WorldWideScience

Sample records for antares ams facility

  1. Technical advances at the ANTARES AMS centre

    International Nuclear Information System (INIS)

    Full text: Accelerator Mass Spectrometry (AMS) began at ANTARES in late 1991. Many technical improvements and upgrades to the AMS measurement system have taken place since then. The AMS Centre routinely measures 14C (to better than 1% precision), 36Cl and 129I. The capability to measure 10Be and 26Al, is established although further development is still in progress. A capability to analyse Actinides is being established and is the subject of another paper to this conference. This paper reviews some of the more recent technical improvements to the facility. For our 14C analyses a new gas stripper system and high resolution ExB velocity analyser have been installed and are in routine operation. The gas stripper is also used for most other isotopes. A new 90 degree spherical ESA allows 129I measurements without the need for time-of-flight analysis. Installation of a critical insulation flange in the isotope cycling system has permitted bouncing of 12C- and the measurement of 13C/12C ratios. A complete set of Dowlish tubes now allows spark free operation to 8 MV for our 10Be and 36Cl measurements. The very recent installation of pelletron chains is being assessed

  2. AMS of heavy radionuclides at ANTARES: status and plans

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.M.; Fink, D.; Hotchkis, M.A.C.; Lawson, E.M.; Tuniz, C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Long-lived radioisotopes are produced in the environment by cosmic ray interactions, natural radioactivity and through the use of nuclear technologies. Detection of trace amounts of anthropogenic isotopes by accelerator mass spectrometry (AMS) is a means of monitoring the safe operation of nuclear facilities and the presence of nuclear activities, however for heavy isotopes such measurements are difficult. This paper discusses the approach taken at ANTARES in developing AMS measurement capability for the actinides and summarises the current status of the project. 6 refs., 1 fig.

  3. ANTARES: Cold neutron radiography and tomography facility

    OpenAIRE

    Schulz, Michael; Schillinger, Burkhard

    2015-01-01

    The neutron imaging facility ANTARES, operated by the Technische Universität München, is located at the cold neutron beam port SR-4a. Based on a pinhole camera principle with a variable collimator located close to the beam port, the facility provides the possibility for flexible use in high resolution and high flux imaging.

  4. Target preparation at the ANTARES AMS Centre

    International Nuclear Information System (INIS)

    The Antares Accelerator Mass Spectroscopy Centre at ANSTO has two chemistry labs dedicated to preparing targets for measurement. Target preparation encompasses a variety of activities ranging from the curation of incoming samples to the numerous steps involved in the purification and processing of dissimilar samples. One of the two laboratories is set up for the physical and chemical pretreatment of 14C samples. Treatments include cleaning by sonification, sorting, grinding and sieving, and chemical treatments such as the standard AAA treatment, and solvent extraction. Combustion and graphitization are also carried out in this laboratory. The second laboratory is a clean room and is dedicated to the combustion, hydrolysis and graphitization of 14C samples as well as the process of the targets for the other isotopes. Combustion is achieved by heating the sample to 900 deg C in the presence of CuO, the resulting gas is purified by passing over Ag and Cu wire at 600 deg C. Graphitization is carried out by reducing the CO2 with an iron catalyst (600 deg C) in the presence of zinc (400 deg C) and a small amount of hydrogen. Samples such as charcoal, shell bone, wood, sediment, seawater and groundwater, containing 0.3-1 mg or more of original carbon, are processed routinely for radiocarbon analysis. The current 14C chemistry background for 1 mg carbon is ∼ 0.3 percent of modern carbon (pMC) enabling us to date materials up to 45 000 BP. Samples of 0.5 - 3 mg carbon or more are routinely performed with a precision 129I, 10Be, 36CI and 26Al. Initial tests for the extraction of 129I from groundwater and sediment have been carried out. 5 refs., 2 figs

  5. Target preparation at the ANTARES AMS Centre

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, G.E.; Hua, Q.; Fink, D.; Hotchkis, M.A.C.; Lawson, E.M. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    The Antares Accelerator Mass Spectroscopy Centre at ANSTO has two chemistry labs dedicated to preparing targets for measurement. Target preparation encompasses a variety of activities ranging from the curation of incoming samples to the numerous steps involved in the purification and processing of dissimilar samples. One of the two laboratories is set up for the physical and chemical pretreatment of {sup 14}C samples. Treatments include cleaning by sonification, sorting, grinding and sieving, and chemical treatments such as the standard AAA treatment, and solvent extraction. Combustion and graphitization are also carried out in this laboratory. The second laboratory is a clean room and is dedicated to the combustion, hydrolysis and graphitization of {sup 14}C samples as well as the process of the targets for the other isotopes. Combustion is achieved by heating the sample to 900 deg C in the presence of CuO, the resulting gas is purified by passing over Ag and Cu wire at 600 deg C. Graphitization is carried out by reducing the CO{sub 2} with an iron catalyst (600 deg C) in the presence of zinc (400 deg C) and a small amount of hydrogen. Samples such as charcoal, shell bone, wood, sediment, seawater and groundwater, containing 0.3-1 mg or more of original carbon, are processed routinely for radiocarbon analysis. The current {sup 14}C chemistry background for 1 mg carbon is {approx} 0.3 percent of modern carbon (pMC) enabling us to date materials up to 45 000 BP. Samples of 0.5 - 3 mg carbon or more are routinely performed with a precision < 1% At present, procedures are being tested for the treatment of samples containing a minimum of 20 {mu}g original carbon. Such small samples sre more likely to be affected by contamination with modern carbon. These laboratories are also being expanded to cater for the processing of a variety of samples for the measurement of other isotopes, ie {sup 129}I, {sup 10}Be, {sup 36}CI and {sup 26}Al. Initial tests for the extraction of

  6. Portfolio of recent climate change studies utilizing AMS at ANTARES, ANSTO

    International Nuclear Information System (INIS)

    The application of Accelerator Mass Spectrometry (AMS) to the measurement of the radionuclides 14C, 10Be, 26Al and 36Cl has dramatically increased our understanding of factors that affect climate and has led to a greater understanding of natural processes. Using the ANTARES AMS facility at ANSTO we are able to analyse samples containing as few as 105 atoms of these radionuclides. Cosmogenic radionuclides produced by the interaction of cosmic rays with the upper atmosphere and exposed surface rocks are stored in natural archives. By measuring small variations in the concentrations of these isotopes over time, information can be inferred about the systems governing these changes. Over the last four years we have undertaken a broad range of climate change and environmental studies, based on the ultra-sensitive technique of accelerator mass spectrometry (AMS). Some specific examples of projects investigating the ice sheet at Law Dome, Antarctica and minerals extracted from geological surface formations will be given

  7. Recent tree ring analyses at the ANTARES AMS centre

    International Nuclear Information System (INIS)

    A total of 48 annual tree rings (24 pairs) from 1952 to 1975 AD have been carefully split, milled and pretreated to alpha-cellulose, the most reliable component of wood for dating. Due to the small amount of material available in each ring, accelerator mass spectrometry (AMS) rather than the conventional method (radiometry) has been used for the determination of the 14C content in tree rings. Pretreated material was combusted to CO2 and then converted to graphite for the 14C measurement in ANTARES, the tandem accelerator at ANSTO. Excellent matching between our measured 14C tree-ring data and atmospheric 14C records at the same latitude has been found. Our data can therefore be used for: extension of atmospheric 14C bomb-pulse curves in tropical regions and the Southern Hemisphere back to the early stage of the nuclear age in the 1950's, for which few direct atmospheric records are available. This is needed to gain a better understanding of global carbon cycle and air-sea interactions; determination of the growth rate of trees in tropical regions (Murphy et al., 1997); and dating of modern organic material in tropical regions and the Southern Hemisphere (in combination with 14C atmospheric data)

  8. AMS analyses at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, E.M. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Physics Division

    1998-03-01

    The major use of ANTARES is Accelerator Mass Spectrometry (AMS) with {sup 14}C being the most commonly analysed radioisotope - presently about 35 % of the available beam time on ANTARES is used for {sup 14}C measurements. The accelerator measurements are supported by, and dependent on, a strong sample preparation section. The ANTARES AMS facility supports a wide range of investigations into fields such as global climate change, ice cores, oceanography, dendrochronology, anthropology, and classical and Australian archaeology. Described here are some examples of the ways in which AMS has been applied to support research into the archaeology, prehistory and culture of this continent`s indigenous Aboriginal peoples. (author)

  9. AMS analyses at ANSTO

    International Nuclear Information System (INIS)

    The major use of ANTARES is Accelerator Mass Spectrometry (AMS) with 14C being the most commonly analysed radioisotope - presently about 35 % of the available beam time on ANTARES is used for 14C measurements. The accelerator measurements are supported by, and dependent on, a strong sample preparation section. The ANTARES AMS facility supports a wide range of investigations into fields such as global climate change, ice cores, oceanography, dendrochronology, anthropology, and classical and Australian archaeology. Described here are some examples of the ways in which AMS has been applied to support research into the archaeology, prehistory and culture of this continent's indigenous Aboriginal peoples. (author)

  10. Hierarchical tree-structured control network for the Antares laser facility

    Energy Technology Data Exchange (ETDEWEB)

    McGirt, F.

    1979-01-01

    The design and implementation of a distributed, computer-based control system for the Antares 100-kJ gas laser fusion facility is presented. Control system requirements and their operational interrelationships that consider both integrated system control and individual subsystem control are described. Several configurations of minicomputers are established to provide direct control of sets of microcomputers and to provide points of operator-laser interaction. Over 100 microcomputers are located very close to the laser device control points or sources of data and perform the real-time functions of the control system, such as data and control signal multiplexing, stepping motor control, and vacuum and gas system control. These microcomputers are designed to be supported as an integral part of the control network and to be software compatible with the larger minicomputers.

  11. The status of the tandem accelerator ANTARES

    Energy Technology Data Exchange (ETDEWEB)

    Fallon, J.; Boldeman, J.; Cohen, D.; Tuniz, C.; Ellis, P. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    The ANTARES facility at the Lucas Heights Research Laboratories has now operated for 4 years. A research program in Accelerator Mass Spectrometry, lon Beam Analysis and small scale radioisotope production has been pursued. During the same period, the accelerator has been significantly upgraded from the configuration which existed at Rutgers University, NJ, USA, before shipment to Australia in 1989. AMS measurement techniques of several long lived isotopes have been developed for environmental, industry and biomedical applications. Both the experimental program and the engineering developments are discussed further.

  12. ANTARES - Recent research and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Tuniz, C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1997-12-31

    ANTARES is an advanced accelerator-based facility dedicated to accelerator mass spectrometry (AMS) and ion beam analysis (IBA). Research programs based on the AMS spectrometer include applications of {sup 14}C, {sup 10}Be, {sup 129}I and other long-lived radionuclides in quaternary science studies, global climate change and nuclear safeguards. Ion beam analysis methods based on elastic recoil detection are used for the in-situ determination of specific elements or isotopes in surface materials. New analytical systems under construction will be presented, including an AMS beamline for the measurement of actinide isotopes and a heavy ion microprobe for elemental imaging with micron resolution. It is estimated that these capabilities will allow the development of exciting research programs in materials and life sciences and foster novel applications in industrial research. 10 refs., 1 fig.

  13. ANTARES - Recent research and future plans

    International Nuclear Information System (INIS)

    ANTARES is an advanced accelerator-based facility dedicated to accelerator mass spectrometry (AMS) and ion beam analysis (IBA). Research programs based on the AMS spectrometer include applications of 14C, 10Be, 129I and other long-lived radionuclides in quaternary science studies, global climate change and nuclear safeguards. Ion beam analysis methods based on elastic recoil detection are used for the in-situ determination of specific elements or isotopes in surface materials. New analytical systems under construction will be presented, including an AMS beamline for the measurement of actinide isotopes and a heavy ion microprobe for elemental imaging with micron resolution. It is estimated that these capabilities will allow the development of exciting research programs in materials and life sciences and foster novel applications in industrial research

  14. Photomultipliers activity inside the ANTARES project

    CERN Document Server

    Basa, S

    2000-01-01

    The ANTARES collaboration is building a deep underwater neutrino telescope. The detection principle is based on the observation of the Cherenkov light produced by a lepton issued from a neutrino interaction with the matter. The detector will consist of about 10 000 large hemispherical photomultipliers with a very good time resolution. After an introduction to the ANTARES project, the design of the ANTARES Optical Module and the various testing facilities will be described. The measured performances on five types of photomultipliers from three different manufacturers (Electron Tube Limited Ltd, Hamamatsu and Photonis) will be finally presented and discussed.

  15. Quality assurance in the Antares laser fusion construction project

    International Nuclear Information System (INIS)

    The Antares CO2 laser facility came on line in November 1983 as an experimental physics facility; it is the world's largest CO2 laser fusion system. Antares is a major component of the Department of Energy's Inertial Confinement Fusion Program. Antares is a one-of-a-kind laser system that is used in an experimental environment. Given limited project funds and tight schedules, the quality assurance program was tailored to achieve project goals without imposing oppressive constraints. The discussion will review the Antares quality assurance program and the utility of various portions to completion of the project

  16. The role of {sup 129} I in the environment and its measurement at the ANTARES AMS center

    Energy Technology Data Exchange (ETDEWEB)

    Fink, D.; Hotchkis, M.; Lawson, E.M.; Jacobsen, G.E. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Anthropogenic production of several radionuclides during the nuclear era has resulted in a dramatic enhancement in their ambient concentrations relative to cosmogenic values for geophysical systems which are in exchange with the atmosphere and oceans. These environmental pulses have been archived in sediments and polar ice caps where for example profiles of {sup 90}Sr and {sup 135}Cs have been measured to establish global transport rates and deposition budgets for bomb-test products. {sup 129}I, half-life 16 Ma, is another nuclear fission product that is and has been periodically released into the atmosphere, but unlike the shorter lived {sup 90}Sr and {sup 135}Cs, had not found widespread utilization because previous detection via neutron activation analysis ({sup 129}I (2n,{gamma}){sup 131}I) was cumbersome and lacked the required sensitivity. AMS has resolved this problem for {sup 129}I measurements by reducing the required sample size, measurement time and atom-counting sensitivity to as little as 10{sup 6} atoms that enable {sup 129}I/{sup 127}I isotopic ratios as low as 2x10-{sup 14} to be measured on milligram samples within an hour. As a result of this new detection capability, an ever-growing interest and awareness in the application of {sup 129}I as an environmental tracer, radiometric dating tool and monitor of operations of the nuclear industry has been generated. 7 refs.

  17. A new 14C AMS facility at IUAC, New Delhi

    International Nuclear Information System (INIS)

    A new state of art Accelerator Mass Spectrometry (AMS) facility for 14C has been developed at IUAC. This facility is based on the 0.5 MV Pelletron accelerator and an Automated Graphitization Equipment (AGE). In addition to the 14C measurements, this system has the capability to perform 10Be and 26AI measurements also. The system is called XCAMS i.e., Compact, Accelerator Mass Spectrometer eXtended for 10Be and 26AI. A detailed description of the newly developed AMS facility and the recent measurements will be discussed

  18. A new AMS facility in Mexico

    Science.gov (United States)

    Solís, C.; Chávez-Lomelí, E.; Ortiz, M. E.; Huerta, A.; Andrade, E.; Barrios, E.

    2014-07-01

    A new Accelerator Mass Spectrometry system has been installed at the Institute of Physics of the National Autonomous University of Mexico (UNAM). A sample preparation chemistry laboratory equipped with computer controlled graphitization equipment (AGEIII) has also been established. Together both facilities constitute the LEMA (Laboratorio de Espectrometría de Masas con Aceleradores) first of its kind in Mexico. High sensitivity characterization of the concentration in a sample of 14C as well as 10Be, 26Al, 129I and Pu are now possible. Since the demand for 14C dating is far more abundant, a data analysis program was developed in the cross-platform programming language Python in order to calculate radiocarbon age. Results from installation, acceptance tests and the first results of 14C analyses of reference materials prepared in our own facility are presented.

  19. A new AMS facility in Mexico

    International Nuclear Information System (INIS)

    A new Accelerator Mass Spectrometry system has been installed at the Institute of Physics of the National Autonomous University of Mexico (UNAM). A sample preparation chemistry laboratory equipped with computer controlled graphitization equipment (AGEIII) has also been established. Together both facilities constitute the LEMA (Laboratorio de Espectrometría de Masas con Aceleradores) first of its kind in Mexico. High sensitivity characterization of the concentration in a sample of 14C as well as 10Be, 26Al, 129I and Pu are now possible. Since the demand for 14C dating is far more abundant, a data analysis program was developed in the cross-platform programming language Python in order to calculate radiocarbon age. Results from installation, acceptance tests and the first results of 14C analyses of reference materials prepared in our own facility are presented

  20. A new AMS facility in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Solís, C., E-mail: corina@fisica.unam.mx; Chávez-Lomelí, E.; Ortiz, M.E.; Huerta, A.; Andrade, E.; Barrios, E.

    2014-07-15

    A new Accelerator Mass Spectrometry system has been installed at the Institute of Physics of the National Autonomous University of Mexico (UNAM). A sample preparation chemistry laboratory equipped with computer controlled graphitization equipment (AGEIII) has also been established. Together both facilities constitute the LEMA (Laboratorio de Espectrometría de Masas con Aceleradores) first of its kind in Mexico. High sensitivity characterization of the concentration in a sample of {sup 14}C as well as {sup 10}Be, {sup 26}Al, {sup 129}I and Pu are now possible. Since the demand for {sup 14}C dating is far more abundant, a data analysis program was developed in the cross-platform programming language Python in order to calculate radiocarbon age. Results from installation, acceptance tests and the first results of {sup 14}C analyses of reference materials prepared in our own facility are presented.

  1. Recent results from ANTARES

    Directory of Open Access Journals (Sweden)

    Trovato Agata

    2015-01-01

    Full Text Available Operating 40 km off the coast of France since 2007, the ANTARES detector is the largest deep-sea neutrino telescope in the Northern Hemisphere with an instrumented volume of more than 0.01 cubic kilometers. It consists of an array of 885 photomultipliers detecting the Cherenkov light induced by charged leptons produced by neutrino interactions in and around the detector. The primary goal of ANTARES is to search for astrophysical neutrinos in the TeV–PeV range. This comprises generic searches for any diffuse cosmic neutrino flux as well as more specific searches for astrophysical galactic and extragalactic sources. The search program also includes multi-messenger analyses based on time and/or space coincidences with other cosmic probes. The ANTARES observatory is sensitive to a wide-range of other phenomena, from atmospheric neutrino oscillations to dark matter annihilation. In this contribution, recent results from the ANTARES neutrino telescope will be presented.

  2. The ANTARES Optical Module

    OpenAIRE

    the ANTARES Collaboration

    2001-01-01

    The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0.1 km-squared and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere. The design of the ANTARES optical module, which is a key element of the detector, has been finalized following extensive R & D studi...

  3. PMT measurements in Antares

    Energy Technology Data Exchange (ETDEWEB)

    Creusot, A. [APC, 10, rue Alice Domon et Lonie Duquet,75205 Paris (France); Kalekin, O., E-mail: kalekin@physik.uni-erlangen.de [ECAP, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Kulikovskiy, V. [INFN Genova, Via Dodecaneso 33, 16146 Genova (Italy); Yakovenko, Ya. [Moscow State University, Leninskie Gori, 119991 Moscow (Russian Federation)

    2013-10-11

    The comparison of simulated and real data in the Antares experiment shows some discrepancies. Differences are observed in the charge distribution of background hits, in the trigger efficiency, and in the counting rate of {sup 40}K decay induced events. These discrepancies must be understood to improve data analysis. It turns out that most of the simulated/real data mismatch can be explained by a undetailed description of the PMT response in the simulations. PMT parameters such as late pulses, afterpulses and angular acceptance have been reviewed and when necessary measurements of these parameters have been carried out using Antares PMTs and optical modules. In addition a more detailed simulation of the angular acceptance of the Antares optical module has been performed. Results of these studies are presented.

  4. The Antares computing model

    Energy Technology Data Exchange (ETDEWEB)

    Kopper, Claudio, E-mail: claudio.kopper@nikhef.nl [NIKHEF, Science Park 105, 1098 XG Amsterdam (Netherlands)

    2013-10-11

    Completed in 2008, Antares is now the largest water Cherenkov neutrino telescope in the Northern Hemisphere. Its main goal is to detect neutrinos from galactic and extra-galactic sources. Due to the high background rate of atmospheric muons and the high level of bioluminescence, several on-line and off-line filtering algorithms have to be applied to the raw data taken by the instrument. To be able to handle this data stream, a dedicated computing infrastructure has been set up. The paper covers the main aspects of the current official Antares computing model. This includes an overview of on-line and off-line data handling and storage. In addition, the current usage of the “IceTray” software framework for Antares data processing is highlighted. Finally, an overview of the data storage formats used for high-level analysis is given.

  5. PMT measurements in Antares

    International Nuclear Information System (INIS)

    The comparison of simulated and real data in the Antares experiment shows some discrepancies. Differences are observed in the charge distribution of background hits, in the trigger efficiency, and in the counting rate of 40K decay induced events. These discrepancies must be understood to improve data analysis. It turns out that most of the simulated/real data mismatch can be explained by a undetailed description of the PMT response in the simulations. PMT parameters such as late pulses, afterpulses and angular acceptance have been reviewed and when necessary measurements of these parameters have been carried out using Antares PMTs and optical modules. In addition a more detailed simulation of the angular acceptance of the Antares optical module has been performed. Results of these studies are presented

  6. The Antares computing model

    International Nuclear Information System (INIS)

    Completed in 2008, Antares is now the largest water Cherenkov neutrino telescope in the Northern Hemisphere. Its main goal is to detect neutrinos from galactic and extra-galactic sources. Due to the high background rate of atmospheric muons and the high level of bioluminescence, several on-line and off-line filtering algorithms have to be applied to the raw data taken by the instrument. To be able to handle this data stream, a dedicated computing infrastructure has been set up. The paper covers the main aspects of the current official Antares computing model. This includes an overview of on-line and off-line data handling and storage. In addition, the current usage of the “IceTray” software framework for Antares data processing is highlighted. Finally, an overview of the data storage formats used for high-level analysis is given

  7. The ANTARES optical module

    International Nuclear Information System (INIS)

    The ANTARES collaboration is building a deep sea neutrino telescope in the Mediterranean Sea. This detector will cover a sensitive area of typically 0.1 km2 and will be equipped with about 1000 optical modules. Each of these optical modules consists of a large area photomultiplier and its associated electronics housed in a pressure resistant glass sphere. The design of the ANTARES optical module, which is a key element of the detector, has been finalized following extensive R and D studies and is reviewed here in detail

  8. Application of AMS to oceanography: Progress at the National Ocean Sciences AMS facility

    International Nuclear Information System (INIS)

    Through the support of the NSF, the authors have established a facility for the measurement of 14C in oceanographic samples. A major portion of the samples they are analyzing are being provided from the large oceanographic programs of WOCE (World Ocean Circulation Experiment) and JGOFS (Joint Global Ocean Flux Study). They have established a laboratory for rapidly preparing graphite samples from seawater inorganic carbon, organic carbon, and CaCO3 and are automating many of the procedures. Analysis of Δ14C in seawater samples is facilitated by the abundance of inorganic carbon in seawater, but hindered by the precision required (±0.5%). In addition to routinely processing samples supporting a variety of oceanographic projects, they are investigating novel uses of AMS in the field of chemical oceanography

  9. The new 6 MV AMS-facility DREAMS at Dresden

    International Nuclear Information System (INIS)

    Highlights: ► New 6 MV tandem accelerator in operation in Germany for AMS, IBA and HE-implantation. ► DREsden AMS (DREAMS) primarily used for radionuclides 10Be, 26Al, 36Cl, 41Ca and 129I. ► Quality assurance by traceable calibration materials and interlaboratory comparisons. High accuracy data for future DREAMS users. ► Energy calibration of accelerator by 1H(15N,γα)12C yield correction factor of 1.019. - Abstract: A new 6 MV electrostatic tandem accelerator has been put into operation at Helmholtz-Zentrum Dresden-Rossendorf (HZDR). The system is equipped for accelerator mass spectrometry and opens a new research field at HZDR and the Helmholtz Association. It will be also used for ion beam analysis as well as for material modification via high-energy ion implantation. The research activity at the DREsden Accelerator Mass Spectrometry facility (DREAMS) based on a 6 MV Tandetron is primarily dedicated to the long-lived radioisotopes of 10Be, 26Al, 36Cl, 41Ca, and 129I. DREAMS background levels have been found to be at 4.5 × 10−16 for 10Be/9Be, 8 × 10−16 for 26Al/27Al, 3 × 10−15 for 36Cl/35Cl and 8 × 10−15 for 41Ca/40Ca, respectively. The observed background of 2 × 10−13 for 129I/127I originates from intrinsic 129I from AgI produced from commercial KI. The introduction of quality assurance approaches for AMS, such as the use of traceable calibration materials and taking part in interlaboratory comparisons, guarantees high accuracy data for future DREAMS users. During first experiments an energy calibration of the accelerator has been carried out using the nuclear reaction 1H(15N,γα)12C yielding an energy correction factor of 1.019.

  10. ANTARES: The first undersea neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  11. ANTARES: The first undersea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Ageron, M. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Aguilar, J.A. [IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC-Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Albert, A. [GRPHE-Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568, 68008 Colmar (France); Ameli, F. [INFN-Sezione di Roma, P.le Aldo Moro 2, 00185 Roma (Italy); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, 08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere-Institut de recherche sur les lois fondamentales de l' Univers-Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de Zones Costaneres (IGIC)-Universitat Politecnica de Valencia. C/Paranimf 1., 46730 Gandia (Spain); Arnaud, K.; Aslanides, E. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Assis Jesus, A.C.; Astraatmadja, T. [Nikhef, Science Park, Amsterdam (Netherlands); Aubert, J.-J. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Auer, R. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Barbarito, E. [INFN-Sezione di Bari, Via E. Orabona 4, 70126 Bari (Italy); Baret, B. [APC-Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris), 10 rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (France); and others

    2011-11-11

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  12. ANTARES: The first undersea neutrino telescope

    OpenAIRE

    Ageron, M.; H. van Haren; ANTARES Collaboration

    2011-01-01

    The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

  13. The neutrino telescope ANTARES

    Directory of Open Access Journals (Sweden)

    Gleixner Andreas

    2014-04-01

    Full Text Available The ANTARES neutrino telescope is currently the largest neutrino detector in the Northern Hemisphere. The detector consists of a three-dimensional array of 885 photomultiplier tubes, distributed along 12 lines, located at a depth of 2500 m in the Mediterranean Sea. The purpose of the experiment is the detection of high-energy cosmic neutrinos. The detection principle is based on the observation of Cherenkov-Light emitted by muons resulting from charged-current interactions of muon neutrinos in the vicinity of the detection volume. The main scientific targets of ANTARES include the search for astrophysical neutrino point sources, the measurement of the diffuse neutrino flux and the indirect search for dark matter.

  14. LOTS analysis of optical diffraction in Antares

    International Nuclear Information System (INIS)

    Diffraction and aberration effects are calculated for the power-amplifier and target-system portions of the 100-kJ Antares laser fusion facility, using LOTS, a fast-Fourier-transform propagation code incorporating a model for saturating gain in CO2. Energy losses due to diffraction are found to be small compared to other losses. Diffraction 'hot spots' usually typical of propagation at low Fresnel numbers are effectively suppressed in the Antares power amplifier by gain saturation. Taking account of diffraction and aberrations over the whole optical train, the code predicts a target focal spot that has 82% of its energy in a 150-micron-diameter circle, a result essentially identical to what would be expected of the final focus mirror alone

  15. Antares Reference Telescope System

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, V.K.; Kaprelian, E.; Swann, T.; Parker, J.; Wolfe, P.; Woodfin, G.; Knight, D.

    1983-01-01

    Antares is a 24-beam, 40-TW carbon-dioxide laser-fusion system currently nearing completion at the Los Alamos National Laboratory. The 24 beams will be focused onto a tiny target (typically 300 to 1000 ..mu..m in diameter) located approximately at the center of a 7.3-m-diameter by 9.3-m-long vacuum (10/sup -6/ torr) chamber. The design goal is to position the targets to within 10 ..mu..m of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares Reference Telescope System is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares Reference Telescope System consists of two similar electro-optical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9X optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front-lighting subsystem which illuminates the target; and (4) an adjustable back-lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and trade-offs are discussed. The final system chosen (which is being built) and its current status are described in detail.

  16. Antares Reference Telescope System

    International Nuclear Information System (INIS)

    Antares is a 24-beam, 40-TW carbon-dioxide laser-fusion system currently nearing completion at the Los Alamos National Laboratory. The 24 beams will be focused onto a tiny target (typically 300 to 1000 μm in diameter) located approximately at the center of a 7.3-m-diameter by 9.3-m-long vacuum (10-6 torr) chamber. The design goal is to position the targets to within 10 μm of a selected nominal position, which may be anywhere within a fixed spherical region 1 cm in diameter. The Antares Reference Telescope System is intended to help achieve this goal for alignment and viewing of the various targets used in the laser system. The Antares Reference Telescope System consists of two similar electro-optical systems positioned in a near orthogonal manner in the target chamber area of the laser. Each of these consists of four subsystems: (1) a fixed 9X optical imaging subsystem which produces an image of the target at the vidicon; (2) a reticle projection subsystem which superimposes an image of the reticle pattern at the vidicon; (3) an adjustable front-lighting subsystem which illuminates the target; and (4) an adjustable back-lighting subsystem which also can be used to illuminate the target. The various optical, mechanical, and vidicon design considerations and trade-offs are discussed. The final system chosen (which is being built) and its current status are described in detail

  17. RICH - A new AMS facility at the Royal Institute for Cultural Heritage, Brussels, Belgium

    Science.gov (United States)

    Boudin, Mathieu; Van Strydonck, Mark; van den Brande, Tess; Synal, Hans-Arno; Wacker, Luckas

    2015-10-01

    Since 1989 the radiocarbon dating lab has their own graphitization system for 14C AMS dating but RICH (Royal Institute for Cultural Heritage) did not possess their own AMS and measurements were carried out in collaboration with other AMS facilities. In April 2013 the Micadas (Mini Carbon Dating System) AMS was installed at RICH in Brussels and after 1.5 year operation the high stability and performance of the Micadas can be demonstrated by repeated analyses of primary standard OXA II and secondary standards. Results of unknown samples measured on the RICH-Micadas and on other AMS systems are in good agreement.

  18. ANTARES Status Report

    CERN Document Server

    Montaruli, T

    2003-01-01

    The ANTARES Collaboration is building a neutrino telescope 2400 m below the Mediterranean sea close to the Southern French coast. The site is already linked to the shore station by a 40 km-long electro-optical cable (EOC) which transmits power and data. A prototype line and an instrumentation line for monitoring environmental parameters have been successfully deployed and connected to the EOC via the junction box, using the IFREMER manned submarine. The Collaboration, after years of dedicated R&D and deployments of prototype lines, is now ready to deploy the detector starting in spring 2004.

  19. A small and compact AMS facility for tritium depth profiling

    Indian Academy of Sciences (India)

    M Friedrich; W Pilz; N Bekris; M Glugla; M Kiisk; V Liechtenstein

    2002-12-01

    Depth profiling measurements of tritium in carbon samples have been performed during the past seven years at the AMS facility installed at the Rossendorf 3 MV Tandetron. The samples have been cut from the inner walls of the fusion experiments ASDEX-upgrade/Garching and JET/Culham. The tritium content of the samples from JET required a dedicated AMS facility to prevent any contamination of the versatile 3 MV Tandetron. On the basis of an air-insulated 100 kV tandem accelerator equipped with a gas stripper an AMS facility exclusively devoted to tritium depth profiling was installed, tested and used for routine measurements. After additional successful tests employing diamond-like carbon (DLC) stripper foils at this accelerator, another small and compact 100 kV tandem accelerator with SF6 insulation and a DLC stripper has been installed at the AMS facility. Results obtained with the different tandem accelerators are presented.

  20. A new AMS facility at Inter University Accelerator Centre, New Delhi

    Science.gov (United States)

    Kumar, Pankaj; Chopra, S.; Pattanaik, J. K.; Ojha, S.; Gargari, S.; Joshi, R.; Kanjilal, D.

    2015-10-01

    Inter University Accelerator Centre (IUAC), a national facility of government of India, is having a 15UD Pelletron accelerator for multidisciplinary ion beam based research programs. Recently, a new accelerator mass spectrometry (AMS) facility has been developed after incorporating many changes in the existing 15UD Pelletron accelerator. A clean chemistry laboratory for 10Be and 26Al with all the modern facilities has also been developed for the chemical processing of samples. 10Be measurements on sediment samples, inter laboratory comparison results and 26Al measurements on standard samples are presented in this paper. In addition to the 10Be and 26Al AMS facilities, a new 14C AMS facility based on a dedicated 500 kV tandem ion accelerator with two cesium sputter ion sources, is also being setup at IUAC.

  1. The ANTARES neutrino telescope

    CERN Document Server

    Zornoza, Juan de Dios

    2012-01-01

    The ANTARES collaboration completed the installation of the first neutrino detector in the sea in 2008. It consists of a three dimensional array of 885 photomultipliers to gather the Cherenkov photons induced by relativistic muons produced in charged-current interactions of high energy neutrinos close to/in the detector. The scientific scope of neutrino telescopes is very broad: the origin of cosmic rays, the origin of the TeV photons observed in many astrophysical sources or the nature of dark matter. The data collected up to now have allowed us to produce a rich output of physics results, including the map of the neutrino sky of the Southern hemisphere, search for correlations with GRBs, flaring sources, gravitational waves, limits on the flux produced by dark matter self-annihilations, etc. In this paper a review of these results is presented.

  2. Optical tooling for Antares

    International Nuclear Information System (INIS)

    The Antares laser system is a large (40 kJ) CO2 pulse laser system. High energy pulses are transmitted between buildings over path lengths exceeding 90 m. The optical elements are contained within large steel assemblies (power amplifiers, turning chambers, and target chamber) which must be positioned with tolerances of 0.75 mm. The subassemblies of optical components must be prepositioned to a precision of 0.25 mm. This precision can easily be obtained by first order surveying techniques and instrumentation. This paper describes the use of a combination of traditional surveying techniques and modern optical tooling methods throughout the integration of building reference planes and the erection of major steel assemblies. The design and measured assembly tolerances are compared

  3. ANTARES: status report

    International Nuclear Information System (INIS)

    The ANTARES collaboration aims at the construction of a large underwater neutrino telescope to be deployed in the Mediterranean Sea by 2500 m depth, 40 km off the coast, near Toulon (France). The detector consists in a 3-D array of photo-multiplier tubes to detect the Cerenkov light emitted in sea water by muons produced by the charged interaction of neutrinos in the surrounding matter. The R and D phase of the project comes to a conclusion with the deployments of a subset of a vertical string (December 2002) and of a line equipped with instrumentation for environmental monitoring (February 2003), and with the submarine connections of both lines to the already installed electro-optical cable (March 2003). In this contribution, after a description of the detector, we will go through the main steps leading to the first operation of the detector. Results from the 100 day operation will also be presented

  4. The ANTARES Neutrino Telescope

    CERN Document Server

    Perrina, Chiara

    2015-01-01

    At about 40 km off the coast of Toulon (France), anchored at 2475 m deep in the Mediterranean Sea, there is ANTARES: the first undersea neutrino telescope and the only one currently operating. The detector consists of 885 photomultiplier tubes arranged into 12 strings of 450-metres high, with the aim to detect the Cherenkov light induced by the charged superluminal interaction products of neutrinos. Its main scientific target is the search for high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the cosmic neutrino diffuse flux, focusing in particular on events coming from below the horizon (up-going events) in order to significantly reduce the atmospheric muons background. Thanks to the development of a strategy for the identification of neutrinos coming from above the horizon (down-going events) the field of view of the telescope will be extended.

  5. Measurement of radium isotopes with the ANU AMS facility

    International Nuclear Information System (INIS)

    In contaminated environments the spatial distribution of thorium should be far more uniform than that for uranium. Accordingly, measurements of the 228Ra/226Ra ratio may provide a probe with which to assess variations in the amount of uranium-process derived 226Ra. Furthermore, for contaminated or rehabilitated areas where the 226Ra/228Ra ratio is anomalous, measurements of the transport of material away from the site via the ratio could provide information on the local erosion rate. Accelerator Mass Spectrometry (AMS) adds a tandem ion accelerator and additional analysis stages to a conventional mass spectrometry arrangement, in order to facilitate ultra-trace level abundance measurements of selected isotopes. In doing so, it also makes use of the detection and analysis techniques of traditional nuclear physics. For the 226,228Ra isotopes AMS offers a number of advantages over the more traditional techniques of a-and γ- spectroscopy. AMS requires less sample mass, and because of its very high selectivity provides excellent discrimination against potential interferences. The smaller sample size (∼1g) also allows a considerable simplification of the radio-chemical processing compared with α-spectroscopy. Two major advantages are the ability to measure both isotopes with the one technique without the necessity of waiting for 228Th to grow in and, that once prepared, the 228Ra/226Ra ratio for ∼30 samples can be determined in about a day. This paper will describe the AMS technique, and highlight recent developments in the measurement of 226,228Ra with the ANU system

  6. Alignment telescope for Antares

    International Nuclear Information System (INIS)

    The Antares Automatic Alignment System employs a specially designed telescope for alignment of its laser beamlines. There are two telescopes in the system, and since each telescope is a primary alignment reference, stringent boresight accuracy and stability over the focus range were required. Optical and mechanical designs, which meet this requirement as well as that of image quality over a wide wavelength band, are described. Special test techniques for initial assembly and alignment of the telescope are also presented. The telescope, which has a 180-mm aperture FK51-KZF2 type glass doublet objective, requires a boresight accuracy of 2.8 μrad at two focal lengths, and object distances between 11 meters and infinity. Travel of a smaller secondary doublet provides focus from 11 m to infinity with approximately 7.8 m effective focal length. By flipping in a third doublet, the effective focal length is reduced to 2.5 m. Telescope alignment was accomplished by using a rotary air bearing to establish an axis in front of the system and placing the focus of a Laser Unequal Path Interferometer (LUPI) at the image plane

  7. The new French 5 MV AMS facility: ASTERisques

    International Nuclear Information System (INIS)

    A new 5 MV accelerator mass spectrometry (AMS) system, developed by HVE, has been installed at CEREGE. Ions are extracted from a hybrid ion source which can handle gaseous and solid samples. On the low-energy side the ions are separated by an energy-analyser, a 54 electrostatic deflector, and a mass-analyzer, a 90 magnet, equipped with a fast-bouncing system. The tandetron accelerator contains a gas stripper and active stripper gas regulation. On the high-energy side, a 90 analysing magnet is followed by Faraday cups for stable isotope measurements. The rare isotopes are detected by a 4-anode gas ionization chamber after passing through an absorber foil, a 35 electrostatic deflector and a 30 vertical analysing magnet for further background reduction. The system is fully dedicated to applied research. We will mainly measure long-lived (half-life > 100000 a) cosmogenic radionuclides isolated from geological and environmental samples. The determination of e.g. Be-10, Al-26, Cl-36 in bed rock, sediments and ice cores will help to reconstruct climatic changes, seismic activities, volcano eruptions and rock falls in the past. Understanding past events will enable us to better predict such events in the future

  8. Operational performance of the Antares alignment system

    International Nuclear Information System (INIS)

    A review of the operational performance of the alignment system for the large Antares optical system is presented. The alignment of twenty-four optical channels consisting of two hundred optical elements is verified and established as required prior to each target shot for this CO2 laser fusion test facility. The overall system design included features such as automatic operation, data base driven controls, self calibration, provisions for initial optical alignment set up, and system aided fault location. The system approach employed two alignment stations which sequentially viewed the 24 optical channels (sectors) and could be used for prealignments and calibrations. Closed-loop operations via the computer permit rapid mirror alignments. The performance of the applied techniques and devices is evaluated and compared to the required performance specifically from the standpoint of accuracy and shot rate. Overall system performance with verification by actual target shots is presented

  9. The ANTARES Optical Beacon System

    CERN Document Server

    Ageron, M; Albert, A; Ameli, F; Anghinolfi, M; Anton, G; Anvar, S; Ardellier-Desages, F; Aslanides, E; Aubert, J J; Auer, R; Barbarito, E; Basa, S; Battaglieri, M; Becherini, Y; Beltramelli, J; Bertin, V; Bigi, A; Billault, M; Blaes, R; De Botton, N R; Bouwhuis, M C; Bradbury, S M; Bruijn, R; Brunner, J; Burgio, G F; Busto, J; Cafagna, F; Caillat, L; Calzas, A; Capone, A; Caponetto, L; Carmona, E; Carr, J; Cartwright, S L; Castel, D; Castorina, E; Cavasinni, V; Cecchini, S; Ceres, A; Charvis, P; Chauchot, P; Chiarusi, T; Circella, M; Colnard, C; Compere, C; Coniglione, R; Cottini, N; Coyle, P; Cuneo, S; Cussatlegras, A S; Damy, G; Van Dantzig, R; De Bonis, G; De Marzo, C; De Vita, R; Dekeyser, I; Delagnes, E; Denans, D; Deschamps, A; Destelle, J J; Dinkespieler, B; Distefano, C; Donzaud, C; Drogou, J F; Druillole, F; Durand, D; Ernenwein, J P; Escoffier, S; Falchini, E; Favard, S; Fehr, F; Feinstein, F; Ferry, S; Fiorello, C; Flaminio, V; Fratini, K; Fuda, J L; Galeotti, S; Gallone, J M; Giacomelli, G; Girard, N; Gojak, C; Goret, P; Graf, K; Hallewell, G; Harakeh, M N; Hartmann, B; Heijboer, A; Heine, E; Hello, Y; Hernández-Rey, J J; Hossl, J; Hoffman, C; Hogenbirk, J; Hubbard, John R; Jaquet, M; Jaspers, M; De Jong, M; Jouvenot, F; Kalantar-Nayestanaki, N; Kappes, A; Karg, T; Katz, U; Keller, P; Kok, E; Kok, H; Kooijman, P; Kopper, C; Korolkova, E V; Kouchner, A; Kretschmer, W; Kruijer, A; Kuch, S; Kudryavtsev, V A; Lagier, P; Lahmann, R; Lamanna, G; Lamare, P; Lambard, G; Languillat, J C; Laschinsky, H; Lavalle, J; Le Guen, Y; Le Provost, H; Le Van-Suu, A; Lefèvre, D; Legou, T; Lelaizant, G; Lim, G; Lo Presti, D; Löhner, H; Loucatos, Sotirios S; Louis, F; Lucarelli, F; Lyashuk, V; Marcelin, M; Margiotta, A; Masullo, R; Mazéas, F; Mazure, A; McMillan, J E; Megna, R; Melissas, M; Migneco, E; Milovanovic, A; Mongelli, M; Montaruli, T; Morganti, M; Moscoso, L; Musumeci, M; Naumann-Godo, M; Naumann, C; Niess, V; Noble, T; Olivetto, C; Ostasch, R; Palanque-Delabrouille, Nathalie; Payre, P; Peek, H; Pérez, A; Petta, C; Piattelli, P; Pillet, R; Pineau, J P; Poinsignon, J; Popa, V; Pradier, T; Racca, C; Randazzo, N; Van Randwijk, J; Real, D; Van Rens, B; Rethore, F; Rewiersma, P A M; Riccobene, G; Rigaud, V; Ripani, M; Roca, V; Roda, C; Rolin, J F; Rose, H J; Rostovtsev, A; Roux, J; Ruppi, M; Russo, G V; Rusydi, G; Salesa, F; Salomon, K; Sapienza, P; Schmitt, F; Schuller, J P; Shanidze, R; Sokalski, I A; Spona, T; Spurio, M; van der Steenhoven, G; Stolarczyk, T; Streeb, K; Sulak, L; Taiuti, M; Tamburini, C; Tao, C; Terreni, G; Thompson, L F; Urbano, F; Valdy, P; Valente, V; Vallage, B; Vaudaine, G; Venekamp, G; Verlaat, B; Vernin, P; De Vries-Uiterweerd, G; Van Wijk, R; Wijnker, G; De Witt-Huberts, P K A; Wobbe, G; De Wolf, E; Yao, A F; Zaborov, D; Zaccone, Henri; De Dios-Zornoza-Gomez, Juan; Zúñiga, J; al, et

    2007-01-01

    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of ...

  10. The ANTARES Optical Beacon System

    OpenAIRE

    Ageron, M.; collaboration, ANTARES

    2007-01-01

    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming...

  11. Dark Matter Search with ANTARES

    OpenAIRE

    Motz, Holger

    2011-01-01

    Built in the deep sea of the Mediterranean near Toulon, France, the ANTARES neutrino telescope detects neutrinos which interact inside or close to the detector and bring forth a muon which emits Cherenkov light. The detector consists of a photomultiplier array mounted on flexible strings which are anchored on the seabed. From the position and time of the incident Cherenkov photons, the direction of the muon track and thereby that of its precursor neutrino are reconstructed. Part of the projec...

  12. The ANTARES optical beacon system

    International Nuclear Information System (INIS)

    ANTARES is a neutrino telescope being deployed in the Mediterranean Sea. It consists of a three-dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. High angular resolution can be achieved, in particular, when a muon is produced, provided that the Cherenkov photons are detected with sufficient timing precision. Considerations of the intrinsic time uncertainties stemming from the transit time spread in the photomultiplier tubes and the mechanism of transmission of light in sea water lead to the conclusion that a relative time accuracy of the order of 0.5 ns is desirable. Accordingly, different time calibration systems have been developed for the ANTARES telescope. In this article, a system based on Optical Beacons, a set of external and well-controlled pulsed light sources located throughout the detector, is described. This calibration system takes into account the optical properties of sea water, which is used as the detection volume of the ANTARES telescope. The design, tests, construction and first results of the two types of beacons, LED and laser-based, are presented

  13. Upgrading of the AMS facility at the Koffler 14UD Pelletron accelerator

    International Nuclear Information System (INIS)

    The AMS facility based on a 14UD Pelletron tandem accelerator has been upgraded in recent years to support an active and diversified research program. A new dedicated AMS ion source beam line merging at 45 deg. with the existing injection line through a 45 deg. electrostatic deflector is in operation. The multi-sample high-intensity Cs sputter ion source stands on a separate 120 kV platform and is remote-controlled through a hybrid infrared-fiber-optics link operated either manually or by the accelerator-control computer, ensuring safe and reliable operation. Independent current preamplifiers are used in Faraday cup current readings down to the pA range. The accelerator computer-control system was upgraded to LabView 6.1, allowing a PC server to control and read out all hardware components while one or more remote PC clients run the AMS software. Ad hoc sequences of commands, written in a script macro language, are run from a client computer to perform an automated AMS measurement. The present capabilities of the facility in terms of detected radionuclides and their sensitivities are listed

  14. Instrumental developments at the IBA-AMS dating facility at the University of Lecce

    International Nuclear Information System (INIS)

    The accelerator mass spectrometry (AMS) radiocarbon dating facility at the University of Lecce, Italy is now fully operational and in the first year of operation more than 500 samples both organic and inorganic have been measured for applications in archaeology, history of art, geology and environmental sciences. The experimental capabilities of the facility have been recently significantly improved by the installation of an in vacuum and in air ion beam analysis (IBA) beam line. Investigations are routinely carried out in material science and cultural heritage diagnostics

  15. The ANTARES telescope neutrino alert system

    NARCIS (Netherlands)

    Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhoefer, A.; Ernenwein, J-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J-L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefevre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Pavalas, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schoeck, F.; Schuller, J-P.; Schuessler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sanchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zuniga, J.

    2012-01-01

    The ANTARES telescope has the capability to detect neutrinos produced in astrophysical transient sources. Potential sources include gamma-ray bursts, core collapse supernovae, and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a new detection method based on c

  16. Upgrading of the AMS facility at the Koffler 14UD Pelletron accelerator

    CERN Document Server

    Berkovits, D; Bordeanu, C; Ghelberg, S; Hass, M; Heber, O; Paul, M; Shahar, Y; Verri, G; 10.1016/j.nimb.2004.04.033

    2004-01-01

    The AMS facility based on a 14UD Pelletron tandem accelerator has been upgraded in recent years to support an active and diversified research program. A new dedicated AMS ion source beam line merging at 45 degrees with the existing injection line through a 45 degrees electrostatic deflector is in operation. The multi-sample high- intensity Cs sputter ion source stands on a separate 120 kV platform and is remote-controlled through a hybrid infrared-fiber-optics link operated either manually or by the accelerator-control computer, ensuring safe and reliable operation. Independent current preamplifiers are used in Faraday cup current readings down to the pA range. The accelerator computer-control system was upgraded to Lab View 6.1, allowing a PC server to control and read out all hardware components while one or more remote PC clients run the AMS software. Ad hoc sequences of commands, written in a script macro language, are run from a client computer to perform an automated AMS measurement. The present capabil...

  17. Status of the compact 1 MV AMS facility at the Centro Nacional de Aceleradores (Spain)

    International Nuclear Information System (INIS)

    Since February 2006, the new 1 MV multielement compact AMS facility SARA (Spanish Accelerator for Radionuclides Analyses) at the Centro Nacional de Aceleradores (CNA) in Sevilla (Spain) is fully operative. During the first one and a half year of operation, the viability of the system for the measurement of 10Be, 14C, 129I and plutonium isotopes, 239Pu and 240Pu, has been evaluated. First results have demonstrated that, in terms of precision and detection limits, the performance of the device compares to other compact AMS facilities, although some progress can still be done in order to optimize its capacities. At this moment, background levels are in the order of 10-14 for 10Be/9Be, 10-13 for 129I/127I, 10-15 for 14C/12C (processed and unprocessed blank) and about 106 atoms for plutonium isotopes: 239Pu, 240Pu and 242Pu. In this work, the current status of the AMS measurements at CNA for the above mentioned radionuclides is described

  18. AMS analysis of 36Cl induced in concrete of accelerator facilities

    International Nuclear Information System (INIS)

    Accelerator mass spectrometry (AMS) was applied to the analysis of 36Cl induced in concrete samples obtained from accelerator facilities. In order to use a small amount of concrete sample and to separate chlorine as pure as possible, an improvement of separation process was developed. Chlorine was extracted from 1-5 g of concrete into 0.01 M nitric acid in a pressurized decomposition vessel. After determining chlorine using ion chromatography, a certain amount of NaCl solution was added to obtain sufficient amounts of AgCl precipitate and to dilute to a suitable isotope ratio of 36Cl to 35Cl (36Cl/35Cl) for the AMS (10-12-10-10). A careful purification procedure was applied to reduce 36S interference in AMS. Good reproducibility and small error throughout the chemical process for sample preparation was attained. Depth profiles of 36Cl/35Cl in concrete of a medium-energy cyclotron were measured by the developed method and compared with the results of γ-emitters induced by thermal neutrons. Since it was confirmed that 36Cl was produced by thermal neutron capture of 35Cl, the thermal neutron fluence irradiated during accelerator operation could be obtained using 36Cl/35Cl. In order to estimate the neutron fluences, the 36Cl/35Cl measurement by AMS is more useful than radioactivity measurements of other isotopes such as γ-emitters because AMS directly provides the isotope ratio and the half-life of 36Cl is very long. (orig.)

  19. ANTARES: An Undersea Neutrino telescope

    CERN Multimedia

    2002-01-01

    The ANTARES (Astronomy with a Neutrino Telescope and ${Abyss}$ environmental RESearch) deep-sea neutrino telescope is designed to search for neutrinos of astrophysical origin. Neutrinos are unique probes of the high energy universe; being neutral they are not deflected by magnetic fields and interacting weakly they can readily escape from the densest regions of the universe. Potential sources of neutrino are galactic (e.g supernova remnants, micro-quasars) and extra-galactic (e.g active galactic nuclei, gamma-ray bursters). Annihilation of dark matter particles in the Sun or Galactic Centre is another well motivated potential source of extra terrestrial neutrinos. The ANTARES detector is located 40 km off the coast of Toulon (France) at a depth of 2475m in the Mediterranean Sea. Being located in the Northern hemisphere it studies the Southern sky and in particular has the Galactic Centre in its field of view. Since 2006, the detector has operated continuously in a partial configuration. The detector was compl...

  20. Recent results of the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The latest results from the ANTARES Neutrino Telescope are reported. Limits on a high energy neutrino diffuse flux have been set using for the first time both muon–track and showering events. The results for point sources obtained by ANTARES are also shown. These are the most stringent limits for the southern sky for neutrino energies below 100 TeV. Constraints on the nature of the cluster of neutrino events near the Galactic Centre observed by IceCube are also reported. In particular, ANTARES data excludes a single point–like neutrino source as the origin of this cluster. Looking for neutrinos coming from the Sun or the centre of the Galaxy, very competitive limits are set by the ANTARES data to the flux of neutrinos produced by self-annihilation of weakly interacting massive particles

  1. Integration of Acoustic Detection Equipment into ANTARES

    CERN Document Server

    Lahmann, R; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Naumann, C; Salomon, K

    2005-01-01

    The ANTARES group at the University of Erlangen is working towards the integration of a set of acoustic sensors into the ANTARES Neutrino Telescope. With this setup, tests of acoustic particle detection methods and background studies shall be performed. The ANTARES Neutrino Telescope, which is currently being constructed in the Mediterranean Sea, will be equipped with the infrastructure to accommodate a 3-dimensional array of photomultipliers for the detection of Cherenkov light. Within this infrastructure, the required resources for acoustic sensors are available: Bandwidth for the transmission of the acoustic data to the shore, electrical power for the off-shore electronics and physical space to install the acoustic sensors and to route the connecting cables (transmitting signals and power) into the electronics containers. It will be explained how the integration will be performed with minimal modifications of the existing ANTARES design and which setup is foreseen for the acquisition of the acoustic data.

  2. Atmospheric muons reconstruction with Antares

    International Nuclear Information System (INIS)

    The ANTARES collaboration is building a neutrino telescope in the Mediterranean Sea. This detector contains 900 photomultiplier tubes, dispatched on 12 lines, in order to detect Cerenkov light from muon induced by neutrino interactions in the the vicinity of the detector. Currently the first 5 lines have been deployed. A first task consists in studying the stability of the detector calibration, which is a necessary step to understand the detector response. Then we studied optical properties of water, for this we developed a reconstruction method dedicated to LED Beacon. The extracted parameters are compatible with earlier measurements. A quality criteria to reject badly reconstructed track has been developed based on the likelihood of the tracks fit versus point fit. This has been applied to real data and a preliminary analysis of atmospheric muons with a 5-lines detector is performed. (author)

  3. Recent developments of the 1 MV AMS facility at the Centro Nacional de Aceleradores

    Science.gov (United States)

    Scognamiglio, G.; Chamizo, E.; López-Gutiérrez, J. M.; Müller, A. M.; Padilla, S.; Santos, F. J.; López-Lora, M.; Vivo-Vilches, C.; García-León, M.

    2016-05-01

    The Centro Nacional de Aceleradores (CNA) hosts a 1 MV accelerator mass spectrometry (AMS) apparatus since September 2005. In order to improve its overall performance, several updates have been made on the existing facility during the last 10 years of operation. In this paper, two modifications conducted in 2015 will be described. To increase the transmission of the ions through the accelerator, the stripping gas on the 1 MV CNA machine was changed from Ar to He. The measured maximum transmission for almost every isotope results to be higher, especially for heavy masses: for instance, in the case of uranium in the 3+ charge state, the transmission increased from 11% with Ar gas to about 38% with He gas. The second advance consisted of the substitution of the existing gas ionization chamber with a new one provided by ETH Zurich. The ETH detector features with its miniaturized design and is optimized for low energy AMS (i.e. very low electronic noise and efficient charge collection). As the electronic noise is the most important contribution to the resolution for light ions, the total energy resolution has been reduced by 15% in the case of 10Be, allowing a better discrimination against its isobar, 10B. For the heaviest radionuclides where the quality of the spectra is determined by the charge carrier production in the gas, the resolution for 2.7 MeV uranium ions was improved by 30%, probably due to a more efficient charge collection.

  4. A MATLAB-based interface for the beam-transport system of an AMS facility

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Guzmán, J.M., E-mail: jm_gomez@us.es [Centro Nacional de Aceleradores (CNA), University of Seville (Spain); Dpto. de Física Atómica, Molecular y Nuclear, University of Seville (Spain); Gómez-Morilla, I. [Technische Universität Dresden, Fakultät Maschinenwesen, Professur für Magnetofluiddynamik (Germany); Enamorado-Báez, S.M.; Moreno-Suárez, A.I.; Pinto-Gómez, A.R. [Centro Nacional de Aceleradores (CNA), University of Seville (Spain)

    2013-12-01

    In this paper we present a MATLAB code built to model the transport of a charged particle beam through the Accelerator Mass Spectrometry (AMS) facility located at the Centro Nacional de Aceleradores (CNA, Seville, Spain). We determine the beam transport through the optical system using the transfer matrix formalism in two different approaches (ray tracing and the beam-envelope approach) and describe it in terms of cross section size and emittance. The beam size results given by MATLAB are compared with the measured beam size in three of the four image points that the system has, obtaining a good agreement between them. This suggests that the first-order transfer matrix formalism is enough to simulate the optical behavior of the system. The present version of this interface enables the user to control, interact with and display a beam transport system. Parameters involved in the optics such as voltages applied to the lenses, terminal voltage and charge state of the selected ion can be modified using this interface, which gives great generality, as the optics behavior of the AMS system can be simulated for any ion species prior to operation.

  5. A MATLAB-based interface for the beam-transport system of an AMS facility

    International Nuclear Information System (INIS)

    In this paper we present a MATLAB code built to model the transport of a charged particle beam through the Accelerator Mass Spectrometry (AMS) facility located at the Centro Nacional de Aceleradores (CNA, Seville, Spain). We determine the beam transport through the optical system using the transfer matrix formalism in two different approaches (ray tracing and the beam-envelope approach) and describe it in terms of cross section size and emittance. The beam size results given by MATLAB are compared with the measured beam size in three of the four image points that the system has, obtaining a good agreement between them. This suggests that the first-order transfer matrix formalism is enough to simulate the optical behavior of the system. The present version of this interface enables the user to control, interact with and display a beam transport system. Parameters involved in the optics such as voltages applied to the lenses, terminal voltage and charge state of the selected ion can be modified using this interface, which gives great generality, as the optics behavior of the AMS system can be simulated for any ion species prior to operation

  6. Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals

    OpenAIRE

    Lee, H. S.; Bhang, H.; Choi, J.H.; Choi, S.; Hahn, I. S.; Jeon, E. J.; Joo, H. W.; Kang, W. G.; Kim, G. B.; Kim, H. J.; Kim, K. W.; Kim, S.C.; Kim, S K; Kim, Y.D.(Center for Underground Physics, Institute for Basic Science (IBS), Daejon, 305-811, Korea); Kim, Y H

    2014-01-01

    We constructed a neutron calibration facility based on a 300-mCi Am-Be source in conjunction with a search for weakly interacting massive particle candidates for dark matter. The facility is used to study the response of CsI(Tl) crystals to nuclear recoils induced by neutrons from the Am-Be source and comparing them with the response to electron recoils produced by Compton scattering of 662-keV $\\gamma$-rays from a $^{137}$Cs source. The measured results on pulse shape discrimination (PSD) be...

  7. Use of JAEA Mutsu AMS facility at Japan Marine Science Foundation. A history and current simulation

    International Nuclear Information System (INIS)

    AMS measurements on samples for marine environmental studies as well as small number of geological and archaeological samples were made at Japan Marine Science Foundation by using the Tandetron AMS facility of Japan Atomic Energy Agency at Mutsu, Aomori Prefecture for 14C since 2001, and 129I since 2006. In this report, an early historical relationship of this institute to JAEA Mutsu AMS, past applications until 2006 and a few examples of obtained results are described. Approximately seven hundred 14C measurements were carried out for seawater, marine sediment and tree-ring samples as well as geological and archaeological materials. About one hundred 129I measurements were made for seawater samples in 2006. Three glass-made vacuum lines are in operation for seawater DIC, preparation and purification for the general purpose, and graphitization. Dating calculations are made on the total 14C count and individual 13C current measurements following Stuiver and Polach. Two wooden pillars excavated at Sannai Maruyama Jomon site were dated using small parts from them and by wiggle matching methods first based on Pearson's and later being based on a Bayesian method, respectively and more recently by OxCal 4. As an alternative means for a long-term measurement of atmospheric 14C concentrations and as part of marine environmental studies, tree-rings were analyzed using core samples from standing, live, Japanese pine trees. In parallel, 14C concentrations were measured for rings from a partial disk of an old Japanese cedar tree near Aomori City. Both results were in agreement during the period 1990-2000. The latter data during 1945-2000 showed influences of the large-scale atmospheric nuclear weapons tests; small differences being found between the present and literature data in 1970s suggesting need for further study on possible local effects. Iodine-129 with added carrier in sweater was extracted as molecular iodine with hexane after reducing iodate to iodide. Iodine was

  8. Time-resolved neutron imaging at ANTARES cold neutron beamline

    Science.gov (United States)

    Tremsin, A. S.; Dangendorf, V.; Tittelmeier, K.; Schillinger, B.; Schulz, M.; Lerche, M.; Feller, W. B.

    2015-07-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and integrated over multiple cycles. A fast MCP/Timepix neutron counting detector was used to image the water distribution within a model steam engine operating at 10 Hz frequency. Within neutron radiography for the future applications. The neutron spectrum of the ANTARES beamline as well as transmission spectra of a Fe sample were also measured with the Time Of Flight (TOF) technique in combination with a high resolution beam chopper. The energy resolution of our setup was found to be ~ 0.8% at 5 meV and ~ 1.7% at 25 meV. The background level (most likely gammas and epithermal/fast neutrons) of the ANTARES beamline was also measured in our experiments and found to be on the scale of 3% when no filters are installed in the beam. Online supplementary data available from stacks.iop.org/jinst/10/P07008/mmedia. The videos are given as supplementary material linked to the main article.

  9. The ANTARES recoil time-of-flight spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.W.; Russell, G.J. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    The Australian National Tandem for Applied Research (ANTARES), is a 8MV FN tandem particle accelerator at the Australian Nuclear Science and Technology Organisation. Research on the accelerator is divided between two groups, Accelerator Mass Spectrometry (AMS) and lon Beam Analysis (IBA). The IBA group carries out a range of research projects from nuclear physics to materials characterisation. The major IBA project on the accelerator is a recoil time-of-flight spectrometer which consists of two electrostatic time pulse generators and an ion-implanted surface barrier detector. The spectrometer is ideally suited to the profiling of layered multi-element materials, and has been used to characterise materials such as metal-germanides, optoelectronics, superconductors and catalytic converters. This paper will describe the time-of-flight system as well as some recent materials characterisation results. 1 refs., 3 figs.

  10. A database for the ANTARES neutrino telescope

    Science.gov (United States)

    Albert, A.; ANTARES Collaboration

    2011-01-01

    ANTARES is a telescope for neutrino astronomy installed in the Mediterranean Sea at a depth of about 2500 m. While the event data are stored in root files, an Oracle 10 G Relational Data Base Management Server (RDBMS) is used for storing structural, control and monitoring information. The database includes complete configuration tables for the whole detector, allowing to store calibration information for each acquisition chain element. Such an information is stored in a large number of tables with relational behavior, in order to maintain the necessary correlations between the different data entries. This complex structure has been designed, so as to facilitate the development of the software for acquisition and analysis of the ANTARES data. In this paper the structure of the ANTARES database is illustrated for what concerns two major functionalities: calibration and apparatus configuration.

  11. Recent results from the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES detector, located 40 km off the French coast, is the largest deep-sea neutrino telescope in the world. It consists of an array of 885 photomultipliers detecting the Cherenkov light induced by charged leptons produced by neutrino interactions in and around the detector. The primary goal of ANTARES is to search for astrophysical neutrinos in the TeV–PeV range. This comprises generic searches for any diffuse cosmic neutrino flux as well as more specific searches for astrophysical sources such as active galactic nuclei or galactic sources. The search program also includes multi messenger analyses based on time and/or space coincidences with other cosmic probes. The ANTARES observatory is sensitive to a wide range of other phenomena, from atmospheric neutrino oscillations to dark matter annihilation or potential exotics such as nuclearites and magnetic monopoles. The most recent results are reported. (author)

  12. Recent results from the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES detector, located in the deep sea 40 km off the French coast, is the largest neutrino telescope in the northern hemisphere. It consists of an array of 885 photomultipliers detecting the Cherenkov light induced by charged leptons created in neutrino interactions in and around the detector. The main goal of ANTARES is to search for astrophysical neutrinos in the TeV-PeV range. This comprises searches for a diffuse cosmic neutrino flux and for fluxes from possible galactic and extragalactic sources of neutrinos. The search program also includes multi-messenger analyses based on time and/or space coincidences with other cosmic probes. The ANTARES detector is sensitive to a wide range of other phenomena, from atmospheric neutrino oscillations to dark matter annihilation or potential exotics such as nuclearites and magnetic monopoles

  13. Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals

    International Nuclear Information System (INIS)

    We constructed a neutron calibration facility based on a 300-mCi Am-Be source in conjunction with a search for weakly interacting massive particle candidates for dark matter. The facility is used to study the response of CsI(Tl) crystals to nuclear recoils induced by neutrons from the Am-Be source and comparing them with the response to electron recoils produced by Compton scattering of 662-keV γ-rays from a 137Cs source. The measured results on pulse shape discrimination (PSD) between nuclear- and electron-recoil events are quantified in terms of quality factors. A comparison with our previous result from a neutron generator demonstrate the feasibility of performing calibrations of PSD measurements using neutrons from a Am-Be source

  14. Neutron calibration facility with an Am-Be source for pulse shape discrimination measurement of CsI(Tl) crystals

    CERN Document Server

    Lee, H S; Choi, J H; Choi, S; Hahn, I S; Jeon, E J; Joo, H W; Kang, W G; Kim, G B; Kim, H J; Kim, K W; Kim, S C; Kim, S K; Kim, Y D; Kim, Y H; Lee, J H; Lee, J K; Leonard, D S; Li, J; Myung, S S; Olsen, S L; So, J H

    2014-01-01

    We constructed a neutron calibration facility based on a 300-mCi Am-Be source in conjunction with a search for weakly interacting massive particle candidates for dark matter. The facility is used to study the response of CsI(Tl) crystals to nuclear recoils induced by neutrons from the Am-Be source and comparing them with the response to electron recoils produced by Compton scattering of 662-keV $\\gamma$-rays from a $^{137}$Cs source. The measured results on pulse shape discrimination (PSD) between nuclear- and electron-recoil events are quantified in terms of quality factors. A comparison with similar result from a neutron reactor demonstrate the feasibility of performing calibrations of PSD measurements using neutrons from a Am-Be source.

  15. ANTARES the first undersea telescope

    International Nuclear Information System (INIS)

    The detection of very high energy neutrinos of galactic/extragalactic origin requires a very large detector mass and a large overburden as a shield against cosmic ray muons. Experiments are therefore being built under huge layers of ice or water, using the solid/liquid medium itself as a Cherenkov radiator. ANTARES is the largest experiment of this kind currently operating in the northern hemisphere. It has been built and installed at a depth of 250m in the Mediterranean sea, near the Southern French coast, by a large european collaboration. A Three-dimensional array of photomultipliers is used to detect the Cherenkov light emitted by neutrino-induced muons. The array consists of 12 lines each covering a vertical length of about 480 m of which 350 m are equipped with 75 photomultipliers arranged in triplets. The complete array, comprising about 900 photomultipliers and the readout electronics, is connected to an onshore laboratory through a 42 km long electro.optical cable. The installation of the experiment started at the beginning of 2006 and was completed in June 2008. Data taking has been going on continuously, with relatively short interruptions for the installation of the additional lines or for repairs, since the installation of the first line. Details of the detector structure, of the monitoring and calibration system, of the data acquired and reconstructed will be given, together with some preliminary results recently obtained.

  16. ANTARES alternative event reconstruction strategies

    CERN Document Server

    Becherini, Y

    2007-01-01

    The ANTARES Collaboration is building a high-energy neutrino telescope at 2500 m depth in the Mediterranean Sea. The experiment aims to search for high-energy cosmic neutrinos through the detection of Cerenkov light induced by muons and showers resulting from neutrino interactions with the surrounding medium. The detector will consist of a three-dimensional array of 900 optical modules housing photomultipliers. It will be composed of 12 strings, 5 of them being already in operation since January 2007. The muon track is reconstructed from the arrival time and the charge of the signals obtained from the photomultipliers, whose positions are known by means of an acoustic positioning system. The reconstruction strategies include several steps among which there are: optical background filtering, algorithms for first estimations of the track parameters, and a final fit aiming to reach an angular resolution better than 0.3 degree above 10 TeV in the full detector. Different reconstruction strategies will be presente...

  17. Reconstruction of Atmospheric Neutrinos in Antares

    CERN Document Server

    Heijboer, Aart

    2009-01-01

    In May 2008, the Antares neutrino telescope was completed at 2.5 km depth in the Mediterranean Sea; data taking has been going on since. A prerequisite for neutrino astronomy is an accurate reconstruction of the neutrino events, as well as a detailed understanding of the atmospheric muon and neutrino backgrounds. Several methods have been developed to confront the challenges of muon reconstruction in the sea water environment, which are posed by e.g. backgrounds due to radioactivity and bioluminescence. I will discuss the techniques that allowed Antares to confidently identify its first neutrino events, as well as recent results on the measurement of atmospheric neutrinos.

  18. Mirror quality required by the Antares laser system

    International Nuclear Information System (INIS)

    The Antares laser system is a large (100 kJ) CO2 pulse laser operating at 10.6 μm. The system has 72 beam lines, each with an aperture of 900 cm2. The system will be composed primarily of large copper-faced mirrors whose principal dimensions range up to 65 cm. These mirrors will be single-point diamond turned (SPOT) at the Y-12 facility of Union Carbide Corporation in Oak Ridge, Tennessee. we have had to develop surface quality specifications for these mirrors. These specifications were initially set at 50 nm peak-to-valley (p-v) surface error for the microsurface over 0.5-mm areas and 500 nm (p-v) over the whole mirror surface. An attempt has been made to refine these specifications to a more physically meaningful set based on the performance of the system. The optical specification for Antares is that 80% of the energy from each beam should be deliverable inside a 400-μm circle. The diffraction limited focal spot is 160 μm across, so small amounts of low spatial frequency wavefront aberrations are acceptable. This is the figure error and can be represented by a best-fit fourth-order polynomial. It is specified separately from the higher spatial frequency subfigure errors that diffract light out of the 400-μm circle

  19. Preparing and measuring ultra-small radiocarbon samples with the ARTEMIS AMS facility in Saclay, France

    Energy Technology Data Exchange (ETDEWEB)

    Delque-Kolic, E., E-mail: emmanuelle.delque-kolic@cea.fr [LMC14, CEA Saclay, Batiment 450 Porte 4E, 91191 Gif sur Yvette (France); Comby-Zerbino, C.; Ferkane, S.; Moreau, C.; Dumoulin, J.P.; Caffy, I.; Souprayen, C.; Quiles, A.; Bavay, D.; Hain, S.; Setti, V. [LMC14, CEA Saclay, Batiment 450 Porte 4E, 91191 Gif sur Yvette (France)

    2013-01-15

    The ARTEMIS facility in Saclay France measures, on average, 4500 samples a year for French organizations working in an array of fields, including environmental sciences, archeology and hydrology. In response to an increasing demand for the isolation of specific soil compounds and organic water fractions, we were motivated to evaluate our ability to reduce microgram samples using our standard graphitization lines and to measure the graphite thus obtained with our 3MV NEC Pelletron AMS. Our reduction facility consists of two fully automated graphitization lines. Each line has 12 reduction reactors with a reduction volume of 18 ml for the first line and 12 ml for the second. Under routine conditions, we determined that we could reduce the samples down to 10 {mu}g of carbon, even if the graphitization yield is consequently affected by the lower sample mass. Our results when testing different Fe/C ratios suggest that an amount of 1.5 mg of Fe powder was ideal (instead of lower amounts of catalyst) to prevent the sample from deteriorating too quickly under the Cs+ beam, and to facilitate pressing procedures. Several sets of microsamples produced from HOxI standard, international references and backgrounds were measured. When measuring {sup 14}C-free wood charcoal and HOxI samples we determined that our modern and dead blanks, due to the various preparation steps, were of 1.1 {+-} 0.8 and 0.2 {+-} 0.1 {mu}g, respectively. The results presented here were obtained for IAEA-C1, {sup 14}C-free wood, IAEA-C6, IAEA-C2 and FIRI C.

  20. Neutron transmission and capture cross section measurements for 241Am at the GELINA facility

    International Nuclear Information System (INIS)

    Resonance parameters for neutron-induced reactions on 241Am below 110 eV have been determined. The parameters result from a resonance shape analysis of transmission and capture data measured at the time-of-flight facility GELINA, with the accelerator operating at a 50 Hz repetition rate. The transmission experiments were carried out at a 25 m station using a Li glass scintillator. The capture experiments were performed at a 12.5 m station by applying the total energy detection principle in combination with the pulse height weighting technique using a pair of C6D6 detectors. The normalization of the capture data was determined by a combined least squares adjustment of the transmission and capture data. From the adjusted resonance parameters a capture cross section of 749 ± 35 b for a neutron energy of 0.0253 eV and an average radiation width of Γγ = 42.0 meV for s-wave resonances were obtained. A missing-level analysis for s-wave neutron resonances within the statistical model results in compatible values with previous estimates. The neutron widths obtained in this work are approximately 22% larger compared to other experimental data and evaluated data libraries. Also the thermal capture cross section is larger than most of the recommended values. However, the resonance parameter file presented in this work is consistent with results of both integral experiments and of the experimentally determined resonance integrals. (authors)

  1. ANTARES Collaboration Proceedings of ICRC 2007

    CERN Document Server

    Mangano, S

    2007-01-01

    Contributions to ICRC 2007, Merida, Mexico. Contents pages for the Contribution on behalf of the ANTARES Collaboration to the 30th ICRC that took place in July 2007 in Merida, Mexico. The contents are in html form with clickable links to the papers that exist on the Astrophysics archive.

  2. Performance of the first ANTARES detector line

    NARCIS (Netherlands)

    Ageron, M.; Aguilar, J. A.; Albert, A.; Ameli, F.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Aubert, J. -J.; Aublin, J.; Auer, R.; Basa, S.; Bazzotti, M.; Becherini, Y.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bou-Cabo, M.; Bruijn, R.; Brunner, J.; Burgio, G. F.; Busto, J.; Camarena, F.; Capone, A.; Carminati, G.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Colnard, C.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; De Bonis, G.; Decowski, P.; Dekeyser, I.; Deschamps, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Druillole, F.; Eberl, T.; Ernenwein, J. -P.; Escoffier, S.; Falchini, E.; Fehr, F.; Flaminio, V.; Fratini, K.; Fuda, J. -L.; Giacomelli, G.; Graf, K.; Guillard, G.; Hallewell, G.; Hello, Y.; Hernandez-Rey, J. J.; Hossl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kuch, S.; Lahmann, R.; Lamare, P.; Lambard, G.; Laschinsky, H.; Lavalle, J.; Le Provost, H.; Lefevre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyons, K.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Maurin, G.; Mazure, A.; Melissas, M.; Migneco, E.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Ostasch, R.; Pavalas, G. E.; Payre, P.; Petrovic, J.; Petta, C.; Piattelli, P.; Picq, C.; Pillet, R.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schoeck, F.; Schuller, J. -P.; Shanidze, R.; Simeone, F.; Spurio, M.; van der Steenhoven, G.; Tamburini, C.; Tasca, L.; Toscano, S.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Zaborov, D.; Zornoza, J. D.; Zuniga, J.

    2009-01-01

    In this paper we report on the data recorded with the first Antares detector line. The line was deployed on the 14th of February 2006 and was connected to the readout 2 weeks later. Environmental data for one and a half years of running are shown. Measurements of atmospheric muons from data taken fr

  3. Search for cosmic neutrinos with ANTARES

    NARCIS (Netherlands)

    Bogazzi, Claudio

    2014-01-01

    A time integrated search for cosmic neutrinos is discussed in this thesis using four years of data collected by the ANTARES experiment. No statistically significant signal was found, therefore upper limits on the neutrino flux were derived. Limits for specific models of RX J1713.7-3946, Vela X and C

  4. Underwater acoustic detection of UHE neutrinos with the ANTARES experiment

    OpenAIRE

    Simeone, Francesco; collaboration, for the ANTARES

    2009-01-01

    The ANTARES Neutrino Telescope is a water Cherenkov detector composed of an array of approximately 900 photomultiplier tubes in 12 vertical strings, spread over an area of about 0.1 km^2 with an instrumented height of about 350 metres. ANTARES, built in the Mediterranean Sea, is the biggest neutrino Telescope operating in the northern hemisphere. Acoustic sensors (AMADEUS project) have been integrated into the infrastructure of ANTARES, grouped in small arrays, to evaluate the feasibility of ...

  5. Time-resolved neutron imaging at ANTARES cold neutron beamline

    CERN Document Server

    Tremsin, A S; Tittelmeier, K; Schillinger, B; Schulz, M; Lerche, M; Feller, W B

    2015-01-01

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and...

  6. 129I measurements on the 1 MV AMS facility at the Centro Nacional de Aceleradores (CNA, Spain)

    International Nuclear Information System (INIS)

    The AMS system at CNA has been the first 1 MV compact AMS system designed and manufactured by HVE. In this paper we present the experimental set-up for 129I measurements in this facility. Charge state +3 has been selected at high-energy side and an optimum stripper pressure of 6×10−3 mbar of argon (mass thickness of about 0.15 μg cm−2) has been reached to obtain lowest blank values (129I/127I≅3×10−13). The measurements of the reference materials provided by the IAEA have demonstrated the viability of this facility to make routine measurements of 129I at environmental levels. This blank value obtained is enough for the measurement of most environmental samples and comparable with other reported backgrounds obtained in facilities working at higher energies and higher charge states. - Highlights: ► At the CNA the 1 MV AMS system has been set-up for the measurement of 129I in charge states 3+ and 4+. ► The sensitivity is about 10−13, enough for the measurement of most environmental samples. ► Measurement of standards demonstrated that the ratios agree perfectly with the nominal values. ► The technique was validated with the measurement of 129I content in four reference materials.

  7. Recent results from the ANTARES neutrino telescope

    CERN Document Server

    Van Elewyck, V

    2013-01-01

    The ANTARES neutrino telescope is currently the largest operating water Cherenkov detector and the largest neutrino detector in the Northern Hemisphere. Its main scientific target is the detection of high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the diffuse neutrino flux. Its location allows for surveying a large part of the Galactic Plane, including the Galactic Centre. In addition to the standalone searches for point-like and diffuse high-energy neutrino signals, ANTARES has developed a range of multi-messenger strategies to exploit the close connection between neutrinos and other cosmic messengers such as gamma-rays, charged cosmic rays and gravitational waves. This contribution provides an overview of the recently conducted analyses, including a search for neutrinos from the Fermi bubbles region, searches for optical counterparts with the TAToO program, and searches for neutrinos in correlation with gamma-ray bursts, bl...

  8. The ANTARES neutrino project: status report

    CERN Document Server

    Sokalski, I A

    2004-01-01

    The ANTARES project aims to build a deep underwater Cherenkov neutrino telescope in the Mediterranean Sea. Currently the experiment is in the construction phase and has recently achieved two important milestones. The electro-optical cable to shore and the junction box that will distribute power to detector strings and allow data transmission have been deployed at the sea floor. A prototype string and a string for environmental parameter measurement have been deployed, connected to the cable using a manned submarine. Data have been sent to shore. The final ANTARES detector consisting in 12 strings each equipped with 75 photomultiplier tubes is planned to be fully deployed and taking data by the end of 2006.

  9. Time-resolved neutron imaging at ANTARES cold neutron beamline

    International Nuclear Information System (INIS)

    In non-destructive evaluation with X-rays light elements embedded in dense, heavy (or high-Z) matrices show little contrast and their structural details can hardly be revealed. Neutron radiography, on the other hand, provides a solution for those cases, in particular for hydrogenous materials, owing to the large neutron scattering cross section of hydrogen and uncorrelated dependency of neutron cross section on the atomic number. The majority of neutron imaging experiments at the present time is conducted with static objects mainly due to the limited flux intensity of neutron beamline facilities and sometimes due to the limitations of the detectors. However, some applications require the studies of dynamic phenomena and can now be conducted at several high intensity beamlines such as the recently rebuilt ANTARES beam line at the FRM-II reactor. In this paper we demonstrate the capabilities of time resolved imaging for repetitive processes, where different phases of the process can be imaged simultaneously and integrated over multiple cycles. A fast MCP/Timepix neutron counting detector was used to image the water distribution within a model steam engine operating at 10 Hz frequency. Within <10 minutes integration the amount of water was measured as a function of cycle time with a sub-mm spatial resolution, thereby demonstrating the capabilities of time-resolved neutron radiography for the future applications. The neutron spectrum of the ANTARES beamline as well as transmission spectra of a Fe sample were also measured with the Time Of Flight (TOF) technique in combination with a high resolution beam chopper. The energy resolution of our setup was found to be ∼ 0.8% at 5 meV and ∼ 1.7% at 25 meV. The background level (most likely gammas and epithermal/fast neutrons) of the ANTARES beamline was also measured in our experiments and found to be on the scale of 3% when no filters are installed in the beam. Online supplementary data available from stacks

  10. Reconstruction of Atmospheric Neutrinos in Antares

    OpenAIRE

    Heijboer, Aart; Collaboration, for the ANTARES

    2009-01-01

    In May 2008, the Antares neutrino telescope was completed at 2.5 km depth in the Mediterranean Sea; data taking has been going on since. A prerequisite for neutrino astronomy is an accurate reconstruction of the neutrino events, as well as a detailed understanding of the atmospheric muon and neutrino backgrounds. Several methods have been developed to confront the challenges of muon reconstruction in the sea water environment, which are posed by e.g. backgrounds due to radioactivity and biolu...

  11. Search for cosmic neutrinos with ANTARES

    OpenAIRE

    Bogazzi, Claudio

    2014-01-01

    A time integrated search for cosmic neutrinos is discussed in this thesis using four years of data collected by the ANTARES experiment. No statistically significant signal was found, therefore upper limits on the neutrino flux were derived. Limits for specific models of RX J1713.7-3946, Vela X and Crab Nebula which include information on the source morphology and spectrum, are also given.

  12. ANTARES, a large underwater neutrino detector

    International Nuclear Information System (INIS)

    The development and construction of the ANTARES detector are presented. The physics of underwater neutrino detection is discussed, with emphasis on the research potential concerning new physics (mainly new elementary mechanisms), relevant to this conference and with a summary of research on high-energy neutrino astrophysical sources. The collaboration is currently deploying various instrumental setups in deep water in order to measure site qualities and optimize the detector parameters. Strings of optical modules connected to the shore are under construction

  13. Development of an AMS facility with the 6MV EN tandem accelerator at iThemba Labs - Johannesburg

    International Nuclear Information System (INIS)

    In the twenty five years since the first demonstration that 14C could be detected at natural levels using tandem nuclear accelerator as a mass spectrometer, the AMS (Accelerator Mass Spectrometry) technique has developed into a major analytical tool. Presently there are about 50 AMS facilities world wide, with only 5 in the Southern hemisphere (two in Australia, one in New Zealand, one in Brazil and one in Argentina ). Here we report on the status of work at iThemba Labs and Wits University to develop a capability for accelerator mass spectrometry (AMS) making use of the 6 MV EN Tandem Accelerator. AMS makes use of nuclear accelerators of the so-called 'Tandem' type. The only tandem accelerator under operation in the African continent resides at iThemba Labs in Johannesburg, within the campus of the University of the Witwatersrand. The completion of the facility calls for a number of equipment to be modified upgraded or purchased. In this respect, the iThemba EN Tandem lab is presently undergoing a multi-million rands upgrade. New spirally inclined field tubes and shielded column grading resistors are being installed. The Van de Graaff belt is being replaced with a pelletron chain charging system in order to improve the stability of the accelerator. The stripper system will be kept as is, however, a recirculating stripping gas scheme is being implemented. The insulating gas, a mixture of nitrogen and carbon dioxide, will be enriched with 6% SF6. The low energy injection spectrometer is based on sequential injection of isotopes. The mass switching is achieved by bouncing a 90 deg double focusing magnet with a radius of 650 mm. A dedicated high current multi cathode AMS source from HV Engineering Europa will be used to produce the isotopes of interest. The design of the low energy system with all necessary optical elements (einzel lenses, steerers, electrostatic analyzer) and components is being carried out and finalized through beam optics calculations. The post

  14. Results from the ANTARES neutrino telescope

    Science.gov (United States)

    Spurio, M.

    2016-04-01

    ANTARES is the largest neutrino telescope in the Northern hemisphere, running in its final configuration since 2008. After the discovery of a cosmic neutrino diffuse flux by the IceCube detector, the search for its origin has become a key mission in high-energy astrophysics. The ANTARES sensitivity is large enough to constrain the origin of the IceCube excess from regions extended up to 0.2 sr in the Southern sky. The Southern sky has been studied searching for point-like objects, for extended regions of emission (as the Galactic plane) and for signal from transient objects selected through multimessenger observations. Upper limits are presented assuming different spectral indexes for the energy spectrum of neutrino sources. In addition, ANTARES provides results on studies of the sky in combination with different multimessenger experiments, on atmospheric neutrinos, on the searches for rare particles in the cosmic radiation (such as magnetic monopoles and nuclearites), and on Earth and Sea science. Particularly relevant are the searches for Dark Matter: the limits obtained for the spin-dependent WIMP-nucleon cross section overcome that of existing direct-detection experiments. The recent results, widely discussed in dedicated presentations during the 7th edition of the Very Large Volume Neutrino Telescope Workshop (VLVνT-2015), are highlighted in this paper.

  15. Results from the ANTARES neutrino telescope

    Directory of Open Access Journals (Sweden)

    Spurio M.

    2016-01-01

    Full Text Available ANTARES is the largest neutrino telescope in the Northern hemisphere, running in its final configuration since 2008. After the discovery of a cosmic neutrino diffuse flux by the IceCube detector, the search for its origin has become a key mission in high-energy astrophysics. The ANTARES sensitivity is large enough to constrain the origin of the IceCube excess from regions extended up to 0.2 sr in the Southern sky. The Southern sky has been studied searching for point-like objects, for extended regions of emission (as the Galactic plane and for signal from transient objects selected through multimessenger observations. Upper limits are presented assuming different spectral indexes for the energy spectrum of neutrino sources. In addition, ANTARES provides results on studies of the sky in combination with different multimessenger experiments, on atmospheric neutrinos, on the searches for rare particles in the cosmic radiation (such as magnetic monopoles and nuclearites, and on Earth and Sea science. Particularly relevant are the searches for Dark Matter: the limits obtained for the spin-dependent WIMP-nucleon cross section overcome that of existing direct-detection experiments. The recent results, widely discussed in dedicated presentations during the 7th edition of the Very Large Volume Neutrino Telescope Workshop (VLVνT-2015, are highlighted in this paper.

  16. News from the ANTARES underwater neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES telescope is a device of 0.1km2 size to detect high energy neutrinos. It is located in the Mediterranean Sea at a depth of 2500 m. It consists of a three-dimensional matrix of optical modules (OM) containing photomultiplier tubes. As of September 2006 two complete lines and an instrumentation line, called MILOM, are deployed and fully operational for data taking. Three additional lines have been connected by the end of January 2007 allowing the first up-going muon track reconstruction. At the beginning of 2008, the full Antares telescope will be operational with 12 lines. All technical aspects are under control from the mechanical architecture to the constant improvement of the 'all-data-to-shore' concept. This talk will focus on the photon signal processing that allows to reconstruct the neutrino track. After a first review of the line architecture, we will present the signal processing and transport from the OM detector to the on-shore storage. During the R and D phases, the ANTARES collaboration has developed new concepts in terms of detector integration, front-end electronics architecture, cables, DAQ hardware architecture and software management. Finally, preliminary results of the performance of the detector will be shown

  17. Measurement and analysis of the $^{243}$Am neutron capture cross section at the n_TOF facility at CERN

    CERN Document Server

    Mendoza, E; Guerrero, C; Berthoumieux, E; Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Balibrea, J; Baumann, P; Becvar, F; Belloni, F; Calvino, F; Calviani, M; Capote, R; Carrapico, C; Carrillo de Albornoz, A; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Ferrant†, L; Ferrari, A; Ferreira-Marques, R; Fitzpatrick, L; Frais-Koelbl, H; Fujii, K; Furman, W; Goncalves, I; Gonz alez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Isaev, S; Jericha, E; Kappeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Ketlerov, V; Kerveno, M; Koehler, P; Konovalov, V; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lossito, R; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Martınez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O’Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vicente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2014-01-01

    Background:The design of new nuclear reactors and transmutation devices requires to reduce the present neutron cross section uncertainties of minor actinides. Purpose: Reduce the $^{243}$Am(n,$\\gamma$) cross section uncertainty. Method: The $^{243}$Am(n,$\\gamma$) cross section has been measured at the n_TOF facility at CERN with a BaF$_{2}$ Total Absorption Calorimeter, in the energy range between 0.7 eV and 2.5 keV. Results: The $^{243}$Am(n,$\\gamma$) cross section has been successfully measured in the mentioned energy range. The resolved resonance region has been extended from 250 eV up to 400 eV. In the unresolved resonance region our results are compatible with one of the two incompatible capture data sets available below 2.5 keV. The data available in EXFOR and in the literature has been used to perform a simple analysis above 2.5 keV. Conclusions: The results of this measurement contribute to reduce the $^{243}$Am(n,$\\gamma$) cross section uncertainty and suggest that this cross section is underestimate...

  18. Masgid Sultan Qansuh Al Ghury: Sheikh Antar: Asr Adhan

    OpenAIRE

    Kipervaser, Anna; LLC; On Look Films

    2010-01-01

    Sheikh Antar recites ?Asr adhan at 4:38pm on August 10, 2010 at the Sultan Qansuh Al Ghury Mosque in El-Hussein (Islamic Cairo), calling the faithful to come and to pray. Sheikh Antar has recited the adhan here for 5 years, as a volunteer.

  19. Gallex, Nomad and Antares. A decade of neutrino research; Gallex, nomad, antares. Une decennie de neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Stolarczyk, Th

    2003-02-01

    This report presents 10 years of research concerning the neutrino through the experiments Gallex, Nomad and Antares to which the author has contributed. For each experiment the author gives the physic principles on which the detection is based, presents the equipment and the detection systems, details his contribution and reports the main results.

  20. Time calibration of the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of 1 ns. The methods developed to attain this level of precision are described. (authors)

  1. Time Calibration of the ANTARES Neutrino Telescope

    CERN Document Server

    Aguilar, J A; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J J; Auer, R; Baret, B; Basa, S; Bazzotti, M; Bertin, V; Biagi, S; Bigongiari, C; Bou-Cabo, M; Bouwhuis, M C; Brown, A M; Brunner, J; Busto, J; Camarena, F; Capone, A; Carloganu, C; Carminati, G; Carr, J; Cecchini, S; Charvis, Ph; Chiarusi, T; Circella, M; Costantini, H; Cottini, N; Coyle, P; Curtil, C; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Emanuele, U; Ernenwein, J P; Escoffier, S; Fehr, F; Flaminio, V; Fritsch, U; Fuda, J L; Galata, S; Gay, P; Giacomelli, G; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hössl, J; Hsu, C C; de Jong, M; Kadler, M; Kalantar-Nayestanaki, N; Kalekin, O; Kappes, A; Katz, U; Kooijman, P; Kopper, C; Kouchner, A; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Lucarelli, F; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Mazure, A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Naumann, C; Neff, M; Palioselitis, D; Pavalas, G E; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Picq, C; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Rujoiu, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J P; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tasca, L; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wijnker, G; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2010-01-01

    The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of about 1ns. The methods developed to attain this level of precision are described.

  2. Performance of the first ANTARES detector line

    International Nuclear Information System (INIS)

    In this paper we report on the data recorded with the first Antares detector line. The line was deployed on 14 February 2006 and was connected to the readout 2 weeks later. Environmental data for one and a half years of running are shown. Measurements of atmospheric muons from data taken from selected runs during the first 6 months of operation are presented. Performance figures in terms of time residuals and angular resolution are given. Finally the angular distribution of atmospheric muons is presented and from this the depth profile of the muon intensity is derived. (authors)

  3. Antares, a large underwater neutrino detector

    International Nuclear Information System (INIS)

    The development and construction of the ANTARES detector is presented. The physics of underwater neutrino detection is discussed with emphasis on the research potential concerning new physics (mainly new elementary mechanisms) relevant to this conference and with a summary of research on high-energy neutrino astrophysical sources. The collaboration is currently deploying various instrumental setups in deep water in order to measure site qualities and optimize the detector parameters. Strings of optical modules connected to the shore are under construction. The steps toward a demonstrator with several strings and a future km3 detector are outlined

  4. The interpretation of archaeological dates from an AMS perspective

    International Nuclear Information System (INIS)

    The XVII century saw the establishment of the scientific method and scholars such as Galileo were giving excellent contributions to a variety of fields ranging from the natural sciences to the humanities. At the dawn of the new millenium, after a period of excessive specialization, the scientific climate is once again encouraging broad collaborations across different disciplines. For projects involving AMS measurements in general and radiocarbon dating in particular, the benefits of this new trend are numerous. For example, the full potential of the radiocarbon dating method can be exploited only through the mutual understanding of the problems related to sample selection, chemical preparation, AMS measurement, data analysis and interpretation. This paper is intended to enhance the exchange of information by reporting to our current and potential collaborators about the latest technical developments undertaken at the ANTARES AMS facility at ANSTO. Furthermore, we will present two splendid examples of collaborative research: the radiocarbon dating of a replica of a famous chesspiece and the archaeological investigations at the ancient settlement of Sos Hoyuk (north-eastern Anatolia, Turkey) where the multidisciplinary approach was the key to a better understanding of the social structure, settlement patterns, land use and cultural contact, especially with the lands of Trans-Caucasus. (author). 12 refs., 4 figs

  5. Recent results from the ANTARES neutrino telescope

    Science.gov (United States)

    Van Elewyck, Véronique

    2014-04-01

    The ANTARES neutrino telescope is currently the largest operating water Cherenkov detector and the largest neutrino detector in the Northern Hemisphere. Its main scientific target is the detection of high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the diffuse neutrino flux. Its location allows for surveying a large part of the Galactic Plane, including the Galactic Centre. In addition to the standalone searches for point-like and diffuse high-energy neutrino signals, ANTARES has developed a range of multi-messenger strategies to exploit the close connection between neutrinos and other cosmic messengers such as gamma-rays, charged cosmic rays and gravitational waves. This contribution provides an overview of the recently conducted analyses, including a search for neutrinos from the Fermi bubbles region, searches for optical counterparts with the TAToO program, and searches for neutrinos in correlation with gamma-ray bursts, blazars, and microquasars. Further topics of investigation, covering e.g. the search for neutrinos from dark matter annihilation, searches for exotic particles and the measurement of neutrino oscillations, are also reviewed.

  6. Recent results from the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES neutrino telescope is currently the largest operating water Cherenkov detector and the largest neutrino detector in the Northern Hemisphere. Its main scientific target is the detection of high-energy (TeV and beyond) neutrinos from cosmic accelerators, as predicted by hadronic interaction models, and the measurement of the diffuse neutrino flux. Its location allows for surveying a large part of the Galactic Plane, including the Galactic Centre. In addition to the standalone searches for point-like and diffuse high-energy neutrino signals, ANTARES has developed a range of multi-messenger strategies to exploit the close connection between neutrinos and other cosmic messengers such as gamma-rays, charged cosmic rays and gravitational waves. This contribution provides an overview of the recently conducted analyses, including a search for neutrinos from the Fermi bubbles region, searches for optical counterparts with the TAToO program, and searches for neutrinos in correlation with gamma-ray bursts, blazars, and microquasars. Further topics of investigation, covering e.g. the search for neutrinos from dark matter annihilation, searches for exotic particles and the measurement of neutrino oscillations, are also reviewed

  7. Precision and reproducibility in AMS radiocarbon measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Hotchkis, M.A.; Fink, D.; Hua, Q.; Jacobsen, G.E.; Lawson, E. M.; Smith, A.M.; Tuniz, C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Accelerator Mass Spectrometry (AMS) is a technique by which rare radioisotopes such as {sup 14}C can be measured at environmental levels with high efficiency. Instead of detecting radioactivity, which is very weak for long-lived environmental radioisotopes, atoms are counted directly. The sample is placed in an ion source, from which a negative ion beam of the atoms of interest is extracted, mass analysed, and injected into a tandem accelerator. After stripping to positive charge states in the accelerator HV terminal, the ions are further accelerated, analysed with magnetic and electrostatic devices and counted in a detector. An isotopic ratio is derived from the number of radioisotope atoms counted in a given time and the beam current of a stable isotope of the same element, measured after the accelerator. For radiocarbon, {sup 14}C/{sup 13}C ratios are usually measured, and the ratio of an unknown sample is compared to that of a standard. The achievable precision for such ratio measurements is limited primarily by {sup 14}C counting statistics and also by a variety of factors related to accelerator and ion source stability. At the ANTARES AMS facility at Lucas Heights Research Laboratories we are currently able to measure {sup 14}C with 0.5% precision. In the two years since becoming operational, more than 1000 {sup 14}C samples have been measured. Recent improvements in precision for {sup 14}C have been achieved with the commissioning of a 59 sample ion source. The measurement system, from sample changing to data acquisition, is under common computer control. These developments have allowed a new regime of automated multi-sample processing which has impacted both on the system throughput and the measurement precision. We have developed data evaluation methods at ANTARES which cross-check the self-consistency of the statistical analysis of our data. Rigorous data evaluation is invaluable in assessing the true reproducibility of the measurement system and aids in

  8. Measurement and analysis of the $^{241}$Am(n,$\\gamma$) cross section at the CERN n_TOF facility.

    CERN Document Server

    Fraval, Kevin

    In the context of the current nuclear technology, the radiotoxicity of the spent fuel of a typical PWR reactor is dominated by minor actinides for times greater than 104 years. In particular, 241Am and its 432 years half-life is responsible for about half of the minor actinide content of a PWR spent fuel. This thesis work consisted in measuring and analysing the 241Am(n, ) cross section at the CERN n TOF facility. After selecting exclusively the events obtained with lead shielding in front of the C6D6 detectors, the amplitude-energy calibration has to be adjusted with time, by using a photon coming from the 27Al(,,p)30Si reaction. Histogram extraction included applying a weighting function (obtained by MCNP simulation), a dead time correction, and a normalization to the compound nucleus excitation energy. The background corrected spectra were normalized relatively to the 4.9 eV resonance on 197Au. Finally, the resonance analysis was performed using the SAMMY code. The extracted thermal value is 678±68 barns,...

  9. Measurement and analysis of the 241Am(n,γ) cross section at the CERN nTOF facility

    International Nuclear Information System (INIS)

    In the context of the current nuclear technology, the radiotoxicity of the spent fuel of a typical PWR reactor is dominated by minor actinides for times greater than 104 years. In particular, 241Am and its 432 years half-life is responsible for about half of the minor actinide content of a PWR spent fuel. This thesis work consisted in measuring and analysing the 241Am(n,γ) cross section at the CERN nTOF facility. After selecting exclusively the events obtained with lead shielding in front of the C6D6 detectors, the amplitude-energy calibration has to be adjusted with time, by using a photon coming from the 27Al(α,p)30Si* reaction. Histogram extraction included applying a weighting function (obtained by MCNP simulation), a dead time correction, and a normalization to the compound nucleus excitation energy. The background corrected spectra were normalized relatively to the 4.9 eV resonance on 197Au. Finally, the resonance analysis was performed using the SAMMY code. The extracted thermal value is 678±68 barns, the uncertainty being mostly due to the large background level. The resolved range was extended from 150 eV to 320 eV, with a total of 192 resonances that had to be added of heavily modified. The unresolved region was analysed up to 150 keV, yielding a larger average cross section than previously evaluated below 20 keV. (author)

  10. Antares: A low cost modular launch vehicle for the future

    Science.gov (United States)

    The single-stage-to-orbit launch vehicle Antares is a revolutionary concept based on identical modular units, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg (22,000 lb) into low Earth orbit (LEO). When coupled with a standard Centaur upper stage, it is capable of placing 4000 kg (8800 lb) into geosynchronous Earth orbit (GE0). The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles can be attached depending on the payload and mission requirements. With a seven-vehicle configuration, the Antares' modular concept provides a heavy lift capability of approximately 70,000 kg (154,000 lb) to LEO. This expandability allows for a wide range of payload options, such as large Earth satellites, Space Station Freedom material, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.

  11. The french 5 MV AMS facility ASTERisques - status after the first year

    International Nuclear Information System (INIS)

    A new 5 MV accelerator mass spectrometry (AMS) system, fully dedicated to applied research, has been installed at CEREGE. Since its acceptance test in March 2007, we have successfully established routine measurement conditions for the long-lived cosmogenic radionuclides 10Be and 26Al. Using 9Be carrier derived in our laboratory from phenakite crystals originating from a deep mine, we determined a background-level as low as 5 x 10-16 (10Be/9Be). For 41Ca (extracted as CaF3-) and 129I, background levels are in the range of 2 x 10-14, whereas under optimum conditions the 36Cl background can reach 3x10-16 (36Cl/35Cl). The total transmission varies from 0.02 (36Cl with a post-stripping absorber foil) to 0.38 (26Al). The main focus of applications has been on geological and environmental topics with the broad goal of using isotopic techniques to help understand the timing and rates of processes in the earth system. Work so far has included reconstruction of past climate, determination of the rate and timing of seismic activity, volcanic eruptions and rock falls

  12. Antares beam-alignment-system performance

    International Nuclear Information System (INIS)

    The beam alignment system for the 24-beam-sector Antares CO2 fusion laser automatically aligns more than 200 optical elements. A visible-wavelength alignment technique is employed which uses a telescope/TV system to view point-light sources appropriately located down the beamline. The centroids of the light spots are determined by a video tracker, which generates error signals used by the computer control system to move appropriate mirrors in a closed-loop system. Final touch-up alignment is accomplished by projecting a CO2 alignment laser beam through the system and sensing its position at the target location. The techniques and control algorithms employed have resulted in alignment accuracies exceeding design requirements. By employing video processing to determine the centroids of diffraction images and by averaging over multiple TV frames, we achieve alignment accuracies better than 0.1 times system diffraction limits in the presence of air turbulence

  13. Selected results from the ANTARES neutrino telescope

    CERN Document Server

    Mangano, Salvatore

    2012-01-01

    The ANTARES telescope is the largest underwater neutrino telescope existing at present. It is based on the detection of Cherenkov light produced in sea water by neutrino-induced muons. The detector, consisting of a tri-dimensional array of 885 photomultipliers arranged on twelve vertical lines, is located at a depth of 2475 m in the Mediterranean Sea, 40 km off the French coast. The main goal of the experiment is to probe the Universe by means of neutrino events in an attempt to investigate the nature of high energy astrophysical sources, to contribute to the identification of cosmic ray sources, and to explore the nature of dark matter. In this contribution we will review the status of the detector, illustrate its operation and performance, and present the first results from the analysis carried out on atmospheric muons and neutrinos, as well as from the search for astrophysical neutrino sources.

  14. SB-LOCA beyond the design basis in a PWR experimental verification of am procedures in the PKL test facility

    International Nuclear Information System (INIS)

    The integral test facility PKL at the Technical Center of Framatome ANP (formerly Siemens/KWU) in Erlangen, Germany, simulates a 1300 MWe western type PWR. It is scaled by 1:145 in power and volume at original elevations. It features the entire primary side including four symmetrically arranged coolant loops and auxiliary and safety systems as well as the major part of the secondary side. The test series PKL III D, which was finished at the end of 1999, aimed at the exploration of safety margins and at the efficiency and optimization of operator initiated accident management (AM) procedures. Among others, several tests with small primary breaks combined with additional system failures were performed. This presentation describes test D3.1. The scenario under investigation was a small primary break (24 cm2 ) with simultaneous failure of the high pressure safety injection (HPSI), a beyond-design-basis scenario. For the German 1300 MWe PWRs, under such additional failure conditions, SB-LOCAs with leak sizes below 25 cm2 account for 18 % of the integral core damage frequency (CDF). This integral CDF can be estimated to be 3.1*10-6 per year if no credit is taken from AM procedures. The break location in the test under consideration was in the cold leg between reactor coolant pump (RCP) and reactor pressure vessel (RPV). The assumed aggravating circumstances were HPSI failure and unavailability of 2 steam generators (SGs) as well as 3 out of 4 main steam relief and control valves (MS-RCV). The extra borating system was switched to injection mode at low pressurizer level but, by itself, would have been unable to maintain enough coolant to avoid core being uncovered before the pressure reached the setpoint of the accumulators (ACCs). The accident was managed by additional utilization of the chemical- and volume control system (CVCS) to inject water to partly neutralize the leak rate. The plant could be cooled down by 2 SGs using only one MS-RCV. The suitability of the

  15. SB-LOCA beyond the design basis in a PWR experimental verification of am procedures in the PKL test facility

    Energy Technology Data Exchange (ETDEWEB)

    Mull, T.; Schoen, B.; Umminger, K.; Wegner, R. [Framatome ANP GmbH, Erlangen (Germany)

    2001-07-01

    The integral test facility PKL at the Technical Center of Framatome ANP (formerly Siemens/KWU) in Erlangen, Germany, simulates a 1300 MWe western type PWR. It is scaled by 1:145 in power and volume at original elevations. It features the entire primary side including four symmetrically arranged coolant loops and auxiliary and safety systems as well as the major part of the secondary side. The test series PKL III D, which was finished at the end of 1999, aimed at the exploration of safety margins and at the efficiency and optimization of operator initiated accident management (AM) procedures. Among others, several tests with small primary breaks combined with additional system failures were performed. This presentation describes test D3.1. The scenario under investigation was a small primary break (24 cm{sup 2} ) with simultaneous failure of the high pressure safety injection (HPSI), a beyond-design-basis scenario. For the German 1300 MWe PWRs, under such additional failure conditions, SB-LOCAs with leak sizes below 25 cm{sup 2} account for 18 % of the integral core damage frequency (CDF). This integral CDF can be estimated to be 3.1*10{sup -6} per year if no credit is taken from AM procedures. The break location in the test under consideration was in the cold leg between reactor coolant pump (RCP) and reactor pressure vessel (RPV). The assumed aggravating circumstances were HPSI failure and unavailability of 2 steam generators (SGs) as well as 3 out of 4 main steam relief and control valves (MS-RCV). The extra borating system was switched to injection mode at low pressurizer level but, by itself, would have been unable to maintain enough coolant to avoid core being uncovered before the pressure reached the setpoint of the accumulators (ACCs). The accident was managed by additional utilization of the chemical- and volume control system (CVCS) to inject water to partly neutralize the leak rate. The plant could be cooled down by 2 SGs using only one MS-RCV. The

  16. Development of the Antares electron gun

    International Nuclear Information System (INIS)

    Antares is the Los Alamos National Laboratory 40-kJ, 1-ns, CO2 laser system that is now operational. This laser system was developed for the Intertial Confinement Fusion (ICF) program and is beginning target experiments. The distributed circuit modeling, design and operation of the large electron gun developed for the final laser power amplifier are reviewed. This gun is significant because of the large electron current area, 9 m2; the number of emitter blades, 48; the dual cathode current return; and the coaxial geometry and grid control. The gun components and their development are discussed. These include the emitter blades, the coaxial grid (to maintain constant electron current during the 5-μs pulse), the bonded stacked-ring insulator (to electrically insulate the grid/cathode), the Kapton/aluminum electron transmission windows (to provide an interface between gun vacuum and laser gas) and the vacuum shell (operated at a vacuum of 10-6 torr). A unique pressure diagnostic is also discussed

  17. Antares: Towards a Large Underwater Neutrino Experiment

    CERN Document Server

    Spurio, M

    2008-01-01

    After a long R&D phase to validate its detector concept, the ANTARES (Astronomy with a Neutrino Telescope and Abyss environmental RESearch) collaboration is operating the largest neutrino telescope in the Northern hemisphere, which is close to completion. It is located in the Mediterranean Sea, offshore from Toulon in France at a depth of 2500 m of water which provide a shield from cosmic rays. The detector design is based on the reconstruction of events produced by neutrino interactions. The expected angular resolution for high energy muon neutrinos (E>10 TeV) is less than 0.3 deg. To achieve this good angular resolution, severe requirements on the time resolution of the detected photons and on the determination of the relative position of the detection devices must be reached. The full 12-line detector is planned to be fully operational during this year. At present (April 2008) there are 10 lines taking data plus an instrumented line deployed at the edge of the detector to monitor environmental sea para...

  18. Status report (2006) of the ANTARES project

    CERN Document Server

    Spurio, M; Albertu, A; Amelix, F; Anghinolfii, M; Antong, G; Anvary, S; Aslanidese, E; Auberte, J J; Barbarito, E; Basar, S; Battaglierii, M; Becherini, Y; Bellottib, R; Beltramelliy, J; Bertine, V; Bigiw, A; Billaulte, M; Blaesu, R; de Bottony, N; Bouwhuisv, M C; Bradburyt, S M; Bruijnv, R; Brunner, J; Burgiof, G F; Bustoe, J; Cafagnab, F; Caillate, L; Calzase, A; Caponex, A; Caponettof, L; Carmonaj, E; Carre, J; Cartwrightz, S L; Castelu, D; Castorinaw, E; Cavasinni, Vincenzo; Cecchinic, S; Ceresb, A; Charvis, P; Chauchotk, P; Chiarusix, T; Circellab, M; Colnardv, C; Comprek, C; Conigliones, R; Cottiniw, N; Coylee, P; Cuneoi, S; Cussatlegrasd, A S; Damyk, G; van Dantzigv, R; De Marzob1, C; Dekeyserd, I; Delagnesy, E; Denansy, D; Deschampsh, A; Dessages-Ardelliery, F; Destellee, J J; Dinkespielere, B; Distefanos, C; Donzaudy, C; Drogou, J F; Druilloley, F; Durandy, D; Ernenwein, J P; Escoffiere, S; Falchiniw, E; Favarde, S; Feinsteine, F; Ferryn, S; Festyk, D; Fiorellob, C; Flaminiow, V; Galeottiw, S; Gallonen, J M; Giacomelli, G; Girardu, N; Gojake, C; Gorety, P; Grafg, K; Hallewell, G D; Harakehq, M N; Hartmanng, B; Heijboerv, A; Heinev, E; Helloh, Y; Herandez-Reyj, J J; Hlg, J; Hoffmann, C; Hogenbirkv, J; Hubbardy, J R; Jaquete, M; Jaspersv, M; de Jongv, M; Jouvenoty, F; Kalantar-Nayestanakiq, N; Kappesg, A; Kargg, T; Karkare, S; Katzg, U; Kellere, P; Kokv, H; Kooijmanv, P; Kopperg, C; Korolkova, E V; Kouchnera, A; Kretschmerg, W; Kruijerv, A; Kuchg, S; Kudryavtsev, V A; Lachartre, D; Lafouxy, H; Lagier, P; Lahmann, R; Lamanna, G; Lamare, P; Languillat, J C; Laschinsky, H; Le Guen, Y; Le Provost, H; Le Van-Suu, A; Legou, T; Lim, G; Lo Nigro, L; Lo Presti, D; Löhner, H; Loucatos, Sotirios S; Louis, F; Lucarelli, F; Lyashuk, V; Marcelin, M; Margiotta, A; Masullox, R; Maz´eas, K; Mazurer, A; McMillanz, J E; Megna, R; Melissas, M; Migneco, E; Milovanovic, A; Mongelli, M; Montaruli, T; Morganti, M; Moscoso, L; Musumeci, M; Naumann, C; Naumann-Godo, M; Niess, V; Olivetto, C; Ostasch, R; Palanque-Delabrouille, Nathalie; Payre, P; Peek, H; Petta, C; Piattelli, P; Pineau, J P; Poinsignon, J; Popac, V; Pradier, T; Racca, C; Randazzo, N; Van Randwijk, J; Real, D; Van Rens, B; Réthoré, F; Rewiersma, P A M; Riccobene, G; Rigaud, V; Ripani, M; Roca, V; Roda, C; Rolin, J F; Romita, M; Rose, H J; Rostovtsev, A; Roux, J; Ruppi, M; Russo, G V; Salesa, F; Salomon, K; Sapienza, P; Schmitt, F; Schuller, J P; Shadnizeg, R; Sokalski, I A; Spona, T; van der Steenhoven, G; Stolarczyk, T; Streeb, K; Stubert, D; Sulak, L; Taiuti, M; Tamburini, C; Tao, C; Terreni, G; Thompson, L F; Vald, P; Valente, V; Vallage, B; Venekamp, G; Verlaat, B; Vernin, P; De Vita, R; De Vries, G; Van Wijk, R F; Wobbe, G; De Witt-Huberts, P K A; De Wolf, E; Yao, A F; Zaborov, D; Zaccone, Henri; De Dios-Zornoza-Gomez, Juan; Zúñiga, J; Spurio, Maurizio

    2006-01-01

    The detection of very high energy neutrinos of galactic/extragalactic origin requires very large detectors and a large overburden as a shield against the background of cosmic ray muons. ANTARES is at present the largest (effective area ~0.05 km2) experiment currently under construction in the northern hemisphere. It is being built and installed at a depth of 2500m in the Mediterranean sea, near the Southern French coast, by a large European collaboration. A three-dimensional array of photomultipliers are used to detect the Cherenkov light emitted by neutrino-induced muons. The array, when completed, will consists of 12 lines each covering a vertical length of about 480 m and equipped with 75 photomultipliers arranged in triplets. The readout electronics is connected to an on-shore laboratory through a 42 km long electro-optical cable. The final detector design has been completed. An instrumented line (called MILOM) has been installed in the spring of 2005; the first string (Line 1) is in acquisition starting ...

  19. Atmospheric muons reconstruction with Antares; Reconstruction de muons atmospheriques avec ANTARES

    Energy Technology Data Exchange (ETDEWEB)

    Melissas, M

    2007-09-15

    The ANTARES collaboration is building a neutrino telescope in the Mediterranean Sea. This detector contains 900 photomultiplier tubes, dispatched on 12 lines, in order to detect Cerenkov light from muon induced by neutrino interactions in the the vicinity of the detector. Currently the first 5 lines have been deployed. A first task consists in studying the stability of the detector calibration, which is a necessary step to understand the detector response. Then we studied optical properties of water, for this we developed a reconstruction method dedicated to LED Beacon. The extracted parameters are compatible with earlier measurements. A quality criteria to reject badly reconstructed track has been developed based on the likelihood of the tracks fit versus point fit. This has been applied to real data and a preliminary analysis of atmospheric muons with a 5-lines detector is performed. (author)

  20. The positioning system of the ANTARES Neutrino Telescope

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Ageron, M.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A. C. Assis; Astraatmadja, T.; Aubert, J. -J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; De Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhoefer, A.; Ernenwein, J. -P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J. -L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Herold, B.; Hoessl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefevre, D.; Le Van Suu, A.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Niess, V.; Palioselitis, D.; Pavalas, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Real, D.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Samtleben, D. F. E.; Schoeck, F.; Schuller, J. -P.; Schuessler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sanchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zuniga, J.

    2012-01-01

    The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary

  1. Search for high energy cosmic neutrino point sources with ANTARES

    International Nuclear Information System (INIS)

    The aim of this thesis is the search for high energy cosmic neutrinos emitted by point sources with the ANTARES neutrino telescope. The detection of high energy cosmic neutrinos can bring answers to important questions such as the origin of cosmic rays and the γ-rays emission processes. In the first part of the thesis, the neutrino flux emitted by galactic and extragalactic sources and the number of events which can be detected by ANTARES are estimated. This study uses the measured γ-ray spectra of known sources taking into account the γ-ray absorption by the extragalactic background light. In the second part of the thesis, the absolute pointing of the ANTARES telescope is evaluated. Being located at a depth of 2475 m in sea water, the orientation of the detector is determined by an acoustic positioning system which relies on low and high frequency acoustic waves measurements between the sea surface and the bottom. The third part of the thesis is a search for neutrino point sources in the ANTARES data. The search algorithm is based on a likelihood ratio maximization method. It is used in two search strategies; 'the candidate sources list strategy' and 'the all sky search strategy'. Analysing 2007+2008 data, no discovery is made and the world's best upper limits on neutrino fluxes from various sources in the Southern sky are established. (author)

  2. Accuracy of radiocarbon analyses at ANTARES

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, E.M.; Fink, D.; Hotchkis, M.; Hua, Q.; Jacobsen, G.; Smith, A.M.; Tuniz, C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    Accuracy in Accelerator Mass Spectroscopy (AMS) measurements, as distinct from precision, requires the application of a number of corrections. Most of these are well known except in extreme circumstances and AMS can deliver radiocarbon results which are both precise and accurate in the 0.5 to 1.0% range. The corrections involved in obtaining final radiocarbon ages are discussed. 3 refs., 1 tab.

  3. Fission Cross-section Measurements of (233)U, (245)Cm and (241,243)Am at CERN n_TOF Facility

    CERN Document Server

    Calviani, M; Andriamonje, S; Chiaveri, E; Vlachoudis, V; Colonna, N; Meaze, M H; Marrone, S; Tagliente, G; Terlizzi, R; Belloni, F; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C; Aerts, G; Berthoumieux, E; Dridi, W; Gunsing, F; Pancin, J; Perrot, L; Plukis, A; Alvarez, H; Duran, I; Paradela, C; Alvarez-Velarde, F; Cano-Ott, D; Gonzalez-Romero, E; Guerrero, C; Martinez, T; Villamarin, D; Vicente, M C; Andrzejewski, J; Marganiec, J; Assimakopoulos, P; Karadimos, D; Karamanis, D; Papachristodoulou, C; Patronis, N; Audouin, L; David, S; Ferrant, L; Isaev, S; Stephan, C; Tassan-Got, L; Badurek, G; Jericha, E; Leeb, H; Oberhummer, H; Pigni, M T; Baumann, P; Kerveno, M; Lukic, S; Rudolf, G; Becvar, F; Krticka, M; Calvino, F; Capote, R; Carrillo De Albornoz, A; Marques, L; Salgado, J; Tavora, L; Vaz, P; Cennini, P; Dahlfors, M; Ferrari, A; Gramegna, F; Herrera-Martinez, A; Kadi, Y; Mastinu, P; Praena, J; Sarchiapone, L; Wendler, H; Chepel, V; Ferreira-Marques, R; Goncalves, I; Lindote, A; Lopes, I; Neves, F; Cortes, G; Poch, A; Pretel, C; Couture, A; Cox, J; O'brien, S; Wiescher, M; Dillman, I; Heil, M; Kappeler, F; Mosconi, M; Plag, R; Voss, F; Walter, S; Wisshak, K; Dolfini, R; Rubbia, C; Domingo-Pardo, C; Tain, J L; Eleftheriadis, C; Savvidis, I; Frais-Koelbl, H; Griesmayer, E; Furman, W; Konovalov, V; Goverdovski, A; Ketlerov, V; Haas, B; Haight, R; Reifarth, R; Igashira, M; Koehler, P; Kossionides, E; Lampoudis, C; Lozano, M; Quesada, J; Massimi, C; Vannini, G; Mengoni, A; Oshima, M; Papadopoulos, C; Vlastou, R; Pavlik, A; Pavlopoulos, P; Plompen, A; Rullhusen, P; Rauscher, T; Rosetti, M; Ventura, A

    2011-01-01

    Neutron-induced fission cross-sections of minor actinides have been measured using the n_TOF white neutron source at CERN, Geneva, as part of a large experimental program aiming at collecting new data relevant for nuclear astrophysics and for the design of advanced reactor systems. The measurements at n_TOF take advantage of the innovative features of the n_TOF facility, namely the wide energy range, high instantaneous neutron flux and good energy resolution. Final results on the fission cross-section of 233U, 245Cm and 243Am from thermal to 20 MeV are here reported, together with preliminary results for 241Am. The measurement have been performed with a dedicated Fast Ionization Chamber (FIC), a fission fragment detector with a very high efficiency, relative to the very well known cross-section of 235U, measured simultaneously with the same detector.

  4. Calibration systems and methods for the ANTARES neutrino telescope

    CERN Document Server

    Fehr, Felix

    2007-01-01

    The ANTARES neutrino telescope is currently being constructed in the Mediterranean Sea. The complete detector will consist of 12 strings, supplemented by an additional instrumentation line. Nine strings are at present deployed of which five are already connected to the shore and operating. Each string is equipped with 75 Optical Modules (OMs) housing the photomultipliers to detect the Cherenkov light induced by the charged particles produced in neutrino reactions. An accurate measurement of the Cherenkov photon arrival times as well as the positions and orientations of the OMs is required for a precise reconstruction of the direction of the detected neutrinos. For this purpose the ANTARES detector is provided with several system s to facilitate the calibration of the detector. The time calibration is performed using light pulses emitted from LED and laser devices. The positioning is done via acoustic triangulation using hydrophones. Additionally, local tilt angles and the orientations of the modules are measu...

  5. Measurement of the atmospheric muon flux with the ANTARES detector

    CERN Document Server

    Bazzotti, Marco

    2009-01-01

    ANTARES is a submarine neutrino telescope deployed in the Mediterranean Sea, at a depth of about 2500 m. It consists of a three-dimensional array of photomultiplier tubes that can detect the Cherenkov light induced by charged particles produced in the interactions of neutrinos with the surrounding medium. Down-going muons produced in atmospheric showers are a physical background to the neutrino detection, and are being studied. In this paper the measurement of the Depth Intensity Relation (DIR) of atmospheric muon flux is presented. The data collected in June and July 2007, when the ANTARES detector was in its 5-line configuration, are used in the analysis. The corresponding livetime is $724 h$. A deconvolution method based on a Bayesian approach was developed, which takes into account detector and reconstruction inefficiencies. Comparison with other experimental results and Monte Carlo expectations are presented and discussed.

  6. The Positioning System of the ANTARES Neutrino Telescope

    CERN Document Server

    Adrián-Martínez, S; Aguilar, J A; Samarai, I Al; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigi, A; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Camarena, F; Capone, A; Carloganu, C; Carminati, G; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Curtil, C; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fermani, P; Ferri, M; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatá, S; Gay, P; Giacomelli, G; Giordano, V; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Hartman, J; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Keller, P; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lattuada, D; Lefévre, D; Van Suu, A Le; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Meli, A; Montaruli, T; Moscoso, L; Motz, H; Neff, M; Nezri, E; Niess, V; Palioselitis, D; Păvălaş, G E; Payet, K; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Popa, V; Pradier, T; Presani, E; Racca, C; Real, D; Reed, C; Riccobene, G; Richardt, C; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Samtleben, D F E; Schöck, F; Schuller, J-P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2012-01-01

    The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described.

  7. The positioning system of the ANTARES Neutrino Telescope

    International Nuclear Information System (INIS)

    The ANTARES neutrino telescope, located 40 km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475 m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10 cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described.

  8. Integration of Acoustic Neutrino Detection Methods into ANTARES

    International Nuclear Information System (INIS)

    The ANTARES Neutrino Telescope is a water Cherenkov detector currently under construction in the Mediterranean Sea. It is also designed to serve as a platform for investigations of the deep-sea environment. In this context, the ANTARES group at the University of Erlangen will integrate acoustic sensors within the infrastructure of the experiment. With this dedicated setup, tests of acoustic particle detection methods and deep-sea acoustic background studies shall be performed. The aim of this project is to evaluate the feasibility of a future acoustic neutrino telescope in the deep sea operating in the ultra-high energy regime. In these proceedings, the implementation of the project is described in the context of the premises and challenges set by the physics of acoustic particle detection and the integration into an existing infrastructure

  9. Integration of Acoustic Neutrino Detection Methods into ANTARES

    CERN Document Server

    Graf, K; Hoessl, J; Kappes, A; Katz, U F; Lahmann, R; Naumann, C; Salomon, K

    2007-01-01

    The ANTARES Neutrino Telescope is a water Cherenkov detector currently under construction in the Mediterranean Sea. It is also designed to serve as a platform for investigations of the deep-sea environment. In this context, the ANTARES group at the University of Erlangen will integrate acoustic sensors within the infrastructure of the experiment. With this dedicated setup, tests of acoustic particle detection methods and deep-sea acoustic background studies shall be performed. The aim of this project is to evaluate the feasibility of a future acoustic neutrino telescope in the deep sea operating in the ultra-high energy regime. In these proceedings, the implementation of the project is described in the context of the premises and challenges set by the physics of acoustic particle detection and the integration into an existing infrastructure.

  10. Neutrino fluxes from the Galactic plane and the ANTARES limit

    Directory of Open Access Journals (Sweden)

    Fusco Luigi Antonio

    2016-01-01

    Full Text Available The existence of cosmic neutrinos has been reported by the IceCube Collaboration. Though this measurement is consistent with an isotropic neutrino flux, a sub-dominant galactic component coming from extended regions such as the Galactic Plane cannot be excluded. The ANTARES detector, located in the Mediterranean Sea, is currently the largest and longest operated under-water neutrino telescope; its effective area and good exposure to the Southern Sky allow to constrain an enhanced muon neutrino emission from extended sources such as the Galactic Plane. ANTARES data from 2007 to 2013 have been analysed and upper limits on the neutrino production from the central region of our galaxy have been set.

  11. The ANTARES demonstrator towards an undersea neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES demonstrator is intended to prove the feasibility of a large undersea high energy neutrino telescope aimed at the observation of galactic and extra-galactic sources. An array of photo-multiplier tubes (PMT) detects the Cherenkov light emitted in the sea water from the muons produced by the neutrinos in the surrounding medium. The demonstrator will consist of several elementary structures connected to the coast via a single optical cable. The mechanical structure organisation, the optical cable connection, the position monitoring and the data transmission schemes will be extrapolable to a km-scale telescope. The demonstrator with approximately 100 optical modules is planned be deployed in 1999 in the Mediterranean sea of the coast of Toulon (France). ANTARES is also building autonomous systems in order to measure undersea optical parameters in view of the selection of a site for a km-scale telescope

  12. The data acquisition system for the ANTARES neutrino telescope

    CERN Document Server

    Aguilar, J A; Ameli, F; Anghinolfi, M; Anton, G; Anvar, S; Aslanides, E; Aubert, Jean-Jacques; Barbarito, E; Basa, S; Battaglieri, M; Becherini, Y; Bellotti, R; Beltramelli, J; Bertin, V; Bigi, A; Billault, M; Blaes, R; De Botton, N R; Bouwhuis, M C; Bradbury, S M; Bruijn, R; Brunner, J; Burgio, G F; Busto, J; Cafagna, F; Caillat, L; Calzas, A; Capone, A; Caponetto, L; Carmona, E; Carr, J; Cartwright, S L; Castel, D; Castorina, E; Cavasinni, V; Cecchini, S; Ceres, A; Charvis, P; Chauchot, P; Chiarusi, T; Circella, M; Colnard, C; Compere, C; Coniglione, R; Cottini, N; Coyle, P; Cuneo, S; Cussatlegras, A S; Damy, G; Van Dantzig, R; De Marzo, C; Dekeyser, I; Delagnes, E; Denans, D; Deschamps, A; Dessages-Ardellier, F; Destelle, J J; Dinkespieler, B; Distefano, C; Donzaud, C; Drogou, J F; Druillole, F; Durand, D; Ernenwein, J P; Escoffier, S; Falchini, E; Favard, S; Feinstein, F; Ferry, S; Festy, D; Fiorello, C; Flaminio, V; Galeotti, S; Gallone, J M; Giacomelli, G; Girard, N; Gojak, C; Goret, P; Graf, K; Hallewell, G D; Harakeh, M N; Hartmann, B; Heijboer, A; Heine, E; Hello, Y; Hernández-Rey, J J; Hossl, J; Hoffman, C; Hogenbirk, J; Hubbard, John R; Jaquet, M; Jaspers, M; De Jong, M; Jouvenot, F; Kalantar-Nayestanaki, N; Kappes, A; Karg, T; Karkar, S; Katz, U; Keller, P; Kok, H; Kooijman, P; Kopper, C; Korolkova, E V; Kouchner, A; Kretschmer, W; Kruijer, A; Kuch, S; Kudryavtsev, V A; Lachartre, D; Lafoux, H; Lagier, P; Lahmann, R; Lamanna, G; Lamare, P; Languillat, J C; Laschinsky, H; Le Guen, Y; Le Provost, H; Le Van-Suu, A; Legou, T; Lim, G; Lo Nigro, L; Lo Presti, D; Löhner, H; Loucatos, Sotirios S; Louis, F; Lucarelli, F; Lyashuk, V; Marcelin, M; Margiotta, A; Masullo, R; Mazéas, F; Mazure, A; McMillan, J E; Megna, R; Melissas, M; Migneco, E; Milovanovic, A; Mongelli, M; Montaruli, T; Morganti, M; Moscoso, L; Musumeci, M; Naumann, C; Naumann-Godo, M; Niess, V; Olivetto, C; Ostasch, R; Palanque-Delabrouille, Nathalie; Payre, P; Peek, H; Petta, C; Piattelli, P; Pineau, J P; Poinsignon, J; Popa, V; Pradier, T; Racca, C; Randazzo, N; Van Randwijk, J; Real, D; Van Rens, B; Rethore, F; Rewiersma, P A M; Riccobene, G; Rigaud, V; Ripani, M; Roca, V; Roda, C; Rolin, J F; Romita, M; Rose, H J; Rostovtsev, A; Roux, J; Ruppi, M; Russo, G V; Salesa, F; Salomon, K; Sapienza, P; Schmitt, F; Schuller, J P; Shanidze, R; Sokalski, I A; Spona, T; Spurio, M; van der Steenhoven, G; Stolarczyk, T; Streeb, K; Stubert, D; Sulak, L; Taiuti, M; Tamburini, C; Tao, C; Terreni, G; Thompson, L F; Valdy, P; Valente, V; Vallage, B; Venekamp, G; Verlaat, B; Vernin, P; De Vita, R; De Vries, G; Van Wijk, R F; De Witt-Huberts, P K A; Wobbe, G; De Wolf, E; Yao, A F; Zaborov, D; Zaccone, Henri; De Dios-Zornoza-Gomez, Juan; Zúñiga, J; al, et

    2006-01-01

    The ANTARES neutrino telescope is being constructed in the Mediterranean Sea. It consists of a large three-dimensional array of photo-multiplier tubes. The data acquisition system of the detector takes care of the digitisation of the photo-multiplier tube signals, data transport, data filtering, and data storage. The detector is operated using a control program interfaced with all elements. The design and the implementation of the data acquisition system are described.

  13. ANTARES neutrino detection and possible Swift X-ray counterpart

    Science.gov (United States)

    Dornic, D.; Basa, S.; Evans, P. A.; Kennea, J. A.; Osborne, J. P.; Lipunov, V.

    2015-09-01

    On September 1st, 2015, at 07:38:25 UT, ANTARES has detected a bright neutrino at a location of: & nbsp; & nbsp; & nbsp;RA(J2000) = 16h 25m 42s & nbsp; & nbsp; & nbsp;DEC (J2000) = -27d 23m 24s with an uncertainty of 18 arcmin (radius, 50% containment) A target of opportunity alert has been sent immediately to Swift.

  14. Underwater mateable electro-optical connectors: The feedback from ANTARES

    International Nuclear Information System (INIS)

    Underwater mateable electro-optical connectors operated by a submarine or a ROV are key components for present and future seabed detectors. After a test, ANTARES selected a type of connector from the Ocean Design (ODI) Company. The use of this device was not fully successful and it is considered today as the most critical part of the detector. Possible improvements in the use of this connector are suggested.

  15. The deep-sea hub of the ANTARES neutrino telescope

    OpenAIRE

    Anghinolfi, M.; Calzas, A.; Dinkespiler, B.; Cuneo, S.; Favard, S; Hallewell, G.; Jaquet, M.; Musumeci, M.; Papaleo, R.; Raia, G.; Valdy, P.; Vernin, P.

    2006-01-01

    The ANTARES neutrino telescope, currently under construction at 2500 in depth off the French Mediterranean coast, will contain 12 detection lines, powered and read out through a deep-sea junction box (JB) hub. Electrical energy from the shore station is distributed through a transformer with multiple secondary windings and a plugboard with 16 deep sea-mateable electro-optic connectors. Connections are made to the JB outputs using manned or remotely operated submersible vehicles. The triply re...

  16. Search for magnetic monopoles with the neutrino telescope ANTARES

    International Nuclear Information System (INIS)

    The ANTARES neutrino telescope is located at a 2500 meters depth, and is composed of an array of 900 photomultipliers installed for the detection of Cherenkov light emitted by neutrino-induced muons, after having interacted with matter, and in order to reconstruct their directions. However, besides of being capable of detecting high energy neutrinos, neutrino telescopes could measure the incoming flux of magnetic monopoles in the detector. In this work, were first presented the different methods used in order to calibrate the photomultipliers, which are the heart of a neutrino telescope. The possibility of detecting magnetic monopoles with ANTARES was then discussed, and a first analysis optimised for the search for high velocity magnetic monopoles showed the great sensitivity offered by the telescope. Finally, a track reconstruction algorithm was modified, and a new analysis this time sensitive over a wider range of velocities was performed. After the application of the last analysis on the data taken in 2008 with the ANTARES telescope, new upper limits on the upward going magnetic monopole flux, of masses lower than 1014 GeV were obtained, and are the best experimental constraints on their flux for the velocity region β ∼ [0.65, 0.995]. (author)

  17. Sedimentation and Fouling of Optical Surfaces at the ANTARES Site

    CERN Document Server

    Amram, P

    2003-01-01

    ANTARES is a project leading towards the construction and deployment of a neutrino telescope in the deep Mediterranean Sea. The telescope will use an array of photomultiplier tubes to detect the Cherenkov light emitted by muons resulting from the interaction with matter of high energy neutrinos. In the vicinity of the deployment site the ANTARES collaboration has performed a series of in-situ measurements to study the change in light transmission through glass surfaces during immersions of several months. The average loss of light transmission is estimated to be only ~2% at the equator of a glass sphere one year after deployment. It decreases with increasing zenith angle, and tends to saturate with time. The transmission loss, therefore, is expected to remain small for the several year lifetime of the ANTARES detector whose optical modules are oriented downwards. The measurements were complemented by the analysis of the ^{210}Pb activity profile in sediment cores and the study of biofouling on glass plates. D...

  18. Dark matter search with the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Zornoza, Juan de Dios, E-mail: zornoza@ific.uv.es [IFIC, Ed. Institutos de Investigacin, AC 20085, E-46071 Valencia (Spain)

    2012-11-11

    The ANTARES neutrino telescope was completed in 2008 with the installation of its 12th line. Its scientific scope is very broad, but the two main goals are the observation of astrophysical sources and the indirect detection of dark matter. The latter is possible through neutrinos produced after the annihilation of WIMPs, which would accumulate in sources like the Sun, the Earth or the Galactic Centre. The neutralino, which arises in Supersymmetry models, is one of the most popular WIMP candidates. KK particles, which appear in Universal Extra Dimension models, are another one. Though in most models these annihilations would not directly produce neutrinos, they are expected from the decay of secondary particles. An important advantage of neutrino telescopes with respect to other indirect searches (like gamma rays or cosmic rays) is that a potential signal (for instance from the Sun) would be very clean, since no other astrophysical explanations could mimic it (like pulsars for the case of the positron excess seen by PAMELA). Moreover, the Galactic Centre is accessible for ANTARES, being in the Northern Hemisphere. In this talk I will present the results of the ANTARES telescope for dark matter searches, which include neutralino and KK particles.

  19. Measurement of the neutron-induced fission cross-section of {sup 241}Am at the time-of-flight facility n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Belloni, F.; Milazzo, P.M.; Abbondanno, U.; Fujii, K.; Moreau, C. [Istituto Nazionale di Fisica Nucleare (INFN), Trieste (Italy); Calviani, M. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare (INFN), Trieste (Italy); CERN, Geneva (Switzerland); Colonna, N.; Barbagallo, M.; Marrone, S.; Meaze, M.H.; Tagliente, G.; Terlizzi, R. [Istituto Nazionale di Fisica Nucleare (INFN), Bari (Italy); Mastinu, P.; Gramegna, F. [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare (INFN), Trieste (Italy); Aerts, G.; Andriamonje, S.; Berthoumieux, E.; Dridi, W.; Gunsing, F.; Perrot, L.; Plukis, A. [Irfu, CEA, Gif-sur-Yvette (France); Alvarez, H.; Cano-Ott, D.; Duran, I.; Embid-Segura, M.; Gonzalez-Romero, E.; Paradela, C.; Tarrio, D. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Alvarez-Velarde, F.; Guerrero, C.; Martinez, T.; Villamarin, D.; Vincente, M.C. [Centro de Investigaciones Energeticas Medioambientales y Technologicas, Madrid (Spain); Andrzejewski, J.; Marganiec, J. [University of Lodz, Lodz (Poland); Audouin, L.; Dillmann, I.; Heil, M.; Kaeppeler, F.; Mosconi, M.; Plag, R.; Voss, F.; Walter, S.; Wisshak, K. [Institut fuer Kernphysik, Karlsruhe Institute of Technology, Campus Nord, Nord (Germany); Badurek, G.; Jericha, E.; Leeb, H.; Oberhummer, H. [Technische Universitaet Wien, Atominstitut der Oesterreichischen Universitaeten, Wien (Austria); Baumann, P.; David, S.; Kerveno, M.; Lukic, S.; Rudolf, G. [Centre National de la Recherche Scientifique/IN2P3 - IReS, Strasbourg (France); Becvar, F.; Krticka, M. [Charles University in Prague, Faculty of Mathematics and Physics, Prague (Czech Republic); Calvino, F.; Cortes, G.; Poch, A.; Pretel, C. [Universitat Politecnica de Catalunya, Barcelona (Spain); Capote, R. [NAPC/Nuclear Data Section, International Atomic Energy Agency (IAEA), Vienna (Austria); Universidad de Sevilla, Sevilla (Spain)] [and others

    2013-01-15

    The neutron-induced fission cross-section of {sup 241}Am has been measured relative to the standard fission cross-section of {sup 235}U between 0.5 and 20 MeV. The experiment was performed at the CERN n{sub T}OF facility. Fission fragments were detected by a fast ionization chamber by discriminating against the {alpha} -particles from the high radioactivity of the samples. The high instantaneous neutron flux and the low background of the n{sub T}OF facility enabled us to obtain uncertainties of {approx} 5%. With the present results it was possible to resolve discrepancies between previous data sets and to confirm current evaluations, thus providing important information for design studies of future reactors with improved fuel burn-up. (orig.)

  20. Survey Layanan Publik Pemantauan Frekuensi Radio untuk Radio Amatir Dan Radio Antar Penduduk Indonesia

    OpenAIRE

    Azwar Aziz

    2014-01-01

    Berlatar belakang fenomena penggunaan amatir radio dan komunikasi radio antar penduduk yang berkaitan dengan faktor layanan publik dari monitor frekuensi radio, dimana peneliti memfokuskan pada permasalahan kondisi pelayanan publik yang diberikan oleh pemerintah tentang penggunaan radio non komersial yang digunakan oleh perorangan. Penelitian ini memperlihatkan penggiat amatir radio dan komunikasi radio antar penduduk bervariasi, mulai dari yang tidak mempunyai izin sampai pada yang memiliki ...

  1. The André E. Lalonde AMS Laboratory - The new accelerator mass spectrometry facility at the University of Ottawa

    Science.gov (United States)

    Kieser, W. E.; Zhao, X.-L.; Clark, I. D.; Cornett, R. J.; Litherland, A. E.; Klein, M.; Mous, D. J. W.; Alary, J.-F.

    2015-10-01

    The University of Ottawa, Canada, has installed a multi-element, 3 MV tandem AMS system as the cornerstone of their new Advanced Research Complex and the principal analytical instrument of the André E. Lalonde Accelerator Mass Spectrometry Laboratory. Manufactured by High Voltage Engineering Europa B.V., the Netherlands, it is equipped with a 200 sample ion source, a high resolution, 120° injection magnet, a 90° high energy analysis magnet (mass-energy product 350 MeV-AMU), a 65°, 1.7 m radius electric analyzer and a 2 channel gas ionization detector. It is designed to analyze isotopes ranging from tritium to the actinides and to accommodate the use of fluoride target materials. This system is being extended with a second injection line, consisting of selected components from the IsoTrace Laboratory, University of Toronto. This line will contain a pre-commercial version of the Isobar Separator for Anions, manufactured by Isobarex Corp., Bolton, Ontario, Canada. This instrument uses selective ion-gas reactions in a radio-frequency quadrupole cell to attenuate both atomic and molecular isobars. This paper discusses the specifications of the new AMS equipment, reports on the acceptance test results for 10Be, 14C, 26Al and 127I and presents typical spectra for 10Be and actinide analyses.

  2. DETERMINAN SUKU BUNGA PASAR UANG ANTAR BANK DI INDONESIA

    Directory of Open Access Journals (Sweden)

    Dyah Utami

    2015-12-01

    Full Text Available Interbank money market (interbank or often called the Interbank Call Money is one of the important means to encourage the development of money markets.Interbank money market is interest rate which is determined by the bank that needs loan. It also means that the interest rate which is charged to the banks that borrow some money in the interbank money market because of PUAB publishing. This study aims to analyze the determinants of the interbank money market in Indonesia. The variables in this study are the Singapore Interbank offered rate (SIBOR, SBI interest rates, and exchange rates. The results show that SIBOR has positive effect on the interest rate of Interbank Call Money, SBI has negative effect to the rates of Interbank Call Money, and the exchange rates has a positive effect to the rates of Interbank Call Money, and SIBOR, SBI, and the exchange rate at the same time affects the rates of Interbank Call Money.Pasar uang antar bank (PUAB atau sering disebut dengan Interbank Call Money merupakan salah satu sarana penting untuk mendorong pengembangan pasar uang.Pasar uang antar bank sendiri adalah tingkat suku bunga yang ditentukan dan dikenakan oleh pihak bank kepada bank yang melakukan pinjaman di pasar uang antar bank atas penerbitan PUAB. Penelitian ini bertujuan untuk menganalisis determinan PUAB di Indonesia. Adapun variabel yang mempengaruhi dalam penelitian ini adalah Singapore Interbank offered rate (SIBOR, Suku bunga SBI, dan kurs. Hasil penelitian menunjukan bahwa SIBOR berpengaruh positif terhadap tingkat suku bunga PUAB, SBI berpengaruh negative terhadap suku bunga PUAB, dan Kurs berpengaruh positif terhadap suku bunga PUAB, serta secara bersama SIBOR, SBI, dan Kurs mempengaruhi tingkat suku bunga PUAB. 

  3. Development of Acoustic Sensors for the ANTARES Experiment

    CERN Document Server

    Naumann, C L; Graf, K; Hoessl, J; Kappes, A; Karg, T; Katz, U; Lahmann, R; Salomon, K; Naumann, Christopher Lindsay; Anton, Gisela; Graf, Kay; Hoessl, Juergen; Kappes, Alexander; Karg, Timo; Katz, Uli; Lahmann, Robert; Salomon, Karsten

    2005-01-01

    In order to study the possibility of acoustic detection of ultra-high energy neutrinos in water, our group is planning to deploy and operate an array of acoustic sensors using the ANTARES Neutrino telescope in the Mediterranean Sea. Therefore, acoustic sensor hardware has to be developed which is both capable of operation under the hostile conditions of the deep sea and at the same time provides the high sensitivity necessary to detect the weak pressure signals resulting from the neutrino's interaction in water. In this paper, two different approaches to building such sensors, as well as performance studies in the laboratory and in situ, are presented.

  4. Measurement and Analysis of $^{241}$Am(n,γ) Cross Sections with C$_6$D$_6$ Detectors at the n_TOF Facility at CERN

    CERN Document Server

    Fraval, K; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T; Žugec, P

    The 241Am(n,γ) cross sections have been measured at the n_TOF facility at CERN using C6D6 liquid scintillators and time of flight spectrometry. The results in the resolved resonance range bring new constraints to evaluations below 150 eV, and the energy upper limit can be extended from 150 eV to 320 eV. The analysis goes from thermal energy to 150 keV, and the unresolved resonance range cross section turns out to be larger than expected by evaluations or otherwise measured by previous works. The thermal cross section is found to be σthσth = 740 ± 74 barns, which is larger than expected by evaluations and most previous measurements.

  5. Project Antares: A low cost modular launch vehicle for the future

    Science.gov (United States)

    Aarnio, Steve; Anderson, Hobie; Arzaz, El Mehdi; Bailey, Michelle; Beeghly, Jeff; Cartwright, Curt; Chau, William; Dawdy, Andrew; Detert, Bruce; Ervin, Miles

    1991-06-01

    The single stage to orbit launch vehicle Antares is based upon the revolutionary concept of modularity, enabling the Antares to efficiently launch communications satellites, as well as heavy payloads, into Earth's orbit and beyond. The basic unit of the modular system, a single Antares vehicle, is aimed at launching approximately 10,000 kg into low Earth orbit (LEO). When coupled with a Centaur upper stage it is capable of placing 3500 kg into geostationary orbit. The Antares incorporates a reusable engine, the Dual Mixture Ratio Engine (DMRE), as its propulsive device. This enables Antares to compete and excel in the satellite launch market by dramatically reducing launch costs. Antares' projected launch costs are $1340 per kg to LEO which offers a tremendous savings over launch vehicles available today. Inherent in the design is the capability to attach several of these vehicles together to provide heavy lift capability. Any number of these vehicles, up to seven, can be attached depending on the payload and mission requirements. With a seven vehicle configuration Antares's modular concept provides a heavy lift capability of approximately 70,000 kg to LEO. This expandability allows for a wider range of payload options such as large Earth satellites, Space Station Freedom support, and interplanetary spacecraft, and also offers a significant cost savings over a mixed fleet based on different launch vehicles.

  6. The mechanism for RNA recognition by ANTAR regulators of gene expression.

    Directory of Open Access Journals (Sweden)

    Arati Ramesh

    Full Text Available ANTAR proteins are widespread bacterial regulatory proteins that have RNA-binding output domains and utilize antitermination to control gene expression at the post-initiation level. An ANTAR protein, EutV, regulates the ethanolamine-utilization genes (eut in Enterococcus faecalis. Using this system, we present genetic and biochemical evidence of a general mechanism of antitermination used by ANTARs, including details of the antiterminator structure. The novel antiterminator structure consists of two small hairpins with highly conserved terminal loop residues, both features being essential for successful antitermination. The ANTAR protein dimerizes and associates with its substrate RNA in response to signal-induced phosphorylation. Furthermore, bioinformatic searches using this conserved antiterminator motif identified many new ANTAR target RNAs in phylogenetically diverse bacterial species, some comprising complex regulons. Despite the unrelatedness of the species in which they are found, the majority of the ANTAR-associated genes are thematically related to nitrogen management. These data suggest that the central tenets for gene regulation by ANTAR antitermination occur widely in nature to specifically control nitrogen metabolism.

  7. Development of a prompt-gamma neutron activation analysis facility for small animal in vivo body composition studies using Am-Be Source

    International Nuclear Information System (INIS)

    Full text: The design, calibration, radiation dosimetry and preliminary performance evaluation of a prompt-gamma neutron activation analysis facility for in vivo body composition studies in small animals (i.e. rats or rabbits) are described. The system design was guided by Monte Carlo neutron and photon transport calculations performed using the MCNP-4C code. The facility utilizes a 555 GBq (15 Ci) Am-Be radionuclide neutron source positioned within a graphite collimator and appropriate shielding assembly. Prompt gamma rays produced by thermal neutron capture reactions within the animal are detected by a combination of a NaI(Tl) and a HPGe detectors positioned on either side of the sample, perpendicularly to the neutron beam. Small animal body nitrogen and hydrogen are determined by the NaI(Tl) detector by analysis of the 10.83 MeV and 2.22 MeV peaks, respectively, while calcium and chlorine are determined by the HPGe detector by analysis of the 6.42 MeV and 6.11 MeV peaks, respectively. Moreover, body potassium is determined independently by means of 40K measurement at a modified whole body counter facility. Appropriate corrections for animal body size and shape are applied. Mixed neutron and gamma radiation dosimetry was performed using a tissue-equivalent proportional counter. The facility described is a simple tool enabling us to perform in vivo analysis of the major body compartments of protein, bone mass, extra-cellular and intra-cellular space. It will be used to perform serial nutritional and metabolic studies in sets of small experimental animals under controlled conditions for an ethically accepted radiation dose and without the need to kill the animal. (author)

  8. Standardization prospective in ESONET NoE and a possible implementation on the ANTARES Site

    Energy Technology Data Exchange (ETDEWEB)

    Puillat, Ingrid [IFREMER Centre de Brest, Bp 70 29280 Plouzane cedex (France)], E-mail: ipuillat@ifremer.fr; Person, Roland [IFREMER Centre de Brest, Bp 70 29280 Plouzane cedex (France); Leveque, Claude; Drogou, Jean-Francois [IFREMER Centre de Toulon, Bp 330, 83507 La Seyne sur mer Cedex (France); Diepenbroek, Michael [MARUM-Bremen University, Leobener Strasse, Pop 330 440, 28359 Bremen (Germany); Garreau, Pierre [IFREMER Centre de Brest, Bp 70 29280 Plouzane cedex (France); Waldmann, Christoph [MARUM-Bremen University, Leobener Strasse, Pop 330 440, 28359 Bremen (Germany); Auffret, Yves [IFREMER Centre de Brest, Bp 70 29280 Plouzane cedex (France)

    2009-04-11

    ESONET is a Multidisciplinary European Network of Excellence (NoE) associating 50 partners from 14 countries and more than 300 scientists and engineers and dedicated to the lasting integration of research and development in deep sea observatories in Europe. Amongst other actions, it works at establishing seafloor infrastructure that will provide platforms for instrumentation deployed throughout the water column and the geosphere below in a standard manner. Those platforms will provide power for instruments and real-time two-way data communications. This preparatory phase of observatory implementation is intended to select the most suitable standards in order to develop observatories that are interoperable between themselves and which would be able to benefit from the common sharing of facilities. After the ESONET Best Practices Workshop held in Bremen at the end of January 2008, the state of art has been set and some groups working on key standardization topics have been constituted to manage standardization plans. Some outputs are presented hereafter. Those plans will be implemented and tested in the recently-selected four so-called ESONET Demonstration Missions. The ANTARES Site as an ESONET regional node offers some facilities for the next call for demonstration missions. Scientific interest is briefly explained, with a specific focus on needs for oceanography. The technical possibility of new instrument implementation via a secondary junction box is then presented.

  9. Multi-wavelength follow-up of ANTARES neutrino alerts

    Science.gov (United States)

    Mathieu, Aurore

    2015-10-01

    Transient sources are often associated with the most violent phenomena in the Universe, where the acceleration of hadrons may occur. Such sources include gamma-ray bursts (GRBs), active galactic nuclei (AGN) or core-collapse supernovae (CCSNe), and are promising candidates for the production of high energy cosmic rays and neutrinos. The ANTARES telescope, located in the Mediterranean sea, aims at detecting these high energy neutrinos, which could reveal the presence of a cosmic ray accelerator. However, to enhance the sensitivity to transient sources, a method based on multi-wavelength follow-up of neutrino alerts has been developed within the ANTARES collaboration. This program, denoted as TAToO, triggers a network of robotic optical telescopes and the Swift-XRT with a delay of only a few seconds after a neutrino detection. The telescopes start an observation program of the corresponding region of the sky in order to detect a possible electromagnetic counterpart to the neutrino event. The work presented in this thesis covers the development and implementation of an optical image analysis pipeline, as well as the analysis of optical and X-ray data to search for fast transient sources, such as GRB afterglows, and slowly varying transient sources, such as CCSNe.

  10. Water absorption length measurement with the ANTARES optical beacon system

    International Nuclear Information System (INIS)

    ANTARES is a neutrino telescope located in the Mediterranean Sea with the aim of detecting high energy neutrinos of extra-terrestrial origin. It consists of a three dimensional array on 12 detection lines of photomultiplier tubes (PMTs) able to detect the Cherenkov light induced by muons produced in the interaction of neutrinos with the surrounding water and seabed. To reach the best angular resolution, good time and positioning calibrations are required. The propagation of Cherenkov photons strongly depends on the optical properties of the sea water, which has an impact on the reconstruction efficiency. The determination of the optical parameters, as the absorption and scattering lengths, is crucial to calculate properly the effective area and the angular resolution of the detector. The ANTARES optical beacon system consists of pulsed and fast, well controlled light sources distributed throughout the detector to carry out in situ the relative time calibration of the detector components. In this contribution we show some results on the sea water optical properties and their stability measured with the optical beacon system.

  11. First results of the Instrumentation Line for the deep-sea ANTARES neutrino telescope

    CERN Document Server

    Aguilar, J A; Ameli, F; Anghinolfi, M; Anton, G; Anvar, S; Aslanides, E; Aubert, Jean-Jacques; Barbarito, E; Basa, S; Battaglieri, M; Becherini, Y; Bellotti, R; Beltramelli, J; Bertin, V; Bigi, A; Billault, M; Blaes, R; de Botton, N; Bouwhuis, M C; Bradbury, S M; Bruijn, R; Brunner, J; Burgio, G F; Busto, J; Cafagna, F; Caillat, L; Calzas, A; Capone, A; Caponetto, L; Carmona, E; Carr, J; Cartwright, S L; Castel, D; Castorina, E; Cavasinni, V; Cecchini, S; Ceres, A; Charvis, P; Chauchot, P; Chiarusi, T; Circella, M; Colnard, C; Compere, C; Coniglione, R; Cottini, N; Coyle, P; Cuneo, S; Cussatlegras, A S; Damy, G; Van Dantzig, R; De Marzo, C; Dekeyser, I; Delagnes, E; Denans, D; Deschamps, A; Dessages-Ardellier, F; Destelle, J J; Dinkespieler, B; Distefano, C; Donzaud, C; Drogou, J F; Druillole, F; Durand, D; Ernenwein, J P; Escoffier, S; Falchini, E; Favard, S; Feinstein, F; Ferry, S; Festy, D; Fiorello, C; Flaminio, V; Galeotti, S; Gallone, J M; Giacomelli, G; Girard, N; Gojak, C; Goret, P; Graf, K; Hallewell, G D; Harakeh, M N; Hartmann, B; Heijboer, A; Heine, E; Hello, Y; Hernández-Rey, J J; Hossl, J; Hoffman, C; Hogenbirk, J; Hubbard, John R; Jaquet, M; Jaspers, M; De Jong, M; Jouvenot, F; Kalantar-Nayestanaki, N; Kappes, A; Karg, T; Karkar, S; Katz, U; Keller, P; Kok, H; Kooijman, P; Kopper, C; Korolkova, E V; Kouchner, A; Kretschmer, W; Kruijer, A; Kuch, S; Kudryavtsev, V A; Lachartre, D; Lafoux, H; Lagier, P; Lahmann, R; Lamanna, G; Lamare, P; Languillat, J C; Laschinsky, H; Le Guen, Y; Le Provost, H; Le Van-Suu, A; Legou, T; Lim, G; Lo Nigro, L; Lo Presti, D; Löhner, H; Loucatos, Sotirios S; Louis, F; Lucarelli, F; Lyashuk, V; Marcelin, M; Margiotta, A; Masullo, R; Mazéas, F; Mazure, A; McMillan, J E; Megna, R; Melissas, M; Migneco, E; Milovanovic, A; Mongelli, M; Montaruli, T; Morganti, M; Moscoso, L; Musumeci, M; Naumann, C; Naumann-Godo, M; Niess, V; Olivetto, C; Ostasch, R; Palanque-Delabrouille, Nathalie; Payre, P; Peek, H; Petta, C; Piattelli, P; Pineau, J P; Poinsignon, J; Popa, V; Pradier, T; Racca, C; Randazzo, N; Van Randwijk, J; Real, D; Van Rens, B; Rethore, F; Rewiersma, P A M; Riccobene, G; Rigaud, V; Ripani, M; Roca, V; Roda, C; Rolin, J F; Romita, M; Rose, H J; Rostovtsev, A; Roux, J; Ruppi, M; Russo, G V; Salesa, F; Salomon, K; Sapienza, P; Schmitt, F; Schuller, J P; Shadnize, R; Sokalski, I A; Spona, T; Spurio, M; van der Steenhoven, G; Stolarczyk, T; Streeb, K; Stubert, D; Sulak, L; Taiuti, M; Tamburini, C; Tao, C; Terreni, G; Thompson, L F; Valdy, P; Valente, V; Vallage, B; Venekamp, G; Verlaat, B; Vernin, P; De Vita, R; De Vries, G; Van Wijk, R F; De Witt-Huberts, P K A; Wobbe, G; De Wolf, E; Yao, A F; Zaborov, D; Zaccone, Henri; De Dios-Zornoza-Gomez, Juan; Zúñiga, J; Deceased

    2006-01-01

    In 2005, the ANTARES Collaboration deployed and operated at a depth of 2500 m a so-called Mini Instrumentation Line equipped with Optical Modules (MILOM) at the ANTARES site. The various data acquired during the continuous operation from April to December 2005 of the MILOM confirm the satisfactory performance of the Optical Modules, their front-end electronics and readout system, as well as the calibration devices of the detector. The in-situ measurement of the Optical Module time response yields a resolution better than 0.5 ns. The performance of the acoustic positioning system, which enables the spatial reconstruction of the ANTARES detector with a precision of about 10 cm, is verified. These results demonstrate that with the full ANTARES neutrino telescope the design angular resolution of better than $0.3^\\circ$ can be realistically achieved.

  12. Search for a neutrino emission from the Fermi Bubbles with the ANTARES telescope

    CERN Multimedia

    BIAGI, S

    2012-01-01

    The first search for neutrinos from the Fermi Bubbles is presented using data collected by the ANTARES telescope. No evidence of a neutrino signal from the Fermi Bubbles region was found, hence upper limits were calculated for different energy cutoffs.

  13. Calibration Human Voxel Phantoms for In Vivo Measurement of ''241 Am in Bone at the Whole Body Counter Facility of CIEMAT

    International Nuclear Information System (INIS)

    The Whole Body Counting facility of CIEMAT is capable of carrying out In-Vivo measurements of radionuclides emitting X-rays and low energy gamma radiation internally deposited in the body. The system to use for this purpose consists of flour Low energy Germanium (LeGe) Camberra detectors working in the energy range from 10 to 1000 keV. Physical phantoms with a known contamination in the organ of interest are normally used for the calibration of the LEGe detection system. In this document we present a calibration method using the Monte Carlo technique (MCNP4C) over a voxel phantom obtained from a computerized tomography of a real human head. The phantom consists of 104017 (43x59x41) cubic voxels, 4 mn on each side, os specific tissues, but for this simulation only two types are taken into account: adipose tissue and hard bone. The skull is supposed to be contaminated with ''241 Am and the trajectories of the photons are simulated till they reach the germanium detectors. The detectors were also simulated in detail to obtain a good agreement with the reality. In order to verify the accuracy of this procedure to reproduce the experiments, the MCNP results are compared with laboratory measurements of a head phantom simulating an internal contamination of 1000 Bq of ''241 Am deposited in bone. Different relative positions source-detector were tried to look for the best counting geometry for measurement of a contaminated skull. Efficiency values are obtained and compared, resulting in the validation of the mathematical method for the assessment of internal contamination of American deposited in skeleton. (Author) 16 refs

  14. Calibration Human Voxel Phantoms for In Vivo Measurement of ''241 Am in Bone at the Whole Body Counter Facility of CIEMAT

    Energy Technology Data Exchange (ETDEWEB)

    Moraleda, M.; Lopez, M. A.; Gomez Ros, J. M.; Navarro, T.; Navarro, J. F.

    2002-07-01

    The Whole Body Counting facility of CIEMAT is capable of carrying out In-Vivo measurements of radionuclides emitting X-rays and low energy gamma radiation internally deposited in the body. The system to use for this purpose consists of flour Low energy Germanium (LeGe) Camberra detectors working in the energy range from 10 to 1000 keV. Physical phantoms with a known contamination in the organ of interest are normally used for the calibration of the LEGe detection system. In this document we present a calibration method using the Monte Carlo technique (MCNP4C) over a voxel phantom obtained from a computerized tomography of a real human head. The phantom consists of 104017 (43x59x41) cubic voxels, 4 mn on each side, os specific tissues, but for this simulation only two types are taken into account: adipose tissue and hard bone. The skull is supposed to be contaminated with ''241 Am and the trajectories of the photons are simulated till they reach the germanium detectors. The detectors were also simulated in detail to obtain a good agreement with the reality. In order to verify the accuracy of this procedure to reproduce the experiments, the MCNP results are compared with laboratory measurements of a head phantom simulating an internal contamination of 1000 Bq of ''241 Am deposited in bone. Different relative positions source-detector were tried to look for the best countring geometry for measurement of a contaminated skull. Efficiency values are obtained and compared, resulting in the validation of the mathematical method for the assessment of internal contamination of American deposited in skeleton. (Author) 16 refs.

  15. Measurement of the Group Velocity of Light in Sea Water at the ANTARES Site

    CERN Document Server

    Adrián-Martínez, S; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigi, A; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Camarena, F; Capone, A; Carloganu, C; Carminati, G; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Costantini, H; Coyle, P; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fermani, P; Ferri, M; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatá, S; Gay, P; Geyer, K; Giacomelli, G; Giordano, V; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Hartman, J; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lattuada, D; Lefévre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Meli, A; Montaruli, T; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Payet, K; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Richter, R; Riviére, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Samtleben, D F E; Sapienza, P; Schöck, F; Schuller, J-P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2011-01-01

    The group velocity of light has been measured at eight different wavelengths between 385 nm and 532 nm in the Mediterranean Sea at a depth of about 2.2 km with the ANTARES optical beacon systems. A parametrisation of the dependence of the refractive index on wavelength based on the salinity, pressure and temperature of the sea water at the ANTARES site is in good agreement with these measurements.

  16. Analisis Tarif Angkutan Antar Kota Nice Trans Taxi Berdasarkan Bok Dan Wtp

    OpenAIRE

    Bakara, Jefferey

    2016-01-01

    Penentuan besaran tarif angkutan membutuhkan penanganan dan kebijakan yangarif. Karena harus dapat menjembatani kepentingan penumpang selaku konsumen dan pengelola angkutan umum. Angkutan umum Nice Trans Taxi merupakan salah satu angkutan umum antar kota yang melayani daerah strategis, diharapkan dapatmewakili penumpang angkutan umum khususnya bus antar kota tujuan Medan - Pematang Siantar. Data di dapat dengan penyebaran kuisioner kepada pengguna angkutan Nice Trans Taxi dan juga wawanca...

  17. The ANTARES Collaboration: contributions to the 31st International Cosmic Ray Conference (ICRC 2009), Lodz, Poland, July 2009

    OpenAIRE

    The ANTARES Collaboration

    2010-01-01

    The Antares neutrino telescope, operating at 2.5 km depth in the Mediterranean Sea, 40 km off the Toulon shore, represents the world's largest operational underwater neutrino telescope, optimized for the detection of Cerenkov light produced by neutrino-induced muons. The main goal of Antares is the search of high energy neutrinos from astrophysical point or transient sources. Antares is taking data in its full 12 lines configuration since May 2008: in this paper we collect the 16 contribution...

  18. ANTARES: Hunting the "rarest of the rare" in the time-domain

    Science.gov (United States)

    Narayan, Gautham; Snodgrass, Richard; Keceioglu, John; Saha, Abhijit; Matheson, Thomas; Seaman, Rob; Jenness, Tim; Day Toeniskotter, Jackson; Yang, Shuo; Wang, Zhe; Dempsey, Jen

    2015-08-01

    Current and future wide-field surveys provide us with petabytes of images, and an unparalleled window into the time-domain. Identifying, filtering, characterizing, and following up even known classes of variable and transient sources in this data stream pose an unprecedented challenge. However, the most interesting objects are those that we have never seen before. I’ll discuss our work on the Arizona-NOAO Temporal Analysis and Response to Events System. ANTARES is a joint project of the U.S. National Optical Astronomy Observatory, and the Department of Computer Science at the University of Arizona, and we are using our experience with synoptic surveys and big data to tackle the general problem of characterizing the entire transient and variable sky. Our prototype is focused on identifying the “rarest of the the rare” events in real-time, from "multi-messenger" data streams. In order to coordinate detailed follow-up studies with facilities spanning the entire electromagnetic spectrum, we must accurately characterize known objects with sparse data to separate the wheat from the chaff. I’ll detail some of the new algorithms being developed for the project, the more complex architecture we need to accomplish this more ambitious goal, and present some of our preliminary results using existing data sets.

  19. Trigger and data acquisition system for the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES collaboration is building a deep underwater neutrino telescope to be immersed in the Mediterranean Sea 40 km off the French coast. This detector will be able to detect the Cherenkov light emitted by muons produced in neutrino interactions using a three-dimensional matrix of optical sensors. The telescope will be made of nearly 1000 of these elementary units distributed over a wide area of about 0.1 km2 at an average depth of 2400 m. In order to reach a sub-nanosecond resolution on light pulse detection, signals from all OMs are analyzed and digitized locally before being sent to shore through a 50 km electro-optical cable. Front-end electronics, time alignment (clock distribution), triggering and data acquisition for such a large and remote detector represent a real challenge and required considerable R and D studies. The technical solutions adopted by the collaboration will be described and their performances discussed

  20. Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope

    CERN Document Server

    Adrian-Martinez, S; Albert, A; Andre, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Astraatmadja, T; Aubert, J -J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Capone, A; Carloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhoefer, A; Ernenwein, J -P; Escoffier, S; Fehn, K; Fermani, P; Ferri, M; Ferry, S; Flaminio, V; Folger, F; Fritsch, U; Fuda, J -L; Galata, S; Gay, P; Geyer, K; Giacomelli, G; Giordano, V; Gleixner, A; Gomez-Gonzalez, J P; Graf, K; Guillard, G; Hallewell, G; Hamal, M; van Haren, H; Heijboer, A J; Hello, Y; Hernandez-Rey, J J; Herold, B; Hoessl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Larosa, G; Lattuada, D; Lefevre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Meli, A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Pavalas, G E; Payet, K; Petrovic, J; Piattelli, P; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Richter, R; Riviere, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Samtleben, D F E; Sanchez-Losa, A; Sapienza, P; Schmid, J; Schnabel, J; Schoeck, F; Schuller, J -P; Schuessler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Trovato, A; Vallage, B; Vallee, C; Van Elewyck, V; Vecchi, M; Vernin, P; Visser, E; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zuniga, J

    2012-01-01

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of $\\Delta m_{32}^2=(3.1\\pm 0.9)\\cdot 10^{-3}$ eV$^2$ is obtained, in good agreement with the world average value.

  1. Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S. [Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Universitat Politecnica de Valencia, C/ Paranimf 1, 46730 Gandia (Spain); Al Samarai, I. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit, BP 50568, 68008 Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, 08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Universitat Politecnica de Valencia, C/ Paranimf 1, 46730 Gandia (Spain); Astraatmadja, T. [Nikhef, Science Park, Amsterdam (Netherlands); Aubert, J.-J. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); and others

    2012-08-14

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass difference of {Delta}m{sub 32}{sup 2}=(3.1{+-}0.9) Dot-Operator 10{sup -3} eV{sup 2} is obtained, in good agreement with the world average value.

  2. Measurement of atmospheric neutrino oscillations with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximal mixing, a mass difference of Δm322=(3.1±0.9)⋅10-3 eV2 is obtained, in good agreement with the world average value.

  3. Charge Calibration of the ANTARES high energy neutrino telescope

    CERN Document Server

    Baret, Bruny

    2009-01-01

    ANTARES is a deep-sea, large volume Mediterranean neutrino telescope installed off the Coast of Toulon, France. It is taking data in its complete configuration since May 2008 with nearly 900 photomultipliers installed on 12 lines. It is today the largest high energy neutrino telescope of the northern hemisphere. The charge calibration and threshold tuning of the photomultipliers and their associated front-end electronics is of primary importance. It indeed enables to translate signal amplitudes into number of photo-electrons which is the relevant information for track and energy reconstruction. It has therefore a strong impact on physics analysis. We will present the performances of the front-end chip, so-called ARS, including the waveform mode of acquisition. The in-laboratory as well as regularly performed in situ calibrations will be presented together with related studies like the time evolution of the gain of photomultipliers

  4. ANTARES, a scanning photoemission microscopy beamline at SOLEIL

    CERN Document Server

    Avila, Jose; Lorcy, Stehane; Lagarde, Bruno; Giorgetta, Jean-Luc; Polack, François; Asensio, Maria C

    2013-01-01

    As one of the latest beamline built at the SOLEIL synchrotron source, ANTARES beamline offers a spectroscopic non-destructive nano-probe to study advanced materials. This innovative scanning photoemission microscopy combines linear and angle sweeps to perform precise electronic band structure determination by Nano Angle Resolved Photoelectron Spectroscopy (nanoARPES) and chemical imaging by core level detection. The beamline integrates effectively insertion devices and a high transmission beamline optics. This photon source has been combined with an advanced microscope, which has precise sample handling abilities. Moreover, it is fully compatible with a high resolution R4000 Scienta hemispherical analyzer and a set of Fresnel Zone Plates (FZP) able to focalize the beam spot up to a few tenths of nanometers, depending on the spatial resolution of the selected FZP. We present here the main conceptual design of the beamline and endstation, together with some of the firsts commissioning results.

  5. ANTARES: Status, first results and multi-messenger astronomy

    CERN Document Server

    ,

    2011-01-01

    The ANTARES Collaboration has completed in 2008 the deployment of what is currently the largest high energy neutrino detector in the Northern hemisphere. The search for cosmic neutrinos in the energy range between tens of GeV and tens of PeV is performed by means of a three dimensional array of photomultiplier tubes (PMTs), arranged on 12 vertical structures (strings) located in the Mediterranean Sea at a depth of about 2500 meters. The detection principle relies on the identification of the Cherenkov light produced as ultra-relativistic muons propagate in water. The main goal of the detector is the search for point-like sources of cosmic neutrinos from both Galactic and extra-Galactic sources. Besides the search for point sources, other analysis topics are strongly pursued and will be described in the following.

  6. Calibration Human Voxel Phantoms for In Vivo Measurement of ''2 sup 4 sup 1 Am in Bone at the Whole Body Counter Facility of CIEMAT

    CERN Document Server

    Moraleda, M; Navarro, J F; Navarro, T

    2002-01-01

    The Whole Body Counting facility of CIEMAT is capable of carrying out In-Vivo measurements of radionuclides emitting X-rays and low energy gamma radiation internally deposited in the body. The system to use for this purpose consists of flour Low energy Germanium (LeGe) Camberra detectors working in the energy range from 10 to 1000 keV. Physical phantoms with a known contamination in the organ of interest are normally used for the calibration of the LEGe detection system. In this document we present a calibration method using the Monte Carlo technique (MCNP4C) over a voxel phantom obtained from a computerized tomography of a real human head. The phantom consists of 104017 (43x59x41) cubic voxels, 4 mn on each side, os specific tissues, but for this simulation only two types are taken into account: adipose tissue and hard bone. The skull is supposed to be contaminated with ''241 Am and the trajectories of the photons are simulated till they reach the germanium detectors. The detectors were also simulated in det...

  7. Radionuclide tracing of water masses in the Southern Ocean (Indian Sector) - ANTARES IV cruise

    International Nuclear Information System (INIS)

    The study area is located in the Crozet Basin (northwest Kerguelen Plateau and east of Crozet Plateau), where it is featured by the confluence of several fronts, i.e., Agulhas Front (AF), Sub-Tropical Front (STF) and Sub-Antarctic Front (SAF). The most predominant current affecting the circulation in the Crozet Basin is the Agulhas Current (AC) characterized by warm and saline water, extending eastward into the basin. The dominant physical control on biogeochemical distribution is due to the Antarctic Circumpolar Current (ACC). Extending to east of 60 deg E, (ACC) re-circulate to the north, probably as part of an anticyclonic subtropical gyre. Water samples collected during the Antarctic Research Cruise (ANTARES) IV carried out in January-February, 1999, in the Sub-Antarctic Frontal System in the Southern Ocean, were analysed to study the vertical and horizontal distributions of 3H, 90Sr, 239,240Pu and 241Am. Biological samples (plankton and fish) were collected as well. The latitudinal variations of 3H, 90Sr and 239,240Pu indicate that the global fallout is the main source of these radionuclides in the region. However, the main factors controlling the distribution of these radionuclides in surface seawater seemed to be related to the fronts observed in the region. Higher concentrations of 3H, 90Sr and 239,240Pu were found north of AF where warmer and saltier waters were observed, while the concentrations decreased dramatically in the STF and SAF zones, where cooler and less salty waters were observed. A noticeable deeper penetration of 3H in the AF is attributable to the process of Crozet Basin Mode Water formation during wintertime and steady sinking water masses. Higher concentrations of 3H observed in bottom layers in, might be due to intrusion of North Indian Deep Water. Differences in fronts and in radionuclide concentrations in seawater are primary factors in controlling 210Po and 239,240Pu concentrations in zooplankton

  8. Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope

    CERN Document Server

    Adrián-Martínez, S; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Flaminio, V.; Folger, F.; Fusco, L.A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Gómez-González, J.P.; Graf, K.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernández-Rey, J.J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C.W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J.A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Neff, M.; Nezri, E.; Păvălaş, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D.F.E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    2016-01-01

    The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of $\\sim$10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for ph...

  9. Results on dark matter searches with the ANTARES neutrino telescope

    CERN Multimedia

    Zornoza, Juande

    2016-01-01

    Neutrino telescopes have a wide scientific scope. One of their main goals is the detection of dark matter, for which they have specific advantages. The understanding of the nature of dark matter requires a multi-front approach since we still do not know many of their properties. Neutrino telescopes offer the possibility of look at several kinds of sources, not all of them available to other indirect searches. In this work we provide an overview of the results obtained by the ANTARES neutrino telescope, which has been taking data for almost ten years. It is installed in the Mediterranean Sea at a depth of 2475 m, off the coast of Toulon (France). The results presented in this work include searches for neutrino excess from several astrophysical sources. One of the most interesting ones is the Sun. Dark matter particles by the solar system would scatter with nuclei of the Sun, lose energy and accumulate in its centre. Among the final products of their annihilations, only neutrinos could escape. Therefore, a dete...

  10. The ANTARES detector: background sources and effects on detector performance

    CERN Document Server

    Escoffier, S

    2007-01-01

    The ANTARES Collaboration is deploying a large neutrino detector at a depth of 2475 m in the Mediterranean Sea, 40 km off shore from La Seyne-sur-Mer in South France. The construction of this 12-line detector with 75 phototubes per line will be completed early 2008. Data taking has begun since April 2005 with an instrumentation line also equipped with optical modules. The first 5 detector lines are operational since January 2007. The telescope is aimed to observe high energy cosmic neutrinos through the detection of the Cerenkov light produced by up-going induced muons. Background sources are due to atmospheric neutrinos as well as misreconstructed atmospheric muons. Additional backgrounds inherent to the sea water environment come from 40K decay and marine organisms' luminescence. While the contribution of the former is expected to be constant at a level of about 45 kHz, the bioluminescence has shown large time variations, with periods of very high activity, up to several hundred kHz. Description of these ba...

  11. First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

    CERN Document Server

    Adrián-Martínez, S; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M; Brunner, J; Busto, J; Capone, A; Carloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fehn, K; Fermani, P; Ferri, M; Ferry, S; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatà, S; Gay, P; Geyer, K; Giacomelli, G; Giordano, V; Gómez-González, J P; Graf, K; Guillard, G; Hallewell, G; Hamal, M; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Larosa, G; Lattuada, D; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Pavalas, G E; Payet, K; Petrovic, J; Piattelli, P; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Samtleben, D F E; Sánchez-Losa, A; Sapienza, P; Schnabel, J; Schöck, F; Schuller, J-P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Trovato, A; Vallage, B; Vallée, C; Van Elewyck, V; Vecchi, M; Vernin, P; Visser, E; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúniga, J

    2013-01-01

    A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV--PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.

  12. A method for detection of muon induced electromagnetic showers with the ANTARES detector

    International Nuclear Information System (INIS)

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.

  13. A method for detection of muon induced electromagnetic showers with the ANTARES detector

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC-Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM-Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Albert, A. [GRPHE-Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568-68008 Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, 08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere-Institut de recherche sur les lois fondamentales de l' Univers-Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de Zones Costaneres (IGIC)-Universitat Politecnica de Valencia. C/ Paranimf 1, 46730 Gandia (Spain); Assis Jesus, A.C.; Astraatmadja, T. [Nikhef, Science Park, Amsterdam (Netherlands); and others

    2012-05-21

    The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.

  14. First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV–PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models

  15. Constraints to a Galactic Component of the Ice Cube cosmic neutrino flux from ANTARES

    CERN Document Server

    Spurio, M

    2014-01-01

    The IceCube evidence for cosmic neutrinos in the high-energy starting events (HESE) sample has inspired a large number of hypothesis on their origin, mainly due to the poor precision on the measurement of the direction of showering events. The fact that most of HESE are downward going suggests a possible Galactic component. This could be originated either by a single point-like source or to a directional excess from an extended Galactic region. These hypotheses are reviewed and constrained, using the present available upper limits from the ANTARES neutrino telescope. ANTARES detects $\

  16. Study of Large Hemispherical Photomultiplier Tubes for the ANTARES Neutrino Telescope

    CERN Document Server

    Aguilar, J A; Ameli, F; Amram, P; Anghinolfi, M; Anton, G; Anvar, S; Ardellier-Desages, F E; Aslanides, E; Aubert, Jean-Jacques; Bailey, D; Basa, S; Battaglieri, M; Becherini, Y; Bellotti, R; Beltramelli, J; Bertin, V; Billault, M; Blaes, R; Blanc, F; De Botton, N R; Boulesteix, J; Bouwhuis, M C; Brooks, C B; Bradbury, S M; Bruijn, R; Brunner, J; Burgio, G F; Cafagna, F; Calzas, A; Capone, A; Caponetto, L; Carmona, E; Carr, J; Cartwright, S L; Castorina, E; Cavasinni, V; Cecchini, S; Charvis, P; Circella, M; Colnard, C; Compere, C; Coniglione, R; Cooper, S; Coyle, P; Cuneo, S; Damy, G; Van Dantzig, R; Deschamps, A; De Marzo, C; Denans, D; Destelle, J J; De Vita, R; Dinkelspiler, B; Distefano, C; Drogou, J F; Druillole, F; Engelen, J; Ernenwein, J P; Falchini, E; Favard, S; Feinstein, F; Ferry, S; Festy, D; Flaminio, V; Fopma, J; Fuda, J L; Gallone, J M; Giacomelli, G; Girard, N; Goret, P; Graf, K; Hallewell, G D; Hartmann, B; Heijboer, A; Hello, Y; Hernández-Rey, J J; Herrouin, G; Hossl, J; Hoffmann, C; Hubbard, John R; Jaquet, M; De Jong, M; Jouvenot, F; Kappes, A; Karg, T; Karkar, S; Karolak, M; Katz, U; Keller, P; Kooijman, P; Korolkova, E V; Kouchner, A; Kretschmer, W; Kuch, S; Kudryavtsev, V A; Lafoux, H; Lagier, P; Lahmann, R; Lamare, P; Languillat, J C; Laschinsky, H; Laubier, L; Legou, T; Le Guen, Y; Le Provost, H; Le Van-Suu, A; Lo Nigro, L; Lo Presti, D; Loucatos, Sotirios S; Louis, F; Lyashuk, V; Marcelin, M; Margiotta, A; Maron, C; Massol, A; Masullo, R; Mazéas, F; Mazure, A; McMillan, J E; Migneco, E; Millot, C; Milovanovic, A; Montanet, François; Montaruli, T; Morel, J P; Morganti, M; Moscoso, L; Musumeci, M; Naumann, C; Naumann-Godo, M; Nezri, E; Niess, V; Nooren, G J; Ogden, P; Olivetto, C; Palanque-Delabrouille, Nathalie; Papaleo, R; Payre, P; Petta, C; Piattelli, P; Pineau, J P; Poinsignon, J; Popa, V; Potheau, R; Pradier, T; Racca, C; Raia, G; Randazzo, N; Real, D; Van Rens, B A P; Rethore, F; Riccobene, G; Rigaud, V; Ripani, M; Roca-Blay, V; Rolin, J F; Romita, M; Rose, H J; Rostovtsev, A; Ruppi, M; Russo, G V; Sacquin, Yu; Salesa, F; Salomon, K; Saouter, S; Sapienza, P; Shanidze, R; Schuller, J P; Schuster, W; Sokalski, I A; Spurio, M; Stolarczyk, T; Stubert, D; Taiuti, M; Thompson, L F; Tilav, S; Valdy, P; Valente, V; Vallage, B; Vernin, P; Virieux, J; De Vries, G; De Witt-Huberts, P K A; De Wolf, E; Zaborov, D; Zaccone, Henri; Zakharov, V; De Dios-Zornoza-Gomez, Juan; Zúñiga, J

    2005-01-01

    The ANTARES neutrino telescope, to be immersed depth in the Mediterranean Sea, will consist of a 3 dimensional matrix of 900 large area photomultiplier tubes housed in pressure resistant glass spheres. The selection of the optimal photomultiplier was a critical step for the project and required an intensive phase of tests and developments carried out in close collaboration with the main manufacturers worldwide. This paper provides an overview of the tests performed by the collaboration and describes in detail the features of the PMT chosen for ANTARES.

  17. Towards Acoustic Detection of UHE Neutrinos in the Mediterranean Sea - The AMADEUS Project in ANTARES

    CERN Document Server

    Graf, K; Hoessl, J; Kappes, A; Katz, U F; Lahmann, R; Naumann, C; Salomon, K

    2007-01-01

    The acoustic detection method is a promising option for future neutrino telescopes operating in the ultra-high energy regime. It utilises the effect that a cascade evolving from a neutrino interaction generates a sound wave, and is applicable in different target materials like water, ice and salt. Described here are the developments in and the plans for the research on acoustic particle detection in water performed by the ANTARES group at the University of Erlangen within the framework of the ANTARES experiment in the Mediterranean Sea. A set of acoustic sensors will be integrated into this optical neutrino telescope to test acoustic particle detection methods and perform background studies.

  18. Fiber optic analog and timing monitoring system for the antares laser fusion program

    International Nuclear Information System (INIS)

    The development and use of two optical fiber systems for the Antares 40 kJ CO2 laser is described. In the Antares power amplifier, electron guns produce a discharge-sustaining B kA beam of 500 kV electrons. Eight 300 kJ, 3 μs Marx pulsers provide a direct electrical pumping discharge through the laser gas. The electro-optic systems developed allow the measurement of pulsed analog waveforms and trigger timing information within the laser and power systems by a computer based control and data acquisition network

  19. The Antares Collaboration : Contributions to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague)

    CERN Document Server

    ,

    2015-01-01

    The ANTARES detector, completed in 2008, is the largest neutrino telescope in the Northern hemisphere. Located at a depth of 2.5 km in the Mediterranean Sea, 40 km off the Toulon shore, its main goal is the search for astrophysical high energy neutrinos. In this paper we collect the 21 contributions of the ANTARES collaboration to the 34th International Cosmic Ray Conference (ICRC 2015). The scientific output is very rich and the contributions included in these proceedings cover the main physics results, ranging from steady point sources, diffuse searches, multi-messenger analyses to exotic physics.

  20. The sensitivity of the Antares detector to the galactic neutrino flux; Sensibilite du telescope Antares au flux diffus de neutrinos galactiques

    Energy Technology Data Exchange (ETDEWEB)

    Jouvenot, F

    2005-06-15

    The Antares european collaboration builds an underwater neutrinos telescope which will be deployed in the Mediterranean by 2500 m depth. This detector consists of a three-dimensional network of 900 photomultipliers which detects the Cherenkov light produced in water by muons created from the interaction of neutrinos in the Earth. Cosmic rays are confined in the Galaxy and interact with the interstellar matter producing charged pions which decay into neutrinos. The observation of the sky with high energy neutrinos (> 100 GeV) could open a new window on the Galaxy, in particular, the detection of these neutrinos may make it possible to directly observe the dense parts of the Galaxy. In this work, corresponding fluxes have been calculated using a simulation program GALPROP, for several models, constrained by various gamma and cosmic rays observations. The expected sensitivity of the Antares detector to these models was reviewed, as well as a first estimation of the performances of what would give a future km{sup 3} scale detector. A shape recognition algorithm was also developed: it would permit to highlight the structures of the Galaxy in the optimistic case which the number of events detected would be sufficient. This work shows that Antares has an insufficient size for observing the galactic plane. It was also demonstrated that a new generation of neutrino telescope having an effective area at least 40 times larger will be needed to detect the hardest spectrum model and put limits on the other models. (author)

  1. Search for Cosmic Neutrino Point Sources with Four Year Data of the ANTARES Telescope

    CERN Document Server

    Adrián-Martínez, S; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Astraatmadja, T; Aubert, J -J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Capone, A; Carloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J -P; Escoffier, S; Fehn, K; Fermani, P; Ferri, M; Ferry, S; Flaminio, V; Folger, F; Fritsch, U; Fuda, J -L; Galatà, S; Gay, P; Geyer, K; Giacomelli, G; Giordano, V; Gleixner, A; Gómez-González, J P; Graf, K; Guillard, G; Hallewell, G; Hamal, M; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Larosa, G; Lattuada, D; Leonora, E; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Meli, A; Montaruli, T; Morganti, M; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Payet, K; Petrovic, J; Piattelli, P; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Samtleben, D F E; Sapienza, P; Schmid, J; Schnabel, J; Schuller, J -P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Trovato, A; Vallage, B; Vallée, C; Van Elewyck, V; Vecchi, M; Vernin, P; Visser, E; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2012-01-01

    In this paper, a time integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an $E_{\

  2. Searches for diffuse fluxes of cosmic neutrinos with the ANTARES telescope

    Directory of Open Access Journals (Sweden)

    Fusco Luigi Antonio

    2016-01-01

    Full Text Available In this proceedings we report on the status of searches for diffuse fluxes of cosmic neutrinos with the ANTARES neutrino telescope data. A complete overview of full sky searches will be given, together with the analysis of possible diffuse neutrino emission from regions such as the Fermi Bubbles or the Galactic Plane.

  3. TOLERANSI ANTAR PENGANUT NAHDHATUL ULAMA, MUHAMMADIYAH, DAN KRISTEN JAWA DI BATANG

    OpenAIRE

    Adistya Iqbal Irfani,; Moh Yasir Alimi; Rini Iswari

    2013-01-01

    Tujuan penelitian ini adalah untuk mengeksplorasi bentuk toleransi dan faktor pendorong dan faktor penghambat toleransi masyarakat Jawa dengan studi kasus di Dukuh Medono Kabupaten Batang. Di dukuh tersebut, penganut organisasi agama seperti NU, Muhammadiyah dan Kristen Jawa di Dukuh Medono saling hidup rukun. Metode penelitian menggunakan metode penelitian kualitatif dengan pendekatan fenomenologi. Hasil penelitian menunjukan bahwa toleransi antar penganut NU, Muhammadiyah, Kristen Jawa tamp...

  4. VEGA, STAR, SIRIUS and ANTARES – from 1 to 10 MV: Accelerator Mass Spectrometry at ANSTO

    International Nuclear Information System (INIS)

    Accelerator Mass Spectrometry is recognized as one of the most significant advances in analytical isotope research in the 20th century. Since the 1980’s its impact in all subjects related to the study of planet Earth has been immeasurable. Commensurate with all these advances, numerous revolutions have occurred in AMS technology with the continual drive to reduce complexity, and improve performance. The ANSTO AMS Facility has and is contributing to this process. We have recently acquired two new NEC AMS systems at 1 MV (VEGA) and a 6 MV (SIRIUS) NEC plus a full suite of new sample preparation laboratories for actinides and cosmogenics. This seminar will provide an overview of the new ANSTO Centre for Accelerator Science and also some novel applications of in-situ cosmogenic 10Be and 26Al in landscape change and glaciology. (author)

  5. The ANTARES Collaboration: contributions to the 31st International Cosmic Ray Conference (ICRC 2009), Lodz, Poland, July 2009

    CERN Document Server

    ,

    2010-01-01

    The Antares neutrino telescope, operating at 2.5 km depth in the Mediterranean Sea, 40 km off the Toulon shore, represents the world's largest operational underwater neutrino telescope, optimized for the detection of Cerenkov light produced by neutrino-induced muons. The main goal of Antares is the search of high energy neutrinos from astrophysical point or transient sources. Antares is taking data in its full 12 lines configuration since May 2008: in this paper we collect the 16 contributions by the ANTARES collaboration that were submitted to the 31th International Cosmic Ray Conference ICRC 2009. These contributions includes the detector performances, the first preliminary results on neutrino events and the current physics analysis including the sensitivity to point like sources, the possibility to detect high energy neutrinos in coincidence with GRB, the search for dark matter or exotic particles.

  6. The experience of the fuel waste management of AM and BR-10 reactor facilities at SSC RF IPPE named after A.I. Leipunsky

    International Nuclear Information System (INIS)

    8 research and experimental reactors have been created at the Institute industrial site. The majority of them have been or are being decommissioned now. During many decades the reactor of the first-in-the-world NPP -AM and the fast neutron reactor BR-5 (BR-10) are the main research reactor bases of the Institute. They have been in operation for 45 and 40 years respectively. At present the preparation work for their decommissioning is being carried out. One of the problems of that process is the fuel waste management which amount is about 13 tons. The possibility of its reprocessing is under consideration. (author)

  7. The Run-by-Run Monte Carlo simulation for the ANTARES experiment

    Science.gov (United States)

    Fusco, L. A.; Margiotta, A.

    2016-04-01

    The ANTARES neutrino telescope is the largest and longest-operated underwater neutrino telescope. Data acquisition conditions in a marine environment are not stable in time: biological and physical phenomena follow a seasonal evolution producing a periodical change of the rates registered at the neutrino telescope. Variations in the sea current velocity also affect the measured baseline value and the burst fraction on short time scales. Monte Carlo simulations of the detector response to charged particles in the proximity of the telescope should reproduce the conditions of the medium and of the acquisition setup as much as possible. An efficient way to account for their variability is to extract related information directly from the data runs. A Run-by-Run simulation procedure has been developed to follow the time evolution of data acquisition in ANTARES.

  8. Contributions to the 32nd International Cosmic Ray Conference (ICRC 2011) by the ANTARES collaboration

    CERN Document Server

    Adrián-Martínez, S; Samarai, I Al; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigi, A; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Camarena, F; Capone, A; Carloganu, C; Carminati, G; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Costantini, H; Coyle, P; Creusto, A; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fermani, P; Ferri, M; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatà, S; Gay, P; Giacomelli, G; Giordano, V; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Hartman, J; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lattuada, D; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Meli, A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Pavalas, G E; Payet, K; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J-P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Toscano, S; Vallage, B; Vallée, C; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2011-01-01

    The ANTARES detector, completed in 2008, is the largest neutrino telescope in the Northern hemisphere. It is located at a depth of 2.5 km in the Mediterranean Sea, 40 km off the Toulon shore. The scientific scope of the experiment is very broad, being the search for astrophysical neutrinos the main goal. In this paper we collect the 22 contributions of the ANTARES collaboration to the 32nd International Cosmic Ray Conference (ICRC 2011). At this stage of the experiment the scientific output is very rich and the contributions included in these proceedings cover the main physics results (steady point sources, correlations with GRBs, diffuse fluxes, target of opportunity programs, dark matter, exotic physics, oscillations, etc.) and some relevant detector studies (water optical properties, energy reconstruction, moon shadow, accoustic detection, etc.)

  9. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Martì, J; Basa, S; Bertin, V; Biagi, S; Bogazzi, C; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; De Rosa, G; Dekeyser, I; Deschamps, A; DeBonis, G; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Dumas, A; Eberl, T; Elsässer, D; Enzenhöfer, A; Escoffier, S; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gómez-González, J P; Graf, K; Guillard, G; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Herrero, A; Hößl, J; Hofestädt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, E; Lambard, G; Lefèvre, D; Leonora, E; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Müller, C; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Perrina, C; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Rostovtsev, A; Saldaña, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tayalati, Y; Trovato, A; Tselengidou, M; Tönnis, C; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; de Wolf, E; Yatkin, K; Yepes, H; Zornoza, J D; Zúñiga, J; Falco, E E

    2014-01-01

    Context. The jets of radio-loud Active Galactic Nuclei are among the most powerful particle accelerators in the Universe, and a plausible production site for high-energy cosmic rays. The detection of high-energy neutrinos from these sources would provide unambiguous evidence of a hadronic component in such jets. High-luminosity blazars, such as the flat-spectrum radio quasars (FSRQs), are promising candidates to search for such emission. Because of the low fluxes due to large redshift, these sources are however challenging for the current generation of neutrino telescopes such as ANTARES and IceCube. Aims. This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazars. Methods. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed blazars, using data collected from 2007 to 2012 by ANTARES. The magnification factor is estimated for each syst...

  10. A fast algorithm for muon track reconstruction and its application to the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    An algorithm is presented, that provides a fast and robust reconstruction of neutrino induced upward going muons and a discrimination of these events from downward-going atmospheric muon background in data collected by the ANTARES neutrino telescope. The algorithm consists of a hit merging and hit selection procedure followed by fitting steps for a track hypothesis and a point-like light source. It is particularly well-suited for real time applications such as online monitoring and fast triggering of optical follow- up observations for multi-messenger studies. The performance of the algorithm is evaluated with Monte Carlo simulations and various distributions are compared with that obtained in ANTARES data. (authors)

  11. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    International Nuclear Information System (INIS)

    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 1046 erg s-1. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars

  12. Constraining the neutrino emission of gravitationally lensed Flat-Spectrum Radio Quasars with ANTARES data

    Energy Technology Data Exchange (ETDEWEB)

    Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC), Universitat Politècnica de València, C/ Paranimf 1, Gandia, 46730 Spain (Spain); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568, Colmar, 68008 France (France); André, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició, Vilanova i la Geltrú, Barcelona, 08800 Spain (Spain); Anton, G. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, Erlangen, 91058 Germany (Germany); Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J. [Aix Marseille Université, CNRS/IN2P3, CPPM UMR 7346, Marseille, 13288 France (France); Baret, B. [APC, AstroParticule et Cosmologie, Université Paris Diderot, CNRS/IN2P3, CEA/Irfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Léonie Duquet, Paris Cedex 13, F-75205 France (France); Barrios-Martí, J. [IFIC - Instituto de Física Corpuscular, Edificios Investigación de Paterna, CSIC - Universitat de València, Apdo de Correos 22085, Valencia, 46071 Spain (Spain); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pôle de l' Étoile Site de Château-Gombert, rue Frédéric Joliot-Curie 38, Marseille Cedex 13, 13388 France (France); Biagi, S. [INFN - Sezione di Bologna, Viale Berti-Pichat 6/2, Bologna, 40127 Italy (Italy); Bogazzi, C.; Bormuth, R.; Bouwhuis, M.C.; Bruijn, R. [Nikhef, Science Park 105, Amsterdam, 1098XG The Netherlands (Netherlands); Capone, A. [INFN -Sezione di Roma, P.le Aldo Moro 2, Roma, 00185 Italy (Italy); Caramete, L., E-mail: antares.spokesperson@in2p3.fr [Institute for Space Sciences, Bucharest, Măgurele, R-77125 Romania (Romania); and others

    2014-11-01

    This paper proposes to exploit gravitational lensing effects to improve the sensitivity of neutrino telescopes to the intrinsic neutrino emission of distant blazar populations. This strategy is illustrated with a search for cosmic neutrinos in the direction of four distant and gravitationally lensed Flat-Spectrum Radio Quasars. The magnification factor is estimated for each system assuming a singular isothermal profile for the lens. Based on data collected from 2007 to 2012 by the ANTARES neutrino telescope, the strongest constraint is obtained from the lensed quasar B0218+357, providing a limit on the total neutrino luminosity of this source of 1.08× 10{sup 46} erg s{sup -1}. This limit is about one order of magnitude lower than those previously obtained in the ANTARES standard point source searches with non-lensed Flat-Spectrum Radio Quasars.

  13. Recent results from operation of the ANTARES deep-sea neutrino telescope

    International Nuclear Information System (INIS)

    The ANTARES neutrino telescope is currently the largest operating water Cherenkov detector and the largest neutrino detector in the Northern hemisphere. It comprises 885 optical modules distributed on 12 detection lines anchored at a depth of 2.5 km in the Mediterranean Sea near Toulon, France; at a latitude that accesses a large part of the Galactic Plane, including the Galactic Centre. Its main scientific target is the detection of multi-TeV neutrinos predicted in charged cosmic particle acceleration mechanisms. In addition, ANTARES has developed a range of multi-messenger search strategies to look for correlations with optical counterparts and other cosmic messengers including γ-rays and charged cosmic rays. Other topics of investigation include the search for neutrinos from dark matter annihilation, searches for exotic particles and the measurement of neutrino oscillations. Details of the telescope are discussed together with examples of recently-conducted searches

  14. A Fast Algorithm for Muon Track Reconstruction and its Application to the ANTARES Neutrino Telescope

    CERN Document Server

    Aguilar, J A; Albert, A; Andre, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Auer, R; Baret, B; Basa, S; Bazzotti, M; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouwhuis, M C; Brown, A M; Brunner, J; Busto, J; Camarena, F; Capone, A; Carloganu, C; Carminati, G; Carr, J; Cecchini, S; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Cottini, N; Coyle, P; Curtil, C; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Ernenwein, J-P; Escoffier, S; Fehr, F; Flaminio, V; Fritsch, U; Fuda, J-L; Galata, S; Gay, P; Giacomelli, G; Gomez-Gonzalez, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Heijboer, A J; Hello, Y; Hernandez-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalantar-Nayestanaki, N; Kalekin, O; Kappes, A; Katz, U; Kooijman, P; Kopper, C; Kouchner, A; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lefevre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Lucarelli, F; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Mazure, A; Meli, A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Naumann, C; Neff, M; Palioselitis, D; Pavalas, G E; Payre, P; Petrovic, J; Picot-Clemente, N; Picq, C; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Richter, R; Rostovtsev, A; Rujoiu, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J-P; Shanidze, R; Simeone, F; Spiess, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tasca, L; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wijnker, G; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zuniga, J

    2011-01-01

    An algorithm is presented, that provides a fast and robust reconstruction of neutrino induced upward-going muons and a discrimination of these events from downward-going atmospheric muon background in data collected by the ANTARES neutrino telescope. The algorithm consists of a hit merging and hit selection procedure followed by fitting steps for a track hypothesis and a point-like light source. It is particularly well-suited for real time applications such as online monitoring and fast triggering of optical follow-up observations for multi-messenger studies. The performance of the algorithm is evaluated with Monte Carlo simulations and various distributions are compared with that obtained in ANTARES data.

  15. Study of the high energy Cosmic Rays large scale anisotropies with the ANTARES neutrino telescope

    Science.gov (United States)

    Illuminati, Giulia

    2016-02-01

    We present the analysis method used to search for an anisotropy in the high energy Cosmic Rays arrival distribution using data collected by the ANTARES telescope. ANTARES is a neutrino detector, where the collected data are dominated by a large background of cosmic ray muons. Therefore, the background data are suitable for high-statistics studies of cosmic rays in the Northern sky. The main challenge for this analysis is accounting for those effects which can mimic an apparent anisotropy in the muon arrival direction: the detector exposure asymmetries, non-uniform time coverage, diurnal and seasonal variation of the atmospheric temperature. Once all these effects have been corrected, a study of the anisotropy profiles along the right ascension can be performed.

  16. Search for spatial and temporal collective effects in the ANTARES neutrino telescope data

    Science.gov (United States)

    Coleiro, Alexis; Gracia Ruiz, Rodrigo; Kouchner, Antoine

    2016-04-01

    We investigate potential collective effects in the spatial and temporal domains in ANTARES data sets. On the one hand, we apply a two-point correlation analysis to look for inhomogeneities in the arrival directions of the high energy muon neutrino candidates detected between 2007 and 2012. This enables us to provide constraints on models of a population of point sources too faint to be detected by a likelihood-based method. On the other hand, we perform a search for ANTARES neutrino events in temporal coincidence with IceCube High-Energy Starting Events located within 45∘ from the Galactic Center. This study, also based on a two-point correlation function, is sensitive to transient emission and does not a prior on either the burst timing structure or on the electromagnetic emission. Therefore, it provides an effective way to acquire information on the possible origin of the IceCube astrophysical signal from transient sources.

  17. Optical and X-ray early follow-up of ANTARES neutrino alerts

    CERN Document Server

    Adrian-Martinez, S; Albert, A; Samarai, I Al; Andre, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Marti, J; Basa, S; Bertin, V; Biagi, S; Bogazzi, C; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Dumas, A; Eberl, T; Elsasser, D; Enzenhofer, A; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galata, S; Gay, P; Geißelsoder, S; Geyer, K; Giordano, V; Gleixner, A; Gracia-Ruiz, R; Graf, K; van Haren, H; Heijboer, A J; Hello, Y; Hernandez-Rey, J J; Herrero, A; Hoßl, J; Hofestadt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Lattuada, D; Lefevre, D; Leonora, E; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Neff, M; Nezri, E; Pavalas, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Rostovtsev, A; Saldana, M; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sanchez-Losa, A; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Tonnis, C; Turpin, D; Vallage, B; Vallee, C; Van Elewyck, V; Vecchi, M; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zuniga, J; Klotz, A; Boer, M; Van Suu, A Le; Akerlof, C; Zheng, W; Evans, P; Gehrels, N; Kennea, J; Osborne, J P; Coward, D M

    2015-01-01

    High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrial high-energy neutrinos by the IceCube experiment, no astrophysical neutrino source has yet been discovered. Transient sources, such as gamma-ray bursts, core-collapse supernovae, or active galactic nuclei are promising candidates. Multi-messenger programs offer a unique opportunity to detect these transient sources. By combining the information provided by the ANTARES neutrino telescope with information coming from other observatories, the probability of detecting a source is enhanced, allowing the possibility of identifying a neutrino progenitor from a single detected event. A method based on optical and X-ray follow-ups of high-energy neutrino alerts has been developed within the ANTARES collaboration. This program, denoted as TAToO, triggers a network of robotic optical telescopes (TAROT and ROTSE) and the Swift-XRT w...

  18. Search for spatial and temporal collective effects in the ANTARES neutrino telescope data

    Directory of Open Access Journals (Sweden)

    Coleiro Alexis

    2016-01-01

    Full Text Available We investigate potential collective effects in the spatial and temporal domains in ANTARES data sets. On the one hand, we apply a two-point correlation analysis to look for inhomogeneities in the arrival directions of the high energy muon neutrino candidates detected between 2007 and 2012. This enables us to provide constraints on models of a population of point sources too faint to be detected by a likelihood-based method. On the other hand, we perform a search for ANTARES neutrino events in temporal coincidence with IceCube High-Energy Starting Events located within 45∘ from the Galactic Center. This study, also based on a two-point correlation function, is sensitive to transient emission and does not a prior on either the burst timing structure or on the electromagnetic emission. Therefore, it provides an effective way to acquire information on the possible origin of the IceCube astrophysical signal from transient sources.

  19. Searches for clustering in the time integrated skymap of the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC) - Universitat Politècnica de València. C/ Paranimf 1 , 46730 Gandia, Spain. (Spain); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568 - 68008 Colmar (France); André, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició,08800 Vilanova i la Geltrú,Barcelona (Spain); Anton, G. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J. [CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille (France); Baret, B. [APC, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, 75205 Paris (France); Barrios-Martí, J. [IFIC - Instituto de Física Corpuscular, Edificios Investigación de Paterna, CSIC - Universitat de València, Apdo. de Correos 22085, 46071 Valencia (Spain); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pôle de l' Étoile Site de Château-Gombert, rue Frédéric Joliot-Curie 38, 13388 Marseille Cedex 13 (France); Biagi, S. [INFN - Sezione di Bologna, Viale Berti-Pichat 6/2, 40127 Bologna (Italy); Bogazzi, C.; Bormuth, R.; Bouwhuis, M.C.; Bruijn, R. [Nikhef, Science Park, Amsterdam (Netherlands); Capone, A. [INFN -Sezione di Roma, P.le Aldo Moro 2, 00185 Roma (Italy); Caramete, L., E-mail: fabian.schussler@cea.fr [Institute for Space Sciences, R-77125 Bucharest, Măgurele (Romania); and others

    2014-05-01

    This paper reports a search for spatial clustering of the arrival directions of high energy muon neutrinos detected by the ANTARES neutrino telescope. An improved two-point correlation method is used to study the autocorrelation of 3058 neutrino candidate events as well as cross-correlations with other classes of astrophysical objects: sources of high energy gamma rays, massive black holes and nearby galaxies. No significant deviations from the isotropic distribution of arrival directions expected from atmospheric backgrounds are observed.

  20. Searches for clustering in the time integrated skymap of the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    This paper reports a search for spatial clustering of the arrival directions of high energy muon neutrinos detected by the ANTARES neutrino telescope. An improved two-point correlation method is used to study the autocorrelation of 3058 neutrino candidate events as well as cross-correlations with other classes of astrophysical objects: sources of high energy gamma rays, massive black holes and nearby galaxies. No significant deviations from the isotropic distribution of arrival directions expected from atmospheric backgrounds are observed

  1. Search for a diffuse cosmic neutrino flux using shower events in the ANTARES neutrino telescope

    OpenAIRE

    Folger, Florian

    2014-01-01

    The ANTARES neutrino telescope is a three-dimensional array of 885 photomultiplier tubes that has been installed in the Mediterranean Sea and that is designed to detect high energy neutrinos from the cosmos. Neutrinos that interact with nucleons in water in deep inelastic scattering processes induce secondary particles, such as muon tracks or hadronic and electromagnetic particle showers, that move faster than the speed of light in water and hence, emit Cherenkov radiation. By measuring the a...

  2. TOLERANSI ANTAR PENGANUT NAHDHATUL ULAMA, MUHAMMADIYAH, DAN KRISTEN JAWA DI BATANG

    Directory of Open Access Journals (Sweden)

    Adistya Iqbal Irfani,

    2013-04-01

    Full Text Available Tujuan penelitian ini adalah untuk mengeksplorasi bentuk toleransi dan faktor pendorong dan faktor penghambat toleransi masyarakat Jawa dengan studi kasus di Dukuh Medono Kabupaten Batang. Di dukuh tersebut, penganut organisasi agama seperti NU, Muhammadiyah dan Kristen Jawa di Dukuh Medono saling hidup rukun. Metode penelitian menggunakan metode penelitian kualitatif dengan pendekatan fenomenologi. Hasil penelitian menunjukan bahwa toleransi antar penganut NU, Muhammadiyah, Kristen Jawa tampak berbagai bentuk. Antara NU dan Kristen Jawa dalam bentuk partisipasi dalam ritual tahlilan, sedangkan antar ketiganya tampak dalam bentuk kerja bakti, saling membantu dalam acara hajatan, perkawinan campur dan saling berkunjung bila ada yang sakit. Faktor pendorong toleransi antara lain budaya toleransi yang sudah lama, pernikahan antar penganut yang berbeda, sosialisasi toleransi dalam keluarga, dan kepemimpinan desa yang menekankan pentingnya toleransi. Sedangkan faktor penghambat toleransi yaitu perbedaan pandangan antar penganut NU dan Muhammadiyah dalam pelaksanaan ibadah, pernikahan beda keyakinan, dan sikap menyinggung keyakinan diantara penganut yang ada. The objective of this study is to explore forms of tolerance and the driving factor of religious tolerance in Dukuh Medono, Batang. In that village, the followers of NU, Muhammadiyah, and Kristen Jawa live peacefully and united in tolerance. The research method used here is a qualitative method with phenomenology approach. The result of the research shows that the tolerance between NU followers and Javanese Christians take the form of participation in tahlilan ritual. The tolerance between NU, Muhammadiyah followers, and Kristen Jawa followers are expressed through kerja bakti, mutual support in hajatan rituals, mixed marriage, visits to the sick, and social activities together. The factors which help to create tolerance include the culture of tolerance which exist in the village, marriages

  3. Antares prototype 300-kJ, 250-kA Marx generator. Final report

    International Nuclear Information System (INIS)

    A high-energy, low-inductance, low prefire rate, low trigger jitter, high-voltage, pulsed-power supply was needed to drive the gas discharge in the Antares laser power amplifier. This report describes the design and testing of a Marx generator that meets these requirements, the development and testing of a high-capacity spark gap, and the selection of suitable capacitors and resistors

  4. Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope

    OpenAIRE

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; J.-J. Aubert; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; M. C. Bouwhuis; R. Bruijn

    2016-01-01

    A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed...

  5. Indirect Dark Matter search with the ANTARES Deep-Sea Cherenkov detector

    Directory of Open Access Journals (Sweden)

    Fermani Paolo

    2014-04-01

    Full Text Available In 2008 the ANTARES collaboration completed the construction of an underwater neutrino telescope in the Mediterranean Sea, located 40 km off the French coast at a depth of 2475 m. With an effective area for upward muon detection of about 0.05 km2, depending on neutrino energy, ANTARES is the largest neutrino detector currently operating in the Northern hemisphere. The experiment aims to detect high-energy neutrinos up to 104 TeV using a 3-dimensional array of 885 photomultipliers distributed in 25 storeys along 12 vertical lines. The detection is based on the measurement of Cherenkov light emitted by charged leptons resulting from charged-current neutrino interactions in the matter surrounding the telescope. The accurate measurements of the photon arrival times and of the deposited charge together with a precise knowledge of the actual positions and orientations of the photo sensors allow the reconstruction of the direction of neutrinos with good angular resolution (about 0.3° for muon neutrinos above a few TeV and of their energy. ANTARES is performing an indirect search for dark matter by looking for a statistical excess of neutrinos coming from astrophysical massive objects, such as the Sun, the Earth and the Galactic Centre. This excess could be an evidence of the possible annihilation of dark matter particles in the centre of these objects. In the most accepted scenario, the dark matter is composed by WIMP particles. These particles can be scattered by the nuclei of these astrophysical bodies and get gravitationally trapped, accumulating in their inner core. Here they can interact with other WIMPs, in self-annihilation reactions, producing some standard model particles that, in subsequent steps, originate neutrinos that can be detected at Earth. The preliminary results of the sensitivity of the ANTARES neutrino telescope to the indirect detection of dark matter fluxes will be presented for different dark matter models.

  6. The sensitivity of the Antares detector to the galactic neutrino flux

    International Nuclear Information System (INIS)

    The Antares european collaboration builds an underwater neutrinos telescope which will be deployed in the Mediterranean by 2500 m depth. This detector consists of a three-dimensional network of 900 photomultipliers which detects the Cherenkov light produced in water by muons created from the interaction of neutrinos in the Earth. Cosmic rays are confined in the Galaxy and interact with the interstellar matter producing charged pions which decay into neutrinos. The observation of the sky with high energy neutrinos (> 100 GeV) could open a new window on the Galaxy, in particular, the detection of these neutrinos may make it possible to directly observe the dense parts of the Galaxy. In this work, corresponding fluxes have been calculated using a simulation program GALPROP, for several models, constrained by various gamma and cosmic rays observations. The expected sensitivity of the Antares detector to these models was reviewed, as well as a first estimation of the performances of what would give a future km3 scale detector. A shape recognition algorithm was also developed: it would permit to highlight the structures of the Galaxy in the optimistic case which the number of events detected would be sufficient. This work shows that Antares has an insufficient size for observing the galactic plane. It was also demonstrated that a new generation of neutrino telescope having an effective area at least 40 times larger will be needed to detect the hardest spectrum model and put limits on the other models. (author)

  7. Determination of the Antares sensitivity to the cosmic neutrinos diffuse flux using contained showers

    International Nuclear Information System (INIS)

    The Antares collaboration has chosen to build an underwater telescope in the Mediterranean sea, at a depth of 2500 m, to detect high energy (> 100 GeV) cosmic neutrinos. This detector is composed of 12 vertical lines with 900 photomultipliers. Neutrinos are detected thanks to the Cherenkov light produced in water by charged particles created in neutrino interactions near the detector. The aim of this work is the study of Antares performance for the detection of the electronic neutrino interaction in the instrumented volume using a Monte-Carlo simulation. The method allows the determination of the incident energy with an excellent resolution (20 %) which is much smaller than what is obtained from muons induced by muonic neutrino interactions at several kilometers below the detector. This work has consisted in studying the reconstruction of contained showers of particles in the detector resulting from charged current interactions of electronic neutrinos. This mode of detection has been used for the study of the diffuse neutrino flux, resulting from the neutrino emission of unresolved sources and that can be isolated from the atmospheric neutrino background at high energy. The Antares sensitivity is found to be 5.10-7 GeV.cm-2.s-1.sr-1 after 1 year of data recording for energies above 3 TeV and for a model with an E-2 energy spectrum. (author)

  8. Characterization of optical properties of the site of the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Yepes-Ramírez, H., E-mail: Harold.Yepes@ific.uv.es [Instituto de Física Corpuscular (IFIC), Edificios de investigación de Paterna, CSIC - Universitat de València, Apdo. de Correos 22085, E-46071 Valencia (Spain)

    2013-10-11

    ANTARES is a neutrino detector based on a three-dimensional grid of photomultipliers tubes (PMT's) arranged in several detection lines anchored to the seabed at depth of 2.5 km in the Mediterranean Sea (40 km off the Toulon coast in France), its main physics goal is the reconstruction and identification of high energy neutrinos of extra-terrestrial origin. The PMT's register the Cherenkov light induced by relativistic charged leptons produced by the interaction of neutrinos with material in the detector surroundings. The propagation of Cherenkov light strongly depends on the optical properties of the sea water, the understanding of which is crucial in order to achieve the expected detector performance. To reach the ANTARES physics goals, good time and positioning calibration systems are required. The ANTARES optical beacon system consists of a set of pulsed light sources strategically located throughout the detector. The system is mainly used for time calibration but can also be used as a tool to study the water optical properties and their stability. In this contribution we will present the current status of our measurements of the group velocity and transmission length of light carried out between 2008 and 2011. A set of water models strategically defined will be discussed as well as some preliminary results concerning track reconstruction parameters.

  9. Follow-up of high energy neutrinos detected by the ANTARES telescope

    Science.gov (United States)

    Mathieu, Aurore

    2016-04-01

    The ANTARES telescope is well-suited to detect high energy neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky with a high duty cycle. Potential neutrino sources are gamma-ray bursts, core-collapse supernovae and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a detection method based on follow-up observations from the neutrino direction has been developed. This program, denoted as TAToO, includes a network of robotic optical telescopes (TAROT, Zadko and MASTER) and the Swift-XRT telescope, which are triggered when an "interesting" neutrino is detected by ANTARES. A follow-up of special events, such as neutrino doublets in time/space coincidence or a single neutrino having a very high energy or in the specific direction of a local galaxy, significantly improves the perspective for the detection of transient sources. The analysis of early and long term follow-up observations to search for fast and slowly varying transient sources, respectively, has been performed and the results covering optical and X-ray data are presented in this contribution.

  10. Search for high-energy neutrinos from GRB130427A with the ANTARES neutrino telescope

    Science.gov (United States)

    Celli, Silvia

    2016-02-01

    ANTARES is the first deep under-sea high-energy astrophysical neutrino telescope, in operation since 2008, in the Northern Hemisphere. In the light of a multi-messenger approach, one of the most ever intense (photon fluence Fγ ≃10-3 erg/cm2) and close (redshift z = 0.34) transient γ-source, GRB130427A, is considered in the ANTARES physics program for a co-incident search for photons and high-energy neutrinos. The first time-dependent analysis on GRBs neutrino emissions has been performed for this source: Konus-Wind parameters of the γ time-dependent spectrum are used to predict the expected neutrino flux from each peak of the burst, through the numerical calculation code NeuCosmA. An extended maximum likelihood ratio search is performed in order to maximize the discovery probability of prompt neutrinos from the burst: at the end, ANTARES sensitivity to this source is evaluated to be E2Φv ∼ 1 -10 GeV/cm2 in the energy range from 2 x 105 GeV to 2 x 107 GeV.

  11. Time calibration with atmospheric muon tracks in the ANTARES neutrino telescope

    Science.gov (United States)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Flaminio, V.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Gómez-González, J. P.; Graf, K.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Neff, M.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.

    2016-05-01

    The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of ∼10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for photomultipliers on different lines at a precision level of 0.5 ns. It has also been validated for calibrating photomultipliers on the same line, using a system of LEDs and laser light devices.

  12. AMADEUS - The Acoustic Neutrino Detection Test System of the ANTARES Deep-Sea Neutrino Telescope

    CERN Document Server

    Aguilar, J A; Albert, A; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Auer, R; Barbarito, E; Baret, B; Basa, S; Bazzotti, M; Bertin, V; Biagi, S; Bigongiari, C; Bou-Cabo, M; Bouwhuis, M C; Brown, A; Brunner, J; Busto, J; Camarena, F; Capone, A; Cârloganu, C; Carminati, G; Carr, J; Cassano, B; Castorina, E; Cavasinni, V; Cecchini, S; Ceres, A; Charvis, Ph; Chiarusi, T; Sen, N Chon; Circella, M; Coniglione, R; Costantini, H; Cottini, N; Coyle, P; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Emanuele, U; Ernenwein, J-P; Escoffier, S; Fehr, F; Fiorello, C; Flaminio, V; Fritsch, U; Fuda, J-L; Gay, P; Giacomelli, G; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Heijboer, A J; Heine, E; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; de Jong, M; Kalantar-Nayestanaki, N; Kalekin, O; Kappes, A; Katz, U; Keller, P; Kooijman, P; Kopper, C; Kouchner, A; Kretschmer, W; Lahmann, R; Lamare, P; Lambard, G; Larosa, G; Laschinsky, H; Le Provost, H; Lefèvre, D; Lelaizant, G; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Lucarelli, F; Mangano, S; Marcelin, M; Margiotta, A; Martinez-Mora, J A; Mazure, A; Mongelli, M; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Naumann, C; Neff, M; Ostasch, R; Palioselitis, D; Pavalas, G E; Payre, P; Petrovic, J; Picot-Clemente, N; Picq, C; Popa, V; Pradier, T; Presani, E; Racca, C; Radu, A; Reed, C; Riccobene, G; Richardt, C; Rujoiu, M; Ruppi, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J-P; Shanidze, R; Simeone, F; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tasca, L; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wijnker, G; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J; 10.1016/j.nima.2010.09.053

    2010-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1V/muPa (including preamplifier). Completed in May 2008, AMADEUS consists of six "acoustic clusters", each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on...

  13. Survey Layanan Publik\tPemantauan Frekuensi Radio untuk Radio Amatir Dan Radio Antar Penduduk Indonesia

    Directory of Open Access Journals (Sweden)

    Azwar Aziz

    2014-03-01

    Full Text Available Berlatar belakang fenomena penggunaan amatir radio dan komunikasi radio antar penduduk yang berkaitan dengan faktor layanan publik dari monitor frekuensi radio, dimana peneliti memfokuskan pada permasalahan kondisi pelayanan publik yang diberikan oleh pemerintah tentang penggunaan radio non komersial yang digunakan oleh perorangan. Penelitian ini memperlihatkan penggiat amatir radio dan komunikasi radio antar penduduk bervariasi, mulai dari yang tidak mempunyai izin sampai pada yang memiliki izin. Begitu  juga  peran  tokoh  yang  selalu  mempelopori  tentang berkembangnya potensi amatir radio dan radio antar penduduk ini untuk mengatasi kemashalatan yang ada di Masyarakat. Dengan metode Kualitatif, peneliti melakukan wawancara mendalam untuk mendapatkan kondisi yang sebenarnya dari layanan publik yang telah dilakukan oleh pemerintah maupun oleh pihak organisasi yang membangkitkan potensi untuk menjadi suatu daya yang besar dalam memberikan dukungan komunikasi berkaitan dengan tanggap darurat terkait dengan bencana dan keadaan sosial lainnya. Hasil penelitian menunjukkan bahwa layanan publik diberikan oleh pemerintah di bidang penertiban sangat kurang sehingga frekuensi radio yang digunakan oleh radio perorangan ini tidak kondusif untuk digunakan, hal ini akan mempunyai dampak kemampuan organisasi untuk mengembangkan diri, pengabdian masyarakat dalam mendukung komunikasi tanggap darurat yang setiap saat bisa terjadi.

  14. Follow-up of high energy neutrinos detected by the ANTARES telescope

    Directory of Open Access Journals (Sweden)

    Mathieu Aurore

    2016-01-01

    Full Text Available The ANTARES telescope is well-suited to detect high energy neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky with a high duty cycle. Potential neutrino sources are gamma-ray bursts, core-collapse supernovae and flaring active galactic nuclei. To enhance the sensitivity of ANTARES to such sources, a detection method based on follow-up observations from the neutrino direction has been developed. This program, denoted as TAToO, includes a network of robotic optical telescopes (TAROT, Zadko and MASTER and the Swift-XRT telescope, which are triggered when an “interesting” neutrino is detected by ANTARES. A follow-up of special events, such as neutrino doublets in time/space coincidence or a single neutrino having a very high energy or in the specific direction of a local galaxy, significantly improves the perspective for the detection of transient sources. The analysis of early and long term follow-up observations to search for fast and slowly varying transient sources, respectively, has been performed and the results covering optical and X-ray data are presented in this contribution.

  15. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations

    Energy Technology Data Exchange (ETDEWEB)

    Ageron, Michel [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Al Samarai, Imen, E-mail: samarai@cppm.in2p3.fr [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Akerlof, Carl [Randall Laboratory of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109-1040 (United States); Basa, Stephane [LAM, BP8, Traverse du siphon, 13376 Marseille Cedex 12 (France); Bertin, Vincent [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Boer, Michel [OHP, 04870 Saint Michel de l' Observatoire (France); Brunner, Juergen; Busto, Jose; Dornic, Damien [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Klotz, Alain [OHP, 04870 Saint Michel de l' Observatoire (France); IRAP, 9 avenue du colonel Roche, 31028 Toulouse Cedex 4 (France); Schussler, Fabian; Vallage, Bertrand [CEA-IRFU, centre de Saclay, 91191 Gif-sur-Yvette (France); Vecchi, Manuela [CPPM, CNRS/IN2P3 - Universite de Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Zheng, Weikang [Randall Laboratory of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109-1040 (United States)

    2012-11-11

    The ANTARES telescope is well suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all the times with a duty cycle close to unity and an angular resolution better than 0.5 Degree-Sign . Potential sources include gamma-ray bursts (GRBs), core collapse supernovae (SNe), and flaring active galactic nuclei (AGNs). To enhance the sensitivity of ANTARES to such sources, a new detection method based on coincident observations of neutrinos and optical signals has been developed. A fast online muon track reconstruction is used to trigger a network of small automatic optical telescopes. Such alerts are generated one or two times per month for special events such as two or more neutrinos coincident in time and direction or single neutrinos of very high energy. Since February 2009, ANTARES has sent 37 alert triggers to the TAROT and ROTSE telescope networks, 27 of them have been followed. First results on the optical images analysis to search for GRBs are presented.

  16. Light at the end of the shower: An all-flavour neutrino point-source search with the ANTARES neutrino telescope

    NARCIS (Netherlands)

    T. Michael

    2016-01-01

    The ANTARES detector is the largest deep sea neutrino observatory to date. This thesis describes a search for cosmic neutrino sources with ANTARES. There are three different types (or flavours) of neutrinos and several possible event signatures in the detector. Until now, most analyses solely relied

  17. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations (TAToO)

    Science.gov (United States)

    Dornic, Damien; Brunner, Jurgen; Basa, Stéphane; Al Samarai, Imen; Bertin, Vincent; Boer, Michel; Busto, José; Escoffier, Stéphanie; Klotz, Alain; Mazure, Alain; Vallage, Bertrand; ANTARES Collaboration; TAROT Collaboration

    2011-01-01

    The ANTARES telescope has the opportunity to detect transient neutrino sources, such as gamma-ray bursts, core-collapse supernovae, flares of active galactic nuclei. In order to enhance the sensitivity to these sources, we have developed a new detection method based on the follow-up by optical telescopes of “golden” neutrino events, such as neutrino doublets coincident in time and space or single neutrinos of very high energy. The ANTARES collaboration has therefore implemented a very fast on-line reconstruction with a good angular resolution. These characteristics allow us to trigger an optical telescope network. Since February 2009, ANTARES is sending alert triggers once or twice per month to the two 25 cm robotic telescope of TAROT. This optical follow-up of such special events would not only give access to the nature of the sources, but also would improve the sensitivity to transient neutrino sources.

  18. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations (TAToO)

    Energy Technology Data Exchange (ETDEWEB)

    Dornic, Damien, E-mail: dornic@cppm.in2p3.f [CPPM, CNRS/IN2P3-Universite de la Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); IFIC, Edificios Investigacion de Paterna, CSIC-Universitat de Valenciaa, Apdo. de correos 22085, 46071 Valencia (Spain); Brunner, Jurgen [CPPM, CNRS/IN2P3-Universite de la Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Basa, Stephane [LAM, BP8, Traverse du siphon, 13376 Marseille Cedex 12 (France); Al Samarai, Imen; Bertin, Vincent [CPPM, CNRS/IN2P3-Universite de la Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Boer, Michel [OHP, 04870 Saint Michel de l' Observatoire (France); Busto, Jose; Escoffier, Stephanie [CPPM, CNRS/IN2P3-Universite de la Mediterranee, 163 avenue de Luminy, 13288 Marseille Cedex 09 (France); Klotz, Alain [OHP, 04870 Saint Michel de l' Observatoire (France); CESR, Observatiore Midi-Pyrenees, CNRS Universite de Toulouse, BP4346, 31028 Toulouse Cedex 04 (France); Mazure, Alain [LAM, BP8, Traverse du siphon, 13376 Marseille Cedex 12 (France); Vallage, Bertrand [CEA-IRFU, Centre de Saclay, 91191 Gif-sur-Yvette (France)

    2011-01-21

    The ANTARES telescope has the opportunity to detect transient neutrino sources, such as gamma-ray bursts, core-collapse supernovae, flares of active galactic nuclei. In order to enhance the sensitivity to these sources, we have developed a new detection method based on the follow-up by optical telescopes of 'golden' neutrino events, such as neutrino doublets coincident in time and space or single neutrinos of very high energy. The ANTARES collaboration has therefore implemented a very fast on-line reconstruction with a good angular resolution. These characteristics allow us to trigger an optical telescope network. Since February 2009, ANTARES is sending alert triggers once or twice per month to the two 25 cm robotic telescope of TAROT. This optical follow-up of such special events would not only give access to the nature of the sources, but also would improve the sensitivity to transient neutrino sources.

  19. Search for neutrinos from transient sources with the ANTARES telescope and optical follow-up observations (TAToO)

    International Nuclear Information System (INIS)

    The ANTARES telescope has the opportunity to detect transient neutrino sources, such as gamma-ray bursts, core-collapse supernovae, flares of active galactic nuclei. In order to enhance the sensitivity to these sources, we have developed a new detection method based on the follow-up by optical telescopes of 'golden' neutrino events, such as neutrino doublets coincident in time and space or single neutrinos of very high energy. The ANTARES collaboration has therefore implemented a very fast on-line reconstruction with a good angular resolution. These characteristics allow us to trigger an optical telescope network. Since February 2009, ANTARES is sending alert triggers once or twice per month to the two 25 cm robotic telescope of TAROT. This optical follow-up of such special events would not only give access to the nature of the sources, but also would improve the sensitivity to transient neutrino sources.

  20. Multidimensional realistic modelling of Cepheid-like variables - I. Extensions of the ANTARES code

    Science.gov (United States)

    Mundprecht, Eva; Muthsam, Herbert J.; Kupka, Friedrich

    2013-11-01

    We have extended the ANTARES code to simulate the coupling of pulsation with convection in Cepheid-like variables in an increasingly realistic way, in particular in multidimensions, 2D at this stage. Present-day models of radially pulsating stars assume radial symmetry and have the pulsation-convection interaction included via model equations containing ad hoc closures and moreover parameters whose values are barely known. We intend to construct ever more realistic multidimensional models of Cepheids. In this paper, the first of a series, we describe the basic numerical approach and how it is motivated by physical properties of these objects which are sometimes more, sometimes less obvious. For the construction of appropriate models a polar grid comoving with the mean radial velocity has been introduced to optimize radial resolution throughout the different pulsation phases. The grid is radially stretched to account for the change of spatial scales due to vertical stratification and a new grid refinement scheme is introduced to resolve the upper, hydrogen ionization zone where the gradient of temperature is steepest. We demonstrate that the simulations are not conservative when the original weighted essentially non-oscillatory method implemented in ANTARES is used and derive a new scheme which allows a conservative time evolution. The numerical approximation of diffusion follows the same principles. Moreover, the radiative transfer solver has been modified to improve the efficiency of calculations on parallel computers. We show that with these improvements, the ANTARES code can be used for realistic simulations of the convection-pulsation interaction in Cepheids. We discuss the properties of several numerical models of this kind which include the upper 42 per cent of a Cepheid along its radial coordinate and assume different opening angles. The models are suitable for an in-depth study of convection and pulsation in these objects.

  1. Coincident searches between high energy neutrinos and gravitational waves with ANTARES, VIRGO and LIGO detectors

    International Nuclear Information System (INIS)

    The aim of this work is the joint detection of gravitational waves and high energy neutrinos in a multi-messengers context. The neutrino and gravitational waves astronomies are still in the phase of development, but they are expected to play a fundamental role in the future. In fact, these messengers can travel big distances because of their weak interaction with matter (contrary to photons that at high energy are rapidly absorbed) without being affected by magnetic fields (contrary to charged cosmic rays). They can also escape dense media and provide information on the processes taking place in the heart of astrophysics sources. Particularly, GW+HEN multi-messenger astronomy may open a new observational window on the Universe. ANTARES collaboration has built a telescope of area 0.1 km2 in the Mediterranean Sea for the detection of high energy neutrinos. This is the most sensitive telescope for the observed part of the sky. LIGO and VIRGO interferometers are ground-based detector for direct observation of gravitational waves, installed in Europe and the USA respectively. Instruments ANTARES, VIRGO and LIGO offer unrivaled sensitivity in the area of joint observation. The first chapter of this thesis introduces the theoretical motivations for GW+HEN search by developing different emission scenarios. The second and third chapters we give an overview of the experiments and review the data analysis tools. The fourth and fifth chapters of this work present the results of the analysis of the combined data from ANTARES, VIRGO and LIGO taken separately in 2007 and 2009-2010. (author)

  2. AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    International Nuclear Information System (INIS)

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/μPa (including preamplifier). Completed in May 2008, AMADEUS consists of six 'acoustic clusters', each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  3. AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC - Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM - Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Albert, A. [GRPHE - Institut Universitaire de Technologie de Colmar, 34 rue du Grillenbreit BP 50568, 68008 Colmar (France); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere - Institut de Recherche sur les lois fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de Zones Costaneres (IGIC) - Universitat Politecnica de Valencia. C/ Paranimf 1., 46730 Gandia (Spain); Assis Jesus, A.C.; Astraatmadja, T. [FOM Instituut voor Subatomaire Fysica Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Aubert, J.-J. [CPPM - Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Auer, R. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Barbarito, E. [INFN - Sezione di Bari, Via E. Orabona 4, 70126 Bari (Italy); Baret, B. [APC - Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris) 10, rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (France); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, 13388 Marseille Cedex 13 (France)

    2011-01-21

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/{mu}Pa (including preamplifier). Completed in May 2008, AMADEUS consists of six 'acoustic clusters', each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  4. Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [Inst. de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC - Univ. de Valencia, Valencia (Spain); Albert, A. [GRPHE - Inst. univ. de technologie de Colmar, Colmar (France); Anton, G. [Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anvar, S.; Lamare, P.; Lo Presti, D. [Direction des Sciences de la Matiere - Inst. de recherche sur les lois fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, Gif-sur-Yvette (France); Ardid, M. [Univ. Politecnica de Valencia, Gandia (Spain); Assis Jesus, A.C. [FOM Inst. voor Subatomaire Fysica Nikhef, Amsterdam (Netherlands); Aubert, J.J.; Brown, A.M.; Brunner, J.; Carr, J.; Coyle, P.; Curtil, C.; Lambard, G.; Lelaizant, G.; Melissas, M.; Payre, P.; Picot-Clemente, N.; Reed, C.; Zaborov, D. [Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Univ. de la Mediterranee, Marseille (France); Kouchner, A.; Moscoso, L.; Van Elewyck, V. [Lab. AstroParticule et Cosmologie, UMR 7164, CNRS, Univ. Paris 7 Diderot, CEA, Observatoire de Paris, Paris (France); Tasca, L. [Lab. d' Astrophysique de Marseille, Marseille (France); Charvis, Ph.; Pillet, R. [Geoazur - Univ. de Nice Sophia-Antipolis, CNRS/INSU, IRD, Observatoire de la Cote d' Azur and Univ. Pierre et Marie Curie, Villefranche-sur-mer (France); Cottini, N.; Loucatos, S.; Maurin, G.; Naumann, C.; Picq, C.; Schuller, J.P.; Stolarczyk, Th.; Vallage, B.; Vernin, P. [Inst. de recherche sur les lois fondamentales de l' Univers, Service de Physique des Particules, CEA Saclay, Gif-sur-Yvette (France); Dekeyser, I.; Lefevre, D.; Tamburini, C. [Centre d' Oceanologie de Marseille, CNRS/INSU et Universite de la Mediterranee, Marseille (France); Univ. Paris-Sud 11, Dept. de Physique, Orsay (France); Guillard, G.; Lyons, K.; Pradier, T. [Institut Pluridisciplinaire Hubert Curien, Univ. de Strasbourg et CNRS/IN2P3, Strasbourg (France)

    2010-07-01

    The ANTARES high-energy neutrino telescope is a three-dimensional array of about 900 photomultipliers distributed over 12 mooring lines installed in the Mediterranean Sea. Between February and November 2007 it acquired data in a 5-line configuration. The zenith angular distribution of the atmospheric muon flux and the associated depth-intensity relation are measured and compared with previous measurements and Monte Carlo expectations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is presented. (authors)

  5. SEARCH FOR A CORRELATION BETWEEN ANTARES NEUTRINOS AND PIERRE AUGER OBSERVATORY UHECRs ARRIVAL DIRECTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Universitat Politecnica de Valencia, C/ Paranimf 1, E-46730 Gandia (Spain); Al Samarai, I.; Aubert, J-J.; Bertin, V. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, F-13288 Marseille (France); Albert, A. [GRPHE-Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568-68008 Colmar (France); Andre, M. [Laboratory of Applied Bioacoustics, Technical University of Catalonia, Rambla Exposicio, E-08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Astraatmadja, T.; Beemster, L. J.; Bogazzi, C.; Bouwhuis, M. C. [Nikhef, Science Park, Amsterdam (Netherlands); Baret, B.; Bouhou, B. [APC-Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris) 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13 (France); Basa, S. [LAM-Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, rue Frederic Joliot-Curie 38, F-13388 Marseille Cedex 13 (France); Biagi, S. [INFN-Sezione di Bologna, Viale Berti-Pichat 6/2, I-40127 Bologna (Italy); Bigongiari, C. [IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna CSIC, Universitat de Valencia, Apdo. de Correos 22085, E-46071 Valencia (Spain); and others

    2013-09-01

    A multimessenger analysis optimized for a correlation of arrival directions of ultra-high energy cosmic rays (UHECRs) and neutrinos is presented and applied to 2190 neutrino candidate events detected in 2007-2008 by the ANTARES telescope and 69 UHECRs observed by the Pierre Auger Observatory between 2004 January 1 and 2009 December 31. No significant correlation is observed. Assuming an equal neutrino flux (E {sup -2} energy spectrum) from all UHECR directions, a 90% CL upper limit on the neutrino flux of 5.0 Multiplication-Sign 10{sup -8} GeV cm{sup -2} s{sup -1} per source is derived.

  6. SEARCH FOR A CORRELATION BETWEEN ANTARES NEUTRINOS AND PIERRE AUGER OBSERVATORY UHECRs ARRIVAL DIRECTIONS

    International Nuclear Information System (INIS)

    A multimessenger analysis optimized for a correlation of arrival directions of ultra-high energy cosmic rays (UHECRs) and neutrinos is presented and applied to 2190 neutrino candidate events detected in 2007-2008 by the ANTARES telescope and 69 UHECRs observed by the Pierre Auger Observatory between 2004 January 1 and 2009 December 31. No significant correlation is observed. Assuming an equal neutrino flux (E –2 energy spectrum) from all UHECR directions, a 90% CL upper limit on the neutrino flux of 5.0 × 10–8 GeV cm–2 s–1 per source is derived

  7. SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE

    International Nuclear Information System (INIS)

    In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E –2ν spectrum, these flux limits are at 1-10 ×10–8 GeV cm–2 s–1 for declinations ranging from –90° to 40°. Limits for specific models of RX J1713.7–3946 and Vela X, which include information on the source morphology and spectrum, are also given.

  8. Zenith distribution and flux of atmospheric muons measured with the 5-line ANTARES detector

    International Nuclear Information System (INIS)

    The ANTARES high-energy neutrino telescope is a three-dimensional array of about 900 photomultipliers distributed over 12 mooring lines installed in the Mediterranean Sea. Between February and November 2007 it acquired data in a 5-line configuration. The zenith angular distribution of the atmospheric muon flux and the associated depth-intensity relation are measured and compared with previous measurements and Monte Carlo expectations. An evaluation of the systematic effects due to uncertainties on environmental and detector parameters is presented. (authors)

  9. TAToO, an implementation of an optical follow up of ANTARES events

    Energy Technology Data Exchange (ETDEWEB)

    Ageron, M. [IN2P3, CCPM, Merseille (France)

    2009-07-01

    Completed in May 2008, Antares is a large area water Cherenkov detector comprising a 3-dimensional array of 875 photosensitive detectors, located in the deep Mediterranean Sea close to Toulon, France. It is designed to detect high energy neutrinos emitted by astrophysical sources. These sources can also emit other kind of information, especially visible light. The purpose of the work presented here is to quickly determine the celestial coordinates of such a source and send them to the TAROT robotic optical telescope array, then to analyse the collected images, in order to detect a possible optical counterpart of high energy neutrino events. (authors)

  10. TAToO, an implementation of an optical follow up of ANTARES events

    International Nuclear Information System (INIS)

    Completed in May 2008, Antares is a large area water Cherenkov detector comprising a 3-dimensional array of 875 photosensitive detectors, located in the deep Mediterranean Sea close to Toulon, France. It is designed to detect high energy neutrinos emitted by astrophysical sources. These sources can also emit other kind of information, especially visible light. The purpose of the work presented here is to quickly determine the celestial coordinates of such a source and send them to the TAROT robotic optical telescope array, then to analyse the collected images, in order to detect a possible optical counterpart of high energy neutrino events. (authors)

  11. Search of Dark Matter Annihilation in the Galactic Centre using the ANTARES Neutrino Telescope

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bogazzi, C; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; DeBonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Dumas, A; Eberl, T; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gracia-Ruiz, R; Graf, K; vanHaren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herrero, A; Hößl, J; Hofestädt, J; Hugon, C; WJames, C; deJong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Lattuada, D; Lefèvre, D; Leonora, E; Loucatos, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Neff, M; Nezri, E; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Rostovtsev, A; Saldaña, M; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Tönnis, C; Vallage, B; Vallée, C; VanElewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J

    2015-01-01

    A search for high-energy neutrinos coming from the direction of the Galactic Centre is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. The event selection criteria are chosen to maximise the sensitivity to possible signals produced by the self-annihilation of weakly interacting massive particles accumulated around the centre of the Milky Way with respect to the atmospheric background. After data unblinding, the number of neutrinos observed in the line of sight of the Galactic Centre is found to be compatible with background expectations. The 90% C.L. upper limits in terms of the neutrino+anti-neutrino flux, $\\rm \\Phi_{\

  12. A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Avgitas, T; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Celli, S; Chiarusi, T; Circella, M; Coleiro, A; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Bojaddaini, I El; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Glotin, H; Gracia-Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Hößl, J; Hofestädt, J; Hugon, C; Illuminati, G; James, C W; de Jong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lachaud, C; Lahmann, R; Lefèvre, D; Leonora, E; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Nezri, E; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Roensch, K; Saldaña, M; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schnabel, J; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Trovato, A; Tselengidou, M; Turpin, D; Tönnis, C; Vallage, B; Vallée, C; Van Elewyck, V; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J

    2016-01-01

    A search for Secluded Dark Matter annihilation in the Sun using 2007-2012 data of the ANTARES neutrino telescope is presented. Three different cases are considered: a) detection of dimuons that result from the decay of the mediator, or neutrino detection from: b) mediator that decays into a dimuon and, in turn, into neutrinos, and c) mediator that decays directly into neutrinos. As no significant excess over background is observed, constraints are derived on the dark matter mass and the lifetime of the mediator.

  13. Reconstruction of Neutrino-Induced Hadronic and Electromagnetic Showers with the ANTARES Experiment

    CERN Document Server

    Hartmann, B

    2006-01-01

    The ANTARES neutrino telescope is being constructed at a site off the French Mediterranean coast at a depth of 2400m. When high energy neutrinos interact in water, the charged secondary particles produce Cherenkov light which can be measured in photomultiplier tubes. Different event signatures are possible; this work introduces a reconstruction algorithm for events with a hadronic and potentially an electromagnetic shower producing a signal in the detector. An algorithm for the combined reconstruction of shower direction and energy is described, based on a maximum likelihood fit which matches the signal expected in the photomultipliers for an assumed direction and energy with the signal actually measured.

  14. ANTARES Constrains a Blazar Origin of Two IceCube PeV Neutrino Events

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios, J; Basa, S; Bertin, V; Biagi, S; Bogazzi, C; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; De Rosa, G; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Dumas, A; Eberl, T; Enzenhöfer, A; Escoffier, S; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gómez-González, J P; Graf, K; Guillard, G; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Herrero, A; Hößl, J; Hofestädt, J; Hugon, C; James, C W; de Jong, M; Kalekin, O; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kulikovskiy, V; Lahmann, R; Lambard, E; Lambard, G; Lefèvre, D; Leonora, E; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Rostovtsev, A; Saldaña, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Tayalati, Y; Trovato, A; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; de Wolf, E; Yatkin, K; Yepes, H; Zornoza, J D; Zúñiga, J; :,; Krauß, F; Kadler, M; Mannheim, K; Schulz, R; Trüstedt, J; Wilms, J; Ojha, R; Ros, E; Baumgartner, W; Beuchert, T; Blanchard, J; Bürkel, C; Carpenter, B; Edwards, P G; Glawion, D Eisenacher; Elsässer, D; Fritsch, U; Gehrels, N; Gräfe, C; Großberger, C; Hase, H; Horiuchi, S; Kappes, A; Kreikenbohm, A; Kreykenbohm, I; Langejahn, M; Leiter, K; Litzinger, E; Lovell, J E J; Müller, C; Phillips, C; Plötz, C; Quick, J; Steinbring, T; Stevens, J; Thompson, D J; Tzioumis, A K

    2015-01-01

    The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most energetic IceCube events. Such objects are prime candidates to be the source of the highest-energy cosmic rays, and thus of associated neutrino emission. We present an analysis of neutrino emission from the six blazars using observations with the ANTARES neutrino telescope. The standard methods of the ANTARES candidate list search are applied to six years of data to search for an excess of muons - and hence their neutrino progenitors - from the directions of the six blazars described by the TANAMI Collaboration, and which are possibly associated with two IceCube events. Monte Carlo simulations of the detector response to both signal and background particle fluxes are used to estimate the sensitivity of this analysis for different possible source neutrino spectra. A...

  15. Murchison Widefield Array Limits on Radio Emission from ANTARES Neutrino Events

    Science.gov (United States)

    Croft, S.; Kaplan, D. L.; Tingay, S. J.; Murphy, T.; Bell, M. E.; Rowlinson, A.; the MWA Collaboration; Adrián-Martínez, S.; Ageron, M.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, T.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; the ANTARES Collaboration; Klotz, A.; Boer, M.; Le Van Suu, A.; the TAROT Collaboration; Akerlof, C.; Zheng, W.; the ROTSE Collaboration

    2016-04-01

    We present a search, using the Murchison Widefield Array (MWA), for electromagnetic (EM) counterparts to two candidate high-energy neutrino events detected by the ANTARES neutrino telescope in 2013 November and 2014 March. These events were selected by ANTARES because they are consistent, within 0.°4, with the locations of galaxies within 20 Mpc of Earth. Using MWA archival data at frequencies between 118 and 182 MHz, taken ˜20 days prior to, at the same time as, and up to a year after the neutrino triggers, we look for transient or strongly variable radio sources that are consistent with the neutrino positions. No such counterparts are detected, and we set a 5σ upper limit for low-frequency radio emission of ˜1037 erg s-1 for progenitors at 20 Mpc. If the neutrino sources are instead not in nearby galaxies, but originate in binary neutron star coalescences, our limits place the progenitors at z ≳ 0.2. While it is possible, due to the high background from atmospheric neutrinos, that neither event is astrophysical, the MWA observations are nevertheless among the first to follow up neutrino candidates in the radio, and illustrate the promise of wide-field instruments like MWA for detecting EM counterparts to such events.

  16. PENGARUH TEBAL PLAT DAN JARAK ANTAR PIPA TERHADAP PERFORMANSI KOLEKTOR SURYA PLAT DATAR

    Directory of Open Access Journals (Sweden)

    Yoe Kiem San

    2001-01-01

    Full Text Available Flat plate solar collector is an equipment to used for water heater. This collector absorb the radiant energy from the sun and convert it to heat in the tubes collector. Parameters which influence the performance this collector are thickness of the plate absorber and distance between the tubes which called collector fin efficiency. From the research it is found that more and more the thickness of the plate absorber and more and more the small distance between of the tubes collector, more and more optimum fin eficiency the collector. Abstract in Bahasa Indonesia : Kolektor surya plat datar merupakan suatu peralatan yang dapat digunakan untuk memanaskan air. Kolektor tersebut menyerap energi radiasi dari matahari dan mengkonversikannya menjadi panas pada pipa-pipa kolektor. Parameter-parameter yang berpengaruh terhadap unjuk kerja kolektor tersebut diantaranya adalah ketebalan plat penyerap dan jarak antar pipa-pipa kolektor yang disebut dengan efisiensi sirip kolektor. Hasil penelitian menunjukkan bahwa semakin tebal plat penyerap dan semakin kecil jarak antar pipa-pipa kolektor, efisiensi sirip dari kolektor semakin optimum. Kata kunci: kolektor surya plat datar, performansi, efisiensi sirip.

  17. First results on dark matter annihilation in the Sun using the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The 90% CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two supersymmetric models, CMSSM and MSSM-7. The ANTARES limits are comparable with those obtained by other neutrino observatories and are more stringent than those obtained by direct search experiments for the spin-dependent WIMP-proton cross-section in the case of hard self-annihilation channels (W+W−, τ+τ−)

  18. Murchison Widefield Array Limits on Radio Emission from ANTARES Neutrino Events

    CERN Document Server

    Croft, S; Tingay, S J; Murphy, T; Bell, M E; Rowlinson, A; Adrian-Martinez, S; Ageron, M; Albert, A; Andre, M; Anton, G; Ardid, M; Aubert, J -J; Avgitas, T; Baret, B; Barrios-Marti, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coleiro, A; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Bojaddaini, I El; Elsasser, D; Enzenhofer, A; Fehn, K; Felis, I; Fermani, P; Fusco, L A; Galata, S; Gay, P; Geisselsoder, S; Geyer, K; Giordano, V; Gleixner, A; Glotin, H; Gracia-Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernandez-Rey, J J; Hossl, J; Hofestadt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kalekin, O; Katz, U; Kiessling, D; Kooijman, P; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lachaud, C; Lahmann, R; Lefevre, D; Leonora, E; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martinez-Mora, J A; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Nezri, E; Pavalas, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Roensch, K; Saldana, M; Samtleben, D F E; Sanchez-Losa, A; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schussler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, T; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Turpin, D; Tonnis, C; Vallage, B; Vallee, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zuniga, J; Klotz, A; Boer, M; Van Suu, A Le; Akerlof, C; Zheng, W

    2016-01-01

    We present a search, using the Murchison Widefield Array (MWA), for electromagnetic counterparts to two candidate high energy neutrino events detected by the ANTARES neutrino telescope in 2013 November and 2014 March. These events were selected by ANTARES because they are consistent, within 0.4 degrees, with the locations of galaxies within 20 Mpc of Earth. Using MWA archival data at frequencies between 118 and 182 MHz, taken ~20 days prior to, at the same time as, and up to a year after the neutrino triggers, we look for transient or strongly variable radio sources consistent with the neutrino positions. No such counterparts are detected, and we set a 5 sigma upper limit for low-frequency radio emission of ~1E37 erg/s for progenitors at 20 Mpc. If the neutrino sources are instead not in nearby galaxies, but originate in binary neutron star coalescences, our limits place the progenitors at z > 0.2. While it is possible, due to the high background from atmospheric neutrinos, that neither event is astrophysical...

  19. Juno II (AM-14)

    Science.gov (United States)

    1959-01-01

    Juno II (AM-14) on the launch pad just prior to launch, March 3, 1959. The payload of AM-14 was Pioneer IV, America's first successful lunar mission. The Juno II was a modification of Jupiter ballistic missile

  20. Future directions of the AMS program at Lucas Heights

    Energy Technology Data Exchange (ETDEWEB)

    Tuniz, C. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1998-12-31

    The research program based on the ANTARES AMS spectrometer involves applications of the long-lived radionuclides {sup 14}C, {sup 10}Be, {sup 26}Al, {sup 36}Cl and {sup 129}I in earth sciences and archaeology. Examples of environmental applications of AMS at Lucas Heights include: use of the {sup 14}C bomb pulse to determine the age and age-spread of air trapped in Antarctic ice bubbles, key parameters to study the variability of CO{sub 2} and other greenhouse gases in the past; analyses of {sup 14}C bomb-pulse curves in tree rings from tropical regions and the southern hemisphere to improve our understanding of the carbon cycle and air-sea interactions, important processes for the global climate; analyses of {sup 10}Be and {sup 36}Cl produced in-situ in polished glacial bedrock and moraine boulders from Tasmania, New Zealand and Antarctica, as part of a major national project to unravel the timing of glacial cycles in the southern hemisphere. A recent archaeological application has been the radiocarbon dating of charcoal fragments from the rock shelter at Jinmium in the Northern Territory demonstrating that this site was occupied by Aboriginal people only during the late Holocene. In environmental monitoring, the analysis of {sup 129}I, {sup 14}C and {sup 36}Cl in water specimens from Mururoa and Fangatauga contributed to an IAEA study regarding residual radioactivity in the Pacific after the French nuclear program Extended abstract. 5 refs.

  1. Future directions of the AMS program at Lucas Heights

    International Nuclear Information System (INIS)

    The research program based on the ANTARES AMS spectrometer involves applications of the long-lived radionuclides 14C, 10Be, 26Al, 36Cl and 129I in earth sciences and archaeology. Examples of environmental applications of AMS at Lucas Heights include: use of the 14C bomb pulse to determine the age and age-spread of air trapped in Antarctic ice bubbles, key parameters to study the variability of CO2 and other greenhouse gases in the past; analyses of 14C bomb-pulse curves in tree rings from tropical regions and the southern hemisphere to improve our understanding of the carbon cycle and air-sea interactions, important processes for the global climate; analyses of 10Be and 36Cl produced in-situ in polished glacial bedrock and moraine boulders from Tasmania, New Zealand and Antarctica, as part of a major national project to unravel the timing of glacial cycles in the southern hemisphere. A recent archaeological application has been the radiocarbon dating of charcoal fragments from the rock shelter at Jinmium in the Northern Territory demonstrating that this site was occupied by Aboriginal people only during the late Holocene. In environmental monitoring, the analysis of 129I, 14C and 36Cl in water specimens from Mururoa and Fangatauga contributed to an IAEA study regarding residual radioactivity in the Pacific after the French nuclear program

  2. Multidimensional realistic modelling of Cepheid-like variables. I: Extensions of the ANTARES code

    CERN Document Server

    Mundprecht, Eva; Kupka, Friedrich

    2012-01-01

    We have extended the ANTARES code to simulate the coupling of pulsation with convection in Cepheid-like variables in an increasingly realistic way, in particular in multidimensions, 2D at this stage. Present days models of radially pulsating stars assume radial symmetry and have the pulsation-convection interaction included via model equations containing ad hoc closures and moreover parameters whose values are barely known. We intend to construct ever more realistic multidimensional models of Cepheids. In the present paper, the first of a series, we describe the basic numerical approach and how it is motivated by physical properties of these objects which are sometimes more, sometimes less obvious. - For the construction of appropriate models a polar grid co-moving with the mean radial velocity has been introduced to optimize radial resolution throughout the different pulsation phases. The grid is radially stretched to account for the change of spatial scales due to vertical stratification and a new grid refi...

  3. A Search for Neutrino Emission from the Fermi Bubbles with the ANTARES Telescope

    CERN Document Server

    Adrián-Martínez, S; Samarai, I Al; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Astraatmadja, T; Aubert, J-J; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Capone, A; Caramete, L; Cârloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Classen, F; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Dekeyser, I; Deschamps, A; Decowski, M P; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Dumas, A; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fehn, K; Fermani, P; Ferry, S; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giacomelli, G; Giordano, V; Gleixner, A; Gómez-González, J P; Graf, K; Guillard, G; Hallewell, G; Hamal, M; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; James, C W; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, E; Lambard, G; Larosa, G; Lattuada, D; Lefèvre, D; Leonora, E; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Martini, S; Michael, T; Montaruli, T; Morganti, M; Motz, H; Müller, C; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Perrina, C; Petrovic, J; Piattelli, P; Popa, V; Pradier, T; Racca, C; Reed, C; Riccobene, G; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Rujoiu, M; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Shanidze, R; Sieger, C; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Tayalati, Y; Trovato, A; Vallage, B; Vallée, C; Van Elewyck, V; Vecchi, M; Vernin, P; Visser, E; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yatkin, K; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2013-01-01

    Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source.

  4. A Search for Time Dependent Neutrino Emission from Microquasars with the ANTARES Telescope

    CERN Document Server

    Adrián-Martínez, S; André, M; Anghinolfi, M; Anton, G; Ardid, M; Astraatmadja, T; Aubert, J -J; Baret, B; Barrios, J; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Capone, A; Caramete, L; Cârloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, P; Chiarusi, T; Circella, M; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; De Rosa, G; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Dumas, A; Eberl, T; Elsässer, D; Emanuele, U; Enzenhöfer, A; Ernenwein, J -P; Escoffier, S; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gómez-González, J P; Graf, K; Guillard, G; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hofestädt, J; James, C W; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, E; Lambard, G; Larosa, G; Lattuada, D; Lefèvre, D; Leonora, E; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Montaruli, T; Müller, C; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Salda\; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, T; Taiuti, M; Tamburini, C; Tayalati, Y; Trovato, A; Vallage, B; Vallée, C; Van Elewyck, V; Vernin, P; Visser, E; Vivolo, D; Wagner, S; Wilms, J; de Wolf, E; Yatkin, K; Yepes, H; Zornoza, J D; Zúñiga, J

    2014-01-01

    Results are presented on a search for neutrino emission from a sample of six microquasars, based on the data collected by the ANTARES neutrino telescope between 2007 and 2010. By means of appropriate time cuts, the neutrino search has been restricted to the periods when the acceleration of relativistic jets was taking place at the microquasars under study. The time cuts have been chosen using the information from the X-ray telescopes RXTE/ASM and Swift/BAT, and, in one case, the gamma-ray telescope Fermi/LAT. Since none of the searches has produced a statistically significant signal, upper limits on the neutrino fluences are derived and compared to the predictions from theoretical models.

  5. Performance of the front-end electronics of the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named analogue ring samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip; results from the functionality and characterization tests in the laboratory are summarized and the long-term performance in the apparatus is illustrated.

  6. FIRST SEARCH FOR POINT SOURCES OF HIGH-ENERGY COSMIC NEUTRINOS WITH THE ANTARES NEUTRINO TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Universitat Politecnica de Valencia, C/Paranimf 1, 46730 Gandia (Spain); Aguilar, J. A.; Bigongiari, C. [IFIC-Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC, Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I.; Aubert, J.-J.; Bertin, V. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Albert, A. [GRPHE-Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568-68008 Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, 08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN-Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Assis Jesus, A. C.; Astraatmadja, T.; Bogazzi, C. [Nikhef, Science Park, Amsterdam (Netherlands); Baret, B. [APC-Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris) 10, rue Alice Domon et Leonie Duquet 75205 Paris Cedex 13 (France); Basa, S. [LAM-Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, rue Frederic Joliot-Curie 38, 13388 Marseille Cedex 13 (France); Biagi, S. [INFN-Sezione di Bologna, Viale C. Berti-Pichat 6/2, 40127 Bologna (Italy); Bigi, A. [INFN-Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); and others

    2011-12-10

    Results are presented of a search for cosmic sources of high-energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 {+-} 0.1 deg. The neutrino flux sensitivity is 7.5 Multiplication-Sign 10{sup -8}(E{sub {nu}}/ GeV){sup -2} GeV{sup -1} s{sup -1} cm{sup -2} for the part of the sky that is always visible ({delta} < -48 deg), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed.

  7. FIRST SEARCH FOR POINT SOURCES OF HIGH-ENERGY COSMIC NEUTRINOS WITH THE ANTARES NEUTRINO TELESCOPE

    International Nuclear Information System (INIS)

    Results are presented of a search for cosmic sources of high-energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 ± 0.1 deg. The neutrino flux sensitivity is 7.5 × 10–8(Eν/ GeV)–2 GeV–1 s–1 cm–2 for the part of the sky that is always visible (δ < –48 deg), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed.

  8. SEARCH FOR COSMIC NEUTRINO POINT SOURCES WITH FOUR YEARS OF DATA FROM THE ANTARES TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC) - Universitat Politecnica de Valencia. C/Paranimf 1, E-46730 Gandia (Spain); Al Samarai, I.; Aubert, J-J.; Bertin, V.; Brunner, J. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit, BP 50568 - 68008 Colmar (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, E-08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere - Institut de recherche sur les lois fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Astraatmadja, T.; Bogazzi, C.; Bouwhuis, M. C. [Nikhef, Science Park, Amsterdam (Netherlands); Baret, B.; Bouhou, B. [APC - Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris) 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13 (France); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, rue Frederic Joliot-Curie 38, F-13388 Marseille Cedex 13 (France); Biagi, S. [INFN - Sezione di Bologna, Viale Berti-Pichat 6/2, I-40127 Bologna (Italy); Bigongiari, C. [IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC - Universitat de Valencia, Apdo. de Correos 22085, E-46071 Valencia (Spain); and others

    2012-11-20

    In this paper, a time-integrated search for point sources of cosmic neutrinos is presented using the data collected from 2007 to 2010 by the ANTARES neutrino telescope. No statistically significant signal has been found and upper limits on the neutrino flux have been obtained. Assuming an E {sup -2} {sub {nu}} spectrum, these flux limits are at 1-10 Multiplication-Sign 10{sup -8} GeV cm{sup -2} s{sup -1} for declinations ranging from -90 Degree-Sign to 40 Degree-Sign . Limits for specific models of RX J1713.7-3946 and Vela X, which include information on the source morphology and spectrum, are also given.

  9. Performance of the front-end electronics of the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC - Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM - Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568 - 68008 Colmar (France); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere - Institut de recherche sur les lois fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de Zones Costaneres (IGIC) - Universitat Politecnica de Valencia. C/ Paranimf, 1. E-46730 Gandia (Spain); Assis Jesus, A.C.; Astraatmadja, T. [FOM Instituut voor Subatomaire Fysica Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Aubert, J.-J. [CPPM - Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (France); Auer, R. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Baret, B. [APC - Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris) 10, rue Alice Domon et Leonie Duquet 75205 Paris Cedex 13 (France); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Ch-Gombert, rue Frederic Joliot-Curie 38, 13388 Marseille cedex 13 (France)

    2010-10-01

    ANTARES is a high-energy neutrino telescope installed in the Mediterranean Sea at a depth of 2475 m. It consists of a three-dimensional array of optical modules, each containing a large photomultiplier tube. A total of 2700 front-end ASICs named analogue ring samplers (ARS) process the phototube signals, measure their arrival time, amplitude and shape as well as perform monitoring and calibration tasks. The ARS chip processes the analogue signals from the optical modules and converts information into digital data. All the information is transmitted to shore through further multiplexing electronics and an optical link. This paper describes the performance of the ARS chip; results from the functionality and characterization tests in the laboratory are summarized and the long-term performance in the apparatus is illustrated.

  10. A search for neutrino emission from the Fermi bubbles with the ANTARES telescope

    International Nuclear Information System (INIS)

    Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source. (orig.)

  11. VizieR Online Data Catalog: Neutrinos from GRBs with ANTARES (Adrian-Martinez+ 2013)

    Science.gov (United States)

    Adrian-Martinez, S.; Albert, A.; Al Samarai, I.; Andre, M.; Anghinol, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Barrios-Mart, J.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Classen, F.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; de Bonis, G.; Dekeyser, I.; Deschamps, A.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Emanuele, U.; Enzenofer, A.; Ernenwein, J.-P.; Escoer, S.; Fehn, K.; Fermani, P.; Flaminio, V.; Folger, F.; Fritsch, U.; Fusco, L. A.; Galata, S.; Gay, P.; Geieloder, S.; Geyer, K.; Giacomelli, G.; Giordanoa, V.; Gleixner, A.; Gomez-Gonzalez, J. P.; Graf, K.; Guillard, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Herold, B.; Hossl, J.; James, C. W.; de Jong, M.; Kadlera, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kouchner, A.; ! Kreykenbo hma I., Kulikovski V., Lahmann R., Lambard E., Lambard G., Larosa G., Lattuad D., Lefevre D., Leonoraa E., Lo Prestia D., Loehner H., Loucatosa S., Louis F., Mangano S., Marcelin M., Margiotta A., Martnez-Mora J.A., Martini S., Michael T., Montaruli T., Morganti M., Muller C., Neff M., Nezri E., Palioseliti D., Pavalas G.E., Perrina C., Popa V., Pradiera T., Racca C., Riccobene G., Richter R., Riviere C., Robert A., Roensch K., Rostovtseva A., Samtleben D.F.E., Sanguineti M., Sapienza P., Schmid J., Schnabel J., Schulte S., Scusslera F., Seitz T., Shanidze R., Sieger C., Simeone F., Spies A., Spurio M., Steijger J.J.M., Stolarczyka T., Sanchez-Losa A., Taiuti M., Tamburini C., Tayalatia Y., Trovato A., Vallagea B., Vallee C., Van Elewyck V., Vecchi M., Vernina P., Visser E., Wagner S., Wilmsa J., de Wolf E., Yatkin K., Yepes H., Zornoza J.D., Zuniga J.

    2013-08-01

    A search for muon neutrinos in coincidence with gamma-ray bursts with the ANTARES neutrino detector using data from the end of 2007 to 2011 is performed. Expected neutrino fluxes are calculated for each burst individually. The most recent numerical calculations of the spectra using the NeuCosmA code are employed, which include Monte Carlo simulations of the full underlying photohadronic interaction processes. The discovery probability for a selection of 296 gamma-ray bursts in the given period is optimised using an extended maximum-likelihood strategy. No significant excess over background is found in the data, and 90% confidence level upper limits are placed on the total expected flux according to the model. (1 data file).

  12. Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope

    Directory of Open Access Journals (Sweden)

    S. Adrián-Martínez

    2016-08-01

    Full Text Available A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and 90% C.L. upper limits on the neutrino flux, the spin-dependent and spin-independent WIMP-nucleon cross-sections are derived for WIMP masses ranging from 50 GeV to 5 TeV for the annihilation channels WIMP+WIMP→bb¯,W+W− and τ+τ−.

  13. Limits on Dark Matter Annihilation in the Sun using the ANTARES Neutrino Telescope

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Avgitas, T; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Celli, S; Chiarusi, T; Circella, M; Coleiro, A; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Bojaddaini, I El; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Glotin, H; Gracia-Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Hößl, J; Hofestädt, J; Hugon, C; Illuminati, G; James, C W; de Jong, M; Jongen, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lachaud, C; Lahmann, R; Lefèver, D; Leonora, E; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mathieu, A; Melis, K; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Nezri, E; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Roensch, K; Saldana, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schnabel, J; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Stolarczyk, Th; Taiuti, M; Tönnis, C; Trovato, A; Tselengidou, M; Turpin, D; Vallage, B; Vallée, C; Van Elewyck, V; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J

    2016-01-01

    A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and $90\\%$ C.L. upper limits on the neutrino flux, the spin--dependent and spin--independent WIMP-nucleon cross--sections are derived for WIMP masses ranging from $ \\rm 50$ GeV to $\\rm 5$ TeV for the annihilation channels $\\rm WIMP + WIMP \\to b \\bar b, W^+ W^-$ and $\\rm \\tau^+ \\tau^-$.

  14. A search for neutrino emission from the Fermi bubbles with the ANTARES telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Larosa, G.; Martinez-Mora, J.A. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Albert, A.; Drouhin, D.; Racca, C. [GRPHE, Institut Universitaire de Technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar (France); Al Samarai, I.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Core, L.; Costantini, H.; Coyle, P.; Curtil, C.; Dornic, D.; Ernenwein, J.P.; Escoffier, S.; Lambard, E.; Riviere, C.; Vallee, C.; Vecchi, M.; Yatkin, K. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Anton, G.; Classen, F.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Fritsch, U.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Herold, B.; Hoessl, J.; James, C.W.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Neff, M.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Shanidze, R.; Sieger, C.; Spies, A.; Wagner, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anvar, S.; Louis, F.; Schuessler, F.; Stolarczyk, T.; Vallage, B.; Vernin, P. [Institut de recherche sur les lois fondamentales de l' Univers, Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, Direction des Sciences de la Matiere, Gif-sur-Yvette Cedex (France); Astraatmadja, T.; Bogazzi, C.; Heijboer, A.J.; Jong, M. de; Michael, T.; Palioselitis, D.; Schulte, S.; Steijger, J.J.M.; Visser, E. [Nikhef, Science Park, Amsterdam (Netherlands); Baret, B.; Bouhou, B.; Creusot, A.; Galata, S.; Kouchner, A.; Elewyck, V. van [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Barrios-Marti, J.; Bigongiari, C.; Bouwhuis, M.C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuniga, J. [Universitat de Valencia, IFIC, Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [Pole de l' Etoile Site de Chateau-Gombert, LAM, Laboratoire d' Astrophysique de Marseille, Marseille Cedex 13 (France); Biagi, S.; Fusco, L.A.; Giacomelli, G.; Margiotta, A.; Spurio, M. [INFN, Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica dell' Universita, Bologna (Italy); Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.; Simeone, F. [INFN, Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Sciences, Bucharest, Magurele (Romania); Carloganu, C.; Dumas, A.; Gay, P.; Guillard, G. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand (France); Cecchini, S.; Chiarusi, T. [INFN, Sezione di Bologna, Bologna (Italy); Charvis, P.; Deschamps, A.; Hello, Y. [Geoazur, Universite Nice Sophia-Antipolis, CNRS/INSU, IRD, Observatoire de la Cote d' Azur, Sophia Antipolis (France); Circella, M. [INFN, Sezione di Bari, Bari (Italy); Coniglione, R.; Lattuada, D.; Riccobene, G.; Sapienza, P.; Trovato, A. [INFN, Laboratori Nazionali del Sud (LNS), Catania (Italy); Dekeyser, I.; Lefevre, D.; Martini, S.; Robert, A.; Tamburini, C. [Mediterranean Institute of Oceanography (MIO), Aix-Marseille University, Marseille Cedex 9 (France); Universit du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde Cedex (France); Donzaud, C. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Universite Paris-Sud, Orsay Cedex (France); Dorosti, Q.; Loehner, H. [University of Groningen, Kernfysisch Versneller Instituut (KVI), Groningen (Netherlands); Flaminio, V. [INFN, Sezione di Pisa, Pisa (Italy); Dipartimento di Fisica dell' Universita, Pisa (Italy); Giordano, V. [INFN, Sezione di Catania, Catania (Italy); Haren, H. van [Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje (Texel) (Netherlands); Hugon, C.; Sanguineti, M. [INFN, Sezione di Genova, Genoa (Italy); Kadler, M. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Kooijman, P. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Utrecht, Faculteit Betawetenschappen, Utrecht (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Kreykenbohm, I.; Mueller, C.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (Germany); Kulikovskiy, V. [INFN, Sezione di Genova, Genoa (Italy); Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Leonora, E.; Lo Presti, D. [INFN, Sezione di Catania, Catania (Italy); Dipartimento di Fisica ed Astronomia dell' Universita, Catania (Italy); Loucatos, S. [Institut de recherche sur les lois fondamentales de l' Univers, Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, Direction des Sciences de la Matiere, Gif-sur-Yvette Cedex (France); APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Montaruli, T. [Mediterranean Institute of Oceanography (MIO), Aix-Marseille University, Marseille Cedex 9 (France); Universite de Geneve, Departement de Physique Nucleaire et Corpusculaire, Geneva (Switzerland); Morganti, M. [INFN, Sezione di Pisa, Pisa (Italy); Pradier, T. [Universite de Strasbourg et CNRS/IN2P3, IPHC-Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, BP 28, Strasbourg Cedex 2 (France); Rostovtsev, A. [ITEP, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Samtleben, D.F.E. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Leiden, Leids Instituut voor Onderzoek in Natuurkunde, Leiden (Netherlands); Taiuti, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Dipartimento di Fisica dell' Universita, Genoa (IT); Tayalati, Y. [University Mohammed I, Laboratory of Physics of Matter and Radiations, B.P.717, Oujda (MA); Wolf, E. de [Nikhef, Science Park, Amsterdam (NL); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (NL); Collaboration: The ANTARES Collaboration

    2014-02-15

    Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source. (orig.)

  15. Search for neutrino point sources with ANTARES 2007-2012 data

    International Nuclear Information System (INIS)

    Neutrinos are unique probes to study the high energy Universe, since they are neutral, only interact weakly and are stable. Furthermore, they can provide key information about several fundamental questions in Physics like the origin of cosmic rays and the nature of dark matter. The ANTARES neutrino telescope, installed in the Mediterranean Sea, has been taking data since 2007. In this paper we review the results concerning the search for point sources of cosmic neutrinos, using data of 2007–2012. Two main strategies have been followed: to look towards the direction of sources candidate to emmit neutrinos and to make an all-sky scan. Although no significant cluster has been found above the background, flux limits have been set at the level of E2φν90CL∼1–2×10−8 GeV cm−2s−1

  16. NEUTRINOS AS COSMIC MESSENGERS IN THE ERA OF ICECUBE, ANTARES AND KM3NET

    Directory of Open Access Journals (Sweden)

    Uli F. Katz

    2013-12-01

    Full Text Available Using neutrinos as cosmic messengers for observation of non-thermal processes in the Universe is a highly attractive and promising vision, which has been pursued in various neutrino telescope projects for more than two decades. Recent results from ground-based TeV gamma-ray observatories and refinements of model calculations of the expected neutrino fluxes indicate that Gigaton target volumes will be necessary to establish neutrino astronomy. A first neutrino telescope of that size, IceCube, is operational at the South Pole. Based on experience with the smaller first-generation ANTARES telescope in the Mediterranean Sea, the multi-Gigaton KM3NeT device is in preparation. These neutrino telescopes are presented, and some selected results and the expected KM3NeT performance are discussed.

  17. Acoustic neutrino detection investigations within ANTARES and prospects for KM3NeT

    Directory of Open Access Journals (Sweden)

    Lahmann Robert

    2016-01-01

    Full Text Available The acoustic neutrino detection technique is a promising approach for future large-scale detectors with the aim of measuring the small expected flux of cosmogenic neutrinos at energies exceeding 1 EeV. It suggests itself to investigate this technique in the context of underwater Cherenkov neutrino telescopes, in particular KM3NeT, because acoustic sensors are present by design to allow for the calibration of the positions of the optical sensors. For the future, the KM3NeT detector in the Mediterranean Sea will provide an ideal infrastructure for a dedicated array of acoustic sensors. In this presentation results from the acoustic array AMADEUS of the ANTARES detector will be discussed with respect to the potential and implications for acoustic neutrino detection with KM3NeT and beyond.

  18. Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope

    Science.gov (United States)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tönnis, C.; Trovato, A.; Tselengidou, M.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.

    2016-08-01

    A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and 90% C.L. upper limits on the neutrino flux, the spin-dependent and spin-independent WIMP-nucleon cross-sections are derived for WIMP masses ranging from 50 GeV to 5 TeV for the annihilation channels WIMP + WIMP → b b bar ,W+W- and τ+τ-.

  19. Search for a neutrino signal in the first data of the ANTARES experiment

    International Nuclear Information System (INIS)

    The ANTARES telescope consists of a three dimensional array of 885 photomultipliers, arranged in 12 lines deployed at 2500 m depth in the Mediterranean Sea, detecting the Cherenkov light produced by neutrino-induced muons. The first five lines of the detector have been taking data between January and December 2007. The 5 line detector operations are described. The data are analyzed to filter the atmospheric neutrino events from the atmospheric muon background. The number of detected neutrinos (185, that is 1.1 per day) is found in agreement with the predictions, thus proving the correct behaviour of the detector. A search for a cosmic neutrino signal is performed, looking for statistically significant neutrino clusters on the sky, with respect to the uniform atmospheric neutrino background. The event distribution is found compatible with the background. The event correlation with potential known sources is also studied, without obtaining a positive result. The presented methods are exploitable for the 12 line data analysis. (author)

  20. Optical and X-ray early follow-up of ANTARES neutrino alerts

    Science.gov (United States)

    Adrián-Martínez, S.; Ageron, M.; Albert, A.; Samarai, I. Al; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bogazzi, C.; Bormuth, R.; Bou-Cabo, M.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Graf, K.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herrero, A.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Neff, M.; Nezri, E.; Păvălaš, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Rostovtsev, A.; Saldaña, M.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Turpin, D.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vecchi, M.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Klotz, A.; Boer, M.; Le Van Suu, A.; Akerlof, C.; Zheng, W.; Evans, P.; Gehrels, N.; Kennea, J.; Osborne, J. P.; Coward, D. M.

    2016-02-01

    High-energy neutrinos could be produced in the interaction of charged cosmic rays with matter or radiation surrounding astrophysical sources. Even with the recent detection of extraterrestrial high-energy neutrinos by the IceCube experiment, no astrophysical neutrino source has yet been discovered. Transient sources, such as gamma-ray bursts, core-collapse supernovae, or active galactic nuclei are promising candidates. Multi-messenger programs offer a unique opportunity to detect these transient sources. By combining the information provided by the ANTARES neutrino telescope with information coming from other observatories, the probability of detecting a source is enhanced, allowing the possibility of identifying a neutrino progenitor from a single detected event. A method based on optical and X-ray follow-ups of high-energy neutrino alerts has been developed within the ANTARES collaboration. This method does not require any assumptions on the relation between neutrino and photon spectra other than time-correlation. This program, denoted as TAToO, triggers a network of robotic optical telescopes (TAROT and ROTSE) and the Swift-XRT with a delay of only a few seconds after a neutrino detection, and is therefore well-suited to search for fast transient sources. To identify an optical or X-ray counterpart to a neutrino signal, the images provided by the follow-up observations are analysed with dedicated pipelines. A total of 42 alerts with optical and 7 alerts with X-ray images taken with a maximum delay of 24 hours after the neutrino trigger have been analysed. No optical or X-ray counterparts associated to the neutrino triggers have been found, and upper limits on transient source magnitudes have been derived. The probability to reject the gamma-ray burst origin hypothesis has been computed for each alert.

  1. Indirect research of dark matter toward dwarf galaxies with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    The first part of this document summarizes the astrophysical arguments to suppose the existence of dark matter. The cosmological model γCDM is presented as well as the concept of cross section of dark matter self-annihilation. Dwarf galaxies satellites of the Milky Way, the sources of our study are introduced into a second chapter. After recalling the large structures that make up the universe, the issues related to dwarf galaxies are addressed: missing satellites problem, distribution of dark matter density within them and tidal forces due to the Milky Way. The second part discusses the modeling of the dark matter density in dwarf galaxies. The methodology, using the Jeans equation and dispersion of projected stars velocities, is presented. Three dark matter profiles are retained: NFW, Burkert and Einasto and fifteen dwarf galaxies. Neutrino production during the self-annihilation of dark matter is then addressed. The energy spectra of neutrinos are generated with PYTHIA software and compared with other results for the galactic center. Twenty-three assumptions of mass dark matter candidates are chosen, ranging from 25 GeV/c2 100 TeV/c2. Five self-annihilation channels are selected for analysis: b-b, W+W- T+T- μ+μ- νμ νμ. The third part includes a presentation of the detector used for the study, the ANTARES neutrino telescope. Three reconstruction algorithms developed and used in collaboration are also detailed: AAFIT, BBFit and GridFit. The analysis of data ANTARES aimed to find a neutrinos excess characteristic of dark matter self-annihilation is summarized in the sixth and final chapter. No excess was observed, a limit on the cross section of dark matter self-annihilation was determined. (author)

  2. Determination of the Antares sensitivity to the cosmic neutrinos diffuse flux using contained showers; Determination de la sensibilite d'Antares au flux diffus de neutrinos cosmiques en utilisant les gerbes contenues

    Energy Technology Data Exchange (ETDEWEB)

    Denans, D

    2006-12-15

    The Antares collaboration has chosen to build an underwater telescope in the Mediterranean sea, at a depth of 2500 m, to detect high energy (> 100 GeV) cosmic neutrinos. This detector is composed of 12 vertical lines with 900 photomultipliers. Neutrinos are detected thanks to the Cherenkov light produced in water by charged particles created in neutrino interactions near the detector. The aim of this work is the study of Antares performance for the detection of the electronic neutrino interaction in the instrumented volume using a Monte-Carlo simulation. The method allows the determination of the incident energy with an excellent resolution (20 %) which is much smaller than what is obtained from muons induced by muonic neutrino interactions at several kilometers below the detector. This work has consisted in studying the reconstruction of contained showers of particles in the detector resulting from charged current interactions of electronic neutrinos. This mode of detection has been used for the study of the diffuse neutrino flux, resulting from the neutrino emission of unresolved sources and that can be isolated from the atmospheric neutrino background at high energy. The Antares sensitivity is found to be 5.10{sup -7} GeV.cm{sup -2}.s{sup -1}.sr{sup -1} after 1 year of data recording for energies above 3 TeV and for a model with an E{sup -2} energy spectrum. (author)

  3. High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with ANTARES and IceCube

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Avgitas, T; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Celli, S; Chiarusi, T; Circella, M; Coleiro, A; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Bojaddaini, I El; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Glotin, H; Gracia-Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Hößl, J; Hofestädt, J; Hugon, C; Illuminati, G; James, C W; de Jong, M; Jongen, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lachaud, C; Lahmann, R; Lefèvre, D; Leonora, E; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mathieu, A; Melis, K; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Nezri, E; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Roensch, K; Saldaña, M; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schnabel, J; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Trovato, A; Tselengidou, M; Turpin, D; T\\, C; Vallage, B; Vallée, C; Van Elewyck, V; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J; :,; Aartsen, M G; Abraham, K; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Ansseau, I; Archinger, M; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Beiser, E; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Collin, G H; Conrad, J M; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dujmovic, H; Dumm, J P; Dunkman, M; Eberhardt, B; Ehrhardt, T; Eichmann, B; Euler, S; Evenson, P A; Fahey, S; Fazely, A R; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Flis, S; Fösig, C -C; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Ghorbani, K; Gier, D; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Góra, D; Grant, D; Griffith, Z; Ha, C; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hansmann, T; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Homeier, A; Hoshina, K; Huang, F; Huber, M; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jeong, M; Jero, K; Jones, B J P; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kim, M; Kintscher, T; Kiryluk, J; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, G; Kroll, M; Krückl, G; Kunnen, J; Kunwar, S; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lennarz, D; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Mandelartz, M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meier, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Middell, E; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Pollmann, A Obertacke; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Richter, S; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Sabbatini, L; Sander, H -G; Sandrock, A; Sandroos, J; Sarkar, S; Schatto, K; Schimp, M; Schlunder, P; Schmidt, T; Schoenen, S; Schöneberg, S; Schönwald, A; Schumacher, L; Seckel, D; Seunarine, S; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stamatikos, M; Stanev, T; Stasik, A; Steuer, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Turcati, A; Unger, E; Usner, M; Vallecorsa, S; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Wendt, C; Westerhoff, S; Whelan, B J; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wills, L; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M; Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P -F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J -P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H -B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J -D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C -J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J -M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y -M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; Brand, J F J van den; Broeck, C Van Den; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J -Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L -W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, %S E; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J -P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-01-01

    We present the high-energy-neutrino follow-up observations of the first gravitational wave transient GW150914 observed by the Advanced LIGO detectors on Sept. 14th, 2015. We search for coincident neutrino candidates within the data recorded by the IceCube and ANTARES neutrino detectors. A possible joint detection could be used in targeted electromagnetic follow-up observations, given the significantly better angular resolution of neutrino events compared to gravitational waves. We find no neutrino candidates in both temporal and spatial coincidence with the gravitational wave event. Within 500 s of the gravitational wave event, the number of neutrino candidates detected by IceCube and ANTARES were three and zero, respectively. This is consistent with the expected atmospheric background, and none of the neutrino candidates were directionally coincident with GW150914. We use this non-detection to constrain neutrino emission from the gravitational-wave event.

  4. Stacked search for time shifted high energy neutrinos from gamma ray bursts with the \\ANTARES neutrino telescope

    CERN Document Server

    Adrian-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Marti, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Dumas, A; Eberl, T; Elsasser, D; Enzenhofer, A; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geisselsoeder, S; Geyer, K; Giordano, V; Gleixner, A; Gracia-Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernàndez-Rey, J J; Hoessl, J; Hofestadt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kadler, M; Kalekin, O; Katz, U; Kiessling, D; Kooijman, P; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lefèvre, D; Leonora, E; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Muller, C; Nezri, E; Pavalas, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Saldaña, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schussler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Tonnis, C; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J

    2016-01-01

    A search for high-energy neutrino emission correlated with gamma-ray bursts outside the electromagnetic prompt-emission time window is presented. Using a stacking approach of the time delays between reported gamma-ray burst alerts and spatially coincident muon-neutrino signatures, data from the Antares neutrino telescope recorded between 2007 and 2012 are analysed. One year of public data from the IceCube detector between 2008 and 2009 have been also investigated. The respective timing pro?les are scanned for statistically significant accumulations within 40 days of the Gamma Ray Burst, as expected from Lorentz Invariance Violation effects and some astrophysical models. No significant excess over the expected accidental coincidence rate could be found in either of the two data sets. The average strength of the neutrino signal is found to be fainter than one detectable neutrino signal per hundred gamma-ray bursts in the Antares data at 90% confidence level.

  5. ANALISIS TINGKAT KEPUASAN PELANGGAN TERHADAP MUTU LAYANAN ANTAR (DELIVERY SERVICE) DI RESTORAN KFC CABANG AHMAD YANI MAKASSAR

    OpenAIRE

    AMRENY, FANY FEBRIANY

    2012-01-01

    Fany Febriany Amreny (I 311 07 053). Analisis Tingkat Kepuasan Pelanggan terhadap Mutu Layanan Antar di Restoran KFC Cabang Ahmad Yani Makassar. Dibawah Bimbingan Ir. Sofyan nurdin Kasim, M.S sebagai Pembimbing Utama dan Ir. Veronica Sri Lestari, M.Ec sebagai Pembimbing Anggota. Perkembangan dan peningkatan jasa pelayanan pada restoran fast food dari tahun ke tahun semakin menjadi perhatian masyarakat yang dapat dilihat dari ketatnya persaingan yang menyebabkan suatu restoran perlu melaku...

  6. AMS Data Analysis Overview

    Energy Technology Data Exchange (ETDEWEB)

    Malchow, Russell L. [National Security Technologies, LLC

    2015-04-20

    This presentation discusses standard techniques and processes used for radiation mapping (RM) via an AMS, Aerial Measurement System. The advantages and shortcomings of standard AMS-based RM are presented, along with some suggested areas for improvement. Issues touched on include what gets counted, data quality, background correction, data processing, altitude correction, isotope extraction, contouring, and time shift.

  7. Astro particle physics with AMS on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Battiston, R

    2002-12-01

    We review how AMS will study open issues on Astro Particle physics operating for three years on the International Space Station, in a complementary way to what is being done at underground and accelerators facilities.

  8. AMS ready for launch

    CERN Multimedia

    Katarina Anthony

    2011-01-01

    On 29 April, the Alpha Magnetic Spectrometer (AMS) will complete its long expedition to the International Space Station on board the space shuttle Endeavour. The Endeavour is set to lift off from NASA’s Kennedy Space Station at 15:47 EST (21:47 CET).   Samuel Ting, principal investigator for the AMS project, and Rolf Heuer, CERN Director-General, visit the Kennedy Space Centre before the AMS launch.  Courtesy of NASA and Kennedy Space Center. AMS is a CERN recognised experiment, created by an internal collaboration of 56 institutes. It will be the first large magnetic spectrometer to be used in space, and has been designed to function as an external module on the ISS. AMS will measure cosmic rays without atmospheric interference, allowing researchers on the ground to continue their search for dark matter and antimatter in the Universe. Data collected by AMS will be analysed in CERN’s new AMS Control Centre in Building 946 (due for completion in June 2011). The End...

  9. Study of the sensibility of the Antares neutrino telescope to very high energy photons: Contribution to the time calibration of the detector

    International Nuclear Information System (INIS)

    From the sea-floor, the 900-odd photomultiplier tubes of the Antares neutrino telescope scrutinize the abysses attempting to discern, amid bioluminescence and marine radioactivity, Cerenkov photons emitted by muons from astrophysical neutrinos, and to distinguish these muons from those generated by air showers produced by cosmic rays. Antares has been collecting data since 2006; this feat of engineering has paved the way for submarine neutrino astronomy: Antares is expected to be the forerunner of a larger instrument, KM3NeT. Telescope's performance is characterized in part by its angular resolution. In the case of Antares, the angular resolution is directly related to the time resolution of the detector's elements. This manuscript presents a correction for one of the main sources of deterioration of this time resolution, the walk effect induced by the set up of a fixed threshold for triggering the photomultiplier tubes signal. This correction, implemented in the official software chain of the Antares collaboration, improves in particular the events reconstruction quality estimator. This implementation allows further optimizations. The author also attempts to evaluate, using a complete Monte-Carlo simulation, the possibility of using very high energy photon sources as calibrated muon beams in order to estimate the absolute pointing and the angular resolution of the telescope. Although limited by large uncertainties, it is demonstrated that the possibility to detect such sources is extremely small. In addition, it is shown that the atmospheric neutrino background induced by very high-energy photons is negligible. (author)

  10. A time dependent search for neutrino emission from micro-quasars with the ANTARES telescope

    International Nuclear Information System (INIS)

    The ANTARES collaboration has successfully built, deployed and is currently operating an underwater Cherenkov detector dedicated to high energy neutrino astronomy. The primary aim of the experiment is to detect cosmic sources of neutrinos in order to reveal the production sites of cosmic rays. Among the sources likely to be significant sources of neutrinos are those accelerating relativistic jets, like gamma ray bursts, active galactic nuclei and micro-quasars. Micro-quasars are binary systems formed by a compact object accreting mass from a companion star. The mass transfer causes the emission of X-rays, whereas the onset of magnetic forces in the accreting plasma can cause the acceleration of relativistic jets, which are observed by radio telescopes via their non-thermal synchrotron emission. In some systems, a correlation between X-ray and radio light curves indicates an interplay between accretion and ejection respectively. Some micro-quasars are also high energy and very high energy gamma ray emitters. In this thesis, a time dependent search for neutrino emission from micro-quasars was performed with a multi-messenger approach (photon/neutrino). The data from the X-ray monitors RXTE/ASM and SWIFT/BAT, and the gamma-ray telescope FERMI/LAT were used to select transient events in which the source was supposed to accelerate relativistic jets. The restriction of the analysis to the ejection periods allows a drastic reduction of atmospheric muon and neutrino background, and thus to increase the chances of a discovery. The search was performed with the ANTARES data taken between 2007 and 2010. Statistical analysis was carried out using an un-binned likelihood method based on a likelihood ratio test. The cuts for the event selection were optimized in order to maximize the chance of a discovery. As no neutrino signal was observed in correlation with these micro-quasars, upper limits on the neutrino fluxes of the micro-quasars under study were calculated and compared

  11. Why Am I Dizzy?

    Medline Plus

    Full Text Available Video: "Why Am I Dizzy?" A few of the more common balance orders that affect older adults ... disease, and benign paroxysmal positional vertigo, or BPPV. Video excerpts courtesy of Johns Hopkins Center for Hearing ...

  12. I Am Canadian

    DEFF Research Database (Denmark)

    Goddard, Joe

    "I Am Canadian: Immigration and Multiculturalism in the True North" looks at Canadian immigration history from a contemporary point of view. The article scrutinizes recent discussions on dual nationality and what this may mean for Canadianness......."I Am Canadian: Immigration and Multiculturalism in the True North" looks at Canadian immigration history from a contemporary point of view. The article scrutinizes recent discussions on dual nationality and what this may mean for Canadianness....

  13. Elements in biological AMS

    International Nuclear Information System (INIS)

    AMS (Accelerator Mass Spectrometry) provides high detection sensitivity for isotopes whose half-lives are between 10 years and 100 million years. 14C is the most developed of such isotopes and is used in tracing natural and anthropogenic organic compounds in the Earth's biosphere. Thirty-three elements in the main periodic table and 17 lanthanides or actinides have long lived isotopes, providing potential tracers for research in elemental biochemistry. Overlap of biologically interesting heavy elements and possible AMS tracers is discussed

  14. AMS in Phytonutrition

    Energy Technology Data Exchange (ETDEWEB)

    Dueker, S R; Buchholz, B A

    2003-08-26

    As public interest in phytonutrition continues to increase, the result will be an augmented demand for extensive phytochemical research. The fact that foods are inherently phytochemically complex dictates a need to apply scientific techniques, which can detect synergistic interaction among the many active principles and adjuvant substances in the plant, and furthermore, modify the activities of these components. As illustrated by the experiments discussed in this presentation, the advantages of AMS are unique and extensive. These advantages are best summarized by Dr. John Vogel, an originator of biological AMS experimentation: ''AMS brings (at least) three advantages to biochemical tracing: high sensitivity for finding low probability events or for use of physiologic-sized doses; small sample sizes for painless biopsies or highly specific biochemical separations; and reduction of overall radioisotope exposures, inventories, and waste streams.'' AMS opens the door to increased phytochemical tracing in humans to obtain biochemical data concerning human health at dietary relevant levels of exposure. AMS, thus, obviates the need for uncertain extrapolations from animal models, which express marginal relevance to human metabolism. The unparalleled capabilities and benefits of AMS will undoubtedly establish this particular MS technique as an important analytical tool in phytochemical research.

  15. Search for Neutrino Emission from Gamma-Ray Flaring Blazars with the ANTARES Telescope

    CERN Document Server

    Adrián-Martínez, S; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Astraatmadja, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Camarena, F; Capone, A; Cârloganu, C; Carminati, G; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fehn, K; Fermani, P; Ferri, M; Ferry, S; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatà, S; Gay, P; Geyer, K; Giacomelli, G; Giordano, V; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Hartman, J; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Larosa, G; Lattuada, D; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Meli, A; Montaruli, T; Morganti, N; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Payet, K; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Samtleben, D F E; Sapienza, P; Schöck, F; Schuller, J-P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Toscano, S; Vallage, B; Vallée, C; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Visser, E; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2011-01-01

    The ANTARES telescope is well-suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. Radio-loud active galactic nuclei with jets pointing almost directly towards the observer, the so-called blazars, are particularly attractive potential neutrino point sources. The all-sky monitor LAT on board the Fermi satellite probes the variability of any given gamma-ray bright blazar in the sky on time scales of hours to months. Assuming hadronic models, a strong correlation between the gamma-ray and the neutrino fluxes is expected. Selecting a narrow time window on the assumed neutrino production period can significantly reduce the background. An unbinned method based on the minimization of a likelihood ratio was applied to a subsample of data collected in 2008 (61 days live time). By searching for neutrinos during the high state periods of the AGN light curve, the sensitivity to these sources was improved by about a facto...

  16. Secluded Dark Matter search in the Sun with the ANTARES neutrino telescope

    CERN Multimedia

    Adrián-Martínez, S

    2014-01-01

    Models where Dark Matter (DM) is secluded from the Standard Model via a mediator have increased their presence during the last decade to explain some experimental observations. This is a special scenario where DM, which would gravitationally accumulate in sources like the Sun, the Earth or the Galactic Centre, is annihilated into a non-standard Model mediator which subsequently decays into Standard Model particles, two co-linear muons for example. As the lifetime of the mediator could be large enough, its decay may occur in the vicinity of the Earth and the resulting SM particles could be detected. In this work we will describe the analysis for secluded dark matter coming from the Sun with ANTARES in three different cases: a) detection of di-muons that result of the mediator decay, or neutrino detection from: b) mediator that decays into di-muon and, in turn, into neutrinos, and c) mediator that directly decays into neutrinos. Sensitivities and results of the analysis for each case will be presented.

  17. Search for neutrino emission of gamma-ray flaring blazars with the ANTARES telescope

    CERN Document Server

    Dornic, D

    2011-01-01

    The ANTARES telescope is well suited to detect neutrinos produced in astrophysical transient sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background and point source sensitivity can be drastically reduced by selecting a narrow time window around the assumed neutrino production period. Radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, the so- called blazars, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the observed ultra high energy cosmic rays and therefore, neutrinos and gamma-rays may be produced in hadronic interactions with the surrounding medium. The gamma-ray light curves of blazars measured by the LAT instrument on-board the Fermi satellite reveal important time variability information. A strong correlation between the gamma-ray and the neutrino fluxes is expected in this scenario. An unbinned method based on the minimization of a likelihood ...

  18. Constraints on the neutrino emission from the Galactic Ridge with the ANTARES telescope

    CERN Document Server

    Adrián-Martínez, S; André, M; Anghinolfi, M; Anton, G; Ardid, M; Aubert, J -J; Avgitas, T; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Celli, S; Chiarusi, T; Circella, M; Coleiro, A; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Eberl, T; Bojaddaini, I El; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Glotin, H; Gracia-Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Hößl, J; Hofestädt, J; Hugon, C; Illuminati, G; James, C W; de Jong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lachaud, C; Lahmann, R; Lefèvre, D; Leonora, E; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Nezri, E; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Roensch, K; Saldaña, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schnabel, J; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Stolarczyk, Th; Taiuti, M; Trovato, A; Tselengidou, M; Turpin, D; Tönnis, C; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J

    2016-01-01

    Compelling evidence for the existence of astrophysical neutrinos has been reported by the IceCube collaboration. Some features of the energy and declination distributions of IceCube events hint at a North/South asymmetry of the neutrino flux. This could be due to the presence of the bulk of our Galaxy in the Southern hemisphere. The ANTARES neutrino telescope, located in the Mediterranean Sea, has been taking data since 2007. It offers the best sensitivity to muon neutrinos produced by galactic cosmic ray interactions in this region of the sky. In this letter a search for an extended neutrino flux from the Galactic Ridge region is presented. Different models of neutrino production by cosmic ray propagation are tested. No excess of events is observed and upper limits for different neutrino flux spectral indices are set. This constrains the number of IceCube events possibly originating from the Galactic Ridge. A simple power-law extrapolation of the Fermi-LAT flux to associated IceCube High Energy Starting Even...

  19. Opto-mechanical devices for the Antares automatic beam alignment system

    International Nuclear Information System (INIS)

    Antares is a 24-beam CO2 laser system for controlled fusion research, under construction at Los Alamos National Laboratory. Rapid automatic alignment of this system is required prior to each experimental shot. Unique opto-mechanical alignment devices, which have been developed specifically for this automatic alignment system, are discussed. A variable focus alignment telescope views point light sources. A beam expander/spatial filter processes both a visible Krypton Ion and a 10.6 μm CO2 alignment laser. The periscope/carousel device provides the means by which the alignment telescope can sequentially view each of twelve optical trains in each power amplifier. The polyhedron alignment device projects a point-light source for both centering and pointing alignment at the polyhedron mirror. The rotating wedge alignment device provides a sequencing point-light source and also compensates for dispersion between visible and 10.6 μm radiation. The back reflector flip in remotely positions point-light sources at the back reflector mirrors. A light source box illuminates optic fibers with high intensity white light which is distributed to the various point-light sources in the system

  20. New AMS system at the JAERI-Mutsu

    Energy Technology Data Exchange (ETDEWEB)

    Aramaki, Takafumi; Togawa, Orihiko; Kitamura, Toshikatsu [Marine Research Laboratory, Japan Atomic Energy Research Institute, Mutsu, Aomori (Japan)

    2000-07-01

    A new AMS facility has been set up at the Japan Atomic Energy Research Institute (JAERI) in 1997 and {sup 14}C as well as {sup 129}I will be used for marine environmental studies. The 3 MV AMS system is capable to perform high precision {sup 14}C as well as heavy element AMS. The {sup 14}C-AMS section of the system has been accepted and its precision is comparable to other high precision {sup 14}C-AMS systems. A sample preparation system for the extraction of dissolved inorganic carbon from seawater has been built up. Accuracy checks of the sample preparation system and the {sup 14}C-AMS system have been carried out with international accepted {sup 14}C standard material. The heavy element section for {sup 129}I measurement has been accepted and its precision was verified by using international standard. (author)

  1. Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based oil the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of 40K and the bioluminescence in the sea water. The 40K background is used to calibrate the efficiency of the photo-multiplier tubes. (authors)

  2. Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC - Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Al Samarai, I. [CPPM - Centre de Physique des Particules de Marseille, CNRS/IN2P3 et Universite de la Mediterranee, 163 Avenue de Luminy, Case 902, 13288 Marseille Cedex 9 (FR); Albert, A. [GRPHE - Institut Universitaire de Technologie de Colmar, 34 Rue du Grillenbreit, BP 50568, 68008 Colmar (FR); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere - Institut de Recherche sur les lois Fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (FR); Baret, B.; Donzaud, C.; Kouchner, A.; Moscoso, L.; Van Elewyck, V. [APC - Laboratoire AstroParticule et Cosmologie, UMR 7164, CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris, 10, Rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (FR); Basa, S.; Marcelin, M.; Mazure, A.; Tasca, L. [Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, Marseille (FR); Carloganu, C.; Gay, P. [Lab. de Physique Corpusculaire, IN2P3-CNRS, Universite Blaise Pascal, Clermont-Ferrand (FR); Charvis, Ph.; Deschamps, A.; Hello, Y.; Pillet, R. [Geoazur - Universite de Nice Sophia-Antipolis, CNRS/INSU, IRD, Observatoire de la Cote d' Azur and Universite Pierre et Marie Curie, BP 48, F-06235 Villefranche-sur-mer (FR); Cottini, N.; Loucatos, S.; Moscoso, L.; Naumann, C.; Picq, C.; Schuller, J.P.; Stolarczyk, Th.; Vallage, B.; Vernin, P. [Direction des Sciences de la Matiere - Institut de Recherche sur les lois Fondamentales de l' Univers - Service de Physique des Particules, CEA Saclay, 91191 Gif-sur-Yvette (FR)

    2010-07-01

    A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based oil the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of {sup 40}K and the bioluminescence in the sea water. The {sup 40}K background is used to calibrate the efficiency of the photo-multiplier tubes. (authors)

  3. Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope

    CERN Document Server

    Aguilar, J A

    2009-01-01

    A new method for the measurement of the muon flux in the deep-sea ANTARES neutrino telescope and its dependence on the depth is presented. The method is based on the observation of coincidence signals in adjacent storeys of the detector. This yields an energy threshold of about 4 GeV. The main sources of optical background are the decay of 40K and the bioluminescence in the sea water. The 40K background is used to calibrate the efficiency of the photo-multiplier tubes.

  4. IA, I AM

    DEFF Research Database (Denmark)

    Munk, Timme Bisgaard; Mørk, Kristian

    2004-01-01

    Hvad er informationsarkitektur? Mørk & Munk gennemgår de forskellige metaforiske konstruktioner af begrebet og kommer med deres helt egen selvstændige definition. Informationsarkitektur er en samtale, strukturation, en klassifikationskamp og et konceptuelt blend. Læs hvorfor i dette working paper...... om et af de meste centrale begreber videnssamfundet. For nu er vi alle informationsarkitekter: IA, I AM....

  5. Study of the ANTARES detector sensitivity to a diffuse high-energy cosmic neutrino flux; Etude de la sensibilite du detecteur ANTARES a un flux diffus de neutrinos cosmiques de haute energie

    Energy Technology Data Exchange (ETDEWEB)

    Romeyer, A

    2003-04-01

    The ANTARES collaboration aims to built an underwater neutrino telescope, 2 400 m deep, 40 km from Toulon (France). This detector is constituted by 12 strings, each one comprising 90 photomultipliers. Neutrinos are detected through their charged current interaction in the medium surrounding the detector (water or rock) leading to the production of a muon in the final state. Its Cherenkov light emitted all along its travel is detected by a three dimensional array of photomultipliers. The diffuse neutrino flux is constituted by the addition of the neutrino emission of sources. Only astrophysical ones have been discussed. The different theoretical models predicting such a flux have been listed and added to the simulation possibilities. As the muon energy reconstruction was a crucial parameter in this analysis, a new energy estimator has been developed. It gives a resolution of a factor three on the muon energy above 1 TeV. Discriminant variables have been also developed in order to reject the atmospheric muon background. Including all these developments, the ANTARES sensitivity is found to be around 8.10{sup -8} GeV-cm{sup -2}-s{sup -1}-sr{sup -1} after one year of data taking for an E{sup -2} spectrum and a 10 string detector. (author)

  6. Determination of the atmospheric muon flux with the neutrino telescope ANTARES

    International Nuclear Information System (INIS)

    The neutrino telescope ANTARES is a deep-sea detector located in the Mediterranean Sea. The universe is transparent to neutrinos, so their study provides a unique means of improving our knowledge of the nature of cosmic rays, their origins and their emission from the most powerful astrophysical sources in the cosmos. Neutrinos also offer the possibility of opening a new energy window (>TeV) for observation of the universe. This thesis is dedicated to the study of the main background noise of the detector, due to the passage of atmospheric muons produced by high energy cosmic rays interacting with atmospheric nuclei. The first part of this thesis focuses on the study of the detector. The different characteristics and the calibration of the detector as well as the techniques of monitoring the electronic are described. The second part of this thesis reports the various results obtained on the atmospheric muons with the five line detector. A detailed presentation of the simulations used is presented. The first difficulty of detecting atmospheric muons is due to the geometry of the detector. The second is due to the fact that the atmospheric muons often arrive in bundles and that the number of muons in these bundles is unknown at a depth of 2500 m. A first study based on simulations makes it possible to discriminate between the muons alone and the bundles of muons. A second study is dedicated to the measurement of the muon flux depending on the slant depth. The measurement is compatible with the results of other instruments when the systematic uncertainties are taken into account. (author)

  7. SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE

    International Nuclear Information System (INIS)

    A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is located at equatorial coordinates R.A. = –46.°8 and decl. = –64.°9 and corresponds to a 2.2σ background fluctuation. In addition, upper limits on the flux normalization of an E –2 muon neutrino energy spectrum have been set for 50 pre-selected astrophysical objects. Finally, motivated by an accumulation of seven events relatively close to the Galactic Center in the recently reported neutrino sample of the IceCube telescope, a search for point sources in a broad region around this accumulation has been carried out. No indication of a neutrino signal has been found in the ANTARES data and upper limits on the flux normalization of an E –2 energy spectrum of neutrinos from point sources in that region have been set. The 90% confidence level upper limits on the muon neutrino flux normalization vary between 3.5 and 5.1 × 10–8 GeV cm–2 s–1, depending on the exact location of the source

  8. SEARCHES FOR POINT-LIKE AND EXTENDED NEUTRINO SOURCES CLOSE TO THE GALACTIC CENTER USING THE ANTARES NEUTRINO TELESCOPE

    Energy Technology Data Exchange (ETDEWEB)

    Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC) - Universitat Politècnica de València. C/Paranimf 1, E-46730 Gandia (Spain); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568, F-68008 Colmar (France); André, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició, E-08800 Vilanova i la Geltrú, Barcelona (Spain); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, D-91058 Erlangen (Germany); Aubert, J.-J.; Bertin, V.; Brunner, J.; Busto, J. [CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille (France); Baret, B. [APC, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris (France); Barrios-Martí, J. [IFIC - Instituto de Física Corpuscular, Edificios Investigación de Paterna, CSIC - Universitat de València, Apdo. de Correos 22085, E-46071 Valencia (Spain); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pôle de l' Étoile Site de Château-Gombert, rue Frédéric Joliot-Curie 38, F-13388 Marseille Cedex 13 (France); Biagi, S. [INFN - Sezione di Bologna, Viale Berti-Pichat 6/2, I-40127 Bologna (Italy); Bogazzi, C.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R. [Nikhef, Science Park, Amsterdam (Netherlands); Capone, A. [INFN -Sezione di Roma, P.le Aldo Moro 2, I-00185 Roma (Italy); and others

    2014-05-01

    A search for cosmic neutrino sources using six years of data collected by the ANTARES neutrino telescope has been performed. Clusters of muon neutrinos over the expected atmospheric background have been looked for. No clear signal has been found. The most signal-like accumulation of events is located at equatorial coordinates R.A. = –46.°8 and decl. = –64.°9 and corresponds to a 2.2σ background fluctuation. In addition, upper limits on the flux normalization of an E {sup –2} muon neutrino energy spectrum have been set for 50 pre-selected astrophysical objects. Finally, motivated by an accumulation of seven events relatively close to the Galactic Center in the recently reported neutrino sample of the IceCube telescope, a search for point sources in a broad region around this accumulation has been carried out. No indication of a neutrino signal has been found in the ANTARES data and upper limits on the flux normalization of an E {sup –2} energy spectrum of neutrinos from point sources in that region have been set. The 90% confidence level upper limits on the muon neutrino flux normalization vary between 3.5 and 5.1 × 10{sup –8} GeV cm{sup –2} s{sup –1}, depending on the exact location of the source.

  9. Antares DLR H2. Studies and experimental data for a fuel cell propulsion module for general aviation airplanes

    Energy Technology Data Exchange (ETDEWEB)

    Kallo, Josef; Rathke, Philipp; Stephan, Thomas; Schirmer, Johannes [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany). Inst. fuer Technische Thermodynamik

    2013-06-01

    The Institute of Technical Thermodynamics of the German Aerospace Center (DLR e.V.) has been conducting research on airborne fuel cell systems for several years. One important mainstay in this context is the flying testbed Antares DLR H2. This fuel cell powered motor glider permits scientific research of fuel cell systems under airborne conditions. The Antares DLR H2 is the first manned fuel cell powered motor glider with the ability to take off and fly merely by fuel cell power. In August 2012 a new generation fuel cell propulsion module has been integrated successfully into this aircraft, providing significant improvements over the former systems. During September 2012 long-distance flight testing has been carried out in which an overall flight time of more than 11 hours and an overall distance of nearly 1500 km have been flown. In this paper an overview of the design of the fuel cell propulsion module is provided. Furthermore exemplary measurements, focusing on the tank system during flight, are presented. (orig.)

  10. AMS and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kutschera, Walter, E-mail: walter.kutschera@univie.ac.a [Vienna Environmental Research Accelerator (VERA), Fakultaet fuer Physik - Isotopenforschung, Universitaet Wien, Waehringerstrasse 17, A-1090 Wien (Austria)

    2010-04-15

    This paper attempts to draw a connection between information that can be gained from measurements with accelerator mass spectrometry (AMS) and the study of climate change on earth. The power of AMS to help in this endeavor is demonstrated by many contributions to these proceedings. Just like in archaeology, we are entering a phase of an 'integrated approach' to understand the various components of climate change. Even though some basic understanding emerged, we are still largely in a situation of a phenomenological description of climate change. Collecting more data is therefore of paramount interest. Based on a recent suggestion of 'geo-engineering' to take out CO{sub 2} from the atmosphere, this radical step will also be briefly discussed.

  11. AMS and climate change

    Science.gov (United States)

    Kutschera, Walter

    2010-04-01

    This paper attempts to draw a connection between information that can be gained from measurements with accelerator mass spectrometry (AMS) and the study of climate change on earth. The power of AMS to help in this endeavor is demonstrated by many contributions to these proceedings. Just like in archaeology, we are entering a phase of an 'integrated approach' to understand the various components of climate change. Even though some basic understanding emerged, we are still largely in a situation of a phenomenological description of climate change. Collecting more data is therefore of paramount interest. Based on a recent suggestion of 'geo-engineering' to take out CO 2 from the atmosphere, this radical step will also be briefly discussed.

  12. Developments of AMS at the TANDAR accelerator

    Science.gov (United States)

    Fernández Niello, J. O.; Abriola, D.; Alvarez, D. E.; Capurro, O. A.; di Tada, M.; Etchegoyen, A.; Ferrero, A. M. J.; Martí, G. V.; Pacheco, A. J.; Testoni, J. E.; Korschinek, G.

    1996-08-01

    Man-made long-lived radioisotopes have been produced as a result of different nuclear technologies. The study of accidental spillages and the determination of radioisotope concentrations in nuclear waste prior to final storage in a repository are subjects of great interest in connection with this activity. The accelerator mass spectrometry (AMS) technique is a powerful tool to measure long-lived isotopes at abundance ratios as low as 10 -12-10 -15 in small samples. Applications to the Argentine nuclear program like those mentioned above, as well as applications to archaeology, hydrology and biomedical research, are considered in an AMS program using the TANDAR 20 UD electrostatic accelerator at Buenos Aires. In this work we present the status of the program and a description of the facility.

  13. Wideband Power Amplifier Modeling Incorporating Carrier Frequency Dependent AM/AM and AM/PM Characteristics

    Science.gov (United States)

    Tkacenko, A.

    2013-05-01

    In this article, we present a complex baseband model for a wideband power amplifier that incorporates carrier frequency dependent amplitude modulation (AM) and phase modulation (PM) (i.e., AM/AM and AM/PM) characteristics in the design process. The structure used to implement the amplifier model is a Wiener system which accounts for memory effects caused by the frequency selective nature of the amplifier, in addition to the nonlinearities caused by gain compression and saturation. By utilizing piecewise polynomial nonlinearities in the structure, it is shown how to construct the Wiener model to exactly accommodate all given AM/AM and AM/PM measurement constraints. Simulation results using data from a 50 W 32-way Ka-band solid-state power amplifier (SSPA) are provided, highlighting the differences in degradation incurred for a wideband input signal as compared with a narrowband input.

  14. A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

    Energy Technology Data Exchange (ETDEWEB)

    Adrián-Martínez, S.; Ardid, M.; Bou-Cabo, M. [Institut d' Investigació per a la Gestió Integrada de les Zones Costaneres (IGIC) - Universitat Politècnica de València. C/ Paranimf 1 , 46730 Gandia, Spain. (Spain); Samarai, I. Al; Aubert, J-J.; Bertin, V.; Brunner, J. [CPPM, Aix-Marseille Université, CNRS/IN2P3, Marseille (France); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568 - 68008 Colmar (France); André, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposició, 08800 Vilanova i la Geltrú, Barcelona (Spain); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matière - Institut de recherche sur les lois fondamentales de l' Univers - Service d' Electronique des Détecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Astraatmadja, T.; Bogazzi, C.; Bouwhuis, M.C. [Nikhef, Science Park, Amsterdam (Netherlands); Baret, B.; Bouhou, B. [APC, Université Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité, 75205 Paris (France); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pôle de l' Étoile Site de Château-Gombert, rue Frédéric Joliot-Curie 38, 13388 Marseille Cedex 13 (France); Biagi, S. [INFN - Sezione di Bologna, Viale C. Berti-Pichat 6/2, 40127 Bologna (Italy); Bigongiari, C., E-mail: antares.spokesperson@in2p3.fr, E-mail: lsc-spokesperson@ligo.org, E-mail: virgo-spokesperson@ego-gw.it, E-mail: Irene.DiPalma@aei.mpg.de, E-mail: thierry.pradier@iphc.cnrs.fr [IFIC - Instituto de Física Corpuscular, Edificios Investigación de Paterna, CSIC - Universitat de València, Apdo. de Correos 22085, 46071 Valencia (Spain); and others

    2013-06-01

    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.

  15. Search for a diffuse flux of high-energy {nu}{sub {mu}} with the ANTARES neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, J.A. [IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC - Universitat de Valencia, Apdo. de Correos 22085, 46071 Valencia (Spain); Samarai, I. Al [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Albert, A. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit BP 50568 - 68008 Colmar (France); Andre, M. [Technical Univ. of Catalonia, Laboratory of Applied Bioacoustics, Rambla Exposicio, 08800 Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M. [INFN - Sezione di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Anton, G. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Anvar, S. [Direction des Sciences de la Matiere - Institut de recherche sur les lois fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Ardid, M. [Institut d' Investigacio per a la Gestio Integrada de Zones Costaneres (IGIC) - Univ. Politecnica de Valencia. C/Paranimf 1., 46730 Gandia (Spain); Assis Jesus, A.C.; Astraatmadja, T. [Nikhef, Science Park, Amsterdam (Netherlands); Aubert, J.-J. [CPPM, Aix-Marseille Univ., CNRS/IN2P3, Marseille (France); Auer, R. [Friedrich-Alexander-Univ. Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erwin-Rommel-Str. 1, 91058 Erlangen (Germany); Baret, B. [APC - Laboratoire AstroParticule et Cosmologie, UMR 7164 (CNRS, Universite Paris 7 Diderot, CEA, Observatoire de Paris) 10, rue Alice Domon et Leonie Duquet, 75205 Paris Cedex 13 (France); Basa, S. [LAM - Laboratoire d' Astrophysique de Marseille, Pole de l' Etoile Site de Chateau-Gombert, rue Frederic Joliot-Curie 38, 13388 Marseille Cedex 13 (France); Bazzotti, M. [INFN - Sezione di Bologna, Viale Berti Pichat 6/2, 40127 Bologna (Italy); Dipt. di Fisica dell' Univ., Viale Berti Pichat 6/2, 40127 Bologna (Italy)

    2011-01-24

    A search for a diffuse flux of astrophysical muon neutrinos, using data collected by the ANTARES neutrino telescope is presented. A (0.83x2{pi}) sr sky was monitored for a total of 334 days of equivalent live time. The searched signal corresponds to an excess of events, produced by astrophysical sources, over the expected atmospheric neutrino background. The observed number of events is found compatible with the background expectation. Assuming an E{sup -2} flux spectrum, a 90% c.l. upper limit on the diffuse {nu}{sub {mu}} flux of E{sup 2{Phi}}{sub 90%}=5.3x10{sup -8} GeVcm{sup -2}s{sup -1}sr{sup -1} in the energy range 20 TeV-2.5 PeV is obtained. Other signal models with different energy spectra are also tested and some rejected.

  16. Search for a diffuse flux of high-energy νμ with the ANTARES neutrino telescope

    International Nuclear Information System (INIS)

    A search for a diffuse flux of astrophysical muon neutrinos, using data collected by the ANTARES neutrino telescope is presented. A (0.83x2π) sr sky was monitored for a total of 334 days of equivalent live time. The searched signal corresponds to an excess of events, produced by astrophysical sources, over the expected atmospheric neutrino background. The observed number of events is found compatible with the background expectation. Assuming an E-2 flux spectrum, a 90% c.l. upper limit on the diffuse νμ flux of E2Φ90%=5.3x10-8 GeVcm-2s-1sr-1 in the energy range 20 TeV-2.5 PeV is obtained. Other signal models with different energy spectra are also tested and some rejected.

  17. A first search for coincident gravitational waves and high energy neutrinos using LIGO, Virgo and ANTARES data from 2007

    International Nuclear Information System (INIS)

    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events

  18. A First Search for Coincident Gravitational Waves and High Energy Neutrinos Using LIGO, Virgo and ANTARES Data from 2007

    Science.gov (United States)

    Adrian-Martinez, S.; Samarai, Al; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C; Bou-Cabo, M.; Bouhou, B.; Bowhuis, M. C.; Bertin, V.; Brunner, J.; Busto, J.; Blackburn, L.; Camp, J. B.; Kanner, J. B.

    2013-01-01

    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.

  19. Search for muon neutrinos from gamma-ray bursts with the ANTARES neutrino telescope using 2008 to 2011 data

    CERN Document Server

    Adrián-Martínez, S; Samarai, I Al; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Astraatmadja, T; Aubert, J -J; Baret, B; Barrios-Marti, J; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Capone, A; Caramete, L; Cârloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Classen, F; Coniglione, R; Core, L; Costantini, H; Coyle, P; Creusot, A; Curtil, C; De Bonis, G; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Dumas, A; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J -P; Escoffier, S; Fehn, K; Fermani, P; Flaminio, V; Folger, F; Fritsch, U; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giacomelli, G; Giordano, V; Gleixner, A; Gómez-González, J P; Graf, K; Guillard, G; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; James, C W; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, E; Lambard, G; Larosa, G; Lefèvre, D; Leonora, E; Presti, D Lo; Loehner, H; Loucatos, S; Louis, F; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Martini, S; Montaruli, T; Morganti, M; Müller, C; Neff, M; Nezri, E; Palioselitis, D; Pavalas, G E; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Samtleben, D F E; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Shanidze, R; Sieger, C; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Tayalati, Y; Trovato, A; Vallage, B; Vallée, C; Van Elewyck, V; Vernin, P; Visser, E; Wagner, S; Wilms, J; de Wolf, E; Yatkin, K; Yepes, H; Zornoza, J D; Zúñiga, J; Baerwald, P

    2013-01-01

    A search for muon neutrinos in coincidence with gamma-ray bursts with the ANTARES neutrino detector using data from the end of 2007 to 2011 is performed. Expected neutrino fluxes are calculated for each burst individually. The most recent numerical calculations of the spectra using the NeuCosmA code are employed, which include Monte Carlo simulations of the full underlying photohadronic interaction processes. The discovery probability for a selection of 296 gamma-ray bursts in the given period is optimised using an extended maximum-likelihood strategy. No significant excess over background is found in the data, and 90% confidence level upper limits are placed on the total expected flux according to the model.

  20. A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007

    CERN Document Server

    Adrián-Martínez, S; Samarai, I Al; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigi, A; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Camarena, F; Capone, A; Cârloganu, C; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Curtil, C; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fermani, P; Ferri, M; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatà, S; Gay, P; Giacomelli, G; Giordano, V; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Hartman, J; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lattuada, D; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Meli, A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Payet, K; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Richardt, C; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Samtleben, D F E; Sapienza, P; Schöck, F; Schuller, J-P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J; Aasi, J; Abadie, J; Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M; Accadia, T; Acernese, F; Adams, C; Adams, T; Addesso, P; Adhikari, R; Affeldt, C; Agathos, M; Agatsuma, K; Ajith, P; Allen, B; Allocca, A; Ceron, E Amador; Amariutei, D; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Ast, S; Aston, S M; Astone, P; Atkinson, D; Aufmuth, P; Aulbert, C; Aylott, B E; Babak, S; Baker, P; Ballardin, G; Ballmer, S; Bao, Y; Barayoga, J C B; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Bastarrika, M; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Beck, D; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Benacquista, M; Berliner, J M; Bertolini, A; Betzwieser, J; Beveridge, N; Beyersdorf, P T; Bhadbade, T; Bilenko, I A; Billingsley, G; Birch, J; Biswas, R; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Bland, B; Blom, M; Bock, O; Bodiya, T P; Bogan, C; Bond, C; Bondarescu, R; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Braccini, S; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Bulik, T; Bulten, H J; Buonanno, A; Burguet--Castell, J; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calloni, E; Camp, J B; Campsie, P; Cannon, K; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chalermsongsak, T; Charlton, P; Chassande-Mottin, E; Chen, W; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chua, S S Y; Chung, C T Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Clayton, J H; Cleva, F; Coccia, E; Cohadon, P -F; Colacino, C N; Colla, A; Colombini, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M; Coulon, J -P; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Creighton, J D E; Creighton, T D; Cruise, A M; Cumming, A; Cunningham, L; Cuoco, E; Cutler, R M; Dahl, K; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Daw, E J; Day, R; Dayanga, T; De Rosa, R; DeBra, D; Debreczeni, G; Degallaix, J; Del Pozzo, W; Dent, T; Dergachev, V; DeRosa, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Emilio, M Di Paolo; Di Virgilio, A; Díaz, M; Dietz, A; Donovan, F; Dooley, K L; Doravari, S; Dorsher, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J -C; Dwyer, S; Eberle, T; Edgar, M; Edwards, M; Effler, A; Ehrens, P; Endrőczi, G; Engel, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Farr, B F; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R P

    2012-01-01

    We present the results of the first search for gravitational wave bursts associated with high energy neutrinos. Together, these messengers could reveal new, hidden sources that are not observed by conventional photon astronomy, particularly at high energy. Our search uses neutrinos detected by the underwater neutrino telescope ANTARES in its 5 line configuration during the period January - September 2007, which coincided with the fifth and first science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed for candidate gravitational-wave signals coincident in time and direction with the neutrino events. No significant coincident events were observed. We place limits on the density of joint high energy neutrino - gravitational wave emission events in the local universe, and compare them with densities of merger and core-collapse events.

  1. Searching for high-energy neutrinos in coincidence with gravitational waves with the ANTARES and VIRGO/LIGO detectors

    CERN Document Server

    Van Elewyck, V

    2009-01-01

    Cataclysmic cosmic events can be plausible sources of both gravitational waves (GW) and high-energy neutrinos (HEN). Both GW and HEN are alternative cosmic messengers that may escape very dense media and travel unaffected over cosmological distances, carrying information from the innermost regions of the astrophysical engines. For the same reasons, such messengers could also reveal new, hidden sources that were not observed by conventional photon astronomy. Requiring the consistency between GW and HEN detection channels shall enable new searches as one has significant additional information about the common source. A neutrino telescope such as ANTARES can determine accurately the time and direction of high energy neutrino events, while a network of gravitational wave detectors such as LIGO and VIRGO can also provide timing/directional information for gravitational wave bursts. By combining the information from these totally independent detectors, one can search for cosmic events that may arrive from common as...

  2. Detection of magnetic monopoles in the future neutrino telescope Antares and characterization of the photomultiplier pulse treatment

    International Nuclear Information System (INIS)

    Grand unified theories (GUT) involve phase transitions in the early universe, that could create topological defects, like magnetic monopoles. Monopoles main characteristics are shown and in particular energy losses and flux limits. High energy neutrino telescopes offer a new opportunity for magnetic monopole search. The study of the photomultiplier pulse treatment by the Antares detector front-end electronics indicates that this one is well adapted to the telescope needs. The pulses detailed analysis has allowed to obtain a time measurement precision lower than 0.6 ns and electronic noise and saturation have no relevant effect on the telescope performances. Relativistic monopoles generate a large amount of light, that leads to an effective area for the Antares detector of about 0.06 km2 for velocities βmon = 0.6 and 0.35 km2 for velocities βmon ∼ 1. Monopole track are well reconstructed and the velocity determination is made with an error lower than few percents, which represents a decisive result for the background rejection, caused by high energy muons with a velocity βμ ∼ 1. The very dispersive light emission of monopoles below the Cherenkov limit, 0.6 ∼mon ≤ 0.74, via the delta-rays produced by ionisation, does not allow an accurate expecting signal and the bad reconstructed muons rejection must be improved. Above the Cherenkov limit, βmon ≥ 0.8, bad reconstructed events can be rejected from the Cherenkov emission parametrisation. A magnetic monopole signal can then clearly be distinguished from background. (author)

  3. ANALISIS KINERJA PKPRI PADA ASPEK KERJASAMA ANTAR KPRI DAN PADA ASPEK KEPEDULIAN TERHADAP KOMUNITAS KPRI DI KABUPATEN PEMALANG

    Directory of Open Access Journals (Sweden)

    Wandha Norendra

    2013-02-01

    Full Text Available Analisis kinerja pada� PKPRI masih menggunakan cara lama yaitu hanya menggunakan penilaian keuangan dengan menggunakan analisis rasio keuangan rentabilitas, likuiditas, dan solvabilitas. Bukannya dengan menggunakan pedoman dari kepmen no 129 tahun 2002 yang dikeluarkan oleh menteri koperasi dan UKM. Tujuan dari penelitian ini adalah untuk menganalisis dan mendeskripsikan kinerja pada PKPRI pada aspek kerjasama antar KPRI dan pada aspek kepedulian terhadap komunitas KPRI di Kabupaten Pemalang. Penelitian ini merupakan studi kasus pada PKPRI dan KPRI di Kabupaten Pemalang. Pendekatan penelitian yang akan� digunakan dalam penulisan skripsi ini adalah metode penelitian deskriptif� kuantitatif yaitu apabila datanya telah terkumpul,� kemudian diklasifikasikan menjadi dua kelompok data, yaitu data kuantitatif yang berbentuk angka-angka dan data kualitatif yang menyatakan dalam kata-kata atau simbol-simbol (Suharsimi, 2006: 239. Hasil dalam penelitian ini adalah kerjasama antar KPRI dikategorikan baik, kepedulian terhadap komunitas KPRI juga dikategorikan baik. � Analysis of the performance of the PKPRI still use the old way is just using financial valuation using financial ratio analysis of profitability, liquidity and solvency. Instead of using the guidelines of the Decree No. 129 of 2002 issued by the minister of cooperatives and SMEs. The purpose of this study is to analyze and describe the performance of the PKPRI KPRI aspects of cooperation and concern for the community aspect KPRI in Pemalang. This research is a case study on PKPRI and KPRI in Pemalang. The research approach will be used in writing this thesis is descriptive quantitative research method is if the data has been collected and then classified into two groups of data, the quantitative data in the form of figures and qualitative data are expressed in words or symbols (Suharsimi , 2006: 239. The results of this study are categorized KPRI good cooperation, concern for the

  4. Who am I?

    DEFF Research Database (Denmark)

    Smedegaard Ernst Bengtsen, Søren

    general and singular dimensions of the supervisory dialogue through the category of style. I draw on the work of the American phenomenologists Alphonso Lingis and Graham Harman, little known in European context, who share the understanding that the category of style holds the key to accessing different...... planes of the self which are made manifest in the concrete situation (Lingis, 2007; Harman, 2005). Inspired as well by the American linguist Barbara Johnstone I term this singular level of the self the idiosyncratic dimension - a dimension where stylistic features specific to this person and this...... interpersonal meeting can be located (Johnstone, 1996). In the conference presentation I take the point of departure in my own data material and show how I am able to locate general and singular levels of the self by the means of stylistic analysis (a fusion of linguistic and phenomenological approaches...

  5. First combined search for neutrino point-sources in the southern sky with the ANTARES and IceCube neutrino telescopes

    Directory of Open Access Journals (Sweden)

    Barrios-Martí J.

    2016-01-01

    Full Text Available A search for cosmic neutrino point-like sources using the ANTARES and IceCube neutrino telescopes over the Southern Hemisphere is presented. The ANTARES data were collected between January 2007 and December 2012, whereas the IceCube data ranges from April 2008 to May 2011. An unbinned maximum likelihood method is used to search for a localized excess of muon events in the southern sky assuming an E−2 neutrino source spectrum. A search over a pre-selected list of candidate sources has also been carried out for different source assumptions: spectral indices of 2.0 and 2.5, and energy cutoffs of 1 PeV, 300 TeV and 100 TeV. No significant excess over the background has been found, and upper limits for the candidate sources are presented compared to the individual experiments.

  6. The First Combined Search for Neutrino Point-sources in the Southern Hemisphere with the ANTARES and IceCube Neutrino Telescopes

    Science.gov (United States)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Dekeyser, I.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Dumas, A.; Eberl, T.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fermani, P.; Folger, F.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kooijman, P.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Trovato, A.; Tselengidou, M.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Visser, E.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; ANTARES Collaboration; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; De Young, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O’Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; IceCube Collaboration

    2016-05-01

    We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors, which differ in size and location, forms a window in the southern sky where the sensitivity to point sources improves by up to a factor of 2 compared with individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the southern sky and from a preselected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for E ‑2.5 and E ‑2 power-law spectra with different energy cut-offs.

  7. First combined search for neutrino point-sources in the Southern Hemisphere with the ANTARES and IceCube neutrino telescopes

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bormuth, R; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Dumas, A; Eberl, T; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gracia-Ruiz, R; Graf, K; Hallmann, S; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Hößl, J; Hofestädt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kreter, M; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lefèvre, D; Leonora, E; Loucatos, S; Marcelin, M; Margiotta, A; Marinelli, A; Martínez-Mora, J A; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Nezri, E; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Saldaña, M; Samtleben, D F E; Sánchez-Losa, A; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, Th; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Tönnis, C; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J; :,; Aartsen, M G; Abraham, K; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Ansseau, I; Archinger, M; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Beiser, E; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; D{\\'ı}az-Vélez, J C; di Lorenzo, V; Dumm, J P; Dunkman, M; Eberhardt, B; Ehrhardt, T; Eichmann, B; Euler, S; Evenson, P A; Fahey, S; Fazely, A R; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Fösig, C -C; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Ghorbani, K; Gier, D; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Góra, D; Grant, D; Griffith, Z; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Homeier, A; Hoshina, K; Huang, F; Huber, M; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jero, K; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, G; Kroll, M; Krückl, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Mandelartz, M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Middell, E; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Pollmann,; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Richter, S; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Sabbatini, L; Sander, H -G; Sandrock, A; Sandroos, J; Sarkar, S; Schatto, K; Scheriau, F; Schimp, M; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schulte, L; Schumacher, L; Seckel, D; Seunarine, S; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stamatikos, M; Stanev, T; Stasik, A; Steuer, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Ter-Antonyan, S; Terliuk, A; Te{š}ić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Turcati, A; Unger, E; Usner, M; Vallecorsa, S; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Wendt, C; Westerhoff, S; Whelan, B J; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M

    2015-01-01

    We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors which differ in size and location forms a window in the Southern sky where the sensitivity to point sources improves by up to a factor of two compared to individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the Southern sky and from a pre-selected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for $E^{-2.5}$ and $E^{-2}$ power-law spectra with different energy cut-offs.

  8. ICRC 2015 proceedings: First combined search for neutrino point-sources in the Southern Sky with the ANTARES and IceCube neutrino telescopes

    CERN Document Server

    ,

    2015-01-01

    A search for cosmic neutrino point-like sources using the ANTARES and IceCube neutrino telescopes over the Southern Hemisphere is presented. The ANTARES data was collected between January 2007 and December 2012, whereas the IceCube data ranges from April 2008 to May 2011. Clusters of muon neutrinos over the diffusely distributed background have been looked for by means of an unbinned maximum likelihood maximisation. This method is used to search for a localised excess of events over the whole Southern Sky assuming an $E^{-2}$ source spectrum. A search over a pre-selected list of candidate sources has also been carried out for different source assumptions: spectral indices of 2.0 and 2.5, and energy cutoffs of 1 PeV, 300 TeV and 100 TeV. No significant excess over the expected background has been found, and upper limits for the candidate sources are presented compared to the individual experiments.

  9. Safety analysis and lay-out aspects of shieldings against particle radiation at the example of spallation facilities in the megawatt range; Sicherheitstechnische Analyse und Auslegungsaspekte von Abschirmungen gegen Teilchenstrahlung am Beispiel von Spallationsanlagen im Megawatt Bereich

    Energy Technology Data Exchange (ETDEWEB)

    Hanslik, R.

    2006-08-15

    This paper discusses the shielding of particle radiation from high current accelerators, spallation neutron sources and so called ADS-facilities (Accelerator Driven Systems). ADS-facilities are expected to gain importance in the future for transmutation of long-lived isotopes from fission reactors as well as for energy production. In this paper physical properties of the radiation as well as safety relevant requirements and corresponding shielding concepts are discussed. New concepts for the layout and design of such shielding are presented. Focal point of this work will be the fundamental difference between conventional fission reactor shielding and the safety relevant issues of shielding from high-energy radiation. Key point of this paper is the safety assessment of shielding issues of high current accelerators, spallation targets and ADS-blanket systems as well as neutron scattering instruments at spallation neutron sources. Safety relevant shielding requirements are presented and discussed. For the layout and design of the shielding for spallation sources computer base calculations methods are used. A discussion and comparison of the most important methods like semi-empirical, deterministic and stochastic codes are presented. Another key point within the presented paper is the discussion of shielding materials and their shielding efficiency concerning different types of radiation. The use of recycling material, as a cost efficient solution, is discussed. Based on the conducted analysis, flowcharts for a systematic layout and design of adequate shielding for targets and accelerators have been developed and are discussed in this paper. By use of these flowcharts layout and engineering design of future ADS-facilities can be performed. (orig.)

  10. Chemical behaviour of Np, Pu and Am in aquatic solutions

    International Nuclear Information System (INIS)

    The chemical behaviour of Np, Am and Pu has been studied in aquatic systems of various ionic strength and NaCl concentrations as well as in natural groundwaters. Basic chemical reactions investigated are hydrolysis reaction of Np(V), Pu(IV) and Am(III), carbonate complexation of Pu(IV) and Am(III), and redox reaction of Pu and Am induced by α-radiolysis in brine solutions. The α-induced radiolysis reactions in NaCl solutions are carefully evaluated. The generation of real-colloids of Am(III) and Pu(IV) and the generation of Am(III)-pseudo-colloids through sorption of Am3+ on groundwater-colloids have been also investigated. The natural groundwater-colloids and humic substances, being present in Gorleben groundwaters, are characterized systematically in order to facilate a better understanding of colloid generation in a given groundwater. Transuranium ions in solution have been speciated either by UV-VIS spectroscopy for relatively high concentrations or by Laser-induced photoacoustic spectroscopy (LPAS) for sub-μmol concentrations. (orig.)

  11. Study of the sensibility of the Antares neutrino telescope to very high energy photons: Contribution to the time calibration of the detector; Etude de la sensibilite du telescope a neutrinos Antares aux photons de tres haute energie: Contribution a l'etalonnage en temps du detecteur

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, G.

    2010-10-15

    From the sea-floor, the 900-odd photomultiplier tubes of the Antares neutrino telescope scrutinize the abysses attempting to discern, amid bioluminescence and marine radioactivity, Cerenkov photons emitted by muons from astrophysical neutrinos, and to distinguish these muons from those generated by air showers produced by cosmic rays. Antares has been collecting data since 2006; this feat of engineering has paved the way for submarine neutrino astronomy: Antares is expected to be the forerunner of a larger instrument, KM3NeT. Telescope's performance is characterized in part by its angular resolution. In the case of Antares, the angular resolution is directly related to the time resolution of the detector's elements. This manuscript presents a correction for one of the main sources of deterioration of this time resolution, the walk effect induced by the set up of a fixed threshold for triggering the photomultiplier tubes signal. This correction, implemented in the official software chain of the Antares collaboration, improves in particular the events reconstruction quality estimator. This implementation allows further optimizations. The author also attempts to evaluate, using a complete Monte-Carlo simulation, the possibility of using very high energy photon sources as calibrated muon beams in order to estimate the absolute pointing and the angular resolution of the telescope. Although limited by large uncertainties, it is demonstrated that the possibility to detect such sources is extremely small. In addition, it is shown that the atmospheric neutrino background induced by very high-energy photons is negligible. (author)

  12. Hydrolysis reactions of Am(III) and Am(V)

    International Nuclear Information System (INIS)

    Hydrolysis reactions of Am(III) have been investigated in non-complexing solution as well as saline solutions under CO2-free conditions. The solubility experiment in combination with radiometric pH-titration is carried out for the pH range from 6 to 13, at different ionic strengths. In non-complexing solution, the solubility product is found to be increasing along with an increase of the specific α-activity in a given experimental solution. In concentrated NaCl solutions (I ≥ 3M, pH>7) with high specific α-activities (>1 Ci/L), the α-radiolysis starts generating substantial amounts of oxidized chlorine species, e.g. ClO-, which results in the oxidation of Am(III) to Am(V). The hydrolysis reaction of Am(V) in 3M NaCl is also investigated by radiometric pH-titration. Solubility products (Ksp) of Am(OH)3(s) and AmO2(OH)(s) and hydrolysis constants of Am(III) and Am(V) are calculated from the solubility data. The speciation of different hydrolysis products, undertaken by laser-induced photacoustic spectroscopy (LPAS), has verified probable species assessed theoretically on the basis of solubility experiments. (orig.)

  13. 75 FR 1621 - Radio Broadcasting Services; AM or FM Proposals To Change the Community of License

    Science.gov (United States)

    2010-01-12

    ...The following applicants filed AM or FM proposals to change the community of license: COVENANT NETWORK, Station NEW, Facility ID 171236, BMPED-20091118AGS, From ELDON, MO, To ST. THOMAS, MO; COX RADIO, INC., Station WALR-FM, Facility ID 48728, BPH-20091124ABA, From GREENVILLE, GA, To PALMETTO, GA; DARBY ADVERTISING, INC., Station WGRL, Facility ID 170939, BMPH-20091202ACC, From FREDERIC, MI,......

  14. Possibility of observation by the Antares telescope of the gamma ray point sources observed by the Egret detector and study of a prototype

    International Nuclear Information System (INIS)

    The ANTARES collaboration aims to install an underwater neutrino telescope at 2 500 m deep and 40 km away from Toulon (France). The neutrinos are detected thanks to their interaction by charged current in the medium surrounding the telescope which can be rock or water. The produced muon emits Tcherenkov light along its path in water. This light is detected by a three-dimensional network of 900 photomultipliers divided into 12 independent lines. To validate the chosen techniques, a prototype made up of a fifth of line was deployed in 2003. A reconstruction algorithm was developed on simulated data whose results are presented. However, a technical failure made the data recorded by the prototype unsuitable. The detection potential of Antares to gamma ray sources observed by Egret is studied. Indeed, under the assumption of a gamma ray production via high-energy hadrons, a comparable flux of neutrinos associated is predicted. By supposing the two fluxes equal and an energy spectrum varying as E-2 eleven sources are potentially detectable in one year. The Antares sensitivity to such a spectrum depends on the declination of the source with an optimum of 3.6 10-4 m-2 s-1 GeV-1 in one year at 90% of confidence level for a declination of - 90 deg C. (author)

  15. The Federal intermediate storage facility at the Paul Scherrer Institute (CH). Change of perspective - what does that mean?; Das Bundeszwischenlager am Paul Scherrer Institut (CH). Aenderung der Perspektive - Was bedeutet das?

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Hans-Frieder [Paul Scherrer Institut, Villigen-PSI (Switzerland)

    2015-07-01

    The Paul Scherrer Institute (PSI) operates a place of collection of radioactive wastes from medicine, industry and research based on the Swiss legislation. Paragraph 87 of the Swiss radiation protection regulation says: ''The Federal place of collection is the PSI.'' and further in paragraph 87a: ''The PSI accepts the radioactive waste and cares for the stacking, conditioning and intermediate storage''. The site search for an underground final repository is difficult. Therefore the planned commissioning of a final repository is shifted to the remote future. The report covers also the operational experience of the intermediate storage facility during the last 30 years.

  16. Tritium AMS for biomedical applications

    International Nuclear Information System (INIS)

    The authors are developing 3H accelerator mass spectrometry (AMS) at LLNL for work in the biological sciences. Their group has applied 14C AMS to a variety of problems (such as low-level dosimetry of genotoxic materials) and the development and demonstration of 3H AMS would greatly complement these studies. In conjunction with their present AMS capacity, the ability to perform 3H AMS measurements at equivalent sensitivities will allow them to perform unique double labeling experiments in which they learn the fate, distribution, and metabolism of separate fractions of xenobiotics and biologicals. Also, the large number of commercially available 3H-tagged compounds will allow them to perform experiments using compounds that are simply unavailable in 14C-tagged form. The authors anticipate being able to measure 3H/1H concentrations as low as 1 part in 1014 from sample masses as low as 2 μgs. Progress to date and future plans are discussed

  17. Beneficial uses of 241Am

    International Nuclear Information System (INIS)

    This report assesses the uses of 241Am and the associated costs and supply. The study shows that 241Am-fueled radioisotope thermoelectric generators in the range of 1 to 5 W electrical provide the most promising use of kilogram amounts of this isotope. For medical uses, where purity is essential, irradiation of 241Am can produce 97% pure 238Pu at $21,000/g. Using a pyro-metallurgical process, 241Am could be recovered from molten salt extraction (MSE) residues at an estimated incremental cost of $83/g adjusted to reflect the disposal costs of waste products. This cost of recovery is less than the $300/g cost for disposal of the 241Am contained in the MSE residues

  18. 75 FR 51812 - Radio Broadcasting Services; AM or FM Proposals To Change the Community of License

    Science.gov (United States)

    2010-08-23

    ... COMMISSION Radio Broadcasting Services; AM or FM Proposals To Change the Community of License AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: The following applicants filed AM or FM proposals to change...-20100712ABU, From NAVASOTA, TX, To COLLEGE STATION, TX; CUMULUS LICENSING LLC, Station KNRQ-FM, Facility...

  19. 78 FR 69086 - Radio Broadcasting Services; AM or FM Proposals To Change the Community of License

    Science.gov (United States)

    2013-11-18

    ... COMMISSION Radio Broadcasting Services; AM or FM Proposals To Change the Community of License AGENCY: Federal Communications Commission. ACTION: Notice. SUMMARY: The following applicants filed AM or FM proposals to change..., From ANNAPOLIS, MD, To COLLEGE PARK, MD; FAMILY LIFE MINISTRIES, INC., Station WCIK, Facility ID...

  20. Frauen am Himmel

    Directory of Open Access Journals (Sweden)

    Gertrud Pfister

    2008-07-01

    Full Text Available Evelyn Zegenhagen hat ohne Zweifel das am besten recherchierte Buch über die Geschichte des Frauenfliegens und über die Rolle der Pilotinnen in der Geschichte der Luftfahrt zwischen 1918 und 1945 vorgelegt. Mit einem unglaublichen Forschungsaufwand hat sie viele Lücken in der vorliegenden Forschung zu diesem Thema geschlossen und erstmalig Biographien von Segelfliegerinnen und deren Chancen und Probleme aufgearbeitet. Damit gewährt sie Einblicke in einen Bereich der Luftfahrtgeschichte, der neue Perspektiven, nicht nur im Hinblick auf die Beteiligung von Frauen, eröffnet. Umfangreiche Quellenstudien ermöglichten es zudem, die Lebensläufe bisher weitgehend unbekannter Fliegerinnen zu rekonstruieren und bereits bekannte und gut dokumentierte Biographien um neue Facetten zu ergänzen. Zegenhagen hat den Anspruch, die Fliegerei der Frauen im zeitgenössischen Kontext zu betrachten und neben den individuellen Chancen auch die strukturellen Bedingungen zu berücksichtigen, ohne Frage eingelöst.

  1. 36Cl-AMS measurements with 3-MV tandem accelerator

    International Nuclear Information System (INIS)

    36C- is one of the most interesting nuclides in accelerator mass spectrometry (AMS) measurements. The application of 36Cl has been widely applied in various fields. All most all of 36Cl AMS measurements at natural isotopic concentrations have yet been performed at tandem accelerator with 5 MV or higher terminal voltage. The measure improvement of 36Cl and other medium heavy isotopes performed at 3 MV in AMS facilities is one of the hottest topics in AMS measurements. In order to increase the suppression factor of 36S, the energy loss straggling and angular straggling of 36Cl and 36S ions in various counter gases (P10, isobutane and propane) were investigated. Some groundwater samples were measured with energy of 32 MeV, and the results were in good agreement with the result obtained with ion energy of 72 MeV. The results indicate that the approximate detection limit of 36Cl in 3 MV AMS facility is 36Cl/Cl=1 × 10-14, and the uncertainty is 30% when the sample with isotopic ration 36Cl/Cl≈10-13. (authors)

  2. AMS of {sup 14}C at low energies

    Energy Technology Data Exchange (ETDEWEB)

    Suter, M.; Huber, R.; Jacob, S. [ETHZ, Zurich (Switzerland); Synal, H.A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    At the ETH/PSI AMS facility {sup 14}C test measurements have been performed at low terminal voltages of 0.5 and 1 MV in order to study the feasibility of AMS with very small accelerators. These experiments have demonstrated that interfering molecules ({sup 13}CH and {sup 12}CH{sub 2}) in charge states 1{sup +} and 2{sup +} can be destroyed in an adequate Ar gas stripper. These new results imply the feasibility of a new generation of very small accelerator systems for {sup 14}C. (author) 1 fig., 3 refs.

  3. AMS using 14UD Pelletron at TIFR, Mumbai: present status and future prospects

    International Nuclear Information System (INIS)

    The AMS (Accelerator Mass Spectrometry) is a versatile tool employed in multidisciplinary programmes. The AMS programme at the BARC-TIFR 14UD Pelletron accelerator has been initiated with major emphasis on the determination of 36Cl concentration in environment in general and water samples in particular. Preliminary measurements related to detection of 129I have been carried out in recent past. The system used for AMS measurement is based on a 14 MV Tandem Accelerator. In this paper, the status and future prospects of AMS programme at BARC-TIFR Pelletron Accelerator Facility are presented

  4. The new AMS control centre

    CERN Multimedia

    Anaïs Schaeffer

    2011-01-01

    Construction work for the future AMS control room began in November 2010 and should be finished this June. The new building, which will have been completed in record time thanks to the professionalism of the project team, will soon be ready to receive the initial data from the AMS experiment.     Luigi Scibile and Michael Poehler, from the GS department, at the AMS control centre construction site.   The Alpha Magnetic Spectrometer (AMS) is due to wing its way towards the International Space Station (ISS) on board the shuttle Discovery in April. Mainly intended for research on antimatter and dark matter, the data collected by AMS will be sent to Houston in the United States and then directly to CERN’s new Building 946. Construction work for the AMS control centre building on the Route Gentner at CERN’s Prévessin site started in November 2010 and must be completed in time to receive the first data from the spectrometer in June. “It normall...

  5. Further study on highly sensitive AMS measurement of 53Mn

    Science.gov (United States)

    Kejun, Dong; Hao, Hu; Xianggao, Wang; Chaoli, Li; Ming, He; Zhenyu, Li; Shaoyong, Wu; Jiancheng, Liu; Guowen, Zheng; Heng, Li; Zhigang, Chen; Guangshan, Liu; Jian, Yuan; Shan, Jiang

    2012-08-01

    The AMS facility at China Institute of Atomic Energy has been equipped with a ΔE-Q3D detection system for the measurements of 53Mn. While the sample material of MnO2 and the extraction ions of MnO- were used previously in AMS measurement of 53Mn with fairly good results, a method has recently been developed with the extraction of MnF- from ion source using MnF2 and MnO2 + PbF2 as sample materials. As a result, a sensitivity of 10-14 (53Mn/Mn) has been achieved. Compared with the original MnO-/MnO2 approach, the method of MnF- extraction, combined with ΔE-Q3D detection technique, demonstrated an improved sensitivity for AMS measurement of 53Mn.

  6. Comparison of two leg phantoms containing (241)Am in bone.

    Science.gov (United States)

    Kramer, Gary H; Hauck, Barry; Capello, Kevin; Rühm, Werner; El-Faramawy, Nabil; Broggio, David; Franck, Didier; Lopez, Maria Antonia; Navarro, Teresa; Navarro, Juan Francisco; Perez, Begoña; Tolmachev, Sergei

    2011-09-01

    Three facilities (CIEMAT, HMGU and HML) have used their in vivo counters to compare two leg phantoms. One was commercially produced with (241)Am activity artificially added to the bone inserts. The other, the United States Transuranium and Uranium Registries' (USTUR) leg phantom, was manufactured from (241)Am-contaminated bones resulting from an intake. The comparison of the two types of leg phantoms showed that the two phantoms are not similar in their activity distributions. An error in a bone activity estimate could be quite large if the commercial leg phantom is used to estimate what is contained in the USTUR leg phantom and, consequently, a real person. As the latter phantom was created as a result of a real contamination, it is deemed to be the more representative of what would actually happen if a person were internally contaminated with (241)Am. PMID:21799341

  7. First operation of the Bern AMS MICADAS

    International Nuclear Information System (INIS)

    The University of Bern has a long history of experience in precise 14C measurements based on the conventional counting laboratory founded more than 50 years ago. Due to the demanding preparation and measurement procedures, the throughput and required carbon mass of this technique both are the limiting factors. Therefore, the University of Bern decided to update the facility aiming at a new 14C laboratory equipped with an accelerator mass spectrometer (AMS) MICADAS. The focus of this laboratory is twofold. On the one hand, the access to routine 14C analysis for climate research and other disciplines will be improved on site. On the other hand, new hyphenated analytical systems shall be developed for online separation and 14C detection of specific fractions or individual compounds. The MICADAS became operational in November 2012. In this work, instruments, laboratory equipment, measures of quality assurance and first results are presented.

  8. Neutron transmission and capture of 241Am

    International Nuclear Information System (INIS)

    A set of neutron transmission and capture experiments based on the Time Of Flight (TOF) technique, were performed in order to determine the 241Am capture cross section in the energy range from 0.01 eV to 1 keV. The GELINA facility of the Institute for Reference Materials and Measurements (IRMM) served as the neutron source. A pair of C6D6 liquid scintillators was used to register the prompt gamma rays emerging from the americium sample, while a Li-glass detector was used in the transmission setup. Results from the capture and transmission data acquired are consistent with each other, but appear to be inconsistent with the evaluated data files. Resonance parameters have been derived for the data up to the energy of 100 eV. (authors)

  9. Flying with Antares DLR-H2 – From Stereo images to multi view. Image making from the research of the German Aerospace Center (DLR)

    International Nuclear Information System (INIS)

    3-Dimensional scientific illustrations have been used by the German Aerospace Center for more than 20 years. Dietmar Öhlmann has transformed over the years scientific abstract information into visual presentations in hologram, S3D, and M§D media. The latest project Antares DLR-H2, the first emission free flying airplane in the world has been documented in 3D through stereoscopic video. Its research and progress have been documented in two and three dimensional media, a project still in progress.

  10. 78 FR 23565 - Radio Broadcasting Services; AM or FM Proposals To Change the Community of License.

    Science.gov (United States)

    2013-04-19

    ... COMMISSION Radio Broadcasting Services; AM or FM Proposals To Change the Community of License. AGENCY... proposals to change the community of license: CALVARY CHAPEL OF CASA GRANDE, Station KVNG, Facility ID... TYRONE, PA, To STATE COLLEGE, PA; INVISIBLE ALLIES MINISTRIES, Station WRVI, Facility ID 176200,...

  11. The Alpha Magnetic Spectrometer (AMS)

    CERN Document Server

    Alcaraz, J; Ambrosi, G; Anderhub, H; Ao, L; Arefev, A; Azzarello, P; Babucci, E; Baldini, L; Basile, M; Barancourt, D; Barão, F; Barbier, G; Barreira, G; Battiston, R; Becker, R; Becker, U; Bellagamba, L; Bene, P; Berdugo, J; Berges, P; Bertucci, B; Biland, A; Bizzaglia, S; Blasko, S; Bölla, G; Boschini, M; Bourquin, Maurice; Brocco, L; Bruni, G; Buénerd, M; Burger, J D; Burger, W J; Cai, X D; Camps, C; Cannarsa, P; Capell, M; Casadei, D; Casaus, J; Castellini, G; Cecchi, C; Chang, Y H; Chen, H F; Chen, H S; Chen, Z G; Chernoplekov, N A; Tzi Hong Chiueh; Chuang, Y L; Cindolo, F; Commichau, V; Contin, A; Crespo, P; Cristinziani, M; Cunha, J P D; Dai, T S; Deus, J D; Dinu, N; Djambazov, L; Dantone, I; Dong, Z R; Emonet, P; Engelberg, J; Eppling, F J; Eronen, T; Esposito, G; Extermann, P; Favier, Jean; Fiandrini, E; Fisher, P H; Flügge, G; Fouque, N; Galaktionov, Yu; Gervasi, M; Giusti, P; Grandi, D; Grimm, O; Gu, W Q; Hangarter, K; Hasan, A; Hermel, V; Hofer, H; Huang, M A; Hungerford, W; Ionica, M; Ionica, R; Jongmanns, M; Karlamaa, K; Karpinski, W; Kenney, G; Kenny, J; Kim, W; Klimentov, A; Kossakowski, R; Koutsenko, V F; Kraeber, M; Laborie, G; Laitinen, T; Lamanna, G; Laurenti, G; Lebedev, A; Lee, S C; Levi, G; Levchenko, P M; Liu, C L; Liu, H T; Lopes, I; Lu, G; Lü, Y S; Lübelsmeyer, K; Luckey, D; Lustermann, W; Maña, C; Margotti, A; Mayet, F; McNeil, R R; Meillon, B; Menichelli, M; Mihul, A; Mourao, A; Mujunen, A; Palmonari, F; Papi, A; Park, I H; Pauluzzi, M; Pauss, Felicitas; Perrin, E; Pesci, A; Pevsner, A; Pimenta, M; Plyaskin, V; Pozhidaev, V; Postolache, V; Produit, N; Rancoita, P G; Rapin, D; Raupach, F; Ren, D; Ren, Z; Ribordy, M; Richeux, J P; Riihonen, E; Ritakari, J; Röser, U; Roissin, C; Sagdeev, R; Sartorelli, G; Schwering, G; Scolieri, G; Seo, E S; Shoutko, V; Shoumilov, E; Siedling, R; Son, D; Song, T; Steuer, M; Sun, G S; Suter, H; Tang, X W; Ting, Samuel C C; Ting, S M; Tornikoski, M; Torsti, J; Ulbricht, J; Urpo, S; Usoskin, I; Valtonen, E; Vandenhirtz, J; Velcea, F; Velikhov, E P; Verlaat, B; Vetlitskii, I; Vezzu, F; Vialle, J P; Viertel, Gert M; Vitè, Davide F; Gunten, H V; Wallraff, W; Wang, B C; Wang, J Z; Wang, Y H; Wiik, K; Williams, C; Wu, S X; Xia, P C; Yan, J L; Yan, L G; Yang, C G; Yang, M; Ye, S W; Yeh, P; Xu, Z Z; Zhang, H Y; Zhang, Z P; Zhao, D X; Zhu, G Y; Zhu, W Z; Zhuang, H L; Zichichi, A; Zimmermann, B

    2002-01-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m sup 2) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  12. The Alpha Magnetic Spectrometer (AMS)

    International Nuclear Information System (INIS)

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m2) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS

  13. The Alpha Magnetic Spectrometer (AMS)

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, J.; Alpat, B.; Ambrosi, G.; Anderhub, H.; Ao, L.; Arefiev, A.; Azzarello, P.; Babucci, E.; Baldini, L.; Basile, M.; Barancourt, D.; Barao, F.; Barbier, G.; Barreira, G.; Battiston, R.; Becker, R.; Becker, U.; Bellagamba, L.; Bene, P.; Berdugo, J.; Berges, P.; Bertucci, B.; Biland, A.; Bizzaglia, S.; Blasko, S.; Boella, G.; Boschini, M.; Bourquin, M.; Brocco, L.; Bruni, G.; Buenerd, M.; Burger, J.D.; Burger, W.J.; Cai, X.D.; Camps, C.; Cannarsa, P.; Capell, M.; Casadei, D.; Casaus, J.; Castellini, G.; Cecchi, C.; Chang, Y.H.; Chen, H.F.; Chen, H.S.; Chen, Z.G.; Chernoplekov, N.A.; Chiueh, T.H.; Chuang, Y.L.; Cindolo, F.; Commichau, V.; Contin, A. E-mail: contin@bo.infn.it; Crespo, P.; Cristinziani, M.; Cunha, J.P. da; Dai, T.S.; Deus, J.D.; Dinu, N.; Djambazov, L.; DAntone, I.; Dong, Z.R.; Emonet, P.; Engelberg, J.; Eppling, F.J.; Eronen, T.; Esposito, G.; Extermann, P.; Favier, J.; Fiandrini, E.; Fisher, P.H.; Fluegge, G.; Fouque, N.; Galaktionov, Yu.; Gervasi, M.; Giusti, P.; Grandi, D.; Grimm, O.; Gu, W.Q.; Hangarter, K.; Hasan, A.; Hermel, V.; Hofer, H.; Huang, M.A.; Hungerford, W.; Ionica, M.; Ionica, R.; Jongmanns, M.; Karlamaa, K.; Karpinski, W.; Kenney, G.; Kenny, J.; Kim, W.; Klimentov, A.; Kossakowski, R.; Koutsenko, V.; Kraeber, M.; Laborie, G.; Laitinen, T.; Lamanna, G.; Laurenti, G.; Lebedev, A.; Lee, S.C.; Levi, G.; Levtchenko, P.; Liu, C.L.; Liu, H.T.; Lopes, I.; Lu, G.; Lu, Y.S.; Luebelsmeyer, K.; Luckey, D.; Lustermann, W.; Mana, C.; Margotti, A.; Mayet, F.; McNeil, R.R.; Meillon, B.; Menichelli, M.; Mihul, A.; Mourao, A.; Mujunen, A.; Palmonari, F.; Papi, A.; Park, I.H.; Pauluzzi, M.; Pauss, F.; Perrin, E.; Pesci, A.; Pevsner, A.; Pimenta, M.; Plyaskin, V.; Pojidaev, V.; Postolache, V.; Produit, N.; Rancoita, P.G.; Rapin, D.; Raupach, F.; Ren, D.; Ren, Z.; Ribordy, M.; Richeux, J.P.; Riihonen, E.; Ritakari, J.; Roeser, U.; Roissin, C.; Sagdeev, R.; Sartorelli, G.; Schultz von Dratzig, A.; Schwering, G.; Scolieri, G.; Seo, E.S.; Shoutko, V.

    2002-02-01

    The Alpha Magnetic Spectrometer (AMS) is a large acceptance (0.65 sr m{sup 2}) detector designed to operate in the International Space Station (ISS) for three years. The purposes of the experiment are to search for cosmic antimatter and dark matter and to study the composition and energy spectrum of the primary cosmic rays. A 'scaled-down' version has been flown on the Space Shuttle Discovery for 10 days in June 1998. The complete AMS is programmed for installation on the ISS in October 2003 for an operational period of 3 yr. This contribution reports on the experimental configuration that will be installed on the ISS.

  14. América Latina

    Directory of Open Access Journals (Sweden)

    Marcos Olalla

    2007-01-01

    Full Text Available Este trabajo analiza el sentido intelectualista de la producción literaria modernista de Latinoamérica. Dicho enfoque es revisado en la obra del escritor argentino Manuel Ugarte (1875-1951 El porvenir de América Latina (1910. Nuestra lectura ofrece algunas líneas para la discriminación de las diversas fuentes ideológicas del intelectualismo en el “americanismo literario”. Consideramos en tal sentido la perspectiva historicista con la que Ugarte describe la composición social de América Latina.

  15. Studi Eksperimen Karakteristik Lapis Batas Aliran Turbulen Melintasi Empat Silinder Sirkular Tersusun Secara Equispaced dengan Rasio Gap (G/D = 0,2 “Studi Kasus Untuk Pengaruh Jarak Antar Silinder di Dekat Dinding Datar (L/D = 2; 3; dan 4”

    Directory of Open Access Journals (Sweden)

    Kresna Adytia Putra

    2014-09-01

    Full Text Available Dalam industri, silinder sirkular yang tersusun secara equispaced seringkali diaplikasikan antara lain pada jaringan pipa yang berada di dasar laut sebagai penghubung distribusi antar pulau, berbagai peralatan lainnya. Hal tersebut mendasari adanya penelitian tentang karakteristik aliran fluida turbulen melintasi empat silinder sirkular tersusun secara equispaced di dekat dinding datar. Penelitian ini dilakukan pada open circuit subsonic wind tunnel dengan empat silinder sirkular disusun secara equispaced diletakkan di atas dinding datar relatif terhadap diameter silinder (G/D = 0,2; dengan jarak antar silinder relative terhadap diameter (L/D = 2, 3, 4. Kecepatan freestream di dalam wind tunnel dijaga konstan pada 14,12 m/s dengan Reynolds Number Re = 5,3 x 104. Dari penelitian yang telah dilakukan menunjukkan bahwa variasi jarak antar silinder memiliki fenomena berbeda-beda dengan dipengaruhi dinding datar. Jarak antar silinder (L/D 2 memiliki blockage effect terbesar dikarenakan jarak yang sempit antar silinder. Adanya interferensi wake yang terjadi pada silinder upstream dan pengaruh blockage yang terjadi pada silinder 3 mengakibatkan separasi shear layer silinder 2 cenderung terbelokkan pada sisi lower silinder 4 dan akan menyebabkan attachment pada daerah tersebut Semakin besar jarak antar silinder (L/D, Nilai CDP pada jarak antar silinder 2 memiliki nilai yang cukup jauh berbeda dengan jarak antar silinder 3 dan 4, sedangkan jarak antar silinder 3 dan 4 memiliki kecendrungan konstan, nilai CDP terbesar terjadi pada silinder 1 di L/D 2, hal ini mengindikasikan bahwa pada posisi tersebut, pengaruh blockage yang ditimbulkan oleh dinding sangat besar, sehingga aliran tidak dapat mengalir secara merata melalui kedua sisi silinder.

  16. {sup 41}Ca measurements at the Zurich AMS facility

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, C.; Gartenmann, P.; Suter, M. [Eidgenoessische Technische Hochschule, Zurich (Switzerland); Synal, H.A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Gloris, M.; Leya, I.; Michel, R. [Hannover Univ. (Germany); Herpers, U. [Koeln Univ. (Germany)

    1997-09-01

    Proton-induced production cross sections for {sup 41}Ca from Fe and Ni determined using 6 MV tandem accelerator are presented. The calibration of two secondary standard materials to a standard material of {sup 41}Ca concentration determined by PTB (Braunschweig, Germany) has been carried out. (author) 2 figs., 3 refs.

  17. AMS-02 fits dark matter

    Science.gov (United States)

    Balázs, Csaba; Li, Tong

    2016-05-01

    In this work we perform a comprehensive statistical analysis of the AMS-02 electron, positron fluxes and the antiproton-to-proton ratio in the context of a simplified dark matter model. We include known, standard astrophysical sources and a dark matter component in the cosmic ray injection spectra. To predict the AMS-02 observables we use propagation parameters extracted from observed fluxes of heavier nuclei and the low energy part of the AMS-02 data. We assume that the dark matter particle is a Majorana fermion coupling to third generation fermions via a spin-0 mediator, and annihilating to multiple channels at once. The simultaneous presence of various annihilation channels provides the dark matter model with additional flexibility, and this enables us to simultaneously fit all cosmic ray spectra using a simple particle physics model and coherent astrophysical assumptions. Our results indicate that AMS-02 observations are not only consistent with the dark matter hypothesis within the uncertainties, but adding a dark matter contribution improves the fit to the data. Assuming, however, that dark matter is solely responsible for this improvement of the fit, it is difficult to evade the latest CMB limits in this model.

  18. Study of neutrino production in the Cannonball model of Gamma ray bursts: possibility of observation of these neutrinos with the Antares neutrinos telescope, and study of the optical background recorded with the prototype sector line

    International Nuclear Information System (INIS)

    ANTARES is a future neutrino telescope which will be build at 40 km off the french coast (Toulon), at a 2500 m depth. The interaction of a neutrino with matter produces a muon which emits Cerenkov light while propagating in water. This light is detected with 900 photomultipliers distributed over 12 lines. Gamma ray bursts (GRB) are violent cosmological phenomenon observed once per day. In the Cannonball Model, bursts are produced by the interaction of a jet made of cannonballs (CB) with a supernova remnant (SNR). Forward shocks propagate in the SNR, reverse ones in the CB and neutrinos are produced at the shock fronts. An estimation of the neutrino production is given and is studied over a large parameter range. For a typical GRB, 0.002 to 0.3 vμ, cm-2 can be produced. Depending on the viewing angle, ANTARES could detect 1 to 10 vμ per year in correlation with GRBs. The ambient optical background has been recorded by the ANTARES prototype sector line. The analysis is about the background influence on the detector performance and about the organisms activity which produces it. For example, it appears a 17.6 to 20.4 h periodicity which is compatible with the liquid masses movement imposed by the Coriolis force at the ANTARES latitude. (author)

  19. The structure of the NasR transcription antiterminator reveals a one-component system with a NIT nitrate receptor coupled to an ANTAR RNA-binding effector.

    Science.gov (United States)

    Boudes, Marion; Lazar, Noureddine; Graille, Marc; Durand, Dominique; Gaidenko, Tatiana A; Stewart, Valley; van Tilbeurgh, Herman

    2012-08-01

    The nitrate- and nitrite-sensing NIT domain is present in diverse signal-transduction proteins across a wide range of bacterial species. NIT domain function was established through analysis of the Klebsiella oxytoca NasR protein, which controls expression of the nasF operon encoding enzymes for nitrite and nitrate assimilation. In the presence of nitrate or nitrite, the NasR protein inhibits transcription termination at the factor-independent terminator site in the nasF operon transcribed leader region. We present here the crystal structure of the intact NasR protein in the apo state. The dimeric all-helical protein contains a large amino-terminal NIT domain that associates two four-helix bundles, and a carboxyl-terminal ANTAR (AmiR and NasR transcription antitermination regulator) domain. The analysis reveals unexpectedly that the NIT domain is structurally similar to the periplasmic input domain of the NarX two-component sensor that regulates nitrate and nitrite respiration. This similarity suggests that the NIT domain binds nitrate and nitrite between two invariant arginyl residues located on adjacent alpha helices, and results from site-specific mutagenesis showed that these residues are critical for NasR function. The resulting structural movements in the NIT domain would provoke an active configuration of the ANTAR domains necessary for specific leader mRNA binding. PMID:22690729

  20. Study of neutrino production in the Cannonball model of Gamma ray bursts: possibility of observation of these neutrinos with the Antares neutrinos telescope, and study of the optical background recorded with the prototype sector line; Etude de la production de neutrinos associes aux Sursauts Gamma dans le modele du Boulet de canon: possibilite d'observation de ces neutrinos par le detecteur ANTARES, et etude du bruit de fond optique enregistre par le prototype d'un secteur de ligne

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, S

    2004-09-15

    ANTARES is a future neutrino telescope which will be build at 40 km off the french coast (Toulon), at a 2500 m depth. The interaction of a neutrino with matter produces a muon which emits Cerenkov light while propagating in water. This light is detected with 900 photomultipliers distributed over 12 lines. Gamma ray bursts (GRB) are violent cosmological phenomenon observed once per day. In the Cannonball Model, bursts are produced by the interaction of a jet made of cannonballs (CB) with a supernova remnant (SNR). Forward shocks propagate in the SNR, reverse ones in the CB and neutrinos are produced at the shock fronts. An estimation of the neutrino production is given and is studied over a large parameter range. For a typical GRB, 0.002 to 0.3 v{sub {mu}}, cm{sup -2} can be produced. Depending on the viewing angle, ANTARES could detect 1 to 10 v{sub {mu}} per year in correlation with GRBs. The ambient optical background has been recorded by the ANTARES prototype sector line. The analysis is about the background influence on the detector performance and about the organisms activity which produces it. For example, it appears a 17.6 to 20.4 h periodicity which is compatible with the liquid masses movement imposed by the Coriolis force at the ANTARES latitude. (author)

  1. Annotation Method (AM): SE40_AM1 [Metabolonote[Archive

    Lifescience Database Archive (English)

    Full Text Available se search. Peaks with no hit to these databases are then selected to secondary sear...ch using EX-HR2 (http://webs2.kazusa.or.jp/mfsearcher/) databases. After the database search processes, each database...SE40_AM1 PowerGet annotation In annotation process, KEGG, KNApSAcK and LipidMAPS are used for primary databa

  2. Chemical processing for 10Be and 26Al AMS measurements at IUAC

    International Nuclear Information System (INIS)

    10Be and 26AI measurements have been carried out at IUAC using its AMS facility based on 15UD Pelletron accelerator since couple of years. A new AMS facility (called XCAMS) based on 500 kV Pelletron accelerator was recently, installed for 14C measurements. Chemical processing is the first and integral part of AMS measurements. Prior to the AMS measurement natural samples undergo series of chemical processes for pre-concentrating element of interest. These chemical procedures are carried out in an ultraclean environment to reduce blank level. Extraction of meteoric 10Be from the sediment samples are being done regularly and have been reported earlier. However, extraction of in situ produced 10Be and 26AI from quartz bearing rocks was started recently

  3. $^{241}$Am: a difficult actinide for (n,$\\gamma$) cross section measurement

    CERN Document Server

    Rossbach, M

    2014-01-01

    Many attempts have been made in the past to determine accurate cross section data for neutron capture in $^{241}$Am, however, the reported data for thermal neutron energies scatter by more than 25% around 680 b. The situation is complicated as the product of the capture reaction is twofold: $^{241}$Am (n,$\\gamma$)$^{242g}Am,^{242m}$Am. The production ratio for ground- and metastable state is uncertain but also $^{241}$Am exhibits a very low first resonance at about 0.3 eV and this might influence the 1/v behaviour at thermal energy, 0.025 eV. In our experiments, we are using cold neutrons at the PGAA facilities of the Budapest and Garching Research Reactors, hence, we assume to be independent of the perturbations from possible non-1/v behaviour.

  4. AMS DAYS 2015 - Interview Roberto Battiston

    CERN Multimedia

    2015-01-01

    Roberto Battiston, president of the Italian Space Agency (ASI) and deputy spokesperson of the AMS experiments, tells about AMS latest results and the complementarity with the second run of the LHC in the search for dark matter

  5. WILL I AM visits CERN

    CERN Multimedia

    Noemi Caraban

    2013-01-01

    Will.i.am visited CERN in December 2013, fulfilling a wish he made in a video-link appearance at TEDxCERN earlier that year http://tedxcern.web.cern.ch/video/choral-performance-reach-stars-william. During his visit, he was shown the Antimatter Decelerator, the underground ATLAS experiment cavern and the CERN Control Centre. He also took the opportunity to promote CERN’s beam line for schools competition.

  6. A compact tritium AMS system

    Energy Technology Data Exchange (ETDEWEB)

    Chiarappa, M L; Dingley, K H; Hamm, R W; Love, A H; Roberts, M L

    1999-09-23

    Tritium ({sup 3}H) is a radioisotope that is extensively utilized in biological and environmental research. For biological research, {sup 3}H is generally quantified by liquid scintillation counting requiring gram-sized samples and counting times of several hours. For environmental research, {sup 3}H is usually quantified by {sup 3}He in-growth which requires gram-sized samples and in-growth times of several months. In contrast, provisional studies at LLNL's Center for Accelerator Mass Spectrometry have demonstrated that Accelerator Mass Spectrometry (AMS) can be used to quantify {sup 3}H in milligram-sized biological samples with a 100 to 1000-fold improvement in detection limits when compared to scintillation counting. This increased sensitivity is expected to have great impact in the biological and environmental research community. However in order to make the {sup 3}H AMS technique more broadly accessible, smaller, simpler, and less expensive AMS instrumentation must be developed. To meet this need, a compact, relatively low cost prototype {sup 3}H AMS system has been designed and built based on a LLNL ion source/sample changer and an AccSys Technology, Inc. Radio Frequency Quadrupole (RFQ) linac. With the prototype system, {sup 3}/{sup 1}H ratios ranging from 1 x 10{sup -10} to 1 x 10{sup -13} have to be measured from milligram sized samples. With improvements in system operation and sample preparation methodology, the sensitivity limit of the system is expected to increase to approximately 1 x 10{sup -15}.

  7. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from Surface underway observations using Carbon dioxide (CO2) gas analyzer, Shower head chamber equilibrator for autonomous carbon dioxide (CO2) measurement and other instruments from ANTARES in the North Atlantic Ocean and South Atlantic Ocean from 2009-03-20 to 2010-08-06 (NODC Accession 0114477)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0114477 includes Surface underway, chemical, meteorological and physical data collected from ANTARES in the North Atlantic Ocean and South Atlantic...

  8. AMS radiocarbon chemistry at ANSTO

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, G. [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia). Physics Division

    1999-11-01

    The purpose of this paper is to demystify the `black box` of AMS chemistry. For many, a sample is sent and eventually a date is received. Little is known of what happens to the sample beyond that it is treated chemically and then measured in the tandem accelerator. In this overview I will discuss the fate of your radiocarbon samples once they have arrived here at ANSTO with a focus on the chemistry. The AMS measurement of radiocarbon samples has been discussed previously (Lawson 1999). There are three main aims when it comes to the chemistry: 1) to remove extraneous carbon, ie contamination, 2) to convert the carbon to a form suitable for measurement in the tandem accelerator and 3) not to contaminate the sample while doing 1 and 2. Before measurement the sample goes through a number of distinct stages, these being registration, pretreatment, carbon extraction, graphitisation and pressing. Of these I am going to deal mainly with the pretreatment stage, as it is at this stage that contamination is removed for which the accuracy of the final measurement is dependant 12 refs.

  9. AMS radiocarbon chemistry at ANSTO

    International Nuclear Information System (INIS)

    The purpose of this paper is to demystify the 'black box' of AMS chemistry. For many, a sample is sent and eventually a date is received. Little is known of what happens to the sample beyond that it is treated chemically and then measured in the tandem accelerator. In this overview I will discuss the fate of your radiocarbon samples once they have arrived here at ANSTO with a focus on the chemistry. The AMS measurement of radiocarbon samples has been discussed previously (Lawson 1999). There are three main aims when it comes to the chemistry: 1) to remove extraneous carbon, ie contamination, 2) to convert the carbon to a form suitable for measurement in the tandem accelerator and 3) not to contaminate the sample while doing 1 and 2. Before measurement the sample goes through a number of distinct stages, these being registration, pretreatment, carbon extraction, graphitisation and pressing. Of these I am going to deal mainly with the pretreatment stage, as it is at this stage that contamination is removed for which the accuracy of the final measurement is dependant

  10. AMS in drug development at GSK

    International Nuclear Information System (INIS)

    A history of the use of AMS in GSK studies spanning the last 8 years (1998-2005) is presented, including use in pilot studies through to clinical, animal and in vitro studies. A brief summary of the status of GSK's in-house AMS capability is outlined and views on the future of AMS in GSK are presented, including potential impact on drug development and potential advances in AMS technology

  11. CologneAMS, a dedicated center for accelerator mass spectrometry in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, A., E-mail: dewald@ikp.uni-koeln.de [CologneAMS, Institute of Nuclear Physics, University of Cologne (Germany); Heinze, S.; Jolie, J.; Zilges, A. [CologneAMS, Institute of Nuclear Physics, University of Cologne (Germany); Dunai, T.; Rethemeyer, J.; Melles, M.; Staubwasser, M. [Institute of Geology and Mineralogy, University of Cologne (Germany); Kuczewski, B. [Division of Nuclear Chemistry, University of Cologne (Germany); Richter, J. [Institute of Prehistoric Archaeology, University of Cologne (Germany); Radtke, U. [Institute of Geography, University of Cologne, Germany, Rectorate, University of Duisburg-Essen (Germany); Blanckenburg, F. von [GFZ, German Research Centre for Geosciences, Potsdam (Germany); Klein, M. [HVEE, Amersfoort (Netherlands)

    2013-01-15

    CologneAMS is a new centre for accelerator mass spectrometry (AMS) at University of Cologne. It has been funded by the German Research Foundation (DFG) to improve the experimental conditions especially for those German scientists that apply the AMS technique for their geologic, environmental, nuclear chemical, and nuclear astrophysical research. The new AMS-device has been built by High Voltage Engineering Europe (HVEE) and has been installed in the existing accelerator area of the Institute of Nuclear Physics. The AMS-facility is designed for the spectrometry of {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, {sup 41}Ca, {sup 129}I in and heavy ions up to {sup 236}U and {sup 244}Pu. The central part of the AMS-facility is a 6 MV Tandetron Trade-Mark-Sign accelerator. Downstream of the high energy mass spectrometer an additional switching magnet is used as a further filter element which supplies also additional ports for future extensions of the detector systems. The current status of CologneAMS and the results of the first test measurements will be presented.

  12. 7 CFR 1230.602 - Administrator, AMS.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Administrator, AMS. 1230.602 Section 1230.602... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.602 Administrator, AMS. The term Administrator, AMS, means the Administrator of the Agricultural Marketing Service, or...

  13. 7 CFR 1220.601 - Administrator, AMS.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Administrator, AMS. 1220.601 Section 1220.601... CONSUMER INFORMATION Procedures To Request a Referendum Definitions § 1220.601 Administrator, AMS. Administrator, AMS, means the Administrator of the Agricultural Marketing Service, or any officer or employee...

  14. 7 CFR 1280.602 - Administrator, AMS.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Administrator, AMS. 1280.602 Section 1280.602... INFORMATION ORDER Procedures To Request a Referendum Definitions § 1280.602 Administrator, AMS. Administrator, AMS, means the Administrator of the Agricultural Marketing Service, or any officer or employee of...

  15. AMS of stable isotopes - shouldn't that be easy?

    International Nuclear Information System (INIS)

    Accelerator Mass Spectrometry (AMS) has become the most sensitive method to measure long-lived radionuclides at minute concentrations. The idea to use the same method for measuring stable isotopes has been around since the early days of AMS. At several laboratories special ion sources have been installed and even dedicated facilities were built that focus on the AMS of stable isotopes. The advantages over conventional mass spectrometers are obvious, first molecular interferences can be eliminated and second high ion energies allow to separate isobars. However, despite of several attempts at various scales the use of AMS for stable isotopes did not take off and published results are sparse. At ETH Zurich a SIMS ion source is coupled to the 6 MV EN Tandem accelerator and has been used for several projects in the past 15 years. In this talk I will report on my own experiences in that field, in particular on the astrophysical use of this method, and that one not always gains by combining two successful methods. (author)

  16. Development of the Lund AMS system and the evaluation of a new AMS detection technique

    International Nuclear Information System (INIS)

    This thesis is based on work at the Lund Pelletron accelerator facility in order to improve the accuracy and efficiency of the Lund Accelerator Mass Spectrometry (AMS) system. To obtain high accuracy, all measurements are performed relative to a standard of known activity. Charge state distributions have been obtained for a number of isotopes: 9Be, 12C, 13C, 16O, 19F, 27Al, 35Cl, 48Ti and 58Ni order to improve the transmission through the system and to reduce the isotopic fractionation in the measurements. For carbon, charge states distributions were obtained both under foil and gas stripping. The pressure profile of the Lund Pelletron system has been calculated, both under foil and gas stripping, to make possible to perform transmission calculations for a carbon beam. These results were used to design a new terminal stripper of the accelerator system. A new ion source has, during the last few years, been constructed providing a multiple sample wheel, enabling more accurate relative measurements and also providing more efficient measurements, due to a higher beam current. A new detection technique suitable for AMS measurements on heavier radionuclides, such as 36Cl,44Ti and 59Ni, has been evaluated and detection limits for 59Ni have been derived. 59 refs, 13 figs

  17. Development of the Lund AMS system and the evaluation of a new AMS detection technique

    Energy Technology Data Exchange (ETDEWEB)

    Wiebert, A.

    1995-09-01

    This thesis is based on work at the Lund Pelletron accelerator facility in order to improve the accuracy and efficiency of the Lund Accelerator Mass Spectrometry (AMS) system. To obtain high accuracy, all measurements are performed relative to a standard of known activity. Charge state distributions have been obtained for a number of isotopes: {sup 9}Be, {sup 12}C, {sup 13}C, {sup 16}O, {sup 19}F, {sup 27}Al, {sup 35}Cl, {sup 48}Ti and {sup 58}Ni order to improve the transmission through the system and to reduce the isotopic fractionation in the measurements. For carbon, charge states distributions were obtained both under foil and gas stripping. The pressure profile of the Lund Pelletron system has been calculated, both under foil and gas stripping, to make possible to perform transmission calculations for a carbon beam. These results were used to design a new terminal stripper of the accelerator system. A new ion source has, during the last few years, been constructed providing a multiple sample wheel, enabling more accurate relative measurements and also providing more efficient measurements, due to a higher beam current. A new detection technique suitable for AMS measurements on heavier radionuclides, such as {sup 36}Cl,{sup 44}Ti and {sup 59}Ni, has been evaluated and detection limits for {sup 59}Ni have been derived. 59 refs, 13 figs.

  18. ANALISIS KELAYAKAN FINANSIAL PENGOPERASIAN ANGKUTAN ANTAR JEMPUT SISWA SEKOLAH PADA KORIDOR JALAN GUNUNG AGUNG DENPASAR

    Directory of Open Access Journals (Sweden)

    D. A. Nyoman Sriastuti

    2013-03-01

    Full Text Available The population increase in Denpasar City causes the increase of peoples’ activities which is followed by the increase of using transportation facilities. It certainly influences the traffic in the city itself. One of the peoples’ activities causing traffic jams on the streets of Denpasar particularly on Gunung Agung Street is the students’ pick-up service. The jam is mainly caused by the use of private vehicles especially motorcycles for picking-up the students. The problem can be overcome with pick up service so that the use of private vehicles can be minimized. Some advantages can be gained from the pick-up service; it can be done door to door in accordance with the students’ schedules and it can help the parents who are in troubles in bringing and picking-up their children to schools. A planning and an evaluation on aspects of financial investment feasibility towards the students’ pick-up service are needed in order to match both the interests of service providers and the customers. This research used field survey method completed with interview method. The interview method was applied to gain primary data from related parties and from related institutions for the secondary data. Tariff calculation analysis based on the vehicle operational cost (VOC used a method of Transportation Department, and the Ability to Pay (ATP tariff and Willing to Pay (WTF tariff were determined based on respondents’ income and their perceptions toward a tariff they expected. The result of the research shows that the ATP tariff for both routes is higher than WTF tariff; on route I the ATP is Rp. 569,76 per kilometer-  passenger (Rp. 4,273 per passenger and the WTP tariff is Rp. 499,67 per kilometer-passenger (Rp. 3,748 per passenger, on route II the ATP tariff is Rp. 594,46 per kilometer-passenger (Rp. 3,864 per passenger and the WTP tarrif is Rp. 554,56 per kilometer-passenger (Rp. 3,605 per passenger. Based on the estimation of the passengers, there

  19. Measurement of the atmospheric νμ energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope

    International Nuclear Information System (INIS)

    Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric νμ + anti νμ energy spectrum in the energy range 0.1-200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from 2008 to 2011. Overall, the measured flux is ∝25 % higher than predicted by the conventional neutrino flux, and compatible with the measurements reported in ice. The flux is compatible with a single power-law dependence with spectral index γmeas=3.58±0.12. With the present statistics the contribution of prompt neutrinos cannot be established. (orig.)

  20. Measurement of the atmospheric {nu}{sub {mu}} energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Larosa, G.; Martinez-Mora, J.A. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Albert, A.; Drouhin, D.; Racca, C. [GRPHE - Institut universitaire de technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar (France); Al Samarai, I.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Core, L.; Costantini, H.; Coyle, P.; Curtil, C.; Dornic, D.; Ernenwein, J.P.; Escoffier, S.; Lambard, E.; Riviere, C.; Vallee, C.; Yatkin, K. [Aix-Marseille Universite, CPPM, CNRS/IN2P3, Marseille (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Anghinolfi, M.; Sanguineti, M. [INFN - Sezione di Genova, Genova (Italy); Anton, G.; Classen, F.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Fritsch, U.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Herold, B.; Hoessl, J.; James, C.W.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Motz, H.; Neff, M.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Shanidze, R.; Sieger, C.; Spies, A.; Wagner, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anvar, S.; Louis, F. [CEA Saclay, Direction des Sciences de la Matiere - Institut de recherche sur les lois fondamentales de l' Univers - Service d' Electronique des Detecteurs et d' Informatique, Gif-sur-Yvette Cedex (France); Astraatmadja, T.; Bogazzi, C.; Bouwhuis, M.C.; Heijboer, A.J.; Jong, M. de; Michael, T.; Palioselitis, D.; Schulte, S.; Steijger, J.J.M.; Visser, E. [Nikhef, Amsterdam (Netherlands); Baret, B.; Bouhou, B.; Creusot, A.; Galata, S.; Kouchner, A.; Elewyck, V. van [Universite Paris Diderot, APC, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Paris (France); Barrios-Marti, J.; Bigongiari, C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuniga, J. [CSIC - Universitat de Valencia, IFIC - Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [Pole de l' Etoile Site de Chateau-Gombert, LAM - Laboratoire d' Astrophysique de Marseille, Marseille Cedex 13 (France); Biagi, S.; Fusco, L.A.; Giacomelli, G.; Margiotta, A.; Spurio, M. [INFN - Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica dell' Universita, Bologna (Italy); Bruijn, R.; Decowski, M.P.; Wolf, E. de [Nikhef, Amsterdam (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, XG Amsterdam (Netherlands); Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.; Simeone, F. [INFN - Sezione di Roma, Roma (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Roma (Italy); Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Sciences, Bucharest (Romania); Carloganu, C.; Dumas, A.; Gay, P.; Guillard, G. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand (France); Cecchini, S.; Chiarusi, T. [INFN - Sezione di Bologna, Bologna (Italy); Charvis, P.; Deschamps, A.; Hello, Y. [Universite Nice Sophia-Antipolis, Geoazur, CNRS/INSU, IRD, Observatoire de la Cote d' Azur, Sophia Antipolis (France); Circella, M. [INFN - Sezione di Bari, Bari (Italy); Dekeyser, I.; Lefevre, D.; Martini, S.; Robert, A.; Tamburini, C. [Aix-Marseille University, Mediterranean Institute of Oceanography (MIO), Marseille Cedex 9 (France); Universite du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde Cedex (France); Distefano, C.; Lattuada, D.; Piattelli, P.; Sapienza, P.; Trovato, A. [INFN - Laboratori Nazionali del Sud (LNS), Catania (Italy); Donzaud, C. [Universite Paris Diderot, APC, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Paris (France); Univ Paris-Sud, Orsay Cedex (France); Dorosti, Q.; Loehner, H. [University of Groningen, Kernfysisch Versneller Instituut (KVI), Groningen (Netherlands); Flaminio, V. [INFN - Sezione di Pisa, Pisa (Italy); Dipartimento di Fisica dell' Universita, Pisa (Italy); Giordano, V. [INFN - Sezione di Catania, Catania (Italy); Haren, H. van [Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje (Texel) (Netherlands); Kadler, M. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Kooijman, P. [Nikhef, Amsterdam (Netherlands); Universiteit Utrecht, Faculteit Betawetenschappen, Utrecht (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, XG Amsterdam (Netherlands); Kreykenbohm, I.; Mueller, C.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (Germany); Kulikovskiy, V. [INFN - Sezione di Genova, Genova (Italy); Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Leonora, E.; Lo Presti, D. [INFN - Sezione di Catania, Catania (Italy); Dipartimento di Fisica ed Astronomia dell' Universita, Catania (IT); Loucatos, S.; Schuessler, F.; Stolarczyk, T.; Vallage, B.; Vernin, P. [CEA Saclay, Direction des Sciences de la Matiere, Institut de recherche sur les lois fondamentales de l' Univers, Service de Physique des Particules, Gif-sur-Yvette Cedex (FR); Montaruli, T. [INFN - Sezione di Bari, Bari (IT); Universite de Geneve, Departement de Physique Nucleaire et Corpusculaire, Geneva (CH); Morganti, M. [INFN - Sezione di Pisa, Pisa (IT); Pradier, T. [Universite de Strasbourg et CNRS/IN2P3, IPHC-Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, BP 28, Strasbourg Cedex 2 (FR); Rostovtsev, A. [ITEP - Institute for Theoretical and Experimental Physics, Moscow (RU); Samtleben, D.F.E. [Nikhef, Amsterdam (NL); Universiteit Leiden, Leids Instituut voor Onderzoek in Natuurkunde, Leiden (NL); Taiuti, M. [INFN - Sezione di Genova, Genova (IT); Dipartimento di Fisica dell' Universita, Genova (IT); Tayalati, Y. [University Mohammed I, Laboratory of Physics of Matter and Radiations, B.P. 717, Oujda (MA)

    2013-10-15

    Atmospheric neutrinos are produced during cascades initiated by the interaction of primary cosmic rays with air nuclei. In this paper, a measurement of the atmospheric {nu}{sub {mu}} + anti {nu}{sub {mu}} energy spectrum in the energy range 0.1-200 TeV is presented, using data collected by the ANTARES underwater neutrino telescope from 2008 to 2011. Overall, the measured flux is {proportional_to}25 % higher than predicted by the conventional neutrino flux, and compatible with the measurements reported in ice. The flux is compatible with a single power-law dependence with spectral index {gamma}{sub meas}=3.58{+-}0.12. With the present statistics the contribution of prompt neutrinos cannot be established. (orig.)

  1. Facilities & Leadership

    Data.gov (United States)

    Department of Veterans Affairs — The facilities web service provides VA facility information. The VA facilities locator is a feature that is available across the enterprise, on any webpage, for the...

  2. Biochemistry Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Biochemistry Facility provides expert services and consultation in biochemical enzyme assays and protein purification. The facility currently features 1) Liquid...

  3. Actinide measurements by AMS using fluoride matrices

    Science.gov (United States)

    Cornett, R. J.; Kazi, Z. H.; Zhao, X.-L.; Chartrand, M. G.; Charles, R. J.; Kieser, W. E.

    2015-10-01

    Actinides can be measured by alpha spectroscopy (AS), mass spectroscopy or accelerator mass spectrometry (AMS). We tested a simple method to separate Pu and Am isotopes from the sample matrix using a single extraction chromatography column. The actinides in the column eluent were then measured by AS or AMS using a fluoride target matrix. Pu and Am were coprecipitated with NdF3. The strongest AMS beams of Pu and Am were produced when there was a large excess of fluoride donor atoms in the target and the NdF3 precipitates were diluted about 6-8 fold with PbF2. The measured concentrations of 239,240Pu and 241Am agreed with the concentrations in standards of known activity and with two IAEA certified reference materials. Measurements of 239,240Pu and 241Am made at A.E. Lalonde AMS Laboratory agree, within their statistical uncertainty, with independent measurements made using the IsoTrace AMS system. This work demonstrated that fluoride targets can produce reliable beams of actinide anions and that the measurement of actinides using fluorides agree with published values in certified reference materials.

  4. AMS-01: First flight, first results; future AMS-02

    International Nuclear Information System (INIS)

    The Alpha Magnetic Spectrometer (AMS) was constructed 1995-1997 as a particle spectrometer in space. During the shuttle flight SPS91 June 2-12, 1998 it received 100 h of data in space. No antihelium was found among 2.8 million He nuclei and no antimatter in 156,000 Z>2 nuclei. Protons were measured with very high accuracy, including detailed second spectra below the cutoff. Fits to the spectra above 10 GeV are given. Surprisingly, at the magnetic equator, positrons are four times more copious than electrons. He nuclei below the cutoff are dominantly He3. A short description of the complete detector for the 3 years on the space station ISS is presented

  5. Plutonium measurements on the 1 MV AMS system at the Centro Nacional de Aceleradores (CNA)

    International Nuclear Information System (INIS)

    Plutonium isotopes have been recently added to the list of radionuclides that can be measured with the new generation of compact AMS facilities. In this paper we present first experimental results concerning the development of the plutonium AMS technique at 680 kV on the 1 MV AMS system at the Centro Nacional de Aceleradores (CNA) in Sevilla, Spain. This is the first compact AMS machine designed and manufactured by High Voltage Engineering Europa. As we demonstrate, the obtained backgrounds for 239,240Pu, of about 106 atoms, and the 239Pu/238U mass suppression factor, in the range of 10-9, compare to the ones achieved on other AMS facilities. With the measurement of reference materials provided by the International Atomic Energy Agency (IAEA-375, IAEA-Soil-6, IAEA-381) and samples already studied on the 600 kV compact ETH/PSI AMS system at Zuerich, we show that the CNA system can be perfectly used for the routine measurement of plutonium isotopes at environmental levels.

  6. AMS Days: "the results are phenomenal"

    CERN Multimedia

    2015-01-01

    Following the conclusion of the successful AMS Days at CERN (see here), we sat down with leading minds in space science and particle physics to discuss their thoughts on the recent positron-excess results as well as the future of the AMS physics programme.   Samuel Ting, AMS spokesperson: Roberto Battiston, President of the Italian Space Agency (ASI): William H. Gerstenmaier, Human Exploration and Operations Directorate, NASA: Edward C. Stone (Caltech), Voyager 1 and 2 principal investigator:

  7. The AMS-02 electromagnetic calorimeter

    CERN Document Server

    Cadoux, F; Chambert-Hermel, V; Chen, G; Chen, H; Coignet, G; Di Falco, S; Dubois, J M; Falchini, E; Franzoso, A; Fougeron, D; Fouque, N; Galeotti, S; Girard, L; Goy, C; Hermel, R; Incagli, M; Kossakowski, R; Lieunard, B; Liu, Y; Liu, Z; Lomtadze, T A; Maestro, P; Marrocchesi, P S; Paoletti, R; Pilo, F; Rosier-Lees, S; Spinella, F; Turini, N; Valle, G D; Venanzoni, G; Vialle, J P; Yu, Z; Zhuang, H

    2002-01-01

    The Electromagnetic Calorimeter (ECAL) of the AMS-02 experiment is a lead-scintillating fibers sampling calorimeter characterized by high granularity that allows to image the longitudinal and lateral showers development, a key issue to provide high electron/hadron discrimination. The light collection system and the FE electronics are designed to let the calorimeter operate over a wide energy range from few GeV up to 1 TeV. A full-scale prototype of the e.m. calorimeter was tested at CERN in October 2001 using electrons and pions beams with energy ranging from 3 to 100 GeV. Effective sampling thickness, linearity and energy resolution were measured. (8 refs).

  8. Am-241 buildup in nematode organisms

    International Nuclear Information System (INIS)

    The process of Am-241 intake into earthworm organisms from chernozem leached in their presence in soil contaminated with this radionuclide is studied. The data on Am-241 buildup values during long-time radionuclide intake into earthworm organisms from soil are given. It s shown that Am-241 buildup in earthworm organisms do not exceed its concentration in soil for the whole observation period (as Am-241 presents in soil in state unavailable for animals). Intensive extraction of the radionuclide from the organisms is observed when earthworm contacts with soil are stopped

  9. Upgrading the Neutron Radiography Facility in South Africa (SANRAD): Concrete Shielding Design Characteristics

    Science.gov (United States)

    de Beer, F. C.; Radebe, M. J.; Schillinger, B.; Nshimirimana, R.; Ramushu, M. A.; Modise, T.

    A common denominator of all neutron radiography (NRAD) facilities worldwide is that the perimeter of the experimental chamber of the facility is a radiation shielding structure which,in some cases, also includes flight tube and filter chamber structures. These chambers are normally both located on the beam port floor outside the biological shielding of the neutron source. The main function of the NRAD-shielding structure isto maintain a radiological safe working environment in the entire beam hall according to standards set by individual national radiological safety regulations. In addition, the shielding's integrity and capability should not allow, during NRAD operations, an increase in radiation levels in the beam port hall and thus negatively affectadjacent scientific facilities (e.g. neutron diffraction facilities).As a bonus, the shielding for the NRAD facility should also prevent radiation scattering towards the detector plane and doing so, thus increase thecapability of obtaining better quantitative results. This paper addresses Monte Carlo neutron-particletransport simulations to theoretically optimize the shielding capabilities of the biological barrierfor the SANRAD facility at the SAFARI-1 nuclear research reactor in South Africa. The experimental process to develop the shielding, based on the principles of the ANTARES facility, is described. After casting, the homogeneity distribution of these concrete mix materials is found to be near perfect and first order experimental radiation shielding characteristicsthrough film badge (TLD) exposure show acceptable values and trends in neutron- and gamma-ray attenuation.

  10. Preliminary evaluation of Am/Cm melter feed preparation process upset recovery flowsheets

    International Nuclear Information System (INIS)

    This document summarizes the results from the development of flowsheets to recover from credible processing errors specified in TTR 99-MNSS/SE-006. The proposed flowsheets were developed in laboratory scale equipment and will be utilized with minor modifications for full scale demonstrations in the Am/Cm Pilot Facility

  11. Indirect search for dark matter with AMS

    International Nuclear Information System (INIS)

    This document summarises the potential of AMS in the indirect search for Dark Matter. Observations and cosmology indicate that the Universe may include a large amount of Dark Matter of unknown nature. A good candidate is the Ligthest Supersymmetric Particle in R-Parity conserving models. AMS offers a unique opportunity to study Dark Matter indirect signature in three spectra: gamma, antiprotons and positrons

  12. Applications of AMS to hydrology

    International Nuclear Information System (INIS)

    The evaluation and management of water as a resource requires an understanding of the chemical, and geological interactions that water effects or undergoes in the hydrologic cycle. Delivery of water to the land surface by precipitation, subsequent streamflow, circulation in surface waters and evapotranspiration, infiltration, recharge, movement of waters in the subsurface, and discharge are of interest. Also important are the quality of water, water's role in mineral dissolution, transport, and deposition, and the various water-related geotechnical problems of subsidence, tectonics, slope instability, and earth structures. Mathematical modeling techniques are available and are being improved which describe these phenomena and predict future system behavior. Typically, however, models suffer from substantial uncertainties due to insufficient data. Refinement, calibration,and verification of hydrologic models require expansion of the data base. Examination of chemical constituents of water which act as tracers can often supply the needed information. Unfortunately, few tracers are available which are both mobile and chemically stable. Several long-lived radioisotopic hydrologic tracers exist, however, which have received little attention in hydrologic studies to date because of low concentration, low specific activity, or sample size limitations. Recent development of ultra-sensitive accelerator mass spectrometry techniques (AMS) by Purser and others (1977), Nelson and others (1977), Bennett and others (1978), Muller and others (1978), Raisbeck and others (1978) is now expected to provide access to many of these tracers

  13. Experimental facilities

    International Nuclear Information System (INIS)

    We have completed an engineering feasibility study of a major modification of the HFIR facility and are now beginning a similar study of an entirely new facility. The design of the reactor itself is common to both options. In this paper, a general description of the modified HFIR is presented with some indications of the additional facilities that might be available in an entirely new facility

  14. The stray capacitance effect in Kelvin probe force microscopy using FM, AM and heterodyne AM modes

    International Nuclear Information System (INIS)

    The effect of stray capacitance on potential measurements was investigated using Kelvin probe force microscopy (KPFM) at room temperature under ultra-high vacuum (UHV). The stray capacitance effect was explored in three modes, including frequency modulation (FM), amplitude modulation (AM) and heterodyne amplitude modulation (heterodyne AM). We showed theoretically that the distance-dependence of the modulated electrostatic force in AM-KPFM is significantly weaker than in FM- and heterodyne AM-KPFMs and that the stray capacitance of the cantilever, which seriously influences the potential measurements in AM-KPFM, was almost completely eliminated in FM- and heterodyne AM-KPFMs. We experimentally confirmed that the contact potential difference (CPD) in AM-KPFM, which compensates the electrostatic force between the tip and the surface, was significantly larger than in FM- and heterodyne AM-KPFMs due to the stray capacitance effect. We also compared the atomic scale corrugations in the local contact potential difference (LCPD) among the three modes on the surface of Si(111)-7 × 7 finding that the LCPD corrugation in AM-KPFM was significantly weaker than in FM- and heterodyne AM-KPFMs under low AC bias voltage conditions. The very weak LCPD corrugation in AM-KPFM was attributed to the artefact induced by topographic feedback. (paper)

  15. Le tecniche AMS e IBA del CEDAD per lo studio dei Beni Culturali, Ambientali e per la Scienza dei Materiali

    OpenAIRE

    Lucio Calcagnile

    2011-01-01

    ItGli acceleratori di particelle sono diventati un potente strumento per la diagnostica dei materiali in molti campi di ricerca. Questo articolo descrive la facility AMS-IBA installata presso il CEDAD – Centro di Datazione e Diagnostica dell’Università del Salento e riporta alcune applicazioni in Archeologia, Scienze ambientali e Scienza dei materiali.EnParticle accelerators have become a powerful tool for the diagnostics of materials in many research fields. This paper describes the AMS-IBA...

  16. Determination of 241Am in reindeer bone

    International Nuclear Information System (INIS)

    The purpose of this work was to develop a procedure to separate americium from other alpha active nuclides present in reindeer bone samples, especially 228Th and its daughter nuclides. The 241Am-spectrum of a reindeer bone sample analyzed using the proposed method is given. The α-spectrum was measured one week after electrodeposition. The absence of the alpha peak of 224Ra, the daughter nuclide of 228Th, indicates that no 228Th was electrodeposited onto the platinum disc. Four reindeer bone samples were analyzed for 241Am using the method developed. The 241Am/239240Pu activity ratio in reindeer bone was 0.9 :- 0.4. These results indicate that compared to plutonium, americium is accumulated in reindeer bone more heavily than in liver. All 241Am values presented are concentrations at the time of radioassay, and no correction has been made for the ingrowth of 241Am formed by the decay of 241Pu during stockpilling. However, all 241Am determinations were made 1 to 3 yrs after sample collection, and thus the corrections due to the ingrowth can be considered slight. About 60% of plutonium body burden is located in liver and 20% in skeleton. The activity ratio 241Am/239240Pu in these animals was about 0.2 and 1.0 in liver and skeleton, respectively. This indicates that about 60% of the 241Am body burden is located in skeleton and about 30% in liver. It can be roughly estimated that the whole-body activity of 241Am is thus about 40% of the 239240Pu body burden

  17. Detection of magnetic monopoles in the future neutrino telescope Antares and characterization of the photomultiplier pulse treatment; Etude de la detection de monopoles magnetiques au sein du futur telescope a neutrinos antares et caracterisation des performances du traitement des impulsions des photomultiplicateurs

    Energy Technology Data Exchange (ETDEWEB)

    Ricol, J.St

    2002-10-01

    Grand unified theories (GUT) involve phase transitions in the early universe, that could create topological defects, like magnetic monopoles. Monopoles main characteristics are shown and in particular energy losses and flux limits. High energy neutrino telescopes offer a new opportunity for magnetic monopole search. The study of the photomultiplier pulse treatment by the Antares detector front-end electronics indicates that this one is well adapted to the telescope needs. The pulses detailed analysis has allowed to obtain a time measurement precision lower than 0.6 ns and electronic noise and saturation have no relevant effect on the telescope performances. Relativistic monopoles generate a large amount of light, that leads to an effective area for the Antares detector of about 0.06 km{sup 2} for velocities {beta}{sub mon} = 0.6 and 0.35 km{sup 2} for velocities {beta}{sub mon} {approx} 1. Monopole track are well reconstructed and the velocity determination is made with an error lower than few percents, which represents a decisive result for the background rejection, caused by high energy muons with a velocity {beta}{sub {mu}} {approx} 1. The very dispersive light emission of monopoles below the Cherenkov limit, 0.6 {approx}< {beta}{sub mon} {<=} 0.74, via the delta-rays produced by ionisation, does not allow an accurate expecting signal and the bad reconstructed muons rejection must be improved. Above the Cherenkov limit, {beta}{sub mon} {>=} 0.8, bad reconstructed events can be rejected from the Cherenkov emission parametrisation. A magnetic monopole signal can then clearly be distinguished from background. (author)

  18. AMS 14C measurement of small volume oceanic water samples: Experimental procedure and comparison with low-level counting technique

    International Nuclear Information System (INIS)

    The technique for small volume oceanic AMS 14C measurement is described. The procedure includes sampling, CO2 extraction from the water samples, target preparation and measurement at the ETH/SIN AMS facility. AMS 14C data from a station in the southern Weddell Sea with an accuracy of ±5per mille are presented. The data are in good agreement with large volume 14C measurements done by conventional low-level counting techniques with an accuracy of ±2per mille. (orig.)

  19. Computational thermodynamic study on the complexes of Am(III) with tridentate N-donor ligands

    International Nuclear Information System (INIS)

    To assess the role of the lateral triazine group of 2,6-bis(1,2,4-triazin-3-yl) pyridine (BTP) when coordinated to Am(III), three tridentate N-donor ligands, i.e. BTP, 6-(-2-pyridyl)-2-pyridyl (hemi-BTP), and 2,2':6'2''- terpyridine (TPY), have been used to construct coordination complexes with Am(III), and the structures and binding modes of these complexes have been investigated using the B3LYP functional. The 1:1 and 1:2 (metal: ligand) type complexes, based on our calculations, form mainly via reactions Am(H2O)3(NO3)3+ L → AmL(NO3)3 + 3H2O and [Am(H2O)6(NO3)2]+ 2L → [AmL2(NO3)2]+ + 6H2O. The Gibbs free energy changes were in the order of TPY ≥ hemi-BTP ≥ BTP, independent of the presence of nitrate ions in the complexes. We show that in 1:1 type complexes substitution of electron-donating groups to the three ligands can enhance their binding ability. From analysis of NPA charge and Mayer Bond Order, it is found that the value of binding free energy is correlated with charge transfers between the central metal and the ligand: the larger the ligand-to-metal charge transfer, the more negative the binding energy, and meanwhile, the smaller the Mayer bond order of the Am-N bonds. This suggests that the interaction between Am(III) and the tridentate ligands has a strong ionic feature, which is confirmed by the quantum theory of atoms-in-molecules (QTAIM) topological analysis. According to our calculations, the presence of the triazine group in BTP and hemi-BTP does not improve the binding affinity of the ligand to Am(III), compared to TPY, but facilitates the ligand to adopt a conformation that favors to coordinate with Am3+ than others via a dynamic isomerization process, and the electron-donating groups on the triazine group may enhance the charge transfer between Am(III) and the ligand, and thus stabilize the complex. We tentatively propose that the facile conversion between the conformations of BTP, which is more difficult for TPY and

  20. Photometry and dynamics of the minor mergers AM\\,1228-260 and AM\\,2058-381

    CERN Document Server

    Hernandez-Jimenez, J A; Bonatto, C; Rodrigues, I; Krabbe, A C; Winge, Cláudia

    2015-01-01

    We investigate interaction effects on the dynamics and morphology of the galaxy pairs AM\\,2058-381 and AM\\,1228-260. This work is based on $r'$ images and long-slit spectra obtained with the Gemini Multi-Object Spectrograph at the Gemini South Telescope. The luminosity ratio between the main (AM\\,2058A) and secondary (AM\\,2058B) components of the first pair is a factor of $\\sim$ 5, while for the other pair, the main (AM\\,1228A) component is 20 times more luminous than the secondary (AM\\,1228B). The four galaxies have pseudo-bulges, with a S\\'ersic index $n<2$. Their observed radial velocities profiles (RVPs) present several irregularities. The receding side of the RVP of AM\\,2058A is displaced with respect to the velocity field model, while there is a strong evidence that AM\\,2058B is a tumbling body, rotating along its major axis. The RVPs for AM\\,1228A indicate a misalignment between the kinematic and photometric major axes. The RVP for AM\\,1228B is quite perturbed, very likely due to the interaction wit...

  1. A new and compact system at the AMS laboratory in Bucharest

    Science.gov (United States)

    Stan-Sion, C.; Enachescu, M.; Petre, A. R.; Simion, C. A.; Calinescu, C. I.; Ghita, D. G.

    2015-10-01

    AMS research started more than 15 years ago at our National Institute for Physics and Nuclear Engineering (IFIN-HH), Bucharest. A first facility was constructed based on our multipurpose 9 MV tandem accelerator and was upgraded several times. In May 2012 a new Cockcroft Walton type 1 MV HVEE tandetron AMS system, was commissioned. Two chemistry laboratories were constructed and are routinely performing the target preparation for carbon dating and for other isotope applications such as for geology, environment physics, medicine and forensic physics. Performance parameters of the new system are shown.

  2. High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER

    CERN Document Server

    Ohnaka, Keiichi; Schertl, Dieter; Weigelt, Gerd; Baffa, Carlo; Chelli, Alain; Petrov, Romain; Robbe-Dubois, Sylvie

    2013-01-01

    We present high spectral resolution aperture-synthesis imaging of the red supergiant Antares (alpha Sco) in individual CO first overtone lines with VLTI/AMBER. The reconstructed images reveal that the star appears differently in the blue wing, line center, and red wing and shows an asymmetrically extended component. The appearance of the star within the CO lines changes drastically within one year, implying a significant change in the velocity field in the atmosphere. Our modeling suggests an outer atmosphere (MOLsphere) extending to 1.2--1.4 stellar radii with CO column densities of (0.5--1)x10^{20} cm^{-2} and a temperature of ~2000 K. While the velocity field in 2009 is characterized by strong upwelling motions at 20--30 km/s, it changed to strong downdrafts in 2010. On the other hand, the AMBER data in the continuum show only a slight deviation from limb-darkened disks and only marginal time variations. We derive a limb-darkened disk diameter of 37.38+/-0.06 mas and a power-law-type limb-darkening paramet...

  3. Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope

    CERN Document Server

    Adrián-Martínez, S; André, M; Anton, G; Ardid, M; Aubert, J -J; Baret, B; Barrios-Martí, J; Basa, S; Bertin, V; Biagi, S; Bogazzi, C; Bormuth, R; Bou-Cabo, M; Bouwhuis, M C; Bruijn, R; Brunner, J; Busto, J; Capone, A; Caramete, L; Carr, J; Chiarusi, T; Circella, M; Coniglione, R; Costantini, H; Coyle, P; Creusot, A; Dekeyser, I; Deschamps, A; De Bonis, G; Distefano, C; Donzaud, C; Dornic, D; Drouhin, D; Dumas, A; Eberl, T; Elsässer, D; Enzenhöfer, A; Fehn, K; Felis, I; Fermani, P; Folger, F; Fusco, L A; Galatà, S; Gay, P; Geißelsöder, S; Geyer, K; Giordano, V; Gleixner, A; Gracia-Ruiz, R; Graf, K; van Haren, H; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herrero, A; Hößl, J; Hofestädt, J; Hugon, C; James, C W; de Jong, M; Kadler, M; Kalekin, O; Katz, U; Kießling, D; Kooijman, P; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lambard, G; Lattuada, D; Lefèvre, D; Leonora, E; Loucatos, S; Mangano, S; Margiotta, A; Martínez-Mora, J A; Martini, S; Mathieu, A; Michael, T; Migliozzi, P; Moussa, A; Mueller, C; Neff, M; Nezri, E; Păvălaş, G E; Pellegrino, C; Perrina, C; Piattelli, P; Popa, V; Pradier, T; Racca, C; Riccobene, G; Richter, R; Roensch, K; Rostovtsev, A; Saldaña, M; Samtleben, D F E; Sanguineti, M; Sapienza, P; Schmid, J; Schnabel, J; Schulte, S; Schüssler, F; Seitz, T; Sieger, C; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Trovato, A; Tselengidou, M; Tönnis, C; Turpin, D; Vallage, B; Vallée, C; Van Elewyck, V; Visser, E; Vivolo, D; Wagner, S; Wilms, J; Zornoza, J D; Zúñiga, J

    2015-01-01

    The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, and the point-source sensitivity improved, by selecting a narrow time window around possible neutrino production periods. Blazars, being radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the very high-energy cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions with the surrounding medium. Moreover, blazars generally show high time variability in their light curves at different wavelengths and on various time scales. This paper presents a time-dependent analysis applied to a selection of flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV Cherenkov telescopes using ...

  4. Biosorption of 241Am by R. arrihizus

    International Nuclear Information System (INIS)

    The Biosorption of radionuclide 241Am on R.arrihizus from aqueous solution and the effects of the experimental conditions on the biosorption are investigated by the batch technique. The experimental results show that the R.arrihizus is a very efficient sorbent. The biosorption reaches equilibration in 1 h, the optimum pH range is 1-3. No significant temperature effect on 241Am biosorption is observed in the range of 10-45 degree C. No significant differences of biosorption in the presence and absence of Au3+ or Ag+ are observed. The relationship between concentrations of 241Am in aqueous solutions and adsorption capacities of 241Am can be described by the Freundlich adsorption equation

  5. Biosorption of 241Am by microorganism

    International Nuclear Information System (INIS)

    The biosorption of 241Am on A. niger, R. arrihizus and Candida albicans from aqueous solution, and the effects of the experimental conditions on the biosorption are investigated by the batch technique. The experimental results show that all the microorganism above are very efficient as the sorbent. The biosorption equilibrium time is 2 h and the optimum pH ranges 1-3. No significant differences on 241Am biosorption are observed at the temperature of 15-45 degree C, or in the presence and absence of Au3+ or Ag+. The relationship between concentrations of 241Am in aqueous solutions and adsorption capacities of 241Am can be described by the Freundlich adsorption equation on A. niger and R. arrihizus, while as it can be done by the Langmuir adsorption equation on Candida albicans

  6. AMS DAYs 2015 - Interview William H. Gerstenmaier

    CERN Multimedia

    2015-01-01

    William H. Gerstenmaier, associate administrator for the Human Exploration and Operations Directorate at NASA, tells about the science aat the International Space Station and the tasks to be performed to make sure the AMS detector, installed on the main

  7. Challenge of COPD: Am I at Risk?

    Science.gov (United States)

    ... please turn JavaScript on. Feature: The Challenge of COPD Am I at Risk? Past Issues / Fall 2014 ... or the American Lung Association's COPD information section. COPD Learn More Breathe Better ® Program The COPD Learn ...

  8. AMS prepares for long stay in space

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Following the successful space qualification tests at the ESA Technology Centre (ESTEC) in Noordwijk in the Netherlands, AMS is now back in the integration hall at CERN Prévessin. The collaboration is replacing the superconducting magnet with a permanent (non-superconducting) one, which will ensure reliable operation of the experiment for the recently planned longer run on board the International Space Station (ISS).   Work is under way at the AMS integration hall at CERN Prévessin. Following a trip to ESTEC in Noordwijk in the Netherlands, where tests confirmed its fitness for launch into space on board the International Space Station (ISS), the AMS experiment is now back at CERN for final modifications. “The collaboration agreed to adopt a modified configuration that, among other things, re-uses the permanent magnet of the AMS-01 prototype that was flown into space in 1998”, says Samuel Ting, Spokesperson of the AMS experiment. Althoug...

  9. Intervista Roberto Battiston, vice-portavoce AMS

    CERN Multimedia

    CERN Video Productions

    2011-01-01

    "L'universo è un'acceleratore di raggi cosmici che non è mai in shut down!"Commento sulla prima fase di funzionamento di AMS, a due mesi dal lancio nello spazio e dall'installazione sulla Stazione Spaziale Internazionale, con un flusso ininterrotto di dati: 100 milioni di trigger alla settimana.(2'19) Rest of video: rushes of the AMS POCC (Payload and Operations Control Centre) at CERN - Prevessin site.

  10. Psychische Gesundheit am Arbeitsplatz in Deutschland

    OpenAIRE

    2008-01-01

    "Schon wieder ein Bericht zur Gesundheit am Arbeitsplatz!", mag so mancher denken, der den diesjährigen Bericht des Berufsverbandes der Deutschen Psychologinnen und Psychologen zur psychischen Lage der Nation in die Hand nimmt. Reichen denn nicht die jährlichen Berichte der Krankenkassen zur Gesundheit der Erwerbstätigen? Was macht gerade diesen Bericht so wichtig und interessant? Er beleuchtet das Thema "Psychische Gesundheit am Arbeitsplatz" aus den verschiedensten Perspektiven. So wird ...

  11. New results from AMS cosmic ray measurements

    OpenAIRE

    Huang, M. A.

    2002-01-01

    The Alpha Magnetic Spectrometer (AMS) is a detector designed to search for antimatter in the cosmic rays. The physics results from the test flight in June 1998 are analyzed and published. This paper reviews the results in the five published papers of the AMS collaboration, updates the current understanding of two puzzles, albedo $e^+/e^-$ and albedo $^3$He, and disscusses the influence of albedo particles.

  12. Digitale Grauwertanalyse am Endometrium puerperaler Stuten

    OpenAIRE

    Schlomm, Stefanie

    2013-01-01

    In der Zyklusdiagnostik von Stuten hat sich die digitale Grauwertanalyse als ein sensitives Verfahren zur Erfassung zyklisch bedingter Veränderungen am Endometrium geschlechts-gesunder Stuten bewährt. Darüber hinaus ist mit Hilfe der digitalen Grauwertanalyse die Differenzierung zwischen physiologischen und pathologischen Prozessen am Endometrium zyklischer Stuten möglich. Ziel dieser Untersuchung war es, herauszufinden inwieweit sich die digitale Grauwertanalyse als diagnostische Methode...

  13. Biosorption of 241Am by Candida sp

    International Nuclear Information System (INIS)

    The biosorption of radionuclide 241Am from solutions by Candida sp., and the influences of experimental conditions on the adsorption were studied. The results showed that the adsorption equilibrium was achieved within 4h and the optimum pH=2. No significant differences on 241Am biosorption were observed at 10-45 degree C, or challenged with Au3+ or Ag+, even 1500 times or 4500 times over 241Am, respectively. The adsorption rate could reach 97.8% by dry Candida sp. of 0.82 g/L in 241Am solutions (pH=2) of 5.6-111 MBq/L (44.04-873.0 μg/L) (C0), with maximum adsorption capacity (W) of 63.5 MBq/g (501.8 μg/g), implying that the removal of 241Am by Candida sp. from solutions was feasible. The relationship between activities (C0) and adsorption capacities (W) of 241Am indicated that the biosorption process could be described by Langmuir adsorption isotherm

  14. Plant uptake and transport of 241Am

    International Nuclear Information System (INIS)

    We conducted several experiments with 241Am to obtain a more complete understanding of how this transuranium element is absorbed and transported in plants. In a plant species (Tamarix pentandra Pall.) that has salt glands in the leaves excreting NaCl and other ions, 241Am was not pumped through these glands. Cyanide, which forms complexes with any metals, when applied to a calcareous soil, greatly increased the transport of 241Am into stems and leaves of bush bean plants. Radioactive cyanide (14C) was also transported to leaves and stems. When radish was grown in both calcareous and noncalcareous soils, 241Am appeared to be fixed on the peel so firmly that it was resistant to removal by HNO3 washing. The chelating agent DTPA induced increased transport of 241Am to leaves and into the fleshy roots of the radish. Data for Golden Cross hybrid corn grown in solution culture showed at least seven times as much 241Am transport to the xylem exudatields are corrected by recovery of added tracers

  15. Animal facilities

    International Nuclear Information System (INIS)

    The animal facilities in the Division are described. They consist of kennels, animal rooms, service areas, and technical areas (examining rooms, operating rooms, pathology labs, x-ray rooms, and 60Co exposure facilities). The computer support facility is also described. The advent of the Conversational Monitor System at Argonne has launched a new effort to set up conversational computing and graphics software for users. The existing LS-11 data acquisition systems have been further enhanced and expanded. The divisional radiation facilities include a number of gamma, neutron, and x-ray radiation sources with accompanying areas for related equipment. There are five 60Co irradiation facilities; a research reactor, Janus, is a source for fission-spectrum neutrons; two other neutron sources in the Chicago area are also available to the staff for cell biology studies. The electron microscope facilities are also described

  16. 47 CFR 73.128 - AM stereophonic broadcasting.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false AM stereophonic broadcasting. 73.128 Section 73.128 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) BROADCAST RADIO SERVICES RADIO BROADCAST SERVICES AM Broadcast Stations § 73.128 AM stereophonic broadcasting. (a) An Am broadcast...

  17. Determination of the242 m Am nuclear moments

    Science.gov (United States)

    Bekk, K.; Göring, S.; Kälber, W.; Meisel, G.; Rebel, H.; Sameh, A. Ali

    1988-09-01

    The hyperfine structure of Am atoms was investigated in an atomic beam by laser spectroscopy. The observed splittings were evaluated with respect to the magnetic dipole and electric quadrupole moments of242 m Am. The results are: μ I (242 m Am)=+0.97(5)nm, Q(242 m Am)=+6.5(2.0)b.

  18. Determination of the 242mAm nuclear moments

    International Nuclear Information System (INIS)

    The hyperfine structure of Am atoms was investigated in an atomic beam by laser spectroscopy. The observed splittings were evaluated with respect to the magnetic dipole and electric quadrupole moments of 242mAm. The results are: μI(242mAm) = +0.97(5) nm, Q(242mAm) = +6.5(2.0) b. (orig.)

  19. Estimation of the thermal neutron flux and its application by accelerator mass spectrometry (AMS)

    International Nuclear Information System (INIS)

    Accelerator Mass Spectrometry (AMS) is the most powerful tool for detection of long-lived radio-nuclides. 36Cl is a long-lived radio nucleus (T1/2=3.0x105 years) and created mainly through a thermal neutron capture process of 35Cl(n,γ)36Cl. The 36Cl/35Cl ratio can be obtained with a precision of 3% for the standard sample of 36Cl/35Cl-10-12 by the AMS system at University of Tsukuba. The effective lower limit of 36Cl/35Cl ratio is achieved to 3-4x10-14. We applied to estimate the strength of the thermal neutron flux in KCl samples from JCO nuclear accidental site, granite samples from Hiroshima A-bomb site and the shielding concrete of accelerator facilities by 36Cl-AMS measurements. The depth profiles of 36Cl/35Cl in shielding concrete for several accelerator facilities were compared with the results of γ emitters induced by thermal neutrons. It was confirmed that the 36Cl-AMS measurement is a useful tool to estimate the integrated thermal neutron flux. (author)

  20. Pulsar interpretation for the AMS-02 result

    CERN Document Server

    Yin, Peng-Fei; Yuan, Qiang; Bi, Xiao-Jun

    2013-01-01

    The AMS-02 collaboration has just published a high precision measurement of the cosmic positron fraction $e^+/(e^- + e^+)$, which rises with energy from $\\sim 5$ GeV to $\\sim 350$ GeV. The result indicates the existence of primary electron/positron sources to account for the positron excess. In this work, we investigate the possibility that the nearby mature pulsars are the primary positron sources. By fitting the data we find that the positrons from a single nearby pulsar, such as Geminga or Monogem, with the spectral index $\\alpha \\sim 2$ can interpret the AMS-02 result. We also investigate the possibility that high energy positrons are generated by multiple known pulsars in the ATNF catalogue. Such a scenario can also fit the AMS-02 data well. Future precise measurements of fine structures in the positron spectrum would be a support to the pulsar scenario.

  1. AMS-02 in Space: Physics Results

    CERN Document Server

    Tomassetti, Nicola

    2015-01-01

    The Alpha Magnetic Spectrometer (AMS-02) is a particle physics experiment designed to study origin and nature of Galactic Cosmic Rays (CRs) up to TeV energies from space. With its high sensitivity, long exposure and excellent identification capabilities, AMS is conducting a unique mission of fundamental physics research in space. To date, more than 60 billion CR events have been collected by AMS. The new results on CR leptons and the analysis and light-nuclei are presented and discussed. The new leptonic data indicate the existence of new sources of high-energy CR leptons, that may arise either by dark-matter particles annihilation or by nearby astrophysical sources of $e^{\\pm}$ pairs. Future data at higher energies and forthcoming measurements on the antiproton spectrum and the boron-to-carbon ratio will be crucial in providing the discrimination among the different scenario.

  2. AMS: Area Message Service for SLC

    International Nuclear Information System (INIS)

    The Area Message Service (AMS) is a TCP/IP based messaging service currently in use at SLAC. A number of projects under development here at SLAC require and application level interface to the 4.3BSD UNIX socket level communications functions using TCP/IP over ethernet. AMS provides connection management, solicited message transfer, unsolicited message transfer, and asynchronous notification of pending messages. AMS is written completely in ANSI 'C' and is currently portable over three hardware/operating system/network manager platforms, VAX/VMS/Multinet, PC/MS-DOS/Pathworks, VME 68K/pSOS/pNA. The basic architecture is a client-server connection where either end of the interface may be the server. This allows for connections and data flow to be initiated from either end of the interface. Included in the paper are details concerning the connection management, the handling of the multi-platform code, and the implementation process

  3. Biomedical tritium applications with AMS detection

    International Nuclear Information System (INIS)

    There are numerous applications for tritium (3 H) as a tracer isotope in biomedicine commonly combined with liquid scintillation counting method. The use of accelerator mass spectrometry (AMS), a rather new detection method will, enlarge and open new possibilities for tritium applications in biomedicine, especially when sample volumes are small. The tritium in the samples has to be transformed to solid form, which yields a high output of negative hydrogen ion current. The sample preparation is done in two steps: firstly extracting water from the biological sample and secondly, extracting hydrogen/tritium from the water and forming a chemically suitable compound for the AMS ion source. In this paper a chemical for the sample preparation is described. The results of the first measurements of tritiated water with known activity using the AMS detection technique will also be presented.(authors)

  4. Commissioning results of the Amsterdam Pulse Stretcher/Storage ring AmPS

    International Nuclear Information System (INIS)

    AmPS has been built to enhance substantially the main specifications of the 1 % duty factor 550 MeV electron accelerator facility MEA. The maximum energy will be raised to 0.9 GeV while the duty factor increases from 1 % to approximately 100 %. To this purpose the ring AmPS was added to the facility. Simultaneously the linac was upgraded both in current and energy. Two modes of operation for the ring are implemented: a Pulse Stretcher mode with 3 turn injection creating an external beam, and a Storage Mode with multi turn injection for internal target physics. The commissioning of the ring started in April 1992. Within two months 10 % duty factor beams could be delivered for electron scattering experiments. Meanwhile the performance of the machine has been improved dramatically. The actual performance of the ring is presented and is compared with the initial design goals

  5. Extraction of Am3+ from concentrated solutions

    International Nuclear Information System (INIS)

    Diamond and coworkers published a series of valuable papers on the extraction and ion exchange behavior of metal cations in concentrated aqueous of mineral acids. The authors have extended such studies to the behavior of Am3+ in solutions of NX where N = H+, Li+, Na+, and X- = ClO4-, Cl- and NO3-. The variation of the extraction coefficient is interpreted in terms of ion exchange, complexation and salting out behavior. These effects on Am3+ extraction are contrasted with that on Ca2+ and Zn2+ extraction

  6. Mammography Facilities

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Mammography Facility Database is updated periodically based on information received from the four FDA-approved accreditation bodies: the American College of...

  7. Health Facilities

    Science.gov (United States)

    Health facilities are places that provide health care. They include hospitals, clinics, outpatient care centers, and specialized care centers, such as birthing centers and psychiatric care centers. When you ...

  8. Canyon Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — B Plant, T Plant, U Plant, PUREX, and REDOX (see their links) are the five facilities at Hanford where the original objective was plutonium removal from the uranium...

  9. Detection limits of pollutants in water for PGNAA using Am Be source

    Science.gov (United States)

    Khelifi, R.; Amokrane, A.; Bode, P.

    2007-09-01

    A basic PGNAA facility with an Am-Be neutron source is described to analyze the pollutants in water. The properties of neutron flux were determined by MCNP calculations. In order to determine the efficiency curve of a HPGe detector, the prompt-gamma rays from chlorine were used and an exponential curve was fitted. The detection limits for typical water sample are also estimated using the statistical fluctuations of the background level in the areas of recorded the prompt-gamma spectrum.

  10. Detection limits of pollutants in water for PGNAA using Am-Be source

    Energy Technology Data Exchange (ETDEWEB)

    Khelifi, R. [Departement de Physique, Universite Saad Dahlab, BP: 270, Blida (Algeria)], E-mail: r_khelifi@yahoo.com; Amokrane, A. [Faculte de Physique, USTHB, Bab Ezzouar, Alger (Algeria); Bode, P. [Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, 2629 JB (Netherlands)

    2007-09-15

    A basic PGNAA facility with an Am-Be neutron source is described to analyze the pollutants in water. The properties of neutron flux were determined by MCNP calculations. In order to determine the efficiency curve of a HPGe detector, the prompt-gamma rays from chlorine were used and an exponential curve was fitted. The detection limits for typical water sample are also estimated using the statistical fluctuations of the background level in the areas of recorded the prompt-gamma spectrum.

  11. Measurements of neutron cross section of the {sup 243}Am(n,{gamma}){sup 244}Am reaction

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi; Shinohara, Nobuo; Hata, Kentaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The effective thermal neutron cross section of {sup 243}Am(n,{gamma}){sup 244}Am reaction was measured by the activation method. Highly-purified {sup 243}Am target was irradiated in an aluminum capsule by using a research reactor JRR-3M. The tentative effective thermal neutron cross sections are 3.92 b, and 84.44 b for the production of {sup 244g}Am and {sup 244m}Am, respectively. (author)

  12. Characterization of strong 241Am sources

    International Nuclear Information System (INIS)

    Gamma ray spectra of strong 241Am sources may reveal information about the source composition as there may be other radioactive nuclides such as progeny and radioactive impurities present. In this work the possibility to use gamma spectrometry to identify inherent signatures in 241Am sources in order to differentiate sources from each other, is investigated. The studied signatures are age, i.e. time passed since last chemical separation, and presence of impurities. The spectra of some sources show a number of Doppler broadened peaks in the spectrum which indicate the presence of nuclear reactions on light elements within the sources. The results show that the investigated sources can be differentiated between by age and/or presence of impurities. These spectral features would be useful information in a national nuclear forensics library (NNFL) in cases when the visual information on the source, e.g. the source number, is unavailable. - Highlights: • Age and impurities can be used as a signature for 241Am sources. • Nuclear reactions take place in sources with low Z impurities. • Some sources contain 243Am as an impurity

  13. AMS: From the ISS to CERN

    CERN Multimedia

    Jordan Juras

    2011-01-01

    The week of 16 May 2011 saw the successful launch and installation of the Alpha Magnetic Spectrometer aboard the International Space Station. Only 4 minutes after the installation had been completed, cosmic event data started to be recorded and began its long journey from low Earth orbit to the newly constructed Payload Operations and Control Centre located on CERN's Prévessin site.    The AMS Control Room in the newly constructed Building 946 in CERN’s Prévessin site. Unlike the detectors around the LHC ring, the Alpha Magnetic Spectrometer (AMS) does not have the luxury of a physical connection to data-processing infrastructure. Instead, cosmic events and data on AMS itself must undergo a lengthy journey before they arrive at the Payload and Operations on the Control Centre (POCC - building 946 Prévessin site) of the AMS collaboration. A joint effort between NASA and CERN makes this transmission possible. “The Space Stat...

  14. A final test for AMS at ESTEC

    CERN Multimedia

    Paola Catapano

    2010-01-01

    The Alpha Magnetic Spectrometer (AMS) left CERN on Friday 12th February on the first leg of its journey to the International Space Station (ISS). The special convoy carrying the experiment arrived at the European Space Agency’s research and technology centre (ESTEC) in the Netherlands at 4.30 pm on Tuesday 16th February. AMS will then fly to the Kennedy Space Center in Florida before lifting off aboard the space shuttle.   Arrival of the AMS detector at ESTEC in the Netherlands (Credit ESA/Jari Makinen) The transportation of an 8.5-tonne load filled with superfluid helium across Europe is no ordinary shipment. The AMS detector was first inserted into a supporting structure, specially built by the collaboration’s mechanical engineers, then surrounded by protective plastic foil, placed in a box and finally carefully loaded onto the special lorry also carrying a diesel generator running a pump to keep the helium at the right temperature (about 2 K). Its initial destination is ES...

  15. AMS gets lift on space shuttle Discovery

    CERN Multimedia

    2009-01-01

    AMS-02, the CERN-recognized experiment that will seek dark matter, missing matter and antimatter in Space aboard the International Space Station (ISS), has recently got the green light to be part of the STS-134 NASA mission in 2010. Installation of AMS detectors in the Prévessin experiment hall.In a recent press release, NASA announced that the last or last-but-one mission of the Space Shuttle programme would be the one that will deliver AMS, the Alpha Magnetic Spectrometer, to the International Space Station. The Space Shuttle Discovery is due to lift off in July 2010 from Kennedy Space Center and its mission will include the installation of AMS to the exterior of the space station, using both the shuttle and station arms. "It wasn’t easy to get a lift on the Space Shuttle from the Bush administration," says professor Samuel Ting, spokesperson of the experiment, "since during his administration all the funds for space research w...

  16. Speciation of 241Am molecular compounds through 237Np Moessbauer and 241Am XPS spectroscopy

    International Nuclear Information System (INIS)

    Light actinides (U to Am) can be found in several oxidation states from (II) to (VII) in the molecular form or in the condensed matter state. The large variety of oxidation states is usually attributed to the contribution of the 5f states to the valence orbitals. For the heavier actinides, for which the 5f electrons are non bonding, the actinides become rare-earth like with a smaller number of oxidation states (II and III). However it is still not understood what really decides on the stability of a given oxidation state, and how it is depending on the chemical environment (coordination sphere, nature of the counter-anion, etc). This work shows how Moessbauer spectroscopy and 4f photoelectron spectroscopy (XPS) can contribute to progress in the understanding of the electronic structure of the actinide, especially for Am compounds Moessbauer reverse experiments were undertaken to show in what manner the electronic structure of the Am is preserved during the decay process (oxidation state stability). The result of XPS measurements shows that it is possible to correlate the 4f binding energy of the Am to the charge at the actinide core. The obtained results are somewhat surprising. The formal oxidation state (V) is 'less oxidised' than expected. Some Am(III) have less electron density (that means are more ionic) than americyl (V) hydroxide or carbonate. The reason for these surprisingly results comes from the 'Am=O' multiple bond system which reduces dramatically the charge at the actinide by a pi-donation mechanism. The evolution of the 4f binding energy of the Am species does not follow the oxidation state order. Theoretical DFT calculation were done on Am(V) compounds for qualitative electronic modeling. (authors)

  17. Two More Candidate AM Canum Venaticorum (AM CVn) Binaries from the Sloan Digital Sky Survey

    CERN Document Server

    Anderson, S F; Haggard, D; Prieto, J L; Knapp, G R; Sako, M; Halford, K B; Jha, S; Martin, B; Holtzman, J; Frieman, J A; Garnavich, P M; Hayward, S; Ivezic, Z; Mukadam, A S; Sesar, B; Szkody, P; Malanushenko, V; Richmond, M W; Schneider, D P; York, D G

    2008-01-01

    AM CVn systems are a select group of ultracompact binaries with the shortest orbital periods of any known binary subclass; mass-transfer is likely from a low-mass (partially-)degenerate secondary onto a white dwarf primary, driven by gravitational radiation. In the past few years, the Sloan Digital Sky Survey (SDSS) has provided five new AM CVns. Here we report on two further candidates selected from more recent SDSS data. SDSS J1208+3550 is similar to the earlier SDSS discoveries, recognized as an AM CVn via its distinctive spectrum which is dominated by helium emission. From the expanded SDSS Data Release 6 (DR6) spectroscopic area, we provide an updated surface density estimate for such AM CVns of order 10^{-3.1} to 10^{-2.5} per deg^2 for 15AM CVn, SDSS J2047+0008, that was discovered in the course of followup of SDSS-II supernova candidates. It shows nova-like outbursts in multi-epoch imaging data; in contrast to the other SDSS AM CVn discoveri...

  18. Marina Facilities

    OpenAIRE

    2014-01-01

    The CIRPAS main facility and headquarters are at Marina Municipal Airport (formerly Fritchie Field, Fort Ord) in Marina, California. CIRPAS has a 30,000 sq. ft. maintenance hanger there, which houses staff offices, an instrument and calibration laboratory, maintenance and payload integration shops, conference rooms, and flight planning and operations control center.

  19. Performance comparison of an 241Am-Be neutron source-based PGNAA setup with the KFUPM PGNAA setup

    International Nuclear Information System (INIS)

    Monte Carlo calculations have been carried out to compare the performance of an 241Am-Be neutron source-based prompt gamma neutron activation analysis (PGNAA) setup with that of the 2.8 MeV neutron-based PGNAA setup at King Fahd University of Petroleum and Minerals (KFUPM) to analyze Portland cement samples. This work is a part of a wide Monte Carlo studies being conducted at KFUPM in search of a more efficient neutron source for its 2.8 MeV neutrons, from the D(d,n) reaction, based PGNAA facility. In this study an 241Am-Be neutron source-based PGNAA setup was simulated. For comparison, the diameter of a cylindrical external moderator of the 241Am-Be neutron source, based PGNAA setup, was assumed to be similar to that used in the KFUPM PGNAA setup. It was revealed that although the optimum geometry of the 241Am-Be neutron source-based setup is similar to that of the KFUPM PGNAA facility, the performance of the 241Am-Be neutron source-based setup is slightly poorer than that of the 2.8 MeV neutron-based setup. (author)

  20. Gamma-ray spectra of 241Am

    International Nuclear Information System (INIS)

    The γ-spectrum of 241Am was reinvestigated by using intense sources (100 and 25 mCi) for the energy range of Eγ>60 keV, and purified solution source of about 10 μCi for the low energy and to make sure that the γ-lines present in the spectrum come from the α-decay of 241Am. The study was divided into three parts. The γ-spectrometers consists of 40 and 10% relative efficiency Hp Ge detectors and 8192 channel ADC for normal spectra, and Si-Li for low energy. Outs of 169 γ-lines that are presented in the spectrum 47 are new. The major part of the new gamma lines was observed in the energy range of Eγ≥200 keV. (author)

  1. La América colonial

    OpenAIRE

    Laviana Cuetos, María Luisa

    2006-01-01

    Edición on-line hecha en el año 2006 de parte de la obra “La América española, 1492-1898. De las Indias a Nuestra América” (vol. 14 de la “Historia de España”, coordinada por Julio Mangas, José Luis Martín, Carlos Martínez Shaw y Javier Tusell, Madrid, Información e Historia, Historia 16 y Temas de Hoy, 1996), según la edición digital dirigida por L. Sanguino Arias: “Historia de España, desde Atapuerca hasta la transición democrática”. Libro con CD-ROM (Madrid, Ediciones Dolmen, 2002, vol. 7,...

  2. Numerical simulation of AM1 microstructure

    OpenAIRE

    Rougier Luc; Jacot Alain; Gandin Charles-André; Napoli Paolo Di; Ponsen Damien; Jaquet Virginie

    2014-01-01

    A modelling approach is developed for the description of microstructure formation in the industrial AM1 Ni-base superalloy. Solidification and homogenization simulations are first carried out using a microsegregation model, before using the local compositions as an input for precipitation calculations, in order to characterize the influence of segregation on precipitation. First, the precipitation model was validated by comparing simulated and measured evolutions of the average precipitate ra...

  3. Akmens amžiaus karyba Lietuvoje

    OpenAIRE

    Šatavičius, Egidijus

    2004-01-01

    Straipsnyje bandoma atsakyti į klausimą, ar buvo karinių susidūriumų, konfliktų akmens amžiuje, mėginama ieškoti jų pėdsakų lietuviškoje archeologinėje medžiagoje, įvardinti jų atsiradimo priežastis ir pasekmes.

  4. Magister magistri lupus? "Mobbing" am Arbeitsplatz Schule

    OpenAIRE

    Rothland, Martin

    2003-01-01

    Vor dem Hintergrund einer Skizze der allgemeinen Auseinandersetzung mit und der Forschung zu dem populären Phänomen 'Mobbing am Arbeitsplatz' wird die schulbezogene Diskussion des Themas einer kritischen Analyse unterzogen. Nachfolgend wird mit Blick auf die strukturellen und interaktionellen Charakteristika des Lehrerberufs sowie des Arbeitsplatzes Schule diskutiert, inwieweit diesen ein erhöhtes Potenzial für das Auftreten von 'Mobbing' zugeschrieben werden kann und wie die Wirkungen dieses...

  5. I am remix your web identity

    CERN Document Server

    Sordi, Paolo

    2015-01-01

    I Am: Remix Your Web Identity explores methods of designing and developing a personal website with RSS feeds that aggregate blog posts along with posts on social networks, such as Flickr, YouTube, Goodreads, Last.fm, and Delicious, in order to regain control and ownership (as well as authorship) of one's identity in one consistent and customized location. The book provides a short overview of the evolution of digital identity and the transformation of personal websites from Geocities to blogs...

  6. Recent results from the AMS-02 experiment

    Directory of Open Access Journals (Sweden)

    Vecchi Manuela

    2015-01-01

    Full Text Available The AMS-02 detector is a large acceptance magnetic spectrometer operating onboard the International Space Station since May 2011. The main goals of the detector are the search for antimatter and dark matter in space, as well as the measurement of cosmic ray composition and flux. Precise measurements of cosmic ray positrons and electrons are presented in this document, based on 41×109 events collected during the first 30 months of operations.

  7. Online Messdatenplausibilisierung am Motorenprüfstand

    OpenAIRE

    Franze, Roxana Maria

    2011-01-01

    Ein neuartiges Online-Verfahren zur Detektion und Identifizierung von fehlerbehafteten Messdaten am Motorenprüfstand wurde mittels multivarianten statistischen Verfahren entwickelt, implementiert und erfolgreich in Testreihen angewandt. Das Verfahren beinhaltet die Online-Erfassung der Messdaten und die Überprüfung durch physikalische Kriterien bzw. Regressionsanalysen, um mögliche Auffälligkeiten herauszufiltern. Aussagen über die Messdatenqualität werden anhand eines leicht verständli...

  8. AMICA, an astro-mapper for AMS

    Science.gov (United States)

    Monfardini, Alessandro; Trampus, Paolo; Battiston, Roberto; Gargiulo, Corrado

    2006-07-01

    The alpha magnetic spectrograph (AMS) is a composite particle detector to be accommodated on the International Space Station (ISS). AMS is mainly devoted to galactic, charged cosmic rays studies, antimatter and dark matter searches. Besides the main, classical physics goals, capabilities in the field of GeV and multi-GeV gamma astrophysics have been established and are under investigation by a number of groups. Due to the unsteadiness of the ISS platform, a star-mapper device is required in order to fully exploit the intrinsic arc-min angular resolution provided by the silicon tracker. A star-mapper is conceptually an imaging, optical instrument able to autonomously recognize a stellar field and to calculate its own orientation with respect to an inertial reference frame. AMICA (Astro Mapper for Instruments Check of Attitude) on AMS is responsible for providing real-time information that is going to be used off-line for compensating the large uncertainties in the ISS flight attitude and the structural degrees of freedom. In this paper, we describe in detail the AMICA sub-system, the accommodation/integration issues and the in-flight alignment procedure adopting identified galactic (Pulsars) and extra-galactic (AGNs) sources.

  9. AMS: Area Message Service for SLC

    International Nuclear Information System (INIS)

    The Area Message Service (AMS) is a TCP/IP based messaging service currently in use at SLAC. A number of projects under development here at SLAC require an application level interface to the 4.3BSD UNIX socket level communications functions using TCP/IP over ethernet. AMS provides connection management, solicited message transfer, unsolicited message transfer, and asynchronous notification of pending messages. AMS is written completely in ANSI open-quote C close-quote and is currently portable over three hardware/operating system/network manager platforms, VAX/VMS/Multinet, PC/MS-DOS/Pathworks, VME 68K/pSOS/pNA. The basic architecture is a client-server connection where either end of the interface may be the server. This allows for connections and data flow to be initiated from either end of the interface. Included in the paper are details concerning the connection management, the handling of the multi-platform code, and the implementation process

  10. Identifying electrons and positrons with AMS-02

    International Nuclear Information System (INIS)

    The AMS-02 experiment is a multi-purpose detector for cosmic ray particles mounted on the International Space Station. It recorded over 40 billion events since its installation in 2011. The bulk of these events are protons, which are most abundant in cosmic rays. Electrons are 100 times and positrons 1000 times less abundant. Measuring the positrons as function of energy is especially interesting, as an excess over the expected astrophysical background may hint at an additional source of positrons in the galaxy or a new phenomena responsible for the excess, e.g. dark-matter annihilation. In order to measure positrons accurately with a small uncertainty, a large proton rejection of 106 is needed. AMS-02 offers a transition radiation detector to separate positrons from protons and an electromagnetic calorimeter allowing a precise measurement of the kinetic energy of an incoming lepton. This talk covers the general strategy of identifying electrons/positrons with AMS-02 and presents the so-obtained electron/positron fluxes that were recently published.

  11. AMICA, an astro-mapper for AMS

    CERN Document Server

    Monfardini, A; Battiston, R; Gargiulo, C

    2005-01-01

    The Alpha Magnetic Spectrograph (AMS) is a composite particle detector to be accommodated on the International Space Station (ISS) in 2008. AMS is mainly devoted to galactic, charged Cosmic Rays studies, Antimatter and Dark Matter searches. Besides the main, classical physics goals, capabilities in the field of GeV and multi-GeV gamma astrophysics have been established and are under investigation by a number of groups. Due to the unsteadiness of the ISS platform, a star-mapper device is required in order to fully exploit the intrinsic arc-min angular resolution provided by the Silicon Tracker. A star-mapper is conceptually an imaging, optical instrument able to autonomously recognize a stellar field and to calculate its own orientation with respect to an inertial reference frame. AMICA (Astro Mapper for Instruments Check of Attitude) on AMS is responsible for providing real-time information that is going to be used off-line for compensating the large uncertainties in the ISS flight attitude and the structural...

  12. Determination of the /sup 242m/Am nuclear moments

    Energy Technology Data Exchange (ETDEWEB)

    Bekk, K.; Goering, S.; Kaelber, W.; Meisel, G.; Rebel, H.; Sameh, A.A.

    1988-07-01

    The hyperfine structure of Am atoms was investigated in an atomic beam by laser spectroscopy. The observed splittings were evaluated with respect to the magnetic dipole and electric quadrupole moments of /sup 242m/Am. The results are: ..mu../sub I/(/sup 242m/Am) = +0.97(5) nm, Q(/sup 242m/Am) = +6.5(2.0) b.

  13. Monitoring intakes of Pu/Am by external counting. Current status in India

    International Nuclear Information System (INIS)

    This paper describes the current status of the direct methods of monitoring intakes of actinides, Pu/Am, by external counting techniques in India. It begins with the brief descriptions of the in vivo monitoring facilities established and a variety of optimised radiation detectors being operated inside the graded lined steel room chamber. Two types of phoswich detectors (200 mm dia) differing in the thicknesses of their primary detectors, are operated with pulse shape discrimination electronics based on pulse shape analyser (ORTEC model 458). The other detection systems are : 51 mm dia coaxial HPGe low energy photon spectrometer, a miniature CdTe and a twin thin NaI(Tl). Over the past several years, these facilities have been rationally utilized for conducting various types of internal monitoring programmes for workers handing Pu/Am. Due emphasis has been given to the Quality Assurance (QA) programmes and thus the accuracy of internal exposure evaluations has been ensured by participating in the international intercomparison studies. These included: a) In vivo calibration experiments based on inhalation of mock Pu i.e. polystyrene particles labelled with 103Pd - 51Cr, by human volunteers; b) Calibration measurements on Lawrence Livermore National Laboratory's (LLNL) realistic thorax phantom representing a Caucasian man, under an IAEA-CRP and c) By participating in yet another IAEA-CRP on the calibration of in vivo counting systems for actinides (Pu, Am, U, Th) using a Reference Asian phantom whose physique represented an Asian man of Japanese origin. As both, ICRP and BSS of IAEA recommend the use of latest dose coefficients, the current methodology of evaluating internal exposures to actinides (Pu/Am) is based on the new (ICRP-66) model of the human respiratory tract. For this purpose, the software package LUDEP 2.05 (Lung Dose Evaluation Program) has been standardised for routine use. The use of LUDEP 2.05 for calculating intakes and committed effective doses is

  14. Interview Roberto Battiston, AMS Deputy Spokesperson, English version

    CERN Multimedia

    CERN Video Productions

    2011-01-01

    "The Universe is providing cosmic rays all the time". Roberto Battiston, deputy spokesperson of the AMS experiment (Alpha Magnetic Spectrometer) comments on the uninterrupted flow of high energy cosmic rays (several billion events per week) AMS is detecting since launch and deployment on the International Space Station (ISS). Rushes of the AMS POCC (Payload and Operations Control Centre) in CERN- Prevessin follow.

  15. Think Big: Leadership Projects for AMS and Montessori Educators

    Science.gov (United States)

    Chattin-McNichols, John

    2014-01-01

    The American Montessori Society's (AMS) 2014 Living Legacy recipient, John Chattin-McNichols, delivered the keynote address at the Annual Conference in Dallas, TX, on March 27, 2014, In his speech, he described three overall highlights of AMS: (1) AMS is now a world-leading organization; (2) It must become a learning organization; and (3)…

  16. Separation and purification of Am from assorted wastes

    International Nuclear Information System (INIS)

    In the present work a separation method was developed using about 0.5 mg aliquot of Am from the waste containing 10 mg of Am. It is proposed to use purified Am for the calibration of sequential ICP-AES for the determination of lanthanides in fuel samples

  17. 47 CFR 73.45 - AM antenna systems.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false AM antenna systems. 73.45 Section 73.45... Broadcast Stations § 73.45 AM antenna systems. (a) All applicants for new, additional, or different AM... existing station must specify an antenna system, the efficiency of which complies with the requirements...

  18. High resolution measurements of the Am241(n,2n) reaction cross section

    Science.gov (United States)

    Sage, C.; Semkova, V.; Bouland, O.; Dessagne, P.; Fernandez, A.; Gunsing, F.; Nästren, C.; Noguère, G.; Ottmar, H.; Plompen, A. J. M.; Romain, P.; Rudolf, G.; Somers, J.; Wastin, F.

    2010-06-01

    Measurements of the Am241(n,2n) reaction cross section have been performed at the Joint Research Centre (JRC) Geel in the frame of a collaboration between the European Commission (EC) JRC and French laboratories from CNRS and the Commissariat à L’Energie Atomique (CEA) Cadarache. Raw material coming from the Atalante facility of CEA Marcoule has been transformed by JRC Karlsruhe into suitable Am241O2 samples embedded in Al2O3 matrices specifically designed for these measurements. The irradiations were carried out at the 7-MV Van de Graaff accelerator. The Am241(n,2n) reaction cross section was determined relative to the Al27(n,α)Na24 standard cross section. The measurements were performed in four sessions, using quasi-mono-energetic neutrons with energies ranging from 8 to 21 MeV produced via the H2(d,n)He3 and the H3(d,n)He4 reactions. The induced activity was measured by standard γ-ray spectrometry using a high-purity germanium detector. Below 15 MeV, the present results are in agreement with data obtained earlier. Above 15 MeV, these measurements allowed the experimental investigation of the Am241(n,2n) reaction cross section for the first time. The present data are in good agreement with predictions obtained with the talys code that uses an optical and fission model developed at CEA.

  19. AMS method for depth profiling of trace elements concentration in materials - Construction and applications

    Science.gov (United States)

    Stan-Sion, C.; Enachescu, M.

    2015-10-01

    The need to investigate the behavior of solid state materials on the impact/retention/repulsion/contamination/impregnation with special trace elements or radioactive elements has driven us to develop a modified Accelerator Mass Spectrometry (AMS) analyzing method that is able to perform the measurement of the concentration depth profile of an element in a host material. This upgraded method that we call AMS-depth profiling method (AMS-DP) measures continuously the concentration of a trace element in a given sample material as a function of the depth from the surface (e.g., tritium in carbon, deuterium in tungsten, etc.). However, in order to perform depth profiling, common AMS facilities have to undergo several changes: a new replaceable sample target-holder has to be constructed to accept small plates of solid material as samples; their position has to be adjusted in the focus point of the sputter beam; crater rim effects of the produced hole in the sample have to be avoided or removed from the registered events in the detector; suitable reference samples have to be prepared and used for calibration. All procedures are presented in the paper together with several applications.

  20. Biocorrosion behavior of biodegradable nanocomposite fibers coated layer-by-layer on AM50 magnesium implant.

    Science.gov (United States)

    Abdal-Hay, Abdalla; Hasan, Anwarul; Yu-Kyoung; Lee, Min-Ho; Hamdy, Abdel Salam; Khalil, Khalil Abdelrazek

    2016-01-01

    This article demonstrates the use of hybrid nanofibers to improve the biodegradation rate and biocompatibility of AM50 magnesium alloy. Biodegradable hybrid membrane fiber layers containing nano-hydroxyapatite (nHA) particles and poly(lactide)(PLA) nanofibers were coated layer-by-layer (LbL) on AM50 coupons using a facile single-step air jet spinning (AJS) approach. The corrosion performance of coated and uncoated coupon samples was investigated by means of electrochemical measurements. The results showed that the AJS 3D membrane fiber layers, particularly the hybrid membrane layers containing a small amount of nHA (3 wt.%), induce a higher biocorrosion resistance and effectively decrease the initial degradation rate compared with the neat AM50 coupon samples. The adhesion strength improved highly due to the presence of nHA particles in the AJS layer. Furthermore, the long biodegradation rates of AM50 alloy in Hank's balanced salt solution (HBSS) were significantly controlled by the AJS-coatings. The results showed a higher cytocompatibility for AJS-coatings compared to that for neat Mg alloys. The nanostructured nHA embedded hybrid PLA nanofiber coating can therefore be a suitable coating material for Mg alloy as a potential material for biodegradable metallic orthopedic implants. PMID:26478426

  1. Main Facilities

    International Nuclear Information System (INIS)

    This chapter discuss on main nuclear facilities available in the Malaysian Institute for Nuclear Technology Research (MINT). As a national research institute whose core activities are nuclear science and technology, MINT are made up of main commercializable radiation irradiators, pilot plant and fully equipped laboratories. Well elaboration on its characteristics and functions explain for RTP (PUPSPATI TRIGA reactors), Cobalt-60 gamma irradiator, electron beam accelerators, and radioactive waste management center

  2. Nuclear facility

    International Nuclear Information System (INIS)

    In nuclear facilities with a fuel storage pool in a spent fuel pit building there is a filter to each pool through which the fuel pit water is pumped. According to the invention the filter is provided with an independently movable housing placed beneath the surface of the pool water and fixed to the lateral side of the pool by means of detachable fixtures. (orig./RW)

  3. Support facilities

    International Nuclear Information System (INIS)

    Computer support is centered on the Remote Access Data Station (RADS), which is equipped with a 1000 lpm printer, 1000 cpm reader, and a 300 cps paper tape reader with 500-foot spools. The RADS is located in a data preparation room with four 029 key punches (two of which interpret), a storage vault for archival magnetic tapes, card files, and a 30 cps interactive terminal principally used for job inquiry and routing. An adjacent room provides work space for users, with a documentation library and a consultant's office, plus file storage for programs and their documentations. The facility has approximately 2,600 square feet of working laboratory space, and includes two fully equipped photographic darkrooms, sectioning and autoradiographic facilities, six microscope cubicles, and five transmission electron microscopes and one Cambridge scanning electron microscope equipped with an x-ray energy dispersive analytical system. Ancillary specimen preparative equipment includes vacuum evaporators, freeze-drying and freeze-etching equipment, ultramicrotomes, and assorted photographic and light microscopic equipment. The extensive physical plant of the animal facilities includes provisions for holding all species of laboratory animals under controlled conditions of temperature, humidity, and lighting. More than forty rooms are available for studies of the smaller species. These have a potential capacity of more than 75,000 mice, or smaller numbers of larger species and those requiring special housing arrangements. There are also six dog kennels to accommodate approximately 750 dogs housed in runs that consist of heated indoor compartments and outdoor exercise areas

  4. Implementierung von Phasenkontrast-Radiographie und -Tomographie mit Neutronen am FRM-II

    OpenAIRE

    Lorenz, Klaus

    2008-01-01

    At ANTARES, the beam line for neutron imaging at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM-II) in Garching, the option to do phase contrast imaging besides conventional absorption based neutron imaging was implemented and successfully used for the non-destructive testing of various types of objects. The used propagation-based technique is based on the interference of neutron waves in the detector plane that were differently strong diffracted by the sample. A comparison with ...

  5. High altitude AM0 testing of PV concentrator lens elements. [Air Mass Zero

    Science.gov (United States)

    Piszczor, M. F.; Brinker, D. J.; Boyer, E. O.; Mcknight, R. C.; Ranaudo, R. J.

    1990-01-01

    Recently, the NASA Lewis Research Center modified its Lear High Altitude Test Facility to fly two prototype ENTECH minidome Fresnel lens photovoltaic concentrator elements. The tests were highly successful, and the results verified the ability of the Lear High Altitude Facility to measure the optical performance of individual concentrator lens elements and concentrator/cell combinations at near AM0 insolation conditions. The two concentrator lenses flown achieved optical efficiencies, based on a gallium arsenide concentrator cell response, of 89.8 percent and 90.0 percent. The flights demonstrated the ability of the aircraft to maintain the pointing accuracy required to obtain useful data. With proper alignment of the collimating tube and the pilot's sunsight, this facility could easily maintain a pointing accuracy of + or - 0.5 deg for a sufficiently long time to obtain accurate, reproducible results.

  6. Decommissioning Russian Research Facilities

    International Nuclear Information System (INIS)

    Gosatomnadzor of Russia is conducting the safety regulation and inspection activity related to nuclear and radiation safety of nuclear research facilities (RR), including research reactors, critical assemblies and sub-critical assemblies. Most of the Russian RR were built and put in operation more than 30 years ago. The problems of ageing equipment and strengthening of safety requirements in time, the lack of further experimental programmes and financial resources, have created a condition when some of the RR were forced to take decisions on their decommissioning. The result of these problems was reflected in reducing the number of RR from 113 in 1998 to 81 in the current year. At present, seven RR are already under decommissioning or pending it. Last year, the Ministry of Atomic Energy took the decision to finally shut down two remaining actual research reactors in the Physics and Power Engineering Institute in Obninsk: AM-1, the first reactor in the world built for peaceful purposes, graphite-type reactor, and the fast liquid metal reactor BR-10, and to start their preparation for decommissioning. It is not enough just to declare the decommissioning of a RR: it is also vital to find financial resources for that purpose. For this reason, due to lack of financing, the MR reactor at the Kurchatov Institute has been pending decommissioning since 1992 and still is. The other example of long-lasting decommissioning is TVR, a heavy water reactor at the Institute of Theoretical Physics in Moscow (ITEF). The reason is also poor financing. Another example discussed in the paper concerns on-site disposal of a RR located above the Arctic Pole Circle, owned by the Norilsk Mining Company. Furthermore, the experience of the plutonium reactor decommissioning at the Joint Institute of Nuclear Research is also discussed. As shown, the Russian Federation has had good experiences in the decommissioning of nuclear research facilities. (author)

  7. Nuclear Data from AMS & Nuclear Data for AMS – some examples

    Directory of Open Access Journals (Sweden)

    Semkova V.

    2012-10-01

    Full Text Available We summarize some recent cross-section measurements using accelerator mass spectrometry (AMS. AMS represents an ultra-sensitive technique for measuring a limited, but steadily increasing number of longer-lived radionuclides. This method implies a two-step procedure with sample activation and subsequent AMS measurement. Applications include nuclear astrophysics, nuclear technology (nuclear fusion, nuclear fission and advanced reactor concepts and radiation dose estimations. A series of additional applications involves cosmogenic radionuclides in environmental, geological and extraterrestrial studies. There is a lack of information for a list of nuclides, as pointed out by nuclear data requests. An overview of some recent measurements is given and the method is illustrated for some specific neutron-induced reactions.

  8. Measurement of contamination by 241Am

    International Nuclear Information System (INIS)

    In relation to the fact that four employees at the Danish Isotope Center who had regularly cleaned the smoke detectors used for control measurements were found to be contaminated with 241Am, the aim was to investigate the suitability of the Phoswich detector system for measurement of contamination of humans by 241Am. It was also wished to compare this measuring method with other selected ones. The measurement results are presented in detail. It was found that measurements taken on the cranium with the Phoswich detectors were more suitable for measurement of contamination by 241Am than the use of a Ge detector on the liver, - because of the first-named method's greater degree of measuring efficiency, (0.013 cps/Bq compared with 0.0001 cps/Bq in the case of Ge detector measurement) and lower minimum detectable activity in relation to that activity that was measured on A1 (one of the employees). It was found that Phoswich-detector measurement and measuring of urine samples supplemented each other in a satisfactory way. The Phoswich detector enables a quick measurement of the degree of seriousness of the contamination of a person and a relatively accurate determination of the calculated intake of contamination which has a size of at least twice the annual limit of intake size. Measurements of urine samples enable smaller amounts of contamination to be revealed, but this takes ca. 32 weeks and is less accurate than Phoswich measurement especially if a long time has elapsed after the intake. (AB) (34 refs.)

  9. The contribution of AMS to geosciences

    International Nuclear Information System (INIS)

    Full text: This presentation outlines some of the advances in AMS methods with emphasis on Australian examples and measurements using the accelerators at ANSTO and the Australian National University. Perhaps the best known of these techniques is the application of AMS 14C dating which has the advantage of needing much smaller amounts of sample (typically 14C determinations by β counting. AMS 14C has been applied to dating an enormous array of materials including archaeological samples and sites, tree rings, ice cores, banding in coals and circulation and ventilation changes in the world's oceans. An exciting application of the measurement of the rare long-lived isotopes 10Be, 26Al and 36Cl is in the relatively new field of cosmogenic exposure dating. Accumulation of these cosmogenically produced nuclides formed in-situ in exposed rock surfaces is used to estimate both the time of exposure of the rock surface and mean erosion rates. A large variety of landscape-related processes have been successfully addressed including weathering and sediment-transport rates and the ages of glacial retreat, tectonic uplift and lava eruptions. In the field of hydrology, 36Cl studies of dissolved chloride have been used to successfully estimate the ages of ground waters and trace their origins. The tracing of atmospheric air masses that deliver rain and the origin of Australian salt lakes and continental salinisation using 36Cl lead to important conclusions on the origin and residence time of chloride in the Australian landscape. The ultimate origin of the bulk of the surficial chloride in Australia is shown to be meteoric, and for the western part of the continent, a mean residence time of about 0.75 Ma pertains. The realisation of the long-term and continuing delivery of salts to the landscape needs recognition in planning strategies to combat salinisations of agricultural areas

  10. AMS/CEA Joint Aerial Campaign Nevada Test Site AMS Data Analysis Procedure

    International Nuclear Information System (INIS)

    The United States NNSA AMS (Aerial Measuring Systems) and the French Commissariat a l-Energie Atomique (CEA) participated in joint aerial survey activities during the period November 6-19, 2007. Survey activities were conducted near Las Vegas, Nevada, and at selected areas of the Nevada Test Site (NTS) under the auspices of the Accident Response Working Group (ARWG). The intent of the activities was to compare technologies, procedures, and data analysis techniques related to specific AMS and the CEA aerial radiation detection systems

  11. L'Amérique latine

    OpenAIRE

    Compagnon, Olivier

    2000-01-01

    Ce travail propose un regard de synthèse sur les mutations du champ religieux latino-américain depuis la fin des années 1950, tout en incluant le produit de recherches personnelles sur certains points précis (ainsi la dimension quantitative du recul catholique ou les réponses apportées par Jean Paul II à la crise du catholicisme).La première partie analyse l'érosion du monopole confessionnel que détenait le catholicisme depuis la Conquête. Celle-ci est tout d'abord le produit d'une crise prop...

  12. América y Apocalipsis

    OpenAIRE

    Adriano Prosperi

    2003-01-01

    El artículo estudia las razones que han vinculado la exploración y conquista de América o 'Nuevo Mundo' con las profecías cristianas de naturaleza apocalíptica y/o milenarista en torno a un 'Fin del Mundo'. En el siglo XVI el horizonte de la Europa cristiana estaba dominado por el requerimiento de un profundo cambio y por el anhelo de volver a la forma eclesial apostólica de los inicios. El descubrimiento de tierras y nuevos pueblos replanteó la cuestión del sentido de la historia y fortaleci...

  13. IAEA A+M Unit Activities

    International Nuclear Information System (INIS)

    Research on fusion energy devices requires a large amount of data for atomic, molecular and plasma-surface interactions. As current machines are updated and future machines are designed, data for a variety of different materials for a wide range of plasma parameters arise. The Atomic and Molecular (A+M) Data Unit of the International Atomic Energy Agency works to coordinate efforts to establish databases for this fusion research effort. Current activities for database development include a number of Coordinated Research Projects (CRP), Technical Meetings, Consultant Meetings and a number of collaborations. These activities generate significant new data in support of fusion research. These data are published in journals as well as IAEA publications and are included in numerical databases ALADDIN accessible by all fusion researchers. Historically a number of institutions have contributed to development of such databases and continue to participate in a Data Centre Network, supported by the A+M Unit. Members of this network maintain individual databases, many of which can be searched using the GENIE search engine. The A+M Unit host the OPEN-ADAS system that allows access to most of the numerical data stored within the ADAS system. An effort on development of an XML schema for data exchange among the databases is underway. Many numerical data for specific processes in fusion relevant materials are not available. In many cases computer codes exist with the capability of generating such data as needed. An informal network of institutions with such capabilities is in the process of formation to provide a means quickly generating such data. The A+M Unit maintains on-line code capabilities to generate atomic and molecular data and serves as an access point to LANL atomic physics codes and FLYCHK, Non-LTE kinetics codes at NIST. Currently, a wiki-style knowledge base is under the development. It will host a wealth of information on atomic, molecular, plasma-surface data for

  14. The AMS experiment: Results and perspectives

    Science.gov (United States)

    Bertucci, B.; AMS Collaboration

    2016-07-01

    The Alpha Magnetic Spectrometer (AMS) experiment operates since May 2011 on board of the International Space Station to search for primordial anti-matter, to study the light anti-matter components in the Cosmic Rays (CR) and to perform a precision study of the CR composition and energy spectrum. More than 60 billion events have been collected by the instrument up to now thanks to its large acceptance and the long exposure time. In this contribution we will discuss the most recent results, reviewing the instrument design and performances as well as the data analysis procedures enabling their achievement.

  15. New data acquisition system for AMS

    Energy Technology Data Exchange (ETDEWEB)

    Pfenninger, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    A new data acquisition system based on a VME front-end computer, a Sun workstation and a PC has been installed. It is used for the acquisition of mainly AMS data, their graphical display, and storage of the data in a Oracle database. The measurement of magazines of 25 sample each is fully automated. Several data parameters such as transmission are regularly checked. In case of problems the operator is informed by optical and/or acoustical signals. Screens are updated automatically after every measurement cycle. (author) 1 fig.

  16. Neutron-induced fission cross section measurement of 233U, 241Am and 243Am in the energy range 0.5 MeV En 20 MeV at nTOF at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Belloni, F. [Instituto Nazionale de Fisica Nucleare-Italy and CEA-France; Milazzo, P. M. [Instituto Nazionale de Fisica Nucleare, Trieste, Italy; Calviani, M. [Laboratori Nazionali di Legnaro, Italy and CERN, Geneva, Switzerland; Colonna, N. [Instituto Nazionale di Fisica Nucleare, Bari, Italy; Mastinu, P. F. [INFN, Laboratori Nazionali di Legnaro, Italy; Abbondanno, U. [Instituto Nazionale de Fisica Nucleare, Trieste, Italy; Aerts, G. [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Alvarez, H. [University of Santiago de Compostela, Spain; Alvarez-Velarde, F. [Centro de Investigaciones Energeticas Medioambientales y Technol., Madrid, Spain; Andriamonje, S. [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Andrzejewski, J. [University of Lodz, Lodz, Poland; Assimakopoulos, P. A. [University of Ioannina, Greece; Audouin, L. [Centre National de la Recherche Scidntifique/IN2P3-IPN, Orsay, France; Badurek, G. [Vienna University of Technology, Austria; Barbagallo, M. [Instituto Nazionale di Fisica Nucleare, Bari, Italy; Baumann, P. [CNRS, Strasbourg, France; Becvar, F. [Charles University, Prague, Czech Republic; Berthoumieux, E. [French Atomic Energy Commission (CEA), Centre de Saclay, Gif sur Yvette; Calvino, F. [Universidad Politecnica de Madrid, Spain; Cerutti, F. [CERN, Geneva, Switzerland; Cano-Ott, D. [CIEMAT, Spain; Capote, R. [IAEA-Vienna, Austria and Universidad de Sevilla, Spain; Carrapico, C. [Instituto Tecnológico e Nuclear (ITN), Lisbon, Portugal; Carrillo de Albornoz, A. [Instituto Tecnológico e Nuclear (ITN), Lisbon, Portugal; Cennini, P. [CERN, Geneva, Switzerland; Chepel, V. [University of Ciombra, Portugal; Chiaveri, E. [CERN, Geneva, Switzerland; Cortes, G. [Universitat Politecnica de Catalunya, Barcelona, Spain; Couture, A. [University of Notre Dame, IN; Cox, J. [University of Notre Dame, IN; Dahlfors, M. [CERN, Geneva, Switzerland; David, S. [CNRS, Orsay, France; Dillmann, I. [Institut fur Kernphysik, Karlsruhe, Germany; Dolfini, R. [Universita di Pavia, Italy; Domingo-Pardo, C. [CSIC-Universidad de Valencia; Koehler, Paul [ORNL; The n_TOF Collaboration, [CERN, Geneva, Switzerland

    2012-01-01

    Neutron-induced fission cross section measurements of 233U, 243Am and 241Am relative to 235U have been carried out at the neutron time-of-flight facility n TOF at CERN. A fast ionization chamber has been employed. All samples were located in the same detector; therefore the studied elements and the reference 235U target are subject to the same neutron beam.

  17. Dicty_cDB: FC-AM13 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available FC (Link to library) FC-AM13 (Link to dictyBase) - - - Contig-U16203-1 FC-AM13E (Li...nk to Original site) - - - - - - FC-AM13E 385 Show FC-AM13 Library FC (Link to library) Clone ID FC-AM13 (Li.../dictycdb.biol.tsukuba.ac.jp/CSM/FC/FC-AM/FC-AM13Q.Seq.d/ Representative seq. ID FC-AM1...3E (Link to Original site) Representative DNA sequence >FC-AM13 (FC-AM13Q) /CSM/FC/FC-AM/FC-AM13Q.Seq....0.0 VFA207 (VFA207Q) /CSM/VF/VFA2-A/VFA207Q.Seq.d/ 632 0.0 FC-AM13 (FC-AM13Q) /CSM/FC/FC-AM/FC-AM1

  18. Dicty_cDB: FC-AM14 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available FC (Link to library) FC-AM14 (Link to dictyBase) - G03223 DDB0230027 Contig-U16031-1 FC-AM1...4E (Link to Original site) - - - - - - FC-AM14E 533 Show FC-AM14 Library FC (Link to library) Clone ID FC-AM1...1-1 Original site URL http://dictycdb.biol.tsukuba.ac.jp/CSM/FC/FC-AM/FC-AM14Q.Se...q.d/ Representative seq. ID FC-AM14E (Link to Original site) Representative DNA sequence >FC-AM14 (FC-AM14Q) /CSM/FC/FC-AM/FC-AM1...ignments: (bits) Value FC-AM14 (FC-AM14Q) /CSM/FC/FC-AM/FC-AM14Q.Seq.d/ 959 0.0 FC-041 (FC-041Q) /CSM/CG/CG-

  19. Dicty_cDB: FC-AM12 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available FC (Link to library) FC-AM12 (Link to dictyBase) - - - Contig-U15060-1 FC-AM12E (Li...nk to Original site) - - - - - - FC-AM12E 977 Show FC-AM12 Library FC (Link to library) Clone ID FC-AM12 (Li.../dictycdb.biol.tsukuba.ac.jp/CSM/FC/FC-AM/FC-AM12Q.Seq.d/ Representative seq. ID FC-AM1...2E (Link to Original site) Representative DNA sequence >FC-AM12 (FC-AM12Q) /CSM/FC/FC-AM/FC-AM12Q.Seq....alignments: (bits) Value FC-AM12 (FC-AM12Q) /CSM/FC/FC-AM/FC-AM12Q.Seq.d/ 1852 0.

  20. Dicty_cDB: FC-AM16 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available FC (Link to library) FC-AM16 (Link to dictyBase) - - - Contig-U16196-1 FC-AM16E (Li...nk to Original site) - - - - - - FC-AM16E 433 Show FC-AM16 Library FC (Link to library) Clone ID FC-AM16 (Li.../dictycdb.biol.tsukuba.ac.jp/CSM/FC/FC-AM/FC-AM16Q.Seq.d/ Representative seq. ID FC-AM1...6E (Link to Original site) Representative DNA sequence >FC-AM16 (FC-AM16Q) /CSM/FC/FC-AM/FC-AM16Q.Seq....0.0 VFD371 (VFD371Q) /CSM/VF/VFD3-C/VFD371Q.Seq.d/ 773 0.0 FC-AM16 (FC-AM16Q) /CSM/FC/FC-AM/FC-AM16Q.Seq.d/

  1. Dicty_cDB: FC-AM15 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available FC (Link to library) FC-AM15 (Link to dictyBase) - - - Contig-U16529-1 FC-AM15Z (Li...nk to Original site) - - FC-AM15Z 503 - - - - Show FC-AM15 Library FC (Link to library) Clone ID FC-AM15 (Li.../dictycdb.biol.tsukuba.ac.jp/CSM/FC/FC-AM/FC-AM15Q.Seq.d/ Representative seq. ID FC-AM1...5Z (Link to Original site) Representative DNA sequence >FC-AM15 (FC-AM15Q) /CSM/FC/FC-AM/FC-AM15Q.Seq....t alignments: (bits) Value FC-AM15 (FC-AM15Q) /CSM/FC/FC-AM/FC-AM15Q.Seq.d/ 856 0

  2. Dicty_cDB: FC-AM11 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available FC (Link to library) FC-AM11 (Link to dictyBase) - - - Contig-U15674-1 FC-AM11Z (Li...nk to Original site) - - FC-AM11Z 449 - - - - Show FC-AM11 Library FC (Link to library) Clone ID FC-AM11 (Li.../dictycdb.biol.tsukuba.ac.jp/CSM/FC/FC-AM/FC-AM11Q.Seq.d/ Representative seq. ID FC-AM1...1Z (Link to Original site) Representative DNA sequence >FC-AM11 (FC-AM11Q) /CSM/FC/FC-AM/FC-AM11Q.Seq....) Value FC-AO01 (FC-AO01Q) /CSM/FC/FC-AO/FC-AO01Q.Seq.d/ 785 0.0 FC-AM11 (FC-AM11Q) /CSM/FC/FC-AM/FC-AM11Q.S

  3. Dicty_cDB: FC-AM19 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available FC (Link to library) FC-AM19 (Link to dictyBase) - - - Contig-U15031-1 FC-AM19E (Li...nk to Original site) - - - - - - FC-AM19E 546 Show FC-AM19 Library FC (Link to library) Clone ID FC-AM19 (Li.../dictycdb.biol.tsukuba.ac.jp/CSM/FC/FC-AM/FC-AM19Q.Seq.d/ Representative seq. ID FC-AM1...9E (Link to Original site) Representative DNA sequence >FC-AM19 (FC-AM19Q) /CSM/FC/FC-AM/FC-AM19Q.Seq....cant alignments: (bits) Value VFM738 (VFM738Q) /CSM/VF/VFM7-B/VFM738Q.Seq.d/ 1017 0.0 FC-AM19 (FC-AM19Q) /CSM/FC/FC-AM/FC-AM1

  4. Dicty_cDB: FC-AM17 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available FC (Link to library) FC-AM17 (Link to dictyBase) - - - Contig-U16560-1 FC-AM17Z (Li...nk to Original site) - - FC-AM17Z 698 - - - - Show FC-AM17 Library FC (Link to library) Clone ID FC-AM17 (Li.../dictycdb.biol.tsukuba.ac.jp/CSM/FC/FC-AM/FC-AM17Q.Seq.d/ Representative seq. ID FC-AM1...7Z (Link to Original site) Representative DNA sequence >FC-AM17 (FC-AM17Q) /CSM/FC/FC-AM/FC-AM17Q.Seq.... 1269 0.0 SSC659 (SSC659Q) /CSM/SS/SSC6-C/SSC659Q.Seq.d/ 1269 0.0 FC-AM17 (FC-AM17Q) /CSM/FC/FC-AM/FC-AM1

  5. An electrochemical oxidation process of Am (III) into Am (VI) used to separate the americium of spent fuels reprocessing solutions

    International Nuclear Information System (INIS)

    The aim of this invention is to oxidize by an electrochemical process Am (III) to Am (VI). This process can be used to separate the americium of spent fuels reprocessing solutions. The method consists to add to the aqueous nitric solution containing Am (III) an heteropolyanion able to complex the americium (as for instance the potassium tungstophosphate) and the Ag (II) ion. The Ag (II) ion oxidizes the Am (III) and is reduced into an Ag (I) ion. It is then regenerated by the electrolysis of the solution. After the oxidation of Am (III) into Am (VI), this last ion can be extracted by an adapted organic solvent. With this electrochemical method a yield of 100% Am (VI) is obtained in half a hour. (O.M.). 5 refs., 5 figs., 2 tabs

  6. Facility Management

    OpenAIRE

    Král, David

    2012-01-01

    Tématem bakalářské práce je nalezení cesty ke zvýšení dlouhodobé efektivnosti a prosperity společnosti, která v rámci své podnikatelské činnosti spravuje a udržuje vlastní nemovitosti v centru Brna. Práce vychází z aktuálního stavu facility managementu společnosti a definování jejich silných a slabých stránek. Základem pro návrh efektivního řízení facility managementu je zpracování finanční analýzy společnosti a sledování nákladů včetně jejich optimalizace. Hlavním přínosem mé bakalářské prác...

  7. Nuclear Safeguards and Non-Proliferation Education at Texas A&M University

    International Nuclear Information System (INIS)

    The MS degree in Nuclear Engineering - Non-proliferation at Texas A&M University is administered by the Nuclear Security Science and Policy Institute (NSSPI). The oldest and largest of its kind in the US, 45 M.S. and 15 Ph.D. students conducted technical research in relevant areas: safeguards, nuclear security, non-proliferation, and arms control. In addition to focusing on graduate education with a wide combination of internationally-recognized talent, NSSPI faculty lead research and service activities in safeguarding of nuclear materials and reducing nuclear threats. Texas A&M Nuclear Engineering students take relevant nonproliferation and safeguards courses (within the College of Engineering and the Texas A&M Bush School of Government) as well as conduct their research under competent experts. The complete educational experience here is unique because of the strong research and educational support NSSPI provides. This paper will detail these endeavors and convey contributions from NSSPI for developing next-generation safeguards experts via practical experiences and strong affiliations with real-world practitioners. The safeguards and non-proliferation education programme blends historical, legal, technical and policy aspects that is unique for a technical university such as Texas A&M. Beyond classroom lectures, NSSPI provides opportunities for students ranging from asynchronous learning modules to practical experiences. Publicly-available self-paced, online course modules in basic and advanced safeguards education have been developed by NSSPI as supplemental nuclear education for students and professionals. By leveraging NSSPI's contacts, students participate in exchange programmes with international institutions as well as partake in experiences like engaging safeguards practitioners at nuclear fuel cycle facilities around the world, conducting experiments at internationally-renowned laboratories, and representing their communities at workshops worldwide

  8. Internal gastargets in AmPS

    Science.gov (United States)

    Kaan, A. P.; Postma, O.; van den Brand, J. F. J.; van Leeuwen, E.; Doets, M.; Kraan, M.

    1997-05-01

    Internal gas targets in AmPS A.P. Kaan, O. Postma, J.F.J. van den Brand, E. van Leeuwen, M. Doets, M. Kra= an National Institute for Nuclear Physics and High Energy Physics; Kruislaan 409; 1098 SJ Amsterdam; Holland In the Amsterdam Puls Stretcher/storage ring AmPS(1 GeV electrons), we designed a set-up in order to accommodate a gas target with a density of 1016 mol/cm2. The storage cell needed for this purpose is a aluminium tube with a length of 40 cm, a diameter of 15 mm and a wall thickness of 25 =B5m. Three sets of conductance limiters on both sides of the target, combined with dry turbopumps are designed to be used as differential pumping stations. These limiters cause discontinuities in the beam path and must therefor be retractable and radio frequency compatible in both positions. Low =B5 materials must be used because of the depolarisation effects of changing magnetic fields. The calculations show that the flow resistance's are sufficient to reduce the load of the getter pumps to a level with which the lifetime of the pump elements remain acceptable. The design of the mechanics and the vacuum system will be explained. Recent results from the measurements after installation in combination with the influence on the lifetime on the beam will be presented

  9. Stable isotope applications of AMS in geology

    International Nuclear Information System (INIS)

    The subject of geochemistry has become increasingly concerned with the distribution of trace elements in and between mineral phases. Part per million detection is routine, but part per billion measurements are, for certain elements, beyond the range of such sensitive analytical methods as neutron activation analysis (NAA). Tandem AMS has the ability to extend this limit several orders of magnitude for those elements which readily form negative ions. There is no doubt that such information can be most valuable for elements which are partitioned strongly between different mineral phases. While bulk analyses may indicate trace levels of certain elements to be present in a rock, it has always been difficult to state with certainty whether the trace element occurs at a uniformly low level throughout the various phases, or whether it is concentrated at a high level in small grains of an extremely rare phase scattered through the rock. The milli- or micro-probe analytical capability, which can be part of AMS, enables such problems concerning ultra-low level element concentrations to be tackled. With the same approach isotopic ratios of both major and minor elements in microgram amounts of material may be undertaken

  10. Positron ratio measurement with AMS-02

    International Nuclear Information System (INIS)

    The Alpha Magnetic Spectrometer (AMS-02) is a state of the art particle detector on the International Space Station (ISS). Equipped with a transition radiation detector (TRD) and an electromagnetic calorimeter (ECAL) AMS-02 is able to clearly distinguish positrons from the large background of protons in the cosmic rays. To optimize the proton rejection power of the TRD as many hits with a good estimation of the particles path length in the straw as possible are needed. A new tracking method has been used, which does not only use the particle path information provided by the tracker, but also uses the inefficiency of the single layers in the TRD. A missing signal in a layer of the detector adds additional high precision points of passage of the measured particle. These points help to correct the particle path for multiple scattering inside the TRD or small interactions in the material between TRD and Tracker. With this tracking method the path length estimation in the TRD straws is improved and therefore the proton rejection power is increased. This assures a positron spectrum with a high purity.

  11. Characterization of the neutron field from the 241Am-Be isotopic source of the IPHC irradiator

    International Nuclear Information System (INIS)

    A measurement campaign has been carried out recently to provide the source intensity and the reference spectra around a neutron irradiation facility based on 241Am-Be radionuclide source, using the UAB Bonner Sphere Spectrometer. This facility, which consists of a bunker, a container/shielding for the source and an irradiation device that uses an automated remote-controlled system for the source positioning and rotating during the dosimeter irradiation, is intended to be routinely used to check the response of passive dosimeters, namely those based on photo-stimulated imaging plates and solid-state nuclear track detectors. The measurement results, in terms of neutron spectra and global dosimetric quantities (i.e., fluence and ambient dose equivalent rates) at different distances with respect to the 241Am-Be source, were compared with Monte Carlo simulations using the MCNPX code and a good agreement was observed. An estimation of the un-scattered neutron spectrum directly emitted from the 241Am-Be source is given as well. - Highlights: ► We describe a neutron irradiation facility based on 241Am-Be radioactive source. ► The neutron field was characterized with a Bonner sphere spectrometer (BSS). ► Monte Carlo simulations using the MCNPX code were in good agreement with BSS. ► The un-scattered neutron spectrum is provided and compared to that given by the ISO-8529 standard. ► The neutron intensity of the 241Am-Be source is also estimated

  12. Evaluation of Am-Li neutron spectra data for active well type neutron multiplicity measurements of uranium

    Science.gov (United States)

    Goddard, Braden; Croft, Stephen; Lousteau, Angela; Peerani, Paolo

    2016-09-01

    Safeguarding nuclear material is an important and challenging task for the international community. One particular safeguards technique commonly used for uranium assay is active neutron correlation counting. This technique involves irradiating unused uranium with (α, n) neutrons from an Am-Li source and recording the resultant neutron pulse signal which includes induced fission neutrons. Although this non-destructive technique is widely employed in safeguards applications, the neutron energy spectra from an Am-Li sources is not well known. Several measurements over the past few decades have been made to characterize this spectrum; however, little work has been done comparing the measured and theoretical spectra of various Am-Li sources to each other. This paper examines fourteen different Am-Li spectra, focusing on how these spectra affect simulated neutron multiplicity results using the code Monte Carlo N-Particle eXtended (MCNPX). Two measurement and simulation campaigns were completed using Active Well Coincidence Counter (AWCC) detectors and uranium standards of varying enrichment. The results of this work indicate that for standard AWCC measurements, the fourteen Am-Li spectra produce similar doubles and triples count rates. The singles count rates varied by as much as 20% between the different spectra, although they are usually not used in quantitative analysis, being dominated by scattering which is highly dependent on item placement.

  13. Multi-nuclide AMS system at the University of Tsukuba

    International Nuclear Information System (INIS)

    A multi-nuclide AMS system on the 12UD Pelletron tandem accelerator at the University of Tsukuba (Tsukuba AMS system) can measure environmental levels of long-lived radioisotopes of 14C, 26Al, 36Cl and 129I by employing a molecular pilot beam. AMS is an ultrasensitive technique for the study of long-lived radioisotopes, and stable isotopes at very low abundances. The high terminal voltage has an advantage in the detection of heavy radioisotopes. Much progress has been made in the development of new AMS techniques. For example, a standard deviation of the fluctuation for the 36Cl/Cl ratio is ± 2%, and the effective detection limit is better than 1x10-15. In recent years, the main research field of the 12UD Pelletron tandem accelerator has shifted to accelerator mass spectrometry (AMS) research from nuclear physics. This report presents an overview of the Tsukuba AMS system.

  14. The rare isotope beams production at the Texas A&M university Cyclotron Institute

    OpenAIRE

    Tabacaru, G.; May, D. P.; Ärje, Juha; Chubarian, G.; Clark, H.; Kim, G.J.; Tribble, R. E.

    2013-01-01

    The Cyclotron Institute at Texas A&M is currently configuring a scheme for the production of radioactive-ion beams that incorporates a light-ion guide and a heavy-ion guide coupled with an electron-cyclotron-resonance ion source constructed for charge-breeding. This scheme is part of an upgrade to the facility and is intended to produce radioactive beams suitable for injection into the K500 superconducting cyclotron. The current status of the project and details on the ion sources...

  15. Decommissioning of Russian research facilities

    International Nuclear Information System (INIS)

    When the most of our research facilities were built and put in operation more than 30 years ago there had been neither requirements no regulations concerning their future decommissioning (D and D). And due to that fact nobody thought of that in the initial designs of these facilities. The situation changed when in 1994 a top-level safety standard 'Safety Provision for Safety of Research Reactors' was issued by Gosatomnadzor of Russia with a special chapter 7, devoted to D and D issues. Unfortunately, it was just one page of requirements pertaining RR D and D in general terms and was not specific. Only in 2001 Gosatomnadzor of Russia developed and issued a more specific standard 'Rules for Safety Decommissioning of Nuclear Research Facilities'. From the total number of 85 Nuclear Research Facilities, including 34 research reactors, 36 critical assemblies and 15 subcritical assemblies, we have now 7 facilities under decommissioning. The situation is inevitably changing over the time. In the end of 2003 the decision was made to permanently shutdown two RR: AM, graphite type with channels, 15 MBt; BR-10, LMFR type, 10 MBt, and to start preparatory work for their future decommissioning, starting from 2005. It needs to be mentioned that from this list we have 6 reactors with which we face many difficulties in developing decommissioning technologies, namely: for TVR reactor: handling of heavy water and high radiation field in the core; for MR reactor: very complex reactor with many former radioactive spills, which is required a careful and expensive D and D work; AM: graphite utilization problem; BR-10: a problem of coolant poisoned with other heavy metals (like lead, bismuth); IBR-30: the fuel cannot be removed from the core prior the D and D project starts; RG-1M: location is above Arctic Circle, problem of transfer of irradiated parts of the reactor. The decision was made to bury then on the site thus creating a shallow-land radwaste storage facility. The established D

  16. Le tecniche AMS e IBA del CEDAD per lo studio dei Beni Culturali, Ambientali e per la Scienza dei Materiali

    Directory of Open Access Journals (Sweden)

    Lucio Calcagnile

    2011-09-01

    Full Text Available ItGli acceleratori di particelle sono diventati un potente strumento per la diagnostica dei materiali in molti campi di ricerca. Questo articolo descrive la facility AMS-IBA installata presso il CEDAD – Centro di Datazione e Diagnostica dell’Università del Salento e riporta alcune applicazioni in Archeologia, Scienze ambientali e Scienza dei materiali.EnParticle accelerators have become a powerful tool for the diagnostics of materials in many research fields. This paper describes the AMS-IBA (Accelerator Mass Spectrometry – Ion Beam Analysis facility installed at CEDAD-Center for Dating and Diagnostics of the University of Salento, Italy and some applications in Archaeology, Environmental Sciences and Materials Science.

  17. Preparation of a multi-isotope plutonium AMS standard and preliminary results of a first inter-lab comparison

    Science.gov (United States)

    Dittmann, B.-A.; Dunai, T. J.; Dewald, A.; Heinze, S.; Feuerstein, C.; Strub, E.; Fifield, L. K.; Froehlich, M. B.; Tims, S. G.; Wallner, A.; Christl, M.

    2015-10-01

    The motivation of this work is to establish a new multi-isotope plutonium standard for isotopic ratio measurements with accelerator mass spectrometry (AMS), since stocks of existing solutions are declining. To this end, certified reference materials (CRMs) of each of the individual isotopes 239Pu, 240Pu, 242Pu and 244Pu were obtained from JRC IRMM (Joint Research Center Institute for Reference Materials and Measurements). These certified reference materials (IRMM-081a, IRMM-083, IRMM-043 and IRMM-042a) were diluted with nitric acid and mixed to obtain a stock standard solution with an isotopic ratio of approximately 1.0:1.0:1.0:0.1 (239Pu:240Pu:242Pu:244Pu). From this stock solution, samples were prepared for measurement of the plutonium isotopic composition by AMS. These samples have been measured in a round-robin exercise between the AMS facilities at CologneAMS, at the ANU Canberra and ETH Zurich to verify the isotopic ratio and to demonstrate the reproducibility of the measurements. The results show good agreement both between the different AMS measurements and with the gravimetrically determined nominal ratios.

  18. The AMS detector heads for the International Space Station

    CERN Multimedia

    CERN Video Productions

    2011-01-01

    The AMS particle detector will take off on 29 April 2011 at 21.47 CEST onboard the very last mission of the space Shuttle Endeavour. AMS, the Alpha Magnetic Spectrometer, will then be installed on the International Space Station from where it will explore the Universe for a period of over 10 years. AMS will address some of the most exciting mysteries of modern physics, looking for antimatter and dark matter in space, phenomena that have remained elusive up to now.

  19. Numerical simulation of AM1 microstructure

    Directory of Open Access Journals (Sweden)

    Rougier Luc

    2014-01-01

    Full Text Available A modelling approach is developed for the description of microstructure formation in the industrial AM1 Ni-base superalloy. Solidification and homogenization simulations are first carried out using a microsegregation model, before using the local compositions as an input for precipitation calculations, in order to characterize the influence of segregation on precipitation. First, the precipitation model was validated by comparing simulated and measured evolutions of the average precipitate radius during isothermal heat treatments at 1100 ∘C and 1210 ∘C. The chained microsegregation and precipitation simulations indicate that the global sequences of precipitation events remains are qualitatively the same at the different locations in the microstructure, but the growth and dissolution kinetics are strongly influenced by the local compositions. Local supersaturations have a larger effect on the average radius of the precipitates than certain stages of the precipitation heat treatment.

  20. AMS in combustion and tribology research

    International Nuclear Information System (INIS)

    An obvious, but previously untested, application of accelerator mass spectrometry is in the use of 14C as a tag to trace the erosion of combustion of carbon containing materials. The attractiveness of 14C as a site-specific, non-labile tag has been pointed out previously as part of the development of AMS for biomedical applications. Developments in sample handling protocols and in ion source performances have made it possible to work easily over five to seven orders of magnitude in concentration of isotopic labile (105 Modern to 10-2 Modern). The authors show that organics labeled with 14C can be added to fossil materials (naturally depleted in 14C) at no regulatory penalty or radiation hazard and usefully used to measure combustion of specific fractions of fuel or to trace the erosion of graphitic materials into lubricant sumps

  1. AMS measurement technology for 182Hf

    International Nuclear Information System (INIS)

    In order to improve the accuracy of AMS measurement for 182Hf/180Hf, a series of improvement and innovations of measurement technique and method were taken, such as chemical synthesis of 182Hf free samples, technique of monitoring off-axis current simultaneously, testing the stability of accelerator system, performing the alternate measurement, modified deduction method of 182W, testing the measurement method with simulated samples and real rock samples, and testing the reliability of measurement results. The experimental results show that the relative uncertainty is about 12% for the simulated samples to the order of 1 × 10-10 (182Hf/180Hf), which satisfies the requirement of measurements for real rock samples. The reason of big uncertainty with the rock sample mainly lies in the high content of W in the rock sample. (authors)

  2. en América Latina

    Directory of Open Access Journals (Sweden)

    Marta M. Elvira

    2005-01-01

    Full Text Available Las relaciones sociales y el respeto por la autoridad son características del modelo de administración latinoamericana. Estas características están basadas en valores del trabajo que forman un marco cultural apropiado para entender cómo las organizaciones latinoamericanas administran sus recursos humanos. Este artículo explora el desarrollo de la Administración de Recursos Humanos de acuerdo a este marco cultural enfocándose en las prácticas de reclutamiento, selección y promoción, entrenamiento y desarrollo, recompensas y reconocimientos, sistemas de trabajo, comunicación y relaciones laborales, y su relación con el desempeño organizacional en América Latina.

  3. The AMS-02 experiment on the ISS

    International Nuclear Information System (INIS)

    The Alpha Magnetic Spectrometer (AMS-02) on the International Space Station (ISS) is a large acceptance magnetic spectrometer aiming for high precision studies of cosmic rays in space. The experiment will address fundamental questions regarding primary antimatter and dark matter contents of the universe. In addition, the precise measurements of cosmic rays in a wide energy range will result in a greatly improved understanding of the cosmic ray propagation in the Galaxy. The detector is now in its final assembly stage at CERN (Geneva) and it will be shipped to KSC (Florida) for integration with the space shuttle Discovery before the end of 2009. The STS-134 mission, currently scheduled for launch in September 2010 will transport the experiment to the ISS where it will operate for a period of 3 to 5 years.

  4. 14C AMS dating Yongcheon cave

    International Nuclear Information System (INIS)

    The biggest island in South Korea is Jeju Island, which lies 80 km south of the mainland and has one shield volcano, Mt. Halla. The volcanic island and its lava tubes were added to the world heritage list by UNESCO in 2007. Among the many lava tubes on the island, a unique cave had been accidentally found in 2005 while some workers were replacing a telephone pole. Until the discovery, it had been completely isolated from the outside by naturally-built sand blocks. Yongcheon cave is a lime-decorated lava tube showing both the properties of a volcanic lava tube and a limestone cave. This cave, about 3 km in length, is acknowledged to be the best of this type in the world and includes a large clean-water lake, lava falls, and richly developed speleothems inside it. Even though there is archaeological evidence from well preserved pottery that ancient people entered this place, the preservation of artifacts was ensured by a geological change that made later entrance difficult. We have collected charcoal samples scattered around the cave and dated them using AMS. Ages were in the range of ca. 1570-1260 BP (A.D. 340–880) and this corresponds to the Ancient Three Kingdoms and the Unified Silla era in Korean history. The 14C AMS measurement results presented in this paper on wood charcoal provide precise dates which will be very useful not only to clarify the nature of human activities in this cave but also to provide reference dates when comparing other dating methods.

  5. {sup 14}C AMS dating Yongcheon cave

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.H., E-mail: jefflee@snu.ac.kr [AMS Lab., NCIRF, Seoul National University, Seoul 151-742 (Korea, Republic of); Choe, K. [AMS Lab., NCIRF, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, J.C. [Dept. of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Choi, S.H.; Kang, J.; Song, S.; Song, Y.M. [AMS Lab., NCIRF, Seoul National University, Seoul 151-742 (Korea, Republic of); Jang, J.G. [Jeju National Museum, Jeju 690-782 (Korea, Republic of)

    2013-01-15

    The biggest island in South Korea is Jeju Island, which lies 80 km south of the mainland and has one shield volcano, Mt. Halla. The volcanic island and its lava tubes were added to the world heritage list by UNESCO in 2007. Among the many lava tubes on the island, a unique cave had been accidentally found in 2005 while some workers were replacing a telephone pole. Until the discovery, it had been completely isolated from the outside by naturally-built sand blocks. Yongcheon cave is a lime-decorated lava tube showing both the properties of a volcanic lava tube and a limestone cave. This cave, about 3 km in length, is acknowledged to be the best of this type in the world and includes a large clean-water lake, lava falls, and richly developed speleothems inside it. Even though there is archaeological evidence from well preserved pottery that ancient people entered this place, the preservation of artifacts was ensured by a geological change that made later entrance difficult. We have collected charcoal samples scattered around the cave and dated them using AMS. Ages were in the range of ca. 1570-1260 BP (A.D. 340-880) and this corresponds to the Ancient Three Kingdoms and the Unified Silla era in Korean history. The {sup 14}C AMS measurement results presented in this paper on wood charcoal provide precise dates which will be very useful not only to clarify the nature of human activities in this cave but also to provide reference dates when comparing other dating methods.

  6. Proceedings of the second JAEA tandetron AMS utilization workshop

    International Nuclear Information System (INIS)

    Accelerator Mass Spectrometer (AMS) can determine ultra low level long-lived radioactive isotopes in high sensitivity and precision. Tandetron AMS, originally introduced at Mutsu Establishment, the former Japan Atomic Energy Research Institute (JAERI), had been adjusted for the measurement of 14C and 129I. The AMS has mainly been used for marine research around the Japan Sea. This AMS has adopted the open door policy for the general users from the spring of 2006. Recently varieties of research activities using this AMS have been in progress by many users. This workshop aimed to not only exchange information on the AMS and its utilization but also continue stable operation of the AMS. Second JAEA Tandetron AMS Utilization Workshop was held at Mutsu office, JAEA in November 12-13, 2009. In the workshop 70 participants attended. The topic of the conference was about the recent 14C measurement and its application, 129I measurement and its application, and the current state of the use of AMS. This report contains 28 papers presented at the workshop. The 28 of the presented papers are indexed individually. (J.P.N.)

  7. Disturbance from Am-241 Photons of the Cellular Dose by Am-241 Alpha Emissions: Am-241 as an alternative source of alpha particles to radon daughters

    International Nuclear Information System (INIS)

    The Radiation Bioengineering Laboratory (RadBio Lab) at Seoul National University (SNU) has built an Am-241 alpha particle irradiator for study of cellular responses to radiation from radon daughters. The radon daughters of concern that cause internal exposure from inhalation of radon-contaminated air are Po-218, Po-214 and Po-210. In their alpha decay schemes, the yields of photon emissions are negligible. Unfortunately, Am-241, the source of alpha irradiator in RadBio Lab, emits photons at every alpha decay while transforming to Np-237 of long half-life. Employing Am-241 as the source simulating radon daughters, therefore, requires that photon emissions from Am-241 be specified in term of dose contribution. In this study, Monte Carlo calculations have been made to characterize dose contributions of Am-241 photon emissions. This study confirms that disturbance from Am-241 photon emissions of the cellular dose by Am-241 alpha emissions is negligible. Dose contamination fraction from photon emissions was 8.02 .. 10-6 at 25 mm SSD at maximum. Also, note that LET in tissue-equivalent medium varies within about 20% for alpha particles at energies over 5 MeV

  8. Disturbance from Am-241 Photons of the Cellular Dose by Am-241 Alpha Emissions: Am-241 as an alternative source of alpha particles to radon daughters

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki-Man; Kim, Eun-Hee [Seoul National University, Seoul (Korea, Republic of)

    2015-05-15

    The Radiation Bioengineering Laboratory (RadBio Lab) at Seoul National University (SNU) has built an Am-241 alpha particle irradiator for study of cellular responses to radiation from radon daughters. The radon daughters of concern that cause internal exposure from inhalation of radon-contaminated air are Po-218, Po-214 and Po-210. In their alpha decay schemes, the yields of photon emissions are negligible. Unfortunately, Am-241, the source of alpha irradiator in RadBio Lab, emits photons at every alpha decay while transforming to Np-237 of long half-life. Employing Am-241 as the source simulating radon daughters, therefore, requires that photon emissions from Am-241 be specified in term of dose contribution. In this study, Monte Carlo calculations have been made to characterize dose contributions of Am-241 photon emissions. This study confirms that disturbance from Am-241 photon emissions of the cellular dose by Am-241 alpha emissions is negligible. Dose contamination fraction from photon emissions was 8.02 .. 10{sup -6} at 25 mm SSD at maximum. Also, note that LET in tissue-equivalent medium varies within about 20% for alpha particles at energies over 5 MeV.

  9. Pulmonary administration of Am80 regenerates collapsed alveoli.

    Science.gov (United States)

    Sakai, Hitomi; Horiguchi, Michiko; Ozawa, Chihiro; Akita, Tomomi; Hirota, Keiji; Shudo, Koichi; Terada, Hiroshi; Makino, Kimiko; Kubo, Hiroshi; Yamashita, Chikamasa

    2014-12-28

    Chronic obstructive pulmonary disease (COPD) is an intractable pulmonary disease, which causes widespread and irreversible alveoli collapse. Nevertheless, there is no effective drug therapy that regenerates lung tissue or prevents the progression of COPD and clinical management of patients remains mostly supportive. The aim of this study was to evaluate whether Am80 is useful as a novel pulmonary emphysema therapeutic drug. In this study, we treated the human alveolar epithelial stem cells with Am80 to clarify the differentiation-inducing mechanism and administrated Am80 transpulmonarily into elastase-induced COPD model mice to evaluate the effect of Am80 on pulmonary emphysema. First, we accordingly investigated whether Am80 had a differentiation-inducing effect on human alveolar epithelial stem cells, Am80 induced differentiation of human alveolar epithelial stem cells to alveolar type I and II cells dose dependently, and the proportion of differentiated into type I and type II alveolar epithelial cells as a result of treatment with 10 μM of Am80 for 7 days was approximately 20%. Second, we attempted to identify the major factor involved in the differentiation-inducing effect of human alveolar epithelial stem cells induced by Am80 using microarray analysis. In a microarray analysis, WNT1, lectin, SLIT, chordin, ck12, ck11, and neurexin3 showed the largest variation in the Am80-treated group compared with the controls. In quantitative polymerase-chain-reaction assay, Am80 resulted in significant reduction in the WNT1 expression ratio whereas increase in the neurexin3 expression ratio. We evaluated the repairs effect for collapsed alveoli by Am80 of pulmonary administration. In untreated and Am80-treated mice the average CT value at 2 days was, respectively, -506 and -439 and there was a significant difference. Likewise, the assessment of the distance between alveolar walls, Lm, confirmed that there was a significant difference between control (68.0±3.8 μm) and

  10. Some Validation Data for the Achievement Motives Scale (AMS).

    Science.gov (United States)

    Rand, Per

    1978-01-01

    A Norwegian version of the Achievement Motives Scale (AMS) was administered to Oslo sixth-graders, along with verbal, numeric, test anxiety, and lie/defensiveness tests. Results showed the relationships to academic performance predicted by achievement theory. Even when related to the personality scales, the AMS showed promising qualities.…

  11. North Slope, Alaska ESI: FACILITY (Facility Points)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for oil field facilities for the North Slope of Alaska. Vector points in this data set represent oil field facility locations. This data...

  12. forzada en América Latina

    Directory of Open Access Journals (Sweden)

    Jorge A. González

    2008-01-01

    Full Text Available Para mediados del año 2007 la red de Internet tiene conectados a más de 1,200 millones de personas por todo el mundo. Sin embargo, la historia social de la tecnología indica que algunas de las innovaciones más importantes se reservan para fruto de quienes las inventan y desarrollan. Desde el punto de vista del análisis social la internacionalización de los estudios sobre Internet, no es lo mismo preguntarse las cosas desde el centro del sistema—mundo, que desde la periferia donde se ubica América Latina. En la primera parte de este texto se exponen algunas cifras que dan cuenta de la presencia y crecimiento de Internet en el mundo de habla hispana; en la segunda se plantea una estrategia para desarrollar Cibercultur@ que ha sido diseñada para operar justo al revés de como se ha ido dando el proceso de expansión y difusión del acceso a Internet en las regiones no centrales de la sociedad a escala mundial.

  13. Status of AMS system of Kyoto University

    International Nuclear Information System (INIS)

    We are developing Accelerator Mass Spectrometer (AMS) using 8 MV tandem accelerator of Faculty of Science, Kyoto University to measure long life heavy radio- isotope with high sensitivity. The multi target sputter ion source mounted 59 samples. A slit was installed in front of negative ion source to decrease beam emittance. The 3 μm aluminum foil was used to separate 13C4+ and 14N4+, 7Li2)4+ in the silicon semiconductor detector. Successive injection is realized by changing the magnetic field of injection section. The test sample was at first to become CO2. After purification, it was de oxidized by Hydrogen with Fe catalysis. The ratio of 14C/12C was obtained after estimation of the ion permeability efficiency. The tandem accelerator was not exclusive for the mass spectrometer. Therefore, we installed the second stripper (5 μm Mylar) between the 90 degrees analyzing magnet and the steering magnet to cancel out background signals. After all, this modification enabled to measure 14C by successive injection method. The reproducibility of data is less than 1 - 2 %, which is mainly due to the fluctuation of the electric current measurement. The chain operation time is about 2500 hours in a year. Meantime, the main trouble is a deterioration of cooling water quality. Exchanges of pipes and cleaning by chemicals were needed after the deterioration of water quality. Further optimization of detector system is being continued to increase sensitivity. (Y. Tanaka)

  14. Photon interaction studies using 241Am -rays

    Indian Academy of Sciences (India)

    N Ramachandran; K Karunakaran Nair; K K Abdullah; K M Varier

    2006-09-01

    We have carried out some photon interaction measurements using 59.54 keV -rays from a 241Am source. These include attenuation studies as well as photoelectric absorption studies in various samples. The attenuation studies have been made using leaf and wood samples, samples like sand, sugar etc., which contain particles of varying sizes as well as pellets and aqueous solutions of rare earth compounds. In the case of the leaf and wood samples, we have used the -ray attenuation technique for the determination of the water content in fresh and dried samples. The variation of the attenuation coefficient with particle size has been investigated for sand and sugar samples. The attenuation studies as well as the photoelectric studies in the case of rare earth elements have been carried out on samples containing such elements whose K-absorption edge energies lie below and close to the -energy used. Suitable compounds of the rare earth elements have been chosen as mixture absorbers in these investigations. A narrow beam good geometry set-up was used for the attenuation measurements. A well-shielded scattering geometry was used for the photoelectric measurements. The mixture rule was invoked to extract the values of the mass attenuation coefficients for the elements from those of the corresponding compounds. The results are consistent with theoretical values derived from the XCOM package.

  15. The Ohrberg solar village; Solarsiedlung am Ohrberg

    Energy Technology Data Exchange (ETDEWEB)

    Vanoli, K.; Christoffers, D.; Rockendorf, G. [Institut fuer Solarenergieforschung GmbH Hameln/Emmerthal (ISFH), Emmerthal (Germany). Abt. Systemtechnik von Solarenergieanlagen; Kranz, R. [Elektrizitaetswerke Wesertal GmbH, Hameln (Germany). Abt. Energieberatung/Energiekonzepte

    1998-02-01

    As an officially approved regional project of the EXPO 2000, the Ohrberg Solar Village will demonstrate an integrated energy concept - combining customer information and counseling, modern energy technologies and energy services rendered by utilities - which reduces the consumption of conventional energy ressources and the CO{sub 2}-emissions. The local utility Wesertal GmbH will equip the 82 low-energy solar houses of the village with reliable, cost-effective and innovative energy technologies and will provide energy services on the basis of a user-friendly contract. (orig.) [Deutsch] Die Solarsiedlung am Ohrberg demonstriert als registriertes Regionalprojekt der EXPO 2000, wie ein integriertes Energiekonzept - bestehend aus umfassender Energieberatung, Einsatz moderner Energietechnologien und einem Nutz-Energie-Dienstleistungsangebot der Energieversorger - einen substantiellen Beitrag zur Ressourcenschonung und zur Reduzierung der klimarelevanten Umweltbelastung leisten kann. Das regionale Energieversorgungsunternehmen Wesertal GmbH wird innovative, erprobte, kostenguenstige, rationelle und regenerative Energieversorgungstechniken in den 82 solaren Niedrigenergiehaeusern dieser Siedlung installieren und die Waermeversorgung im Rahmen eines Waermedienstleistungskonzeptes uebernehmen. (orig.)

  16. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research FacilityFacilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other...

  17. Basic Research Firing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Basic Research Firing Facility is an indoor ballistic test facility that has recently transitioned from a customer-based facility to a dedicated basic research...

  18. Kusheh, na minem Fatu, en mi na koko farmer Hello, I am Fatu and I am a cocoa farmer

    NARCIS (Netherlands)

    Witteveen, L.M.; Goris, Margriet; Lie, R.; Ingram, V.J.

    2016-01-01

    This document reports on the development of a prototype Digital Farmer Field School (DFFS) called Kusheh, na minem Fatu, en mi na koko farmer (“Hello, I am Fatu and I am a cocoa farmer”). The DFFS provides an ICT-based alternative to traditional agricultural extension. More specifically, it offers a

  19. Competence of alpha spectrometry analysis algorithms used to resolve the 241Am and 243Am alpha peak overlap

    International Nuclear Information System (INIS)

    Five alpha spectrometry analysis algorithms were evaluated for their ability to resolve the 241Am and 243Am peak overlap present under typical low-level counting conditions. The major factors affecting the performance of the algorithms were identified using design-of-experiment combined with statistical analysis of the results. The study showed that the accuracy of the 241Am/243Am ratios calculated by the algorithms depends greatly on the degree of peak deformation and tailing. Despite the improved data quality obtained using an algorithm that may include peak addition and tail estimation, the accurate determination of 241Am by alpha spectrometry relies primarily on reduction of peak overlap rather than on algorithm selection

  20. Microstructural evolution and Am migration behaviour in Am-containing fuels at the initial stage of irradiation

    International Nuclear Information System (INIS)

    In order to investigate the effect of americium addition to MOX fuels on the irradiation behaviour, the 'Am-1' programme is being conducted in JAEA. The Am-1 programme consists of two short-term irradiation tests of 10-minute and 24-hour irradiations and a steady-state irradiation test. The short-term irradiation tests were successfully completed and the post-irradiation examinations (PIE) are in progress. The PIE for Am-containing MOX fuels focused on the microstructural evolution and redistribution behaviour of Am at the initial stage of irradiation and the results to date are reported. The successful development of fabrication technology with remote handling and the evaluation of thermo-chemical properties based on the out-of-pile experiments are described with an emphasis on the effects of Am addition on the MOX fuel properties. (authors)