WorldWideScience

Sample records for antarctic ocean

  1. Emplacement of Antarctic ice sheet mass affects circumpolar ocean flow

    NARCIS (Netherlands)

    Rugenstein, M.; Stocchi, P.; van der Heydt, A.; Brinkhuis, H.

    2014-01-01

    During the Cenozoic the Antarctic continent experienced large fluctuations in ice-sheet volume. We investigate the effects of Glacial Isostatic Adjustment (GIA) on Southern Ocean circulation for the first continental scale glaciation of Antarctica (~ 34 Myr) by combining solid Earth and ocean dynami

  2. Antarctic and Southern Ocean influences on Late Pliocene global cooling

    NARCIS (Netherlands)

    McKay, R.; Naish, T.; Carter, L.; Riesselman, C.; Dunbar, R.; Sjunneskog, C.; Winter, D.; Sangiorgi, F.; Warren, C.; Pagani, M.; Schouten, S.; Willmott, V.; Levy, R.; DeConto , R.M.; Powell, R.D.

    2012-01-01

    The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL AND-1

  3. Ocean forcing of glacier retreat in the western Antarctic Peninsula.

    Science.gov (United States)

    Cook, A J; Holland, P R; Meredith, M P; Murray, T; Luckman, A; Vaughan, D G

    2016-07-15

    In recent decades, hundreds of glaciers draining the Antarctic Peninsula (63° to 70°S) have undergone systematic and progressive change. These changes are widely attributed to rapid increases in regional surface air temperature, but it is now clear that this cannot be the sole driver. Here, we identify a strong correspondence between mid-depth ocean temperatures and glacier-front changes along the ~1000-kilometer western coastline. In the south, glaciers that terminate in warm Circumpolar Deep Water have undergone considerable retreat, whereas those in the far northwest, which terminate in cooler waters, have not. Furthermore, a mid-ocean warming since the 1990s in the south is coincident with widespread acceleration of glacier retreat. We conclude that changes in ocean-induced melting are the primary cause of retreat for glaciers in this region. PMID:27418507

  4. Risk maps for Antarctic krill under projected Southern Ocean acidification

    Science.gov (United States)

    Kawaguchi, S.; Ishida, A.; King, R.; Raymond, B.; Waller, N.; Constable, A.; Nicol, S.; Wakita, M.; Ishimatsu, A.

    2013-09-01

    Marine ecosystems of the Southern Ocean are particularly vulnerable to ocean acidification. Antarctic krill (Euphausia superba; hereafter krill) is the key pelagic species of the region and its largest fishery resource. There is therefore concern about the combined effects of climate change, ocean acidification and an expanding fishery on krill and ultimately, their dependent predators--whales, seals and penguins. However, little is known about the sensitivity of krill to ocean acidification. Juvenile and adult krill are already exposed to variable seawater carbonate chemistry because they occupy a range of habitats and migrate both vertically and horizontally on a daily and seasonal basis. Moreover, krill eggs sink from the surface to hatch at 700-1,000m (ref. ), where the carbon dioxide partial pressure (pCO2) in sea water is already greater than it is in the atmosphere. Krill eggs sink passively and so cannot avoid these conditions. Here we describe the sensitivity of krill egg hatch rates to increased CO2, and present a circumpolar risk map of krill hatching success under projected pCO2 levels. We find that important krill habitats of the Weddell Sea and the Haakon VII Sea to the east are likely to become high-risk areas for krill recruitment within a century. Furthermore, unless CO2 emissions are mitigated, the Southern Ocean krill population could collapse by 2300 with dire consequences for the entire ecosystem.

  5. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.

    Science.gov (United States)

    Goldner, A; Herold, N; Huber, M

    2014-07-31

    Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future. PMID:25079555

  6. Circulation of Antarctic intermediate water in the South Indian Ocean

    Science.gov (United States)

    Fine, Rana A.

    1993-10-01

    Chlorofluorocarbon (CFC) and hydrographic data collected on the R.R.S. Charles Darwin Cruise 29 along 32°S during November-December 1987, are used to examine the circulation in the South Indian Ocean. The emphasis is on Antarctic Intermediate Water (AAIW); bottom waters and mode waters are also examined. Bottom waters entering in the western boundary of the Crozet Basin (about 60°E) and in the Mozambique Basin (about 40°E) have low concentrations of anthropogenic CFCs. The rest of the bottom and deep waters up to about 2000 m have concentrations that are below blank levels. Above the intermediate waters there are injections of mode waters, which are progressively denser in the eastward direction. They form a broad subsurface CFC maximum between 200 and 400 m. The injections of recently ventilated (with respect to CFCs and oxygen) Subantarctic Mode Waters (SAMWs) at different densities indicate that there is considerable exchange between the subtropical and subantarctic regions. The tracer data presented show that the circulation of AAIW in the South Indian Ocean is different from that in the South Atlantic and South Pacific oceans in several ways. (1) The most recently ventilated AAIW is observed in a compact anticyclonic gyre west of 72°E. The shallow topography (e.g. that extending northeastward from the Kerguelen Plateau) may deflect and limit the eastward extent of the most recently ventilated AAIW. As a consequence, there is a zonal offset in the South Indian Ocean of the location of the most recently ventilated SAMW and AAIW, which does not occur in the other two oceans. The strongest component of SAMW is in the east, while the AAIW is strongest in the western-central South Indian Ocean. The offset results in a higher vertical gradient in CFCs in the east. (2) The Agulhas Current may impede input of AAIW along the western boundary. (3) Tracers are consistent with an inter-ocean flow from the South Pacific into the Eastern Indian Ocean, similar to the

  7. Sensitivity of Antarctic fish to ocean warming - an energy budget approach

    OpenAIRE

    Sandersfeld, Tina

    2015-01-01

    Like the Arctic, the Antarctic region hosts some of the hot spots of climatic change. At the western Antarctic Peninsula, alterations of air and water temperature, pH, salinity and sea-ice regime were reported and associated shifts in species abundance and changes in food web structure have already become evident. In contrast, for most high-Antarctic regions, no climate related changes have yet been found. However, future temperature increases are also projected for these areas. Ocean warming...

  8. Mitochondrial Acclimation Capacities to Ocean Warming and Acidification Are Limited in the Antarctic Nototheniid Fish, Notothenia rossii and Lepidonotothen squamifrons

    OpenAIRE

    Strobel, Anneli; Graeve, Martin; Poertner, Hans O.; Mark, Felix C

    2013-01-01

    Antarctic notothenioid fish are characterized by their evolutionary adaptation to the cold, thermostable Southern Ocean, which is associated with unique physiological adaptations to withstand the cold and reduce energetic requirements but also entails limited compensation capacities to environmental change. This study compares the capacities of mitochondrial acclimation to ocean warming and acidification between the Antarctic nototheniid Notothenia rossii and the sub-Antarctic Lepidonotothen ...

  9. Characterising Antarctic and Southern Ocean Lithosphere with Magnetic and Gravity Imaging of East Antarctic Rift Systems

    Science.gov (United States)

    Vaughan, A. P.; Kusznir, N. J.; Ferraccioli, F.; Jordan, T. A.; Purucker, M. E.; Golynsky, A. V.; Rogozhina, I.

    2012-12-01

    Since the International Geophysical Year (1957), a view has prevailed that the lithospheric structure of East Antarctica is relatively homogeneous, forming a geological block of largely cratonic nature, consisting of a mosaic of Precambrian terranes, stable since the Pan-African orogeny ~500 million years ago. Recent recognition of a continental-scale rift system cutting the East Antarctic interior indicates that this is incorrect, and has crystallised an alternative view of much more recent geological activity with important implications for tectonic reconstructions and controls on ice sheet formation and stability. The newly defined East Antarctic Rift System appears to extend from at least the South Pole to the continental margin at the Lambert Rift, a distance of 2500 km. This is comparable in scale to the well-studied East African rift system. New analysis of RadarSat data pioneered by Golynsky & Golynsky indicates that further rift zones may extend the East Antarctic Rift System into widely distributed extension zones within the continent. We have carried out a pilot study, using a newly developed gravity inversion technique with existing public domain satellite data, which shows that East Antarctica consists of distinct crustal thickness provinces with anomalously thick areas separated by thin, possibly rifted crust and overall high average thickness. Understanding the nature of crustal thickness in East Antarctica is critical because: 1) Better understanding of crustal thickness in Antarctica, especially along the ocean-continent transition (OCT), will make it possible to improve the plate reconstruction fit between Antarctica, Australia and India in Gondwana and also refine constraints on how and when these continents separated; 2) crustal thickness provinces can be used to aid supercontinent reconstructions and provide new assessments of the influence of basement architecture and mechanical properties on rifting processes; 3) tracking rift zones through

  10. Methyl iodine over oceans from the Arctic Ocean to the maritime Antarctic

    Science.gov (United States)

    Hu, Qihou; Xie, Zhouqing; Wang, Xinming; Yu, Juan; Zhang, Yanli

    2016-05-01

    Studies about methyl iodide (CH3I), an important atmospheric iodine species over oceans, had been conducted in some maritime regions, but the understanding of the spatial distribution of CH3I on a global scale is still limited. In this study, we reports atmospheric CH3I over oceans during the Chinese Arctic and Antarctic Research Expeditions. CH3I varied considerably with the range of 0.17 to 2.9 pptv with absent of ship emission. The concentration of CH3I generally decreased with increasing latitudes, except for higher levels in the middle latitudes of the Northern Hemisphere than in the low latitudes. For sea areas, the Norwegian Sea had the highest CH3I concentrations with a median of 0.91 pptv, while the Central Arctic Ocean had the lowest concentrations with all values below 0.5 pptv. CH3I concentration over oceans was affected by many parameters, including sea surface temperature, salinity, dissolved organic carbon, biogenic emissions and input from continents, with distinctive dominant factor in different regions, indicating complex biogeochemical processes of CH3I on a global scale.

  11. Southern Ocean deep convection as a driver of Antarctic warming events

    Science.gov (United States)

    Pedro, J. B.; Martin, T.; Steig, E. J.; Jochum, M.; Park, W.; Rasmussen, S. O.

    2016-03-01

    Simulations with a free-running coupled climate model show that heat release associated with Southern Ocean deep convection variability can drive centennial-scale Antarctic temperature variations of up to 2.0°C. The mechanism involves three steps: Preconditioning: heat accumulates at depth in the Southern Ocean; Convection onset: wind and/or sea ice changes tip the buoyantly unstable system into the convective state; and Antarctic warming: fast sea ice-albedo feedbacks (on annual-decadal time scales) and slow Southern Ocean frontal and sea surface temperature adjustments to convective heat release (on multidecadal-century time scales) drive an increase in atmospheric heat and moisture transport toward Antarctica. We discuss the potential of this mechanism to help drive and amplify climate variability as observed in Antarctic ice core records.

  12. Acoustic Observatory Provides Real-Time Underwater Sounds from the Antarctic Ocean

    OpenAIRE

    Boebel, Olaf; Kindermann, Lars; Klinck, Holger; Bornemann, Horst; Plötz, Joachim; Steinhage, Daniel; Riedel, Sven; Burkhardt, Elke

    2006-01-01

    To obtain real-time, year-round acoustic data from the coastal Antarctic Ocean, an autonomous listening station, PALAOA (PerenniAL Acoustic Observatory in the Antarctic Ocean, or Hawaiian whale), was constructed in austral summer 2005/06, 15 km North of the German Neumayer Base. PALAOAs design was guided by demanding prerequisites: perennial, 365/24, autonomous operation, real-time data access, and full frequency and dynamic coverage. The station is located at 70°31S 8°13W, on the Ekström ice...

  13. Antarctic icebergs melt over the Southern Ocean : Climatology and impact on sea ice

    Science.gov (United States)

    Merino, Nacho; Le Sommer, Julien; Durand, Gael; Jourdain, Nicolas C.; Madec, Gurvan; Mathiot, Pierre; Tournadre, Jean

    2016-08-01

    Recent increase in Antarctic freshwater release to the Southern Ocean is suggested to contribute to change in water masses and sea ice. However, climate models differ in their representation of the freshwater sources. Recent improvements in altimetry-based detection of small icebergs and in estimates of the mass loss of Antarctica may help better constrain the values of Antarctic freshwater releases. We propose a model-based seasonal climatology of iceberg melt over the Southern Ocean using state-of-the-art observed glaciological estimates of the Antarctic mass loss. An improved version of a Lagrangian iceberg model is coupled with a global, eddy-permitting ocean/sea ice model and compared to small icebergs observations. Iceberg melt increases sea ice cover, about 10% in annual mean sea ice volume, and decreases sea surface temperature over most of the Southern Ocean, but with distinctive regional patterns. Our results underline the importance of improving the representation of Antarctic freshwater sources. This can be achieved by forcing ocean/sea ice models with a climatological iceberg fresh-water flux.

  14. Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula.

    Science.gov (United States)

    Shevenell, A E; Ingalls, A E; Domack, E W; Kelly, C

    2011-02-10

    The disintegration of ice shelves, reduced sea-ice and glacier extent, and shifting ecological zones observed around Antarctica highlight the impact of recent atmospheric and oceanic warming on the cryosphere. Observations and models suggest that oceanic and atmospheric temperature variations at Antarctica's margins affect global cryosphere stability, ocean circulation, sea levels and carbon cycling. In particular, recent climate changes on the Antarctic Peninsula have been dramatic, yet the Holocene climate variability of this region is largely unknown, limiting our ability to evaluate ongoing changes within the context of historical variability and underlying forcing mechanisms. Here we show that surface ocean temperatures at the continental margin of the western Antarctic Peninsula cooled by 3-4 °C over the past 12,000 years, tracking the Holocene decline of local (65° S) spring insolation. Our results, based on TEX(86) sea surface temperature (SST) proxy evidence from a marine sediment core, indicate the importance of regional summer duration as a driver of Antarctic seasonal sea-ice fluctuations. On millennial timescales, abrupt SST fluctuations of 2-4 °C coincide with globally recognized climate variability. Similarities between our SSTs, Southern Hemisphere westerly wind reconstructions and El Niño/Southern Oscillation variability indicate that present climate teleconnections between the tropical Pacific Ocean and the western Antarctic Peninsula strengthened late in the Holocene epoch. We conclude that during the Holocene, Southern Ocean temperatures at the western Antarctic Peninsula margin were tied to changes in the position of the westerlies, which have a critical role in global carbon cycling. PMID:21307939

  15. Transport of Antarctic bottom water through the Kane Gap, tropical NE Atlantic Ocean

    NARCIS (Netherlands)

    Morozov, E.G.; Tarakanov, R.Y.; van Haren, H.

    2013-01-01

    We study low-frequency properties of the Antarctic Bottom Water (AABW) flow through the Kane Gap (9° N) in the Atlantic Ocean. The measurements in the Kane Gap include five visits with CTD (Conductivity-Temperature-Depth) sections in 2009–2012 and a year-long record of currents on a mooring using th

  16. The seasonal cycle of ocean-atmosphere CO2 Flux in Ryder Bay, West Antarctic Peninsula.

    OpenAIRE

    Legge, Oliver J.; Bakker, Dorothee C. E.; Johnson, Martin T.; Meredith, Michael P.; Venables, Hugh J.; Brown, Peter J.; Lee, Gareth A.

    2015-01-01

    Approximately 15 million km2 of the Southern Ocean is seasonally ice covered, yet the processes affecting carbon cycling and gas exchange in this climatically important region remain inadequately understood. Here, 3 years of dissolved inorganic carbon (DIC) measurements and carbon dioxide (CO2) fluxes from Ryder Bay on the west Antarctic Peninsula (WAP) are presented. During spring and summer, primary production in the surface ocean promotes atmospheric CO2 uptake. In winter, higher DIC, caus...

  17. Sources and Levels of Ambient Ocean Sound near the Antarctic Peninsula

    OpenAIRE

    Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Stafford, Kathleen M.; Haruyoshi Matsumoto; Minkyu Park; Won Sang Lee; Fowler, Matt J.; Tai-Kwan Lau; Haxel, Joseph H.; Mellinger, David K.

    2015-01-01

    Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapi...

  18. Final Report. Coupled simulations of Antarctic Ice-sheet/ocean interactions using POP and CISM

    Energy Technology Data Exchange (ETDEWEB)

    Asay-Davis, Xylar Storm [Potsdam Institute for Climate Impact Research, Potdam (Germany)

    2015-12-30

    The project performed under this award, referred to from here on as CLARION (CoupLed simulations of Antarctic Ice-sheet/Ocean iNteractions), included important advances in two models of ice sheet and ocean interactions. Despite its short duration (one year), the project made significant progress on its three major foci. First, together with collaborator Daniel Martin at Lawrence Berkeley National Laboratory (LBNL), I developed the POPSICLES coupled ice sheet-ocean model to the point where it could perform a number of pan-Antarctic simulations under various forcing conditions. The results were presented at a number of major conferences and workshops worldwide, and are currently being incorporated into two manuscripts in preparation.

  19. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice.

    Science.gov (United States)

    Li, Xichen; Holland, David M; Gerber, Edwin P; Yoo, Changhyun

    2014-01-23

    In recent decades, Antarctica has experienced pronounced climate changes. The Antarctic Peninsula exhibited the strongest warming of any region on the planet, causing rapid changes in land ice. Additionally, in contrast to the sea-ice decline over the Arctic, Antarctic sea ice has not declined, but has instead undergone a perplexing redistribution. Antarctic climate is influenced by, among other factors, changes in radiative forcing and remote Pacific climate variability, but none explains the observed Antarctic Peninsula warming or the sea-ice redistribution in austral winter. However, in the north and tropical Atlantic Ocean, the Atlantic Multidecadal Oscillation (a leading mode of sea surface temperature variability) has been overlooked in this context. Here we show that sea surface warming related to the Atlantic Multidecadal Oscillation reduces the surface pressure in the Amundsen Sea and contributes to the observed dipole-like sea-ice redistribution between the Ross and Amundsen-Bellingshausen-Weddell seas and to the Antarctic Peninsula warming. Support for these findings comes from analysis of observational and reanalysis data, and independently from both comprehensive and idealized atmospheric model simulations. We suggest that the north and tropical Atlantic is important for projections of future climate change in Antarctica, and has the potential to affect the global thermohaline circulation and sea-level change. PMID:24451542

  20. Antarctic-type blue whale calls recorded at low latitudes in the Indian and eastern Pacific Oceans

    Science.gov (United States)

    Stafford, Kathleen M.; Bohnenstiehl, DelWayne R.; Tolstoy, Maya; Chapp, Emily; Mellinger, David K.; Moore, Sue E.

    2004-10-01

    Blue whales, Balaenoptera musculus, were once abundant around the Antarctic during the austral summer, but intensive whaling during the first half of the 20th century reduced their numbers by over 99%. Although interannual variability of blue whale occurrence on the Antarctic feeding grounds was documented by whalers, little was known about where the whales spent the winter months. Antarctic blue whales produce calls that are distinct from those produced by blue whales elsewhere in the world. To investigate potential winter migratory destinations of Antarctic blue whales, we examined acoustic data for these signals from two low-latitude locales: the eastern tropical Pacific Ocean and the Indian Ocean. Antarctic-type blue whale calls were detected on hydrophones in both regions during the austral autumn and winter (May-September), with peak detections in July. Calls occurred over relatively brief periods in both oceans, suggesting that there may be only a few animals migrating so far north and/or producing calls. Antarctic blue whales appear to use both the Indian and eastern Pacific Oceans concurrently, indicating that there is not a single migratory destination. Acoustic data from the South Atlantic and from mid-latitudes in the Indian or Pacific Oceans are needed for a more global understanding of migratory patterns and destinations of Antarctic blue whales.

  1. Primary productivity, phytoplankton standing crop and physico-chemical characteristics of the Antarctic and adjacent central Indian Ocean waters

    Digital Repository Service at National Institute of Oceanography (India)

    JiyalalRam, M.

    Primary productivity, phytoplankton pigments and physico-chemical properties were studied in Antarctic waters and adjoining Indian Ocean between 11 degrees and 67 degrees E longitudes from polynya region (60 degrees S) to equator during the austral...

  2. Water masses, ocean fronts, and the structure of Antarctic seabird communities: Putting the eastern Bellingshausen Sea in perspective

    Science.gov (United States)

    Ribic, Christine A.; Ainley, David G.; Glenn Ford, R.; Fraser, William R.; Tynan, Cynthia T.; Woehler, Eric J.

    2011-07-01

    Waters off the western Antarctic Peninsula (i.e., the eastern Bellingshausen Sea) are unusually complex owing to the convergence of several major fronts. Determining the relative influence of fronts on occurrence patterns of top-trophic species in that area, therefore, has been challenging. In one of the few ocean-wide seabird data syntheses, in this case for the Southern Ocean, we analyzed ample, previously collected cruise data, Antarctic-wide, to determine seabird species assemblages and quantitative relationships to fronts as a way to provide context to the long-term Palmer LTER and the winter Southern Ocean GLOBEC studies in the eastern Bellingshausen Sea. Fronts investigated during both winter (April-September) and summer (October-March) were the southern boundary of the Antarctic Circumpolar Current (ACC), which separates the High Antarctic from the Low Antarctic water mass, and within which are embedded the marginal ice zone and Antarctic Shelf Break Front; and the Antarctic Polar Front, which separates the Low Antarctic and the Subantarctic water masses. We used clustering to determine species' groupings with water masses, and generalized additive models to relate species' densities, biomass and diversity to distance to respective fronts. Antarctic-wide, in both periods, highest seabird densities and lowest species diversity were found in the High Antarctic water mass. In the eastern Bellingshausen, seabird density in the High Antarctic water mass was lower (as low as half that of winter) than found in other Antarctic regions. During winter, Antarctic-wide, two significant species groups were evident: one dominated by Adélie penguins ( Pygoscelis adeliae) (High Antarctic water mass) and the other by petrels and prions (no differentiation among water masses); in eastern Bellingshausen waters during winter, the one significant species group was composed of species from both Antarctic-wide groups. In summer, Antarctic-wide, a High Antarctic group dominated

  3. Quaternary Antarctic ice-sheet fluctuations and Southern Ocean palaeoceanography: natural variability studies at the Antarctic CRC

    International Nuclear Information System (INIS)

    In its first three years, the Antarctic Co-operative Research Centre's Natural Variability Program has focussed research effort on understanding changes in the extent of the East Antarctic ice sheet, the sedimentary processes and biogeochemical cycles affecting shelf sedimentation and the palaeoceanography of the Southern Ocean. Seismic data from the Prydz trough-mouth fan indicate that it contains a high-resolution time series of the Plio-Pleistocene activity of the Lambert Glacier system. The fan has been prograding from the eastern side of Prydz Bay at least since the Miocene and it contains Plio-Pleistocene sediments, which are 0.8-1.2 s TWT thick beneath the current shelf break. Radiocarbon dating of shelf sediments indicates that deposition of a Holocene siliceous mud and ooze layer N as initiated at about 10 ka BP on the Mac Robertson Shelf, which is interpreted as coinciding with the retreat of an expanded ice sheet from the shelf break. Geochemical analyses of sediment cores from the Mac Robertson Shelf suggest significant differences in sediment accumulation between the inner and outer shelf during the Holocene. In contrast, results for a core from the inner shelf suggest an approximately 7-fold increase in average sediment accumulation rate from the mid to late Holocene, with roughly comparable increases in the accumulation of both biogenic and lithogenic material. Palaeoceanographic studies of the Southern Ocean, using planktonic foraminifera, diatoms and alkenone unsaturation ratios, indicate larger sea surface temperature amplitudes over wider areas of the Southern Ocean during the last glacial maximum than previously suggested by CLIMAP. Our studies offer the possibility of improvements to reconstructed glacial boundary conditions, with wider areal coverage, greater reliability of estimates, and the opportunity for estimation of seasonal dynamics. The cores under study contain, essentially, no biogenic carbonates, precluding use of δ18O stratigraphy

  4. RTOPO-1: A consistent dataset for Antarctic ice shelf topography and global ocean bathymetry

    Science.gov (United States)

    Timmermann, Ralph

    2010-05-01

    Sub-ice shelf circulation and freezing/melting rates depend critically on an accurate and consistent representation of cavity geometry (i.e. ice-shelf draft and ocean bathymetry). Existing global or pan-Antarctic data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile independent regional fields into a global data set. We use the S-2004 global 1-minute bathymetry as the backbone and add an improved version of the BEDMAP topography for an area that roughly coincides with the Antarctic continental shelf. Locations of the merging line have been carefully adjusted in order to get the best out of each data set. High-resolution gridded data for the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves and for Pine Island Glacier have been carefully merged into the ambient ice and ocean topographies. Multibeam ship survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI), British Antarctic Survey (BAS) and Lamont-Doherty Earth Observatory (LDEO), gridded, and again carefully merged into the existing bathymetry map. The resulting global 1-minute data set contains consistent masks for open ocean, grounded ice, floating ice, and bare land surface. The Ice Shelf Cavern Geometry Team: Anne Le Brocq, Tara Deen, Eugene Domack, Pierre Dutrieux, Ben Galton-Fenzi, Dorothea Graffe, Hartmut Hellmer, Angelika Humbert, Daniela Jansen, Adrian Jenkins, Astrid Lambrecht, Keith Makinson, Fred Niederjasper, Frank Nitsche, Ole Anders Nøst, Lars Henrik Smedsrud, and Walter Smith

  5. Oceanic fronts along 45 degrees across Antarctic Circumpolar Current during austral summer 2004

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; Dash, M.K.; Luis, A.J.; RameshBabu, V.; Somayajulu, Y.K.; Sudhakar, M.; Pandey, P.C.

    COMMUNICATIONS CURRENT SCIENCE, VOL. 88, NO. 10, 25 MAY 2005 1669 *For correspondence. (e - mail: anil@ncaor.org ) Oceanic fronts along 45 ?E across Antarctic Circumpolar Current during austral summer 2004 N. Anilkumar 1, *, M. K. Dash 1 , A... h is the thickness of the freshwater input per unit surface area, D c is the WW depth, S w is the WW salinity, R ESEARCH COMMUNICATIONS CURRENT SCIENCE, VOL. 88, NO. 10, 25 MAY 2005 Table 1. A dopted property indicators for ident i...

  6. Transport of Antarctic bottom water through the Kane Gap, tropical NE Atlantic Ocean

    OpenAIRE

    E. G. Morozov; Tarakanov, R.Y.; Van Haren, H.

    2013-01-01

    We study low-frequency properties of the Antarctic Bottom Water (AABW) flow through the Kane Gap (9° N) in the Atlantic Ocean. The measurements in the Kane Gap include five visits with CTD (Conductivity-Temperature-Depth) sections in 2009–2012 and a year-long record of currents on a mooring using three AquaDopp current meters. We found an alternating regime of flow, which changes direction several times during a year. The seasonal signal seems to dominate. The maximum daily ...

  7. Climate-induced changes in carbon and nitrogen cycling in the rapidly warming Antarctic coastal ocean

    OpenAIRE

    Henley, Sian Frances

    2013-01-01

    The western Antarctic Peninsula (WAP) is a hotspot of climatic and oceanographic change, with a 6°C rise in winter atmospheric temperatures and >1°C warming of the surface ocean since the 1950s. These trends are having a profound impact on the physical environment at the WAP, with widespread glacial retreat, a 40% decline in sea ice coverage and intensification of deep water upwelling. The main objective of this study is to assess the response of phytoplankton productivity to t...

  8. Global sediment thickness data set updated for the Australian-Antarctic Southern Ocean

    Science.gov (United States)

    Whittaker, Joanne M.; Goncharov, Alexey; Williams, Simon E.; Müller, R. Dietmar; Leitchenkov, German

    2013-08-01

    We present a new, 5 min sediment thickness grid for the Australian-Antarctic region (60°E-155°E, 30°S-70°S). New seismic reflection and refraction data have been used to add detail to the conjugate Australian and Antarctic margins and intervening ocean floor where regional sediment thickness patterns were poorly known previously. On the margins, sediment thickness estimates were computed from velocity-depth functions from sonobuoy/refraction velocity solutions ground-truthed against seismic reflection data. For the Southeast Indian Ridge abyssal plains, sediment thickness contours from Geli et al. (2007) were used. The new regional minimum sediment thickness grid was combined with the global National Geophysical Data Center (NGDC) sediment grid to create an updated global grid. Even using the minimum estimates, sediment accumulations on the extended Australian and Antarctic continental margins are 2 km thicker across large regions and up to 9 km thicker in the Ceduna Basin compared to the global NGDC compilation of sediment thickness data.

  9. The Biogeochemical Role of Antarctic Krill and Baleen Whales in Southern Ocean Nutrient Cycling.

    Science.gov (United States)

    Ratnarajah, L.

    2015-12-01

    Iron limits primary productivity in large areas of the Southern Ocean. It has been suggested that baleen whales form a crucial part of biogeochemical cycling processes through the consumption of nutrient-rich krill and subsequent defecation, but evidence on their contribution is scarce. We analysed the concentration of iron in Antarctic krill and baleen whale faeces and muscle. Iron concentrations in Antarctic krill were over 1 million times higher, and whale faecal matter were almost 10 million times higher than typical Southern Ocean High Nutrient Low Chlorophyll seawater concentrations. This suggests that Antarctic krill act as a reservoir of in in Southern Ocean surface waters, and that baleen whales play an important role in converting this fixed iron into a liquid form in their faeces. We developed an exploratory model to examine potential contribution of blue, fin and humpback whales to the Southern Ocean iron cycle to explore the effect of the recovery of great whales to historical levels. Our results suggest that pre-exploitation populations of blue whales and, to a lesser extent fin and humpback whales, could have contributed to the more effective recycling of iron in surface waters, resulting in enhanced phytoplankton production. This enhanced primary productivity is estimated to be: 8.3 x 10-5 to 15 g C m-2 yr-1 (blue whales), 7 x 10-5 to 9 g C m-2 yr-1 (fin whales), and 10-5 to 1.7 g C m-2 yr-1 (humpback whales). To put these into perspective, current estimates of primary production in the Southern Ocean from remotely sensed ocean colour are in the order of 57 g C m-2 yr-1 (south of 50°). The high degree of uncertainty around the magnitude of these increases in primary productivity is mainly due to our limited quantitative understanding of key biogeochemical processes including iron content in krill, krill consumption rates by whales, persistence of iron in the photic zone, bioavailability of retained iron, and carbon-to-iron ratio of phytoplankton

  10. Antarctic ice-rafted detritus (IRD) in the South Atlantic: Indicators of iceshelf dynamics or ocean surface conditions?

    Science.gov (United States)

    Nielsen, Simon H.H.; Hodell, D.A.

    2007-01-01

    Ocean sediment core TN057-13PC4/ODP1094, from the Atlantic sector of the Southern Ocean, contains elevated lithogenic material in sections representing the last glacial period compared to the Holocene. This ice-rafted detritus is mainly comprised of volcanic glass and ash, but has a significant input of what was previously interpreted as quartz during peak intervals (Kanfoush et al., 2000, 2002). Our analysis of these clear mineral grains indicates that most are plagioclase, and that South Sandwich Islands is the predominant source, similar to that inferred for the volcanic glass (Nielsen et al., in review). In addition, quartz and feldspar with possible Antarctic origin occur in conjunction with postulated episodes of Antarctic deglaciation. We conclude that while sea ice was the dominant ice rafting agent in the Polar Frontal Zone of the South Atlantic during the last glacial period, the Holocene IRD variability may reflect Antarctic ice sheet dynamics.

  11. Southern Ocean phytoplankton turnover in response to stepwise Antarctic cooling over the past 15 million years

    Science.gov (United States)

    Crampton, James S.; Cody, Rosie D.; Levy, Richard; Harwood, David; McKay, Robert; Naish, Tim R.

    2016-06-01

    It is not clear how Southern Ocean phytoplankton communities, which form the base of the marine food web and are a crucial element of the carbon cycle, respond to major environmental disturbance. Here, we use a new model ensemble reconstruction of diatom speciation and extinction rates to examine phytoplankton response to climate change in the southern high latitudes over the past 15 My. We identify five major episodes of species turnover (origination rate plus extinction rate) that were coincident with times of cooling in southern high-latitude climate, Antarctic ice sheet growth across the continental shelves, and associated seasonal sea-ice expansion across the Southern Ocean. We infer that past plankton turnover occurred when a warmer-than-present climate was terminated by a major period of glaciation that resulted in loss of open-ocean habitat south of the polar front, driving non-ice adapted diatoms to regional or global extinction. These findings suggest, therefore, that Southern Ocean phytoplankton communities tolerate “baseline” variability on glacial–interglacial timescales but are sensitive to large-scale changes in mean climate state driven by a combination of long-period variations in orbital forcing and atmospheric carbon dioxide perturbations.

  12. Southern Ocean phytoplankton turnover in response to stepwise Antarctic cooling over the past 15 million years.

    Science.gov (United States)

    Crampton, James S; Cody, Rosie D; Levy, Richard; Harwood, David; McKay, Robert; Naish, Tim R

    2016-06-21

    It is not clear how Southern Ocean phytoplankton communities, which form the base of the marine food web and are a crucial element of the carbon cycle, respond to major environmental disturbance. Here, we use a new model ensemble reconstruction of diatom speciation and extinction rates to examine phytoplankton response to climate change in the southern high latitudes over the past 15 My. We identify five major episodes of species turnover (origination rate plus extinction rate) that were coincident with times of cooling in southern high-latitude climate, Antarctic ice sheet growth across the continental shelves, and associated seasonal sea-ice expansion across the Southern Ocean. We infer that past plankton turnover occurred when a warmer-than-present climate was terminated by a major period of glaciation that resulted in loss of open-ocean habitat south of the polar front, driving non-ice adapted diatoms to regional or global extinction. These findings suggest, therefore, that Southern Ocean phytoplankton communities tolerate "baseline" variability on glacial-interglacial timescales but are sensitive to large-scale changes in mean climate state driven by a combination of long-period variations in orbital forcing and atmospheric carbon dioxide perturbations. PMID:27274061

  13. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic

    Science.gov (United States)

    Hu, Q.; Xie, Z.; Wang, X.; Kang, H.; Zhang, P.

    2015-12-01

    Biomass burning discharges numerous kinds of gases and aerosols, such as carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), black carbon (BC), alcohols, organic acids and persistent organic pollutants (POPs), and is known to affect air quality, global carbon cycle, and climate. However, the extent to which biomass burning gases/aerosols are present on a global scale, especially in the marine atmosphere, is poorly understood. Here we measure levoglucosan, a superior molecular tracer of biomass burning aerosols because of its single source, in marine air from the Arctic Ocean through the North and South Pacific Ocean to coastal Antarctica during burning season. Levoglucosan was found to be present in all regions at ng/m3 levels. As a whole, levoglucosan concentrations in the Southern Hemisphere were comparable to those in the Northern Hemisphere. Marine air in the mid-latitudes (30°-60° N and S) has the highest levoglucosan loading due to the emission from adjacent lands. Air over the Arctic Ocean which affected by biomass burning in the east Siberia has intermediate loading. Equatorial latitudes is the main source of biomass burning emissions, however, levoglucosan is in relatively low level. Large amount of precipitation and high hydroxyl radical concentration in this region cause more deposition and degradation of levoglucosan during transport. Previous studies were debatable on the influence of biomass burning on the Antarctic because of uncertain source of BC. Here via levoglucosan, it is proved that although far away from emission sources, the Antarctic is still affected by biomass burning aerosols which may be derived from South America. Biomass burning has a significant impact on mercury (Hg) and water-soluble organic carbon (WSOC) in marine aerosols from pole to pole, with more contribution to WSOC in the Northern Hemisphere than in the Southern Hemisphere.

  14. Ontogenetic changes in the food habits of larval and juvenile Antarctic myctophids Electrona antarctica in the Indian sector, Southern Ocean

    OpenAIRE

    若原, 千恵子; 藤井, 健太郎; 小島, 本葉; 高橋, 邦夫; 谷村,篤; 茂木, 正人

    2013-01-01

    Krill (Euphausia superba) have been identified as a key species in the Southern Ocean ecosystem, although their geographical distribution is limited to the continental slope of the Indian sector, with a lower biomass than that in the Atlantic sector represented by the Western Antarctic Peninsula waters and Scotia Sea. Thus, myctohids have an ecological role as an alternative to krill due to their huge biomass in the oceanic zone. We examined the food habits of larval and juvenile Electrona an...

  15. Detection of temperature and sea ice extent changes in the Antarctic and Southern Ocean

    International Nuclear Information System (INIS)

    Some global climate models indicate that future global warming from increased atmospheric concentrations of greenhouse gases may be greatest in the polar regions, over areas where the sea ice cover is reduced. The reduction of sea ice area in the models also gives rise to a strong positive feedback to the warming. From the increase of atmospheric greenhouse gas concentration to date and the results of transient climate models, an estimate of the expected change in the Antarctic temperatures and sea ice extent can be made. The existing data for observed changes in temperatures of the Antarctic and Southern Ocean (extending back to ∼1956 and ∼1945 respectively) are analyzed along with the data of sea ice cover (commencing in 1973) to examine the extent to which the anticipated warming trends and sea ice decrease are being realized. In spite of high temporal and spatial variability, the data does support small significant trends of temperature increase and sea ice cover decrease compatible in magnitude to those expected as a consequence of atmospheric greenhouse gas increase. The seasonal cycle shows a delayed period of autumn-winter sea ice growth with a longer period of open water. This supports a mechanism for positive feedback between decreasing sea ice cover and increasing temperature

  16. Formulation, calibration and validation of the DAIS model (version 1), a simple Antarctic ice sheet model sensitive to variations of sea level and ocean subsurface temperature

    OpenAIRE

    Shaffer, G.

    2014-01-01

    The DCESS (Danish Center for Earth System Science) Antarctic Ice Sheet (DAIS) model is presented. Model hindcasts of Antarctic ice sheet (AIS) sea level equivalent are forced by reconstructed Antarctic temperatures, global mean sea level and high-latitude, ocean subsurface temperatures, the latter calculated using the DCESS model forced by reconstructed global mean atmospheric temperatures. The model is calibrated by comparing such hindcasts for different model configurations w...

  17. The sensitivity of dimethyl sulfide production to simulated climate change in the Eastern Antarctic Southern Ocean

    International Nuclear Information System (INIS)

    Dimethyl sulfide (DMS) is a radiatively active trace gas produced by enzymatic cleavage of its precursor compound, dimethyl sulfoniopropionate (DMSP), which is released by marine phytoplankton in the upper ocean. Once ventilated to the atmosphere, DMS is oxidised to form non-sea-salt sulfate and methane sulfonate (MSA) aerosols, which are a major source of cloud condensation nuclei (CCN) in remote marine air and may thus play a role in climate regulation. Here we simulate the change in DMS flux in the Eastern Antarctic ocean from 1960-2086, corresponding to equivalent CO2 tripling relative to pre-industrial levels. Calibration to contemporary climate conditions was carried out using a genetic algorithm to fit the model to surface chlorophyll from the 4-yr SeaWiFs satellite archive and surface DMS from an existing global database. Following the methodology used previously in the Subantarctic Southern Ocean, we then simulated DMS emissions under enhanced greenhouse conditions by forcing the DMS model with output from a coupled atmospheric-ocean general circulation model (GCM). The GCM was run in transient mode under the IPCC/IS92a radiative forcing scenario. By 2086, the change simulated in annual integrated DMS flux is around 20% in ice-free waters, with a greater increase of 45% in the seasonal ice zone (SIZ). Interestingly, the large increase in flux in the SIZ is not due to higher in situ production but mainly because of a loss of ice cover during summer-autumn and an increase in sea-to-air ventilation of DMS. These proportional changes in areal mean flux (25%) are much higher than previously estimated for the Subantarctic Southern Ocean (5%), and point to the possibility of a significant DMS-climate feedback at high Southern latitudes. Due to the nexus between ice cover and food-web structure, the potential for ecological community shifts under enhanced greenhouse conditions is high, and the implications for DMS production are discussed

  18. Particulate export vs lateral advection in the Antarctic Polar Front (Southern Pacific Ocean)

    Science.gov (United States)

    Tesi, T.; Langone, L.; Ravaioli, M.; Capotondi, L.; Giglio, F.

    2012-04-01

    The overarching goal of our study was to describe and quantify the influence of lateral advection relative to the vertical export in the Antarctic Polar Front (Southern Pacific Ocean). In areas where lateral advection of particulate material is significant, budgets of bioactive elements can be inaccurate if fluxes through the water column and to the seabed are exclusively interpreted as passive sinking of particles. However, detailed information on the influence of lateral advection in the water column in the southern ocean is lacking. With this in mind, our study focused between the twilight zone (i.e. mesopelagic) and the benthic nepheloid layer to understand the relative importance of lateral flux with increasing water depth. Measurements were performed south of the Antarctic Polar Front for 1 year (January 10th 1999-January 3rd 2000) at 900, 1300, 2400, and 3700 m from the sea surface. The study was carried out using a 3.5 km long mooring line instrumented with sediment traps, current meters and sensors of temperature and conductivity. Sediment trap samples were characterized via several parameters including total mass flux, elemental composition (organic carbon, total nitrogen, biogenic silica, and calcium carbonate), concentration of metals (aluminum, iron, barium, and manganese), 210Pb activity, and foraminifera taxonomy. High fluxes of biogenic particles were observed in both summer 1999 and 2000 as a result of seasonal algal blooms associated with sea ice retreat and water column stratification. During no-productive periods, several high energy events occurred and resulted in advecting resuspended biogenic particles from flat-topped summits of the Pacific Antarctic Ridge. Whereas the distance between seabed and uppermost sediment traps was sufficient to avoid lateral advection processes, resuspension was significant in the lowermost sediment traps accounting for ~60 and ~90% of the material caught at 2400 and 3700 m, respectively. Samples collected during

  19. Decadal trends in the Antarctic sea ice extent ultimately controlled by ice-ocean feedback

    Directory of Open Access Journals (Sweden)

    H. Goosse

    2013-09-01

    Full Text Available The large natural variability of the Antarctic sea ice is a key characteristic of the system that might be responsible for the small positive trend in sea ice extent observed since 1979. In order to gain insight in the processes responsible for this variability, we have analysed in a control simulation performed with a coupled climate model a strong positive ice-ocean feedback that amplifies sea ice variations. When sea ice concentration increases in a region, in particular close to the ice edge, the mixed layer depth tends to decrease. This can be caused by a net inflow of ice and thus of freshwater that stabilizes the water column. Another stabilizing mechanism at interannual time scales that appears more widespread in our simulation is associated with the downward salt transport due to the seasonal cycle of ice formation: brine is released in winter when ice is formed and mixed over a deep layer while the freshwater flux caused by ice melting is included in a shallow layer, resulting in a net vertical transport of salt. Because of this stronger stratification due to the presence of sea ice, more heat is stored at depth in the ocean and the vertical oceanic heat flux is reduced, which contributes to maintain a higher ice extent. This positive feedback is not associated with a particular spatial pattern. Consequently, the spatial distribution of the trend in ice concentration is largely imposed by the wind changes that can provide the initial perturbation. A positive freshwater flux could alternatively be the initial trigger but the amplitude of the final response of the sea ice extent is finally set up by the amplification related to ice-ocean feedback. Initial conditions have also an influence as the chance to have a large increase in ice extent is higher if starting from a state characterized by a low value.

  20. Sources and levels of ambient ocean sound near the Antarctic Peninsula.

    Science.gov (United States)

    Dziak, Robert P; Bohnenstiehl, DelWayne R; Stafford, Kathleen M; Matsumoto, Haruyoshi; Park, Minkyu; Lee, Won Sang; Fowler, Matt J; Lau, Tai-Kwan; Haxel, Joseph H; Mellinger, David K

    2015-01-01

    Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10-20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15-28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean. PMID:25875205

  1. Sources and levels of ambient ocean sound near the Antarctic Peninsula.

    Directory of Open Access Journals (Sweden)

    Robert P Dziak

    Full Text Available Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10-20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus and fin (B. physalus whales also dominate the long-term spectra records in the 15-28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns, likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.

  2. Extensive lake sediment coring survey on Sub-Antarctic Indian Ocean Kerguelen Archipelago (French Austral and Antarctic Lands)

    Science.gov (United States)

    Arnaud, Fabien; Fanget, Bernard; Malet, Emmanuel; Poulenard, Jérôme; Støren, Eivind; Leloup, Anouk; Bakke, Jostein; Sabatier, Pierre

    2016-04-01

    Recent paleo-studies revealed climatic southern high latitude climate evolution patterns that are crucial to understand the global climate evolution(1,2). Among others the strength and north-south shifts of westerlies wind appeared to be a key parameter(3). However, virtually no lands are located south of the 45th South parallel between Southern Georgia (60°W) and New Zealand (170°E) precluding the establishment of paleoclimate records of past westerlies dynamics. Located around 50°S and 70°E, lost in the middle of the sub-Antarctic Indian Ocean, Kerguelen archipelago is a major, geomorphologically complex, land-mass that is covered by hundreds lakes of various sizes. It hence offers a unique opportunity to reconstruct past climate and environment dynamics in a region where virtually nothing is known about it, except the remarkable recent reconstructions based on a Lateglacial peatbog sequence(4). During the 2014-2015 austral summer, a French-Norwegian team led the very first extensive lake sediment coring survey on Kerguelen Archipelago under the umbrella of the PALAS program supported by the French Polar Institute (IPEV). Two main areas were investigated: i) the southwest of the mainland, so-called Golfe du Morbihan, where glaciers are currently absent and ii) the northernmost Kerguelen mainland peninsula so-called Loranchet, where cirque glaciers are still present. This double-target strategy aims at reconstructing various independent indirect records of precipitation (glacier advance, flood dynamics) and wind speed (marine spray chemical species, wind-borne terrigenous input) to tackle the Holocene climate variability. Despite particularly harsh climate conditions and difficult logistics matters, we were able to core 6 lake sediment sites: 5 in Golfe du Morbihan and one in Loranchet peninsula. Among them two sequences taken in the 4km-long Lake Armor using a UWITEC re-entry piston coring system by 20 and 100m water-depth (6 and 7m-long, respectively). One

  3. Feedbacks between ice and ocean dynamics at the West Antarctic Filchner-Ronne Ice Shelf in future global warming scenarios

    Science.gov (United States)

    Goeller, Sebastian; Timmermann, Ralph

    2016-04-01

    The ice flow at the margins of the West Antarctic Ice Sheet is moderated by large ice shelves. Their buttressing effect substantially controls the mass balance of the WAIS and thus its contribution to sea level rise. The stability of these ice shelves results from the balance of mass gain by accumulation and ice flow from the adjacent ice sheet and mass loss by calving and basal melting due to the ocean heat flux. Recent results of ocean circulation models indicate that warm circumpolar water of the Southern Ocean may override the submarine slope front of the Antarctic Continent and boost basal ice shelf melting. In particular, ocean simulations for several of the IPCC's future climate scenarios demonstrate the redirection of a warm coastal current into the Filchner Trough and underneath the Filchner-Ronne Ice Shelf within the next decades. In this study, we couple the finite elements ocean circulation model FESOM and the three-dimensional thermomechanical ice flow model RIMBAY to investigate the complex interactions between ocean and ice dynamics at the Filchner-Ronne Ice Shelf. We focus on the impact of a changing ice shelf cavity on ocean dynamics as well as the feedback of the resulting sub-shelf melting rates on the ice shelf geometry and implications for the dynamics of the adjacent marine-based Westantarctic Ice Sheet. Our simulations reveal the high sensitivity of grounding line migration to ice-ocean interactions within the Filchner-Ronne Ice Shelf and emphasize the importance of coupled model studies for realistic assessments of the Antarctic mass balance in future global warming scenarios.

  4. Response of the Southern Ocean dynamics to the changes in the Antarctic glacial runoff and icebergs discharge

    Science.gov (United States)

    Aksenov, Yevgeny; Nurser, George; Bacon, Sheldon; Rye, Craig; Megann, Alex; Kjellsson, Joakim; Holland, Paul; Ridley, Jeff; Coward, Andrew; Marshall, Gareth; Marsh, Bob; Mathiot, Pierre

    2016-04-01

    This study examines how changes in the freshwater discharge from the Antarctic (liquid runoff and icebergs) affect stratification and ocean circulation in the Southern Ocean. The changes in the ocean circulation could potentially modify transports of the warm subsurface waters onto the continental shelves and increase ice sheet melting. We investigate impacts of the increased freshwater discharge in the 1990s-2000s on the subsurface waters in the Southern Ocean in the NEMO 1° global sea ice-ocean model. In the simulations the warming signal is largely circum-Antarctic, with "hot spots" in the Bellingshausen-Amundsen and Ross seas. The warming of the subsurface waters in the Bellingshausen-Amundsen Sea exceeds 0.5°C/decade. Differences in spreading of the liquid freshwater and icebergs in the Southern Ocean are investigated. Hindcasts and forward projections with the eddy-admitting global NEMO 1/4° model are diagnosed to examine regional trends in the ocean and sea ice states and to attribute these to the changes in the freshwater forcing and wind. The study contributes to the "Poles Apart" research project and is funded by the Natural Environment Research Council UK.

  5. Comparison of the accuracy of SST estimates by artificial neural networks (ANN) and other quantitative methods using radiolarian data from the Antarctic and Pacific Oceans

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Malmgren, B.A.

    ) regression, the maximum likelihood (ML) method, and artificial neural networks (ANNs), based on radiolarian faunal abundance data from surface sediments from the Antarctic and Pacific Oceans. Recent studies have suggested that ANNs may represent one...

  6. Multi-year record of atmospheric mercury at Dumont d'Urville, East Antarctic coast: continental outflow and oceanic influences

    Science.gov (United States)

    Angot, Hélène; Dion, Iris; Vogel, Nicolas; Legrand, Michel; Magand, Olivier; Dommergue, Aurélien

    2016-07-01

    Under the framework of the Global Mercury Observation System (GMOS) project, a 3.5-year record of atmospheric gaseous elemental mercury (Hg(0)) has been gathered at Dumont d'Urville (DDU, 66°40' S, 140°01' E, 43 m above sea level) on the East Antarctic coast. Additionally, surface snow samples were collected in February 2009 during a traverse between Concordia Station located on the East Antarctic plateau and DDU. The record of atmospheric Hg(0) at DDU reveals particularities that are not seen at other coastal sites: a gradual decrease of concentrations over the course of winter, and a daily maximum concentration around midday in summer. Additionally, total mercury concentrations in surface snow samples were particularly elevated near DDU (up to 194.4 ng L-1) as compared to measurements at other coastal Antarctic sites. These differences can be explained by the more frequent arrival of inland air masses at DDU than at other coastal sites. This confirms the influence of processes observed on the Antarctic plateau on the cycle of atmospheric mercury at a continental scale, especially in areas subject to recurrent katabatic winds. DDU is also influenced by oceanic air masses and our data suggest that the ocean plays a dual role on Hg(0) concentrations. The open ocean may represent a source of atmospheric Hg(0) in summer whereas the sea-ice surface may provide reactive halogens in spring that can oxidize Hg(0). This paper also discusses implications for coastal Antarctic ecosystems and for the cycle of atmospheric mercury in high southern latitudes.

  7. Characteristic atmosphere-ocean-solid earth interactions in the Antarctic coastal and marine environment inferred from seismic and infrasound recording at Syowa Station, East Antarctica

    OpenAIRE

    Kanao, Masaki; Maggi, Alessia; Ishihara, Yoshiaki; Stutzmann, Eléonore; Yamamoto, Masa-Yuki; Toyokuni, Genti

    2013-01-01

    Several characteristic waves detected by seismographs in Antarctic stations have been recognized as originating from the physical interaction between the solid earth and the atmosphere-ocean-cryosphere system surrounding the Antarctic and may be used as a proxy for characterizing ocean wave climate. A Chaparral-type infrasound sensor was installed at Syowa Station (SYO; 39.6E, 69.0S), East Antarctica, in April 2008 during the International Polar Year (IPY2007-2008). Matching data are also ava...

  8. Distribution patterns of larval and juvenile Antarctic myctophid fish Electrona antarctica off Adélie Land in the Indian sector of the Southern Ocean

    OpenAIRE

    藤井, 健太郎; 若原, 千恵子; 谷村,篤; 茂木, 正人

    2013-01-01

    Antarctic krill (Euphausia superba) is a key species in the Southern Ocean ecosystem; its biomass in the Indian sector, however, is lower than that in the Atlantic sector, as the distribution of krill is limited to along the continental slope. Therefore, myctophids in the Indian sector should be an important component in the oceanic food web due to their huge biomass. We clarified the larval and juvenile distribution patterns of the Antarctic myctophid Electrona antarctica, which is dominant ...

  9. Spatial distribution of atmospheric aerosol optical depth over Atlantic Ocean along the route of Russian Antarctic expeditions

    Science.gov (United States)

    Kabanov, Dmitry M.; Radionov, Vladimir F.; Sakerin, Sergey M.; Smirnov, Alexander

    2015-11-01

    During recent decade, Microtops and SPM portable sun photometers are used to perform annual measurements of aerosol optical depth (AOD) and water vapor content of the atmosphere over Atlantic Ocean along the route of the Russian Antarctic expeditions (RAE). The data accumulation has made it possible to analyze the specific features of the spatial distribution of spectral AOD of the atmosphere along eastern RAE route and identify six basic regions (latitudinal zones). The statistical characteristics of AOD in the identified oceanic regions in winter and spring periods are discussed. The estimates of finely and coarsely dispersed AOD components in different regions, as well as the interannual atmospheric AOD variations, are presented.

  10. Antarctic krill swarm characteristics in the Southeast Atlantic sector of the Southern Ocean

    KAUST Repository

    Krafft, BA

    2012-09-28

    Knowledge about swarm dynamics and underlying causes is essential to understand the ecology and distribution of Antarctic krill Euphausia superba. We collected acoustic data and key environmental data continuously across extensive gradients in the little-studied Southeast Atlantic sector of the Southern Ocean. A total of 4791 krill swarms with swarm descriptors including swarm height and length, packing density, swimming depth and inter-swarm distance were extracted. Through multivariate statistics, swarms were categorized into 4 groups. Group 2 swarms were largest (median length 108 m and thickness 18 m), whereas swarms in both Groups 1 and 4 were on average small, but differed markedly in depth distribution (median: 52 m for Group 1 vs. 133 m for Group 4). There was a strong spatial autocorrelation in the occurrence of swarms, and an autologistic regression model found no prediction of swarm occurrence from environmental variables for any of the Groups 1, 2 or 4. Probability of occurrence of Group 3 swarms, however, increased with increasing depth and temperature. Group 3 was the most distinctive swarm group with an order of magnitude higher packing density (median: 226 ind. m−3) than swarms from any of the other groups and about twice the distance to nearest neighbor swarm (median: 493 m). The majority of the krill were present in Group 3 swarms, and the absence of association with hydrographic or topographic concentrating mechanisms strongly suggests that these swarms aggregate through their own locomotion, possibly associated with migration.

  11. Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current

    Directory of Open Access Journals (Sweden)

    A. M. Treguier

    2007-12-01

    Full Text Available An eddying global model is used to study the characteristics of the Antarctic Circumpolar Current (ACC in a streamline-following framework. Previous model-based estimates of the meridional circulation were calculated using zonal averages: this method leads to a counter-intuitive poleward circulation of the less dense waters, and underestimates the eddy effects. We show that on the contrary, the upper ocean circulation across streamlines agrees with the theoretical view: an equatorward mean flow partially cancelled by a poleward eddy mass flux. Two model simulations, in which the buoyancy forcing above the ACC changes from positive to negative, suggest that the relationship between the residual meridional circulation and the surface buoyancy flux is not as straightforward as assumed by the simplest theoretical models: the sign of the residual circulation cannot be inferred from the surface buoyancy forcing only. Among the other processes that likely play a part in setting the meridional circulation, our model results emphasize the complex three-dimensional structure of the ACC (probably not well accounted for in streamline-averaged, two-dimensional models and the distinct role of temperature and salinity in the definition of the density field. Heat and salt transports by the time-mean flow are important even across time-mean streamlines. Heat and salt are balanced in the ACC, the model drift being small, but the nonlinearity of the equation of state cannot be ignored in the density balance.

  12. Observational Evidence of a Hemispheric-wide Ice-ocean Albedo Feedback Effect on Antarctic Sea-ice Decay

    Science.gov (United States)

    Nihashi, Sohey; Cavalieri, Donald J.

    2007-01-01

    The effect of ice-ocean albedo feedback (a kind of ice-albedo feedback) on sea-ice decay is demonstrated over the Antarctic sea-ice zone from an analysis of satellite-derived hemispheric sea ice concentration and European Centre for Medium-Range Weather Forecasts (ERA-40) atmospheric data for the period 1979-2001. Sea ice concentration in December (time of most active melt) correlates better with the meridional component of the wind-forced ice drift (MID) in November (beginning of the melt season) than the MID in December. This 1 month lagged correlation is observed in most of the Antarctic sea-ice covered ocean. Daily time series of ice , concentration show that the ice concentration anomaly increases toward the time of maximum sea-ice melt. These findings can be explained by the following positive feedback effect: once ice concentration decreases (increases) at the beginning of the melt season, solar heating of the upper ocean through the increased (decreased) open water fraction is enhanced (reduced), leading to (suppressing) a further decrease in ice concentration by the oceanic heat. Results obtained fi-om a simple ice-ocean coupled model also support our interpretation of the observational results. This positive feedback mechanism explains in part the large interannual variability of the sea-ice cover in summer.

  13. Bacteria, plankton, and trace metal, and other data from bottle and CTD casts in the Antarctic from the NATHANIEL B. PALMER and ROGER REVELL in support of the US Joint Global Ocean Flux Study / Antarctic Environments Southern Ocean Process Study (JGOFS /AESOPS) from 1996-10-17 to 1998-03-15 (NODC Accession 0000504)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Phytoplankton and other data were collected in the Antarctic from the NATHANIEL B. PALMER and ROGER REVELL from 17 October 1996 to 15 March 1998. Bottle data...

  14. Sea ice and the ocean mixed layer over the Antarctic shelf seas

    Science.gov (United States)

    Petty, A. A.; Holland, P. R.; Feltham, D. L.

    2014-04-01

    An ocean mixed-layer model has been incorporated into the Los Alamos sea ice model CICE to investigate regional variations in the surface-driven formation of Antarctic shelf waters. This model captures well the expected sea ice thickness distribution, and produces deep (> 500 m) mixed layers in the Weddell and Ross shelf seas each winter. This results in the complete destratification of the water column in deep southern coastal regions leading to high-salinity shelf water (HSSW) formation, and also in some shallower regions (no HSSW formation) of these seas. Shallower mixed layers are produced in the Amundsen and Bellingshausen seas. By deconstructing the surface processes driving the mixed-layer depth evolution, we show that the net salt flux from sea ice growth/melt dominates the evolution of the mixed layer in all regions, with a smaller contribution from the surface heat flux and a negligible input from wind stress. The Weddell and Ross shelf seas receive an annual surplus of mixing energy at the surface; the Amundsen shelf sea energy input in autumn/winter is balanced by energy extraction in spring/summer; and the Bellingshausen shelf sea experiences an annual surface energy deficit, through both a low energy input in autumn/winter and the highest energy loss in spring/summer. An analysis of the sea ice mass balance demonstrates the contrasting mean ice growth, melt and export in each region. The Weddell and Ross shelf seas have the highest annual ice growth, with a large fraction exported northwards each year, whereas the Bellingshausen shelf sea experiences the highest annual ice melt, driven by the advection of ice from the northeast. A linear regression analysis is performed to determine the link between the autumn/winter mixed-layer deepening and several atmospheric variables. The Weddell and Ross shelf seas show stronger spatial correlations (temporal mean - intra-regional variability) between the autumn/winter mixed-layer deepening and several

  15. Characteristics of change of the SST in the tropical western Pacific and the tropical Indian Ocean and its response to the change of the Antarctic ice area

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, by using ocean surface temperature data (COADS), the study is made of the characteristics of the monthly and annual changes of the SST in the tropical western Pacific and Indian Oceans, which have important influences on the climate change of the whole globe and the relation between ENSO(E1 Nino-Southern Oscillation) and the Antarctic ice area is also discussed. The result indicates that in the tropical western Pacific and the Indian Oceans the change of Sea Surface Temperture (SST) is conspicuous both monthly and armaully, and shows different change tendency between them. This result may be due to different relation in the vibration period of SST between the two Oceans. The better corresponding relationship is obvious in the annual change of SST in the tropical Indian Ocean with the occurrence El Nino and LaNlra. The change of the SST in the tropical western Pacific and the tropical Indian Oceans has a close relation to the Antarctic ice area, especially to the ice areas in the eastern-south Pole and Ross Sea, and its notable correlative relationship appears in 16 months when the SST of the tropical western Pacific and the Indian Oceans lag back the Antarctic ice area.

  16. Ocean-atmosphere exchange of organic carbon and CO2 in the Antarctic Peninsula – physical and biological controls

    Directory of Open Access Journals (Sweden)

    S. Ruiz-Halpern

    2013-10-01

    Full Text Available Exchangeable organic carbon (OC dynamics and CO2 fluxes in the Antarctic Peninsula region during austral summer are highly variable. By stations, the region is a weak source of CO2 to the atmosphere, however, continuous records of CO2 revealed this area as a weak sink. OC fluxes are also in both directions but generally towards the ocean and much higher than CO2 fluxes, sometimes by a factor of 10. Surface exchangeable dissolved organic carbon (EDOC measurements had a 43 ± 3 μmol C L−1 overall mean, while the gaseous organic carbon equilibrated in water as given by the Henry's Law constant (H' resulted in (GOC H'−1 concentrations of 46 ± 3 μmol C L−1. EDOC represents around 66% of surface dissolved organic carbon (DOC in Antarctic waters. There is a tendency towards low partial pressures of CO2 in waters with high Chlorophyll a (Chl a content and high fCO2 in areas with high krill densities. However, such relationships were not found for EDOC. Depth profiles of EDOC were also quite variable and followed Chl a profiles, but only in some instances, while diel cycles of EDOC revealed two distinct peaks around midday and middle of the short austral dark period concurrent with solar radiation maxima and krill night migration patterns. However, there was no evident diel pattern for GOC H'−1. The pool of exchangeable OC reveals itself as an important compartment of the carbon budget in the Antarctic Peninsula and adds to previous studies highlighting its importance in the redistribution of carbon in marine environments.

  17. On the Variability of Southern Ocean Front Locations Between Southern Brazil and the Antarctic Peninsula

    OpenAIRE

    Ikeda, Yoshimine; Siedler, Gerold; Zwierz, Marek

    1989-01-01

    A 4-year expendable bathythermograph data set (1984–1987) from the area between southern Brazil and the Antarctic Peninsula provides information on the interannual variability of front locations. Two boundaries of subtropical water at different depths are identified north and south of the Brazil Current-Falkland (Malvinas) Current confluence zone. The northern Subtropical Front is displaced over a large part of the Argentine Basin from one observational period to the other. The shallow southe...

  18. Halogen and trace element geochemistry in Mid-Ocean Ridge basalts from the Australian-Antarctic Ridge (AAR)

    Science.gov (United States)

    Yang, Y. S.; Seo, J. H.; Park, S. H.; Kim, T.

    2015-12-01

    Australian-Antarctic Ridge (AAR) is an extension of easternmost SE Indian Mid-Ocean Ridge (MOR).We collected volcanic glasses from the "in-axis" of the KR1 and KR2 MOR, and the overlapping zones of the KR1 MOR and the nearby seamounts ("KR1 mixing"). We determined trace and halogen elements in the glasses. Halogen concentrations and its ratios in the glasses are important to understand the mantle metasomatism and volatile recycling. 52 of the collected glasses are "primitive" (higher than 6 wt% MgO), while 3 of them have rather "evolved" composition (MgO wt% of 1.72, 2.95 and 4.15). K2O concentrations and Th/Sc ratios in the glasses show a negative correlation with its MgO concentration. Incompatible element ratios such as La/Sm are rather immobile during a magma differentiation so the ratios are important to understand mantle composition (Hofmann et al. 2003). La/Sm ratios in the glasses are 0.95 ~ 3.28 suggesting that the AAR basalts can be classified into T-MORB and E-MORB (Schilling et al., 1983). La/Sm ratios are well-correlated with incompatible elements such as U, Ba, Nb, and negatively correlated with compatible elements such as Sc, Eu2+, Mg. The AAR glasses contain detectable halogen elements. The "KR1 mixing" glasses in halogen elements are more abundant than "in-axis" the glasses. Cl is the least variable element compared to the other halogens such as Br and I in the AAR. The "KR1 mixing" glasses have the largest variations of Br/Cl ratios compared to the "in-axis" glasses. The Cl/Br and Th/Sc ratios in the "in-axis" glasses and in the "KR1 mixing" glasses show positive and negative correlations, respectively. The Br-rich glasses in the "KR1 mixing" zone might be explained by a recycled Br-rich oceanic slab of paleo-subduction or by a hydrothermal alteration in the AAR. I composition in the glasses does not show a correlation other trace elements. The K/Cl and K/Ti ratios in the AAR glasses are similar to the basalts from the Galapagos Spreading Center

  19. Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification?

    Science.gov (United States)

    Collard, Marie; De Ridder, Chantal; David, Bruno; Dehairs, Frank; Dubois, Philippe

    2015-02-01

    Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans' pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high-magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid-base regulation capacities of the extracellular fluids. No information on this is available to date for Antarctic echinoderms and inference from temperate and tropical studies needs support. In this study, we investigated the acid-base status of 9 species of sea urchins (3 cidaroids, 2 regular euechinoids and 4 irregular echinoids). It appears that Antarctic regular euechinoids seem equipped with similar acid-base regulation systems as tropical and temperate regular euechinoids but could rely on more passive ion transfer systems, minimizing energy requirements. Cidaroids have an acid-base status similar to that of tropical cidaroids. Therefore Antarctic cidaroids will most probably not be affected by decreasing seawater pH, the pH drop linked to ocean acidification being negligible in comparison of the naturally low pH of the coelomic fluid. Irregular echinoids might not suffer from reduced seawater pH if acidosis of the coelomic fluid pH does not occur but more data on their acid-base regulation are needed. Combining these results with the resilience of Antarctic sea urchin larvae strongly suggests that these organisms might not be the expected victims of ocean acidification. However, data on the impact of other global stressors such as temperature and of the combination of the different stressors needs to be acquired to assess the sensitivity of these organisms to global

  20. Meridional distribution of Fukushima-derived radiocesium in surface seawater along a trans-Pacific line from the Arctic to Antarctic Oceans in summer 2012

    International Nuclear Information System (INIS)

    In summer 2012, we measured activity concentration of radiocesium in surface seawater collected in the Arctic Ocean, Bering Sea, western Pacific Ocean, and Antarctic Ocean. The radiocesium derived from the Fukushima Dai-ichi Nuclear Power Plant accident in March 2011 was found in the Bering Sea and western North Pacific between 25 deg N and 63 deg N, which agrees with model simulation results of atmospheric deposition. A semi-synoptic view suggests that a main body of radiocesium discharged directly had been transported eastward to 170 deg W. northward to 50 deg N, and southward to 30 deg N by summer 2012, about one and half years after the accident. (author)

  1. Distribution of the CO{sub 2} partial pressure in the Atlantic ocean between Iceland and the Antarctic peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, B. [Institute for Baltic Sea Research, Rostock-Warnemuende (Germany); Morlang, J. [Institute for Marine Research, Kiel (Germany)

    1995-02-01

    CO{sub 2} partial pressure of surface water, (pCO{sub 2}){sub sw}, was measured continuously during two cruises in the Atlantic Ocean in November/December 1991 and May 1992. A (pCO{sub 2}){sub sw} profile between Iceland and the Antarctic Peninsula is obtained which demonstrates that along the investigated transect the Atlantic Ocean is largely a potential sink for atmospheric CO{sub 2}, especially at high latitudes, where partial pressure differences of -80{mu}atm to -100 {mu}atm are observed. A significant potential source region exists only between the equator and 10 degrees S with a maximum {Delta}pCO{sub 2} of 35 {mu}atm. An attempt is made to identify the processes that control the (pCO{sub 2}){sub sw} distribution pattern. The investigations at latitudes >40 degrees in both hemispheres were performed during spring and correlations between (pCO{sub 2}){sub sw} and chlorophyll a contents indicate that biological production mainly controls the distribution of (pCO{sub 2}){sub sw}. At lower latitudes, (pCO{sub 2}){sub sw} is mainly related to temperature and salinity, but also an upwelling effect could be identified close to the equator. 24 refs, 11 figs

  2. Zooplankton biomass and abundance of Antarctic krill Euphausia superba DANA in Indian Ocean sector of the southern ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Parulekar, A

    Zooplankton sampling was carried out during the first six Indian Scientific Expeditions to Antarctica (1981-1987) to estimate krill abundance in the Indian sector of the Southern Ocean (between 35 to 70 degrees S and 10 to 52 degrees E). This study...

  3. Marine bacteria in deep Arctic and Antarctic ice cores: a proxy for evolution in oceans over 300 million generations

    Directory of Open Access Journals (Sweden)

    P. B. Price

    2012-10-01

    Full Text Available Using fluorescence spectrometry to map autofluorescence of chlorophyll (Chl and tryptophan (Trp versus depth in polar ice cores in the US National Ice Core Laboratory, we found that the Chl and Trp concentrations often showed an annual modulation of up to 25%, with peaks at depths corresponding to local summers. Using epifluorescence microscopy (EFM and flow cytometry (FCM triggered on red fluorescence at 670 nm to study microbes from unstained melts of the polar ice, we inferred that picocyanobacteria may have been responsible for the red fluorescence in the cores. Micron-size bacteria in all ice melts from Arctic and Antarctic sites showed FCM patterns of scattering and of red vs. orange fluorescence (interpreted as due to Chl vs. phycoerythrin (PE that bore similarities to patterns of cultures of unstained picocyanobacteria Prochlorococcus and Synechococcus. Concentrations in ice from all sites were low, but measurable at ~ 1 to ~ 103 cells cm−3. Calibrations showed that FCM patterns of mineral grains and volcanic ash could be distinguished from microbes with high efficiency by triggering on scattering instead of by red fluorescence. Average Chl and PE autofluorescence intensities showed no decrease per cell with time during up to 150 000 yr of storage in glacial ice. Taking into account the annual modulation of ~ 25% and seasonal changes of ocean temperatures and winds, we suggest that picocyanobacteria are wind-transported year-round from warmer ocean waters onto polar ice. Ice cores offer the opportunity to study evolution of marine microbes over ~ 300 million generations by analysing their genomes vs. depth in glacial ice over the last 700 000 yr as frozen proxies for changes in their genomes in oceans.

  4. Marine bacteria in deep Arctic and Antarctic ice cores: a proxy for evolution in oceans over 300 million generations

    Science.gov (United States)

    Price, P. B.; Bay, R. C.

    2012-10-01

    Using fluorescence spectrometry to map autofluorescence of chlorophyll (Chl) and tryptophan (Trp) versus depth in polar ice cores in the US National Ice Core Laboratory, we found that the Chl and Trp concentrations often showed an annual modulation of up to 25%, with peaks at depths corresponding to local summers. Using epifluorescence microscopy (EFM) and flow cytometry (FCM) triggered on red fluorescence at 670 nm to study microbes from unstained melts of the polar ice, we inferred that picocyanobacteria may have been responsible for the red fluorescence in the cores. Micron-size bacteria in all ice melts from Arctic and Antarctic sites showed FCM patterns of scattering and of red vs. orange fluorescence (interpreted as due to Chl vs. phycoerythrin (PE)) that bore similarities to patterns of cultures of unstained picocyanobacteria Prochlorococcus and Synechococcus. Concentrations in ice from all sites were low, but measurable at ~ 1 to ~ 103 cells cm-3. Calibrations showed that FCM patterns of mineral grains and volcanic ash could be distinguished from microbes with high efficiency by triggering on scattering instead of by red fluorescence. Average Chl and PE autofluorescence intensities showed no decrease per cell with time during up to 150 000 yr of storage in glacial ice. Taking into account the annual modulation of ~ 25% and seasonal changes of ocean temperatures and winds, we suggest that picocyanobacteria are wind-transported year-round from warmer ocean waters onto polar ice. Ice cores offer the opportunity to study evolution of marine microbes over ~ 300 million generations by analysing their genomes vs. depth in glacial ice over the last 700 000 yr as frozen proxies for changes in their genomes in oceans.

  5. Marine bacteria in deep Arctic and Antarctic ice cores: a proxy for evolution in oceans over 300 million generations

    Directory of Open Access Journals (Sweden)

    P. B. Price

    2012-06-01

    Full Text Available Using fluorescence spectrometry to map autofluorescence of chlorophyll (Chl and tryptophan (Trp versus depth in polar ice cores in the US National Ice Core Laboratory, we found that the Chl and Trp concentrations often showed an annual modulation of up to 25%, with peaks at depths corresponding to local summers. Using epifluorescence microscopy (EFM and flow cytometry (FCM triggered on 670 nm fluorescence (red to study microbes from unstained melts of the polar ice, we inferred that picocyanobacteria may have been responsible for the red fluorescence in the cores. Micron-size bacteria in all ice melts from 2 Arctic and 6 Antarctic sites showed FCM patterns of scattering and of red vs. orange fluorescence (interpreted as due to Chl vs. phycoerythrin (PE that bore similarities to patterns of cultures of unstained picocyanobacteria Prochlorococcus and Synechococcus. Concentrations in ice from all sites were low but measurable at ~1 to ~103 cells cm−3. Calibrations showed that FCM patterns of mineral grains and volcanic ash could be distinguished from microbes with high efficiency by triggering on scattering instead of by red fluorescence. Average Chl and PE autofluorescence intensities showed no decrease per cell with time during up to 150 000 yr of storage in glacial ice. Taking into account the annual modulation of ~25% and seasonal changes of ocean temperatures and winds, we suggest that picocyanobacteria are wind-transported year-round from warmer ocean waters onto polar ice. Ice cores offer the opportunity to study evolution of marine microbes over ~300 million generations by analyzing their genomes vs. depth in glacial ice over the last 700 000 yr as frozen proxies for changes in their genomes in oceans.

  6. Bimodal pattern of seismicity detected at the ocean margin of an Antarctic ice shelf

    Science.gov (United States)

    Lombardi, Denis; Benoit, Lionel; Camelbeeck, Thierry; Martin, Olivier; Meynard, Christophe; Thom, Christian

    2016-08-01

    In Antarctica, locally grounded ice, such as ice rises bordering floating ice shelves, plays a major role in the ice mass balance as it stabilizes the ice sheet flow from the hinterland. When in direct contact with the ocean, the ice rise buttressing effect may be altered in response of changing ocean forcing. To investigate this vulnerable zone, four sites near the boundary of an ice shelf with an ice rise promontory in Dronning Maud Land, East-Antarctica were monitored for a month in early 2014 with new instruments that include both seismic and GPS sensors. Our study indicated that this transition zone experiences periodic seismic activity resulting from surface crevassing during oceanic tide-induced flexure of the ice shelf. The most significant finding is the observation of apparent fortnightly tide-modulated low-frequency, long-duration seismic events at the seaward front of the ice rise promontory. A basal origin of these events is postulated with the ocean water surge at each new spring tide triggering basal crevassing or basal slip on a local bedrock asperity. Detection and monitoring of such seismicity may help identifying ice rise zones vulnerable to intensified ocean forcing.

  7. Linear sea-level response to abrupt ocean warming of major West Antarctic ice basin

    Science.gov (United States)

    Mengel, M.; Feldmann, J.; Levermann, A.

    2016-01-01

    Antarctica's contribution to global sea-level rise has recently been increasing. Whether its ice discharge will become unstable and decouple from anthropogenic forcing or increase linearly with the warming of the surrounding ocean is of fundamental importance. Under unabated greenhouse-gas emissions, ocean models indicate an abrupt intrusion of warm circumpolar deep water into the cavity below West Antarctica's Filchner-Ronne ice shelf within the next two centuries. The ice basin's retrograde bed slope would allow for an unstable ice-sheet retreat, but the buttressing of the large ice shelf and the narrow glacier troughs tend to inhibit such instability. It is unclear whether future ice loss will be dominated by ice instability or anthropogenic forcing. Here we show in regional and continental-scale ice-sheet simulations, which are capable of resolving unstable grounding-line retreat, that the sea-level response of the Filchner-Ronne ice basin is not dominated by ice instability and follows the strength of the forcing quasi-linearly. We find that the ice loss reduces after each pulse of projected warm water intrusion. The long-term sea-level contribution is approximately proportional to the total shelf-ice melt. Although the local instabilities might dominate the ice loss for weak oceanic warming, we find that the upper limit of ice discharge from the region is determined by the forcing and not by the marine ice-sheet instability.

  8. A Strategic Vision for NSF Investments in Antarctic and Southern Ocean Research: Recommendations of a New Study from the National Academes of Sciences, Engineering, and Medicine.

    Science.gov (United States)

    Weller, R. A.; Bell, R. E.; Geller, L.

    2015-12-01

    A Committee convened by the National Academies of Sciences, Engineering, and Medicine carried out a study (at the request of NSF's Division of Polar Programs) to develop a strategic vision for the coming decade of NSF's investments in Antarctic and Southern Ocean research. The study was informed by extensive efforts to gather ideas from researchers across the United States. This presentation will provide an overview of the Committee's recommendations—regarding an overall strategic framework for a robust U.S. Antarctic program, regarding the specific areas of research recommended as highest priority for NSF support, and regarding the types of infrastructure, logistical support, data management, and other critical foundations for enabling and adding lasting value to the proposed research .

  9. Satellite remote sensing of the island mass effect on the Sub-Antarctic Kerguelen Plateau, Southern Ocean

    Science.gov (United States)

    Jena, Babula

    2016-09-01

    The presence of the Kerguelen Plateau and surrounding bathymetric features has a strong influence on the persistently eastward flowing Antarctic Circumpolar Current (ACC), resulting in enhancement of surface chlorophyll-a (Chl- a) in the downstream section of the plateau along the polar front (PF). The phenomenon is reported in this paper as the island mass effect (IME). Analysis of climatological Chl- a datasets from Aqua- Moderate Resolution Imaging Spectroradiometer (Aqua- MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) shows distinct bloomy plumes (Chl- a>0.5 mg/m3) during austral spring-summer spreading as far as ~1800 km offshore up to 98°E along the downstream of the north Kerguelen Plateau (NKP). Similar IME phenomena is apparent over the south Kerguelen Plateau (SKP) with the phytoplankton bloom extending up to 96.7°E, along the southern boundary of ACC. The IME phenomena are pronounced only during austral spring-summer period with the availability of light and sedimentary source of iron from shallow plateau to sea surface that fertilizes the mixed layer. The NKP bloom peaks with a maximum areal extent of 1.315 million km2 during December, and the SKP bloom peaks during January with a time lag of one month. The blooms exist for at least 4 months of a year and are significant both as the base of regional food web and for regulating the biogeochemical cycle in the Southern Ocean. Even though the surface water above the Kerguelen Plateau is rich in Chl- a, an exception of an oligotrophic condition dominated between NKP and SKP due to apparent intrusion of iron limited low phytoplankton regime waters from the Enderby basin through the northeastward Fawn Trough Current.

  10. Satellite remote sensing of the island mass effect on the Sub-Antarctic Kerguelen Plateau, Southern Ocean

    Science.gov (United States)

    Jena, Babula

    2016-04-01

    The presence of the Kerguelen Plateau and surrounding bathymetric features has a strong influence on the persistently eastward flowing Antarctic Circumpolar Current (ACC), resulting in enhancement of surface chlorophyll-a (Chl-a) in the downstream section of the plateau along the polar front (PF). The phenomenon is reported in this paper as the island mass effect (IME). Analysis of climatological Chl-a datasets from Aqua- Moderate Resolution Imaging Spectroradiometer (Aqua- MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) shows distinct bloomy plumes (Chl-a>0.5 mg/m3) during austral spring-summer spreading as far as ~1800 km offshore up to 98°E along the downstream of the north Kerguelen Plateau (NKP). Similar IME phenomena is apparent over the south Kerguelen Plateau (SKP) with the phytoplankton bloom extending up to 96.7°E, along the southern boundary of ACC. The IME phenomena are pronounced only during austral spring-summer period with the availability of light and sedimentary source of iron from shallow plateau to sea surface that fertilizes the mixed layer. The NKP bloom peaks with a maximum areal extent of 1.315 million km2 during December, and the SKP bloom peaks during January with a time lag of one month. The blooms exist for at least 4 months of a year and are significant both as the base of regional food web and for regulating the biogeochemical cycle in the Southern Ocean. Even though the surface water above the Kerguelen Plateau is rich in Chl-a, an exception of an oligotrophic condition dominated between NKP and SKP due to apparent intrusion of iron limited low phytoplankton regime waters from the Enderby basin through the northeastward Fawn Trough Current.

  11. Ocean acidification state in western Antarctic surface waters: drivers and interannual variability

    Directory of Open Access Journals (Sweden)

    M. Mattsdotter Björk

    2013-05-01

    Full Text Available Each December during four years from 2006 to 2010, the surface water carbonate system was measured and investigated in the Amundsen Sea and Ross Sea, western Antarctica as part of the Oden Southern Ocean expeditions (OSO. The I/B Oden started in Punta Arenas in Chile and sailed southwest, passing through different regimes such as, the marginal/seasonal ice zone, fronts, coastal shelves, and polynyas. Discrete surface water was sampled underway for analysis of total alkalinity (AT, total dissolved inorganic carbon (CT and pH. Two of these parameters were used together with sea-surface temperature (SST, and salinity to obtain a full description of the surface water carbonate system, including pH in situ and calcium carbonate saturation state of aragonite (ΩAr and calcite (ΩCa. Multivariate analysis was used to investigate interannual variability and the major controls (sea-ice concentration, SST, salinity and chlorophyll a on the variability in the carbonate system and Ω. This analysis showed that SST and chlorophyll a were the major drivers of the Ω variability in both the Amundsen and Ross seas. In 2007, the sea-ice edge was located further south and the area of the open polynya was relatively small compared to 2010. We found the lowest pH in situ (7.932 and Ω = 1 values in the sea-ice zone and in the coastal Amundsen Sea, nearby marine out flowing glaciers. In 2010, the sea-ice coverage was the largest and the areas of the open polynyas were the largest for the whole period. This year we found the lowest salinity and AT, coinciding with highest chl a. This implies that the highest ΩAr in 2010 was likely an effect of biological CO2 drawdown, which out-competed the dilution of carbonate ion concentration due to large melt water volumes. We predict and discuss future Ω values, using our data and reported rates of oceanic uptake of anthropogenic CO2, suggesting that the Amundsen Sea will become undersaturated with regard to aragonite about

  12. Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys

    Science.gov (United States)

    Bombosch, Annette; Zitterbart, Daniel P.; Van Opzeeland, Ilse; Frickenhaus, Stephan; Burkhardt, Elke; Wisz, Mary S.; Boebel, Olaf

    2014-09-01

    Seismic surveys are frequently a matter of concern regarding their potentially negative impacts on marine mammals. In the Southern Ocean, which provides a critical habitat for several endangered cetacean species, seismic research activities are undertaken at a circumpolar scale. In order to minimize impacts of these surveys, pre-cruise planning requires detailed, spatio-temporally resolved knowledge on the likelihood of encountering these species in the survey area. In this publication we present predictive habitat modelling as a potential tool to support decisions for survey planning. We associated opportunistic sightings (2005-2011) of humpback (Megaptera novaeangliae, N=93) and Antarctic minke whales (Balaenoptera bonaerensis, N=139) with a range of static and dynamic environmental variables. A maximum entropy algorithm (Maxent) was used to develop habitat models and to calculate daily basinwide/circumpolar prediction maps to evaluate how species-specific habitat conditions evolved throughout the spring and summer months. For both species, prediction maps revealed considerable changes in habitat suitability throughout the season. Suitable humpback whale habitat occurred predominantly in ice-free areas, expanding southwards with the retreating sea ice edge, whereas suitable Antarctic minke whale habitat was consistently predicted within sea ice covered areas. Daily, large-scale prediction maps provide a valuable tool to design layout and timing of seismic surveys as they allow the identification and consideration of potential spatio-temporal hotspots to minimize potential impacts of seismic surveys on Antarctic cetacean species.

  13. A record of Antarctic sea ice extent in the Southern Indian Ocean for the past 300 yr and its relationship with global mean temperature

    Directory of Open Access Journals (Sweden)

    C. Xiao

    2013-07-01

    Full Text Available The differing response of ice extent in the Arctic and Antarctic to global average temperature change, over approximately the last three decades, highlights the importance of reconstructing long-term sea ice history. Here, using high-resolution ice core records of methanesulfonate (MS− from the East Antarctic Ice Sheet in Princess Elizabeth Land, we reconstruct southern Indian Ocean sea ice extent (SIE for the sector 70° E–100° E for the period 1708–2000 A.D. Annual MS− concentration positively correlates in this sector with satellite-derived SIE for the period 1973–2000 (P − record of proxy SIE shows multi-decadal variations, with large decreases occurring in two warm intervals during the Little Ice Age, and during the 1940s. However, after the 1980s there is a change in phase between Antarctic SIE and global temperature change, with both increasing. This paradox is probably attributable to the strong anomaly in the Southern Annular Mode (SAM in the recent three decades.

  14. Oceanographic changes in the Southern Ocean and Antarctic cryosphere dynamics during the Oligocene and Miocene: a view from offshore Wilkes Land

    Science.gov (United States)

    Sangiorgi, Francesca; Bijl, Peter K.; Hartman, Julian D.; Schouten, Stefan; Brinkhuis, Henk

    2016-04-01

    With the ongoing increase in atmospheric CO2 and global temperatures, a fundamental scientific and societal question arises concerning the stability of the Antarctic cryosphere. Modern observational data indicate the Southern Ocean has experienced significant warming, with oceanic fronts being pushed several tenth of km closer to the continent. Moreover, basal melt of ice shelves from warming oceans is causing accelerated grounding line retreat of the Antarctic ice sheets and shelves. However, monitoring data are available for the last few decades only, which prevents the evaluation of long-term changes in ice mass balance. Studying intervals in Earth's past history, which represent the best possible analogues of (near) future conditions, becomes thus essential. The Oligocene and Miocene Epochs encompass periods with CO2 concentrations between today's and those expected for the (near) future. It has also become clear that ice-proximal oceanographic regime is a critical factor for the stability and mass balance of ice sheets. Integrated Ocean Drilling Program (IODP) Expedition 318 offshore Wilkes Land (East Antarctica) Site U1356 satisfies both requirements of being ice-proximal and having a relative complete, stratigraphically well-resolved Oligocene-Miocene sequence (albeit with a possible 5-Myrs gap between Late Oligocene and Early Miocene). This allows for the first time studying oceanographic changes and cryosphere dynamics in the interval ~34-13 Myrs. Thus far, ice-proximal reconstructions were hindered by the paucity of suitable sedimentary archives around Antarctica and/or poor stratigraphic constraints. We reconstructed changes in surface oceanography and seawater temperatures by means of dinoflagellate cyst assemblages and TEX86 paleothermometry. The dinocyst data suggest (summer) sea-ice occurrence at Site U1356 only for the first 1.5 Ma following the onset of full Antarctic glaciation and after the Mid-Miocene Climatic Optimum. In between, both dinocysts

  15. Modelling the Antarctic Ice Sheet

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Holm, A.

    2015-01-01

    Science) Antarctic Ice Sheet (DAIS) model (Shaffer 2014) is forced by reconstructed time series of Antarctic temperature, global sea level and ocean subsurface temperature over the last two glacial cycles. In this talk a modelling work of the Antarctic ice sheet over most of the Cenozoic era using the......The Antarctic ice sheet is a major player in the Earth’s climate system and is by far the largest depository of fresh water on the planet. Ice stored in the Antarctic ice sheet (AIS) contains enough water to raise sea level by about 58 m, and ice loss from Antarctica contributed significantly to...... DAIS model will be presented. G. Shaffer (2014) Formulation, calibration and validation of the DAIS model (version 1), a simple Antarctic ice sheet model sensitive to variations of sea level and ocean subsurface temperature, Geosci. Model Dev., 7, 1803‐1818...

  16. Biodiversity and biogeography of Antarctic and sub-Antarctic mollusca

    Science.gov (United States)

    Linse, Katrin; Griffiths, Huw J.; Barnes, David K. A.; Clarke, Andrew

    2006-04-01

    For many decades molluscan data have been critical to the establishment of the concept of a global-scale increase in species richness from the poles to the equator. Low polar diversity is key to this latitudinal cline in diversity. Here we investigate richness patterns in the two largest classes of molluscs at both local and regional scales throughout the Southern Ocean. We show that biodiversity is very patchy in the Southern Ocean (at the 1000-km scale) and test the validity of historical biogeographic sub-regions and provinces. We used multivariate analysis of biodiversity patterns at species, genus and family levels to define richness hotspots within the Southern Ocean and transition areas. This process identified the following distinct sub-regions in the Southern Ocean: Antarctic Peninsula, Weddell Sea, East Antarctic—Dronning Maud Land, East Antarctic—Enderby Land, East Antarctic—Wilkes Land, Ross Sea, and the independent Scotia arc and sub Antarctic islands. Patterns of endemism were very different between the bivalves and gastropods. On the basis of distributional ranges and radiation centres of evolutionarily successful families and genera we define three biogeographic provinces in the Southern Ocean: (1) the continental high Antarctic province excluding the Antarctic Peninsula, (2) the Scotia Sea province including the Antarctic Peninsula, and (3) the sub Antarctic province comprising the islands in the vicinity of the Antarctic Circumpolar Current.

  17. Distribution and long-range transport of polyfluoroalkyl substances in the Arctic, Atlantic Ocean and Antarctic coast

    International Nuclear Information System (INIS)

    The global distribution and long-range transport of polyfluoroalkyl substances (PFASs) were investigated using seawater samples collected from the Greenland Sea, East Atlantic Ocean and the Southern Ocean in 2009–2010. Elevated levels of ΣPFASs were detected in the North Atlantic Ocean with the concentrations ranging from 130 to 650 pg/L. In the Greenland Sea, the ΣPFASs concentrations ranged from 45 to 280 pg/L, and five most frequently detected compounds were perfluorooctanoic acid (PFOA), perfluorohexanesulfonate (PFHxS), perfluorohexanoic acid (PFHxA), perfluorooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS). PFOA (15 pg/L) and PFOS (25–45 pg/L) were occasionally found in the Southern Ocean. In the Atlantic Ocean, the ΣPFASs concentration decreased from 2007 to 2010. The elevated PFOA level that resulted from melting snow and ice in Greenland Sea implies that the Arctic may have been driven by climate change and turned to be a source of PFASs for the marine ecosystem. - Highlights: ► PFOA is released from the Arctic snow and ice and might be transport southwards to the Atlantic. ► Decline temporal trends of PFASs are present in the Northern Hemisphere in the Atlantic. ► PFOS has elevate concentration in comparison to PFOA in the Southern Ocean. - Polyfluoroalkyl substances (PFASs) have been reported for the Arctic, Atlantic and the Southern Ocean, which improves understanding the fate of PFASs in the global oceans.

  18. North Atlantic Deep Water and Antarctic Bottom Water: Their Interaction and Influence on Modes of the Global Ocean Circulation

    OpenAIRE

    Brix, Holger

    2001-01-01

    Interhemispheric signal transmission in the Atlantic Ocean connects the deep water production regions of both hemispheres. The nature of these interactions and large scale responses to perturbations on time scales of years to millenia have been investigated using a global general circulation model based on the primitive equations coupled to a dynamic-thermodynamic sea ice model with a viscous-plastic rheology. The coupled model reproduces many aspects of today´s oceanic circulation. Testing t...

  19. Antarctic and Southern Ocean Mineral Dust Aerosol Transport Pathways: Forward-Trajectory Modeling and Source Constraints Derived from the RICE Ice Core

    Science.gov (United States)

    Neff, P. D.; Tuohy, A.; Bertler, N. A. N.; Edwards, R.

    2014-12-01

    Mineral dust fertilization of Southern Ocean surface waters, and mixing with Antarctic deep-water, influences oceanic uptake of atmospheric carbon dioxide and draws down global atmospheric CO2concentration during glacial periods. Quantifying modern variability in dust source and transport strength, especially with respect to high- and low-latitude climate phenomena (e.g. SAM, ENSO), will improve understanding of this important aspect of the global carbon cycle. Here we present data from a new intermediate-depth, coastal ice core drilled at Roosevelt Island, Antarctica as part of the Roosevelt Island Climate Evolution (RICE) project. Using HySPLIT forward trajectories, climate reanalysis and geochemistry data, this work explores variability in atmospheric transport for modern Southern Hemisphere dust source areas (primarily Australia, southern South America and southern Africa). While New Zealand represents a relatively small dust source at present, it is strongly-connected to the Antarctic due to its position within the circumpolar westerly winds and was a major dust source during the last glacial period. Geochemical data from the RICE ice core (79.36ºS, 161.71ºW, 550 m a.s.l.) are used to constrain sources of dust in this sector. The lanthanide elements—common in crustal material and not susceptible to fractionation—can preserve the signature of their original source material, allowing for characterisation of dust provenance. Initial results suggest that only air trajectories originating in New Zealand regularly reach the Ross Sea, Marie Byrd Land and Roosevelt Island within 3 to 5 days (see Figure 1), a characteristic travel time of suspended dust particles. We discuss estimates of the relative source strength of New Zealand compared with other dust source areas to evaluate its overall contribution. Figure 1: Daily 96-hour forward trajectories for Southern Hemisphere dust source areas, 2010-2013 (NOAA HySPLIT, NCEP reanalysis). NCEP reanalysis 1980

  20. Abundant Hydrothermal Venting in the Southern Ocean Near 62°S/159°E on the Australian-Antarctic Ridge

    Science.gov (United States)

    Baker, E. T.; Hahm, D.; Rhee, T. S.; Park, S. H.; Lupton, J. E.; Walker, S. L.; Choi, H.

    2014-12-01

    Circum-Antarctic Ridges (CARs) comprise almost one-third of the global Mid-Ocean Ridge, yet remain terra incognita for hydrothermal activity and chemosynthetic ecosystems. The InterRidge Vents Database lists only 3 confirmed (visualized) and 35 inferred (plume evidence) active sites along the ~21,000 km of CARs. Here, we report on a multi-year effort to locate and characterize hydrothermal activity on two 1st-order segments of the Australian-Antarctic Ridge that are perhaps more isolated from other known vent fields than any other vent site on the Mid-Ocean Ridge. KR1 is a 300-km-long segment near 62°S/159°E, and KR2 a 90-km-long segment near 60°S/152.5°E. We used profiles collected by Miniature Autonomous Plume Recorders (MAPRs) on rock corers in March and December of 2011 to survey each segment, and an intensive CTD survey in Jan/Feb 2013 to pinpoint sites and sample plumes on KR1. Optical and oxidation-reduction potential (ORP, aka Eh) anomalies indicate multiple active sites on both segments. Seven profiles on KR2 found 3 sites, each separated by ~25 km. Forty profiles on KR1 identified 13 sites, some within a few km of each other. The densest site concentration on KR1 occurred along a relatively inflated, 90-km-long section near the segment center. CTD tows covered 20 km of the eastern, most inflated portion of this area, finding two 6-km-long zones centered near 158.6°E and 158.8°E with multiple plume anomalies. Three ORP anomalies within 50 m of the seafloor indicate precise venting locations. We call this area the Mujin "Misty Harbor" vent field. Vent frequency sharply decreases away from Mujin. 3He/heat ratios determined from 20 plume samples in the Mujin field were mostly spreading ridges. We calculate the plume incidence (ph) along KR1 and KR2 as the mean of the fraction of MAPR casts detecting a plume in each 2nd-order segment. For all 6 segments, ph=0.37±0.25, consistent with the prediction of 0.33 from the global trend of ph for a spreading

  1. Threshold behavior of a marine-based sector of the East Antarctic Ice Sheet in response to early Pliocene ocean warming

    Science.gov (United States)

    Hansen, Melissa A.; Passchier, Sandra; Khim, Boo-Keun; Song, Buhan; Williams, Trevor

    2015-06-01

    We investigate the stability of the East Antarctic Ice Sheet (EAIS) on the Wilkes Land continental margin, Antarctica, utilizing a high-resolution record of ice-rafted debris (IRD) mass accumulation rates (MAR) from Integrated Ocean Drilling Program Site U1359. The relationship between orbital variations in the IRD record and climate drivers was evaluated to capture changes in the dynamics of a marine-based ice sheet in response to early Pliocene warming. Three IRD MAR excursions were observed and confirmed via scanning electron microscope microtextural analysis of sand grains. Time series analysis of the IRD MAR reveals obliquity-paced expansions of the ice sheet to the outer shelf prior to ~4.6 Ma. A decline in the obliquity and a transition into a dominant precession response of IRD MAR occur at ~4.6 Ma along with a decline in the amplitude of IRD MAR maxima to low background levels between ~4.0 and ~3.5 Ma. We speculate that as sea surface temperatures began to peak above 3°C during the early Pliocene climatic optimum, the ice shelves thinned, leading to a greater susceptibility to precession-forced summer insolation and the onset of persistent retreat of a marine-based portion of the EAIS.

  2. On the Linkage between Antarctic Surface Water Stratification and Global Deep-Water Temperature

    OpenAIRE

    Keeling, R.F.; Visbeck, Martin

    2011-01-01

    The suggestion is advanced that the remarkably low static stability of Antarctic surface waters may arise from a feedback loop involving global deep-water temperatures. If deep-water temperatures are too warm, this promotes Antarctic convection, thereby strengthening the inflow of Antarctic Bottom Water into the ocean interior and cooling the deep ocean. If deep waters are too cold, this promotes Antarctic stratification allowing the deep ocean to warm because of the input of North Atlantic D...

  3. Environmental contamination in Antarctic ecosystems.

    Science.gov (United States)

    Bargagli, R

    2008-08-01

    Although the remote continent of Antarctica is perceived as the symbol of the last great wilderness, the human presence in the Southern Ocean and the continent began in the early 1900s for hunting, fishing and exploration, and many invasive plant and animal species have been deliberately introduced in several sub-Antarctic islands. Over the last 50 years, the development of research and tourism have locally affected terrestrial and marine coastal ecosystems through fuel combustion (for transportation and energy production), accidental oil spills, waste incineration and sewage. Although natural "barriers" such as oceanic and atmospheric circulation protect Antarctica from lower latitude water and air masses, available data on concentrations of metals, pesticides and other persistent pollutants in air, snow, mosses, lichens and marine organisms show that most persistent contaminants in the Antarctic environment are transported from other continents in the Southern Hemisphere. At present, levels of most contaminants in Antarctic organisms are lower than those in related species from other remote regions, except for the natural accumulation of Cd and Hg in several marine organisms and especially in albatrosses and petrels. The concentrations of organic pollutants in the eggs of an opportunistic top predator such as the south polar skua are close to those that may cause adverse health effects. Population growth and industrial development in several countries of the Southern Hemisphere are changing the global pattern of persistent anthropogenic contaminants and new classes of chemicals have already been detected in the Antarctic environment. Although the Protocol on Environmental Protection to the Antarctic Treaty provides strict guidelines for the protection of the Antarctic environment and establishes obligations for all human activity in the continent and the Southern Ocean, global warming, population growth and industrial development in countries of the Southern

  4. Relative Changes in Krill Abundance Inferred from Antarctic Fur Seal

    OpenAIRE

    Tao Huang; Liguang Sun; John Stark; Yuhong Wang; Zhongqi Cheng; Qichao Yang; Song Sun

    2011-01-01

    Antarctic krill Euphausia superba is a predominant species in the Southern Ocean, it is very sensitive to climate change, and it supports large stocks of fishes, seabirds, seals and whales in Antarctic marine ecosystems. Modern krill stocks have been estimated directly by net hauls and acoustic surveys; the historical krill density especially the long-term one in the Southern Ocean, however, is unknown. Here we inferred the relative krill population changes along the West Antarctic Peninsula ...

  5. Fate of Polycyclic Aromatic Hydrocarbons in Seawater from the Western Pacific to the Southern Ocean (17.5°N to 69.2°S) and Their Inventories on the Antarctic Shelf.

    Science.gov (United States)

    Cai, Minggang; Liu, Mengyang; Hong, Qingquan; Lin, Jing; Huang, Peng; Hong, Jiajun; Wang, Jun; Zhao, Wenlu; Chen, Meng; Cai, Minghong; Ye, Jun

    2016-09-01

    Semivolatile organic compounds such as polycyclic aromatic hydrocarbons (PAHs) have the potential to reach pristine environments through long-range transport. To investigate the long-range transport of the PAHs and their fate in Antarctic seawater, dissolved PAHs in the surface waters from the western Pacific to the Southern Ocean (17.5°N to 69.2°S), as well as down to 3500 m PAH profiles in Prydz Bay and the adjacent Southern Ocean, were observed during the 27th Chinese National Antarctic Research Expedition in 2010. The concentrations of Σ9PAH in the surface seawater ranged from not detected (ND) to 21 ng L(-1), with a mean of 4.3 ng L(-1); and three-ring PAHs were the most abundant compounds. Samples close to the Australian mainland displayed the highest levels across the cruise. PAHs originated mainly from pyrogenic sources, such as grass, wood, and coal combustion. Vertical profiles of PAHs in Prydz Bay showed a maximum at a depth of 50 m and less variance with depth. In general, we inferred that the water masses as well as the phytoplankton were possible influencing factors on PAH surface-enrichment depth-depletion distribution. Inventory estimation highlighted the contribution of intermediate and deep seawater on storing PAHs in seawater from Prydz Bay, and suggested that climate change rarely shows the rapid release of the PAHs currently stored in the major reservoirs (intermediate and deep seawater). PMID:27509536

  6. Onset and role of the Antarctic Circumpolar Current

    OpenAIRE

    Barker, P. F.; Threshers Barn, Whitcott Keysett, Clun, Shropshire SY7 8QE, UK; Filippelli, G. M.; Department of Earth Sciences, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN 46202-5132, USA; Florindo, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma2, Roma, Italia; Martin, E. E.; Department of Geological Sciences, University of Florida, Gainesville, FL 32611-2120, USA; Howard, D. S.; Department of Earth & Environmental Sciences, University of Rochester, Rochester, NY 14611, USA

    2007-01-01

    For some time, onset of the Antarctic Circumpolar Current (ACC) was considered to have caused or stabilised full Antarctic glaciation. Recently, however, the importance of the ACC in this role has been questioned. In order to understand the relationship between the ACC and Antarctic glaciation, and thence the importance of ocean circulation to palaeoclimate, we need to determine the development history of both processes. To this end, we summarise all published estimates of ACC ons...

  7. Features and spatial distribution of circumpolar deep water in the southern Indian Ocean and the effects of Antarctic circum polar current

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The data from the Southern Ocean observations of World Ocean Circulation Experiment(WOCE)are used for analysis and illustration of the features and spatial distributions of Circumpolar Deep Water(CDW)in the southern Indian Ocean.It is learnt from the comparison among the vertical distributions of temperature/salinity/oxygen along the (30.)E, (90.)E and (145.)E sections respectively that some different features of CDW and the fronts can be found at those longitudes, and those differences can be attributed to the zonal transoceanic flow and the merizonal movement in the Circumpolar Deep Water.In fact, the zonal transoceanic flow is the main dynamic factor for the water exchange between the Pacific Ocean and the Indian Ocean or between the Atlantic Ocean and the Indian Ocean, and for the effects on the spatial distributions of the physical properties in CDW.

  8. Climate Prediction Center (CPC) Daily Antarctic Oscillation Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Antarctic Oscillation (AAO) is a leading teleconnection pattern in the Southern Hemisphere circulation. It is calculated as the first Empirical Orthogonal...

  9. Scientific drilling in the Indian Ocean

    Science.gov (United States)

    Exon, Neville; Pandey, Dhananjai; Gallagher, Stephen

    2012-02-01

    Indian Ocean IODP Workshop; Goa, India, 17-18 October 2011 An Indian Ocean Integrated Ocean Drilling Program (IODP) Workshop was hosted by the National Centre for Antarctic and Ocean Research. With no scientific ocean drilling in the Indian Ocean for nearly a decade, this region remains a major gap in understanding global geoscientific processes, past and present, and their implications for the future.

  10. Relative Changes in KrillAbundance Inferred from Antarctic Fur Seal

    OpenAIRE

    Huang, T.; Sun, L; Stark, John M.; Wang, Y.; Cheng, Z.; Yang, Q.; Sun, S.

    2011-01-01

    Antarctic krill Euphausia superba is a predominant species in the Southern Ocean, it is very sensitive to climate change, and it supports large stocks of fishes, seabirds, seals and whales in Antarctic marine ecosystems. Modern krill stocks have been estimated directly by net hauls and acoustic surveys; the historical krill density especially the long-term one in the Southern Ocean, however, is unknown. Here we inferred the relative krill population changes along the West Antarctic Peninsula ...

  11. Controls and variability of solute and sedimentary fluxes in Antarctic and sub-Antarctic Environments

    Science.gov (United States)

    Zwolinski, Zbigniew

    2015-04-01

    The currently prepared SEDIBUD Book on "Source-to-Sink Fluxes in Undisturbed Cold Environments" (edited by Achim A. Beylich, John C. Dixon and Zbigniew Zwolinski and published by Cambridge University Press) is summarizing and synthesizing the achievements of the International Association of Geomorphologists` (I.A.G./A.I.G.) Working Group SEDIBUD (Sediment Budgets in Cold Environments), which has been active since 2005 (http://www.geomorph.org/wg/wgsb.html). The book comprises five parts. One of them is part about sub-Antarctic and Antarctic Environments. This part "Sub-Antarctic and Antarctic Environments" describes two different environments, namely oceanic and continental ones. Each part contains results of research on environmental drivers and rates of contemporary solute and sedimentary fluxes in selected sites. Apart from describing the environmental conditions of the whole continent of Antarctica and sub-Antarctic islands (Zb.Zwolinski, M.Kejna, A.N.Lastochkin, A.Zhirov, S.Boltramovich) this part of the book characterizes terrestrial polar oases free from multi-year ice and snow covers (Zb.Zwolinski). The detailed results of geoecological and sedimentological research come from different parts of Antarctica. Antarctic continental shelf (E.Isla) is an example of sub-Antarctic oceanic environment. South Shetlands, especially King George Island (Zb.Zwolinski, M.Kejna, G.Rachlewicz, I.Sobota, J.Szpikowski), is an example of sub-Antarctic terrestrial environment. Antarctic Peninsula (G.Vieira, M.Francelino, J.C.Fernandes) and surroundings of McMurdo Dry Valleys (W.B.Lyons, K.A.Welch, J.Levy, A.Fountain, D.McKnight) are examples of Antarctic continental environments. The key goals of the Antarctic and sub-Antarctic book chapters are following: (i) identify the main environmental drivers and rates of contemporary solute and sedimentary fluxes, and (ii) model possible effects of projected climate change on solute and sedimentary fluxes in cold climate environments

  12. Icecolors '93: Beginnings of an antarctic phytoplankton and bacterial DNA library from southern ocean natural communities exposed to ultraviolet-B

    International Nuclear Information System (INIS)

    Springtime ozone depletion and the resultant increase in ultraviolet-B (UV-B) radiation [280-320 nanometers (nm)] have deleterious effects on primary productivity. To assess damage to cellular components other than the photosynthetic apparatus, we isolated total community DNA from samples in the field before, during, and after the 1993 springtime depletion in stratospheric ozone. The effort was motivated by the concern that the ozone-dependent increases in UV-B radiation may increase DNA damage within primary producers. This increase in damage could result in changes of species composition as well as hereditary changes within species that can influence the competitiveness of these organisms in their natural community. Previous studies have focused on DNA damage in isolated cultures of antarctic phytoplankton that were irradiated with UV-B under lab conditions. These studies clearly indicate variable species sensitivities to the increase in UV-B flux. These studies, however, did not resolve the question of whether such damage occurred in field samples collected from actively mixing, polyphyletic phytoplankton communities. Potential species composition changes and the resultant changes in the trophic dynamics cannot be interpreted in terms of DNA damage unless this damage can be documented in samples isolated under these dynamic natural conditions. 7 refs., 2 figs

  13. Arctic and Antarctic Ice Pack Changes during the Past Decade from a High Resolution Global Coupled Sea Ice-Ocean Model

    Science.gov (United States)

    Ivanova, D. P.; McClean, J. L.; Thoppil, P.; Hunke, E.; Stark, D.; Maltrud, M. E.; Lipscomb, W.

    2004-12-01

    Changes over the past decade in the global ice pack are analyzed using a coupled ice-ocean model and observational data sets. The model consists of the latest versions of the Los Alamos Parallel Ocean Program (POP) and sea ice model (CICE) and is configured on a moderately high-resolution global grid (0.4° and 40 vertical levels). A model simulation forced with high frequency daily NCEP/NCAR atmospheric fields was integrated for 23 years (1979-2002). Following a decade-long ice spin-up, the model's ability to reproduce observed ice extent, ice thickness and ice drift distributions is evaluated by statistical comparisons using satellite, upward looking sonar and ice drift buoy data. In particular, the realism of the ice mean state and variability on time scales from daily to interannual are examined. To better understand ocean-ice interaction processes, coupled model results are compared to stand alone integrations of the ice and ocean models. Mean ice states are examined during the positive/negative phases of the North Atlantic Oscillation and Arctic Oscillation in the last decade of the coupled simulation. Particularly ice export from the Fram and Bering Straits during these phases will be considered.

  14. Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys

    OpenAIRE

    Bombosch, Annette; Zitterbart, Daniel P.; Opzeeland, Ilse van; Frickenhaus, Stephan; Burkhardt, Elke; Wisz, Mary S.; Boebel, Olaf

    2014-01-01

    Seismic surveys are frequently a matter of concern regarding their potentially negative impacts on marine mammals. In the Southern Ocean, which provides a critical habitat for several endangered cetacean species, seismic research activities are undertaken at a circumpolar scale. In order to minimize impacts of these surveys, pre-cruise planning requires detailed, spatio-temporally resolved knowledge on the likelihood of encountering these species in the survey area. In this publication we pre...

  15. Regional Variation in Lytic and Lysogenic Viral Infection in the Southern Ocean and Its Contribution to Biogeochemical Cycling

    OpenAIRE

    Evans, C; Brussaard, C.P.D.

    2012-01-01

    Lytic and lysogenic viral infection was investigated throughout the Southern Ocean at sites spanning the sub-Antarctic zone, the Antarctic Circumpolar Current, and an Antarctic continental sea. Higher lytic virus activity was recorded in the more productive sub-Antarctic zone than in the iron-limited waters of the Antarctic Circumpolar Current during two transects. Reduced lytic viral activity in the Antarctic Circumpolar Current was combined with a shift toward lysogenic infection, probably ...

  16. Antarctic research today

    International Nuclear Information System (INIS)

    With the appetite for living and dead natural resources, the political and economical interest concerning the Antarctic increases throughout the world. There are three interrelated main subjects accounting for the international interest: The shelf tectonic puzzle of the original continent of Gondwana, where the Antarctic is situated in the centre, between Australia, South Africa and South America, and the hopes concerning the existence of mineral resources under the ice of the Antarctic are based thereon. The Antarctic forms the biggest unified living space of the world. (orig.)

  17. A study of marine ambient acoustic noise in relation to marine life in Antarctic waters during austral summer of 18 th Indian Expedition to Antarctica (1998-99)

    Digital Repository Service at National Institute of Oceanography (India)

    Saran, A.K.

    The exploration of the Antarctic Ocean (Southern Ocean) receives much attention by Oceanographers of various disciplines, because the ocean supports all the animal life and has the tremendous influence on meteorology and bio-geo-physical problems...

  18. Volcanic time-markers for Marine Isotopic Stages 6 and 5 in Southern Ocean sediments and Antarctic ice cores: implications for tephra correlations between palaeoclimatic records

    Science.gov (United States)

    Hillenbrand, C.-D.; Moreton, S. G.; Caburlotto, A.; Pudsey, C. J.; Lucchi, R. G.; Smellie, J. L.; Benetti, S.; Grobe, H.; Hunt, J. B.; Larter, R. D.

    2008-03-01

    Three megascopic and disseminated tephra layers (which we refer to as layers A, B, and C) occur in late Quaternary glaciomarine sediments deposited on the West Antarctic continental margin. The stratigraphical positions of the distal tephra layers in 28 of the 32 studied sediment cores suggest their deposition during latest Marine Isotopic Stage (MIS) 6 and MIS 5. One prominent tephra layer (layer B), which was deposited subsequent to the penultimate deglaciation (Termination II), is present in almost all of the cores. Geochemical analyses carried out on the glass shards of the layers reveal a uniform trachytic composition and indicate Marie Byrd Land (MBL), West Antarctica, as the common volcanic source. The geochemical composition of the marine tephra is compared to that of ash layers of similar age described from Mount Moulton and Mount Takahe in MBL and from ice cores drilled at Dome Fuji, Vostok and EPICA Dome C in East Antarctica. The three tephra layers in the marine sediments are chemically indistinguishable. Also five englacial ash layers from Mt. Moulton, which originated from highly explosive Plinian eruptions of the Mt. Berlin volcano in MBL between 142 and 92 ka ago, are chemically very similar, as are two tephra layers erupted from Mt. Takahe at ca 102 ka and ca 93 ka. Statistical analysis of the chemical composition of the glass shards indicates that the youngest tephra (layer A) in the marine cores matches the ash layer that erupted from Mt. Berlin at 92 ka, which was previously correlated with tephra layers in the EPICA Dome C and the Dome Fuji ice cores. A tephra erupted from Mt. Berlin at 136 ka seems to correspond to a tephra layer deposited at 1733 m in the EPICA Dome C ice core. Additionally, the oldest tephra (layer C) in the marine sediments resembles an ash layer deposited at Vostok around 142 ka, but statistical evidence for the validity of this correlation is inconclusive. Although our results underscore the potential of

  19. Obliquity-paced Pliocene West Antarctic ice sheet oscillations

    OpenAIRE

    Naish, T.; Antarctic Research Centre, Victoria University of Wellington, Kelburn Parade, PO Box 600, Wellington 6012, New Zealand; Powell, R.; Department of Geology & Environmental Geosciences, Northern Illinois University, DeKalb, Illinois 60115, USA.; Levy, R.; ANDRILL Science Management Office, University of Nebraska-Lincoln, Lincoln, USA; Wilson, G.; University of Otago, Department of Geology, PO Box 56, Leith Street, Dunedin, Otago 9001, New Zealand; Scherer, R.; Department of Geology & Environmental Geosciences, Northern Illinois University, DeKalb, Illinois 60115, USA.; Talarico, F.; Universita` di Siena, Dipartimento di Scienze delle Terra, Via Laterina 8, I-53100 Siena, Italy; Krissek, L.; Ohio State University, Department of Geological Sciences, 275 Mendenhall Lab, 125 South Oval Mall, Columbus, Ohio 43210, USA; Niessen, F.; Alfred Wegener Institute, Department of Geosciences, Postfach 12 01 6, Am Alten Hafen 26, D-27515 Bremerhaven, Germany; Pompilio, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Pisa, Pisa, Italia; Wilson, T.; Ohio State University, Department of Geological Sciences, 275 Mendenhall Lab, 125 South Oval Mall, Columbus, Ohio 43210, USA; Carter, L.; Antarctic Research Centre, Victoria University of Wellington, Kelburn Parade, PO Box 600, Wellington 6012, New Zealand; DeConto, R.; Department of Geosciences, 233 Morrell Science Centre, University of Massachusetts, Amherst, Massachusetts 01003-9297, USA; Huybers, P.; Department of Earth and Planetary Sciences, Harvard University, Massachusetts 02138, USA; McKay, R.; Antarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington - New Zealand; Pollard, D.; Earth and Environmental Systems Institute, 2217 Earth-Engineering Science Bldg, University Park, PA 16802, USA

    2009-01-01

    Thirty years after oxygen isotope records frommicrofossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth’s orbital geometry control the ice ages1, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles2. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the ‘warmer-than- present’ early-Pliocene epoch (̃5–3Myr ago) is needed to better constrain the possibl...

  20. Neogene kinematic history of Nazca-Antarctic-Phoenix slab windows beneath Patagonia and the Antarctic Peninsula

    Science.gov (United States)

    Breitsprecher, Katrin; Thorkelson, Derek J.

    2009-01-01

    The Patagonian slab window is a subsurface tectonic feature resulting from subduction of the Nazca-Antarctic spreading-ridge system (Chile Rise) beneath southern South America. The geometry of the slab window had not been rigorously defined, in part because of the complex nature of the history of ridge subduction in the southeast Pacific region, which includes four interrelated spreading-ridge systems since 20 Ma: first, the Nazca-Phoenix ridge beneath South America, then simultaneous subduction of the Nazca-Antarctic and the northern Phoenix-Antarctic spreading-ridge systems beneath South America, and the southern Phoenix-Antarctic spreading-ridge system beneath Antarctica. Spreading-ridge paleo-geographies and rotation poles for all relevant plate pairs (Nazca, Phoenix, Antarctic, South America) are available from 20 Ma onward, and form the mathematical basis of our kinematic reconstruction of the geometry of the Patagonia and Antarctic slab windows through Neogene time. At approximately 18 Ma, the Nazca-Phoenix-Antarctic oceanic (ridge-ridge-ridge) triple junction enters the South American trench; we recognize this condition as an unstable quadruple junction. Heat flow at this junction and for some distance beneath the forearc would be considerably higher than is generally recognized in cases of ridge subduction. From 16 Ma onward, the geometry of the Patagonia slab window developed from the subduction of the trailing arms of the former oceanic triple junction. The majority of the slab window's areal extent and geometry is controlled by the highly oblique (near-parallel) subduction angle of the Nazca-Antarctic ridge system, and by the high contrast in relative convergence rates between these two plates relative to South America. The very slow convergence rate of the Antarctic slab is manifested by the shallow levels achieved by the slab edge (< 45 km); thus no point on the Antarctic slab is sufficiently deep to generate "normal" mantle-derived arc-type magmas

  1. Do Antarctic fish like it hot? What energy allocation can tell us about distribution shifts

    OpenAIRE

    Sandersfeld, Tina; Davison, William; Lamare, Miles D.; Richter, Claudio; Knust, Rainer

    2014-01-01

    Despite evidence for distribution shifts of single species and ecosystem changes as a reaction to global warming, little is known about the underlying processes. As a consequence of warming waters in the Southern Ocean, shifts in species distribution are expected with sub-Antarctic species migrating southward to high-Antarctic waters, while species from temperate regions might intrude sub-Antarctic areas. Species distribution and abundance are driven by reproduction and somatic growth, which ...

  2. Feeding, respiration and egg production rates of copepods during austral spring in the Indian sector of the Antarctic Ocean: role of the zooplankton community in carbon transformation

    Science.gov (United States)

    Mayzaud, P.; Razouls, S.; Errhif, A.; Tirelli, V.; Labat, J. P.

    2002-06-01

    During the austral spring period of 1996, the composition, age structure and physiological activity of zooplankton were studied in the Indian sector of the Southern Ocean. Zooplankton biomass ranged from less than 1 g m -2 in the Northern Polar Front Zone (PFZ) to 16 g m -2 near the ice edge in the Seasonal Ice Zone (SIZ). Zooplankton communities were dominated by copepods associated with euphausiid larvae. At all stations, species composition of copepods was dominated in number by small species ( Oithona spp, Ctenocalanus citer). Northern stations were characterized by Calanus simillimus and Metridia lucens. Southern stations showed high abundance of Calanoides acutus, Calanus propinquus and Rhincalanus gigas. Stage distribution was analyzed for the four main contributors to the copepod biomass ( Calanus simillimus, Calanoides acutus, Calanus propinquus and Rhincalanus gigas). Gut pigment content and gut transit time showed a strong day-night periodicity. Gut transit times were usually high with values ranging from 1 h ( Calanus propinquus) to 1 h 30 min ( Rhincalanus gigas). Maximum ingestion rates were recorded for Calanus propinquus and Pleuromamma robusta. Respiration rates were measured for 13 species of copepods and varied from 0.5-0.6 μl O 2 ind -1 day -1 for smaller species to 20-62 μl O 2 ind -1 day -1 for the larger ones. The impact of the copepod population was estimated from the CO 2 produced per m -2 and per day, which showed a release of 4.2-4.5 mmol. It corresponded to a minimum ingestion of 41.4% in the Permanent Open Ocean Zone (POOZ) and 22.6% in the SIZ of the daily primary production. The budget between carbon ingestion and respiratory requirements appears to be nearly balanced, but with the exception of Calanus propinquus, cannot accommodate the addition of the cost of egg production, which only partially relies on food intake. During austral spring, the population studied appeared to rely mostly on phytoplankton as food, though additional

  3. Regional Variation in Lytic and Lysogenic Viral Infection in the Southern Ocean and Its Contribution to Biogeochemical Cycling

    NARCIS (Netherlands)

    Evans, C.; Brussaard, C.P.D.

    2012-01-01

    Lytic and lysogenic viral infection was investigated throughout the Southern Ocean at sites spanning the sub-Antarctic zone, the Antarctic Circumpolar Current, and an Antarctic continental sea. Higher lytic virus activity was recorded in the more productive sub-Antarctic zone than in the iron-limite

  4. The promise and perils of Antarctic fishes: The remarkable life forms of the Southern Ocean have much to teach science about survival, but human activity is threatening their existence

    OpenAIRE

    O'Brien, Kristin M; Crockett, Elizabeth L.

    2012-01-01

    The waters around the Antarctic are a treasure trove of fauna specially adapted to extreme cold temperatures. However, as with many other marine ecosystems, its life forms are threatened by human actions.

  5. The spatial extent and dynamics of the Antarctic Cold Reversal

    Science.gov (United States)

    Pedro, Joel B.; Bostock, Helen C.; Bitz, Cecilia M.; He, Feng; Vandergoes, Marcus J.; Steig, Eric J.; Chase, Brian M.; Krause, Claire E.; Rasmussen, Sune O.; Markle, Bradley R.; Cortese, Giuseppe

    2016-01-01

    Antarctic ice cores show that a millennial-scale cooling event, the Antarctic Cold Reversal (14,700 to 13,000 years ago), interrupted the last deglaciation. The Antarctic Cold Reversal coincides with the Bølling-Allerød warm stage in the North Atlantic, providing an example of the inter-hemispheric coupling of abrupt climate change generally referred to as the bipolar seesaw. However, the ocean-atmosphere dynamics governing this coupling are debated. Here we examine the extent and expression of the Antarctic Cold Reversal in the Southern Hemisphere using a synthesis of 84 palaeoclimate records. We find that the cooling is strongest in the South Atlantic and all regions south of 40° S. At the same time, the terrestrial tropics and subtropics show abrupt hydrologic variations that are significantly correlated with North Atlantic climate changes. Our transient global climate model simulations indicate that the observed extent of Antarctic Cold Reversal cooling can be explained by enhanced northward ocean heat transport from the South to North Atlantic, amplified by the expansion and thickening of sea ice in the Southern Ocean. The hydrologic variations at lower latitudes result from an opposing enhancement of southward heat transport in the atmosphere mediated by the Hadley circulation. Our findings reconcile previous arguments about the relative dominance of ocean and atmospheric heat transports in inter-hemispheric coupling, demonstrating that the spatial pattern of past millennial-scale climate change reflects the superposition of both.

  6. Multichannel Seismic Reflection Data - SCAR - Antarctic Peninsula - 1985, SDLS CD-ROM vol 16

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1985 field season along the north side of the Antarctic-Peninsula by the British...

  7. Multichannel Seismic Reflection Data - SCAR - Antarctic Peninsula 1987-88, SDLS CD-ROM vol 24

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1987-88 in the Antarctic Peninsula, Antarctica, by the Japan National Oil...

  8. Multichannel Seismic Reflection Data - SCAR - Antarctic Peninsula - 1988-1989, SDLS CD-ROM vol 25

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1988-89 in the Antarctic Peninsula, Antarctica, by the Japan National Oil...

  9. Climate Change Impacts in the sub-Antarctic Islands Technical Report N.2 of ONERC

    International Nuclear Information System (INIS)

    Difficult to apprehend as a whole, the polar regions constitute the Arctic to the North, an ocean surrounded by emerged lands, and the Antarctic to the South, a continent bordered by the Austral Ocean where a belt of sub Antarctic islands lies. Climate change impacts on sub Antarctic islands are varied, direct and indirect: glacier retreat, more favourable conditions for introduced species, marine biodiversity modification, etc. This report discusses the French, British, Australian, South African and New Zealand sub Antarctic islands, the climatic evolutions and the resulting impacts, focused especially on biodiversity. The Observatoire National sur les Effets du Rechauffement Climatique and the International Polar Foundation have been joined in this endeavour by the French polar institute Paul-Emile Victor, the administration of the French Southern and Antarctic Lands (TAAF in French) and the International Union for the Conservation of Nature. (authors)

  10. Sugars in Antarctic aerosol

    Science.gov (United States)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  11. At-Sea Distribution and Prey Selection of Antarctic Petrels and Commercial Krill Fisheries.

    Science.gov (United States)

    Descamps, Sébastien; Tarroux, Arnaud; Cherel, Yves; Delord, Karine; Godø, Olaf Rune; Kato, Akiko; Krafft, Bjørn A; Lorentsen, Svein-Håkon; Ropert-Coudert, Yan; Skaret, Georg; Varpe, Øystein

    2016-01-01

    Commercial fisheries may impact marine ecosystems and affect populations of predators like seabirds. In the Southern Ocean, there is an extensive fishery for Antarctic krill Euphausia superba that is projected to increase further. Comparing distribution and prey selection of fishing operations versus predators is needed to predict fishery-related impacts on krill-dependent predators. In this context, it is important to consider not only predators breeding near the fishing grounds but also the ones breeding far away and that disperse during the non-breeding season where they may interact with fisheries. In this study, we first quantified the overlap between the distribution of the Antarctic krill fisheries and the distribution of a krill dependent seabird, the Antarctic petrel Thalassoica antarctica, during both the breeding and non-breeding season. We tracked birds from the world biggest Antarctic petrel colony (Svarthamaren, Dronning Maud Land), located >1000 km from the main fishing areas, during three consecutive seasons. The overall spatial overlap between krill fisheries and Antarctic petrels was limited but varied greatly among and within years, and was high in some periods during the non-breeding season. In a second step, we described the length frequency distribution of Antarctic krill consumed by Antarctic petrels, and compared this with results from fisheries, as well as from diet studies in other krill predators. Krill taken by Antarctic petrels did not differ in size from that taken by trawls or from krill taken by most Antarctic krill predators. Selectivity for specific Antarctic krill stages seems generally low in Antarctic predators. Overall, our results show that competition between Antarctic petrels and krill fisheries is currently likely negligible. However, if krill fisheries are to increase in the future, competition with the Antarctic petrel may occur, even with birds breeding thousands of kilometers away. PMID:27533327

  12. At-Sea Distribution and Prey Selection of Antarctic Petrels and Commercial Krill Fisheries

    Science.gov (United States)

    Descamps, Sébastien; Tarroux, Arnaud; Cherel, Yves; Delord, Karine; Godø, Olaf Rune; Kato, Akiko; Krafft, Bjørn A.; Lorentsen, Svein-Håkon; Ropert-Coudert, Yan; Skaret, Georg; Varpe, Øystein

    2016-01-01

    Commercial fisheries may impact marine ecosystems and affect populations of predators like seabirds. In the Southern Ocean, there is an extensive fishery for Antarctic krill Euphausia superba that is projected to increase further. Comparing distribution and prey selection of fishing operations versus predators is needed to predict fishery-related impacts on krill-dependent predators. In this context, it is important to consider not only predators breeding near the fishing grounds but also the ones breeding far away and that disperse during the non-breeding season where they may interact with fisheries. In this study, we first quantified the overlap between the distribution of the Antarctic krill fisheries and the distribution of a krill dependent seabird, the Antarctic petrel Thalassoica antarctica, during both the breeding and non-breeding season. We tracked birds from the world biggest Antarctic petrel colony (Svarthamaren, Dronning Maud Land), located >1000 km from the main fishing areas, during three consecutive seasons. The overall spatial overlap between krill fisheries and Antarctic petrels was limited but varied greatly among and within years, and was high in some periods during the non-breeding season. In a second step, we described the length frequency distribution of Antarctic krill consumed by Antarctic petrels, and compared this with results from fisheries, as well as from diet studies in other krill predators. Krill taken by Antarctic petrels did not differ in size from that taken by trawls or from krill taken by most Antarctic krill predators. Selectivity for specific Antarctic krill stages seems generally low in Antarctic predators. Overall, our results show that competition between Antarctic petrels and krill fisheries is currently likely negligible. However, if krill fisheries are to increase in the future, competition with the Antarctic petrel may occur, even with birds breeding thousands of kilometers away. PMID:27533327

  13. The ARM West Antarctic Radiation Experiment (AWARE)

    Science.gov (United States)

    Lubin, Dan; Bromwich, David; Vogelmann, Andrew; Verlinde, Johannes; Russell, Lynn

    2016-04-01

    West Antarctica is one of the most rapidly warming regions on Earth, and its changing climate in both atmosphere and ocean is linked to loss of Antarctic ice mass and global sea level rise. The specific mechanisms for West Antarctic Ice Sheet (WAIS) warming are not fully understood, but are hypothesized to involve linkage between moisture from Southern Ocean storm tracks and the surface energy balance over the WAIS, and related teleconnections with subtropical and tropical meteorology. This present lack of understanding has motivated a climate science and cloud physics campaign jointly supported by the US National Science Foundation (NSF) and Department of Energy (DOE), called the Atmospheric Radiation Measurement Program (ARM) West Antarctic Radiation Experiment (AWARE). The DOE's second ARM Mobile Facility (AMF2) was deployed to McMurdo Station on Ross Island in November 2015 and will operate through December 2016. The AMF2 includes (1) cloud research radars, both scanning and zenith, operating in the Ka- and X-bands, (2) high spectral resolution and polarized micropulse lidars, and (3) a suite of shortwave and longwave broadband and spectral radiometers. A second suite of instruments is deployed at the WAIS Divide Ice Camp on the West Antarctic plateau during December 2015 and January 2016. The WAIS instrument suite provides (1) measurement of all surface energy balance components, (2) a polarized micropulse lidar and shortwave spectroradiometer, (3) microwave total water column measurement, and (4) four times daily rawinsonde launches which are the first from West Antarctica since 1967. There is a direct linkage between the WAIS instrument suite and the AMF2 at McMurdo, in that air masses originating in Southern Ocean storm tracks that are driven up over the WAIS often subsequently descend over the Ross Ice Shelf and arrive at Ross Island. Preliminary data are already illustrating the prevalence of mixed-phase clouds and their role in the surface energy balance

  14. Antarctic ozone depletion

    International Nuclear Information System (INIS)

    Antarctic ozone depletion is most severe during the southern hemisphere spring, when the local reduction in the column amount may be as much as 50 percent. The extent to which this ozone poor air contributes to the observed global ozone loss is a matter of debate, but there is some evidence that fragments of the 'ozone hole' can reach lower latitudes following its breakup in summer. Satellite data show the seasonal evolution of the ozone hole. A new dimension has been added to Antarctic ozone depletion with the advent of large volcanic eruptions such as that from Mount Pinatubo in 1991. (author). 5 refs., 1 fig

  15. A Bivalve Proxy for Neogene Antarctic Shelf Marine Environments

    Science.gov (United States)

    Clark, N. A.; Williams, M.; Quilty, P. G.; Leng, M. J.; Zalasiewicz, J. A.; Smellie, J.; Dowsett, H. J.

    2012-12-01

    The Neogene shallow-marine successions of the Antarctic Peninsula and of the East Antarctic region preserve rich assemblages of bivalve molluscs. These bivalve molluscs provide a detailed record of palaeoseasonality in the chemical signature and morphology of their shells that can be used to assess sea temperatures and sea ice extent for the Antarctic shelf during the Pliocene. Analyses identify the following. 1) Neogene bivalves from James Ross Island, Antarctic Peninsula, comprise material of late Miocene through to late Pliocene age. Results identify warm (ca. 3-10 °C) early Pliocene sea temperatures, and cooler late Pliocene sea temperatures (ca. 0-4 °C), and flag a cooling trend which is consistent with the evolution of polar climate through this interval. 2) Neogene bivalves from the Larsemann Hills, East Antarctic, identify generally warmer than present sea temperatures (ca. 0-11 °C) in the early Pliocene consistent with data from other fossil groups of this age, including dolphins and silicoflagellates. The new data may provide significant ground truth for climate models assessing the Southern Ocean and Antarctic shelf climate.

  16. Relative changes in krill abundance inferred from Antarctic fur seal.

    Directory of Open Access Journals (Sweden)

    Tao Huang

    Full Text Available Antarctic krill Euphausia superba is a predominant species in the Southern Ocean, it is very sensitive to climate change, and it supports large stocks of fishes, seabirds, seals and whales in Antarctic marine ecosystems. Modern krill stocks have been estimated directly by net hauls and acoustic surveys; the historical krill density especially the long-term one in the Southern Ocean, however, is unknown. Here we inferred the relative krill population changes along the West Antarctic Peninsula (WAP over the 20th century from the trophic level change of Antarctic fur seal Arctocephalus gazella using stable carbon (δ(13C and nitrogen (δ(15N isotopes of archival seal hairs. Since Antarctic fur seals feed preferentially on krill, the variation of δ(15N in seal hair indicates a change in the proportion of krill in the seal's diets and thus the krill availability in local seawater. For the past century, enriching fur seal δ(15N values indicated decreasing krill availability. This is agreement with direct observation for the past ∼30 years and suggests that the recently documented decline in krill populations began in the early parts of the 20th century. This novel method makes it possible to infer past krill population changes from ancient tissues of krill predators.

  17. Generalised additive models to investigate environmental drivers of Antarctic minke whale (Balaenoptera bonaerensis) spatial density in austral summer

    NARCIS (Netherlands)

    Beekmans, Bas W.P.M.; Forcada, Jaume; Murphy, Eugene J.; Baar, Hein J.W. de; Bathmann, Ulrich V.; Fleming, Andrew H.

    2010-01-01

    There is a need to characterise the physical environment associated with Antarctic minke whale density in order to understand long-term changes in minke whale distribution and density in open waters of the Southern Ocean during austral summer months. To investigate environmental drivers of Antarctic

  18. Fast recession of a West Antarctic glacier

    OpenAIRE

    Rignot, EJ

    1998-01-01

    Satellite radar interferometry observations of Pine Island Glacier, West Antarctica, reveal that the glacier hinge-line position retreated 1.2 ± 0.3 kilometers per year between 1992 and 1996, which in turn implies that the ice thinned by 3.5 ± 0.9 meters per year. The fast recession of Pine Island Glacier, predicted to be a possible trigger for the disintegration of the West Antarctic Ice Sheet, is attributed to enhanced basal melting of the glacier floating tongue by warm ocean waters.

  19. Polonium-210 and lead-210 in the Southern Polar Ocean: Naturally occurring tracers of biological and hydrographical processes in the surface waters of the Antarctic Circumpolar Current and the Weddell Sea

    International Nuclear Information System (INIS)

    In this thesis the distribution of 210Po and 210Pb in the upper 600 m of the Antarctic Circumpolar Current and the Weddell Sea was investigated along north-south transects in austral spring and autumn. 210Po and 210Pb can serve as sensitive tracers for the special hydrographic conditions of the Antarctic Circumpolar Current and the Weddell Sea as well as for biological processes during phytoplankton blooms. The 210Po/210Pb disequilibrium was used as a tracer for particle export. This tracer integrates export on a timescale of 276 days because of the 138 day half-life of 210Po and complements the 234Th/238U disequilibrium as another tracer for plankton production and export on a shorter timescale of several weeks. (orig.)

  20. Archive of Geosample Data and Information from the Florida State University (FSU) Antarctic Marine Geology Research Facility (AMGRF)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Antarctic Marine Geology Research Facility (AMGRF) operated by Florida State University is a partner in the Index to Marine and Lacustrine Geological Samples...

  1. Temperature, salinity profiles and associated data collected in the Southern Oceans in support of the Global Ocean Ecosystem Dynamics project, April - August 2001 (NODC Accession 0001097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The overall goal of the U.S. Southern Ocean GLOBEC program is to elucidate circulation processes and their effect on sea ice formation and Antarctic krill...

  2. Antarctic Tourism and Maritime Heritage

    OpenAIRE

    Basberg, Bjørn L.

    2010-01-01

    Maritime activities in the Antarctic region date back to the eighteenth century. They evolved from exploration and discoveries to commercial enterprises, especially sealing, whaling and fishing. Antarctic tourism is a much more recent phenomenon, developing mainly from the 1950s and 1960s. Today over 40,000 tourists visit the Antarctic annually, most of them on cruise ships. This essay reviews the historical development of this tourism. The focus is on how maritime heritage has been treated a...

  3. Antarctic science preserve polluted

    Science.gov (United States)

    Simarski, Lynn Teo

    Geophysicists are alarmed at the electromagnetic pollution of a research site in the Antarctic specifically set aside to study the ionosphere and magnetosphere. A private New Zealand communications company called Telecom recently constructed a satellite ground station within the boundaries of this Site of Special Scientific Interest (SSSI), protected since the mid-1970s. The placement of a commercial facility within this site sets an ominous precedent not only for the sanctity of other SSSIs, but also for Specially Protected Areas—preserves not even open to scientific research, such as certain penguin rookeries.The roughly rectangular, one-by-one-half mile site, located at Arrival Heights not far from McMurdo Station, is one of a number of areas protected under the Antarctic treaty for designated scientific activities. Many sites are set aside for geological or biological research, but this is the only one specifically for physical science.

  4. Antarctic Porifera database from the Spanish benthic expeditions

    Directory of Open Access Journals (Sweden)

    Pilar Rios

    2014-04-01

    Full Text Available The information about the sponges in this dataset is derived from the samples collected during five Spanish Antarctic expeditions: Bentart 94, Bentart 95, Gebrap 96, Ciemar 99/00 and Bentart 2003. Samples were collected in the Antarctic Peninsula and Bellingshausen Sea at depths ranging from 4 to 2044 m using va­rious sampling gears.The Antarctic Porifera database from the Spanish benthic expeditions is unique as it provides in­formation for an under-explored region of the Southern Ocean (Bellingshausen Sea. It fills an information gap on Antarctic deep-sea sponges, for which there were previously very few data.This phylum is an important part of the Antarctic biota and plays a key role in the structure of the Antarctic marine benthic community due to its considerable diversity and predominance in different areas. It is often a dominant component of Southern Ocean benthic communities.The quality of the data was controlled very thoroughly with GPS systems onboard the R/V Hesperides and by checking the data against the World Porifera Database (which is part of the World Register of Marine Species, WoRMS. The data are therefore fit for completing checklists, inclusion in biodivers­ity pattern analysis and niche modelling. The authors can be contacted if any additional information is needed before carrying out detailed biodiversity or biogeographic studies.The dataset currently contains 767 occurrence data items that have been checked for systematic reliability. This database is not yet complete and the collection is growing. Specimens are stored in the author’s collection at the Spanish Institute of Oceanography (IEO in the city of Gijón (Spain. The data are available in GBIF.

  5. Antarctic Porifera database from the Spanish benthic expeditions.

    Science.gov (United States)

    Rios, Pilar; Cristobo, Javier

    2014-01-01

    THE INFORMATION ABOUT THE SPONGES IN THIS DATASET IS DERIVED FROM THE SAMPLES COLLECTED DURING FIVE SPANISH ANTARCTIC EXPEDITIONS: Bentart 94, Bentart 95, Gebrap 96, Ciemar 99/00 and Bentart 2003. Samples were collected in the Antarctic Peninsula and Bellingshausen Sea at depths ranging from 4 to 2044 m using various sampling gears. The Antarctic Porifera database from the Spanish benthic expeditions is unique as it provides information for an under-explored region of the Southern Ocean (Bellingshausen Sea). It fills an information gap on Antarctic deep-sea sponges, for which there were previously very few data. This phylum is an important part of the Antarctic biota and plays a key role in the structure of the Antarctic marine benthic community due to its considerable diversity and predominance in different areas. It is often a dominant component of Southern Ocean benthic communities. The quality of the data was controlled very thoroughly with GPS systems onboard the R/V Hesperides and by checking the data against the World Porifera Database (which is part of the World Register of Marine Species, WoRMS). The data are therefore fit for completing checklists, inclusion in biodiversity pattern analysis and niche modelling. The authors can be contacted if any additional information is needed before carrying out detailed biodiversity or biogeographic studies. The dataset currently contains 767 occurrence data items that have been checked for systematic reliability. This database is not yet complete and the collection is growing. Specimens are stored in the author's collection at the Spanish Institute of Oceanography (IEO) in the city of Gijón (Spain). The data are available in GBIF. PMID:24843257

  6. Extremophiles in an Antarctic Marine Ecosystem

    Directory of Open Access Journals (Sweden)

    Iain Dickinson

    2016-01-01

    Full Text Available Recent attempts to explore marine microbial diversity and the global marine microbiome have indicated a large proportion of previously unknown diversity. However, sequencing alone does not tell the whole story, as it relies heavily upon information that is already contained within sequence databases. In addition, microorganisms have been shown to present small-to-large scale biogeographical patterns worldwide, potentially making regional combinations of selection pressures unique. Here, we focus on the extremophile community in the boundary region located between the Polar Front and the Southern Antarctic Circumpolar Current in the Southern Ocean, to explore the potential of metagenomic approaches as a tool for bioprospecting in the search for novel functional activity based on targeted sampling efforts. We assessed the microbial composition and diversity from a region north of the current limit for winter sea ice, north of the Southern Antarctic Circumpolar Front (SACCF but south of the Polar Front. Although, most of the more frequently encountered sequences  were derived from common marine microorganisms, within these dominant groups, we found a proportion of genes related to secondary metabolism of potential interest in bioprospecting. Extremophiles were rare by comparison but belonged to a range of genera. Hence, they represented interesting targets from which to identify rare or novel functions. Ultimately, future shifts in environmental conditions favoring more cosmopolitan groups could have an unpredictable effect on microbial diversity and function in the Southern Ocean, perhaps excluding the rarer extremophiles.

  7. Antarctic ecosystems as models for extraterrestrial surface habitats

    Science.gov (United States)

    Wynn-Williams, D. D.; Edwards, H. G. M.

    2000-09-01

    Surface habitats in Antarctic deserts are near the limits of life on Earth and resemble those hypothesized for early Mars. Cyanobacteria dominate the transient riverbeds, stromatolitic sediments in ice-covered lakes, and endolithic communities in translucent rock. There is still no direct evidence of photosynthetic life on early Mars, but cyanobacteria are amongst the earliest microbes detectable in the fossil record for analogous habitats on Earth. Key biomolecules persist in Antarctic microbial habitats, even after extinction by excessive low temperatures, desiccation and UV-B stress within the Ozone Hole. Pigments (or their fossil residues), such as chlorophyll and the UV-protectants scytonemin, carotene and quinones, are good biomarkers. To show not only their presence but also their micro-spatial distribution in situ, we describe the use of FT-Raman spectroscopy with 1064 nm excitation to avoid autofluorescence from the pigments. We report not only the diversity of biomolecules that we have diagnosed from their unique Raman spectra of Antarctic cyanobacterial communities, but also their functional stratification in endolithic communities. Our analyses of Antarctic habitats show the potential of this remote, non-intrusive technique to probe for buried biomolecules on future Mars missions and in Antarctic Lake Vostok, >4 km beneath the Central Ice Sheet, with implications for the putative analogous sub-ice ocean on Europa.

  8. Total Sediment Thickness of the World's Oceans & Marginal Seas, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's global ocean sediment thickness grid (Divins, 2003) has been updated for the Australian-Antarctic region (60? -155? E, 30? -70? S). New seismic reflection...

  9. Comparative roles of upwelling and glacial iron sources in Ryder Bay, coastal western Antarctic Peninsula

    OpenAIRE

    Annett, Amber; Skiba, Marta; Henley, Sian; Venables, Hugh J.; Meredith, Michael P.; Statham, Peter; Ganeshram, Raja

    2015-01-01

    Iron (Fe) is an essential micronutrient for phytoplankton, and is scarce in many regions including the open Southern Ocean. The western Antarctic Peninsula (WAP), an important source region of Fe to the wider Southern Ocean, is also the fastest warming region of the Southern Hemisphere. The relative importance of glacial versus marine Fe sources is currently poorly constrained, hindering projections of how changing oceanic circulation, productivity, and glacial dynamics may affect the balance...

  10. Testing olfactory foraging strategies in an Antarctic seabird assemblage

    OpenAIRE

    Nevitt, G A; Reid, K; Trathan, P.

    2004-01-01

    Procellariiform seabirds (petrels, albatrosses and shearwaters) forage over thousands of square kilometres for patchily distributed prey resources. While these birds are known for their large olfactory bulbs and excellent sense of smell, how they use odour cues to locate prey patches in the vast ocean is not well understood. Here, we investigate species-specific responses to 3-methyl pyrazine in a sub-Antarctic species assemblage near South Georgia Island (54degrees00' S, 36degrees00' W). Pyr...

  11. Blue and fin whale acoustics and ecology off Antarctic Peninsula

    OpenAIRE

    Sirovic, Ana

    2006-01-01

    Blue (Balaenoptera musculus) and fin whales (B. physalus) in the Southern Ocean were subjects of extensive whaling industry during the twentieth century. Their current population numbers remain low, making population monitoring using traditional visual surveys difficult. Both blue and fin whales produce low frequency, regularly repeated calls and are suitable for acoustic monitoring. Eight, continuously recording acoustic recorders were deployed off the Western Antarctic Peninsula (WAP) betwe...

  12. The Oceanic Eddy Heat Transport

    OpenAIRE

    Jayne, S.; Marotzke, J.

    2002-01-01

    The rectified eddy heat transport is calculated from a global high-resolution ocean general circulation model. The eddy heat transport is found to be strong in the western boundary currents, the Antarctic Circumpolar Current, and the equatorial region. It is generally weak in the central gyres. It is also found to be largely confined to the upper 1000 m of the ocean model. The eddy heat transport is separated into its rotational and divergent components. The rotational component of the eddy h...

  13. Ecuadorian antarctic act

    International Nuclear Information System (INIS)

    To develop research in this continent involves to take communion with earth where the cold pole of the planet is located, the stormiest sea of the world surround it and where the capricious continental and geographical distribution permits the pass of meteorological violent and continuous systems. The Ecuador, in execution of the acquired commitments like Full Member of the System of the Antarctic Treaty, carried out the VII Expedition to the White Continent with an extensive program of scientific investigation in the field of: Sciences of Life, Sciences of the Earth and Atmospheric Sciences, so much in the environment of the Pacific Southeast, the Drake Pass, Bransfield Strait and the nearby ecosystems antarctic to Point Fort William in the Greenwich Island, site where the Ecuadorian station Pedro Vicente Maldonado is located. The scientific articles, result of the fruitful work of national investigator is consigned in this fourth edition. This publication constitutes our contribution to the world in the knowledge, understanding and handling of the marvelous White Continent from the middle of our planet, Ecuador

  14. A transcriptome resource for the Antarctic pteropod Limacina helicina antarctica.

    Science.gov (United States)

    Johnson, Kevin M; Hofmann, Gretchen E

    2016-08-01

    The pteropod Limacina helicina antarctica is a dominant member of the zooplankton assemblage in the Antarctic marine ecosystem, and is part of a relatively simple food web in nearshore marine Antarctic waters. As a shelled pteropod, Limacina has been suggested as a candidate sentinel organism for the impacts of ocean acidification, due to the potential for shell dissolution in undersaturated waters. In this study, our goal was to develop a transcriptomic resource for Limacina that would support mechanistic studies to explore the physiological response of Limacina to abiotic stressors such as ocean acidification and ocean warming. To this end, RNA sequencing libraries were prepared from Limacina that had been exposed to a range of pH levels and an elevated temperature to maximize the diversity of expressed genes. RNA sequencing (RNA-seq) was conducted on an Illumina NextSeq500 which produced 339,000,000 150bp paired-end reads. The de novo transcriptome was produced using Trinity and annotation of the assembled transcriptome resulted in the identification of 81,229 transcripts in 137 KEGG pathways. This RNA-seq effort resulted in a transcriptome for the Antarctic pteropod, Limacina helicina antarctica, that is a major resource for an international marine science research community studying these pelagic molluscs in a global change context. PMID:27157132

  15. Vertical Eddy Fluxes in the Southern Ocean

    OpenAIRE

    Zika, Jan D.; Le Sommer, Julien; Dufour, Carolina O.; Molines, Jean-Marc; Barnier, Bernard; Brasseur, Pierre; Dussin, Raphaël; Penduff, Thierry; Iudicone, Daniele; Lenton, Andrew; Madec, Gurvan; Mathiot, Pierre; Orr, James; Shuckburgh, Emily; Vivier, Frederic

    2013-01-01

    The overturning circulation of the Southern Ocean has been investigated using eddying coupled ocean–sea ice models. The circulation is diagnosed in both density–latitude coordinates and in depth–density coordinates. Depth–density coordinates follow streamlines where the Antarctic Circumpolar Current is equivalent barotropic, capture the descent of Antarctic Bottom Water, follow density outcrops at the surface, and can be interpreted energetically. In density–latitude coordinates, wind-driven ...

  16. Western Indian Ocean - A glimpse of the tectonic scenario

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattacharya, G.C.; Chaubey, A.K.

    as a result of fragmentation of the Gondwanaland, therefore the western Indian Ocean is surrounded by the Indian, African and Antarctic continents, which were parts of the Gondwanaland. The most dominating bathymetric features of this region... (SEIR). In the plate tectonic framework these three branches of the mid-oceanic ridges form the boundaries between the Indian, Antarctic and African major plates. 2.1 The Central Indian, Carlsberg and Sheba Ridges a) The Central Indian Ridge The segment...

  17. DMA Antarctic Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (65,164 records) were gathered by various governmental organizations (and academia) using a variety of methods. The data base was received...

  18. A multivariate analysis of Antarctic sea ice since 1979

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes Neto, Newton de; Evangelista, Heitor [Universidade do Estado do Rio de Janeiro (Uerj), LARAMG - Laboratorio de Radioecologia e Mudancas Globais, Maracana, Rio de Janeiro, RJ (Brazil); Tanizaki-Fonseca, Kenny [Universidade do Estado do Rio de Janeiro (Uerj), LARAMG - Laboratorio de Radioecologia e Mudancas Globais, Maracana, Rio de Janeiro, RJ (Brazil); Universidade Federal Fluminense (UFF), Dept. Analise Geoambiental, Inst. de Geociencias, Niteroi, RJ (Brazil); Penello Meirelles, Margareth Simoes [Universidade do Estado do Rio de Janeiro (UERJ)/Geomatica, Maracana, Rio de Janeiro, RJ (Brazil); Garcia, Carlos Eiras [Universidade Federal do Rio Grande (FURG), Laboratorio de Oceanografia Fisica, Rio Grande, RS (Brazil)

    2012-03-15

    Recent satellite observations have shown an increase in the total extent of Antarctic sea ice, during periods when the atmosphere and oceans tend to be warmer surrounding a significant part of the continent. Despite an increase in total sea ice, regional analyses depict negative trends in the Bellingshausen-Amundsen Sea and positive trends in the Ross Sea. Although several climate parameters are believed to drive the formation of Antarctic sea ice and the local atmosphere, a descriptive mechanism that could trigger such differences in trends are still unknown. In this study we employed a multivariate analysis in order to identify the response of the Antarctic sea ice with respect to commonly utilized climate forcings/parameters, as follows: (1) The global air surface temperature, (2) The global sea surface temperature, (3) The atmospheric CO{sub 2} concentration, (4) The South Annular Mode, (5) The Nino 3, (6) The Nino (3 + 4, 7) The Nino 4, (8) The Southern Oscillation Index, (9) The Multivariate ENSO Index, (10) the Total Solar Irradiance, (11) The maximum O{sub 3} depletion area, and (12) The minimum O{sub 3} concentration over Antarctica. Our results indicate that western Antarctic sea ice is simultaneously impacted by several parameters; and that the minimum, mean, and maximum sea ice extent may respond to a separate set of climatic/geochemical parameters. (orig.)

  19. Antarctic Miocene Climate

    Science.gov (United States)

    Ashworth, A. C.; Lewis, A. R.

    2013-12-01

    Fossils from Antarctic Miocene terrestrial deposits, coupled with stratigraphic, geochemical and paleontological data from marine boreholes, provide new insights into the climatic history of the continent. During the Miocene, ice caps coalesced to form ice sheets and vegetated surfaces gave way to barren expanses. The cryospheric changes especially have global climatic implications. The fossil data consists of diatoms, pollen and spores, and macroscopic remains of plants, ostracods, insects, molluscs and a fish. Plant fossils include wood and leaves of Nothofagus (southern beech), seeds of several vascular plants, including Ranunculus (buttercup), Hippuris (mare's-tail) and Myriophyllum (watermilfoil), megaspores of Isoetes (quillwort), and moss species. The insect chitin consists of larval head capsules of Chironomidae (midges) and exoskeletal parts of Coleoptera (beetles). The molluscs include freshwater gastropods and bivalves. The majority of these taxa are likely descendants of taxa that had survived on the continent from the Paleogene or earlier. Even though early Miocene glaciations may have been large, the climate was never cold enough to cause the extinction of the biota, which probably survived in coastal refugia. Early Miocene (c. 20 Ma) macrofossils from the McMurdo Dry Valleys (77°S) support palynological interpretations from the Cape Roberts and ANDRILL marine records that the upland vegetation was a shrub tundra. Mean summer temperature (MST) in the uplands was c. 6°C and possibly higher at the coast. The climate was wet, supporting mires and lakes. By the mid-Miocene, even though the climate continued to be wet. MST was c. 4°C which was too cold to support Nothofagus and most vascular plant species. Stratigraphic evidence indicates that the time between the Early and Mid-Miocene was a time of repeated ice advances and retreats of small glaciers originating from ice caps. At c. 14 Ma there appears to have been a modal shift in climate to

  20. 极区海洋对全球气候变化的快速响应和反馈作用%Rapid change in Arctic and Antarctic Oceans and their feedbacks to global climate change

    Institute of Scientific and Technical Information of China (English)

    陈立奇; 高众勇; 詹力扬; 许苏清; 汪建君; 张远辉; 何建华

    2013-01-01

    This paper analyzes the interaction between polar oceans and global climate change. Global warming could induce rapid changes in the Arctic and Southern Oceans, such as dramatic thinning and retreating of Arctic Ocean sea ice, serious melting of the Greenland ice sheet, decreasing carbon uptake capacity in the Arctic Ocean and the Southern Ocean, and polar ocean acidification. It is pointed out that since sea ice rapidly declined in the summer in the Arctic, the ice surface area hit a record low on 26th, August 2012. Some model predicted that in 2035 there will be no ice in the Arctic. The melting of Greenland ice sheet would affect the global sea level rising and the ocean circulation; the sea level would rise 7 meters if the Greenland ice sheet melts. Based on the last ten years' research, it was found that the capacity of absorbing atmospheric CO2 in the polar ocean decreased, the sea water is tend to be saturated. It is predicted by some models that by the end of 21st century the pH in the Arctic surface water would decrease 0. 23 to 0. 45 , making the Arctic Ocean the most acid in the global oceans. While the pCO2 in the Southern Ocean surface waters would exceed 600μatm in the latter half of the 21st century. The acidification in the polar oceans would induce irreversible damage to marine food chain and ecosystem. Therefore, all these rapid changes in the Arctic and Southern Oceans will create feedbacks to global climate change.%分析了全球气候变化与极区海洋的相互作用;集成极区快速变暖促使极区海洋出现快速变化的各种现象,如海冰快速变薄和退缩,格陵兰冰盖严重融化,北冰洋和南大洋碳池的固碳能力下降以及极地海洋酸化等.研究提出:北冰洋夏季海冰覆盖面积快速退缩,海冰覆盖面积在2012年8月26日呈现了记录以来的最低值,有模型预测到2035年北冰洋夏季将会见不到海冰.格陵兰冰盖的消融对全球海平面的上升和大洋环流均会产

  1. The South Atlantic in the Fine-Resolution Antarctic Model

    Directory of Open Access Journals (Sweden)

    D. P. Stevens

    Full Text Available The geographical area covered by the Fine-Resolution Antarctic Model (FRAM includes that part of the South Atlantic south of 24°S. A description of the dynamics and thermodynamics of this region of the model is presented. Both the mean and eddy fields in the model are in good agreement with reality, although the magnitude of the transients is somewhat reduced. The heat flux is northward and in broad agreement with many other estimates. Agulhas eddies are formed by the model and propagate westward into the Atlantic providing a mechanism for fluxing heat from the Indian Ocean. The confluence of the Brazil and Falkland currents produces a strong front and a large amount of mesoscale activity. In the less stratified regions to the south, topographic steering of the Antarctic circumpolar current is important.

  2. Ozone depletion - Ultraviolet radiation and phytoplankton biology in Antarctic waters

    Science.gov (United States)

    Smith, R. C.; Prezelin, B. B.; Baker, K. S.; Bidigare, R. R.; Boucher, N. P.; Coley, T.; Karentz, D.; Macintyre, S.; Matlick, H. A.; Menzies, D.

    1992-01-01

    The near-50-percent thinning of the stratospheric ozone layer over the Antarctic, with increased passage of mid-UV radiation to the surface of the Southern Ocean, has prompted concern over possible radiation damage to the near-surface phytoplankton communities that are the bases of Antarctic marine ecosystems. As the ozone layer thinned, a 6-week study of the marginal ice zone of the Bellingshousen Sea in the austral spring of 1990 noted sea-surface and depth-dependent ratios of mid-UV irradiance to total irradiance increased, and mid-UV inhibition of photosynthesis increased. A 6-12 percent reduction in primary production associated with ozone depletion was estimated to have occurred over the course of the present study.

  3. Towers for Antarctic Telescopes

    Science.gov (United States)

    Hammerschlag, R. H.; Bettonvil, F. C. M.; Jägers, A. P. L.; Nielsen, G.

    To take advantage of the exceptional seeing above the boundary layer on Antarctic sites, a high-resolution telescope must be mounted on a support tower. An open transparent tower of framework minimizes the upward temperature-disturbed airflow. A typical minimum height is 30m. The tower platform has to be extremely stable against wind-induced rotational motions, which have to be less than fractions of an arc second, unusually small from a mechanical engineering viewpoint. In a traditional structure, structural deflections result in angular deflections of the telescope platform, which introduce tip and tilt motions in the telescope. However, a structure that is designed to deflect with parallel motion relative to the horizontal plane will undergo solely translation deflections in the telescope platform and thus will not degrade the image. The use of a parallel motion structure has been effectively demonstrated in the design of the 15-m tower for the Dutch Open Telescope (DOT) on La Palma. Special framework geometries are developed, which make it possible to construct high towers in stories having platforms with extreme stability against wind-induced tilt. These geometric solutions lead to constructions, being no more massive than a normal steel framework carrying the same load. Consequently, these lightweight towers are well suited to difficult sites as on Antarctica. A geometry with 4 stories has been worked out.

  4. Evolution and ecology of antarctic sponges

    OpenAIRE

    Vargas Ramirez, Sergio

    2012-01-01

    Sponges are abundant and species-rich in Antarctic waters, and play important roles in the benthic ecosystems of the continent. The taxonomy of Antarctic sponges is, to some extent, well established, yet the phylogenetic relationships of this fauna remain unknown. Here, the first contributions to the knowledge of the evolution of Antarctic sponges are presented. A molecular phylogeny for the common Antarctic shelf glass sponge genus Rossella is provided. Based on nuclear and mitochondrial mar...

  5. Obliquity-paced Pliocene West Antarctic ice sheet oscillations

    Science.gov (United States)

    Naish, T.; Powell, R.; Levy, R.; Wilson, G.; Scherer, R.; Talarico, F.; Krissek, L.; Niessen, F.; Pompilio, M.; Wilson, T.; Carter, L.; DeConto, R.; Huybers, P.; McKay, R.; Pollard, D.; Ross, J.; Winter, D.; Barrett, P.; Browne, G.; Cody, R.; Cowan, E.; Crampton, J.; Dunbar, G.; Dunbar, N.; Florindo, F.; Gebhardt, C.; Graham, I.; Hannah, M.; Hansaraj, D.; Harwood, D.; Helling, D.; Henrys, S.; Hinnov, L.; Kuhn, G.; Kyle, P.; Laufer, A.; Maffioli, P.; Magens, D.; Mandernack, K.; McIntosh, W.; Millan, C.; Morin, R.; Ohneiser, C.; Paulsen, T.; Persico, D.; Raine, I.; Reed, J.; Riesselman, C.; Sagnotti, L.; Schmitt, D.; Sjunneskog, C.; Strong, P.; Taviani, M.; Vogel, S.; Wilch, T.; Williams, T.

    2009-01-01

    Thirty years after oxygen isotope records from microfossils deposited in ocean sediments confirmed the hypothesis that variations in the Earth's orbital geometry control the ice ages, fundamental questions remain over the response of the Antarctic ice sheets to orbital cycles. Furthermore, an understanding of the behaviour of the marine-based West Antarctic ice sheet (WAIS) during the 'warmer-than-present' early-Pliocene epoch (???5-3 Myr ago) is needed to better constrain the possible range of ice-sheet behaviour in the context of future global warming. Here we present a marine glacial record from the upper 600 m of the AND-1B sediment core recovered from beneath the northwest part of the Ross ice shelf by the ANDRILL programme and demonstrate well-dated, ???40-kyr cyclic variations in ice-sheet extent linked to cycles in insolation influenced by changes in the Earth's axial tilt (obliquity) during the Pliocene. Our data provide direct evidence for orbitally induced oscillations in the WAIS, which periodically collapsed, resulting in a switch from grounded ice, or ice shelves, to open waters in the Ross embayment when planetary temperatures were up to ???3??C warmer than today and atmospheric CO 2 concentration was as high as ???400 p.p.m.v. (refs 5, 6). The evidence is consistent with a new ice-sheet/ice-shelf model that simulates fluctuations in Antarctic ice volume of up to +7 m in equivalent sea level associated with the loss of the WAIS and up to +3 m in equivalent sea level from the East Antarctic ice sheet, in response to ocean-induced melting paced by obliquity. During interglacial times, diatomaceous sediments indicate high surface-water productivity, minimal summer sea ice and air temperatures above freezing, suggesting an additional influence of surface melt under conditions of elevated CO2. ??2009 Macmillan Publishers Limited. All rights reserved.

  6. Temporal variability of the antarctic circumpolar current observed from satellite altimetry.

    Science.gov (United States)

    Fu, L L; Chelton, D B

    1984-10-19

    Sea level measurements by the Seasat altimeter were used to study the temporal variability of the Antarctic Circumpolar Current between July and October 1978. Large-scale zonal coherence in the cross-stream sea level difference was observed, indicating a general increase in the surface geostrophic velocity of the current around the Southern Ocean. The result demonstrates the power of satellite altimetry to monitor the variability of large-scale ocean currents. PMID:17749887

  7. Antarctic Ozone Hole, 2000

    Science.gov (United States)

    2002-01-01

    Each spring the ozone layer over Antarctica nearly disappears, forming a 'hole' over the entire continent. The hole is created by the interaction of some man-made chemicals-freon, for example-with Antarctica's unique weather patterns and extremely cold temperatures. Ozone in the stratosphere absorbs ultraviolet radiation from the sun, thereby protecting living things. Since the ozone hole was discovered many of the chemicals that destroy ozone have been banned, but they will remain in the atmosphere for decades. In 2000, the ozone hole grew quicker than usual and exceptionally large. By the first week in September the hole was the largest ever-11.4 million square miles. The top image shows the average total column ozone values over Antarctica for September 2000. (Total column ozone is the amount of ozone from the ground to the top of the atmosphere. A relatively typical measurement of 300 Dobson Units is equivalent to a layer of ozone 0.12 inches thick on the Earth's surface. Levels below 220 Dobson Units are considered to be significant ozone depletion.) The record-breaking hole is likely the result of lower than average ozone levels during the Antarctic fall and winter, and exceptionally cold temperatures. In October, however (bottom image), the hole shrank dramatically, much more quickly than usual. By the end of October, the hole was only one-third of it's previous size. In a typical year, the ozone hole does not collapse until the end of November. NASA scientists were surprised by this early shrinking and speculate it is related to the region's weather. Global ozone levels are measured by the Total Ozone Mapping Spectrometer (TOMS). For more information about ozone, read the Earth Observatory's ozone fact sheet, view global ozone data and see these ozone images. Images by Greg Shirah, NASA GSFC Scientific Visualization Studio.

  8. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios

    Science.gov (United States)

    Trusel, Luke D.; Frey, Karen E.; Das, Sarah B.; Karnauskas, Kristopher B.; Kuipers Munneke, Peter; van Meijgaard, Erik; van den Broeke, Michiel R.

    2015-12-01

    Ice shelves modulate Antarctic contributions to sea-level rise and thereby represent a critical, climate-sensitive interface between the Antarctic ice sheet and the global ocean. Following rapid atmospheric warming over the past decades, Antarctic Peninsula ice shelves have progressively retreated, at times catastrophically. This decay supports hypotheses of thermal limits of viability for ice shelves via surface melt forcing. Here we use a polar-adapted regional climate model and satellite observations to quantify the nonlinear relationship between surface melting and summer air temperature. Combining observations and multimodel simulations, we examine melt evolution and intensification before observed ice shelf collapse on the Antarctic Peninsula. We then assess the twenty-first-century evolution of surface melt across Antarctica under intermediate and high emissions climate scenarios. Our projections reveal a scenario-independent doubling of Antarctic-wide melt by 2050. Between 2050 and 2100, however, significant divergence in melt occurs between the two climate scenarios. Under the high emissions pathway by 2100, melt on several ice shelves approaches or surpasses intensities that have historically been associated with ice shelf collapse, at least on the northeast Antarctic Peninsula.

  9. Integrated Science and Logistical Planning to Support Big Questions in Antarctic Science

    Science.gov (United States)

    Vaughan, D. G.; Stockings, T. M.

    2015-12-01

    Each year, British Antarctic Survey (BAS) supports an extensive programme of science at five Antarctic and sub-Antarctic stations, ranging from the tiny Bird Island Research Station at 54°S in the South Atlantic, to the massive, and fully re-locatable, Halley Research Station on Brunt Ice Shelf at 75°S. The BAS logistics hub, Rothera Research Station on the Antarctic Peninsula supports deployment of deep-field and airborne field campaigns through much of the Antarctic continent, and an innovative new UK polar research vessel is under design, and planned to enter service in the Southern Ocean in 2019. BAS's core science programme covering all aspects of physical, biological and geological science is delivered by our own science teams, but every year many other UK scientists and overseas collaborators also access BAS's Antarctic logistics to support their own programmes. As an integrated science and logistics provider, BAS is continuously reviewing its capabilities and operational procedures to ensure that the future long-term requirements of science are optimally supported. Current trends are towards providing the capacity for heavier remote operations and larger-scale field camps, increasing use of autonomous ocean and airborne platforms, and increasing opportunities to provide turnkey solutions for low-cost experimental deployments. This talk will review of expected trends in Antarctic science and the opportunities to conduct science in Antarctica. It will outline the anticipated logistic developments required to support future stakeholder-led and strategically-directed science programmes, and the long-term ambitions of our science communities indentified in several recent horizon-scanning activities.

  10. Morphogenesis of Antarctic Paleosols: Martian Analogue

    Science.gov (United States)

    Mahaney, W. C.; Dohm, J. M.; Baker, V. R.; Newsom, Horton E.; Malloch, D.; Hancock, R. G. V.; Campbell, Iain; Sheppard, D.; Milner, M. W.

    2001-11-01

    Samples of horizons in paleosols from the Quartermain Mountains of the Antarctic Dry Valleys (Aztec and New Mountain areas) were analyzed for their physical characteristics, mineralogy, chemical composition, and microbiology to determine the accumulation and movement of salts and other soluble constituents and the presence/absence of microbial populations. Salt concentrations are of special interest because they are considered to be a function of age, derived over time, in part from nearby oceanic and high-altitude atmospheric sources. The chemical composition of ancient Miocene-age paleosols in these areas is the direct result of the deposition and weathering of airborne-influxed salts and other materials, as well as the weathering of till derived principally from local dolerite and sandstone outcrops. Paleosols nearer the coast have greater contents of Cl, whereas near the inland ice sheet, nitrogen tends to increase on a relative basis. The accumulation and vertical distribution of salts and other soluble chemical elements indicate relative amounts of movement in the profile over long periods of time, in the order of several million years. Four of the six selected subsamples from paleosol horizons in two ancient soil profiles contained nil concentrations of bacteria and fungi. However, two horizons at depths of between 3 and 8 cm, in two profiles, yielded several colonies of the fungi Beauveria bassiana and Penicillium brevicompactum, indicating very minor input of organic carbon. Beauveria bassiana is often reported in association with insects and is used commercially for the biological control of some insect pests. Penicillium species are commonly isolated from Arctic, temperate, and tropical soils and are known to utilize a wide variety of organic carbon and nitrogen compounds. The cold, dry soils of the Antarctic bear a close resemblance to various present and past martian environments where similar weathering could occur and possible microbial populations

  11. The Scientific Committee on Antarctic Research (SCAR) in the IPY 2007-2009

    Science.gov (United States)

    Kennicutt, M. C.; Wilson, T. J.; Summerhayes, C.

    2005-05-01

    The Scientific Committee on Antarctic Research (SCAR) initiates, develops, and coordinates international scientific research in the Antarctic region. SCAR is assuming a leadership position in the IPY primarily through its five major Scientific Research Programs; ACE, SALE, EBA, AGCS, and ICESTAR; which will be briefly described.Antarctic Climate Evolution (ACE) promotes the exchange of data and ideas between research groups focusing on the evolution of Antarctica's climate system and ice sheet. The program will: (1) quantitatively assess the climate and glacial history of Antarctica; (2) identify the processes which govern Antarctic change and feed back around the globe; (3) improve our ability to model past changes in Antarctica; and (4)document past change to predict future change in Antarctica. Subglacial Antarctic Lake Environments (SALE) promotes, facilitates, and champions cooperation and collaboration in the exploration and study of subglacial environments in Antarctica. SALE intends to understand the complex interplay of biological, geological, chemical, glaciological, and physical processes within subglacial lake environments through coordinated international research teams. Evolution and Biodiversity in the Antarctic (EBA) will use a suite of modern techniques and interdisciplinary approaches, to explore the evolutionary history of selected modern Antarctic biota, examine how modern biological diversity in the Antarctic influences the way present-day ecosystems function, and thereby predict how the biota may respond to future environmental change. Antarctica and the Global Climate System (AGCS) will investigate the nature of the atmospheric and oceanic linkages between the climate of the Antarctic and the rest of the Earth system, and the mechanisms involved therein. A combination of modern instrumented records of atmospheric and oceanic conditions, and the climate signals held within ice cores will be used to understand past and future climate

  12. Feeding repellence in Antarctic bryozoans

    Science.gov (United States)

    Figuerola, Blanca; Núñez-Pons, Laura; Moles, Juan; Avila, Conxita

    2013-11-01

    The Antarctic sea star Odontaster validus and the amphipod Cheirimedon femoratus are important predators in benthic communities. Some bryozoans are part of the diet of the asteroid and represent both potential host biosubstrata and prey for this omnivorous lysianassid amphipod. In response to such ecological pressure, bryozoans are expected to develop strategies to deter potential predators, ranging from physical to chemical mechanisms. However, the chemical ecology of Antarctic bryozoans has been scarcely studied. In this study we evaluated the presence of defenses against predation in selected species of Antarctic bryozoans. The sympatric omnivorous consumers O. validus and C. femoratus were selected to perform feeding assays with 16 ether extracts (EE) and 16 butanol extracts (BE) obtained from 16 samples that belonged to 13 different bryozoan species. Most species (9) were active (12 EE and 1 BE) in sea star bioassays. Only 1 BE displayed repellence, indicating that repellents against the sea star are mainly lipophilic. Repellence toward C. femoratus was found in all species in different extracts (10 EE and 12 BE), suggesting that defenses against the amphipod might be both lipophilic and hydrophilic. Interspecific and intraspecific variability of bioactivity was occasionally detected, suggesting possible environmental inductive responses, symbiotic associations, and/or genetic variability. Multivariate analysis revealed similarities among species in relation to bioactivities of EE and/or BE. These findings support the hypothesis that, while in some cases alternative chemical or physical mechanisms may also provide protection, repellent compounds play an important role in Antarctic bryozoans as defenses against predators.

  13. Antarctic snow and global climate

    International Nuclear Information System (INIS)

    Global circulation models (GCM) indicate that global warming will be most pronounced at polar regions and high latitudes, causing concern about the stability of the Antarctic ice cap. A project entitled the Seasonal Snow in Antarctica examined the properties of the near surface snow to determine the current conditions that influence snow cover development. The goal was to assess the response of the snow cover in Queen Maud Land (QML) to an increased atmospheric carbon dioxide content. The Antarctic snow cover in QML was examined as part of the FINNARP expeditions in 1999 and 2000 which examined the processes that influence the snow cover. Its energy and mass balance were also assessed by examining the near surface snow strata in shallow (1-2 m) pits and by taking measurements of environmental variables. This made it possible to determine if the glacier is in danger of melting at this northerly location in the Antarctic. The study also made it possible to determine which variables need to change and by how much, for significant melting to occur. It was shown that the Antarctic anticyclone creates particular conditions that protect the snow cover from melting. The anticyclone brings dry air from the stratosphere during most of the year and is exempt from the water vapour feedback. It was concluded that even a doubling of atmospheric carbon dioxide will not produce major snow melt runoff. 8 refs

  14. Model studies of the effects of global warming and Antarctic sea ice changes on Antarctic and global climates

    International Nuclear Information System (INIS)

    The authors discuss the results obtained in three experiments by changing the global ocean temperatures and the concentration and distribution of Antarctic sea ice in a General Circulation Model of July climate, with a view to determining the local and global impacts of Antarctic sea ice variations alone, as distinct with those coupled with global scale temperature changes which may be associated with global warming. In all cases there were significant changes in the upward flux of sensible heat over the sea ice zone associated with the reductions of sea ice. The response of weaker westerlies between 40 and 65 degree S was common to all three experiments. Their analyses suggest that a significant proportion of this is a response to the change in sea ice concentration alone. (Not surprisingly, further north of this region most of the changes induced in the wind structure in the global forcing experiment can be seen as due unambiguously to the differential changes in ocean temperatures.). This weakening of the westerlies means there is less mechanical forcing of the ocean in this region. From this they suggest that when consideration is given to the possible impact of feedbacks not considered in these experiments, sea ice changes alone, and particularly those in the Southern Hemisphere, have the potential to induce changes on a hemispheric scale

  15. Phylogenetic position of Antarctic Scalpelliformes (Crustacea: Cirripedia: Thoracica)

    Science.gov (United States)

    Linse, Katrin; Jackson, Jennifer A.; Fitzcharles, Elaine; Sands, Chester J.; Buckeridge, John S.

    2013-03-01

    The phylogenetic relationships of seven Antarctic barnacle species, one verrucomorph and six scalpelliforms from the Scotia, Weddell and Ross seas were investigated using DNA sequences from two nuclear genes (18 S and 28 S) and one mitochondrial gene (COI), with a combined total length of 3,151 base pairs. Analyses of these new sequences, together with those of previously published ibliform, lepadiform, scalpelliform, balanomorph and verrucomorph species, confirm that the Scalpelliformes are not monophyletic. Bayesian and maximum likelihood analyses consistently recovered a monophyletic group which comprised Ornatoscalpellum stroemii (Sars) and the Southern Ocean scalpellomorphs; Arcoscalpellum sp. from the Weddell Sea, Arcoscalpellum africanum from Elephant Island, A. bouveti from Bouvet Island, the circum-Antarctic Litoscalpellum discoveryi, Litoscalpellum sp. from Shag Rocks and Scalpellum sp. from the Falkland Trough. We also used multiple fossil constraints in a relaxed clock Bayesian framework to estimate divergence times for the 18 S+28 S phylogeny. Our results indicate a mid Cretaceous divergence for the Weddell Sea Arcoscalpellum sp, followed by a late Cretaceous divergence from the North Atlantic O. stroemii. Subsequent to this, the Antarctic scalpellomorphs began to radiate at the Cretaceous-Tertiary boundary. Monophyly within the scalpellid genera Arcoscalpellum, Litoscalpellum and Scalpellum was strongly rejected by all loci. Our results show incongruence between taxonomy and molecular systematics and highlight the need for more species to be sequenced as well as taxonomic revisions to resolve uncertainties in the phylogenetic relationships of the stalked barnacles.

  16. Cyclone formation and development in the Antarctic Prydz Bay

    Institute of Scientific and Technical Information of China (English)

    解思梅; 梅山; 刘克威; 魏立新

    2002-01-01

    Using meteorological data of field observation in 1990~ 2000 , especially polar orbit highresolution NOAA satellite cloud maps received from the Antarctic expedition vessel since 1997, the formation and development of the Prydz Bay cyclone are studied in this paper. Some new viewpoints are suggested such as: when surround-polar cyclone enters the Prydz Bay, it can also intensify and develop in summer; cyclone can also develop in the easterlies in this bay. These view points revise old uncomplete view point that the Prydz Bay is a burial ground of cyclone, and also further consummate formation-development theory of surround-cyclone in the Antarctic westerlies and cyclone in the Antarctic easterlies. In this paper, the mechanism of ice-air-sea interaction in the Prydz Bay is studied, and the physical process of cyclone formation-development is explained. By use of wholly dynamic transportation method, an energy exchange case of a cyclone, which explosively developed after entering the Prydz Bay, is calculated. In the open water area, momentum flux is - 2.205 N/m2, sensible heat flux is 486.69 W/m2, and latent heat flux is 261.84 W/m2. It is larger than values of westerlies burst over the Pacific. The heat transferred from ocean to atmosphere in form of sensible and latent heat promotes cyclone development rapidly. In this case wind force was as strong as 12 grade, with 10 minutes average wind speed of 38 m/s, and instantaneous wind speed of 100 m/s which broke the wind speed record of 96 m/s in the Antarctic (Wendler and Kodama).

  17. Mantle domain and segmentation at the Australian-Antarctic Ridge

    Science.gov (United States)

    Park, S. H.; Langmuir, C. H.; Lin, J.; Kim, S.; Hahm, D.; Michael, P. J.; Scott, S. R.; Sims, K. W. W.

    2014-12-01

    The Australian-Antarctic ridge (AAR) is the largest unexplored expanse of the global mid-ocean ridges. Using the Korean Icebreaker Araon, we carried out a multi-disciplinary study of two segments (KR1 and KR2) of intermediate spreading AAR in three expeditions from 2011 to 2013. KR1, a 300-km-long supersegment located in the center of AAR, has large transform faults at its two ends, only small 3rd and 4th order offsets between the transforms, and no overlapping spreading centers. Nonetheless there are large variations in axial morphology from axial high to rift valley, as well as large changes in chemical and Pb isotopic composition. The KR2 segment is located about 200 km northwest of KR1 and connected to it by the Balleny transform. KR2 is a 180 km-long 1st order segment bounded by two transforms and consists of a western segment with axial high and an eastern segment with rift valley. Along-axis geochemical variations indicate that the magma flux and ridge morphology of are influenced by changing mantle composition on a fine scale, and thus magma transport to the crust must occur at multiple locations along this single segment. Both the KR1 and KR2 segments are on the Pacific side of the Australian-Antarctic-Discordance, long considered as the boundary between Pacific and Indian mantle. However, isotopic and trace elements data of these segments differ from samples from the Pacific-Antarctic Ridge, so flow of Pacific mantle into Indian mantle bounded by the Australian-Antarctic-Discordance is no longer supported.

  18. Tectonic provinces of the Atlantic Ocean

    Science.gov (United States)

    Pushcharovsky, Yu. M.

    2009-05-01

    The tectonic structure of the floor of the Atlantic Ocean beyond the continental margins is insufficiently studied. This is also true of its tectonic demarcation. The segmentation of the floor into regional-scale tectonic provinces of several orders proposed in this paper is primarily based on structural and historical geological features. It is shown that deep oceanic basins and fault tectonics are of particular importance in this respect. Tectonic provinces of two orders are distinguished by a set of attributes. The first-order provinces are the North, Central, South, and Antarctic domains of the Atlantic Ocean. They are separated by wide demarcation fracture zones into Transatlantic (transverse) second-order tectonic provinces. Ten such provinces are recognized (from the north southward): Greenland-Lofoten, Greenland-Scandinavia, Greenland-Ireland, Newfoundland-European, North American-African, Antilles-African, Angola-Brazil, Cape-Argentine, North Antarctic, and South Antarctic. This subdivision demonstrates significant differentiation in the geodynamic state of the oceanic lithosphere that determines nonuniform ocean formation and the tectonic features of the ocean floor. The latitudinal orientation of the second-order provinces inherits the past tectonic pattern, though newly formed structural units cannot be ruled out. The Earth rotation exerts a crucial effect on the crust and the mantle.

  19. Physical, chemical, net haul, bird surveys, and other observations (BIOMASS data) from the British Antarctic Survey FIBEX and SIBEX Projects from 01 November 1980 to 30 April 1985 (NODC Accession 9400053)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession includes observations of physical, chemical, and biomass properties from three field experiments conducted by the British Antarctic Survey: the First...

  20. Oceanographic profile temperature, salinity, and other measurements collected using bottle and high resolution CTD from the SHIRASE (JSVY), SHOYO, and other platforms in the Antarctic, South Indian, and other locations from 1987 to 2000 (NODC Accession 0001363)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data from the CD-ROM contains the BT Data observed by Japan Maritime Self-Defence Force from 1995 to 2001, Japan Antarctic Research Expedition data up to the...

  1. Bacteria Biomass and Chlorophyll-a depth profiles from bottle casts off the western Antarctic Peninsula from the R/V LAURENCE M. GOULD from 23 April 2001 to 01 September 2001 (NODC Accession 0000820)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bacteria and Chlorophyll data were collected from bottle cast of the western Antarctic peninsula from the R/V Laurence M. Gould. Data were collected by the...

  2. The complete mitochondrial genome of the Antarctic stalked jellyfish, Haliclystus antarcticus Pfeffer, 1889 (Staurozoa: Stauromedusae

    Directory of Open Access Journals (Sweden)

    Hsing-Hui Li

    2016-06-01

    Full Text Available In present study, the complete mitogenome sequence of the Antarctic stalked jellyfish, Haliclystus antarcticus Pfeffer (Staurozoa: Stauromedusae has been sequenced by next-generation sequencing method. The assembled mitogenome comprises of 15,766 bp including 13 protein coding genes, 7 transfer RNAs, and 2 ribosomal RNA genes. The overall base of Antarctic stalked jellyfish constitutes of 26.5% for A, 19.6% for C, 19.8% for G, 34.1% for T and show 90% identity to Sessile Jelly, Haliclystus sanjuanensis, in the northeastern Pacific Ocean. The complete mitogenome of the Antarctic stalked jellyfish, contributes fundamental and significant DNA molecular data for further phylogeography and evolutionary analysis for seahorse phylogeny. The complete sequence was deposited in DBBJ/EMBL/GenBank under accession number KU947038.

  3. Antarctic tourism and the maritime heritage

    OpenAIRE

    Basberg, Bjørn L.

    2008-01-01

    Maritime activity in the Antarctic region goes back to the 18th Century. It evolved from exploration and discoveries to commercial activities, especially sealing and whaling. Antarctic tourism is a more recent phenomenon, developing gradually from the 1960s. Today, more than 20.000 tourists visit the Antarctic annually – mostly on cruise ships. The paper reviews the historical development of these activities. The main focus is on how the maritime heritage has been dealt with an...

  4. The multi-millennial Antarctic commitment to future sea-level rise

    Science.gov (United States)

    Golledge, N. R.; Kowalewski, D. E.; Naish, T. R.; Levy, R. H.; Fogwill, C. J.; Gasson, E. G. W.

    2015-10-01

    Atmospheric warming is projected to increase global mean surface temperatures by 0.3 to 4.8 degrees Celsius above pre-industrial values by the end of this century. If anthropogenic emissions continue unchecked, the warming increase may reach 8-10 degrees Celsius by 2300 (ref. 2). The contribution that large ice sheets will make to sea-level rise under such warming scenarios is difficult to quantify because the equilibrium-response timescale of ice sheets is longer than those of the atmosphere or ocean. Here we use a coupled ice-sheet/ice-shelf model to show that if atmospheric warming exceeds 1.5 to 2 degrees Celsius above present, collapse of the major Antarctic ice shelves triggers a centennial- to millennial-scale response of the Antarctic ice sheet in which enhanced viscous flow produces a long-term commitment (an unstoppable contribution) to sea-level rise. Our simulations represent the response of the present-day Antarctic ice-sheet system to the oceanic and climatic changes of four representative concentration pathways (RCPs) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We find that substantial Antarctic ice loss can be prevented only by limiting greenhouse gas emissions to RCP 2.6 levels. Higher-emissions scenarios lead to ice loss from Antarctic that will raise sea level by 0.6-3 metres by the year 2300. Our results imply that greenhouse gas emissions in the next few decades will strongly influence the long-term contribution of the Antarctic ice sheet to global sea level.

  5. Antarctic skuas recognize individual humans.

    Science.gov (United States)

    Lee, Won Young; Han, Yeong-Deok; Lee, Sang-Im; Jablonski, Piotr G; Jung, Jin-Woo; Kim, Jeong-Hoon

    2016-07-01

    Recent findings report that wild animals can recognize individual humans. To explain how the animals distinguish humans, two hypotheses are proposed. The high cognitive abilities hypothesis implies that pre-existing high intelligence enabled animals to acquire such abilities. The pre-exposure to stimuli hypothesis suggests that frequent encounters with humans promote the acquisition of discriminatory abilities in these species. Here, we examine individual human recognition abilities in a wild Antarctic species, the brown skua (Stercorarius antarcticus), which lives away from typical human settlements and was only recently exposed to humans due to activities at Antarctic stations. We found that, as nest visits were repeated, the skua parents responded at further distances and were more likely to attack the nest intruder. Also, we demonstrated that seven out of seven breeding pairs of skuas selectively responded to a human nest intruder with aggression and ignored a neutral human who had not previously approached the nest. The results indicate that Antarctic skuas, a species that typically inhabited in human-free areas, are able to recognize individual humans who disturbed their nests. Our findings generally support the high cognitive abilities hypothesis, but this ability can be acquired during a relatively short period in the life of an individual as a result of interactions between individual birds and humans. PMID:26939544

  6. Climate Change Impacts in the sub-Antarctic Islands Technical Report N.2 of ONERC; Impacts du changement climatique dans les iles subantarctiques. Rapport Technique N.2 de l'ONERC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Difficult to apprehend as a whole, the polar regions constitute the Arctic to the North, an ocean surrounded by emerged lands, and the Antarctic to the South, a continent bordered by the Austral Ocean where a belt of sub Antarctic islands lies. Climate change impacts on sub Antarctic islands are varied, direct and indirect: glacier retreat, more favourable conditions for introduced species, marine biodiversity modification, etc. This report discusses the French, British, Australian, South African and New Zealand sub Antarctic islands, the climatic evolutions and the resulting impacts, focused especially on biodiversity. The Observatoire National sur les Effets du Rechauffement Climatique and the International Polar Foundation have been joined in this endeavour by the French polar institute Paul-Emile Victor, the administration of the French Southern and Antarctic Lands (TAAF in French) and the International Union for the Conservation of Nature. (authors)

  7. Antarctic Forcing of Abrupt Global Climate Change During Isotope Stage 3

    Science.gov (United States)

    Turney, Christian; Jones, Richard; Phipps, Steven; Thomas, Zoë; Hogg, Alan; Kershaw, Peter; Fogwill, Christopher; Palmer, Jonathan; Bronk Ramsey, Christopher; Adolphi, Florian; Muscheler, Raimund; Hughen, Konrad; Staff, Richard; Grosvenor, Mark; Golledge, Nicholas; Haberle, Simon

    2016-04-01

    Contrasting Greenland and Antarctic temperature trends during the late Pleistocene (60,000 to 11,650 years ago) are thought to be driven by imbalances in the rate of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'), with millennial-scale cooling Dansgaard-Oeschger (D-O) events in the north leading warming in the south. An alternative origin for these abrupt climate shifts, however, is the Southern Hemisphere whereby changes are transmitted globally via atmospheric and/or oceanic teleconnections. Testing these competing hypotheses is challenging given the relatively large uncertainties associated with dating terrestrial, marine and ice core chronologies. Here we use a fully coupled climate system model to investigate whether freshening of the Southern Ocean has extra-regional climate impacts. Focusing on an Isotope Stage 3 cooling event preserved in Antarctic ice cores immediately prior to Antarctic Isotope Maximum 4 (AIM 4; around 29,000 years ago) we undertook an ensemble of transient meltwater simulations. We observe no impact on the Atlantic Meridional Overturning Circulation (AMOC) from freshwater hosing in the Southern Ocean but a dramatic warming over the North Atlantic and contrasting precipitation patterns across the low latitudes. Exploiting a new bidecadally-resolved 14C calibration dataset obtained from New Zealand kauri (Agathis australis) we undertook intensive radiocarbon dating and high-resolution multiproxy analysis of the tropical Australia Lynch's Crater terrestrial peat sequence spanning this same period and find a synchronous change in hydroclimate to the purported meltwater event in the Southern Ocean. Our results imply Southern Ocean dynamics played a significant role in driving global climate change across this period via atmospheric teleconnections, with implications for other abrupt events through the late Pleistocene.

  8. Distribution of clay minerals in drift sediments on the continental rise west of the Antarctic Peninsula, ODP Leg 178, Sites 1095 and 1096

    OpenAIRE

    Hillenbrand, C.-D.; W. Ehrmann

    2001-01-01

    The clay mineral compositions of upper Miocene to Quaternary sediments recovered at Ocean Drilling Program (ODP) Leg 178, Sites 1095 and 1096, from the continental rise west of the Antarctic Peninsula were analyzed in order to reconstruct the Neogene and Quaternary Antarctic paleoclimate and ice dynamics. The clay mineral assemblages are dominated by smectite, illite, and chlorite. Kaolinite occurs only in trace amounts. Analysis of a surface-sample data set facilitates the assignment of thes...

  9. Changes in ocean vertical heat transport with global warming

    OpenAIRE

    Zika, Jan D.; Laliberté, Frédéric; Mudryk, Lawrence R.; Sijp, Willem P.; Nurser, A.J.G.

    2015-01-01

    Heat transport between the surface and deep ocean strongly influences transient climate change. Mechanisms setting this transport are investigated using coupled climate models and by projecting ocean circulation into the temperature-depth diagram. In this diagram, a “cold cell” cools the deep ocean through the downwelling of Antarctic waters and upwelling of warmer waters and is balanced by warming due to a “warm cell,” coincident with the interhemispheric overturning and previously linked to...

  10. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea-ice

    Directory of Open Access Journals (Sweden)

    R. S. Humphries

    2015-10-01

    Full Text Available The effect of aerosols on clouds and their radiative properties is one of the largest uncertainties in our understanding of radiative forcing. A recent study has concluded that better characterisation of pristine, natural aerosol processes leads to the largest reduction in these uncertainties. Antarctica, being far from anthropogenic activities, is an ideal location for the study of natural aerosol processes. Aerosol measurements in Antarctica are often limited to boundary layer air-masses at spatially sparse coastal and continental research stations, with only a handful of studies in the sea ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the ice-breaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3 concentrations exhibited a five-fold increase moving across the Polar Front, with mean Polar Cell concentrations of 1130 cm−3 – higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air-masses quickly from the free-troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea ice boundary layer air-masses travelled equator-ward into the low albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei where, after growth, may potentially impact on the region's radiative balance. The high aerosol

  11. On the birth of near-modern Southern Ocean ecosystems

    Science.gov (United States)

    Houben, A.; Bohaty, S. M.; Passchier, S.; Roehl, U.; Bijl, P.; Pross, J.; Stickley, C. E.; van de Flierdt, T.; Escutia, C.; Klaus, A.; Brinkhuis, H.

    2011-12-01

    It has become widely appreciated that the initiation of major Antarctic glaciation occurred around Eocene - Oligocene boundary times (~34-33 Ma). Some studies suggest that this greenhouse-icehouse transition (GIT) invoked a more productive Southern Ocean and therefore circum-Antarctic marine systems as a result of e.g., increased wind-stress and upwelling after ice-sheet arrival and related atmospheric reorganization. Yet, actual documentation of such presumed major reorganization among plankton communities in the Southern Ocean is quite limited. This is partly due to scarce and incomplete records, and/or lack of suitable plankton remains for various reasons. Principally on the basis of the recent Integrated Ocean Drilling Program Expedition 318, drilling of the Wilkes Land margin, and in context with studies into e.g., XRF-geochemistry, ice rafted debris, and clay mineralogy, we here discuss late Eocene to early Oligocene dinoflagellate cyst assemblage changes related to the GIT, and compare results with several other circum-Antarctic sites. Conspicuously, the earliest Oligocene circum-Antarctic dinoflagellate cyst assemblages are consistently dominated by protoperidinioid taxa, in sharp contrast to the Eocene assemblages. Extant protoperidinioid dinoflagellates have a heterotrophic feeding strategy, are therefore found in association with high productivity ecosystems, and particularly dominate modern southern ocean settings. Combined results indicate the birth of near modern circum-Antarctic marine ecosystems to coincide with the GIT.

  12. Environmental radioactivity in the antarctic station

    International Nuclear Information System (INIS)

    Study about environmental radioactivity in the Peruvian antarctic station Machu Pichu they were carried out during the last three periods to the southern summer. The objective of the project it is to evaluate environmental component in order to elaborate a study it base on the levels background radioactivity and artificial in the antarctic region

  13. Onset of Antarctic Circumpolar Current 30 million years ago as Tasmanian Gateway aligned with westerlies

    Science.gov (United States)

    Scher, Howie D.; Whittaker, Joanne M.; Williams, Simon E.; Latimer, Jennifer C.; Kordesch, Wendy E. C.; Delaney, Margaret L.

    2015-07-01

    Earth's mightiest ocean current, the Antarctic Circumpolar Current (ACC), regulates the exchange of heat and carbon between the ocean and the atmosphere, and influences vertical ocean structure, deep-water production and the global distribution of nutrients and chemical tracers. The eastward-flowing ACC occupies a unique circumglobal pathway in the Southern Ocean that was enabled by the tectonic opening of key oceanic gateways during the break-up of Gondwana (for example, by the opening of the Tasmanian Gateway, which connects the Indian and Pacific oceans). Although the ACC is a key component of Earth's present and past climate system, the timing of the appearance of diagnostic features of the ACC (for example, low zonal gradients in water-mass tracer fields) is poorly known and represents a fundamental gap in our understanding of Earth history. Here we show, using geophysically determined positions of continent-ocean boundaries, that the deep Tasmanian Gateway opened 33.5 +/- 1.5 million years ago (the errors indicate uncertainty in the boundary positions). Following this opening, sediments from Indian and Pacific cores recorded Pacific-type neodymium isotope ratios, revealing deep westward flow equivalent to the present-day Antarctic Slope Current. We observe onset of the ACC at around 30 million years ago, when Southern Ocean neodymium isotopes record a permanent shift to modern Indian-Atlantic ratios. Our reconstructions of ocean circulation show that massive reorganization and homogenization of Southern Ocean water masses coincided with migration of the northern margin of the Tasmanian Gateway into the mid-latitude westerly wind band, which we reconstruct at 64° S, near to the northern margin. Onset of the ACC about 30 million years ago coincided with major changes in global ocean circulation and probably contributed to the lower atmospheric carbon dioxide levels that appear after this time.

  14. The Future of Southern Ocean Observing Systems

    Science.gov (United States)

    Talley, L. D.

    2015-12-01

    Knowledge of the Southern Ocean's role in global climate from seasonal to millennial timescales is evolving, with rapidly increasing recognition of the centrality of the Southern Ocean to Earth's heat, carbon, nutrient, and freshwater budgets, and of the impact of interactions between the ocean and the major ice shelves and grounded ice sheets of Antarctica, which have been decreasing in mass. Observations in this data-sparse and logistically remote region have never been so important, and many nations are rising to the challenge of supporting both experiments and long-term sustained observations. As illustrated in the figure from Meredith et al. (Current Op. Env. Sustain. 2013), autonomous in situ technologies are at the fore because of the difficulty and expense of sending ships year-round and because the crucial satellite remote sensing must be accompanied by in situ observations, including beneath sea ice and ice shelves. The Southern Ocean Observing System (SOOS) has grown out of this recognized need for coordinated observations from the Antarctic coastline northward to the subtropics, from the bottom water production regions in coastal polynyas over the continental shelves, to the regions of interaction of warm ocean waters with Antarctic ice shelves, beneath the vast seasonal sea ice region, and in the hot spots of air-sea fluxes and cross-Antarctic Circumpolar Current (ACC) mixing where the ACC interacts with topography and continental boundaries. The future includes international coordination and collaboration and strengthening of new and existing technologies, which include satellite observing, ice-enabled profiling floats, profiling from marine mammals, moored measurements in many strategic locations, glider and other autonomous operations in all regions, and drilling through floating ice shelves to measure the ocean waters below. Improved and consistent weather observations around the Antarctic coastlines will improve forecasting and reanalysis. Ice

  15. Variability of Antarctic Sea Ice 1979-1998

    Science.gov (United States)

    Zwally, H. Jay; Comiso, Josefino C.; Parkinson, Claire L.; Cavalieri, Donald J.; Gloersen, Per; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The principal characteristics of the variability of Antarctic sea ice cover as previously described from satellite passive-microwave observations are also evident in a systematically-calibrated and analyzed data set for 20.2 years (1979-1998). The total Antarctic sea ice extent (concentration > 15 %) increased by 13,440 +/- 4180 sq km/year (+1.18 +/- 0.37%/decade). The area of sea ice within the extent boundary increased by 16,960 +/- 3,840 sq km/year (+1.96 +/- 0.44%/decade). Regionally, the trends in extent are positive in the Weddell Sea (1.5 +/- 0.9%/decade), Pacific Ocean (2.4 +/- 1.4%/decade), and Ross (6.9 +/- 1.1 %/decade) sectors, slightly negative in the Indian Ocean (-1.5 +/- 1.8%/decade, and strongly negative in the Bellingshausen-Amundsen Seas sector (-9.5 +/- 1.5%/decade). For the entire ice pack, small ice increases occur in all seasons with the largest increase during autumn. On a regional basis, the trends differ season to season. During summer and fall, the trends are positive or near zero in all sectors except the Bellingshausen-Amundsen Seas sector. During winter and spring, the trends are negative or near zero in all sectors except the Ross Sea, which has positive trends in all seasons. Components of interannual variability with periods of about 3 to 5 years are regionally large, but tend to counterbalance each other in the total ice pack. The interannual variability of the annual mean sea-ice extent is only 1.6% overall, compared to 5% to 9% in each of five regional sectors. Analysis of the relation between regional sea ice extents and spatially-averaged surface temperatures over the ice pack gives an overall sensitivity between winter ice cover and temperature of -0.7% change in sea ice extent per K. For summer, some regional ice extents vary positively with temperature and others negatively. The observed increase in Antarctic sea ice cover is counter to the observed decreases in the Arctic. It is also qualitatively consistent with the

  16. Testing oils in antarctic soils

    International Nuclear Information System (INIS)

    The resident seals, whales and penguins in Antarctica's Ross Sea region have only environmentally friendly ways of getting around. In contrast, wherever humans go in the Antarctic and whatever they do, be it research, tourism or fishing, they need fuel for their planes, icebreaker ships, land vehicles and generators. Because of this, petroleum hydrocarbons are the most likely source of pollution in the Antarctic. Accidental oil spills often occur near scientific stations, where storage and refuelling of aircraft and vehicles can result in spills. Spills also occur as a consequence of drilling activities. Dr Jackie Aislabie, a microbiologist from the New Zealand government's research company Landcare Research, is leading a program aimed at understanding how oil spills impact on Antarctic soils. The properties of pristine soils were compared with oil-contaminated soil at three locations: Scott Base, Marble Point and in the Wright Valley at Bull Pass. Soils in the Scott Base area are impacted by the establishment and continuous habitation of the base over 40 years, and a hydrocarbon-contaminated site was sampled near a former storage area for drums of mixed oils. Soil sampled from Marble Point was taken from near the old Marble Point camp, which was inhabited from 1957 to about 1963. Oil stains were visible on the soil surface, and are assumed to have been there for more than 30 years. The samples selected for analysis from the Wright Valley came from a spill site near Bull Pass that occurred during seismic bore-hole drilling activities in 1985. The contamination levels ranged from below detection to just over 29,000 μg/g of soil. Descriptions and analyse results are included into a Geographic Information System and associated soils database

  17. Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model

    Science.gov (United States)

    Lenaerts, Jan T. M.; Vizcaino, Miren; Fyke, Jeremy; van Kampenhout, Leo; van den Broeke, Michiel R.

    2016-02-01

    We present climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS) as simulated by the global, coupled ocean-atmosphere-land Community Earth System Model (CESM) with a horizontal resolution of ˜1° in the past, present and future (1850-2100). CESM correctly simulates present-day Antarctic sea ice extent, large-scale atmospheric circulation and near-surface climate, but fails to simulate the recent expansion of Antarctic sea ice. The present-day Antarctic ice sheet SMB equals 2280 ± 131 {Gt year^{-1}} , which concurs with existing independent estimates of AIS SMB. When forced by two CMIP5 climate change scenarios (high mitigation scenario RCP2.6 and high-emission scenario RCP8.5), CESM projects an increase of Antarctic ice sheet SMB of about 70 {Gt year^{-1}} per degree warming. This increase is driven by enhanced snowfall, which is partially counteracted by more surface melt and runoff along the ice sheet's edges. This intensifying hydrological cycle is predominantly driven by atmospheric warming, which increases (1) the moisture-carrying capacity of the atmosphere, (2) oceanic source region evaporation, and (3) summer AIS cloud liquid water content.

  18. Measurements beneath an Antarctic ice shelf using an autonomous underwater vehicle

    OpenAIRE

    Nicholls, K.W.; Abrahamsen, E.P.; Buck, J.J.H.; P. A. Dodd; Goldblatt, C.; Griffiths, G; K. J. Heywood; Hughes, N.E.; Kaletzky, A.; Lane-Serff, G.F.; McPhail, S.D.; Millard, N. W.; Oliver, K. I. C.; Perrett, J; Price, M. R.

    2006-01-01

    The cavities beneath Antarctic ice shelves are among the least studied regions of the World Ocean, yet they are sites of globally important water mass transformations. Here we report results from a mission beneath Fimbul Ice Shelf of an autonomous underwater vehicle. The data reveal a spatially complex oceanographic environment, an ice base with widely varying roughness, and a cavity periodically exposed to water with a temperature significantly above the surface freezing point. The result...

  19. Large-scale distribution analysis of Antarctic echinoids using ecological niche modelling

    OpenAIRE

    Pierrat, B.; Saucede, T.; Laffont, R.; De Ridder, C.; Festeau, A.; David, B.

    2012-01-01

    Understanding the factors that determine the distribution of taxa at various spatial scales is a crucial challenge in the context of global climate change. This holds particularly true for polar marine biota that are composed of both highly adapted and vulnerable faunas. We analysed the distribution of 2 Antarctic echinoid species, Sterechinus antarcticus and S. neumayeri, at the scale of the entire Southern Ocean using 2 niche modelling procedures. The performance of distribution models was ...

  20. Molecular evidence for cryptic species among the Antarctic fish Trematomus bernacchii and Trematomus hansoni

    Digital Repository Service at National Institute of Oceanography (India)

    Bernardi, G.; Goswami, U.

    in the amplification using an ABI 373 automated sequencer (Applied Biosystems, Foster City, CA). Sequence analysis Sequences were aligned with the aid of the computer program Clustal in Sequence Navigator (Applied Biosystems). Two sequences from the literature... of mitochondrial DNA in fishesh HOCHACHKA, P.W. & MOMMSEN, T.P., eds. Biochemistry and molecular biology of fishes. Amsterdam: Elsevier Science Publications, 1-38. MILLER, R.G. 1993. A history and atlas of the fishes of the Antarctic ocean. Carson City, NV...

  1. Deglacial intermediate water reorganization: new evidence from the Indian Ocean

    Directory of Open Access Journals (Sweden)

    S. Romahn

    2013-07-01

    Full Text Available The importance of intermediate water masses in climate change and ocean circulation has been emphasized recently. In particular, Antarctic Intermediate Water (AAIW is thought to have acted as an active interhemispheric transmitter of climate anomalies. Here we reconstruct changes in AAIW signature and spatial and temporal evolution based on a 40 kyr time series of oxygen and carbon isotopes as well as planktic Mg/Ca based thermometry from a site in the western Indian Ocean. Our data suggest that AAIW transmitted Antarctic temperature trends to the equatorial Indian Ocean via the "oceanic tunnel" mechanism. Moreover, our results reveal that deglacial AAIW carried a signature of aged Southern Ocean deep water. We find no evidence of increased formation of intermediate waters during the deglaciation.

  2. Antarctic ocean and resource variability. Ed. by D. Sahrhage

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    stream_size 2 stream_content_type text/plain stream_name Indian_J_Mar_Sci_19_153.pdf.txt stream_source_info Indian_J_Mar_Sci_19_153.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  3. Biochemical composition of Antarctic zooplankton from the Indian Ocean sector

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Parulekar, A

    Zooplankton samples were analysed for faunal composition, organic carbon, protein, carbohydrate and lipid content. Total zooplankton biomass (as displacement volume) varied from 0.032 to 0.500 ml.m sup(-3) (x = 0.23 + or - 0.14) in upper 200 m...

  4. Antarctic marine bacteria versus UV-B irradiation

    International Nuclear Information System (INIS)

    The most important stages of knowledge development in Antarctic marine microbiology, from the beginning of this century, were reviewed and systematized. Multi-annual studies from 1978 to 1988 demonstrated a great variation in total and saprophytic bacterial numbers at different sites in the Antarctic. These sites included inshore waters (Admiralty Bay), open ocean waters (Drake Passage and Bransfield Strait), and the vicinity of pack-ice in Scotia Sea. Bacterial biomass, which is highly comparable to that of other organisms, combined with many times shorter bacterial generation time, (in case of saprophytic population it amounts to 17.5 h), must have profound consequences for cold marine ecosystems of the Antarctic. Higher numbers of bacteria were found in open surface waters, down to 75 m. High transparency of oceanic offshore waters causes that UV radiation (280-400 nm) penetrates to biologically effective depths to about 50 m. The UV-B sensitivity of 25 Antarctic bacterial strains from the following various habitats: coastal waters, krill stomach, krill feaces, water ice edge, water below ice and sea ice was examined. The strains were irradiated in UV-B transparent cuvettes on an optical bench with artificial UV-B (290 nm; 1.21 W. m-2 ] during 10 hours in temperature 4oC. ATP (adenosine triphosphate), number of bacterial cells, lethal effect of UV-B and survival of bacteria, total bacterial number, biovolume and changes in biochemical/physiological properties have been estimated. The results indicated a high interspecific variability in the sensitivity against UV-B. The ATP content show at the beginning of irradiation an increase (reaching typical for individual species maximum, at 0.5 to 4 hours) and afterwards a decrease to the level above zero (also characteristic of species). We hypothesize that first anabolic processes and after that catabolic processes are destroyed by UV. Survival of the bacterial strains ranged between 0 and 3.2%. Among 25 bacterial

  5. Temperature, lithosphere-asthenosphere boundary, and heat flux beneath the Antarctic Plate inferred from seismic velocities

    Science.gov (United States)

    An, Meijian; Wiens, Douglas A.; Zhao, Yue; Feng, Mei; Nyblade, Andrew; Kanao, Masaki; Li, Yuansheng; Maggi, Alessia; Lévêque, Jean-Jacques

    2015-12-01

    We estimate the upper mantle temperature of the Antarctic Plate based on the thermoelastic properties of mantle minerals and S velocities using a new 3-D shear velocity model, AN1-S. Crustal temperatures and surface heat fluxes are then calculated from the upper mantle temperature assuming steady state thermal conduction. The temperature at the top of the asthenosphere beneath the oceanic region and West Antarctica is higher than the dry mantle solidus, indicating the presence of melt. From the temperature values, we generate depth maps of the lithosphere-asthenosphere boundary and the Curie temperature isotherm. The maps show that East Antarctica has a thick lithosphere similar to that of other stable cratons, with the thickest lithosphere (~250 km) between Domes A and C. The thin crust and lithosphere beneath West Antarctica are similar to those of modern subduction-related rift systems in East Asia. A cold region beneath the Antarctic Peninsula is similar in spatial extent to that of a flat-subducted slab beneath the southern Andes, indicating a possible remnant of the Phoenix Plate, which was subducted prior to 10 Ma. The oceanic lithosphere generally thickens with increasing age, and the age-thickness correlation depends on the spreading rate of the ridge that formed the lithosphere. Significant flattening of the age-thickness curves is not observed for the mature oceanic lithosphere of the Antarctic Plate.

  6. Underwater Optics in Sub-Antarctic and Antarctic Coastal Ecosystems

    Science.gov (United States)

    Huovinen, Pirjo; Ramírez, Jaime; Gómez, Iván

    2016-01-01

    Understanding underwater optics in natural waters is essential in evaluating aquatic primary production and risk of UV exposure in aquatic habitats. Changing environmental conditions related with global climate change, which imply potential contrasting changes in underwater light climate further emphasize the need to gain insights into patterns related with underwater optics for more accurate future predictions. The present study evaluated penetration of solar radiation in six sub-Antarctic estuaries and fjords in Chilean North Patagonian region (39–44°S) and in an Antarctic bay (62°S). Based on vertical diffuse attenuation coefficients (Kd), derived from measurements with a submersible multichannel radiometer, average summer UV penetration depth (z1%) in these water bodies ranged 2–11 m for UV-B (313 nm), 4–27 m for UV-A (395 nm), and 7–30 m for PAR (euphotic zone). UV attenuation was strongest in the shallow Quempillén estuary, while Fildes Bay (Antarctica) exhibited the highest transparency. Optically non-homogeneous water layers and seasonal variation in transparency (lower in winter) characterized Comau Fjord and Puyuhuapi Channel. In general, multivariate analysis based on Kd values of UV and PAR wavelengths discriminated strongly Quempillén estuary and Puyuhuapi Channel from other study sites. Spatial (horizontal) variation within the estuary of Valdivia river reflected stronger attenuation in zones receiving river impact, while within Fildes Bay a lower spatial variation in water transparency could in general be related to closeness of glaciers, likely due to increased turbidity through ice-driven processes. Higher transparency and deeper UV-B penetration in proportion to UV-A/visible wavelengths observed in Fildes Bay suggests a higher risk for Antarctic ecosystems reflected by e.g. altered UV-B damage vs. photorepair under UV-A/PAR. Considering that damage repair processes often slow down under cool temperatures, adverse UV impact could be

  7. Genetic differentiation in the circum—Antarctic sea spider Nymphon australe (Pycnogonida; Nymphonidae)

    Science.gov (United States)

    Arango, Claudia P.; Soler-Membrives, Anna; Miller, Karen J.

    2011-03-01

    Nymphon australe Hodgson 1902 is the most abundant species of sea spiders in the Southern Ocean. The species is recognised as highly morphologically variable, circumpolar and eurybathic—which is surprising given that sea spiders lack a planktonic stage; the fertilised eggs and larvae remain attached to the ovigers of the father, and consequently have limited dispersal capacity. In this study, we investigate the genetic structure of N. australe populations around Antarctica, confronting the apparent limited dispersal ability with its recognised circumpolarity. Here we analyse mitochondrial DNA of specimens from Antarctic Peninsula, Weddell Sea and East Antarctica to determine if they represent populations of the widespread N. australe — or instead we can recognise cryptic species - and how genetically different they are. Both CO1 and 16S sequence data produced single haplotype networks for N. australe from all three Antarctic locations without indication of cryptic speciation. However, we found strong phylogeographic structure among the three Antarctic locations based on CO1 data. There was only a single shared haplotype between the Antarctic Peninsula and the East Antarctica locations, and all three regions were significantly subdivided from each other ( FST=0.28, ppopulations of N. australe separated by 10-100 s of km ( FST=0.07-0.22, pspiders life history traits indicating a limited dispersal capability. We conclude N. australe represents a single circum-Antarctic species that, despite its limited dispersal abilities, has successfully colonised large parts of the Antarctic marine ecosystem through geological history. However, clear genetic differences among and within locations indicate contemporary gene flow is limited, and that populations of N. australe around Antarctica are effectively isolated.

  8. Antarctic Ozone Hole on September 17, 2001

    Science.gov (United States)

    2002-01-01

    Satellite data show the area of this year's Antarctic ozone hole peaked at about 26 million square kilometers-roughly the size of North America-making the hole similar in size to those of the past three years, according to scientists from NASA and the National Oceanic and Atmospheric Administration (NOAA). Researchers have observed a leveling-off of the hole size and predict a slow recovery. Over the past several years the annual ozone hole over Antarctica has remained about the same in both its size and in the thickness of the ozone layer. 'This is consistent with human-produced chlorine compounds that destroy ozone reaching their peak concentrations in the atmosphere, leveling off, and now beginning a very slow decline,' said Samuel Oltmans of NOAA's Climate Monitoring and Diagnostics Laboratory, Boulder, Colo. In the near future-barring unusual events such as explosive volcanic eruptions-the severity of the ozone hole will likely remain similar to what has been seen in recent years, with year-to-year differences associated with meteorological variability. Over the longer term (30-50 years) the severity of the ozone hole in Antarctica is expected to decrease as chlorine levels in the atmosphere decline. The image above shows ozone levels on Spetember 17, 2001-the lowest levels observed this year. Dark blue colors correspond to the thinnest ozone, while light blue, green, and yellow pixels indicate progressively thicker ozone. For more information read: 2001 Ozone Hole About the Same Size as Past Three Years. Image courtesy Greg Shirah, GSFC Scientific Visualization Studio, based on data from the TOMS science team

  9. Microbiology and Geochemistry of Antarctic Paleosols

    Science.gov (United States)

    Mahaney, W. C.; Malloch, D.; Hancock, R. G. V.; Campbell, I. B.; Sheppard, D.

    2000-08-01

    Samples of ancient soils from horizons in paleosols from the Quartermain Mountains (Aztec and New Mountain areas of the Antarctic Dry Valleys) were analyzed for their chemical composition and microbiology to determine the accumulation and movement of salts and other soluble constituents. The salt concentrations are of special interest because they are considered to be a function of age, derived in part from nearby oceanic and high altitude atmospheric sources. The geochemistry of ancient Miocene-age paleosols in these areas is the direct result of the deposition and weathering of till, derived principally from dolerite and sandstone source rock, in association with airborne-influxed salts. Paleosols nearer the coast have greater contents of chlorine, and farther inland near the Inland Ice Sheet, nitrogen tends to increase on a relative basis. The accumulation and vertical distribution of salts and other soluble chemical elements indicate relative amounts of movement in the profile over long periods of time, to the order of several million years. Iron, both in total concentration and in the form of various extracts, indicates it can be used as a geochronometer to assess the buildup of goethite plus hematite over time in the paleosols. Trends for ferrihydrite, a partially soluble Fe-hydroxide, shows limited profile translocation that might be related to the movement of salt. Six of the eight selected subsamples from paleosol horizons in three soil profiles contained nil concentrations of bacteria and fungi. However, two horizons at depths of between three to eight centimeters yielded several colonies of the fungi Beauveria bassiana and Penicillium spp., indicating some input of organic carbon. Beauveria bassiana is often reported in association with insects and is used commercially for the biological control of some insect pests. Penicillium species are commonly isolated from Arctic, temperate and tropical soils and are known to utilize a wide variety of organic

  10. Comparison of air-sea fluxes of CO2 in the Southern Ocean and the western Arctic Ocean

    Institute of Scientific and Technical Information of China (English)

    CHEN Liqi; GAO Zhongyong; YANG Xulin; WANG Weiqiang

    2004-01-01

    The data were collected during Chinese Arctic and Antarctic Expeditions in the western Arctic Ocean and the marginal sea ice zone (MSIZ) of the Southern Ocean, respectively in the boreal summer from July to September of 1999 and in the austral summer from December of 1999 to January of 2000. The concentrations of CO2 in surface water of the survey regions would mostly present lower than those in the atmosphere. A significant biological driving force could also been observed in summer waters in both of the above oceans. Air to sea CO2 fluxes were also calculated to compare oceanic uptake capacity of CO2 in both oceans with the world oceans using Liss, Wanninkhof,and Jacobs' s methods. The averaged CO2 fluxes of air to sea in the western Arctic Ocean or in the MSIZ of the Southern Ocean doubled that in the world oceans.

  11. Study on ecological structures of coastal lakes in Antarctic continent

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Coastal region on the Antarctic continent, where it is under the influences both of ocean and ice sheet, as well as frequent human activities, could be considered as a fragile zone in Antarctic ecological environment. There are many lakes in coastal region, showing much differences from each other in physical-chemical features because of individual evolutionary history in their geographical environments, and suffering from different outside factors, such as climate changes and precipitation. Thus, it results in respective biological distribution and ecological structure in lakes. The present paper reports the results from the studies of chemical components, species distributions and community structures, which mainly consisted of planktons in lakes in the Vestfold Hills (68°38'S, 78°06'E), and the Larsemann Hills (69°30'S, 76°20'E), East Antarctica. It also treats the biological diversities and nutrient relationships of these different types of lakes. So as to provide more scientific basis for monitoring of climate changes and environmental protection in Antarctica.

  12. Carbonate Deposition on Antarctic Shelves

    Science.gov (United States)

    Frank, T. D.; James, N. P.; Malcolm, I.

    2011-12-01

    Limestones associated with glaciomarine deposits occur throughout the geologic record but remain poorly understood. The best-described examples formed during major ice ages of the Neoproterozoic and Late Paleozoic. Quaternary analogs on Antarctic shelves have received comparatively little study. Here, we report on the composition, spatial distribution, and stratigraphic context of carbonate sediments contained in piston cores from the Ross Sea. The goals of this work are to (1) document the nature and distribution of carbonate sediments on the Ross Sea continental shelf and (2) examine temporal relationships to Quaternary glaciation. Results will be used to develop criteria that will improve understanding of analogous deposits in the ancient record. All carbonate-rich intervals in piston cores from the Ross Rea, now housed at the Antarctic Marine Geology Research Facility at Florida State University, were examined and described in detail. Sediment samples were disaggregated and sieved into size fractions before description with paleontological analysis carried out on the coarsest size fraction (>250 microns). Carbonate-rich sediments are concentrated in the northwestern Ross Sea, along the distal margins of Mawson and Pennell Banks. Calcareous facies include a spectrum of lithologies that range from fossiliferous mud, sand, and gravel to skeletal floatstone-rudstone and bafflestone. Floatstone-rudstone and bafflestone is most abundant along western-facing slopes in areas protected from the Antarctic Coastal Current. Sand-prone facies dominate the tops of banks and mud-prone, often spicultic, facies occur in deeper areas. The carbonate factory is characterized by a low-diversity, heterozoan assemblage that is dominated by stylasterine hydrocorals, barnacles, and bryozoans. Molluscs and echinoids are present but not abundant. Planktic and benthic foraminifera are ubiquitous components of the sediment matrix, which is locally very rich in sponge spicules. Biota rarely

  13. Antarctic density stratification and the strength of the circumpolar current during the Last Glacial Maximum

    Science.gov (United States)

    Lynch-Stieglitz, Jean; Ito, Takamitsu; Michel, Elisabeth

    2016-05-01

    The interaction between ocean circulation and biological processes in the Southern Ocean is thought to be a major control on atmospheric carbon dioxide content over glacial cycles. A better understanding of stratification and circulation in the Southern Ocean during the Last Glacial Maximum (LGM) provides information that will help us to assess these scenarios. First, we evaluate the link between Southern Ocean stratification and circulation states in a suite of climate model simulations. While simulated Antarctic Circumpolar Current (ACC) transport varies widely (80-350 Sverdrup (Sv)), it co-varies with horizontal and vertical stratification and the formation of the southern deep water. We then test the LGM simulations against available data from paleoceanographic proxies, which can be used to assess the density stratification and ACC transport south of Australia. The paleoceanographic data suggest a moderate increase in the Southern Ocean stratification and the ACC strength during the LGM. Even with the relatively large uncertainty in the proxy-based estimates, extreme scenarios exhibited by some climate models with ACC transports of greater than 250 Sv and highly saline Antarctic Bottom Water are highly unlikely.

  14. Denitrification in the Antarctic stratosphere

    Science.gov (United States)

    Salawitch, R. J.; Gobbi, G. P.; Wofsy, S. C.; Mcelroy, M. B.

    1989-01-01

    Rapid loss of ozone over Antarctica in spring requires that the abundance of gaseous nitric acid be very low. Precipitation of particulate nitric acid has been assumed to occur in association with large ice crystals, requiring significant removal of H2O and temperatures well below the frost point. However, stratospheric clouds exhibit a bimodal size distribution in the Antarctic atmosphere, with most of the nitrate concentrated in particles with radii of 1 micron or greater. It is argued here that the bimodal size distribution sets the stage for efficient denitrification, with nitrate particles either falling on their own or serving as nuclei for the condensation of ice. Denitrification can therefore occur without significant dehydration, and it is unnecessary for temperatures to drop significantly below the frost point.

  15. ARM West Antarctic Radiation Experiment (AWARE) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lubin, D [National Science Foundation; Bromwich, DH [Ohio State University; Russell, LM [Scripps Institution of Oceanography; Verlinde, J [The Pennsylvania State University; Vogelmann, AM [Brookhaven National Laboratory

    2015-10-01

    West Antarctica is one of the most rapidly warming regions on Earth, and this warming is closely connected with global sea level rise. The discovery of rapid climate change on the West Antarctic Ice Sheet (WAIS) has challenged previous explanations of Antarctic climate change that focused on strengthening of circumpolar westerlies in response to the positive polarity trend in the Southern Annular Mode. West Antarctic warming does not yet have a comprehensive explanation: dynamical mechanisms may vary from one season to the next, and these mechanisms very likely involve complex teleconnections with subtropical and tropical latitudes. The prime motivation for this proposal is that there has been no substantial atmospheric science or climatological field work on West Antarctica since the 1957 International Geophysical Year and that research continued for only a few years. Direct meteorological information on the WAIS has been limited to a few automatic weather stations for several decades, yet satellite imagery and meteorological reanalyses indicate that West Antarctica is highly susceptible to advection of warm and moist maritime air with related cloud cover, depending on the location and strength of low pressure cells in the Amundsen, Ross, and Bellingshausen Seas. There is a need to quantify the role of these changing air masses on the surface energy balance, including all surface energy components and cloud-radiative forcing. More generally, global climate model simulations are known to perform poorly over the Antarctic and Southern Oceans, and the marked scarcity of cloud information at southern high latitudes has so far inhibited significant progress. Fortunately, McMurdo Station, where the Atmospheric Radiation Measurement Facility’s (ARM’s) most advanced cloud and aerosol instrumentation is situated, has a meteorological relationship with the WAIS via circulation patterns in the Ross and Amundsen Seas. We can therefore gather sophisticated data with cloud

  16. Role of the meiobenthos in Antarctic ecosystems

    OpenAIRE

    Vanhove, S.; Wittoeck, J; Beghyn, M.; Van Gansbeke, D.; Van Kenhove, A.; Coomans, A.; Vincx, M.

    1997-01-01

    To date meiobenthic research remained a big white spot in the systematic-ecological work on Antarctic zoobenthos. Therefore the relative importance of the meiofauna (organisms within the size range of 38-1000µm) in the Antarctic benthic community has been assessed by a combined field ecology and experimental approach. This was done in two contrasting conditions, e.g. the deep sea and low subtidal, where as to the depth of the water column the benthic characteristics were, respectively, indire...

  17. New and interesting species of the genus Muelleria (Bacillariophyta) from the Antarctic region and South Africa

    Science.gov (United States)

    Van De Vijver, B.; Mataloni, G.; Stanish, L.; Spaulding, S.A.

    2010-01-01

    During a survey of the terrestrial diatom flora of some sub-Antarctic islands in the southern Indian and Atlantic Oceans and of the Antarctic continent, more than 15 taxa belonging to the genus Muelleria were observed. Nine of these taxa are described as new species using light and scanning electron microscopy. Comments are made on their systematic position and how they are distinguished from other species in the genus. Additionally, two previously unrecognized taxa within the genus were discovered in samples from South Africa. One of these, Muelleria taylorii Van de Vijver & Cocquyt sp. nov., is new to science; the other, Muelleria vandermerwei (Cholnoky) Van de Vijver & Cocquyt nov. comb., had been included in the genus Diploneis. The large number of new Muelleria taxa on the (sub)-Antarctic locations is not surprising. Species in Muelleria occur rarely in collections; in many habitats, it is unusual to find more than 1-2 valves in any slide preparation. As a result, records are scarce. The practice of "force-fitting" (shoehorning) specimens into descriptions from common taxonomic keys (and species drift) results in European species, such as M. gibbula and M. linearis, being applied to Antarctic forms in ecological studies. Finally, the typical terrestrial habitats of soils, mosses and ephemeral water bodies of most of these taxa have been poorly studied in the past.

  18. Late Miocene-Pliocene Asian monsoon intensification linked to Antarctic ice-sheet growth

    Science.gov (United States)

    Ao, Hong; Roberts, Andrew P.; Dekkers, Mark J.; Liu, Xiaodong; Rohling, Eelco J.; Shi, Zhengguo; An, Zhisheng; Zhao, Xiang

    2016-06-01

    Environmental conditions in one of Earth's most densely populated regions, East Asia, are dominated by the monsoon. While Quaternary monsoon variability is reasonably well understood, pre-Quaternary monsoon variability and dynamics remain enigmatic. In particular, little is known about potential relationships between northern hemispheric monsoon response and major Cenozoic changes in Antarctic ice cover. Here we document long-term East Asian summer monsoon (EASM) intensification through the Late Miocene-Pliocene (∼8.2 to 2.6 Ma), and attribute this to progressive Antarctic glaciation. Our new high-resolution magnetic records of long-term EASM intensification come from the Late Miocene-Pliocene Red Clay sequence on the Chinese Loess Plateau; we identify underlying mechanisms using a numerical climate-model simulation of EASM response to an idealized stepwise increase in Antarctic ice volume. We infer that progressive Antarctic glaciation caused intensification of the cross-equatorial pressure gradient between an atmospheric high-pressure cell over Australia and a low-pressure cell over mid-latitude East Asia, as well as intensification of the cross-equatorial sea-surface temperature (SST) gradient. These combined atmospheric and oceanic adjustments led to EASM intensification. Our findings offer a new and more global perspective on the controls behind long-term Asian monsoon evolution.

  19. Observationally constrained projections of Antarctic ice sheet instability

    Science.gov (United States)

    Edwards, Tamsin; Ritz, Catherine; Durand, Gael; Payne, Anthony; Peyaud, Vincent; Hindmarsh, Richard

    2015-04-01

    Large parts of the Antarctic ice sheet lie on bedrock below sea level and may be vulnerable to a positive feedback known as Marine Ice Sheet Instability (MISI), a self-sustaining retreat of the grounding line triggered by oceanic or atmospheric changes. There is growing evidence MISI may be underway throughout the Amundsen Sea Embayment (ASE) of West Antarctica, induced by circulation of warm Circumpolar Deep Water. If this retreat is sustained the region could contribute up to 1-2 m to global mean sea level, and if triggered in other areas the potential contribution to sea level on centennial to millennial timescales could be two to three times greater. However, physically plausible projections of Antarctic MISI are challenging: numerical ice sheet models are too low in spatial resolution to resolve grounding line processes or else too computationally expensive to assess modelling uncertainties, and no dynamical models exist of the ocean-atmosphere-ice sheet system. Furthermore, previous numerical ice sheet model projections for Antarctica have not been calibrated with observations, which can reduce uncertainties. Here we estimate the probability of dynamic mass loss in the event of MISI under a medium climate scenario, assessing 16 modelling uncertainties and calibrating the projections with observed mass losses in the ASE from 1992-2011. We project losses of up to 30 cm sea level equivalent (SLE) by 2100 and 72 cm SLE by 2200 (95% credibility interval: CI). Our results are substantially lower than previous estimates. The ASE sustains substantial losses, 83% of the continental total by 2100 and 67% by 2200 (95% CI), but in other regions losses are limited by ice dynamical theory, observations, or a lack of projected triggers.

  20. Interhemispheric controls on deep ocean circulation and carbon chemistry during the last two glacial cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Wilson, D.J.; Galy, A.; Piotrowski, A.M.; Banakar, V.K.

    temperature and/or Antarctic sea ice extent, on deep stratification and mixing in the Southern Ocean, leading to isolation of the global deep oceans from an NADW source during times of low Northern Hemisphere summer insolation. That evidence could support...

  1. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes.

    Science.gov (United States)

    Near, Thomas J; Dornburg, Alex; Kuhn, Kristen L; Eastman, Joseph T; Pennington, Jillian N; Patarnello, Tomaso; Zane, Lorenzo; Fernández, Daniel A; Jones, Christopher D

    2012-02-28

    The Southern Ocean around Antarctica is among the most rapidly warming regions on Earth, but has experienced episodic climate change during the past 40 million years. It remains unclear how ancient periods of climate change have shaped Antarctic biodiversity. The origin of antifreeze glycoproteins (AFGPs) in Antarctic notothenioid fishes has become a classic example of how the evolution of a key innovation in response to climate change can drive adaptive radiation. By using a time-calibrated molecular phylogeny of notothenioids and reconstructed paleoclimate, we demonstrate that the origin of AFGP occurred between 42 and 22 Ma, which includes a period of global cooling approximately 35 Ma. However, the most species-rich lineages diversified and evolved significant ecological differences at least 10 million years after the origin of AFGPs, during a second cooling event in the Late Miocene (11.6-5.3 Ma). This pattern indicates that AFGP was not the sole trigger of the notothenioid adaptive radiation. Instead, the bulk of the species richness and ecological diversity originated during the Late Miocene and into the Early Pliocene, a time coincident with the origin of polar conditions and increased ice activity in the Southern Ocean. Our results challenge the current understanding of the evolution of Antarctic notothenioids suggesting that the ecological opportunity that underlies this adaptive radiation is not linked to a single trait, but rather to a combination of freeze avoidance offered by AFGPs and subsequent exploitation of new habitats and open niches created by increased glacial and ice sheet activity. PMID:22331888

  2. Learning from the past: Antarctic Eemian ice sheet dynamics as an analogy for future warming.

    Science.gov (United States)

    Sutter, Johannes; Thoma, Malte; Grosfeld, Klaus; Gierz, Paul; Lohmann, Gerrit

    2015-04-01

    Facing considerable warming during this century the stability of the West Antarctic Ice Sheet is under increasing scrutiny. Recent observations suggest that the marine ice sheet instability of the WAIS has already started . We investigate the dynamic evolution of the Antarctic Ice Sheet during the last interglacial, forcing a state of the art 3D ice sheet model with Eemian boundary conditions. We elucidate the role of ocean warming and surface mass balance on the coupled ice sheet/shelf and grounding line dynamics. Special focus lies on an ice sheet modeling assessment of Antarctica's potential contribution to global sea level rise during the Eemian. The transient model runs are forced by time slice experiments of a fully coupled atmosphere-ocean global circulation model, as well as different sets of sea level and bedrock reconstructions. The model result show strong evidences for a severe ice-sheet retreat in West Antartica, leading to substantical contribution to global sea level from the Southern Hemisphere. Additionally we compare future warming scenarios of West Antarctic Ice Sheet dynamics to our paleo ice sheet modeling studies.

  3. Jun Jaegyu Volcano: A Recently Discovered Alkali Basalt Volcano in Antarctic Sound, Antarctica

    Science.gov (United States)

    Hatfield, A.; Bailey, D.; Domack, E.; Brachfeld, S.; Gilbert, R.; Ishman, S.; Krahmann, G.; Leventer, A.

    2004-12-01

    Jun Jaegyu is a young volcanic construct discovered in May 2004 by researchers aboard the National Science Foundation (NSF) vessel Laurence M. Gould (LMG04-04). The volcano is located on the Antarctic continental shelf in Antarctic Sound, approximately 9 km due north of the easternmost point of Andersson Island. Swath bathymetry (NBP01-07) indicates that the volcano stands 700 meters above the seafloor, yet remains 275 meters short of the ocean surface. The seamount lies along a northwest-southeast oriented fault scarp and contains at least 1.5 km3 of volcanic rock. Video recording of the volcano's surface revealed regions nearly devoid of submarine life. These areas are associated with a thermal anomaly of up to 0.052° C higher than the surrounding ocean water. A rock dredge collected ~13 kg of material, over 80% of which was fresh volcanic rock; the remainder was glacial IRD. These observations, along with reports by mariners of discolored water in this region of Antarctic Sound, suggest that the volcano has been recently active. The basalt samples are generally angular, glassy and vesicular. Preliminary petrographic observations indicate that plagioclase, olivine, and clinopyroxene are all present as phenocryst phases, and that small (tectonic setting of the region is complex, volcanism appears to be associated with active faults related to within-plate extension.

  4. Health aspects of Antarctic tourism.

    Science.gov (United States)

    Prociv, P

    1998-12-01

    Increasing numbers of seaborne tourists are visiting Antarctica, with most coming from the United States (3503 in 1996-97), Germany (777), and Australia (680; cf. 356 in 1994-95 and 410 in 1995-96). The impression among travel medicine clinicians is that, each year, more prospective travelers seek advice about the health demands of this type of adventure, mostly relating to fitness for travel, exposure to extreme cold, hazards in ice and snow, and other potential health risks. This is a recent phenomenon. While a regular shipping service had been established between the Falklands and the subantarctic islands of South Georgia and the South Shetlands by 1924, the first documented tourists accompanied an Argentine expedition to the South Orkneys in 1933.1 Commercial airline flights over these islands and the Antarctic Peninsula began in 1956, from Chile, and recreational cruises to the Peninsula began in 1958. Tourist numbers subsequently grew slowly, for what was clearly an exclusive and very expensive undertaking, with few ships available for these hazardous voyages. From 1957 to 1993, 37,000 tourists visited by sea, most seeing only the Peninsula.2 The dramatic recent growth in numbers is a consequence of the collapse of the Soviet Union. The small fleet of ice-strengthened research vessels and working icebreakers, which was made redundant by withdrawal of central government support from isolated communities and military activities along the northern coast of Siberia (and from Antarctic research bases), now accounts for the bulk of charter-cruise tourism to Antarctica, at competitive prices. According to the International Association of Antarctica Tour Operators,3 7322 people traveled to Antarctica on commercially organized voyages in the 1996-97 season, and a record 10,000 shipborne visitors were expected for the 1997-98 season (November-March), traveling mainly from South America to the Peninsula on 15 ice-reinforced vessels, each carrying between 36 and 180

  5. Oceanographic profile chlorophyll a and zooplankton biomass measurements collected using bottle in the Southern Oceans from 1995 to 1996 (NODC Accession 0000980)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Variability in abundance of virus-like particles (VLP), VLP decay rates and prokaryotic mortality due to viral infection were determined in three Antarctic areas:...

  6. Temperature, salinity, oxygen, beam attenuation coefficient, and pressure measurements collected using CTD in the global ocean from 1990 to 1998 (NODC Accession 0002369)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD and Transmissometer data from JGOFS Programs: Equatorial Pacific (EqPac), Antarctic Polar Front Zone (APFZ), North Atlantic Bloom Experiment (NABE), Arabian Sea...

  7. The Southern Ocean and South Pacific Region

    OpenAIRE

    Kelleher, K.; Warnau, Michel; Failler, Pierre; Pecl, Gretta; Turley, Carol; Boeuf, Gilles; Laffoley, Dan; Parker, Laura; Gurney, Leigh

    2012-01-01

    The Region comprises three sub-regions (FAO Statistical Areas) with very different characteristics. The South Pacific includes the vast and virtually unpopulated Southern Ocean surrounding the Antarctic. It has the world’s largest fisheries off Peru and Chile and some of the world’s best managed fisheries in Australia and New Zealand. The Region has over 27% of the world’s ocean area and over 98% of the Region’s total area of 91 million km2 is ‘open ocean’. The Region contains less than 5% of...

  8. 76 FR 9849 - Comprehensive Environmental Evaluations for Antarctic Activities

    Science.gov (United States)

    2011-02-22

    .... SUPPLEMENTARY INFORMATION: Article 3 of Annex I to the Protocol on Environmental Protection to the Antarctic... Comprehensive Environmental Evaluations for Antarctic Activities SUMMARY: The Department of State gives notice of the availability of two draft Comprehensive Environmental Evaluations (CEEs) for...

  9. Mapping and interpretation of satellite magnetic anomalies from POGO data over the Antarctic region

    Directory of Open Access Journals (Sweden)

    P. T. Taylor

    1999-06-01

    Full Text Available A satellite magnetic anomaly map made using the POGO magnetic field data is compared to three maps made using Magsat data. A total of 14 anomalies with magnitudes greater than 3 nT can be identified in all four of the maps poleward of 60°S latitude. Forward models of the Antarctic continental and oceanic lithosphere are produced which use magnetic crustal thickness based on seismic and heat flow data, and which also use the distribution of the Cretaceous Quiet Zone from marine geophysics. These simple models can explain significant parts of eight of the 14 identified anomalies. The remaining anomalies may be caused by lateral variations of magnetization, inadequate models of the magnetic crustal thickness, or remanent magnetizations in directions other than the present field. In addition, contamination of the magnetic anomaly maps by fields of time-varying external origin (and their corresponding internal parts is still a significant problem in the Antarctic region.

  10. Rich and rare—First insights into species diversity and abundance of Antarctic abyssal Gastropoda (Mollusca)

    Science.gov (United States)

    Schwabe, Enrico; Michael Bohn, Jens; Engl, Winfried; Linse, Katrin; Schrödl, Michael

    2007-08-01

    The abyssal depths of the polar oceans are thought to be low in diversity compared with the shallower polar shelves and temperate and tropical deep-sea basins. Our recent study on the gastropod fauna of the deep Southern Ocean gives evidence of the existence of a rich gastropod assemblage at abyssal depths. During the ANDEEP I and II expeditions to the southern Drake Passage, Northwestern Weddell Sea, and South Sandwich Trench, gastropods were collected by bottom and Agassiz trawls, epibenthic sledge, and multicorer, at 40 stations in depths between 127 and 5194 m. On the whole, 473 specimens, corresponding to 93 species of 36 families, were obtained. Of those, 414 specimens were caught below 750 m depth and refer to 84 (90%) benthic species of 32 (89%) families. Most families were represented by a single species only. The numerically dominant families were Skeneidae and Buccinidae (with 10 and 11 species, respectively), Eulimidae and Trochidae (with 9 species each), and Turridae (6 species). Thirty-Seven benthic deep-sea species (44%) were represented by a single specimen, and another 20 species (24%) were found at a single station, suggesting that more than two thirds of Antarctic deep-sea gastropod species are very rare or have a very scattered distribution. Of the 27 species occurring at two or more deep-sea stations, 14 were collected with different gear. Approximately half of the deep-water species are new to science or have been recently described. The present investigation increases the total number of recorded benthic Antarctic deep-sea gastropods (below 750 m) from 115 to 177. The previously known depth ranges have been extended, often considerably, for 31 species. The collected deep-sea gastropods comprise both eurybathic shelf species (29%) and apparently true deep-sea species (58%); some of the latter may belong to a so far unknown Antarctic abyssal fauna. Geographical ranges of the collected Antarctic benthic deep-sea gastropod species appear limited

  11. Climate Model Dependency and Understanding the Antarctic Ice Sheet during the Warm Late Pliocene

    Science.gov (United States)

    Dolan, Aisling; de Boer, Bas; Bernales, Jorge; Hunter, Stephen; Haywood, Alan

    2016-04-01

    In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals of Earth history is fundamentally important. A warm period in the Late Pliocene (3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions and geological evidence. Following a five year international project PLISMIP (Pliocene Ice Sheet Modeling Intercomparison Project) we present the final set of results which quantify uncertainty in climate model-based predictions of the Antarctic ice sheet. In this study we use an ensemble of climate model forcings within a multi-ice sheet model framework to assess the climate (model) dependency of large scale features of the Antarctic ice sheet. Seven coupled atmosphere-ocean climate models are used to derive surface temperature, precipitation and oceanic forcing that drive three ice sheet models (over the grounded and floating domain). Similar to results presented over Greenland, we show that the reconstruction of the Antarctic ice sheet is sensitive to which climate model is used to provide the forcing field. Key areas of uncertainty include West Antarctica, the large subglacial basins of East Antarctica and the overall thickness of the continental interior of East Antarctica. We relate the results back to geological proxy data, such as those relating to exposure rates which provide information on potential ice sheet thickness. Finally we discuss as to whether the choice of modelling framework (i.e. climate model and ice sheet model used) or the choice of boundary conditions causes the greatest uncertainty in ice sheet reconstructions of the warm Pliocene.

  12. Evaluating Antarctic sea ice predictability at seasonal to interannual timescales in global climate models

    Science.gov (United States)

    Marchi, Sylvain; Fichefet, Thierry; Goosse, Hugues; Zunz, Violette; Tietsche, Steffen; Day, Jonny; Hawkins, Ed

    2016-04-01

    Unlike the rapid sea ice losses reported in the Arctic, satellite observations show an overall increase in Antarctic sea ice extent over recent decades. Although many processes have already been suggested to explain this positive trend, it remains the subject of current investigations. Understanding the evolution of the Antarctic sea ice turns out to be more complicated than for the Arctic for two reasons: the lack of observations and the well-known biases of climate models in the Southern Ocean. Irrespective of those issues, another one is to determine whether the positive trend in sea ice extent would have been predictable if adequate observations and models were available some decades ago. This study of Antarctic sea ice predictability is carried out using 6 global climate models (HadGEM1.2, MPI-ESM-LR, GFDL CM3, EC-Earth V2, MIROC 5.2 and ECHAM 6-FESOM) which are all part of the APPOSITE project. These models are used to perform hindcast simulations in a perfect model approach. The predictive skill is estimated thanks to the PPP (Potential Prognostic Predictability) and the ACC (Anomaly Correlation Coefficient). The former is a measure of the uncertainty of the ensemble while the latter assesses the accuracy of the prediction. These two indicators are applied to different variables related to sea ice, in particular the total sea ice extent and the ice edge location. This first model intercomparison study about sea ice predictability in the Southern Ocean aims at giving a general overview of Antarctic sea ice predictability in current global climate models.

  13. House mouse colonization patterns on the sub-Antarctic Kerguelen Archipelago suggest singular primary invasions and resilience against re-invasion

    OpenAIRE

    Scavetta Rick J; Quillfeldt Petra; van Vuuren Jansen; Stevens Mark I; Chapuis Jean-Louis; Hardouin Emilie A; Teschke Meike; Tautz Diethard

    2010-01-01

    Abstract Background Starting from Western Europe, the house mouse (Mus musculus domesticus) has spread across the globe in historic times. However, most oceanic islands were colonized by mice only within the past 300 years. This makes them an excellent model for studying the evolutionary processes during early stages of new colonization. We have focused here on the Kerguelen Archipelago, located within the sub-Antarctic area and compare the patterns with samples from other Southern Ocean isla...

  14. Meteorological observatory for Antarctic data collection

    International Nuclear Information System (INIS)

    In the last years, a great number of automatic weather stations was installed in Antarctica, with the aim to examine closely the weather and climate of this region and to improve the coverage of measuring points on the Antarctic surface. In 1987 the Italian Antarctic Project started to set up a meteorological network, in an area not completely covered by other countries. Some of the activities performed by the meteorological observatory, concerning technical functions such as maintenance of the AWS's and the execution of radio soundings, or relating to scientific purposes such as validation and elaboration of collected data, are exposed. Finally, some climatological considerations on the thermal behaviour of the Antarctic troposphere such as 'coreless winter', and on the wind field, including katabatic flows in North Victoria Land are described

  15. The Antarctic cryptoendolithic ecosystem - Relevance to exobiology

    Science.gov (United States)

    Friedmann, E. I.; Ocampo-Friedmann, R.

    1984-01-01

    Cryptoendolithic microorganisms in the Antarctic desert live inside porous sandstone rocks, protected by a thin rock crust. While the rock surface is abiotic, the microclimate inside the rock is comparatively mild. These organisms may have descended from early, pre-glaciation Antarctic life forms and thus may represent the last outpost of life in a gradually deteriorating environment. Assuming that life once arose on Mars, it is conceivable that, following the loss of water, the last of surviving organisms withdrew to similar insulated microenvironments. Because such microscopic pockets have little connection with the outside environment, their detection may be difficult. The chances that the Viking lander could sample cryptoendolithic microorganisms in the Antarctic desert would be infinitesimal.

  16. Altered developmental timing in early life stages of Antarctic krill (Euphausia superba) exposed to p,p'-DDE

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Anita H., E-mail: anita.poulsen@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Rd, Brisbane, Qld 4108 (Australia); Kawaguchi, So, E-mail: so.kawaguchi@aad.gov.au [Australian Antarctic Division, Channel Highway, Kingston, Tas 7050 (Australia); Leppaenen, Matti T., E-mail: matti.t.leppanen@uef.fi [University of Eastern Finland, Joensuu Campus, Department of Biology, FIN-80101 (Finland); Kukkonen, Jussi V.K., E-mail: jussi.kukkonen@uef.fi [University of Eastern Finland, Joensuu Campus, Department of Biology, FIN-80101 (Finland); Bengtson Nash, Susan M., E-mail: s.bengtsonnash@griffith.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Rd, Brisbane, Qld 4108 (Australia); Griffith University, Atmospheric Environment Research Centre, Brisbane, Qld 4111 (Australia)

    2011-11-15

    Persistent organic pollutants (POPs) are persistent, toxic and bioaccumulative anthropogenic organic chemicals, capable of undergoing long range environmental transport to remote areas including the Antarctic. p,p'-dichlorodiphenyl dichloroethylene (p,p'-DDE) has been identified as a dominant POP accumulating in Antarctic krill (Euphausia superba), which is a key Southern Ocean species. This study examined the developmental toxicity of p,p'-DDE via aqueous exposure to Antarctic krill larvae. p,p'-DDE exposure was found to stimulate developmental timing in the first three larval stages of Antarctic krill, while extended monitoring of larvae after a five day exposure period had ended, revealed delayed inhibitory responses during development to the fourth larval stage. Stimulatory responses were observed from the lowest p,p'-DDE body residue tested of 10.1 {+-} 3.0 {mu}mol/kg (3.2 {+-} 0.95 mg/kg) preserved wet weight, which is comparable to findings for temperate species and an order of magnitude lower than the exposure level found to cause sublethal behavioural effects in Antarctic krill. The delayed responses included increased mortality, which had doubled in the highest p,p'-DDE treatment (95 {+-} 8.9% mortality at 20 {mu}g/L p,p'-DDE) compared to the solvent control (44 {+-} 11% mortality) 2 weeks after end of exposure. Development of surviving metanauplius larvae to calyptopis 1 larvae was delayed by 2 days in p,p'-DDE exposed larvae compared with untreated larvae. Finally, the developmental success of surviving p,p'-DDE exposed larvae was reduced by 50 to 75% compared to the solvent control (100% developmental success). The lowest observed effect concentration for all delayed effects was 1 {mu}g/L, the lowest exposure concentration tested. These findings demonstrate the importance of delayed and indirect effects of toxicant exposure. Further, the findings of this study are important for environmental risk assessment

  17. Altered developmental timing in early life stages of Antarctic krill (Euphausia superba) exposed to p,p'-DDE

    International Nuclear Information System (INIS)

    Persistent organic pollutants (POPs) are persistent, toxic and bioaccumulative anthropogenic organic chemicals, capable of undergoing long range environmental transport to remote areas including the Antarctic. p,p'-dichlorodiphenyl dichloroethylene (p,p'-DDE) has been identified as a dominant POP accumulating in Antarctic krill (Euphausia superba), which is a key Southern Ocean species. This study examined the developmental toxicity of p,p'-DDE via aqueous exposure to Antarctic krill larvae. p,p'-DDE exposure was found to stimulate developmental timing in the first three larval stages of Antarctic krill, while extended monitoring of larvae after a five day exposure period had ended, revealed delayed inhibitory responses during development to the fourth larval stage. Stimulatory responses were observed from the lowest p,p'-DDE body residue tested of 10.1 ± 3.0 μmol/kg (3.2 ± 0.95 mg/kg) preserved wet weight, which is comparable to findings for temperate species and an order of magnitude lower than the exposure level found to cause sublethal behavioural effects in Antarctic krill. The delayed responses included increased mortality, which had doubled in the highest p,p'-DDE treatment (95 ± 8.9% mortality at 20 μg/L p,p'-DDE) compared to the solvent control (44 ± 11% mortality) 2 weeks after end of exposure. Development of surviving metanauplius larvae to calyptopis 1 larvae was delayed by 2 days in p,p'-DDE exposed larvae compared with untreated larvae. Finally, the developmental success of surviving p,p'-DDE exposed larvae was reduced by 50 to 75% compared to the solvent control (100% developmental success). The lowest observed effect concentration for all delayed effects was 1 μg/L, the lowest exposure concentration tested. These findings demonstrate the importance of delayed and indirect effects of toxicant exposure. Further, the findings of this study are important for environmental risk assessment of POPs in the Southern Ocean ecosystem and strongly

  18. Commitments to future retreat of Antarctic and Greenland ice sheets

    Science.gov (United States)

    DeConto, Robert; Pollard, David

    2016-04-01

    The agreement reached at the COP21 United Nations Conference on Climate Change is aimed at limiting future increases in global mean temperature below 2°C. Here, we use a continental ice sheet/shelf model with new treatments of meltwater-enhanced calving (hydrofracturing) and marine terminating ice-cliffs, to explore future commitments to sea-level rise given limits of global mean warming between 1 and 3°C. In this case, ice-sheet model physics are calibrated against past ice-sheet response to temperatures warmer than today. The ice-sheet model is coupled to highly resolved atmosphere and ocean-model components, with imposed limits on future warming designed to mimic the idealized limits discussed at COP21. Both the short and long-term potential rise in global mean sea level are discussed in light of the range of allowances agreed in Paris. We also explore the sensitivity of Greenland and Antarctic ice sheets to plausible ranges of atmospheric versus ocean warming consistent with global mean temperatures between 1 and 3°C; and the resulting long-term commitments to sea-level rise over the coming centuries and millennia.

  19. Speedup and fracturing of George VI Ice Shelf, Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    T. O. Holt

    2013-05-01

    Full Text Available George VI Ice Shelf (GVIIS is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat, radar (ERS 1/2 SAR and laser altimetry (GLAS datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010 are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009 to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to ongoing atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.

  20. First geomagnetic measurements in the Antarctic region

    Science.gov (United States)

    Raspopov, O. M.; Demina, I. M.; Meshcheryakov, V. V.

    2014-05-01

    Based on data from literature and archival sources, we have further processed and analyzed the results of geomagnetic measurements made during the 1772-1775 Second World Expedition by James Cook and the 1819-1821 overseas Antarctic Expedition by Russian mariners Bellingshausen and Lazarev. Comparison with the GUFM historical model showed that there are systematic differences in the spatial structure of both the declination and its secular variation. The results obtained can serve as a basis for the construction of regional models of the geomagnetic field for the Antarctic region.

  1. Climate Change Influences on Antarctic Bird Populations

    Science.gov (United States)

    Korczak-Abshire, Małgorzata

    2010-01-01

    Rapid changes in the major environmental variables like: temperature, wind and precipitation have occurred in the Antarctic region during the last 50 years. In this very sensitive region, even small changes can potentially lead to major environmental perturbations. Then the climate change poses a new challenge to the survival of Antarctic wildlife. As important bioindicators of changes in the ecosystem seabirds and their response to the climate perturbations have been recorded. Atmospheric warming and consequent changes in sea ice conditions have been hypothesized to differentially affect predator populations due to different predator life-history strategies and substantially altered krill recruitment dynamics.

  2. Influence of the Southern Annular Mode on the sea ice-ocean system

    OpenAIRE

    W. Lefebvre; Goosse, H.; Timmermann, R.; Fichefet, T.

    2004-01-01

    [1] The global sea ice - ocean model ORCA2-LIM, driven by the NCEP/NCAR ( National Centers for Environmental Prediction-National Center for Atmospheric Research) reanalysis daily 2-m air temperatures and 10-m winds and by monthly climatologies for precipitation, cloud cover, and relative humidity, is used to investigate the impact of the Southern Annular Mode (SAM) on the Antarctic sea ice-ocean system. Our results suggest that the response of the circumpolar Southern Ocean consists of an ann...

  3. About the consistency between Envisat and CryoSat-2 radar freeboard retrieval over Antarctic sea ice

    OpenAIRE

    Schwegmann, S.; E. Rinne; Ricker, R.; Hendricks, S.; V. Helm

    2015-01-01

    Knowledge about Antarctic sea-ice volume and its changes over the past decades has been sparse due to the lack of systematic sea-ice thickness measurements in this remote area. Recently, first attempts have been made to develop a sea-ice thickness product over the Southern Ocean from space-borne radar altimetry and results look promising. Today, more than 20 years of radar altimeter data are potentially available for such products. However, data come from di...

  4. Increased Feeding and Nutrient Excretion of Adult Antarctic Krill, Euphausia superba, Exposed to Enhanced Carbon Dioxide (CO2)

    OpenAIRE

    Saba, Grace K.; Oscar Schofield; Joseph J Torres; Erica H Ombres; Steinberg, Deborah K.

    2012-01-01

    Ocean acidification has a wide-ranging potential for impacting the physiology and metabolism of zooplankton. Sufficiently elevated CO(2) concentrations can alter internal acid-base balance, compromising homeostatic regulation and disrupting internal systems ranging from oxygen transport to ion balance. We assessed feeding and nutrient excretion rates in natural populations of the keystone species Euphausia superba (Antarctic krill) by conducting a CO(2) perturbation experiment at ambient and ...

  5. Reducing uncertainties in projections of Antarctic ice mass loss

    Science.gov (United States)

    Durand, G.; Pattyn, F.

    2015-11-01

    Climate model projections are often aggregated into multi-model averages of all models participating in an intercomparison project, such as the Coupled Model Intercomparison Project (CMIP). The "multi-model" approach provides a sensitivity test to the models' structural choices and implicitly assumes that multiple models provide additional and more reliable information than a single model, with higher confidence being placed on results that are common to an ensemble. A first initiative of the ice sheet modeling community, SeaRISE, provided such multi-model average projections of polar ice sheets' contribution to sea-level rise. The SeaRISE Antarctic numerical experiments aggregated results from all models devoid of a priori selection, based on the capacity of such models to represent key ice-dynamical processes. Here, using the experimental setup proposed in SeaRISE, we demonstrate that correctly representing grounding line dynamics is essential to infer future Antarctic mass change. We further illustrate the significant impact on the ensemble mean and deviation of adding one model with a known bias in its ability of modeling grounding line dynamics. We show that this biased model can hardly be identified from the ensemble only based on its estimation of volume change, as ad hoc and untrustworthy parametrizations can force any modeled grounding line to retreat. However, tools are available to test parts of the response of marine ice sheet models to perturbations of climatic and/or oceanic origin (MISMIP, MISMIP3d). Based on recent projections of Pine Island Glacier mass loss, we further show that excluding ice sheet models that do not pass the MISMIP benchmarks decreases the mean contribution and standard deviation of the multi-model ensemble projection by an order of magnitude for that particular drainage basin.

  6. Proceses in the Southern Ocean carbon cycle: Dissolution of carbonate sediments and inter-annual variability of carbon fluxes

    OpenAIRE

    Hauck, Judith

    2012-01-01

    The Southern Ocean (SO) carbon cycle is and will be undergoing various changes in a high-CO2 world. This thesis analyzes two key processes: dissolution of carbonate sediments on Antarctic shelves and inter-annual variability of upper ocean carbon fluxes. In the first part of the thesis, the main question is whether dissolution of carbonate sediments from Antarctic shelves can be a negative feedback to ocean acidification. Patterns in the CaCO3 distribution are related to primary production in...

  7. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport

    Science.gov (United States)

    Armour, Kyle C.; Marshall, John; Scott, Jeffery R.; Donohoe, Aaron; Newsom, Emily R.

    2016-07-01

    The Southern Ocean has shown little warming over recent decades, in stark contrast to the rapid warming observed in the Arctic. Along the northern flank of the Antarctic Circumpolar Current, however, the upper ocean has warmed substantially. Here we present analyses of oceanographic observations and general circulation model simulations showing that these patterns--of delayed warming south of the Antarctic Circumpolar Current and enhanced warming to the north--are fundamentally shaped by the Southern Ocean's meridional overturning circulation: wind-driven upwelling of unmodified water from depth damps warming around Antarctica; greenhouse gas-induced surface heat uptake is largely balanced by anomalous northward heat transport associated with the equatorward flow of surface waters; and heat is preferentially stored where surface waters are subducted to the north. Further, these processes are primarily due to passive advection of the anomalous warming signal by climatological ocean currents; changes in ocean circulation are secondary. These findings suggest the Southern Ocean responds to greenhouse gas forcing on the centennial, or longer, timescale over which the deep ocean waters that are upwelled to the surface are warmed themselves. It is against this background of gradual warming that multidecadal Southern Ocean temperature trends must be understood.

  8. Inability of stratospheric sulfate aerosol injections to preserve the West Antarctic Ice Sheet

    Science.gov (United States)

    McCusker, K. E.; Battisti, D. S.; Bitz, C. M.

    2015-06-01

    Injection of sulfate aerosols into the stratosphere has the potential to reduce the climate impacts of global warming, including sea level rise (SLR). However, changes in atmospheric and oceanic circulation that can significantly influence the rate of basal melting of Antarctic marine ice shelves and the associated SLR have not previously been considered. Here we use a fully coupled global climate model to investigate whether rapidly increasing stratospheric sulfate aerosol concentrations after a period of global warming could preserve Antarctic ice sheets by cooling subsurface ocean temperatures. We contrast this climate engineering method with an alternative strategy in which all greenhouse gases (GHG) are returned to preindustrial levels. We find that the rapid addition of a stratospheric aerosol layer does not effectively counteract surface and upper level atmospheric circulation changes caused by increasing GHGs, resulting in continued upwelling of warm water in proximity of ice shelves, especially in the vicinity of the already unstable Pine Island Glacier in West Antarctica. By contrast, removal of GHGs restores the circulation, yielding relatively cooler subsurface ocean temperatures to better preserve West Antarctica.

  9. Community structure across a large-scale ocean productivity gradient: Marine bird assemblages of the Southern Indian Ocean

    Science.gov (United States)

    Hyrenbach, K. David; Veit, Richard R.; Weimerskirch, Henri; Metzl, Nicolas; Hunt, George L., Jr.

    2007-07-01

    Our objective was to understand how marine birds respond to oceanographic variability across the Southern Indian Ocean using data collected during an 16-day cruise (4-21 January 2003). We quantified concurrent water mass distributions, ocean productivity patterns, and seabird distributions across a heterogeneous pelagic ecosystem from subtropical to sub-Antarctic waters. We surveyed 5155 km and sighted 15,606 birds from 51 species, and used these data to investigate how seabirds respond to spatial variability in the structure and productivity of the ocean. We addressed two spatial scales: the structure of seabird communities across macro-mega scale (1000 s km) biogeographic domains, and their coarse-scale (10 s km) aggregation at hydrographic and bathymetric gradients. Both seabird density and species composition changed with latitudinal and onshore-offshore gradients in depth, water temperature, and chlorophyll-a concentration. The average seabird density increased across the subtropical convergence (STC) from 2.4 birds km -2 in subtropical waters to 23.8 birds km -2 in sub-Antarctic waters. The composition of the avifauna also differed across biogeographic domains. Prions ( Pachyptila spp.) accounted for 57% of all sub-Antarctic birds, wedge-tailed shearwaters ( Puffinus pacificus) accounted for 46% of all subtropical birds, and Indian Ocean yellow-nosed albatross ( Thallasarche carteri) accounted for 32% of all birds in the STC. While surface feeders were the most abundant foraging guild across the study area, divers were disproportionately more numerous in the sub-Antarctic domain, and plungers were disproportionately more abundant in subtropical waters. Seabird densities were also higher within shallow shelf-slope regions, especially in sub-Antarctic waters, where large numbers of breeding seabirds concentrated. However, we did not find elevated seabird densities along the STC, suggesting that this broad frontal region is not a site of enhanced aggregation.

  10. A consistent data set of Antarctic ice sheet topography, cavity geometry, and global bathymetry

    Directory of Open Access Journals (Sweden)

    R. Timmermann

    2010-12-01

    Full Text Available Sub-ice shelf circulation and freezing/melting rates in ocean general circulation models depend critically on an accurate and consistent representation of cavity geometry. Existing global or pan-Antarctic topography data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile independent regional surveys and maps into a global data set. We use the S-2004 global 1-min bathymetry as the backbone and add an improved version of the BEDMAP topography (ALBMAP bedrock topography for an area that roughly coincides with the Antarctic continental shelf. The position of the merging line is individually chosen in different sectors in order to capture the best of both data sets. High-resolution gridded data for ice shelf topography and cavity geometry of the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves, and for Pine Island Glacier are carefully merged into the ambient ice and ocean topographies. Multibeam survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI, British Antarctic Survey (BAS and Lamont-Doherty Earth Observatory (LDEO, gridded, and blended into the existing bathymetry map. The resulting global 1-min Refined Topography data set (RTopo-1 contains self-consistent maps for upper and lower ice surface heights, bedrock topography, and surface type (open ocean, grounded ice, floating ice, bare land surface. The data set is available in NetCDF format from the PANGAEA database at doi:10.1594/pangaea.741917.

  11. Super-aggregations of krill and humpback whales in Wilhelmina Bay, Antarctic Peninsula.

    Directory of Open Access Journals (Sweden)

    Douglas P Nowacek

    Full Text Available Ecological relationships of krill and whales have not been explored in the Western Antarctic Peninsula (WAP, and have only rarely been studied elsewhere in the Southern Ocean. In the austral autumn we observed an extremely high density (5.1 whales per km(2 of humpback whales (Megaptera novaeangliae feeding on a super-aggregation of Antarctic krill (Euphausia superba in Wilhelmina Bay. The krill biomass was approximately 2 million tons, distributed over an area of 100 km(2 at densities of up to 2000 individuals m(-3; reports of such 'super-aggregations' of krill have been absent in the scientific literature for >20 years. Retentive circulation patterns in the Bay entrained phytoplankton and meso-zooplankton that were grazed by the krill. Tagged whales rested during daylight hours and fed intensively throughout the night as krill migrated toward the surface. We infer that the previously unstudied WAP embayments are important foraging areas for whales during autumn and, furthermore, that meso-scale variation in the distribution of whales and their prey are important features of this system. Recent decreases in the abundance of Antarctic krill around the WAP have been linked to reductions in sea ice, mediated by rapid climate change in this area. At the same time, baleen whale populations in the Southern Ocean, which feed primarily on krill, are recovering from past exploitation. Consideration of these features and the effects of climate change on krill dynamics are critical to managing both krill harvests and the recovery of baleen whales in the Southern Ocean.

  12. Contrasting Arctic and Antarctic sea ice temperatures

    Science.gov (United States)

    Vancoppenolle, Martin; Raphael, Marilyn; Rousset, Clément; Vivier, Frédéric; Moreau, Sébastien; Delille, Bruno; Tison, Jean-Louis

    2016-04-01

    Sea ice temperature affects the sea ice growth rate, heat content, permeability and habitability for ice algae. Large-scale simulations with NEMO-LIM suggest large ice temperature contrasts between the Arctic and the Antarctic sea ice. First, Antarctic sea ice proves generally warmer than in the Arctic, in particular during winter, where differences reach up to ~10°C. Second, the seasonality of temperature is different among the two hemispheres: Antarctic ice temperatures are 2-3°C higher in spring than they are in fall, whereas the opposite is true in the Arctic. These two key differences are supported by the available ice core and mass balance buoys temperature observations, and can be attributed to differences in air temperature and snow depth. As a result, the ice is found to be habitable and permeable over much larger areas and much earlier in late spring in the Antarctic as compared with the Arctic, which consequences on biogeochemical exchanges in the sea ice zone remain to be evaluated.

  13. Relevance of antarctic microbial ecosystems to exobiology

    Science.gov (United States)

    Mckay, Christopher P.

    1993-01-01

    Antarctic microbial ecosystems which provide biological and physical analogs that can be used in exobiology are studied. Since the access to extraterrestrial habitats is extremely difficult, terrestrial analogs represent the best opportunity for both formulation and preliminary testing of hypothesis about life. Antarctica, as one of few suitable environments on earth is considered to be a major locus of progress in exobiology.

  14. Antarctic sea ice variability and trends, 1979–2010

    Directory of Open Access Journals (Sweden)

    D. J. Cavalieri

    2012-03-01

    Full Text Available In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978–December 2010 reveal an overall positive trend in ice extents of 17 100 ± 2300 km2 yr−1. Much of the increase, at 13 700 ± 1500 km2 yr−1, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has, like the Arctic, instead experienced significant sea ice decreases, with an overall ice extent trend of −8200 ± 1200 km2 yr−1. When examined through the annual cycle over the 32-yr period 1979–2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9100 ± 6300 km2 yr−1 in February to a high of 24 700 ± 10 000 km2 yr−1 in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and Western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but differences in the magnitudes of the two trends identify regions with overall increasing ice concentrations and others with overall decreasing ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.

  15. Antarctic sea ice variability and trends, 1979–2010

    Directory of Open Access Journals (Sweden)

    D. J. Cavalieri

    2012-08-01

    Full Text Available In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978–December 2010 reveal an overall positive trend in ice extents of 17 100 ± 2300 km2 yr−1. Much of the increase, at 13 700 ± 1500 km2 yr−1, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has (like the Arctic instead experienced significant sea ice decreases, with an overall ice extent trend of −8200 ± 1200 km2 yr−1. When examined through the annual cycle over the 32-yr period 1979–2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9100 ± 6300 km2 yr−1 in February to a high of 24 700 ± 10 000 km2 yr−1 in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but the magnitudes of the two trends differ, and in some cases these differences allow inferences about the corresponding changes in sea ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.

  16. Distributions of surface sediments surrounding the Antarctic Peninsula and its environmental significance

    Institute of Scientific and Technical Information of China (English)

    WANG Chunjuan; CHEN Zhihua; LI Chunshun; DU Dewen; YAN Shijuan; ZHU Zhiwei

    2014-01-01

    We analyzed grain size composition to provide information on the types and distributions as well as depositional varieties of marine surface sediments from the area surrounding the Antarctic Peninsula. The samples retrieved from the study area contain gravel, sand, silt and clay. As suggested by bathymetry and morphology, the study area is characterized by neritic, hemipelagic and pelagic deposits. The glacial-marine sediments can be divided into two types, residual paratill and compound paratill, which are primarily transported by glaciers and as ice-rafted debris. Ocean current effects on deposition are more obvious, and the deposit types are distributed consistently with terrain variations.

  17. Where is the West Antarctic Rift System in the Amundsen Sea and Bellingshausen Sea sectors?

    Science.gov (United States)

    Gohl, Karsten; Kalberg, Thomas; Eagles, Graeme; Dziadek, Ricarda; Kaul, Norbert; Spiegel, Cornelia; Lindow, Julia

    2015-04-01

    The West Antarctic Rift System (WARS) is one of the largest continental rifts globally, but its lateral extent, distribution of local rifts, timing of rifting phases, and mantle processes are still largely enigmatic. It has been presumed that the rift and its crustal extensional processes have widely controlled the history and development of West Antarctic glaciation with an ice sheet of which most is presently based at sub-marine level and which is, therefore, likely to be highly sensitive to ocean warming. While the western domain of the WARS in the Ross Sea has been studied in some detail, only recently have various geophysical and geochemical/thermochronological analyses revealed indications for its eastern extent in the Amundsen Sea and Bellingshausen Sea sectors of the South Pacific realm. The current model, based on these studies and additional data, suggests that the WARS activity included tectonic translateral, transtensional and extensional processes from the Amundsen Sea Embayment to the Bellingshausen Sea region of the southern Antarctic Peninsula. We present the range of existing hypotheses regarding the extent of the eastern WARS as well as published and yet unpublished data that support a conceptual WARS model for the eastern West Antarctica with implications for glacial onset and developments.

  18. Botany of Bouvetøya, South Atlantic Ocean. II. The terrestrial vegetation of Bouvetøya

    OpenAIRE

    Engelskjøn, Torstein

    1987-01-01

    Bouvetøya (54°25'S, 3°20'E), the northernmost land in the maritime Antarctic, has a climate typical of oceanic islands south of the Antarctic convergence, and a non-vascular vegetation of maritime Antarctic composition and structure. Mean vegetation temperatures during the growing season are from + 1 to +4.S°C on the low ground, whereas elevations above 200 m a.s.1. are more prone to freezing and show regular diurnal freeze/thaw cycles. Radiative heating of the ground is im...

  19. Organophosphorus esters in the oceans and possible relation with ocean gyres

    International Nuclear Information System (INIS)

    Four organophosphorus esters (OPEs) were detected in aerosol samples collected in the West Pacific, the Indian Ocean and the Southern Ocean from 2009 to 2010, suggesting their circumpolar and global distribution. In general, the highest concentrations were detected near populated regions in China, Australia and New Zealand. OPE concentrations in the Southern Ocean were about two orders of magnitude lower than those near major continents. Additionally, relatively high OPE concentrations were detected at the Antarctic Peninsula, where several scientific survey stations are located. The four OPEs investigated here are significantly correlated with each other, suggesting they may derive from the same source. In the circumpolar transect, OPE concentrations were associated with ocean gyres in the open ocean. Their concentrations were positively related with average vorticity in the sampling area suggesting that a major source of OPEs may be found in ocean gyres where plastic debris is known to accumulate. -- Highlights: •We provide OPE concentrations in aerosols in a circumpolar expedition. •We find strong anthropogenic source of OPE pollution. •We suggest potential relationship between ocean gyres and OPE pollution. -- Our work provides a circumpolar investigation on OPEs in the Southern Ocean and we suggest a possibility that ocean currents and gyres may act as important roles in global transport of OPEs

  20. Polonium-210 and lead-210 in the Southern Polar Ocean: Naturally occurring tracers of biological and hydrographical processes in the surface waters of the Antarctic Circumpolar Current and the Weddell Sea; Polonium-210 und Blei-210 im Suedpolarmeer: Natuerliche Tracer fuer biologische und hydrographische Prozesse im Oberflaechenwasser des Antarktischen Zirkumpolarstroms und des Weddellmeeres

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, J.

    1997-11-01

    In this thesis the distribution of {sup 210}Po and {sup 210}Pb in the upper 600 m of the Antarctic Circumpolar Current and the Weddell Sea was investigated along north-south transects in austral spring and autumn. {sup 210}Po and {sup 210}Pb can serve as sensitive tracers for the special hydrographic conditions of the Antarctic Circumpolar Current and the Weddell Sea as well as for biological processes during phytoplankton blooms. The {sup 210}Po/{sup 210}Pb disequilibrium was used as a tracer for particle export. This tracer integrates export on a timescale of 276 days because of the 138 day half-life of {sup 210}Po and complements the {sup 234}Th/{sup 238}U disequilibrium as another tracer for plankton production and export on a shorter timescale of several weeks. (orig.) [Deutsch] In der vorliegenden Arbeit wurde die Verteilung von Blei-210 und seinem Enkelnuklid Polonium-210 im Antarktischen Zirkumpolarstrom und im Weddellmeer bis 600 m Tiefe in mehreren meridionalen Transekten im australen Fruehjahr und Herbst waehrend der `Polarstern`-Expeditionen ANT-X/6 und ANT-XI/4 untersucht. Die Verteilung von {sup 210}Pb und {sup 210}Po wird von mehreren Faktoren beeinflusst, sowohl durch die Advektion von Wassermassen im Antarktischen Zirkumpolarstrom und im Weddellmeer als auch von biologischen Prozessen z.B. innerhalb einer Planktonbluete. Bevor die Verteilungsmuster von {sup 210}Pb und {sup 210}Po jedoch als Tracer fuer einen Prozess genutzt werden koennen, muss der Effekt der einzelnen Faktoren auf die Verteilung betrachtet werden. (orig.)

  1. Spring–summer albedo variations of Antarctic sea ice from 1982 to 2009

    International Nuclear Information System (INIS)

    This study examined the spring–summer (November, December, January and February) albedo averages and trends using a dataset consisting of 28 years of homogenized satellite data for the entire Antarctic sea ice region and for five longitudinal sectors around Antarctica: the Weddell Sea (WS), the Indian Ocean sector (IO), the Pacific Ocean sector (PO), the Ross Sea (RS) and the Bellingshausen–Amundsen Sea (BS). Time series data of the sea ice concentrations and sea surface temperatures were used to analyse their relations to the albedo. The results indicated that the sea ice albedo increased slightly during the study period, at a rate of 0.314% per decade, over the Antarctic sea ice region. The sea ice albedos in the PO, the IO and the WS increased at rates of 2.599% per decade (confidence level 99.86%), 0.824% per decade and 0.413% per decade, respectively, and the steepest increase occurred in the PO. However, the sea ice albedo in the BS decreased at a rate of −1.617% per decade (confidence level 95.05%) and was near zero in the RS. The spring–summer average albedo over the Antarctic sea ice region was 50.24%. The highest albedo values were mainly found on the continental coast and in the WS; in contrast, the lowest albedo values were found on the outer edge of the sea ice, the RS and the Amery Ice Shelf. The average albedo in the western Antarctic sea ice region was distinctly higher than that in the east. The albedo was significantly positively correlated with sea ice concentration (SIC) and was significantly negatively correlated with sea surface temperature (SST); these scenarios held true for all five longitudinal sectors. Spatially, the higher surface albedos follow the higher SICs and lower SST patterns. The increasing albedo means that Antarctic sea ice region reflects more solar radiation and absorbs less, leading to a decrease in temperature and much snowfall on sea ice, and further resulted in an increase in albedo. Conversely, the decreasing

  2. In situ, navigational, physical and profile data collected by Antarctic Climate & Ecosystems Cooperative Research Centre and Commonwealth Scientific and Industrial Research Organization at OceanSITES site IMOS-EAC from 2011-04-19 to 2013-08-28 (NCEI Accession 0130033)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In situ, navigational, physical and profile oceanographic data were collected, including CURRENT SPEED - EAST/WEST COMPONENT (U), CURRENT SPEED - NORTH/SOUTH...

  3. In situ, navigational, physical and profile data collected by Antarctic Climate & Ecosystems Cooperative Research Centre and Commonwealth Scientific and Industrial Research Organization at OceanSITES site IMOS-ITF from 2011-05-26 to 2014-04-25 (NCEI Accession 0130034)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In situ, navigational, physical and profile oceanographic data were collected, including CURRENT SPEED - EAST/WEST COMPONENT (U), CURRENT SPEED - NORTH/SOUTH...

  4. Multichannel Seismic Investigations of Sediment Drifts off West Antarctica and the Antarctic Peninsula: Preliminary Results from Research Cruise JR298

    Science.gov (United States)

    Larter, R. D.; Graham, A. G. C.; Hernandez-Molina, J.; Channell, J. E. T.; Hillenbrand, C. D.; Hogan, K. A.; Uenzelmann-Neben, G.; Gohl, K.; Rebesco, M.; Hodell, D. A.

    2015-12-01

    The West Antarctic Ice Sheet (WAIS) and Antarctic Peninsula Ice Sheet (APIS) have exhibited significant changes over recent decades but there is still great uncertainty about how rapidly and how far they will retreat in a warmer climate. For example, it remains unclear whether or not the marine-based WAIS "collapsed" during the last interglacial period, resulting in a global sea-level rise contribution of more than 3 m. Previous studies, including Ocean Drilling Program (ODP) Leg 178, have shown that sediment drifts on the continental rise west of the Antarctic Peninsula contain a rich high-resolution archive of Antarctic margin paleoceanography and APIS history that extends back to at least the Late Miocene. The potential of existing ODP cores from the drifts is, however, compromised by the fact that composite sections are incomplete and lack of precise chronological control. A new drilling proposal (732-Full2) has been scientifically approved and is with the JOIDES Resolution Facilities Board of the International Ocean Discovery Program for scheduling. The main aims of the proposal are to obtain continuous, high-resolution records from sites on sediment drifts off both the Antarctic Peninsula and West Antarctica (southern Bellingshausen Sea) and to achieve good chronological control on them using a range of techniques. We present preliminary results from a recent site survey investigation cruise on RRS James Clark Ross (JR298) that obtained high-resolution multichannel seismic reflection data over the proposed sites and adjacent working areas. The new data provide a basis for interpretation of (i) sedimentary processes that operated during the development of the drifts, and (ii) links between depositional systems on the continental rise, paleo-ice-sheet dynamics and paleoceanographic processes. Through further analyses of seismic and other geophysical data, in combination with marine sediment cores retrieved from the proposed sites, we aim to provide insight into

  5. Antarctic contribution to global sea level in a high CO2 world

    Science.gov (United States)

    Golledge, Nicholas R.; Levy, Richard H.; Naish, Timothy R.; McKay, Robert M.; Gasson, Edward G. W.; Kowalewski, Douglas E.; Fogwill, Christopher J.

    2016-04-01

    In 2014 atmospheric CO2 levels exceeded 400 ppm for the first time since the early Pliocene (3.5-5 Ma). Although the rise in global mean surface temperatures that will accompany continued increases in CO2 is hard to predict, proxy evidence from the early Pliocene suggest that these CO2 concentrations, together with higher-than-present summer insolation, were associated with circum-Antarctic seas 2-4° C warmer than present and air temperatures 6-10° C warmer. Large sectors of the present-day Antarctic ice sheet rest on bedrock below sea level, and as such these areas are more sensitive to environmental forcings than ice grounded above sea level because the geometry of their submarine beds allows for runaway retreat in response to relatively small initial perturbations (Thomas & Bentley, 1978; Mengel & Levermann, 2014). Here we present an ice-sheet model ensemble that explores the consequences of a range of air and ocean warming scenarios representative of a higher-than-present CO2 world. Using circum-Antarctic palaeoenvironmental proxy data to constrain the range of likely conditions adjacent to the continent we calculate probability densities of likely sea-level equivalent ice-sheet volume changes relative to present, together with their associated uncertainties, for a range of timeframes. We find that multi-metre sea-level contributions are likely within centuries, increasing to over ten metres within subsequent millennia. Our results are consistent with empirically-based sea-level reconstructions for the Pliocene, and in addition offer new insights into basin-specific responses within the Antarctic continent.

  6. Halogen species record Antarctic sea ice extent over glacial–interglacial periods

    Directory of Open Access Journals (Sweden)

    A. Spolaor

    2013-07-01

    Full Text Available Sea ice is an integral part of the earth's climate system because it affects planetary albedo, sea-surface salinity, and the atmosphere–ocean exchange of reactive gases and aerosols. Bromine and iodine chemistry is active at polar sea ice margins with the occurrence of bromine explosions and the biological production of organoiodine from sea ice algae. Satellite measurements demonstrate that concentrations of bromine oxide (BrO and iodine oxide (IO decrease over sea ice toward the Antarctic interior. Here we present speciation measurements of bromine and iodine in the TALDICE (TALos Dome Ice CorE ice core (159°11' E, 72°49' S; 2315 m a.s.l. spanning the last 215 ky. The Talos Dome ice core is located 250 km inland and is sensitive to marine air masses intruding onto the Antarctic Plateau. Talos Dome bromide (Br− is positively correlated with temperature and negatively correlated with sodium (Na. Based on the Br−/Na seawater ratio, bromide is depleted in the ice during glacial periods and enriched during interglacial periods. Total iodine, consisting of iodide (I− and iodate (IO3−, peaks during glacials with lower values during interglacial periods. Although IO3− is considered the most stable iodine species in the atmosphere it was only observed in the TALDICE record during glacial maxima. Sea ice dynamics are arguably the primary driver of halogen fluxes over glacial–interglacial timescales, by altering the distance between the sea ice edge and the Antarctic plateau and by altering the surface area of sea ice available to algal colonization. Based on our results we propose the use of both halogens for examining Antarctic variability of past sea ice extent.

  7. Halogen species record Antarctic sea ice extent over glacial-interglacial periods

    Directory of Open Access Journals (Sweden)

    A. Spolaor

    2013-02-01

    Full Text Available Sea ice is an integral part of the Earth's climate system because it affects planetary albedo, sea surface salinity, and the atmosphere-ocean exchange of reactive gases and aerosols. Bromine and iodine chemistry is active at polar sea ice margins with the occurrence of bromine explosions and the biological production of organo-iodine from sea ice algae. Satellite measurements demonstrate that concentrations of bromine oxide (BrO and iodine oxide (IO decrease over sea ice toward the Antarctic interior. Here we present speciation measurements of bromine and iodine in the TALDICE (TALos Dome Ice CorE ice core (159°11' E, 72°49' S, 2315 m a.s.l. spanning the last 215 ky. The Talos Dome ice core is located 250 km inland and is sensitive to marine air masses intruding onto the Antarctic Plateau. Talos Dome bromide (Br is positively correlated with temperature and negatively correlated with sodium (Na. Based on the Br/Na seawater ratio, bromide is depleted in the ice during glacial periods and enriched during interglacial periods. Total iodine, consisting of iodide (I and iodate (IO3, peaks during glacials with lower values during interglacial periods. Although IO3 is considered the most stable iodine species in the atmosphere it was only observed in the TALDICE record during glacial maxima. Sea ice dynamics are arguably the primary driver of halogen fluxes over glacial-interglacial timescales, by altering the distance between the sea ice edge and the Antarctic plateau and by altering the surface area of sea ice available to algal colonization. Based on our results we propose the use of both halogens for examining Antarctic variability of past sea ice extent.

  8. The Australasian Antarctic Expedition 2013-2014: Practicing 'Citizen-Science' in a Changing World

    Science.gov (United States)

    Fogwill, C. J.; Turney, C. S.

    2014-12-01

    Government funding is the cornerstone of modern science. But with declining investment in science across most of the Western World, a major challenge for society is where best to place what little resource we have. Which research questions should have the greatest priority? Nowhere are these issues more pressing than in the Antarctic, where bases have and continue to play host to 'big-science', multi-year programmes of research, locking up logistical support and costs. But in a warming world, the areas with the greatest effects of climate change aren't always near government research stations. With this in mind, in 2012 a plan was formed to visit Commonwealth Bay, a remote area off the East Antarctic Ice Sheet, where in 2010, an iceberg the size of Rhode Island, known as B09B, dramatically knocked a 60-mile long tongue of ice off the Mertz Glacier into the Southern Ocean, setting off a cascade of change. Inspired by the expeditions of the past, we advertised berths for sale to take citizen scientists south with us, harnessing their interest, experience and investment. People responded far and wide. We were oversubscribed, and the Australasian Antarctic Expedition 2013-2014 was born. With the Russian-owned MV Akademik Shokalskiy as the expedition vessel, we set out south from the New Zealand port of Bluff in late November 2013. During our journey south and on the ice we undertook a number of scientific firsts for the region actively engaging the volunteer scientists on board in projects ranging from oceanography, biology, ecology, geology and glaciaology. The expedition demostrated how private funding could support targeted programmes of research and communicate it to the wider world. Small-science research can capture the public's imagination and also reap real scientific outputs. Although it is a funding model developed in the Antarctic a hundred years ago, the beauty is it can applied anywhere in the world.

  9. Does Antarctic glaciation cool the world?

    Directory of Open Access Journals (Sweden)

    A. Goldner

    2012-07-01

    Full Text Available In this study we compare the simulated climatic impact of adding the Antarctic Ice Sheet to the "Greenhouse World" of the Eocene and removing the Antarctic Ice Sheet from the Modern world. The Modern surface temperature anomaly (ΔT induced by Antarctic Glaciation ranges from −1.22 to −0.18 K when CO2 is dropped from 2240 to 560 ppm, whereas the Eocene ΔT is nearly constant at −0.3 K. We calculate the climate sensitivity parameter S[Antarctica] which is defined as the change in surface temperature (ΔT divided by the change in radiative forcing (ΔQAntarctica imposed by prescribing the glacial properties of Antarctica. While the ΔT associated with the imposed Antarctic properties is relatively consistent across the Eocene cases, the radiative forcing is not. This leads to a wide range of S[Antarctica], with Eocene values systematically smaller than Modern.

    This differing temperature response in Eocene and Modern is partially due to the smaller surface area of the imposed forcing over Antarctica in the Eocene and partially due to the presence of strong positive sea-ice feedbacks in the Modern. The system's response is further mediated by differing shortwave cloud feedbacks which are large and of opposite sign operating in Modern and Eocene configurations. A negative cloud feedback warms much of the Earth's surface as a large ice sheet is introduced in Antarctica in the Eocene, whereas in the Modern this cloud feedback is positive and acts to enhance cooling introduced by adding an ice sheet. Because of the importance of cloud feedbacks in determining the final temperature sensitivity of the Antarctic Ice Sheet our results are likely to be model dependent. Nevertheless, these model results show that the radiative forcing and feedbacks induced by the Antarctic Ice Sheet did not significantly decrease global mean surface temperature across

  10. On the Atmospheric Correction of Antarctic Airborne Hyperspectral Data

    OpenAIRE

    Martin Black; Andrew Fleming; Teal Riley; Graham Ferrier; Peter Fretwell; John McFee; Stephen Achal; Alejandra Umana Diaz

    2014-01-01

    The first airborne hyperspectral campaign in the Antarctic Peninsula region was carried out by the British Antarctic Survey and partners in February 2011. This paper presents an insight into the applicability of currently available radiative transfer modelling and atmospheric correction techniques for processing airborne hyperspectral data in this unique coastal Antarctic environment. Results from the Atmospheric and Topographic Correction version 4 (ATCOR-4) package reveal absolute reflectan...

  11. Surface influence on the marine and coastal Antarctic atmosphere

    OpenAIRE

    Valkonen, Teresa

    2013-01-01

    The Antarctic region plays an important role in the global climate system, and it contributes to the future of global climate through changes in regional factors, such as sea ice, atmospheric circulation patterns and moisture distribution. The aim of this thesis is to improve the understanding of the influence of the Earth surface on the marine and coastal Antarctic atmosphere. The thesis outlines the characteristics of typical phenomena of the Antarctic environment both near the surface and ...

  12. Encouraging Advances Made by Chinese Scientists in Antarctic Research

    Institute of Scientific and Technical Information of China (English)

    Zhang Qingsong

    2003-01-01

    @@ Chinese scientists began involving in the Antarctic research in 1980. As the first step, some 40 Chinese scientists were sent to Antarctic stations of Australia and other countries during the period from 1980 to 1984. Then,China established two Antarctic stations of its own, and purchased an icebreaker, enabling China to carry on its own independent research program both on land and at sea.

  13. Southern Ocean eddy phenomenology

    Science.gov (United States)

    Frenger, I.; Münnich, M.; Gruber, N.; Knutti, R.

    2015-11-01

    Mesoscale eddies are ubiquitous features in the Southern Ocean, yet their phenomenology is not well quantified. To tackle this task, we use satellite observations of sea level anomalies and sea surface temperature (SST) as well as in situ temperature and salinity measurements from profiling floats. Over the period 1997-2010, we identified over a million mesoscale eddy instances and were able to track about 105 of them over 1 month or more. The Antarctic Circumpolar Current (ACC), the boundary current systems, and the regions where they interact are hot spots of eddy presence, representing also the birth places and graveyards of most eddies. These hot spots contrast strongly to areas shallower than about 2000 m, where mesoscale eddies are essentially absent, likely due to topographical steering. Anticyclones tend to dominate the southern subtropical gyres, and cyclones the northern flank of the ACC. Major causes of regional polarity dominance are larger formation numbers and lifespans, with a contribution of differential propagation pathways of long-lived eddies. Areas of dominance of one polarity are generally congruent with the same polarity being longer-lived, bigger, of larger amplitude, and more intense. Eddies extend down to at least 2000 m. In the ACC, eddies show near surface temperature and salinity maxima, whereas eddies in the subtropical areas generally have deeper anomaly maxima, presumably inherited from their origin in the boundary currents. The temperature and salinity signatures of the average eddy suggest that their tracer anomalies are a result of both trapping in the eddy core and stirring.

  14. Terrestrial age dating of antarctic meteorites

    International Nuclear Information System (INIS)

    During the last three antarctic field seasons, US and Japanese teams have collected several thousand meteorites. The terrestrial age of these objects is of interest because such knowledge enables the setting of lower bounds on the lower age of the ice sheet, provides information about ice movement, and aids understanding of the accumulation mechanism of the meteorites. Terrestrial ages can be established by measuring the decay of radioactive species produced by bombardment of cosmic rays while the objects are in space. After entering the Earth's atmosphere the meteorites essentially are completely shielded from cosmic rays. The radioactive products that exist at saturation values in space then decay exponentially toward zero activity. By the end of 1980, data will be established on 150 to 200 selected samples. With that large a data base we should have a fairly clear picture of the terrestrial age distribution of antarctic meteorites

  15. [Taxonomical status of the psychrotolerant Antarctic microorganisms].

    Science.gov (United States)

    Romanovskaia, V A; Gladka, G V; Tashireva, A A; Tashirev, A B

    2013-01-01

    The aerobic chemoorganotrophic bacteria, dominating in soils and phytocenosis of the Antarctic Region, on combination of morphological and biochemical properties belong to several taxons of Bacteria domain. Gram-negative strains 3189, 3415 (fam. Halomonadaceae, Halomonas sp.) and 3088, 3468, 3469 (fam. Moraxellaceae, Psychrobacter sp.) belong to phylum Proteobacteria, to class Gammaproteobacteria. Gram-negative strains 3294 3392 (Rhizobiales, fam. Methylobacteriaceae, Methylobacterium sp.) relate to class Alphaproteobacteria of this phylum. Gram-positive strains 3179, 3275, 3470, 3471 (fam. Microbacteriaceae, Cryobacterium sp.), 3054, 3058, 3411 (fam. Corynebacteriaceae, Corynebacterium sp.) and 3194, 3398 (fam. Micrococcaceae, Micrococcus sp.) relate to phylum Actinobacteria, class Actinobacteria. Thus, the psychrophilic and psychrotolerant Antarctic bacteria (aerobic chemoorganotrophic) isolated from phytocenosis and soils of polar region are characterized by wide taxonomic variety. PMID:24450178

  16. running ocean

    Directory of Open Access Journals (Sweden)

    Lokenath Debnath

    1978-01-01

    Full Text Available A theory is presented of the generation and propagation of the two and the three dimensional tsunamis in a shallow running ocean due to the action of an arbitrary ocean floor or ocean surface disturbance. Integral solutions for both two and three dimensional problems are obtained by using the generalized Fourier and Laplace transforms. An asymptotic analysis is carried out for the investigation of the principal features of the free surface elevation. It is found that the propagation of the tsunamis depends on the relative magnitude of the given speed of the running ocean and the wave speed of the shallow ocean. When the speed of the running ocean is less than the speed of the shallow ocean wave, both the two and the three dimensional free surface elevation represent the generation and propagation of surface waves which decay asymptotically as t−12 for the two dimensional case and as t−1 for the three dimensional tsunamis. Several important features of the solution are discussed in some detail. As an application of the general theory, some physically realistic ocean floor disturbances are included in this paper.

  17. Ocean technology

    Digital Repository Service at National Institute of Oceanography (India)

    Peshwe, V.B.

    stream_size 2 stream_content_type text/plain stream_name Voices_Oceans_1996_113.pdf.txt stream_source_info Voices_Oceans_1996_113.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  18. History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic: a synthesis

    International Nuclear Information System (INIS)

    The New Zealand sector of the Southern Ocean (NZSSO) has opened about the Indian-Pacific spreading ridge throughout the Cenozoic. Today the NZSSO is characterised by broad zonal belts of antarctic (cold), subantarctic (cool), and subtropical (warm) surface-water masses separated by prominent oceanic fronts: the Subtropical Front (STF) c. 43 degrees S, Subantarctic Front (SAF) c. 50 degrees S, and Antarctic Polar Front (AAPF) c. 60 degrees S. Despite a meagre database, the broad pattern of Cenozoic evolution of these fronts is reviewed from the results of Deep Sea Drilling Project-based studies of sediment facies, microfossil assemblages and diversity, and stable isotope records, as well as from evidence in onland New Zealand Cenozoic sequences. Results are depicted schematically on seven paleogeographic maps covering the NZSSO at 10 m.y. intervals through the Cenozoic. During the Paleocene and most of the Eocene (65-35 Ma), the entire NZSSO was under the influence of warm to cool subtropical waters, with no detectable oceanic fronts. In the latest Eocene (c. 35 Ma), a proto-STF is shown separating subantarctic and subtropical waters offshore from Antarctica, near 65 degrees S paleolatitude. During the earliest Oligocene, this front was displaced northwards by development of an AAPF following major global cooling and biotic turnover associated with ice sheet expansion to sea level on East Antarctica. Early Oligocene full opening (c. 31 Ma) of the Tasmanian gateway initiated vigorous proto-circum-Antarctic flow of cold/cool waters, possibly through a West Antarctic seaway linking the southern Pacific and Atlantic Oceans, including detached northwards 'jetting' onto the New Zealand plateau where condensation and unconformity development was widespread in cool-water carbonate facies. Since this time, a broad tripartite division of antarctic, subantarctic, and subtropical waters has existed in the NZSSO, including possible development of a proto-SAF within the

  19. Antarctic terrestrial ecosystems: responses to environmental change

    OpenAIRE

    Convey, Peter

    2006-01-01

    The consequences of climate change are exciting considerable concern worldwide. Parts of Antarctica are facing the most rapid rates of anthropogenic climate change currently seen on the planet. This paper sets out to introduce contemporary ecosystems of the Antarctic, and the factors that have influenced them and their biodiversity over evolutionary timescales. Contemporary climate change processes significant to terrestrial biota, and the biological consequences of these changes seen t...

  20. Isotopic heterogeneity of East Antarctic mantle

    International Nuclear Information System (INIS)

    Isotopic heterogeneity of deep garnet-bearing mantle xenolytes of East Antarctics is studied to analyze the mechanisms of geochemical heterogeneity occurrence in the Earth mantle. Analysis of isotope data for the system 143Nd/144Nd - Sm/Nd permitted ascertaining the time of the last thermal impact on the mantle material (108-35 bill. years) for certain nodules, which is close to the age of ultra base alkali magmatism intrusion

  1. Photosynthesis in Antarctic sea ice diatoms

    OpenAIRE

    Mock, Thomas

    2003-01-01

    This thesis was conducted to apply new techniques for measuring photosynthesis in Antarctic sea ice diatoms. A systematic approach of investigations was applied to obtain precise measurements of photosynthesis under natural conditions in the field from which questions were derived for further analysis in the laboratory. In situ measurements with the tracer 14C through the entire thickness of a young sea ice floe revealed that algae are able to actively assimilate dissolved inorganic carbon un...

  2. Oil Pollution in the Antarctic Terrestrial Environment

    OpenAIRE

    Hughes, Kevin; Stallwood, Bethan

    2006-01-01

    Fuel oil has been extensively relied upon as an energy source since the earliest discovery and exploration of Antarctica. During this time oil spills have occurred, particularly around established research stations, which have had a negative impact on the terrestrial environment. Recently developed bioremediative technology, using indigenous Antarctic hydrocarbon-degrading bacteria, may be used to assist in cleaning up existing oil-contaminated land

  3. Satellite magnetic anomalies of the Antarctic crust

    Directory of Open Access Journals (Sweden)

    D. E. Alsdorf

    2000-06-01

    Full Text Available Spatially and temporally static crustal magnetic anomalies are contaminated by static core field effects above spherical harmonic degree 12 and dynamic, large-amplitude external fields. To extract crustal magnetic anomalies from the measurements of NASA's Magsat mission, we separate crustal signals from both core and external field effects. In particular, we define Magsat anomalies relative to the degree 11 field and use spectral correlation theory to reduce them for external field effects. We obtain a model of Antarctic crustal thickness by comparing the region's terrain gravity effects to free-air gravity anomalies derived from the Earth Gravity Model 1996 (EGM96. To separate core and crustal magnetic effects, we obtain the pseudo-magnetic effect of the crustal thickness variations from their gravity effect via Poisson's theorem for correlative potentials. We compare the pseudo-magnetic effect of the crustal thickness variations to field differences between degrees 11 and 13 by spectral correlation analysis. We thus identify and remove possible residual core field effects in the Magsat anomalies relative to the degree 11 core field. The resultant anomalies reflect possible Antarctic contrasts due both to crustal thickness and intracrustal variations of magnetization. In addition, they provide important constraints on the geologic interpretation of aeromagnetic survey data, such as are available for the Weddell Province. These crustal anomalies also may be used to correct for long wavelength errors in regional compilations of near-surface magnetic survey data. However, the validity of these applications is limited by the poor quality of the Antarctic Magsat data that were obtained during austral Summer and Fall when south polar external field activity was maximum. Hence an important test and supplement for the Antarctic crustal Magsat anomaly map will be provided by the data from the recently launched Ørsted mission, which will yield coverage

  4. PSEUDO MAGNETIC ANOMALIES IN THE ANTARCTIC SEA

    OpenAIRE

    マツモト, タケシ; カミヌマ, カツタダ; Takeshi, MATSUMOTO; Katsutada, Kaminuma

    1988-01-01

    Pseudo magnetic anomaly in the Antarctic Sea has been calculated using the gravity data derived from altimetric geoid. Comparison of the pseudo magnetic anomaly thus calculated with the theoretical magnetic anomaly predicted from topography has been made with respect to the large fracture zones composed of short-wavelength ridges and troughs in the Southeastern Pacific, which shows that these two anomalies coincide well with each other. Gravity anomaly calculated from topography only also coi...

  5. Tephrochronology : Methodology and correlations, Antarctic Peninsula Area

    OpenAIRE

    Molén, Mats

    2012-01-01

    Abstract Methods for tephrochronology are evaluated, in the following way: Lake sediments <500 years old from three small Antarctic lakes were analysed for identification of tephras. Subsamples were analysed for a) grain size, and identification and concentration of volcanogenic grains, b) identification of tephra horizons, c) element abundance by EPMA WDS/EDS and LA-ICP-MS, and d) possible correlations between lakes and volcanoes. Volcanogenic minerals and shards were found all through th...

  6. The Southern Ocean: Its involvement in global change

    International Nuclear Information System (INIS)

    The Southern Ocean is the site of considerable water mass formation which cools and ventilates the modern world ocean. At the polar front zone, formation of cool, low salinity water sinks and spreads northward at intermediate depths limiting the downward penetration of the thermocline. Within the seasonal sea ice zone and along the margins of Antarctica, convection injects very cold oxygenated water into the deep and bottom ocean. These conditions developed as Antarctica shifted into its present configuration and grew a persistent glacial ice sheet, about 14 million years ago. The potential of the Southern Ocean to ventilate the deep and bottom ocean layers is related to occurrence of polynyas that form within the winter sea ice cover. Global climate changes would be expected to alter the polynya size and frequency. Under greenhouse-induced warming offshore polynyas may become less common as the static stability of the Southern Ocean mixed layer increases. This would diminish the Southern Ocean's cooling influence on the deep layers of the world ocean, resulting in a warmer deep ocean. The fate of coastal polynyas is less clear. It is likely that they would continue at close to their present form providing a setting conducive to Antarctic Bottom Water formation. Within the polar front zone, global warming is expected to create lower salinity though slightly cooler surface water. A reduction in the salt input to the Antarctic Intermediate Water would inject it into a shallower horizon at the thermocline base, further limiting the thickness of the thermocline. Less heat storage in the thermocline would tend to counter-act the proposed deep ocean warming. The thermocline change would occur at a faster rate than would deep ocean warming (based on present-day resident times), its effect would precede the polynya influence

  7. New and rare cephalopods from the Antarctic waters

    OpenAIRE

    Kubodera,Tsunemi/Okutani,Takeshi

    1986-01-01

    Three species of Antarctic cephalopods, Grimpoteuthis antarctica n. sp., male specimens of Megaleledone senoi TAKI and Gonatus antarcticus LONNBERG are described with some considerations to their systematic status.

  8. Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol

    Directory of Open Access Journals (Sweden)

    E. Barbaro

    2015-01-01

    Full Text Available To investigate the impact of marine aerosols on global climate change it is important to study their chemical composition and size distribution. Amino acids are a component of the organic nitrogen in aerosols, particles containing amino acids have been found to be efficient ice nuclei. The main aim of this study was to investigate the L- and D-free amino acid composition as possible tracers of primary biological production in Antarctic aerosols from three different areas: two continental bases, Mario Zucchelli Station (MZS on the coast of the Ross Sea, Concordia Station at Dome C on the Antarctic Plateau, and the Southern Ocean near the Antarctic continent. Studying the size distribution of amino acids in aerosols allowed us to characterize this component of the water-soluble organic carbon (WSOC in marine aerosols near their source and after long-range transport. The presence of only free L-amino acids in our samples is indicative of the prevalence of phytoplanktonic material. Sampling at these three points allowed us to study the reactivity of these compounds during long-range transport. The mean total amino acid concentration detected at MZS was 11 pmol m−3, a higher percentage of amino acids were found in the fine fraction. The aerosol samples collected at Dome C had the lowest amino acid values (0.7 and 0.8 pmol m−3 and the coarse particles were found to be enriched with amino acids compared to the coastal site. The amino acid composition had also changed suggesting that physical and chemical transformations had occurred during long range transport. During the sampling cruise on the R/V talica on the Southern Ocean, high concentrations of amino acids were found in the total suspended particles, this we attribute to the presence of intact biological material in the sample.

  9. Incorporation of iron and organic matter into young Antarctic sea ice during its initial growth stages

    Directory of Open Access Journals (Sweden)

    Julie Janssens

    2016-08-01

    Full Text Available Abstract This study reports concentrations of iron (Fe and organic matter in young Antarctic pack ice and during its initial growth stages in situ. Although the importance of sea ice as an Fe reservoir for oceanic waters of the Southern Ocean has been clearly established, the processes leading to the enrichment of Fe in sea ice have yet to be investigated and quantified. We conducted two in situ sea-ice growth experiments during a winter cruise in the Weddell Sea. Our aim was to improve the understanding of the processes responsible for the accumulation of dissolved Fe (DFe and particulate Fe (PFe in sea ice, and of particulate organic carbon and nitrogen, dissolved organic carbon, extracellular polymeric substances, inorganic macro-nutrients (silicic acid, nitrate and nitrite, phosphate and ammonium, chlorophyll a and bacteria. Enrichment indices, calculated for natural young ice and ice newly formed in situ, indicate that during Antarctic winter all of the measured forms of particulate matter were enriched in sea ice compared to underlying seawater, and that enrichment started from the initial stages of sea-ice formation. Some dissolved material (DFe and ammonium was also enriched in the ice but at lower enrichment indices than the particulate phase, suggesting that size is a key factor for the incorporation of impurities in sea ice. Low chlorophyll a concentrations and the fit of the macro-nutrients (with the exception of ammonium with their theoretical dilution lines indicated low biological activity in the ice. From these and additional results we conclude that physical processes are the dominant mechanisms leading to the enrichment of DFe, PFe, organic matter and bacteria in young sea ice, and that PFe and DFe are decoupled during sea-ice formation. Our study thus provides unique quantitative insight into the initial incorporation of impurities, in particular DFe and PFe, into Antarctic sea ice.

  10. Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol

    Science.gov (United States)

    Barbaro, E.; Zangrando, R.; Vecchiato, M.; Piazza, R.; Cairns, W. R. L.; Capodaglio, G.; Barbante, C.; Gambaro, A.

    2015-05-01

    To investigate the impact of marine aerosols on global climate change it is important to study their chemical composition and size distribution. Amino acids are a component of the organic nitrogen in aerosols and particles containing amino acids have been found to be efficient ice nuclei. The main aim of this study was to investigate the L- and D-free amino acid composition as possible tracers of primary biological production in Antarctic aerosols from three different areas: two continental bases, Mario Zucchelli Station (MZS) on the coast of the Ross Sea, Concordia Station at Dome C on the Antarctic Plateau, and the Southern Ocean near the Antarctic continent. Studying the size distribution of amino acids in aerosols allowed us to characterize this component of the water-soluble organic carbon (WSOC) in marine aerosols near their source and after long-range transport. The presence of only free L-amino acids in our samples is indicative of the prevalence of phytoplanktonic material. Sampling at these three points allowed us to study the reactivity of these compounds during long-range transport. The mean total amino acid concentration detected at MZS was 11 pmol m-3, a higher percentage of amino acids were found in the fine fraction. The aerosol samples collected at Dome C had the lowest amino acid values (0.7 and 0.8 pmol m-3), and the coarse particles were found to have higher concentrations of amino acids compared to the coastal site. The amino acid composition in the aerosol collected at Dome C had also changed compared to the coastal site, suggesting that physical and chemical transformations had occurred during long range transport. During the sampling cruise on the R/V Italica on the Southern Ocean, high concentrations of amino acids were found in the total suspended particles, this we attribute to the presence of intact biological material (as microorganisms or plant material) in the sample.

  11. Measurements of 36Cl in Antarctic meteorites and Antarctic ice using a Van de Graaff accelerator

    International Nuclear Information System (INIS)

    Cosmic-ray produced 36Cl(tsub(1/2) = 3.0 X 105 years) has been measured in four Antarctic meteorites and one sample of Antarctic ice using a tandem Van de Graaff accelerator as an ultrasensitive mass spectrometer with the extremely low background level of 36Cl/Cl -16. Results from this ion counting technique (applied here to extraterrestrial materials for the first time) are used to support a two-stage irradiation model for the Yamato-7301and Allan Hills-76008 meteorites and to show a long terrestrial age (0.7 +- 0.1 m.y.) for Allan Hills-77002. Yamato-7304 has a terrestrial age of less than 0.1 m.y. The 36Cl content of the Antarctic ice sample from the Yamato Mountain area implies that the age of the ice cap at this site is less than one 36Cl half-life. (Auth.)

  12. Balance of the West Antarctic Ice Sheet

    Science.gov (United States)

    2002-01-01

    For several decades, measurements of the West Antarctic Ice Sheet showed it to be retreating rapidly. But new data derived from satellite-borne radar sensors show the ice sheet to be growing. Changing Antarctic ice sheets remains an area of high scientific interest, particularly in light of recent global warming concerns. These new findings are significant because scientists estimate that sea level would rise 5-6 meters (16-20 feet) if the ice sheet collapsed into the sea. Do these new measurements signal the end of the ice sheet's 10,000-year retreat? Or, are these new satellite data simply much more accurate than the sparse ice core and surface measurements that produced the previous estimates? Another possibility is that the ice accumulation may simply indicate that the ice sheet naturally expands and retreats in regular cycles. Cryologists will grapple with these questions, and many others, as they examine the new data. The image above depicts the region of West Antarctica where scientists measured ice speed. The fast-moving central ice streams are shown in red. Slower tributaries feeding the ice streams are shown in blue. Green areas depict slow-moving, stable areas. Thick black lines depict the areas that collect snowfall to feed their respective ice streams. Reference: Ian Joughin and Slawek Tulaczyk Science Jan 18 2002: 476-480. Image courtesy RADARSAT Antarctic Mapping Project

  13. Thin Layer Sensory Cues Affect Antarctic Krill Swimming Kinematics

    Science.gov (United States)

    True, A. C.; Webster, D. R.; Weissburg, M. J.; Yen, J.

    2013-11-01

    A Bickley jet (laminar, planar free jet) is employed in a recirculating flume system to replicate thin shear and phytoplankton layers for krill behavioral assays. Planar laser-induced fluorescence (LIF) and particle image velocimetry (PIV) measurements quantify the spatiotemporal structure of the chemical and free shear layers, respectively, ensuring a close match to in situ hydrodynamic and biochemical conditions. Path kinematics from digitized trajectories of free-swimming Euphausia superba examine the effects of hydrodynamic sensory cues (deformation rate) and bloom level phytoplankton patches (~1000 cells/mL, Tetraselamis spp.) on krill behavior (body orientation, swimming modes and kinematics, path fracticality). Krill morphology is finely tuned for receiving and deciphering both hydrodynamic and chemical information that is vital for basic life processes such as schooling behaviors, predator/prey, and mate interactions. Changes in individual krill behavior in response to ecologically-relevant sensory cues have the potential to produce population-scale phenomena with significant ecological implications. Krill are a vital trophic link between primary producers (phytoplankton) and larger animals (seabirds, whales, fish, penguins, seals) as well as the subjects of a valuable commercial fishery in the Southern Ocean; thus quantifying krill behavioral responses to relevant sensory cues is an important step towards accurately modeling Antarctic ecosystems.

  14. Enhanced deep ocean ventilation and oxygenation with global warming

    Science.gov (United States)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  15. Skip spawning as a reproductive strategy in Antarctic fish species: the Antarctic silverfish (Pleuragramma antarctica) case study

    OpenAIRE

    Eva Pisano; Stuart Hanchet; Marino Vacchi

    2015-01-01

    The Antarctic silverfish Pleuragramma antarctica (Notothenioidei, Nototheniidae) is the most abundant pelagic fish inhabiting the frigid Antarctic coastal waters. It plays relevant roles in the local ecosystems, where it is often considered a keystone species connecting lower and upper trophic levels within the coastal marine food web. Despite its ecological relevance, and although many aspects of the Antarctic silverfish biology have already been elucidated, knowledge on important components...

  16. Reconstructions of subducted ocean floor along the Andes: a framework for assessing Magmatic and Ore Deposit History

    Science.gov (United States)

    Sdrolias, M.; Müller, R.

    2006-05-01

    The South American-Antarctic margin has been characterised by numerous episodes of volcanic arc activity and ore deposit formation throughout much of the Mesozoic and Cenozoic. Although its Cenozoic subduction history is relatively well known, placing the Mesozoic arc-related volcanics and the emplacement of ore bodies in their plate tectonic context remains poorly constrained. We use a merged moving hotspot (Late Cretaceous- present) and palaeomagnetic /fixed hotspot (Early Cretaceous) reference frame, coupled with reconstructed spreading histories of the Pacific, Phoenix and Farallon plates to understand the convergence history of the South American and Antarctic margins. We compute the age-area distribution of oceanic lithosphere through time, including subducting oceanic lithosphere and estimate convergence rates along the margin. Additionally, we map the location and migration of spreading ridges along the margin and relate this to processes on the overriding plate. The South American-Antarctic margin in the late Jurassic-early Cretaceous was dominated by rapid convergence, the subduction of relatively young oceanic lithosphere (Rocas Verdes" in southern South America. The speed of subduction increased again along the South American-Antarctic margin at ~105 Ma after another change in tectonic regime. Newly created crust from the Farallon-Phoenix ridge continued to be subducted along southern South America until the cessation of the Farallon-Phoenix ridge in the latest Cretaceous / beginning of the Cenozoic. The age of the subducting oceanic lithosphere along the South American-Antarctic margin has increased steadily through time.

  17. Enhancing Ocean Research Data Access

    Science.gov (United States)

    Chandler, Cynthia; Groman, Robert; Shepherd, Adam; Allison, Molly; Arko, Robert; Chen, Yu; Fox, Peter; Glover, David; Hitzler, Pascal; Leadbetter, Adam; Narock, Thomas; West, Patrick; Wiebe, Peter

    2014-05-01

    The Biological and Chemical Oceanography Data Management Office (BCO-DMO) works in partnership with ocean science investigators to publish data from research projects funded by the Biological and Chemical Oceanography Sections and the Office of Polar Programs Antarctic Organisms & Ecosystems Program at the U.S. National Science Foundation. Since 2006, researchers have been contributing data to the BCO-DMO data system, and it has developed into a rich repository of data from ocean, coastal and Great Lakes research programs. While the ultimate goal of the BCO-DMO is to ensure preservation of NSF funded project data and to provide open access to those data, achievement of those goals is attained through a series of related phases that benefits from active collaboration and cooperation with a large community of research scientists as well as curators of data and information at complementary data repositories. The BCO-DMO is just one of many intermediate data management centers created to facilitate long-term preservation of data and improve access to ocean research data. Through partnerships with other data management professionals and active involvement in local and global initiatives, BCO-DMO staff members are working to enhance access to ocean research data available from the online BCO-DMO data system. Continuing efforts in use of controlled vocabulary terms, development of ontology design patterns and publication of content as Linked Open Data are contributing to improved discovery and availability of BCO-DMO curated data and increased interoperability of related content available from distributed repositories. We will demonstrate how Semantic Web technologies (e.g. RDF/XML, SKOS, OWL and SPARQL) have been integrated into BCO-DMO data access and delivery systems to better serve the ocean research community and to contribute to an expanding global knowledge network.

  18. A study on the Antarctic circumpolar wave mode-A coexistence system of standing and traveling wave

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Antarctic circumpolar wave (ACW) has become a focus of the air-sea coupled Southern Ocean study since 1996, when it was discovered as an air-sea coupled interannual signal propagating eastward in the region of the Antarctic Circumpolar Current (ACC). In order to analyze the mechanism of discontinuity along the latitudinal propagation, a new idea that ACW is a system with a traveling wave in the Southern Pacific and Atlantic Ocean and with a concurrent standing wave in the southern Indian Ocean is proposed in this paper. Based on the ideal wave principle, the average wave parameters of ACW is achieved using a non-linear approximation method, by which we find that the standing part and the traveling part possess similar radius frequency, proving their belonging to an integral system. We also give the latitudinal distribution of wave speed with which we could tell the reason for steady propagation during the same period. The spatial distribution of the propagation reveals complex process with variant spatial and temporal scales-The ENSO scale oscillation greatly impacts on the traveling process, while the result at the south of Australia indicates little connection between the Indian Ocean and the Pacific, which may be blocked by the vibration at the west of the Pacific. The advective effect of ACC on the propagation process should be examined clearly through dynamical method.

  19. Geoethical Approach to Antarctic Subglacial Lakes Exploration

    Science.gov (United States)

    Talalay, Pavel; Markov, Alexey; Sysoev, Mikhail

    2014-05-01

    Antarctic subglacial aquatic environment have become of great interest to the science community because they may provide unique information about microbial evolution, the past climate of the Earth, and the formation of the Antarctic ice sheet. Nowadays it is generally recognized that a vast network of lakes, rivers, and streams exists thousands of meters beneath Antarctic Ice Sheets. Up to date only four boreholes accessed subglacial aquatic system but three of them were filled with high-toxic drilling fluid, and the subglacial water was contaminated. Two recent exploration programs proposed by UK and USA science communities anticipated direct access down to the lakes Ellsworth and Whillans, respectively, in the 2012/2013 Antarctic season. A team of British scientists and engineers engaged in the first attempt to drill into Lake Ellsworth but failed. US research team has successfully drilled through 800 m of Antarctic ice to reach a subglacial lake Whillans and retrieve water and sediment samples. Both activities used hot-water drilling technology to access lakes. Hot water is considered by the world science community as the most clean drilling fluid medium from the present point of view but it cannot solve environmental problems in total because hot-water even when heated to 90 °C, filtered to 0.2 μm, and UV treated at the surface could pick up microorganisms from near-surface snow and circulate them in great volume through the borehole. Another negative impact of hot-water circulation medium is thermal pollution of subglacial water. The new approach to Antarctic subglacial lakes exploration is presented by sampling technology with recoverable autonomous sonde which is equipped by two hot-points with heating elements located on the bottom and top sides of the sonde. All down-hole sonde components will be sterilized by combination of chemical wash, HPV and UV sterilization prior using. At the beginning of the summer season sonde is installed on the surface of the

  20. Interannual variability of Antarctic Oscillation and its influence on East Asian climate during boreal winter and spring

    Institute of Scientific and Technical Information of China (English)

    FAN; Ke; WANG; Huijun

    2006-01-01

    The interannual variability of Antarctic Oscillation (AAO) and its influence on East Asian climate during both boreal winter and spring are addressed. The results show that the positive AAO anomaly decreases the cold activity over East Asia during both boreal winter and spring. AAO-related barotropic meridional teleconnection from Antarctic to Arctic is found through analysis of mean meridional circulations. This meridional teleconnection is remarkable over Eurasia during boreal winter and over the Pacific Ocean during boreal spring. The results also show that zonal mean zonal wind at high latitudes in Southern Hemisphere has well positive correlation with that of Eurasia during boreal winter and has negative correlation with Pacific North American teleconnection (PNA) during boreal spring, which again display the meridional teleconnection. Thus, local meridional teleconnection is a possible linkage for interaction of circulations at mid-high latitudes between both hemispheres.

  1. 226Ra in the western Indian Ocean

    Science.gov (United States)

    Chung, Y.

    1987-09-01

    226Ra profiles have been measured in the western Indian Ocean as part of the 1977-1978 Indian Ocean GEOSECS program. These profiles show a general increase in deep and bottom water Ra concentration from the Circumpolar region to the Arabian Sea. A deep Ra maximum which originates in the Arabian Sea and in the Somali basin at about 3000 m depth spreads southward into the Mascarene basin and remains discernible in the Madagascar and Crozet basins. In the western Indian Ocean, the cold Antarctic Bottom Water spreads northward under the possibly southward-flowing deep water, forming a clear benthic front along the Crozet basin across the Southwest Indian Ridge into the Madagascar and Mascarene basins. The Antarctic Bottom Water continues to spread farther north to the Somali basin through the Amirante Passage at 10°S as a western boundary current. The benthic front and other characteristic features in the western Indian Ocean are quite similar to those observed in the western Pacific where the benthic front as a distinctive feature was first described by Craig et al. [15]. Across the Mid-Indian Ridge toward the Ceylon abyssal plain near the triple junction, Ra profiles display a layered structure, reflecting the topographic effect of the mid-ocean ridge system on the mixing and circulation of the deep and bottom waters. Both Ra and Si show a deep maximum north of the Madagascar basin. Linear relationships between these two elements are observed in the deep and bottom water with slopes increasing northward. This suggests a preferential input of Ra over Si from the bottom sediments of the Arabian Sea and also from the flank sediments of the Somali basin.

  2. Ocean Color

    Data.gov (United States)

    National Aeronautics and Space Administration — Satellite-derived Ocean Color Data sets from historical and currently operational NASA and International Satellite missions including the NASA Coastal Zone Color...

  3. Biogeochemical cycling of cadmium isotopes in the Southern Ocean along the Zero Meridian

    NARCIS (Netherlands)

    Abouchami, W.; Galer, S.J.G.; de Baar, H.J.W.; Middag, R.; Vance, D.; Zhao, Y.; Klunder, M.; Mezger, K.; Feldmann, H.; Andreae, M.O.

    2014-01-01

    We present depth profiles of Cd isotopes and concentrations from the Southern Ocean at four stations in the Atlantic sector along the Greenwich Meridian (47 degrees S to 68 degrees S) located across the main Antarctic frontal zones and productivity belt. The vertical profiles of Cd concentration typ

  4. 77 FR 5403 - Conservation of Antarctic Animals and Plants

    Science.gov (United States)

    2012-02-03

    ... From the Federal Register Online via the Government Publishing Office NATIONAL SCIENCE FOUNDATION 45 CFR Part 670 Conservation of Antarctic Animals and Plants AGENCY: National Science Foundation. ACTION: Final rule. SUMMARY: Pursuant to the Antarctic Conservation Act of 1978, The National...

  5. Biological studies in the Antarctic waters: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.

    stream_size 12 stream_content_type text/plain stream_name Proc_Workshop_Antarct_Stud_1990_407.pdf.txt stream_source_info Proc_Workshop_Antarct_Stud_1990_407.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO...

  6. Laboratory study of nitrate photolysis in Antarctic snow

    DEFF Research Database (Denmark)

    Berhanu, Tesfaye A.; Meusinger, Carl; Erbland, Joseph;

    2014-01-01

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. [" Laboratory study of nitrate photolysis in Antarc...... reproduce the stable isotopic composition of nitrate found in Antarctic snow profiles. © 2014 Author(s)....

  7. Fish from the Southern Ocean: biodiversity, ecology and conservation challenges

    Directory of Open Access Journals (Sweden)

    Marino Vacchi

    2015-11-01

    Living and functioning at subzero temperatures implied important adaptations, including freezing avoidance by antifreeze glycoproteins ( AFGPs. Among the system-wide adaptive traits holding major ecological implications, the acquisition of secondary pelagicism in some species (plesiomorphically devoid of swim-bladder is a major. In those notothenioids, lipid deposition and reduced ossification allowed to achieve partial or full neutral buoyancy, and enabled expansion into semi-pelagic, pelagic, and cryopelagic habitats. Such an impressive ecological expansion has allowed several notothenioids to play a primary role in the Antarctic marine ecosystems. On the other side, their fine adaptation to the environment, might expose these fishes to risks that need to be properly considered and addressed. For instance, a relationship between the Antarctic silverfish (Pleuragramma antarctica, a key species in the coastal Antarctic ecosystem and the sea-ice, has recently been assessed, thus making this species potentially threatened by the ongoing climatic change, with implications for the whole ecosystem. In addition, some Antarctic fish, such as toothfishes (Dissostichus eleginoides and Dissostichus mawsoni are primary targets of industrial fish harvesting in the SO. To increase and update the scientific knowledge on these species is mandatory in order to improve the management of Antarctic marine resources, in response to the increasing international request of exploitation. This task is presently being conducted by CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources, along with fighting the illegal, unreported and unregulated (IUU fishing and with the establishment of MPAs (Marine Protected Areas in various sectors of the Southern Ocean.

  8. Eddy heat flux in the Southern Ocean: response to variable wind forcing

    OpenAIRE

    Hogg, Andrew Mcc.; Meredith, Michael P; Blundell, Jeffrey R.; Wilson, Christopher

    2008-01-01

    We assess the role of time-dependent eddy variability in the Antarctic Circumpolar Current (ACC) in influencing warming of the Southern Ocean. For this, we use an eddy-resolving quasigeostrophic model of the wind-driven circulation, and quantify the response of circumpolar transport, eddy kinetic energy and eddy heat transport to changes in winds. On interannual timescales, the model exhibits the behaviour of an "eddy saturated" ocean state, where increases in wind stress do not signicantly ...

  9. The Soundscape of the Southern Ocean – How Quiet and how Loud can Nature be?

    OpenAIRE

    Kindermann, Lars; Boebel, Olaf; van Opzeeland, Ilse

    2011-01-01

    The Southern Ocean around the Antarctic continent provides some of the most extreme environmental conditions on earth which shape also the unique underwater soundscape. The area probably contains the most quiet locations within the world's oceans but is also stage for some of the loudest natural events. It is still relatively void of anthropogenic noise and is one of the most important feeding grounds for great whales. However, comparatively little acoustic data exists from this region so far...

  10. On the problem of parameterizing ice shelf-ocean interaction in global climate models

    OpenAIRE

    Hellmer, Hartmut

    2005-01-01

    Sensitivity studies for the Southern Ocean indicate that freshwater fluxes from various sources have a significant impact on the stability of the water column with consequences for sea ice and water mass characteristics. These sources are either atmospheric or result from ocean interaction with the base of Antarctic ice shelves and drifting icebergs. The resolution of global climate models does not allow for an adequate representation of the processes on polar continental shelves. Therefore, ...

  11. The role of atmospheric greenhouse gases, orbital parameters, and southern ocean gateways: an idealized model study

    OpenAIRE

    Hertwig, Eileen; Lunkeit, Frank; Fraedrich, Klaus

    2016-01-01

    A set of idealized experiments are performed to analyze the competing effects of declining atmospheric CO2 concentrations, the opening of an ocean gateway, and varying orbital parameters. These forcing mechanisms, which influence the global mean climate state, may have played a role for triggering climate transitions of the past (for example during the Eocene-Oligocene climate transition and the build-up of the Antarctic Ice Sheet). Sensitivity simulations with a coupled atmosphere-ocean gene...

  12. How much snow falls on the Antarctic ice sheet?

    Directory of Open Access Journals (Sweden)

    C. Palerme

    2014-02-01

    Full Text Available Climate models predict Antarctic precipitation to increase during the 21st century, but their present day Antarctic precipitation differs. A fully model-independent climatology of the Antarctic precipitation characteristics, such as snowfall rates and frequency, is needed to assess the models, but was not available so far. Satellite observation of precipitation by active spaceborne sensors has been possible in the polar regions since the launch of CloudSat in 2006. Here we use CloudSat products to build the first multi-year model-independent climatology of Antarctic precipitation. The mean snowfall rate from August 2006 to April 2011 is 171 mm yr−1 over the Antarctic ice sheet north of 82° S. The ECMWF ERA Interim dataset agrees well with the new satellite climatology.

  13. Emerging spatial patterns in Antarctic prokaryotes

    Directory of Open Access Journals (Sweden)

    Chun Wie eChong

    2015-09-01

    Full Text Available Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversity and distributions has lagged far behind that of the macroscopic eukaryote organisms. Increasing human contact with and activity in the continent is leading to risks of biological contamination and change in a region whose isolation has protected it for millions of years at least; these risks may be particularly acute for microbial communities which have, as yet, received scant recognition and attention. Even a matter apparently as straightforward as Protected Area designation in Antarctica requires robust biodiversity data which, in most parts of the continent, remain almost completely unavailable. A range of important contributing factors mean that it is now timely to reconsider the state of knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological approaches are increasingly demonstrating that bacterial diversity in Antarctica may be far greater than previously thought, and that there is overlap in the environmental controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial dispersal mechanisms and colonization patterns remain largely unaddressed, although evidence for regional evolutionary differentiation is rapidly accruing and, with this, there is increasing appreciation of patterns in regional bacterial biogeography in this large part of the globe. In this review, we set out to describe the state of knowledge of Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote

  14. International Whaling Commission–Southern Ocean GLOBEC/CCAMLR collaboration. Scientific Committee document SC/55/E10, International Whaling Commission, May-June 2003, Berlin, Germany

    OpenAIRE

    Thiele, D; S. Moore; Hildebrand, J; Sirovic, A.; Friedlaender, A.; Glosgow, D.; Leaper, R.; Van Waerebeek, K.; Mcdonald, M.; Wiggins, S; Pirzl, R.; Viddi, F.; Hofmann, E

    2003-01-01

    Collaboration between the International Whaling Commission, and national programs conducting multidisciplinary ecosystem research in the Antarctic under Southern Ocean Global Ecosystem Dynamics (SO GLOBEC) program and the Commission for the Convention on Antarctic Marine Living Resources (CCAMLR) occurred during five research cruises between April 2002 and April 2003. Visual survey, passive acoustic and tissue biopsy work was conducted by IWC observers and collaborating passive acoustics scie...

  15. Effects of Whaling on the Structure of the Southern Ocean Food Web: Insights on the “Krill Surplus” from Ecosystem Modelling

    OpenAIRE

    Szymon Surma; Pakhomov, Evgeny A.; Tony J Pitcher

    2014-01-01

    The aim of this study was to examine the ecological plausibility of the "krill surplus" hypothesis and the effects of whaling on the Southern Ocean food web using mass-balance ecosystem modelling. The depletion trajectory and unexploited biomass of each rorqual population in the Antarctic was reconstructed using yearly catch records and a set of species-specific surplus production models. The resulting estimates of the unexploited biomass of Antarctic rorquals were used to construct an Ecopat...

  16. Automatic focusing system of BSST in Antarctic

    Science.gov (United States)

    Tang, Peng-Yi; Liu, Jia-Jing; Zhang, Guang-yu; Wang, Jian

    2015-10-01

    Automatic focusing (AF) technology plays an important role in modern astronomical telescopes. Based on the focusing requirement of BSST (Bright Star Survey Telescope) in Antarctic, an AF system is set up. In this design, functions in OpenCV is used to find stars, the algorithm of area, HFD or FWHM are used to degree the focus metric by choosing. Curve fitting method is used to find focus position as the method of camera moving. All these design are suitable for unattended small telescope.

  17. Microwave remote sensing of the Southern Ocean ice cover

    Science.gov (United States)

    Comiso, Josefino C.; Grenfell, Thomas C.; Lange, Manfred; Lohanick, Alan W.; Moore, Richard K.; Wadhams, Peter

    The Southern Ocean sea ice cover grows dramatically to about 20 × 106 km2 in the spring and breaks up abruptly to about 4 × 106 km2 in the summer (e.g., Zwally et al. [1983b]). This makes it one of the most seasonally variable climate parameters on the surface of the globe. Compared to the Northern Hemisphere, the ice cover in the Southern Ocean is about 20% greater at its maximum extent [Comiso and Zwally, 1984; Gloersen and Campbell, 1988]. By virtue of its size alone, the impact of the Southern Ocean ice cover on the regional and global climate can be considerable, since sea ice drastically changes surface albedo and roughness and insulates the ocean from the atmosphere. Seasonal and interannual variations in the spatial distribution of sea ice also cause the redistribution of salts, which, in turn, cause changes in the vertical stratification of the ocean. Compared to the Arctic, the environmental geographical background for sea ice in the Antarctic is also very different. Land surrounds most of the southern limits of the Arctic ice cover, whereas in the Antarctic, there is no corresponding land boundary in the north. The Southern Ocean ice cover is more divergent since it is more vulnerable to dynamic forcing than its Arctic counterpart. Accurate estimation of the percentage of open water is important because heat and salinity fluxes increase considerably even with just small increases in the fraction of open water or new ice [Maykut, 1978; Allison, 1981]. These fluxes are, in turn, closely linked with bottom water formation, ocean circulation, and momentum exchange between the ocean and the atmosphere. Oceanic heat flux is also believed to be a major determinant of ice growth rate [Bagriantsev et. al., 1989].

  18. Pliocene three-dimensional global ocean temperature reconstruction

    Directory of Open Access Journals (Sweden)

    H. J. Dowsett

    2009-12-01

    Full Text Available The thermal structure of the mid-Piacenzian ocean is obtained by combining the Pliocene Research, Interpretation and Synoptic Mapping Project (PRISM3 multiproxy sea-surface temperature (SST reconstruction with bottom water temperature estimates from 27 locations produced using Mg/Ca paleothermometry based upon the ostracod genus Krithe. Deep water temperature estimates are skewed toward the Atlantic Basin (63% of the locations and represent depths from 1000 m to 4500 m. This reconstruction, meant to serve as a validation data set as well as an initialization for coupled numerical climate models, assumes a Pliocene water mass framework similar to that which exists today, with several important modifications. The area of formation of present day North Atlantic Deep Water (NADW was expanded and extended further north toward the Arctic Ocean during the mid-Piacenzian relative to today. This, combined with a deeper Greenland-Scotland Ridge, allowed a greater volume of warmer NADW to enter the Atlantic Ocean. In the Southern Ocean, the Polar Front Zone was expanded relative to present day, but shifted closer to the Antarctic continent. This, combined with at least seasonal reduction in sea ice extent, resulted in decreased Antarctic Bottom Water (AABW production (relative to present day as well as possible changes in the depth of intermediate waters. The reconstructed mid-Piacenzian three-dimensional ocean was warmer overall than today, and the hypothesized aerial extent of water masses appears to fit the limited stable isotopic data available for this time period.

  19. Pliocene three-dimensional global ocean temperature reconstruction

    Directory of Open Access Journals (Sweden)

    H. J. Dowsett

    2009-07-01

    Full Text Available A snapshot of the thermal structure of the mid-Piacenzian ocean is obtained by combining the Pliocene Research, Interpretation and Synoptic Mapping Project (PRISM3 multiproxy sea-surface temperature (SST reconstruction with bottom water temperature estimates produced using Mg/Ca paleothermometry. This reconstruction assumes a Pliocene water mass framework similar to that which exists today, with several important modifications. The area of formation of present day North Atlantic Deep Water (NADW was expanded and extended further north toward the Arctic Ocean during the mid-Piacenzian relative to today. This, combined with a deeper Greenland-Scotland Ridge, allowed a greater volume of warmer NADW to enter the Atlantic Ocean. In the Southern Ocean, the Polar Front Zone was expanded relative to present day, but shifted closer to the Antarctic continent. This, combined with at least seasonal reduction in sea ice extent, resulted in decreased Antarctic Bottom Water (AABW production (relative to present day as well as possible changes in the depth of intermediate waters. The reconstructed mid-Piacenzian three-dimensional ocean was warmer overall than today, and the hypothesized aerial extent of water masses appears to fit the limited stable isotopic data available for this time period.

  20. Pliocene three-dimensional global ocean temperature reconstruction

    Science.gov (United States)

    Dowsett, H.J.; Robinson, M.M.; Foley, K.M.

    2009-01-01

    A snapshot of the thermal structure of the mid-Piacenzian ocean is obtained by combining the Pliocene Research, Interpretation and Synoptic Mapping Project (PRISM3) multiproxy sea-surface temperature (SST) reconstruction with bottom water tempera-5 ture estimates produced using Mg/Ca paleothermometry. This reconstruction assumes a Pliocene water mass framework similar to that which exists today, with several important modifications. The area of formation of present day North Atlantic Deep Water (NADW) was expanded and extended further north toward the Arctic Ocean during the mid-Piacenzian relative to today. This, combined with a deeper Greenland-Scotland Ridge, allowed a greater volume of warmer NADW to enter the Atlantic Ocean. In the Southern Ocean, the Polar Front Zone was expanded relative to present day, but shifted closer to the Antarctic continent. This, combined with at least seasonal reduction in sea ice extent, resulted in decreased Antarctic BottomWater (AABW) production (relative to present day) as well as possible changes in the depth of intermediate wa15 ters. The reconstructed mid-Piacenzian three-dimensional ocean was warmer overall than today, and the hypothesized aerial extent of water masses appears to fit the limited stable isotopic data available for this time period. ?? Author(s) 2009.

  1. Longitudinal surface structures (flowstripes on Antarctic glaciers

    Directory of Open Access Journals (Sweden)

    N. F. Glasser

    2011-11-01

    Full Text Available Longitudinal surface structures (''flowstripes'' are common on many glaciers but their origin and significance are poorly understood. In this paper we present observations of the development of these longitudinal structures from four different Antarctic glacier systems (the Lambert Glacier/Amery Ice Shelf area, outlet glaciers in the Ross Sea sector, ice-shelf tributary glaciers on the Antarctic Peninsula, and the onset zone of a tributary to the Recovery Glacier Ice Stream in the Filchner Ice Shelf area. Mapping from optical satellite images demonstrates that longitudinal surface structures develop in two main situations: (1 as relatively wide flow stripes within glacier flow units and (2 as relatively narrow flow stripes where there is convergent flow around nunataks or at glacier confluence zones. Our observations indicate that the confluence features are narrower, sharper, and more clearly defined features. They are characterised by linear troughs or depressions on the ice surface and are much more common than the former type. Longitudinal surface structures within glacier flow units have previously been explained as the surface expression of localised bed perturbations but a universal explanation for those forming at glacier confluences is lacking. Here we propose that these features are formed at zones of ice acceleration and extensional flow at glacier confluences. We provide a schematic model for the development of longitudinal surface structures based on extensional flow that can explain their ridge and trough morphology as well as their down-ice persistence.

  2. Interhemispheric coupling and warm Antarctic interglacials

    Directory of Open Access Journals (Sweden)

    P. B. Holden

    2009-12-01

    Full Text Available Ice core evidence indicates that even though atmospheric CO2 concentrations did not exceed ~300 ppm at any point during the last 800 000 years, East Antarctica was at least ~3–4 °C warmer than pre-industrial (CO2 ~280 ppm in each of the last four interglacials. During the previous three interglacials, this anomalous warming was short lived (~3 000 years and apparently occurred before the completion of Northern Hemisphere deglaciation. Hereafter, we refer to these periods as "Warmer than Present Transients" (WPTs. We here present transient 800 kyr simulations using the intermediate complexity model GENIE-1 which suggest that WPTs could be explained as a consequence of the meltwater-forced slowdown of the Atlantic Meridional Overturning Circulation (AMOC during glacial terminations. It is well known that a slowed AMOC would increase southern Sea Surface Temperature (SST through the bipolar seesaw. Observational data supports this hypothesis, suggesting that the AMOC remained weak throughout the terminations preceding WPTs, strengthening rapidly at a time which coincides closely with peak Antarctic temperature. In order to investigate model and boundary condition uncertainty, we additionally present three ensembles of transient GENIE-1 simulations across Termination II (135 000 to 124 000 BP and three snapshot HadCM3 simulations at 130 000 Before Present (BP. These simulations together reproduce both the timing and magnitude of WPTs, and point to the potential importance of an albedo feedback associated with West Antarctic Ice Sheet (WAIS retreat.

  3. Solar power for an Antarctic rover

    Science.gov (United States)

    Lever, J. H.; Ray, L. R.; Streeter, A.; Price, A.

    2006-03-01

    Sensors mounted on mobile robots could serve a variety of science missions in Antarctica. Although weather conditions can be harsh, Antarctic snowfields offer unique conditions to facilitate long-distance robot deployment: the absence of obstacles, firm snow with high albedo, and 24 h sunlight during the summer. We have developed a four-wheel-drive, solar-powered rover that capitalizes on these advantages. Analyses and field measurements confirm that solar power reflected from Antarctic snow contributes 30-40% of the power available to a robot consisting of a five-side box of solar panels. Mobility analyses indicate that the 80 kg rover can move at 0.8 m s-1 during clear sky conditions on firm snow into a 5 m s-1 headwind, twice the speed needed to achieve the design target of 500 km in 2 weeks. Local winter tests of the chassis demonstrated good grade-climbing ability and lower than predicted rolling resistance. Tests of the completed robot occurred in Greenland in 2005.

  4. CHAMP Magnetic Anomalies of the Antarctic Crust

    Science.gov (United States)

    Kim, Hyung Rae; Gaya-Pique, Luis R.; vonFrese, Ralph R. B.; Taylor, Patrick T.; Kim, Jeong Woo

    2003-01-01

    Regional magnetic signals of the crust are strongly masked by the core field and its secular variations components and hence difficult to isolate in the satellite measurements. In particular, the un-modeled effects of the strong auroral external fields and the complicated- behavior of the core field near the geomagnetic poles conspire to greatly reduce the crustal magnetic signal-to-noise ratio in the polar regions relative to the rest of the Earth. We can, however, use spectral correlation theory to filter the static lithospheric and core field components from the dynamic external field effects. To help isolate regional lithospheric from core field components, the correlations between CHAMP magnetic anomalies and the pseudo magnetic effects inferred from gravity-derived crustal thickness variations can also be exploited.. Employing these procedures, we processed the CHAMP magnetic observations for an improved magnetic anomaly map of the Antarctic crust. Relative to the much higher altitude Orsted and noisier Magsat observations, the CHAMP magnetic anomalies at 400 km altitude reveal new details on the effects of intracrustal magnetic features and crustal thickness variations of the Antarctic.

  5. Oceans Past

    DEFF Research Database (Denmark)

    Based on research for the History of Marine Animal Populations project, Oceans Past examines the complex relationship our forebears had with the sea and the animals that inhabit it. It presents eleven studies ranging from fisheries and invasive species to offshore technology and the study of marine...... environmental history, bringing together the perspectives of historians and marine scientists to enhance understanding of ocean management of the past, present and future. In doing so, it also highlights the influence that changes in marine ecosystems have upon the politics, welfare and culture of human...

  6. Warming, Contraction, and Freshening of Antarctic Bottom Water since the 1990s, with a Potential Ice-Sheet Melt Feedback.

    Science.gov (United States)

    Johnson, Gregory; Purkey, Sarah; Rintoul, Stephen; Swift, James

    2013-04-01

    We analyze changes in Antarctic Bottom Waters (AABW) around the deep Southern Ocean using repeat section data collected between 1981 and 2012. The international World Ocean Circulation Experiment (WOCE) Hydrographic Program collected a global high-quality baseline of full-depth, accurate oceanographic transects in the 1980s and 1990s. Since the 2000s, some of these transects are being reoccupied, again through international collaboration, as part of GO-SHIP (The Global Ocean Ship-Based Hydrographic Investigations Program). The average dates of the first and last data used to estimate these trends are circa 1991 and 2008. Temperature analyses reveal a nearly global-scale signature of warming in the abyssal ocean ventilated from the Antarctic. In the deep basins around Antarctica, AABW warmed at a rate of 0.02 to 0.05 °C per decade below 4000 m. In addition, the waters between 1000 and 4000 m within and south of the Antarctic Circumpolar Current warmed at a rate of about 0.03 °C per decade. With this warming, cold, deep isotherms are sinking in the Southern Ocean. The 0 °C potential isotherm sinking rate is around 100 m per decade, implying a 8.2 (±2.6) Sv contraction rate of AABW, about 7% per decade. In addition to this contraction, AABW freshening is observed within the Indian and Pacific sectors of the Southern Ocean. The freshening signal is stronger closer to AABW sources. Its spatial pattern implies recent changes in AABW formation, perhaps partly owing to freshening of the shelf waters, which has been linked to increases in glacial ice sheet melt. The observed rate of water-mass freshening for AABW colder than 0°C in the Indian and Pacific Sectors of the Southern Ocean is about half of the estimated increase in mass lost by glacial ice sheets there in recent years. A positive feedback loop might link the AABW contraction and ice sheet melt-influenced freshening as follows: Increased ocean heat flux drives enhanced basal melt of floating ice shelves

  7. Microbial biomass and basal respiration in Sub-Antarctic and Antarctic soils in the areas of some Russian polar stations

    Directory of Open Access Journals (Sweden)

    E. Abakumov

    2014-03-01

    Full Text Available Antarctica is the unique place for pedological investigations. Soils of Antarctica have been studied intensively during the last century. Antarctic logistic provides the possibility to scientists access the terrestrial landscapes mainly in the places of polar stations. That is why the main and most detailed pedological investigations were conducted in Mc Murdo Valleys, Transantarctic Mountains, South Shetland Islands, Larsemann hills and Schirmacher Oasis. Investigations were conducted during the 53rd and 55th Russian Antarctic expeditions on the base of soil pits and samples collected in Sub-Antarctic and Antarctic regions. Soils of diverse Antarctic landscapes were studied with aim to assess the microbial biomass level, basal respiration rates and metabolic activity of microbial communities. The investigation conducted shows that soils of Antarctic are quite different in profile organization and carbon content. In general, Sub-Antarctic soils are characterized by more developed humus (sod organo-mineral horizons as well as the upper organic layer. The most developed organic layers were revealed in peat soils of King-George Island, where its thickness reach even 80 cm. These soils as well as soils under guano are characterized by the highest amount of total organic carbon (TOC 7.22–33.70%. Coastal and continental soils of Antarctic are presented by less developed Leptosols, Gleysols, Regolith and rare Ornhitosol with TOC levels about 0.37–4.67%. The metabolic ratios and basal respiration were higher in Sub-Antarctic soils than in Antarctic ones which can be interpreted as result of higher amounts of fresh organic remnants in organic and organo-mineral horizons. Also the soils of King-George island have higher portion of microbial biomass (max 1.54 mg g−1 than coastal (max 0.26 mg g−1 and continental (max 0.22 mg g−1 Antarctic soils. Sub-Antarctic soils mainly differ from Antarctic ones in increased organic layers thickness and total

  8. Calling in the cold: pervasive acoustic presence of humpback whales (Megaptera novaeangliae in Antarctic coastal waters.

    Directory of Open Access Journals (Sweden)

    Ilse Van Opzeeland

    Full Text Available Humpback whales migrate between relatively unproductive tropical or temperate breeding grounds and productive high latitude feeding areas. However, not all individuals of a population undertake the annual migration to the breeding grounds; instead some are thought to remain on the feeding grounds year-round, presumably to avoid the energetic demands of migration. In the Southern Hemisphere, ice and inclement weather conditions restrict investigations of humpback whale presence on feeding grounds as well as the extent of their southern range. Two years of near-continuous recordings from the PerenniAL Acoustic Observatory in the Antarctic Ocean (PALAOA, Ekström Iceshelf, 70°31'S, 8°13'W are used to explore the acoustic presence of humpback whales in an Antarctic coastal area. Humpback whale calls were present during nine and eleven months of 2008 and 2009, respectively. In 2008, calls were present in January through April, June through August, November and December, whereas in 2009, calls were present throughout the year, except in September. Calls occurred in un-patterned sequences, representing non-song sound production. Typically, calls occurred in bouts, ranging from 2 to 42 consecutive days with February, March and April having the highest daily occurrence of calls in 2008. In 2009, February, March, April and May had the highest daily occurrence of calls. Whales were estimated to be within a 100 km radius off PALAOA. Calls were also present during austral winter when ice cover within this radius was >90%. These results demonstrate that coastal areas near the Antarctic continent are likely of greater importance to humpback whales than previously assumed, presumably providing food resources year-round and open water in winter where animals can breathe.

  9. The Antarctic krill Euphausia superba shows diurnal cycles of transcription under natural conditions.

    Directory of Open Access Journals (Sweden)

    Cristiano De Pittà

    Full Text Available BACKGROUND: Polar environments are characterized by extreme seasonal changes in day length, light intensity and spectrum, the extent of sea ice during the winter, and food availability. A key species of the Southern Ocean ecosystem, the Antarctic krill (Euphausia superba has evolved rhythmic physiological and behavioral mechanisms to adapt to daily and seasonal changes. The molecular organization of the clockwork underlying these biological rhythms is, nevertheless, still only partially understood. METHODOLOGY/PRINCIPAL FINDINGS: The genome sequence of the Antarctic krill is not yet available. A normalized cDNA library was produced and pyrosequenced in the attempt to identify large numbers of transcripts. All available E. superba sequences were then assembled to create the most complete existing oligonucleotide microarray platform with a total of 32,217 probes. Gene expression signatures of specimens collected in the Ross Sea at five different time points over a 24-hour cycle were defined, and 1,308 genes differentially expressed were identified. Of the corresponding transcripts, 609 showed a significant sinusoidal expression pattern; about 40% of these exibithed a 24-hour periodicity while the other 60% was characterized by a shorter (about 12-hour rhythm. We assigned the differentially expressed genes to functional categories and noticed that those concerning translation, proteolysis, energy and metabolic process, redox regulation, visual transduction and stress response, which are most likely related to daily environmental changes, were significantly enriched. Two transcripts of peroxiredoxin, thought to represent the ancestral timekeeping system that evolved about 2.5 billion years ago, were also identified as were two isoforms of the EsRh1 opsin and two novel arrestin1 sequences involved in the visual transduction cascade. CONCLUSIONS: Our work represents the first characterization of the krill diurnal transcriptome under natural conditions

  10. Mechanisms of Antarctic net precipitation climate change signals

    Science.gov (United States)

    Grieger, Jens; Leckebusch, Gregor C.; Ulbrich, Uwe

    2015-04-01

    This study investigates mechanisms leading to climate change signals of Antarctic net precipitation (E-P) simulated by three members of one CMIP3 coupled atmosphere-ocean general circulation model (AOGCM). Net precipitation is calculated with the divergence of the vertically integrated moisture flux. Generally, moisture flux changes are dominated by increased humidity in the atmosphere due to temperature increase in the future climate projections. This contribution presents an approach to distinguish between thermodynamical and dynamical influences on moisture flux. A physical interpretation of the changing flux signal due to dynamics is given by decomposing atmospheric waves into different length scales and temporal variations. Climate change of moisture transport is compared with fluctuations of geopotential height fields as well as climate signals of extra-tropical cyclones. Synoptic length scale moisture flux variability with temporal variations between 2.5 and 8 days can be assigned to the SH stormtrack, which shows a distinctive poleward shift in the future projection. This signal can also be found for extra-tropical cyclones, whereas changing wave activity can be better understood if strong cyclones separately are taken into account, which intensify especially on the Eastern Hemisphere. Changing moisture transport towards Antarctica leads to climate change signals of net precipitation inside a spherical cap around the continent. Generally, an increasing signal of net precipitation can be found whereas the dynamical part decreases. This is due to the low variability component of synoptic scale waves, which show a decreasing climate change signal, especially off-coast of West Antarctica. This is discussed to be connected to changing variability of the Amundsen-Bellingshausen Sea Low.

  11. Antarctic Porifera database from the Spanish benthic expeditions

    OpenAIRE

    Pilar Rios; Javier Cristobo

    2014-01-01

    The information about the sponges in this dataset is derived from the samples collected during five Spanish Antarctic expeditions: Bentart 94, Bentart 95, Gebrap 96, Ciemar 99/00 and Bentart 2003. Samples were collected in the Antarctic Peninsula and Bellingshausen Sea at depths ranging from 4 to 2044 m using va­rious sampling gears.The Antarctic Porifera database from the Spanish benthic expeditions is unique as it provides in­formation for an under-explored region of the Southern Oc...

  12. Southern Ocean CO2 sink: the contribution of the sea ice

    DEFF Research Database (Denmark)

    Delille, B.; Vancoppenolle, Martin; Geilfus, Nicolas-Xavier;

    2014-01-01

    at the air-sea ice interface. The sea ice changes from a transient source to a sink for atmospheric CO2. We upscale these observations to the whole Antarctic sea ice cover using the NEMO-LIM3 large-scale sea ice-ocean and provide first esti- mates of spring and summer CO2 uptake from the atmosphere...... by Antarctic sea ice. Over the spring- summer period, the Antarctic sea ice cover is a net sink of atmospheric CO2 of 0.029 Pg C, about 58% of the estimated annual uptake from the Southern Ocean. Sea ice then contributes significantly to the sink of CO2 of the Southern Ocean.......We report first direct measurements of the partial pressure of CO2 (pCO2) within Antarctic pack sea ice brines and related CO2 fluxes across the air-ice interface. From late winter to summer, brines encased in the ice change from a CO2 large oversaturation, relative to the atmosphere, to a marked...

  13. Ocean energies

    International Nuclear Information System (INIS)

    This timely volume provides a comprehensive review of current technology for all ocean energies. It opens with an analysis of ocean thermal energy conversion (OTEC), with and without the use of an intermediate fluid. The historical and economic background is reviewed, and the geographical areas in which this energy could be utilized are pinpointed. The production of hydrogen as a side product, and environmental consequences of OTEC plants are considered. The competitiveness of OTEC with conventional sources of energy is analysed. Optimisation, current research and development potential are also examined. Separate chapters provide a detailed examination of other ocean energy sources. The possible harnessing of solar ponds, ocean currents, and power derived from salinity differences is considered. There is a fascinating study of marine winds, and the question of using the ocean tides as a source of energy is examined, focussing on a number of tidal power plant projects, including data gathered from China, Australia, Great Britain, Korea and the USSR. Wave energy extraction has excited recent interest and activity, with a number of experimental pilot plants being built in northern Europe. This topic is discussed at length in view of its greater chance of implementation. Finally, geothermal and biomass energy are considered, and an assessment of their future is given. The authors also distinguished between energy schemes which might be valuable in less-industrialized regions of the world, but uneconomical in the developed countries. A large number of illustrations support the text. This book will be of particular interest to energy economists, engineers, geologists and oceanographers, and to environmentalists and environmental engineers

  14. Different adaptations of Chinese winter-over expeditioners during prolonged Antarctic and sub-Antarctic residence

    Science.gov (United States)

    Chen, Nan; Wu, Quan; Li, Hao; Zhang, Tao; Xu, Chengli

    2016-05-01

    Prolonged residence in Antarctica is characterized by exposure to isolated, confined, and extreme (ICE) environment. Winter-over expeditioners at research stations often exhibit a complex of psychophysiological symptoms, which varied by stations and sociocultural backgrounds. To understand the different patterns of psychophysiological responses provoked by environmental stress, we conducted a longitudinal assessment of mood and endocrine function in two groups of Chinese expeditioners who were deployed to sub-Antarctic (Great Wall Station, 62°S, N = 12) and Antarctic (Zhongshan Station, 66°S, N = 16) from December 2003 to 2005. Measures of mood, thyroid function, the levels of plasma catecholamine, and circulating interleukins were obtained at departure from China, mid-winter (Antarctica), end of winter (Antarctica), and return to China, respectively. The Zhongshan Station crew experienced significant increases in fatigue, anger, tension, confusion, and decrease in free thyroxine (FT4), norepinephrine (NE), and epinephrine (E) during the winter, increase in thyrotropin (TSH) and total triiodothyronine (TT3) when returning, whereas their counterparts at Great Wall Station only experienced increased TT3 after deployment. Moreover, compared with the Great Wall Station crew, the Zhongshan Station crew exhibited greater increase in anger, greater decrease in FT4, total thyroxine (TT4), NE and E over the winter, and greater increase in TSH when returning. Chinese expeditioners who lived and worked at the Antarctic station and the sub-Antarctic station for over a year showed different change patterns in mood and endocrine hormones. Negative mood and endocrine dysfunction were positively associated with the severity of environment. The study is a supplement to scientific knowledge on psychophysiological variation under ICE environment, which has certain applied value for the development of preventive countermeasures or interventions.

  15. Southern elephant seals from Kerguelen Islands confronted by Antarctic Sea ice. Changes in movements and in diving behaviour

    Science.gov (United States)

    Bailleul, Frédéric; Charrassin, Jean-Benoıˆt; Ezraty, Robert; Girard-Ardhuin, Fanny; McMahon, Clive R.; Field, Iain C.; Guinet, Christophe

    2007-02-01

    The behaviour of southern elephant seals from Kerguelen Island ( 49∘50'S, 70∘30'E) was investigated in relation to the oceanographic regions of the Southern Ocean. The oceanographic and the seal behaviour data, including location and diving activity, were collected using a new generation of satellite-relayed devices measuring and transmitting pressure, temperature, and salinity along with locations. Dive duration, maximum diving depth, time spent at the bottom of the dives, and shape of dive profiles were compared between male and female seals, and were related to the oceanographic characteristics of areas prospected by the seals. Most animals travelled to the Antarctic shelf. However, during winter, adult females travelled away from the continent, remained and foraged within the marginal sea-ice zone, while juvenile males remained within the pack ice to forage mainly on the Antarctic shelf. Therefore, as the ice expanded females appeared to shift from benthic to pelagic foraging farther north, while males continued to forage almost exclusively benthically on the continental shelf. This difference is likely related to the different energetic requirements between the two sexes, but also may be related to pregnant females having to return to Kerguelen in early spring in order to give birth and successfully raise their pups, while males can remain in the ice. Our results show an important link between elephant seals and Antarctic sea ice and suggest that changes in sea-ice conditions could strongly affect the behaviour of this species.

  16. Anomalous South Pacific lithosphere dynamics derived from new total sediment thickness estimates off the West Antarctic margin

    Science.gov (United States)

    Wobbe, Florian; Lindeque, Ansa; Gohl, Karsten

    2014-12-01

    Paleotopographic models of the West Antarctic margin, which are essential for robust simulations of paleoclimate scenarios, lack information on sediment thickness and geodynamic conditions, resulting in large uncertainties. A new total sediment thickness grid spanning the Ross Sea-Amundsen Sea-Bellingshausen Sea basins is presented and is based on all the available seismic reflection, borehole, and gravity modeling data offshore West Antarctica. This grid was combined with NGDC's global 5 arc minute grid of ocean sediment thickness (Whittaker et al., 2013) and extends the NGDC grid further to the south. Sediment thickness along the West Antarctic margin tends to be 3-4 km larger than previously assumed. The sediment volume in the Bellingshausen, Amundsen, and Ross Sea basins amounts to 3.61, 3.58, and 2.78 million km3, respectively. The residual basement topography of the South Pacific has been revised and the new data show an asymmetric trend over the Pacific-Antarctic Ridge. Values are anomalously high south of the spreading ridge and in the Ross Sea area, where the topography seems to be affected by persistent mantle processes. In contrast, the basement topography offshore Marie Byrd Land cannot be attributed to dynamic topography, but rather to crustal thickening due to intraplate volcanism. Present-day dynamic topography models disagree with the presented revised basement topography of the South Pacific, rendering paleotopographic reconstructions with such a limited dataset still fairly uncertain.

  17. Levels and pattern of polybrominated diphenyl ethers in eggs of Antarctic seabirds: Endemic versus migratory species

    International Nuclear Information System (INIS)

    Chinstrap and gentoo penguins are endemic species that live year round south of the Antarctic Convergence. South polar skua is a migratory seabird that can be observed in Antarctica during the breeding season (i.e., austral summer). This study compares concentration and pattern of polybrominated diphenyl ethers (PBDEs) in eggs of seabirds breeding at King George Island, Antarctic Peninsula. PBDEs in south polar skua eggs are approximately 20 times higher than in penguin eggs suggesting that skuas are more exposed to contaminants during the non-breeding season when they migrate to waters of the northern hemisphere. The pattern of PBDE congeners also differs between south polar skua and penguin eggs. The latter exhibited a pattern similar to that found in the local biota. In contrast, the congener pattern in south polar skua eggs suggests that birds breeding at King George Island may winter in the northwestern Pacific Ocean. - Skua and penguin eggs collected at King George Island have different concentration and pattern of PBDEs

  18. Relationship among latest Miocene oxygen isotopic enrichment, antarctic ice volume, and the Messinian salinity crisis

    Energy Technology Data Exchange (ETDEWEB)

    Hodell, D.A.; Elmstrom, K.M.; Kennett, J.P.

    1985-01-01

    An interval of high variable, enriched benthic /sup 18/O values was found to bracket the Miocene/Pliocene boundary, between 5.6 and 5.1 Ma, in five sites from the Southwest Pacific and Atlantic Oceans. The duration of this enrichment event was less than 500,000 years, and is shown by paleomagnetic correlation to be equivalent in time with the deposition of Messinian evaporites. The /sup 18/O enrichment occurred in two main stages separated by a brief interval of relatively depleted /sup 18/O values. Between 5.5 and 5.3 Ma, glacioeustatic lowering of sea level due to increased Antarctic ice volume isolated the Mediterranean basin, and resulted in the deposition of the lower evaporite unit (Main Salt unit). A temporary decrease in ice volume occurred between 5.3 and 5.2 Ma, and corresponded to the intra-Messinian transgression where evaporite deposition ceased temporarily. Between 5.2 and 5.1 Ma, a second Antarctic glacial advance lowered sea level again and resulted in the deposition of the upper evaporite unit. A rapid decreased in delta/sup 18/O values occurred in all sites during the early Pliocene at 5.0 Ma. This depletion marks a glacial retreat and marine transgression, which refilled the Mediterranean Basin and permanently terminated evaporite deposition.

  19. Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding

    Science.gov (United States)

    Ohneiser, Christian; Florindo, Fabio; Stocchi, Paolo; Roberts, Andrew P.; Deconto, Robert M.; Pollard, David

    2015-11-01

    The Messinian Salinity Crisis (MSC) was a marked late Neogene oceanographic event during which the Mediterranean Sea evaporated. Its causes remain unresolved, with tectonic restrictions to the Atlantic Ocean or glacio-eustatic restriction of flow during sea-level lowstands, or a mixture of the two mechanisms, being proposed. Here we present the first direct geological evidence of Antarctic ice-sheet (AIS) expansion at the MSC onset and use a δ18O record to model relative sea-level changes. Antarctic sedimentary successions indicate AIS expansion at 6 Ma coincident with major MSC desiccation; relative sea-level modelling indicates a prolonged ~50 m lowstand at the Strait of Gibraltar, which resulted from AIS expansion and local evaporation of sea water in concert with evaporite precipitation that caused lithospheric deformation. Our results reconcile MSC events and demonstrate that desiccation and refilling were timed by the interplay between glacio-eustatic sea-level variations, glacial isostatic adjustment and mantle deformation in response to changing water and evaporite loads.

  20. Levels and pattern of polybrominated diphenyl ethers in eggs of Antarctic seabirds: Endemic versus migratory species

    Energy Technology Data Exchange (ETDEWEB)

    Yogui, G.T. [Geochemical and Environmental Research Group, College of Geosciences, Texas A and M University, 833 Graham Road, College Station, TX 77845 (United States)], E-mail: gtyogui@ocean.tamu.edu; Sericano, J.L. [Geochemical and Environmental Research Group, College of Geosciences, Texas A and M University, 833 Graham Road, College Station, TX 77845 (United States)], E-mail: jsericano@gerg.tamu.edu

    2009-03-15

    Chinstrap and gentoo penguins are endemic species that live year round south of the Antarctic Convergence. South polar skua is a migratory seabird that can be observed in Antarctica during the breeding season (i.e., austral summer). This study compares concentration and pattern of polybrominated diphenyl ethers (PBDEs) in eggs of seabirds breeding at King George Island, Antarctic Peninsula. PBDEs in south polar skua eggs are approximately 20 times higher than in penguin eggs suggesting that skuas are more exposed to contaminants during the non-breeding season when they migrate to waters of the northern hemisphere. The pattern of PBDE congeners also differs between south polar skua and penguin eggs. The latter exhibited a pattern similar to that found in the local biota. In contrast, the congener pattern in south polar skua eggs suggests that birds breeding at King George Island may winter in the northwestern Pacific Ocean. - Skua and penguin eggs collected at King George Island have different concentration and pattern of PBDEs.

  1. Subduction of Pacific Antarctic Intermediate Water in an eddy-resolving model

    Science.gov (United States)

    Hiraike, Yuri; Tanaka, Yukio; Hasumi, Hiroyasu

    2016-01-01

    The subduction process of Pacific Antarctic Intermediate Water (PAAIW) in the Pacific is investigated using output from an eddy-resolving ocean model. Focus is on contribution of eddies to the subduction process. To separate the subduction rate into contributions by eddies and mean flows, the temporal residual mean (TRM) velocity is used. In the mean subduction rate, lateral induction caused by the strong eastward flow of the Antarctic Circumpolar Current (ACC) is dominant. The largest rate is located in the Drake Passage. The estimated eddy-induced subduction rate is comparable with the mean subduction rate, and it tends to cancel the vertical mean component in many regions. In the west of the Drake Passage, however, the eddy-induced subduction is larger than the vertical mean component, and this eddy-induced subduction was not detected in previous studies using the thickness diffusion parameterization and an eddy-permitting model. Results of idealized sensitivity studies to model resolution suggest that the subduction rate would be larger using a model with higher vertical resolution. Therefore, the vertical resolution should be paid more attention in model studies investigating eddy-induced subduction, and not just the horizontal resolution.

  2. The de-correlation of westerly winds and westerly-wind stress over the Southern Ocean during the Last Glacial Maximum

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Lu, Jian; Leung, Lai-Yung R.; Xie, Shang-Ping; Liu, Zhengyu; Zhu, Jiang

    2015-02-22

    This paper investigates the changes of the Southern Westerly Winds (SWW) and Southern Ocean (SO) upwelling between the Last Glacial Maximum (LGM) and preindustrial (PI) in the PMIP3/CMIP5 simulations, highlighting the role of the Antarctic sea ice in modulating the wind stress effect on the ocean. Particularly, a discrepancy may occur between the changes in SWW and westerly wind stress, caused primarily by an equatorward expansion of winter Antarctic sea ice that undermines the wind stress in driving the liquid ocean. Such discrepancy may reflect the LGM condition in reality, in view of that the model simulates this condition has most credible simulation of modern SWW and Antarctic sea ice. The effect of wind stress on the SO upwelling is further explored via the wind-induced Ekman pumping, which is reduced under the LGM condition in all models, in part by the sea-ice “capping” effect present in the models.

  3. Biomarkers and Microbial Fossils In Antarctic Rocks

    Science.gov (United States)

    Wierzchos, J.; Ascaso, C.

    Lithobiontic microbial communities living within Antarctic rocks are an example of survival in an extremely cold and dry environment. Any unfavourable change in ex- ternal conditions can result in the death and disappearance of microscopic organisms, and this may be followed by the appearance of trace biomarkers and microbial fossils. The extinction of these microorganisms in some zones of the Ross Desert, probably provoked by the hostile environment, might be considered a good terrestrial analogue of the first stage of the disappearance of possible life on early Mars. Granite samples from maritime Antarctica (Granite Harbour) and sandstone rocks from the continental Ross Desert were collected with the aim of searching for biomarkers and microbial fossils at the microscopic level of observation. To this end, a novel in situ applica- tion of scanning electron microscopy with backscattered electron imaging was com- bined with the simultaneous use of X-ray energy dispersive spectroscopy techniques. Our findings confirm the existence of inorganic biomarkers in the form of physico- chemically bioweathered minerals within the granitic rocks. The presence of Fe-rich diagenetic minerals, such as iron hydroxide nanocrystals and biogenic clays around chasmoendolithic hyphae and bacterial cells was also observed. Others biomarkers, including inorganic deposits such as calcium oxalates and silica accumulations, are clear signs of endolithic microorganism activity. The interior of the sandstone rocks (Ross Desert, Mt. Fleming) reveal the presence of microbial fossils of algae and other endolithic microorganisms. These microbial fossils, detected for the first time within Antarctic rocks, contain well preserved and morphologically distinguishable relics of ultrastructural cytoplasm elements, such as cell walls, chloroplast membranes, and oc- casionally, pyrenoids and traces of organic matter. These structures are similar to those observed in live cells also found in Antarctic

  4. Shearwater foraging in the Southern Ocean: the roles of prey availability and winds.

    Directory of Open Access Journals (Sweden)

    Ben Raymond

    Full Text Available BACKGROUND: Sooty (Puffinus griseus and short-tailed (P. tenuirostris shearwaters are abundant seabirds that range widely across global oceans. Understanding the foraging ecology of these species in the Southern Ocean is important for monitoring and ecosystem conservation and management. METHODOLOGY/PRINCIPAL FINDINGS: Tracking data from sooty and short-tailed shearwaters from three regions of New Zealand and Australia were combined with at-sea observations of shearwaters in the Southern Ocean, physical oceanography, near-surface copepod distributions, pelagic trawl data, and synoptic near-surface winds. Shearwaters from all three regions foraged in the Polar Front zone, and showed particular overlap in the region around 140 degrees E. Short-tailed shearwaters from South Australia also foraged in Antarctic waters south of the Polar Front. The spatial distribution of shearwater foraging effort in the Polar Front zone was matched by patterns in large-scale upwelling, primary production, and abundances of copepods and myctophid fish. Oceanic winds were found to be broad determinants of foraging distribution, and of the flight paths taken by the birds on long foraging trips to Antarctic waters. CONCLUSIONS/SIGNIFICANCE: The shearwaters displayed foraging site fidelity and overlap of foraging habitat between species and populations that may enhance their utility as indicators of Southern Ocean ecosystems. The results highlight the importance of upwellings due to interactions of the Antarctic Circumpolar Current with large-scale bottom topography, and the corresponding localised increases in the productivity of the Polar Front ecosystem.

  5. Ocean Bottom Pressure Seasonal Cycles and Decadal Trends from GRACE Release-05: Ocean Circulation Implications

    Science.gov (United States)

    Johnson, G. C.; Chambers, D. P.

    2013-12-01

    Ocean mass variations are important for diagnosing sea level budgets, the hydrological cycle and global energy budget, as well as ocean circulation variability. Here seasonal cycles and decadal trends of ocean mass from January 2003 to December 2012, both global and regional, are analyzed using GRACE Release 05 data. The trend of global flux of mass into the ocean approaches 2 cm decade-1 in equivalent sea level rise. Regional trends are of similar magnitude, with the North Pacific, South Atlantic, and South Indian oceans generally gaining mass and other regions losing mass. These trends suggest a spin-down of the North Pacific western boundary current extension and the Antarctic Circumpolar Current in the South Atlantic and South Indian oceans. The global average seasonal cycle of ocean mass is about 1 cm in amplitude, with a maximum in early October and volume fluxes in and out of the ocean reaching 0.5 Sv (1 Sv = 1 × 106 m3 s-1) when integrated over the area analyzed here. Regional patterns of seasonal ocean mass change have typical amplitudes of 1-4 cm, and include maxima in the subtropics and minima in the subpolar regions in hemispheric winters. The subtropical mass gains and subpolar mass losses in the winter spin up both subtropical and subpolar gyres, hence the western boundary current extensions. Seasonal variations in these currents are order 10 Sv, but since the associated depth-averaged current variations are only order 0.1 cm s-1, they would be difficult to detect using in situ oceanographic instruments. a) Amplitude (colors, in cm) and b) phase (colors, in months of the year) of an annual harmonic fit to monthly GRACE Release 05 CSR 500 km smoothed maps (concurrently with a trend and the semiannual harmonic). The 97.5% confidence interval for difference from zero is also indicated (solid black line). Data within 300 km of coastlines are not considered.

  6. Changes in the West Antarctic ice sheet

    International Nuclear Information System (INIS)

    The portion of the West Antarctic ice sheet that flows into the Ross Sea is thinning in some places and thickening in others. These changes are not caused by any current climatic change, but by the combination of a delayed response to the end of the last global glacial cycle and an internal instability. The near-future impact of the ice sheet on global sea level is largely due to processes internal to the movement of the ice sheet, and not so much to the threat of a possible greenhouse warming. Thus the near-term future of the ice sheet is already determined. However, too little of the ice sheet has been surveyed to predict its overall future behavior

  7. Joint Antarctic School Expedition - An International Collaboration for High School Students and Teachers on Antarctic Science

    Science.gov (United States)

    Botella, J.; Warburton, J.; Bartholow, S.; Reed, L. F.

    2014-12-01

    The Joint Antarctic School Expedition (JASE) is an international collaboration program between high school students and teachers from the United States and Chile aimed at providing the skills required for establishing the scientific international collaborations that our globalized world demands, and to develop a new approach for science education. The National Antarctic Programs of Chile and the United States worked together on a pilot program that brought high school students and teachers from both countries to Punta Arenas, Chile, in February 2014. The goals of this project included strengthening the partnership between the two countries, and building relationships between future generations of scientists, while developing the students' awareness of global scientific issues and expanding their knowledge and interest in Antarctica and polar science. A big component of the project involved the sharing by students of the acquired knowledge and experiences with the general public. JASE is based on the successful Chilean Antarctic Science Fair developed by Chile´s Antarctic Research Institute. For 10 years, small groups of Chilean students, each mentored by a teacher, perform experimental or bibliographical Antarctic research. Winning teams are awarded an expedition to the Chilean research station on King George Island. In 2014, the Chileans invited US participation in this program in order to strengthen science ties for upcoming generations. On King George Island, students have hands-on experiences conducting experiments and learning about field research. While the total number of students directly involved in the program is relatively small, the sharing of the experience by students with the general public is a novel approach to science education. Research experiences for students, like JASE, are important as they influence new direction for students in science learning, science interest, and help increase science knowledge. We will share experiences with the

  8. Organic carbon in Antarctic snow: spatial trends and possible sources

    Digital Repository Service at National Institute of Oceanography (India)

    Antony, R.; Mahalinganathan, K.; Thamban, M.; Nair, S.

    Organic carbon records in Antarctic snow are sparse despite the fact that it is of great significance to global carbon dynamics, snow photochemistry, and air–snow exchange processes. Here, surface snow total organic carbon (TOC) along with sea...

  9. A Comparative Study of Antarctic Arctic and Himalayan Ice

    Directory of Open Access Journals (Sweden)

    R. C. Pathak

    1989-07-01

    Full Text Available Arctic, Antarctic and inaccessible lofty regions of Himalayas,which are geographically diverse areas and have been a constant source of inspiration, envisages a challenging field of study 'by early adventurers and scientists of the world. Characteristics of ice obtained at Arctic and Antarctic do not possess similar properties. Even thesalient properties of snow and ice of western and central Himalayas vary due to its differing free water content. A study has been carriedout based on recent Antarctic Expedition by Indian scientists and the data gathered along litha-tectonic regions of Himalayas and their characteristics have been compared, wkich brings out stratigraphic and metamorphic characteristics of the ice and snow. In the present paper,an analysis of the ice and snow properties of Arctic, Antarctic and Himalayan regions has been presented.

  10. Constraining the Antarctic contribution to global sea-level change: ANDRILL and beyond

    Science.gov (United States)

    Naish, Timothy

    2016-04-01

    Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1 to 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the

  11. Decadal Trends in Abundance, Size and Condition of Antarctic Toothfish in McMurdo Sound, Antarctica, 1972-2010

    Science.gov (United States)

    Ainley, David G.; Nur, Nadav; Eastman, Joseph T.; Ballard. Grant; Parkinson, Claire L; Evans, Clive W.; DeVries, Arthur L.

    2012-01-01

    We report analyses of a dataset spanning 38 years of near-annual fishing for Antarctic toothfish Dissostichus mawsoni, using a vertical setline through the fast ice of McMurdo Sound, Antarctica, 1972-2010. This constitutes one of the longest biological time series in the Southern Ocean, and certainly the longest for any fish. Fish total length, condition and catch per unit effort (CPUE) were derived from the more than 5500 fish caught. Contrary to expectation, length-frequency was dominated by fish in the upper half of the industrial catch. The discrepancy may be due to biases in the sampling capabilities of vertical (this study) versus benthic (horizontal) fishing gear (industry long lines), related to the fact that only large Antarctic toothfish (more than 100 cm TL) are neutrally buoyant and occur in the water column. Fish length and condition increased from the early 1970s to the early 1990s and then decreased, related to sea ice cover, with lags of 8 months to 5 years, and may ultimately be related to the fishery (which targets large fish) and changes in the Southern Annular Mode through effects on toothfish main prey, Antarctic silverfish Pleuragramma antarcticum. CPUE was constant through 2001 and then decreased dramatically, likely related to the industrial fishery, which began in 1996 and which concentrates effort over the Ross Sea slope, where tagged McMurdo fish have been found. Due to limited prey choices and, therefore, close coupling among mesopredators of the Ross Sea, Antarctic toothfish included, the fishery may be altering the trophic structure of the Ross Sea.

  12. Fundamental differences between Arctic and Antarctic ozone depletion

    OpenAIRE

    Solomon, Susan; Haskins, Jessica; Ivy, Diane J.; Min, Flora

    2014-01-01

    Fundamental differences in observed ozone depletion between the Arctic and the Antarctic are shown, clarifying distinctions between both average and extreme ozone decreases in the two hemispheres. Balloon-borne and satellite measurements in the heart of the ozone layer near 18−24 km altitude show that extreme ozone decreases often observed in the Antarctic ozone hole region have not yet been measured in the Arctic in any year, including the unusually cold Arctic spring of 2011. The data provi...

  13. Perspectives on the economic history of the Antarctic region

    OpenAIRE

    Basberg, Bjørn L.

    2005-01-01

    This paper starts out by indicating how the economic history of the Antarctic could be conceptualized, given the peculiarities of the continent and the region (no permanent population, no sovereignty in a traditional sense, extreme remoteness, rigorous climate etc.). Second, it describes the main industries throughout Antarctic history. Third, it examines the quantitative data available on economic activity in the region, suggests how we should proceed to analyse the economic a...

  14. Holocene subsurface temperature variability in the eastern Antarctic continental margin

    OpenAIRE

    Kim, J. H.; X. Crosta; Willmott, V.; Renssen, H.; J. Bonnin; Helmke, P.; Schouten, S.; Sinninghe Damsté, J.S.

    2012-01-01

    We reconstructed subsurface (similar to 45-200 m water depth) temperature variability in the eastern Antarctic continental margin during the late Holocene, using an archaeal lipid-based temperature proxy (TEX86 L). Our results reveal that subsurface temperature changes were probably positively coupled to the variability of warmer, nutrient-rich Modified Circumpolar Deep Water (MCDW, deep water of the Antarctic circumpolar current) intrusion onto the continental shelf. The TEX86 L record, in c...

  15. Wind profile radar for study of Antarctic air circulation

    International Nuclear Information System (INIS)

    After a brief discussion of meteorological methods used in the Antarctic, the paper gives an outline of a coordinated international research project whose objective is to set up a wind profiler radar station that would give meteorologists information regarding Antarctic atmospheric dynamics useful in their investigation of the causes and effects of the hole in the ozone layer. The radar instrumentation is to provide continuous readings of wind velocity at varying altitudes above the polar continent

  16. Stochastic superparameterization in a quasigeostrophic model of the Antarctic Circumpolar Current

    Science.gov (United States)

    Grooms, Ian; Majda, Andrew J.; Smith, K. Shafer

    2015-01-01

    Stochastic superparameterization, a stochastic parameterization framework based on a multiscale formalism, is developed for mesoscale eddy parameterization in coarse-resolution ocean modeling. The framework of stochastic superparameterization is reviewed and several configurations are implemented and tested in a quasigeostrophic channel model - an idealized representation of the Antarctic Circumpolar Current. Five versions of the Gent-McWilliams (GM) parameterization are also implemented and tested for comparison. Skill is measured using the time-mean and temporal variability separately, and in combination using the relative entropy in the single-point statistics. Among all the models, those with the more accurate mean state have the less accurate variability, and vice versa. Stochastic superparameterization results in improved climate fidelity in comparison with GM parameterizations as measured by the relative entropy. In particular, configurations of stochastic superparameterization that include stochastic Reynolds stress terms in the coarse model equations, corresponding to kinetic energy backscatter, perform better than models that only include isopycnal height smoothing.

  17. Evolution of the Arctic and Antarctic sea ice over the 20th and 21st centuries as simulated by CMIP5 models

    Science.gov (United States)

    Philippon-Berthier, G.; Fichefet, T.; Goosse, H.; Massonnet, F.

    2011-12-01

    Results from simulations conducted with the CMIP5 atmosphere-ocean general circulation models are used to study the evolution of the Arctic and Antarctic sea ice covers over the 20th and 21st centuries. We first assess the ability of the individual models and the multi-model mean to reproduce the average seasonal cycle, the interannual variability and the longer-term changes of the Arctic and Antarctic sea ice extents and volumes over the late 20th century. A performance metric based on observations is proposed and applied to all available models with the aim of selecting those that yield the most realistic behavior of both ice packs. Outputs from the selected models are then thoroughly analyzed to better understand the sharp decline of the Arctic sea ice area coverage observed during the last decades and to determine the causes of the recent increase in Antarctic sea ice extent. Second, we project with each individual model and the multi-model mean the response of the Arctic and Antarctic sea ice extents and volumes over the 21st century to the RCP2.6, RCP4.5, RCP6 and RCP8.5 forcing scenarios. Models that meet the performance criteria defined by the metric are finally used to reduce uncertainties regarding the date of disappearance of the summer Arctic sea ice.

  18. A Biophysical and Economic Profile of South Georgia and the South Sandwich Islands as Potential Large-Scale Antarctic Protected Areas.

    Science.gov (United States)

    Rogers, Alex D; Yesson, Christopher; Gravestock, Pippa

    2015-01-01

    The current hiatus in the establishment of a network of marine protected areas (MPAs) in the Antarctic means that other routes to conservation are required. The protection of overseas territories in the Antarctic and sub-Antarctic represents one way to advance the initiation of such a network. This review of the physical and biological features of the United Kingdom (U.K.) overseas territories of South Georgia and South Sandwich Islands (SGSSI) is undertaken to estimate the importance of the islands in terms of marine conservation in the Southern Ocean and globally. The economy and management of SGSSI are also analysed, and the question of whether the islands already have sufficient protection to constitute part of an Antarctic network of MPAs is assessed. The SGSSI comprise unique geological and physical features, a diverse marine biota, including a significant proportion of endemic species and globally important breeding populations of marine predators. Regardless of past exploitation of biotic resources, such as seals, whales and finfish, SGSSI would make a significant contribution to biological diversity in an Antarctic network of MPAs. At present, conservation measures do not adequately protect all of the biological features that render the islands so important in terms of conservation at a regional and global level. However, a general lack of data on Antarctic marine ecosystems (particularly needed for SGSSSI) makes it difficult to assess this fully. One barrier to achieving more complete protection is the continuing emphasis on fishing effort in these waters by U.K. government. Other non-U.K. Antarctic overseas territories of conservation importance are also compromised as MPAs because of the exploitation of fisheries resources in their waters. The possible non-use values of SGSSI as well as the importance of ecosystem services that are indirectly used by people are outlined in this review. Technology is improving the potential for management of remote MPAs

  19. Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean

    NARCIS (Netherlands)

    Nishioka, Jun; Takeda, Shigenobu; Baar, Hein J.W. de; Croot, Peter L.; Boye, Marie; Laan, Patrick; Timmermans, Klaas R.

    2005-01-01

    An in situ iron enrichment experiment was carried out in the Southern Ocean Polar Frontal Zone and fertilized a patch of water within an eddy of the Antarctic Circumpolar Current (EisenEx, Nov. 2000). During the experiment, a physical speciation technique was used for iron analysis in order to under

  20. Odontocetes of the Southern Ocean Sanctuary. Scientific Committee document SC/56/SOS1, International Whaling Commission, July 2004, Sorrento, Italy

    OpenAIRE

    Van Waerebeek, K.; Leaper, R.; Baker, A.N.; Papastavrou, V; Thiele, D

    2004-01-01

    Twenty-seven odontocete species are identified as occupying subantarctic and Antarctic habitat covered by the 1994 IWC-established Southern Ocean Sanctuary. Twenty-one species are autochthonous in showing a regular, apparently year-round, presence: Physeter macrocephalus, Kogia breviceps, Orcinus orca, Globicephala melas edwardii, Lagenorhynchus cruciger, Lagenorhynchus obscurus, Lissodelphis peronii, Cephalorhynchus commersonii, Cephalorhynchus hectori, Tursiops truncatus, Delphinus delphis,...

  1. Transcriptomics and comparative analysis of three antarctic notothenioid fishes.

    Directory of Open Access Journals (Sweden)

    Seung Chul Shin

    Full Text Available For the past 10 to 13 million years, Antarctic notothenioid fish have undergone extraordinary periods of evolution and have adapted to a cold and highly oxygenated Antarctic marine environment. While these species are considered an attractive model with which to study physiology and evolutionary adaptation, they are poorly characterized at the molecular level, and sequence information is lacking. The transcriptomes of the Antarctic fishes Notothenia coriiceps, Chaenocephalus aceratus, and Pleuragramma antarcticum were obtained by 454 FLX Titanium sequencing of a normalized cDNA library. More than 1,900,000 reads were assembled in a total of 71,539 contigs. Overall, 40% of the contigs were annotated based on similarity to known protein or nucleotide sequences, and more than 50% of the predicted transcripts were validated as full-length or putative full-length cDNAs. These three Antarctic fishes shared 663 genes expressed in the brain and 1,557 genes expressed in the liver. In addition, these cold-adapted fish expressed more Ub-conjugated proteins compared to temperate fish; Ub-conjugated proteins are involved in maintaining proteins in their native state in the cold and thermally stable Antarctic environments. Our transcriptome analysis of Antarctic notothenioid fish provides an archive for future studies in molecular mechanisms of fundamental genetic questions, and can be used in evolution studies comparing other fish.

  2. Effect of Antarctic solar radiation on sewage bacteria viability

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, K.A. [National Environment Research Council, Cambridge (United Kingdom). British Antarctic Survey

    2005-06-01

    The majority of coastal Antarctic research stations discard untreated sewage waste into the near-shore marine environment. However, Antarctic solar conditions are unique, with ozone depletion increasing the proportion of potentially damaging ultraviolet-B (UV-B) radiation reaching the marine environment. This study assessed the influence of Antarctic solar radiation on the viability of Escherichia coli and sewage microorganisms at Rothera Research Station, Adelaide Island, Antarctic Peninsula. Cell viability decreased with increased exposure time and with exposure to shorter wavelengths of solar radiation. Cell survival also declined with decreasing cloud cover, solar zenith angle and ozone column depth. However, particulates in sewage increased the persistence of viable bacteria. Ultraviolet radiation doses over Rothera Point were highest during the austral summer. During this time, solar radiation may act to partially reduce the number of viable sewage-derived microorganisms in the surface seawater around Antarctic outfalls. Nevertheless, this effect is not reliable and every effort should be made to fully treat sewage before release into the Antarctic marine environment. (author)

  3. Study on tidal gravity observations obtained at stations Zhongshan and Changcheng, Antarctic

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the international tidal gravity reference values at station Wuhan, the tidal gravity parameters, including the amplitude factors and phase differences are determined accurately by using the observations with three La-Coste-Romberg (LCR) gravimeters (G-589, ET-20 and ET-21) at stations Zhongshan and Changcheng in the Ant-arctic, respectively. The standard deviations of the determined amplitude factors of the main tidal waves are better than 0.5%. The amplitude of each tidal wave observed at station Zhongshan is much less than that of the same wave at station Changcheng. The differences of amplitude factors in the diurnal band (O1) at these two stations are less than 7% while those in the semi-diurnal band (M2) are larger than 40%. The influences of meteorology factors, such as atmospheric pressure and temperature, on the tidal gravity observations are very obvious. The oceanic loading effects on the tidal gravity are also very prominent. It is found that the amplitude of the final residual vec-tor of every tidal wave reduces significantly after oceanic correction based on the Schwiderski's global co-tides. However, because the local oceanic loading is not taken into account, the discrepancies of amplitude factors of wave O1 observed at Zhongshan from the corresponding values of theoretical tidal model are about 4%, and 9% at Changcheng.

  4. Siple Dome Ice Cores: Implications for West Antarctic Climate and ENSO Events

    Science.gov (United States)

    Jones, T.; White, J. W.

    2010-12-01

    Ice cores at Siple Dome, West Antarctic receive the majority of their precipitation from Pacific Ocean moisture sources. Pacific climate patterns, particularly the El Niño-Southern Oscillation, affect the local temperature, atmospheric circulation, and snow accumulation at Siple Dome, as well as isotopic signals (∂D and ∂18O). We examined isotopes, accumulation and borehole temperatures from a number of shallow ice cores distributed 60km across the Dome. The data reveal a strong microclimate heavily influenced by South Pacific climate and the location of the Amundsen Sea Low Pressure Area. The Dome Summit and Pacific Flank respond to La Niña conditions by warming, increasing isotope ratios and increased snowfall. The Inland Flank responds to El Niño conditions and cold interior air masses by cooling, decreasing isotope ratios and decreased snowfall. Spectral analysis of the ∂D record shows a distinct shift in ocean-atmosphere climate dynamics in the late 19th century, where scattered bi-decadal to decadal periodicities change to include more intensely grouped and decreasing periodicities as low as two years at the end of the 20th century. Similar changes are seen in South Pacific coral isotope records. Map of Siple Dome including local grid locations for the seven shallow cores B-H. Note the Pacific Ocean and Inland (South Pole) oriented cores. [Modified after Bertler et al., 2006].

  5. Parasites of the Antarctic toothfish (Dissostichus mawsoni Norman, 1937 (Perciformes, Nototheniidae in the Pacific sector of the Antarctic

    Directory of Open Access Journals (Sweden)

    Ilya I. Gordeev

    2016-06-01

    Full Text Available The Antarctic toothfish (Dissostichus mawsoni Norman, 1937 is one of the main target species of commercial fisheries in the Antarctic. It is an endemic and is found along the shelf of Antarctica, as well as on the slopes of seamounts, underwater elevations and islands in the sub-Antarctic. It feeds on a variety of fish and cephalopods and can be an intermediate/paratenic host of some helminthes, whose final hosts are whales, seals, large rays and sharks. This article presents new data on toothfish infection in the Pacific sector of the Antarctic. Specimens were examined during commercial longline fishing in the Ross Sea and the Amundsen Sea in January–February 2013. Fourteen species of parasites were found using standard parasitological methods and genetic analysis.

  6. Snow depth on Arctic and Antarctic sea ice derived from autonomous (Snow Buoy) measurements

    Science.gov (United States)

    Nicolaus, Marcel; Arndt, Stefanie; Hendricks, Stefan; Heygster, Georg; Huntemann, Marcus; Katlein, Christian; Langevin, Danielle; Rossmann, Leonard; Schwegmann, Sandra

    2016-04-01

    The snow cover on sea ice received more and more attention in recent sea ice studies and model simulations, because its physical properties dominate many sea ice and upper ocean processes. In particular; the temporal and spatial distribution of snow depth is of crucial importance for the energy and mass budgets of sea ice, as well as for the interaction with the atmosphere and the oceanic freshwater budget. Snow depth is also a crucial parameter for sea ice thickness retrieval algorithms from satellite altimetry data. Recent time series of Arctic sea ice volume only use monthly snow depth climatology, which cannot take into account annual changes of the snow depth and its properties. For Antarctic sea ice, no such climatology is available. With a few exceptions, snow depth on sea ice is determined from manual in-situ measurements with very limited coverage of space and time. Hence the need for more consistent observational data sets of snow depth on sea ice is frequently highlighted. Here, we present time series measurements of snow depths on Antarctic and Arctic sea ice, recorded by an innovative and affordable platform. This Snow Buoy is optimized to autonomously monitor the evolution of snow depth on sea ice and will allow new insights into its seasonality. In addition, the instruments report air temperature and atmospheric pressure directly into different international networks, e.g. the Global Telecommunication System (GTS) and the International Arctic Buoy Programme (IABP). We introduce the Snow Buoy concept together with technical specifications and results on data quality, reliability, and performance of the units. We highlight the findings from four buoys, which simultaneously drifted through the Weddell Sea for more than 1.5 years, revealing unique information on characteristic regional and seasonal differences. Finally, results from seven snow buoys co-deployed on Arctic sea ice throughout the winter season 2015/16 suggest the great importance of local

  7. Barotropic and baroclinic processes in the transport variability of the Antarctic Circumpolar Current

    Science.gov (United States)

    Olbers, Dirk; Lettmann, Karsten

    2007-12-01

    Synoptic scale variability of the Southern Ocean wind field in the high-frequency range of barotropic Rossby waves results in transport variations of the Antarctic Circumpolar Current (ACC), which are highly coherent with the bottom pressure field all around the Antarctic continent. The coherence pattern, in contrast to the steady state ACC, is steered by the geostrophic f/ h contours passing through Drake Passage and circling closely around the continent. At lower frequencies, with interannual and decadal periods, the correlation with the bottom pressure continues, but baroclinic processes gain importance. For periods exceeding a few years, variations of the ACC transport are in geostrophic balance with the pressure field associated with the baroclinic potential energy stored in the stratification, whereas bottom pressure plays a minor role. The low-frequency variability of the ACC transport is correlated with the baroclinic state variable in the entire Southern Ocean, mediated by baroclinic topographic-planetary Rossby waves that are not bound to f/ h contours. To clarify the processes of wave dynamics and pattern correlation, we apply a circulation model with simplified physics (the barotropic-baroclinic-interaction model BARBI) and use two types of wind forcing: the National Centers for Environmental Prediction (NCEP) wind field with integrations spanning three decades and an artificial wind field constructed from the first three empirical orthogonal functions of NCEP combined with a temporal variability according to an autoregressive process. Experiments with this Southern Annular Mode type forcing have been performed for 1,800 years. We analyze the spin-up, trends, and variability of the model runs. Particular emphasis is placed on coherence and correlation patterns between the ACC transport, the wind forcing, the bottom pressure field and the pressure associated with the baroclinic potential energy. A stochastic dynamical model is developed that describes

  8. Cretaceous-Tertiary boundary in the Antarctic: Climatic cooling precedes biotic crisis

    Science.gov (United States)

    Stott, Lowell D.; Kennett, James P.

    1988-01-01

    Stable isotopic investigations were conducted on calcareous microfossils across two deep sea Cretaceous-Tertiary boundary sequences on Maud Rise, Weddell Sea, Antarctica. The boundary is taken at the level of massive extinctions in calcareous planktonic microfossils, and coincides with a sharp lithologic change from pure calcareous ooze to calcareous ooze with a large volcanic clay component. The uppermost Maestrichtian is marked by a long-term decrease in delta value of 0 to 18 which spans most of the lower and middle A. mayaroensis Zone and represents a warming trend which culminated in surface water temperatures of about 16 C. At approximately 3 meters below the K-T boundary this warming trend terminates abruptly and benthic and planktonic isotopic records exhibit a rapid increase in delta value of 0 to 18 that continues up to the K-T boundary. The trend towards cooler surface water temperatures stops abruptly at the K-T boundary and delta value of 0 to 18 values remain relatively stable through the Paleocene. Comparison of the Antarctic sequence with the previously documented deep sea records in the South Atlantic reveal shifts of similar magnitude in the latest Maestrichtian. It is indicated that the Southern Ocean underwent the most significant, and apparently permanent, climatic change. The latest Cretaceous oxygen isotopic shift recorded at Maud Rise and other deep sea sites is similar in magnitude to large positive delta valve of 0 to 18 shifts in the middle Eocene, at the Eocene/Oligocene boundary and in the middle Miocene that marked large scale climatic transitions which ultimately lead to cryospheric development of the Antarctic. The climatic shift at the end of the Cretaceous represents one of the most significant climatic transitions recorded in the latest Phanerozoic and had a profound effect on global climate as well as oceanic circulation.

  9. Variability and trends in Southern Ocean eddy activity in 1/12° ocean model simulations

    Science.gov (United States)

    Patara, Lavinia; Böning, Claus W.; Biastoch, Arne

    2016-05-01

    The response of eddy kinetic energy (EKE) to the strengthening of Southern Hemisphere winds occurring since the 1950s is investigated with a global ocean model having a resolution of 1/12° in the Antarctic Circumpolar Current domain. The simulations expose regional differences in the relative importance of stochastic and wind-related contributions to interannual EKE changes. In the Pacific and Indian sectors the model captures the EKE variability observed since 1993 and confirms previous hypotheses of a lagged response to regional wind stress anomalies. Here the multidecadal trend in wind stress is reflected in an increase in EKE typically exceeding 5 cm2 s-2 decade-1. In the western Atlantic, EKE variability is mostly stochastic, is weakly correlated with wind fluctuations, and its multidecadal trends are close to zero. The nonuniform distribution of wind-related changes in the eddy activity could affect the regional patterns of ocean circulation and biogeochemical responses to future climate change.

  10. Development of a regional glycerol dialkyl glycerol tetraether (GDGT)-temperature calibration for Antarctic and sub-Antarctic lakes

    Science.gov (United States)

    Foster, Louise C.; Pearson, Emma J.; Juggins, Steve; Hodgson, Dominic A.; Saunders, Krystyna M.; Verleyen, Elie; Roberts, Stephen J.

    2016-01-01

    A regional network of quantitative reconstructions of past climate variability is required to test climate models. In recent studies, temperature calibration models based on the relative abundances of sedimentary glycerol dialkyl glycerol tetraethers (GDGTs) have enabled past temperature reconstructions in both marine and terrestrial environments. Nevertheless, to date these methods have not been widely applied in high latitude environments due to poor performance of the GDGT-temperature calibrations at lower temperatures. To address this we studied 32 lakes from Antarctica, the sub-Antarctic Islands and Southern Chile to: 1) quantify their GDGT composition and investigate the environmental controls on GDGT composition; and 2) develop a GDGT-temperature calibration model for inferring past temperatures from Antarctic and sub-Antarctic lakes. GDGTs were found in all 32 lakes studied and in 31 lakes branched GDGTs (brGDGTs) were the dominant compounds. Statistical analyses of brGDGT composition in relation to temperature, pH, conductivity and water depth showed that the composition of brGDGTs is strongly correlated with mean summer air temperature (MSAT). This enabled the development of the first regional brGDGT-temperature calibration for use in Antarctic and sub-Antarctic lakes using four brGDGT compounds (GDGT-Ib, GDGT-II, GDGT-III and GDGT-IIIb). A key discovery was that GDGT-IIIb is of particular importance in cold lacustrine environments. The addition of this compound significantly improved the model's performance from r2 = 0.67, RMSEP-LOO (leave-one-out) = 2.23 °C, RMSEP-H (h-block) = 2.37 °C when applying the re-calibrated global GDGT-temperature calibration to our Antarctic dataset to r2 = 0.83, RMSEP-LOO = 1.68 °C, RMSEP-H = 1.65 °C for our new Antarctic calibration. This shows that Antarctic and sub-Antarctic, and possibly other high latitude, palaeotemperature reconstructions should be based on a regional GDGT-temperature calibration where specific

  11. Potential Contributions to Geoscience from GNSS Observations of the King Edward Point Geodetic Observatory, South Georgia, South Atlantic Ocean

    OpenAIRE

    Teferle, Felix Norman; Hunegnaw, Addisu; Ahmed, Furqan; Sidorov, Dmitry; Williams, Simon; Foden, Peter; Woodworth, Phil

    2013-01-01

    During February 2013 the King Edward Point (KEP) Geodetic Observatory was established in South Georgia, South Atlantic Ocean, through a University of Luxembourg funded research project and in collaboration with the United Kingdom’s National Oceanography Centre, British Antarctic Survey and Unavco, Inc. Due to its remote location in the South Atlantic Ocean, as well as, being one of few subaerial exposures of the Scotia plate, South Georgia Island has been a key location for a number of global...

  12. Diversity in deep-sea benthic macrofauna: the importance of local ecology, the larger scale, history and the Antarctic

    Science.gov (United States)

    Gage, John D.

    2004-07-01

    High diversity in macrobenthos in the deep sea still lacks satisfactory explanation, even if this richness may not be exceptional compared to that in coastal soft sediments. Explanations have assumed a highly ecologically interactive, saturated local community with co-existence controlled by either niche heterogeneity, or spatio-temporal heterogeneity embodying disturbance. All have failed to provide convincing support. Local/regional scale biodiversity relationships support the idea of local richness in macrobenthos being predominantly dependent on the larger, rather local scale. Local-scale ecological interactions seem unlikely to have overriding importance in co-existence of species in the deep sea, even for relatively abundant, 'core' species with wide distributions. Variety in observed larger-scale pattern and the strong inter-regional pattern, particularly in the poorly known southern hemisphere, seem to have a pluralistic causation. These include regional-scale barriers and extinctions (e.g., Arctic), and ongoing adaptive zone re-colonisation (e.g., Mediterranean), along with other historical constraints on speciation and migration of species caused by changes in ocean and ocean-basin geometry. At the global scale lack of knowledge of the Antarctic deep sea, for example, blocks coherent understanding of latitudinal species diversity gradients. We need to reconcile emerging understanding of large-scale historical variability in the deep-sea environment—with massive extinctions among microfossil indicators as recently as the Pliocene—to results from cladistic studies indicating ancient lineages, such as asellote isopods, that have evolved entirely within the deep sea. The degree to which the great age, diversity, and high degree of endemism in Antarctic shelf benthos might have enriched biodiversity in the adjacent deep seas basins remains unclear. Basin confluence with the Atlantic, Indian and Pacific Oceans may have encouraged northwards dispersion of

  13. Monitoring Ocean Carbon and Ocean Acidification

    OpenAIRE

    Tanhua, Toste; Orr, James C.; Lorenzoni, Laura; Hansson, Lina

    2015-01-01

    As atmospheric CO2 continues to increase, more and more CO2 enters the ocean, which reduces pH (pH is a measure of acidity, the lower the pH, the more acidic the liquid) in a process referred to as ocean acidification. Declines in surface ocean pH due to ocean acidification are already detectable and accelerating.

  14. Foraging habitats of southern elephant seals, Mirounga leonina, from the Northern Antarctic Peninsula

    Science.gov (United States)

    Muelbert, Monica M. C.; de Souza, Ronald B.; Lewis, Mirtha N.; Hindell, Mark A.

    2013-04-01

    Elephant Island (EI) is uniquely placed to provide southern elephant seals (SES) breeding there with potential access to foraging grounds in the Weddell Sea, the frontal zones of the South Atlantic Ocean, the Patagonian shelf and the Western Antarctic Peninsula (WAP). Quantifying where seals from EI forage therefore provides insights into the types of important habitats available, and which are of particular importance to elephant seals. Twenty nine SES (5 sub-adult males—SAM and 24 adult females—AF) were equipped with SMRU CTD-SLDRs during the post-breeding (PB 2008, 2009) and post-moulting (PM 2007, 2008, 2009, 2010) trips to sea. There were striking intra-annual and inter-sex differences in foraging areas, with most of the PB females remaining within 150 km of EI. One PB AF travelled down the WAP as did 16 out of the 20 PM females and foraged near the winter ice-edge. Most PM sub-adult males remained close to EI, in areas similar to those used by adult females several months earlier, although one SAM spent the early part of the winter foraging on the Patagonian Shelf. The waters of the Northern Antarctic Peninsula (NAP) contain abundant resources to support the majority of the Islands' SES for the summer and early winter, such that the animals from this population have shorter migrations than those from most other populations. Sub-adult males and PB females are certainly taking advantage of these resources. However, PM females did not remain there over the winter months, instead they used the same waters at the ice-edge in the southern WAP that females from both King George Island and South Georgia used. Females made more benthic dives than sub-adult males—again this contrasts with other sites where SAMs do more benthic diving. Unlike most other populations studied to date EI is a relatively southerly breeding colony located on the Antarctic continental shelf. EI seals are using shelf habitats more than other SES populations but some individuals still

  15. An assessment of upper ocean salinity content from the Ocean Reanalyses Inter-comparison Project (ORA-IP)

    Science.gov (United States)

    Shi, L.; Alves, O.; Wedd, R.; Balmaseda, M. A.; Chang, Y.; Chepurin, G.; Ferry, N.; Fujii, Y.; Gaillard, F.; Good, S. A.; Guinehut, S.; Haines, K.; Hernandez, F.; Lee, T.; Palmer, M.; Peterson, K. A.; Masuda, S.; Storto, A.; Toyoda, T.; Valdivieso, M.; Vernieres, G.; Wang, X.; Yin, Y.

    2015-10-01

    Many institutions worldwide have developed ocean reanalyses systems (ORAs) utilizing a variety of ocean models and assimilation techniques. However, the quality of salinity reanalyses arising from the various ORAs has not yet been comprehensively assessed. In this study, we assess the upper ocean salinity content (depth-averaged over 0-700 m) from 14 ORAs and 3 objective ocean analysis systems (OOAs) as part of the Ocean Reanalyses Intercomparison Project. Our results show that the best agreement between estimates of salinity from different ORAs is obtained in the tropical Pacific, likely due to relatively abundant atmospheric and oceanic observations in this region. The largest disagreement in salinity reanalyses is in the Southern Ocean along the Antarctic circumpolar current as a consequence of the sparseness of both atmospheric and oceanic observations in this region. The West Pacific warm pool is the largest region where the signal to noise ratio of reanalysed salinity anomalies is >1. Therefore, the current salinity reanalyses in the tropical Pacific Ocean may be more reliable than those in the Southern Ocean and regions along the western boundary currents. Moreover, we found that the assimilation of salinity in ocean regions with relatively strong ocean fronts is still a common problem as seen in most ORAs. The impact of the Argo data on the salinity reanalyses is visible, especially within the upper 500 m, where the interannual variability is large. The increasing trend in global-averaged salinity anomalies can only be found within the top 0-300 m layer, but with quite large diversity among different ORAs. Beneath the 300 m depth, the global-averaged salinity anomalies from most ORAs switch their trends from a slightly growing trend before 2002 to a decreasing trend after 2002. The rapid switch in the trend is most likely an artefact of the dramatic change in the observing system due to the implementation of Argo.

  16. Persistent organic pollutants in tissues of the white-blooded Antarctic fish Champsocephalus gunnari and Chaenocephalus aceratus.

    Science.gov (United States)

    Strobel, Anneli; Schmid, Peter; Segner, Helmut; Burkhardt-Holm, Patricia; Zennegg, Markus

    2016-10-01

    The global occurrence of persistent organic pollutants (POPs) continuously contributes to their accumulation also in remote areas such as the Antarctic Ocean. Antarctic fish, which hold high trophic positions but appear to possess low endogenous elimination rates for chemicals, are expected to bioaccumulate POPs with rising anthropogenic pollution. Using a chemical-analytical method, we measured concentrations of PCBs, PBDEs, HCBs, HCH and DDTs and determined toxic equivalents (TEQs) and bioanalytical equivalents (BEQs) in muscle and ovaries of Antarctic icefish caught in the Southern Ocean around Elephant Island. We used two species with different feeding habits and trophic web positions: the planktivorous Champsocephalus gunnari and the piscivorous Chaenocephalus aceratus. Our results revealed higher contaminant levels in ovary than in muscle tissues of both species. Most analytes concentrations and the TEQs (0.2-0.5) and BEQs (0.2) were lower as in temperate species. Comparison with literature data points to higher PCB (20-22 ng g(-1) lipid weight (lw)) and DDT (7-19.5 ng g(-1) lw) concentrations than those measured in icefish in the 90's. For the other contaminants, we could not identify temporal trends. We found a higher bioaccumulation of contaminants, particularly HCB and DDTs, in C. aceratus (6.2 & 19.5 ng g(-1) lw, respectively) than in C. gunnari (3.8 & 7.0 ng g(-1) lw, respectively). However, there was no general species-specific accumulation pattern of the different toxicant classes between the two icefish. Thus, the expected link between contaminant burdens of C. aceratus and C. gunnari and their ecological traits was only weakly supported for these species. PMID:27198544

  17. A Decade of Ocean Color

    Science.gov (United States)

    1997-01-01

    the ocean to rise to the surface where plants grow. This global relationship between temperature and productivity was one that scientists first observed in SeaWiFS data and is illustrated in this image. The places with the lowest chlorophyll concentrations are in the sun-baked tropics, while the cold waters in the Arctic and Antarctic have high chlorophyll concentrations. What the image does not show is that the growth at the poles is seasonal. The plants only flourish during the spring and summer when there is sufficient light to fuel photosynthesis. Since the image is a composite, made with data collected every day over a period of ten years, it erases all seasonal patterns. Apart from revealing patterns of productivity, SeaWiFS' observations are helping scientists understand the role of the ocean's plants in removing carbon from the atmosphere. Tiny ocean plants that grow at the ocean's surface--phytoplankton--soak up more carbon dioxide than anything else on Earth, including dense tropical forests. Since ocean plants remove so much of the greenhouse gas from the atmosphere, they play an important role in mitigating global warming.

  18. Regional variation in lytic and lysogenic viral infection in the Southern Ocean and its contribution to biogeochemical cycling.

    Science.gov (United States)

    Evans, Claire; Brussaard, Corina P D

    2012-09-01

    Lytic and lysogenic viral infection was investigated throughout the Southern Ocean at sites spanning the sub-Antarctic zone, the Antarctic Circumpolar Current, and an Antarctic continental sea. Higher lytic virus activity was recorded in the more productive sub-Antarctic zone than in the iron-limited waters of the Antarctic Circumpolar Current during two transects. Reduced lytic viral activity in the Antarctic Circumpolar Current was combined with a shift toward lysogenic infection, probably resulting from the lower concentration of potential prokaryotic hosts. Superimposed on this variation, lytic viral production was lower in a transect completed in the Drake Passage in autumn (1.8 × 10(8) to 1.5 × 10(9) liter(-1) day(-1)) than over the Greenwich Meridian during summer (5.1 × 10(8) to 2.0 × 10(10) cells liter(-1) day(-1)), indicating that viral activity is linked to the overall seasonal fluctuations in biotic activity. Interestingly, while prokaryotic abundance was lowest in the coastal Weddell Sea, levels of bacterial and lytic viral production (4.3 × 10(8) to 1.7 × 10(10) cells liter(-1) day(-1)) in this area were similar to those of the other zones. This may explain the weak relationship between the distribution of prokaryotes and chlorophyll in the Weddell Sea, as a high turnover of prokaryotic biomass may have been stimulated by the availability of substrates in the form of viral lysate. With estimated carbon and iron releases of 0.02 to 7.5 μg liter(-1) day(-1) and 1.5 to 175.7 pg liter(-1) day(-1), respectively, viral activity in the Southern Ocean is shown to be a major contributor to satisfying the elemental requirements of microbes, notably prokaryotes in the Weddell Sea and phytoplankton in the sub-Antarctic zone. PMID:22798377

  19. Stable water isotopes of precipitation and firn cores from the northern Antarctic Peninsula region as a proxy for climate reconstruction

    Directory of Open Access Journals (Sweden)

    F. Fernandoy

    2012-03-01

    Full Text Available In order to investigate the climate variability in the northern Antarctic Peninsula region, this paper focuses on the relationship between stable isotope content of precipitation and firn, and main meteorological variables (air temperature, relative humidity, sea surface temperature, and sea ice extent. Between 2008 and 2010, we collected precipitation samples and retrieved firn cores from several key sites in this region. We conclude that the deuterium excess oscillation represents a robust indicator of the meteorological variability on a seasonal to sub-seasonal scale. Low absolute deuterium excess values and the synchronous variation of both deuterium excess and air temperature imply that the evaporation of moisture occurs in the adjacent Southern Ocean. The δ18O-air temperature relationship is complicated and significant only at a (multiseasonal scale. Backward trajectory calculations show that air-parcels arriving at the region during precipitation events predominantly originate at the South Pacific Ocean and Bellingshausen Sea. These investigations will be used as a calibration for ongoing and future research in the area, suggesting that appropriate locations for future ice core research are located above 600 m a.s.l. We selected the Plateau Laclavere, Antarctic Peninsula as the most promising site for a deeper drilling campaign.

  20. Low densities of drifting litter in the African sector of the Southern Ocean.

    Science.gov (United States)

    Ryan, Peter G; Musker, Seth; Rink, Ariella

    2014-12-15

    Only 52 litter items (>1cm diameter) were observed in 10,467 km of at-sea transects in the African sector of the Southern Ocean. Litter density north of the Subtropical Front (0.58 items km(-2)) was less than in the adjacent South Atlantic Ocean (1-6 items km(-2)), but has increased compared to the mid-1980s. Litter density south of the Subtropical Front was an order of magnitude less than in temperate waters (0.032 items km(-2)). There was no difference in litter density between sub-Antarctic and Antarctic waters either side of the Antarctic Polar Front. Most litter was made of plastic (96%). Fishery-related debris comprised a greater proportion of litter south of the Subtropical Front (33%) than in temperate waters (13%), where packaging dominated litter items (68%). The results confirm that the Southern Ocean is the least polluted ocean in terms of drifting debris and suggest that most debris comes from local sources. PMID:25455366

  1. Multi- year Arctic and Antarctic aerosol chemical characterization

    Science.gov (United States)

    Udisti, Roberto; Becagli, Silvia; Caiazzo, Laura; Calzolai, Giulia; Cappelletti, David; Giardi, Fabio; Grotti, Marco; Malandrino, Mery; Nava, Silvia; Severi, Mirko; Traversi, Rita

    2016-04-01

    Long term measurements of aerosol chemical composition in polar region are particularly relevant to investigate potential climatic effects of atmospheric components arising from both natural and anthropogenic emissions. In order to improve our knowledge on the atmospheric load and chemical composition of polar aerosol, several measurements and sampling campaigns were carried out both in Antarctica and in the Arctic since 2005.The main results are here reported. As regard as Antarctica, a continuous all-year-round sampling of size-segregated aerosol was carried from 2005 to 2013 at Dome C (East Antarctica; 75° 60' S, 123° 200' E, 3220 m a.s.l. and 1100 km away from the nearest coast). Aerosol was collected by PM10 and PM2.5 samplers and by multi-stage impactors (Dekati 4-stage impactor). Chemical analysis was carried out by Ion Chromatography (ions composition) and ICP-MS (trace metals). Sea spray showed a sharp seasonal pattern, with winter (Apr-Nov) concentrations about ten times larger than summer (Dec-Mar). Besides, in winter, sea spray particles are mainly sub micrometric, while the summer size-mode is around 1-2 um. Meteorological analysis and air mass back trajectory reconstructions allowed the identification of two major air mass pathways: micrometric fractions for transport from the closer Indian-Pacific sector, and sub-micrometric particles for longer trajectories over the Antarctic Plateau. The markers of oceanic biogenic emission (methanesulfonic acid - MSA, and non-sea-salt sulphate) exhibit a seasonal cycle with summer maxima (Nov-Mar). Their size distributions show two modes (0.4- 0.7 um and 1.1-2.1 um) in early summer and just one sub-micrometric mode in full summer. The two modes are related to different transport pathways. In early summer, air masses came primarily from the Indian Ocean and spent a long time over the continent. The transport of sulphur compounds is related to sea spray aerosols and the resulting condensation of H2SO4 and MSA over

  2. Will krill fare well under Southern Ocean acidification?

    Science.gov (United States)

    Kawaguchi, So; Kurihara, Haruko; King, Robert; Hale, Lillian; Berli, Thomas; Robinson, James P.; Ishida, Akio; Wakita, Masahide; Virtue, Patti; Nicol, Stephen; Ishimatsu, Atsushi

    2011-01-01

    Antarctic krill embryos and larvae were experimentally exposed to 380 (control), 1000 and 2000 µatm pCO2 in order to assess the possible impact of ocean acidification on early development of krill. No significant effects were detected on embryonic development or larval behaviour at 1000 µatm pCO2; however, at 2000 µatm pCO2 development was disrupted before gastrulation in 90 per cent of embryos, and no larvae hatched successfully. Our model projections demonstrated that Southern Ocean sea water pCO2 could rise up to 1400 µatm in krill's depth range under the IPCC IS92a scenario by the year 2100 (atmospheric pCO2 788 µatm). These results point out the urgent need for understanding the pCO2-response relationship for krill developmental and later stages, in order to predict the possible fate of this key species in the Southern Ocean. PMID:20943680

  3. Glacial cycles drive variations in the production of oceanic crust

    CERN Document Server

    Crowley, John W; Huybers, Peter; Langmuir, Charles H; Park, Sung-Hyun

    2014-01-01

    Glacial cycles redistribute water between the oceans and continents causing pressure changes in the upper mantle, with potential consequences for melting of Earth's interior. A numerical model of mid-ocean ridge dynamics that explicitly includes melt transport is used to calculate the melting effects that would be caused by Plio-Pleistocene sea-level variations. Model results interpreted in the context of an analytical approximation predict sea-level induced variations in crustal thickness on the order of hundreds of meters. The specifics of the response depend on rates of sea-level change, mid-ocean ridge spreading rates, and mantle permeability. Spectral analysis of the bathymetry of the Australian-Antarctic ridge shows significant spectral energy near 23, 41, and 100 ky periods, consistent with model results and with the spectral content of Pleistocene sea-level variability. These results support the hypothesis that sea-floor topography records the magmatic response to changes in sea level, reinforcing the...

  4. Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models

    Directory of Open Access Journals (Sweden)

    A. Levermann

    2012-08-01

    Full Text Available The largest uncertainty in projections of future sea-level change still results from the potentially changing dynamical ice discharge from Antarctica. While ice discharge can alter through a number of processes, basal ice-shelf melting induced by a warming ocean has been identified as a major if not the major cause for possible additional ice flow across the grounding line. Here we derive dynamic ice-sheet response functions for basal ice-shelf melting using experiments carried out within the Sea-level Response to Ice Sheet Evolution (SeaRISE intercomparison project with five different Antarctic ice-sheet models. As used here these response functions provide separate contributions for four different Antarctic drainage regions. Under the assumptions of linear-response theory we project future ice-discharge for each model, each region and each of the four Representative Concentration Pathways (RCP using oceanic temperatures from 19 comprehensive climate models of the Coupled Model Intercomparison Project, CMIP-5, and two ocean models from the EU-project Ice2Sea. Uncertainty in the climatic forcing, the oceanic response and the ice-model differences is combined into an uncertainty range of future Antarctic ice-discharge induced from basal ice-shelf melt. The additional ice-loss (Table 6 is clearly scenario-dependent and results in a median of 0.07 m (66%-range: 0.04–0.10 m; 90%-range: −0.01–0.26 m of global sea-level equivalent for the low-emission RCP-2.6 scenario and yields 0.1 m (66%-range: 0.06–0.14 m; 90%-range: −0.01–0.45 m for the strongest RCP-8.5. If only models with an explicit representation of ice-shelves are taken into account the scenario dependence remains and the values change to: 0.05 m (66%-range: 0.03–0.08 m for RCP-2.6 and 0.07 m (66%-range: 0.04–0.11 m for RCP-8.5. These results were obtained using a time delay between the surface warming signal and the subsurface oceanic warming as observed in the CMIP-5 models

  5. Antarctic Single Frames = Frame Level Records of Antarctica Photos: 1946 - 2000

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Aerial photographs of Antarctica from the United States Antarctic Resource Center (USARC) and the British Antarctic Survey (BAS) are maintained in this collection....

  6. Marine introductions in the Southern Ocean: an unrecognised hazard to biodiversity.

    Science.gov (United States)

    Lewis, Patrick N; Hewitt, Chad L; Riddle, Martin; McMinn, Andrew

    2003-02-01

    This study investigated the potential for transport of organisms between Hobart, Macquarie Island and the Antarctic continent by ships used in support of Antarctic science and tourism. Northward transport of plankton in ballast water is more likely than southward transport because ballast is normally loaded in the Antarctic and unloaded at the home port. Culturing of ballast water samples revealed that high-latitude hitchhikers were able to reach greater diversities when cultured at temperate thermal conditions than at typical Southern Ocean temperatures, suggesting the potential for establishment in the Tasmanian coastal environment. Several known invasive species were identified among fouling communities on the hulls of vessels that travel between Hobart and the Southern Ocean. Southward transport of hull fouling species is more likely than northward transport due to the accumulation of assemblages during the winter period spent in the home port of Hobart. This study does not prove that non-indigenous marine species have, or will be, transported and established as a consequence of Antarctic shipping but illustrates that the potential exists. Awareness of the potential risk and simple changes to operating procedures may reduce the chance of introductions in the future. PMID:12586117

  7. The safety band of Antarctic ice shelves

    Science.gov (United States)

    Fürst, Johannes Jakob; Durand, Gaël; Gillet-Chaulet, Fabien; Tavard, Laure; Rankl, Melanie; Braun, Matthias; Gagliardini, Olivier

    2016-05-01

    The floating ice shelves along the seaboard of the Antarctic ice sheet restrain the outflow of upstream grounded ice. Removal of these ice shelves, as shown by past ice-shelf recession and break-up, accelerates the outflow, which adds to sea-level rise. A key question in predicting future outflow is to quantify the extent of calving that might precondition other dynamic consequences and lead to loss of ice-shelf restraint. Here we delineate frontal areas that we label as `passive shelf ice’ and that can be removed without major dynamic implications, with contrasting results across the continent. The ice shelves in the Amundsen and Bellingshausen seas have limited or almost no `passive’ portion, which implies that further retreat of current ice-shelf fronts will yield important dynamic consequences. This region is particularly vulnerable as ice shelves have been thinning at high rates for two decades and as upstream grounded ice rests on a backward sloping bed, a precondition to marine ice-sheet instability. In contrast to these ice shelves, Larsen C Ice Shelf, in the Weddell Sea, exhibits a large `passive’ frontal area, suggesting that the imminent calving of a vast tabular iceberg will be unlikely to instantly produce much dynamic change.

  8. Iodine monoxide in the Antarctic snowpack

    Directory of Open Access Journals (Sweden)

    U. Platt

    2009-11-01

    Full Text Available Recent ground-based and space borne observations suggest the presence of significant amounts of iodine monoxide in the boundary layer of Antarctica, which are expected to have an impact on the ozone budget and might contribute to the formation of new airborne particles. So far, the source of these iodine radicals has been unknown. This paper presents long-term measurements of iodine monoxide at the German Antarctic research station Neumayer, which indicate that the snowpack is the main source for iodine radicals. The measurements have been performed using multi-axis differential optical absorption spectroscopy (MAX-DOAS. Using a coupled atmosphere-snowpack radiative transfer model, the comparison of the signals observed from scattered skylight and from light reflected by the snowpack yields several ppb of iodine monoxide in the upper layers of the sunlit snowpack throughout the year. Snow pit samples from Neumayer Station contain up to 700 ng/l of total iodine, representing a sufficient reservoir for these extraordinarily high IO concentrations.

  9. Iodine monoxide in the Antarctic snowpack

    Directory of Open Access Journals (Sweden)

    U. Frieß

    2010-03-01

    Full Text Available Recent ground-based and space borne observations suggest the presence of significant amounts of iodine monoxide in the boundary layer of Antarctica, which are expected to have an impact on the ozone budget and might contribute to the formation of new airborne particles. So far, the source of these iodine radicals has been unknown. This paper presents long-term measurements of iodine monoxide at the German Antarctic research station Neumayer, which indicate that high IO concentrations in the order of 50 ppb are present in the snow interstitial air. The measurements have been performed using multi-axis differential optical absorption spectroscopy (MAX-DOAS. Using a coupled atmosphere – snowpack radiative transfer model, the comparison of the signals observed from scattered skylight and from light reflected by the snowpack yields several ppb of iodine monoxide in the upper layers of the sunlit snowpack throughout the year. Snow pit samples from Neumayer Station contain up to 700 ng/l of total iodine, representing a sufficient reservoir for these extraordinarily high IO concentrations.

  10. Responses of Antarctic Oscillation to global warming

    Science.gov (United States)

    Feng, S.

    2015-12-01

    The Antarctic Oscillation (AAO) is the major annular mode dominates the spatiotemporal variability of the atmospheric circulation in the Southern Hemisphere. This study examined the sensitivity of AAO to future warming by analyzing the outputs of 34 state-of-the-art climate models participating in phase 5 of the Coupled Model Intercomparion Project (CMIP5). The model simulations include the stabilized (RCP4.5) and business as usual (RCP8.5) scenarios as well as the idealized 1% per year increase in atmospheric CO2 to quadrupling (1pctCO2) and an instantaneous quadrupling of CO2 (abrupt4xCO2). We show that the CMIP5 models on average simulate increases in the AAO in every season by 2100 under the RCP4.5 and RCP8.5 scenarios. However, due to the impacts of ozone, aerosol and land use changes, the amplitudes of the projected changes in AAO to future climate scenarios are quit different on different seasons. After the impact of ozone, aerosol and land use changes were removed; it was found that the impact of greenhouse gases (GHGs) on AAO is similar on all seasons. The increases of AAO are accelerating following the increase of GHGs. Our results are also consistent with the simulations of 1pctCO2 and abrupt4xCO2.

  11. Ionospheric irregularities at Antarctic using GPS measurements

    Indian Academy of Sciences (India)

    Sunita Tiwari; Amit Jain; Shivalika Sarkar; Sudhir Jain; A K Gwal

    2012-04-01

    The purpose of this work is to study the behaviour of the ionospheric scintillation at high latitude during geomagnetically quiet and disturbed conditions which is one of the most relevant themes in the space weather studies. Scintillation is a major problem in navigation application using GPS and in satellite communication at high latitudes. Severe amplitude fading and strong scintillation affect the reliability of GPS navigational system and satellite communication. To study the effects of the ionospheric scintillations, GPS receiver installed at Antarctic station Maitri (Geog. 70.76°S; 11.74°E) was used. The data is collected by using GISTM 4004A, NOVATEL’S GPS receiver during March 2008. Studies show that percentage occurrence of phase scintillation is well correlated with geomagnetic activity during the observation period. The result also shows that very intense scintillations can degrade GPS based location determination due to loss of lock of satellites. These findings indicate that the dependence of scintillations and irregularity occurrence on geomagnetic activity is associated with the magnetic local time (MLT). Large number of patches are reported and their activity depends on the magnetic activity index.

  12. Automated detection of Antarctic blue whale calls.

    Science.gov (United States)

    Socheleau, Francois-Xavier; Leroy, Emmanuelle; Pecci, Andres Carvallo; Samaran, Flore; Bonnel, Julien; Royer, Jean-Yves

    2015-11-01

    This paper addresses the problem of automated detection of Z-calls emitted by Antarctic blue whales (B. m. intermedia). The proposed solution is based on a subspace detector of sigmoidal-frequency signals with unknown time-varying amplitude. This detection strategy takes into account frequency variations of blue whale calls as well as the presence of other transient sounds that can interfere with Z-calls (such as airguns or other whale calls). The proposed method has been tested on more than 105 h of acoustic data containing about 2200 Z-calls (as found by an experienced human operator). This method is shown to have a correct-detection rate of up to more than 15% better than the extensible bioacoustic tool package, a spectrogram-based correlation detector commonly used to study blue whales. Because the proposed method relies on subspace detection, it does not suffer from some drawbacks of correlation-based detectors. In particular, it does not require the choice of an a priori fixed and subjective template. The analytic expression of the detection performance is also derived, which provides crucial information for higher level analyses such as animal density estimation from acoustic data. Finally, the detection threshold automatically adapts to the soundscape in order not to violate a user-specified false alarm rate. PMID:26627784

  13. Prospects for surviving climate change in Antarctic aquatic species

    Directory of Open Access Journals (Sweden)

    Peck Lloyd S

    2005-06-01

    Full Text Available Abstract Maritime Antarctic freshwater habitats are amongst the fastest changing environments on Earth. Temperatures have risen around 1°C and ice cover has dramatically decreased in 15 years. Few animal species inhabit these sites, but the fairy shrimp Branchinecta gaini typifies those that do. This species survives up to 25°C daily temperature fluctuations in summer and passes winter as eggs at temperatures down to -25°C. Its annual temperature envelope is, therefore around 50°C. This is typical of Antarctic terrestrial species, which exhibit great physiological flexibility in coping with temperature fluctuations. The rapidly changing conditions in the Maritime Antarctic are enhancing fitness in these species by increasing the time available for feeding, growth and reproduction, as well as increasing productivity in lakes. The future problem these animals face is via displacement by alien species from lower latitudes. Such invasions are now well documented from sub-Antarctic sites. In contrast the marine Antarctic environment has very stable temperatures. However, seasonality is intense with very short summers and long winter periods of low to no algal productivity. Marine animals grow slowly, have long generation times, low metabolic rates and low levels of activity. They also die at temperatures between +5°C and +10°C. Failure of oxygen supply mechanisms and loss of aerobic scope defines upper temperature limits. As temperature rises, their ability to perform work declines rapidly before lethal limits are reached, such that 50% of populations of clams and limpets cannot perform essential activities at 2–3°C, and all scallops are incapable of swimming at 2°C. Currently there is little evidence of temperature change in Antarctic marine sites. Models predict average global sea temperatures will rise by around 2°C by 2100. Such a rise would take many Antarctic marine animals beyond their survival limits. Animals have 3 mechanisms for

  14. Complex Geodetic Research in Ukrainian Antarctic Station "Academician Vernadsky" (Years 2002 - 2005, 2013-2014)

    Science.gov (United States)

    Tretyak, Kornyliy; Hlotov, Volodymyr; Holubinka, Yuriy; Marusazh, Khrystyna

    2016-06-01

    In this paper is given an information about complex geodetic research in Ukrainian Antarctic station "Academician Vernadsky". Research were carried by Lviv polytechnic scientists, during Antarctic expeditions in years 2002 - 2005, 2013, 2014. Main objectives of the studies were: (a) study of the islands glaciers surface volumes changes in Antarctic archipelago and Antarctic Peninsula using terestrial laser scaning and digital terrestrial stereophotogrammetry survey; (b) investigation of Penola strain tectonic fault, using the results of precise GNSS observations.

  15. Planet Ocean

    Science.gov (United States)

    Afonso, Isabel

    2014-05-01

    A more adequate name for Planet Earth could be Planet Ocean, seeing that ocean water covers more than seventy percent of the planet's surface and plays a fundamental role in the survival of almost all living species. Actually, oceans are aqueous solutions of extraordinary importance due to its direct implications in the current living conditions of our planet and its potential role on the continuity of life as well, as long as we know how to respect the limits of its immense but finite capacities. We may therefore state that natural aqueous solutions are excellent contexts for the approach and further understanding of many important chemical concepts, whether they be of chemical equilibrium, acid-base reactions, solubility and oxidation-reduction reactions. The topic of the 2014 edition of GIFT ('Our Changing Planet') will explore some of the recent complex changes of our environment, subjects that have been lately included in Chemistry teaching programs. This is particularly relevant on high school programs, with themes such as 'Earth Atmosphere: radiation, matter and structure', 'From Atmosphere to the Ocean: solutions on Earth and to Earth', 'Spring Waters and Public Water Supply: Water acidity and alkalinity'. These are the subjects that I want to develop on my school project with my pupils. Geographically, our school is located near the sea in a region where a stream flows into the sea. Besides that, our school water comes from a borehole which shows that the quality of the water we use is of significant importance. This project will establish and implement several procedures that, supported by physical and chemical analysis, will monitor the quality of water - not only the water used in our school, but also the surrounding waters (stream and beach water). The samples will be collected in the borehole of the school, in the stream near the school and in the beach of Carcavelos. Several physical-chemical characteristics related to the quality of the water will

  16. Carbon fluxes to Antarctic top predators

    NARCIS (Netherlands)

    Franeker, van J.A.; Bathmann, U.V.; Mathot, S.

    1997-01-01

    The role of birds, seals and whales in the overall biological carbon fluxes of the Southern Ocean has been estimated based on census counts of top predator individuals in the region. Using standard routines for conversion to food consumption and respiration rates we demonstrate that at most 0.3-0.6%

  17. The Antarctic ozone depletion caused by Erebus volcano gas emissions

    Science.gov (United States)

    Zuev, V. V.; Zueva, N. E.; Savelieva, E. S.; Gerasimov, V. V.

    2015-12-01

    Heterogeneous chemical reactions releasing photochemically active molecular chlorine play a key role in Antarctic stratospheric ozone destruction, resulting in the Antarctic ozone hole. Hydrogen chloride (HCl) is one of the principal components in these reactions on the surfaces of polar stratospheric clouds (PSCs). PSCs form during polar nights at extremely low temperatures (lower than -78 °C) mainly on sulfuric acid (H2SO4) aerosols, acting as condensation nuclei and formed from sulfur dioxide (SO2). However, the cause of HCl and H2SO4 high concentrations in the Antarctic stratosphere, leading to considerable springtime ozone depletion, is still not clear. Based on the NCEP/NCAR reanalysis data over the last 35 years and by using the NOAA HYSPLIT trajectory model, we show that Erebus volcano gas emissions (including HCl and SO2) can reach the Antarctic stratosphere via high-latitude cyclones with the annual average probability Pbarann. of at least ∼0.235 (23.5%). Depending on Erebus activity, this corresponds to additional annual stratospheric HCl mass of 1.0-14.3 kilotons (kt) and SO2 mass of 1.4-19.7 kt. Thus, Erebus volcano is the natural and powerful source of additional stratospheric HCl and SO2, and hence, the cause of the Antarctic ozone depletion, together with man-made chlorofluorocarbons.

  18. Impact of the oceanic geothermal heat flux on a glacial ocean state

    Science.gov (United States)

    Ballarotta, M.; Roquet, F.; Falahat, S.; Zhang, Q.; Madec, G.

    2015-08-01

    The oceanic geothermal heating (OGH) has a significant impact on the present-day ocean state, but its role during glacial periods, when the ocean circulation and stratification were different from those of today, remains poorly known. In the present study, we analyzed the response of the glacial ocean to OGH, by comparing ocean simulations of the Last Glacial Maximum (LGM, ∼ 21 ka ago) including or not geothermal heating. We found that applying the OGH warmed the Antarctic Bottom Waters (AABW) by ∼ 0.4 °C and increased the abyssal circulation by 15 to 30 % north of 30° S in the deep Pacific and Atlantic basins. The geothermally heated deep waters were then advected toward the Southern Ocean where they upwelled to the surface due to the Ekman transport. The extra heat transport towards Antarctica acted to reduce the amount of sea ice contributing to the freshening of the whole AABW overturning cell. The global amount of salt being conserved, this bottom freshening induced a salinification of the North Atlantic and North Pacific surface and intermediate waters, contributing to the deepening of the North Atlantic Deep Water. This indirect mechanism is responsible for the largest observed warming, found in the North Atlantic deep western boundary current between 2000 and 3000 m (up to 2 °C). The characteristic time scale of the ocean response to the OGH corresponds to an advective time scale (associated with the overturning of the AABW cell) rather than a diffusive time scale. The OGH might facilitate the transition from a glacial to an inter-glacial state but its effect on the deep stratification seems insufficient to drive alone an abrupt climate change.

  19. Impact of the oceanic geothermal heat flux on a glacial ocean state

    Directory of Open Access Journals (Sweden)

    M. Ballarotta

    2015-08-01

    Full Text Available The oceanic geothermal heating (OGH has a significant impact on the present-day ocean state, but its role during glacial periods, when the ocean circulation and stratification were different from those of today, remains poorly known. In the present study, we analyzed the response of the glacial ocean to OGH, by comparing ocean simulations of the Last Glacial Maximum (LGM, ∼ 21 ka ago including or not geothermal heating. We found that applying the OGH warmed the Antarctic Bottom Waters (AABW by ∼ 0.4 °C and increased the abyssal circulation by 15 to 30 % north of 30° S in the deep Pacific and Atlantic basins. The geothermally heated deep waters were then advected toward the Southern Ocean where they upwelled to the surface due to the Ekman transport. The extra heat transport towards Antarctica acted to reduce the amount of sea ice contributing to the freshening of the whole AABW overturning cell. The global amount of salt being conserved, this bottom freshening induced a salinification of the North Atlantic and North Pacific surface and intermediate waters, contributing to the deepening of the North Atlantic Deep Water. This indirect mechanism is responsible for the largest observed warming, found in the North Atlantic deep western boundary current between 2000 and 3000 m (up to 2 °C. The characteristic time scale of the ocean response to the OGH corresponds to an advective time scale (associated with the overturning of the AABW cell rather than a diffusive time scale. The OGH might facilitate the transition from a glacial to an inter-glacial state but its effect on the deep stratification seems insufficient to drive alone an abrupt climate change.

  20. A Late Miocene-Pliocene Antarctic Deepwater Record of Cyclic Iron Reduction Events (ODP Leg 178 Site 1095)

    Science.gov (United States)

    Hepp, D. A.; Moerz, T.

    2007-12-01

    variability of primary production and preservation of organic matter. The study describes the complex interaction of Antarctic ice sheet behavior and ocean conditions in warmer late Miocene to Pliocene climate and may serve as an outlook for upcoming changes in the Circum-Antarctic realm in the course of recent global warming.

  1. Acid rock drainage and rock weathering in antarctica: Important sources for iron cycling in the southern ocean

    OpenAIRE

    Dold, B.; González-Toril, Elena; Aguilera, Ángeles; López-Pamo, E.; M. E. Cisternas; F. Bucchi; Amils, Ricardo

    2013-01-01

    Here we describe biogeochemical processes that lead to the generation of acid rock drainage (ARD) and rock weathering on the Antarctic landmass and describe why they are important sources of iron into the Antarctic Ocean. During three expeditions, 2009-2011, we examined three sites on the South Shetland Islands in Antarctica. Two of them displayed intensive sulfide mineralization and generated acidic (pH 3.2-4.5), iron-rich drainage waters (up to 1.78 mM Fe), which infiltrated as groundwater ...

  2. Modeling Antarctica's contribution to sea-level rise during the Last Interglacial and the future: differing roles of oceanic versus atmospheric warming

    Science.gov (United States)

    DeConto, Rob; Pollard, David

    2015-04-01

    A hybrid ice sheet-shelf model with freely migrating grounding lines is extended by accounting for surface meltwater enhancement of ice shelf calving; and the structural stability of thick, marine-terminating (tidewater) grounding lines. The ice model is coupled to a high-resolution atmospheric model with imposed and simulated ocean temperatures, and applied to past and future climate scenarios. When forced by greenhouse gas and orbital forcing representing the Last Interglacial (LIG; 130 to 115ka), the model simulates an Antarctic global mean sea-level contribution of up to +5m, in agreement with observed estimates. Most of the ice sheet response is driven by circum-Antarctic oceanic warming, rather than atmospheric warming, implying meridional overturning ocean dynamics were an important factor in the timing of Antarctic ice sheet retreat. A long, coupled climate-ice sheet simulation through the entire LIG shows that two peaks in sea level (early and late in the interglacial) are possible, but depend on the timing of Southern Ocean warming relative to local insolation maxima. Using the same atmosphere and ice-model physics used in the LIG simulations, future simulations are run following RCP2.6, 4.5, and 8.5 greenhouse-gas scenarios extended to the year 2500 CE. Ocean temperatures in each scenario are prescribed from offline simulations using the NCAR CCSM4 with 0.5° ocean resolution. As expected, the magnitude and rate of Antarctic ice sheet retreat are highly dependent on which future greenhouse gas scenario is followed, but even the lower emission scenarios produce an Antarctic contribution of several meters within the next several centuries. Once atmospheric CO2 concentrations exceed ∼2x preindustrial levels, we find that hydrofracturing by surface melt on ice shelves can trigger large-scale ice sheet retreat, regardless of circum-Antarctic ocean warming. Hence, unlike the LIG, atmospheric (not ocean) warming has the potential to become the primary

  3. Ocean Uses: Hawaii (PROUA)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Pacific Regional Ocean Uses Atlas (PROUA) Project is an innovative partnership between NOAA and the Bureau of Ocean Energy Management (BOEM) designed to...

  4. A Southern Ocean mode of multidecadal variability

    Science.gov (United States)

    Le Bars, D.; Viebahn, J. P.; Dijkstra, H. A.

    2016-03-01

    A 250 year simulation of a strongly eddying global version of the Parallel Ocean Program (POP) model reveals a new mode of intrinsic multidecadal variability, the Southern Ocean Mode (SOM), with a period of 40-50 year. The peak-to-peak difference in the global ocean heat content within a multidecadal cycle is up to 60 ZJ. This change results from surface heat flux variations in the South Atlantic and propagation of temperature anomalies along the Antarctic Circumpolar Current and into the Weddell gyre around 30°E. The temperature anomalies propagate as deep as 5000 m along the isopycnals between 50°S and 30°S and induce multidecadal changes in the Atlantic Meridional Overturning Circulation. A positive feedback loop between the generation of eddies through baroclinic instability and the dynamics of the mean circulation is essential for the existence of the SOM. The dominant physics appears similar to that responsible for variability found in a three-layer quasi-geostrophic eddy-resolving model. This combined with the fact that the SOM is not found in a noneddying version of the same global POP model further suggests that eddy processes are crucial for its existence and/or excitation.

  5. Antarctic DNA moving forward: genomic plasticity and biotechnological potential.

    Science.gov (United States)

    Martínez-Rosales, Cecilia; Fullana, Natalia; Musto, Héctor; Castro-Sowinski, Susana

    2012-06-01

    Antarctica is the coldest, driest, and windiest continent, where only cold-adapted organisms survive. It has been frequently cited as a pristine place, but it has a highly diverse microbial community that is continually seeded by nonindigenous microorganisms. In addition to the intromission of 'alien' microorganisms, global warming strongly affects microbial Antarctic communities, changing the genes (qualitatively and quantitatively) potentially available for horizontal gene transfer. Several mobile genetic elements have been described in Antarctic bacteria (including plasmids, transposons, integrons, and genomic islands), and the data support that they are actively involved in bacterial evolution in the Antarctic environment. In addition, this environment is a genomic source for the identification of novel molecules, and many investigators have used culture-dependent and culture-independent approaches to identify cold-adapted proteins. Some of them are described in this review. We also describe studies for the design of new recombinant technologies for the production of 'difficult' proteins. PMID:22360528

  6. Terrestrial 81Kr-Kr ages of Antarctic meteorites

    International Nuclear Information System (INIS)

    The production rate of 38Ar in meteorites-P(38)-has been determined, as a function of the sample's chemical composition, from 81Kr-Kr exposure ages of four eucrite falls. The cosmogenic 78Kr/83Kr ratio is used to estimate the shielding dependence of P(38). From the ''true'' 38Ar exposure ages and the apparent 81Kr-Kr exposure ages of nine Antarctic eucrite finds, terrestrial ages are calculated. The distribution of terrestrial ages of Allan Hills meteorites is discussed. Meteorites from this blue ice field have two sources: Directly deposited falls and meteorites transported to the Allan Hills inside the moving Antarctic ice sheet. During the surface residence time meteorites decompose due to weathering processes. The weathering ''half-life'' is about 1.6 x 105 a. From the different age distributions of Allan Hills and Yamato meteorites, it is concluded that meteorite concentrations of different Antarctic ice fields need different explanations. (author)

  7. The role of atmospheric greenhouse gases, orbital parameters, and southern ocean gateways: an idealized model study

    CERN Document Server

    Hertwig, Eileen; Fraedrich, Klaus

    2016-01-01

    A set of idealized experiments are performed to analyze the competing effects of declining atmospheric CO2 concentrations, the opening of an ocean gateway, and varying orbital parameters. These forcing mechanisms, which influence the global mean climate state, may have played a role for triggering climate transitions of the past (for example during the Eocene-Oligocene climate transition and the build-up of the Antarctic Ice Sheet). Sensitivity simulations with a coupled atmosphere-ocean general circulation model are conducted to test these three forcings and their roles for the global climate. The simulations are carried out under idealized conditions to focus on the essentials. The combination of all three forcings triggers a climate transition which resembles the onset of the Antarctic glaciation. In particular, the temperatures in the southern high latitudes decrease and snow accumulates constantly. Moreover, the relative importance of each possible forcing is explored. All three of the mechanisms (atmosp...

  8. Sensitivity of sea ice and ocean simulations to sea ice salinity in a coupled global climate model

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The impacts of the spatiotemporal variations of sea ice salinity on sea ice and ocean characteristics have not been studied in detail, as the existing climate models neglect or misrepresent this process. To address this issue, this paper formulated a parameterization with more realistic sea ice salinity budget, and examined the sensitivity of sea ice and ocean simulations to the ice salinity variations and associated salt flux into the ocean using a coupled global climate model. Results show that the inclusion of such a parameterization leads to an increase and thickening of sea ice in the Eurasian Arctic and within the ice pack in the Antarctic circumpolar region, and a weakening of the North Atlantic Deep Water and a strengthening of the Antarctic Bottom Water. The atmospheric responses associated with the ice changes were also discussed.

  9. Depletion in Antarctic ozone and associated climatic change

    International Nuclear Information System (INIS)

    Perhaps the most significant discovery in the atmospheric sciences in the last decade has been the observation of large decreases in ozone. These losses in ozone occur during austral spring, and from 1979 the severity of the depletion increased non-monotonically until September of 1987 when the lowest column ozone amounts ever recorded were observed in Antarctica. While the surprising ozone hole in the remote icy continent of Antarctica emphasizes the potential importance and complexity of processes in the high latitude stratosphere, it also motivated this study on the nature of greenhouse effect on polar climate due to perturbations in column ozone amount in association with observed increases in other trace gases in the Antarctic atmosphere. The authors have examined the potential climatic effects of changes in the concentration of greenhouse gases on thermal structure of the Antarctic atmosphere using both steady-state and time-dependent climate models. When the authors incorporate the greenhouse effect of increases in methane, nitrous oxide, carbon dioxide and chlorofluorocarbons in association with decrease in ozone at the levels of maximum concentration in their radiative flux computations for the Antarctic region, the net result is a surface warming which is in fair agreement with that inferred from mean Antarctic temperature series. Further, the stratospheric cooling due to the ozone hole phenomenon is not only restricted to low and middle stratosphere but also extends deep into the upper Antarctic stratosphere, particularly in the beginning of November. In view of this, it is possible that the polar stratospheric warming phenomenon associated with planetary wave events could be significantly disturbed by ozone depletion in the Antarctic atmosphere, leading to appreciable perturbations in the general circulation

  10. Is vertical migration in Antarctic krill (Euphausia superba) influenced by an underlying circadian rhythm?

    Indian Academy of Sciences (India)

    Edward Gaten; Geraint Tarling; Harold Dowse; Charalambos Kyriacou; Ezio Rosato

    2008-12-01

    Antarctic krill (Euphausia superba) is a keystone species in the southern ocean ecosystem where it is the main consumer of phytoplankton and constitutes the main food item of many higher predators. Both food and predators are most abundant at the surface, thus krill hide in the depth of the ocean during the day and migrate to the upper layers at night, to feed at a time when the predatory risk is lowest. Although the functional significance of this diel vertical migration (DVM) is clear and its modulation by environmental factors has been described, the involvement of an endogenous circadian clock in this behaviour is as yet not fully resolved. We have analysed the circadian behaviour of Euphausia superba in a laboratory setting and here we present the first description of locomotor activity rhythms for this species. Our results are in agreement with the hypothesis that the circadian clock plays a key role in DVM. They also suggest that the interplay between food availability, social cues and the light:dark cycle acts as the predominant Zeitgeber for DVM in this species.

  11. The application of optical coherence tomography to image subsurface tissue structure of Antarctic krill Euphausia superba.

    Directory of Open Access Journals (Sweden)

    Nicola Bellini

    Full Text Available Many small open ocean animals, such as Antarctic krill, are an important part of marine ecosystems. To discover what will happen to animals such as krill in a changing ocean, experiments are run in aquaria where conditions can be controlled to simulate water characteristics predicted to occur in the future. The response of individual animals to changing water conditions can be hard to observe, and with current observation techniques it is very difficult to follow the progress of an individual animal through its life. Optical coherence tomography (OCT is an optical imaging technique that allows images at high resolution to be obtained from depths up to a few millimeters inside biological specimens. It is compatible with in vivo imaging and can be used repeatedly on the same specimens. In this work, we show how OCT may be applied to post mortem krill samples and how important physiological data such as shell thickness and estimates of organ volume can be obtained. Using OCT we find an average value for the thickness of krill exoskeleton to be (30±4 µm along a 1 cm length of the animal body. We also show that the technique may be used to provide detailed imagery of the internal structure of a pleopod joint and provide an estimate for the heart volume of (0.73±0.03 mm3.

  12. Viral distribution and activity in Antarctic waters

    Science.gov (United States)

    Guixa-Boixereu, Núria; Vaqué, Dolors; Gasol, Josep M.; Sánchez-Cámara, Jaime; Pedrós-Alió, Carlos

    Variability in abundance of virus-like particles (VLP), VLP decay rates and prokaryotic mortality due to viral infection were determined in three Antarctic areas: Bellingshausen Sea, Bransfield Strait and Gerlache Strait, during December 1995 and February 1996. VLP abundance showed very small spatial variability in the three areas (7×10 6-2×10 7 VLP ml -1). VLP abundance, on the other hand, decreased one order of magnitude from the surface to the bottom, in two stations where deep vertical profiles were sampled. Low seasonal variability in VLP abundance was found when comparing each area separately. Diel VLP variability was also very low. VLP abundance showed the lowest values when solar irradiation was maximal, in two of the three stations where diel cycles were examined. Viral decay rates (VDR) were determined using KCN in two kinds of experiments. Type 1 experiments were performed in 6 stations to determine viral decay. Type 2 experiments were carried out in 2 stations to examine the influence of temperature and organic matter concentration on viral decay. VDR was not influenced by these parameters. Prokaryotic mortality due to viral infection was always higher than that due to bacterivores in the stations where both factors of prokaryotic mortality were measured. Viral infection accounted for all the prokaryotic heterotrophic production in Bellingshausen Sea and Gerlache Strait and for half of the prokaryotic heterotrophic production in Bransfield Strait. These high values of prokaryotic mortality due to viral infection are difficult to reconcile in nature, and more work is necessary to determine the mechanisms involved in the disappearance of viruses.

  13. Hydrochemical characteristic of different modifications of Antarctic waters

    Science.gov (United States)

    Batrak, K. V.

    2008-06-01

    The report considers the distribution of several hydrochemical components (dissolved oxygen, mineral phosphorus, dissolved silicon, and nitrate nitrogen) depending on the disposition of different structural water modifications constituting the unified Antarctic structural type. It is shown that the character of the silicon distribution in the waters of the South Polar zone is mainly determined by large-scale circulation features. The distribution of mineral phosphorus and nitrate nitrogen is characterized by a certain patchiness related to the photosynthesis intensity. An attempt was made to follow the supply and transformation of dissolved silicon, nitrates, and phosphates in the Antarctic.

  14. Middle Eocene paleocirculation of the southwestern Atlantic Ocean, the anteroom to an ice-house world: evidence from dinoflagellates

    Science.gov (United States)

    Raquel Guerstein, G.; Daners, Gloria; Palma, Elbio; Ferreira, Elizabete P.; Premaor, Eduardo; Amenábar, Cecilia R.; Belgaburo, Alexandra

    2016-04-01

    Middle Eocene dinoflagellate cyst organic walled assemblages from sections located in the Antarctic Peninsula, Tierra del Fuego, Santa Cruz province and south of Chile are mainly represented by endemic taxa, which are also dominant in several circum - Antarctic sites located southern 45° S. Some members of this endemic Antarctic assemblage, including especies of Enneadocysta, Deflandrea, Vozzhennikovia, and Spinidinium, have been recognised in sites along the Southwest Atlantic Ocean Shelf at Colorado (˜38° S), Punta del Este (˜36° S) and Pelotas (˜30° S) basins. Northern 30° S, at Jequitinhonha (˜17oS) and Sergipe (˜11° S) basins, there is no evidence of the endemic Antarctic members, except for Enneadocysta dictyostila, recorded in very low proportion. Based on its positive correlation with CaCO3 percentages we assume that this species is the unique member of the endemic assemblage apparently tolerant to warm surface waters. Previous research developed in the Tasman area has related the presence of endemic taxa at mid- latitudes to a strong clockwise subpolar gyre favoured by the partial continental blockage of the Tasmanian Gateways and the Drake Passage. In this work we propose that the dinoflagellate cyst distribution along the South Atlantic Ocean Shelf can be explained by a similar dynamical mechanism induced by a cyclonic subpolar gyre on the South Atlantic Ocean. The western boundary current of this gyre, starting on the west Antarctic continental slope, would follow a similar path to the present Malvinas Current on the Patagonian slope. Modelling and observational studies at the Patagonian shelf-break have shown that a cyclonic western boundary current promotes upwelling and intrusion of cold oceanic waters to the shelf and intensifies the northward shelf transport. In a similar way we hypothesize that during the Middle Eocene the western boundary current of a proto-Weddell Gyre transported the circum-antarctic waters and the endemic components

  15. Calibration of the Tide Gauge at King Edward Point, South Georgia Island, South Atlantic Ocean

    OpenAIRE

    Teferle, Felix Norman; Hunegnaw, Addisu; Woodworth, P. L.; Foden, Peter R.; S. D. P. Williams; Pugh, Jeffrey; Hibbert, Angela

    2015-01-01

    In 2008 a new pressure tide gauge with Global Sea Level Observing System Number 187 was installed at King Edward Point (KEP), South Georgia Island, South Atlantic Ocean. This installation was carried out as part of the Antarctic Circumpolar Current Levels by Altimetry and Island Measurements (ACCLAIM) programme. In 2013 the KEP Geodetic Observatory was established in support of various scientific applications including the monitoring of vertical land movements at KEP. Currently, the observato...

  16. Scaling laws for parametrizations of subgrid interactions in simulations of oceanic circulations

    OpenAIRE

    Kitsios, V.; J. S. Frederiksen; Zidikheri, M. J.

    2014-01-01

    Parametrizations of the subgrid eddy–eddy and eddy–meanfield interactions are developed for the simulation of baroclinic ocean circulations representative of an idealized Antarctic Circumpolar Current. Benchmark simulations are generated using a spectral spherical harmonic quasi-geostrophic model with maximum truncation wavenumber of T=504, which is equivalent to a resolution of 0.24° globally. A stochastic parametrization is used for the eddy–eddy interactions, and a linear deterministic par...

  17. Ecology of coccolithophores in the Indian sector of the Southern Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Mohan, R.; Mergulhao, L.P.; Guptha, M.V.S.; Rajakumar, A.; Thamban, M.; AnilKumar, N.; Sudhakar, M.; Ravindra, R.

    Paula, Goa - 403 004, India the PF, and silicate concentrations are negatively correlated to both the abundance and diversity of coccolithophore populations. In contrast, high nitrate concentrations corresponds with a high abundance of monospecific... (SAF) and the Polar Front (PF). Nutrient concentrations increased from the STF to d 62, Sagar Society, Dona a National Centre for Antarctic & Ocean Research, Headland Sada, Goa-403 804, India b Department of Chemistry, I.I.T. Kharagpur, Kharagpur-721302...

  18. A Southern Indian Ocean database of hydrographic profiles obtained with instrumented elephant seals

    OpenAIRE

    Roquet, Fabien; Williams, Guy; Hindell, Mark A; Harcourt, Rob; McMahon, Clive; Guinet, Christophe; Charrassin, Jean-Benoit; Reverdin, Gilles; Boehme, Lars; Lovell, Phil; Fedak, Mike

    2014-01-01

    The instrumentation of southern elephant seals with satellite-linked CTD tags has offered unique temporal and spatial coverage of the Southern Indian Ocean since 2004. This includes extensive data from the Antarctic continental slope and shelf regions during the winter months, which is outside the conventional areas of Argo autonomous floats and ship-based studies. This landmark dataset of around 75,000 temperature and salinity profiles from 20–140 °E, concentrated on the sector between the K...

  19. Organic compounds and suspended matter in the marine ice of the Eastern Antarctic

    International Nuclear Information System (INIS)

    Data on the composition of organic compounds in Antarctic sea ice are virtually non-existent, as most works concentrate on the structure, physical composition and biological properties of the ice. Data is needed for the study of the global carbon cycle and the estimation of background values and anthropogenic compounds. Specific features of the hydrometeorological regime near Antarctica affect the structure of the ice cover and its properties. The transportation of large volumes of snow to the ocean results in the formation of a snow sludge layer which gradually accumulates on the sea surface and freezes into young slush ice. The irregular distribution of snow at the ice surface and seawater infiltration results in the formation of ice with a specific crystalline structure and physiochemical properties. This paper discussed the dissolved and suspended lipids and hydrocarbons, as well as suspended matter (SM) concentrations in snow, sea ice and sub-ice water in coastal zones of the East Antarctic. The data was obtained during the Russian Antarctic Expedition in 2003. Variations in the concentration and distribution of the various substances suggest that they are related to ice forming conditions and to the processes that occur when ice forms, as well as in the interaction of the substances with ice, snow and sub-ice water. The SM and organic compounds are accumulated in layers characterized by intense autochthonous processes. It was noted that the zones stay biogeochemically active even under low temperature conditions. The highest concentrations of organic compounds, along with the biggest variations in their proportions have been discovered in the areas surrounded by penguin colonies near Buromsky Island and Haswell Island's Lake. The presence of significant quantities of PAHs in both pack and seasonal ice of high latitudes indicates that their formation is relatively rapid even at low temperatures. Many biochemical processes are intense under the influence of ice

  20. Geochemical evolution of Pliocene-Recent post-subduction alkalic basalts from Seal Nunataks, Antarctic Peninsula

    International Nuclear Information System (INIS)

    Following more than 200 Ma of subduction of Pacific oceanic crust beneath the west coast of the Antarctic Peninsula, subduction ceased by a series of ridge crest-trench collisions. However, magmatism continued after the cessation of subduction with basaltic rocks of the intraplate alkalic association being erupted from centres scattered along the whole length of the peninsula. In the northeast, at Seal Nunataks, a suite of intraplate basalts ranging in composition from tholeiite to alkali basalt was erupted less than 4 Ma ago, almost synchronously with the cessation of subduction in that area (4-6 Ma). LREE-enrichment [(La/Yb)n 4.7-11.5] but consistency of HREE abundances for all the basalts suggest they were generated by partial melting in the garnet stability field of the mantle. A number of trace-element ratios [e.g. Zr/Nb (4.9-8.4), Hf/Ta (1.5-3.3), Sr/Nb (15-26), Ti/Nb (390-800)] are likely to have been fractionated during partial melting/melt extraction, although they do exhibit some correlation with isotope ratios, suggesting variations in these ratios may have been controlled by both partial melting and source heterogeneity. However, Th/Ta (0.87-2.31), La/Th (5.4-10.5) and K/Rb (275-1330) ratios also exhibit considerable variations within the suite and show strong correlations with 87Sr/86Sr ratios (0.7028-0.7033). These trace-element-isotope covariations are explained by a model involving mixing of a LILE-, 87Sr-depleted end-member, broadly similar to the source for non-Dupal OIB and N-type MORB, and upper-mantle material with high LILE/HFSE and 87Sr/86Sr ratios. This high-LILE/HFSE, high-87Sr component may represent mantle material which was enriched during the previous 200 Ma of subduction-related magmatism within the Antarctic Peninsula. Post-subduction high-Mg andesites (''bajaites''), which are associated with the cessation of subduction long other continental margins, are apparently absent within the Antarctic Peninsula. (orig./WB)

  1. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations

    Science.gov (United States)

    Ritz, Catherine; Edwards, Tamsin L.; Durand, Gaël; Payne, Antony J.; Peyaud, Vincent; Hindmarsh, Richard C. A.

    2015-12-01

    Large parts of the Antarctic ice sheet lying on bedrock below sea level may be vulnerable to marine-ice-sheet instability (MISI), a self-sustaining retreat of the grounding line triggered by oceanic or atmospheric changes. There is growing evidence that MISI may be underway throughout the Amundsen Sea embayment (ASE), which contains ice equivalent to more than a metre of global sea-level rise. If triggered in other regions, the centennial to millennial contribution could be several metres. Physically plausible projections are challenging: numerical models with sufficient spatial resolution to simulate grounding-line processes have been too computationally expensive to generate large ensembles for uncertainty assessment, and lower-resolution model projections rely on parameterizations that are only loosely constrained by present day changes. Here we project that the Antarctic ice sheet will contribute up to 30 cm sea-level equivalent by 2100 and 72 cm by 2200 (95% quantiles) where the ASE dominates. Our process-based, statistical approach gives skewed and complex probability distributions (single mode, 10 cm, at 2100; two modes, 49 cm and 6 cm, at 2200). The dependence of sliding on basal friction is a key unknown: nonlinear relationships favour higher contributions. Results are conditional on assessments of MISI risk on the basis of projected triggers under the climate scenario A1B (ref. 9), although sensitivity to these is limited by theoretical and topographical constraints on the rate and extent of ice loss. We find that contributions are restricted by a combination of these constraints, calibration with success in simulating observed ASE losses, and low assessed risk in some basins. Our assessment suggests that upper-bound estimates from low-resolution models and physical arguments (up to a metre by 2100 and around one and a half by 2200) are implausible under current understanding of physical mechanisms and potential triggers.

  2. Antarctic Pumpdown---a New Geoengineering Concept for Capturing and Storing Atmospheric Carbon Dioxide

    Science.gov (United States)

    Beget, J. E.

    2014-12-01

    Growing concentrations of carbon dioxide in the atmosphere are increasing global temperatures. This is projected to impact human society in negative ways. Multiple geoengineering approaches have been suggested that might counteract problems created by greenhouse warming, but geoengineering itself can be problematic as some proposed methods would pose environmental risks to the oceans, atmosphere, and biosphere. I propose a new approach that would remove CO2 from the atmosphere and store it in the cryosphere. Carbon dioxide would be captured by seeding the atmosphere over a designated small region of central Antarctica with monoethanolamine (MEA), a well known compound commonly used for CO2 capture in submarines and industrial processes. Monoethanolamine captures and retains carbon dioxide until it encounters water. Because MEA crystals are stable when dry, they would fall from the atmosphere just in the local area where the seeding is done, and they would be naturally buried by snowfalls and preserved in the upper parts of the East Antarctic Ice Sheet, where thawing does not occur. The carbon dioxide removed from the atmosphere by this process could reside safely in this geologic reservoir for thousands of years, based on known flow characteristic of the ice sheet. Also, carbon dioxide stored in this way could be recovered in the future by drilling into the ice sheet to the frozen storage zone. The CO2 Antarctic Pumpdown (CAP) concept could potentially be used to stabilize or reduce the amount of carbon dioxide in the atmosphere, and then to store the carbon dioxide safely and inexpensively in a stable geologic reservoir

  3. Equivalent magnetization over the World Ocean

    Science.gov (United States)

    Dyment, J.; Hamoudi, M.; Choi, Y.; Thebault, E.; Quesnel, Y.; Roest, W. R.; Lesur, V.

    2012-12-01

    , the Mid-Atlantic Ridge displays a more uniform signature, although off-axis variations seem associated to the Tristan and St Helena hotspots. In the Indian Ocean, a strong equivalent magnetization characterizes areas of hotspot-ridge interaction such as the Gulf of Aden, the Central Indian Ridge near Rodrigues Island, the Southwest Indian Ridge near Marion Island, and the Southeast Indian Ridge near St Paul and Amsterdam Islands. A weaker one is observed in colder area, at the Australian-Antarctic Discordance and around the Rodrigues Triple Junction. The Pacific Ocean is characterized by a generally stronger equivalent magnetization, both near ridges and in abyssal plains. Time variations, i.e. along seafloor spreading flowlines, are apparent across the Mid-Atlantic and Pacific-Antarctic ridges, with highs near the ridge axis (younger than 10 Ma) and between ~83 and 60 Ma, just after the Cretaceous Normal Superchron and lows between ~60 and 10 Ma. The Mesozoic basins of the Pacific and Atlantic oceans show a weaker equivalent magnetization before ~155 Ma and a stronger one after. Basins covered by thick sediments such as the Bengal Bay, Great Australian Bight, Nova Scotia Basin, and Western Somali Basin show a very weak equivalent magnetization, reflecting both a deeper basement and a possible thermal demagnetization. Some of these variations coincide with satellite magnetic anomalies.

  4. /sup 226/Ra in the western Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y.

    1987-09-01

    /sup 226/Ra profiles have been measured in the western Indian Ocean as part of the 1977-78 Indian Ocean GEOSECS program. These profiles show a general increase in deep and bottom water Ra concentration from the Circumpolar region to the Arabian Sea. A deep Ra maximum which originates in the Arabian Sea and in the Somali basin at about 3000 m depth spreads southward into the Mascarene basin and remains discernible in the Madagascar and Crozet basins. In the western Indian Ocean, the cold Antarctic Bottom Water spreads northward under the possibly southward-flowing deep water, forming a clear benthic front along the Crozet basin across the Southwest Indian Ridge into the Madagascar and Mascarene basins. The Antarctic Bottom Water continues to spread farther north to the Somali basin through the Amirante Passage at 10/sup 0/S as a western boundary current. The benthic front and other characteristic features in the western Indian Ocean are quite similar to those observed in the western Pacific where the benthic front as a distinctive feature was first described by Craig et al. Across the Mid-Indian Ridge toward the Ceylon abyssal plain near the triple junction, Ra profiles display a layered structure, reflecting the topographic effect of the mid-ocean ridge system on the mixing and circulation of the deep and bottom waters. Both Ra and Si show a deep maximum north of the Madagascar Basin. Linear relationships between these two elements are observed in the deep and bottom water with slopes increasing northward. This suggests a preferential input of Ra over Si from the bottom sediments of the Arabian Sea and also from the flank sediments of the Somali basin.

  5. Persistent organohalogen contaminant burdens in Antarctic krill (Euphausia superba) from the eastern Antarctic sector: A baseline study

    International Nuclear Information System (INIS)

    A baseline for persistent organohalogen compound (POC) accumulation in the Antarctic keystone species, Antarctic krill (Euphausia superba) has been established for a 50 deg. longitudinal range of the eastern Antarctic sector. Samples of adult krill, caught from 12 sites distributed between 30 deg. and 80 deg. E (60-70 deg. S), were analysed for > 100 organohalogen compounds including chlorinated pesticides, polychlorinated biphenyls (PCBs), polybrominated organic compounds and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs). Organochlorine pesticides dominated measured krill contaminant burdens with hexachlorobenzene (HCB) as the single most abundant compound quantified. Krill HCB concentrations were comparable to those detected at this trophic level in both the Arctic and temperate northwest Atlantic, lending support for the hypothesis that HCB will approach global equilibrium at a faster rate than other POCs. Para, para'-dichlorodiphenylethene (p,p'-DDE) was detected at notable concentrations. Measurements of DDT and its degradation products provide an important baseline for monitoring the temporal and geographical influence of renewed, DDT usage for malaria-control in affected southern hemisphere countries. In contrast to the Arctic, PCBs did not feature prominently in contaminant burdens of Antarctic krill. The major commercial polybrominated diphenyl ether (PBDE) congeners -99 and -47 were quantified at low background levels with clear concentration spikes observed at around 70 deg. E , in the vicinity of modern, active research stations. The likelihood that local anthropogenic activities are supplementing low PBDE levels, delivered otherwise primarily via long range environmental transport, is discussed. The suspected naturally occurring brominated organic compound, 2,4,6-tribromoanisole (TBA), was a ubiquitous contaminant in all samples whereas the only PCDD/Fs quantifiable were trace levels of octachlorodibenzo-p-dioxin (OCDD) and 1,2,3

  6. Holocene climate variability along the Antarctic Peninsula and linkage with a terrestrial paleoclimate record from South America

    International Nuclear Information System (INIS)

    Pacific. In this regard, we note that the strongest Southern Oscillation atmospheric pressure anomaly in the Southern Ocean is in the Bellingshausen/Amundsen seas, upwind from our Antarctic Peninsula study site. We see temporal coherence between a rapid mid-Holocene excursion at site 1098 and a similarly rapid 85 m lowering of the level of Lake Titicaca, at 14 deg. S in the South American Altiplano, again suggestive of a Pacific Ocean control. Comparison with other Antarctic margin paleoclimate records from East Antarctica and the Ross Sea as well as with terrestrial records from Australia and New Zealand generally shows heterogeneity across longitudes and coherence across latitudes. However, convincing conclusions along these lines are still difficult because of problems in comparing chronologies at sub-millennial timescales between marine records, ice cores, and terrestrial records. (author)

  7. Holocene climate variability along the Antarctic Peninsula and linkage with a terrestrial paleoclimate record from South America

    International Nuclear Information System (INIS)

    Pacific. In this regard, we note that the strongest Southern Oscillation atmospheric pressure anomaly in the Southern Ocean is in the Bellingshausen/Amundsen seas, upwind from our Antarctic Peninsula study site. We see temporal coherence between a rapid mid-Holocene excursion at site 1098 and a similarly rapid 85 m lowering of the level of Lake Titicaca, at 14 deg. S in the South American Altiplano, again suggestive of a Pacific Ocean control. Comparison with other Antarctic margin paleoclimate records from East Antarctica and the Ross Sea as well as with terrestrial records from Australia and New Zealand generally shows heterogeneity across longitudes and coherence across latitudes. However, convincing conclusions along these lines are still difficult because of problems in comparing chronologies at sub- millennial timescales between marine records, ice cores, and terrestrial records. (author)

  8. Antarctic climate variability during the past few centuries based on ice core records from coastal Dronning Maud Land and its implications on the Recent warming

    Digital Repository Service at National Institute of Oceanography (India)

    Thamban, M.; Naik, S.S.; Laluraj, C.M.; Chaturvedi, A.; Ravindra, R.

      Southern  Ocean  is  an  outcome  of  the  interplay of the ice sheet, ocean, sea ice, and atmosphere and their response to past and present  climate forcing. With ~98% of its area covered with snow and ice, the Antarctic continent reflects  most...‐dated firn/ice cores from the coastal regions of Antarctica. With this backdrop, the National  Centre for Antarctic and Ocean Research has taken up studies on snow and shallow ice core from  the  central  Dronning  Maud  Land  (DML)  in  East  Antarctica.  The  initial  results  suggested  that  understanding  the  modern  biogeochemical  processes...

  9. Local scaling characteristics of Antarctic surface layer turbulence

    Directory of Open Access Journals (Sweden)

    S. Basu

    2010-03-01

    Full Text Available Over the past years, several studies have validated Nieuwstadt's local scaling hypothesis by utilizing turbulence observations from the mid-latitude, nocturnal stable boundary layers. In this work, we probe into the local scaling characteristics of polar, long-lived stable boundary layers by analyzing turbulence data from the South Pole region of the Antarctic Plateau.

  10. Evaluating Wind Power Potential in the Spanish Antarctic Base (BAE)

    International Nuclear Information System (INIS)

    The objective of the work is to model wind field in the surroundings of the Spanish Antarctic Base (BAE in the following). The need of such a work comes from the necessity of an energy source able to supply the energy demand in the BAE during the Antarctic winter. When the BAE is in operation (in the Antarctic summer) the energy supply comes from a diesel engine. In the Antarctic winter the base is closed, but the demand of energy supply is growing up every year because of the increase in the number of technical and scientific machines that remain in the BAE taking different measurements. For this purpose the top of a closed hill called Pico Radio, not perturbed by close obstacles, has been chosen as the better site for the measurements. The measurement station is made up with a sonic anemometer and a small wind generator to supply the energy needed by the sensors head heating of the anemometer. This way, it will be also used as a proof for the suitability of a wind generator in the new chosen site, under those special climatic conditions.(Author) 3 refs

  11. Recent Rapid Regional Climate Warming on the Antarctic Peninsula

    Science.gov (United States)

    Vaughan, D. G.; Marshall, G. J.; Connolley, W. M.; Parkinson, C.; Mulvaney, R.; Hodgson, D. A.; King, J. C.; Pudsey, C. J.; Turner, J.

    2002-12-01

    The Intergovernmental Panel on Climate Change (IPCC) confirmed that global warming was 0.6 ñ 0.2 degrees C during the 20th Century and cited increases in greenhouse gases as a likely contributor. But this average conceals the complexity of observed climate change, which is seasonally biased, decadally variable and geographically patchy. In particular, over the last 50 years three high-latitude areas have undergone recent rapid regional (RRR) warming ? substantially more rapid than the global mean. We discuss the spatial and temporal significance of RRR warming in one area, the Antarctic Peninsula. New analyses of station records show no ubiquitous polar amplification of global warming but significant RRR warming on the Antarctic Peninsula. We investigate the likelihood that this could be amplification of a global warming, and use climate-proxy data to indicate that this RRR warming on the Antarctic Peninsula is unprecedented over the last two millennia and unlikely to be a natural mode of variability. We can show a strong connection between RRR warming and reduced sea-ice duration in an area on the west of the Antarctic Peninsula, but here we cannot yet distinguish cause and effect. Thus for the present we cannot determine which process causes the RRR warming, and until the mechanism initiating and sustaining it is understood, and is convincingly reproduced in climate models, we lack a sound basis for predicting climate change in this region over the coming century.

  12. Pioneering work of CAS researchers in Antarctic expedition

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The first observatory at Dome A On 12 January, China scientific expedition to Antarctica succeeded for a second time in climbing up to Dome A, the highest Antarctic icecap peak. A similar feat was made by Chinese scientists about three years ago in January 2005, leaving first human footprints there.

  13. Occurrence of a taurine derivative in an antarctic glass sponge.

    Science.gov (United States)

    Carbone, Marianna; Núñez-Pons, Laura; Ciavatta, M Letizia; Castelluccio, Francesco; Avila, Conxita; Gavagnin, Margherita

    2014-04-01

    The n-butanol extract of an Antarctic hexactinellid sponge, Anoxycalyx (Scolymastra) joubini, was found to contain a taurine-conjugated anthranilic acid, never reported so far either as a natural product or by synthesis. The compound was inactive against human cancer cells in an in vitro growth inhibitory test, and also showed no antibacterial activity. PMID:24868857

  14. Microbial ecology and biogeochemistry of continental Antarctic soils

    Directory of Open Access Journals (Sweden)

    Don A Cowan

    2014-04-01

    Full Text Available The Antarctica Dry Valleys are regarded as the coldest hyperarid desert system on Earth. While a wide variety of environmental stressors including very low minimum temperatures, frequent freeze-thaw cycles and low water availability impose severe limitations to life, suitable niches for abundant microbial colonization exist. Antarctic desert soils contain much higher levels of microbial diversity than previously thought. Edaphic niches, including cryptic and refuge habitats, microbial mats and permafrost soils all harbour microbial communities which drive key biogeochemical cycling processes. For example, lithobionts (hypoliths and endoliths possess a genetic capacity for nitrogen and carbon cycling, polymer degradation and other system processes. Nitrogen fixation rates of hypoliths, as assessed through acetylene reduction assays, suggest that these communities are a significant input source for nitrogen into these oligotrophic soils. Here we review aspects of microbial diversity in Antarctic soils with an emphasis on functionality and capacity. We assess current knowledge regarding adaptations to Antarctic soil environments and highlight the current threats to Antarctic desert soil communities.

  15. An Antarctic Circumpolar Current driven by surface buoyancy forcing

    Science.gov (United States)

    Hogg, Andrew McC.

    2010-12-01

    Simulations of an idealised, but eddy-resolving, channel model of the Antarctic Circumpolar Current (ACC) are used to investigate the sensitivity of ACC transport to wind and surface buoyancy forcing. The results are consistent with theoretical predictions of the eddy-saturated limit, where transport is independent of wind stress. In this parameter regime, buoyancy forcing provides the primary control over ACC transport.

  16. Molecular evolution of hemoglobins of Antarctic fishes (Notothenioidei)

    NARCIS (Netherlands)

    Stam, W.T.; Beintema, J.J; D Avino, R.; Tamburrini, M.; di Prisco, G.

    1997-01-01

    Amino acid sequences of alpha- and beta-chains of human hemoglobin and of hemoglobins of coelacanth and 24 teleost fish species, including 11 antarctic and two temperate Notothenioidei, were analyzed using maximum parsimony. Trees were derived for the alpha- and beta-chains separately and for tandem

  17. Maneuver simulation model of an experimental hovercraft for the Antarctic

    Science.gov (United States)

    Murao, Rinichi

    Results of an investigation of a hovercraft model designed for Antarctic conditions are presented. The buoyancy characteristics, the propellant control system, and simulation model control are examined. An ACV (air cushion vehicle) model of the hovercraft is used to examine the flexibility and friction of the skirt. Simulation results are presented which show the performance of the hovercraft.

  18. Antarctic Cenozoic climate history from sedimentary records: ANDRILL and beyond.

    Science.gov (United States)

    McKay, R M; Barrett, P J; Levy, R S; Naish, T R; Golledge, N R; Pyne, A

    2016-01-28

    Mounting evidence from models and geological data implies that the Antarctic Ice Sheet may behave in an unstable manner and retreat rapidly in response to a warming climate, which is a key factor motivating efforts to improve estimates of Antarctic ice volume contributions to future sea-level rise. Here, we review Antarctic cooling history since peak temperatures of the Middle Eocene Climatic Optimum (approx. 50 Ma) to provide a framework for future initiatives to recover sediment cores from subglacial lakes and sedimentary basins in Antarctica's continental interior. While the existing inventory of cores has yielded important insights into the biotic and climatic evolution of Antarctica, strata have numerous and often lengthy time breaks, providing a framework of 'snapshots' through time. Further cores, and more work on existing cores, are needed to reconcile Antarctic records with the more continuous 'far-field' records documenting the evolution of global ice volume and deep-sea temperature. To achieve this, we argue for an integrated portfolio of drilling and coring missions that encompasses existing methodologies using ship- and sea-ice-/ice-shelf-based drilling platforms as well as recently developed seafloor-based drilling and subglacial access systems. We conclude by reviewing key technological issues that will need to be overcome. PMID:26667911

  19. A novel Antarctic microbial endolithic community within gypsum crusts.

    Science.gov (United States)

    Hughes, Kevin A; Lawley, Blair

    2003-07-01

    A novel endolithic microbial habitat is described from a climatically extreme site at Two Step Cliffs, Alexander Island, Antarctic Peninsula (71 degrees 54'S, 68 degrees 13'W). Small endolithic colonies (endolithic communities are less extensive than those of the Dry Valleys, continental Antarctica, probably owing to only recent deglaciation (<7000 year ago). PMID:12823188

  20. Microbial ecology and biogeochemistry of continental Antarctic soils

    Science.gov (United States)

    Cowan, Don A.; Makhalanyane, Thulani P.; Dennis, Paul G.; Hopkins, David W.

    2014-01-01

    The Antarctica Dry Valleys are regarded as the coldest hyperarid desert system on Earth. While a wide variety of environmental stressors including very low minimum temperatures, frequent freeze-thaw cycles and low water availability impose severe limitations to life, suitable niches for abundant microbial colonization exist. Antarctic desert soils contain much higher levels of microbial diversity than previously thought. Edaphic niches, including cryptic and refuge habitats, microbial mats and permafrost soils all harbor microbial communities which drive key biogeochemical cycling processes. For example, lithobionts (hypoliths and endoliths) possess a genetic capacity for nitrogen and carbon cycling, polymer degradation, and other system processes. Nitrogen fixation rates of hypoliths, as assessed through acetylene reduction assays, suggest that these communities are a significant input source for nitrogen into these oligotrophic soils. Here we review aspects of microbial diversity in Antarctic soils with an emphasis on functionality and capacity. We assess current knowledge regarding adaptations to Antarctic soil environments and highlight the current threats to Antarctic desert soil communities. PMID:24782842

  1. Two decades of inorganic carbon dynamics along the Western Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    C. Hauri

    2015-05-01

    Full Text Available We present 20 years of seawater inorganic carbon measurements collected along the western shelf and slope of the Antarctic Peninsula. Water column observations from summertime cruises and seasonal surface underway pCO2 measurements provide unique insights into the spatial, seasonal and interannual variability of the dynamic system. The discrete measurements from depths > 2000 m align well with World Ocean Circulation Experiment observations across the time-series and underline the consistency of the data set. Analysis shows large spatial gradients in surface alkalinity and dissolved inorganic carbon content, with a concomitant wide range of Ωarag from values arag despite glacial and sea-ice melt water input. In support of previous studies, we observed Redfield behavior of regional C / N nutrient utilization, while the C / P (80.5 ± 2.5 and N / P (11.7 ± 0.3 molar ratios were significantly lower than the Redfield elemental stoichiometric values. Seasonal predictions of Ωarag suggest that surface waters remained mostly supersaturated with regard to aragonite throughout the study. However, more than a third of the predictions for winters between 1999 and 2013 resulted in Ωarag arag may have implications for important organisms such as pteropods. Despite large interannual variability, surface pCO2 measurements indicate a statistically significant increasing trend of up to 23 μatm per decade in fall and spring and a concomitant decreasing pH, pointing towards first signs of ocean acidification in the region. The combination of ongoing ocean acidification and freshwater input may soon provoke more unfavorable conditions than what the ecosystem experiences today.

  2. Comparing ice discharge through West Antarctic Gateways: Weddell vs. Amundsen Sea warming

    Science.gov (United States)

    Martin, M. A.; Levermann, A.; Winkelmann, R.

    2015-03-01

    Future changes in Antarctic ice discharge will be largely controlled by the fate of the floating ice shelves, which exert a back-stress onto Antarctica's marine outlet glaciers. Ice loss in response to warming of the Amundsen Sea has been observed and investigated as a potential trigger for the marine ice-sheet instability. Recent observations and simulations suggest that the Amundsen Sea Sector might already be unstable which would have strong implications for global sea-level rise. At the same time, regional ocean projections show much stronger warm-water intrusion into ice-shelf cavities in the Weddell Sea compared to the observed Amundsen warming. Here we present results of numerical ice sheet modelling with the Parallel Ice Sheet Model (PISM) which show that idealized, step-function type ocean warming in the Weddell Sea leads to more immediate ice discharge with a higher sensitivity to small warming levels than the same warming in the Amundsen Sea. This is consistent with the specific combination of bedrock and ice topography in the Weddell Sea Sector which results in an ice sheet close to floatation. In response to even slight ocean warming, ice loss increases rapidly, peaks and declines within one century. While the cumulative ice loss in the Amundsen Sea Sector is of similar magnitude after five centuries of continued warming, ice loss increases at a slower pace and only for significantly higher warming levels. Although there is more marine ice stored above sea level in close vicinity of the grounding line compared to the Weddell Sea Sector, the ice sheet is farther from floatation and the grounding line initially retreats more slowly.

  3. Gateways, Supergyre, and proto-Antarctic Circumpolar Current in the middle to late Eocene

    Science.gov (United States)

    Katz, M. E.; Cramer, B. S.; Toggweiler, J.

    2013-12-01

    The (proto-)Antarctic Circumpolar Current (ACC) began to develop in the middle Eocene through a shallow Drake Passage and Tasman Gateway. Progressive deepening of these gateways and northward migration of Australia through the Eocene impacted global ocean circulation. We present middle to late Eocene (~36-40 Ma) benthic foraminiferal stable isotope (δ18O, δ13C) records from ODP Site 1090 that extend published late Eocene-early Oligocene records (Pusz et al. 2011). Comparisons with published isotope records highlight that the deep (~3000m) eastern and western South Atlantic (Sites 699 (Mead et al. 1993) and 1090) was warmer than the shallower (~1500-2500m) Southern Ocean Sites 689 (Diester-Haass and Zahn, 1996; Bohaty et al., 2012). The divergence in the δ18O records began in the late middle Eocene and continued through the late Eocene, as the Drake and Tasman gateways progressively deepened, and Australia moved northward. We speculate that these paleogeographic changes resulted in the development of circulation analogous to the modern Supergyre, which transported warm Indian and Pacific water westward into the South Atlantic and cooler South Atlantic water eastward into the Pacific Ocean via the Tasman Seaway, and acted as a barrier that prevented subtropical water from flowing to high southern latitudes. At the same time, a significant carbon isotopic (δ13C) offset developed between Site 1090 (values ~ 0.7‰ lower) and other sites from ~37.5 to 34 Ma, coinciding with onset of elevated opaline silica (Diekmann et al. 2004), barite, carbonate, and phosphorous (Anderson and Delaney 2005) deposition at Site 1090; these changes are consistent with enhanced primary productivity at the northern edge of the developing polar front, consistent with model predictions for the effects of proto-ACC development (Heinze and Crowley, 1997; Toggweiler and Bjornsson, 2000).

  4. Comparing ice discharge through West Antarctic Gateways: Weddell vs. Amundsen Sea warming

    Directory of Open Access Journals (Sweden)

    M. A. Martin

    2015-03-01

    Full Text Available Future changes in Antarctic ice discharge will be largely controlled by the fate of the floating ice shelves, which exert a back-stress onto Antarctica's marine outlet glaciers. Ice loss in response to warming of the Amundsen Sea has been observed and investigated as a potential trigger for the marine ice-sheet instability. Recent observations and simulations suggest that the Amundsen Sea Sector might already be unstable which would have strong implications for global sea-level rise. At the same time, regional ocean projections show much stronger warm-water intrusion into ice-shelf cavities in the Weddell Sea compared to the observed Amundsen warming. Here we present results of numerical ice sheet modelling with the Parallel Ice Sheet Model (PISM which show that idealized, step-function type ocean warming in the Weddell Sea leads to more immediate ice discharge with a higher sensitivity to small warming levels than the same warming in the Amundsen Sea. This is consistent with the specific combination of bedrock and ice topography in the Weddell Sea Sector which results in an ice sheet close to floatation. In response to even slight ocean warming, ice loss increases rapidly, peaks and declines within one century. While the cumulative ice loss in the Amundsen Sea Sector is of similar magnitude after five centuries of continued warming, ice loss increases at a slower pace and only for significantly higher warming levels. Although there is more marine ice stored above sea level in close vicinity of the grounding line compared to the Weddell Sea Sector, the ice sheet is farther from floatation and the grounding line initially retreats more slowly.

  5. Is there a distinct continental slope fauna in the Antarctic?

    Science.gov (United States)

    Kaiser, Stefanie; Griffiths, Huw J.; Barnes, David K. A.; Brandão, Simone N.; Brandt, Angelika; O'Brien, Philip E.

    2011-02-01

    The Antarctic continental slope spans the depths from the shelf break (usually between 500 and 1000 m) to ˜3000 m, is very steep, overlain by 'warm' (2-2.5 °C) Circumpolar Deep Water (CDW), and life there is poorly studied. This study investigates whether life on Antarctica's continental slope is essentially an extension of the shelf or the abyssal fauna, a transition zone between these or clearly distinct in its own right. Using data from several cruises to the Weddell Sea and Scotia Sea, including the ANDEEP (ANtarctic benthic DEEP-sea biodiversity, colonisation history and recent community patterns) I-III, BIOPEARL (BIOdiversity, Phylogeny, Evolution and Adaptive Radiation of Life in Antarctica) 1 and EASIZ (Ecology of the Antarctic Sea Ice Zone) II cruises as well as current databases (SOMBASE, SCAR-MarBIN), four different taxa were selected (i.e. cheilostome bryozoans, isopod and ostracod crustaceans and echinoid echinoderms) and two areas, the Weddell Sea and the Scotia Sea, to examine faunal composition, richness and affinities. The answer has important ramifications to the link between physical oceanography and ecology, and the potential of the slope to act as a refuge and resupply zone to the shelf during glaciations. Benthic samples were collected using Agassiz trawl, epibenthic sledge and Rauschert sled. By bathymetric definition, these data suggest that despite eurybathy in some of the groups examined and apparent similarity of physical conditions in the Antarctic, the shelf, slope and abyssal faunas were clearly separated in the Weddell Sea. However, no such separation of faunas was apparent in the Scotia Sea (except in echinoids). Using a geomorphological definition of the slope, shelf-slope-abyss similarity only changed significantly in the bryozoans. Our results did not support the presence of a homogenous and unique Antarctic slope fauna despite a high number of species being restricted to the slope. However, it remains the case that there may be

  6. Short-term climate response to a freshwater pulse in the Southern Ocean

    OpenAIRE

    Richardson, G.; Wadley, MR; Heywood, KJ; Stevens, DP; Banks, HT

    2005-01-01

    The short-term response of the climate system to a freshwater anomaly in the Southern Ocean is investigated using a coupled global climate model. As a result of the anomaly, ventilation of deep waters around Antarctica is inhibited, causing a warming of the deep ocean, and a cooling of the surface. The surface cooling causes Antarctic sea-ice to thicken and increase in extent, and this leads to a cooling of Southern Hemisphere surface air temperature. The surface cooling increases over the fi...

  7. Last Glacial Maximum sea surface temperature and sea-ice extent in the Pacific sector of the Southern Ocean

    Science.gov (United States)

    Benz, Verena; Esper, Oliver; Gersonde, Rainer; Lamy, Frank; Tiedemann, Ralf

    2016-08-01

    Sea surface temperatures and sea-ice extent are most critical variables to evaluate the Southern Ocean paleoceanographic evolution in relation to the development of the global carbon cycle, atmospheric CO2 and ocean-atmosphere circulation. Here we present diatom transfer function-based summer sea surface temperature (SSST) and winter sea-ice (WSI) estimates from the Pacific sector of the Southern Ocean to bridge a gap in information that has to date hampered a well-established reconstruction of the last glacial Southern Ocean at circum-Antarctic scale. We studied the Last Glacial Maximum (LGM) at the EPILOG time slice (19,000-23,000 calendar years before present) in 17 cores and consolidated our LGM picture of the Pacific sector taking into account published data from its warmer regions. Our data display a distinct east-west differentiation with a rather stable WSI edge north of the Pacific-Antarctic Ridge in the Ross Sea sector and a more variable WSI extent over the Amundsen Abyssal Plain. The zone of maximum cooling (>4 K) during the LGM is in the present Subantarctic Zone and bounded to its south by the 4 °C isotherm. The isotherm is in the SSST range prevailing at the modern Antarctic Polar Front, representing a circum-Antarctic feature, and marks the northern edge of the glacial Antarctic Circumpolar Current (ACC). The northward deflection of colder than modern surface waters along the South American continent led to a significant cooling of the glacial Humboldt Current surface waters (4-8 K), which affected the temperature regimes as far north as tropical latitudes. The glacial reduction of ACC temperatures may also have resulted in significant cooling in the Atlantic and Indian Southern Ocean, thus enhancing thermal differentiation of the Southern Ocean and Antarctic continental cooling. The comparison with numerical temperature and sea-ice simulations yields discrepancies, especially concerning the estimates of the sea-ice fields, but some simulations

  8. Evaluation of the biological toxicity of lfuorine in Antarctic krill

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ling; LU Xiaoqi; WANG Zhangmin; QIN Liqiang; LIN Zhiqin; YUAN Linxi; ZHANG Wen; YIN Xuebin

    2014-01-01

    Antarctic krill is a potentially nutritious food source for humans, but lfuorine (F) toxicity is a matter of concern. To evaluate the toxicity of F in Antarctic krill, 30 Wistar rats were divided into three groups with different dietary regimens:a control group, a krill treatment group (150 mg·kg-1 F), and a sodium lfuoride (NaF) treatment group (150 mg·kg-1 F). After three months, F concentrations in feces, plasma, and bone were determined, and the degree of dental and skeletal lfuorosis was assessed. The F concentrations in plasma and bone from the krill treatment group were 0.167 0±0.020 4 mg.L-1 and 2 709.8±301.9 mg·kg-1, respectively, compared with 0.043 8±0.005 5 mg·L-1 and 442.4±60.7 mg·kg-1, respectively, in samples from the control group. Concentrations of F in plasma and bone in the krill treatment group were higher than in the control group, but lower than in the NaF treatment group. The degree of dental lfuorosis in the krill treatment group was moderate, compared with severe in the NaF treatment group and normal in the control group. The degree of skeletal lfuorosis did not change signiifcantly in any group. These results showed that the toxicity of F in Antarctic krill was lower than for an equivalent concentration of F in NaF, but it was toxic for rats consuming krill in large quantities. To conclude, we discuss possible reasons for the reduced toxicity of F in Antarctic krill. The present study provides a direct toxicological reference for the consideration of Antarctic krill for human consumption.

  9. Evidence for widespread endemism among Antarctic micro-organisms

    Science.gov (United States)

    Vyverman, Wim; Verleyen, Elie; Wilmotte, Annick; Hodgson, Dominic A.; Willems, Anne; Peeters, Karolien; Van de Vijver, Bart; De Wever, Aaike; Leliaert, Frederik; Sabbe, Koen

    2010-08-01

    Understanding the enormous diversity of microbes, their multiple roles in the functioning of ecosystems, and their response to large-scale environmental and climatic changes, are at the forefront of the international research agenda. In Antarctica, where terrestrial and lacustrine environments are predominantly microbial realms, an active and growing community of microbial ecologists is probing this diversity and its role in ecosystem processes. In a broader context, this work has the potential to make a significant contribution to the long-standing debate as to whether microbes are fundamentally different from macroorganisms in their biogeography. According to the ubiquity hypothesis, microbial community composition is not constrained by dispersal limitation and is solely the result of species sorting along environmental gradients. However, recent work on several groups of microalgae is challenging this view. Global analyses using morphology-based diatom inventories have demonstrated that, in addition to environmental harshness, geographical isolation underlies the strong latitudinal gradients in local and regional diversity in the Southern hemisphere. Increasing evidence points to a strong regionalization of diatom floras in the Antarctic and sub-Antarctic regions, mirroring the biogeographical regions that have been recognized for macroorganisms. Likewise, the application of molecular-phylogenetic techniques to cultured and uncultured diversity revealed a high number of Antarctic endemics among cyanobacteria and green algae. Calibration of these phylogenies suggests that several clades have an ancient evolutionary history within the Antarctic continent, possibly dating back to 330 Ma. These findings are in line with the current view on the origin of Antarctic terrestrial metazoa, including springtails, chironomids and mites, with most evidence suggesting a long history of geographic isolation on a multi-million year, even pre-Gondwana break-up timescale.

  10. DNA barcoding reveals new insights into the diversity of Antarctic species of Orchomene sensu lato (Crustacea: Amphipoda: Lysianassoidea)

    Science.gov (United States)

    Havermans, C.; Nagy, Z. T.; Sonet, G.; De Broyer, C.; Martin, P.

    2011-03-01

    Recent molecular analyses revealed that several so-called "circum-Antarctic" benthic crustacean species appeared to be complexes of cryptic species with restricted distributions. In this study we used a DNA barcoding approach based on mitochondrial cytochrome oxidase I gene sequences in order to detect possible cryptic diversity and to test the circumpolarity of some lysianassoid species. The orchomenid genus complex consists of the genera Abyssorchomene, Falklandia, Orchomenella, Orchomenyx and Pseudorchomene. Species of this genus complex are found throughout the Southern Ocean and show a high species richness and level of endemism. In the majority of the studied species, a genetic homogeneity was found even among specimens from remote sampling sites, which indicates a possible circum-Antarctic and eurybathic distribution. In four investigated species ( Orchomenella ( Orchomenopsis) acanthurus, Orchomenella ( Orchomenopsis) cavimanus, Orchomenella ( Orchomenella) franklini and Orchomenella ( Orchomenella) pinguides), genetically divergent lineages and possible cryptic taxa were revealed. After a detailed morphological analysis, O. ( O.) pinguides appeared to be composed of two distinct species, formerly synonymized under O. ( O.) pinguides. The different genetic patterns observed in these orchomenid species might be explained by the evolutionary histories undergone by these species and by their different dispersal and gene flow capacities.

  11. North Atlantic warming during Dansgaard-Oeschger events synchronous with Antarctic warming and out-of-phase with Greenland climate

    Science.gov (United States)

    Rasmussen, Tine L.; Thomsen, Erik; Moros, Matthias

    2016-02-01

    The precise reason for the differences and out-of-phase relationship between the abrupt Dansgaard-Oeschger warmings in the Nordic seas and Greenland ice cores and the gradual warmings in the south-central Atlantic and Antarctic ice cores is poorly understood. Termed the bipolar seesaw, the differences are apparently linked to perturbations in the ocean circulation pattern. Here we show that surface and intermediate-depth water south of Iceland warmed gradually synchronously with the Antarctic warming and out of phase with the abrupt warming of the Nordic seas and over Greenland. The hinge line between areas showing abrupt and gradual warming was close to the Greenland-Scotland Ridge and the marine system appears to be a ‘push-and-pull’ system rather than a seesaw system. ‘Pull’ during the warm interstadials, when convection in the Nordic seas was active; ‘push’ during the cold stadials, when convection stopped and warm water from the south-central Atlantic pushed northward gradually warming the North Atlantic and Nordic seas.

  12. Increased feeding and nutrient excretion of adult Antarctic krill, Euphausia superba, exposed to enhanced carbon dioxide (CO₂.

    Directory of Open Access Journals (Sweden)

    Grace K Saba

    Full Text Available Ocean acidification has a wide-ranging potential for impacting the physiology and metabolism of zooplankton. Sufficiently elevated CO(2 concentrations can alter internal acid-base balance, compromising homeostatic regulation and disrupting internal systems ranging from oxygen transport to ion balance. We assessed feeding and nutrient excretion rates in natural populations of the keystone species Euphausia superba (Antarctic krill by conducting a CO(2 perturbation experiment at ambient and elevated atmospheric CO(2 levels in January 2011 along the West Antarctic Peninsula (WAP. Under elevated CO(2 conditions (∼672 ppm, ingestion rates of krill averaged 78 µg C individual(-1 d(-1 and were 3.5 times higher than krill ingestion rates at ambient, present day CO(2 concentrations. Additionally, rates of ammonium, phosphate, and dissolved organic carbon (DOC excretion by krill were 1.5, 1.5, and 3.0 times higher, respectively, in the high CO(2 treatment than at ambient CO(2 concentrations. Excretion of urea, however, was ∼17% lower in the high CO(2 treatment, suggesting differences in catabolic processes of krill between treatments. Activities of key metabolic enzymes, malate dehydrogenase (MDH and lactate dehydrogenase (LDH, were consistently higher in the high CO(2 treatment. The observed shifts in metabolism are consistent with increased physiological costs associated with regulating internal acid-base equilibria. This represents an additional stress that may hamper growth and reproduction, which would negatively impact an already declining krill population along the WAP.

  13. Large ensemble modeling of last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

    Directory of Open Access Journals (Sweden)

    D. Pollard

    2015-11-01

    Full Text Available A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ~ 20 000 years. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree quite well with the more advanced techniques, but only for a large ensemble with full factorial parameter sampling. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds. Each run is extended 5000 years into the "future" with idealized ramped climate warming. In the majority of runs with reasonable scores, this produces grounding-line retreat deep into the West Antarctic interior, and the analysis provides sea-level-rise envelopes with well defined parametric uncertainty bounds.

  14. Large ensemble modeling of last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

    Science.gov (United States)

    Pollard, D.; Chang, W.; Haran, M.; Applegate, P.; DeConto, R.

    2015-11-01

    A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ~ 20 000 years. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree quite well with the more advanced techniques, but only for a large ensemble with full factorial parameter sampling. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds. Each run is extended 5000 years into the "future" with idealized ramped climate warming. In the majority of runs with reasonable scores, this produces grounding-line retreat deep into the West Antarctic interior, and the analysis provides sea-level-rise envelopes with well defined parametric uncertainty bounds.

  15. Studying ocean acidification in the Arctic Ocean

    Science.gov (United States)

    Robbins, Lisa

    2012-01-01

    The U.S. Geological Survey (USGS) partnership with the U.S. Coast Guard Ice Breaker Healey and its United Nations Convention Law of the Sea (UNCLOS) cruises has produced new synoptic data from samples collected in the Arctic Ocean and insights into the patterns and extent of ocean acidification. This framework of foundational geochemical information will help inform our understanding of potential risks to Arctic resources due to ocean acidification.

  16. Upper-level circulation in the South Atlantic Ocean

    Science.gov (United States)

    Peterson, Ray G.; Stramma, Lothar

    In this paper we present a literature survey of the South Atlantic's climate and its oceanic upper-layer circulation and meridional heat transport. The opening section deals with climate and is focused upon those elements having greatest oceanic relevance, i.e., distributions of atmospheric sea level pressure, the wind fields they produce, and the net surface energy fluxes. The various geostrophic currents comprising the upper-level general circulation are then reviewed in a manner organized around the subtropical gyre, beginning off southern Africa with the Agulhas Current Retroflection and then progressing to the Benguela Current, the equatorial current system and circulation in the Angola Basin, the large-scale variability adn interannual warmings at low latitudes, the Brazil Current, the South Atlantic Current, and finally to the Antarctic Circumpolar Current system in which the Falkland (Malvinas) Current is included. A summary of estimates of the meridional heat transport at various latitudes in the South Atlantic ends the survey.

  17. The origin of platyrrhines: An evaluation of the Antarctic scenario and the floating island model.

    Science.gov (United States)

    Houle, A

    1999-08-01

    This paper evaluates whether 1) protoplatyrrhines could have migrated to South America via Antarctica, and 2) the floating island model is a plausible transoceanic mode of dispersal for land vertebrates like protoplatyrrhines. Results show that Eocene Antarctica and Australia supported large and dense forests, and that the Antarctic fauna was comprised of many species of vertebrates, including placental and marsupial land mammals. However, no primate remains have ever been reported from these continents. Antarctica and South America were connected until the Middle Eocene (i.e., after the oldest Asian anthropoids), but two major water barriers existed between Antarctica and Asia since the Early Eocene. The Eocene and Oligocene water gap separating Africa and Antarctica was excessively large. Thus, all scenarios involving an Antarctic route have been rejected. The African scenario is difficult to falsify because only one water barrier existed, both paleowinds and paleocurrents were favorable, and Paleogene African anthropoids show phylogenetic affinities to platyrrhines. I tested whether a journey on a hypothetical floating island over the Paleogene Atlantic Ocean exceeds the survival limit of a genetically viable group of animals such as protoplatyrrhines. Studies of water deprivation suggest that they could have been able, with a body weight averaging 1 kg, to survive without water for at least 13 days. I have used the present Atlantic Ocean as a model for the velocity of Paleogene paleowinds and paleocurrents. Considering winds as the key accelerating force of floating islands, the Paleogene Atlantic water barrier could have been crossed, in the most conservative scenario, in 8 days at 50 Mya, 11 days at 40 Mya, and 15 days at 30 Mya. In order to survive a transoceanic journey, however, protoplatyrrhines had to be preadapted to strong seasonal variations in water availability in their original (African) environment. Once on the sea, their brains would have

  18. Parameter Estimations of Dynamic Energy Budget (DEB Model over the Life History of a Key Antarctic Species: The Antarctic Sea Star Odontaster validus Koehler, 1906.

    Directory of Open Access Journals (Sweden)

    Antonio Agüera

    Full Text Available Marine organisms in Antarctica are adapted to an extreme ecosystem including extremely stable temperatures and strong seasonality due to changes in day length. It is now largely accepted that Southern Ocean organisms are particularly vulnerable to global warming with some regions already being challenged by a rapid increase of temperature. Climate change affects both the physical and biotic components of marine ecosystems and will have an impact on the distribution and population dynamics of Antarctic marine organisms. To predict and assess the effect of climate change on marine ecosystems a more comprehensive knowledge of the life history and physiology of key species is urgently needed. In this study we estimate the Dynamic Energy Budget (DEB model parameters for key benthic Antarctic species the sea star Odontaster validus using available information from literature and experiments. The DEB theory is unique in capturing the metabolic processes of an organism through its entire life cycle as a function of temperature and food availability. The DEB model allows for the inclusion of the different life history stages, and thus, becomes a tool that can be used to model lifetime feeding, growth, reproduction, and their responses to changes in biotic and abiotic conditions. The DEB model presented here includes the estimation of reproduction handling rules for the development of simultaneous oocyte cohorts within the gonad. Additionally it links the DEB model reserves to the pyloric caeca an organ whose function has long been ascribed to energy storage. Model parameters described a slowed down metabolism of long living animals that mature slowly. O. validus has a large reserve that-matching low maintenance costs- allow withstanding long periods of starvation. Gonad development is continuous and individual cohorts developed within the gonads grow in biomass following a power function of the age of the cohort. The DEB model developed here for O

  19. Parameter Estimations of Dynamic Energy Budget (DEB) Model over the Life History of a Key Antarctic Species: The Antarctic Sea Star Odontaster validus Koehler, 1906.

    Science.gov (United States)

    Agüera, Antonio; Collard, Marie; Jossart, Quentin; Moreau, Camille; Danis, Bruno

    2015-01-01

    Marine organisms in Antarctica are adapted to an extreme ecosystem including extremely stable temperatures and strong seasonality due to changes in day length. It is now largely accepted that Southern Ocean organisms are particularly vulnerable to global warming with some regions already being challenged by a rapid increase of temperature. Climate change affects both the physical and biotic components of marine ecosystems and will have an impact on the distribution and population dynamics of Antarctic marine organisms. To predict and assess the effect of climate change on marine ecosystems a more comprehensive knowledge of the life history and physiology of key species is urgently needed. In this study we estimate the Dynamic Energy Budget (DEB) model parameters for key benthic Antarctic species the sea star Odontaster validus using available information from literature and experiments. The DEB theory is unique in capturing the metabolic processes of an organism through its entire life cycle as a function of temperature and food availability. The DEB model allows for the inclusion of the different life history stages, and thus, becomes a tool that can be used to model lifetime feeding, growth, reproduction, and their responses to changes in biotic and abiotic conditions. The DEB model presented here includes the estimation of reproduction handling rules for the development of simultaneous oocyte cohorts within the gonad. Additionally it links the DEB model reserves to the pyloric caeca an organ whose function has long been ascribed to energy storage. Model parameters described a slowed down metabolism of long living animals that mature slowly. O. validus has a large reserve that-matching low maintenance costs- allow withstanding long periods of starvation. Gonad development is continuous and individual cohorts developed within the gonads grow in biomass following a power function of the age of the cohort. The DEB model developed here for O. validus allowed us to

  20. XBT fall rate in waters of extreme temperature: A case study in the Antarctic Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Saran, A.K.; Gopalakrishna, V.V.; Vethamony, P.; Araligidad, N.; Bailey, R.

    are significantly different from those reported earlier for tropical and subtropical regions. The comprehensive study of Hanawa et al. (making use of controlled XBT-CTD data, mostly from tropical and subtropical waters) showed that the manufacturer's equation...

  1. Acid rock drainage and rock weathering in Antarctica: important sources for iron cycling in the Southern Ocean.

    Science.gov (United States)

    Dold, B; Gonzalez-Toril, E; Aguilera, A; Lopez-Pamo, E; Cisternas, M E; Bucchi, F; Amils, R

    2013-06-18

    Here we describe biogeochemical processes that lead to the generation of acid rock drainage (ARD) and rock weathering on the Antarctic landmass and describe why they are important sources of iron into the Antarctic Ocean. During three expeditions, 2009-2011, we examined three sites on the South Shetland Islands in Antarctica. Two of them displayed intensive sulfide mineralization and generated acidic (pH 3.2-4.5), iron-rich drainage waters (up to 1.78 mM Fe), which infiltrated as groundwater (as Fe(2+)) and as superficial runoff (as Fe(3+)) into the sea, the latter with the formation of schwertmannite in the sea-ice. The formation of ARD in the Antarctic was catalyzed by acid mine drainage microorganisms found in cold climates, including Acidithiobacillus ferrivorans and Thiobacillus plumbophilus. The dissolved iron (DFe) flux from rock weathering (nonmineralized control site) was calculated to be 0.45 × 10(9) g DFe yr(-1) for the nowadays 5468 km of ice-free Antarctic rock coastline which is of the same order of magnitude as glacial or aeolian input to the Southern Ocean. Additionally, the two ARD sites alone liberate 0.026 and 0.057 × 10(9) g DFe yr(-1) as point sources to the sea. The increased iron input correlates with increased phytoplankton production close to the source. This might even be enhanced in the future by a global warming scenario, and could be a process counterbalancing global warming. PMID:23682976

  2. Discussing Progress in Understanding Ice Sheet-Ocean Interactions

    Science.gov (United States)

    Herraiz Borreguero, Laura; Mottram, Ruth; Cvijanovic, Ivana

    2010-11-01

    Advanced Climate Dynamics Course 2010: Ice Sheet-Ocean Interactions; Lyngen, Norway, 8-19 June 2010; Sea level rise is one of many expected consequences of climate change, with accompanying complex social and economic challenges. Major uncertainties in sea level rise projections relate to the response of ice sheets to sea level rise and the key role that interactions with the ocean may play. Recognizing that probably no comprehensive curriculum currently exists at any single university that covers this novel and interdisciplinary subject, the Advanced Climate Dynamics Courses (ACDC) team brought together a group of 40 international students, postdocs, and lecturers from diverse backgrounds to provide an overview and discussion of state-of-the-art research into ocean-ice sheet interactions and to propose research priorities for the next decade. Among the key issues addressed were small-scale processes near the Antarctic ice shelves and Greenland outlet glaciers. These are fast changing components in the climate system, often related to large-scale forcings (atmospheric teleconnections and oceanic circulation). Progress in understanding and modeling is hampered by the range of scales involved, the lack of observations, and the difficulties in constraining, initializing, and providing adequate boundary conditions for ice sheet and ocean models.

  3. Challenges for Surface Fluxes in the Southern Ocean

    Science.gov (United States)

    Gille, S. T.; Jiang, C.; Sprintall, J.; Stephenson, G. R.

    2012-12-01

    Surface fluxes govern the critical exchanges between different components of the climate system, and observational data play a key role in assessing these fluxes. However, at high latitudes, and especially in the Southern Ocean, few in situ observations exist. In contrast with the tropics or mid-latitudes where flux moorings have been used extensively, flux mooring efforts have only just begun in the Southern Ocean and have been limited to a just a few specific locations. The dearth of observations makes upper ocean heat and freshwater budgets particularly difficult to evaluate. Results emerging from data collected in Drake Passage by the US Antarctic vessel, L. M. Gould, are helping to illuminate air-sea exchange in the Southern Ocean. The Gould routinely collects meteorological data and pCO2. In addition, upper ocean profile data provide a strong constraint on air-sea exchange processes, particularly on seasonal to interannual time scales. Drake Passage temperature profile data data show that eddy length scales can be as small as 20 km, and thus sensible heat, latent heat and momentum fluxes can vary over scales that are not resolved in satellite or reanalysis products. The Polar Front sharply divides Drake Passage waters, and properties of ocean stratification, heat fluxes, and CO2 fluxes differ on either side of the front. The mixed-layer is not sharply separated from the thermocline below; thus air-sea flux data are more successful at explaining temporal variabiiity in upper ocean heat content for a several hundred meter depth range than for the mixed layer alone. Continued expansion of the air-sea flux measurement systems from moorings and shipboard underway systems, together with upper ocean profile data from ships and Argo, should enable improvements in high-latitude air-sea fluxes.

  4. Sub-lethal heat stress causes apoptosis in an Antarctic fish that lacks an inducible heat shock response.

    Science.gov (United States)

    Sleadd, Isaac M; Lee, Marissa; Hassumani, Daniel O; Stecyk, Tonya M A; Zeitz, Otto K; Buckley, Bradley A

    2014-08-01

    The endemic fish fauna of the Southern Ocean are cold-adapted stenotherms and are acutely sensitive to elevated temperature. Many of these species lack a heat shock response and cannot increase the production of heat shock proteins in their tissues. However, some species retain the ability to induce other stress-responsive genes, some of which are involved in cell cycle arrest and apoptosis. Here, the effect of heat on cell cycle stage and its ability to induce apoptosis were tested in thermally stressed hepatocytes from a common Antarctic fish species from McMurdo Sound in the Ross Sea. Levels of proliferating cell nuclear antigen were also measured as a marker of progression through the cell cycle. The results of these studies demonstrate that even sub-lethal heat stress can have deleterious impacts at the cellular level on these environmentally sensitive species. PMID:25086982

  5. Seasonal and geographic variation of southern blue whale subspecies in the Indian Ocean.

    Directory of Open Access Journals (Sweden)

    Flore Samaran

    Full Text Available Understanding the seasonal movements and distribution patterns of migratory species over ocean basin scales is vital for appropriate conservation and management measures. However, assessing populations over remote regions is challenging, particularly if they are rare. Blue whales (Balaenoptera musculus spp are an endangered species found in the Southern and Indian Oceans. Here two recognized subspecies of blue whales and, based on passive acoustic monitoring, four "acoustic populations" occur. Three of these are pygmy blue whale (B.m. brevicauda populations while the fourth is the Antarctic blue whale (B.m. intermedia. Past whaling catches have dramatically reduced their numbers but recent acoustic recordings show that these oceans are still important habitat for blue whales. Presently little is known about the seasonal movements and degree of overlap of these four populations, particularly in the central Indian Ocean. We examined the geographic and seasonal occurrence of different blue whale acoustic populations using one year of passive acoustic recording from three sites located at different latitudes in the Indian Ocean. The vocalizations of the different blue whale subspecies and acoustic populations were recorded seasonally in different regions. For some call types and locations, there was spatial and temporal overlap, particularly between Antarctic and different pygmy blue whale acoustic populations. Except on the southernmost hydrophone, all three pygmy blue whale acoustic populations were found at different sites or during different seasons, which further suggests that these populations are generally geographically distinct. This unusual blue whale diversity in sub-Antarctic and sub-tropical waters indicates the importance of the area for blue whales in these former whaling grounds.

  6. Seasonal and geographic variation of southern blue whale subspecies in the Indian Ocean.

    Science.gov (United States)

    Samaran, Flore; Stafford, Kathleen M; Branch, Trevor A; Gedamke, Jason; Royer, Jean-Yves; Dziak, Robert P; Guinet, Christophe

    2013-01-01

    Understanding the seasonal movements and distribution patterns of migratory species over ocean basin scales is vital for appropriate conservation and management measures. However, assessing populations over remote regions is challenging, particularly if they are rare. Blue whales (Balaenoptera musculus spp) are an endangered species found in the Southern and Indian Oceans. Here two recognized subspecies of blue whales and, based on passive acoustic monitoring, four "acoustic populations" occur. Three of these are pygmy blue whale (B.m. brevicauda) populations while the fourth is the Antarctic blue whale (B.m. intermedia). Past whaling catches have dramatically reduced their numbers but recent acoustic recordings show that these oceans are still important habitat for blue whales. Presently little is known about the seasonal movements and degree of overlap of these four populations, particularly in the central Indian Ocean. We examined the geographic and seasonal occurrence of different blue whale acoustic populations using one year of passive acoustic recording from three sites located at different latitudes in the Indian Ocean. The vocalizations of the different blue whale subspecies and acoustic populations were recorded seasonally in different regions. For some call types and locations, there was spatial and temporal overlap, particularly between Antarctic and different pygmy blue whale acoustic populations. Except on the southernmost hydrophone, all three pygmy blue whale acoustic populations were found at different sites or during different seasons, which further suggests that these populations are generally geographically distinct. This unusual blue whale diversity in sub-Antarctic and sub-tropical waters indicates the importance of the area for blue whales in these former whaling grounds. PMID:23967221

  7. Impact of oceanic circulation changes on atmospheric δ13CO2

    Science.gov (United States)

    Menviel, L.; Mouchet, A.; Meissner, K. J.; Joos, F.; England, M. H.

    2015-11-01

    δ13CO2 measured in Antarctic ice cores provides constraints on oceanic and terrestrial carbon cycle processes linked with millennial-scale changes in atmospheric CO2. However, the interpretation of δ13CO2 is not straightforward. Using carbon isotope-enabled versions of the LOVECLIM and Bern3D models, we perform a set of sensitivity experiments in which the formation rates of North Atlantic Deep Water (NADW), North Pacific Deep Water (NPDW), Antarctic Bottom Water (AABW), and Antarctic Intermediate Water (AAIW) are varied. We study the impact of these circulation changes on atmospheric δ13CO2 as well as on the oceanic δ13C distribution. In general, we find that the formation rates of AABW, NADW, NPDW, and AAIW are negatively correlated with changes in δ13CO2: namely, strong oceanic ventilation decreases atmospheric δ13CO2. However, since large-scale oceanic circulation reorganizations also impact nutrient utilization and the Earth's climate, the relationship between atmospheric δ13CO2 levels and ocean ventilation rate is not unequivocal. In both models atmospheric δ13CO2 is very sensitive to changes in AABW formation rates: increased AABW formation enhances the transport of low δ13C waters to the surface and decreases atmospheric δ13CO2. By contrast, the impact of NADW changes on atmospheric δ13CO2 is less robust and might be model dependent. This results from complex interplay between global climate, carbon cycle, and the formation rate of NADW, a water body characterized by relatively high δ13C.

  8. Unmanned aerial optical systems for spatial monitoring of Antarctic mosses

    Science.gov (United States)

    Lucieer, Arko; Turner, Darren; Veness, Tony; Malenovsky, Zbynek; Harwin, Stephen; Wallace, Luke; Kelcey, Josh; Robinson, Sharon

    2013-04-01

    The Antarctic continent has experienced major changes in temperature, wind speed and stratospheric ozone levels during the last 50 years. In a manner similar to tree rings, old growth shoots of Antarctic mosses, the only plants on the continent, also preserve a climate record of their surrounding environment. This makes them an ideal bio-indicator of the Antarctic climate change. Spatially extensive ground sampling of mosses is laborious and time limited due to the short Antarctic growing season. Obviously, there is a need for an efficient method to monitor spatially climate change induced stress of the Antarctic moss flora. Cloudy weather and high spatial fragmentation of the moss turfs makes satellite imagery unsuitable for this task. Unmanned aerial systems (UAS), flying at low altitudes and collecting image data even under a full overcast, can, however, overcome the insufficiency of satellite remote sensing. We, therefore, developed scientific UAS, consisting of a remote-controlled micro-copter carrying on-board different remote sensing optical sensors, tailored to perform fast and cost-effective mapping of Antarctic flora at ultra-high spatial resolution (1-10 cm depending on flight altitude). A single lens reflex (SLR) camera carried by UAS acquires multi-view aerial photography, which processed by the Structure from Motion computer vision algorithm provides an accurate three-dimensional digital surface model (DSM) at ultra-high spatial resolution. DSM is the key input parameter for modelling a local seasonal snowmelt run-off, which provides mosses with the vital water supply. A lightweight multispectral camera on-board of UVS is collecting images of six selected spectral wavebands with the full-width-half-maximum (FWHM) of 10 nm. The spectral bands can be used to compute various vegetation optical indices, e.g. Difference Vegetation Index (NDVI) or Photochemical Reflectance Index (PRI), assessing the actual physiological state of polar vegetation. Recently

  9. Dissolved organic carbon in the deep Southern Ocean: Local versus distant controls

    Science.gov (United States)

    Bercovici, Sarah K.; Hansell, Dennis A.

    2016-02-01

    The global ocean contains a massive reservoir (662 ± 32 Pg C) of dissolved organic carbon (DOC), and its dynamics, particularly in the deepest zones, are only slowly being understood. DOC in the deep ocean is ubiquitously low in concentration (~35 to 48 µmol kg-1) and aged (4000 to 6000 years), persisting for multiple meridional overturning circulations. Deep waters relatively enriched in DOC form in the North Atlantic, migrate to the Southern Ocean to mix with waters from Antarctic shelves and the deep Pacific and Indian Oceans, in turn forming the voluminous waters of the Circumpolar Deep Water. Here we seek evidence for local (autochthonous) versus distant (allochthonous) processes in determining the distribution of DOC in the deep Southern Ocean. Prior analyses on DOC in the deep Southern Ocean have conflicted, describing both conservative and nonconservative traits: the deep DOC field has been reported as uniform in distribution, yet local inputs have been suggested as quantitatively important. We use multiple approaches (multiple linear regression, mass transport, and mass balance calculations) with data from Climate Variability and Predictability Repeat Hydrography sections to evaluate the system. We find that DOC concentrations in the deep Southern Ocean largely reflect the conservative mixing of the several deep waters entering the system from the north. Mass balance suggests that the relatively depleted DOC radiocarbon content in the deep Southern Ocean is a conserved property as well. These analyses advance our understanding of the controls on the DOC reservoir of the Southern Ocean.

  10. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age.

    Science.gov (United States)

    Jaccard, Samuel L; Galbraith, Eric D; Martínez-García, Alfredo; Anderson, Robert F

    2016-02-11

    No single mechanism can account for the full amplitude of past atmospheric carbon dioxide (CO2) concentration variability over glacial-interglacial cycles. A build-up of carbon in the deep ocean has been shown to have occurred during the Last Glacial Maximum. However, the mechanisms responsible for the release of the deeply sequestered carbon to the atmosphere at deglaciation, and the relative importance of deep ocean sequestration in regulating millennial-timescale variations in atmospheric CO2 concentration before the Last Glacial Maximum, have remained unclear. Here we present sedimentary redox-sensitive trace-metal records from the Antarctic Zone of the Southern Ocean that provide a reconstruction of transient changes in deep ocean oxygenation and, by inference, respired carbon storage throughout the last glacial cycle. Our data suggest that respired carbon was removed from the abyssal Southern Ocean during the Northern Hemisphere cold phases of the deglaciation, when atmospheric CO2 concentration increased rapidly, reflecting--at least in part--a combination of dwindling iron fertilization by dust and enhanced deep ocean ventilation. Furthermore, our records show that the observed covariation between atmospheric CO2 concentration and abyssal Southern Ocean oxygenation was maintained throughout most of the past 80,000 years. This suggests that on millennial timescales deep ocean circulation and iron fertilization in the Southern Ocean played a consistent role in modifying atmospheric CO2 concentration. PMID:26840491

  11. A circadian clock in Antarctic krill: an endogenous timing system governs metabolic output rhythms in the euphausid species Euphausia superba.

    Directory of Open Access Journals (Sweden)

    Mathias Teschke

    Full Text Available Antarctic krill, Euphausia superba, shapes the structure of the Southern Ocean ecosystem. Its central position in the food web, the ongoing environmental changes due to climatic warming, and increasing commercial interest on this species emphasize the urgency of understanding the adaptability of krill to its environment. Krill has evolved rhythmic physiological and behavioral functions which are synchronized with the daily and seasonal cycles of the complex Southern Ocean ecosystem. The mechanisms, however, leading to these rhythms are essentially unknown. Here, we show that krill possesses an endogenous circadian clock that governs metabolic and physiological output rhythms. We found that expression of the canonical clock gene cry2 was highly rhythmic both in a light-dark cycle and in constant darkness. We detected a remarkable short circadian period, which we interpret as a special feature of the krill's circadian clock that helps to entrain the circadian system to the extreme range of photoperiods krill is exposed to throughout the year. Furthermore, we found that important key metabolic enzymes of krill showed bimodal circadian oscillations (∼9-12 h period in transcript abundance and enzymatic activity. Oxygen consumption of krill showed ∼9-12 h oscillations that correlated with the temporal activity profile of key enzymes of aerobic energy metabolism. Our results demonstrate the first report of an endogenous circadian timing system in Antarctic krill and its likely link to metabolic key processes. Krill's circadian clock may not only be critical for synchronization to the solar day but also for the control of seasonal events. This study provides a powerful basis for the investigation into the mechanisms of temporal synchronization in this marine key species and will also lead to the first comprehensive analyses of the circadian clock of a polar marine organism through the entire photoperiodic cycle.

  12. Dynamics of the Oligocene Southern Ocean: dinocysts as surface paleoceanographic tracers

    Science.gov (United States)

    Bijl, Peter; Houben, Alexander; Brinkhuis, Henk; Sangiorgi, Francesca

    2015-04-01

    The Oligocene Epoch (33.9-23 Ma) is the time interval in the Cenozoic that saw the establishment of a continental-scale Antarctic ice-sheet. There remains a controversy about whether this early episode of a glaciated Antarctica was stable, or whether dynamic ice conditions prevailed. Most of this controversy persists due to the absence of chronostratigraphically well-dated sedimentary archives from close to the east Antarctic ice sheet, which has recorded a direct signal of glacial dynamics. Another major question is how the Oligocene Southern Ocean responded to the glaciation and subsequent evolution of the ice sheet, as the Southern ocean is a major player in global ocean circulation. Numerical modelling studies suggest that alongside the buildup of continental ice on Antarctica, first sea-ice conditions may have started along the East Antarctic Margin, but this conclusion lacks support from field evidence. Other numerical models predict that hysteresis effects within the ice sheet will make a continental-size Antarctic ice sheet rather insensitive to warming. In contrast, deep-water benthic foraminiferal oxygen isotope records across the Oligocene suggest dramatic waxing and waning of Antarctic ice sheets. This paradox is as yet not solved Integrated Ocean Drilling Expedition 318 drilled the Antarctic Margin in 2010, and recovered sediments from the early phase of Antarctic glaciation. With this record, we can now evaluate the robustness of the results of the numerical models and the oceanographic changes with field data. Sediments recovered from Site U1356 yield a thick and relatively complete (albeit compromised by core gaps) Oligocene succession both of which are chrono-stratigraphically well-calibrated with use of nannoplankton- dinocyst- and magnetostratigraphy. Notably, this record yields well-preserved dinoflagellate cysts (dinocysts), which we can use to investigate surface-water condition changes across the Eocene-Oligocene to provide answers to these

  13. A process-based analysis of ocean heat uptake in an AOGCM with an eddy-permitting ocean component

    Science.gov (United States)

    Kuhlbrodt, T.; Gregory, J. M.; Shaffrey, L. C.

    2015-12-01

    About 90 % of the anthropogenic increase in heat stored in the climate system is found in the oceans. Therefore it is relevant to understand the details of ocean heat uptake. Here we present a detailed, process-based analysis of ocean heat uptake (OHU) processes in HiGEM1.2, an atmosphere-ocean general circulation model with an eddy-permitting ocean component of 1/3° resolution. Similarly to various other models, HiGEM1.2 shows that the global heat budget is dominated by a downward advection of heat compensated by upward isopycnal diffusion. Only in the upper tropical ocean do we find the classical balance between downward diapycnal diffusion and upward advection of heat. The upward isopycnal diffusion of heat is located mostly in the Southern Ocean, which thus dominates the global heat budget. We compare the responses to a 4xCO2 forcing and an enhancement of the windstress forcing in the Southern Ocean. This highlights the importance of regional processes for the global ocean heat uptake. These are mainly surface fluxes and convection in the high latitudes, and advection in the Southern Ocean mid-latitudes. Changes in diffusion are less important. In line with the CMIP5 models, HiGEM1.2 shows a band of strong OHU in the mid-latitude Southern Ocean in the 4xCO2 run, which is mostly advective. By contrast, in the high-latitude Southern Ocean regions it is the suppression of convection that leads to OHU. In the enhanced windstress run, convection is strengthened at high Southern latitudes, leading to heat loss, while the magnitude of the OHU in the Southern mid-latitudes is very similar to the 4xCO2 results. Remarkably, there is only very small global OHU in the enhanced windstress run. The wind stress forcing just leads to a redistribution of heat. We relate the ocean changes at high Southern latitudes to the effect of climate change on the Antarctic Circumpolar Current (ACC). It weakens in the 4xCO2 run and strengthens in the wind stress run. The weakening is due

  14. Synergism between elevated pCO2 and temperature on the Antarctic sea ice diatom Nitzschia lecointei

    Directory of Open Access Journals (Sweden)

    A. Torstensson

    2013-04-01

    Full Text Available Polar oceans are particularly susceptible to ocean acidification and warming. Diatoms play a significant role in sea ice biogeochemistry and provide an important food source to grazers in ice-covered oceans, especially during early spring. However, the ecophysiology of ice living organisms has received little attention in terms of ocean acidification. In this study, the synergism between temperature and partial pressure of CO2 (pCO2 was investigated in relationship to the optimal growth temperature of the Antarctic sea ice diatom Nitzschia lecointei. Diatoms were kept in cultures at controlled levels of pCO2 (∼390 and ∼960 μatm} and temperature (−1.8 and 2.5 °C for 14 days. Synergism between temperature and pCO2 was detected in growth rate and acyl lipid fatty acid content. Carbon enrichment only promoted (3% growth rate closer to the optimal growth, but not at the control temperature (−1.8 °C. Optimal growth rate was observed around 5 °C in a separate experiment. Polyunsaturated fatty acids (PUFA comprised up to 98% of the total acyl lipid fatty acid pool at −1.8 °C. However, the total content of fatty acids was reduced by 39% at elevated pCO2, but only at the control temperature. PUFAs were reduced by 30% at high pCO2. Effects of carbon enrichment may be different depending on ocean warming scenario or season, e.g. reduced food quality for higher trophic levels during spring. Synergy between temperature and pCO2 may be particularly important in polar areas since a narrow thermal window generally limits cold-water organisms.

  15. Ocean Uses: California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Ocean Uses Atlas Project is an innovative partnership between NOAA's National Marine Protected Areas Center and Marine Conservation Biology Institute. The...

  16. California Ocean Uses Atlas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a result of the California Ocean Uses Atlas Project: a collaboration between NOAA's National Marine Protected Areas Center and Marine Conservation...

  17. Ocean Acidification Product Suite

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Scientists within the ACCRETE (Acidification, Climate, and Coral Reef Ecosystems Team) Lab of AOML_s Ocean Chemistry and Ecosystems Division (OCED) have constructed...

  18. Ocean Sediment Thickness Contours

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean sediment thickness contours in 200 meter intervals for water depths ranging from 0 - 18,000 meters. These contours were derived from a global sediment...

  19. Ocean acoustic reverberation tomography.

    Science.gov (United States)

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  20. Mitochondrial plasticity in response to changing abiotic factors in Antarctic fish and cephalopods

    OpenAIRE

    Strobel, Anneli

    2013-01-01

    Antarctic species possess very low metabolic rates and poor capacities to change their physiological state, thus making them extremely vulnerable to changing environmental conditions. Mitochondria are a key element in shaping whole organism energy turnover and functional capacity. In my study, the effects of rising temperature and increased seawater PCO2 on the energy metabolism were compared between various nototheniids from sub-Antarctic and cold-temperate and Antarctic waters, and between ...

  1. On the manoeuvering simulation of an Antarctic hovercraft

    Science.gov (United States)

    Murao, R.; Nojiri, T.

    Since 1981 an experimental hovercraft for the Antarctic has been tested in Japan's Antarctic station Syowa. During tests on the ice field near Syowa station, it was experienced that the yaw response of this craft is very sensitive to certain ice conditions. In this report, we deal with course keeping of the craft in relative crosswinds and with the maneuvering simulation while turning. Maneuvering at large yaw angle is required to generate the effective centripetal force in turning. The trajectories based on pulse steering are obtained. The course stability is very dependent upon the friction between skirts and ground, and generally not good on smooth flat ice. It is shown, however, that the rudder automatic control provides good course stability independent of ice conditions. The trajectories obtained from the simulation show that the use of a combination of rudder control and puff ports produces quick turning.

  2. The 1988 Antarctic ozone depletion - Comparison with previous year depletions

    Science.gov (United States)

    Schoeberl, Mark R.; Stolarski, Richard S.; Krueger, Arlin J.

    1989-01-01

    The 1988 spring Antarctic ozone depletion was observed by TOMS to be substantially smaller than in recent years. The minimum polar total ozone values declined only 15 percent during September 1988, compared to nearly 50 percent during September 1987. At southern midlatitudes, exceptionally high total ozone values were recorded beginning in July 1988. The total integrated southern hemispheric ozone increased rapidly during the Austral spring, approaching 1980 levels during October. The high midlatitude total ozone values were associated with a substantial increase in eddy activity as indicated by the standard deviation in total ozone in the zonal band 30-60 deg S. Mechanisms through which the increased midlatitude eddy activity could disrupt the formation of the Antarctic ozone hole are briefly discussed.

  3. Antarctic springtime ozone depletion computed from temperature observations

    Science.gov (United States)

    Rosenfield, Joan E.; Schoeberl, Mark R.; Newman, Paul A.

    1988-01-01

    An observationally based, mechanistic dynamical model is used to simulate the decline of total ozone during September and October for the years 1979 through 1986. Vertical velocities derived from observed stratospheric temperature changes and computed radiative heating rates are used to advect an ozone mixing ratio profile during the Antarctic spring period. An early August 1982 Syowa balloonsonde ozone profile is used to initialize the computations. The model reasonably simulates the September and October changes in total ozone, considering the uncertainties in the observed data and the radiative heating. The simulated decline is found to be very sensitive to the choice of initial ozone profile and to small changes in the radiative heating. The results of this study suggest that the dynamical hypothesis of the Antarctic ozone depletion is both quantitatively credible and consistent with the observed temperature changes.

  4. Antarctic sea ice: Its development and basic properties

    International Nuclear Information System (INIS)

    The author reports investigations on sea ice properties carried out during a number of expeditions into the Weddell Sea, Antarctica. The results provide important baseline data, against which possible changes in the Antarctic sea ice cover as induced by climatic changes can be compared. This paper concentrates on results dealing with the textural properties and the ice thickness distributions of Antarctic sea ice. In addition, the author looks at the contribution of meteoric ice (snow ice) to the sea ice cover by means of δ18O measurements. While changes in extent and thickness are to be expected as a result of possible climatic warming, they propose that the amount of snow ice will serve as an additional indicator of such changes

  5. Results and perspectives of tectonomagnetic investigations in the Western Antarctic

    Directory of Open Access Journals (Sweden)

    Ihor O. Chobotok

    2009-06-01

    Full Text Available The results of long-term (1998-2005 yrs. tectonomagnetic investigations in the Western Antarctic near the location
    of Ukrainian Antarctic Station «Academic Vernadsky» are reviewed. The peculiarities of the Earth’s
    anomalous magnetic field and its dynamic temporal variations (tectonomagnetic anomalies were studied using
    the newly founded tectonomagnetic polygon. Near the Argentine Archipelago intensive tectonomagnetic effects
    up to -2.8 nT/year were determined. Their spatial-temporal structure agrees with tectonic structure elements. We
    suggest that the nature of such effects is caused by a piezomagnetic effect under the influence of stretching tectonic
    forces (few bars per year in sub-latitudinal direction. Perspectives of tectonomagnetic investigations in the
    region are discussed.

  6. Oceanic Climatology in the Coupled Model FGOALS-g2:Improvements and Biases

    Institute of Scientific and Technical Information of China (English)

    LIN Pengfei; YU Yongqiang; LIU Hailong

    2013-01-01

    The present study examines simulated oceanic climatology in the Flexible Global Ocean-Atmosphere-Land System model,Grid-point Version 2 (FGOALS-g2) forced by historical external forcing data.The oceanic temperatures and circulations in FGOALS-g2 were found to be comparable to those observed,and substantially improved compared to those simulated by the previous version,FGOALS-g1.0.Compared with simulations by FGOALS-g1.0,the shallow mixed layer depths were better captured in the eastern Atlantic and Pacific Ocean in FGOALS-g2.In the high latitudes of the Northern Hemisphere,the cold biases of SST were about 1℃ 5℃ smaller in FGOALS-g2.The associated sea ice distributions and their seasonal cycles were more realistic in FGOALS-g2.The pattern of Atlantic Meridional Overturning Circulation (AMOC) was better simulated in FGOALS-g2,although its magnitude was larger than that found in observed data.The simulated Antarctic Circumpolar Current (ACC) transport was about 140 Sv through the Drake Passage,which is close to that observed.Moreover,Antarctic Intermediate Water (AAIW) was better captured in FGOALS-g2.However,large SST cold biases (>3℃) were still found to exist around major western boundary currents and in the Barents Sea,which can be explained by excessively strong oceanic cold advection and unresolved processes owing to the coarse resolution.In the Indo-Pacific warm pool,the cold biases were partly related to the excessive loss of heat from the ocean.Along the eastern coast in the Atlantic and Pacific Oceans,the warm biases were due to overestimation of shortwave radiation.In the Indian Ocean and Southern Ocean,the surface fresh biases were mainly due to the biases of precipitation.In the tropical Pacific Ocean,the surface fresh biases (>2 psu) were mainly caused by excessive precipitation and oceanic advection.In theIndo-Pacific Ocean,fresh biases were also found to dominate in the upper 1000 m,except in the northeastern Indian Ocean.There were warm and

  7. Late Quaternary Advance and Retreat of an East Antarctic Ice Shelf System: Insights from Sedimentary Beryllium-10 Concentrations

    Science.gov (United States)

    Guitard, M. E.; Shevenell, A.; Domack, E. W.; Rosenheim, B. E.; Yokoyama, Y.

    2014-12-01

    Observed retreat of Antarctica's marine-based glaciers and the presence of warm (~2°C) modified Circumpolar Deep Water on Antarctica's continental shelves imply ocean temperatures may influence Antarctic cryosphere stability. A paucity of information regarding Late Quaternary East Antarctic cryosphere-ocean interactions makes assessing the variability, timing, and style of deglacial retreat difficult. Marine sediments from Prydz Bay, East Antarctica contain hemipelagic siliceous mud and ooze units (SMO) alternating with glacial marine sediments. The record suggests Late Quaternary variability of local outlet glacier systems, including the Lambert Glacier/Amery Ice Shelf system that drains 15% of the East Antarctic Ice Sheet. We present a refined radiocarbon chronology and beryllium-10 (10Be) record of Late Quaternary depositional history in Prydz Channel, seaward of the Amery Ice Shelf system, which provides insight into the timing and variability of this important outlet glacier system. We focus on three piston cores (NBP01-01, JPC 34, 35, 36; 750 m water depth) that contain alternating SMO and granulated units uninterrupted by glacial till; the record preserves a succession of glacial marine deposits that pre-date the Last Glacial Maximum. We utilize the ramped pyrolysis preparatory method to improve the bulk organic carbon 14C-based chronology for Prydz Channel. To determine if the SMO intervals reflect open water conditions or sub-ice shelf advection, we measured sedimentary 10Be concentrations. Because ice cover affects 10Be pathways through the water column, sedimentary concentrations should provide information on past depositional environments in Prydz Channel. In Prydz Channel sediments, 10Be concentrations are generally higher in SMO units and lower in glacial units, suggesting Late Quaternary fluctuations in the Amery Ice Shelf. Improved chronologic constraints indicate that these fluctuations occurred on millennial timescales during the Last Glacial

  8. Remote Antarctic feeding ground important for east Australian humpback whales

    OpenAIRE

    Constantine, R.; Steel, D.; Allen, J.; Anderson, M; Andrews, O.; Baker, C.; Beeman, P.; Burns, D.; Charrassin, J. B.; Childerhouse, S.; Double, M; Ensor, P.; Franklin, T; Franklin, W; Gales, N.

    2014-01-01

    Understanding the dynamics of population recovery is particularly complex when an organism has multiple, remote breeding and feeding grounds separated by one of the longest known migration routes. This study reports on the most comprehensive assessment of humpback whale (Megaptera novaeangliae) movements between remote Antarctic waters south of New Zealand and east Australia (EA), and the migratory corridors and breeding grounds of Australia and Oceania. A total of 112 individual whales were ...

  9. Natural thermoluminescence of Antarctic meteorites and related studies

    Science.gov (United States)

    Benoit, Paul H.; Sears, Derek W. G.

    1998-01-01

    The natural thermoluminescence (TL) laboratory's primary purpose is to provide data on newly recovered Antarctic meteorites that can be included in discovery announcements and to investigate the scientific implications of the data. Natural TL levels of meteorites are indicators of recent thermal history and terrestrial history, and the data can be used to study the orbital/radiation history of groups of meteorites (e.g., H chondrites) or to study the processes leading to the concentration of meteorites at certain sites in Antarctica. An important application of these data is the identification of fragments, or "pairs" of meteorites produced during atmospheric passage or during terrestrial weathering. Thermoluminescence data are particularly useful for pairing within the most common meteorite classes, which typically exhibit very limited petrographic and chemical diversity. Although not originally part of the laboratory's objectives, TL data are also useful in the identification and classification of petrographically or mineralogically unusual meteorites, including unequilibrated ordinary chondrites and some basaltic achondrites. In support of its primary mission, the laboratory also engages in TL studies of modern falls, finds from hot deserts, and terrestrial analogs and conducts detailed studies of the TL properties of certain classes of meteorites. These studies include the measurement of TL profiles in meteorites, the determination of TL levels of finds from the Sahara and the Nullarbor region of Australia, and comparison of TL data to other indicators of irradiation or terrestrial history, such as cosmogenic noble gas and radionuclide abundances. Our current work can be divided into five subcategories, (a) TL survey of Antarctic meteorites, (b) pairing and field relations of Antarctic meteorites, (c) characterization of TL systematics of meteorites, (d) comparison of natural TL and other terrestrial age indicators for Antarctic meteorites, and for meteorites

  10. Ecological and Pharmacological Activities of Antarctic Marine Natural Products.

    Science.gov (United States)

    Avila, Conxita

    2016-06-01

    Antarctic benthic communities are regulated by abundant interactions of different types among organisms, such as predation, competition, etc. Predators are usually sea stars, with omnivorous habits, as well as other invertebrates. Against this strong predation pressure, many organisms have developed all sorts of defensive strategies, including chemical defenses. Natural products are thus quite common in Antarctic organisms with an important ecological and pharmacological potential. In this paper, the chemical defenses of the Antarctic organisms studied during the ECOQUIM and ACTIQUIM projects, as well as their pharmacological potential, are reviewed. For the ecological defenses, predation against the sea star Odontaster validus is analyzed and evaluated along depth gradients as well as considering the lifestyle of the organisms. For the pharmacological activity, the anticancer, anti-inflammatory, and antibacterial activities tested are evaluated here. Very often, only crude extracts or fractions have been tested so far, and therefore, the natural products responsible for such activities remain yet to be identified. Even if the sampling efforts are not uniform along depth, most ecologically active organisms are found between 200 and 500 m depth. Also, from the samples studied, about four times more sessile organisms possess chemical defenses against the sea star than the vagile ones; these represent 50 % of sessile organisms and 35 % of the vagile ones, out of the total tested, being active. Pharmacological activity has not been tested uniformly in all groups, but the results show that relevant activity is found in different phyla, especially in Porifera, Cnidaria, Bryozoa, and Tunicata, but also in others. No relationship between depth and pharmacological activity can be established with the samples tested so far. More studies are needed in order to better understand the ecological relationships among Antarctic invertebrates mediated by natural products and

  11. Atmospheric near surface nitrate at coastal Antarctic sites

    OpenAIRE

    D. Wagenbach; Legrand, M; Fischer, H.; Pichlmayer, F.; E. W. Wolff

    1998-01-01

    Records of atmospheric nitrate were obtained by year-round aerosol sampling at Neumayer and Dumont D'Urville stations, located in the Atlantic and Pacific sector of coastal Antarctica, respectively. Where possible, evaluation of the nitrate records is mainly based on concurrently measured radioisotopes (10Be, 7Be, 210Pb) as well as δ15N in nitrate nitrogen. Observations made at these (and two other coastal Antarctic sites [Savoie et al., 1993]) reveal a uniform nitrate background near 10 ng m...

  12. Ultraviolet radiation response of two heterotropy Antarctic marine bacterial

    International Nuclear Information System (INIS)

    Two Antarctic marine bacterial strains, were exposed to different irradiance of ultraviolet (UV) solar radiation using several experimental protocols and interferential filters. Results showed that both, UV-A and UV-B radiation produce deleterious effects on two tested bacterial strains. The mortality values under UVB treatments were higher than those observed under UVA treatments. UVvi strain proved to be more resistant to UV radiation than the UVps strain. (author)

  13. Antarctic sea ice losses drive gains in benthic carbon drawdown.

    Science.gov (United States)

    Barnes, D K A

    2015-09-21

    Climate forcing of sea-ice losses from the Arctic and West Antarctic are blueing the poles. These losses are accelerating, reducing Earth's albedo and increasing heat absorption. Subarctic forest (area expansion and increased growth) and ice-shelf losses (resulting in new phytoplankton blooms which are eaten by benthos) are the only significant described negative feedbacks acting to counteract the effects of increasing CO2 on a warming planet, together accounting for uptake of ∼10(7) tonnes of carbon per year. Most sea-ice loss to date has occurred over polar continental shelves, which are richly, but patchily, colonised by benthic animals. Most polar benthos feeds on microscopic algae (phytoplankton), which has shown increased blooms coincident with sea-ice losses. Here, growth responses of Antarctic shelf benthos to sea-ice losses and phytoplankton increases were investigated. Analysis of two decades of benthic collections showed strong increases in annual production of shelf seabed carbon in West Antarctic bryozoans. These were calculated to have nearly doubled to >2x10(5) tonnes of carbon per year since the 1980s. Annual production of bryozoans is median within wider Antarctic benthos, so upscaling to include other benthos (combined study species typically constitute ∼3% benthic biomass) suggests an increased drawdown of ∼2.9x10(6) tonnes of carbon per year. This drawdown could become sequestration because polar continental shelves are typically deeper than most modern iceberg scouring, bacterial breakdown rates are slow, and benthos is easily buried. To date, most sea-ice losses have been Arctic, so, if hyperboreal benthos shows a similar increase in drawdown, polar continental shelves would represent Earth's largest negative feedback to climate change. PMID:26394097

  14. Antarctic Ice Sheet and Radar Altimetry: A Review

    OpenAIRE

    Frédérique Rémy; Soazig Parouty

    2009-01-01

    International audience Altimetry is probably one of the most powerful tools for ice sheet observation. Our vision of the Antarctic ice sheet has been deeply transformed since the launch of the ERS1 satellite in 1991. With the launch of ERS2 and Envisat, the series of altimetric observations now provides 19 years of continuous and homogeneous observations that allow monitoring of the shape and volume of ice sheets. The topography deduced from altimetry is one of the relevant parameters reve...

  15. The Antarctic - the wild card in the global climate

    International Nuclear Information System (INIS)

    The overview gives an account of studies of snowfall, ice melting and formation and water flow patterns in the Antarctic during the present global warming period. It also gives a survey of the ice area in the region. The sea water warming is dramatic and a large floating glacier seems to be decomposing which is disrupting the oceanographic and ecological relations in the region and globally and is significantly influencing the global climate

  16. Is the species flock concept operational? The Antarctic Shelf case

    OpenAIRE

    Guillaume Lecointre; Nadia Améziane; Marie-Catherine Boisselier; Céline Bonillo; Frédéric Busson; Romain Causse; Anne Chenuil; Arnaud Couloux; Jean-Pierre Coutanceau; Corinne Cruaud; Cédric d'Udekem d'Acoz; Chantal De Ridder; Gael Denys; Agnès Dettaï; Guy Duhamel

    2013-01-01

    There has been a significant body of literature on species flock definition but not so much about practical means to appraise them. We here apply the five criteria of Eastman and McCune for detecting species flocks in four taxonomic components of the benthic fauna of the Antarctic shelf: teleost fishes, crinoids (feather stars), echinoids (sea urchins) and crustacean arthropods. Practical limitations led us to prioritize the three historical criteria (endemicity, monophyly, species richness) ...

  17. First record of Babesia sp. in Antarctic penguins.

    Science.gov (United States)

    Montero, Estrella; González, Luis Miguel; Chaparro, Alberto; Benzal, Jesús; Bertellotti, Marcelo; Masero, José A; Colominas-Ciuró, Roger; Vidal, Virginia; Barbosa, Andrés

    2016-04-01

    This is the first reported case of Babesia sp. in Antarctic penguins, specifically a population of Chinstrap penguins (Pygoscelis antarctica) in the Vapour Col penguin rookery in Deception Island, South Shetlands, Antarctica. We collected peripheral blood from 50 adult and 30 chick Chinstrap penguins. Examination of the samples by microscopy showed intraerythrocytic forms morphologically similar to other avian Babesia species in 12 Chinstrap penguin adults and seven chicks. The estimated parasitaemias ranged from 0.25×10(-2)% to 0.75×10(-2)%. Despite the low number of parasites found in blood smears, semi-nested PCR assays yielded a 274bp fragment in 12 of the 19 positive blood samples found by microscopy. Sequencing revealed that the fragment was 97% similar to Babesia sp. 18S rRNA from Australian Little Penguins (Eudyptula minor) confirming presence of the parasite. Parasite prevalence estimated by microscopy in adults and chicks was higher (24% vs. 23.3%, respectively) than found by semi-nested PCR (16% vs. 13.3% respectively). Although sampled penguins were apparently healthy, the effect of Babesia infection in these penguins is unknown. The identification of Babesia sp. in Antarctic penguins is an important finding. Ixodes uriae, as the only tick species present in the Antarctic Peninsula, is the key to understanding the natural history of this parasite. Future work should address the transmission dynamics and pathogenicity of Babesia sp. in Chinstrap penguin as well as in other penguin species, such as Gentoo penguin (Pygoscelis papua) and Adélie penguin (Pygoscelis adeliae), present within the tick distribution range in the Antarctic Peninsula. PMID:26874670

  18. Acclimation and thermal tolerance in Antarctic marine ectotherms

    OpenAIRE

    Peck, L.S.; Morley, S.A.; Richard, J.; Clark, M.S.

    2014-01-01

    Antarctic marine species have evolved in one of the coldest and most temperature-stable marine environments on Earth. They have long been classified as being stenothermal, or having a poor capacity to resist warming. Here we show that their ability to acclimate their physiology to elevated temperatures is poor compared with species from temperate latitudes, and similar to those from the tropics. Those species that have been demonstrated to acclimate take a very long time to do so, with Antarc...

  19. Ocean, Spreading Centre

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.

    the lithospheric plates on either side in order to accommodate newly accreted crust. Many of the oceanic ridges in the world oceans have been abandoned in the geologic past and led to resume the activity elsewhere either in the intra-oceanic or intracontinental...

  20. On the Atmospheric Correction of Antarctic Airborne Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Martin Black

    2014-05-01

    Full Text Available The first airborne hyperspectral campaign in the Antarctic Peninsula region was carried out by the British Antarctic Survey and partners in February 2011. This paper presents an insight into the applicability of currently available radiative transfer modelling and atmospheric correction techniques for processing airborne hyperspectral data in this unique coastal Antarctic environment. Results from the Atmospheric and Topographic Correction version 4 (ATCOR-4 package reveal absolute reflectance values somewhat in line with laboratory measured spectra, with Root Mean Square Error (RMSE values of 5% in the visible near infrared (0.4–1 µm and 8% in the shortwave infrared (1–2.5 µm. Residual noise remains present due to the absorption by atmospheric gases and aerosols, but certain parts of the spectrum match laboratory measured features very well. This study demonstrates that commercially available packages for carrying out atmospheric correction are capable of correcting airborne hyperspectral data in the challenging environment present in Antarctica. However, it is anticipated that future results from atmospheric correction could be improved by measuring in situ atmospheric data to generate atmospheric profiles and aerosol models, or with the use of multiple ground targets for calibration and validation.

  1. Extreme phenotypic plasticity in metabolic physiology of Antarctic Demosponges

    Directory of Open Access Journals (Sweden)

    Simon Anthony Morley

    2016-01-01

    Full Text Available Seasonal measurements of the metabolic physiology of four Antarctic demosponges and their associated assemblages, maintained in a flow through aquarium facility, demonstrated one of the largest differences in seasonal strategies between species and their associated sponge communities. The sponge oxygen consumption measured here exhibited both the lowest and highest seasonal changes for any Antarctic species; metabolic rates varied from a 25% decrease to a 5.8 fold increase from winter to summer, a range which was greater than all 17 Antarctic marine species (encompassing 8 phyla previously investigated and amongst the highest recorded for any marine environment. The differences in nitrogen excretion, metabolic substrate utilisation and tissue composition between species were, overall, greater than seasonal changes. The largest seasonal difference in tissue composition was an increase in CHN (Carbon, Hydrogen and Nitrogen content in Homaxinella balfourensis, a pioneer species in ice-scour regions, which changed growth form to a twig-like morph in winter. The considerable flexibility in seasonal and metabolic physiology across the Demospongiae likely enables these species to respond to rapid environmental change such as ice-scour, reductions in sea ice cover and ice-shelf collapse in the Polar Regions, shifting the paradigm that polar sponges always live life in the slow lane. Great phenotypic plasticity in physiology has been linked to differences in symbiotic community composition, and this is likely to be a key factor in the global success of sponges in all marine environments and their dominant role in many climax communities.

  2. Antarctic birds (Neornithes during the Cretaceous-Eocene times

    Directory of Open Access Journals (Sweden)

    C. Tambussi

    2007-12-01

    Full Text Available Antarctic fossil birds can be confidently assigned to modern orders and families, such as a goose-like anseriform, two loon-like and a seriema-like, all recorded before the K/T boundary at the López de Bertodano Fomation. Also, the discovery of a ratite and a phororhacids from the uppermost levels of the Submeseta Allomember (Late Eocene, suggests that West Antarctica was functional to dispersal routes obligate terrestrial birds. Representatives of Falconiformes Polyborinae, Ciconiiformes, Phoenicoteriformes, Charadriiformes, Pelagornitidae and Diomedeidae constitute the non-penguin avian assemblages of the Eocene of La Meseta Formation. Fifthteen Antarctic species of penguins have been described including the oldest penguin of West Antarctica, Croswallia unienwillia. The Anthropornis nordenskjoeldi Biozone (36.13 and 34.2 Ma, Late Eocene is characterized by bearing one of the highest frequencies of penguin bones and the phospatic brachiopod Lingula., together with remains of Gadiforms, sharks and primitive mysticete whales. Anthropornis nordenskjoeldi, Delphinornis gracilis, D. arctowski, Archaeospheniscus lopdelli, and Palaeeudyptes antarcticus are exclusively of the La Meseta Formation. Anthropornis nordenskjoeldi was evidently the largest penguin recorded at the James Ross Basin, whereas Delphinornis arctowski is the smallest, and include one of the worldwide highest morphological and taxonomic penguin diversity living sympatrically. The progressive climate cooling of the Eocene could have affected the penguin populations, because of climatic changes linked with habitat availability and food web processes. However, there is not available evidence about Antarctic penguins' evolution after the end of the Eocene.

  3. Metagenomic Analysis of Bacterial Communities of Antarctic Surface Snow

    Directory of Open Access Journals (Sweden)

    Anna Lopatina

    2016-03-01

    Full Text Available The diversity of bacteria present in surface snow around four Russian stations in Eastern Antarctica was studied by high throughput sequencing of amplified 16S rRNA gene fragments and shotgun metagenomic sequencing. Considerable class- and genus-level variation between the samples was revealed indicating a presence of inter-site diversity of bacteria in Antarctic snow. Flavobacterium was a major genus in one sampling site and was also detected in other sites. The diversity of flavobacterial type II-C CRISPR spacers in the samples was investigated by metagenome sequencing. Thousands of unique spacers were revealed with less than 35% overlap between the sampling sites, indicating an enormous natural variety of flavobacterial CRISPR spacers and, by extension, high level of adaptive activity of the corresponding CRISPR-Cas system. None of the spacers matched known spacers of flavobacterial isolates from the Northern hemisphere. Moreover, the percentage of spacers with matches with Antarctic metagenomic sequences obtained in this work was significantly higher than with sequences from much larger publically available environmental metagenomic database. The results indicate that despite the overall very high level of diversity, Antarctic Flavobacteria comprise a separate pool that experiences pressures from mobile genetic elements different from those present in other parts of the world. The results also establish analysis of metagenomic CRISPR spacer content as a powerful tool to study bacterial populations diversity.

  4. Total gaseous mercury along a transect from coastal to central Antarctic: Spatial and diurnal variations.

    Science.gov (United States)

    Wang, Jiancheng; Zhang, Lulu; Xie, Zhouqing

    2016-11-01

    Total gaseous mercury (TGM) in the atmospheric boundary layer was investigated along a transect from coastal (Zhongshan Station; 69°22'25″S, 76°22'14″E) to central (Kunlun Station; 80°25'2″S, 77°6'47″E) Antarctic from December 16, 2012 to February 6, 2013. TGM varied considerably from 0.32 to 2.34ngm(-3) with a mean value of 0.91ngm(-3). Spatially, relatively high values occurred near the coastal region and on the central plateau with altitude higher than 3000m above sea level. This distribution pattern cannot be accounted for simply by the influence of mercury emission from the ocean. Changes in TGM were also found to be related to the topography. TGM was higher in the inland flat region (290-800km from the coast) than in the inland transition zones with steep slopes (800-1000km from the coast). Temporally, diurnal cycling of TGM was clearly observed at Kunlun Station, with the lowest value occurring typically at midnight, and the peak value at midday. This diurnal pattern was attributed to the reemission of gaseous elemental mercury (GEM) from the snow pack, the oxidization of GEM and convective mixing. PMID:27318733

  5. Phytoplankton abundance and community structure in the Antarctic polar frontal region during austral summer of 2009

    Institute of Scientific and Technical Information of China (English)

    SHRAMIK Patil; RAHUL Mohan; SUHAS Shetye; SAHINA Gazi

    2013-01-01

    The Antarctic polar front region in the Southern Ocean is known to be most productive.We studied the phytoplankton community structure in the Indian sector at this frontal location during late austral summer (February,2009) onboard R/V Akademic Boris Petrov.We used the phytoplankton and microheterotrophs abundance,as also the associated physico-chemical parameters to explain the low phytoplankton abundance in the study region.This study emphasizes the shift of phytoplankton,from large (>10 μm) to small (<10 μm) size.The phytoplankton abundance appears to be controlled by physical parameters and by nutrient concentrations and also by the microheterotrophs (ciliates and dinoflagellates) which exert a strong grazing pressure.This probably reduces small (<10 μm) and large (>10 μm)phytoplankton abundance during the late austral summer.This study highlights the highly productive polar front nevertheless becomes a region of low phytoplankton abundance,due to community shifts towards pico-phytoplankton (<10 μm) during late austral summer.

  6. Flapping, wobbling, and zig-zagging: Tomographic PIV measurements of Antarctic sea butterfly ``flying'' underwater

    Science.gov (United States)

    Adhikari, D.; Webster, D. R.; Yen, J.

    2015-11-01

    A portable tomographic PIV technique was used to study the fluid dynamics and kinematics of sea butterflies in Antarctica. Antarctic pteropods (or sea butterflies), which are currently threatened by ocean acidification, swim in seawater with a pair of gelatinous parapodia (or ``wings'') via a unique propulsion mechanism. Both power and recovery strokes propel the organism (1.5 - 5 mm in size) upward in a sawtooth-like trajectory with average speed of 14 - 30 mm/s and pitch the shell forwards-and-backwards at 1.9 - 3 Hz. The pitching motion effectively positions the parapodia such that they stroke downward during both the power and recovery strokes. Reynolds numbers defined for flapping, translating, and pitching (i.e. Ref, ReU, and ReΩ) characterize the motion of the pteropod. For Ref <50, the shell does not pitch and the pteropod swims abnormally. We present a detailed comparison of the volumetric fluid velocity fields induced by pteropods swimming upwards with Ref = 80 and 180. The pteropod at the lower Ref creates an attached shear flow along the parapodia and pushes fluid in a method analogous to a paddle. In contrast, at higher Ref, the flow along the parapodia separates and generates complex vortex structures.

  7. The interdisciplinary marine system of the Amundsen Sea, Southern Ocean: Recent advances and the need for sustained observations

    Science.gov (United States)

    Meredith, Michael P.; Ducklow, Hugh W.; Schofield, Oscar; Wåhlin, Anna; Newman, Louise; Lee, SangHoon

    2016-01-01

    The Southern Ocean exerts a profound influence on the functioning of the Earth System, in part because its location and unique bathymetric configuration enable direct linkages to the other major ocean basins (Ganachaud and Wunsch, 2000; Lumpkin and Speer, 2007). It is the site of the world's largest current system, the Antarctic Circumpolar Current (ACC), which transfers waters and climatically/ecologically-important tracers between the Atlantic, Indian and Pacific Oceans (Rintoul et al., 2001). In addition to the strong horizontal connectivity, the ACC is also characterized by a vigorous overturning circulation, which upwells warm, nutrient-rich waters from intermediate depth to the surface, where they are modified by interactions with the atmosphere and cryosphere to form new water masses, some of which are lighter and others more dense (Marshall and Speer, 2012). This overturning circulation structures the Southern Ocean both horizontally and vertically, dictates the levels of its communication with the rest of the global ocean, and is a fundamental control on the sequestration of carbon from the atmosphere into the ocean interior (Sallée et al., 2012). In some locations, the upwelled waters can intrude onto the Antarctic shelves, supplying heat and nutrients to the shallower regions. This is believed to be especially effective in west Antarctica, where the southern edge of the ACC moves close to the shelf break (Martinson, 2011; Orsi et al., 1995; Thoma et al., 2008).

  8. Silicon pool dynamics and biogenic silica export in the Southern Ocean inferred from Si-isotopes

    Directory of Open Access Journals (Sweden)

    F. Fripiat

    2011-09-01

    Full Text Available Silicon isotopic signatures (δ30Si of water column silicic acid (Si(OH4 were measured in the Southern Ocean, along a meridional transect from South Africa (Subtropical Zone down to 57° S (northern Weddell Gyre. This provides the first reported data of a summer transect across the whole Antarctic Circumpolar Current (ACC. δ30Si variations are large in the upper 1000 m, reflecting the effect of the silica pump superimposed upon meridional water transfer across the ACC: the transport of Antarctic surface waters northward by a net Ekman drift and their convergence and mixing with warmer upper-ocean Si-depleted waters to the north. Using Si isotopic signatures, we determine different mixing interfaces: the Antarctic Surface Water (AASW, the Antarctic Intermediate Water (AAIW, and thermoclines in the low latitude areas. The residual silicic acid concentrations of end-members control the δ30Si alteration of the mixing products and with the exception of AASW, all mixing interfaces have a highly Si-depleted mixed layer end-member. These processes deplete the silicic acid AASW concentration northward, across the different interfaces, without significantly changing the AASW δ30Si composition. By comparing our new results with a previous study in the Australian sector we show that during the circumpolar transport of the ACC eastward, the δ30Si composition of the silicic acid pools is getting slightly, but significantly lighter from the Atlantic to the Australian sectors. This results either from the dissolution of biogenic silica in the deeper layers and/or from an isopycnal mixing with the deep water masses in the different oceanic basins: North Atlantic Deep Water in the Atlantic, and Indian Ocean deep water in the Indo-Australian sector. This isotopic trend is further transmitted to the subsurface waters, representing mixing interfaces between the surface and deeper layers.

  9. Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing

    Directory of Open Access Journals (Sweden)

    Power Deborah M

    2010-06-01

    Full Text Available Abstract Background The Antarctic clam, Laternula elliptica, is an infaunal stenothermal bivalve mollusc with a circumpolar distribution. It plays a significant role in bentho-pelagic coupling and hence has been proposed as a sentinel species for climate change monitoring. Previous studies have shown that this mollusc displays a high level of plasticity with regard to shell deposition and damage repair against a background of genetic homogeneity. The Southern Ocean has amongst the lowest present-day CaCO3 saturation rate of any ocean region, and is predicted to be among the first to become undersaturated under current ocean acidification scenarios. Hence, this species presents as an ideal candidate for studies into the processes of calcium regulation and shell deposition in our changing ocean environments. Results 454 sequencing of L. elliptica mantle tissue generated 18,290 contigs with an average size of 535 bp (ranging between 142 bp-5.591 kb. BLAST sequence similarity searching assigned putative function to 17% of the data set, with a significant proportion of these transcripts being involved in binding and potentially of a secretory nature, as defined by GO molecular function and biological process classifications. These results indicated that the mantle is a transcriptionally active tissue which is actively proliferating. All transcripts were screened against an in-house database of genes shown to be involved in extracellular matrix formation and calcium homeostasis in metazoans. Putative identifications were made for a number of classical shell deposition genes, such as tyrosinase, carbonic anhydrase and metalloprotease 1, along with novel members of the family 2 G-Protein Coupled Receptors (GPCRs. A membrane transport protein (SEC61 was also characterised and this demonstrated the utility of the clam sequence data as a resource for examining cold adapted amino acid substitutions. The sequence data contained 46,235 microsatellites and 13

  10. NOAA's Tropical Atmosphere Ocean Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Realtime El Nino and La Nina data from the tropical Pacific Ocean is provided by the Tropical Atmosphere Ocean / Triangle Trans-Ocean buoy network (TAO/TRITON) of...

  11. Modeling brine and nutrient dynamics in Antarctic sea ice: The case of dissolved silica

    Science.gov (United States)

    Vancoppenolle, Martin; Goosse, Hugues; de Montety, Anne; Fichefet, Thierry; Tremblay, Bruno; Tison, Jean-Louis

    2010-02-01

    Sea ice ecosystems are characterized by microalgae living in brine inclusions. The growth rate of ice algae depends on light and nutrient supply. Here, the interactions between nutrients and brine dynamics under the influence of algae are investigated using a one-dimensional model. The model includes snow and ice thermodynamics with brine physics and an idealized sea ice biological component, characterized by one nutrient, namely, dissolved silica (DSi). In the model, DSi follows brine motion and is consumed by ice algae. Depending on physical ice characteristics, the brine flow is either advective, diffusive, or turbulent. The vertical profiles of ice salinity and DSi concentration are solutions of advection-diffusion equations. The model is configured to simulate the typical thermodynamic regimes of first-year Antarctic pack ice. The simulated vertical profiles of salinity and DSi qualitatively reproduce observations. Analysis of results highlights the role of convection in the lowermost 5-10 cm of ice. Convection mixes saline, nutrient-poor brine with comparatively fresh, nutrient-rich seawater. This implies a rejection of salt to the ocean and a flux of DSi to the ice. In the presence of growing algae, the simulated ocean-to-ice DSi flux increases by 0-115% compared to an abiotic situation. In turn, primary production and brine convection act in synergy to form a nutrient pump. The other important processes are the flooding of the surface by seawater and the percolation of meltwater. The former refills nutrients near the ice surface in spring. The latter, if present, tends to expell nutrients from the ice in summer.

  12. Mapping the Antarctic Polar Front: weekly realizations from 2002 to 2014

    Science.gov (United States)

    Freeman, Natalie M.; Lovenduski, Nicole S.

    2016-05-01

    We map the weekly position of the Antarctic Polar Front (PF) in the Southern Ocean over a 12-year period (2002-2014) using satellite sea surface temperature (SST) estimated from cloud-penetrating microwave radiometers. Our study advances previous efforts to map the PF using hydrographic and satellite data and provides a unique realization of the PF at weekly resolution across all longitudes (http://dx.doi.org/10.1594/PANGAEA.855640" target="_blank">doi:10.1594/PANGAEA.855640). The mean path of the PF is asymmetric; its latitudinal position spans from 44 to 64° S along its circumpolar path. SST at the PF ranges from 0.6 to 6.9 °C, reflecting the large spread in latitudinal position. The average intensity of the front is 1.7 °C per 100 km, with intensity ranging from 1.4 to 2.3 °C per 100 km. Front intensity is significantly correlated with the depth of bottom topography, suggesting that the front intensifies over shallow bathymetry. Realizations of the PF are consistent with the corresponding surface expressions of the PF estimated using expendable bathythermograph data in the Drake Passage and Australian and African sectors. The climatological mean position of the PF is similar, though not identical, to previously published estimates. As the PF is a key indicator of physical circulation, surface nutrient concentration, and biogeography in the Southern Ocean, future studies of physical and biogeochemical oceanography in this region will benefit from the provided data set.

  13. Two decades of inorganic carbon dynamics along the West Antarctic Peninsula

    Science.gov (United States)

    Hauri, C.; Doney, S. C.; Takahashi, T.; Erickson, M.; Jiang, G.; Ducklow, H. W.

    2015-11-01

    We present 20 years of seawater inorganic carbon measurements collected along the western shelf and slope of the Antarctic Peninsula. Water column observations from summertime cruises and seasonal surface underway pCO2 measurements provide unique insights into the spatial, seasonal, and interannual variability in this dynamic system. Discrete measurements from depths > 2000 m align well with World Ocean Circulation Experiment observations across the time series and underline the consistency of the data set. Surface total alkalinity and dissolved inorganic carbon data showed large spatial gradients, with a concomitant wide range of Ωarag (end of the sampling grid and meltwater input along the coast towards the northern end. Large inorganic carbon drawdown through biological production in summer caused high near-shore Ωarag despite glacial and sea-ice meltwater input. In support of previous studies, we observed Redfield behavior of regional C / N nutrient utilization, while the C / P (80.5 ± 2.5) and N / P (11.7 ± 0.3) molar ratios were significantly lower than the Redfield elemental stoichiometric values. Seasonal salinity-based predictions of Ωarag suggest that surface waters remained mostly supersaturated with regard to aragonite throughout the study. However, more than 20 % of the predictions for winters and springs between 1999 and 2013 resulted in Ωarag < 1.2. Such low levels of Ωarag may have implications for important organisms such as pteropods. Even though we did not detect any statistically significant long-term trends, the combination of on-going ocean acidification and freshwater input may soon induce more unfavorable conditions than the ecosystem experiences today.

  14. The imbalance of new and export production in the western Antarctic Peninsula, a potentially "leaky" ecosystem

    Science.gov (United States)

    Stukel, Michael R.; Asher, Elizabeth; Couto, Nicole; Schofield, Oscar; Strebel, Stefanie; Tortell, Philippe; Ducklow, Hugh W.

    2015-09-01

    To quantify the balance between new production and vertical nitrogen export of sinking particles, we measured nitrate uptake, net nitrate drawdown, ΔO2/Ar-based net community production, sediment trap flux, and 234Th export at a coastal site near Palmer Station, Antarctica, during the phytoplankton growing season from October 2012 to March 2013. We also measured nitrate uptake and 234Th export throughout the northern western Antarctic Peninsula (WAP) region on a cruise in January 2013. We used a nonsteady state 234Th equation with temporally varying upwelling rates and an irradiance-based phytoplankton production model to correct our export and new production estimates in the complex coastal site near Palmer Station. Results unequivocally showed that nitrate uptake and net community production were significantly greater than the sinking particle export on region-wide spatial scales and season-long temporal scales. At our coastal site, new production (105 ± 17.4 mg N m-2 d-1, mean ± standard error) was 5.3 times greater than vertical nitrogen export (20.4 ± 2.4 mg N m-2 d-1). On the January cruise in the northern WAP, new production (47.9 ± 14.4 mg N m-2 d-1) was 2.4 times greater than export (19.9 ± 1.4 mg N m-2 d-1). Much of this imbalance can be attributed to diffusive losses of particulate nitrogen from the surface ocean due to diapycnal mixing, indicative of a "leaky" WAP ecosystem. If these diffusive losses are common in other systems where new production exceeds export, it may be necessary to revise current estimates of the ocean's biological pump.

  15. The response of Southern Ocean eddies to increased midlatitude westerlies: a non-eddy resolving model study

    OpenAIRE

    Hofmann, M.; M. A. Morales Maqueda

    2011-01-01

    The midlatitude westerlies of the southern hemisphere have intensified since the 1970s. Non-eddy resolving general circulation models respond to such wind intensification with steeper isopycnals, a faster Antarctic Circumpolar Current (ACC), and a stronger Atlantic Meridional Overturning Circulation (AMOC). However, hydrographic observations show little change in the slope of the Southern Ocean isopycnals over the past 40 years. This insensitivity seems to result from a compensating mechanism...

  16. Penguins as bioindicators of mercury contamination in the Southern Ocean: Birds from the Kerguelen Islands as a case study

    OpenAIRE

    Carravieri, Alice; Bustamante, Paco; Churlaud, Carine; Cherel, Yves

    2013-01-01

    International audience Seabirds have been used extensively as bioindicators of mercury (Hg) contamination in the marine environment, although information on flightless species like penguins remains limited. In order to assess the use of penguins as bioindicators of Hg contamination in subantarctic and Antarctic marine ecosystems, Hg concentrations were evaluated in the feathers of the four species that breed on the Kerguelen Islands in the southern Indian Ocean. Compared to other seabirds,...

  17. Regional Ocean Data Assimilation

    Science.gov (United States)

    Edwards, Christopher A.; Moore, Andrew M.; Hoteit, Ibrahim; Cornuelle, Bruce D.

    2015-01-01

    This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal regions. As in weather prediction, the accurate representation of physical, chemical, and/or biological properties in the ocean is challenging. Models and observations alone provide imperfect representations of the ocean state, but together they can offer improved estimates. Variational and sequential methods are among the most widely used in regional ocean systems, and there have been exciting recent advances in ensemble and four-dimensional variational approaches. These techniques are increasingly being tested and adapted for biogeochemical applications.

  18. Regional Ocean Data Assimilation

    KAUST Repository

    Edwards, Christopher A.

    2015-01-03

    This article reviews the past 15 years of developments in regional ocean data assimilation. A variety of scientific, management, and safety-related objectives motivate marine scientists to characterize many ocean environments, including coastal regions. As in weather prediction, the accurate representation of physical, chemical, and/or biological properties in the ocean is challenging. Models and observations alone provide imperfect representations of the ocean state, but together they can offer improved estimates. Variational and sequential methods are among the most widely used in regional ocean systems, and there have been exciting recent advances in ensemble and four-dimensional variational approaches. These techniques are increasingly being tested and adapted for biogeochemical applications.

  19. Deep Ocean Warming Assessed from Altimeters, GRACE, 3 In-situ Measurements, and a Non-Boussinesq OGCM

    Science.gov (United States)

    Song, Y. Tony; Colberg, Frank

    2011-01-01

    Observational surveys have shown significant oceanic bottom water warming, but they are too spatially and temporally sporadic to quantify the deep ocean contribution to the present-day sea level rise (SLR). In this study, altimetry sea surface height (SSH), Gravity Recovery and Climate Experiment (GRACE) ocean mass, and in situ upper ocean (0-700 m) steric height have been assessed for their seasonal variability and trend maps. It is shown that neither the global mean nor the regional trends of altimetry SLR can be explained by the upper ocean steric height plus the GRACE ocean mass. A non-Boussinesq ocean general circulation model (OGCM), allowing the sea level to rise as a direct response to the heat added into the ocean, is then used to diagnose the deep ocean steric height. Constrained by sea surface temperature data and the top of atmosphere (TOA) radiation measurements, the model reproduces the observed upper ocean heat content well. Combining the modeled deep ocean steric height with observational upper ocean data gives the full depth steric height. Adding a GRACE-estimated mass trend, the data-model combination explains not only the altimetry global mean SLR but also its regional trends fairly well. The deep ocean warming is mostly prevalent in the Atlantic and Indian oceans, and along the Antarctic Circumpolar Current, suggesting a strong relation to the oceanic circulation and dynamics. Its comparison with available bottom water measurements shows reasonably good agreement, indicating that deep ocean warming below 700 m might have contributed 1.1 mm/yr to the global mean SLR or one-third of the altimeter-observed rate of 3.11 +/- 0.6 mm/yr over 1993-2008.

  20. Significance of the distribution of bomb-produced radiocarbon in the ocean

    International Nuclear Information System (INIS)

    The pattern of global water column inventories of bomb-produced radiocarbon suggests that a sizable portion of the bomb radiocarbon that entered the Antarctic, the northern Pacific, and the tropical oceans has been transported to the adjacent temperate regions. Models of lateral transport of surface water in the Atlantic, Indian, and Pacific Oceans are designed on the basis of this distribution pattern. Upwelling of bomb-radiocarbon-free water from below takes place in the Antarctic, the northern Pacific, and the tropical regions; and downwelling of surface water occurs in the temperate oceans and in the northern Atlantic. Uptake of excess CO2 by these models is calculated using the observed Mauna Loa pCO2 record as an input function. Results indicate that 35 percent of fossil fuel CO2 is taken up by these model oceans during the period 1958-1980. Considering the observed airborne fraction of 0.55, it appears that about 10 percent of the global fossil fuel CO2 is still missing. 24 refs., 5 tabs