WorldWideScience

Sample records for antarctic ocean

  1. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.

    Science.gov (United States)

    Goldner, A; Herold, N; Huber, M

    2014-07-31

    Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.

  2. MECHANISMS FOR THE SEASONAL CYCLE IN THE ANTARCTIC COASTAL OCEANS

    OpenAIRE

    オオシマ; Kay I., OHSHIMA

    1996-01-01

    Seasonal variations of the Antarctic coastal oceans has not been well understood owing to logistical difficulties in observations, especially during the ice-covered season. Recently, 'Weddell Gyre Study' and 'Japanese Antarctic Climate Research program' have revealed the following seasonal variations in the Antarctic coastal ocean. First, the thickness of the Winter Water (WW) layer, characterized by cold, fresh, oxygen-rich water, exhibits its maximum in the austral fall and its minimum in t...

  3. Air-sea interaction regimes in the sub-Antarctic Southern Ocean and Antarctic marginal ice zone revealed by icebreaker measurements

    Science.gov (United States)

    Yu, Lisan; Jin, Xiangze; Schulz, Eric W.; Josey, Simon A.

    2017-08-01

    This study analyzed shipboard air-sea measurements acquired by the icebreaker Aurora Australis during its off-winter operation in December 2010 to May 2012. Mean conditions over 7 months (October-April) were compiled from a total of 22 ship tracks. The icebreaker traversed the water between Hobart, Tasmania, and the Antarctic continent, providing valuable in situ insight into two dynamically important, yet poorly sampled, regimes: the sub-Antarctic Southern Ocean and the Antarctic marginal ice zone (MIZ) in the Indian Ocean sector. The transition from the open water to the ice-covered surface creates sharp changes in albedo, surface roughness, and air temperature, leading to consequential effects on air-sea variables and fluxes. Major effort was made to estimate the air-sea fluxes in the MIZ using the bulk flux algorithms that are tuned specifically for the sea-ice effects, while computing the fluxes over the sub-Antarctic section using the COARE3.0 algorithm. The study evidenced strong sea-ice modulations on winds, with the southerly airflow showing deceleration (convergence) in the MIZ and acceleration (divergence) when moving away from the MIZ. Marked seasonal variations in heat exchanges between the atmosphere and the ice margin were noted. The monotonic increase in turbulent latent and sensible heat fluxes after summer turned the MIZ quickly into a heat loss regime, while at the same time the sub-Antarctic surface water continued to receive heat from the atmosphere. The drastic increase in turbulent heat loss in the MIZ contrasted sharply to the nonsignificant and seasonally invariant turbulent heat loss over the sub-Antarctic open water.Plain Language SummaryThe icebreaker Aurora Australis is a research and supply vessel that is regularly chartered by the Australian Antarctic Division during the southern summer to operate in waters between Hobart, Tasmania, and Antarctica. The vessel serves as the main lifeline to three permanent research stations on the

  4. Impacts of marine instability across the East Antarctic Ice Sheet on Southern Ocean dynamics

    Directory of Open Access Journals (Sweden)

    S. J. Phipps

    2016-09-01

    Full Text Available Recent observations and modelling studies have demonstrated the potential for rapid and substantial retreat of large sectors of the East Antarctic Ice Sheet (EAIS. This has major implications for ocean circulation and global sea level. Here we examine the effects of increasing meltwater from the Wilkes Basin, one of the major marine-based sectors of the EAIS, on Southern Ocean dynamics. Climate model simulations reveal that the meltwater flux rapidly stratifies surface waters, leading to a dramatic decrease in the rate of Antarctic Bottom Water (AABW formation. The surface ocean cools but, critically, the Southern Ocean warms by more than 1 °C at depth. This warming is accompanied by a Southern Ocean-wide “domino effect”, whereby the warming signal propagates westward with depth. Our results suggest that melting of one sector of the EAIS could result in accelerated warming across other sectors, including the Weddell Sea sector of the West Antarctic Ice Sheet. Thus, localised melting of the EAIS could potentially destabilise the wider Antarctic Ice Sheet.

  5. Emplacement of Antarctic ice sheet mass affects circumpolar ocean flow

    NARCIS (Netherlands)

    Rugenstein, Maria; Stocchi, Paolo; von der Heydt, Anna; Dijkstra, Hendrik; Brinkhuis, Henk

    2014-01-01

    During the Cenozoic the Antarctic continent experienced large fluctuations in ice-sheet volume. We investigate the effects of Glacial Isostatic Adjustment (GIA) on Southern Ocean circulation for the first continental scale glaciation of Antarctica (~34 Myr) by combining solid Earth and ocean dynamic

  6. Emplacement of Antarctic ice sheet mass affects circumpolar ocean flow

    NARCIS (Netherlands)

    Rugenstein, M.; Stocchi, P.; van der Heydt, A.; Brinkhuis, H.

    2014-01-01

    During the Cenozoic the Antarctic continent experienced large fluctuations in ice-sheet volume. We investigate the effects of Glacial Isostatic Adjustment (GIA) on Southern Ocean circulation for the first continental scale glaciation of Antarctica (~ 34 Myr) by combining solid Earth and ocean

  7. The Effects of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in an AOGCM

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven; Waugh, Darryn

    2014-01-01

    Stratospheric ozone depletion has played a dominant role in driving Antarctic climate change in the last decades. In order to capture the stratospheric ozone forcing, many coupled atmosphere-ocean general circulation models (AOGCMs) prescribe the Antarctic ozone hole using monthly and zonally averaged ozone field. However, the prescribed ozone hole has a high ozone bias and lacks zonal asymmetry. The impacts of these biases on model simulations, particularly on Southern Ocean and the Antarctic sea ice, are not well understood. The purpose of this study is to determine the effects of using interactive stratospheric chemistry instead of prescribed ozone on Antarctic and Southern Ocean climate change in an AOGCM. We compare two sets of ensemble simulations for the 1960-2010 period using different versions of the Goddard Earth Observing System 5 - AOGCM: one with interactive stratospheric chemistry, and the other with prescribed monthly and zonally averaged ozone and 6 other stratospheric radiative species calculated from the interactive chemistry simulations. Consistent with previous studies using prescribed sea surface temperatures and sea ice concentrations, the interactive chemistry runs simulate a deeper Antarctic ozone hole and consistently larger changes in surface pressure and winds than the prescribed ozone runs. The use of a coupled atmosphere-ocean model in this study enables us to determine the impact of these surface changes on Southern Ocean circulation and Antarctic sea ice. The larger surface wind trends in the interactive chemistry case lead to larger Southern Ocean circulation trends with stronger changes in northerly and westerly surface flow near the Antarctica continent and stronger upwelling near 60S. Using interactive chemistry also simulates a larger decrease of sea ice concentrations. Our results highlight the importance of using interactive chemistry in order to correctly capture the influences of stratospheric ozone depletion on climate

  8. Restricted regions of enhanced growth of Antarctic krill in the circumpolar Southern Ocean.

    Science.gov (United States)

    Murphy, Eugene J; Thorpe, Sally E; Tarling, Geraint A; Watkins, Jonathan L; Fielding, Sophie; Underwood, Philip

    2017-07-31

    Food webs in high-latitude oceans are dominated by relatively few species. Future ocean and sea-ice changes affecting the distribution of such species will impact the structure and functioning of whole ecosystems. Antarctic krill (Euphausia superba) is a key species in Southern Ocean food webs, but there is little understanding of the factors influencing its success throughout much of the ocean. The capacity of a habitat to maintain growth will be crucial and here we use an empirical relationship of growth rate to assess seasonal spatial variability. Over much of the ocean, potential for growth is limited, with three restricted oceanic regions where seasonal conditions permit high growth rates, and only a few areas around the Scotia Sea and Antarctic Peninsula suitable for growth of the largest krill (>60 mm). Our study demonstrates that projections of impacts of future change need to account for spatial and seasonal variability of key ecological processes within ocean ecosystems.

  9. Antarctic and Southern Ocean influences on Late Pliocene global cooling

    NARCIS (Netherlands)

    McKay, R.; Naish, T.; Carter, L.; Riesselman, C.; Dunbar, R.; Sjunneskog, C.; Winter, D.; Sangiorgi, F.; Warren, C.; Pagani, M.; Schouten, S.; Willmott, V.; Levy, R.; DeConto , R.M.; Powell, R.D.

    2012-01-01

    The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL

  10. Final Report. Coupled simulations of Antarctic Ice-sheet/ocean interactions using POP and CISM

    Energy Technology Data Exchange (ETDEWEB)

    Asay-Davis, Xylar Storm [Potsdam Institute for Climate Impact Research, Potdam (Germany)

    2015-12-30

    The project performed under this award, referred to from here on as CLARION (CoupLed simulations of Antarctic Ice-sheet/Ocean iNteractions), included important advances in two models of ice sheet and ocean interactions. Despite its short duration (one year), the project made significant progress on its three major foci. First, together with collaborator Daniel Martin at Lawrence Berkeley National Laboratory (LBNL), I developed the POPSICLES coupled ice sheet-ocean model to the point where it could perform a number of pan-Antarctic simulations under various forcing conditions. The results were presented at a number of major conferences and workshops worldwide, and are currently being incorporated into two manuscripts in preparation.

  11. A roadmap for Antarctic and Southern Ocean science for the next two decades and beyond

    OpenAIRE

    Kennicutt, M.C.; Chown, S.L.; Cassano, J.J.; Liggett, D.; Peck, L.S.; Massom, R.; Rintoul, S.R.; Storey, J.; Vaughan, D.G.; Wilson, T.J.; Allison, I.; Ayton, J.; Badhe, R.; Baeseman, J.; Barrett, P.J.

    2015-01-01

    Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to ‘scan the horizon’ to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consu...

  12. A Roadmap for Antarctic and Southern Ocean Science for the Next Two Decades and Beyond

    Science.gov (United States)

    Kennicutt, M. C., II

    2015-12-01

    Abstract: Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to 'scan the horizon' to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consultation was a fundamental principle for the development of a collective, international view of the most important future directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific questions through structured debate, discussion, revision and voting. Questions were clustered into seven topics: i) Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world, iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond, and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require innovative experimental designs, novel applications of technology, invention of next-generation field and laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples. Sustained year-round access to Antarctica and the Southern Ocean will be essential to increase winter-time measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the Earth System, and provide predictions at spatial and temporal resolutions useful for decision making. A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration, will be essential as no scientist, programme or nation can realize these aspirations alone.

  13. Poles apart: the "bipolar" pteropod species Limacina helicina is genetically distinct between the Arctic and Antarctic oceans.

    Science.gov (United States)

    Hunt, Brian; Strugnell, Jan; Bednarsek, Nina; Linse, Katrin; Nelson, R John; Pakhomov, Evgeny; Seibel, Brad; Steinke, Dirk; Würzberg, Laura

    2010-03-23

    The shelled pteropod (sea butterfly) Limacina helicina is currently recognised as a species complex comprising two sub-species and at least five "forma". However, at the species level it is considered to be bipolar, occurring in both the Arctic and Antarctic oceans. Due to its aragonite shell and polar distribution L. helicina is particularly vulnerable to ocean acidification. As a key indicator of the acidification process, and a major component of polar ecosystems, L. helicina has become a focus for acidification research. New observations that taxonomic groups may respond quite differently to acidification prompted us to reassess the taxonomic status of this important species. We found a 33.56% (+/-0.09) difference in cytochrome c oxidase subunit I (COI) gene sequences between L. helicina collected from the Arctic and Antarctic oceans. This degree of separation is sufficient for ordinal level taxonomic separation in other organisms and provides strong evidence for the Arctic and Antarctic populations of L. helicina differing at least at the species level. Recent research has highlighted substantial physiological differences between the poles for another supposedly bipolar pteropod species, Clione limacina. Given the large genetic divergence between Arctic and Antarctic L. helicina populations shown here, similarly large physiological differences may exist between the poles for the L. helicina species group. Therefore, in addition to indicating that L. helicina is in fact not bipolar, our study demonstrates the need for acidification research to take into account the possibility that the L. helicina species group may not respond in the same way to ocean acidification in Arctic and Antarctic ecosystems.

  14. Impacts of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in the Goddard Earth Observing System Version 5 (GEOS-5)

    Science.gov (United States)

    Li, Feng; Vikhliaev, Yury V.; Newman, Paul A.; Pawson, Steven; Perlwitz, Judith; Waugh, Darryn W.; Douglass, Anne R.

    2016-01-01

    Stratospheric ozone depletion plays a major role in driving climate change in the Southern Hemisphere. To date, many climate models prescribe the stratospheric ozone layer's evolution using monthly and zonally averaged ozone fields. However, the prescribed ozone underestimates Antarctic ozone depletion and lacks zonal asymmetries. In this study we investigate the impact of using interactive stratospheric chemistry instead of prescribed ozone on climate change simulations of the Antarctic and Southern Ocean. Two sets of 1960-2010 ensemble transient simulations are conducted with the coupled ocean version of the Goddard Earth Observing System Model, version 5: one with interactive stratospheric chemistry and the other with prescribed ozone derived from the same interactive simulations. The model's climatology is evaluated using observations and reanalysis. Comparison of the 1979-2010 climate trends between these two simulations reveals that interactive chemistry has important effects on climate change not only in the Antarctic stratosphere, troposphere, and surface, but also in the Southern Ocean and Antarctic sea ice. Interactive chemistry causes stronger Antarctic lower stratosphere cooling and circumpolar westerly acceleration during November-December-January. It enhances stratosphere-troposphere coupling and leads to significantly larger tropospheric and surface westerly changes. The significantly stronger surface wind stress trends cause larger increases of the Southern Ocean Meridional Overturning Circulation, leading to year-round stronger ocean warming near the surface and enhanced Antarctic sea ice decrease.

  15. Water masses, ocean fronts, and the structure of Antarctic seabird communities: putting the eastern Bellingshausen Sea in perspective

    Science.gov (United States)

    Ribic, Christine A.; Ainley, David G.; Ford, R. Glenn; Fraser, William R.; Tynan, Cynthia T.; Woehler, Eric J.

    2015-01-01

    Waters off the western Antarctic Peninsula (i.e., the eastern Bellingshausen Sea) are unusually complex owing to the convergence of several major fronts. Determining the relative influence of fronts on occurrence patterns of top-trophic species in that area, therefore, has been challenging. In one of the few ocean-wide seabird data syntheses, in this case for the Southern Ocean, we analyzed ample, previously collected cruise data, Antarctic-wide, to determine seabird species assemblages and quantitative relationships to fronts as a way to provide context to the long-term Palmer LTER and the winter Southern Ocean GLOBEC studies in the eastern Bellingshausen Sea. Fronts investigated during both winter (April–September) and summer (October–March) were the southern boundary of the Antarctic Circumpolar Current (ACC), which separates the High Antarctic from the Low Antarctic water mass, and within which are embedded the marginal ice zone and Antarctic Shelf Break Front; and the Antarctic Polar Front, which separates the Low Antarctic and the Subantarctic water masses. We used clustering to determine species' groupings with water masses, and generalized additive models to relate species' densities, biomass and diversity to distance to respective fronts. Antarctic-wide, in both periods, highest seabird densities and lowest species diversity were found in the High Antarctic water mass. In the eastern Bellingshausen, seabird density in the High Antarctic water mass was lower (as low as half that of winter) than found in other Antarctic regions. During winter, Antarctic-wide, two significant species groups were evident: one dominated by Adélie penguins (Pygoscelis adeliae) (High Antarctic water mass) and the other by petrels and prions (no differentiation among water masses); in eastern Bellingshausen waters during winter, the one significant species group was composed of species from both Antarctic-wide groups. In summer, Antarctic-wide, a High Antarctic group

  16. Vulnerability of Polar Oceans to Anthropogenic Acidification: Comparison of Arctic and Antarctic Seasonal Cycles

    OpenAIRE

    E. H. Shadwick; T. W. Trull; H. Thomas; J. A. E. Gibson

    2013-01-01

    Polar oceans are chemically sensitive to anthropogenic acidification due to their relatively low alkalinity and correspondingly weak carbonate buffering capacity. Here, we compare unique CO2 system observations covering complete annual cycles at an Arctic (Amundsen Gulf) and Antarctic site (Prydz Bay). The Arctic site experiences greater seasonal warming (10 vs 3?C), and freshening (3 vs 2), has lower alkalinity (2220 vs 2320??mol/kg), and lower summer pH (8.15 vs 8.5), than the Antarctic sit...

  17. Poles Apart: The “Bipolar” Pteropod Species Limacina helicina Is Genetically Distinct Between the Arctic and Antarctic Oceans

    Science.gov (United States)

    Bednarsek, Nina; Linse, Katrin; Nelson, R. John; Pakhomov, Evgeny; Seibel, Brad; Steinke, Dirk; Würzberg, Laura

    2010-01-01

    The shelled pteropod (sea butterfly) Limacina helicina is currently recognised as a species complex comprising two sub-species and at least five “forma”. However, at the species level it is considered to be bipolar, occurring in both the Arctic and Antarctic oceans. Due to its aragonite shell and polar distribution L. helicina is particularly vulnerable to ocean acidification. As a key indicator of the acidification process, and a major component of polar ecosystems, L. helicina has become a focus for acidification research. New observations that taxonomic groups may respond quite differently to acidification prompted us to reassess the taxonomic status of this important species. We found a 33.56% (±0.09) difference in cytochrome c oxidase subunit I (COI) gene sequences between L. helicina collected from the Arctic and Antarctic oceans. This degree of separation is sufficient for ordinal level taxonomic separation in other organisms and provides strong evidence for the Arctic and Antarctic populations of L. helicina differing at least at the species level. Recent research has highlighted substantial physiological differences between the poles for another supposedly bipolar pteropod species, Clione limacina. Given the large genetic divergence between Arctic and Antarctic L. helicina populations shown here, similarly large physiological differences may exist between the poles for the L. helicina species group. Therefore, in addition to indicating that L. helicina is in fact not bipolar, our study demonstrates the need for acidification research to take into account the possibility that the L. helicina species group may not respond in the same way to ocean acidification in Arctic and Antarctic ecosystems. PMID:20360985

  18. Preconditioning of Antarctic maximum sea-ice extent by upper-ocean stratification on a seasonal timescale

    OpenAIRE

    Su, Zhan

    2017-01-01

    This study uses an observationally constrained and dynamically consistent ocean and sea ice state estimate. The author presents a remarkable agreement between the location of the edge of Antarctic maximum sea ice extent, reached in September, and the narrow transition band for the upper ocean (0–100 m depths) stratification, as early as April to June. To the south of this edge, the upper ocean has high stratification, which forbids convective fluxes to cross through; consequently, the ocean h...

  19. A pivotal role for ocean eddies in the distribution of microbial communities across the Antarctic Circumpolar Current.

    Directory of Open Access Journals (Sweden)

    Siddarthan Venkatachalam

    Full Text Available Mesoscale variability and associated eddy fluxes play crucial roles in ocean circulation dynamics and the ecology of the upper ocean. In doing so, these features are biologically important, providing a mechanism for the mixing and exchange of nutrients and biota within the ocean. Transient mesoscale eddies in the Southern Ocean are known to relocate zooplankton communities across the Antarctic Circumpolar Current (ACC and are important foraging grounds for marine top predators. In this study we investigated the role of cyclonic and anti-cyclonic eddies formed at the South-West Indian Ridge on the spatial variability and diversity of microbial communities. We focused on two contrasting adjacent eddies within the Antarctic Polar Frontal Zone to determine how these features may influence the microbial communities within this region. The water masses and microbiota of the two eddies, representative of a cyclonic cold core from the Antarctic zone and an anti-cyclonic warm-core from the Subantarctic zone, were compared. The data reveal that the two eddies entrain distinct microbial communities from their points of origin that are maintained for up to ten months. Our findings highlight the ecological impact that changes, brought by the translocation of eddies across the ACC, have on microbial diversity.

  20. Spreading of Antarctic Bottom Water in the Atlantic Ocean

    OpenAIRE

    Morozov, E.; Tarakanov, R. Y.; Zenk, Walter

    2012-01-01

    This paper describes the transport of bottom water from its source region in the Weddell Sea through the abyssal channels of the Atlantic Ocean. The research brings together the recent observations and historical data. A strong flow of Antarctic Bottom Water through the Vema Channel is analyzed. The mean speed of the flow is 30 cm/s. A temperature increase was found in the deep Vema Channel, which has been observed for 30 years already. The flow of bottom water in the northern part of the Bra...

  1. Freshening of Antarctic Intermediate Water in the South Atlantic Ocean in 2005–2014

    OpenAIRE

    Yao, Wenjun; Shi, Jiuxin

    2016-01-01

    Basin-scaled freshening of Antarctic Intermediate Water (AAIW) is reported to have dominated South Atlantic Ocean during period from 2005 to 2014, as shown by the gridded monthly means Argo (Array for Real-time Geostrophic Oceanography) data. The relevant investigation was also revealed by two transatlantic occupations of repeated section along 30° S, from World Ocean Circulation Experiment Hydrographic Program. Freshening of the AAIW was compensated by the opposing salinity increase o...

  2. Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene-Oligocene transition.

    Science.gov (United States)

    Kennedy, A T; Farnsworth, A; Lunt, D J; Lear, C H; Markwick, P J

    2015-11-13

    The glaciation of Antarctica at the Eocene-Oligocene transition (approx. 34 million years ago) was a major shift in the Earth's climate system, but the mechanisms that caused the glaciation, and its effects, remain highly debated. A number of recent studies have used coupled atmosphere-ocean climate models to assess the climatic effects of Antarctic glacial inception, with often contrasting results. Here, using the HadCM3L model, we show that the global atmosphere and ocean response to growth of the Antarctic ice sheet is sensitive to subtle variations in palaeogeography, using two reconstructions representing Eocene and Oligocene geological stages. The earlier stage (Eocene; Priabonian), which has a relatively constricted Tasman Seaway, shows a major increase in sea surface temperature over the Pacific sector of the Southern Ocean in response to the ice sheet. This response does not occur for the later stage (Oligocene; Rupelian), which has a more open Tasman Seaway. This difference in temperature response is attributed to reorganization of ocean currents between the stages. Following ice sheet expansion in the earlier stage, the large Ross Sea gyre circulation decreases in size. Stronger zonal flow through the Tasman Seaway allows salinities to increase in the Ross Sea, deep-water formation initiates and multiple feedbacks then occur amplifying the temperature response. This is potentially a model-dependent result, but it highlights the sensitive nature of model simulations to subtle variations in palaeogeography, and highlights the need for coupled ice sheet-climate simulations to properly represent and investigate feedback processes acting on these time scales. © 2015 The Author(s).

  3. Transport of Antarctic bottom water through the Kane Gap, tropical NE Atlantic Ocean

    NARCIS (Netherlands)

    Morozov, E.G.; Tarakanov, R.Y.; van Haren, H.

    2013-01-01

    We study low-frequency properties of the Antarctic Bottom Water (AABW) flow through the Kane Gap (9° N) in the Atlantic Ocean. The measurements in the Kane Gap include five visits with CTD (Conductivity-Temperature-Depth) sections in 2009–2012 and a year-long record of currents on a mooring using

  4. Multi-year record of atmospheric mercury at Dumont d'Urville, East Antarctic coast: continental outflow and oceanic influences

    Directory of Open Access Journals (Sweden)

    H. Angot

    2016-07-01

    Full Text Available Under the framework of the Global Mercury Observation System (GMOS project, a 3.5-year record of atmospheric gaseous elemental mercury (Hg(0 has been gathered at Dumont d'Urville (DDU, 66°40′ S, 140°01′ E, 43 m above sea level on the East Antarctic coast. Additionally, surface snow samples were collected in February 2009 during a traverse between Concordia Station located on the East Antarctic plateau and DDU. The record of atmospheric Hg(0 at DDU reveals particularities that are not seen at other coastal sites: a gradual decrease of concentrations over the course of winter, and a daily maximum concentration around midday in summer. Additionally, total mercury concentrations in surface snow samples were particularly elevated near DDU (up to 194.4 ng L−1 as compared to measurements at other coastal Antarctic sites. These differences can be explained by the more frequent arrival of inland air masses at DDU than at other coastal sites. This confirms the influence of processes observed on the Antarctic plateau on the cycle of atmospheric mercury at a continental scale, especially in areas subject to recurrent katabatic winds. DDU is also influenced by oceanic air masses and our data suggest that the ocean plays a dual role on Hg(0 concentrations. The open ocean may represent a source of atmospheric Hg(0 in summer whereas the sea-ice surface may provide reactive halogens in spring that can oxidize Hg(0. This paper also discusses implications for coastal Antarctic ecosystems and for the cycle of atmospheric mercury in high southern latitudes.

  5. Freshening of Antarctic Intermediate Water in the South Atlantic Ocean in 2005–2014

    OpenAIRE

    W. Yao; J. Shi; X. Zhao

    2017-01-01

    Basin-scale freshening of Antarctic Intermediate Water (AAIW) is reported to have occurred in the South Atlantic Ocean during the period from 2005 to 2014, as shown by the gridded monthly means of the Array for Real-time Geostrophic Oceanography (Argo) data. This phenomenon was also revealed by two repeated transects along a section at 30° S, performed during the World Ocean Circulation Experiment Hydrographic Program. Freshening of the AAIW was compensated for by a salinity...

  6. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean.

    Science.gov (United States)

    Coxall, Helen K; Wilson, Paul A; Pälike, Heiko; Lear, Caroline H; Backman, Jan

    2005-01-06

    The ocean depth at which the rate of calcium carbonate input from surface waters equals the rate of dissolution is termed the calcite compensation depth. At present, this depth is approximately 4,500 m, with some variation between and within ocean basins. The calcite compensation depth is linked to ocean acidity, which is in turn linked to atmospheric carbon dioxide concentrations and hence global climate. Geological records of changes in the calcite compensation depth show a prominent deepening of more than 1 km near the Eocene/Oligocene boundary (approximately 34 million years ago) when significant permanent ice sheets first appeared on Antarctica, but the relationship between these two events is poorly understood. Here we present ocean sediment records of calcium carbonate content as well as carbon and oxygen isotopic compositions from the tropical Pacific Ocean that cover the Eocene/Oligocene boundary. We find that the deepening of the calcite compensation depth was more rapid than previously documented and occurred in two jumps of about 40,000 years each, synchronous with the stepwise onset of Antarctic ice-sheet growth. The glaciation was initiated, after climatic preconditioning, by an interval when the Earth's orbit of the Sun favoured cool summers. The changes in oxygen-isotope composition across the Eocene/Oligocene boundary are too large to be explained by Antarctic ice-sheet growth alone and must therefore also indicate contemporaneous global cooling and/or Northern Hemisphere glaciation.

  7. Impact of increasing antarctic glacial freshwater release on regional sea-ice cover in the Southern Ocean

    Science.gov (United States)

    Merino, Nacho; Jourdain, Nicolas C.; Le Sommer, Julien; Goosse, Hugues; Mathiot, Pierre; Durand, Gael

    2018-01-01

    The sensitivity of Antarctic sea-ice to increasing glacial freshwater release into the Southern Ocean is studied in a series of 31-year ocean/sea-ice/iceberg model simulations. Glaciological estimates of ice-shelf melting and iceberg calving are used to better constrain the spatial distribution and magnitude of freshwater forcing around Antarctica. Two scenarios of glacial freshwater forcing have been designed to account for a decadal perturbation in glacial freshwater release to the Southern Ocean. For the first time, this perturbation explicitly takes into consideration the spatial distribution of changes in the volume of Antarctic ice shelves, which is found to be a key component of changes in freshwater release. In addition, glacial freshwater-induced changes in sea ice are compared to typical changes induced by the decadal evolution of atmospheric states. Our results show that, in general, the increase in glacial freshwater release increases Antarctic sea ice extent. But the response is opposite in some regions like the coastal Amundsen Sea, implying that distinct physical mechanisms are involved in the response. We also show that changes in freshwater forcing may induce large changes in sea-ice thickness, explaining about one half of the total change due to the combination of atmospheric and freshwater changes. The regional contrasts in our results suggest a need for improving the representation of freshwater sources and their evolution in climate models.

  8. Observational Evidence of a Hemispheric-wide Ice-ocean Albedo Feedback Effect on Antarctic Sea-ice Decay

    Science.gov (United States)

    Nihashi, Sohey; Cavalieri, Donald J.

    2007-01-01

    The effect of ice-ocean albedo feedback (a kind of ice-albedo feedback) on sea-ice decay is demonstrated over the Antarctic sea-ice zone from an analysis of satellite-derived hemispheric sea ice concentration and European Centre for Medium-Range Weather Forecasts (ERA-40) atmospheric data for the period 1979-2001. Sea ice concentration in December (time of most active melt) correlates better with the meridional component of the wind-forced ice drift (MID) in November (beginning of the melt season) than the MID in December. This 1 month lagged correlation is observed in most of the Antarctic sea-ice covered ocean. Daily time series of ice , concentration show that the ice concentration anomaly increases toward the time of maximum sea-ice melt. These findings can be explained by the following positive feedback effect: once ice concentration decreases (increases) at the beginning of the melt season, solar heating of the upper ocean through the increased (decreased) open water fraction is enhanced (reduced), leading to (suppressing) a further decrease in ice concentration by the oceanic heat. Results obtained fi-om a simple ice-ocean coupled model also support our interpretation of the observational results. This positive feedback mechanism explains in part the large interannual variability of the sea-ice cover in summer.

  9. Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4

    Science.gov (United States)

    Naughten, Kaitlin A.; Meissner, Katrin J.; Galton-Fenzi, Benjamin K.; England, Matthew H.; Timmermann, Ralph; Hellmer, Hartmut H.; Hattermann, Tore; Debernard, Jens B.

    2018-04-01

    An increasing number of Southern Ocean models now include Antarctic ice-shelf cavities, and simulate thermodynamics at the ice-shelf/ocean interface. This adds another level of complexity to Southern Ocean simulations, as ice shelves interact directly with the ocean and indirectly with sea ice. Here, we present the first model intercomparison and evaluation of present-day ocean/sea-ice/ice-shelf interactions, as simulated by two models: a circumpolar Antarctic configuration of MetROMS (ROMS: Regional Ocean Modelling System coupled to CICE: Community Ice CodE) and the global model FESOM (Finite Element Sea-ice Ocean Model), where the latter is run at two different levels of horizontal resolution. From a circumpolar Antarctic perspective, we compare and evaluate simulated ice-shelf basal melting and sub-ice-shelf circulation, as well as sea-ice properties and Southern Ocean water mass characteristics as they influence the sub-ice-shelf processes. Despite their differing numerical methods, the two models produce broadly similar results and share similar biases in many cases. Both models reproduce many key features of observations but struggle to reproduce others, such as the high melt rates observed in the small warm-cavity ice shelves of the Amundsen and Bellingshausen seas. Several differences in model design show a particular influence on the simulations. For example, FESOM's greater topographic smoothing can alter the geometry of some ice-shelf cavities enough to affect their melt rates; this improves at higher resolution, since less smoothing is required. In the interior Southern Ocean, the vertical coordinate system affects the degree of water mass erosion due to spurious diapycnal mixing, with MetROMS' terrain-following coordinate leading to more erosion than FESOM's z coordinate. Finally, increased horizontal resolution in FESOM leads to higher basal melt rates for small ice shelves, through a combination of stronger circulation and small-scale intrusions of

  10. Accelerated freshening of Antarctic Bottom Water over the last decade in the Southern Indian Ocean.

    Science.gov (United States)

    Menezes, Viviane V; Macdonald, Alison M; Schatzman, Courtney

    2017-01-01

    Southern Ocean abyssal waters, in contact with the atmosphere at their formation sites around Antarctica, not only bring signals of a changing climate with them as they move around the globe but also contribute to that change through heat uptake and sea level rise. A repeat hydrographic line in the Indian sector of the Southern Ocean, occupied three times in the last two decades (1994, 2007, and, most recently, 2016), reveals that Antarctic Bottom Water (AABW) continues to become fresher (0.004 ± 0.001 kg/g decade -1 ), warmer (0.06° ± 0.01°C decade -1 ), and less dense (0.011 ± 0.002 kg/m 3 decade -1 ). The most recent observations in the Australian-Antarctic Basin show a particularly striking acceleration in AABW freshening between 2007 and 2016 (0.008 ± 0.001 kg/g decade -1 ) compared to the 0.002 ± 0.001 kg/g decade -1 seen between 1994 and 2007. Freshening is, in part, responsible for an overall shift of the mean temperature-salinity curve toward lower densities. The marked freshening may be linked to an abrupt iceberg-glacier collision and calving event that occurred in 2010 on the George V/Adélie Land Coast, the main source region of bottom waters for the Australian-Antarctic Basin. Because AABW is a key component of the global overturning circulation, the persistent decrease in bottom water density and the associated increase in steric height that result from continued warming and freshening have important consequences beyond the Southern Indian Ocean.

  11. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning.

    Science.gov (United States)

    Golledge, N R; Menviel, L; Carter, L; Fogwill, C J; England, M H; Cortese, G; Levy, R H

    2014-09-29

    During the last glacial termination, the upwelling strength of the southern polar limb of the Atlantic Meridional Overturning Circulation varied, changing the ventilation and stratification of the high-latitude Southern Ocean. During the same period, at least two phases of abrupt global sea-level rise--meltwater pulses--took place. Although the timing and magnitude of these events have become better constrained, a causal link between ocean stratification, the meltwater pulses and accelerated ice loss from Antarctica has not been proven. Here we simulate Antarctic ice sheet evolution over the last 25 kyr using a data-constrained ice-sheet model forced by changes in Southern Ocean temperature from an Earth system model. Results reveal several episodes of accelerated ice-sheet recession, the largest being coincident with meltwater pulse 1A. This resulted from reduced Southern Ocean overturning following Heinrich Event 1, when warmer subsurface water thermally eroded grounded marine-based ice and instigated a positive feedback that further accelerated ice-sheet retreat.

  12. Ocean acidification exerts negative effects during warming conditions in a developing Antarctic fish.

    Science.gov (United States)

    Flynn, Erin E; Bjelde, Brittany E; Miller, Nathan A; Todgham, Anne E

    2015-01-01

    Anthropogenic CO2 is rapidly causing oceans to become warmer and more acidic, challenging marine ectotherms to respond to simultaneous changes in their environment. While recent work has highlighted that marine fishes, particularly during early development, can be vulnerable to ocean acidification, we lack an understanding of how life-history strategies, ecosystems and concurrent ocean warming interplay with interspecific susceptibility. To address the effects of multiple ocean changes on cold-adapted, slowly developing fishes, we investigated the interactive effects of elevated partial pressure of carbon dioxide (pCO2) and temperature on the embryonic physiology of an Antarctic dragonfish (Gymnodraco acuticeps), with protracted embryogenesis (∼10 months). Using an integrative, experimental approach, our research examined the impacts of near-future warming [-1 (ambient) and 2°C (+3°C)] and ocean acidification [420 (ambient), 650 (moderate) and 1000 μatm pCO2 (high)] on survival, development and metabolic processes over the course of 3 weeks in early development. In the presence of increased pCO2 alone, embryonic mortality did not increase, with greatest overall survival at the highest pCO2. Furthermore, embryos were significantly more likely to be at a later developmental stage at high pCO2 by 3 weeks relative to ambient pCO2. However, in combined warming and ocean acidification scenarios, dragonfish embryos experienced a dose-dependent, synergistic decrease in survival and developed more slowly. We also found significant interactions between temperature, pCO2 and time in aerobic enzyme activity (citrate synthase). Increased temperature alone increased whole-organism metabolic rate (O2 consumption) and developmental rate and slightly decreased osmolality at the cost of increased mortality. Our findings suggest that developing dragonfish are more sensitive to ocean warming and may experience negative physiological effects of ocean acidification only in

  13. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice.

    Science.gov (United States)

    Li, Xichen; Holland, David M; Gerber, Edwin P; Yoo, Changhyun

    2014-01-23

    In recent decades, Antarctica has experienced pronounced climate changes. The Antarctic Peninsula exhibited the strongest warming of any region on the planet, causing rapid changes in land ice. Additionally, in contrast to the sea-ice decline over the Arctic, Antarctic sea ice has not declined, but has instead undergone a perplexing redistribution. Antarctic climate is influenced by, among other factors, changes in radiative forcing and remote Pacific climate variability, but none explains the observed Antarctic Peninsula warming or the sea-ice redistribution in austral winter. However, in the north and tropical Atlantic Ocean, the Atlantic Multidecadal Oscillation (a leading mode of sea surface temperature variability) has been overlooked in this context. Here we show that sea surface warming related to the Atlantic Multidecadal Oscillation reduces the surface pressure in the Amundsen Sea and contributes to the observed dipole-like sea-ice redistribution between the Ross and Amundsen-Bellingshausen-Weddell seas and to the Antarctic Peninsula warming. Support for these findings comes from analysis of observational and reanalysis data, and independently from both comprehensive and idealized atmospheric model simulations. We suggest that the north and tropical Atlantic is important for projections of future climate change in Antarctica, and has the potential to affect the global thermohaline circulation and sea-level change.

  14. Could the acid-base status of Antarctic sea urchins indicate a better-than-expected resilience to near-future ocean acidification?

    Science.gov (United States)

    Collard, Marie; De Ridder, Chantal; David, Bruno; Dehairs, Frank; Dubois, Philippe

    2015-02-01

    Increasing atmospheric carbon dioxide concentration alters the chemistry of the oceans towards more acidic conditions. Polar oceans are particularly affected due to their low temperature, low carbonate content and mixing patterns, for instance upwellings. Calcifying organisms are expected to be highly impacted by the decrease in the oceans' pH and carbonate ions concentration. In particular, sea urchins, members of the phylum Echinodermata, are hypothesized to be at risk due to their high-magnesium calcite skeleton. However, tolerance to ocean acidification in metazoans is first linked to acid-base regulation capacities of the extracellular fluids. No information on this is available to date for Antarctic echinoderms and inference from temperate and tropical studies needs support. In this study, we investigated the acid-base status of 9 species of sea urchins (3 cidaroids, 2 regular euechinoids and 4 irregular echinoids). It appears that Antarctic regular euechinoids seem equipped with similar acid-base regulation systems as tropical and temperate regular euechinoids but could rely on more passive ion transfer systems, minimizing energy requirements. Cidaroids have an acid-base status similar to that of tropical cidaroids. Therefore Antarctic cidaroids will most probably not be affected by decreasing seawater pH, the pH drop linked to ocean acidification being negligible in comparison of the naturally low pH of the coelomic fluid. Irregular echinoids might not suffer from reduced seawater pH if acidosis of the coelomic fluid pH does not occur but more data on their acid-base regulation are needed. Combining these results with the resilience of Antarctic sea urchin larvae strongly suggests that these organisms might not be the expected victims of ocean acidification. However, data on the impact of other global stressors such as temperature and of the combination of the different stressors needs to be acquired to assess the sensitivity of these organisms to global

  15. Ocean acidification changes the structure of an Antarctic coastal protistan community

    Science.gov (United States)

    Hancock, Alyce M.; Davidson, Andrew T.; McKinlay, John; McMinn, Andrew; Schulz, Kai G.; van den Enden, Rick L.

    2018-04-01

    Antarctic near-shore waters are amongst the most sensitive in the world to ocean acidification. Microbes occupying these waters are critical drivers of ecosystem productivity, elemental cycling and ocean biogeochemistry, yet little is known about their sensitivity to ocean acidification. A six-level, dose-response experiment was conducted using 650 L incubation tanks (minicosms) adjusted to a gradient in fugacity of carbon dioxide (fCO2) from 343 to 1641 µatm. The six minicosms were filled with near-shore water from Prydz Bay, East Antarctica, and the protistan composition and abundance was determined by microscopy during 18 days of incubation. No CO2-related change in the protistan community composition was observed during the initial 8 day acclimation period under low light. Thereafter, the response of both autotrophic and heterotrophic protists to fCO2 was species-specific. The response of diatoms was mainly cell size related; microplanktonic diatoms ( > 20 µm) increased in abundance with low to moderate fCO2 (343-634 µatm) but decreased at fCO2 ≥ 953 µatm. Similarly, the abundance of Phaeocystis antarctica increased with increasing fCO2 peaking at 634 µatm. Above this threshold the abundance of micro-sized diatoms and P. antarctica fell dramatically, and nanoplanktonic diatoms ( ≤ 20 µm) dominated, therefore culminating in a significant change in the protistan community composition. Comparisons of these results with previous experiments conducted at this site show that the fCO2 thresholds are similar, despite seasonal and interannual differences in the physical and biotic environment. This suggests that near-shore microbial communities are likely to change significantly near the end of this century if anthropogenic CO2 release continues unabated, with profound ramifications for near-shore Antarctic ecosystem food webs and biogeochemical cycling.

  16. Potential climate change effects on the habitat of antarctic krill in the weddell quadrant of the southern ocean.

    Science.gov (United States)

    Hill, Simeon L; Phillips, Tony; Atkinson, Angus

    2013-01-01

    Antarctic krill is a cold water species, an increasingly important fishery resource and a major prey item for many fish, birds and mammals in the Southern Ocean. The fishery and the summer foraging sites of many of these predators are concentrated between 0° and 90°W. Parts of this quadrant have experienced recent localised sea surface warming of up to 0.2°C per decade, and projections suggest that further widespread warming of 0.27° to 1.08°C will occur by the late 21(st) century. We assessed the potential influence of this projected warming on Antarctic krill habitat with a statistical model that links growth to temperature and chlorophyll concentration. The results divide the quadrant into two zones: a band around the Antarctic Circumpolar Current in which habitat quality is particularly vulnerable to warming, and a southern area which is relatively insensitive. Our analysis suggests that the direct effects of warming could reduce the area of growth habitat by up to 20%. The reduction in growth habitat within the range of predators, such as Antarctic fur seals, that forage from breeding sites on South Georgia could be up to 55%, and the habitat's ability to support Antarctic krill biomass production within this range could be reduced by up to 68%. Sensitivity analysis suggests that the effects of a 50% change in summer chlorophyll concentration could be more significant than the direct effects of warming. A reduction in primary production could lead to further habitat degradation but, even if chlorophyll increased by 50%, projected warming would still cause some degradation of the habitat accessible to predators. While there is considerable uncertainty in these projections, they suggest that future climate change could have a significant negative effect on Antarctic krill growth habitat and, consequently, on Southern Ocean biodiversity and ecosystem services.

  17. Transport of soil particles to the ocean and their concentration in the marine atmosphere - A case study of marine aerosols collected during the cruises of the Antarctic observation ship Shirase

    International Nuclear Information System (INIS)

    Tanaka, Shigeru; Okamori, Katsutaka; Hashimoto, Yoshikazu

    1991-01-01

    The marine aerosol samples over the West Pacific Ocean, the Indian Ocean, and the Antarctic Ocean, collected during the cruises of the Antarctic observation ship Shirase, were analyzed by X-ray fluorescence. As the results, the average concentration of soil derived elements were 11.9 ng/m 3 for Al, 50.6 ng/m 3 for Si, 12.5 ng/m 3 for Fe, over the West Pacific Ocean. These values were so low as 1/100 of their concentrations in the land. Furthermore, these concentrations over the Indian Ocean and the Antarctic Ocean were extremely low, 6.5 ng/m 3 for Al, 13.4 ng/m 3 for Si, 3.5 ng/m 3 for Fe with average. It is considered that these values are the background concentration of soil derived elements in the marine atmosphere

  18. Primary productivity, phytoplankton standing crop and physico-chemical characteristics of the Antarctic and adjacent central Indian Ocean waters

    Digital Repository Service at National Institute of Oceanography (India)

    JiyalalRam, M.

    Primary productivity, phytoplankton pigments and physico-chemical properties were studied in Antarctic waters and adjoining Indian Ocean between 11 degrees and 67 degrees E longitudes from polynya region (60 degrees S) to equator during the austral...

  19. Investigating the turbulence response of a 1-D idealized water column located in the sub-Antarctic zone with focus on the upper ocean dynamics

    CSIR Research Space (South Africa)

    Boodhraj, Kirodh

    2017-09-01

    Full Text Available A one-dimensional ocean physical model was implemented in the sub-Antarctic Southern Ocean using the Nucleus for the European Modelling of the Ocean (NEMO) model. It was used to examine the effects of the turbulence response of the simulation...

  20. Environmental contamination in Antarctic ecosystems.

    Science.gov (United States)

    Bargagli, R

    2008-08-01

    Although the remote continent of Antarctica is perceived as the symbol of the last great wilderness, the human presence in the Southern Ocean and the continent began in the early 1900s for hunting, fishing and exploration, and many invasive plant and animal species have been deliberately introduced in several sub-Antarctic islands. Over the last 50 years, the development of research and tourism have locally affected terrestrial and marine coastal ecosystems through fuel combustion (for transportation and energy production), accidental oil spills, waste incineration and sewage. Although natural "barriers" such as oceanic and atmospheric circulation protect Antarctica from lower latitude water and air masses, available data on concentrations of metals, pesticides and other persistent pollutants in air, snow, mosses, lichens and marine organisms show that most persistent contaminants in the Antarctic environment are transported from other continents in the Southern Hemisphere. At present, levels of most contaminants in Antarctic organisms are lower than those in related species from other remote regions, except for the natural accumulation of Cd and Hg in several marine organisms and especially in albatrosses and petrels. The concentrations of organic pollutants in the eggs of an opportunistic top predator such as the south polar skua are close to those that may cause adverse health effects. Population growth and industrial development in several countries of the Southern Hemisphere are changing the global pattern of persistent anthropogenic contaminants and new classes of chemicals have already been detected in the Antarctic environment. Although the Protocol on Environmental Protection to the Antarctic Treaty provides strict guidelines for the protection of the Antarctic environment and establishes obligations for all human activity in the continent and the Southern Ocean, global warming, population growth and industrial development in countries of the Southern

  1. Sea-level response to abrupt ocean warming of Antarctic ice shelves

    Science.gov (United States)

    Pattyn, Frank

    2016-04-01

    Antarctica's contribution to global sea-level rise increases steadily. A fundamental question remains whether the ice discharge will lead to marine ice sheet instability (MISI) and collapse of certain sectors of the ice sheet or whether ice loss will increase linearly with the warming trends. Therefore, we employ a newly developed ice sheet model of the Antarctic ice sheet, called f.ETISh (fast Elementary Thermomechanical Ice Sheet model) to simulate ice sheet response to abrupt perturbations in ocean and atmospheric temperature. The f.ETISh model is a vertically integrated hybrid (SSA/SIA) ice sheet model including ice shelves. Although vertically integrated, thermomechanical coupling is ensured through a simplified representation of ice sheet thermodynamics based on an analytical solution of the vertical temperature profile, including strain heating and horizontal advection. The marine boundary is represented by a flux condition either coherent with power-law basal sliding (Pollard & Deconto (2012) based on Schoof (2007)) or according to Coulomb basal friction (Tsai et al., 2015), both taking into account ice-shelf buttressing. Model initialization is based on optimization of the basal friction field. Besides the traditional MISMIP tests, new tests with respect to MISI in plan-view models have been devised. The model is forced with stepwise ocean and atmosphere temperature perturbations. The former is based on a parametrised sub-shelf melt (limited to ice shelves), while the latter is based on present-day mass balance/surface temperature and corrected for elevation changes. Surface melting is introduced using a PDD model. Results show a general linear response in mass loss to ocean warming. Nonlinear response due to MISI occurs under specific conditions and is highly sensitive to the basal conditions near the grounding line, governed by both the initial conditions and the basal sliding/deformation model. The Coulomb friction model leads to significantly higher

  2. Ocean acidification changes the structure of an Antarctic coastal protistan community

    Directory of Open Access Journals (Sweden)

    A. M. Hancock

    2018-04-01

    Full Text Available Antarctic near-shore waters are amongst the most sensitive in the world to ocean acidification. Microbes occupying these waters are critical drivers of ecosystem productivity, elemental cycling and ocean biogeochemistry, yet little is known about their sensitivity to ocean acidification. A six-level, dose–response experiment was conducted using 650 L incubation tanks (minicosms adjusted to a gradient in fugacity of carbon dioxide (fCO2 from 343 to 1641 µatm. The six minicosms were filled with near-shore water from Prydz Bay, East Antarctica, and the protistan composition and abundance was determined by microscopy during 18 days of incubation. No CO2-related change in the protistan community composition was observed during the initial 8 day acclimation period under low light. Thereafter, the response of both autotrophic and heterotrophic protists to fCO2 was species-specific. The response of diatoms was mainly cell size related; microplanktonic diatoms ( >  20 µm increased in abundance with low to moderate fCO2 (343–634 µatm but decreased at fCO2  ≥  953 µatm. Similarly, the abundance of Phaeocystis antarctica increased with increasing fCO2 peaking at 634 µatm. Above this threshold the abundance of micro-sized diatoms and P. antarctica fell dramatically, and nanoplanktonic diatoms ( ≤  20 µm dominated, therefore culminating in a significant change in the protistan community composition. Comparisons of these results with previous experiments conducted at this site show that the fCO2 thresholds are similar, despite seasonal and interannual differences in the physical and biotic environment. This suggests that near-shore microbial communities are likely to change significantly near the end of this century if anthropogenic CO2 release continues unabated, with profound ramifications for near-shore Antarctic ecosystem food webs and biogeochemical cycling.

  3. Light intensity modulates the response of two Antarctic diatom species to ocean acidification

    Directory of Open Access Journals (Sweden)

    Jasmin Pascale Heiden

    2016-12-01

    Full Text Available It is largely unknown how rising atmospheric CO2 concentrations and changes in the upper mixed layer depth, with its subsequent effects on light availability will affect phytoplankton physiology in the Southern Ocean. Linking seasonal variations in the availability of CO2 and light to abundances and physiological traits of key phytoplankton species could aid to understand their abilities to acclimate to predicted future climatic conditions. To investigate the combined effects of CO2 and light on two ecologically relevant Antarctic diatoms (Fragilariopsis curta and Odontella weisflogii a matrix of three light intensities (LL=20, ML=200, HL=500 µmol photons m-2 s-1 and three pCO2 levels (low=180, ambient=380, high=1000 µatm was applied assessing their effects on growth, particulate organic carbon (POC fixation and photophysiology. Under ambient pCO2, POC production rates were highest already at low light in Fragilariopsis, indicating saturation of photosynthesis, while in Odontella highest rates were only reached at medium irradiances. In both species ocean acidification did not stimulate, but rather inhibited, growth and POC production under low and medium light. This effect was, however, amended under high growth irradiances. Low pCO2 levels inhibited growth and POC production in both species at low and medium light, and further decreased absETRs under high light. Our results suggest that Southern Ocean diatoms were sensitive to changes in pCO2, showing species-specific responses, which were further modulated by light intensity. The two diatom species represent distinct ecotypes and revealed discrete physiological traits that matched their seasonal occurrence with the related physical conditions in Antarctic coastal waters.

  4. Antarctic climate change and the environment

    Science.gov (United States)

    2009-11-01

    This volume provides a comprehensive, up-to-date account of how the physical and biological : environment of the Antarctic continent and Southern Ocean has changed from Deep Time until : the present day. It also considers how the Antarctic environmen...

  5. Draft genome of the Antarctic dragonfish, Parachaenichthys charcoti.

    Science.gov (United States)

    Ahn, Do-Hwan; Shin, Seung Chul; Kim, Bo-Mi; Kang, Seunghyun; Kim, Jin-Hyoung; Ahn, Inhye; Park, Joonho; Park, Hyun

    2017-08-01

    The Antarctic bathydraconid dragonfish, Parachaenichthys charcoti, is an Antarctic notothenioid teleost endemic to the Southern Ocean. The Southern Ocean has cooled to -1.8ºC over the past 30 million years, and the seawater had retained this cold temperature and isolated oceanic environment because of the Antarctic Circumpolar Current. Notothenioids dominate Antarctic fish, making up 90% of the biomass, and all notothenioids have undergone molecular and ecological diversification to survive in this cold environment. Therefore, they are considered an attractive Antarctic fish model for evolutionary and ancestral genomic studies. Bathydraconidae is a speciose family of the Notothenioidei, the dominant taxonomic component of Antarctic teleosts. To understand the process of evolution of Antarctic fish, we select a typical Antarctic bathydraconid dragonfish, P. charcoti. Here, we have sequenced, de novo assembled, and annotated a comprehensive genome from P. charcoti. The draft genome of P. charcoti is 709 Mb in size. The N50 contig length is 6145 bp, and its N50 scaffold length 178 362 kb. The genome of P. charcoti is predicted to contain 32 712 genes, 18 455 of which have been assigned preliminary functions. A total of 8951 orthologous groups common to 7 species of fish were identified, while 333 genes were identified in P. charcoti only; 2519 orthologous groups were also identified in both P. charcoti and N. coriiceps, another Antarctic fish. Four gene ontology terms were statistically overrepresented among the 333 genes unique to P. charcoti, according to gene ontology enrichment analysis. The draft P. charcoti genome will broaden our understanding of the evolution of Antarctic fish in their extreme environment. It will provide a basis for further investigating the unusual characteristics of Antarctic fishes. © The Author 2017. Published by Oxford University Press.

  6. Winter habitat predictions of a key Southern Ocean predator, the Antarctic fur seal (Arctocephalus gazella)

    Science.gov (United States)

    Arthur, Benjamin; Hindell, Mark; Bester, Marthan; De Bruyn, P. J. Nico; Trathan, Phil; Goebel, Michael; Lea, Mary-Anne

    2017-06-01

    Quantification of the physical and biological environmental factors that influence the spatial distribution of higher trophic species is central to inform management and develop ecosystem models, particularly in light of ocean changes. We used tracking data from 184 female Antarctic fur seals (Arctocephalus gazella) to develop habitat models for three breeding colonies for the poorly studied Southern Ocean winter period. Models were used to identify and predict the broadly important winter foraging habitat and to elucidate the environmental factors influencing these areas. Model predictions closely matched observations and several core areas of foraging habitat were identified for each colony, with notable areas of inter-colony overlap suggesting shared productive foraging grounds. Seals displayed clear choice of foraging habitat, travelling through areas of presumably poorer quality to access habitats that likely offer an energetic advantage in terms of prey intake. The relationships between environmental predictors and foraging habitat varied between colonies, with the principal predictors being wind speed, sea surface temperature, chlorophyll a concentration, bathymetry and distance to the colony. The availability of core foraging areas was not consistent throughout the winter period. The habitat models developed in this study not only reveal the core foraging habitats of Antarctic fur seals from multiple colonies, but can facilitate the hindcasting of historical foraging habitats as well as novel predictions of important habitat for other major colonies currently lacking information of the at-sea distribution of this major Southern Ocean consumer.

  7. Secondary organic aerosols over oceans via oxidation of isoprene and monoterpenes from Arctic to Antarctic.

    Science.gov (United States)

    Hu, Qi-Hou; Xie, Zhou-Qing; Wang, Xin-Ming; Kang, Hui; He, Quan-Fu; Zhang, Pengfei

    2013-01-01

    Isoprene and monoterpenes are important precursors of secondary organic aerosols (SOA) in continents. However, their contributions to aerosols over oceans are still inconclusive. Here we analyzed SOA tracers from isoprene and monoterpenes in aerosol samples collected over oceans during the Chinese Arctic and Antarctic Research Expeditions. Combined with literature reports elsewhere, we found that the dominant tracers are the oxidation products of isoprene. The concentrations of tracers varied considerably. The mean average values were approximately one order of magnitude higher in the Northern Hemisphere than in the Southern Hemisphere. High values were generally observed in coastal regions. This phenomenon was ascribed to the outflow influence from continental sources. High levels of isoprene could emit from oceans and consequently have a significant impact on marine SOA as inferred from isoprene SOA during phytoplankton blooms, which may abruptly increase up to 95 ng/m³ in the boundary layer over remote oceans.

  8. SPREADING OF ANTARCTIC BOTTOM WATER IN THE ATLANTIC OCEAN

    Directory of Open Access Journals (Sweden)

    Eugene Morozov

    2012-01-01

    Full Text Available This paper describes the transport of bottom water from its source region in the Weddell Sea through the abyssal channels of the Atlantic Ocean. The research brings together the recent observations and historical data. A strong flow of Antarctic Bottom Water through the Vema Channel is analyzed. The mean speed of the flow is 30 cm/s. A temperature increase was found in the deep Vema Channel, which has been observed for 30 years already. The flow of bottom water in the northern part of the Brazil Basin splits. Part of the water flows through the Romanche and Chain fracture zones. The other part flows to the North American Basin. Part of the latter flow propagates through the Vema Fracture Zone into the Northeast Atlantic. The properties of bottom water in the Kane Gap and Discovery Gap are also analyzed.

  9. Antarctic Ice Sheet Discharge Driven by Atmosphere-Ocean Feedbacks Across the Last Glacial Termination

    Science.gov (United States)

    Fogwill, C. J.; Turney, C. S.; Golledge, N. R.; Etheridge, D. M.; Rubino, M.; Thornton, D.; Baker, A.; Weber, M. E.; Woodward, J.; van Ommen, T. D.; Moy, A. D.; Davies, S. M.; Bird, M. I.; Winter, K.; Munksgaard, N.; Menviel, L.; Rootes, C.; Vohra, J.; Rivera, A.; Cooper, A.

    2016-12-01

    Reconstructing the dynamic response of the Antarctic ice sheets to warming during the Last Glacial Termination (LGT; 18,000-11,650 yrs ago) allows us to identify ice-climate feedbacks that could improve future projections1,2. Whilst the sequence of events during this period are reasonably well-known, relatively poor chronological control has precluded precise alignment of ice, atmospheric and marine records2, making it difficult to assess relationships between Antarctic ice-sheet dynamics, climate change and sea-level rise3-5. Here we present results from a highly-resolved `horizontal ice core'6,7 from the Weddell Sea Embayment, which records millennial-scale ice-sheet dynamics across this extensive sector of Antarctica. Counterintuitively, we find ice-sheet surface drawdown of 600 m across the Antarctic Cold Reversal (ACR; 14,600-12,700 yrs ago)5, with stabilisation during the subsequent millennia of atmospheric warming. Earth system and ice-sheet modelling highlights that this response was likely sustained by strong ocean-ice feedbacks4,8; however, the drivers remain uncertain. Given the coincidence of the ice-sheet changes recorded with marked shifts in atmospheric circulation9,10,11we suggest that millennial-scale Antarctic ice-sheet behaviour was initiated and sustained by global atmospheric teleconnections across the LGT. This has important ramifications ice-sheet stability under contemporary climate change, with changing atmospheric and oceanic circulation patterns. 1 Collins, M. et al. in Climate Change 2013: The Physical Science Basis. 2 Weber, M. E. et al. Nature 510, 134-138, (2014). 3 Weaver, A. J., et al., Science 299, 1709-1713, (2003). 4 Golledge, N. R. et al. Nat Commun 5, (2014). 5 Pedro, J. B. et al. Nature Geosci9. 51-55 (2015). 6 Turney, C. S. M. et al. Journal of Quaternary Science 28, 697-704 (2013). 7 Winter, K. et al. Geophys. Res. Lett.43. 5. 2019-2026 (2016). 8 Menviel, L., A. et al., Quaternary Science Reviews 30, 1155-1172 (2011). 9 Hogg

  10. Sources and levels of ambient ocean sound near the Antarctic Peninsula.

    Directory of Open Access Journals (Sweden)

    Robert P Dziak

    Full Text Available Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10-20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus and fin (B. physalus whales also dominate the long-term spectra records in the 15-28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns, likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.

  11. Seabed images from Southern Ocean shelf regions off the northern Antarctic Peninsula and in the southeastern Weddell Sea

    Science.gov (United States)

    Piepenburg, Dieter; Buschmann, Alexander; Driemel, Amelie; Grobe, Hannes; Gutt, Julian; Schumacher, Stefanie; Segelken-Voigt, Alexandra; Sieger, Rainer

    2017-07-01

    Recent advances in underwater imaging technology allow for the gathering of invaluable scientific information on seafloor ecosystems, such as direct in situ views of seabed habitats and quantitative data on the composition, diversity, abundance, and distribution of epibenthic fauna. The imaging approach has been extensively used within the research project DynAMo (Dynamics of Antarctic Marine Shelf Ecosystems) at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven (AWI), which aimed to comparatively assess the pace and quality of the dynamics of Southern Ocean benthos. Within this framework, epibenthic spatial distribution patterns have been comparatively investigated in two regions in the Atlantic sector of the Southern Ocean: the shelf areas off the northern tip of the Antarctic Peninsula, representing a region with above-average warming of surface waters and sea-ice reduction, and the shelves of the eastern Weddell Sea as an example of a stable high-Antarctic marine environment that is not (yet) affected by climate change. The AWI Ocean Floor Observation System (OFOS) was used to collect seabed imagery during two cruises of the German research vessel Polarstern, ANT-XXIX/3 (PS81) to the Antarctic Peninsula from January to March 2013 and ANT-XXXI/2 (PS96) to the Weddell Sea from December 2015 to February 2016. Here, we report on the image and data collections gathered during these cruises. During PS81, OFOS was successfully deployed at a total of 31 stations at water depths between 29 and 784 m. At most stations, series of 500 to 530 pictures ( > 15 000 in total, each depicting a seabed area of approximately 3.45 m2 or 2.3 × 1.5 m) were taken along transects approximately 3.7 km in length. During PS96, OFOS was used at a total of 13 stations at water depths between 200 and 754 m, yielding series of 110 to 293 photos (2670 in total) along transects 0.9 to 2.6 km in length. All seabed images taken during the two cruises

  12. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf.

    Science.gov (United States)

    Garabato, Alberto C Naveira; Forryan, Alexander; Dutrieux, Pierre; Brannigan, Liam; Biddle, Louise C; Heywood, Karen J; Jenkins, Adrian; Firing, Yvonne L; Kimura, Satoshi

    2017-02-09

    The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change. The increased freshwater output from Antarctica is important in determining sea level rise, the fate of Antarctic sea ice and its effect on the Earth's albedo, ongoing changes in global deep-ocean ventilation, and the evolution of Southern Ocean ecosystems and carbon cycling. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models.

  13. The changing form of Antarctic biodiversity.

    Science.gov (United States)

    Chown, Steven L; Clarke, Andrew; Fraser, Ceridwen I; Cary, S Craig; Moon, Katherine L; McGeoch, Melodie A

    2015-06-25

    Antarctic biodiversity is much more extensive, ecologically diverse and biogeographically structured than previously thought. Understanding of how this diversity is distributed in marine and terrestrial systems, the mechanisms underlying its spatial variation, and the significance of the microbiota is growing rapidly. Broadly recognizable drivers of diversity variation include energy availability and historical refugia. The impacts of local human activities and global environmental change nonetheless pose challenges to the current and future understanding of Antarctic biodiversity. Life in the Antarctic and the Southern Ocean is surprisingly rich, and as much at risk from environmental change as it is elsewhere.

  14. Oceanic an climatic consequences of a sudden large-scale West Antarctic Ice Sheet collapse

    Science.gov (United States)

    Scarff, Katie; Green, Mattias; Schmittner, Andreas

    2015-04-01

    Atmospheric warming is progressing to the point where the West Antarctic Ice Sheet (WAIS) will experience an elevated rate of discharge. The current discharge rate of WAIS is around 0.005Sv, but this rate will most likely accelerate over this century. The input of freshwater, in the form of ice, may have a profound effect on oceanic circulation systems, including potentially reducing the formation of deep water in the Southern Ocean and thus triggering or enhancing the bipolar seesaw. Using UVic - an intermediate complexity ocean-climate model - we investigate how various hosing rates from the WAIS will impact of the present and future ocean circulation and climate. These scenarios range from observed hosing rates (~0.005Sv) being applied for 100 years, to a total collapse of the WAIS over the next 100 years (the equivalent to a0.7Sv hosing). We show that even the present day observed rates can have a significant impact on the ocean and atmospheric temperatures, and that the bipolar seesaw may indeed be enhanced by the Southern Ocean hosing. Consequently, there is a speed-up of the Meridional Overturning Circulation (MOC) early on during the hosing, which leads to a warming over the North Atlantic, and a subsequent reduction in the MOC on centennial scales. The larger hosing cases show more dramatic effects with near-complete shutdowns of the MOC during the hosing. Furthermore, global warming scenarios based on the IPCC "business as usual" scenario show that the atmospheric warming will change the response of the ocean to Southern Ocean hosing and that the warming will dominate the perturbation. The potential feedback between changes in the ocean stratification in the scenarios and tidally driven abyssal mixing via tidal conversion is also explored.

  15. Wide range of metallic and organic contaminants in various tissues of the Antarctic prion, a planktonophagous seabird from the Southern Ocean

    International Nuclear Information System (INIS)

    Fromant, Aymeric; Carravieri, Alice; Bustamante, Paco; Labadie, Pierre; Budzinski, Hélène; Peluhet, Laurent; Churlaud, Carine; Chastel, Olivier; Cherel, Yves

    2016-01-01

    ABSTRACT: Trace elements (n = 14) and persistent organic pollutants (POPs, n = 30) were measured in blood, liver, kidney, muscle and feathers of 10 Antarctic prions (Pachyptila desolata) from Kerguelen Islands, southern Indian Ocean, in order to assess their concentrations, tissue distribution, and inter-tissue and inter-contaminant relationships. Liver, kidney and feathers presented the highest burdens of arsenic, cadmium and mercury, respectively. Concentrations of cadmium, copper, iron, and zinc correlated in liver and muscle, suggesting that uptake and pathways of metabolism and storage were similar for these elements. The major POPs were 4,4′-DDE, mirex, PCB-153 and PCB-138. The concentrations and tissue distribution patterns of environmental contaminants were overall in accordance with previous results in other seabirds. Conversely, some Antarctic prions showed surprisingly high concentrations of BDE-209. This compound has been rarely observed in seabirds before, and its presence in Antarctic prions could be due to the species feeding habits or to the ingestion of plastic debris. Overall, the study shows that relatively lower trophic level seabirds (zooplankton-eaters) breeding in the remote southern Indian Ocean are exposed to a wide range of environmental contaminants, in particular cadmium, selenium and some emerging-POPs, which merits further toxicological investigations. - Highlights: • Trace elements and POPs were measured in various tissues of 10 Antarctic prions. • Residue diversity was notable given the species' small size and low trophic position. • Cd, Se, BDE 183 and 209 showed noticeably high internal tissue concentrations. • Several POPs showed inter- and intra-tissue correlations, indicating co-exposure. • Blood was validated as a good bioindicator of internal tissue As and Hg levels.

  16. Wide range of metallic and organic contaminants in various tissues of the Antarctic prion, a planktonophagous seabird from the Southern Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Fromant, Aymeric [Centre d' Etudes Biologiques de Chizé, UMR 7372 CNRS—Université de La Rochelle, 79360 Villiers-en-Bois (France); Carravieri, Alice, E-mail: carravieri@cebc.cnrs.fr [Centre d' Etudes Biologiques de Chizé, UMR 7372 CNRS—Université de La Rochelle, 79360 Villiers-en-Bois (France); Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS—Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Bustamante, Paco [Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS—Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Labadie, Pierre; Budzinski, Hélène; Peluhet, Laurent [Université de Bordeaux, UMR 5805 EPOC (LPTC Research Group), Université Bordeaux, 351 Cours de la Libération, F 33405 Talence Cedex (France); Churlaud, Carine [Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS—Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Chastel, Olivier; Cherel, Yves [Centre d' Etudes Biologiques de Chizé, UMR 7372 CNRS—Université de La Rochelle, 79360 Villiers-en-Bois (France)

    2016-02-15

    ABSTRACT: Trace elements (n = 14) and persistent organic pollutants (POPs, n = 30) were measured in blood, liver, kidney, muscle and feathers of 10 Antarctic prions (Pachyptila desolata) from Kerguelen Islands, southern Indian Ocean, in order to assess their concentrations, tissue distribution, and inter-tissue and inter-contaminant relationships. Liver, kidney and feathers presented the highest burdens of arsenic, cadmium and mercury, respectively. Concentrations of cadmium, copper, iron, and zinc correlated in liver and muscle, suggesting that uptake and pathways of metabolism and storage were similar for these elements. The major POPs were 4,4′-DDE, mirex, PCB-153 and PCB-138. The concentrations and tissue distribution patterns of environmental contaminants were overall in accordance with previous results in other seabirds. Conversely, some Antarctic prions showed surprisingly high concentrations of BDE-209. This compound has been rarely observed in seabirds before, and its presence in Antarctic prions could be due to the species feeding habits or to the ingestion of plastic debris. Overall, the study shows that relatively lower trophic level seabirds (zooplankton-eaters) breeding in the remote southern Indian Ocean are exposed to a wide range of environmental contaminants, in particular cadmium, selenium and some emerging-POPs, which merits further toxicological investigations. - Highlights: • Trace elements and POPs were measured in various tissues of 10 Antarctic prions. • Residue diversity was notable given the species' small size and low trophic position. • Cd, Se, BDE 183 and 209 showed noticeably high internal tissue concentrations. • Several POPs showed inter- and intra-tissue correlations, indicating co-exposure. • Blood was validated as a good bioindicator of internal tissue As and Hg levels.

  17. Bacteria, plankton, and trace metal, and other data from bottle and CTD casts in the Antarctic from the NATHANIEL B. PALMER and ROGER REVELL in support of the US Joint Global Ocean Flux Study / Antarctic Environments Southern Ocean Process Study (JGOFS /AESOPS) from 1996-10-17 to 1998-03-15 (NODC Accession 0000504)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Phytoplankton and other data were collected in the Antarctic from the NATHANIEL B. PALMER and ROGER REVELL from 17 October 1996 to 15 March 1998. Bottle data include...

  18. Expanding Antarctic Sea Ice: Anthropogenic or Natural Variability?

    Science.gov (United States)

    Bitz, C. M.

    2016-12-01

    Antarctic sea ice extent has increased over the last 36 years according to the satellite record. Concurrent with Antarctic sea-ice expansion has been broad cooling of the Southern Ocean sea-surface temperature. Not only are Southern Ocean sea ice and SST trends at odds with expectations from greenhouse gas-induced warming, the trend patterns are not reproduced in historical simulations with comprehensive global climate models. While a variety of different factors may have contributed to the observed trends in recent decades, we propose that it is atmospheric circulation changes - and the changes in ocean circulation they induce - that have emerged as the most likely cause of the observed Southern Ocean sea ice and SST trends. I will discuss deficiencies in models that could explain their incorrect response. In addition, I will present results from a series of experiments where the Antarctic sea ice and ocean are forced by atmospheric perturbations imposed within a coupled climate model. Figure caption: Linear trends of annual-mean SST (left) and annual-mean sea-ice concentration (right) over 1980-2014. SST is from NOAA's Optimum Interpolation SST dataset (version 2; Reynolds et al. 2002). Sea-ice concentration is from passive microwave observations using the NASA Team algorithm. Only the annual means are shown here for brevity and because the signal to noise is greater than in the seasonal means. Figure from Armour and Bitz (2015).

  19. Impacts of Atmosphere-Ocean Coupling on Southern Hemisphere Climate Change

    Science.gov (United States)

    Li, Feng; Newman, Paul; Pawson, Steven

    2013-01-01

    Climate in the Southern Hemisphere (SH) has undergone significant changes in recent decades. These changes are closely linked to the shift of the Southern Annular Mode (SAM) towards its positive polarity, which is driven primarily by Antarctic ozone depletion. There is growing evidence that Antarctic ozone depletion has significant impacts on Southern Ocean circulation change. However, it is poorly understood whether and how ocean feedback might impact the SAM and climate change in the SH atmosphere. This outstanding science question is investigated using the Goddard Earth Observing System Coupled Atmosphere-Ocean-Chemistry Climate Model(GEOS-AOCCM).We perform ensemble simulations of the recent past (1960-2010) with and without the interactive ocean. For simulations without the interactive ocean, we use sea surface temperatures and sea ice concentrations produced by the interactive ocean simulations. The differences between these two ensemble simulations quantify the effects of atmosphere-ocean coupling. We will investigate the impacts of atmosphere-ocean coupling on stratospheric processes such as Antarctic ozone depletion and Antarctic polar vortex breakup. We will address whether ocean feedback affects Rossby wave generation in the troposphere and wave propagation into the stratosphere. Another focuson this study is to assess how ocean feedback might affect the tropospheric SAM response to Antarctic ozone depletion

  20. Comparison of the accuracy of SST estimates by artificial neural networks (ANN) and other quantitative methods using radiolarian data from the Antarctic and Pacific Oceans

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Malmgren, B.A.

    ) regression, the maximum likelihood (ML) method, and artificial neural networks (ANNs), based on radiolarian faunal abundance data from surface sediments from the Antarctic and Pacific Oceans. Recent studies have suggested that ANNs may represent one...

  1. Transcriptomic response of the Antarctic pteropod Limacina helicina antarctica to ocean acidification.

    Science.gov (United States)

    Johnson, Kevin M; Hofmann, Gretchen E

    2017-10-23

    Ocean acidification (OA), a change in ocean chemistry due to the absorption of atmospheric CO 2 into surface oceans, challenges biogenic calcification in many marine organisms. Ocean acidification is expected to rapidly progress in polar seas, with regions of the Southern Ocean expected to experience severe OA within decades. Biologically, the consequences of OA challenge calcification processes and impose an energetic cost. In order to better characterize the response of a polar calcifier to conditions of OA, we assessed differential gene expression in the Antarctic pteropod, Limacina helicina antarctica. Experimental levels of pCO 2 were chosen to create both contemporary pH conditions, and to mimic future pH expected in OA scenarios. Significant changes in the transcriptome were observed when juvenile L. h. antarctica were acclimated for 21 days to low-pH (7.71), mid-pH (7.9) or high-pH (8.13) conditions. Differential gene expression analysis of individuals maintained in the low-pH treatment identified down-regulation of genes involved in cytoskeletal structure, lipid transport, and metabolism. High pH exposure led to increased expression and enrichment for genes involved in shell formation, calcium ion binding, and DNA binding. Significant differential gene expression was observed in four major cellular and physiological processes: shell formation, the cellular stress response, metabolism, and neural function. Across these functional groups, exposure to conditions that mimic ocean acidification led to rapid suppression of gene expression. Results of this study demonstrated that the transcriptome of the juvenile pteropod, L. h. antarctica, was dynamic and changed in response to different levels of pCO 2 . In a global change context, exposure of L. h. antarctica to the low pH, high pCO 2 OA conditions resulted in a suppression of transcripts for genes involved in key physiological processes: calcification, metabolism, and the cellular stress response. The

  2. Freshening of Antarctic Intermediate Water in the South Atlantic Ocean in 2005-2014

    Science.gov (United States)

    Yao, Wenjun; Shi, Jiuxin; Zhao, Xiaolong

    2017-07-01

    Basin-scale freshening of Antarctic Intermediate Water (AAIW) is reported to have occurred in the South Atlantic Ocean during the period from 2005 to 2014, as shown by the gridded monthly means of the Array for Real-time Geostrophic Oceanography (Argo) data. This phenomenon was also revealed by two repeated transects along a section at 30° S, performed during the World Ocean Circulation Experiment Hydrographic Program. Freshening of the AAIW was compensated for by a salinity increase of thermocline water, indicating a hydrological cycle intensification. This was supported by the precipitation-minus-evaporation change in the Southern Hemisphere from 2000 to 2014. Freshwater input from atmosphere to ocean surface increased in the subpolar high-precipitation region and vice versa in the subtropical high-evaporation region. Against the background of hydrological cycle changes, a decrease in the transport of Agulhas Leakage (AL), which was revealed by the simulated velocity field, was proposed to be a contributor to the associated freshening of AAIW. Further calculation showed that such a decrease could account for approximately 53 % of the observed freshening (mean salinity reduction of about 0.012 over the AAIW layer). The estimated variability of AL was inferred from a weakening of wind stress over the South Indian Ocean since the beginning of the 2000s, which would facilitate freshwater input from the source region. The mechanical analysis of wind data here was qualitative, but it is contended that this study would be helpful to validate and test predictably coupled sea-air model simulations.

  3. Reconsidering connectivity in the sub-Antarctic.

    Science.gov (United States)

    Moon, Katherine L; Chown, Steven L; Fraser, Ceridwen I

    2017-11-01

    Extreme and remote environments provide useful settings to test ideas about the ecological and evolutionary drivers of biological diversity. In the sub-Antarctic, isolation by geographic, geological and glaciological processes has long been thought to underpin patterns in the region's terrestrial and marine diversity. Molecular studies using increasingly high-resolution data are, however, challenging this perspective, demonstrating that many taxa disperse among distant sub-Antarctic landmasses. Here, we reconsider connectivity in the sub-Antarctic region, identifying which taxa are relatively isolated, which are well connected, and the scales across which this connectivity occurs in both terrestrial and marine systems. Although many organisms show evidence of occasional long-distance, trans-oceanic dispersal, these events are often insufficient to maintain gene flow across the region. Species that do show evidence of connectivity across large distances include both active dispersers and more sedentary species. Overall, connectivity patterns in the sub-Antarctic at intra- and inter-island scales are highly complex, influenced by life-history traits and local dynamics such as relative dispersal capacity and propagule pressure, natal philopatry, feeding associations, the extent of human exploitation, past climate cycles, contemporary climate, and physical barriers to movement. An increasing use of molecular data - particularly genomic data sets that can reveal fine-scale patterns - and more effective international collaboration and communication that facilitates integration of data from across the sub-Antarctic, are providing fresh insights into the processes driving patterns of diversity in the region. These insights offer a platform for assessing the ways in which changing dispersal mechanisms, such as through increasing human activity and changes to wind and ocean circulation, may alter sub-Antarctic biodiversity patterns in the future. © 2017 Cambridge

  4. The not-so-silent world: Measuring Arctic, Equatorial, and Antarctic soundscapes in the Atlantic Ocean

    Science.gov (United States)

    Haver, Samara M.; Klinck, Holger; Nieukirk, Sharon L.; Matsumoto, Haru; Dziak, Robert P.; Miksis-Olds, Jennifer L.

    2017-04-01

    Anthropogenic noise in the ocean has been shown, under certain conditions, to influence the behavior and health of marine mammals. Noise from human activities may interfere with the low-frequency acoustic communication of many Mysticete species, including blue (Balaenoptera musculus) and fin whales (B. physalus). This study analyzed three soundscapes in the Atlantic Ocean, from the Arctic to the Antarctic, to document ambient sound. For 16 months beginning in August 2009, acoustic data (15-100 Hz) were collected in the Fram Strait (79°N, 5.5°E), near Ascension Island (8°S, 14.4°W) and in the Bransfield Strait (62°S, 55.5°W). Results indicate (1) the highest overall sound levels were measured in the equatorial Atlantic, in association with high levels of seismic oil and gas exploration, (2) compared to the tropics, ambient sound levels in polar regions are more seasonally variable, and (3) individual elements beget the seasonal and annual variability of ambient sound levels in high latitudes. Understanding how the variability of natural and man-made contributors to sound may elicit differences in ocean soundscapes is essential to developing strategies to manage and conserve marine ecosystems and animals.

  5. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic.

    Science.gov (United States)

    Hu, Qi-Hou; Xie, Zhou-Qing; Wang, Xin-Ming; Kang, Hui; Zhang, Pengfei

    2013-11-01

    Biomass burning is known to affect air quality, global carbon cycle, and climate. However, the extent to which biomass burning gases/aerosols are present on a global scale, especially in the marine atmosphere, is poorly understood. Here we report the molecular tracer levoglucosan concentrations in marine air from the Arctic Ocean through the North and South Pacific Ocean to Antarctica during burning season. Levoglucosan was found to be present in all regions at ng/m(3) levels with the highest atmospheric loadings present in the mid-latitudes (30°-60° N and S), intermediate loadings in the Arctic, and lowest loadings in the Antarctic and equatorial latitudes. As a whole, levoglucosan concentrations in the Southern Hemisphere were comparable to those in the Northern Hemisphere. Biomass burning has a significant impact on atmospheric Hg and water-soluble organic carbon (WSOC) from pole-to-pole, with more contribution to WSOC in the Northern Hemisphere than in the Southern Hemisphere.

  6. Climate Change Impacts in the sub-Antarctic Islands Technical Report N.2 of ONERC

    International Nuclear Information System (INIS)

    2009-01-01

    Difficult to apprehend as a whole, the polar regions constitute the Arctic to the North, an ocean surrounded by emerged lands, and the Antarctic to the South, a continent bordered by the Austral Ocean where a belt of sub Antarctic islands lies. Climate change impacts on sub Antarctic islands are varied, direct and indirect: glacier retreat, more favourable conditions for introduced species, marine biodiversity modification, etc. This report discusses the French, British, Australian, South African and New Zealand sub Antarctic islands, the climatic evolutions and the resulting impacts, focused especially on biodiversity. The Observatoire National sur les Effets du Rechauffement Climatique and the International Polar Foundation have been joined in this endeavour by the French polar institute Paul-Emile Victor, the administration of the French Southern and Antarctic Lands (TAAF in French) and the International Union for the Conservation of Nature. (authors)

  7. Eddy dynamics in the Southern Ocean: How does the interaction of the Antarctic Circumpolar Current with sea-bed topography influence the surface mixed layer and hence the carbon-climate feedback processes?

    CSIR Research Space (South Africa)

    Kobo, N

    2012-10-01

    Full Text Available The Southern Ocean is an important sink for heat and CO2 and is one of the world’s most productive regions. The unique absence of blocking continents allows the Antarctic Circumpolar Current (ACC) to connect all ocean basins (Atlantic, Pacific...

  8. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice

    Directory of Open Access Journals (Sweden)

    R. S. Humphries

    2016-02-01

    Full Text Available Better characterisation of aerosol processes in pristine, natural environments, such as Antarctica, have recently been shown to lead to the largest reduction in uncertainties in our understanding of radiative forcing. Our understanding of aerosols in the Antarctic region is currently based on measurements that are often limited to boundary layer air masses at spatially sparse coastal and continental research stations, with only a handful of studies in the vast sea-ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the icebreaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3 concentrations exhibited a five-fold increase moving across the polar front, with mean polar cell concentrations of 1130 cm−3 – higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low-pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air masses quickly from the free troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea-ice boundary layer air masses travelled equatorward into the low-albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei which, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between

  9. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice

    Science.gov (United States)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2016-02-01

    Better characterisation of aerosol processes in pristine, natural environments, such as Antarctica, have recently been shown to lead to the largest reduction in uncertainties in our understanding of radiative forcing. Our understanding of aerosols in the Antarctic region is currently based on measurements that are often limited to boundary layer air masses at spatially sparse coastal and continental research stations, with only a handful of studies in the vast sea-ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the icebreaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the polar front, with mean polar cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low-pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air masses quickly from the free troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea-ice boundary layer air masses travelled equatorward into the low-albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei which, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between simulations and observations of

  10. Freshening of Antarctic Intermediate Water in the South Atlantic Ocean in 2005–2014

    Directory of Open Access Journals (Sweden)

    W. Yao

    2017-07-01

    Full Text Available Basin-scale freshening of Antarctic Intermediate Water (AAIW is reported to have occurred in the South Atlantic Ocean during the period from 2005 to 2014, as shown by the gridded monthly means of the Array for Real-time Geostrophic Oceanography (Argo data. This phenomenon was also revealed by two repeated transects along a section at 30° S, performed during the World Ocean Circulation Experiment Hydrographic Program. Freshening of the AAIW was compensated for by a salinity increase of thermocline water, indicating a hydrological cycle intensification. This was supported by the precipitation-minus-evaporation change in the Southern Hemisphere from 2000 to 2014. Freshwater input from atmosphere to ocean surface increased in the subpolar high-precipitation region and vice versa in the subtropical high-evaporation region. Against the background of hydrological cycle changes, a decrease in the transport of Agulhas Leakage (AL, which was revealed by the simulated velocity field, was proposed to be a contributor to the associated freshening of AAIW. Further calculation showed that such a decrease could account for approximately 53 % of the observed freshening (mean salinity reduction of about 0.012 over the AAIW layer. The estimated variability of AL was inferred from a weakening of wind stress over the South Indian Ocean since the beginning of the 2000s, which would facilitate freshwater input from the source region. The mechanical analysis of wind data here was qualitative, but it is contended that this study would be helpful to validate and test predictably coupled sea–air model simulations.

  11. Apparent relationship between thermal regime in Antarctic waters and Indian summer monsoon

    Digital Repository Service at National Institute of Oceanography (India)

    Menon, H.B.; RameshBabu, V.; Sastry, J.S.

    ) charts for the Indian Ocean sector of the Southern Ocean during 2 contrasting years (1977 and 1979) of summer monsoon over India. The results suggest an apparent relationship between the thermal regimes in the Antarctic waters of the Indian Ocean sector...

  12. Antarctic crabs: invasion or endurance?

    Directory of Open Access Journals (Sweden)

    Huw J Griffiths

    Full Text Available Recent scientific interest following the "discovery" of lithodid crabs around Antarctica has centred on a hypothesis that these crabs might be poised to invade the Antarctic shelf if the recent warming trend continues, potentially decimating its native fauna. This "invasion hypothesis" suggests that decapod crabs were driven out of Antarctica 40-15 million years ago and are only now returning as "warm" enough habitats become available. The hypothesis is based on a geographically and spatially poor fossil record of a different group of crabs (Brachyura, and examination of relatively few Recent lithodid samples from the Antarctic slope. In this paper, we examine the existing lithodid fossil record and present the distribution and biogeographic patterns derived from over 16,000 records of Recent Southern Hemisphere crabs and lobsters. Globally, the lithodid fossil record consists of only two known specimens, neither of which comes from the Antarctic. Recent records show that 22 species of crabs and lobsters have been reported from the Southern Ocean, with 12 species found south of 60 °S. All are restricted to waters warmer than 0 °C, with their Antarctic distribution limited to the areas of seafloor dominated by Circumpolar Deep Water (CDW. Currently, CDW extends further and shallower onto the West Antarctic shelf than the known distribution ranges of most lithodid species examined. Geological evidence suggests that West Antarctic shelf could have been available for colonisation during the last 9,000 years. Distribution patterns, species richness, and levels of endemism all suggest that, rather than becoming extinct and recently re-invading from outside Antarctica, the lithodid crabs have likely persisted, and even radiated, on or near to Antarctic slope. We conclude there is no evidence for a modern-day "crab invasion". We recommend a repeated targeted lithodid sampling program along the West Antarctic shelf to fully test the validity of the

  13. Antarctic Circumpolar Current Dynamics and Their Relation to Antarctic Ice Sheet and Perennial Sea-Ice Variability in the Central Drake Passage During the Last Climate Cycle

    Science.gov (United States)

    Kuhn, G.; Wu, S.; Hass, H. C.; Klages, J. P.; Zheng, X.; Arz, H. W.; Esper, O.; Hillenbrand, C. D.; Lange, C.; Lamy, F.; Lohmann, G.; Müller, J.; McCave, I. N. N.; Nürnberg, D.; Roberts, J.; Tiedemann, R.; Timmermann, A.; Titschack, J.; Zhang, X.

    2017-12-01

    The evolution of the Antarctic Ice Sheet during the last climate cycle and the interrelation to global atmospheric and ocean circulation remains controversial and plays an important role for our understanding of ice sheet response to modern global warming. The timing and sequence of deglacial warming is relevant for understanding the variability and sensitivity of the Antarctic Ice Sheet to climatic changes, and the continuing rise of atmospheric greenhouse gas concentrations. The Antarctic Ice Sheet is a pivotal component of the global water budget. Freshwater fluxes from the ice sheet may affect the Antarctic Circumpolar Current (ACC), which is strongly impacted by the westerly wind belt in the Southern Hemisphere (SHWW) and constricted to its narrowest extent in the Drake Passage. The flow of ACC water masses through Drake Passage is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global meridional overturning circulation and global climate change. In order to address orbital and millennial-scale variability of the Antarctic ice sheet and the ACC, we applied a multi-proxy approach on a sediment core from the central Drake Passage including grain size, iceberg-rafted debris, mineral dust, bulk chemical and mineralogical composition, and physical properties. In combination with already published and new sediment records from the Drake Passage and Scotia Sea, as well as high-resolution data from Antarctic ice cores (WDC, EDML), we now have evidence that during glacial times a more northerly extent of the perennial sea-ice zone decreased ACC current velocities in the central Drake Passage. During deglaciation the SHWW shifted southwards due to a decreasing temperature gradient between subtropical and polar latitudes caused by sea ice and ice sheet decline. This in turn caused Southern Hemisphere warming, a more vigorous ACC, stronger Southern Ocean ventilation, and warm Circumpolar Deep Water (CDW) upwelling on Antarctic shelves

  14. Antarctic science

    Science.gov (United States)

    Summerhayes, Colin

    Once upon a time, dinosaurs roamed Antarctica and swam in its seas. Since then, life evolved as the climate cooled into the ice ages. Life will no doubt continue to evolve there as the globe now warms. But nowadays, humans are having a profound and direct effect on life in Antarctica, the sub-Antarctic islands, and the surrounding Southern Ocean, which are being invaded by a wide range of alien species including microbes, algae, fungi, bryophytes, land plants, invertebrates, fish, birds, and mammals.

  15. Climate Prediction Center (CPC) Daily Antarctic Oscillation Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Antarctic Oscillation (AAO) is a leading teleconnection pattern in the Southern Hemisphere circulation. It is calculated as the first Empirical Orthogonal...

  16. Climate Prediction Center(CPC)Monthly Antarctic Oscillation Index

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Antarctic Oscillation (AAO) is a leading teleconnection pattern in the Southern Hemisphere circulation. It is calculated as the first Empirical Orthogonal...

  17. South African Antarctic earth science research programme

    CSIR Research Space (South Africa)

    SASCAR

    1984-02-01

    Full Text Available This document describes the past, current and planned future South African earth science research programme in the Antarctic, Southern Ocean and subantarctic regions. The scientific programme comprises five components into which present and future...

  18. AGU honored for Antarctic book

    Science.gov (United States)

    AGU has won an honorable mention award at the Fifteenth Annual Awards Program for Excellence in Professional and Scholarly Publishing sponsored by the Association of American Publishers for the book Volcanoes of the Antarctic Plate and Southern Oceans. The book is part of AGU's Antarctic Research Series, an outgrowth of research done during the International Geophysical Year that was begun in 1963 with a grant from the National Science Foundation. The award was presented at the AAP Annual Awards Dinner on February 6 at the Ritz-Carlton Hotel in Washington, D.C. The award consists of a medallion and a plate on which the names of the publisher, title, and authors are engraved.

  19. The multi-millennial Antarctic commitment to future sea-level rise.

    Science.gov (United States)

    Golledge, N R; Kowalewski, D E; Naish, T R; Levy, R H; Fogwill, C J; Gasson, E G W

    2015-10-15

    Atmospheric warming is projected to increase global mean surface temperatures by 0.3 to 4.8 degrees Celsius above pre-industrial values by the end of this century. If anthropogenic emissions continue unchecked, the warming increase may reach 8-10 degrees Celsius by 2300 (ref. 2). The contribution that large ice sheets will make to sea-level rise under such warming scenarios is difficult to quantify because the equilibrium-response timescale of ice sheets is longer than those of the atmosphere or ocean. Here we use a coupled ice-sheet/ice-shelf model to show that if atmospheric warming exceeds 1.5 to 2 degrees Celsius above present, collapse of the major Antarctic ice shelves triggers a centennial- to millennial-scale response of the Antarctic ice sheet in which enhanced viscous flow produces a long-term commitment (an unstoppable contribution) to sea-level rise. Our simulations represent the response of the present-day Antarctic ice-sheet system to the oceanic and climatic changes of four representative concentration pathways (RCPs) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We find that substantial Antarctic ice loss can be prevented only by limiting greenhouse gas emissions to RCP 2.6 levels. Higher-emissions scenarios lead to ice loss from Antarctic that will raise sea level by 0.6-3 metres by the year 2300. Our results imply that greenhouse gas emissions in the next few decades will strongly influence the long-term contribution of the Antarctic ice sheet to global sea level.

  20. Antarctic aerosols - A review

    Science.gov (United States)

    Shaw, Glenn E.

    1988-02-01

    Tropospheric aerosols with the diameter range of half a micron reside in the atmosphere for tens of days and teleconnect Antarctica with other regions by transport that reaches planetary scales of distances; thus, the aerosol on the Antarctic ice represents 'memory modules' of events that took place at regions separated from Antarctica by tens of thousands of kilometers. In terms of aerosol mass, the aerosol species include insoluble crustal products (less than 5 percent), transported sea-salt residues (highly variable but averaging about 10 percent), Ni-rich meteoric material, and anomalously enriched material with an unknown origin. Most (70-90 percent by mass) of the aerosol over the Antarctic ice shield, however, is the 'natural acid sulfate aerosol', apparently deriving from biological processes taking place in the surrounding oceans.

  1. The ocean's role in polar climate change: asymmetric Arctic and Antarctic responses to greenhouse gas and ozone forcing.

    Science.gov (United States)

    Marshall, John; Armour, Kyle C; Scott, Jeffery R; Kostov, Yavor; Hausmann, Ute; Ferreira, David; Shepherd, Theodore G; Bitz, Cecilia M

    2014-07-13

    In recent decades, the Arctic has been warming and sea ice disappearing. By contrast, the Southern Ocean around Antarctica has been (mainly) cooling and sea-ice extent growing. We argue here that interhemispheric asymmetries in the mean ocean circulation, with sinking in the northern North Atlantic and upwelling around Antarctica, strongly influence the sea-surface temperature (SST) response to anthropogenic greenhouse gas (GHG) forcing, accelerating warming in the Arctic while delaying it in the Antarctic. Furthermore, while the amplitude of GHG forcing has been similar at the poles, significant ozone depletion only occurs over Antarctica. We suggest that the initial response of SST around Antarctica to ozone depletion is one of cooling and only later adds to the GHG-induced warming trend as upwelling of sub-surface warm water associated with stronger surface westerlies impacts surface properties. We organize our discussion around 'climate response functions' (CRFs), i.e. the response of the climate to 'step' changes in anthropogenic forcing in which GHG and/or ozone-hole forcing is abruptly turned on and the transient response of the climate revealed and studied. Convolutions of known or postulated GHG and ozone-hole forcing functions with their respective CRFs then yield the transient forced SST response (implied by linear response theory), providing a context for discussion of the differing warming/cooling trends in the Arctic and Antarctic. We speculate that the period through which we are now passing may be one in which the delayed warming of SST associated with GHG forcing around Antarctica is largely cancelled by the cooling effects associated with the ozone hole. By mid-century, however, ozone-hole effects may instead be adding to GHG warming around Antarctica but with diminished amplitude as the ozone hole heals. The Arctic, meanwhile, responding to GHG forcing but in a manner amplified by ocean heat transport, may continue to warm at an accelerating rate.

  2. Ocean transport and variability studies of the South Pacific, Southern, and Indian Oceans

    Science.gov (United States)

    Church, John A.; Cresswell, G. R.; Nilsson, C. S.; Mcdougall, T. J.; Coleman, R.; Rizos, C.; Penrose, J.; Hunter, J. R.; Lynch, M. J.

    1991-01-01

    The objectives of this study are to analyze ocean dynamics in the western South Pacific and the adjacent Southern Ocean and the eastern Indian Ocean. Specifically, our objectives for these three regions are, for the South Pacific Ocean: (1) To estimate the volume transport of the east Australian Current (EAC) along the Australian coast and in the Tasman Front, and to estimate the time variability (on seasonal and interannual time scales) of this transport. (2) To contribute to estimating the meridional heat and freshwater fluxes (and their variability) at about 30 deg S. Good estimates of the transport in the western boundary current are essential for accurate estimates of these fluxes. (3) To determine how the EAC transport (and its extension, the Tasman Front and the East Auckland Current) closes the subtropical gyre of the South Pacific and to better determine the structure at the confluence of this current and the Antarctic Circumpolar Current. (4) To examine the structure and time variability of the circulation in the western South Pacific and the adjacent Southern Ocean, particularly at the Tasman Front. For the Indian Ocean: (5) To study the seasonal interannual variations in the strength of the Leeuwin Current. (6) To monitor the Pacific-Indian Ocean throughflow and the South Equatorial and the South Java Currents between northwest Australia and Indonesia. (7) To study the processes that form the water of the permanent oceanic thermocline and, in particular, the way in which new thermocline water enters the permanent thermocline in late winter and early spring as the mixed layer restratifies. For the Southern Ocean: (8) To study the mesoscale and meridional structure of the Southern Ocean between 150 deg E and 170 deg E; in particular, to describe the Antarctic frontal system south of Tasmania and determine its interannual variability; to estimate the exchanges of heat, salt, and other properties between the Indian and Pacific Oceans; and to investigate the

  3. Effects of ocean acidification on the physiological performance and carbon production of the Antarctic sea ice diatom Nitzschia sp. ICE-H.

    Science.gov (United States)

    Qu, Chang-Feng; Liu, Fang-Ming; Zheng, Zhou; Wang, Yi-Bin; Li, Xue-Gang; Yuan, Hua-Mao; Li, Ning; An, Mei-Ling; Wang, Xi-Xi; He, Ying-Ying; Li, Lu-Lu; Miao, Jin-Lai

    2017-07-15

    Ocean acidification (OA) resulting from increasing atmospheric CO 2 strongly influences marine ecosystems, particularly in the polar ocean due to greater CO 2 solubility. Here, we grew the Antarctic sea ice diatom Nitzschia sp. ICE-H in a semicontinuous culture under low (~400ppm) and high (1000ppm) CO 2 levels. Elevated CO 2 resulted in a stimulated physiological response including increased growth rates, chlorophyll a contents, and nitrogen and phosphorus uptake rates. Furthermore, high CO 2 enhanced cellular particulate organic carbon production rates, indicating a greater shift from inorganic to organic carbon. However, the cultures grown in high CO 2 conditions exhibited a decrease in both extracellular and intracellular carbonic anhydrase activity, suggesting that the carbon concentrating mechanisms of Nitzschia sp. ICE-H may be suppressed by elevated CO 2 . Our results revealed that OA would be beneficial to the survival of this sea ice diatom strain, with broad implications for global carbon cycles in the future ocean. Copyright © 2017. Published by Elsevier Ltd.

  4. Time series analysis of the Antarctic Circumpolar Wave via symbolic transfer entropy

    Science.gov (United States)

    Oh, Mingi; Kim, Sehyun; Lim, Kyuseong; Kim, Soo Yong

    2018-06-01

    An attempt to interpret a large-scale climate phenomenon in the Southern Ocean (SO), the Antarctic Circumpolar Wave (ACW), has been made using an information entropy method, symbolic transfer entropy (STE). Over the areas of 50-60∘S latitude belt, information flow for four climate variables, sea surface temperature (SST), sea-ice edge (SIE), sea level pressure (SLP) and meridional wind speed (MWS) is examined. We found a tendency that eastward flow of information is preferred only for oceanic variables, which is a main characteristic of the ACW, an eastward wave making a circuit around the Antarctica. Since the ACW is the coherent pattern in both ocean and atmosphere it is reasonable to infer that the tendency reflects the Antarctic Circumpolar Current (ACC) encircling the Antarctica, rather than an evidence of the ACW. We observed one common feature for all four variables, a strong information flow over the area of the eastern Pacific Ocean, which suggest a signature of El Nino Southern Oscillation (ENSO).

  5. Factors controlling the development of phytoplankton blooms in the Antarctic Ocean

    International Nuclear Information System (INIS)

    Sakshaug, Egil; Holm-Hansen, Osmund

    1991-01-01

    A mathematical model describing the development of phytoplankton blooms as a function of the depth of the wind-mixed layer, spectral distribution of light, passage of atmospheric low-pressure systems, size of the initial phytoplankton stock and loss rates is presented. Model runs represent shade-adapted, large-celled, bloom-forming diatoms Periodic deep mixing caused by strong winds may severely retard the development of blooms and frequently abort them before macronutrients are completely exhausted. Moderate depths of mixing (40-50 m) in combination with a moderately large total loss rate (about 0.013h -1 ) can prevent blooms from developing during the brightest time of the year. Complete exhaustion of macronutrients in the upper waters is likely only if the wind-mixed layer is less than 10 m deep, i.e. in very sheltered waters, and also in the marginal ice zone when ice is melting. The authors do not exclude the possibility of control of phytoplankton biomass by iron in ice-free, deep-sea parts of the Antarctic Ocean, but the implied enhancement of export production through addition of iron might be restricted because of limitation by light, i.e. vertical mixing. (author). 32 ref.; 5 figs.; 2 tabs

  6. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea-ice

    Science.gov (United States)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2015-10-01

    The effect of aerosols on clouds and their radiative properties is one of the largest uncertainties in our understanding of radiative forcing. A recent study has concluded that better characterisation of pristine, natural aerosol processes leads to the largest reduction in these uncertainties. Antarctica, being far from anthropogenic activities, is an ideal location for the study of natural aerosol processes. Aerosol measurements in Antarctica are often limited to boundary layer air-masses at spatially sparse coastal and continental research stations, with only a handful of studies in the sea ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the ice-breaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the Polar Front, with mean Polar Cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air-masses quickly from the free-troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea ice boundary layer air-masses travelled equator-ward into the low albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei where, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and

  7. Measuring Zonal Transport Variability of the Antarctic Circumpolar Current Using GRACE Ocean Bottom Pressure

    Science.gov (United States)

    Makowski, J.; Chambers, D. P.; Bonin, J. A.

    2012-12-01

    Previous studies have suggested that ocean bottom pressure (OBP) can be used to measure the transport variability of the Antarctic Circumpolar Current (ACC). Using OBP data from the JPL ECCO model and the Gravity Recovery and Climate Experiment (GRACE), we examine the zonal transport variability of the ACC integrated between the major fronts between 2003-2010. The JPL ECCO data are used to determine average front positions for the time period studies, as well as where transport is mainly zonal. Statistical analysis will be conducted to determine the uncertainty of the GRACE observations using a simulated data set. We will also begin looking at low frequency changes and how coherent transport variability is from region to region of the ACC. Correlations with bottom pressure south of the ACC and the average basin transports will also be calculated to determine the probability of using bottom pressure south of the ACC as a means for describing the ACC dynamics and transport.

  8. Thick-shelled, grazer-protected diatoms decouple ocean carbon and silicon cycles in the iron-limited Antarctic Circumpolar Current

    Science.gov (United States)

    Assmy, Philipp; Smetacek, Victor; Montresor, Marina; Klaas, Christine; Henjes, Joachim; Strass, Volker H.; Arrieta, Jesús M.; Bathmann, Ulrich; Berg, Gry M.; Breitbarth, Eike; Cisewski, Boris; Friedrichs, Lars; Fuchs, Nike; Herndl, Gerhard J.; Jansen, Sandra; Krägefsky, Sören; Latasa, Mikel; Peeken, Ilka; Röttgers, Rüdiger; Scharek, Renate; Schüller, Susanne E.; Steigenberger, Sebastian; Webb, Adrian; Wolf-Gladrow, Dieter

    2013-01-01

    Diatoms of the iron-replete continental margins and North Atlantic are key exporters of organic carbon. In contrast, diatoms of the iron-limited Antarctic Circumpolar Current sequester silicon, but comparatively little carbon, in the underlying deep ocean and sediments. Because the Southern Ocean is the major hub of oceanic nutrient distribution, selective silicon sequestration there limits diatom blooms elsewhere and consequently the biotic carbon sequestration potential of the entire ocean. We investigated this paradox in an in situ iron fertilization experiment by comparing accumulation and sinking of diatom populations inside and outside the iron-fertilized patch over 5 wk. A bloom comprising various thin- and thick-shelled diatom species developed inside the patch despite the presence of large grazer populations. After the third week, most of the thinner-shelled diatom species underwent mass mortality, formed large, mucous aggregates, and sank out en masse (carbon sinkers). In contrast, thicker-shelled species, in particular Fragilariopsis kerguelensis, persisted in the surface layers, sank mainly empty shells continuously, and reduced silicate concentrations to similar levels both inside and outside the patch (silica sinkers). These patterns imply that thick-shelled, hence grazer-protected, diatom species evolved in response to heavy copepod grazing pressure in the presence of an abundant silicate supply. The ecology of these silica-sinking species decouples silicon and carbon cycles in the iron-limited Southern Ocean, whereas carbon-sinking species, when stimulated by iron fertilization, export more carbon per silicon. Our results suggest that large-scale iron fertilization of the silicate-rich Southern Ocean will not change silicon sequestration but will add carbon to the sinking silica flux. PMID:24248337

  9. Improved simulation of Antarctic sea ice due to the radiative effects of falling snow

    Science.gov (United States)

    Li, J.-L. F.; Richardson, Mark; Hong, Yulan; Lee, Wei-Liang; Wang, Yi-Hui; Yu, Jia-Yuh; Fetzer, Eric; Stephens, Graeme; Liu, Yinghui

    2017-08-01

    Southern Ocean sea-ice cover exerts critical control on local albedo and Antarctic precipitation, but simulated Antarctic sea-ice concentration commonly disagrees with observations. Here we show that the radiative effects of precipitating ice (falling snow) contribute substantially to this discrepancy. Many models exclude these radiative effects, so they underestimate both shortwave albedo and downward longwave radiation. Using two simulations with the climate model CESM1, we show that including falling-snow radiative effects improves the simulations relative to cloud properties from CloudSat-CALIPSO, radiation from CERES-EBAF and sea-ice concentration from passive microwave sensors. From 50-70°S, the simulated sea-ice-area bias is reduced by 2.12 × 106 km2 (55%) in winter and by 1.17 × 106 km2 (39%) in summer, mainly because increased wintertime longwave heating restricts sea-ice growth and so reduces summer albedo. Improved Antarctic sea-ice simulations will increase confidence in projected Antarctic sea level contributions and changes in global warming driven by long-term changes in Southern Ocean feedbacks.

  10. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

    Science.gov (United States)

    Deppeler, Stacy; Petrou, Katherina; Schulz, Kai G.; Westwood, Karen; Pearce, Imojen; McKinlay, John; Davidson, Andrew

    2018-01-01

    High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm) to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a) and particulate organic matter (POM) in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C), causing significant reductions in gross primary production (GPP14C), Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs) and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments ≥ 953 µatm (days 3-5), yet gross bacterial production (GBP14C) remained unchanged and cell-specific bacterial productivity (csBP14C) was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON) combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative effects on the Antarctic food web and the

  11. Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO2 tolerance in phytoplankton productivity

    Directory of Open Access Journals (Sweden)

    S. Deppeler

    2018-01-01

    Full Text Available High-latitude oceans are anticipated to be some of the first regions affected by ocean acidification. Despite this, the effect of ocean acidification on natural communities of Antarctic marine microbes is still not well understood. In this study we exposed an early spring, coastal marine microbial community in Prydz Bay to CO2 levels ranging from ambient (343 µatm to 1641 µatm in six 650 L minicosms. Productivity assays were performed to identify whether a CO2 threshold existed that led to a change in primary productivity, bacterial productivity, and the accumulation of chlorophyll a (Chl a and particulate organic matter (POM in the minicosms. In addition, photophysiological measurements were performed to identify possible mechanisms driving changes in the phytoplankton community. A critical threshold for tolerance to ocean acidification was identified in the phytoplankton community between 953 and 1140 µatm. CO2 levels  ≥ 1140 µatm negatively affected photosynthetic performance and Chl a-normalised primary productivity (csGPP14C, causing significant reductions in gross primary production (GPP14C, Chl a accumulation, nutrient uptake, and POM production. However, there was no effect of CO2 on C : N ratios. Over time, the phytoplankton community acclimated to high CO2 conditions, showing a down-regulation of carbon concentrating mechanisms (CCMs and likely adjusting other intracellular processes. Bacterial abundance initially increased in CO2 treatments  ≥ 953 µatm (days 3–5, yet gross bacterial production (GBP14C remained unchanged and cell-specific bacterial productivity (csBP14C was reduced. Towards the end of the experiment, GBP14C and csBP14C markedly increased across all treatments regardless of CO2 availability. This coincided with increased organic matter availability (POC and PON combined with improved efficiency of carbon uptake. Changes in phytoplankton community production could have negative

  12. History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic: a synthesis

    International Nuclear Information System (INIS)

    Nelson, C.S.; Cooke, P.J.

    2001-01-01

    The New Zealand sector of the Southern Ocean (NZSSO) has opened about the Indian-Pacific spreading ridge throughout the Cenozoic. Today the NZSSO is characterised by broad zonal belts of antarctic (cold), subantarctic (cool), and subtropical (warm) surface-water masses separated by prominent oceanic fronts: the Subtropical Front (STF) c. 43 degrees S, Subantarctic Front (SAF) c. 50 degrees S, and Antarctic Polar Front (AAPF) c. 60 degrees S. Despite a meagre database, the broad pattern of Cenozoic evolution of these fronts is reviewed from the results of Deep Sea Drilling Project-based studies of sediment facies, microfossil assemblages and diversity, and stable isotope records, as well as from evidence in onland New Zealand Cenozoic sequences. Results are depicted schematically on seven paleogeographic maps covering the NZSSO at 10 m.y. intervals through the Cenozoic. During the Paleocene and most of the Eocene (65-35 Ma), the entire NZSSO was under the influence of warm to cool subtropical waters, with no detectable oceanic fronts. In the latest Eocene (c. 35 Ma), a proto-STF is shown separating subantarctic and subtropical waters offshore from Antarctica, near 65 degrees S paleolatitude. During the earliest Oligocene, this front was displaced northwards by development of an AAPF following major global cooling and biotic turnover associated with ice sheet expansion to sea level on East Antarctica. Early Oligocene full opening (c. 31 Ma) of the Tasmanian gateway initiated vigorous proto-circum-Antarctic flow of cold/cool waters, possibly through a West Antarctic seaway linking the southern Pacific and Atlantic Oceans, including detached northwards 'jetting' onto the New Zealand plateau where condensation and unconformity development was widespread in cool-water carbonate facies. Since this time, a broad tripartite division of antarctic, subantarctic, and subtropical waters has existed in the NZSSO, including possible development of a proto-SAF within the

  13. Reaching for the Horizon: Enabling 21st Century Antarctic Science

    Science.gov (United States)

    Rogan-Finnemore, M.; Kennicutt, M. C., II; Kim, Y.

    2015-12-01

    The Council of Managers of National Antarctic Programs' (COMNAP) Antarctic Roadmap Challenges(ARC) project translated the 80 highest priority Antarctic and Southern Ocean scientific questionsidentified by the community via the SCAR Antarctic Science Horizon Scan into the highest prioritytechnological, access, infrastructure and logistics needs to enable the necessary research to answer thequestions. A workshop assembled expert and experienced Antarctic scientists and National AntarcticProgram operators from around the globe to discern the highest priority technological needs includingthe current status of development and availability, where the technologies will be utilized in the Antarctic area, at what temporal scales and frequencies the technologies will be employed,and how broadly applicable the technologies are for answering the highest priority scientific questions.Secondly the logistics, access, and infrastructure requirements were defined that are necessary todeliver the science in terms of feasibility including cost and benefit as determined by expected scientific return on investment. Finally, based on consideration of the science objectives and the mix oftechnologies implications for configuring National Antarctic Program logistics capabilities andinfrastructure architecture over the next 20 years were determined. In particular those elements thatwere either of a complexity, requiring long term investments to achieve and/or having an associated cost that realistically can only (or best) be achieved by international coordination, planning and partnerships were identified. Major trends (changes) in logistics, access, and infrastructure requirements were identified that allow for long-term strategic alignment of international capabilities, resources and capacity. The outcomes of this project will be reported.

  14. Ocean sea-ice modelling in the Southern Ocean around Indian

    Indian Academy of Sciences (India)

    An eddy-resolving coupled ocean sea-ice modelling is carried out in the Southern Ocean region (9∘–78∘E; 51∘–71∘S) using the MITgcm. The model domain incorporates the Indian Antarctic stations, Maitri (11.7∘E; 70.7∘S) and Bharati (76.1∘E; 69.4∘S). The realistic simulation of the surface variables, namely, sea ...

  15. Variations of the Antarctic Circumpolar Current (ACC) in the Kerguelen Sector during the Last Deglaciation : sedimentological and geochemical evidences

    Science.gov (United States)

    Bout-Roumazeilles, V.; Beny, F.; Mazaud, A.; Michel, E.; Crosta, X.; Davies, G. R.; Bory, A. J. M.

    2017-12-01

    High-resolution sedimentological and geochemical records were obtained from two sediment cores recovered by the French R/V Marion Dufresne during the INDIEN-SUD-ACC cruises near the sub-Antarctic Kerguelen Islands (49°S). This area is ideal to record past oceanic and atmospheric changes in the Southern Ocean because they are currently located in the northern branch of the Antarctic Circumpolar Current and under the direct influence of Southern Hemisphere Westerly wind belt. This study focuses on the last termination, with specific emphasis on the impact of severe climatic events (Heinrich Stadial 1, Antarctic Cold Reversal, Younger Dryas) onto the ocean-atmospheric exchange. Results indicates that most of the sediment is derived from the Kerguelen Plateau, characterized by high smectite content. Periodically, a minor contribution of Antarctica is noticeable. In particular, illite variations suggest fast and short northward incursions of Antarctic Bottom Water, probably formed in the Prydz Bay during the last glaciation. Grainsize repartition combined to magnetic parameters show a southward migration of the ACC and the fronts associated from the beginning of the deglaciation, which is consistent with Southern Hemisphere climate variations. On the opposite, it highlights an asynchronous decrease of the ACC strength, with a large drop during the Antarctic Cold Reversal when atmospheric CO2 increase was slowed down. Thus, at least in the studied area, the ACC strength and the Antarctic Climate were not synchronous during the last deglaciation.

  16. Gravity Maps of Antarctic Lithospheric Structure from Remote-Sensing and Seismic Data

    Science.gov (United States)

    Tenzer, Robert; Chen, Wenjin; Baranov, Alexey; Bagherbandi, Mohammad

    2018-02-01

    Remote-sensing data from altimetry and gravity satellite missions combined with seismic information have been used to investigate the Earth's interior, particularly focusing on the lithospheric structure. In this study, we use the subglacial bedrock relief BEDMAP2, the global gravitational model GOCO05S, and the ETOPO1 topographic/bathymetric data, together with a newly developed (continental-scale) seismic crustal model for Antarctica to compile the free-air, Bouguer, and mantle gravity maps over this continent and surrounding oceanic areas. We then use these gravity maps to interpret the Antarctic crustal and uppermost mantle structure. We demonstrate that most of the gravity features seen in gravity maps could be explained by known lithospheric structures. The Bouguer gravity map reveals a contrast between the oceanic and continental crust which marks the extension of the Antarctic continental margins. The isostatic signature in this gravity map confirms deep and compact orogenic roots under the Gamburtsev Subglacial Mountains and more complex orogenic structures under Dronning Maud Land in East Antarctica. Whereas the Bouguer gravity map exhibits features which are closely spatially correlated with the crustal thickness, the mantle gravity map reveals mainly the gravitational signature of the uppermost mantle, which is superposed over a weaker (long-wavelength) signature of density heterogeneities distributed deeper in the mantle. In contrast to a relatively complex and segmented uppermost mantle structure of West Antarctica, the mantle gravity map confirmed a more uniform structure of the East Antarctic Craton. The most pronounced features in this gravity map are divergent tectonic margins along mid-oceanic ridges and continental rifts. Gravity lows at these locations indicate that a broad region of the West Antarctic Rift System continuously extends between the Atlantic-Indian and Pacific-Antarctic mid-oceanic ridges and it is possibly formed by two major

  17. Population-Level Transcriptomic Responses of the Southern Ocean Salp Salpa thompsoni to Environment Variability of the Western Antarctic Peninsula Region

    Science.gov (United States)

    Bucklin, A. C.; Batta Lona, P. G.; Maas, A. E.; O'Neill, R. J.; Wiebe, P. H.

    2015-12-01

    In response to the changing Antarctic climate, the Southern Ocean salp Salpa thompsoni has shown altered patterns of distribution and abundance that are anticipated to have profound impacts on pelagic food webs and ecosystem dynamics. The physiological and molecular processes that underlay ecological function and biogeographical distribution are key to understanding present-day dynamics and predicting future trajectories. This study examined transcriptome-wide patterns of gene expression in relation to biological and physical oceanographic conditions in coastal, shelf and offshore waters of the Western Antarctic Peninsula (WAP) region during austral spring and summer 2011. Based on field observations and collections, seasonal changes in the distribution and abundance of salps of different life stages were associated with differences in water mass structure of the WAP. Our observations are consistent with previous suggestions that bathymetry and currents in Bransfield Strait could generate a retentive cell for an overwintering population of S. thompsoni, which may generate the characteristic salp blooms found throughout the region later in summer. The statistical analysis of transcriptome-wide patterns of gene expression revealed differences among salps collected in different seasons and from different habitats (i.e., coastal versus offshore) in the WAP. Gene expression patterns also clustered by station in austral spring - but not summer - collections, suggesting stronger heterogeneity of environmental conditions. During the summer, differentially expressed genes covered a wider range of functions, including those associated with stress responses. Future research using novel molecular transcriptomic / genomic characterization of S. thompsoni will allow more complete understanding of individual-, population-, and species-level responses to environmental variability and prediction of future dynamics of Southern Ocean food webs and ecosystems.

  18. Southern Ocean CO2 sink: the contribution of the sea ice

    DEFF Research Database (Denmark)

    Delille, B.; Vancoppenolle, Martin; Geilfus, Nicolas-Xavier

    2014-01-01

    at the air-sea ice interface. The sea ice changes from a transient source to a sink for atmospheric CO2. We upscale these observations to the whole Antarctic sea ice cover using the NEMO-LIM3 large-scale sea ice-ocean and provide first esti- mates of spring and summer CO2 uptake from the atmosphere...... by Antarctic sea ice. Over the spring- summer period, the Antarctic sea ice cover is a net sink of atmospheric CO2 of 0.029 Pg C, about 58% of the estimated annual uptake from the Southern Ocean. Sea ice then contributes significantly to the sink of CO2 of the Southern Ocean....... undersaturation while the underlying oceanic waters remains slightly oversaturated. The decrease from winter to summer of pCO2 in the brines is driven by dilution with melting ice, dissolution of carbonate crystals, and net primary production. As the ice warms, its permeability increases, allowing CO2 transfer...

  19. The sensitivity of dimethyl sulfide production to simulated climate change in the Eastern Antarctic Southern Ocean

    International Nuclear Information System (INIS)

    Gabric, Albert J.; Cropp, Roger; Marchant, Harvey

    2003-01-01

    Dimethyl sulfide (DMS) is a radiatively active trace gas produced by enzymatic cleavage of its precursor compound, dimethyl sulfoniopropionate (DMSP), which is released by marine phytoplankton in the upper ocean. Once ventilated to the atmosphere, DMS is oxidised to form non-sea-salt sulfate and methane sulfonate (MSA) aerosols, which are a major source of cloud condensation nuclei (CCN) in remote marine air and may thus play a role in climate regulation. Here we simulate the change in DMS flux in the Eastern Antarctic ocean from 1960-2086, corresponding to equivalent CO 2 tripling relative to pre-industrial levels. Calibration to contemporary climate conditions was carried out using a genetic algorithm to fit the model to surface chlorophyll from the 4-yr SeaWiFs satellite archive and surface DMS from an existing global database. Following the methodology used previously in the Subantarctic Southern Ocean, we then simulated DMS emissions under enhanced greenhouse conditions by forcing the DMS model with output from a coupled atmospheric-ocean general circulation model (GCM). The GCM was run in transient mode under the IPCC/IS92a radiative forcing scenario. By 2086, the change simulated in annual integrated DMS flux is around 20% in ice-free waters, with a greater increase of 45% in the seasonal ice zone (SIZ). Interestingly, the large increase in flux in the SIZ is not due to higher in situ production but mainly because of a loss of ice cover during summer-autumn and an increase in sea-to-air ventilation of DMS. These proportional changes in areal mean flux (25%) are much higher than previously estimated for the Subantarctic Southern Ocean (5%), and point to the possibility of a significant DMS-climate feedback at high Southern latitudes. Due to the nexus between ice cover and food-web structure, the potential for ecological community shifts under enhanced greenhouse conditions is high, and the implications for DMS production are discussed

  20. Generalised additive models to investigate environmental drivers of Antarctic minke whale (Balaenoptera bonaerensis) spatial density in austral summer

    NARCIS (Netherlands)

    Beekmans, B.W.P.M.; Forcada, J.; Murphy, E.J.; Baar, H.J.W.; Bathmann, U.V.; Fleming, A.H.

    2010-01-01

    There is a need to characterise the physical environment associated with Antarctic minke whale density in order to understand long-term changes in minke whale distribution and density in open waters of the Southern Ocean during austral summer months. To investigate environmental drivers of Antarctic

  1. Recent changes in the ventilation of the southern oceans.

    Science.gov (United States)

    Waugh, Darryn W; Primeau, Francois; Devries, Tim; Holzer, Mark

    2013-02-01

    Surface westerly winds in the Southern Hemisphere have intensified over the past few decades, primarily in response to the formation of the Antarctic ozone hole, and there is intense debate on the impact of this on the ocean's circulation and uptake and redistribution of atmospheric gases. We used measurements of chlorofluorocarbon-12 (CFC-12) made in the southern oceans in the early 1990s and mid- to late 2000s to examine changes in ocean ventilation. Our analysis of the CFC-12 data reveals a decrease in the age of subtropical subantarctic mode waters and an increase in the age of circumpolar deep waters, suggesting that the formation of the Antarctic ozone hole has caused large-scale coherent changes in the ventilation of the southern oceans.

  2. The delta18O composition of Antarctic coastal current waters

    International Nuclear Information System (INIS)

    Frew, R.; Heywood, K.; Dennis, P.

    1997-01-01

    The varying proportions of 18 O to 16 O in sea water provide an oceanographic trace like salinity, but with an extra degree of freedom: salt is a tracer for the oceanic fluid, whereas the isotopic composition is a tracer specifically for the water component of that fluid. Hydrogen and oxygen isotopes are the variables most intimately related to the water component in the sea, therefore thay furnish a direct link to the water in the atmosphere and on continents and to the precipitation cycle which caused the salinity changes. The ratio of 18 O to 16 O (delta 18 O) ot waters is a powerful tracer in polar regions where sea and glacial ice processes decouple delta 18 O from salinity. Here we present observations from a significant but relatively unexplored component of the Southern Ocean current system, the Antarctic Coastal Current, and its associated Antarctic Slope Front. (author)

  3. Changes in ocean circulation in the South-east Atlantic Ocean during the Pliocene

    Science.gov (United States)

    Petrick, B. F.; McClymont, E.; Felder, S.; Leng, M. J.

    2013-12-01

    The Southeast Atlantic Ocean is an important ocean gateway because major oceanic systems interact with each other in a relatively small geographic area. These include the Benguela Current, Antarctic Circumpolar Current, and the input of warm and saline waters from the Indian Ocean via the Agulhas leakage. However, there remain questions about circulation change in this region during the Pliocene, including whether there was more or less Agulhas Leakage, which may have implications for the strength of the global thermohaline circulation. ODP Site 1087 (31°28'S, 15°19'E, 1374m water depth) is located outside the Benguela upwelling region and is affected by Agulhas leakage in the modern ocean. Sea-surface temperatures (SSTs) are thus sensitive to the influence of Agulhas Leakage at this site. Our approach is to apply several organic geochemistry proxies and foraminiferal analyses to reconstruct the Pliocene history of ODP 1087, including the UK37' index (SSTs), pigments (primary productivity) and planktonic foraminifera (water mass changes). SSTs during the Pliocene range from 17 to 22.5 °C (mean SSTs at 21 °C), and show variability on orbital and suborbital time scales. Our results indicate that the Benguela upwelling system had intensified and/or shifted south during the Pliocene. We find no evidence of Agulhas leakage, meaning that either Agulhas Leakage was severely reduced or displaced during the mid-Pliocene. Potential causes of the observed signals include changes to the local wind field and/or changes in the temperature of intermediate waters which upwell in the Benguela system. Pronounced cooling is observed during cold stages in the Pliocene, aligned with the M2 and KM2 events. These results may indicate that changes to the extent of the Antarctic ice sheet had impact on circulation in the south east Atlantic during the Pliocene via displacement of the Antarctic Circumpolar Currents.

  4. Tracking the El Nino events from Antarctic ice core records

    International Nuclear Information System (INIS)

    Keskin, S.S.; Oelmez, I.

    2004-01-01

    Sodium and chlorine measurements were made by instrumental neutron activation analysis (INAA) on stratigraphically dated ice core samples from Byrd Station, Antarctica, for the last three centuries. The time period between 1969 and 1989 showed an enhanced impact on the Antarctic ice sheets from oceans in the form of marine aerosols. A disturbed ocean-atmosphere interface due to El Ni Southern Oscillation (ENSO) events seems to be a candidate for this observation in Antarctica. (author)

  5. Zooplankton biomass data collected from net tows from the Eltanin in the Antarctic in support of the US Antarctic Research Program (USARP) from 1963 - 1967 (NODC Accession 0068171)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Zooplankton biomass data (displacement volume, settled volume) sampled aboard the R/V ELTANIN during the U.S. Antarctic Research Program (USARP) from Apr 5 1963 to...

  6. Arctic and Antarctic Sea Ice Changes and Impacts (Invited)

    Science.gov (United States)

    Nghiem, S. V.

    2013-12-01

    The extent of springtime Arctic perennial sea ice, important to preconditioning summer melt and to polar sunrise photochemistry, continues its precipitous reduction in the last decade marked by a record low in 2012, as the Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted around Barrow, Alaska, to investigate impacts of sea ice reduction on photochemical processes, transport, and distribution in the polar environment. In spring 2013, there was further loss of perennial sea ice, as it was not observed in the ocean region adjacent to the Alaskan north coast, where there was a stretch of perennial sea ice in 2012 in the Beaufort Sea and Chukchi Sea. In contrast to the rapid and extensive loss of sea ice in the Arctic, Antarctic sea ice has a trend of a slight increase in the past three decades. Given the significant variability in time and in space together with uncertainties in satellite observations, the increasing trend of Antarctic sea ice may arguably be considered as having a low confidence level; however, there was no overall reduction of Antarctic sea ice extent anywhere close to the decreasing rate of Arctic sea ice. There exist publications presenting various factors driving changes in Arctic and Antarctic sea ice. After a short review of these published factors, new observations and atmospheric, oceanic, hydrological, and geological mechanisms contributed to different behaviors of sea ice changes in the Arctic and Antarctic are presented. The contribution from of hydrologic factors may provide a linkage to and enhance thermal impacts from lower latitudes. While geological factors may affect the sensitivity of sea ice response to climate change, these factors can serve as the long-term memory in the system that should be exploited to improve future projections or predictions of sea ice changes. Furthermore, similarities and differences in chemical impacts of Arctic and Antarctic sea ice changes are discussed. Understanding sea ice changes and

  7. Are Antarctic minke whales unusually abundant because of 20th century whaling?

    Science.gov (United States)

    Ruegg, Kristen C; Anderson, Eric C; Scott Baker, C; Vant, Murdoch; Jackson, Jennifer A; Palumbi, Stephen R

    2010-01-01

    Severe declines in megafauna worldwide illuminate the role of top predators in ecosystem structure. In the Antarctic, the Krill Surplus Hypothesis posits that the killing of more than 2 million large whales led to competitive release for smaller krill-eating species like the Antarctic minke whale. If true, the current size of the Antarctic minke whale population may be unusually high as an indirect result of whaling. Here, we estimate the long-term population size of the Antarctic minke whale prior to whaling by sequencing 11 nuclear genetic markers from 52 modern samples purchased in Japanese meat markets. We use coalescent simulations to explore the potential influence of population substructure and find that even though our samples are drawn from a limited geographic area, our estimate reflects ocean-wide genetic diversity. Using Bayesian estimates of the mutation rate and coalescent-based analyses of genetic diversity across loci, we calculate the long-term population size of the Antarctic minke whale to be 670,000 individuals (95% confidence interval: 374,000-1,150,000). Our estimate of long-term abundance is similar to, or greater than, contemporary abundance estimates, suggesting that managing Antarctic ecosystems under the assumption that Antarctic minke whales are unusually abundant is not warranted.

  8. Seasonal and Diel Vocalization Patterns of Antarctic Blue Whale (Balaenoptera musculus intermedia in the Southern Indian Ocean: A Multi-Year and Multi-Site Study.

    Directory of Open Access Journals (Sweden)

    Emmanuelle C Leroy

    Full Text Available Passive acoustic monitoring is an efficient way to provide insights on the ecology of large whales. This approach allows for long-term and species-specific monitoring over large areas. In this study, we examined six years (2010 to 2015 of continuous acoustic recordings at up to seven different locations in the Central and Southern Indian Basin to assess the peak periods of presence, seasonality and migration movements of Antarctic blue whales (Balaenoptera musculus intermedia. An automated method is used to detect the Antarctic blue whale stereotyped call, known as Z-call. Detection results are analyzed in terms of distribution, seasonal presence and diel pattern of emission at each site. Z-calls are detected year-round at each site, except for one located in the equatorial Indian Ocean, and display highly seasonal distribution. This seasonality is stable across years for every site, but varies between sites. Z-calls are mainly detected during autumn and spring at the subantarctic locations, suggesting that these sites are on the Antarctic blue whale migration routes, and mostly during winter at the subtropical sites. In addition to these seasonal trends, there is a significant diel pattern in Z-call emission, with more Z-calls in daytime than in nighttime. This diel pattern may be related to the blue whale feeding ecology.

  9. Multichannel Seismic Reflection Data - SCAR - Antarctic Peninsula - 1985, SDLS CD-ROM vol 16

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1985 field season along the north side of the Antarctic-Peninsula by the British...

  10. Spiraling pathways of global deep waters to the surface of the Southern Ocean.

    Science.gov (United States)

    Tamsitt, Veronica; Drake, Henri F; Morrison, Adele K; Talley, Lynne D; Dufour, Carolina O; Gray, Alison R; Griffies, Stephen M; Mazloff, Matthew R; Sarmiento, Jorge L; Wang, Jinbo; Weijer, Wilbert

    2017-08-02

    Upwelling of global deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. However, the exact pathways and role of topography in Southern Ocean upwelling remain largely unknown. Here we show detailed upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution models. The analysis reveals that the northern-sourced deep waters enter the Antarctic Circumpolar Current via southward flow along the boundaries of the three ocean basins, before spiraling southeastward and upward through the Antarctic Circumpolar Current. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the Antarctic Circumpolar Current, with a spatially nonuniform distribution. The timescale for half of the deep water to upwell from 30° S to the mixed layer is ~60-90 years.Deep waters of the Atlantic, Pacific and Indian Oceans upwell in the Southern Oceanbut the exact pathways are not fully characterized. Here the authors present a three dimensional view showing a spiralling southward path, with enhanced upwelling by eddy-transport at topographic hotspots.

  11. A Synoptic View of the Ventilation and Circulation of Antarctic Bottom Water from Chlorofluorocarbons and Natural Tracers

    Science.gov (United States)

    Purkey, Sarah G.; Smethie, William M.; Gebbie, Geoffrey; Gordon, Arnold L.; Sonnerup, Rolf E.; Warner, Mark J.; Bullister, John L.

    2018-01-01

    Antarctic Bottom Water (AABW) is the coldest, densest, most prolific water mass in the global ocean. AABW forms at several distinct regions along the Antarctic coast and feeds into the bottom limb of the meridional overturning circulation, filling most of the global deep ocean. AABW has warmed, freshened, and declined in volume around the globe in recent decades, which has implications for the global heat and sea level rise budgets. Over the past three decades, the use of tracers, especially time-varying tracers such as chlorofluorocarbons, has been essential to our understanding of the formation, circulation, and variability of AABW. Here, we review three decades of temperature, salinity, and tracer data and analysis that have led to our current knowledge of AABW and how the southern component of deep-ocean ventilation is changing with time.

  12. Multichannel Seismic Reflection Data - SCAR - Antarctic Peninsula 1987-88, SDLS CD-ROM vol 24

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1987-88 in the Antarctic Peninsula, Antarctica, by the Japan National Oil...

  13. Multichannel Seismic Reflection Data - SCAR - Antarctic Peninsula - 1988-1989, SDLS CD-ROM vol 25

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data are stacked multichannel marine seismic reflection data recorded during 1988-89 in the Antarctic Peninsula, Antarctica, by the Japan National Oil...

  14. Rapid global ocean-atmosphere response to Southern Ocean freshening during the last glacial.

    Science.gov (United States)

    Turney, Chris S M; Jones, Richard T; Phipps, Steven J; Thomas, Zoë; Hogg, Alan; Kershaw, A Peter; Fogwill, Christopher J; Palmer, Jonathan; Bronk Ramsey, Christopher; Adolphi, Florian; Muscheler, Raimund; Hughen, Konrad A; Staff, Richard A; Grosvenor, Mark; Golledge, Nicholas R; Rasmussen, Sune Olander; Hutchinson, David K; Haberle, Simon; Lorrey, Andrew; Boswijk, Gretel; Cooper, Alan

    2017-09-12

    Contrasting Greenland and Antarctic temperatures during the last glacial period (115,000 to 11,650 years ago) are thought to have been driven by imbalances in the rates of formation of North Atlantic and Antarctic Deep Water (the 'bipolar seesaw'). Here we exploit a bidecadally resolved 14 C data set obtained from New Zealand kauri (Agathis australis) to undertake high-precision alignment of key climate data sets spanning iceberg-rafted debris event Heinrich 3 and Greenland Interstadial (GI) 5.1 in the North Atlantic (~30,400 to 28,400 years ago). We observe no divergence between the kauri and Atlantic marine sediment 14 C data sets, implying limited changes in deep water formation. However, a Southern Ocean (Atlantic-sector) iceberg rafted debris event appears to have occurred synchronously with GI-5.1 warming and decreased precipitation over the western equatorial Pacific and Atlantic. An ensemble of transient meltwater simulations shows that Antarctic-sourced salinity anomalies can generate climate changes that are propagated globally via an atmospheric Rossby wave train.A challenge for testing mechanisms of past climate change is the precise correlation of palaeoclimate records. Here, through climate modelling and the alignment of terrestrial, ice and marine 14 C and 10 Be records, the authors show that Southern Ocean freshwater hosing can trigger global change.

  15. Calving fluxes and basal melt rates of Antarctic ice shelves

    NARCIS (Netherlands)

    Depoorter, M.A.; Bamber, J.L.; Griggs, J.A.; Lenaerts, J.T.M.; Ligtenberg, S.R.M.; van den Broeke, M.R.; Moholdt, G.

    2013-01-01

    Iceberg calving has been assumed to be the dominant cause of mass loss for the Antarctic ice sheet, with previous estimates of the calving flux exceeding 2,000 gigatonnes per year1, 2. More recently, the importance of melting by the ocean has been demonstrated close to the grounding line and near

  16. Total Sediment Thickness of the World's Oceans & Marginal Seas, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NGDC's global ocean sediment thickness grid (Divins, 2003) has been updated for the Australian-Antarctic region (60?? -155?? E, 30?? -70?? S). New seismic reflection...

  17. Southern Ocean biogeochemical control of glacial/interglacial carbon dioxide change

    Science.gov (United States)

    Sigman, D. M.

    2014-12-01

    In the effort to explain the lower atmospheric CO2 concentrations observed during ice ages, two of the first hypotheses involved redistributing dissolved inorganic carbon (DIC) within the ocean. Broecker (1982) proposed a strengthening of the ocean's biological pump during ice ages, which increased the dissolved inorganic carbon gradient between the dark, voluminous ocean interior and the surface ocean's sun-lit, wind-mixed layer. Boyle (1988) proposed a deepening in the ocean interior's pool of DIC associated with organic carbon regeneration, with its concentration maximum shifting from intermediate to abyssal depths. While not irrefutable, evidence has arisen that these mechanisms can explain much of the ice age CO2 reduction and that both were activated by changes in the Southern Ocean. In the Antarctic Zone, reduced exchange of water between the surface and the underlying ocean sequestered more DIC in the ocean interior (the biological pump mechanism). Dust-borne iron fertilization of the Subantarctic surface lowered CO2 partly by the biological pump mechanism and partly by Boyle's carbon deepening. Each mechanism owes a part of its CO2 effect to a transient increase in seafloor calcium carbonate dissolution, which raised the ice age ocean's alkalinity, causing it to absorb more CO2. However, calcium carbonate cycling also sets limits on these mechanisms and their CO2 effects, such that the combination of Antarctic and Subantarctic changes is needed to achieve the full (80-100 ppm) ice age CO2 decline. Data suggest that these changes began at different phases in the development of the last ice age, 110 and 70 ka, respectively, explaining a 40 ppm CO2 drop at each time. We lack a robust understanding of the potential causes for both the implied reduction in Antarctic surface/deep exchange and the increase in Subantarctic dust supply during ice ages. Thus, even if the evidence for these Southern Ocean changes were to become incontrovertible, conceptual gaps stand

  18. The Southern Ocean's role in ocean circulation and climate transients

    Science.gov (United States)

    Thompson, A. F.; Stewart, A.; Hines, S.; Adkins, J. F.

    2017-12-01

    The ventilation of deep and intermediate density classes at the surface of the Southern Ocean impacts water mass modification and the air-sea exchange of heat and trace gases, which in turn influences the global overturning circulation and Earth's climate. Zonal variability occurs along the Antarctic Circumpolar Current and the Antarctic margins related to flow-topography interactions, variations in surface boundary conditions, and exchange with northern basins. Information about these zonal variations, and their impact on mass and tracer transport, are suppressed when the overturning is depicted as a two-dimensional (depth-latitude) streamfunction. Here we present an idealized, multi-basin, time-dependent circulation model that applies residual circulation theory in the Southern Ocean and allows for zonal water mass transfer between different ocean basins. This model efficiently determines the temporal evolution of the ocean's stratification, ventilation and overturning strength in response to perturbations in the external forcing. With this model we explore the dynamics that lead to transitions in the circulation structure between multiple, isolated cells and a three-dimensional, "figure-of-eight," circulation in which traditional upper and lower cells are interleaved. The transient model is also used to support a mechanistic explanation of the hemispheric asymmetry and phase lag associated with Dansgaard-Oeschger (DO) events during the last glacial period. In particular, the 200 year lag in southern hemisphere temperatures, following a perturbation in North Atlantic deep water formation, depends critically on the migration of Southern Ocean isopycnal outcropping in response to low-latitude stratification changes. Our results provide a self-consistent dynamical framework to explain various ocean overturning transitions that have occurred over the Earth's last 100,000 years, and motivate an exploration of these mechanisms in more sophisticated climate models.

  19. Water masses transform at mid-depths over the Antarctic Continental Slope

    Science.gov (United States)

    Mead Silvester, Jess; Lenn, Yueng-Djern; Polton, Jeffrey; Phillips, Helen E.; Morales Maqueda, Miguel

    2017-04-01

    The Meridional Overturning Circulation (MOC) controls the oceans' latitudinal heat distribution, helping to regulate the Earth's climate. The Southern Ocean is the primary place where cool, deep waters return to the surface to complete this global circulation. While water mass transformations intrinsic to this process predominantly take place at the surface following upwelling, recent studies implicate vertical mixing in allowing transformation at mid-depths over the Antarctic continental slope. We deployed an EM-Apex float near Elephant Island, north of the Antarctic Peninsula's tip, to profile along the slope and use potential vorticity to diagnose observed instabilities. The float captures direct heat exchange between a lens of Upper Circumpolar Deep Water (UCDW) and surrounding Lower Circumpolar Deep Waters (LCDW) at mid-depths and over the course of several days. Heat fluxes peak across the top and bottom boundaries of the UCDW lens and peak diffusivities across the bottom boundary are associated with shear instability. Estimates of diffusivity from shear-strain finestructure parameterisation and heat fluxes are found to be in reasonable agreement. The two-dimensional Ertel potential vorticity is elevated both inside the UCDW lens and along its bottom boundary, with a strong contribution from the shear term in these regions and instabilities are associated with gravitational and symmetric forcing. Thus, shear instabilities are driving turbulent mixing across the lower boundary between these two water masses, leading to the observed heat exchange and transformation at mid-depths over the Antarctic continental slope. This has implications for our understanding of the rates of upwelling and ocean-atmosphere exchanges of heat and carbon at this critical location.

  20. South African southern ocean research programme

    CSIR Research Space (South Africa)

    SASCAR

    1987-01-01

    Full Text Available This document describes the South African National Antarctic Research Programme's (SANARP) physical, chemical and biological Southern Ocean research programme. The programme has three main components: ecological studies of the Prince Edward Islands...

  1. Coccolithophore populations and their contribution to carbonate export during an annual cycle in the Australian sector of the Antarctic zone

    Science.gov (United States)

    Rigual Hernández, Andrés S.; Flores, José A.; Sierro, Francisco J.; Fuertes, Miguel A.; Cros, Lluïsa; Trull, Thomas W.

    2018-03-01

    The Southern Ocean is experiencing rapid and relentless change in its physical and biogeochemical properties. The rate of warming of the Antarctic Circumpolar Current exceeds that of the global ocean, and the enhanced uptake of carbon dioxide is causing basin-wide ocean acidification. Observational data suggest that these changes are influencing the distribution and composition of pelagic plankton communities. Long-term and annual field observations on key environmental variables and organisms are a critical basis for predicting changes in Southern Ocean ecosystems. These observations are particularly needed, since high-latitude systems have been projected to experience the most severe impacts of ocean acidification and invasions of allochthonous species. Coccolithophores are the most prolific calcium-carbonate-producing phytoplankton group playing an important role in Southern Ocean biogeochemical cycles. Satellite imagery has revealed elevated particulate inorganic carbon concentrations near the major circumpolar fronts of the Southern Ocean that can be attributed to the coccolithophore Emiliania huxleyi. Recent studies have suggested changes during the last decades in the distribution and abundance of Southern Ocean coccolithophores. However, due to limited field observations, the distribution, diversity and state of coccolithophore populations in the Southern Ocean remain poorly characterised. We report here on seasonal variations in the abundance and composition of coccolithophore assemblages collected by two moored sediment traps deployed at the Antarctic zone south of Australia (2000 and 3700 m of depth) for 1 year in 2001-2002. Additionally, seasonal changes in coccolith weights of E. huxleyi populations were estimated using circularly polarised micrographs analysed with C-Calcita software. Our findings indicate that (1) coccolithophore sinking assemblages were nearly monospecific for E. huxleyi morphotype B/C in the Antarctic zone waters in 2001-2002; (2

  2. Response of Antarctic sea surface temperature and sea ice to ozone depletion

    Science.gov (United States)

    Ferreira, D.; Gnanadesikan, A.; Kostov, Y.; Marshall, J.; Seviour, W.; Waugh, D.

    2017-12-01

    The influence of the Antarctic ozone hole extends all the way from the stratosphere through the troposphere down to the surface, with clear signatures on surface winds, and SST during summer. In this talk we discuss the impact of these changes on the ocean circulation and sea ice state. We are notably motivated by the observed cooling of the surface Southern Ocean and associated increase in Antarctic sea ice extent since the 1970s. These trends are not reproduced by CMIP5 climate models, and the underlying mechanism at work in nature and the models remain unexplained. Did the ozone hole contribute to the observed trends?Here, we review recent advances toward answering these issues using "abrupt ozone depletion" experiments. The ocean and sea ice response is rather complex, comprising two timescales: a fast ( 1-2y) cooling of the surface ocean and sea ice cover increase, followed by a slower warming trend, which, depending on models, flip the sign of the SST and sea ice responses on decadal timescale. Although the basic mechanism seems robust, comparison across climate models reveal large uncertainties in the timescales and amplitude of the response to the extent that even the sign of the ocean and sea ice response to ozone hole and recovery remains unconstrained. After briefly describing the dynamics and thermodynamics behind the two-timescale response, we will discuss the main sources of uncertainties in the modeled response, namely cloud effects and air-sea heat exchanges, surface wind stress response and ocean eddy transports. Finally, we will consider the implications of our results on the ability of coupled climate models to reproduce observed Southern Ocean changes.

  3. The use of drilling by the U.S. Antarctic program

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.C.; Webb, J.W.; Hedberg, W.H.

    1994-08-01

    This report on drilling in the Antarctic has been prepared by the U.S. National Science Foundation (NSF) to assist principal investigators and others in complying with the National Environmental Policy Act (NEPA) and the Antarctic Treaty of 1961. Implementing regulations for NEPA are spelled out in 40 CFR 1500-1508. Environmental protection under the Antarctic Treaty is addressed in the Protocol on Environmental Protection to the Antarctic Treaty (hereafter referred to as the Protocol), which was adopted by 26 countries in 1991. In the United States, responsibility for compliance with these requirements rests with the NSF Office of Polar Programs (OPP), which manages the U.S. Antarctic Program (USAP). The USAP recognizes the potentially profound impacts that its presence and activities can have on the antarctic environment. In its extensive support of operations and research in Antarctica, the USAP uses all practical means to foster and maintain natural conditions while supporting scientific endeavors in a safe and healthful manner. Reducing human impacts on the antarctic environment is a major goal of the USAP. The USAP`s operating philosophy is based on broad yet reasonable and practical assumptions concerning environmental protection. The USAP maintains three year-round stations on the continent to support scientific research. Research and associated support operations at these stations and camps sometimes involve drilling into ice, soil, or ocean sediments. In order to comply with NEPA and the Protocol, it is necessary for principal investigators and others to assess the environmental effects of drilling. This report has been prepared to assist in this process by describing various drilling technologies currently available for use in Antarctica, generally characterizing the potential environmental impacts associated with these drilling techniques, and identifying possible mitigation measures to reduce impacts.

  4. Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice.

    Science.gov (United States)

    Liu, Jiping; Curry, Judith A

    2010-08-24

    The observed sea surface temperature in the Southern Ocean shows a substantial warming trend for the second half of the 20th century. Associated with the warming, there has been an enhanced atmospheric hydrological cycle in the Southern Ocean that results in an increase of the Antarctic sea ice for the past three decades through the reduced upward ocean heat transport and increased snowfall. The simulated sea surface temperature variability from two global coupled climate models for the second half of the 20th century is dominated by natural internal variability associated with the Antarctic Oscillation, suggesting that the models' internal variability is too strong, leading to a response to anthropogenic forcing that is too weak. With increased loading of greenhouse gases in the atmosphere through the 21st century, the models show an accelerated warming in the Southern Ocean, and indicate that anthropogenic forcing exceeds natural internal variability. The increased heating from below (ocean) and above (atmosphere) and increased liquid precipitation associated with the enhanced hydrological cycle results in a projected decline of the Antarctic sea ice.

  5. Surface zooplankton communities in the Indian sector of the Antarctic Ocean in early summer 1999/2000 observed with a Continuous Plankton Recorder

    Directory of Open Access Journals (Sweden)

    Haruko Umeda

    2018-05-01

    Full Text Available The first deployment of a Continuous Plankton Recorder (CPR on board the icebreaker Shirase was conducted during the 41st Japanese Antarctic Research Expedition (JARE in 1999/2000 austral summer in the Indian sector of the Antarctic Ocean. The CPR was towed horizontally at approximately 10m depth while the Shirase was steaming at about 14 knots across the Polar Front (PF. Mean total abundance of zooplankton for horizontal five nautical mile sample units was 168.1(SD : ±117.18 individuals with the maximum of 456 individuals. Zooplanktons were counted for 34 categories of species/taxa. Copepods occupied more than 90% of the total abundance in numbers. Oithona spp. was the most dominant group among copepods, representing 59% of the total zooplankton. Other numerically important categories were small-sized calanoids (copepodites and adults; 18.4%, and copepodites of Calanoides acutus and Calanus simillimus (8.2%. Latitudinal change of zooplankton abundance coincided with increasing/decreasing tends of temperature and salinity. Two different zooplankton assemblages were identified by cluster analysis and these assemblages seem to be closely related to different water characteristics, such as the of PF and areas of cold water masses. CPR is considered to be an ideal tool for long term monitoring of surface zooplankton communities.

  6. Millennial-scale instability of the Antarctic Ice Sheet during the last glaciation.

    NARCIS (Netherlands)

    Kanfoush, S.L.; Hodell, D.A.; Charles, C.D.; Guilderson, T.P.; Mortyn, P.G.

    2000-01-01

    Records of ice-rafted detritus (IRD) concentration in deep-sea cores from the southeast Atlantic Ocean reveal millennial-scale pulses of IRD delivery between 20,000 and 74,000 years ago. Prominent IRD layers correlate across the Polar Frontal Zone, suggesting episodes of Antarctic Ice Sheet

  7. Temperature, salinity profiles and associated data collected in the Southern Oceans in support of the Global Ocean Ecosystem Dynamics project, 2001-04 to 2001-08 (NODC Accession 0001097)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The overall goal of the U.S. Southern Ocean GLOBEC program is to elucidate circulation processes and their effect on sea ice formation and Antarctic krill (Euphausia...

  8. KrillDB: A de novo transcriptome database for the Antarctic krill (Euphausia superba.

    Directory of Open Access Journals (Sweden)

    Gabriele Sales

    Full Text Available Antarctic krill (Euphausia superba is a key species in the Southern Ocean with an estimated biomass between 100 and 500 million tonnes. Changes in krill population viability would have catastrophic effect on the Antarctic ecosystem. One looming threat due to elevated levels of anthropogenic atmospheric carbon dioxide (CO2 is ocean acidification (lowering of sea water pH by CO2 dissolving into the oceans. The genetics of Antarctic krill has long been of scientific interest for both for the analysis of population structure and analysis of functional genetics. However, the genetic resources available for the species are relatively modest. We have developed the most advanced genetic database on Euphausia superba, KrillDB, which includes comprehensive data sets of former and present transcriptome projects. In particular, we have built a de novo transcriptome assembly using more than 360 million Illumina sequence reads generated from larval krill including individuals subjected to different CO2 levels. The database gives access to: 1 the full list of assembled genes and transcripts; 2 their level of similarity to transcripts and proteins from other species; 3 the predicted protein domains contained within each transcript; 4 their predicted GO terms; 5 the level of expression of each transcript in the different larval stages and CO2 treatments. All references to external entities (sequences, domains, GO terms are equipped with a link to the appropriate source database. Moreover, the software implements a full-text search engine that makes it possible to submit free-form queries. KrillDB represents the first large-scale attempt at classifying and annotating the full krill transcriptome. For this reason, we believe it will constitute a cornerstone of future approaches devoted to physiological and molecular study of this key species in the Southern Ocean food web.

  9. Extremophiles in an Antarctic Marine Ecosystem

    Directory of Open Access Journals (Sweden)

    Iain Dickinson

    2016-01-01

    Full Text Available Recent attempts to explore marine microbial diversity and the global marine microbiome have indicated a large proportion of previously unknown diversity. However, sequencing alone does not tell the whole story, as it relies heavily upon information that is already contained within sequence databases. In addition, microorganisms have been shown to present small-to-large scale biogeographical patterns worldwide, potentially making regional combinations of selection pressures unique. Here, we focus on the extremophile community in the boundary region located between the Polar Front and the Southern Antarctic Circumpolar Current in the Southern Ocean, to explore the potential of metagenomic approaches as a tool for bioprospecting in the search for novel functional activity based on targeted sampling efforts. We assessed the microbial composition and diversity from a region north of the current limit for winter sea ice, north of the Southern Antarctic Circumpolar Front (SACCF but south of the Polar Front. Although, most of the more frequently encountered sequences  were derived from common marine microorganisms, within these dominant groups, we found a proportion of genes related to secondary metabolism of potential interest in bioprospecting. Extremophiles were rare by comparison but belonged to a range of genera. Hence, they represented interesting targets from which to identify rare or novel functions. Ultimately, future shifts in environmental conditions favoring more cosmopolitan groups could have an unpredictable effect on microbial diversity and function in the Southern Ocean, perhaps excluding the rarer extremophiles.

  10. Impact of Antarctic mixed-phase clouds on climate.

    Science.gov (United States)

    Lawson, R Paul; Gettelman, Andrew

    2014-12-23

    Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. We modify the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm(-2), and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. These sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than -20 °C.

  11. Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider

    Science.gov (United States)

    Soler-Membrives, Anna; Linse, Katrin; Miller, Karen J.; Arango, Claudia P.

    2017-10-01

    The evolutionary history of Antarctic organisms is becoming increasingly important to understand and manage population trajectories under rapid environmental change. The Antarctic sea spider Nymphon australe, with an apparently large population size compared with other sea spider species, is an ideal target to look for molecular signatures of past climatic events. We analysed mitochondrial DNA of specimens collected from the Antarctic continent and two Antarctic islands (AI) to infer past population processes and understand current genetic structure. Demographic history analyses suggest populations survived in refugia during the Last Glacial Maximum. The high genetic diversity found in the Antarctic Peninsula and East Antarctic (EA) seems related to multiple demographic contraction-expansion events associated with deep-sea refugia, while the low genetic diversity in the Weddell Sea points to a more recent expansion from a shelf refugium. We suggest the genetic structure of N. australe from AI reflects recent colonization from the continent. At a local level, EA populations reveal generally low genetic differentiation, geographically and bathymetrically, suggesting limited restrictions to dispersal. Results highlight regional differences in demographic histories and how these relate to the variation in intensity of glaciation-deglaciation events around Antarctica, critical for the study of local evolutionary processes. These are valuable data for understanding the remarkable success of Antarctic pycnogonids, and how environmental changes have shaped the evolution and diversification of Southern Ocean benthic biodiversity.

  12. Bibliography of Research on Ocean Fronts, 1964-1984

    Science.gov (United States)

    1985-08-01

    subtropical convergence; midtasman convergence; antarctic convergence and antarctic divergence. The search term "siome" was tried, but produced no hits ... Tabata , S. and L.F. Giovando. 1963. The seasonal thermocline at ocean weather station ’P’ during 1956 through 1959. Manus. Rep. Ser. No. 157. Fish...Res. Bd. Can. Tabata , S. and J.F.R. Gower. 1980. Comparison of ship and satellite measurements of sea surface temperatures off the Pacific Coast

  13. Antarctic krill 454 pyrosequencing reveals chaperone and stress transcriptome.

    Directory of Open Access Journals (Sweden)

    Melody S Clark

    Full Text Available BACKGROUND: The Antarctic krill Euphausia superba is a keystone species in the Antarctic food chain. Not only is it a significant grazer of phytoplankton, but it is also a major food item for charismatic megafauna such as whales and seals and an important Southern Ocean fisheries crop. Ecological data suggest that this species is being affected by climate change and this will have considerable consequences for the balance of the Southern Ocean ecosystem. Hence, understanding how this organism functions is a priority area and will provide fundamental data for life history studies, energy budget calculations and food web models. METHODOLOGY/PRINCIPAL FINDINGS: The assembly of the 454 transcriptome of E. superba resulted in 22,177 contigs with an average size of 492bp (ranging between 137 and 8515bp. In depth analysis of the data revealed an extensive catalogue of the cellular chaperone systems and the major antioxidant proteins. Full length sequences were characterised for the chaperones HSP70, HSP90 and the super-oxide dismutase antioxidants, with the discovery of potentially novel duplications of these genes. The sequence data contained 41,470 microsatellites and 17,776 Single Nucleotide Polymorphisms (SNPs/INDELS, providing a resource for population and also gene function studies. CONCLUSIONS: This paper details the first 454 generated data for a pelagic Antarctic species or any pelagic crustacean globally. The classical "stress proteins", such as HSP70, HSP90, ferritin and GST were all highly expressed. These genes were shown to be over expressed in the transcriptomes of Antarctic notothenioid fish and hypothesized as adaptations to living in the cold, with the associated problems of decreased protein folding efficiency and increased vulnerability to damage by reactive oxygen species. Hence, these data will provide a major resource for future physiological work on krill, but in particular a suite of "stress" genes for studies understanding

  14. Multiple states in the late Eocene ocean circulation

    Science.gov (United States)

    Baatsen, M. L. J.; von der Heydt, A. S.; Kliphuis, M.; Viebahn, J.; Dijkstra, H. A.

    2018-04-01

    The Eocene-Oligocene Transition (EOT) marks a major step within the Cenozoic climate in going from a greenhouse into an icehouse state, with the formation of a continental-scale Antarctic ice sheet. The roles of steadily decreasing CO2 concentrations versus changes in ocean circulation at the EOT are still debated and the threshold for Antarctic glaciation is obscured by uncertainties in global geometry. Here, a detailed study of the late Eocene ocean circulation is carried out using an ocean general circulation model under two slightly different geography reconstructions of the middle-to-late Eocene (38 Ma). Using the same atmospheric forcing, both geographies give a profoundly different equilibrium ocean circulation state. The underlying reason for this sensitivity is the presence of multiple equilibria characterised by either North or South Pacific deep water formation. A possible shift from a southern towards a northern overturning circulation would result in significant changes in the global heat distribution and consequently make the Southern Hemisphere climate more susceptible for significant cooling and ice sheet formation on Antarctica.

  15. A multivariate analysis of Antarctic sea ice since 1979

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes Neto, Newton de; Evangelista, Heitor [Universidade do Estado do Rio de Janeiro (Uerj), LARAMG - Laboratorio de Radioecologia e Mudancas Globais, Maracana, Rio de Janeiro, RJ (Brazil); Tanizaki-Fonseca, Kenny [Universidade do Estado do Rio de Janeiro (Uerj), LARAMG - Laboratorio de Radioecologia e Mudancas Globais, Maracana, Rio de Janeiro, RJ (Brazil); Universidade Federal Fluminense (UFF), Dept. Analise Geoambiental, Inst. de Geociencias, Niteroi, RJ (Brazil); Penello Meirelles, Margareth Simoes [Universidade do Estado do Rio de Janeiro (UERJ)/Geomatica, Maracana, Rio de Janeiro, RJ (Brazil); Garcia, Carlos Eiras [Universidade Federal do Rio Grande (FURG), Laboratorio de Oceanografia Fisica, Rio Grande, RS (Brazil)

    2012-03-15

    Recent satellite observations have shown an increase in the total extent of Antarctic sea ice, during periods when the atmosphere and oceans tend to be warmer surrounding a significant part of the continent. Despite an increase in total sea ice, regional analyses depict negative trends in the Bellingshausen-Amundsen Sea and positive trends in the Ross Sea. Although several climate parameters are believed to drive the formation of Antarctic sea ice and the local atmosphere, a descriptive mechanism that could trigger such differences in trends are still unknown. In this study we employed a multivariate analysis in order to identify the response of the Antarctic sea ice with respect to commonly utilized climate forcings/parameters, as follows: (1) The global air surface temperature, (2) The global sea surface temperature, (3) The atmospheric CO{sub 2} concentration, (4) The South Annular Mode, (5) The Nino 3, (6) The Nino (3 + 4, 7) The Nino 4, (8) The Southern Oscillation Index, (9) The Multivariate ENSO Index, (10) the Total Solar Irradiance, (11) The maximum O{sub 3} depletion area, and (12) The minimum O{sub 3} concentration over Antarctica. Our results indicate that western Antarctic sea ice is simultaneously impacted by several parameters; and that the minimum, mean, and maximum sea ice extent may respond to a separate set of climatic/geochemical parameters. (orig.)

  16. Water characteristics and transport of the Antarctic circumpolar current in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Muraleedharan, P.M.; Mathew, B.

    Geostrophic velocities are computed across meridians 37 degrees E and 105 degrees E using hydrographic data. The estimated mass transport is represented on a temperature - salinity diagram. The characteristics of the water within the Antarctic...

  17. A new research project on the interaction of the solid Earth and the Antarctic Ice Sheet

    Science.gov (United States)

    Fukuda, Y.; Nishijima, J.; Kazama, T.; Nakamura, K.; Doi, K.; Suganuma, Y.; Okuno, J.; Araya, A.; Kaneda, H.; Aoyama, Y.

    2017-12-01

    A new research project of "Grant-in-Aid for Scientific Research on Innovative Areas" funded by JSPS (Japan Society for the Promotion of Science) has recently been launched. The title of the project is "Giant reservoirs of heat/water/material: Global environmental changes driven by Southern Ocean and Antarctic Ice Sheet", and as a five years project, is aiming to establish a new research area for Antarctic environmental system science. The project consists of 7 research topics, including Antarctic ice sheet and Southern ocean sciences, new observation methodology, modeling and other interdisciplinary topics, and we are involved in the topic A02-2, "Interaction of the solid Earth and the Antarctic Ice Sheet". The Antarctic ice sheet, which relates to the global climate changes through the sea level rise and ocean circulation, is an essential element of the Earth system for predicting the future environment changes. Thus many studies of the ice sheet changes have been conducted by means of geomorphological, geological, geodetic surveys, as well as satellite gravimetry and satellite altimetry. For these studies, one of the largest uncertainties is the effects of GIA. Therefore, GIA as a key to investigate the interaction between the solid Earth and the ice sheet changes, we plan to conduct geomorphological, geological and geodetic surveys in the inland mountain areas and the coastal areas including the surrounding areas of a Japanese station Syowa in East Antarctica, where the in-situ data for constraining GIA models are very few. Combining these new observations with other in-site data, various satellite data and numerical modeling, we aim to estimating a precise GIA model, constructing a reliable ice melting history after the last glacial maximum and obtaining the viscoelastic structure of the Earth's interior. In the presentation, we also show the five years research plans as well. This study was partially supported by JSPS KAKENHI Grant No. 17H06321.

  18. The seasonal evolution of shelf water masses around Bouvetøya, a sub-Antarctic island in the mid-Atlantic sector of the Southern Ocean, determined from an instrumented southern elephant seal

    Directory of Open Access Journals (Sweden)

    Andrew D. Lowther

    2016-10-01

    Full Text Available Our study makes use of a fortuitous oceanographic data set collected around the remote sub-Antarctic island of Bouvetøya by a conductivity–temperature–depth recorder (CTD integrated with a satellite-relayed data logger deployed on an adult female southern elephant seal (Mirounga leonina to describe the seasonal evolution of the western shelf waters. The instrumented seal remained in waters over the shelf for 259 days, collecting an average of 2.6 (±0.06 CTD profiles per day, providing hydrographic data encompassing the late austral summer and the entire winter. These data document the thermal stratification of the upper water layer due to summer surface heating of the previous year's Antarctic Surface Water, giving way to a cold subsurface layer at about 100 m as the austral winter progressed, with a concomitant increase in salinity of the upper layer. Upper Circumpolar Deep Water was detected at a depth of approximately 200 m along the western shelf of Bouvetøya throughout the year. These oceanographic data represent the only seasonal time series for this region and the second such animal–instrument oceanographic time series in the sub-Antarctic domain of the Southern Ocean.

  19. In situ observations of a possible skate nursery off the western Antarctic Peninsula.

    Science.gov (United States)

    Amsler, M O; Smith, K E; McClintock, J B; Singh, H; Thatje, S; Vos, S C; Brothers, C J; Brown, A; Ellis, D; Anderson, J; Aronson, R B

    2015-06-01

    A dense aggregation of skate egg cases was imaged during a photographic survey of the sea floor along the western Antarctic Peninsula in November 2013. Egg cases were noted in a narrow band between 394 and 443 m depth. Although some skate species in other oceans are known to utilize restricted areas to deposit eggs in great numbers, such nurseries have not been described in the Southern Ocean. © 2015 The Fisheries Society of the British Isles.

  20. An antarctic stratigraphic record of stepwise ice growth through the eocene-oligocene transition

    NARCIS (Netherlands)

    Passchier, Sandra; Ciarletta, Daniel J.; Miriagos, Triantafilo E.; Bijl, Peter K.; Bohaty, Steven M.

    2017-01-01

    Earth's current icehouse phase began ~34 m.y. ago with the onset of major Antarctic glaciation at the Eocene-Oligocene transition. Changes in ocean circulation and a decline in atmospheric greenhouse gas levels were associated with stepwise cooling and ice growth at southern high latitudes. The

  1. Antarctic krill swarm characteristics in the Southeast Atlantic sector of the Southern Ocean

    KAUST Repository

    Krafft, BA

    2012-09-28

    Knowledge about swarm dynamics and underlying causes is essential to understand the ecology and distribution of Antarctic krill Euphausia superba. We collected acoustic data and key environmental data continuously across extensive gradients in the little-studied Southeast Atlantic sector of the Southern Ocean. A total of 4791 krill swarms with swarm descriptors including swarm height and length, packing density, swimming depth and inter-swarm distance were extracted. Through multivariate statistics, swarms were categorized into 4 groups. Group 2 swarms were largest (median length 108 m and thickness 18 m), whereas swarms in both Groups 1 and 4 were on average small, but differed markedly in depth distribution (median: 52 m for Group 1 vs. 133 m for Group 4). There was a strong spatial autocorrelation in the occurrence of swarms, and an autologistic regression model found no prediction of swarm occurrence from environmental variables for any of the Groups 1, 2 or 4. Probability of occurrence of Group 3 swarms, however, increased with increasing depth and temperature. Group 3 was the most distinctive swarm group with an order of magnitude higher packing density (median: 226 ind. m−3) than swarms from any of the other groups and about twice the distance to nearest neighbor swarm (median: 493 m). The majority of the krill were present in Group 3 swarms, and the absence of association with hydrographic or topographic concentrating mechanisms strongly suggests that these swarms aggregate through their own locomotion, possibly associated with migration.

  2. Antarctic krill swarm characteristics in the Southeast Atlantic sector of the Southern Ocean

    KAUST Repository

    Krafft, BA; Skaret, G; Knutsen, T; Melle, W; Klevjer, Thor; Sø iland, H

    2012-01-01

    Knowledge about swarm dynamics and underlying causes is essential to understand the ecology and distribution of Antarctic krill Euphausia superba. We collected acoustic data and key environmental data continuously across extensive gradients in the little-studied Southeast Atlantic sector of the Southern Ocean. A total of 4791 krill swarms with swarm descriptors including swarm height and length, packing density, swimming depth and inter-swarm distance were extracted. Through multivariate statistics, swarms were categorized into 4 groups. Group 2 swarms were largest (median length 108 m and thickness 18 m), whereas swarms in both Groups 1 and 4 were on average small, but differed markedly in depth distribution (median: 52 m for Group 1 vs. 133 m for Group 4). There was a strong spatial autocorrelation in the occurrence of swarms, and an autologistic regression model found no prediction of swarm occurrence from environmental variables for any of the Groups 1, 2 or 4. Probability of occurrence of Group 3 swarms, however, increased with increasing depth and temperature. Group 3 was the most distinctive swarm group with an order of magnitude higher packing density (median: 226 ind. m−3) than swarms from any of the other groups and about twice the distance to nearest neighbor swarm (median: 493 m). The majority of the krill were present in Group 3 swarms, and the absence of association with hydrographic or topographic concentrating mechanisms strongly suggests that these swarms aggregate through their own locomotion, possibly associated with migration.

  3. Productivity and linkages of the food web of the southern region of the western Antarctic Peninsula continental shelf

    Science.gov (United States)

    Ballerini, Tosca; Hofmann, Eileen E.; Ainley, David G.; Daly, Kendra; Marrari, Marina; Ribic, Christine A.; Smith, Walker O.; Steele, John H.

    2014-03-01

    The productivity and linkages in the food web of the southern region of the west Antarctic Peninsula continental shelf were investigated using a multi-trophic level mass balance model. Data collected during the Southern Ocean Global Ocean Ecosystem Dynamics field program were combined with data from the literature on the abundance and diet composition of zooplankton, fish, seabirds and marine mammals to calculate energy flows in the food web and to infer the overall food web structure at the annual level. Sensitivity analyses investigated the effects of variability in growth and biomass of Antarctic krill (Euphausia superba) and in the biomass of Antarctic krill predators on the structure and energy fluxes in the food web. Scenario simulations provided insights into the potential responses of the food web to a reduced contribution of large phytoplankton (diatom) production to total primary production, and to reduced consumption of primary production by Antarctic krill and mesozooplankton coincident with increased consumption by microzooplankton and salps. Model-derived estimates of primary production were 187-207 g C m-2 y-1, which are consistent with observed values (47-351 g C m-2 y-1). Simulations showed that Antarctic krill provide the majority of energy needed to sustain seabird and marine mammal production, thereby exerting a bottom-up control on higher trophic level predators. Energy transfer to top predators via mesozooplanton was a less efficient pathway, and salps were a production loss pathway because little of the primary production they consumed was passed to higher trophic levels. Increased predominance of small phytoplankton (nanoflagellates and cryptophytes) reduced the production of Antarctic krill and of its predators, including seabirds and seals.

  4. Spatial distribution of Salpa thompsoni in the high Antarctic area off Adélie Land, East Antarctica during the austral summer 2008

    Science.gov (United States)

    Ono, Atsushi; Moteki, Masato

    2017-06-01

    The salp Salpa thompsoni has the potential to alter the Southern Ocean ecosystem through competition with krill Euphausia superba. Information on the reproductive status of S. thompsoni in the high Southern Ocean is thus essential to understanding salp population growth and predicting changes in the Southern Ocean ecosystem. We carried out stratified and quantitative sampling from the surface to a depth of 2000 m during the austral summer of 2008 to determine the spatial distribution and population structure of S. thompsoni in the Southern Ocean off Adélie Land. We found two salp species, S. thompsoni and Ihlea racovitzai, with the former being dominant. S. thompsoni was distributed north of the continental slope area, while I. racovitzai was observed in the neritic zone. Mature aggregates and solitary specimens of S. thompsoni were found south of the Southern Boundary of the Antarctic Circumpolar Current, suggesting that S. thompsoni is able to complete its life cycle in high Antarctic waters during the austral summer. However, S. thompsoni was sparsely distributed in the continental slope area, and absent south of the Antarctic Slope Front, suggesting that it is less competitive with krill for food in the slope area off Adélie Land, where krill is densely distributed during the austral summer.

  5. Antarctic research today

    International Nuclear Information System (INIS)

    Hempel, G.

    1982-01-01

    With the appetite for living and dead natural resources, the political and economical interest concerning the Antarctic increases throughout the world. There are three interrelated main subjects accounting for the international interest: The shelf tectonic puzzle of the original continent of Gondwana, where the Antarctic is situated in the centre, between Australia, South Africa and South America, and the hopes concerning the existence of mineral resources under the ice of the Antarctic are based thereon. The Antarctic forms the biggest unified living space of the world. (orig.)

  6. Variability of nutrients and carbon dioxide in the Antarctic Intermediate Water between 1990 and 2014

    NARCIS (Netherlands)

    Panassa, E.; Santana-Casiano, J.M.; González-Dávila, M.; Hoppema, M.; van Heuven, S.M.A.C.; Völker, C.; Wolf-Gladrow, D.; Hauck, J.

    2018-01-01

    Antarctic Intermediate Water (AAIW) formation constitutes an important mechanism for the export of macronutrients outof the Southern Ocean that fuels primary production in low latitudes. We used quality-controlled gridded data from fivehydrographic cruises between 1990 and 2014 to examine decadal

  7. IODP Expedition 318: From Greenhouse to Icehouse at the Wilkes Land Antarctic Margin

    Directory of Open Access Journals (Sweden)

    Adam Klaus

    2011-09-01

    Full Text Available Integrated Ocean Drilling Program (IODP Expedition 318, Wilkes Land Glacial History, drilled a transect of sites across the Wilkes Land margin of Antarctica to provide a long-term record of the sedimentary archives of Cenozoic Antarctic glaciation and its intimate relationships with global climatic and oceanographic change. The Wilkes Land drilling program was undertaken to constrain the age, nature, and paleoenvironment of the previously only seismicallyinferred glacial sequences. The expedition (January–March 2010 recovered ~2000 meters of high-quality middle Eocene–Holocene sediments from water depths between 400 m and 4000 m at four sites on the Wilkes Land rise (U1355, U1356, U1359, and U1361 and three sites on the Wilkes Land shelf (U1357, U1358, and U1360. These records span ~53 million years of Antarctic history, and the various seismic units (WL-S4–WL-S9 have been successfully dated. The cores reveal the history of the Wilkes Land Antarctic margin from an ice-free “greenhouse” Antarctica, to the first cooling, to the onset and erosional consequences of the first glaciation and the subsequentdynamics of the waxing and waning ice sheets, all the way to thick, unprecedented “tree ring style” records with seasonal resolution of the last deglaciation that began ~10,000 y ago. The cores also reveal details of the tectonic history of the Australo-Antarctic Gulf from 53 Ma, portraying the onset of the second phase of rifting between Australia and Antarctica, to ever-subsiding margins and deepening,to the present continental and ever-widening ocean/continent configuration.

  8. What's Cooler Than Being Cool? Icefin: Robotic Exploration Beneath Antarctic Ice Shelves

    Science.gov (United States)

    Lawrence, J.; Schmidt, B. E.; Meister, M. R.; Glass, J. B.; Bowman, J. S.; Stockton, A. M.; Dichek, D.; Hurwitz, B.; Ramey, C.; Spears, A.; Walker, C. C.

    2017-12-01

    The 2017-18 Antarctic field season marks the first of three under the RISEUP project (Ross Ice Shelf & Europa Underwater Probe, NASA PSTAR program grant NNX16AL07G, PI B. E. Schmidt). RISEUP expands our efforts to understand the physical processes governing ice-ocean interactions from beneath the McMurdo Ice Shelf (MIS) to the Ross Ice Shelf (RIS), utilizing the modular autonomous or remotely operable submersible vehicle (AUV/ROV) Icefin. The remote, aphotic regions below Antarctic shelves present a unique opportunity- they are both poorly understood terrestrial environments and analogs for similar systems hypothesized to be present on other bodies in our solar system, such as Europa and Enceladus. By developing new robotic technologies to access and explore ice shelf cavities we are advancing our understanding of how temperature, pressure, and salinity influence the ice-ocean interface, the limits of habitable environments on Earth, and what biological processes and adaptations enable the life discovered by the RISP and WISSARD programs during initial exploration beneath the RIS. These investigations further our understanding of ocean world habitability and support planned and proposed planetary missions (e.g. Europa Clipper, Europa Lander) via improved constraint of marine ice accretion processes, organic entrainment, and interface habitability. Custom built at Georgia Tech and first deployed during the 2014/15 Antarctic season, Icefin is 3.5 m, 125 kg modular vehicle that now carries a full suite of oceanographic sensors (including conductivity, temperature, depth, dissolved O2, dissolved organic matter, turbidity, pH, eH, and sonar) that can be deployed through boreholes as small as 25 cm in diameter. Here we present continued analysis of basal ice and oceanographic observations in the McMurdo Sound region from 2012-2015 with, pending anticipated field work, comparisons to preliminary data from the 2017/18 field season beneath both the McMurdo and Ross Ice

  9. Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends

    Science.gov (United States)

    Schneider, David P.; Deser, Clara

    2017-09-01

    Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979-2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.

  10. Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends

    Science.gov (United States)

    Schneider, David P.; Deser, Clara

    2018-06-01

    Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979-2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.

  11. Submesoscale Rossby waves on the Antarctic circumpolar current.

    Science.gov (United States)

    Taylor, John R; Bachman, Scott; Stamper, Megan; Hosegood, Phil; Adams, Katherine; Sallee, Jean-Baptiste; Torres, Ricardo

    2018-03-01

    The eastward-flowing Antarctic circumpolar current (ACC) plays a central role in the global ocean overturning circulation and facilitates the exchange of water between the ocean surface and interior. Submesoscale eddies and fronts with scales between 1 and 10 km are regularly observed in the upper ocean and are associated with strong vertical circulations and enhanced stratification. Despite their importance in other locations, comparatively little is known about submesoscales in the Southern Ocean. We present results from new observations, models, and theories showing that submesoscales are qualitatively changed by the strong jet associated with the ACC in the Scotia Sea, east of Drake Passage. Growing submesoscale disturbances develop along a dense filament and are transformed into submesoscale Rossby waves, which propagate upstream relative to the eastward jet. Unlike their counterparts in slower currents, the submesoscale Rossby waves do not destroy the underlying frontal structure. The development of submesoscale instabilities leads to strong net subduction of water associated with a dense outcropping filament, and later, the submesoscale Rossby waves are associated with intense vertical circulations.

  12. The Southern Ocean biogeochemical divide.

    Science.gov (United States)

    Marinov, I; Gnanadesikan, A; Toggweiler, J R; Sarmiento, J L

    2006-06-22

    Modelling studies have demonstrated that the nutrient and carbon cycles in the Southern Ocean play a central role in setting the air-sea balance of CO(2) and global biological production. Box model studies first pointed out that an increase in nutrient utilization in the high latitudes results in a strong decrease in the atmospheric carbon dioxide partial pressure (pCO2). This early research led to two important ideas: high latitude regions are more important in determining atmospheric pCO2 than low latitudes, despite their much smaller area, and nutrient utilization and atmospheric pCO2 are tightly linked. Subsequent general circulation model simulations show that the Southern Ocean is the most important high latitude region in controlling pre-industrial atmospheric CO(2) because it serves as a lid to a larger volume of the deep ocean. Other studies point out the crucial role of the Southern Ocean in the uptake and storage of anthropogenic carbon dioxide and in controlling global biological production. Here we probe the system to determine whether certain regions of the Southern Ocean are more critical than others for air-sea CO(2) balance and the biological export production, by increasing surface nutrient drawdown in an ocean general circulation model. We demonstrate that atmospheric CO(2) and global biological export production are controlled by different regions of the Southern Ocean. The air-sea balance of carbon dioxide is controlled mainly by the biological pump and circulation in the Antarctic deep-water formation region, whereas global export production is controlled mainly by the biological pump and circulation in the Subantarctic intermediate and mode water formation region. The existence of this biogeochemical divide separating the Antarctic from the Subantarctic suggests that it may be possible for climate change or human intervention to modify one of these without greatly altering the other.

  13. The complete mitochondrial genome of the Antarctic stalked jellyfish, Haliclystus antarcticus Pfeffer, 1889 (Staurozoa: Stauromedusae

    Directory of Open Access Journals (Sweden)

    Hsing-Hui Li

    2016-06-01

    Full Text Available In present study, the complete mitogenome sequence of the Antarctic stalked jellyfish, Haliclystus antarcticus Pfeffer (Staurozoa: Stauromedusae has been sequenced by next-generation sequencing method. The assembled mitogenome comprises of 15,766 bp including 13 protein coding genes, 7 transfer RNAs, and 2 ribosomal RNA genes. The overall base of Antarctic stalked jellyfish constitutes of 26.5% for A, 19.6% for C, 19.8% for G, 34.1% for T and show 90% identity to Sessile Jelly, Haliclystus sanjuanensis, in the northeastern Pacific Ocean. The complete mitogenome of the Antarctic stalked jellyfish, contributes fundamental and significant DNA molecular data for further phylogeography and evolutionary analysis for seahorse phylogeny. The complete sequence was deposited in DBBJ/EMBL/GenBank under accession number KU947038.

  14. Productivity and linkages of the food web of the southern region of the western Antarctic Peninsula continental shelf

    Science.gov (United States)

    Ballerini, Tosca; Hofmann, Eileen E.; Ainley, David G.; Daly, Kendra L.; Marrari, Marina; Ribic, Christine A.; Smith, Walker O.; Steele, John H.

    2014-01-01

    The productivity and linkages in the food web of the southern region of the west Antarctic Peninsula continental shelf were investigated using a multi-trophic level mass balance model. Data collected during the Southern Ocean Global Ocean Ecosystem Dynamics field program were combined with data from the literature on the abundance and diet composition of zooplankton, fish, seabirds and marine mammals to calculate energy flows in the food web and to infer the overall food web structure at the annual level. Sensitivity analyses investigated the effects of variability in growth and biomass of Antarctic krill (Euphausia superba) and in the biomass of Antarctic krill predators on the structure and energy fluxes in the food web. Scenario simulations provided insights into the potential responses of the food web to a reduced contribution of large phytoplankton (diatom) production to total primary production, and to reduced consumption of primary production by Antarctic krill and mesozooplankton coincident with increased consumption by microzooplankton and salps. Model-derived estimates of primary production were 187–207 g C m−2 y−1, which are consistent with observed values (47–351 g C m−2 y−1). Simulations showed that Antarctic krill provide the majority of energy needed to sustain seabird and marine mammal production, thereby exerting a bottom-up control on higher trophic level predators. Energy transfer to top predators via mesozooplanton was a less efficient pathway, and salps were a production loss pathway because little of the primary production they consumed was passed to higher trophic levels. Increased predominance of small phytoplankton (nanoflagellates and cryptophytes) reduced the production of Antarctic krill and of its predators, including seabirds and seals.

  15. Archive of Geosample Data and Information from the Florida State University (FSU) Antarctic Marine Geology Research Facility (AMGRF)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Antarctic Marine Geology Research Facility (AMGRF) operated by Florida State University is a partner in the Index to Marine and Lacustrine Geological Samples...

  16. Observations of frozen skin of southern ocean from multifrequency scanning microwave radiometer (MSMR) onboard oceansat - 1

    Science.gov (United States)

    Vyas, N.; Bhandari, S.; Dash, M.; Pandey, P.; Khare, N.

    Encircling the Antarctic, Southern Ocean connects all the three oceans of the world with fastest current system found anywhere in the world. The region is thermally very stable and is covered with ice, which has a strong seasonal variability. The sea ice pulsates annually with seasonal migration varying from 4 million square kilometer to 20 million square kilometer during summer and winter respectively. This has strong influence on energy balance of the ocean-ice-atmosphere system, and hence on atmospheric general circulation affecting weather and climate. Sea ice also works as an insulator thus inhibiting the energy flux between ocean and atmosphere. It also influences the ecosystem of the southern ocean, which has rich fish resources with global economic values such as krill and tooth fish. During winter Krill survives on algae found at the under side of the sea ice. The southern ocean is known to have high nutrition but low concentration of chlorophyll-a, which is a proxy of the phytoplankton. It is now understood that iron is the limiting factor as has been shown by various iron fertilization experiments. Passive microwave radiometry from space has been extensively used for the study of sea ice types and concentration in the Arctic and the Antarctic regions. Since late 1970s, data from SMMR and SSM/I have been used to study trends in sea ice extent and area. We have further extended the above studies by using data from OCEANSAT - 1 MSMR. The data, acquired at 18 GHz (H) with 50 kilometer resolution and having a swath of 1360 kilometer and a repeat cycle of 2 days, was processed to generate the brightness temperature maps over the Antarctica for a period of 2 years and the results were analyzed in conjunction with those obtained earlier (since 1978) through the study of SMMR and SSM/I data. Besides strong seasonal variability, our analysis shows an increasing trend in the sea ice extent during the recent years and the rate appears to be accelerating contrary to

  17. Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Du, H.; Garcia-Serrano, J.; Guemas, V.; Soufflet, Y. [Institut Catala de Ciencies del Clima (IC3), Barcelona (Spain); Doblas-Reyes, F.J. [Institut Catala de Ciencies del Clima (IC3), Barcelona (Spain); Institucio Catalana de Recerca i Estudis Avancats (ICREA), Barcelona (Spain); Wouters, B. [Royal Netherlands Meteorological Institute (KNMI), De Bilt (Netherlands)

    2012-10-15

    A coupled global atmosphere-ocean model is employed to investigate the impact of initial perturbation methods on the behaviour of five-member ensemble decadal re-forecasts. Three initial-condition perturbation strategies, atmosphere only, ocean only and atmosphere-ocean, have been used and the impact on selected variables have been investigated. The impact has been assessed in terms of climate drift, forecast quality and spread. The simulated global means of near-surface air temperature (T2M), sea surface temperature (SST) and sea ice area (SIA) for both Arctic and Antarctic show reasonably good quality, in spite of the non-negligible drift of the model. The skill in terms of correlation is not significantly affected by the particular perturbation method employed. The ensemble spread generated for T2M, SST and land surface precipitation (PCP) saturates quickly with any of the perturbation methods. However, for SIA, Atlantic meridional overturning circulation (AMOC) and ocean heat content (OHC), the spread increases substantially during the forecast time when ocean perturbations are applied. Ocean perturbations are particularly important for Antarctic SIA and OHC for the middle and deep layers of the ocean. The results will be helpful in the design of ensemble prediction experiments. (orig.)

  18. A consistent data set of Antarctic ice sheet topography, cavity geometry, and global bathymetry

    Directory of Open Access Journals (Sweden)

    R. Timmermann

    2010-12-01

    Full Text Available Sub-ice shelf circulation and freezing/melting rates in ocean general circulation models depend critically on an accurate and consistent representation of cavity geometry. Existing global or pan-Antarctic topography data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile independent regional surveys and maps into a global data set. We use the S-2004 global 1-min bathymetry as the backbone and add an improved version of the BEDMAP topography (ALBMAP bedrock topography for an area that roughly coincides with the Antarctic continental shelf. The position of the merging line is individually chosen in different sectors in order to capture the best of both data sets. High-resolution gridded data for ice shelf topography and cavity geometry of the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves, and for Pine Island Glacier are carefully merged into the ambient ice and ocean topographies. Multibeam survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI, British Antarctic Survey (BAS and Lamont-Doherty Earth Observatory (LDEO, gridded, and blended into the existing bathymetry map. The resulting global 1-min Refined Topography data set (RTopo-1 contains self-consistent maps for upper and lower ice surface heights, bedrock topography, and surface type (open ocean, grounded ice, floating ice, bare land surface. The data set is available in NetCDF format from the PANGAEA database at doi:10.1594/pangaea.741917.

  19. Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of Australia: a baseline for ocean acidification impact assessment

    Science.gov (United States)

    Trull, Thomas W.; Passmore, Abraham; Davies, Diana M.; Smit, Tim; Berry, Kate; Tilbrook, Bronte

    2018-01-01

    The Southern Ocean provides a vital service by absorbing about one-sixth of humankind's annual emissions of CO2. This comes with a cost - an increase in ocean acidity that is expected to have negative impacts on ocean ecosystems. The reduced ability of phytoplankton and zooplankton to precipitate carbonate shells is a clearly identified risk. The impact depends on the significance of these organisms in Southern Ocean ecosystems, but there is very little information on their abundance or distribution. To quantify their presence, we used coulometric measurement of particulate inorganic carbonate (PIC) on particles filtered from surface seawater into two size fractions: 50-1000 µm to capture foraminifera (the most important biogenic carbonate-forming zooplankton) and 1-50 µm to capture coccolithophores (the most important biogenic carbonate-forming phytoplankton). Ancillary measurements of biogenic silica (BSi) and particulate organic carbon (POC) provided context, as estimates of the biomass of diatoms (the highest biomass phytoplankton in polar waters) and total microbial biomass, respectively. Results for nine transects from Australia to Antarctica in 2008-2015 showed low levels of PIC compared to Northern Hemisphere polar waters. Coccolithophores slightly exceeded the biomass of diatoms in subantarctic waters, but their abundance decreased more than 30-fold poleward, while diatom abundances increased, so that on a molar basis PIC was only 1 % of BSi in Antarctic waters. This limited importance of coccolithophores in the Southern Ocean is further emphasized in terms of their associated POC, representing less than 1 % of total POC in Antarctic waters and less than 10 % in subantarctic waters. NASA satellite ocean-colour-based PIC estimates were in reasonable agreement with the shipboard results in subantarctic waters but greatly overestimated PIC in Antarctic waters. Contrastingly, the NASA Ocean Biogeochemical Model (NOBM) shows coccolithophores as overly

  20. Distribution of planktonic biogenic carbonate organisms in the Southern Ocean south of Australia: a baseline for ocean acidification impact assessment

    Directory of Open Access Journals (Sweden)

    T. W. Trull

    2018-01-01

    Full Text Available The Southern Ocean provides a vital service by absorbing about one-sixth of humankind's annual emissions of CO2. This comes with a cost – an increase in ocean acidity that is expected to have negative impacts on ocean ecosystems. The reduced ability of phytoplankton and zooplankton to precipitate carbonate shells is a clearly identified risk. The impact depends on the significance of these organisms in Southern Ocean ecosystems, but there is very little information on their abundance or distribution. To quantify their presence, we used coulometric measurement of particulate inorganic carbonate (PIC on particles filtered from surface seawater into two size fractions: 50–1000 µm to capture foraminifera (the most important biogenic carbonate-forming zooplankton and 1–50 µm to capture coccolithophores (the most important biogenic carbonate-forming phytoplankton. Ancillary measurements of biogenic silica (BSi and particulate organic carbon (POC provided context, as estimates of the biomass of diatoms (the highest biomass phytoplankton in polar waters and total microbial biomass, respectively. Results for nine transects from Australia to Antarctica in 2008–2015 showed low levels of PIC compared to Northern Hemisphere polar waters. Coccolithophores slightly exceeded the biomass of diatoms in subantarctic waters, but their abundance decreased more than 30-fold poleward, while diatom abundances increased, so that on a molar basis PIC was only 1 % of BSi in Antarctic waters. This limited importance of coccolithophores in the Southern Ocean is further emphasized in terms of their associated POC, representing less than 1 % of total POC in Antarctic waters and less than 10 % in subantarctic waters. NASA satellite ocean-colour-based PIC estimates were in reasonable agreement with the shipboard results in subantarctic waters but greatly overestimated PIC in Antarctic waters. Contrastingly, the NASA Ocean Biogeochemical Model (NOBM shows

  1. Salp/krill interactions in the Southern Ocean: spatial segregation and implications for the carbon flux

    Science.gov (United States)

    Pakhomov, E. A.; Froneman, P. W.; Perissinotto, R.

    Available data on the spatial distribution and feeding ecophysiology of Antarctic krill, Euphausia superba, and the tunicate, Salpa thompsoni, in the Southern Ocean are summarized in this study. Antarctic krill and salps generally display pronounced spatial segregation at all spatial scales. This appears to be the result of a clear biotopical separation of these key species in the Antarctic pelagic food web. Krill and salps are found in different water masses or water mass modifications, which are separated by primary or secondary frontal features. On the small-scale (salps are usually restricted to the specific water parcels, or are well segregated vertically. Krill and salp grazing rates estimated using the in situ gut fluorescence technique are among the highest recorded in the Antarctic pelagic food web. Although krill and salps at times may remove the entire daily primary production, generally their grazing impact is moderate (⩽50% of primary production). The regional ecological consequences of years of high salp densities may be dramatic. If the warming trend, which is observed around the Antarctic Peninsula and in the Southern Ocean, continues, salps may become a more prominent player in the trophic structure of the Antarctic marine ecosystem. This likely would be coupled with a dramatic decrease in krill productivity, because of a parallel decrease in the spatial extension of the krill biotope. The high Antarctic regions, particularly the Marginal Ice Zone, have, however, effective physiological mechanisms that may provide protection against the salp invasion.

  2. Antarctic icebergs distributions 1992-2014

    Science.gov (United States)

    Tournadre, J.; Bouhier, N.; Girard-Ardhuin, F.; Rémy, F.

    2016-01-01

    Basal melting of floating ice shelves and iceberg calving constitute the two almost equal paths of freshwater flux between the Antarctic ice cap and the Southern Ocean. The largest icebergs (>100 km2) transport most of the ice volume but their basal melting is small compared to their breaking into smaller icebergs that constitute thus the major vector of freshwater. The archives of nine altimeters have been processed to create a database of small icebergs (law of slope -1.52 ± 0.32 close to the -3/2 laws observed and modeled for brittle fragmentation. The global volume of ice and its distribution between the ocean basins present a very strong interannual variability only partially explained by the number of large icebergs. Indeed, vast zones of the Southern Ocean free of large icebergs are largely populated by small iceberg drifting over thousands of kilometers. The correlation between the global small and large icebergs volumes shows that small icebergs are mainly generated by large ones breaking. Drifting and trapping by sea ice can transport small icebergs for long period and distances. Small icebergs act as an ice diffuse process along large icebergs trajectories while sea ice trapping acts as a buffer delaying melting.

  3. Geophysical Investigation of Upper Mantle Anomalies of the Australian-Antarctic Ridge

    Science.gov (United States)

    Park, S. H.; Choi, H.; Kim, S. S.; Lin, J.

    2017-12-01

    Australian-Antarctic Ridge (AAR) is situated between the Pacific-Antarctic Ridge (PAR) and Southeast Indian Ridge (SEIR), extending eastward from the Australian-Antarctic Discordance (AAD). Much of the AAR has been remained uncharted until 2011 because of its remoteness and harsh weather conditions. Since 2011, four multidisciplinary expeditions initiated by the Korea Polar Research Institute (KOPRI) have surveyed the little-explored eastern ends of the AAR and investigated the tectonics, geochemistry, and hydrothermal activity of this intermediate spreading system. Recent isotope studies using the new basalt samples from the AAR have led to the new hypothesis of the Southern Ocean mantle domain (SOM), which may have originated from the super-plume activity associated with the Gondwana break-up. In this study, we characterize the geophysics of the Southern Ocean mantle using the newly acquired shipboard bathymetry and available geophysical datasets. First, we computed residual mantle Bouguer gravity anomalies (RMBA), gravity-derived crustal thickness, and residual topography along the AAR in order to obtain a geological proxy for regional variations in magma supply. The results of these analyses revealed that the southern flank of the AAR is associated with shallower seafloor, more negative RMBA, thicker crust, and/or less dense mantle in comparison to the conjugate northern flank. Furthermore, this north-south asymmetry becomes more prominent toward the central ridge segments of the AAR. Interestingly, the along-axis depths of the entire AAR are significantly shallower than the neighboring ridge systems and the global ridges of intermediate spreading rates. Such shallow depths are also correlated with regional negative geoid anomalies. Furthermore, recent mantle tomography models consistently showed that the upper mantle (< 250 km) below the AAR has low S-wave velocities, suggesting that it may be hotter than the nearby ridges. Such regional-scale anomalies of the

  4. Shearwater foraging in the Southern Ocean: the roles of prey availability and winds.

    Directory of Open Access Journals (Sweden)

    Ben Raymond

    Full Text Available BACKGROUND: Sooty (Puffinus griseus and short-tailed (P. tenuirostris shearwaters are abundant seabirds that range widely across global oceans. Understanding the foraging ecology of these species in the Southern Ocean is important for monitoring and ecosystem conservation and management. METHODOLOGY/PRINCIPAL FINDINGS: Tracking data from sooty and short-tailed shearwaters from three regions of New Zealand and Australia were combined with at-sea observations of shearwaters in the Southern Ocean, physical oceanography, near-surface copepod distributions, pelagic trawl data, and synoptic near-surface winds. Shearwaters from all three regions foraged in the Polar Front zone, and showed particular overlap in the region around 140 degrees E. Short-tailed shearwaters from South Australia also foraged in Antarctic waters south of the Polar Front. The spatial distribution of shearwater foraging effort in the Polar Front zone was matched by patterns in large-scale upwelling, primary production, and abundances of copepods and myctophid fish. Oceanic winds were found to be broad determinants of foraging distribution, and of the flight paths taken by the birds on long foraging trips to Antarctic waters. CONCLUSIONS/SIGNIFICANCE: The shearwaters displayed foraging site fidelity and overlap of foraging habitat between species and populations that may enhance their utility as indicators of Southern Ocean ecosystems. The results highlight the importance of upwellings due to interactions of the Antarctic Circumpolar Current with large-scale bottom topography, and the corresponding localised increases in the productivity of the Polar Front ecosystem.

  5. Spring–summer albedo variations of Antarctic sea ice from 1982 to 2009

    International Nuclear Information System (INIS)

    Shao, Zhu-De; Ke, Chang-Qing

    2015-01-01

    This study examined the spring–summer (November, December, January and February) albedo averages and trends using a dataset consisting of 28 years of homogenized satellite data for the entire Antarctic sea ice region and for five longitudinal sectors around Antarctica: the Weddell Sea (WS), the Indian Ocean sector (IO), the Pacific Ocean sector (PO), the Ross Sea (RS) and the Bellingshausen–Amundsen Sea (BS). Time series data of the sea ice concentrations and sea surface temperatures were used to analyse their relations to the albedo. The results indicated that the sea ice albedo increased slightly during the study period, at a rate of 0.314% per decade, over the Antarctic sea ice region. The sea ice albedos in the PO, the IO and the WS increased at rates of 2.599% per decade (confidence level 99.86%), 0.824% per decade and 0.413% per decade, respectively, and the steepest increase occurred in the PO. However, the sea ice albedo in the BS decreased at a rate of −1.617% per decade (confidence level 95.05%) and was near zero in the RS. The spring–summer average albedo over the Antarctic sea ice region was 50.24%. The highest albedo values were mainly found on the continental coast and in the WS; in contrast, the lowest albedo values were found on the outer edge of the sea ice, the RS and the Amery Ice Shelf. The average albedo in the western Antarctic sea ice region was distinctly higher than that in the east. The albedo was significantly positively correlated with sea ice concentration (SIC) and was significantly negatively correlated with sea surface temperature (SST); these scenarios held true for all five longitudinal sectors. Spatially, the higher surface albedos follow the higher SICs and lower SST patterns. The increasing albedo means that Antarctic sea ice region reflects more solar radiation and absorbs less, leading to a decrease in temperature and much snowfall on sea ice, and further resulted in an increase in albedo. Conversely, the decreasing

  6. Coherency Between Volume Transport in the Antarctic Circumpolar Current and Southern Hemisphere Winds

    Science.gov (United States)

    Makowski, Jessica; Chambers, Don; Bonin, Jennifer

    2013-04-01

    Previous studies have suggested that ocean bottom pressure (OBP) can be used to measure the transport variability of the Antarctic Circumpolar Current (ACC). The OBP observations from the Gravity Recovery and Climate Experiment (GRACE) will be used to calculate transport along the 150°E longitude choke point, between Antarctica and Australia. We will examine whether zonally averaged wind stress, wind stress curl, or local zonal winds are more coherent with zonal mass transport variability. Preliminary studies suggest that seasonal variation in transport across 150°E is more correlated with winds along and north of the northern front of the ACC: the Sub Tropical front (STF). It also appears that interannual variations in transport along 150°E are related to wind variations south of the STF and centered south of the Sub Antarctic Front (SAF). We have observed a strong anti-correlation across the SAF, in the Indian Ocean, which suggests wind stress curl may also be responsible for transport variations. Preliminary results will be presented.

  7. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota.

    Science.gov (United States)

    Constable, Andrew J; Melbourne-Thomas, Jessica; Corney, Stuart P; Arrigo, Kevin R; Barbraud, Christophe; Barnes, David K A; Bindoff, Nathaniel L; Boyd, Philip W; Brandt, Angelika; Costa, Daniel P; Davidson, Andrew T; Ducklow, Hugh W; Emmerson, Louise; Fukuchi, Mitsuo; Gutt, Julian; Hindell, Mark A; Hofmann, Eileen E; Hosie, Graham W; Iida, Takahiro; Jacob, Sarah; Johnston, Nadine M; Kawaguchi, So; Kokubun, Nobuo; Koubbi, Philippe; Lea, Mary-Anne; Makhado, Azwianewi; Massom, Rob A; Meiners, Klaus; Meredith, Michael P; Murphy, Eugene J; Nicol, Stephen; Reid, Keith; Richerson, Kate; Riddle, Martin J; Rintoul, Stephen R; Smith, Walker O; Southwell, Colin; Stark, Jonathon S; Sumner, Michael; Swadling, Kerrie M; Takahashi, Kunio T; Trathan, Phil N; Welsford, Dirk C; Weimerskirch, Henri; Westwood, Karen J; Wienecke, Barbara C; Wolf-Gladrow, Dieter; Wright, Simon W; Xavier, Jose C; Ziegler, Philippe

    2014-10-01

    Antarctic and Southern Ocean (ASO) marine ecosystems have been changing for at least the last 30 years, including in response to increasing ocean temperatures and changes in the extent and seasonality of sea ice; the magnitude and direction of these changes differ between regions around Antarctica that could see populations of the same species changing differently in different regions. This article reviews current and expected changes in ASO physical habitats in response to climate change. It then reviews how these changes may impact the autecology of marine biota of this polar region: microbes, zooplankton, salps, Antarctic krill, fish, cephalopods, marine mammals, seabirds, and benthos. The general prognosis for ASO marine habitats is for an overall warming and freshening, strengthening of westerly winds, with a potential pole-ward movement of those winds and the frontal systems, and an increase in ocean eddy activity. Many habitat parameters will have regionally specific changes, particularly relating to sea ice characteristics and seasonal dynamics. Lower trophic levels are expected to move south as the ocean conditions in which they are currently found move pole-ward. For Antarctic krill and finfish, the latitudinal breadth of their range will depend on their tolerance of warming oceans and changes to productivity. Ocean acidification is a concern not only for calcifying organisms but also for crustaceans such as Antarctic krill; it is also likely to be the most important change in benthic habitats over the coming century. For marine mammals and birds, the expected changes primarily relate to their flexibility in moving to alternative locations for food and the energetic cost of longer or more complex foraging trips for those that are bound to breeding colonies. Few species are sufficiently well studied to make comprehensive species-specific vulnerability assessments possible. Priorities for future work are discussed. © 2014 John Wiley & Sons Ltd.

  8. Southern Ocean overturning across streamlines in an eddying simulation of the Antarctic Circumpolar Current

    Directory of Open Access Journals (Sweden)

    A. M. Treguier

    2007-12-01

    Full Text Available An eddying global model is used to study the characteristics of the Antarctic Circumpolar Current (ACC in a streamline-following framework. Previous model-based estimates of the meridional circulation were calculated using zonal averages: this method leads to a counter-intuitive poleward circulation of the less dense waters, and underestimates the eddy effects. We show that on the contrary, the upper ocean circulation across streamlines agrees with the theoretical view: an equatorward mean flow partially cancelled by a poleward eddy mass flux. Two model simulations, in which the buoyancy forcing above the ACC changes from positive to negative, suggest that the relationship between the residual meridional circulation and the surface buoyancy flux is not as straightforward as assumed by the simplest theoretical models: the sign of the residual circulation cannot be inferred from the surface buoyancy forcing only. Among the other processes that likely play a part in setting the meridional circulation, our model results emphasize the complex three-dimensional structure of the ACC (probably not well accounted for in streamline-averaged, two-dimensional models and the distinct role of temperature and salinity in the definition of the density field. Heat and salt transports by the time-mean flow are important even across time-mean streamlines. Heat and salt are balanced in the ACC, the model drift being small, but the nonlinearity of the equation of state cannot be ignored in the density balance.

  9. Organophosphorus esters in the oceans and possible relation with ocean gyres

    International Nuclear Information System (INIS)

    Cheng, Wenhan; Xie, Zhouqing; Blais, Jules M.; Zhang, Pengfei; Li, Ming; Yang, Chengyun; Huang, Wen; Ding, Rui; Sun, Liguang

    2013-01-01

    Four organophosphorus esters (OPEs) were detected in aerosol samples collected in the West Pacific, the Indian Ocean and the Southern Ocean from 2009 to 2010, suggesting their circumpolar and global distribution. In general, the highest concentrations were detected near populated regions in China, Australia and New Zealand. OPE concentrations in the Southern Ocean were about two orders of magnitude lower than those near major continents. Additionally, relatively high OPE concentrations were detected at the Antarctic Peninsula, where several scientific survey stations are located. The four OPEs investigated here are significantly correlated with each other, suggesting they may derive from the same source. In the circumpolar transect, OPE concentrations were associated with ocean gyres in the open ocean. Their concentrations were positively related with average vorticity in the sampling area suggesting that a major source of OPEs may be found in ocean gyres where plastic debris is known to accumulate. -- Highlights: •We provide OPE concentrations in aerosols in a circumpolar expedition. •We find strong anthropogenic source of OPE pollution. •We suggest potential relationship between ocean gyres and OPE pollution. -- Our work provides a circumpolar investigation on OPEs in the Southern Ocean and we suggest a possibility that ocean currents and gyres may act as important roles in global transport of OPEs

  10. Ocean Tide Influences on the Antarctic and Greenland Ice Sheets

    Science.gov (United States)

    Padman, Laurie; Siegfried, Matthew R.; Fricker, Helen A.

    2018-03-01

    Ocean tides are the main source of high-frequency variability in the vertical and horizontal motion of ice sheets near their marine margins. Floating ice shelves, which occupy about three quarters of the perimeter of Antarctica and the termini of four outlet glaciers in northern Greenland, rise and fall in synchrony with the ocean tide. Lateral motion of floating and grounded portions of ice sheets near their marine margins can also include a tidal component. These tide-induced signals provide insight into the processes by which the oceans can affect ice sheet mass balance and dynamics. In this review, we summarize in situ and satellite-based measurements of the tidal response of ice shelves and grounded ice, and spatial variability of ocean tide heights and currents around the ice sheets. We review sensitivity of tide heights and currents as ocean geometry responds to variations in sea level, ice shelf thickness, and ice sheet mass and extent. We then describe coupled ice-ocean models and analytical glacier models that quantify the effect of ocean tides on lower-frequency ice sheet mass loss and motion. We suggest new observations and model developments to improve the representation of tides in coupled models that are used to predict future ice sheet mass loss and the associated contribution to sea level change. The most critical need is for new data to improve maps of bathymetry, ice shelf draft, spatial variability of the drag coefficient at the ice-ocean interface, and higher-resolution models with improved representation of tidal energy sinks.

  11. IMOS: How seals are changing the way we monitor the Southern Ocean

    Science.gov (United States)

    Harcourt, R.; McMahon, C.; Jonsen, I.; Goldsworthy, S.; Hindell, M.; Hoenner, X.; Thums, M.

    2016-02-01

    IMOS (Integrated Marine Observing System) operates a wide range of ocean observing equipment throughout Australia's coastal waters and also the open oceans. This fully integrated, national system, covers physical, chemical and biological ocean sciences forming the basis for robust and informed study of the worlds oceans. Of particular interest in understanding global climate processes is the Southern Ocean (SO), but studying this remote region is difficult and most observations are collected during the short ice-free summer when the region is accessible. Through Winter and Spring it is extremely difficult to collect biophysical ocean information in the Southern Ocean. The importance of good observations from this region, the home of the Antarctic Circumpolar Current (ACC), the largest current system in the world, which connects water masses from the global ocean basins cannot be over emphasised. IMOS through the Australian Animal Tracking and Monitoring System (AATAMS) has made important inroads into collecting otherwise hard to obtain observations from the SO by using CTD bio-loggers to monitor coastal and oceanic movements of marine animals from the Australian mainland as far south as the Antarctic continent. In particular seals equipped with satellite-linked CTD tags have provided unique temporal and spatial coverage of the Southern Ocean. This includes extensive data from the Antarctic continental slope and shelf regions during the winter months, which is outside the conventional areas of Argo autonomous floats and ship-based studies. Over 75,000 temperature and salinity profiles have been collected from 20-140 °E, between the Kerguelen archipelago and Prydz Bay Antarctica. These data offer invaluable new insights into the water masses, oceanographic processes and provides a vital tool for oceanographers seeking to advance our understanding of this key component of the global ocean climate. Here we present an overview of the IMOS database of hydrographic (i

  12. Spatial and temporal variability across life's hierarchies in the terrestrial Antarctic.

    Science.gov (United States)

    Chown, Steven L; Convey, Peter

    2007-12-29

    Antarctica and its surrounding islands lie at one extreme of global variation in diversity. Typically, these regions are characterized as being species poor and having simple food webs. Here, we show that terrestrial systems in the region are nonetheless characterized by substantial spatial and temporal variations at virtually all of the levels of the genealogical and ecological hierarchies which have been thoroughly investigated. Spatial variation at the individual and population levels has been documented in a variety of genetic studies, and in mosses it appears that UV-B radiation might be responsible for within-clump mutagenesis. At the species level, modern molecular methods have revealed considerable endemism of the Antarctic biota, questioning ideas that small organisms are likely to be ubiquitous and the taxa to which they belong species poor. At the biogeographic level, much of the relatively small ice-free area of Antarctica remains unsurveyed making analyses difficult. Nonetheless, it is clear that a major biogeographic discontinuity separates the Antarctic Peninsula and continental Antarctica, here named the 'Gressitt Line'. Across the Southern Ocean islands, patterns are clearer, and energy availability is an important correlate of indigenous and exotic species richness, while human visitor numbers explain much of the variation in the latter too. Temporal variation at the individual level has much to do with phenotypic plasticity, and considerable life-history and physiological plasticity seems to be a characteristic of Antarctic terrestrial species. Environmental unpredictability is an important driver of this trait and has significantly influenced life histories across the region and probably throughout much of the temperate Southern Hemisphere. Rapid climate change-related alterations in the range and abundance of several Antarctic and sub-Antarctic populations have taken place over the past several decades. In many sub-Antarctic locations, these

  13. Pathways of upwelling deep waters to the surface of the Southern Ocean

    Science.gov (United States)

    Tamsitt, Veronica; Drake, Henri; Morrison, Adele; Talley, Lynne; Dufour, Carolina; Gray, Alison; Griffies, Stephen; Mazloff, Matthew; Sarmiento, Jorge; Wang, Jinbo; Weijer, Wilbert

    2017-04-01

    Upwelling of Atlantic, Indian and Pacific deep waters to the sea surface in the Southern Ocean closes the global overturning circulation and is fundamentally important for oceanic uptake of anthropogenic carbon and heat, nutrient resupply for sustaining oceanic biological production, and the melt rate of ice shelves. Here we go beyond the two-dimensional view of Southern Ocean upwelling, to show detailed Southern Ocean upwelling pathways in three dimensions, using hydrographic observations and particle tracking in high-resolution ocean and climate models. The northern deep waters enter the Antarctic Circumpolar Current (ACC) via narrow southward currents along the boundaries of the three ocean basins, before spiraling southeastward and upward through the ACC. Upwelling is greatly enhanced at five major topographic features, associated with vigorous mesoscale eddy activity. Deep water reaches the upper ocean predominantly south of the southern ACC boundary, with a spatially nonuniform distribution, regionalizing warm water supply to Antarctic ice shelves and the delivery of nutrient and carbon-rich water to the sea surface. The timescale for half of the deep water to upwell from 30°S to the mixed layer is on the order of 60-90 years, which has important implications for the timescale for signals to propagate through the deep ocean. In addition, we quantify the diabatic transformation along particle trajectories, to identify where diabatic processes are important along the upwelling pathways.

  14. Can we observe the fronts of the Antarctic Circumpolar Current using GRACE OBP?

    Science.gov (United States)

    Makowski, J.; Chambers, D. P.; Bonin, J. A.

    2014-12-01

    The Antarctic Circumpolar Current (ACC) and the Southern Ocean remains one of the most undersampled regions of the world's oceans. The ACC is comprised of four major fronts: the Sub-Tropical Front (STF), the Polar Front (PF), the Sub-Antarctic Front (SAF), and the Southern ACC Front (SACCF). These were initially observed individually from repeat hydrographic sections and their approximate locations globally have been quantified using all available temperature data from the World Ocean and Climate Experiment (WOCE). More recent studies based on satellite altimetry have found that the front positions are more dynamic and have shifted south by up to 1° on average since 1993. Using ocean bottom pressure (OBP) data from the current Gravity Recovery and Climate Experiment (GRACE) we have measured integrated transport variability of the ACC south of Australia. However, differentiation of variability of specific fronts has been impossible due to the necessary smoothing required to reduce noise and correlated errors in the measurements. The future GRACE Follow-on (GFO) mission and the post 2020 GRACE-II mission are expected to produce higher resolution gravity fields with a monthly temporal resolution. Here, we study the resolution and error characteristics of GRACE gravity data that would be required to resolve variations in the front locations and transport. To do this, we utilize output from a high-resolution model of the Southern Ocean, hydrology models, and ice sheet surface mass balance models; add various amounts of random and correlated errors that may be expected from GFO and GRACE-II; and quantify requirements needed for future satellite gravity missions to resolve variations along the ACC fronts.

  15. Accelerated Prediction of the Polar Ice and Global Ocean (APPIGO)

    Science.gov (United States)

    2014-09-30

    APPIGO) Eric Chassignet Center for Ocean-Atmosphere Prediction Studies (COAPS) Florida State University PO Box 3062840 Tallahassee, FL 32306...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Florida Atlantic University,Center for Ocean-Atmosphere Prediction Studies (COAPS),PO Box 3062840...Cavalieri, D. J., C. I. Parkinson , P. Gloersen, and H. J. Zwally. 1997. Arctic and Antarctic Sea Ice Concentrations from Multichannel Passive-Microwave

  16. Three Plate Reconstruction in the Eastern Indian Ocean: New Constraints on Wharton and Australian-Antarctic basins

    Science.gov (United States)

    Jacob, J.; Dyment, J.

    2012-12-01

    Understanding the continuous seismicity and repeated occurrence of major earthquakes in Sumatra and the neighboring area requires detailed constrains on the subducting plate. In this study we analyze the past plate kinematics evolution of the Wharton basin, eastern Indian Ocean through a three plate reconstruction involving Australia (AUS), Antarctica (ANT), and India (IND). We compile marine magnetic identifications in the Australian-Antarctic Basin [1,2], the Crozet and Central Indian basins (Yatheesh et al, in prep.) and the Wharton Basin [3]. The Wharton Basin is characterized by an extinct spreading center dated by anomaly 18 (38 Ma). The southern flank of the basin exhibits a continuous sequence of anomalies 20n (42 Ma) to 34n (84 Ma), whereas the northern flank lacks some of the older anomalies because a significant part has been subducted in the Sunda Trench. The three-plate reconstructions have provided set of rotation parameters describing the evolution of IND-AUS. Using these parameters, we have reconstructed the missing isochrons of the northern flank and the detailed geometry of the subducted part of the Wharton basin. Such an exercise provides useful constraints on the age and structure of the plate in subduction under Indonesia. As a byproduct, the three plate reconstruction provided set of rotation parameters for AUS-ANT as well, which constrains the conjugate fit between the basins. Previous studies [1,2,4,5] have achieved such a fit on the base of ill-defined fracture zones. We consider the well-defined fracture zones from the Crozet, Central Indian, and Wharton basins, but avoid using the poor fracture zone imprints from the Australian-Antarctic Basin. As a result from this approach, we conclude that the relative motion of AUS with respect to ANT initially followed a north-south direction, then changed to northwest-southeast at anomaly 32ny, and reverted to northeast southwest at anomaly 24no prior to the establishment of the Southeast Indian

  17. Westerly Winds and the Southern Ocean CO2 Sink Since the Last Glacial-Interglacial Transition

    Science.gov (United States)

    Hodgson, D. A.; Saunders, K. M.; Roberts, S. J.; Perren, B.; Butz, C.; Sime, L. C.; Davies, S. J.; Grosjean, M.

    2017-12-01

    The capacity of the Southern Ocean carbon sink is partly controlled by the Southern Hemisphere westerly winds (SHW) and sea ice. These regulate the upwelling of dissolved carbon-rich deep water to Antarctic surface waters, determine the surface area for air-sea gas exchange and therefore modulate the net uptake of atmospheric CO2. Some models have proposed that strengthened SHW will result in a weakening of the Southern Ocean CO2 sink. If these models are correct, then one would expect that reconstructions of changes in SHW intensity on centennial to millennial timescales would show clear links with Antarctic ice core and Southern Ocean marine geological records of atmospheric CO2, temperature and sea ice. Here, we present a 12,300 year reconstruction of past wind strength based on three independent proxies that track the changing inputs of sea salt aerosols and minerogenic particles into lake sediments on sub-Antarctic Macquarie Island. The proxies are consistent in showing that periods of high wind intensity corresponded with the increase in CO2 across the late Last Glacial-Interglacial Transition and in the last 7,000 years, suggesting that the winds have contributed to the long term outgassing of CO2 from the ocean during these periods.

  18. Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes

    Science.gov (United States)

    Lazeroms, Werner M. J.; Jenkins, Adrian; Hilmar Gudmundsson, G.; van de Wal, Roderik S. W.

    2018-01-01

    Basal melting below ice shelves is a major factor in mass loss from the Antarctic Ice Sheet, which can contribute significantly to possible future sea-level rise. Therefore, it is important to have an adequate description of the basal melt rates for use in ice-dynamical models. Most current ice models use rather simple parametrizations based on the local balance of heat between ice and ocean. In this work, however, we use a recently derived parametrization of the melt rates based on a buoyant meltwater plume travelling upward beneath an ice shelf. This plume parametrization combines a non-linear ocean temperature sensitivity with an inherent geometry dependence, which is mainly described by the grounding-line depth and the local slope of the ice-shelf base. For the first time, this type of parametrization is evaluated on a two-dimensional grid covering the entire Antarctic continent. In order to apply the essentially one-dimensional parametrization to realistic ice-shelf geometries, we present an algorithm that determines effective values for the grounding-line depth and basal slope in any point beneath an ice shelf. Furthermore, since detailed knowledge of temperatures and circulation patterns in the ice-shelf cavities is sparse or absent, we construct an effective ocean temperature field from observational data with the purpose of matching (area-averaged) melt rates from the model with observed present-day melt rates. Our results qualitatively replicate large-scale observed features in basal melt rates around Antarctica, not only in terms of average values, but also in terms of the spatial pattern, with high melt rates typically occurring near the grounding line. The plume parametrization and the effective temperature field presented here are therefore promising tools for future simulations of the Antarctic Ice Sheet requiring a more realistic oceanic forcing.

  19. 76 FR 52354 - Notice of Permit Application Received Under the Antarctic Conservation Act of 1978

    Science.gov (United States)

    2011-08-22

    ... can be broken and release plastic into the ocean. (2) Fishing nets: (a) Plankton nets come in a... in ASPA 149-Cape Shirreff, Livingston Island by the Antarctic Marine Living Resources (AMLR) Program... release of a designated pollutant in Antarctica, and for the release of waste in Antarctica. NSF has...

  20. Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models

    Science.gov (United States)

    Son, Seok-Woo; Han, Bo-Reum; Garfinkel, Chaim I.; Kim, Seo-Yeon; Park, Rokjin; Abraham, N. Luke; Akiyoshi, Hideharu; Archibald, Alexander T.; Butchart, N.; Chipperfield, Martyn P.; Dameris, Martin; Deushi, Makoto; Dhomse, Sandip S.; Hardiman, Steven C.; Jöckel, Patrick; Kinnison, Douglas; Michou, Martine; Morgenstern, Olaf; O’Connor, Fiona M.; Oman, Luke D.; Plummer, David A.; Pozzer, Andrea; Revell, Laura E.; Rozanov, Eugene; Stenke, Andrea; Stone, Kane; Tilmes, Simone; Yamashita, Yousuke; Zeng, Guang

    2018-05-01

    The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models reasonably well reproduce Antarctic ozone depletion in the late 20th century. The related SH-summer circulation changes, such as a poleward intensification of westerly jet and a poleward expansion of the Hadley cell, are also well captured. All experiments exhibit quantitatively the same multi-model mean trend, irrespective of whether the ocean is coupled or prescribed. Results are also quantitatively similar to those derived from the Coupled Model Intercomparison Project phase 5 (CMIP5) high-top model simulations in which the stratospheric ozone is mostly prescribed with monthly- and zonally-averaged values. These results suggest that the ozone-hole-induced SH-summer circulation changes are robust across the models irrespective of the specific chemistry-atmosphere-ocean coupling.

  1. The Global S$_1$ Ocean Tide

    Science.gov (United States)

    Ray, Richard D.; Egbert, G. D.

    2003-01-01

    The small S$_1$ ocean tide is caused primarily by diurnal atmospheric pressure loading. Its excitation is therefore unlike any other diurnal tide. The global character of $S-1$ is here determined by numerical modeling and by analysis of Topex/Poseidon satellite altimeter data. The two approaches yield reasonably consistent results, and large ( $ greater than $l\\cm) amplitudes in several regions are further confirmed by comparison with coastal tide gauges. Notwithstanding their excitation differences, S$-1$ and other diurnal tides are found to share several common features, such as relatively large amplitudes in the Arabian Sea, the Sea of Okhotsk, and the Gulf of Alaska. The most noticeable difference is the lack of an S$-1$ Antarctic Kelvin wave. These similarities and differences can be explained in terms of the coherences between near-diurnal oceanic normal modes and the underlying tidal forcings. While gravitational diurnal tidal forces excite primarily a 28-hour Antarctic-Pacific mode, the S$_1$ air tide excites several other near-diurnal modes, none of which has large amplitudes near Antarctica.

  2. Turbidity, SOLAR RADIATION - ATMOSPHERIC and other data from PROFESSOR SIEDLECKI in the Southern Oceans from 1977-01-01 to 1978-12-31 (NODC Accession 9600122)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Ocean Serial data in this accession was collected in Southern Oceans (> 60 degrees South) in Polish Antarctic stations as part of Global Ocean Data...

  3. ADMAP-2: The second generation Antarctic crustal magnetic anomaly map.

    Science.gov (United States)

    Ferraccioli, F.; Golynsky, A.; Golynsky, D.; Young, D. A.; Eagles, G.; Damaske, D.; Finn, C.; Aitken, A.; von Frese, R. R. B.; Ghidella, M. E.; Kim, H. R.; Hong, J.

    2017-12-01

    ADMAP-2 is the second generation crustal magnetic anomaly compilation for the Antarctic region south of 60°S. It was produced from more than 3.5 million line-km of near-surface terrestrial, airborne and marine magnetic observations collected since the International Geophysical Year 1957/58 through 2013. The data were edited, IGRF corrected, profile levelled and gridded at a 1.5-km interval on a polar stereographic projection using the minimum curvature technique. Given the ubiquitous polar cover of snow, ice and sea water, the magnetic anomaly compilation offers important constraints on the global tectonic processes and crustal properties of the Antarctic. It also links widely separated areas of outcrop to help unify disparate geologic studies, and provides insights on the lithospheric transition between Antarctica and adjacent oceans, as well as the geodynamic evolution of the Antarctic lithosphere in the assembly and break-up of the Gondwana, Rodinia, and Columbia supercontinents and key piercing points for reconstructing linkages between the protocontinents. The magnetic data together with ice-probing radar and gravity information greatly facilitate understanding the evolution of fundamental large-scale geological processes such as continental rifting, intraplate mountain building, subduction and terrane accretion processes, and intraplate basin formation.

  4. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    Science.gov (United States)

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.

  5. Determination of the Prebomb Southern (Antarctic) Ocean Radiocarbon in Organic Matter

    International Nuclear Information System (INIS)

    Guilderson, T P

    2001-01-01

    The Southern Hemisphere is an important and unique region of the world's oceans for water-mass formation and mixing, upwelling, nutrient utilization, and carbon export. In fact, one of the primary interests of the oceanographic community is to decipher the climatic record of these processes in the source or sink terms for Southern Ocean surface waters in the CO 2 balance of the atmosphere. Current coupled ocean-atmosphere modeling efforts to trace the input of CO 2 into the ocean imply a strong sink of anthropogenic CO 2 in the southern ocean. However, because of its relative inaccessibility and the difficulty in directly measuring CO 2 fluxes in the Southern Ocean, these results are controversial at best. An accepted diagnostic of the exchange of CO 2 between the atmosphere and ocean is the prebomb distribution of radiocarbon in the ocean and its time-history since atmospheric nuclear testing. Such histories of 14 C in the surface waters of the Southern Ocean do not currently exist, primarily because there are few continuous biological archives (e.g., in corals) such as those that have been used to monitor the 14 C history of the tropics and subtropics. One of the possible long-term archives is the scallop Adamussium collbecki. Although not independently confirmed, relatively crude growth rate estimates of A. collbecki indicate that it has the potential to provide continuous 100 year time-series. We are exploring the suitability of this potential archive

  6. Altered developmental timing in early life stages of Antarctic krill (Euphausia superba) exposed to p,p'-DDE

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Anita H., E-mail: anita.poulsen@uq.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Rd, Brisbane, Qld 4108 (Australia); Kawaguchi, So, E-mail: so.kawaguchi@aad.gov.au [Australian Antarctic Division, Channel Highway, Kingston, Tas 7050 (Australia); Leppaenen, Matti T., E-mail: matti.t.leppanen@uef.fi [University of Eastern Finland, Joensuu Campus, Department of Biology, FIN-80101 (Finland); Kukkonen, Jussi V.K., E-mail: jussi.kukkonen@uef.fi [University of Eastern Finland, Joensuu Campus, Department of Biology, FIN-80101 (Finland); Bengtson Nash, Susan M., E-mail: s.bengtsonnash@griffith.edu.au [The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Rd, Brisbane, Qld 4108 (Australia); Griffith University, Atmospheric Environment Research Centre, Brisbane, Qld 4111 (Australia)

    2011-11-15

    Persistent organic pollutants (POPs) are persistent, toxic and bioaccumulative anthropogenic organic chemicals, capable of undergoing long range environmental transport to remote areas including the Antarctic. p,p'-dichlorodiphenyl dichloroethylene (p,p'-DDE) has been identified as a dominant POP accumulating in Antarctic krill (Euphausia superba), which is a key Southern Ocean species. This study examined the developmental toxicity of p,p'-DDE via aqueous exposure to Antarctic krill larvae. p,p'-DDE exposure was found to stimulate developmental timing in the first three larval stages of Antarctic krill, while extended monitoring of larvae after a five day exposure period had ended, revealed delayed inhibitory responses during development to the fourth larval stage. Stimulatory responses were observed from the lowest p,p'-DDE body residue tested of 10.1 {+-} 3.0 {mu}mol/kg (3.2 {+-} 0.95 mg/kg) preserved wet weight, which is comparable to findings for temperate species and an order of magnitude lower than the exposure level found to cause sublethal behavioural effects in Antarctic krill. The delayed responses included increased mortality, which had doubled in the highest p,p'-DDE treatment (95 {+-} 8.9% mortality at 20 {mu}g/L p,p'-DDE) compared to the solvent control (44 {+-} 11% mortality) 2 weeks after end of exposure. Development of surviving metanauplius larvae to calyptopis 1 larvae was delayed by 2 days in p,p'-DDE exposed larvae compared with untreated larvae. Finally, the developmental success of surviving p,p'-DDE exposed larvae was reduced by 50 to 75% compared to the solvent control (100% developmental success). The lowest observed effect concentration for all delayed effects was 1 {mu}g/L, the lowest exposure concentration tested. These findings demonstrate the importance of delayed and indirect effects of toxicant exposure. Further, the findings of this study are important for environmental risk assessment

  7. The Antarctic Master Directory -- the Electronic Card Catalog of Antarctic Data

    Science.gov (United States)

    Scharfen, G.; Bauer, R.

    2003-12-01

    The Antarctic Master Directory (AMD) is a Web-based, searchable record of thousands of Antarctic data descriptions. These data descriptions contain information about what data were collected, where they were collected, when they were collected, who the scientists are, who the point of contact is, how to get the data, and information about the format of the data and what documentation and bibliographic information exists. With this basic descriptive information about content and access for thousands of Antarctic scientific data sets, the AMD is a resource for scientists to advertise the data they have collected and to search for data they need. The AMD has been created by more than twenty nations which conduct research in the Antarctic under the auspices of the Antarctic Treaty. It is a part of the International Directory Network/Global Change Master Directory (IDN/GCMD). Using the AMD is easy. Users can search on subject matter key words, data types, geographic place-names, temporal or spatial ranges, or conduct free-text searches. To search the AMD go to: http://gcmd.nasa.gov/Data/portals/amd/. Contributing your own data descriptions for Antarctic data that you have collected is also easy. Scientists can start by submitting a short data description first (as a placeholder in the AMD, and to satisfy National Science Foundation (NSF) reporting requirements), and then add to, modify or update their record whenever it is appropriate. An easy to use on-line tool and a simple tutorial are available at: http://nsidc.org/usadcc. With NSF Office of Polar Programs (OPP) funding, the National Snow and Ice Data Center (NSIDC) operates the U.S. Antarctic Data Coordination Center (USADCC), partly to assist scientists in using and contributing to the AMD. The USADCC website is at http://nsidc.org/usadcc.

  8. Structural Uncertainty in Antarctic sea ice simulations

    Science.gov (United States)

    Schneider, D. P.

    2016-12-01

    The inability of the vast majority of historical climate model simulations to reproduce the observed increase in Antarctic sea ice has motivated many studies about the quality of the observational record, the role of natural variability versus forced changes, and the possibility of missing or inadequate forcings in the models (such as freshwater discharge from thinning ice shelves or an inadequate magnitude of stratospheric ozone depletion). In this presentation I will highlight another source of uncertainty that has received comparatively little attention: Structural uncertainty, that is, the systematic uncertainty in simulated sea ice trends that arises from model physics and mean-state biases. Using two large ensembles of experiments from the Community Earth System Model (CESM), I will show that the model is predisposed towards producing negative Antarctic sea ice trends during 1979-present, and that this outcome is not simply because the model's decadal variability is out-of-synch with that in nature. In the "Tropical Pacific Pacemaker" ensemble, in which observed tropical Pacific SST anomalies are prescribed, the model produces very realistic atmospheric circulation trends over the Southern Ocean, yet the sea ice trend is negative in every ensemble member. However, if the ensemble-mean trend (commonly interpreted as the forced response) is removed, some ensemble members show a sea ice increase that is very similar to the observed. While this results does confirm the important role of natural variability, it also suggests a strong bias in the forced response. I will discuss the reasons for this systematic bias and explore possible remedies. This an important problem to solve because projections of 21st -Century changes in the Antarctic climate system (including ice sheet surface mass balance changes and related changes in the sea level budget) have a strong dependence on the mean state of and changes in the Antarctic sea ice cover. This problem is not unique to

  9. Tropical forcing of increased Southern Ocean climate variability revealed by a 140-year subantarctic temperature reconstruction

    NARCIS (Netherlands)

    Turney, Chris S.M.; Fogwill, Christopher J.; Palmer, Jonathan G.; Van Sebille, Erik; Thomas, Zoë; McGlone, Matt; Richardson, Sarah; Wilmshurst, Janet M.; Fenwick, Pavla; Zunz, Violette; Goosse, Hugues; Wilson, Kerry Jayne; Carter, Lionel; Lipson, Mathew; Jones, Richard T.; Harsch, Melanie; Clark, Graeme; Marzinelli, Ezequiel; Rogers, Tracey; Rainsley, Eleanor; Ciasto, Laura; Waterman, Stephanie; Thomas, Elizabeth R.; Visbeck, Martin

    2017-01-01

    Occupying about 14% of the world's surface, the Southern Ocean plays a fundamental role in ocean and atmosphere circulation, carbon cycling and Antarctic ice-sheet dynamics. Unfortunately, high interannual variability and a dearth of instrumental observations before the 1950s limits our

  10. Abundant Hydrothermal Venting in the Southern Ocean Near 62°S/159°E on the Australian-Antarctic Ridge

    Science.gov (United States)

    Baker, E. T.; Hahm, D.; Rhee, T. S.; Park, S. H.; Lupton, J. E.; Walker, S. L.; Choi, H.

    2014-12-01

    Circum-Antarctic Ridges (CARs) comprise almost one-third of the global Mid-Ocean Ridge, yet remain terra incognita for hydrothermal activity and chemosynthetic ecosystems. The InterRidge Vents Database lists only 3 confirmed (visualized) and 35 inferred (plume evidence) active sites along the ~21,000 km of CARs. Here, we report on a multi-year effort to locate and characterize hydrothermal activity on two 1st-order segments of the Australian-Antarctic Ridge that are perhaps more isolated from other known vent fields than any other vent site on the Mid-Ocean Ridge. KR1 is a 300-km-long segment near 62°S/159°E, and KR2 a 90-km-long segment near 60°S/152.5°E. We used profiles collected by Miniature Autonomous Plume Recorders (MAPRs) on rock corers in March and December of 2011 to survey each segment, and an intensive CTD survey in Jan/Feb 2013 to pinpoint sites and sample plumes on KR1. Optical and oxidation-reduction potential (ORP, aka Eh) anomalies indicate multiple active sites on both segments. Seven profiles on KR2 found 3 sites, each separated by ~25 km. Forty profiles on KR1 identified 13 sites, some within a few km of each other. The densest site concentration on KR1 occurred along a relatively inflated, 90-km-long section near the segment center. CTD tows covered 20 km of the eastern, most inflated portion of this area, finding two 6-km-long zones centered near 158.6°E and 158.8°E with multiple plume anomalies. Three ORP anomalies within 50 m of the seafloor indicate precise venting locations. We call this area the Mujin "Misty Harbor" vent field. Vent frequency sharply decreases away from Mujin. 3He/heat ratios determined from 20 plume samples in the Mujin field were mostly <0.015 fM/J, indicative of chronic venting, but 3 samples, 0.021-0.034 fM/J, are ratios typical of a recent eruption. The spatial density of hydrothermal activity along KR1 and KR2 is similar to other intermediate-rate spreading ridges. We calculate the plume incidence (ph) along

  11. More losers than winners in a century of future Southern Ocean seafloor warming

    Science.gov (United States)

    Griffiths, Huw J.; Meijers, Andrew J. S.; Bracegirdle, Thomas J.

    2017-10-01

    The waters of the Southern Ocean are projected to warm over the coming century, with potential adverse consequences for native cold-adapted organisms. Warming waters have caused temperate marine species to shift their ranges poleward. The seafloor animals of the Southern Ocean shelf have long been isolated by the deep ocean surrounding Antarctica and the Antarctic Circumpolar Current, with little scope for southward migration. How these largely endemic species will react to future projected warming is unknown. By considering 963 invertebrate species, we show that within the current century, warming temperatures alone are unlikely to result in wholesale extinction or invasion affecting Antarctic seafloor life. However, 79% of Antarctica's endemic species do face a significant reduction in suitable temperature habitat (an average 12% reduction). Our findings highlight the species and regions most likely to respond significantly (negatively and positively) to warming and have important implications for future management of the region.

  12. Climate change and the marine ecosystem of the western Antarctic Peninsula

    Science.gov (United States)

    Clarke, Andrew; Murphy, Eugene J; Meredith, Michael P; King, John C; Peck, Lloyd S; Barnes, David K.A; Smith, Raymond C

    2006-01-01

    The Antarctic Peninsula is experiencing one of the fastest rates of regional climate change on Earth, resulting in the collapse of ice shelves, the retreat of glaciers and the exposure of new terrestrial habitat. In the nearby oceanic system, winter sea ice in the Bellingshausen and Amundsen seas has decreased in extent by 10% per decade, and shortened in seasonal duration. Surface waters have warmed by more than 1 K since the 1950s, and the Circumpolar Deep Water (CDW) of the Antarctic Circumpolar Current has also warmed. Of the changes observed in the marine ecosystem of the western Antarctic Peninsula (WAP) region to date, alterations in winter sea ice dynamics are the most likely to have had a direct impact on the marine fauna, principally through shifts in the extent and timing of habitat for ice-associated biota. Warming of seawater at depths below ca 100 m has yet to reach the levels that are biologically significant. Continued warming, or a change in the frequency of the flooding of CDW onto the WAP continental shelf may, however, induce sublethal effects that influence ecological interactions and hence food-web operation. The best evidence for recent changes in the ecosystem may come from organisms which record aspects of their population dynamics in their skeleton (such as molluscs or brachiopods) or where ecological interactions are preserved (such as in encrusting biota of hard substrata). In addition, a southwards shift of marine isotherms may induce a parallel migration of some taxa similar to that observed on land. The complexity of the Southern Ocean food web and the nonlinear nature of many interactions mean that predictions based on short-term studies of a small number of species are likely to be misleading. PMID:17405211

  13. Climate change and the marine ecosystem of the western Antarctic Peninsula.

    Science.gov (United States)

    Clarke, Andrew; Murphy, Eugene J; Meredith, Michael P; King, John C; Peck, Lloyd S; Barnes, David K A; Smith, Raymond C

    2007-01-29

    The Antarctic Peninsula is experiencing one of the fastest rates of regional climate change on Earth, resulting in the collapse of ice shelves, the retreat of glaciers and the exposure of new terrestrial habitat. In the nearby oceanic system, winter sea ice in the Bellingshausen and Amundsen seas has decreased in extent by 10% per decade, and shortened in seasonal duration. Surface waters have warmed by more than 1 K since the 1950s, and the Circumpolar Deep Water (CDW) of the Antarctic Circumpolar Current has also warmed. Of the changes observed in the marine ecosystem of the western Antarctic Peninsula (WAP) region to date, alterations in winter sea ice dynamics are the most likely to have had a direct impact on the marine fauna, principally through shifts in the extent and timing of habitat for ice-associated biota. Warming of seawater at depths below ca 100 m has yet to reach the levels that are biologically significant. Continued warming, or a change in the frequency of the flooding of CDW onto the WAP continental shelf may, however, induce sublethal effects that influence ecological interactions and hence food-web operation. The best evidence for recent changes in the ecosystem may come from organisms which record aspects of their population dynamics in their skeleton (such as molluscs or brachiopods) or where ecological interactions are preserved (such as in encrusting biota of hard substrata). In addition, a southwards shift of marine isotherms may induce a parallel migration of some taxa similar to that observed on land. The complexity of the Southern Ocean food web and the nonlinear nature of many interactions mean that predictions based on short-term studies of a small number of species are likely to be misleading.

  14. Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise.

    Science.gov (United States)

    Che-Castaldo, Christian; Jenouvrier, Stephanie; Youngflesh, Casey; Shoemaker, Kevin T; Humphries, Grant; McDowall, Philip; Landrum, Laura; Holland, Marika M; Li, Yun; Ji, Rubao; Lynch, Heather J

    2017-10-10

    Colonially-breeding seabirds have long served as indicator species for the health of the oceans on which they depend. Abundance and breeding data are repeatedly collected at fixed study sites in the hopes that changes in abundance and productivity may be useful for adaptive management of marine resources, but their suitability for this purpose is often unknown. To address this, we fit a Bayesian population dynamics model that includes process and observation error to all known Adélie penguin abundance data (1982-2015) in the Antarctic, covering >95% of their population globally. We find that process error exceeds observation error in this system, and that continent-wide "year effects" strongly influence population growth rates. Our findings have important implications for the use of Adélie penguins in Southern Ocean feedback management, and suggest that aggregating abundance across space provides the fastest reliable signal of true population change for species whose dynamics are driven by stochastic processes.Adélie penguins are a key Antarctic indicator species, but data patchiness has challenged efforts to link population dynamics to key drivers. Che-Castaldo et al. resolve this issue using a pan-Antarctic Bayesian model to infer missing data, and show that spatial aggregation leads to more robust inference regarding dynamics.

  15. Explicit representation and parametrised impacts of under ice shelf seas in the z∗ coordinate ocean model NEMO 3.6

    Directory of Open Access Journals (Sweden)

    P. Mathiot

    2017-07-01

    Full Text Available Ice-shelf–ocean interactions are a major source of freshwater on the Antarctic continental shelf and have a strong impact on ocean properties, ocean circulation and sea ice. However, climate models based on the ocean–sea ice model NEMO (Nucleus for European Modelling of the Ocean currently do not include these interactions in any detail. The capability of explicitly simulating the circulation beneath ice shelves is introduced in the non-linear free surface model NEMO. Its implementation into the NEMO framework and its assessment in an idealised and realistic circum-Antarctic configuration is described in this study. Compared with the current prescription of ice shelf melting (i.e. at the surface, inclusion of open sub-ice-shelf cavities leads to a decrease in sea ice thickness along the coast, a weakening of the ocean stratification on the shelf, a decrease in salinity of high-salinity shelf water on the Ross and Weddell sea shelves and an increase in the strength of the gyres that circulate within the over-deepened basins on the West Antarctic continental shelf. Mimicking the overturning circulation under the ice shelves by introducing a prescribed meltwater flux over the depth range of the ice shelf base, rather than at the surface, is also assessed. It yields similar improvements in the simulated ocean properties and circulation over the Antarctic continental shelf to those from the explicit ice shelf cavity representation. With the ice shelf cavities opened, the widely used three equation ice shelf melting formulation, which enables an interactive computation of melting, is tested. Comparison with observational estimates of ice shelf melting indicates realistic results for most ice shelves. However, melting rates for the Amery, Getz and George VI ice shelves are considerably overestimated.

  16. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    Science.gov (United States)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of

  17. ADMAP-2: The next-generation Antarctic magnetic anomaly map

    Science.gov (United States)

    Golynsky, Alexander; Golynsky, Dmitry; Ferraccioli, Fausto; Jordan, Tom; Damaske, Detlef; Blankenship, Don; Holt, Jack; Young, Duncan; Ivanov, Sergey; Kiselev, Alexander; Jokat, Wilfried; Gohl, Karsten; Eagles, Graeme; Bell, Robin; Armadillo, Egidio; Bozzo, Emanuelle; Caneva, Giorgio; Finn, Carol; Forsberg, Rene; Aitken, Alan

    2017-04-01

    The Antarctic Digital Magnetic Anomaly Project compiled the first international magnetic anomaly map of the Antarctic region south of 60°S (ADMAP-1) some six years after its 1995 launch (Golynsky et al., 2001; Golynsky et al., 2007; von Frese et al., 2007). This magnetic anomaly compilation provided new insights into the structure and evolution of Antarctica, including its Proterozoic-Archaean cratons, Proterozoic-Palaeozoic orogens, Palaeozoic-Cenozoic magmatic arc systems, continental rift systems and rifted margins, large igneous provinces and the surrounding oceanic gateways. The international working group produced the ADMAP-1 database from more than 1.5 million line-kilometres of terrestrial, airborne, marine and satellite magnetic observations collected during the IGY 1957-58 through 1999. Since the publication of the first magnetic anomaly map, the international geomagnetic community has acquired more than 1.9 million line-km of new airborne and marine data. This implies that the amount of magnetic anomaly data over the Antarctic continent has more than doubled. These new data provide important constraints on the geology of the enigmatic Gamburtsev Subglacial Mountains and Prince Charles Mountains, Wilkes Land, Dronning Maud Land, and other largely unexplored Antarctic areas (Ferraccioli et al., 2011, Aitken et al., 2014¸ Mieth & Jokat, 2014, Golynsky et al., 2013). The processing of the recently acquired data involved quality assessments by careful statistical analysis of the crossover errors. All magnetic data used in the ADMAP-2 compilation were delivered as profiles, although several of them were in raw form. Some datasets were decimated or upward continued to altitudes of 4 km or higher with the higher frequency geological signals smoothed out. The line data used for the ADMAP-1 compilation were reprocessed for obvious errors and residual corrugations. The new near-surface magnetic data were corrected for the international geomagnetic reference field

  18. The influence of UV irradiation on the photoreduction of iron in the Southern Ocean

    NARCIS (Netherlands)

    Rijkenberg, M J A; Fischer, AC; Kroon, JJ; Gerringa, LJA; Timmermans, KR; Wolterbeek, HT; de Baar, H J W

    2005-01-01

    An iron enrichment experiment, EisenEx, was performed in the Atlantic sector of the Southern Ocean during the Antarctic spring of 2000. Deck incubations of open ocean water were performed to investigate the influence of ultraviolet B (UVB: 280-315 nm) and ultraviolet A (UVA: 315-400 nm) on the

  19. Antarctic station life: The first 15 years of mixed expeditions to the Antarctic

    Science.gov (United States)

    Sarris, Aspa

    2017-02-01

    This study examined the experiences of women who lived and worked on remote and isolated Antarctic stations for up to 15 months at a time. The study employed purposeful sampling and a longitudinal - processual approach to study women's experiences over the first 15 years of mixed gender Antarctic expeditions. The retrospective analysis was based on a semi-structured interview administered to 14 women upon their return to Australia. The results showed that women referred to the natural physical Antarctic environment as one of the best aspects of their experience and the reason they would recommend the Antarctic to their friends as a good place to work. In describing the worst aspect of their experience, women referred to aspects of Antarctic station life, including: (i) the male dominated nature of station culture; (ii) the impact of interpersonal conflict, including gender based conflict and friction between scientists and trades workers; and (iii) the lack of anonymity associated with living and working with the same group of individuals, mainly men, for up to 12 months or more. The results are discussed within the context of the evolution of Antarctic station culture and recommendations are made in terms of the demography of expeditions, expeditioner selection and recruitment and the ongoing monitoring of Antarctic station culture. The study presents a framework that can be applied to groups and teams living and working in analogous isolated, confined and extreme work environments, including outer space missions.

  20. Report on Workshop "Planning of Future Science in the Polar Ocean Study with Cooperation among Study Groups"

    Directory of Open Access Journals (Sweden)

    Mitsuo Fukuchi

    2001-03-01

    Full Text Available A workshop on "Planning of Future Science in the Polar Ocean Study with Cooperation among Study Groups" was held on November 1,2000,at the National Institute of Polar Research with 21 participants. In this workshop, a plan to charter a research vessel other than "Shirase" was introduced and a science plan using the chartered research vessel by 43rd Japanese Antarctic Research Expedition was discussed. This study is going to be conducted in the sea ice area around 140-150°E in mid-summer (February 2002, when biological production becomes active in the Antarctic Ocean. Oceanographic observations using "Shirase" are difficult to conduct in this season since she supports a wide range of summer operations around Syowa Station. The relationships between biological production and greenhouse effect gas production and the vertical transport of organic materials from the surface to deep ocean will be the focus of this study. At this stage, one deputy leader and three members of JARE, and 25-26 other scientists including graduate students and foreign scientists, will participate in the field observations using the chartered vessel. The members of JARE will conduct a project science program of the VI Phase of JARE, while the other participants will do part of the science program "Antarctic Ocean in Earth System". Since further observations for several years after the summer of 2002 will be required to understand the role of the Antarctic Ocean in global climate change, we have applied for a Grant-in-Aid for Scientific Research for the next project, which will start from 2001,to the Ministry of Education, Science, Sports and Culture of Japan. The proposal was discussed in detail in this workshop.

  1. The Ocean Carbon States Database: A Proof-of-Concept Application of Cluster Analysis in the Ocean Carbon Cycle

    Science.gov (United States)

    Latto, Rebecca; Romanou, Anastasia

    2018-01-01

    In this paper, we present a database of the basic regimes of the carbon cycle in the ocean, the 'ocean carbon states', as obtained using a data mining/pattern recognition technique in observation-based as well as model data. The goal of this study is to establish a new data analysis methodology, test it and assess its utility in providing more insights into the regional and temporal variability of the marine carbon cycle. This is important as advanced data mining techniques are becoming widely used in climate and Earth sciences and in particular in studies of the global carbon cycle, where the interaction of physical and biogeochemical drivers confounds our ability to accurately describe, understand, and predict CO2 concentrations and their changes in the major planetary carbon reservoirs. In this proof-of-concept study, we focus on using well-understood data that are based on observations, as well as model results from the NASA Goddard Institute for Space Studies (GISS) climate model. Our analysis shows that ocean carbon states are associated with the subtropical-subpolar gyre during the colder months of the year and the tropics during the warmer season in the North Atlantic basin. Conversely, in the Southern Ocean, the ocean carbon states can be associated with the subtropical and Antarctic convergence zones in the warmer season and the coastal Antarctic divergence zone in the colder season. With respect to model evaluation, we find that the GISS model reproduces the cold and warm season regimes more skillfully in the North Atlantic than in the Southern Ocean and matches the observed seasonality better than the spatial distribution of the regimes. Finally, the ocean carbon states provide useful information in the model error attribution. Model air-sea CO2 flux biases in the North Atlantic stem from wind speed and salinity biases in the subpolar region and nutrient and wind speed biases in the subtropics and tropics. Nutrient biases are shown to be most important

  2. Seasonal and geographic variation of southern blue whale subspecies in the Indian Ocean.

    Directory of Open Access Journals (Sweden)

    Flore Samaran

    Full Text Available Understanding the seasonal movements and distribution patterns of migratory species over ocean basin scales is vital for appropriate conservation and management measures. However, assessing populations over remote regions is challenging, particularly if they are rare. Blue whales (Balaenoptera musculus spp are an endangered species found in the Southern and Indian Oceans. Here two recognized subspecies of blue whales and, based on passive acoustic monitoring, four "acoustic populations" occur. Three of these are pygmy blue whale (B.m. brevicauda populations while the fourth is the Antarctic blue whale (B.m. intermedia. Past whaling catches have dramatically reduced their numbers but recent acoustic recordings show that these oceans are still important habitat for blue whales. Presently little is known about the seasonal movements and degree of overlap of these four populations, particularly in the central Indian Ocean. We examined the geographic and seasonal occurrence of different blue whale acoustic populations using one year of passive acoustic recording from three sites located at different latitudes in the Indian Ocean. The vocalizations of the different blue whale subspecies and acoustic populations were recorded seasonally in different regions. For some call types and locations, there was spatial and temporal overlap, particularly between Antarctic and different pygmy blue whale acoustic populations. Except on the southernmost hydrophone, all three pygmy blue whale acoustic populations were found at different sites or during different seasons, which further suggests that these populations are generally geographically distinct. This unusual blue whale diversity in sub-Antarctic and sub-tropical waters indicates the importance of the area for blue whales in these former whaling grounds.

  3. The Southern Ocean and South Pacific Region

    OpenAIRE

    Kelleher, K.; Warnau, Michel; Failler, Pierre; Pecl, Gretta; Turley, Carol; Boeuf, Gilles; Laffoley, Dan; Parker, Laura; Gurney, Leigh

    2012-01-01

    The Region comprises three sub-regions (FAO Statistical Areas) with very different characteristics. The South Pacific includes the vast and virtually unpopulated Southern Ocean surrounding the Antarctic. It has the world’s largest fisheries off Peru and Chile and some of the world’s best managed fisheries in Australia and New Zealand. The Region has over 27% of the world’s ocean area and over 98% of the Region’s total area of 91 million km2 is ‘open ocean’. The Region contains less than 5% of...

  4. An assessment of the role of the k-e vertical mixing scheme in the simulation of Southern Ocean upper dynamics

    CSIR Research Space (South Africa)

    Boodhraj, K

    2016-11-01

    Full Text Available Following the work done by Reffrey, Calone and Bourdalle-Badie (2015) we implemented a one dimensional (1D) ocean physical model in the sub-Antarctic Southern Ocean using the Nucleus for the European Modelling of the Ocean(NEMO) model. The 1D model...

  5. Tropical teleconnections via the ocean and atmosphere induced by Southern Ocean deep convective events

    Science.gov (United States)

    Marinov, I.; Cabre, A.; Gunn, A.; Gnanadesikan, A.

    2016-12-01

    The current generation (CMIP5) of Earth System Models (ESMs) shows a huge variability in their ability to represent Southern Ocean (SO) deep-ocean convection and Antarctic Bottom Water, with a preference for open-sea convection in the Weddell and Ross gyres. A long control simulation in a coarse 3o resolution ESM (the GFDL CM2Mc model) shows a highly regular multi-decadal oscillation between periods of SO open sea convection and non-convective periods. This process also happens naturally, with different frequencies and durations of convection across most CMIP5 models under preindustrial forcing (deLavergne et al, 2014). Here we assess the impact of SO deep convection and resulting sea surface temperature (SST) anomalies on the tropical atmosphere and ocean via teleconnections, with a focus on interannual to multi-decadal timescales. We combine analysis of our low-resolution coupled model with inter-model analysis across historical CMIP5 simulations. SST cooling south of 60S during non-convective decades triggers a stronger, northward shifted SH Hadley cell, which results in intensified northward cross-equatorial moist heat transport and a poleward shift in the ITCZ. Resulting correlations between the cross-equatorial atmospheric heat transport and ITCZ location are in good agreement with recent theories (e.g. Frierson et al. 2013; Donohoe et al. 2014). Lagged correlations between a SO convective index and cross-equatorial heat transports (in the atmosphere and ocean), as well as various tropical (and ENSO) climate indices are analyzed. In the ocean realm, we find that non-convective decades result in weaker AABW formation and weaker ACC but stronger Antarctic Intermediate Water (AAIW) formation, likely as a result of stronger SO westerlies (more positive SAM). The signals of AABW and AAIW are seen in the tropics on short timescales of years to decades in the temperature, heat storage and heat transport anomalies and also in deep and intermediate ocean oxygen. Most

  6. The distribution of 226Ra in the Atlantic Ocean

    International Nuclear Information System (INIS)

    Broecker, W.S.; Goddard, J.; Sarmiento, J.L.

    1976-01-01

    Based on results obtained during the GEOSECS program the primary features of the distribution of 226 Ra in the Atlantic Ocean can be defined. Outside the Antarctic no significant variation has been found in the 226 Ra content of surface waters. Eighty samples yield an average of 7.4 dpm/100 kg (normalized to a salinity of 35.00%). Deep waters in the central Atlantic have 226 Ra contents several dpm/100 kg higher than expected from the mixing of Antarctic Bottom Water (21.3 dpm/100 kg) and basal North Atlantic Deep Water (10.3 dpm/100 kg). These excesses correlate well with deficiencies in O 2 and excesses in SiO 2 . The intermediate water 226 Ra maximum in the South Atlantic is associated with the inflow of low-oxygen Circumpolar Intermediate Water beneath the Antarctic Intermediate Water. (Auth.)

  7. The Ocean Carbon States Database: a proof-of-concept application of cluster analysis in the ocean carbon cycle

    Science.gov (United States)

    Latto, Rebecca; Romanou, Anastasia

    2018-03-01

    In this paper, we present a database of the basic regimes of the carbon cycle in the ocean, the ocean carbon states, as obtained using a data mining/pattern recognition technique in observation-based as well as model data. The goal of this study is to establish a new data analysis methodology, test it and assess its utility in providing more insights into the regional and temporal variability of the marine carbon cycle. This is important as advanced data mining techniques are becoming widely used in climate and Earth sciences and in particular in studies of the global carbon cycle, where the interaction of physical and biogeochemical drivers confounds our ability to accurately describe, understand, and predict CO2 concentrations and their changes in the major planetary carbon reservoirs. In this proof-of-concept study, we focus on using well-understood data that are based on observations, as well as model results from the NASA Goddard Institute for Space Studies (GISS) climate model. Our analysis shows that ocean carbon states are associated with the subtropical-subpolar gyre during the colder months of the year and the tropics during the warmer season in the North Atlantic basin. Conversely, in the Southern Ocean, the ocean carbon states can be associated with the subtropical and Antarctic convergence zones in the warmer season and the coastal Antarctic divergence zone in the colder season. With respect to model evaluation, we find that the GISS model reproduces the cold and warm season regimes more skillfully in the North Atlantic than in the Southern Ocean and matches the observed seasonality better than the spatial distribution of the regimes. Finally, the ocean carbon states provide useful information in the model error attribution. Model air-sea CO2 flux biases in the North Atlantic stem from wind speed and salinity biases in the subpolar region and nutrient and wind speed biases in the subtropics and tropics. Nutrient biases are shown to be most important in

  8. Marked phylogeographic structure of Gentoo penguin reveals an ongoing diversification process along the Southern Ocean.

    Science.gov (United States)

    Vianna, Juliana A; Noll, Daly; Dantas, Gisele P M; Petry, Maria Virginia; Barbosa, Andrés; González-Acuña, Daniel; Le Bohec, Céline; Bonadonna, Francesco; Poulin, Elie

    2017-02-01

    Two main hypotheses have been debated about the biogeography of the Southern Ocean: (1) the Antarctic Polar Front (APF), acting as a barrier between Antarctic and sub-Antarctic provinces, and (2) the Antarctic Circumpolar Current (ACC), promoting gene flow among sub-Antarctic areas. The Gentoo penguin is distributed throughout these two provinces, separated by the APF. We analyzed mtDNA (HVR1) and 12 microsatellite loci of 264 Gentoo penguins, Pygoscelis papua, from 12 colonies spanning from the Western Antarctic Peninsula and the South Shetland Islands (WAP) to the sub-Antarctic Islands (SAI). While low genetic structure was detected among WAP colonies (mtDNA Ф ST =0.037-0.133; microsatellite F ST =0.009-0.063), high differentiation was found between all SAI and WAP populations (mtDNA Ф ST =0.678-0.930; microsatellite F ST =0.110-0.290). These results suggest that contemporary dispersal around the Southern Ocean is very limited or absent. As predicted, the APF appears to be a significant biogeographical boundary for Gentoo penguin populations; however, the ACC does not promote connectivity in this species. Our data suggest demographic expansion in the WAP during the last glacial maximum (LGM, about 20kya), but stability in SAI. Phylogenetic analyses showed a deep divergence between populations from the WAP and those from the SAI. Therefore, taxonomy should be further revised. The Crozet Islands resulted as a basal clade (3.57Mya), followed by the Kerguelen Islands (2.32Mya) as well as a more recent divergence between the Falkland/Malvinas Islands and the WAP (1.27Mya). Historical isolation, local adaptation, and past climate scenarios of those Evolutionarily Significant Units may have led to different potentials to respond to climate changes. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Advective pathways near the tip of the Antarctic Peninsula: Trends, variability and ecosystem implications

    Science.gov (United States)

    Renner, Angelika H. H.; Thorpe, Sally E.; Heywood, Karen J.; Murphy, Eugene J.; Watkins, Jon L.; Meredith, Michael P.

    2012-05-01

    Pathways and rates of ocean flow near the Antarctic Peninsula are strongly affected by frontal features, forcings from the atmosphere and the cryosphere. In the surface mixed layer, the currents advect material from the northwestern Weddell Sea on the eastern side of the Peninsula around the tip of the Peninsula to its western side and into the Scotia Sea, connecting populations of Antarctic krill (Euphausia superba) and supporting the ecosystem of the region. Modelling of subsurface drifters using a particle tracking algorithm forced by the velocity fields of a coupled sea ice-ocean model (ORCA025-LIM2) allows analysis of the seasonal and interannual variability of drifter pathways over 43 years. The results show robust and persistent connections from the Weddell Sea both to the west into the Bellingshausen Sea and across the Scotia Sea towards South Georgia, reproducing well the observations. The fate of the drifters is sensitive to their deployment location, in addition to other factors. From the shelf of the eastern Antarctic Peninsula, the majority enter the Bransfield Strait and subsequently the Bellingshausen Sea. When originating further offshore over the deeper Weddell Sea, drifters are more likely to cross the South Scotia Ridge and reach South Georgia. However, the wind field east and southeast of Elephant Island, close to the tip of the Peninsula, is crucial for the drifter trajectories and is highly influenced by the Southern Annular Mode (SAM). Increased advection and short travel times to South Georgia, and reduced advection to the western Antarctic Peninsula can be linked to strong westerlies, a signature of the positive phase of the SAM. The converse is true for the negative phase. Strong westerlies and shifts of ocean fronts near the tip of the Peninsula that are potentially associated with both the SAM and the El Niño-Southern Oscillation restrict the connection from the Weddell Sea to the west, and drifters then predominantly follow the open

  10. New model and field data on estimates of Antarctic Bottom Water flow through the deep Vema Channel

    Science.gov (United States)

    Frey, D. I.; Fomin, V. V.; Diansky, N. A.; Morozov, E. G.; Neiman, V. G.

    2017-05-01

    We used a numerical model of the ocean circulation with a high spatial resolution to obtain estimates of the kinematic characteristics of Antarctic Bottom Water flow through the abyssal Vema Channel in the southwestern part of the Atlantic Ocean. The results of simulations correspond to the data of direct velocity measurements made at several locations in the channel. The high horizontal and vertical resolution of the model in the bottom layer allowed us to study in detail the hydrodynamics of this flow over its entire length.

  11. Hydrothermal and Chemosynthetic Ecosystems in the Southern Ocean: Current Knowledge on their Biology Paper 217790

    Science.gov (United States)

    Linse, K.; Rogers, A. D.; Bohrmann, G.; Copley, J.; Tyler, P. A.

    2017-12-01

    The existence of hydrothermal and other chemosynthetic ecosystems is not surprising in the Antarctic, with its active volcanoes, mid-ocean ridges and back-arc basins, and abundance of marine mammals. In the last two decades a variety of active chemosynthetic ecosystems have been discovered in the Southern Ocean, including low- and high-temperature hydrothermal vents, methane seeps, and whalefalls. Here a summary of the data from the known chemosynthetic communites will be presented, comparing the faunas of vent sites in the Bransfield Strait with those of the East Scotia Ridge (ESR) and the South Sandwich Arc, assessing the fauna at the South Georgia methane seep sites, and discussing the fauna on Antarctic whale falls. As the faunal assemblages of the ESR vents are the most studied in detail to date, this talk therefore focusses on the diversity and composition of the ESR macrofaunal assemblages, their foodweb structure and microdistributions in relation to fluid chemistry and microbiology, and their phylogenetic and biogeographic relationships. The Southern Ocean drives the global ocean conveyor belt, and is suggested to be the centre of origin for global deep-sea fauna, as well as a region of high deep-sea species diversity. In the context of chemosynthetic environments, it may provide a gateway connecting the global vent and seep systems. The mostly endemic species of Southern Ocean vent macrofauna show links to either one or more oceans (Atlantic, Indian, and Pacific), with some evidence for circum-Antarctic connection. The ESR species Gigantopelta chessoia, Kiwa tyleri and Vulcanolepas scotiaensis have their closest known relatives at the Longqi Vent Field on the Southwest Indian Ridge (SWIR), and one species of polynoid polychaete is known from ESR and SWIR vents. Meanwhile, Lepetdrilus sp. and a vesiocomyid clam are linked with species in the Atlantic vent fields. The stichasterid Paulasterias tyleri, the polychaete Rarricirrus jennae and the anthozoan

  12. A biologically relevant method for considering patterns of oceanic retention in the Southern Ocean

    Science.gov (United States)

    Mori, Mao; Corney, Stuart P.; Melbourne-Thomas, Jessica; Klocker, Andreas; Sumner, Michael; Constable, Andrew

    2017-12-01

    Many marine species have planktonic forms - either during a larval stage or throughout their lifecycle - that move passively or are strongly influenced by ocean currents. Understanding these patterns of movement is important for informing marine ecosystem management and for understanding ecological processes generally. Retention of biological particles in a particular area due to ocean currents has received less attention than transport pathways, particularly for the Southern Ocean. We present a method for modelling retention time, based on the half-life for particles in a particular region, that is relevant for biological processes. This method uses geostrophic velocities at the ocean surface, derived from 23 years of satellite altimetry data (1993-2016), to simulate the advection of passive particles during the Southern Hemisphere summer season (from December to March). We assess spatial patterns in the retention time of passive particles and evaluate the processes affecting these patterns for the Indian sector of the Southern Ocean. Our results indicate that the distribution of retention time is related to bathymetric features and the resulting ocean dynamics. Our analysis also reveals a moderate level of consistency between spatial patterns of retention time and observations of Antarctic krill (Euphausia superba) distribution.

  13. Modelling the effects of environmental conditions on the acoustic occurrence and behaviour of Antarctic blue whales.

    Directory of Open Access Journals (Sweden)

    Fannie W Shabangu

    Full Text Available Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC, latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of

  14. Modelling the effects of environmental conditions on the acoustic occurrence and behaviour of Antarctic blue whales.

    Science.gov (United States)

    Shabangu, Fannie W; Yemane, Dawit; Stafford, Kathleen M; Ensor, Paul; Findlay, Ken P

    2017-01-01

    Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC), latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a) were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of Antarctic blue whales is

  15. Determining the Ocean's Role on the Variable Gravity Field on Earth Rotation

    Science.gov (United States)

    Ponte, Rui M.

    1999-01-01

    A number of ocean models of different complexity have been used to study changes in the oceanic mass field and angular momentum and their relation to the variable Earth rotation and gravity field. Time scales examined range from seasonal to a few days. Results point to the importance of oceanic signals in driving polar motion, in particular the Chandler and annual wobbles. Results also show that oceanic signals have a measurable impact on length-of-day variations. Various circulation features and associated mass signals, including the North Pacific subtropical gyre, the equatorial currents, and the Antarctic Circumpolar Current play a significant role in oceanic angular momentum variability.

  16. Direct observations of the Antarctic Slope Current transport at 113°E

    Science.gov (United States)

    Peña-Molino, B.; McCartney, M. S.; Rintoul, S. R.

    2016-10-01

    The Antarctic Slope Current (ASC), defined here as the region of westward flow along the continental slope off Antarctica, forms the southern limb of the subpolar gyres. It regulates the exchange of water across the shelf break and provides a path for interbasin westward transport. Despite its significance, the ASC remains largely unobserved around most of the Antarctic continent. Here we present direct velocity observations from a 17 month current meter moored array deployed across the continental slope between the 1000 and the 4200 m isobaths, in the southeastern Indian Ocean near 113°E. The observed time-mean flow consists of a surface-intensified jet associated with the Antarctic Slope Front (ASF) and a broader bottom-intensified westward flow that extends out to approximately the 4000 m isobath and is strongest along the upper slope. The time-mean transport of the ASC is -29.2 Sv. Fluctuations in the transport are large, typically exceeding the mean by a factor of 2. They are mainly due to changes in the northward extent of the current over the lower slope. However, seasonal changes in the wind also drive variations in the transport of the ASF and the flow in the upper slope. Both mean and variability are largely barotropic, thus invisible to traditional geostrophic methods.

  17. The seasonal cycle of mixed layer dynamics and phytoplankton biomass in the Sub-Antarctic Zone: A high-resolution glider experiment

    CSIR Research Space (South Africa)

    Swart, S

    2014-06-01

    Full Text Available -resolution glider data (3 hourly, 2 km horizontal resolution), from~6 months of sampling (spring through summer) in the Sub-Antarctic Zone, is used to assess 1) the different forcing mechanisms driving variability in upper ocean physics and 2) how thesemay...

  18. Pakistan and Antarctic research - an overview

    International Nuclear Information System (INIS)

    Rizvi, S.H.

    1993-01-01

    The paper describes the significance of Antarctica and the necessity of conducting scientific research for the understanding of the global environment and through various environmental processes operative in Antarctica. The paper presents a review of the Pakistan's activities and research interests in Antarctica focussing on the salient features of the Pakistan's Antarctic Research Programme and objectives. It summarises the significance of Antarctica, Antarctic Research and the interests of the world in Antarctica and international co-operation for Antarctic Research. The paper also highlights the philosophy of Antarctic Science and provides some guidelines for the development of Antarctic Research programmes for Pakistan and for the newcomers in Antarctica particularly for the developing countries. (author)

  19. Glacier extent in sub-Antarctic Kerguelen archipelago from MIS 3 period: Evidence from 36Cl dating

    Science.gov (United States)

    Jomelli, Vincent; Schimmelpfennig, Irene; Favier, Vincent; Mokadem, Fatima; Landais, Amaelle; Rinterknecht, Vincent; Brunstein, Daniel; Verfaillie, Deborah; Legentil, Claude; Aumaitre, Georges; Bourlès, Didier L.; Keddadouche, Karim

    2018-03-01

    Documenting sub-Antarctic glacier variations during the local last glacial maximum is of major interest to better understand their sensitivity to atmospheric and oceanic temperature changes in conjunction with Antarctic ice sheet changes. However, data are sparse because evidence of earlier glacier extents is for most sub-Antarctic islands located offshore making their observation complex. Here, we present 22 cosmogenic 36Cl surface exposure ages obtained from five sites at Kerguelen to document the glacial history. The 36Cl ages from roche moutonnee surfaces, erratics and boulders collected on moraines span from 41.9 ± 4.4 ka to 14.3 ± 1.1 ka. Ice began to retreat on the eastern part of the main island before 41.4 ± 4.4 ka. Slow deglaciation occurred from ∼41 to ∼29 ka. There is no evidence of advances between 29 ka and the Antarctic Cold Reversal (ACR) period (∼14.5-12.9 ka) period. During the ACR, however, the Bontemps and possibly Belvedere moraines were formed by the advance of a Cook Ice Cap outlet glacier and a local glacier on the Presque Ile Jeanne d'Arc, respectively. This glacier evolution differs partly from that of glaciers in New Zealand and in Patagonia. These asynchronous glacier changes in the sub-Antarctic region are however in agreement with sea surface temperature changes recorded around Antarctica, which suggest differences in the climate evolution of the Indo-Pacific and Atlantic sectors of Antarctica.

  20. Species richness and distribution patterns of echinoderms in the southwestern Atlantic Ocean (34-56°S

    Directory of Open Access Journals (Sweden)

    Valeria Souto

    2014-06-01

    Full Text Available The aim of this study was to compile and analyse available historical information on echinoderms in the southwestern Atlantic Ocean in order to make a synthesis of present taxonomical knowledge, to identify patterns of geographical distribution of echinoderm assemblages and to test the validity of the current zoogeographic scheme for this group. This study was conducted on the Argentinean continental shelf, southwestern Atlantic Ocean (34-56°S. An intensive research on geo-referenced data was carried out to make a knowledge synthesis on echinoderm species and thus create a historical database. Multivariate analysis was used to analyse the faunal composition through latitudinal and bathymetric gradients as well as echinoderm associations. The results confirmed the existence of two faunal associations that correspond to the traditional zoogeographic scheme established for the Argentine Sea: the Argentinean and Magellan Provinces. The Argentinean Province had 46 widely distributed species. Of the 86 species recorded in the Magellan Province, a high percentage (25% were also found in Antarctic waters, suggesting a strong connection between the echinoderm fauna of this province and the Antarctic Region. The species richness between 34 and 56°S in the Atlantic Ocean showed a significant increase in reference to latitude, with the highest values being recorded between 46 and 56°S. In view of the high percentage of shared species with Antarctica, considered a hot-spot region in terms of echinoderm diversity, the pattern of distribution of species richness observed in our study area could correspond to a dispersion of this species from Antarctic to sub-Antarctic regions.

  1. Dynamics of the Antarctic Circumpolar Current as seen by GRACE (Invited)

    Science.gov (United States)

    Thomas, M.; Dobslaw, H.; Bergmann, I.

    2010-12-01

    The Antarctic Circumpolar Current, being the strongest and longest ocean current on Earth, connects the three great ocean basins and contributes substantially to the global re-distribution of water masses, with a significant impact on global climate. Observational coverage from in-situ measurements is sparse due to the harsh environmental conditions, and satellite altimetry does not capture the full extent of the current due to seasonal sea-ice coverage. Ocean bottom pressure variations as sensed with the satellite gravity mission GRACE provide a promising way to broaden our observational basis. Besides monthly mean gravity fields that provide ocean bottom pressure variations averaged over 30 days, several alternative GRACE products with higher temporal resolution have been developed during the most recent years. These include 10-day solutions from GRGS Toulouse, weekly solutions from the GFZ Potsdam as well as constrained daily solutions from the University of Bonn which have been obtained by means of a Kalman filtering approach. In this presentation, ocean bottom pressure derived from these alternative GRACE releases will be contrasted against both in-situ observations and output from a numerical ocean model, highlighting the additional information contained in these GRACE solutions with respect to the standard monthly fields. By means of statistical analyses of ocean bottom pressure variations and barotropic transports it will be demonstrated how these new GRACE releases are contributing to our understanding of this highly dynamic great ocean conveyor.

  2. The Ocean Carbon States Database: a proof-of-concept application of cluster analysis in the ocean carbon cycle

    Directory of Open Access Journals (Sweden)

    R. Latto

    2018-03-01

    Full Text Available In this paper, we present a database of the basic regimes of the carbon cycle in the ocean, the ocean carbon states, as obtained using a data mining/pattern recognition technique in observation-based as well as model data. The goal of this study is to establish a new data analysis methodology, test it and assess its utility in providing more insights into the regional and temporal variability of the marine carbon cycle. This is important as advanced data mining techniques are becoming widely used in climate and Earth sciences and in particular in studies of the global carbon cycle, where the interaction of physical and biogeochemical drivers confounds our ability to accurately describe, understand, and predict CO2 concentrations and their changes in the major planetary carbon reservoirs. In this proof-of-concept study, we focus on using well-understood data that are based on observations, as well as model results from the NASA Goddard Institute for Space Studies (GISS climate model. Our analysis shows that ocean carbon states are associated with the subtropical–subpolar gyre during the colder months of the year and the tropics during the warmer season in the North Atlantic basin. Conversely, in the Southern Ocean, the ocean carbon states can be associated with the subtropical and Antarctic convergence zones in the warmer season and the coastal Antarctic divergence zone in the colder season. With respect to model evaluation, we find that the GISS model reproduces the cold and warm season regimes more skillfully in the North Atlantic than in the Southern Ocean and matches the observed seasonality better than the spatial distribution of the regimes. Finally, the ocean carbon states provide useful information in the model error attribution. Model air–sea CO2 flux biases in the North Atlantic stem from wind speed and salinity biases in the subpolar region and nutrient and wind speed biases in the subtropics and tropics. Nutrient biases are shown

  3. Spatial Patterns of Variability in Antarctic Surface Temperature: Connections to the Southern Hemisphere Annular Mode and the Southern Oscillation

    Science.gov (United States)

    Kwok, Ron; Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    The 17-year (1982-1998) trend in surface temperature shows a general cooling over the Antarctic continent, warming of the sea ice zone, with moderate changes over the oceans. Warming of the peripheral seas is associated with negative trends in the regional sea ice extent. Effects of the Southern Hemisphere Annular Mode (SAM) and the extrapolar Southern Oscillation (SO) on surface temperature are quantified through regression analysis. Positive polarities of the SAM are associated with cold anomalies over most of Antarctica, with the most notable exception of the Antarctic Peninsula. Positive temperature anomalies and ice edge retreat in the Pacific sector are associated with El Nino episodes. Over the past two decades, the drift towards high polarity in the SAM and negative polarity in the SO indices couple to produce a spatial pattern with warmer temperatures in the Antarctic Peninsula and peripheral seas, and cooler temperatures over much of East Antarctica.

  4. El Niño and the Antarctic During Recent Climatic Events

    Science.gov (United States)

    Kidwell, A. N.; Jo, Y. H.; Yan, X. H.

    2014-12-01

    The difference between eastern Pacific (EP) and central Pacific (CP) type El Niños has been noted in the tropical Pacific Ocean. During recent global warming hiatus, the Pacific Decadal Oscillations (PDO) switches to the negative phase while the CP El Niños occur more often than EP El Niños. The changes of El Niño type in conjunction with westward drift and increasing warm pool size shows an interesting multidecadal change in the warm pool (Kidwell et al, 2014). However, the effect of these variations in other regions is not fully explored. A comprehensive study of the El Niño /La Niña (EN/LN) events and their Antarctic teleconnections was conducted using multiple remote sensing and composite data sets. During the time period from April 2002-April 2011, the sea ice coverage, remotely sensed sea surface temperature (SST), outgoing longwave radiation (OLR) and continental water mass variations data were all collected and analyzed. The results show the different ways in which the variations in tropical SST and OLR associated with CP and EP El Niños cause regional changes in sea ice coverage around the continent of Antarctica as well as changes in continental water mass during six distinct El Niño events and three distinct La Niña events. The El Niño Southern Oscillation (ENSO) diversity and the Southern Ocean deep warming around the Antarctic during recent "Hiatus" will also be discussed.

  5. Population dynamics of Salpa thompsoni near the Antarctic Peninsula: Growth rates and interannual variations in reproductive activity (1993-2009)

    Science.gov (United States)

    Loeb, V. J.; Santora, J. A.

    2012-04-01

    The salp Salpa thompsoni has exhibited increased abundance in high latitude portions of the Southern Ocean in recent decades and is now frequently the numerically dominant zooplankton taxon in the Antarctic Peninsula region. The abundance increase of this species in high latitude waters is believed related to ocean warming. Due to its continuous filter feeding and production of dense rapidly sinking fecal pellets S. thompsoni is considered to be an important link in the export of particulate carbon from the surface waters. Hence basic information on the life history of this component of the Antarctic marine ecosystem is essential for assessing its impact given continued climate warming. Here we cover various aspects of the life history of S. thompsoni collected in the north Antarctic Peninsula during annual austral summer surveys of the US Antarctic Marine Living Resources (AMLR) Program between 1993 and 2009. We focus on seasonal and interannual variations in the size composition and abundance of the aggregate (sexual) and solitary (asexual) stages. This information is valuable for refining components of Southern Ocean food web models that explicitly deal with size-structured and life history information on zooplankton. Intraseasonal changes in length-frequency distribution of both stages are used to estimate their growth rates. These average 0.40 mm day-1 for aggregates and 0.23 mm day-1 for solitaries; together these represent ∼7 week and ∼7.5 month generation times, respectively, and a 9 month life cycle (i.e., onset of aggregate production year 1 to aggregate production year 2). Based on the maximum lengths typically found during January-March, the life spans of the aggregate and solitary stages can reach at least ∼5 and ∼15 months, respectively. Length-frequency distributions each year reflect interannual differences in timing of the initiation and peak reproductive output. Interannual differences in the abundance of total salps and proportions of the

  6. Thermohaline structure and water masses in the north of Antarctic Peninsula from data collected in situ by southern elephant seals (Mirounga leonina

    Directory of Open Access Journals (Sweden)

    Ilana E. K. C. Wainer

    2013-04-01

    Full Text Available The Western Antarctic Peninsula is rapidly warming and exhibits high indices of biodiversity concentrated mostly along its continental shelf. This region has great importance due to the the mixing caused by the interaction of waters from Weddell Sea (MW, Bransfield Strait (EB and the Antarctic Circumpolar Current (CCA transmits thermohaline characteristics and nutrients of different sites and finally connects with all the world’s oceans. However, studies focusing on the temporal variability of the region’s oceanographic conditions that finally determine the water mass formation are sparse due to the logistical difficulties of conducting oceanographic surveys and traditional monitoring during the winter. For this study, variations of the thermohaline structure and water masses in the vicinity and below the sea ice in the North of the Antarctic Peninsula (AP and Scotia Sea (SS were recorded between February and November 2008 by two female southern elephant seals (SES, Mirounga leonina tagged with Conductivity–Temperature–Depth/Satellite-Relay Data Logger (CTD–SRDL. One thousand three hundred and thirty vertical profiles of temperature and salinity were collected by seals which were tagged by the MEOP-BR Project team at the Elephant Island, South Shetlands. These profiles, together with spread state diagrams allowed the identification of water masses and their variances in the ocean’s vertical structure. Among the set of identified water masses we cite: Antarctic Surface Water (AASW, Winter Water (WW, Warm Deep Water (WDW, Modified Warm Deep Water (MWDW, Circumpolar Deep Water (CDW, Upper Circumpolar Deep Water (UCDW, Lower Circumpolar Deep Water (LCDW and Ice Shelf Water (ISW. Our results show that the oceanic vertical structure undergoes changes that cannot be traditionally monitored, particularly during the Austral winter and that SES are important and modern oceanographic data collection platforms allowing for the improvement of our

  7. Glacial modulation of mid-ocean ridge magmatism and anomalous Pacific Antarctic Ridge volcanism during Termination II

    Science.gov (United States)

    Asimow, P. D.; Lewis, M.; Lund, D. C.; Seeley, E.; McCart, S.; Mudahy, A.

    2017-12-01

    Glacially-driven sea level rise and fall may modulate submarine volcanism by superposing pressure changes on the tectonic decompression that causes melt production in the mantle below mid-ocean ridges. A number of recent studies have considered whether this effect is recorded in the periodicity of ridge flank bathymetry (Tolstoy, 2015; Crowley et al., 2015) but interpretation of the bathymetric data remains controversial (Goff, 2016; Olive et al., 2016). We have pursued an independent approach using hydrothermal metals in well-dated near-ridge sediment cores. Along the full length of the East Pacific Rise, in areas of the ocean with widely variable biologic productivity, there are large and consistent rises in Fe, Mn, and As concentrations during the last two glacial terminations. We interpret these cores as records of excess hydrothermal flux due to delayed delivery to the axis of excess melt generated by the preceding falls in sea level. Here we discuss the potentially related discovery, in a core near the Pacific Antarctic Ridge (PAR), of a 10 cm thick layer of basaltic ash shards up to 250 mm in size, coincident with the penultimate deglaciation (Termination II). Although the site was 8 km off-axis at the time, the glasses have major element, volatile, and trace element composition consistent with more evolved members of the axial MORB suite from the nearby ridge axis. Their morphologies are typical of pyroclastic deposits created by explosive submarine volcanism (Clague et al., 2009). We propose that a period of low magmatic flux following a sea-level rise caused cooling of crustal magmatic systems, more advanced fractionation in the axial magma chamber, and increases in viscosity and volatile concentration. We hypothesize subsequent arrival of high magmatic flux during Termination II then reactivated the system and triggered an unusually vigorous series of explosive eruptions along this segment of the PAR. Ash layers recording large eruptions such as this one

  8. Atmospheric and Oceanic Response to Southern Ocean Deep Convection Oscillations on Decadal to Centennial Time Scales in Climate Models

    Science.gov (United States)

    Martin, T.; Reintges, A.; Park, W.; Latif, M.

    2014-12-01

    Many current coupled global climate models simulate open ocean deep convection in the Southern Ocean as a recurring event with time scales ranging from a few years to centennial (de Lavergne et al., 2014, Nat. Clim. Ch.). The only observation of such event, however, was the occurrence of the Weddell Polynya in the mid-1970s, an open water area of 350 000 km2 within the Antarctic sea ice in three consecutive winters. Both the wide range of modeled frequency of occurrence and the absence of deep convection in the Weddell Sea highlights the lack of understanding concerning the phenomenon. Nevertheless, simulations indicate that atmospheric and oceanic responses to the cessation of deep convection in the Southern Ocean include a strengthening of the low-level atmospheric circulation over the Southern Ocean (increasing SAM index) and a reduction in the export of Antarctic Bottom Water (AABW), potentially masking the regional effects of global warming (Latif et al., 2013, J. Clim.; Martin et al., 2014, Deep Sea Res. II). It is thus of great importance to enhance our understanding of Southern Ocean deep convection and clarify the associated time scales. In two multi-millennial simulations with the Kiel Climate Model (KCM, ECHAM5 T31 atmosphere & NEMO-LIM2 ~2˚ ocean) we showed that the deep convection is driven by strong oceanic warming at mid-depth periodically overriding the stabilizing effects of precipitation and ice melt (Martin et al., 2013, Clim. Dyn.). Sea ice thickness also affects location and duration of the deep convection. A new control simulation, in which, amongst others, the atmosphere grid resolution is changed to T42 (~2.8˚), yields a faster deep convection flip-flop with a period of 80-100 years and a weaker but still significant global climate response similar to CMIP5 simulations. While model physics seem to affect the time scale and intensity of the phenomenon, the driving mechanism is a rather robust feature. Finally, we compare the atmospheric and

  9. The Osservatorio Geofisico Sperimentale marine magnetic surveys in the Antarctic Seas

    Directory of Open Access Journals (Sweden)

    C. Zanolla

    1999-06-01

    Full Text Available About 40 000 km of marine magnetic and gradiometric data have been collected during eight geophysical surveys conducted since the Austral summer 1987/1988 in the circum-antarctic seas, by the research vessel OGS-Explora. For the most surveyed areas (Ross Sea, Southwestern Pacific Ocean, and Southern Scotia Sea, the analysis of the acquired data have contributed to clarify important aspects of their geological structure and tectonic evolution. The main scientific results, obtained combining other available geophysical data (multichannel seismic profiles and satellite-derived data, will be briefly illustrated.

  10. Natural products mediating ecological interactions in Antarctic benthic communities: a mini-review of the known molecules.

    Science.gov (United States)

    Núñez-Pons, L; Avila, C

    2015-07-01

    Out of the many bioactive compounds described from the oceans, only a small fraction have been studied for their ecological significance. Similarly, most chemically mediated interactions are not well understood, because the molecules involved remain unrevealed. In Antarctica, this gap in knowledge is even more acute in comparison to tropical or temperate regions, even though polar organisms are also prolific producers of chemical defenses, and pharmacologically relevant products are being reported from the Southern Ocean. The extreme and unique marine environments surrounding Antarctica along with the numerous unusual interactions taking place in benthic communities are expected to select for novel functional secondary metabolites. There is an urgent need to comprehend the evolutionary role of marine derived substances in general, and particularly at the Poles, since molecules of keystone significance are vital in species survival, and therefore, in structuring the communities. Here we provide a mini-review on the identified marine natural products proven to have an ecological function in Antarctic ecosystems. This report recapitulates some of the bibliography from original Antarctic reviews, and updates the new literature in the field from 2009 to the present.

  11. Constraining the Antarctic contribution to interglacial sea-level rise

    Science.gov (United States)

    Naish, T.; Mckay, R. M.; Barrett, P. J.; Levy, R. H.; Golledge, N. R.; Deconto, R. M.; Horgan, H. J.; Dunbar, G. B.

    2015-12-01

    Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1- 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the

  12. Satellite gravity gradient views help reveal the Antarctic lithosphere

    Science.gov (United States)

    Ferraccioli, F.; Ebbing, J.; Pappa, F.; Kern, M.; Forsberg, R.

    2017-12-01

    Here we present and analyse satellite gravity gradient signatures derived from GOCE and superimpose these on tectonic and bedrock topography elements, as well as seismically-derived estimates of crustal thickness for the Antarctic continent. The GIU satellite gravity component images the contrast between the thinner crust and lithosphere underlying the West Antarctic Rift System and the Weddell Sea Rift System and the thicker lithosphere of East Antarctica. The new images also suggest that more distributed wide-mode lithospheric and crustal extension affects both the Ross Sea Embayment and the less well known Ross Ice Shelf segment of the rift system. However, this pattern is less clear towards the Bellingshousen Embayment, indicating that the rift system narrows towards the southern edge of the Antarctic Peninsula. In East Antarctica, the satellite gravity data provides new views into the Archean to Mesoproterozoic Terre Adelie Craton, and clearly shows the contrast wrt to the crust and lithosphere underlying both the Wilkes Subglacial Basin to the east and the Sabrina Subglacial Basin to the west. This finding augments recent interpretations of aeromagnetic and airborne gravity data over the region, suggesting that the Mawson Continent is a composite lithospheric-scale entity, which was affected by several Paleoproterozoic and Mesoproterozoic orogenic events. Thick crust is imaged beneath the Transantarctic Mountains, the Terre Adelie Craton, the Gamburtsev Subglacial Mountains and also Eastern Dronning Maud Land, in particular beneath the recently proposed region of the Tonian Oceanic Arc Superterrane. The GIA and GIU components help delineate the edges of several of these lithospheric provinces. One of the most prominent lithospheric-scale features discovered in East Antarctica from satellite gravity gradient imaging is the Trans East Antarctic Shear Zone that separates the Gamburtsev Province from the Eastern Dronning Maud Land Province and appears to form the

  13. Water Circulation and Marine Environment in the Antarctic Traced by Speciation of 129I and 127I

    DEFF Research Database (Denmark)

    Xing, Shan; Hou, Xiaolin; Aldahan, Ala

    2017-01-01

    Emissions of anthropogenic 129I from human nuclear activities are now detected in the surface water of the Antarctic seas. Surface seawater samples from the Drake Passage, Bellingshausen, Amundsen, and Ross Seas were analyzed for total 129I and 127I, as well as for iodide and iodate of these two....... The iodine distribution patterns provide useful information on surface water transport and mixing that are vital for better understanding of the Southern Oceans effects on the global climate change. The results indicate multiple spatial interactions between the Antarctic Circumpolar Current (ACC......) and Antarctic Peninsula Coastal Current (APCC). These interactions happen in restricted circulation pathways that may partly relate to glacial melting and icebergs transport. Biological activity during the warm season should be one of the key factors controlling the reduction of iodate in the coastal water...

  14. Microplastics in the Antarctic marine system: An emerging area of research.

    Science.gov (United States)

    Waller, Catherine L; Griffiths, Huw J; Waluda, Claire M; Thorpe, Sally E; Loaiza, Iván; Moreno, Bernabé; Pacherres, Cesar O; Hughes, Kevin A

    2017-11-15

    It was thought that the Southern Ocean was relatively free of microplastic contamination; however, recent studies and citizen science projects in the Southern Ocean have reported microplastics in deep-sea sediments and surface waters. Here we reviewed available information on microplastics (including macroplastics as a source of microplastics) in the Southern Ocean. We estimated primary microplastic concentrations from personal care products and laundry, and identified potential sources and routes of transmission into the region. Estimates showed the levels of microplastic pollution released into the region from ships and scientific research stations were likely to be negligible at the scale of the Southern Ocean, but may be significant on a local scale. This was demonstrated by the detection of the first microplastics in shallow benthic sediments close to a number of research stations on King George Island. Furthermore, our predictions of primary microplastic concentrations from local sources were five orders of magnitude lower than levels reported in published sampling surveys (assuming an even dispersal at the ocean surface). Sea surface transfer from lower latitudes may contribute, at an as yet unknown level, to Southern Ocean plastic concentrations. Acknowledging the lack of data describing microplastic origins, concentrations, distribution and impacts in the Southern Ocean, we highlight the urgent need for research, and call for routine, standardised monitoring in the Antarctic marine system. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. A recent case of Antarctic bioprospecting from Japan

    Directory of Open Access Journals (Sweden)

    Akiho Shibata

    2010-03-01

    Full Text Available Antarctic bioprospecting, namely the search for valuable genetic or chemical compounds in Antarctic nature, has been the subject of intense discussion within Antarctic Treaty Consultative Meetings. In this discussion, based on the so-called "end-users view point," utilizing the patent database to see how much Antarctic biological material has been used in patents, Antarctic bioprospecting has been depicted as a lucrative commercial activity operated by big multinational companies. This paper, instead, proposes an "access view point" for Antarctic bioprospecting, by examining a recent Japanese case in which scientists participating in the Japanese Antarctic Research Expedition in 2007 collected some sediment from Antarctic lakes near Syowa Station, isolated and cultured a particular fungus, and found the first evidence of the presence of antifreezing activity in oomycetes. In 2009, the scientists' affiliate institutions, including the National Institute of Advanced Industrial Science and Technology, applied for a patent on Antarctomyces psychrotrophicus Syw-1 and the antifreeze protein obtained from it. A detailed examination of this case demonstrates that the dichotomy of Antarctic bioprospecting into "commercial" and "scientific" does not reflect the reality of bioprospecting activities and, therefore, does not provide an appropriate ground for legal and policy discussion on Antarctic bioprospecting.

  16. Exploring the sensitivity of global ocean circulation to future ice loss from Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Condron, Alan [Univ. of Massachusetts, Amherst, MA (United States); Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA (United States)

    2017-09-30

    The sensitivity of the global ocean circulation and climate to large increases in iceberg calving and meltwater discharges from the Antarctic Ice Sheet (AIS) are rarely studied and poorly understood. The requirement to investigate this topic is heightened by growing evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse on multidecadal-to-centennial timescales. Observations collected over the last 30 years indicate that the WAIS is now losing mass at an accelerated and that a collapse may have already begun in the Amundsen Sea sector. In addition, some recent future model simulations of the AIS show the potential for rapid ice sheet retreat in the next 50 – 300 years. Such a collapse would be associated with the discharge of enormous volumes of ice and meltwater to the Southern Ocean. This project funds PI Condron to begin assessing the sensitivity of the global ocean circulation to projected increases in meltwater discharge and iceberg calving from the AIS for the next 50 – 100 years. A series of climate model simulations will determine changes in ocean circulation and temperature at the ice sheet grounding line, the role of mesoscale ocean eddies in mixing and transporting freshwater away from the continent to deep water formation regions, and the likely impact on the northward transport of heat to Europe and North America.

  17. Halogen species record Antarctic sea ice extent over glacial–interglacial periods

    Directory of Open Access Journals (Sweden)

    A. Spolaor

    2013-07-01

    Full Text Available Sea ice is an integral part of the earth's climate system because it affects planetary albedo, sea-surface salinity, and the atmosphere–ocean exchange of reactive gases and aerosols. Bromine and iodine chemistry is active at polar sea ice margins with the occurrence of bromine explosions and the biological production of organoiodine from sea ice algae. Satellite measurements demonstrate that concentrations of bromine oxide (BrO and iodine oxide (IO decrease over sea ice toward the Antarctic interior. Here we present speciation measurements of bromine and iodine in the TALDICE (TALos Dome Ice CorE ice core (159°11' E, 72°49' S; 2315 m a.s.l. spanning the last 215 ky. The Talos Dome ice core is located 250 km inland and is sensitive to marine air masses intruding onto the Antarctic Plateau. Talos Dome bromide (Br− is positively correlated with temperature and negatively correlated with sodium (Na. Based on the Br−/Na seawater ratio, bromide is depleted in the ice during glacial periods and enriched during interglacial periods. Total iodine, consisting of iodide (I− and iodate (IO3−, peaks during glacials with lower values during interglacial periods. Although IO3− is considered the most stable iodine species in the atmosphere it was only observed in the TALDICE record during glacial maxima. Sea ice dynamics are arguably the primary driver of halogen fluxes over glacial–interglacial timescales, by altering the distance between the sea ice edge and the Antarctic plateau and by altering the surface area of sea ice available to algal colonization. Based on our results we propose the use of both halogens for examining Antarctic variability of past sea ice extent.

  18. Past penguin colony responses to explosive volcanism on the Antarctic Peninsula

    Science.gov (United States)

    Roberts, Stephen J.; Monien, Patrick; Foster, Louise C.; Loftfield, Julia; Hocking, Emma P.; Schnetger, Bernhard; Pearson, Emma J.; Juggins, Steve; Fretwell, Peter; Ireland, Louise; Ochyra, Ryszard; Haworth, Anna R.; Allen, Claire S.; Moreton, Steven G.; Davies, Sarah J.; Brumsack, Hans-Jürgen; Bentley, Michael J.; Hodgson, Dominic A.

    2017-04-01

    Changes in penguin populations on the Antarctic Peninsula have been linked to several environmental factors, but the potentially devastating impact of volcanic activity has not been considered. Here we use detailed biogeochemical analyses to track past penguin colony change over the last 8,500 years on Ardley Island, home to one of the Antarctic Peninsula's largest breeding populations of gentoo penguins. The first sustained penguin colony was established on Ardley Island c. 6,700 years ago, pre-dating sub-fossil evidence of Peninsula-wide occupation by c. 1,000 years. The colony experienced five population maxima during the Holocene. Overall, we find no consistent relationships with local-regional atmospheric and ocean temperatures or sea-ice conditions, although the colony population maximum, c. 4,000-3,000 years ago, corresponds with regionally elevated temperatures. Instead, at least three of the five phases of penguin colony expansion were abruptly ended by large eruptions from the Deception Island volcano, resulting in near-complete local extinction of the colony, with, on average, 400-800 years required for sustainable recovery.

  19. /sup 226/Ra in the western Indian Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Y.

    1987-09-01

    /sup 226/Ra profiles have been measured in the western Indian Ocean as part of the 1977-78 Indian Ocean GEOSECS program. These profiles show a general increase in deep and bottom water Ra concentration from the Circumpolar region to the Arabian Sea. A deep Ra maximum which originates in the Arabian Sea and in the Somali basin at about 3000 m depth spreads southward into the Mascarene basin and remains discernible in the Madagascar and Crozet basins. In the western Indian Ocean, the cold Antarctic Bottom Water spreads northward under the possibly southward-flowing deep water, forming a clear benthic front along the Crozet basin across the Southwest Indian Ridge into the Madagascar and Mascarene basins. The Antarctic Bottom Water continues to spread farther north to the Somali basin through the Amirante Passage at 10/sup 0/S as a western boundary current. The benthic front and other characteristic features in the western Indian Ocean are quite similar to those observed in the western Pacific where the benthic front as a distinctive feature was first described by Craig et al. Across the Mid-Indian Ridge toward the Ceylon abyssal plain near the triple junction, Ra profiles display a layered structure, reflecting the topographic effect of the mid-ocean ridge system on the mixing and circulation of the deep and bottom waters. Both Ra and Si show a deep maximum north of the Madagascar Basin. Linear relationships between these two elements are observed in the deep and bottom water with slopes increasing northward. This suggests a preferential input of Ra over Si from the bottom sediments of the Arabian Sea and also from the flank sediments of the Somali basin.

  20. New and interesting species of the genus Muelleria (Bacillariophyta) from the Antarctic region and South Africa

    Science.gov (United States)

    Van De Vijver, B.; Mataloni, G.; Stanish, L.; Spaulding, S.A.

    2010-01-01

    During a survey of the terrestrial diatom flora of some sub-Antarctic islands in the southern Indian and Atlantic Oceans and of the Antarctic continent, more than 15 taxa belonging to the genus Muelleria were observed. Nine of these taxa are described as new species using light and scanning electron microscopy. Comments are made on their systematic position and how they are distinguished from other species in the genus. Additionally, two previously unrecognized taxa within the genus were discovered in samples from South Africa. One of these, Muelleria taylorii Van de Vijver & Cocquyt sp. nov., is new to science; the other, Muelleria vandermerwei (Cholnoky) Van de Vijver & Cocquyt nov. comb., had been included in the genus Diploneis. The large number of new Muelleria taxa on the (sub)-Antarctic locations is not surprising. Species in Muelleria occur rarely in collections; in many habitats, it is unusual to find more than 1-2 valves in any slide preparation. As a result, records are scarce. The practice of "force-fitting" (shoehorning) specimens into descriptions from common taxonomic keys (and species drift) results in European species, such as M. gibbula and M. linearis, being applied to Antarctic forms in ecological studies. Finally, the typical terrestrial habitats of soils, mosses and ephemeral water bodies of most of these taxa have been poorly studied in the past.

  1. ARM West Antarctic Radiation Experiment (AWARE) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lubin, D [National Science Foundation; Bromwich, DH [Ohio State University; Russell, LM [Scripps Institution of Oceanography; Verlinde, J [The Pennsylvania State University; Vogelmann, AM [Brookhaven National Laboratory

    2015-10-01

    West Antarctica is one of the most rapidly warming regions on Earth, and this warming is closely connected with global sea level rise. The discovery of rapid climate change on the West Antarctic Ice Sheet (WAIS) has challenged previous explanations of Antarctic climate change that focused on strengthening of circumpolar westerlies in response to the positive polarity trend in the Southern Annular Mode. West Antarctic warming does not yet have a comprehensive explanation: dynamical mechanisms may vary from one season to the next, and these mechanisms very likely involve complex teleconnections with subtropical and tropical latitudes. The prime motivation for this proposal is that there has been no substantial atmospheric science or climatological field work on West Antarctica since the 1957 International Geophysical Year and that research continued for only a few years. Direct meteorological information on the WAIS has been limited to a few automatic weather stations for several decades, yet satellite imagery and meteorological reanalyses indicate that West Antarctica is highly susceptible to advection of warm and moist maritime air with related cloud cover, depending on the location and strength of low pressure cells in the Amundsen, Ross, and Bellingshausen Seas. There is a need to quantify the role of these changing air masses on the surface energy balance, including all surface energy components and cloud-radiative forcing. More generally, global climate model simulations are known to perform poorly over the Antarctic and Southern Oceans, and the marked scarcity of cloud information at southern high latitudes has so far inhibited significant progress. Fortunately, McMurdo Station, where the Atmospheric Radiation Measurement Facility’s (ARM’s) most advanced cloud and aerosol instrumentation is situated, has a meteorological relationship with the WAIS via circulation patterns in the Ross and Amundsen Seas. We can therefore gather sophisticated data with cloud

  2. Enrichments in authigenic uranium in glacial sediments of the Southern Ocean; Enrichissement en uranium authigene dans les sediments glaciaires de l'ocean Austral

    Energy Technology Data Exchange (ETDEWEB)

    Dezileau, L. [Universidad de Conception, Programa Regional de Oceanografia Fisica y Climat PROFC, Y Centro de Investigacion Oceanografica (Chile); Bareille, G. [Pau Univ., Lab. de Chimie Analytique Bio-Inorganique et Environnement, EP-CNRS 132, 64 (France); Reyss, J.L. [CEA Saclay, Direction des Sciences de la Matiere, Lab. des Sciences du Climat et de L' environnement, Lab. Mixte CEA-CNRS, 91 - Gif-sur-Yvette (France)

    2002-11-01

    Four sediment cores from the Polar frontal zone and the Antarctic zone in the Indian sector of the Southern Ocean present an increase of authigenic uranium during glacial periods. We show that this increase in uranium is due to a combination of (i) an increase in the lateral transport of organic matter, (ii) a decrease in the oxygen in deep waters, and (iii) a process of diagenesis. It appears that uranium concentration cannot be used as a proxy of paleo-productivity in the Southern Ocean, as previously suggested by Kumar et al. in 1995. (authors)

  3. Distribution and abundance of Antarctic krill (Euphausia superba) along the Antarctic Peninsula

    Science.gov (United States)

    Siegel, Volker; Reiss, Christian S.; Dietrich, Kimberly S.; Haraldsson, Matilda; Rohardt, Gerhard

    2013-07-01

    Net-based data on the abundance, distribution, and demographic patterns of Antarctic krill are quantified from a contemporaneous two ship survey of the Antarctic Peninsula during austral summer 2011. Two survey areas were sampled focussed on Marguerite Bay in the south, and the tip of the Antarctic Peninsula in the north. Data from 177 stations showed that the highest concentrations of krill were found in the southern sampling area. Differences between areas were associated with a few large catches of one year old krill found in anomalously warm and productive waters in Marguerite Bay, and small krill catches in the less-productive, offshore waters in the north. Estimated krill density across the survey area was 3.4 krill m-2, and was low compared to the long-term average of 45 krill m-2 for the Elephant Island area. Overall recruitment between the two survey regions was similar, but per capita recruitment was about 60% lower than historical mean recruitment levels measured at Elephant Island since the late 1970s. Demographic patterns showed small krill concentrated near the coast, and large krill concentrated offshore on the shelf and slope all along the survey area. The offshore distribution of adult krill was delineated by the warm (˜1 °C), low salinity (33.8) water at 30 m, suggesting that most krill were present shoreward of the southern boundary of Antarctic Circumpolar Current Front. Distributions of larvae indicated that three hotspot areas were important for the production of krill: slope areas outside Marguerite Bay and north of the South Shetland Islands, and near the coast around Antarctic Sound. Successful spawning, as inferred from larval abundance, was roughly coincident with the shelf break and not with inshore waters. Given the rapid changes in climate along the Antarctic Peninsula and the lower per capita recruitment observed in recent years, studies comparing and contrasting production, growth, and recruitment across the Peninsula will be

  4. Development of a Regional Glycerol Dialkyl Glycerol Tetraether (GDGT) - Temperature Calibration for Antarctic and sub-Antarctic Lakes

    Science.gov (United States)

    Roberts, S. J.; Foster, L. C.; Pearson, E. J.; Steve, J.; Hodgson, D.; Saunders, K. M.; Verleyen, E.

    2016-12-01

    Temperature calibration models based on the relative abundances of sedimentary glycerol dialkyl glycerol tetraethers (GDGTs) have been used to reconstruct past temperatures in both marine and terrestrial environments, but have not been widely applied in high latitude environments. This is mainly because the performance of GDGT-temperature calibrations at lower temperatures and GDGT provenance in many lacustrine settings remains uncertain. To address these issues, we examined surface sediments from 32 Antarctic, sub-Antarctic and Southern Chilean lakes. First, we quantified GDGT compositions present and then investigated modern-day environmental controls on GDGT composition. GDGTs were found in all 32 lakes studied. Branched GDGTs (brGDGTs) were dominant in 31 lakes and statistical analyses showed that their composition was strongly correlated with mean summer air temperature (MSAT) rather than pH, conductivity or water depth. Second, we developed the first regional brGDGT-temperature calibration for Antarctic and sub-Antarctic lakes based on four brGDGT compounds (GDGT-Ib, GDGT-II, GDGT-III and GDGT-IIIb). Of these, GDGT-IIIb proved particularly important in cold lacustrine environments. Our brGDGT-Antarctic temperature calibration dataset has an improved statistical performance at low temperatures compared to previous global calibrations (r2=0.83, RMSE=1.45°C, RMSEP-LOO=1.68°C, n=36 samples), highlighting the importance of basing palaeotemperature reconstructions on regional GDGT-temperature calibrations, especially if specific compounds lead to improved model performance. Finally, we applied the new Antarctic brGDGT-temperature calibration to two key lake records from the Antarctic Peninsula and South Georgia. In both, downcore temperature reconstructions show similarities to known Holocene warm periods, providing proof of concept for the new Antarctic calibration model.

  5. Oceanic magmatic evolution during ocean opening under influence of mantle plume

    Science.gov (United States)

    Sushchevskaya, Nadezhda; Melanholina, Elena; Belyatsky, Boris; Krymsky, Robert; Migdisova, Natalya

    2015-04-01

    Petrology, geochemistry and geophysics as well as numerical simulation of spreading processes in plume impact environments on examples of Atlantic Ocean Iceland and the Central Atlantic plumes and Kerguelen plume in the Indian Ocean reveal: - under interaction of large plume and continental landmass the plume can contribute to splitting off individual lithosphere blocks, and their subsequent movement into the emergent ocean. At the same time enriched plume components often have geochemical characteristics of the intact continental lithosphere by early plume exposure. This is typical for trap magmatism in Antarctica, and for magmatism of North and Central Atlantic margins; - in the course of the geodynamic reconstruction under the whole region of the South Atlantic was formed (not in one step) metasomatized enriched sub-oceanic mantle with pyroxenite mantle geochemical characteristics and isotopic composition of enriched HIMU and EM-2 sources. That is typical for most of the islands in the West Antarctic. This mantle through spreading axes jumping involved in different proportions in the melting under the influence of higher-temperature rising asthenospheric lherzolite mantle; - CAP activity was brief enough (200 ± 2 Ma), but Karoo-Maud plume worked for a longer time and continued from 180 to 170 Ma ago in the main phase. Plume impact within Antarctica distributed to the South and to the East, leading to the formation of extended igneous provinces along the Transantarctic Mountains and along the east coast (Queen Maud Land province and Schirmacher Oasis). Moreover, this plume activity may be continued later on, after about 40 million years cessation, as Kerguelen plume within the newly-formed Indian Ocean, significantly affects the nature of the rift magmatism; - a large extended uplift in the eastern part of the Indian Ocean - Southeastern Indian Ridge (SEIR) was formed on the ancient spreading Wharton ridge near active Kerguelen plume. The strongest plume

  6. Epimeria of the Southern Ocean with notes on their relatives (Crustacea, Amphipoda, Eusiroidea

    Directory of Open Access Journals (Sweden)

    Cédric d'Udekem d'Acoz

    2017-10-01

    Full Text Available The present monograph includes general systematic considerations on the family Epimeriidae, a revision of the genus Epimeria Costa in Hope, 1851 in the Southern Ocean, and a shorter account on putatively related eusiroid taxa occurring in Antarctic and sub-Antarctic seas. The former epimeriid genera Actinacanthus Stebbing, 1888 and Paramphithoe Bruzelius, 1859 are transferred to other families, respectively to the Acanthonotozomellidae Coleman & J.L. Barnard, 1991 and the herein re-established Paramphithoidae G.O. Sars, 1883, so that only Epimeria and Uschakoviella Gurjanova, 1955 are retained within the Epimeriidae Boeck, 1871. The genera Apherusa Walker, 1891 and Halirages Boeck, 1891, which are phylogenetically close to Paramphithoe, are also transferred to the Paramphithoidae. The validity of the suborder Senticaudata Lowry & Myers, 2013, which conflicts with traditional and recent concepts of Eusiroidea Stebbing, 1888, is questioned. Eight subgenera are recognized for Antarctic and sub-Antarctic species of the genus Epimeria: Drakepimeria subgen. nov., Epimeriella K.H. Barnard, 1930, Hoplepimeria subgen. nov., Laevepimeria subgen. nov., Metepimeria Schellenberg, 1931, Pseudepimeria Chevreux, 1912, Subepimeria Bellan-Santini, 1972 and Urepimeria subgen. nov. The type subgenus Epimeria, as currently defined, does not occur in the Southern Ocean. Drakepimeria species are superficially similar to the type species of the genus Epimeria: E. cornigera (Fabricius, 1779, but they are phylogenetically unrelated and substantial morphological differences are obvious at a finer level. Twenty-seven new Antarctic Epimeria species are described herein: Epimeria (Drakepimeria acanthochelon subgen. et sp. nov., E. (D. anguloce subgen. et sp. nov., E. (D. colemani subgen. et sp. nov., E. (D. corbariae subgen. et sp. nov., E. (D. cyrano subgen. et sp. nov., E. (D. havermansiana subgen. et sp. nov., E. (D. leukhoplites subgen. et sp. nov., E. (D. loerzae subgen

  7. Biogeneration of chromophoric dissolved organic matter by bacteria and krill in the southern ocean

    OpenAIRE

    Ortega-Retuerta, E.; Frazer, Thomas K.; Duarte, Carlos M.; Ruiz-Halpern, Sergio; Tovar-Sánchez, Antonio; Arrieta López de Uralde, Jesús M.; Reche, Isabel

    2009-01-01

    Chromophoric dissolved organic matter (CDOM), the optically active fraction of dissolved organic matter, is primarily generated by pelagic organisms in the open ocean. In this study, we experimentally determined the quantity and spectral quality of CDOM generated by bacterioplankton using two different substrates (with and without photoproducts) and by Antarctic krill Euphausia superba and evaluated their potential contributions to CDOM dynamics in the peninsular region of the Southern Ocean....

  8. Regulating Antarctic Tourism and the Precautionary Principle

    NARCIS (Netherlands)

    Bastmeijer, C.J.; Roura, R.

    2004-01-01

    On the basis of an overview of the developments in Antarctic tourism since 1956, this current development note examines the issue of international regulation of Antarctic tourism. After discussing one of the main management issues in respect of Antarctic tourism ¿ the assessment and prevention of

  9. Fish from the Southern Ocean: biodiversity, ecology and conservation challenges

    Directory of Open Access Journals (Sweden)

    Marino Vacchi

    2015-11-01

    Living and functioning at subzero temperatures implied important adaptations, including freezing avoidance by antifreeze glycoproteins ( AFGPs. Among the system-wide adaptive traits holding major ecological implications, the acquisition of secondary pelagicism in some species (plesiomorphically devoid of swim-bladder is a major. In those notothenioids, lipid deposition and reduced ossification allowed to achieve partial or full neutral buoyancy, and enabled expansion into semi-pelagic, pelagic, and cryopelagic habitats. Such an impressive ecological expansion has allowed several notothenioids to play a primary role in the Antarctic marine ecosystems. On the other side, their fine adaptation to the environment, might expose these fishes to risks that need to be properly considered and addressed. For instance, a relationship between the Antarctic silverfish (Pleuragramma antarctica, a key species in the coastal Antarctic ecosystem and the sea-ice, has recently been assessed, thus making this species potentially threatened by the ongoing climatic change, with implications for the whole ecosystem. In addition, some Antarctic fish, such as toothfishes (Dissostichus eleginoides and Dissostichus mawsoni are primary targets of industrial fish harvesting in the SO. To increase and update the scientific knowledge on these species is mandatory in order to improve the management of Antarctic marine resources, in response to the increasing international request of exploitation. This task is presently being conducted by CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources, along with fighting the illegal, unreported and unregulated (IUU fishing and with the establishment of MPAs (Marine Protected Areas in various sectors of the Southern Ocean.

  10. Investigation of land ice-ocean interaction with a fully coupled ice-ocean model: 1. Model description and behavior

    Science.gov (United States)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.; Hallberg, R.; Oppenheimer, M.

    2012-06-01

    Antarctic ice shelves interact closely with the ocean cavities beneath them, with ice shelf geometry influencing ocean cavity circulation, and heat from the ocean driving changes in the ice shelves, as well as the grounded ice streams that feed them. We present a new coupled model of an ice stream-ice shelf-ocean system that is used to study this interaction. The model is capable of representing a moving grounding line and dynamically responding ocean circulation within the ice shelf cavity. Idealized experiments designed to investigate the response of the coupled system to instantaneous increases in ocean temperature show ice-ocean system responses on multiple timescales. Melt rates and ice shelf basal slopes near the grounding line adjust in 1-2 years, and downstream advection of the resulting ice shelf thinning takes place on decadal timescales. Retreat of the grounding line and adjustment of grounded ice takes place on a much longer timescale, and the system takes several centuries to reach a new steady state. During this slow retreat, and in the absence of either an upward-or downward-sloping bed or long-term trends in ocean heat content, the ice shelf and melt rates maintain a characteristic pattern relative to the grounding line.

  11. Evidence of microbial rhodopsins in Antarctic Dry Valley edaphic systems.

    Science.gov (United States)

    Guerrero, Leandro D; Vikram, Surendra; Makhalanyane, Thulani P; Cowan, Don A

    2017-09-01

    Microorganisms able to synthesize rhodopsins have the capacity to translocate ions through their membranes, using solar energy to generate a proton motive force. Rhodopsins are the most abundant phototrophic proteins in oceanic surface waters and are key constituents in marine bacterial ecology. However, it remains unclear how rhodopsins are used in most microorganisms. Despite their abundance in marine and fresh-water systems, the presence of functional rhodopsin systems in edaphic habitats has never been reported. Here, we show the presence of several new putative H + , Na + and Cl + pumping rhodopsins identified by metagenomic analysis of Antarctic desert hypolithic communities. Reconstruction of two Proteobacteria genomes harboring xanthorhodopsin-like proteins and one Bacteroidetes genome with a Na-pumping-like rhodopsin indicated that these bacteria were aerobic heterotrophs possessing the apparent capacity for the functional expression of rhodopsins. The existence of these protein systems in hypolithic bacteria expands the known role of rhodopsins to include terrestrial environments and suggests a possible predominant function as heterotrophic energy supply proteins, a feasible microbial adaptation to the harsh conditions prevalent in Antarctic edaphic systems. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Antarctic news clips, 1991

    Science.gov (United States)

    1991-08-01

    Published stories are presented that sample a year's news coverage of Antarctica. The intent is to provide the U.S. Antarctic Program participants with a digest of current issues as presented by a variety of writers and popular publications. The subject areas covered include the following: earth science; ice studies; stratospheric ozone; astrophysics; life science; operations; education; antarctic treaty issues; and tourism

  13. Regional genetic diversity patterns in Antarctic hairgrass (Deschampsia antartica Desv.)

    NARCIS (Netherlands)

    van de Wouw, M.J.; Van Dijk, P.J.; Huiskes, A.H.L.

    2008-01-01

    Aim To determine patterns in diversity of a major Antarctic plant species, including relationships of Antarctic populations with those outside the Antarctic zone. Location Antarctic Peninsula, Maritime Antarctica, sub-Antarctic islands, Falkland Islands and South America. Methods Amplified fragment

  14. Controls on turbulent mixing on the West Antarctic Peninsula shelf

    Science.gov (United States)

    Brearley, J. Alexander; Meredith, Michael P.; Naveira Garabato, Alberto C.; Venables, Hugh J.; Inall, Mark E.

    2017-05-01

    The ocean-to-atmosphere heat budget of the West Antarctic Peninsula is controlled in part by the upward flux of heat from the warm Circumpolar Deep Water (CDW) layer that resides below 200 m to the Antarctic Surface Water (AASW), a water mass which varies strongly on a seasonal basis. Upwelling and mixing of CDW influence the formation of sea ice in the region and affect biological productivity and functioning of the ecosystem through their delivery of nutrients. In this study, 2.5-year time series of both Acoustic Doppler Current Profiler (ADCP) and conductivity-temperature-depth (CTD) data are used to quantify both the diapycnal diffusivity κ and the vertical heat flux Q at the interface between CDW and AASW. Over the period of the study, a mean upward heat flux of 1 W m-2 is estimated, with the largest heat fluxes occurring shortly after the loss of winter fast ice when the water column is first exposed to wind stress without being strongly stratified by salinity. Differences in mixing mechanisms between winter and summer seasons are investigated. Whilst tidally-driven mixing at the study site occurs year-round, but is likely to be relatively weak, a strong increase in counterclockwise-polarized near-inertial energy (and shear) is observed during the fast-ice-free season, suggesting that the direct impact of storms on the ocean surface is responsible for much of the observed mixing at the site. Given the rapid reduction in sea-ice duration in this region in the last 30 years, a shift towards an increasingly wind-dominated mixing regime may be taking place.

  15. Black carbon at a coastal Antarctic station (Syowa Station: seasonal variation and transport processes

    Directory of Open Access Journals (Sweden)

    Keiichiro Hara

    2010-12-01

    Full Text Available Measurement of atmospheric black carbon (BC was carried out at Syowa Station Antarctica (69゜00′S, 39゜35′E from February 2004 until January 2007. The BC concentration at Syowa Station ranged from below detection to 176 ng m^. Higher BC concentrations were observed frequently from April until October. Increase of BC concentration may be associated with poleward flow due to the approach of a cyclone and or blocking event during winter-spring. The BC-rich air masses traveled through the lower troposphere from the Atlantic and Indian Oceans to Syowa (Antarctic coast. During the summer (November-February, the BC concentration showed a diurnal variation together with surface wind speed and increased in the presence of katabatic wind from the Antarctic continent. Considering the low BC source strength over the Antarctic continent, the higher BC concentration in the continental air (katabatic wind might be caused by long range transport of BC via the free troposphere from mid- and low- latitudes. The seasonal variation of BC at Syowa Station had a maximum in July-September, while at the other coastal stations (Halley, Neumayer, and Ferraz and a continental station (Amundsen-Scott, the maximum occurred in October. This difference may result from different transport pathways, significant contribution of source regions and scavenging of BC by precipitation during the transport from the source regions. During the austral summer, long-range transport of BC via the free troposphere is likely to make an important contribution to the ambient BC concentration along the Antarctic coasts.

  16. Macronutrient and carbon supply, uptake and cycling across the Antarctic Peninsula shelf during summer.

    Science.gov (United States)

    Henley, Sian F; Jones, Elizabeth M; Venables, Hugh J; Meredith, Michael P; Firing, Yvonne L; Dittrich, Ribanna; Heiser, Sabrina; Stefels, Jacqueline; Dougans, Julie

    2018-06-28

    The West Antarctic Peninsula shelf is a region of high seasonal primary production which supports a large and productive food web, where macronutrients and inorganic carbon are sourced primarily from intrusions of warm saline Circumpolar Deep Water. We examined the cross-shelf modification of this water mass during mid-summer 2015 to understand the supply of nutrients and carbon to the productive surface ocean, and their subsequent uptake and cycling. We show that nitrate, phosphate, silicic acid and inorganic carbon are progressively enriched in subsurface waters across the shelf, contrary to cross-shelf reductions in heat, salinity and density. We use nutrient stoichiometric and isotopic approaches to invoke remineralization of organic matter, including nitrification below the euphotic surface layer, and dissolution of biogenic silica in deeper waters and potentially shelf sediment porewaters, as the primary drivers of cross-shelf enrichments. Regenerated nitrate and phosphate account for a significant proportion of the total pools of these nutrients in the upper ocean, with implications for the seasonal carbon sink. Understanding nutrient and carbon dynamics in this region now will inform predictions of future biogeochemical changes in the context of substantial variability and ongoing changes in the physical environment.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'. © 2018 The Authors.

  17. STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf

    Science.gov (United States)

    1991-01-01

    STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.

  18. Large-scale population assessment informs conservation management for seabirds in Antarctica and the Southern Ocean: A case study of Adélie penguins

    Directory of Open Access Journals (Sweden)

    Colin Southwell

    2017-01-01

    Full Text Available Antarctica and the Southern Ocean are increasingly affected by fisheries, climate change and human presence. Antarctic seabirds are vulnerable to all these threats because they depend on terrestrial and marine environments to breed and forage. We assess the current distribution and total abundance of Adélie penguins in East Antarctica and find there are 3.5 (95% CI 2.9–4.2 million individuals of breeding age along the East Antarctic coastline and 5.9 (4.2–7.7 million individuals foraging in the adjacent ocean after the breeding season. One third of the breeding population numbering over 1 million individuals breed within 10 km of research stations, highlighting the potential for human activities to impact Adélie penguin populations despite their current high abundance. The 16 Antarctic Specially Protected Areas currently designated in East Antarctica offer protection to breeding populations close to stations in four of six regional populations. The East Antarctic breeding population consumes an average of 193 500 tonnes of krill and 18 800 tonnes of fish during a breeding season, with consumption peaking at the end of the breeding season. These findings can inform future conservation management decisions in the terrestrial environment under the Protocol on Environmental Protection to develop a systematic network of protected areas, and in the marine environment under the Convention for the Conservation of Antarctic Marine Living Resources to allow the consumption needs of Adélie penguins to be taken into account when setting fishery catch limits. Extending this work to other penguin, flying seabird, seal and whale species is a priority for conservation management in Antarctica and the Southern Ocean.

  19. Southern Ocean Phytoplankton in a Changing Climate

    OpenAIRE

    Deppeler, Stacy L.; Davidson, Andrew T.

    2017-01-01

    Phytoplankton are the base of the Antarctic food web, sustain the wealth and diversity of life for which Antarctica is renowned, and play a critical role in biogeochemical cycles that mediate global climate. Over the vast expanse of the Southern Ocean (SO), the climate is variously predicted to experience increased warming, strengthening wind, acidification, shallowing mixed layer depths, increased light (and UV), changes in upwelling and nutrient replenishment, declining sea ice, reduced sal...

  20. Active water exchange and life near the grounding line of an Antarctic outlet glacier

    Science.gov (United States)

    Sugiyama, Shin; Sawagaki, Takanobu; Fukuda, Takehiro; Aoki, Shigeru

    2014-08-01

    The grounding line (GL) of the Antarctic ice sheet forms the boundary between grounded and floating ice along the coast. Near this line, warm oceanic water contacts the ice shelf, producing the ice sheet's highest basal-melt rate. Despite the importance of this region, water properties and circulations near the GL are largely unexplored because in-situ observations are difficult. Here we present direct evidence of warm ocean-water transport to the innermost part of the subshelf cavity (several hundred meters seaward from the GL) of Langhovde Glacier, an outlet glacier in East Antarctica. Our measurements come from boreholes drilled through the glacier's ∼400-m-thick grounding zone. Beneath the grounding zone, we find a 10-24-m-deep water layer of uniform temperature and salinity (-1.45 °C; 34.25 PSU), values that roughly equal those measured in the ocean in front of the glacier. Moreover, living organisms are found in the thin subglacial water layer. These findings indicate active transport of water and nutrients from the adjacent ocean, meaning that the subshelf environment interacts directly and rapidly with the ocean.

  1. New insights into the use of stable water isotopes at the northern Antarctic Peninsula as a tool for regional climate studies

    Science.gov (United States)

    Fernandoy, Francisco; Tetzner, Dieter; Meyer, Hanno; Gacitúa, Guisella; Hoffmann, Kirstin; Falk, Ulrike; Lambert, Fabrice; MacDonell, Shelley

    2018-03-01

    Due to recent atmospheric and oceanic warming, the Antarctic Peninsula is one of the most challenging regions of Antarctica to understand in terms of both local- and regional-scale climate signals. Steep topography and a lack of long-term and in situ meteorological observations complicate the extrapolation of existing climate models to the sub-regional scale. Therefore, new techniques must be developed to better understand processes operating in the region. Isotope signals are traditionally related mainly to atmospheric conditions, but a detailed analysis of individual components can give new insight into oceanic and atmospheric processes. This paper aims to use new isotopic records collected from snow and firn cores in conjunction with existing meteorological and oceanic datasets to determine changes at the climatic scale in the northern extent of the Antarctic Peninsula. In particular, a discernible effect of sea ice cover on local temperatures and the expression of climatic modes, especially the Southern Annular Mode (SAM), is demonstrated. In years with a large sea ice extension in winter (negative SAM anomaly), an inversion layer in the lower troposphere develops at the coastal zone. Therefore, an isotope-temperature relationship (δ-T) valid for all periods cannot be obtained, and instead the δ-T depends on the seasonal variability of oceanic conditions. Comparatively, transitional seasons (autumn and spring) have a consistent isotope-temperature gradient of +0.69 ‰ °C-1. As shown by firn core analysis, the near-surface temperature in the northern-most portion of the Antarctic Peninsula shows a decreasing trend (-0.33 °C year-1) between 2008 and 2014. In addition, the deuterium excess (dexcess) is demonstrated to be a reliable indicator of seasonal oceanic conditions, and therefore suitable to improve a firn age model based on seasonal dexcess variability. The annual accumulation rate in this region is highly variable, ranging between 1060 and 2470 kg m

  2. Lichen flora around the Korean Antarctic Scientific Station, King George Island, Antarctic.

    Science.gov (United States)

    Kim, Ji Hee; Ahn, In-Young; Hong, Soon Gyu; Andreev, Mikhail; Lim, Kwang-Mi; Oh, Mi Jin; Koh, Young Jin; Hur, Jae-Seoun

    2006-10-01

    As part of the long-term monitoring projects on Antarctic terrestrial vegetation in relation to global climate change, a lichen floristical survey was conducted around the Korean Antarctic Station (King Sejong Station), which is located on Barton Peninsula, King George Island, in January and February of 2006. Two hundred and twenty-five lichen specimens were collected and sixty-two lichen species in 38 genera were identified by morphological characteristics, chemical constituents, TLC analysis and ITS nucleotide sequence analysis.

  3. RADARSAT: The Antarctic Mapping Project

    Science.gov (United States)

    Jezek, Kenneth C.; Lindstrom, E. (Technical Monitor)

    2002-01-01

    The first Antarctic Imaging Campaign (AIC) occurred during the period September 9, 1997 through October 20, 1997. The AIC utilized the unique attributes of the Canadian RADARSAT-1 to acquire the first, high-resolution, synthetic aperture imagery covering the entire Antarctic Continent. Although the primary goal of the mission was the acquisition of image data, the nearly flawless execution of the mission enabled additional collections of exact repeat orbit data. These data, covering an extensive portion of the interior Antarctic, potentially are suitable for interferometric analysis of topography and surface velocity. This document summarizes the Project through completion with delivery of products to the NASA DAACs.

  4. Physical, chemical, net haul, bird surveys, and other observations (BIOMASS data) from the British Antarctic Survey FIBEX and SIBEX Projects from 01 November 1980 to 30 April 1985 (NODC Accession 9400053)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession includes observations of physical, chemical, and biomass properties from three field experiments conducted by the British Antarctic Survey: the First...

  5. Modeling UV-B Effects on Primary Production Throughout the Southern Ocean Using Multi-Sensor Satellite Data

    Science.gov (United States)

    Lubin, Dan

    2001-01-01

    This study has used a combination of ocean color, backscattered ultraviolet, and passive microwave satellite data to investigate the impact of the springtime Antarctic ozone depletion on the base of the Antarctic marine food web - primary production by phytoplankton. Spectral ultraviolet (UV) radiation fields derived from the satellite data are propagated into the water column where they force physiologically-based numerical models of phytoplankton growth. This large-scale study has been divided into two components: (1) the use of Total Ozone Mapping Spectrometer (TOMS) and Special Sensor Microwave Imager (SSM/I) data in conjunction with radiative transfer theory to derive the surface spectral UV irradiance throughout the Southern Ocean; and (2) the merging of these UV irradiances with the climatology of chlorophyll derived from SeaWiFS data to specify the input data for the physiological models.

  6. Circum-Antarctic Shoreward Heat Transport Derived From an Eddy- and Tide-Resolving Simulation

    Science.gov (United States)

    Stewart, Andrew L.; Klocker, Andreas; Menemenlis, Dimitris

    2018-01-01

    Almost all heat reaching the bases of Antarctica's ice shelves originates from warm Circumpolar Deep Water in the open Southern Ocean. This study quantifies the roles of mean and transient flows in transporting heat across almost the entire Antarctic continental slope and shelf using an ocean/sea ice model run at eddy- and tide-resolving (1/48°) horizontal resolution. Heat transfer by transient flows is approximately attributed to eddies and tides via a decomposition into time scales shorter than and longer than 1 day, respectively. It is shown that eddies transfer heat across the continental slope (ocean depths greater than 1,500 m), but tides produce a stronger shoreward heat flux across the shelf break (ocean depths between 500 m and 1,000 m). However, the tidal heat fluxes are approximately compensated by mean flows, leaving the eddy heat flux to balance the net shoreward heat transport. The eddy-driven cross-slope overturning circulation is too weak to account for the eddy heat flux. This suggests that isopycnal eddy stirring is the principal mechanism of shoreward heat transport around Antarctica, though likely modulated by tides and surface forcing.

  7. South Atlantic circulation in a world ocean model

    Directory of Open Access Journals (Sweden)

    M. H. England

    1994-08-01

    Full Text Available The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current and fresher Subantarctic surface water (originating in the ACC. The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor. Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model's rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean exchange of

  8. South Atlantic circulation in a world ocean model

    Directory of Open Access Journals (Sweden)

    Matthew H. England

    Full Text Available The circulation in the South Atlantic Ocean has been simulated within a global ocean general circulation model. Preliminary analysis of the modelled ocean circulation in the region indicates a rather close agreement of the simulated upper ocean flows with conventional notions of the large-scale geostrophic currents in the region. The modelled South Atlantic Ocean witnesses the return flow and export of North Atlantic Deep Water (NADW at its northern boundary, the inflow of a rather barotropic Antarctic Circumpolar Current (ACC through the Drake Passage, and the inflow of warm saline Agulhas water around the Cape of Good Hope. The Agulhas leakage amounts to 8.7 Sv, within recent estimates of the mass transport shed westward at the Agulhas retroflection. Topographic steering of the ACC dominates the structure of flow in the circumpolar ocean. The Benguela Current is seen to be fed by a mixture of saline Indian Ocean water (originating from the Agulhas Current and fresher Subantarctic surface water (originating in the ACC. The Benguela Current is seen to modify its flow and fate with depth; near the surface it flows north-westwards bifurcating most of its transport northward into the North Atlantic Ocean (for ultimate replacement of North Atlantic surface waters lost to the NADW conveyor. Deeper in the water column, more of the Benguela Current is destined to return with the Brazil Current, though northward flows are still generated where the Benguela Current extension encounters the coast of South America. At intermediate levels, these northward currents trace the flow of Antarctic Intermediate Water (AAIW equatorward, though even more AAIW is seen to recirculate poleward in the subtropical gyre. In spite of the model's rather coarse resolution, some subtle features of the Brazil-Malvinas Confluence are simulated rather well, including the latitude at which the two currents meet. Conceptual diagrams of the recirculation and interocean

  9. Environmental constraints on West Antarctic ice-sheet formation

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, D R; MacAyeal, D R

    1987-01-01

    Small perturbations in Antarctic environmental conditions can culminate in the demise of the Antarctic ice sheet's western sector. This may have happened during the last interglacial period, and could recur within the next millennium due to atmospheric warming from trace gas and CO/sub 2/ increases. In this study, we investigate the importance of sea-level, accumulation rate, and ice influx from the East Antarctic ice sheet in the re-establishment of the West Antarctic ice sheet from a thin cover using a time-dependent numerical ice-shelf model. Our results show that a precursor to the West Antarctic ice sheet can form within 3000 years. Sea-level lowering caused by ice-sheet development in the Northern Hemisphere has the greatest environmental influence. Under favorable conditions, ice grounding occurs over all parts of the West Antarctic ice sheet except up-stream of Thwaites Glacier and in the Ross Sea region.

  10. Modification of the deep salinity-maximum in the Southern Ocean by circulation in the Antarctic Circumpolar Current and the Weddell Gyre

    Science.gov (United States)

    Donnelly, Matthew; Leach, Harry; Strass, Volker

    2017-07-01

    The evolution of the deep salinity-maximum associated with the Lower Circumpolar Deep Water (LCDW) is assessed using a set of 37 hydrographic sections collected over a 20-year period in the Southern Ocean as part of the WOCE/CLIVAR programme. A circumpolar decrease in the value of the salinity-maximum is observed eastwards from the North Atlantic Deep Water (NADW) in the Atlantic sector of the Southern Ocean through the Indian and Pacific sectors to Drake Passage. Isopycnal mixing processes are limited by circumpolar fronts, and in the Atlantic sector, this acts to limit the direct poleward propagation of the salinity signal. Limited entrainment occurs into the Weddell Gyre, with LCDW entering primarily through the eddy-dominated eastern limb. A vertical mixing coefficient, κV of (2.86 ± 1.06) × 10-4 m2 s-1 and an isopycnal mixing coefficient, κI of (8.97 ± 1.67) × 102 m2 s-1 are calculated for the eastern Indian and Pacific sectors of the Antarctic Circumpolar Current (ACC). A κV of (2.39 ± 2.83) × 10-5 m2 s-1, an order of magnitude smaller, and a κI of (2.47 ± 0.63) × 102 m2 s-1, three times smaller, are calculated for the southern and eastern Weddell Gyre reflecting a more turbulent regime in the ACC and a less turbulent regime in the Weddell Gyre. In agreement with other studies, we conclude that the ACC acts as a barrier to direct meridional transport and mixing in the Atlantic sector evidenced by the eastward propagation of the deep salinity-maximum signal, insulating the Weddell Gyre from short-term changes in NADW characteristics.

  11. Airspace: Antarctic Sound Transmission

    OpenAIRE

    Polli, Andrea

    2009-01-01

    This paper investigates how sound transmission can contribute to the public understanding of climate change within the context of the Poles. How have such transmission-based projects developed specifically in the Arctic and Antarctic, and how do these works create alternative pathways in order to help audiences better understand climate change? The author has created the media project Sonic Antarctica from a personal experience of the Antarctic. The work combines soundscape recordings and son...

  12. Deciphering Detailed Plate Kinematics of the Indian Ocean: A Combined Indian-Australian-French Initiative

    Science.gov (United States)

    Vadakkeyakath, Y.; Müller, R.; Dyment, J.; Bhattacharya, G.; Lister, G. S.; Kattoju, K. R.; Whittaker, J.; Shuhail, M.; Gibbons, A.; Jacob, J.; White, L. T.; Bissessur, P. D.; Kiranmai, S.

    2012-12-01

    The Indian Ocean formed as a result of the fragmentation and dispersal of East Gondwanaland since the Jurassic. The deep ocean basins in the Indian Ocean contain the imprints of this plate tectonic history, which is related with several major events such as the Kerguelen, Marion and Reunion hotspot inception and the Indo-Eurasian collision. A broad model for evolution of the Indian Ocean was proposed in the early 1980s. Subsequently, French scientists collected a large amount of magnetic data from the western and southern parts of the Indian Ocean while Indian and Australian scientists collected considerable volumes of magnetic data from the regions of Indian Ocean around their mainlands. Using these data, the Indian, French and Australian researchers independently carried out investigations over different parts of the Indian Ocean and provided improved models of plate kinematics at different sectoral plate boundaries. Under two Indo-French collaborative projects, detailed magnetic investigations were carried out in the Northwestern and Central Indian Ocean by combining the available magnetic data from conjugate regions. Those projects were complemented by additional area-specific studies in the Mascarene, Wharton, Laxmi and Gop basins, which are characterized by extinct spreading regimes. These Indo-French projects provided high resolution and improved plate tectonic models for the evolution of the conjugate Arabian and Eastern Somali basins that constrain the relative motion between the Indian-African (now Indian-Somalian) plate boundaries, and the conjugate Central Indian, Crozet and Madagascar basins that mainly constrain the relative motions of Indian-African (now Capricorn-Somalian) and Indian-Antarctic (now Capricorn-Antarctic) plate boundaries. During the same period, Australian scientists carried out investigations in the southeastern part of the Indian Ocean and provided an improved understanding of the plate tectonic evolution of the Indian

  13. Phylogeny and colonization history of Pringlea antiscorbutica (Brassicaceae), an emblematic endemic from the South Indian Ocean Province.

    Science.gov (United States)

    Bartish, Igor V; Aïnouche, Abdelkader; Jia, Dongrui; Bergstrom, Dana; Chown, Steven L; Winkworth, Richard C; Hennion, Françoise

    2012-11-01

    The origins and evolution of sub-Antarctic island floras are not well understood. In particular there is uncertainty about the ages of the contemporary floras and the ultimate origins of the lineages they contain. Pringlea R. Br. (Brassicaceae) is a monotypic genus endemic to four sub-Antarctic island groups in the southern Indian Ocean. Here we used sequences from both the chloroplast and nuclear genomes to examine the phylogenetic position of this enigmatic genus. Our analyses confirm that Pringlea falls within the tribe Thelypodieae and provide a preliminary view of its relationships within the group. Divergence time estimates and ancestral area reconstructions imply Pringlea diverged from a South American ancestor ~5 Myr ago. It remains unclear whether the ancestor of Pringlea dispersed directly to the South Indian Ocean Province (SIOP) or used Antarctica as a stepping-stone; what is clear, however, is that following arrival in the SIOP several additional long-distance dispersal events must be inferred to explain the current distribution of this species. Our analyses also suggest that although Pringlea is likely to have inherited cold tolerance from its closest relatives, the distinctive morphology of this species evolved only after it split from the South American lineage. More generally, our results lend support to the hypothesis that angiosperms persisted on the sub-Antarctic islands throughout the Pliocene and Pleistocene. Taken together with evidence from other sub-Antarctic island plant groups, they suggest the extant flora of sub-Antarctic is likely to have been assembled over a broad time period and from lineages with distinctive biogeographic histories. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. A global ocean climatological atlas of the Turner angle: implications for double-diffusion and water-mass structure

    Science.gov (United States)

    You, Yuzhu

    2002-11-01

    The 1994 Levitus climatological atlas is used to calculate the Turner angle (named after J. Stewart Turner) to examine which oceanic water masses are favorable for double-diffusion in the form of diffusive convection or salt-fingering and which are doubly stable. This atlas complements the Levitus climatology. It reveals the major double-diffusive signals associated with large-scale water-mass structure. In total, about 44% of the oceans display double-diffusion, of which 30% is salt-fingering and 14% is diffusive double-diffusion. Results show that various central and deep waters are favorable for salt-fingering. The former is due to positive evaporation minus precipitation, and the latter is due to thermohaline circulation, i.e. the southward spreading of relatively warm, salty North Atlantic Deep Water (NADW) overlying cold, fresh Antarctic Bottom Water. In the northern Indian Ocean and eastern North Atlantic, favorable conditions for salt-fingering are found throughout the water column. The Red Sea (including the Persian Gulf) and Mediterranean Sea are the sources of warm, salty water for the ocean. As consequence, temperature and salinity in these outflow regions both decrease from the sea surface to the bottom. On the other hand, ocean currents are in general sluggish in these regions. In the polar and subpolar regions of Arctic and Antarctic, Okhotsk Sea, Gulf of Alaska, the subpolar gyre of the North Pacific, the Labrador Sea, and the Norwegian Sea, the upper layer water is favorable for diffusive convection because of high latitude surface cooling and ice melting. Weak and shallow diffusive convection is also found throughout tropical regions and the Bay of Bengal. The former is due to excessive precipitation over evaporation and rain cooling, and the latter is due to both precipitation and river runoff. Diffusive convection in the ocean's interior is unique to the South Atlantic between Antarctic Intermediate Water and upper NADW (uNADW). It is the

  15. Silicon pool dynamics and biogenic silica export in the Southern Ocean inferred from Si-isotopes

    Directory of Open Access Journals (Sweden)

    F. Fripiat

    2011-09-01

    Full Text Available Silicon isotopic signatures (δ30Si of water column silicic acid (Si(OH4 were measured in the Southern Ocean, along a meridional transect from South Africa (Subtropical Zone down to 57° S (northern Weddell Gyre. This provides the first reported data of a summer transect across the whole Antarctic Circumpolar Current (ACC. δ30Si variations are large in the upper 1000 m, reflecting the effect of the silica pump superimposed upon meridional water transfer across the ACC: the transport of Antarctic surface waters northward by a net Ekman drift and their convergence and mixing with warmer upper-ocean Si-depleted waters to the north. Using Si isotopic signatures, we determine different mixing interfaces: the Antarctic Surface Water (AASW, the Antarctic Intermediate Water (AAIW, and thermoclines in the low latitude areas. The residual silicic acid concentrations of end-members control the δ30Si alteration of the mixing products and with the exception of AASW, all mixing interfaces have a highly Si-depleted mixed layer end-member. These processes deplete the silicic acid AASW concentration northward, across the different interfaces, without significantly changing the AASW δ30Si composition. By comparing our new results with a previous study in the Australian sector we show that during the circumpolar transport of the ACC eastward, the δ30Si composition of the silicic acid pools is getting slightly, but significantly lighter from the Atlantic to the Australian sectors. This results either from the dissolution of biogenic silica in the deeper layers and/or from an isopycnal mixing with the deep water masses in the different oceanic basins: North Atlantic Deep Water in the Atlantic, and Indian Ocean deep water in the Indo-Australian sector. This isotopic trend is further transmitted to the subsurface waters, representing mixing interfaces between the surface and deeper layers.

  16. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans.

    Science.gov (United States)

    Hawkings, Jon R; Wadham, Jemma L; Tranter, Martyn; Raiswell, Rob; Benning, Liane G; Statham, Peter J; Tedstone, Andrew; Nienow, Peter; Lee, Katherine; Telling, Jon

    2014-05-21

    The Greenland and Antarctic Ice Sheets cover ~ 10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentrations in subglacial runoff from a large Greenland Ice Sheet catchment reveal the potential for globally significant export of labile iron fractions to the near-coastal euphotic zone. We estimate that the flux of bioavailable iron associated with glacial runoff is 0.40-2.54 Tg per year in Greenland and 0.06-0.17 Tg per year in Antarctica. Iron fluxes are dominated by a highly reactive and potentially bioavailable nanoparticulate suspended sediment fraction, similar to that identified in Antarctic icebergs. Estimates of labile iron fluxes in meltwater are comparable with aeolian dust fluxes to the oceans surrounding Greenland and Antarctica, and are similarly expected to increase in a warming climate with enhanced melting.

  17. Parasites of the Antarctic toothfish (Dissostichus mawsoni Norman, 1937 (Perciformes, Nototheniidae in the Pacific sector of the Antarctic

    Directory of Open Access Journals (Sweden)

    Ilya I. Gordeev

    2016-06-01

    Full Text Available The Antarctic toothfish (Dissostichus mawsoni Norman, 1937 is one of the main target species of commercial fisheries in the Antarctic. It is an endemic and is found along the shelf of Antarctica, as well as on the slopes of seamounts, underwater elevations and islands in the sub-Antarctic. It feeds on a variety of fish and cephalopods and can be an intermediate/paratenic host of some helminthes, whose final hosts are whales, seals, large rays and sharks. This article presents new data on toothfish infection in the Pacific sector of the Antarctic. Specimens were examined during commercial longline fishing in the Ross Sea and the Amundsen Sea in January–February 2013. Fourteen species of parasites were found using standard parasitological methods and genetic analysis.

  18. South African antarctic biological research programme

    CSIR Research Space (South Africa)

    SASCAR

    1981-07-01

    Full Text Available This document provides a description of the past, current and planned South African biological research activities in the sub-Antarctic and Antarctic regions. Future activities will fall under one of the five components of the research programme...

  19. Variability of nutrients and carbon dioxide in the Antarctic Intermediate Water between 1990 and 2014

    Science.gov (United States)

    Panassa, Essowè; Santana-Casiano, J. Magdalena; González-Dávila, Melchor; Hoppema, Mario; van Heuven, Steven M. A. C.; Völker, Christoph; Wolf-Gladrow, Dieter; Hauck, Judith

    2018-03-01

    Antarctic Intermediate Water (AAIW) formation constitutes an important mechanism for the export of macronutrients out of the Southern Ocean that fuels primary production in low latitudes. We used quality-controlled gridded data from five hydrographic cruises between 1990 and 2014 to examine decadal variability in nutrients and dissolved inorganic carbon (DIC) in the AAIW (neutral density range 27 net primary productivity (more nutrients unutilized) in the source waters of the AAIW could have contributed as well but cannot fully explain all observed changes.

  20. Uranium in open ocean: concentration and isotopic composition

    International Nuclear Information System (INIS)

    Ku, T.L.; Knauss, K.G.; Mathieu, G.G.

    1977-01-01

    Uranium concentrations and 234 U/ 238 U activity ratios have been determined in 63 seawater samples (nine vertical profiles) from the Atlantic, and Pacific, and Arctic, and the Antarctic oceans, using the alpha-spectrometric method for their determinations. Correlation between uranium and salinity is well manifested by the data from the Arctic and the Antarctic oceans, but such a relation cannot be clearly defined with the +-(1 to 2)% precision of uranium measurements for the Atlantic and Pacific data. At the 95% confidence level: (1) the uranium/salinity ratio is (9.34 + - 0.56) x 10 -8 g/g for the seawater analyzed with salinity ranging from 30.3 to 36.2 per thousand; the uranium concentration of seawater of 35 per thousand salinity is 3.3 5 + - 0.2 μ g l -1 ; (2) the 234 U/ 238 U activity ratio is 1.14 +- 0.03. Uranium isotopes in interstitial waters of the Pacific surface sediments analyzed do not show large concentration differences across the sediment-water interface as suggested by previous measurements. Current estimations of the average world river uranium concentration (0.3 to 0.6 μ g l -1 ) and 234 U/ 238 U ratio (1.2 to 1.3) and of the diffusional 234 U influx from sediments 0.3 dpm cm -2 10 -3 yr -1 ) are essentially consistent with a model which depicts a steady state distribution of uranium in the ocean. However, the 0.3 to 0.6 μ g l -1 value for river uranium may be an upper limit estimate. (author)

  1. Satellite remote sensing of the island mass effect on the Sub-Antarctic Kerguelen Plateau, Southern Ocean

    Science.gov (United States)

    Jena, Babula

    2016-09-01

    The presence of the Kerguelen Plateau and surrounding bathymetric features has a strong influence on the persistently eastward flowing Antarctic Circumpolar Current (ACC), resulting in enhancement of surface chlorophyll-a (Chl- a) in the downstream section of the plateau along the polar front (PF). The phenomenon is reported in this paper as the island mass effect (IME). Analysis of climatological Chl- a datasets from Aqua- Moderate Resolution Imaging Spectroradiometer (Aqua- MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) shows distinct bloomy plumes (Chl- a>0.5 mg/m3) during austral spring-summer spreading as far as ~1800 km offshore up to 98°E along the downstream of the north Kerguelen Plateau (NKP). Similar IME phenomena is apparent over the south Kerguelen Plateau (SKP) with the phytoplankton bloom extending up to 96.7°E, along the southern boundary of ACC. The IME phenomena are pronounced only during austral spring-summer period with the availability of light and sedimentary source of iron from shallow plateau to sea surface that fertilizes the mixed layer. The NKP bloom peaks with a maximum areal extent of 1.315 million km2 during December, and the SKP bloom peaks during January with a time lag of one month. The blooms exist for at least 4 months of a year and are significant both as the base of regional food web and for regulating the biogeochemical cycle in the Southern Ocean. Even though the surface water above the Kerguelen Plateau is rich in Chl- a, an exception of an oligotrophic condition dominated between NKP and SKP due to apparent intrusion of iron limited low phytoplankton regime waters from the Enderby basin through the northeastward Fawn Trough Current.

  2. Observation Impact over the Antarctic During the Concordiasi Field Campaign

    Science.gov (United States)

    Boullot, Nathalie; Rabier, Florence; Langland, Rolf; Gelaro, Ron; Cardinali, Carla; Guidard, Vincent; Bauer, Peter; Doerenbecher, Alexis

    2014-01-01

    The impact of observations on analysis uncertainty and forecast performance was investigated for Austral Spring 2010 over the Southern polar area for four different systems (NRL, GMAO, ECMWF and Meteo-France), at the time of the Concordiasi field experiment. The largest multi model variance in 500 hPa height analyses is found in the southern sub-Antarctic oceanic region, where there are strong atmospheric dynamics, rapid forecast error growth, and fewer upper air wind observation data to constrain the analyses. In terms of data impact the most important observation components are shown to be AMSU, IASI, AIRS, GPS-RO, radiosonde, surface and atmospheric motion vector observations. For sounding data, radiosondes and dropsondes, one can note a large impact of temperature at low levels and a large impact of wind at high levels. Observing system experiments using the Concordiasi dropsondes show a large impact of the observations over the Antarctic plateau extending to lower latitudes with the forecast range, with a large impact around 50 to 70deg South. These experiments indicate there is a potential benefit of better using radiance data over land and sea-ice and innovative atmospheric motion vectors obtained from a combination of various satellites to fill the current data gaps and improve NWP in this region.

  3. Oxygen isotope records of Globigerina bulloides across a north-south transect in the south-western Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Khare, N.; Chaturvedi, S.K.; Saraswat, R

    , Washington, D.C). Lutjeharms, J.R.E., N.M. Walters and B.R. Allanson. 1985. Oceanic frontal systems and biologicalenhancement. p.11-21. In: Antarctic Nutrient Cycles and Food Webs. ed. by W.R. Siegfried et al., Springer-Verlag, NewYork. Matsumoto, K., J...: Ocean Sci. J.: 44(2); 2009; 117-123 OXYGEN ISOTOPE RECORDS OF GLOBIGERINA BULLOIDES ACROSS A NORTH-SOUTH TRANSECT IN THE SOUTH-WESTERN INDIAN OCEAN N. Khare 1* , S. K. Chaturvedi 2 and R. Saraswat 3 1. Ministry of Earth Sciences, Block...

  4. Latitudinal exposure to DDTs, HCB, PCBs, PBDEs and DP in giant petrels (Macronectes spp.) across the Southern Ocean

    Energy Technology Data Exchange (ETDEWEB)

    Roscales, Jose L., E-mail: jlroscales@iqog.csic.es [Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid (Spain); González-Solís, Jacob; Zango, Laura [Institut de Recerca de la Biodiversitat (IRBio) and Department of Animal Biology, Universitat de Barcelona, Av Diagonal 643, 08028 Barcelona (Spain); Ryan, Peter G. [Percy FitzPatrick Institute, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701 (South Africa); Jiménez, Begoña [Department of Instrumental Analysis and Environmental Chemistry, Institute of Organic Chemistry, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid (Spain)

    2016-07-15

    Studies on Persistent Organic Pollutants (POPs) in Antarctic wildlife are scarce, and usually limited to a single locality. As a result, wildlife exposure to POPs across the Southern Ocean is poorly understood. In this study, we report the differential exposure of the major southern ocean scavengers, the giant petrels, to POPs across a wide latitudinal gradient. Selected POPs (PCBs, HCB, DDTs, PBDEs) and related compounds, such as Dechlorane Plus (DP), were analyzed in plasma of southern giant petrels (Macronectes giganteus) breeding on Livingston (62°S 61°W, Antarctica), Marion (46°S 37°E, sub-Antarctic), and Gough (40°S 10°W, cool temperate) islands. Northern giant petrels (Macronectes halli) from Marion Island were also studied. Stable isotope ratios of C and N (δ{sup 13}C and δ{sup 15}N) were used as dietary tracers of the marine habitat and trophic level, respectively. Breeding locality was a major factor explaining petrel exposure to POPs compared with species and sex. Significant relationships between δ{sup 13}C values and POP burdens, at both inter- and intra-population levels, support latitudinal variations in feeding grounds as a key factor in explaining petrel pollutant burdens. Overall, pollutant levels in giant petrels decreased significantly with latitude, but the relative abundance (%) of the more volatile POPs increased towards Antarctica. DP was found at negligible levels compared with legacy POPs in Antarctic seabirds. Spatial POP patterns found in giant petrels match those predicted by global distribution models, and reinforce the hypothesis of atmospheric long-range transport as the main source of POPs in Antarctica. Our results confirm that wildlife movements out of the polar region markedly increase their exposure to POPs. Therefore, strategies for Antarctic wildlife conservation should consider spatial heterogeneity in exposure to marine pollution. Of particular relevance is the need to clarify the exposure of Antarctic predators to

  5. Latitudinal exposure to DDTs, HCB, PCBs, PBDEs and DP in giant petrels (Macronectes spp.) across the Southern Ocean

    International Nuclear Information System (INIS)

    Roscales, Jose L.; González-Solís, Jacob; Zango, Laura; Ryan, Peter G.; Jiménez, Begoña

    2016-01-01

    Studies on Persistent Organic Pollutants (POPs) in Antarctic wildlife are scarce, and usually limited to a single locality. As a result, wildlife exposure to POPs across the Southern Ocean is poorly understood. In this study, we report the differential exposure of the major southern ocean scavengers, the giant petrels, to POPs across a wide latitudinal gradient. Selected POPs (PCBs, HCB, DDTs, PBDEs) and related compounds, such as Dechlorane Plus (DP), were analyzed in plasma of southern giant petrels (Macronectes giganteus) breeding on Livingston (62°S 61°W, Antarctica), Marion (46°S 37°E, sub-Antarctic), and Gough (40°S 10°W, cool temperate) islands. Northern giant petrels (Macronectes halli) from Marion Island were also studied. Stable isotope ratios of C and N (δ 13 C and δ 15 N) were used as dietary tracers of the marine habitat and trophic level, respectively. Breeding locality was a major factor explaining petrel exposure to POPs compared with species and sex. Significant relationships between δ 13 C values and POP burdens, at both inter- and intra-population levels, support latitudinal variations in feeding grounds as a key factor in explaining petrel pollutant burdens. Overall, pollutant levels in giant petrels decreased significantly with latitude, but the relative abundance (%) of the more volatile POPs increased towards Antarctica. DP was found at negligible levels compared with legacy POPs in Antarctic seabirds. Spatial POP patterns found in giant petrels match those predicted by global distribution models, and reinforce the hypothesis of atmospheric long-range transport as the main source of POPs in Antarctica. Our results confirm that wildlife movements out of the polar region markedly increase their exposure to POPs. Therefore, strategies for Antarctic wildlife conservation should consider spatial heterogeneity in exposure to marine pollution. Of particular relevance is the need to clarify the exposure of Antarctic predators to emerging

  6. The effects of greenhouse gases on the Antarctic ozone hole in the past, present, and future

    Science.gov (United States)

    Newman, P. A.; Li, F.; Lait, L. R.; Oman, L.

    2017-12-01

    The Antarctic ozone hole is primarily caused by human-produced ozone depleting substances such as chlorine-containing chlorofluorocarbons (CFCs) and bromine-containing halons. The large ozone spring-time depletion relies on the very-cold conditions of the Antarctic lower stratosphere, and the general containment of air by the polar night jet over Antarctica. Here we show the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM) coupled ocean-atmosphere-chemistry model for exploring the impact of increasing greenhouse gases (GHGs). Model simulations covering the 1960-2010 period are shown for: 1) a control ensemble with observed levels of ODSs and GHGs, 2) an ensemble with fixed 1960 GHG concentrations, and 3) an ensemble with fixed 1960 ODS levels. We look at a similar set of simulations (control, 2005 fixed GHG levels, and 2005 fixed ODS levels) with a new version of GEOSCCM over the period 2005-2100. These future simulations show that the decrease of ODSs leads to similar ozone recovery for both the control run and the fixed GHG scenarios, in spite of GHG forced changes to stratospheric ozone levels. These simulations demonstrate that GHG levels will have major impacts on the stratosphere by 2100, but have only small impacts on the Antarctic ozone hole.

  7. Persistent organohalogen contaminant burdens in Antarctic krill (Euphausia superba) from the eastern Antarctic sector: A baseline study

    International Nuclear Information System (INIS)

    Bengtson Nash, S.M.; Poulsen, A.H.; Kawaguchi, S.; Vetter, W.; Schlabach, M.

    2008-01-01

    A baseline for persistent organohalogen compound (POC) accumulation in the Antarctic keystone species, Antarctic krill (Euphausia superba) has been established for a 50 deg. longitudinal range of the eastern Antarctic sector. Samples of adult krill, caught from 12 sites distributed between 30 deg. and 80 deg. E (60-70 deg. S), were analysed for > 100 organohalogen compounds including chlorinated pesticides, polychlorinated biphenyls (PCBs), polybrominated organic compounds and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs). Organochlorine pesticides dominated measured krill contaminant burdens with hexachlorobenzene (HCB) as the single most abundant compound quantified. Krill HCB concentrations were comparable to those detected at this trophic level in both the Arctic and temperate northwest Atlantic, lending support for the hypothesis that HCB will approach global equilibrium at a faster rate than other POCs. Para, para'-dichlorodiphenylethene (p,p'-DDE) was detected at notable concentrations. Measurements of DDT and its degradation products provide an important baseline for monitoring the temporal and geographical influence of renewed, DDT usage for malaria-control in affected southern hemisphere countries. In contrast to the Arctic, PCBs did not feature prominently in contaminant burdens of Antarctic krill. The major commercial polybrominated diphenyl ether (PBDE) congeners -99 and -47 were quantified at low background levels with clear concentration spikes observed at around 70 deg. E , in the vicinity of modern, active research stations. The likelihood that local anthropogenic activities are supplementing low PBDE levels, delivered otherwise primarily via long range environmental transport, is discussed. The suspected naturally occurring brominated organic compound, 2,4,6-tribromoanisole (TBA), was a ubiquitous contaminant in all samples whereas the only PCDD/Fs quantifiable were trace levels of octachlorodibenzo-p-dioxin (OCDD) and 1

  8. Faunal diversity of the benthic amphipods (Crustacea of the Magellan region as compared to the Antarctic (preliminary results

    Directory of Open Access Journals (Sweden)

    Claude de Broyer

    1999-12-01

    Full Text Available To investigate the marine benthic ecosystems of the Magellan region and to compare them with the better known Antarctic systems, three campaigns were recently carried out in this area: the Joint Magellan Victor Hensen Campaign 1994, the Polarstern ANT XIII/4 cruise 1996, and the Vidal Gormaz CIMAR FIORDO II cruise 1996. Numerous and diverse zoobenthos samples were collected mostly with an Agassiz trawl and with a small dredge, an epibenthic sledge, with baited traps or by diving. All gears together gathered more than 132,000 specimens of gammaridean and caprellidean amphipods. 137 species of gammaridean amphipods have been identified from the material to date. About 20% of these species appear to be new for science. This taxonomic work takes place in the framework of a general revision of the Southern Ocean amphipod fauna undertaken by theAntarctic Amphipodologists Network. A complete list of the benthic species of gammaridean and caprellidean amphipods is presented, including the zoogeographical distribution and the new records. The new abundant material collected, still under study, will allow a comparison of faunal diversity, zoogeographical and ecological traits of the Magellan benthic amphipod taxocoenoses with those of the West and East Antarctic benthos.

  9. Distinct genetic differentiation and species diversification within two marine nematodes with different habitat preference in Antarctic sediments.

    Science.gov (United States)

    Hauquier, Freija; Leliaert, Frederik; Rigaux, Annelien; Derycke, Sofie; Vanreusel, Ann

    2017-05-30

    Dispersal ability, population genetic structure and species divergence in marine nematodes are still poorly understood, especially in remote areas such as the Southern Ocean. We investigated genetic differentiation of species and populations of the free-living endobenthic nematode genera Sabatieria and Desmodora using nuclear 18S rDNA, internal transcribed spacer (ITS) rDNA, and mitochondrial cytochrome oxidase I (COI) gene sequences. Specimens were collected at continental shelf depths (200-500 m) near the Antarctic Peninsula, Scotia Arc and eastern side of the Weddell Sea. The two nematode genera co-occurred at all sampled locations, but with different vertical distribution in the sediment. A combination of phylogenetic (GMYC, Bayesian Inference, Maximum Likelihood) and population genetic (AMOVA) analyses were used for species delimitation and assessment of gene flow between sampling locations. Sequence analyses resulted in the delimitation of four divergent species lineages in Sabatieria, two of which could not be discriminated morphologically and most likely constitute cryptic species. Two species were recognised in Desmodora, one of which showed large intraspecific morphological variation. Both genera comprised species that were restricted to one side of the Weddell Sea and species that were widely spread across it. Population genetic structuring was highly significant and more pronounced in the deeper sediment-dwelling Sabatieria species, which are generally less prone to resuspension and passive dispersal in the water column than surface Desmodora species. Our results indicate that gene flow is restricted at large geographic distance in the Southern Ocean, which casts doubt on the efficiency of the Weddell gyre and Antarctic Circumpolar Current in facilitating circum-Antarctic nematode species distributions. We also show that genetic structuring and cryptic speciation can be very different in nematode species isolated from the same geographic area, but with

  10. Seasonal variations and vertical features of aerosol particles in the Antarctic troposphere

    Directory of Open Access Journals (Sweden)

    K. Hara

    2011-06-01

    Full Text Available Tethered balloon-borne aerosol measurements were conducted at Syowa Station, Antarctica during the 46th Japanese Antarctic expedition (2005–2006. The CN concentration reached a maximum in the summer, although the number concentrations of fine particles (Dp>0.3 μm and coarse particles (Dp>2.0 μm increased during the winter–spring. The CN concentration was 30–2200 cm−3 near the surface (surface – 500 m and 7–7250 cm−3 in the lower free troposphere (>1500 m. During the austral summer, higher CN concentration was often observed in the lower free troposphere, where the number concentrations in fine and coarse modes were remarkably lower. The frequent appearance of higher CN concentrations in the free troposphere relative to continuous aerosol measurements at the ground strongly suggests that new particle formation is more likely to occur in the lower free troposphere in Antarctic regions. Seasonal variations of size distribution of fine-coarse particles show that the contribution of the coarse mode was greater in the winter–spring than in summer because of the dominance of sea-salt particles in the winter–spring. The number concentrations of fine and coarse particles were high in air masses from the ocean and mid-latitudes. Particularly, aerosol enhancement was observed not only in the boundary layer, but also in the lower free troposphere during and immediately after Antarctic haze events occurring in May, July and September.

  11. Depth of origin of ocean-circulation-induced magnetic signals

    Science.gov (United States)

    Irrgang, Christopher; Saynisch-Wagner, Jan; Thomas, Maik

    2018-01-01

    As the world ocean moves through the ambient geomagnetic core field, electric currents are generated in the entire ocean basin. These oceanic electric currents induce weak magnetic signals that are principally observable outside of the ocean and allow inferences about large-scale oceanic transports of water, heat, and salinity. The ocean-induced magnetic field is an integral quantity and, to first order, it is proportional to depth-integrated and conductivity-weighted ocean currents. However, the specific contribution of oceanic transports at different depths to the motional induction process remains unclear and is examined in this study. We show that large-scale motional induction due to the general ocean circulation is dominantly generated by ocean currents in the upper 2000 m of the ocean basin. In particular, our findings allow relating regional patterns of the oceanic magnetic field to corresponding oceanic transports at different depths. Ocean currents below 3000 m, in contrast, only contribute a small fraction to the ocean-induced magnetic signal strength with values up to 0.2 nT at sea surface and less than 0.1 nT at the Swarm satellite altitude. Thereby, potential satellite observations of ocean-circulation-induced magnetic signals are found to be likely insensitive to deep ocean currents. Furthermore, it is shown that annual temporal variations of the ocean-induced magnetic field in the region of the Antarctic Circumpolar Current contain information about sub-surface ocean currents below 1000 m with intra-annual periods. Specifically, ocean currents with sub-monthly periods dominate the annual temporal variability of the ocean-induced magnetic field.

  12. Seasonal variation and sources of atmospheric gravity waves in the Antarctic

    Directory of Open Access Journals (Sweden)

    Kaoru Sato

    2010-12-01

    Full Text Available In the last recent ten years, our knowledge of gravity waves in the Antarctic has been significantly improved through numerous studies using balloon and satellite observations and high-resolution model simulations. In this report, we introduce results from two studies which were performed as a part of the NIPR project "Integrated analysis of the material circulation in the Antarctic atmosphere-cryosphere-ocean" (2004-2009, i.e., Yoshiki et al. (2004 and Sato and Yoshiki (2008. These two studies focused on the seasonal variation and sources of the gravity waves in the Antarctic, because horizontal wavelengths and phase velocities depend largely on the wave sources. The former study used original high-resolution data from operational radiosonde observations at Syowa Station. In the lowermost stratosphere, gravity waves do not exhibit characteristic seasonal variation; instead, the wave energy is intensified when lower latitude air intrudes into the area near Syowa Station in the upper troposphere. This intrusion is associated with blocking events or developed synoptic-scale waves. In the lower and middle stratosphere, the gravity wave energy is maximized in spring and particularly intensified when the axis of the polar night jet approaches Syowa Station. The latter study is based on intensive radiosonde observation campaigns that were performed in 2002 at Syowa Station as an activity of JARE-43. Gravity wave propagation was statistically examined using two dimensional (i.e., vertical wavenumber versus frequency spectra in each season. It was shown that the gravity waves are radiated upward and downward from an unbalanced region of the polar night jet. This feature is consistent with the gravity-wave resolving GCM simulation.

  13. Response of Southern Ocean circulation to global warming may enhance basal ice shelf melting around Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Hattermann, Tore; Levermann, Anders [Potsdam University, Earth System Analysis, Potsdam Institute for Climate Impact Research, Potsdam (Germany)

    2010-10-15

    We investigate the large-scale oceanic features determining the future ice shelf-ocean interaction by analyzing global warming experiments in a coarse resolution climate model with a comprehensive ocean component. Heat and freshwater fluxes from basal ice shelf melting (ISM) are parameterized following Beckmann and Goosse [Ocean Model 5(2):157-170, 2003]. Melting sensitivities to the oceanic temperature outside of the ice shelf cavities are varied from linear to quadratic (Holland et al. in J Clim 21, 2008). In 1% per year CO{sub 2}-increase experiments the total freshwater flux from ISM triples to 0.09 Sv in the linear case and more than quadruples to 0.15 Sv in the quadratic case after 140 years at which 4 x 280 ppm = 1,120 ppm was reached. Due to the long response time of subsurface temperature anomalies, ISM thereafter increases drastically, if CO{sub 2} concentrations are kept constant at 1,120 ppm. Varying strength of the Antarctic circumpolar current (ACC) is crucial for ISM increase, because southward advection of heat dominates the warming along the Antarctic coast. On centennial timescales the ACC accelerates due to deep ocean warming north of the current, caused by mixing of heat along isopycnals in the Southern Ocean (SO) outcropping regions. In contrast to previous studies we find an initial weakening of the ACC during the first 150 years of warming. This purely baroclinic effect is due to a freshening in the SO which is consistent with present observations. Comparison with simulations with diagnosed ISM but without its influence on the ocean circulation reveal a number of ISM-related feedbacks, of which a negative ISM-feedback, due to the ISM-related local oceanic cooling, is the dominant one. (orig.)

  14. The role of the complete Coriolis force in cross-equatorial transport of the Antarctic Bottom Water

    Science.gov (United States)

    Stewart, Andrew; Dellar, Paul

    2010-05-01

    We investigate the equatorial crossing of the Antarctic Bottom Water using a shallow water model that includes the complete Coriolis force. Most theoretical models of the atmosphere and ocean neglect the component of the Coriolis force associated with the horizontal component of the Earth's rotation vector, the so-called traditional approximation. This approximation is typically justified on the basis that ratio of the ocean depth to the Rossby radius of deformation is negligibly small, H-Rd ≪ 1. However, the steep topography and weak stratification in the abyssal ocean magnify the role of the non-traditional component of the Coriolis force. This is most pronounced in equatorial regions, where the traditional component of the Coriolis force is weakest and the non-traditional component is strongest. The inclusion of the complete Coriolis force gives rise to a range of very long sub-inertial waves, whose frequencies lie below the inertial frequency, in the two-layer shallow water equations. These waves have a dramatically different structure to their traditional counterparts, particularly when the stratification is weak. We focus on the flow of the Antarctic Bottom Water from the Brazil Basin in the western South Atlantic to the Guiana Basin in the western North Atlantic. In this region, the current traverses a deep channel directed westwards and very slightly northwards across the equator. Previous attempts to model this flow have struggled to explain why the cross-equatorial transport is so high, with around 2.0-2.2 Sv exiting at the northern end of the channel. We present analytical and numerical solutions of the non-traditional shallow water equations for the cross-equatorial flow of the Antarctic Bottom Water. We obtain analytical solutions by considering the steady-state flow of a single layer of shallow water through a northwesterly channel with a simple geometry. We assume zero potential vorticity, as it may be shown that fluid whose potential vorticity q

  15. Polar Frontal Migration in the Warm Late Pliocene: Diatom Evidence from The Wilkes Land Margin, East Antarctic

    Science.gov (United States)

    Riesselman, C. R.; Taylor-Silva, B.; Patterson, M. O.

    2017-12-01

    The Late Pliocene is the most recent interval in Earth's history to sustain global temperatures within the range of warming predicted for the 21st century. Published global reconstructions and climate models find an average +2° C summer SST anomaly relative to modern during the 3.3-3.0 Ma PRISM interval, when atmospheric CO2 concentrations last reached 400 ppm. Here, we present a new diatom-based reconstruction of Pliocene interglacial sea surface conditions from IODP Site U1361, on the East Antarctic continental rise. U1361 biogenic silica concentrations document the alternation of diatom-rich and diatom-poor lithologies; we interpret 8 diatom-rich mudstones within this sequence to record interglacial periods between 3.8 and 2.8 Ma. We find that open-ocean conditions in the mid-Pliocene became increasingly influenced by sea ice from 3.6-3.2 Ma, prior to the onset of Northern Hemisphere glaciation. This cooling trend was interrupted by a temporary southward migration of the Antarctic Polar Front, bathing U1361 in warmer subantarctic waters during a single interglacial, marine isotope stage KM3 (3.17-3.15 Ma), that corresponds to a maximum in summer insolation at 65°S. Following this interval of transient warmth, interglacial periods became progressively cooler starting at 3 Ma, coinciding with a transition from obliquity to precession as the dominant orbital driver of Antarctic ice sheet fluctuations. Building on the identification of a single outlier interglacial within the PRISM interval, we have revisited older reconstructions to explore the response of the Southern Ocean/cryosphere system to peak late Pliocene warmth. By applying a modern chronostratigraphic framework to those low-resolution "mean interglacial" records, we identify the same frontal migration in 4 other cores in the Pacific sector of the Southern Ocean, documenting a major migration of the polar front during a key interval of warm climate. These new results suggest that increased summer

  16. Impact of realistic future ice sheet discharge on the Atlantic ocean

    Science.gov (United States)

    van den Berk, Jelle

    2015-04-01

    Royal Netherlands Meteorological Institute, De Bilt, The Netherlands A high-end scenario of polar ice loss from the Greenland and Antarctic ice sheet is presented with separate projections for different mass-loss sites up to the year 2100. The resultant freshwater forcing is applied to a global climate model and the effects on sea-level rise are discussed. The simulations show strong sea level rise on the Antarctic continental shelves. To separate the effects of atmospheric warming and melt water we then ran four simulations. One without either forcing, one with both and two with one of each separately. Melt water leads to a slight additional depression of the Atlantic overturning circulation, but a strong decrease remains absent. The bulk of the strength reduction is due to higher atmospheric temperatures which inhibits deep water formation in the North Atlantic. The melt water freshens the upper layers of the ocean, but does not strongly impact buoyancy. The balance between North Atlantic Deep Water and Antarctic Bottom Water must then remain relatively unaffected. Only applying the melt water forcing to the Northern Hemisphere does not lead to a stronger effect. We conclude that the meltwater scenario only impacts the overturning circulation superficially because the deeper ocean is not affected. Transport through Bering Strait and across the zonal section at the latitude of Cape Agulhas is increased by increased atmospheric temperatures and adds some inertia to these transports. Reversing the atmospheric forcing bears this out when the transport then further increases. The freshwater, however, mitigates this inertia somewhat.

  17. Influence of internal tides on Antarctic Bottom Water propagation through abyssal channels

    Science.gov (United States)

    Morozov, Eugene

    2010-05-01

    Antarctic Bottom Water (AABW) propagates in the Atlantic Ocean from the Weddell Sea to the north through narrow passages in submarine ridges. Submarine ridges are regions of strong internal tide generation in the ocean that causes mixing and eventually AABW loses its distinguishing properties such as low temperature and salinity. The Vema Fracture Zone (11 N) and Romanche Fracture Zone (equator) in the Mid-Atlantic Ridge (MAR) are pathways for AABW to the Northeast Atlantic. The deep basin of the Northeast Atlantic (Canary Basin and Gambia Abyssal Plain) are filled with the bottom water propagating through the Vema FZ rather than through the equatorial fracture zones because strong internal tides and mixing over the slopes of the MAR near the equator cause warming of AABW and decrease of its density. Further propagation of AABW through the Kane Gap is low. Recent field measurements in the fracture zones confirm this concept based on modeling results. Results of recent cruises are presented.

  18. Carbon dioxide emissions of Antarctic tourism

    NARCIS (Netherlands)

    Farreny, R.; Oliver-Solà, J.; Lamers, M.A.J.; Amelung, B.; Gabarrell, X.; Rieradevall, J.; Boada, M.; Benayas, J.

    2011-01-01

    The increase of tourism to the Antarctic continent may entail not only local but also global environmental impacts. These latter impacts, which are mainly caused by transport, have been generally ignored. As a result, there is a lack of data on the global impacts of Antarctic tourism in terms of

  19. Constraining the Antarctic contribution to global sea-level change: ANDRILL and beyond

    Science.gov (United States)

    Naish, Timothy

    2016-04-01

    Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1 to 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the

  20. Levels and pattern of polybrominated diphenyl ethers in eggs of Antarctic seabirds: Endemic versus migratory species

    Energy Technology Data Exchange (ETDEWEB)

    Yogui, G.T. [Geochemical and Environmental Research Group, College of Geosciences, Texas A and M University, 833 Graham Road, College Station, TX 77845 (United States)], E-mail: gtyogui@ocean.tamu.edu; Sericano, J.L. [Geochemical and Environmental Research Group, College of Geosciences, Texas A and M University, 833 Graham Road, College Station, TX 77845 (United States)], E-mail: jsericano@gerg.tamu.edu

    2009-03-15

    Chinstrap and gentoo penguins are endemic species that live year round south of the Antarctic Convergence. South polar skua is a migratory seabird that can be observed in Antarctica during the breeding season (i.e., austral summer). This study compares concentration and pattern of polybrominated diphenyl ethers (PBDEs) in eggs of seabirds breeding at King George Island, Antarctic Peninsula. PBDEs in south polar skua eggs are approximately 20 times higher than in penguin eggs suggesting that skuas are more exposed to contaminants during the non-breeding season when they migrate to waters of the northern hemisphere. The pattern of PBDE congeners also differs between south polar skua and penguin eggs. The latter exhibited a pattern similar to that found in the local biota. In contrast, the congener pattern in south polar skua eggs suggests that birds breeding at King George Island may winter in the northwestern Pacific Ocean. - Skua and penguin eggs collected at King George Island have different concentration and pattern of PBDEs.

  1. Levels and pattern of polybrominated diphenyl ethers in eggs of Antarctic seabirds: Endemic versus migratory species

    International Nuclear Information System (INIS)

    Yogui, G.T.; Sericano, J.L.

    2009-01-01

    Chinstrap and gentoo penguins are endemic species that live year round south of the Antarctic Convergence. South polar skua is a migratory seabird that can be observed in Antarctica during the breeding season (i.e., austral summer). This study compares concentration and pattern of polybrominated diphenyl ethers (PBDEs) in eggs of seabirds breeding at King George Island, Antarctic Peninsula. PBDEs in south polar skua eggs are approximately 20 times higher than in penguin eggs suggesting that skuas are more exposed to contaminants during the non-breeding season when they migrate to waters of the northern hemisphere. The pattern of PBDE congeners also differs between south polar skua and penguin eggs. The latter exhibited a pattern similar to that found in the local biota. In contrast, the congener pattern in south polar skua eggs suggests that birds breeding at King George Island may winter in the northwestern Pacific Ocean. - Skua and penguin eggs collected at King George Island have different concentration and pattern of PBDEs

  2. Combined ice core and climate-model evidence for the collapse of the West Antarctic Ice Sheet during Marine Isotope Stage 5e.

    Science.gov (United States)

    Steig, Eric J.; Huybers, Kathleen; Singh, Hansi A.; Steiger, Nathan J.; Frierson, Dargan M. W.; Popp, Trevor; White, James W. C.

    2015-04-01

    It has been speculated that collapse of the West Antarctic Ice Sheet explains the very high eustatic sea level rise during the last interglacial period, marine isotope stage (MIS) 5e, but the evidence remains equivocal. Changes in atmospheric circulation resulting from a collapse of the West Antarctic Ice Sheet (WAIS) would have significant regional impacts that should be detectable in ice core records. We conducted simulations using general circulation models (GCMs) at varying levels of complexity: a gray-radiation aquaplanet moist GCM (GRaM), the slab ocean version of GFDL-AM2 (also as an aquaplanet), and the fully-coupled version of NCAR's CESM with realistic topography. In all the experiments, decreased elevation from the removal of the WAIS leads to greater cyclonic circulation over the West Antarctic region. This creates increased advection of relatively warm marine air from the Amundsen-Bellingshausen Seas towards the South Pole, and increased cold-air advection from the East Antarctic plateau towards the Ross Sea and coastal Marie Byrd Land. The result is anomalous warming in some areas of the East Antarctic interior, and significant cooling in Marie Byrd Land. Comparison of ice core records shows good agreement with the model predictions. In particular, isotope-paleotemperature records from ice cores in East Antarctica warmed more between the previous glacial period (MIS 6) and MIS 5e than coastal Marie Byrd Land. These results add substantial support to other evidence for WAIS collapse during the last interglacial period.

  3. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.

    Science.gov (United States)

    Schmittner, Andreas; Galbraith, Eric D

    2008-11-20

    Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales.

  4. Revision of Eocene Antarctic carpet sharks (Elasmobranchii, Orectolobiformes) from Seymour Island, Antarctic Peninsula.

    Science.gov (United States)

    Engelbrecht, Andrea; Mörs, Thomas; Reguero, Marcelo A; Kriwet, Jürgen

    2017-01-01

    Seymour Island, Antarctic Peninsula, was once called the 'Rosetta Stone' of Southern Hemisphere palaeobiology, because this small island provides the most complete and richly fossiliferous Palaeogene sequence in Antarctica. Among fossil marine vertebrate remains, chondrichthyans seemingly were dominant elements in the Eocene Antarctic fish fauna. The fossiliferous sediments on Seymour Island are from the La Meseta Formation, which was originally divided into seven stratigraphical levels, TELMs 1-7 (acronym for Tertiary Eocene La Meseta) ranging from the upper Ypresian (early Eocene) to the late Priabonian (late Eocene). Bulk sampling of unconsolidated sediments from TELMs 5 and 6, which are Ypresian (early Eocene) and Lutetian (middle Eocene) in age, respectively, yielded very rich and diverse chondrichthyan assemblages including over 40 teeth of carpet sharks representing two new taxa, Notoramphoscyllium woodwardi gen. et sp. nov. and Ceolometlaouia pannucae gen. et sp. nov. Two additional teeth from TELM 5 represent two different taxa that cannot be assigned to any specific taxon and thus are left in open nomenclature. The new material not only increases the diversity of Eocene Antarctic selachian faunas but also allows two previous orectolobiform records to be re-evaluated. Accordingly, Stegostoma cf. faciatum is synonymized with Notoramphoscyllium woodwardi gen. et sp. nov., whereas Pseudoginglymostoma cf. brevicaudatum represents a nomen dubium . The two new taxa, and probably the additional two unidentified taxa, are interpreted as permanent residents, which most likely were endemic to Antarctic waters during the Eocene and adapted to shallow and estuarine environments.

  5. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years

    Science.gov (United States)

    Gardner, Alex S.; Moholdt, Geir; Scambos, Ted; Fahnstock, Mark; Ligtenberg, Stefan; van den Broeke, Michiel; Nilsson, Johan

    2018-02-01

    Ice discharge from large ice sheets plays a direct role in determining rates of sea-level rise. We map present-day Antarctic-wide surface velocities using Landsat 7 and 8 imagery spanning 2013-2015 and compare to earlier estimates derived from synthetic aperture radar, revealing heterogeneous changes in ice flow since ˜ 2008. The new mapping provides complete coastal and inland coverage of ice velocity north of 82.4° S with a mean error of image pairs acquired during the daylight period. Using an optimized flux gate, ice discharge from Antarctica is 1929 ± 40 Gigatons per year (Gt yr-1) in 2015, an increase of 36 ± 15 Gt yr-1 from the time of the radar mapping. Flow accelerations across the grounding lines of West Antarctica's Amundsen Sea Embayment, Getz Ice Shelf and Marguerite Bay on the western Antarctic Peninsula, account for 88 % of this increase. In contrast, glaciers draining the East Antarctic Ice Sheet have been remarkably constant over the period of observation. Including modeled rates of snow accumulation and basal melt, the Antarctic ice sheet lost ice at an average rate of 183 ± 94 Gt yr-1 between 2008 and 2015. The modest increase in ice discharge over the past 7 years is contrasted by high rates of ice sheet mass loss and distinct spatial patters of elevation lowering. The West Antarctic Ice Sheet is experiencing high rates of mass loss and displays distinct patterns of elevation lowering that point to a dynamic imbalance. We find modest increase in ice discharge over the past 7 years, which suggests that the recent pattern of mass loss in Antarctica is part of a longer-term phase of enhanced glacier flow initiated in the decades leading up to the first continent-wide radar mapping of ice flow.

  6. Chilean Antarctic Stations on King George Island

    OpenAIRE

    Katsutada Kaminuma

    2000-01-01

    The purpose of my visit to Chilean Antarctic Stations was to assess the present status of geophysical observations and research, as the South Shetland Island, West Antarctica, where the stations are located, are one of the most active tectonic regions on the Antarctic plate. The Instituto Antartico Chileno (INACH) kindly gave me a chance to stay in Frei/Escudero Bases as an exchange scientist under the Antarctic Treaty for two weeks in January 2000. I stayed in Frei Base as a member of a geol...

  7. Ocean Circulation and Dynamics on the West Antarctic Peninsula Continental Shelf

    National Research Council Canada - National Science Library

    Varas, Carlos F

    2007-01-01

    Observations of current velocity, temperature, salinity and pressure from a 2-year moored array deployment and four hydrographic cruises conducted by the United States Southern Ocean GLOBEC program...

  8. Chapter 1. Impacts of the oceans on climate change.

    Science.gov (United States)

    Reid, Philip C; Fischer, Astrid C; Lewis-Brown, Emily; Meredith, Michael P; Sparrow, Mike; Andersson, Andreas J; Antia, Avan; Bates, Nicholas R; Bathmann, Ulrich; Beaugrand, Gregory; Brix, Holger; Dye, Stephen; Edwards, Martin; Furevik, Tore; Gangstø, Reidun; Hátún, Hjálmar; Hopcroft, Russell R; Kendall, Mike; Kasten, Sabine; Keeling, Ralph; Le Quéré, Corinne; Mackenzie, Fred T; Malin, Gill; Mauritzen, Cecilie; Olafsson, Jón; Paull, Charlie; Rignot, Eric; Shimada, Koji; Vogt, Meike; Wallace, Craig; Wang, Zhaomin; Washington, Richard

    2009-01-01

    further releases of the potent greenhouse gas methane from hydrates and permafrost. The Southern Ocean plays a critical role in driving, modifying and regulating global climate change via the carbon cycle and through its impact on adjacent Antarctica. The Antarctic Peninsula has shown some of the most rapid rises in atmospheric and oceanic temperature in the world, with an associated retreat of the majority of glaciers. Parts of the West Antarctic ice sheet are deflating rapidly, very likely due to a change in the flux of oceanic heat to the undersides of the floating ice shelves. The final section on modelling feedbacks from the ocean to climate change identifies limitations and priorities for model development and associated observations. Considering the importance of the oceans to climate change and our limited understanding of climate-related ocean processes, our ability to measure the changes that are taking place are conspicuously inadequate. The chapter highlights the need for a comprehensive, adequately funded and globally extensive ocean observing system to be implemented and sustained as a high priority. Unless feedbacks from the oceans to climate change are adequately included in climate change models, it is possible that the mitigation actions needed to stabilise CO2 and limit temperature rise over the next century will be underestimated.

  9. Using Gravity Inversion to Estimate Antarctic Geothermal Heat Flux

    Science.gov (United States)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; (Sasha) Golynsky, A. V.; Rogozhina, Irina

    2014-05-01

    New modelling studies for Greenland have recently underlined the importance of GHF for long-term ice sheet behaviour (Petrunin et al. 2013). Revised determinations of top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008), using BedMap2 data have provided improved estimates of geothermal heat flux (GHF) in Antarctica where it is very poorly known. Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Recognition of the East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system that appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km (Ferraccioli et al. 2011) and is comparable in scale to the well-studied East African rift system, highlights that crustal variability in interior Antarctica is much greater than previously assumed. GHF is also important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M. & Wolovick, M. 2011. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (6024), 1592-1595. Chappell, A.R. & Kusznir, N.J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins

  10. Bacteria Biomass and Chlorophyll-a depth profiles from bottle casts off the western Antarctic Peninsula from the R/V LAURENCE M. GOULD from 23 April 2001 to 01 September 2001 (NODC Accession 0000820)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Bacteria and Chlorophyll data were collected from bottle cast of the western Antarctic peninsula from the R/V Laurence M. Gould. Data were collected by the...

  11. Morphogenesis of Antarctic Paleosols: Martian Analogue

    Science.gov (United States)

    Mahaney, W. C.; Dohm, J. M.; Baker, V. R.; Newsom, Horton E.; Malloch, D.; Hancock, R. G. V.; Campbell, Iain; Sheppard, D.; Milner, M. W.

    2001-11-01

    Samples of horizons in paleosols from the Quartermain Mountains of the Antarctic Dry Valleys (Aztec and New Mountain areas) were analyzed for their physical characteristics, mineralogy, chemical composition, and microbiology to determine the accumulation and movement of salts and other soluble constituents and the presence/absence of microbial populations. Salt concentrations are of special interest because they are considered to be a function of age, derived over time, in part from nearby oceanic and high-altitude atmospheric sources. The chemical composition of ancient Miocene-age paleosols in these areas is the direct result of the deposition and weathering of airborne-influxed salts and other materials, as well as the weathering of till derived principally from local dolerite and sandstone outcrops. Paleosols nearer the coast have greater contents of Cl, whereas near the inland ice sheet, nitrogen tends to increase on a relative basis. The accumulation and vertical distribution of salts and other soluble chemical elements indicate relative amounts of movement in the profile over long periods of time, in the order of several million years. Four of the six selected subsamples from paleosol horizons in two ancient soil profiles contained nil concentrations of bacteria and fungi. However, two horizons at depths of between 3 and 8 cm, in two profiles, yielded several colonies of the fungi Beauveria bassiana and Penicillium brevicompactum, indicating very minor input of organic carbon. Beauveria bassiana is often reported in association with insects and is used commercially for the biological control of some insect pests. Penicillium species are commonly isolated from Arctic, temperate, and tropical soils and are known to utilize a wide variety of organic carbon and nitrogen compounds. The cold, dry soils of the Antarctic bear a close resemblance to various present and past martian environments where similar weathering could occur and possible microbial populations

  12. Decadal Trends in Abundance, Size and Condition of Antarctic Toothfish in McMurdo Sound, Antarctica, 1972-2010

    Science.gov (United States)

    Ainley, David G.; Nur, Nadav; Eastman, Joseph T.; Ballard. Grant; Parkinson, Claire L; Evans, Clive W.; DeVries, Arthur L.

    2012-01-01

    We report analyses of a dataset spanning 38 years of near-annual fishing for Antarctic toothfish Dissostichus mawsoni, using a vertical setline through the fast ice of McMurdo Sound, Antarctica, 1972-2010. This constitutes one of the longest biological time series in the Southern Ocean, and certainly the longest for any fish. Fish total length, condition and catch per unit effort (CPUE) were derived from the more than 5500 fish caught. Contrary to expectation, length-frequency was dominated by fish in the upper half of the industrial catch. The discrepancy may be due to biases in the sampling capabilities of vertical (this study) versus benthic (horizontal) fishing gear (industry long lines), related to the fact that only large Antarctic toothfish (more than 100 cm TL) are neutrally buoyant and occur in the water column. Fish length and condition increased from the early 1970s to the early 1990s and then decreased, related to sea ice cover, with lags of 8 months to 5 years, and may ultimately be related to the fishery (which targets large fish) and changes in the Southern Annular Mode through effects on toothfish main prey, Antarctic silverfish Pleuragramma antarcticum. CPUE was constant through 2001 and then decreased dramatically, likely related to the industrial fishery, which began in 1996 and which concentrates effort over the Ross Sea slope, where tagged McMurdo fish have been found. Due to limited prey choices and, therefore, close coupling among mesopredators of the Ross Sea, Antarctic toothfish included, the fishery may be altering the trophic structure of the Ross Sea.

  13. Activities of the training vessel Umitaka-maru (KARE-15; UM-11-07 of the Tokyo University of Marine Science and Technology during the 53rd Japanese Antarctic Research Expedition in 2011/2012

    Directory of Open Access Journals (Sweden)

    Masato Moteki

    2015-11-01

    Full Text Available The training vessel Umitaka-maru of the Tokyo University of Marine Science and Technology (TUMSAT undertook a marine science cruise in the Indian sector of the Southern Ocean during the 2011/2012 austral summer. During the cruise, TUMSAT conducted five different collaborative research projects. These included two phase-VIII Japanese Antarctic Research Expedition (JARE-52 to -57 projects: "Responses of Antarctic Marine Ecosystems to Global Environmental Changes with Carbonate Systems", which is the sub-theme of the prioritized research project "Exploring Global Warming from Antarctica"; and the ordinary research project "Studies on Plankton Community Structure and Environment Parameters in the Southern Ocean". The other three collaborative research projects were those undertaken in conjunction with (1 the National Institute of Polar Research, entitled "Environment and Ecosystem Changes in the Southern Ocean"; (2 the Japan Agency for Marine-Earth Science and Technology (JAMSTEC, entitled "Deployment of the Southern Ocean Buoy" ; and (3 with Hokkaido University, entitled "Studies on Dynamics of Antarctic Bottom Water". The Umitaka-maru departed from Fremantle, Australia, on 27 December 2011, sailed to the study area around the marginal sea ice zone (mainly along 110°E and 140°E, and returned to Hobart, Australia, on 1 February 2012. The participants performed various net castings to qualitatively evaluate the vertical distribution of plankton communities, made physical observations, and measured chemical parameters. They also retrieved a year-round mooring that had been deployed the previous year, retrieved two surface drifting buoys that had been released by the ice breaker Shirase, and deployed a JAMSTEC buoy (m-TRITON. In addition, several acidified culture experiments using pteropods were conducted on board.

  14. Environmental radioactivity in the antarctic station

    International Nuclear Information System (INIS)

    Gonzalez, S.; Osores, J.; Martinez, J.; Lopez, E.; Jara, R.

    1998-01-01

    Study about environmental radioactivity in the Peruvian antarctic station Machu Pichu they were carried out during the last three periods to the southern summer. The objective of the project it is to evaluate environmental component in order to elaborate a study it base on the levels background radioactivity and artificial in the antarctic region

  15. Summer microbial community composition governed by upper-ocean stratification and nutrient availability in northern Marguerite Bay, Antarctica

    NARCIS (Netherlands)

    Rozema, Patrick D.; Biggs, Tristan; Sprong, Pim A.A.; Buma, Anita G.J.; Venables, Hugh J.; Evans, Claire; Meredith, Michael P.; Bolhuis, Henk

    The Western Antarctic Peninsula warmed significantly during the second half of the twentieth century, with a concurrent retreat of the majority of its glaciers, and marked changes in the sea-ice field. These changes may affect summertime upper-ocean stratification, and thereby the seasonal dynamics

  16. Summer microbial community composition governed by upper-ocean stratification and nutrient availability in northern Marguerite Bay, Antarctica

    NARCIS (Netherlands)

    Rozema, P.D.; Biggs, T.; Sprong, P.A.A.; Buma, A.G.J.; Venables, H.J.; Evans, C.; Meredith, M.P.; Bolhuis, H.

    2017-01-01

    The Western Antarctic Peninsula warmed significantly during the second half of the twentieth century, with a concurrent retreat of the majority of its glaciers, and marked changes in the sea-ice field. These changes may affect summertime upper-ocean stratification, and thereby the seasonal dynamics

  17. Oceanographic profile chlorophyll a and zooplankton biomass measurements collected using bottle in the Southern Oceans from 1995 to 1996 (NODC Accession 0000980)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Variability in abundance of virus-like particles (VLP), VLP decay rates and prokaryotic mortality due to viral infection were determined in three Antarctic areas:...

  18. Extensive lake sediment coring survey on Sub-Antarctic Indian Ocean Kerguelen Archipelago (French Austral and Antarctic Lands)

    Science.gov (United States)

    Arnaud, Fabien; Fanget, Bernard; Malet, Emmanuel; Poulenard, Jérôme; Støren, Eivind; Leloup, Anouk; Bakke, Jostein; Sabatier, Pierre

    2016-04-01

    Recent paleo-studies revealed climatic southern high latitude climate evolution patterns that are crucial to understand the global climate evolution(1,2). Among others the strength and north-south shifts of westerlies wind appeared to be a key parameter(3). However, virtually no lands are located south of the 45th South parallel between Southern Georgia (60°W) and New Zealand (170°E) precluding the establishment of paleoclimate records of past westerlies dynamics. Located around 50°S and 70°E, lost in the middle of the sub-Antarctic Indian Ocean, Kerguelen archipelago is a major, geomorphologically complex, land-mass that is covered by hundreds lakes of various sizes. It hence offers a unique opportunity to reconstruct past climate and environment dynamics in a region where virtually nothing is known about it, except the remarkable recent reconstructions based on a Lateglacial peatbog sequence(4). During the 2014-2015 austral summer, a French-Norwegian team led the very first extensive lake sediment coring survey on Kerguelen Archipelago under the umbrella of the PALAS program supported by the French Polar Institute (IPEV). Two main areas were investigated: i) the southwest of the mainland, so-called Golfe du Morbihan, where glaciers are currently absent and ii) the northernmost Kerguelen mainland peninsula so-called Loranchet, where cirque glaciers are still present. This double-target strategy aims at reconstructing various independent indirect records of precipitation (glacier advance, flood dynamics) and wind speed (marine spray chemical species, wind-borne terrigenous input) to tackle the Holocene climate variability. Despite particularly harsh climate conditions and difficult logistics matters, we were able to core 6 lake sediment sites: 5 in Golfe du Morbihan and one in Loranchet peninsula. Among them two sequences taken in the 4km-long Lake Armor using a UWITEC re-entry piston coring system by 20 and 100m water-depth (6 and 7m-long, respectively). One

  19. Temperature, salinity, oxygen, beam attenuation coefficient, and pressure measurements collected using CTD in the global ocean from 1990 to 1998 (NODC Accession 0002369)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — CTD and Transmissometer data from JGOFS Programs: Equatorial Pacific (EqPac), Antarctic Polar Front Zone (APFZ), North Atlantic Bloom Experiment (NABE), Arabian Sea...

  20. ARM West Antarctic Radiation Experiment (AWARE) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Lubin, Daniel [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography; Bromwich, David H [Ohio State University; Vogelmann, Andrew M [Brookhaven National Lab. (BNL), Upton, NY (United States); Verlinde, Johannes [Pennsylvania State Univ., University Park, PA (United States); Russell, Lynn M [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography

    2017-09-15

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) is the most technologically advanced atmospheric and climate science campaign yet fielded in Antarctica. AWARE was motivated be recent concern about the impact of cryospheric mass loss on global sea level rise. Specifically, the West Antarctic Ice Sheet (WAIS) is now the second largest contributor to rising sea level, after the Greenland Ice Sheet. As steadily warming ocean water erodes the grounding lines of WAIS components where they meet the Amundsen and Bellingshausen Seas, the retreating grounding lines moving inland and downslope on the underlying terrain imply mechanical instability of the entire WAIS. There is evidence that this point of instability may have already been reached, perhaps signifying more rapid loss of WAIS ice mass. At the same time, the mechanical support provided by adjacent ice shelves, and also the fundamental stability of exposed ice cliffs at the ice sheet grounding lines, will be adversely impacted by a warming atmosphere that causes more frequent episodes of surface melting. The surface meltwater damages the ice shelves and ice cliffs through hydrofracturing. With the increasing concern regarding these rapid cryospheric changes, AWARE was motivated by the need to (a) diagnose the surface energy balance in West Antarctica as related to both summer season climatology and potential surface melting, and (b) improve global climate model (GCM) performance over Antarctica, such that future cryospheric projections can be more reliable.

  1. Stress fields in the Antarctic plate inferred from focal mechanisms of intraplate earthquakes

    Directory of Open Access Journals (Sweden)

    Atsuki Kubo

    1999-03-01

    Full Text Available Typical directional features of intraplate stresses are extracted from focal mechanism solutions of earthquakes in the Antarctic plate. Typical directions of stresses are obtained in the following regions, 1 Bellingshausen Sea, 2 south of Juan-Fernandez microplate, 3 Balleny Island region and 4 Kerguelen region. P axes in regions 1 and 2 have been interpreted by ridge push force. However these interpretations are based on one focal mechanism for each event and on crude physical concept of ridge push. It is difficult to explain intraplate stress fields in these regions only by the local ridge push force. The stress direction in region 3 can be interpreted by both deformation near triple junction and deformation due to deglaciation. Earthquakes near region 4 appear to be normal fault event. Because normal fault events appear only in the younger ocean floor, the stress field may be affected by thermal features such as hot spots Quantitative modeling and superposition of various stress factors are required to discriminate among stress origins. It is difficult to discuss stress directions in and around Antarctic continent, because number of the earthquakes is not enough.

  2. Boundary layer new particle formation over East Antarctic sea ice – possible Hg-driven nucleation?

    Directory of Open Access Journals (Sweden)

    R. S. Humphries

    2015-12-01

    Full Text Available Aerosol observations above the Southern Ocean and Antarctic sea ice are scarce. Measurements of aerosols and atmospheric composition were made in East Antarctic pack ice on board the Australian icebreaker Aurora Australis during the spring of 2012. One particle formation event was observed during the 32 days of observations. This event occurred on the only day to exhibit extended periods of global irradiance in excess of 600 W m−2. Within the single air mass influencing the measurements, number concentrations of particles larger than 3 nm (CN3 reached almost 7700 cm−3 within a few hours of clouds clearing, and grew at rates of 5.6 nm h−1. Formation rates of 3 nm particles were in the range of those measured at other Antarctic locations at 0.2–1.1 ± 0.1 cm−3 s−1. Our investigations into the nucleation chemistry found that there were insufficient precursor concentrations for known halogen or organic chemistry to explain the nucleation event. Modelling studies utilising known sulfuric acid nucleation schemes could not simultaneously reproduce both particle formation or growth rates. Surprising correlations with total gaseous mercury (TGM were found that, together with other data, suggest a mercury-driven photochemical nucleation mechanism may be responsible for aerosol nucleation. Given the very low vapour pressures of the mercury species involved, this nucleation chemistry is likely only possible where pre-existing aerosol concentrations are low and both TGM concentrations and solar radiation levels are relatively high (∼ 1.5 ng m−3 and ≥ 600 W m−2, respectively, such as those observed in the Antarctic sea ice boundary layer in this study or in the global free troposphere, particularly in the Northern Hemisphere.

  3. Increased exposure of Southern Ocean phytoplankton to ultraviolet radiation

    Science.gov (United States)

    Lubin, Dan; Arrigo, Kevin R.; van Dijken, Gert L.

    2004-05-01

    Satellite remote sensing of both surface solar ultraviolet radiation (UVR) and chlorophyll over two decades shows that biologically significant ultraviolet radiation increases began to occur over the Southern Ocean three years before the ozone ``hole'' was discovered. Beginning in October 1983, the most frequent occurrences of enhanced UVR over phytoplankton-rich waters occurred in the Weddell Sea and Indian Ocean sectors of the Southern Ocean, impacting 60% of the surface biomass by the late 1990s. These results suggest two reasons why more serious impacts to the base of the marine food web may not have been detected by field experiments: (1) the onset of UVR increases several years before dedicated field work began may have impacted the most sensitive organisms long before such damage could be detected, and (2) most biological field work has so far not taken place in Antarctic waters most extensively subjected to enhanced UVR.

  4. Investigation of the weathering effect on Rb-Sr systematics and trace element abundances in Antarctic and non-Antarctic meteorites

    International Nuclear Information System (INIS)

    Nishikawa, Yoshiyuki; Nakamura, Noboru; Misawa, Keiji; Okano, Osamu; Yamamoto, Koshi; Kagami, Hiroo.

    1990-01-01

    In order to examine weathering effects on chondritic meteorites in Antarctic and non-Antarctic environments, the Rb-Sr isotopic ratios and abundances of REE, Ba, Sr, Rb, and K were determined for 8H-group chondrites (Yamato-790986 [H3], Yamato-74492 [H3], Grady [H3], Brownfield [H3], Clovis (No.1) [H3], Yamato-74155 [H4], Allegan [H5] [one whole-rock and two chondrules], and Yamato-74371 [H5]), and partly for the Etter (L5) chondrite. The Allegan whole-rock shows a flat REE pattern with a large negative Eu anomaly and Sr depletion. Analyses of Rb-Sr systematics of one whole-rock and two chondrules show somewhat younger age 4.38±0.12 b.y. It is suggested that REE and Rb-Sr were redistributed during the early thermal metamorphism. Except for Allegan, most other H-chondrites (finds) show the perturbation of the Rb-Sr systematics, indicating recent loss of Rb. It was found that the weathering degree is related with the Rb-Sr disturbance in Antarctic H-chondrite. In spite of different degrees of weathering, all the Antarctic H-chondrites studied (including heavily weathered ones) show flat REE patterns normal as H-chondrite with occasional occurrence of minor Eu anomalies, indicating the tough resistance of REE in H-chondrites to the Antarctic weathering. On the other hand, non-Antarctic finds (particularly the weathered chondrites) indicate light-REE enriched patterns with a large negative Ce anomaly and extreme enrichment of Ba, suggestive of terrestrial contaminations. (author)

  5. The Australasian Antarctic Expedition 2013-2014: Practicing 'Citizen-Science' in a Changing World

    Science.gov (United States)

    Fogwill, C. J.; Turney, C. S.

    2014-12-01

    Government funding is the cornerstone of modern science. But with declining investment in science across most of the Western World, a major challenge for society is where best to place what little resource we have. Which research questions should have the greatest priority? Nowhere are these issues more pressing than in the Antarctic, where bases have and continue to play host to 'big-science', multi-year programmes of research, locking up logistical support and costs. But in a warming world, the areas with the greatest effects of climate change aren't always near government research stations. With this in mind, in 2012 a plan was formed to visit Commonwealth Bay, a remote area off the East Antarctic Ice Sheet, where in 2010, an iceberg the size of Rhode Island, known as B09B, dramatically knocked a 60-mile long tongue of ice off the Mertz Glacier into the Southern Ocean, setting off a cascade of change. Inspired by the expeditions of the past, we advertised berths for sale to take citizen scientists south with us, harnessing their interest, experience and investment. People responded far and wide. We were oversubscribed, and the Australasian Antarctic Expedition 2013-2014 was born. With the Russian-owned MV Akademik Shokalskiy as the expedition vessel, we set out south from the New Zealand port of Bluff in late November 2013. During our journey south and on the ice we undertook a number of scientific firsts for the region actively engaging the volunteer scientists on board in projects ranging from oceanography, biology, ecology, geology and glaciaology. The expedition demostrated how private funding could support targeted programmes of research and communicate it to the wider world. Small-science research can capture the public's imagination and also reap real scientific outputs. Although it is a funding model developed in the Antarctic a hundred years ago, the beauty is it can applied anywhere in the world.

  6. Stable water isotopes of precipitation and firn cores from the northern Antarctic Peninsula region as a proxy for climate reconstruction

    Directory of Open Access Journals (Sweden)

    F. Fernandoy

    2012-03-01

    Full Text Available In order to investigate the climate variability in the northern Antarctic Peninsula region, this paper focuses on the relationship between stable isotope content of precipitation and firn, and main meteorological variables (air temperature, relative humidity, sea surface temperature, and sea ice extent. Between 2008 and 2010, we collected precipitation samples and retrieved firn cores from several key sites in this region. We conclude that the deuterium excess oscillation represents a robust indicator of the meteorological variability on a seasonal to sub-seasonal scale. Low absolute deuterium excess values and the synchronous variation of both deuterium excess and air temperature imply that the evaporation of moisture occurs in the adjacent Southern Ocean. The δ18O-air temperature relationship is complicated and significant only at a (multiseasonal scale. Backward trajectory calculations show that air-parcels arriving at the region during precipitation events predominantly originate at the South Pacific Ocean and Bellingshausen Sea. These investigations will be used as a calibration for ongoing and future research in the area, suggesting that appropriate locations for future ice core research are located above 600 m a.s.l. We selected the Plateau Laclavere, Antarctic Peninsula as the most promising site for a deeper drilling campaign.

  7. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years

    Directory of Open Access Journals (Sweden)

    A. S. Gardner

    2018-02-01

    Full Text Available Ice discharge from large ice sheets plays a direct role in determining rates of sea-level rise. We map present-day Antarctic-wide surface velocities using Landsat 7 and 8 imagery spanning 2013–2015 and compare to earlier estimates derived from synthetic aperture radar, revealing heterogeneous changes in ice flow since ∼ 2008. The new mapping provides complete coastal and inland coverage of ice velocity north of 82.4° S with a mean error of < 10 m yr−1, resulting from multiple overlapping image pairs acquired during the daylight period. Using an optimized flux gate, ice discharge from Antarctica is 1929 ± 40 Gigatons per year (Gt yr−1 in 2015, an increase of 36 ± 15 Gt yr−1 from the time of the radar mapping. Flow accelerations across the grounding lines of West Antarctica's Amundsen Sea Embayment, Getz Ice Shelf and Marguerite Bay on the western Antarctic Peninsula, account for 88 % of this increase. In contrast, glaciers draining the East Antarctic Ice Sheet have been remarkably constant over the period of observation. Including modeled rates of snow accumulation and basal melt, the Antarctic ice sheet lost ice at an average rate of 183 ± 94 Gt yr−1 between 2008 and 2015. The modest increase in ice discharge over the past 7 years is contrasted by high rates of ice sheet mass loss and distinct spatial patters of elevation lowering. The West Antarctic Ice Sheet is experiencing high rates of mass loss and displays distinct patterns of elevation lowering that point to a dynamic imbalance. We find modest increase in ice discharge over the past 7 years, which suggests that the recent pattern of mass loss in Antarctica is part of a longer-term phase of enhanced glacier flow initiated in the decades leading up to the first continent-wide radar mapping of ice flow.

  8. Investigation into the impact of storms on sustaining summer primary productivity in the Sub-Antarctic Ocean

    CSIR Research Space (South Africa)

    Nicholson, Sarah-Anne

    2016-09-01

    Full Text Available ]. Observations of chlorophyll a show that summer blooms are widespread and occur annually [Carranza and Gille, 2015], are prominent within the Sub-Antarctic Zone (SAZ), and may be several months in duration (e.g., ~16weeks in Racault et al. [2012]), typically... al., 2005; Bowie et al., 2009] and is consistent with observations of low fe ratios during summer (i.e., the proportion of dissolved iron (DFe) uptake from “new” sources [Boyd et al., 2005]). In this seasonal scenario, after a “once-off” winter...

  9. Ice sheet-ocean interactions and sea level change

    Science.gov (United States)

    Heimbach, Patrick

    2014-03-01

    Mass loss from the Greenland and Antarctic ice sheets has increased rapidly since the mid-1990s. Their combined loss now accounts for about one-third of global sea level rise. In Greenland, a growing body of evidence points to the marine margins of these glaciers as the region from which this dynamic response originated. Similarly, ice streams in West Antarctica that feed vast floating ice shelves have exhibited large decadal changes. We review observational evidence and present physical mechanisms that might explain the observed changes, in particular in the context of ice sheet-ocean interactions. Processes involve cover 7 orders of magnitudes of scales, ranging from mm boundary-layer processes to basin-scale coupled atmosphere-ocean variability. We discuss observational needs to fill the gap in our mechanistic understanding.

  10. Trace-element analysis of Antarctic H chondrites: Chemical weathering and comparisons with their non-Antarctic counterparts

    International Nuclear Information System (INIS)

    Kwok, J.E.

    1986-01-01

    Large numbers of meteorites have been discovered in Antarctica over the last decade (7000 fragments probably representing over 1200 separate events). They are important for their numbers and for their complement of unique or rare specimens; they also have long terrestrial ages (up to 1,000,000 years) compared to non-Antarctic falls (usually < 200 years). We report compositional data for mobile/volatile trace elements Ag, Au, Bi, Cd, Co, Cs, In, Rb, Sb, Se, Te, Ti, U, and Zn in a suite of Antarctic H chondrites. Our data show that heavily oxidized H chondrites are leached of a portion of their trace elements and, therefore, have been chemically compromised by their stay in Antarctica. The less oxidized specimens seem to have retained their chemical integrity. We suggest possibilities for using chemical data to measure the degree of a chondrite's chemical weathering. We compare our data to that obtained previously for non-Antarctic H chondrites (Linger et al., 1986), by petrologic type (H4, H5, H6, H4-6) and shock-loading (moderately shocked facies a-c, heavily shocked facies d-f). Many statistically significant differences are found between non-Antarctic and Victoria Land, Antarctica H chondrites of each petrologic type and of shock facies d-f

  11. Export of nutrient rich Northern Component Water preceded early Oligocene Antarctic glaciation

    Science.gov (United States)

    Coxall, Helen K.; Huck, Claire E.; Huber, Matthew; Lear, Caroline H.; Legarda-Lisarri, Alba; O'Regan, Matt; Sliwinska, Kasia K.; van de Flierdt, Tina; de Boer, Agatha M.; Zachos, James C.; Backman, Jan

    2018-03-01

    The onset of the North Atlantic Deep Water formation is thought to have coincided with Antarctic ice-sheet growth about 34 million years ago (Ma). However, this timing is debated, in part due to questions over the geochemical signature of the ancient Northern Component Water (NCW) formed in the deep North Atlantic. Here we present detailed geochemical records from North Atlantic sediment cores located close to sites of deep-water formation. We find that prior to 36 Ma, the northwestern Atlantic was stratified, with nutrient-rich, low-salinity bottom waters. This restricted basin transitioned into a conduit for NCW that began flowing southwards approximately one million years before the initial Antarctic glaciation. The probable trigger was tectonic adjustments in subarctic seas that enabled an increased exchange across the Greenland-Scotland Ridge. The increasing surface salinity and density strengthened the production of NCW. The late Eocene deep-water mass differed in its carbon isotopic signature from modern values as a result of the leakage of fossil carbon from the Arctic Ocean. Export of this nutrient-laden water provided a transient pulse of CO2 to the Earth system, which perhaps caused short-term warming, whereas the long-term effect of enhanced NCW formation was a greater northward heat transport that cooled Antarctica.

  12. Changes in the C, N, and P cycles by the predicted salps-krill shift in the southern ocean

    DEFF Research Database (Denmark)

    Alcaraz, Miquel; Almeda, Rodrigo; Duarte, Carlos M.

    2014-01-01

    zooplankton biomass and their metabolic rates, each metabolic process showing a particular response that lead to different metabolic N:P ratios. The predicted change from krill to salps in the Southern Ocean would encompass not only the substitution of a pivotal group for Antarctic food webs (krill) by one...... and proportion of N and P in the nutrient pool, inducing quantitative and qualitative changes on primary producers that will translate to the whole Southern Ocean ecosystem....

  13. Meteorological observatory for Antarctic data collection

    International Nuclear Information System (INIS)

    Grigioni, P.; De Silvestri, L.

    1996-01-01

    In the last years, a great number of automatic weather stations was installed in Antarctica, with the aim to examine closely the weather and climate of this region and to improve the coverage of measuring points on the Antarctic surface. In 1987 the Italian Antarctic Project started to set up a meteorological network, in an area not completely covered by other countries. Some of the activities performed by the meteorological observatory, concerning technical functions such as maintenance of the AWS's and the execution of radio soundings, or relating to scientific purposes such as validation and elaboration of collected data, are exposed. Finally, some climatological considerations on the thermal behaviour of the Antarctic troposphere such as 'coreless winter', and on the wind field, including katabatic flows in North Victoria Land are described

  14. Links between CO2, glaciation and water flow: reconciling the Cenozoic history of the Antarctic Circumpolar Current

    International Nuclear Information System (INIS)

    Ladant, J.B.; Donnadieu, Y.; Dumas, C.

    2014-01-01

    The timing of the onset of the Antarctic Circumpolar Current (ACC) is a crucial event of the Cenozoic because of its cooling and isolating effect over Antarctica. It is intimately related to the glaciations occurring throughout the Cenozoic from the Eocene - Oligocene (EO) transition (∼ 34 Ma) to the middle Miocene glaciations (∼ 13.9 Ma). However, the exact timing of the onset remains debated, with evidence for a late Eocene setup contradicting other data pointing to an occurrence closer to the Oligocene - Miocene (OM) boundary. In this study, we show the potential impact of the Antarctic ice sheet on the initiation of a strong proto- ACC at the EO boundary. Our results reveal that the regional cooling effect of the ice sheet increases sea ice formation, which disrupts the meridional density gradient in the Southern Ocean and leads to the onset of a circumpolar current and its progressive strengthening. We also suggest that subsequent variations in atmospheric CO 2 , ice sheet volumes and tectonic reorganizations may have affected the ACC intensity after the Eocene - Oligocene transition. This allows us to build a hypothesis for the Cenozoic evolution of the Antarctic Circumpolar Current that may provide an explanation for the second initiation of the ACC at the Oligocene - Miocene boundary while reconciling evidence supporting both early Oligocene and early Miocene onset of the ACC. (authors)

  15. Antarctic snow and global climate

    International Nuclear Information System (INIS)

    Granberg, H.B.

    2001-01-01

    Global circulation models (GCM) indicate that global warming will be most pronounced at polar regions and high latitudes, causing concern about the stability of the Antarctic ice cap. A project entitled the Seasonal Snow in Antarctica examined the properties of the near surface snow to determine the current conditions that influence snow cover development. The goal was to assess the response of the snow cover in Queen Maud Land (QML) to an increased atmospheric carbon dioxide content. The Antarctic snow cover in QML was examined as part of the FINNARP expeditions in 1999 and 2000 which examined the processes that influence the snow cover. Its energy and mass balance were also assessed by examining the near surface snow strata in shallow (1-2 m) pits and by taking measurements of environmental variables. This made it possible to determine if the glacier is in danger of melting at this northerly location in the Antarctic. The study also made it possible to determine which variables need to change and by how much, for significant melting to occur. It was shown that the Antarctic anticyclone creates particular conditions that protect the snow cover from melting. The anticyclone brings dry air from the stratosphere during most of the year and is exempt from the water vapour feedback. It was concluded that even a doubling of atmospheric carbon dioxide will not produce major snow melt runoff. 8 refs

  16. Antarctic biology in the 21st century - Advances in, and beyond the international polar year 2007-2008’

    Science.gov (United States)

    Stoddart, Michael

    2010-08-01

    The International Polar Year 2007-2008 (IPY) has provided an opportunity for biology to show itself as an important part of Antarctic science in a manner in which it was not seen during earlier Polar Years. Of the 15 endorsed biological projects in Antarctica, 7 included more than 20 scientists and could be deemed truly international. Four were conducted in the marine environment, and one each in the fields of biological invasions, microbial ecology, and terrestrial ecology, and one was SCAR’s over-arching ‘Evolution and Biodiversity in the Antarctic’. The marine projects have left a robust legacy of data for future research into the consequences of environmental change, and into future decisions about marine protected areas. Studies on introductions of exotic organisms reveal an ever-present threat to the warmer parts of the high-latitude Southern Ocean, or parts which might become warmer with climate change. Studies on microbial ecology reveal great complexity of ecosystems with high numbers of unknown species. Terrestrial research has shown how vulnerable the Antarctic is to accidental introductions, and how productive the soils can be under changed climate conditions. Antarctic biology has come-of-age during IPY 2007-2008 and the campaign has set the scene for future research.

  17. Psychrotrophic metal tolerant bacteria for mobilisation of metals in Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    Gonsalves, M.J.B.D.

    Cold tolerant psychrotrophic bacteria abound in the Antarctic waters. While Antarctic krills are known to concentrate heavy metals at ppm levels, psychrotrophic bacteria from Antarctic fresh and marine waters have been reported to tolerate them...

  18. Biological studies in the Antarctic waters: A review

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.

    stream_size 12 stream_content_type text/plain stream_name Proc_Workshop_Antarct_Stud_1990_407.pdf.txt stream_source_info Proc_Workshop_Antarct_Stud_1990_407.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset...

  19. Chilean Antarctic Stations on King George Island

    Directory of Open Access Journals (Sweden)

    Katsutada Kaminuma

    2000-07-01

    Full Text Available The purpose of my visit to Chilean Antarctic Stations was to assess the present status of geophysical observations and research, as the South Shetland Island, West Antarctica, where the stations are located, are one of the most active tectonic regions on the Antarctic plate. The Instituto Antartico Chileno (INACH kindly gave me a chance to stay in Frei/Escudero Bases as an exchange scientist under the Antarctic Treaty for two weeks in January 2000. I stayed in Frei Base as a member of a geological survey group named "Tectonic Evolution of the Antarctic Peninsula" which was organized by Prof. F. Herve, University of Chile, from January 05 to 19,2000. All my activity in the Antarctic was organized by INACH. During my stay in Frei Base, I also visited Bellingshausen (Russian, Great Wall (China and Artigas (Uruguay stations. All these stations are located within walking distance of Frei Base. King Sejong Station (Korea, located 10km east from Frei Base, and Jubany Base (Argentine, another 6km south-east from King Sejong Station, were also visited with the aid of a zodiac boat that was kindly operated for us by King Sejong Station. All stations except Escudero Base carry out meteorological observations. The seismological observations in Frei Base are operated by Washington State University of the U. S. monitoring of earthquake activity and three-component geomagnetic observations are done at King Sejong and Great Wall stations. Earth tide is monitored at Artigas Base. Continuous monitoring of GPS and gravity change are planned at King Sejong Station in the near future. Scientific research activities of each country in the area in the 1999/2000 Antarctic summer season were studied and the logistic ability of all stations was also assessed for our future international cooperation.

  20. Tolerance of Antarctic soil fungi to hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, Kevin A.; Bridge, Paul; Clark, Melody S. [British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET (United Kingdom)

    2007-01-01

    Little is known about the effects of hydrocarbons and fuel oil on Antarctic filamentous fungi in the terrestrial Antarctic environment. Growth of fungi and bacteria from soils around Rothera Research Station (Adelaide Island, Antarctic Peninsula) was assessed in the presence of ten separate aromatic and aliphatic hydrocarbons [marine gas oil (MGO), dodecane, hexadecane, benzoic acid, p-hydroxybenzoic acid, toluene, phenol, biphenyl, naphthalene and m- and p-xylenes with ethylbenzene]. Aromatic hydrocarbons inhibited soil microbial growth more than aliphatic hydrocarbons. Soil microorganisms from a moss patch, where little previous impact or hydrocarbon contamination had occurred, were less tolerant of hydrocarbons than those from high impact sites. Fungal growth rates of Mollisia sp., Penicillium commune, Mortierella sp., Trichoderma koningii, Trichoderma sp. and Phoma herbarum were assessed in the presence of hydrocarbons. Generally, aromatic hydrocarbons inhibited or stopped hyphal extension, though growth rates increased with some aliphatic hydrocarbons. Hyphal dry weight measurements suggested that Mortierella sp. may be able to use dodecane as sole carbon and energy source. Hydrocarbon-degrading Antarctic fungi may have use in future hydrocarbon spill bioremediation. (author)

  1. The genome of the Antarctic-endemic copepod, Tigriopus kingsejongensis.

    Science.gov (United States)

    Kang, Seunghyun; Ahn, Do-Hwan; Lee, Jun Hyuck; Lee, Sung Gu; Shin, Seung Chul; Lee, Jungeun; Min, Gi-Sik; Lee, Hyoungseok; Kim, Hyun-Woo; Kim, Sanghee; Park, Hyun

    2017-01-01

    The Antarctic intertidal zone is continuously subjected to extremely fluctuating biotic and abiotic stressors. The West Antarctic Peninsula is the most rapidly warming region on Earth. Organisms living in Antarctic intertidal pools are therefore interesting for research into evolutionary adaptation to extreme environments and the effects of climate change. We report the whole genome sequence of the Antarctic-endemic harpacticoid copepod Tigriopus kingsejongensi . The 37 Gb raw DNA sequence was generated using the Illumina Miseq platform. Libraries were prepared with 65-fold coverage and a total length of 295 Mb. The final assembly consists of 48 368 contigs with an N50 contig length of 17.5 kb, and 27 823 scaffolds with an N50 contig length of 159.2 kb. A total of 12 772 coding genes were inferred using the MAKER annotation pipeline. Comparative genome analysis revealed that T. kingsejongensis -specific genes are enriched in transport and metabolism processes. Furthermore, rapidly evolving genes related to energy metabolism showed positive selection signatures. The T. kingsejongensis genome provides an interesting example of an evolutionary strategy for Antarctic cold adaptation, and offers new genetic insights into Antarctic intertidal biota. © The Author 2017. Published by Oxford University Press.

  2. Enhanced deep ocean ventilation and oxygenation with global warming

    Science.gov (United States)

    Froelicher, T. L.; Jaccard, S.; Dunne, J. P.; Paynter, D.; Gruber, N.

    2014-12-01

    Twenty-first century coupled climate model simulations, observations from the recent past, and theoretical arguments suggest a consistent trend towards warmer ocean temperatures and fresher polar surface oceans in response to increased radiative forcing resulting in increased upper ocean stratification and reduced ventilation and oxygenation of the deep ocean. Paleo-proxy records of the warming at the end of the last ice age, however, suggests a different outcome, namely a better ventilated and oxygenated deep ocean with global warming. Here we use a four thousand year global warming simulation from a comprehensive Earth System Model (GFDL ESM2M) to show that this conundrum is a consequence of different rates of warming and that the deep ocean is actually better ventilated and oxygenated in a future warmer equilibrated climate consistent with paleo-proxy records. The enhanced deep ocean ventilation in the Southern Ocean occurs in spite of increased positive surface buoyancy fluxes and a constancy of the Southern Hemisphere westerly winds - circumstances that would otherwise be expected to lead to a reduction in deep ocean ventilation. This ventilation recovery occurs through a global scale interaction of the Atlantic Meridional Overturning Circulation undergoing a multi-centennial recovery after an initial century of transient decrease and transports salinity-rich waters inform the subtropical surface ocean to the Southern Ocean interior on multi-century timescales. The subsequent upwelling of salinity-rich waters in the Southern Ocean strips away the freshwater cap that maintains vertical stability and increases open ocean convection and the formation of Antarctic Bottom Waters. As a result, the global ocean oxygen content and the nutrient supply from the deep ocean to the surface are higher in a warmer ocean. The implications for past and future changes in ocean heat and carbon storage will be discussed.

  3. Determining the Ocean's Role on the Variable Gravity Field and Earth Rotation

    Science.gov (United States)

    Ponte, Rui M.; Frey, H. (Technical Monitor)

    2000-01-01

    A number of ocean models of different complexity have been used to study changes in the oceanic angular momentum (OAM) and mass fields and their relation to the variable Earth rotation and gravity field. Time scales examined range from seasonal to a few days. Results point to the importance of oceanic signals in driving polar motion, in particular the Chandler and annual wobbles. Results also show that oceanic signals have a measurable impact on length-of-day variations. Various circulation features and associated mass signals, including the North Pacific subtropical gyre, the equatorial currents, and the Antarctic Circumpolar Current play a significant role in oceanic angular momentum variability. The impact on OAM values of an optimization procedure that uses available data to constrain ocean model results was also tested for the first time. The optimization procedure yielded substantial changes, in OAM, related to adjustments in both motion and mass fields,as well as in the wind stress torques acting on the ocean. Constrained OAM values were found to yield noticeable improvements in the agreement with the observed Earth rotation parameters, particularly at the seasonal timescale.

  4. Polychaeta Orbiniidae from Antarctica, the Southern Ocean, the Abyssal Pacific Ocean, and off South America.

    Science.gov (United States)

    Blake, James A

    2017-01-12

    The orbiniid polychaetes chiefly from Antarctic and subantarctic seas and off South America are described based on collections of the National Museum of Natural History and new material from surveys conducted by the United States Antarctic Program and other federal and privately funded sources as well as participation in international programs. A total of 44 species of Orbiniidae distributed in 10 genera are reported from the Pacific Ocean and waters off South America and Antarctica. Twenty-one species are new to science; one species is renamed. Berkeleyia heroae n. sp., B. abyssala n. sp., B. weddellia n. sp.; B. hadala n. sp., Leitoscoloplos simplex n. sp., L. plataensis n. sp., L. nasus n. sp., L. eltaninae n. sp., L. phyllobranchus n. sp., L. rankini n. sp., Scoloplos bathytatus n. sp., S. suroestense n. sp., Leodamas hyphalos n. sp., L. maciolekae n. sp., L. perissobranchiatus n. sp., Califia bilamellata n. sp., Orbinia orensanzi n. sp., Naineris antarctica n. sp., N. argentiniensis n. sp., Orbiniella spinosa n. sp., and O. landrumae n. sp. are new to science. A new name, Naineris furcillata, replaces N. chilensis Carrasco, 1977, a junior homonym of N. dendtritica chilensis Hartmann‑Schröder, 1965, which is raised to full species status. Leodamas cochleatus (Ehlers, 1900) is removed from synonymy and redescribed. A neotype is established for Leodamas verax Kinberg, 1966, the type species. A general overview of Leodamas species is provided. The Leitoscoloplos kerguelensis (McIntosh, 1885) complex is reviewed and partially revised. Definitions of the genera of the Orbiniidae are updated to conform to recently described taxa. Several new synonymies are proposed following a reexamination of previously described type specimens. The morphological characters used to identify and classify orbiniids are reviewed. The biogeographic and bathymetric distributions of the South American and Southern Ocean orbiniid fauna are reviewed.

  5. The evolution of water property in the Mackenzie Bay polynya during Antarctic winter

    Science.gov (United States)

    Xu, Zhixin; Gao, Guoping; Xu, Jianping; Shi, Maochong

    2017-10-01

    Temperature and salinity profile data, collected by southern elephant seals equipped with autonomous CTD-Satellite Relay Data Loggers (CTD-SRDLs) during the Antarctic wintertime in 2011 and 2012, were used to study the evolution of water property and the resultant formation of the high density water in the Mackenzie Bay polynya (MBP) in front of the Amery Ice Shelf (AIS). In late March the upper 100-200 m layer is characterized by strong halocline and inversion thermocline. The mixed layer keeps deepening up to 250 m by mid-April with potential temperature remaining nearly the surface freezing point and sea surface salinity increasing from 34.00 to 34.21. From then on until mid-May, the whole water column stays isothermally at about -1.90℃ while the surface salinity increases by a further 0.23. Hereafter the temperature increases while salinity decreases along with the increasing depth both by 0.1 order of magnitude vertically. The upper ocean heat content ranging from 120.5 to 2.9 MJ m-2, heat flux with the values of 9.8-287.0 W m-2 loss and the sea ice growth rates of 4.3-11.7 cm d-1 were estimated by using simple 1-D heat and salt budget methods. The MBP exists throughout the whole Antarctic winter (March to October) due to the air-sea-ice interaction, with an average size of about 5.0×103 km2. It can be speculated that the decrease of the salinity of the upper ocean may occur after October each year. The recurring sea-ice production and the associated brine rejection process increase the salinity of the water column in the MBP progressively, resulting in, eventually, the formation of a large body of high density water.

  6. Ocean Bottom Pressure Seasonal Cycles and Decadal Trends from GRACE Release-05: Ocean Circulation Implications

    Science.gov (United States)

    Johnson, G. C.; Chambers, D. P.

    2013-12-01

    Ocean mass variations are important for diagnosing sea level budgets, the hydrological cycle and global energy budget, as well as ocean circulation variability. Here seasonal cycles and decadal trends of ocean mass from January 2003 to December 2012, both global and regional, are analyzed using GRACE Release 05 data. The trend of global flux of mass into the ocean approaches 2 cm decade-1 in equivalent sea level rise. Regional trends are of similar magnitude, with the North Pacific, South Atlantic, and South Indian oceans generally gaining mass and other regions losing mass. These trends suggest a spin-down of the North Pacific western boundary current extension and the Antarctic Circumpolar Current in the South Atlantic and South Indian oceans. The global average seasonal cycle of ocean mass is about 1 cm in amplitude, with a maximum in early October and volume fluxes in and out of the ocean reaching 0.5 Sv (1 Sv = 1 × 106 m3 s-1) when integrated over the area analyzed here. Regional patterns of seasonal ocean mass change have typical amplitudes of 1-4 cm, and include maxima in the subtropics and minima in the subpolar regions in hemispheric winters. The subtropical mass gains and subpolar mass losses in the winter spin up both subtropical and subpolar gyres, hence the western boundary current extensions. Seasonal variations in these currents are order 10 Sv, but since the associated depth-averaged current variations are only order 0.1 cm s-1, they would be difficult to detect using in situ oceanographic instruments. a) Amplitude (colors, in cm) and b) phase (colors, in months of the year) of an annual harmonic fit to monthly GRACE Release 05 CSR 500 km smoothed maps (concurrently with a trend and the semiannual harmonic). The 97.5% confidence interval for difference from zero is also indicated (solid black line). Data within 300 km of coastlines are not considered.

  7. Southern Ocean Mixed-Layer Seasonal and Interannual Variations From Combined Satellite and In Situ Data

    Science.gov (United States)

    Buongiorno Nardelli, B.; Guinehut, S.; Verbrugge, N.; Cotroneo, Y.; Zambianchi, E.; Iudicone, D.

    2017-12-01

    The depth of the upper ocean mixed layer provides fundamental information on the amount of seawater that directly interacts with the atmosphere. Its space-time variability modulates water mass formation and carbon sequestration processes related to both the physical and biological pumps. These processes are particularly relevant in the Southern Ocean, where surface mixed-layer depth estimates are generally obtained either as climatological fields derived from in situ observations or through numerical simulations. Here we demonstrate that weekly observation-based reconstructions can be used to describe the variations of the mixed-layer depth in the upper ocean over a range of space and time scales. We compare and validate four different products obtained by combining satellite measurements of the sea surface temperature, salinity, and dynamic topography and in situ Argo profiles. We also compute an ensemble mean and use the corresponding spread to estimate mixed-layer depth uncertainties and to identify the more reliable products. The analysis points out the advantage of synergistic approaches that include in input the sea surface salinity observations obtained through a multivariate optimal interpolation. Corresponding data allow to assess mixed-layer depth seasonal and interannual variability. Specifically, the maximum correlations between mixed-layer anomalies and the Southern Annular Mode are found at different time lags, related to distinct summer/winter responses in the Antarctic Intermediate Water and Sub-Antarctic Mode Waters main formation areas.

  8. Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability

    Directory of Open Access Journals (Sweden)

    J. Fyke

    2017-11-01

    Full Text Available Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and ice core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.

  9. Emerging spatial patterns in Antarctic prokaryotes.

    Science.gov (United States)

    Chong, Chun-Wie; Pearce, David A; Convey, Peter

    2015-01-01

    Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversity and distributions has lagged far behind that of the macroscopic eukaryote organisms. Increasing human contact with and activity in the continent is leading to risks of biological contamination and change in a region whose isolation has protected it for millions of years at least; these risks may be particularly acute for microbial communities which have, as yet, received scant recognition and attention. Even a matter apparently as straightforward as Protected Area designation in Antarctica requires robust biodiversity data which, in most parts of the continent, remain almost completely unavailable. A range of important contributing factors mean that it is now timely to reconsider the state of knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological approaches are increasingly demonstrating that bacterial diversity in Antarctica may be far greater than previously thought, and that there is overlap in the environmental controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial dispersal mechanisms and colonization patterns remain largely unaddressed, although evidence for regional evolutionary differentiation is rapidly accruing and, with this, there is increasing appreciation of patterns in regional bacterial biogeography in this large part of the globe. In this review, we set out to describe the state of knowledge of Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote groups where appropriate

  10. Trace elements in Antarctic fish species and the influence of foraging habitats and dietary habits on mercury levels

    Energy Technology Data Exchange (ETDEWEB)

    Goutte, Aurélie, E-mail: aurelie.goutte@ephe.sorbonne.fr [École Pratique des Hautes Études (EPHE), SPL, UPMC Univ Paris 06, UMR 7619 METIS, F-75005, 4 place Jussieu, Paris (France); Cherel, Yves [Centre d' Etudes Biologiques de Chizé, UMR 7372, CNRS-Université de La Rochelle, 79360 Villiers-en-Bois (France); Churlaud, Carine [Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France); Ponthus, Jean-Pierre [École Pratique des Hautes Études (EPHE), SPL, UPMC Univ Paris 06, UMR 7619 METIS, F-75005, 4 place Jussieu, Paris (France); Massé, Guillaume [Unité Mixte Internationale Takuvik, Pavillon Alexandre-Vachon, Université Laval, QC, Québec (Canada); Bustamante, Paco [Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-Université de la Rochelle, 2 rue Olympe de Gouges, 17000 La Rochelle (France)

    2015-12-15

    This study aims at describing and interpreting concentration profiles of trace elements in seven Antarctic fish species (N = 132 specimens) off Adélie Land. Ichthyofauna plays a key role in the Antarctic ecosystem, as they occupy various ecological niches, including cryopelagic (ice-associated), pelagic, and benthic habitats. Firstly, trace element levels in the studied specimens were similar to those previously observed in fish from the Southern Ocean. Apart from manganese and zinc, concentrations of arsenic, cadmium, copper, iron, mercury (Hg), nickel, selenium and silver differed among fish species. Muscle δ{sup 13}C and δ{sup 15}N values were determined to investigate whether the fish foraging habitats and dietary habits could explain Hg levels. Species and foraging habitat (δ{sup 13}C) were strong predictors for variations of Hg concentrations in muscle tissues. The highest Hg contamination was found in shallow benthic fish compared to cryopelagic and pelagic fish. This pattern was likely due to the methylation of Hg in the coastal sediment and the photodemethylation by ultraviolet radiation in surface waters. - Highlights: • Trace elements and stable isotopes were analyzed in seven Antarctic fish species. • Levels of trace elements in liver and in muscle differed among species. • Hg load was higher in benthic fish than in cryopelagic and pelagic fish. • These findings could be due to the high methylation rate of Hg in the sediment.

  11. Trace elements in Antarctic fish species and the influence of foraging habitats and dietary habits on mercury levels

    International Nuclear Information System (INIS)

    Goutte, Aurélie; Cherel, Yves; Churlaud, Carine; Ponthus, Jean-Pierre; Massé, Guillaume; Bustamante, Paco

    2015-01-01

    This study aims at describing and interpreting concentration profiles of trace elements in seven Antarctic fish species (N = 132 specimens) off Adélie Land. Ichthyofauna plays a key role in the Antarctic ecosystem, as they occupy various ecological niches, including cryopelagic (ice-associated), pelagic, and benthic habitats. Firstly, trace element levels in the studied specimens were similar to those previously observed in fish from the Southern Ocean. Apart from manganese and zinc, concentrations of arsenic, cadmium, copper, iron, mercury (Hg), nickel, selenium and silver differed among fish species. Muscle δ"1"3C and δ"1"5N values were determined to investigate whether the fish foraging habitats and dietary habits could explain Hg levels. Species and foraging habitat (δ"1"3C) were strong predictors for variations of Hg concentrations in muscle tissues. The highest Hg contamination was found in shallow benthic fish compared to cryopelagic and pelagic fish. This pattern was likely due to the methylation of Hg in the coastal sediment and the photodemethylation by ultraviolet radiation in surface waters. - Highlights: • Trace elements and stable isotopes were analyzed in seven Antarctic fish species. • Levels of trace elements in liver and in muscle differed among species. • Hg load was higher in benthic fish than in cryopelagic and pelagic fish. • These findings could be due to the high methylation rate of Hg in the sediment.

  12. Diatom and silicoflagellate biostratigraphy for the late Eocene: ODP 1090 (sub-Antarctic Atlantic)

    Science.gov (United States)

    Barron, John A.; Bukry, David B.; Gersonde, Rainer

    2014-01-01

    Abundant and well-preserved diatoms and silicofl agellate assemblages are documented through a complete late Eocene sequence, ODP Hole 1090B, recovered from the southern Agulhas Ridge in the sub-Antarctic South Atlantic. A sequence of Cestodiscus (diatom) species occurrence events involving C. pulchellus var. novazealandica, C. fennerae, C. antarcticus, C. convexus, C. trochus, and C. robustus is tied with paleomagnetic stratigraphy and provides the basis of proposing a new diatom zonation for the latest middle Eocene to early Oligocene (~37.6–33.4 Ma) of the sub-Antarctic South Atlantic. Comparison with previously published diatom occurrence charts suggested this zonation should be applicable throughout the low latitude regions of the world’s oceans. Silicofl agellates belong to the Dictyocha hexacantha and the overlying Corbisema apiculata Zones. The late Eocene succession of silicofl agellate species is dominated by Naviculopsis (20–60%). Naviculopsis constricta and N. foliacea dominate the D. hexacantha Zone, followed by the N. constricta, then N. biapiculata in the C. apiculata Zone. Cold-water Distephanus is most abundant in the latest Eocene along with N. biapiculata. The tops of zonal guide fossils Dictyocha hexacantha and Hannaites quadria (both 36.6 Ma) and Dictyocha spinosa (37.1 Ma) are tied with paleomagnetic stratigraphy.

  13. An Ensemble Analysis of Antarctic Glacial Isostatic Adjustment and Sea Level

    Science.gov (United States)

    Lecavalier, B.; Tarasov, L.

    2016-12-01

    Inferences of past ice sheet evolution that lack any uncertainty assessment (implicit or explicit), have little value. A developing technique for explicit uncertainty quantification of glacial systems is Bayesian calibration of models against large observational data-sets (Tarasov et al., 2012). The foundation for a Bayesian calibration of a 3D glacial systems model (GSM) for Antarctica has recently been completed (Briggs et al., 2013; 2014; Briggs and Tarasov, 2013). Bayesian calibration thoroughly samples model uncertainties against fits to observational data to generate a probability distribution for the Antarctic Ice Sheet deglaciation with explicit and well-defined confidence intervals. To have validity as a complete inference of past ice sheet evolution, Bayesian calibration requires a model that "brackets reality".Past work has shown the GSM to have likely inadequate range of grounding line migration in certain sectors as well as persistent ice thickness biases in topographically complex regions (Briggs et al., 2014). To advance towards full calibration, these deficiencies are being addressed through a number of model developments. The grounding line scheme has been revised (Pollard and DeConto, 2012), the horizontal resolution is increased to 20 km, and boundary conditions are updated. The basal drag representation now includes the sub-grid treatment of the thermo-mechanical impacts of high basal roughness. Parametric uncertainties in basal drag for regions that are presently marine have been re-evaluated. The impact of past changes in ocean temperature on sub ice shelf melt is explicitly incorporated in the current ocean forcing parametric scheme. Uncertainties in earth rheology are also probed to robustly quantify uncertainties affiliated with glacial isostatic adjustment. The ensemble analysis of the Antarctic glacial system provides dynamical bounds on past and present Antarctica glacial isostatic adjustment and sea level contributions. This research

  14. Oceanographic profile temperature, salinity, and other measurements collected using bottle and high resolution CTD from the SHIRASE (JSVY), SHOYO, and other platforms in the Antarctic, South Indian, and other locations from 1987 to 2000 (NODC Accession 0001363)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data from the CD-ROM contains the BT Data observed by Japan Maritime Self-Defence Force from 1995 to 2001, Japan Antarctic Research Expedition data up to the...

  15. Contrasting Arctic and Antarctic atmospheric responses to future sea-ice loss

    Science.gov (United States)

    England, M.; Polvani, L. M.; Sun, L.

    2017-12-01

    By the end of this century, the annual mean Antarctic sea ice area is projected to decline by over a third, an amount similar to that in the Arctic, but the effect of Antarctic sea ice loss on the atmosphere remains largely unexplored. Using the Community Earth Systems Model (CESM) Whole Atmosphere Coupled Climate Model (WACCM), we investigate the effect of future Antarctic sea ice loss, and contrast it with its Arctic counterpart. This is accomplished by analyzing integrations of the model with historic and future sea ice levels, using the RCP8.5 scenario. This allows us to disentangle the effect of future sea ice loss on the atmosphere from other aspects of the coupled system. We find that both Antarctic and Arctic sea ice loss act to shift the tropospheric jet equatorwards, counteracting the poleward shift due to increases in greenhouse gases. Although the total forcing to the atmosphere is similar in both hemispheres, the response to Arctic sea ice loss is larger in amplitude and but more seasonally varying, while the response in the Antarctic persists throughout the year but with a smaller amplitude. Furthermore, the atmospheric temperature response over the Antarctic is trapped closer to the surface than in the Arctic, and perhaps surprisingly, we find that the surface temperature response to Antarctic sea ice loss is unable to penetrate the Antarctic continent.

  16. Ross Ice Shelf, Antarctic Ice and Clouds

    Science.gov (United States)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  17. Glacial ocean circulation and stratification explained by reduced atmospheric temperature.

    Science.gov (United States)

    Jansen, Malte F

    2017-01-03

    Earth's climate has undergone dramatic shifts between glacial and interglacial time periods, with high-latitude temperature changes on the order of 5-10 °C. These climatic shifts have been associated with major rearrangements in the deep ocean circulation and stratification, which have likely played an important role in the observed atmospheric carbon dioxide swings by affecting the partitioning of carbon between the atmosphere and the ocean. The mechanisms by which the deep ocean circulation changed, however, are still unclear and represent a major challenge to our understanding of glacial climates. This study shows that various inferred changes in the deep ocean circulation and stratification between glacial and interglacial climates can be interpreted as a direct consequence of atmospheric temperature differences. Colder atmospheric temperatures lead to increased sea ice cover and formation rate around Antarctica. The associated enhanced brine rejection leads to a strongly increased deep ocean stratification, consistent with high abyssal salinities inferred for the last glacial maximum. The increased stratification goes together with a weakening and shoaling of the interhemispheric overturning circulation, again consistent with proxy evidence for the last glacial. The shallower interhemispheric overturning circulation makes room for slowly moving water of Antarctic origin, which explains the observed middepth radiocarbon age maximum and may play an important role in ocean carbon storage.

  18. Transcriptomics and comparative analysis of three antarctic notothenioid fishes.

    Directory of Open Access Journals (Sweden)

    Seung Chul Shin

    Full Text Available For the past 10 to 13 million years, Antarctic notothenioid fish have undergone extraordinary periods of evolution and have adapted to a cold and highly oxygenated Antarctic marine environment. While these species are considered an attractive model with which to study physiology and evolutionary adaptation, they are poorly characterized at the molecular level, and sequence information is lacking. The transcriptomes of the Antarctic fishes Notothenia coriiceps, Chaenocephalus aceratus, and Pleuragramma antarcticum were obtained by 454 FLX Titanium sequencing of a normalized cDNA library. More than 1,900,000 reads were assembled in a total of 71,539 contigs. Overall, 40% of the contigs were annotated based on similarity to known protein or nucleotide sequences, and more than 50% of the predicted transcripts were validated as full-length or putative full-length cDNAs. These three Antarctic fishes shared 663 genes expressed in the brain and 1,557 genes expressed in the liver. In addition, these cold-adapted fish expressed more Ub-conjugated proteins compared to temperate fish; Ub-conjugated proteins are involved in maintaining proteins in their native state in the cold and thermally stable Antarctic environments. Our transcriptome analysis of Antarctic notothenioid fish provides an archive for future studies in molecular mechanisms of fundamental genetic questions, and can be used in evolution studies comparing other fish.

  19. Distribution and long-range transport of polyfluoroalkyl substances in the Arctic, Atlantic Ocean and Antarctic coast

    International Nuclear Information System (INIS)

    Zhao Zhen; Xie Zhiyong; Möller, Axel; Sturm, Renate; Tang Jianhui; Zhang Gan; Ebinghaus, Ralf

    2012-01-01

    The global distribution and long-range transport of polyfluoroalkyl substances (PFASs) were investigated using seawater samples collected from the Greenland Sea, East Atlantic Ocean and the Southern Ocean in 2009–2010. Elevated levels of ΣPFASs were detected in the North Atlantic Ocean with the concentrations ranging from 130 to 650 pg/L. In the Greenland Sea, the ΣPFASs concentrations ranged from 45 to 280 pg/L, and five most frequently detected compounds were perfluorooctanoic acid (PFOA), perfluorohexanesulfonate (PFHxS), perfluorohexanoic acid (PFHxA), perfluorooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS). PFOA (15 pg/L) and PFOS (25–45 pg/L) were occasionally found in the Southern Ocean. In the Atlantic Ocean, the ΣPFASs concentration decreased from 2007 to 2010. The elevated PFOA level that resulted from melting snow and ice in Greenland Sea implies that the Arctic may have been driven by climate change and turned to be a source of PFASs for the marine ecosystem. - Highlights: ► PFOA is released from the Arctic snow and ice and might be transport southwards to the Atlantic. ► Decline temporal trends of PFASs are present in the Northern Hemisphere in the Atlantic. ► PFOS has elevate concentration in comparison to PFOA in the Southern Ocean. - Polyfluoroalkyl substances (PFASs) have been reported for the Arctic, Atlantic and the Southern Ocean, which improves understanding the fate of PFASs in the global oceans.

  20. Microbial ecology and biogeochemistry of continental Antarctic soils.

    Science.gov (United States)

    Cowan, Don A; Makhalanyane, Thulani P; Dennis, Paul G; Hopkins, David W

    2014-01-01

    The Antarctica Dry Valleys are regarded as the coldest hyperarid desert system on Earth. While a wide variety of environmental stressors including very low minimum temperatures, frequent freeze-thaw cycles and low water availability impose severe limitations to life, suitable niches for abundant microbial colonization exist. Antarctic desert soils contain much higher levels of microbial diversity than previously thought. Edaphic niches, including cryptic and refuge habitats, microbial mats and permafrost soils all harbor microbial communities which drive key biogeochemical cycling processes. For example, lithobionts (hypoliths and endoliths) possess a genetic capacity for nitrogen and carbon cycling, polymer degradation, and other system processes. Nitrogen fixation rates of hypoliths, as assessed through acetylene reduction assays, suggest that these communities are a significant input source for nitrogen into these oligotrophic soils. Here we review aspects of microbial diversity in Antarctic soils with an emphasis on functionality and capacity. We assess current knowledge regarding adaptations to Antarctic soil environments and highlight the current threats to Antarctic desert soil communities.

  1. Different Oceanographic Regimes in the Vicinity of the Antarctic Peninsula Reflected in Benthic Nematode Communities.

    Directory of Open Access Journals (Sweden)

    Freija Hauquier

    Full Text Available Marine free-living nematode communities were studied at similar depths (~500 m at two sides of the Antarctic Peninsula, characterised by different environmental and oceanographic conditions. At the Weddell Sea side, benthic communities are influenced by cold deep-water formation and seasonal sea-ice conditions, whereas the Drake Passage side experiences milder oceanic conditions and strong dynamics of the Antarctic Circumpolar Current. This resulted in different surface primary productivity, which contrasted with observed benthic pigment patterns and varied according to the area studied: chlorophyll a concentrations (as a proxy for primary production were high in the Weddell Sea sediments, but low in the surface waters above; this pattern was reversed in the Drake Passage. Differences between areas were largely mirrored by the nematode communities: nematode densities peaked in Weddell stations and showed deeper vertical occurrence in the sediment, associated with deeper penetration of chlorophyll a and indicative of a strong bentho-pelagic coupling. Generic composition showed some similarities across both areas, though differences in the relative contribution of certain genera were noted, together with distinct community shifts with depth in the sediment at all locations.

  2. Summer diet of the Salvin's prion at sub-Antarctic Marion Island

    African Journals Online (AJOL)

    1988-02-14

    Feb 14, 1988 ... Thirty-nine food samples were collected from Salvin's prions Pachyptila salvini at sub-Antarctic Marion Island,. Prince Edward Islands. ..... guide to foraging methods used by marine birds in. Antarctic and sub-Antarctic seas. BIOMASS Handbook. 24: 1-22. GRINDLEY, J.R. & LANE, S.B. 1979. Zooplankton.

  3. Speedup and fracturing of George VI Ice Shelf, Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    T. O. Holt

    2013-05-01

    Full Text Available George VI Ice Shelf (GVIIS is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat, radar (ERS 1/2 SAR and laser altimetry (GLAS datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010 are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009 to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to ongoing atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.

  4. Anomalous South Pacific lithosphere dynamics derived from new total sediment thickness estimates off the West Antarctic margin

    Science.gov (United States)

    Wobbe, Florian; Lindeque, Ansa; Gohl, Karsten

    2014-12-01

    Paleotopographic models of the West Antarctic margin, which are essential for robust simulations of paleoclimate scenarios, lack information on sediment thickness and geodynamic conditions, resulting in large uncertainties. A new total sediment thickness grid spanning the Ross Sea-Amundsen Sea-Bellingshausen Sea basins is presented and is based on all the available seismic reflection, borehole, and gravity modeling data offshore West Antarctica. This grid was combined with NGDC's global 5 arc minute grid of ocean sediment thickness (Whittaker et al., 2013) and extends the NGDC grid further to the south. Sediment thickness along the West Antarctic margin tends to be 3-4 km larger than previously assumed. The sediment volume in the Bellingshausen, Amundsen, and Ross Sea basins amounts to 3.61, 3.58, and 2.78 million km3, respectively. The residual basement topography of the South Pacific has been revised and the new data show an asymmetric trend over the Pacific-Antarctic Ridge. Values are anomalously high south of the spreading ridge and in the Ross Sea area, where the topography seems to be affected by persistent mantle processes. In contrast, the basement topography offshore Marie Byrd Land cannot be attributed to dynamic topography, but rather to crustal thickening due to intraplate volcanism. Present-day dynamic topography models disagree with the presented revised basement topography of the South Pacific, rendering paleotopographic reconstructions with such a limited dataset still fairly uncertain.

  5. Ecology of southern ocean pack ice.

    Science.gov (United States)

    Brierley, Andrew S; Thomas, David N

    2002-01-01

    Around Antarctica the annual five-fold growth and decay of sea ice is the most prominent physical process and has a profound impact on marine life there. In winter the pack ice canopy extends to cover almost 20 million square kilometres--some 8% of the southern hemisphere and an area larger than the Antarctic continent itself (13.2 million square kilometres)--and is one of the largest, most dynamic ecosystems on earth. Biological activity is associated with all physical components of the sea-ice system: the sea-ice surface; the internal sea-ice matrix and brine channel system; the underside of sea ice and the waters in the vicinity of sea ice that are modified by the presence of sea ice. Microbial and microalgal communities proliferate on and within sea ice and are grazed by a wide range of proto- and macrozooplankton that inhabit the sea ice in large concentrations. Grazing organisms also exploit biogenic material released from the sea ice at ice break-up or melt. Although rates of primary production in the underlying water column are often low because of shading by sea-ice cover, sea ice itself forms a substratum that provides standing stocks of bacteria, algae and grazers significantly higher than those in ice-free areas. Decay of sea ice in summer releases particulate and dissolved organic matter to the water column, playing a major role in biogeochemical cycling as well as seeding water column phytoplankton blooms. Numerous zooplankton species graze sea-ice algae, benefiting additionally because the overlying sea-ice ceiling provides a refuge from surface predators. Sea ice is an important nursery habitat for Antarctic krill, the pivotal species in the Southern Ocean marine ecosystem. Some deep-water fish migrate to shallow depths beneath sea ice to exploit the elevated concentrations of some zooplankton there. The increased secondary production associated with pack ice and the sea-ice edge is exploited by many higher predators, with seals, seabirds and whales

  6. Changes in the concentration of iron in different size fractions during an iron enrichment experiment in the open Southern Ocean

    NARCIS (Netherlands)

    Nishioka, Jun; Takeda, Shigenobu; Baar, Hein J.W. de; Croot, Peter L.; Boye, Marie; Laan, Patrick; Timmermans, Klaas R.

    2005-01-01

    An in situ iron enrichment experiment was carried out in the Southern Ocean Polar Frontal Zone and fertilized a patch of water within an eddy of the Antarctic Circumpolar Current (EisenEx, Nov. 2000). During the experiment, a physical speciation technique was used for iron analysis in order to

  7. Formation of Antarctic Intermediate Water during the Plio-Pleistocene

    Science.gov (United States)

    Karas, C.; Goldstein, S. L.; deMenocal, P. B.

    2017-12-01

    Antarctic Intermediate Water (AAIW) plays a fundamental role in modern climate change. It is an important sink for anthropogenic CO2, it represents an important source water in several (sub)tropical upwelling regions and it is the coldwater route from the Southern Hemisphere to the North Atlantic Ocean replacing North Atlantic Deep Water (NADW). During the last 4 million years, which marks the transition from the warm Pliocene climate towards icehouse conditions, the formation of this watermass is still largely unknown. We here present a multi-proxy approach using neodymium isotopes (ɛNd) on Fe-Mn encrusted foraminifera and coupled benthic Mg/Ca and stable isotopes from South Atlantic Site 516, within AAIW, to reconstruct its variability. Our data show that the modern formation of AAIW started about 3 million years ago, indicated by a distinct drop of ɛNd by 1.5, a cooling and freshening of benthic TMg/Ca by 8°C and a drop in benthic d13C values towards modern times. We interpret these changes as a reduced inflow of Pacific waters into the South Atlantic and the onset of modern deep vertical mixing at the source regions of AAIW near the polar front. These processes had significant effects on the CO2 storage of the ocean that supported global cooling and the intensification of the Northern Hemisphere Glaciation.

  8. Modelling the Antarctic Ice Sheet

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Holm, A.

    2015-01-01

    to sea level high stands during past interglacial periods. A number of AIS models have been developed and applied to try to understand the workings of the AIS and to form a robust basis for future projections of the AIS contribution to sea level change. The recent DCESS (Danish Center for Earth System......The Antarctic ice sheet is a major player in the Earth’s climate system and is by far the largest depository of fresh water on the planet. Ice stored in the Antarctic ice sheet (AIS) contains enough water to raise sea level by about 58 m, and ice loss from Antarctica contributed significantly...

  9. Response of a comprehensive climate model to a broad range of external forcings: relevance for deep ocean ventilation and the development of late Cenozoic ice ages

    Science.gov (United States)

    Galbraith, Eric; de Lavergne, Casimir

    2018-03-01

    Over the past few million years, the Earth descended from the relatively warm and stable climate of the Pliocene into the increasingly dramatic ice age cycles of the Pleistocene. The influences of orbital forcing and atmospheric CO2 on land-based ice sheets have long been considered as the key drivers of the ice ages, but less attention has been paid to their direct influences on the circulation of the deep ocean. Here we provide a broad view on the influences of CO2, orbital forcing and ice sheet size according to a comprehensive Earth system model, by integrating the model to equilibrium under 40 different combinations of the three external forcings. We find that the volume contribution of Antarctic (AABW) vs. North Atlantic (NADW) waters to the deep ocean varies widely among the simulations, and can be predicted from the difference between the surface densities at AABW and NADW deep water formation sites. Minima of both the AABW-NADW density difference and the AABW volume occur near interglacial CO2 (270-400 ppm). At low CO2, abundant formation and northward export of sea ice in the Southern Ocean contributes to very salty and dense Antarctic waters that dominate the global deep ocean. Furthermore, when the Earth is cold, low obliquity (i.e. a reduced tilt of Earth's rotational axis) enhances the Antarctic water volume by expanding sea ice further. At high CO2, AABW dominance is favoured due to relatively warm subpolar North Atlantic waters, with more dependence on precession. Meanwhile, a large Laurentide ice sheet steers atmospheric circulation as to strengthen the Atlantic Meridional Overturning Circulation, but cools the Southern Ocean remotely, enhancing Antarctic sea ice export and leading to very salty and expanded AABW. Together, these results suggest that a `sweet spot' of low CO2, low obliquity and relatively small ice sheets would have poised the AMOC for interruption, promoting Dansgaard-Oeschger-type abrupt change. The deep ocean temperature and

  10. Two new ways of mapping sea ice thickness using ocean waves

    Science.gov (United States)

    Wadhams, P.

    2010-12-01

    TWO NEW METHODS OF MAPPING SEA ICE THICKNESS USING OCEAN WAVES. P. Wadhams (1,2), Martin Doble (1,2) and F. Parmiggiani (3) (1) Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK. (2) Laboratoire d’Océanographie de Villefranche, Université Pierre et Marie Curie, 06234 Villefranche-sur-Mer, France (2) ISAC-CNR, Bologna, Italy Two new methods of mapping ice thickness have been recently developed and tested, both making use of the dispersion relation of ocean waves in ice of radically different types. In frazil-pancake ice, a young ice type in which cakes less than 5 m across float in a suspension of individual ice crystals, the propagation of waves has been successfully modelled by treating the ice layer as a highly viscous fluid. The model predicts a shortening of wavelengths within the ice. Two-dimensional Fourier analysis of successive SAR subscenes to track the directional spectrum of a wave field as it enters an ice edge shows that waves do indeed shorten within the ice, and the change has been successfully used to predict the thickness of the frazil-pancake layer. Concurrent shipborne sampling in the Antarctic has shown that the method is accurate, and we now propose its use throughout the important frazil-pancake regimes in the world ocean (Antarctic circumpolar ice edge zone, Greenland Sea, Bering Sea and others). A radically different type of dispersion occurs when ocean waves enter the continuous icefields of the central Arctic, when they couple with the elastic ice cover to propagate as a flexural-gravity wave. A two-axis tiltmeter array has been used to measure the resulting change in the dispersion relation for long ocean swell (15-30 s) originating from storms in the Greenland Sea. The dispersion relation is slightly different from swell in the open ocean, so if two such arrays are placed a substantial distance (100s of km) apart and used to observe the changing wave period of arrivals from a given

  11. Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt.

    Science.gov (United States)

    Raiswell, Rob; Benning, Liane G; Tranter, Martyn; Tulaczyk, Slawek

    2008-05-30

    Productivity in the Southern Oceans is iron-limited, and the supply of iron dissolved from aeolian dust is believed to be the main source from outside the marine reservoir. Glacial sediment sources of iron have rarely been considered, as the iron has been assumed to be inert and non-bioavailable. This study demonstrates the presence of potentially bioavailable Fe as ferrihydrite and goethite in nanoparticulate clusters, in sediments collected from icebergs in the Southern Ocean and glaciers on the Antarctic landmass. Nanoparticles in ice can be transported by icebergs away from coastal regions in the Southern Ocean, enabling melting to release bioavailable Fe to the open ocean. The abundance of nanoparticulate iron has been measured by an ascorbate extraction. This data indicates that the fluxes of bioavailable iron supplied to the Southern Ocean from aeolian dust (0.01-0.13 Tg yr(-1)) and icebergs (0.06-0.12 Tg yr(-1)) are comparable. Increases in iceberg production thus have the capacity to increase productivity and this newly identified negative feedback may help to mitigate fossil fuel emissions.

  12. Radiocarbon as a Novel Tracer of Extra-Antarctic Feeding in Southern Hemisphere Humpback Whales.

    Science.gov (United States)

    Eisenmann, Pascale; Fry, Brian; Mazumder, Debashish; Jacobsen, Geraldine; Holyoake, Carlysle Sian; Coughran, Douglas; Bengtson Nash, Susan

    2017-06-29

    Bulk stable isotope analysis provides information regarding food web interactions, and has been applied to several cetacean species for the study of migration ecology. One limitation in bulk stable isotope analysis arises when a species, such as Southern hemisphere humpback whales, utilises geographically distinct food webs with differing isotopic baselines. Migrations to areas with different baselines can result in isotopic changes that mimic changes in feeding relations, leading to ambiguous food web interpretations. Here, we demonstrate the novel application of radiocarbon measurement for the resolution of such ambiguities. Radiocarbon was measured in baleen plates from humpback whales stranded in Australia between 2007 and 2013, and in skin samples collected in Australia and Antarctica from stranded and free-ranging animals. Radiocarbon measurements showed lower values for Southern Ocean feeding than for extra-Antarctic feeding in Australian waters. While the whales mostly relied on Antarctic-derived energy stores during their annual migration, there was some evidence of feeding within temperate zone waters in some individuals. This work, to our knowledge, provides the first definitive biochemical evidence for supplementary feeding by southern hemisphere humpback whales within temperate waters during migration. Further, the work contributes a powerful new tool (radiocarbon) for tracing source regions and geographical feeding.

  13. 3He and chlorofluorocarbons (CFC) in the Southern Ocean

    International Nuclear Information System (INIS)

    Jean-Baptiste, P.; Jamous, D.; Mantisi, F.; Memery, L.; Universite Paris 6

    1991-01-01

    The distribution of 3 He across the Southern Ocean is depicted on the basis of a meridional section between Antarctica and South Africa measured during the INDIGO-3 survey (1988). A core of δ 3 He values above 10% is observed south of the Polar Front, associated with very low CFC concentrations. This 3 He enriched layer is documented from the GEOSECS and INDIGO 3 He data in the Southern Ocean. It is found at a density level around θ σ =27.8 in all the waters close to Antarctica (i.e. south of 50 degS). Its zonal distribution suggests that it is likely that it originates from the central/eastern Pacific. Hence, it provides an indication of the deep Pacific waters in the Antarctic Circumpolar Current, which are not easily detectable from the standard hydrographic parameters. (author). 19 refs.; 8 figs

  14. Microbial ecology and biogeochemistry of continental Antarctic soils

    Directory of Open Access Journals (Sweden)

    Don A Cowan

    2014-04-01

    Full Text Available The Antarctica Dry Valleys are regarded as the coldest hyperarid desert system on Earth. While a wide variety of environmental stressors including very low minimum temperatures, frequent freeze-thaw cycles and low water availability impose severe limitations to life, suitable niches for abundant microbial colonization exist. Antarctic desert soils contain much higher levels of microbial diversity than previously thought. Edaphic niches, including cryptic and refuge habitats, microbial mats and permafrost soils all harbour microbial communities which drive key biogeochemical cycling processes. For example, lithobionts (hypoliths and endoliths possess a genetic capacity for nitrogen and carbon cycling, polymer degradation and other system processes. Nitrogen fixation rates of hypoliths, as assessed through acetylene reduction assays, suggest that these communities are a significant input source for nitrogen into these oligotrophic soils. Here we review aspects of microbial diversity in Antarctic soils with an emphasis on functionality and capacity. We assess current knowledge regarding adaptations to Antarctic soil environments and highlight the current threats to Antarctic desert soil communities.

  15. Distribution and long-range transport of polyfluoroalkyl substances in the Arctic, Atlantic Ocean and Antarctic coast.

    Science.gov (United States)

    Zhao, Zhen; Xie, Zhiyong; Möller, Axel; Sturm, Renate; Tang, Jianhui; Zhang, Gan; Ebinghaus, Ralf

    2012-11-01

    The global distribution and long-range transport of polyfluoroalkyl substances (PFASs) were investigated using seawater samples collected from the Greenland Sea, East Atlantic Ocean and the Southern Ocean in 2009-2010. Elevated levels of ΣPFASs were detected in the North Atlantic Ocean with the concentrations ranging from 130 to 650 pg/L. In the Greenland Sea, the ΣPFASs concentrations ranged from 45 to 280 pg/L, and five most frequently detected compounds were perfluorooctanoic acid (PFOA), perfluorohexanesulfonate (PFHxS), perfluorohexanoic acid (PFHxA), perfluorooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS). PFOA (15 pg/L) and PFOS (25-45 pg/L) were occasionally found in the Southern Ocean. In the Atlantic Ocean, the ΣPFASs concentration decreased from 2007 to 2010. The elevated PFOA level that resulted from melting snow and ice in Greenland Sea implies that the Arctic may have been driven by climate change and turned to be a source of PFASs for the marine ecosystem. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Mysterious iodine-overabundance in Antarctic meteorites

    Science.gov (United States)

    Dreibus, G.; Waenke, H.; Schultz, L.

    1986-01-01

    Halogen as well as other trace element concentrations in meteorite finds can be influenced by alteration processes on the Earth's surface. The discovery of Antarctic meteorites offered the opportunity to study meteorites which were kept in one of the most sterile environment of the Earth. Halogen determination in Antartic meteorites was compared with non-Antarctic meteorites. No correlation was found between iodine concentration and the weathering index, or terrestrial age. The halogen measurements indicate a contaminating phase rich in iodine and also containing chlorine. Possible sources for this contamination are discussed.

  17. Mysterious iodine-overabundance in Antarctic meteorites

    International Nuclear Information System (INIS)

    Dreibus, G.; Waenke, H.; Schultz, L.

    1986-01-01

    Halogen as well as other trace element concentrations in meteorite finds can be influenced by alteration processes on the Earth's surface. The discovery of Antarctic meteorites offered the opportunity to study meteorites which were kept in one of the most sterile environment of the Earth. Halogen determination in Antartic meteorites was compared with non-Antarctic meteorites. No correlation was found between iodine concentration and the weathering index, or terrestrial age. The halogen measurements indicate a contaminating phase rich in iodine and also containing chlorine. Possible sources for this contamination are discussed

  18. Antarctic Starfish (Echinodermata, Asteroidea) from the ANDEEP3 expedition.

    Science.gov (United States)

    Danis, Bruno; Jangoux, Michel; Wilmes, Jennifer

    2012-01-01

    This dataset includes information on sea stars collected during the ANDEEP3 expedition, which took place in 2005. The expedition focused on deep-sea stations in the Powell Basin and Weddell Sea.Sea stars were collected using an Agassiz trawl (3m, mesh-size 500µm), deployed in 16 stations during the ANTXXII/3 (ANDEEP3, PS72) expedition of the RV Polarstern. Sampling depth ranged from 1047 to 4931m. Trawling distance ranged from 731 to 3841m. The sampling area ranges from -41°S to -71°S (latitude) and from 0 to -65°W (longitude). A complete list of stations is available from the PANGAEA data system (http://www.pangaea.de/PHP/CruiseReports.php?b=Polarstern), including a cruise report (http://epic-reports.awi.de/3694/1/PE_72.pdf).The dataset includes 50 records, with individual counts ranging from 1-10, reaching a total of 132 specimens.The andeep3-Asteroidea is a unique dataset as it covers an under-explored region of the Southern Ocean, and that very little information was available regarding Antarctic deep-sea starfish. Before this study, most of the information available focused on starfish from shallower depths than 1000m. This dataset allowed to make unique observations, such as the fact that some species were only present at very high depths (Hymenaster crucifer, Hymenaster pellucidus, Hymenaster praecoquis, Psilaster charcoti, Freyella attenuata, Freyastera tuberculata, Styrachaster chuni and Vemaster sudatlanticus were all found below -3770m), while others displayed remarkable eurybathy, with very high depths amplitudes (Bathybiaster loripes (4842m), Lysasterias adeliae (4832m), Lophaster stellans (4752m), Cheiraster planeta (4708m), Eremicaster crassus (4626m), Lophaster gaini (4560m) and Ctenodiscus australis (4489m)).Even if the number of records is relatively small, the data bring many new insights on the taxonomic, bathymetric and geographic distributions of Southern starfish, covering a very large sampling zone. The dataset also brings to light six

  19. Estimating Antarctic Geothermal Heat Flux using Gravity Inversion

    Science.gov (United States)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V.; Sasha Rogozhina, Irina

    2013-04-01

    Geothermal heat flux (GHF) in Antarctica is very poorly known. We have determined (Vaughan et al. 2012) top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008). Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Knowing GHF distribution for East Antarctica and the Gamburtsev Subglacial Mountains (GSM) region in particular is critical because: 1) The GSM likely acted as key nucleation point for the East Antarctic Ice Sheet (EAIS); 2) the region may contain the oldest ice of the EAIS - a prime target for future ice core drilling; 3) GHF is important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). An integrated multi-dataset-based GHF model for East Antarctica is planned that will resolve the wide range of estimates previously published using single datasets. The new map and existing GHF distribution estimates available for Antarctica will be evaluated using direct ice temperature measurements obtained from deep ice cores, estimates of GHF derived from subglacial lakes, and a thermodynamic ice-sheet model of the Antarctic Ice Sheet driven by past climate reconstructions and each of analysed heat flow maps, as has recently been done for the Greenland region (Rogozhina et al. 2012). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N

  20. Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0

    Directory of Open Access Journals (Sweden)

    F. Pattyn

    2017-08-01

    Full Text Available The magnitude of the Antarctic ice sheet's contribution to global sea-level rise is dominated by the potential of its marine sectors to become unstable and collapse as a response to ocean (and atmospheric forcing. This paper presents Antarctic sea-level response to sudden atmospheric and oceanic forcings on multi-centennial timescales with the newly developed fast Elementary Thermomechanical Ice Sheet (f.ETISh model. The f.ETISh model is a vertically integrated hybrid ice sheet–ice shelf model with vertically integrated thermomechanical coupling, making the model two-dimensional. Its marine boundary is represented by two different flux conditions, coherent with power-law basal sliding and Coulomb basal friction. The model has been compared to existing benchmarks. Modelled Antarctic ice sheet response to forcing is dominated by sub-ice shelf melt and the sensitivity is highly dependent on basal conditions at the grounding line. Coulomb friction in the grounding-line transition zone leads to significantly higher mass loss in both West and East Antarctica on centennial timescales, leading to 1.5 m sea-level rise after 500 years for a limited melt scenario of 10 m a−1 under freely floating ice shelves, up to 6 m for a 50 m a−1 scenario. The higher sensitivity is attributed to higher ice fluxes at the grounding line due to vanishing effective pressure. Removing the ice shelves altogether results in a disintegration of the West Antarctic ice sheet and (partially marine basins in East Antarctica. After 500 years, this leads to a 5 m and a 16 m sea-level rise for the power-law basal sliding and Coulomb friction conditions at the grounding line, respectively. The latter value agrees with simulations by DeConto and Pollard (2016 over a similar period (but with different forcing and including processes of hydrofracturing and cliff failure. The chosen parametrizations make model results largely independent of spatial resolution so

  1. Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0)

    Science.gov (United States)

    Pattyn, Frank

    2017-08-01

    The magnitude of the Antarctic ice sheet's contribution to global sea-level rise is dominated by the potential of its marine sectors to become unstable and collapse as a response to ocean (and atmospheric) forcing. This paper presents Antarctic sea-level response to sudden atmospheric and oceanic forcings on multi-centennial timescales with the newly developed fast Elementary Thermomechanical Ice Sheet (f.ETISh) model. The f.ETISh model is a vertically integrated hybrid ice sheet-ice shelf model with vertically integrated thermomechanical coupling, making the model two-dimensional. Its marine boundary is represented by two different flux conditions, coherent with power-law basal sliding and Coulomb basal friction. The model has been compared to existing benchmarks. Modelled Antarctic ice sheet response to forcing is dominated by sub-ice shelf melt and the sensitivity is highly dependent on basal conditions at the grounding line. Coulomb friction in the grounding-line transition zone leads to significantly higher mass loss in both West and East Antarctica on centennial timescales, leading to 1.5 m sea-level rise after 500 years for a limited melt scenario of 10 m a-1 under freely floating ice shelves, up to 6 m for a 50 m a-1 scenario. The higher sensitivity is attributed to higher ice fluxes at the grounding line due to vanishing effective pressure. Removing the ice shelves altogether results in a disintegration of the West Antarctic ice sheet and (partially) marine basins in East Antarctica. After 500 years, this leads to a 5 m and a 16 m sea-level rise for the power-law basal sliding and Coulomb friction conditions at the grounding line, respectively. The latter value agrees with simulations by DeConto and Pollard (2016) over a similar period (but with different forcing and including processes of hydrofracturing and cliff failure). The chosen parametrizations make model results largely independent of spatial resolution so that f.ETISh can potentially be

  2. 77 FR 5403 - Conservation of Antarctic Animals and Plants

    Science.gov (United States)

    2012-02-03

    ... NATIONAL SCIENCE FOUNDATION 45 CFR Part 670 Conservation of Antarctic Animals and Plants AGENCY: National Science Foundation. ACTION: Final rule. SUMMARY: Pursuant to the Antarctic Conservation Act of 1978, The National Science Foundation (NSF) is amending its regulations to reflect newly designated...

  3. Zooplankton biomass and abundance of Antarctic krill Euphausia superba DANA in Indian Ocean sector of the southern ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Parulekar, A.H.

    Zooplankton sampling was carried out during the first six Indian Scientific Expeditions to Antarctica (1981-1987) to estimate krill abundance in the Indian sector of the Southern Ocean (between 35 to 70 degrees S and 10 to 52 degrees E). This study...

  4. ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters

    DEFF Research Database (Denmark)

    Passaro, Marcello; Kildegaard Rose, Stine; Andersen, Ole B.

    2018-01-01

    ice retracker used for fitting specular echoes. Compared to an existing open ocean altimetry dataset, the presented strategy increases the number of sea level retrievals in the sea ice-covered area and the correlation with a local tide gauge. Further tests against in-situ data show that also......Water level from sea ice-covered oceans is particularly challenging to retrieve with satellite radar altimeters due to the different shapes assumed by the returned signal compared with the standard open ocean waveforms. Valid measurements are scarce in large areas of the Arctic and Antarctic Oceans...... the fitting of the signal depending on the sea state and on the slope of its trailing edge. The algorithm modifies the existing Adaptive Leading Edge Subwaveform retracker originally designed for coastal waters, and is applied to Envisat and ERS-2 missions. The validation in a test area of the Arctic Ocean...

  5. In vitro immunobiological activity of an Antarctic streptomyces polysaccharide

    International Nuclear Information System (INIS)

    Toshkova, R.; Yossifova, L.; Gardeva, E.; Zvetkova, E.; Ivanova, V.

    2010-01-01

    Antarctic Streptomyces sp. 1010, were obtained from sea water samples (Livingston Island, Antarctica), during the Third Bulgarian Antarctic Scientific Expedition (1994-1995). The ecophysiological methods for isolation and characterization of these active, cold-adapted, Gram-positive microorganisms (psychrophiles) in morphological, phenotypic, genetic and taxonomic aspects, have been earlier reported. In this study, a new extracellular polysaccharide (heteropolysaccharide) has been isolated and purified from cultured broth of the Antarctic Streptomyces sp. 1010. The monosaccharide content of the Antarctic streptomyces heteropolysaccharide has been examined by TLC and GC/MS. The mitogenic and immuno potential properties of the purified Antarctic Streptomyces polysaccharide (ASMP) have been studied in vitro - in the short-term cultures of human peripheral blood mononuclear cells (hPBMCs - lymphocytes and monocytes) and mouse spleen lymphocytes (mouse splenocytes - mSps). The results obtained show that ASMP has a double lectin-like effect on the proliferative activity of hPBMCs: similar to this of Con A on the lymphoid cells (preliminary T-lymphocytes) and to the effect of LPS on the mononuclear from monocyte-macrophage lineage. Expressed as proliferative index (PI), the mitogenic response of mSps to the in vitro influence of ASMP was also higher than PI in the negative, as well as in the positive controls (mSps, cultured in the presence of PHA, Con A and LPS). The new Antarctic Streptomyces' heteropolysaccharide examined could be useful in the future as an immunomodulative biologically active substance and its extracellular production may contribute to the development of thermobiochemistry, immunomodulative drug therapy and immunopharmaceutical industry. (authors)

  6. Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma

    Science.gov (United States)

    Golledge, Nicholas R.; Thomas, Zoë A.; Levy, Richard H.; Gasson, Edward G. W.; Naish, Timothy R.; McKay, Robert M.; Kowalewski, Douglas E.; Fogwill, Christopher J.

    2017-07-01

    The geometry of Antarctic ice sheets during warm periods of the geological past is difficult to determine from geological evidence, but is important to know because such reconstructions enable a more complete understanding of how the ice-sheet system responds to changes in climate. Here we investigate how Antarctica evolved under orbital and greenhouse gas conditions representative of an interglacial in the early Pliocene at 4.23 Ma, when Southern Hemisphere insolation reached a maximum. Using offline-coupled climate and ice-sheet models, together with a new synthesis of high-latitude palaeoenvironmental proxy data to define a likely climate envelope, we simulate a range of ice-sheet geometries and calculate their likely contribution to sea level. In addition, we use these simulations to investigate the processes by which the West and East Antarctic ice sheets respond to environmental forcings and the timescales over which these behaviours manifest. We conclude that the Antarctic ice sheet contributed 8.6 ± 2.8 m to global sea level at this time, under an atmospheric CO2 concentration identical to present (400 ppm). Warmer-than-present ocean temperatures led to the collapse of West Antarctica over centuries, whereas higher air temperatures initiated surface melting in parts of East Antarctica that over one to two millennia led to lowering of the ice-sheet surface, flotation of grounded margins in some areas, and retreat of the ice sheet into the Wilkes Subglacial Basin. The results show that regional variations in climate, ice-sheet geometry, and topography produce long-term sea-level contributions that are non-linear with respect to the applied forcings, and which under certain conditions exhibit threshold behaviour associated with behavioural tipping points.

  7. Introduction. Antarctic ecology: from genes to ecosystems. Part 2. Evolution, diversity and functional ecology.

    Science.gov (United States)

    Rogers, Alex D; Murphy, Eugene J; Johnston, Nadine M; Clarke, Andrew

    2007-12-29

    The Antarctic biota has evolved over the last 100 million years in increasingly isolated and cold conditions. As a result, Antarctic species, from micro-organisms to vertebrates, have adapted to life at extremely low temperatures, including changes in the genome, physiology and ecological traits such as life history. Coupled with cycles of glaciation that have promoted speciation in the Antarctic, this has led to a unique biota in terms of biogeography, patterns of species distribution and endemism. Specialization in the Antarctic biota has led to trade-offs in many ecologically important functions and Antarctic species may have a limited capacity to adapt to present climate change. These include the direct effects of changes in environmental parameters and indirect effects of increased competition and predation resulting from altered life histories of Antarctic species and the impacts of invasive species. Ultimately, climate change may alter the responses of Antarctic ecosystems to harvesting from humans. The unique adaptations of Antarctic species mean that they provide unique models of molecular evolution in natural populations. The simplicity of Antarctic communities, especially from terrestrial systems, makes them ideal to investigate the ecological implications of climate change, which are difficult to identify in more complex systems.

  8. Antarctic isolation: immune and viral studies

    Science.gov (United States)

    Tingate, T. R.; Lugg, D. J.; Muller, H. K.; Stowe, R. P.; Pierson, D. L.

    1997-01-01

    Stressful environmental conditions are a major determinant of immune reactivity. This effect is pronounced in Australian National Antarctic Research Expedition populations exposed to prolonged periods of isolation in the Antarctic. Alterations of T cell function, including depression of cutaneous delayed-type hypersensitivity responses and a peak 48.9% reduction of T cell proliferation to the mitogen phytohaemagglutinin, were documented during a 9-month period of isolation. T cell dysfunction was mediated by changes within the peripheral blood mononuclear cell compartment, including a paradoxical atypical monocytosis associated with altered production of inflammatory cytokines. There was a striking reduction in the production by peripheral blood mononuclear cells of the predominant pro-inflammatory monokine TNF-alpha and changes were also detected in the production of IL-1, IL-2, IL-6, IL-1ra and IL-10. Prolonged Antarctic isolation is also associated with altered latent herpesvirus homeostasis, including increased herpesvirus shedding and expansion of the polyclonal latent Epstein-Barr virus-infected B cell population. These findings have important long-term health implications.

  9. Biological and physical controls in the Southern Ocean on past millennial-scale atmospheric CO2 changes.

    Science.gov (United States)

    Gottschalk, Julia; Skinner, Luke C; Lippold, Jörg; Vogel, Hendrik; Frank, Norbert; Jaccard, Samuel L; Waelbroeck, Claire

    2016-05-17

    Millennial-scale climate changes during the last glacial period and deglaciation were accompanied by rapid changes in atmospheric CO2 that remain unexplained. While the role of the Southern Ocean as a 'control valve' on ocean-atmosphere CO2 exchange has been emphasized, the exact nature of this role, in particular the relative contributions of physical (for example, ocean dynamics and air-sea gas exchange) versus biological processes (for example, export productivity), remains poorly constrained. Here we combine reconstructions of bottom-water [O2], export production and (14)C ventilation ages in the sub-Antarctic Atlantic, and show that atmospheric CO2 pulses during the last glacial- and deglacial periods were consistently accompanied by decreases in the biological export of carbon and increases in deep-ocean ventilation via southern-sourced water masses. These findings demonstrate how the Southern Ocean's 'organic carbon pump' has exerted a tight control on atmospheric CO2, and thus global climate, specifically via a synergy of both physical and biological processes.

  10. Antarctic skuas recognize individual humans.

    Science.gov (United States)

    Lee, Won Young; Han, Yeong-Deok; Lee, Sang-Im; Jablonski, Piotr G; Jung, Jin-Woo; Kim, Jeong-Hoon

    2016-07-01

    Recent findings report that wild animals can recognize individual humans. To explain how the animals distinguish humans, two hypotheses are proposed. The high cognitive abilities hypothesis implies that pre-existing high intelligence enabled animals to acquire such abilities. The pre-exposure to stimuli hypothesis suggests that frequent encounters with humans promote the acquisition of discriminatory abilities in these species. Here, we examine individual human recognition abilities in a wild Antarctic species, the brown skua (Stercorarius antarcticus), which lives away from typical human settlements and was only recently exposed to humans due to activities at Antarctic stations. We found that, as nest visits were repeated, the skua parents responded at further distances and were more likely to attack the nest intruder. Also, we demonstrated that seven out of seven breeding pairs of skuas selectively responded to a human nest intruder with aggression and ignored a neutral human who had not previously approached the nest. The results indicate that Antarctic skuas, a species that typically inhabited in human-free areas, are able to recognize individual humans who disturbed their nests. Our findings generally support the high cognitive abilities hypothesis, but this ability can be acquired during a relatively short period in the life of an individual as a result of interactions between individual birds and humans.

  11. The discovery of new deep-sea hydrothermal vent communities in the southern ocean and implications for biogeography.

    Directory of Open Access Journals (Sweden)

    Alex D Rogers

    2012-01-01

    Full Text Available Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp., stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae, bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more

  12. Challenges for understanding Antarctic surface hydrology and ice-shelf stability

    Science.gov (United States)

    Kingslake, J.; Bell, R. E.; Banwell, A. F.; Boghosian, A.; Spergel, J.; Trusel, L. D.

    2017-12-01

    It is widely hypothesized that surface meltwater can contribute to ice mass loss in Antarctica through its impact on ice-shelf stability. Meltwater potentially expedites ice-shelf calving by flowing into and enlarging existing crevasses, and could even trigger ice-shelf disintegration via stresses generated by melt ponds. When ice shelves collapse, the adjacent grounded ice accelerates and thins, which contributes to sea-level rise. How these mechanisms mediate the interactions between the atmosphere, the ocean and the ice sheet is the subject of long-standing research efforts. The drainage of water across the surface of the Antarctic Ice Sheet and its ice shelves is beginning to be recognized as another important aspect of the system. Recent studies have revealed that surface meltwater drainage is more widespread than previously thought and that surface hydrological systems in Antarctica may expand and proliferate this century. Contrasting hypotheses regarding the impact of the proliferation of drainage systems on ice-shelf stability have emerged. Surface drainage could deliver meltwater to vulnerable area or export meltwater from ice shelves entirely. Which behavior dominates may have a large impact on the future response of the Antarctic Ice Sheet to atmospheric warming. We will discuss these recent discoveries and hypotheses, as well as new detailed studies of specific areas where hydrological systems are well developed, such as Amery and Nimrod Ice Shelves. We will highlight analogies that can be drawn with Greenlandic (near-)surface hydrology and, crucially, where hydrological systems on the two ice sheets are very different, leading to potentially important gaps in our understanding. Finally, we will look ahead to the key questions that we argue will need to be if we are to determine the role Antarctic surface hydrology could play in the future of the ice sheet. These include: Where does meltwater pond today and how will this change this century? What

  13. Biological invasions in the Antarctic: extent, impacts and implications.

    Science.gov (United States)

    Frenot, Yves; Chown, Steven L; Whinam, Jennie; Selkirk, Patricia M; Convey, Peter; Skotnicki, Mary; Bergstrom, Dana M

    2005-02-01

    Alien microbes, fungi, plants and animals occur on most of the sub-Antarctic islands and some parts of the Antarctic continent. These have arrived over approximately the last two centuries, coincident with human activity in the region. Introduction routes have varied, but are largely associated with movement of people and cargo in connection with industrial, national scientific program and tourist operations. The large majority of aliens are European in origin. They have both direct and indirect impacts on the functioning of species-poor Antarctic ecosystems, in particular including substantial loss of local biodiversity and changes to ecosystem processes. With rapid climate change occurring in some parts of Antarctica, elevated numbers of introductions and enhanced success of colonization by aliens are likely, with consequent increases in impacts on ecosystems. Mitigation measures that will substantially reduce the risk of introductions to Antarctica and the sub-Antarctic must focus on reducing propagule loads on humans, and their food, cargo, and transport vessels.

  14. Ecuadorian antarctic act

    International Nuclear Information System (INIS)

    1998-02-01

    To develop research in this continent involves to take communion with earth where the cold pole of the planet is located, the stormiest sea of the world surround it and where the capricious continental and geographical distribution permits the pass of meteorological violent and continuous systems. The Ecuador, in execution of the acquired commitments like Full Member of the System of the Antarctic Treaty, carried out the VII Expedition to the White Continent with an extensive program of scientific investigation in the field of: Sciences of Life, Sciences of the Earth and Atmospheric Sciences, so much in the environment of the Pacific Southeast, the Drake Pass, Bransfield Strait and the nearby ecosystems antarctic to Point Fort William in the Greenwich Island, site where the Ecuadorian station Pedro Vicente Maldonado is located. The scientific articles, result of the fruitful work of national investigator is consigned in this fourth edition. This publication constitutes our contribution to the world in the knowledge, understanding and handling of the marvelous White Continent from the middle of our planet, Ecuador

  15. Penguin Proxies: Deciphering Millennial-Scale Antarctic Ecosystem Change using Amino Acid Stable Isotope Analysis.

    Science.gov (United States)

    Michelson, C.; McMahon, K.; Emslie, S. D.; Patterson, W. P.; McCarthy, M. D.; Polito, M. J.

    2017-12-01

    The Southern Ocean ecosystem is undergoing rapid environmental change due to ongoing and historic anthropogenic impacts such as climate change and marine mammal harvesting. These disturbances may have cascading effects through the Antarctic food webs, resulting in profound shifts in the sources and cycling of organic matter supporting higher-trophic organisms, such as penguins. For example, bulk stable isotope analyses of modern and ancient preserved penguin tissues suggest variations in penguin feeding ecology throughout the Holocene with dramatic isotopic shifts in the last 200 years. However, it is not clear whether these isotopic shifts resulted from changes at the base of the food web, dietary shifts in penguins, or some combination of both factors. Newly developed compound-specific stable nitrogen isotope analysis of individual amino acids (CSIA-AA) may provide a powerful new tool to tease apart these confounding variables. Stable nitrogen isotope values of trophic amino acids (e.g., glutamic acid) increase substantially with each trophic transfer in the food web, while source amino acid (e.g., phenylalanine) stable nitrogen isotope values remain relatively unchanged and reflect ecosystem baselines. As such, we can use this CSIA-AA approach to decipher between baseline and dietary shifts in penguins over time from modern and ancient eggshells of Pygoscelis penguins in the Antarctic Peninsula and the Ross Sea regions of Antarctica. In order to accurately apply this CSIA-AA approach, we first characterized the trophic fractionation factors of individual amino acids between diet and penguin consumers in a long-term controlled penguin feeding experiment. We then applied these values to modern and ancient eggshells from the Antarctic Peninsula and Ross Sea to evaluate shifts in penguin trophic dynamics as a function of climate and anthropogenic interaction throughout much of the Holocene. This work develops a cutting edge new molecular geochemistry approach

  16. Spatial pattern in Antarctica: what can we learn from Antarctic bacterial isolates?

    Science.gov (United States)

    Chong, Chun Wie; Goh, Yuh Shan; Convey, Peter; Pearce, David; Tan, Irene Kit Ping

    2013-09-01

    A range of small- to moderate-scale studies of patterns in bacterial biodiversity have been conducted in Antarctica over the last two decades, most suggesting strong correlations between the described bacterial communities and elements of local environmental heterogeneity. However, very few of these studies have advanced interpretations in terms of spatially associated patterns, despite increasing evidence of patterns in bacterial biogeography globally. This is likely to be a consequence of restricted sampling coverage, with most studies to date focusing only on a few localities within a specific Antarctic region. Clearly, there is now a need for synthesis over a much larger spatial to consolidate the available data. In this study, we collated Antarctic bacterial culture identities based on the 16S rRNA gene information available in the literature and the GenBank database (n > 2,000 sequences). In contrast to some recent evidence for a distinct Antarctic microbiome, our phylogenetic comparisons show that a majority (~75 %) of Antarctic bacterial isolates were highly similar (≥99 % sequence similarity) to those retrieved from tropical and temperate regions, suggesting widespread distribution of eurythermal mesophiles in Antarctic environments. However, across different Antarctic regions, the dominant bacterial genera exhibit some spatially distinct diversity patterns analogous to those recently proposed for Antarctic terrestrial macroorganisms. Taken together, our results highlight the threat of cross-regional homogenisation in Antarctic biodiversity, and the imperative to include microbiota within the framework of biosecurity measures for Antarctica.

  17. Passive tracers in a general circulation model of the Southern Ocean

    Directory of Open Access Journals (Sweden)

    I. G. Stevens

    Full Text Available Passive tracers are used in an off-line version of the United Kingdom Fine Resolution Antarctic Model (FRAM to highlight features of the circulation and provide information on the inter-ocean exchange of water masses. The use of passive tracers allows a picture to be built up of the deep circulation which is not readily apparent from examination of the velocity or density fields. Comparison of observations with FRAM results gives good agreement for many features of the Southern Ocean circulation. Tracer distributions are consistent with the concept of a global "conveyor belt" with a return path via the Agulhas retroflection region for the replenishment of North Atlantic Deep Water.

    Key words. Oceanography: general (numerical modeling; water masses · Oceanography: physical (general circulation

  18. Enhancing Ocean Research Data Access

    Science.gov (United States)

    Chandler, Cynthia; Groman, Robert; Shepherd, Adam; Allison, Molly; Arko, Robert; Chen, Yu; Fox, Peter; Glover, David; Hitzler, Pascal; Leadbetter, Adam; Narock, Thomas; West, Patrick; Wiebe, Peter

    2014-05-01

    The Biological and Chemical Oceanography Data Management Office (BCO-DMO) works in partnership with ocean science investigators to publish data from research projects funded by the Biological and Chemical Oceanography Sections and the Office of Polar Programs Antarctic Organisms & Ecosystems Program at the U.S. National Science Foundation. Since 2006, researchers have been contributing data to the BCO-DMO data system, and it has developed into a rich repository of data from ocean, coastal and Great Lakes research programs. While the ultimate goal of the BCO-DMO is to ensure preservation of NSF funded project data and to provide open access to those data, achievement of those goals is attained through a series of related phases that benefits from active collaboration and cooperation with a large community of research scientists as well as curators of data and information at complementary data repositories. The BCO-DMO is just one of many intermediate data management centers created to facilitate long-term preservation of data and improve access to ocean research data. Through partnerships with other data management professionals and active involvement in local and global initiatives, BCO-DMO staff members are working to enhance access to ocean research data available from the online BCO-DMO data system. Continuing efforts in use of controlled vocabulary terms, development of ontology design patterns and publication of content as Linked Open Data are contributing to improved discovery and availability of BCO-DMO curated data and increased interoperability of related content available from distributed repositories. We will demonstrate how Semantic Web technologies (e.g. RDF/XML, SKOS, OWL and SPARQL) have been integrated into BCO-DMO data access and delivery systems to better serve the ocean research community and to contribute to an expanding global knowledge network.

  19. Parameterized and resolved Southern Ocean eddy compensation

    Science.gov (United States)

    Poulsen, Mads B.; Jochum, Markus; Nuterman, Roman

    2018-04-01

    The ability to parameterize Southern Ocean eddy effects in a forced coarse resolution ocean general circulation model is assessed. The transient model response to a suite of different Southern Ocean wind stress forcing perturbations is presented and compared to identical experiments performed with the same model in 0.1° eddy-resolving resolution. With forcing of present-day wind stress magnitude and a thickness diffusivity formulated in terms of the local stratification, it is shown that the Southern Ocean residual meridional overturning circulation in the two models is different in structure and magnitude. It is found that the difference in the upper overturning cell is primarily explained by an overly strong subsurface flow in the parameterized eddy-induced circulation while the difference in the lower cell is mainly ascribed to the mean-flow overturning. With a zonally constant decrease of the zonal wind stress by 50% we show that the absolute decrease in the overturning circulation is insensitive to model resolution, and that the meridional isopycnal slope is relaxed in both models. The agreement between the models is not reproduced by a 50% wind stress increase, where the high resolution overturning decreases by 20%, but increases by 100% in the coarse resolution model. It is demonstrated that this difference is explained by changes in surface buoyancy forcing due to a reduced Antarctic sea ice cover, which strongly modulate the overturning response and ocean stratification. We conclude that the parameterized eddies are able to mimic the transient response to altered wind stress in the high resolution model, but partly misrepresent the unperturbed Southern Ocean meridional overturning circulation and associated heat transports.

  20. Feasibility of Using Alternate Fuels in the U.S. Antarctic Program: Initial Assessment

    Science.gov (United States)

    2017-09-01

    Polar Programs. Morris, A. 2015a. Email communication. 21 April. Centennial , CO: Antarctic Support Contractor. ———. 2015b. Personal...communication. 19 May. Centennial , CO: Antarctic Support Contractor. ———. 2014. Email communication. 24 November. Centennial , CO: Antarctic Support

  1. Interactive influences of bioactive trace metals on biological production in oceanic waters

    International Nuclear Information System (INIS)

    Bruland, K.W.; Donat, J.R.; Hutchins, D.A.

    1991-01-01

    The authors present an overview of the oceanic chemistries of the bioactive trace metals, Mn, Fe, Co, Ni, Cu, and Zn; the authors combine field data with results from laboratory phytoplankton culture-trace metal studies and speculate on the potential influences of these trace metals on oceanic plankton production and species composition. Most field studies have focused on the effects of single metals. However, they propose that synergistic and antagonistic interactions between multiple trace metals could be very important in the oceans. Trace metal antagonisms that may prove particularly important are those between Cu and the potential biolimiting metals Fe, Mn, and Zn. These antagonistic interactions could have the greatest influence on biological productivity in areas of the open ocean isolated from terrestrial inputs, such as the remote high nutrient regions of the Pacific and Antarctic Oceans. The emerging picture of trace metal-biota interactions in these oceanic areas is one in which biology strongly influences distribution and chemical speciation of all these bioactive trace metals. It also seems likely that many of these bioactive trace metals and their speciation may influence levels of primary productivity, species composition, and trophic structure. Future investigations should give more complete consideration to the interactive effects of biologically important trace metals

  2. Eddy-resolving simulations of the Fimbul Ice Shelf cavity circulation: Basal melting and exchange with open ocean

    Science.gov (United States)

    Hattermann, T.; Smedsrud, L. H.; Nøst, O. A.; Lilly, J. M.; Galton-Fenzi, B. K.

    2014-10-01

    Melting at the base of floating ice shelves is a dominant term in the overall Antarctic mass budget. This study applies a high-resolution regional ice shelf/ocean model, constrained by observations, to (i) quantify present basal mass loss at the Fimbul Ice Shelf (FIS); and (ii) investigate the oceanic mechanisms that govern the heat supply to ice shelves in the Eastern Weddell Sea. The simulations confirm the low melt rates suggested by observations and show that melting is primarily determined by the depth of the coastal thermocline, regulating deep ocean heat fluxes towards the ice. Furthermore, the uneven distribution of ice shelf area at different depths modulates the melting response to oceanic forcing, causing the existence of two distinct states of melting at the FIS. In the simulated present-day state, only small amounts of Modified Warm Deep Water enter the continental shelf, and ocean temperatures beneath the ice are close to the surface freezing point. The basal mass loss in this so-called state of "shallow melting" is mainly controlled by the seasonal inflow of solar-heated surface water affecting large areas of shallow ice in the upper part of the cavity. This is in contrast to a state of "deep melting", in which the thermocline rises above the shelf break depth, establishing a continuous inflow of Warm Deep Water towards the deep ice. The transition between the two states is found to be determined by a complex response of the Antarctic Slope Front overturning circulation to varying climate forcings. A proper representation of these frontal dynamics in climate models will therefore be crucial when assessing the evolution of ice shelf basal melting along this sector of Antarctica.

  3. Seismic Characterization of Oceanic Water Masses, Water Mass Boundaries, and Mesoscale Eddies SE of New Zealand

    Science.gov (United States)

    Gorman, Andrew R.; Smillie, Matthew W.; Cooper, Joanna K.; Bowman, M. Hamish; Vennell, Ross; Holbrook, W. Steven; Frew, Russell

    2018-02-01

    The Subtropical and Subantarctic Fronts, which separate Subtropical, Subantarctic, and Antarctic Intermediate Waters, are diverted to the south of New Zealand by the submerged continental landmass of Zealandia. In the upper ocean of this region, large volumes of dissolved or suspended material are intermittently transported across the Subtropical Front; however, the mechanisms of such transport processes are enigmatic. Understanding these oceanic boundaries in three dimensions generally depends on measurements collected from stationary vessels and moorings. The details of these data sets, which are critical for understanding how water masses interact and mix at the fine-scale (seismic reflection images of oceanic water masses have been produced using petroleum industry data. These seismic sections clearly show three main water masses, the boundary zones (fronts) between them, and associated thermohaline fine structure that may be related to the mixing of water masses in this region. Interpretations of the data suggest that the Subtropical Front in this region is a landward-dipping zone, with a width that can vary between 20 and 40 km. The boundary zone between Subantarctic Waters and the underlying Antarctic Intermediate Waters is also observed to dip landward. Several isolated lenses have been identified on the three data sets, ranging in size from 9 to 30 km in diameter. These lenses are interpreted to be mesoscale eddies that form at relatively shallow depths along the south side of the Subtropical Front.

  4. Near-shore Antarctic pH variability has implications for the design of ocean acidification experiments

    Science.gov (United States)

    Kapsenberg, Lydia; Kelley, Amanda L.; Shaw, Emily C.; Martz, Todd R.; Hofmann, Gretchen E.

    2015-01-01

    Understanding how declining seawater pH caused by anthropogenic carbon emissions, or ocean acidification, impacts Southern Ocean biota is limited by a paucity of pH time-series. Here, we present the first high-frequency in-situ pH time-series in near-shore Antarctica from spring to winter under annual sea ice. Observations from autonomous pH sensors revealed a seasonal increase of 0.3 pH units. The summer season was marked by an increase in temporal pH variability relative to spring and early winter, matching coastal pH variability observed at lower latitudes. Using our data, simulations of ocean acidification show a future period of deleterious wintertime pH levels potentially expanding to 7–11 months annually by 2100. Given the presence of (sub)seasonal pH variability, Antarctica marine species have an existing physiological tolerance of temporal pH change that may influence adaptation to future acidification. Yet, pH-induced ecosystem changes remain difficult to characterize in the absence of sufficient physiological data on present-day tolerances. It is therefore essential to incorporate natural and projected temporal pH variability in the design of experiments intended to study ocean acidification biology.

  5. The past, present and future distribution of a deep-sea shrimp in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Zeenatul Basher

    2016-02-01

    Full Text Available Shrimps have a widespread distribution across the shelf, slope and seamount regions of the Southern Ocean. Studies of Antarctic organisms have shown that individual species and higher taxa display different degrees of sensitivity and adaptability in response to environmental change. We use species distribution models to predict changes in the geographic range of the deep-sea Antarctic shrimp Nematocarcinus lanceopes under changing climatic conditions from the Last Glacial Maximum to the present and to the year 2100. The present distribution range indicates a pole-ward shift of the shrimp population since the last glaciation. This occurred by colonization of slopes from nearby refugia located around the northern part of Scotia Arc, southern tip of South America, South Georgia, Bouvet Island, southern tip of the Campbell plateau and Kerguelen plateau. By 2100, the shrimp are likely to expand their distribution in east Antarctica but have a continued pole-ward contraction in west Antarctica. The range extension and contraction process followed by the deep-sea shrimp provide a geographic context of how other deep-sea Antarctic species may have survived during the last glaciation and may endure with projected changing climatic conditions in the future.

  6. The role of feedbacks in Antarctic sea ice change

    Science.gov (United States)

    Feltham, D. L.; Frew, R. C.; Holland, P.

    2017-12-01

    The changes in Antarctic sea ice over the last thirty years have a strong seasonal dependence, and the way these changes grow in spring and decay in autumn suggests that feedbacks are strongly involved. The changes may ultimately be caused by atmospheric warming, the winds, snowfall changes, etc., but we cannot understand these forcings without first untangling the feedbacks. A highly simplified coupled sea ice -mixed layer model has been developed to investigate the importance of feedbacks on the evolution of sea ice in two contrasting regions in the Southern Ocean; the Amundsen Sea where sea ice extent has been decreasing, and the Weddell Sea where it has been expanding. The change in mixed layer depth in response to changes in the atmosphere to ocean energy flux is implicit in a strong negative feedback on ice cover changes in the Amundsen Sea, with atmospheric cooling leading to a deeper mixed layer resulting in greater entrainment of warm Circumpolar Deep Water, causing increased basal melting of sea ice. This strong negative feedback produces counter intuitive responses to changes in forcings in the Amundsen Sea. This feedback is absent in the Weddell due to the complete destratification and strong water column cooling that occurs each winter in simulations. The impact of other feedbacks, including the albedo feedback, changes in insulation due to ice thickness and changes in the freezing temperature of the mixed layer, were found to be of secondary importance compared to changes in the mixed layer depth.

  7. Effects of whaling on the structure of the Southern Ocean food web: insights on the "krill surplus" from ecosystem modelling.

    Directory of Open Access Journals (Sweden)

    Szymon Surma

    Full Text Available The aim of this study was to examine the ecological plausibility of the "krill surplus" hypothesis and the effects of whaling on the Southern Ocean food web using mass-balance ecosystem modelling. The depletion trajectory and unexploited biomass of each rorqual population in the Antarctic was reconstructed using yearly catch records and a set of species-specific surplus production models. The resulting estimates of the unexploited biomass of Antarctic rorquals were used to construct an Ecopath model of the Southern Ocean food web existing in 1900. The rorqual depletion trajectory was then used in an Ecosim scenario to drive rorqual biomasses and examine the "krill surplus" phenomenon and whaling effects on the food web in the years 1900-2008. An additional suite of Ecosim scenarios reflecting several hypothetical trends in Southern Ocean primary productivity were employed to examine the effect of bottom-up forcing on the documented krill biomass trend. The output of the Ecosim scenarios indicated that while the "krill surplus" hypothesis is a plausible explanation of the biomass trends observed in some penguin and pinniped species in the mid-20th century, the excess krill biomass was most likely eliminated by a rapid decline in primary productivity in the years 1975-1995. Our findings suggest that changes in physical conditions in the Southern Ocean during this time period could have eliminated the ecological effects of rorqual depletion, although the mechanism responsible is currently unknown. Furthermore, a decline in iron bioavailability due to rorqual depletion may have contributed to the rapid decline in overall Southern Ocean productivity during the last quarter of the 20th century. The results of this study underscore the need for further research on historical changes in the roles of top-down and bottom-up forcing in structuring the Southern Ocean food web.

  8. Ocean acidification and calcium carbonate saturation states in the coastal zone of the West Antarctic Peninsula

    NARCIS (Netherlands)

    Jones, Elizabeth M.; Fenton, Mairi; Meredith, Michael P.; Clargo, Nicola M.; Ossebaar, Sharyn; Ducklow, Hugh W.; Venables, Hugh J.; de Baar, Henricus

    The polar oceans are particularly vulnerable to ocean acidification; the lowering of seawater pH and carbonate mineral saturation states due to uptake of atmospheric carbon dioxide (CO2). High spatial variability in surface water pH and saturation states (Omega) for two biologically-important

  9. The United States Antarctic Program Data Center (USAP-DC): Recent Developments

    Science.gov (United States)

    Nitsche, F. O.; Bauer, R.; Arko, R. A.; Shane, N.; Carbotte, S. M.; Scambos, T.

    2017-12-01

    Antarctic earth and environmental science data are highly valuable, often unique research assets. They are acquired with substantial and expensive logistical effort, frequently in areas that will not be re-visited for many years. The data acquired in support of Antarctic research span a wide range of disciplines. Historically, data management for the US Antarctic Program (USAP) has made use of existing disciplinary data centers, and the international Antarctic Master Directory (AMD) has served as a central metadata catalog linking to data files hosted in these external repositories. However, disciplinary repositories do not exist for all USAP-generated data types and often it is unclear what repositories are appropriate, leading to many datasets being served locally from scientist's websites or not available at all. The USAP Data Center (USAP-DC; www.usap-dc.org), operated as part of the Interdisciplinary Earth Data Alliance (IEDA), contributes to the broader preservation of research data acquired with funding from NSF's Office of Polar Programs by providing a repository for diverse data from the Antarctic region. USAP-DC hosts data that spans the range of Antarctic research from snow radar to volcano observatory imagery to penguin counts to meteorological model outputs. Data services include data documentation, long-term preservation, and web publication, as well as scientist support for registration of data descriptions into the AMD in fulfillment of US obligations under the International Antarctic Treaty. In Spring 2016, USAP-DC and the NSIDC began a new collaboration to consolidate data services for Antarctic investigators and to integrate the NSF-funded glaciology collection at NSIDC with the collection hosted by USAP-DC. Investigator submissions for NSF's Glaciology program now make use of USAP-DC's web submission tools, providing a uniform interface for Antarctic investigators. The tools have been redesigned to collect a broader range of metadata. Each data

  10. Ocean acidification and calcium carbonate saturation states in the coastal zone of the West Antarctic Peninsula

    NARCIS (Netherlands)

    Jones, E.M.; Fenton, M.; Meredith, M.P.; Clargo, N.M.; Ossebaar, S.; Ducklow, H.W.; Venables, H.J.; De Baar, H.J.W.

    2017-01-01

    The polar oceans are particularly vulnerable to ocean acidification; the lowering of seawater pH and carbonate mineral saturation states due to uptake of atmospheric carbon dioxide (CO2). High spatial variability in surface water pH and saturation states (Ω) for two biologically-important calcium

  11. Submarine glacial landforms and interactions with volcanism around Sub-Antarctic Heard and McDonald Islands

    Science.gov (United States)

    Picard, K.; Watson, S. J.; Fox, J. M.; Post, A.; Whittaker, J. M.; Lucieer, V.; Carey, R.; Coffin, M. F.; Hodgson, D.; Hogan, K.; Graham, A. G. C.

    2017-12-01

    Unravelling the glacial history of Sub-Antarctic islands can provide clues to past climate and Antarctic ice sheet stability. The glacial history of many sub-Antarctic islands is poorly understood, including the Heard and McDonald Islands (HIMI) located on the Kerguelen Plateau in the southern Indian Ocean. The geomorphologic development of HIMI has involved a combination of construction via hotspot volcanism and mechanical erosion caused by waves, weather, and glaciers. Today, the 2.5 km2 McDonald Islands are not glacierised; in contrast, the 368 km2 Heard Island has 12 major glaciers, some extending from the summit of 2813 m to sea level. Historical accounts from Heard Island suggest that the glaciers were more extensive in the 1850s to 1870s, and have retreated at least 12% (33.89 km2) since 1997. However, surrounding bathymetry suggests a much more extensive previous glaciation of the HIMI region that encompassed 9,585 km2, likely dating back at least to the Last Glacial Maximum (LGM) ca. 26.5 -19 ka. We present analyses of multibeam bathymetry and backscatter data, acquired aboard RV Investigator in early 2016, that support the previous existence of an extensive icecap. These data reveal widespread ice-marginal and subglacial features including moraines, over-deepened troughs, drumlins and crag-and-tails. Glacial landforms suggest paleo-ice flow directions and a glacial extent that are consistent with previously documented broad scale morphological features. We identify >660 iceberg keel scours in water depths ranging from 150 - 530 m. The orientations of the iceberg keel scours reflect the predominantly east-flowing Antarctic Circumpolar Current and westerly winds in the region. 40Ar/39Ar dating of volcanic rocks from submarine volcanoes around McDonald Islands suggests that volcanism and glaciation coincided. The flat-topped morphology of these volcanoes may result from lava-ice interaction or erosion by glaciers post eruption during a time of extensive ice

  12. Transcriptome of the Antarctic brooding gastropod mollusc Margarella antarctica.

    Science.gov (United States)

    Clark, Melody S; Thorne, Michael A S

    2015-12-01

    454 RNA-Seq transcriptome data were generated from foot tissue of the Antarctic brooding gastropod mollusc Margarella antarctica. A total of 6195 contigs were assembled de novo, providing a useful resource for researchers with an interest in Antarctic marine species, phylogenetics and mollusc biology, especially shell production. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The new version of the Institute of Numerical Mathematics Sigma Ocean Model (INMSOM) for simulation of Global Ocean circulation and its variability

    Science.gov (United States)

    Gusev, Anatoly; Fomin, Vladimir; Diansky, Nikolay; Korshenko, Evgeniya

    2017-04-01

    In this paper, we present the improved version of the ocean general circulation sigma-model developed in the Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS). The previous version referred to as INMOM (Institute of Numerical Mathematics Ocean Model) is used as the oceanic component of the IPCC climate system model INMCM (Institute of Numerical Mathematics Climate Model (Volodin et al 2010,2013). Besides, INMOM as the only sigma-model was used for simulations according to CORE-II scenario (Danabasoglu et al. 2014,2016; Downes et al. 2015; Farneti et al. 2015). In general, INMOM results are comparable to ones of other OGCMs and were used for investigation of climatic variations in the North Atlantic (Gusev and Diansky 2014). However, detailed analysis of some CORE-II INMOM results revealed some disadvantages of the INMOM leading to considerable errors in reproducing some ocean characteristics. So, the mass transport in the Antarctic Circumpolar Current (ACC) was overestimated. As well, there were noticeable errors in reproducing thermohaline structure of the ocean. After analysing the previous results, the new version of the OGCM was developed. It was decided to entitle is INMSOM (Institute of Numerical Mathematics Sigma Ocean Model). The new title allows one to distingwish the new model, first, from its older version, and second, from another z-model developed in the INM RAS and referred to as INMIO (Institute of Numerical Mathematics and Institute of Oceanology ocean model) (Ushakov et al. 2016). There were numerous modifications in the model, some of them are as follows. 1) Formulation of the ocean circulation problem in terms of full free surface with taking into account water amount variation. 2) Using tensor form of lateral viscosity operator invariant to rotation. 3) Using isopycnal diffusion including Gent-McWilliams mixing. 4) Using atmospheric forcing computation according to NCAR methodology (Large and Yeager 2009). 5

  14. The effects of sub-ice-shelf melting on dense shelf water formation and export in idealized simulations of Antarctic margins

    Science.gov (United States)

    Marques, Gustavo; Stern, Alon; Harrison, Matthew; Sergienko, Olga; Hallberg, Robert

    2017-04-01

    Dense shelf water (DSW) is formed in coastal polynyas around Antarctica as a result of intense cooling and brine rejection. A fraction of this water reaches ice shelves cavities and is modified due to interactions with sub-ice-shelf melt water. This modified water mass contributes to the formation of Antarctic Bottom Water, and consequently, influences the large-scale ocean circulation. Here, we investigate the role of sub-ice-shelf melting in the formation and export of DSW using idealized simulations with an isopycnal ocean model (MOM6) coupled with a sea ice model (SIS2) and a thermodynamic active ice shelf. A set of experiments is conducted with variable horizontal grid resolutions (0.5, 1.0 and 2.0 km), ice shelf geometries and atmospheric forcing. In all simulations DSW is spontaneously formed in coastal polynyas due to the combined effect of the imposed atmospheric forcing and the ocean state. Our results show that sub-ice-shelf melting can significantly change the rate of dense shelf water outflows, highlighting the importance of this process to correctly represent bottom water formation.

  15. RU COOL's scalable educational focus on immersing society in the ocean through ocean observing systems

    Science.gov (United States)

    Schofield, O.; McDonnell, J. D.; Kohut, J. T.; Glenn, S. M.

    2016-02-01

    Many regions of the ocean are exhibiting significant change, suggesting the need to develop effective focused education programs for a range of constituencies (K-12, undergraduate, and general public). We have been focused on developing a range of educational tools in a multi-pronged strategy built around using streaming data delivered through customized web services, focused undergraduate tiger teams, teacher training and video/documentary film-making. Core to the efforts is on engaging the undergraduate community by leveraging the data management tools of the U.S. Integrated Ocean Observing System (IOOS) and the education tools of the U.S. National Science Foundation's (NSF) Ocean Observing Initiative (OOI). These intuitive interactive browser-based tools reduce the barriers for student participation in sea exploration and discovery, and allowing them to become "field going" oceanographers while sitting at their desk. Those undergraduate student efforts complement efforts to improve educator and student engagement in ocean sciences through exposure to scientists and data. Through professional development and the creation of data tools, we will reduce the logistical costs of bringing ocean science to students in grades 6-16. We are providing opportunities to: 1) build capacity of scientists in communicating and engaging with diverse audiences; 2) create scalable, in-person and virtual opportunities for educators and students to engage with scientists and their research through data visualizations, data activities, educator workshops, webinars, and student research symposia. We are using a blended learning approach to promote partnerships and cross-disciplinary sharing. Finally we use data and video products to entrain public support through the development of science documentaries about the science and people who conduct it. For example Antarctic Edge is a feature length award-winning documentary about climate change that has garnered interest in movie theatres

  16. Quantarctica: A Unique, Open, Standalone GIS Package for Antarctic Research and Education

    Science.gov (United States)

    Roth, George; Matsuoka, Kenichi; Skoglund, Anders; Melvær, Yngve; Tronstad, Stein

    2017-04-01

    The Norwegian Polar Institute has developed Quantarctica (http://quantarctica.npolar.no), an open GIS package for use by the international Antarctic community. Quantarctica includes a wide range of cartographic basemap layers, geophysical and glaciological datasets, and satellite imagery in standardized open file formats with a consistent Antarctic map projection and customized layer and labeling styles for quick, effective cartography. Quantarctica's strengths as an open science platform lie in 1) The complete, ready-to-use data package which includes full-resolution, original-quality vector and raster data, 2) A policy for freely-redistributable and modifiable data including all metadata and citations, and 3) QGIS, a free, full-featured, modular, offline-capable open-source GIS suite with a rapid and active development and support community. The Quantarctica team is actively incorporating more up-to-date, peer-reviewed, freely distributable pan-Antarctic geospatial datasets for the next version release in 2017. As part of this ongoing development, we are investigating the best approaches for quickly and seamlessly distributing new and updated data to users, storing datasets in efficient, open file formats while maintaining full data integrity, and coexisting with numerous online data portals in a way that most actively benefits the Antarctic community. A recent survey of Quantarctica users showed broad geographical adoption among Antarctic Treaty countries, including those outside the large US and UK Antarctic programs. Maps and figures produced by Quantarctica have also appeared in open-access journals and outside of the formal scientific community on popular science and GIS blogs. Our experience with the Quantarctica project has shown the tremendous value of education and outreach, not only in promoting open software, data formats, and practices, but in empowering Antarctic science groups to more effectively use GIS and geospatial data. Open practices are

  17. DNA barcoding reveals new insights into the diversity of Antarctic species of Orchomene sensu lato (Crustacea: Amphipoda: Lysianassoidea)

    Science.gov (United States)

    Havermans, C.; Nagy, Z. T.; Sonet, G.; De Broyer, C.; Martin, P.

    2011-03-01

    Recent molecular analyses revealed that several so-called "circum-Antarctic" benthic crustacean species appeared to be complexes of cryptic species with restricted distributions. In this study we used a DNA barcoding approach based on mitochondrial cytochrome oxidase I gene sequences in order to detect possible cryptic diversity and to test the circumpolarity of some lysianassoid species. The orchomenid genus complex consists of the genera Abyssorchomene, Falklandia, Orchomenella, Orchomenyx and Pseudorchomene. Species of this genus complex are found throughout the Southern Ocean and show a high species richness and level of endemism. In the majority of the studied species, a genetic homogeneity was found even among specimens from remote sampling sites, which indicates a possible circum-Antarctic and eurybathic distribution. In four investigated species ( Orchomenella ( Orchomenopsis) acanthurus, Orchomenella ( Orchomenopsis) cavimanus, Orchomenella ( Orchomenella) franklini and Orchomenella ( Orchomenella) pinguides), genetically divergent lineages and possible cryptic taxa were revealed. After a detailed morphological analysis, O. ( O.) pinguides appeared to be composed of two distinct species, formerly synonymized under O. ( O.) pinguides. The different genetic patterns observed in these orchomenid species might be explained by the evolutionary histories undergone by these species and by their different dispersal and gene flow capacities.

  18. Stable isotopes and Antarctic moss banks: Plants and soil microbes respond to recent warming on the Antarctic Peninsula

    Science.gov (United States)

    Royles, Jessica; Amesbury, Matthew; Ogée, Jérôme; Wingate, Lisa; Convey, Peter; Hodgson, Dominic; Griffiths, Howard; Leng, Melanie; Charman, Dan

    2014-05-01

    The Antarctic Peninsula is one of the most rapidly warming regions on Earth, with air temperature increases of as much as 3°C recorded since the 1950s. However, the longer-term context of this change is limited and existing records, largely relying on ice core data, are not suitably located to be able to trace the spatial signature of change over time. We are working on a project exploiting stable isotope records preserved in moss peat banks spanning 10 degrees of latitude along the Antarctic Peninsula as an archive of late Holocene climate variability. Here we present a unique time series of past moss growth and soil microbial activity that has been produced from a 150 year old moss bank at Lazarev Bay, Alexander Island (69°S), a site at the southern limit of significant plant growth in the Antarctic Peninsula region. These moss banks are ideal archives for palaeoclimate research as they are well-preserved by freezing, generally monospecific, easily dated by radiocarbon techniques, and have sufficiently high accumulation rates to permit decadal resolution. We use accumulation rates, cellulose δ13C and fossil testate amoebae to show that growth rates, assimilation and microbial productivity rose rapidly in the 1960s, consistent with temperature change, although recently may have stalled, concurrent with other evidence. The increase in biological activity is unprecedented in the last 150 years. Along with work completed on Signy Island (60°S), in the South Orkney Islands, in which we used carbon isotope evidence to show recent climate-related enhancement of CO2 assimilation and peat accumulation rates in Antarctica, the observed relationships between moss growth, microbial activity and climate suggests that moss bank records have the potential to test the regional expression of temperature variability shown by instrumental data on the Antarctic Peninsula over centennial to millennial timescales, by providing long-term records of summer growth conditions

  19. The Antarctic krill Euphausia superba shows diurnal cycles of transcription under natural conditions.

    Directory of Open Access Journals (Sweden)

    Cristiano De Pittà

    Full Text Available BACKGROUND: Polar environments are characterized by extreme seasonal changes in day length, light intensity and spectrum, the extent of sea ice during the winter, and food availability. A key species of the Southern Ocean ecosystem, the Antarctic krill (Euphausia superba has evolved rhythmic physiological and behavioral mechanisms to adapt to daily and seasonal changes. The molecular organization of the clockwork underlying these biological rhythms is, nevertheless, still only partially understood. METHODOLOGY/PRINCIPAL FINDINGS: The genome sequence of the Antarctic krill is not yet available. A normalized cDNA library was produced and pyrosequenced in the attempt to identify large numbers of transcripts. All available E. superba sequences were then assembled to create the most complete existing oligonucleotide microarray platform with a total of 32,217 probes. Gene expression signatures of specimens collected in the Ross Sea at five different time points over a 24-hour cycle were defined, and 1,308 genes differentially expressed were identified. Of the corresponding transcripts, 609 showed a significant sinusoidal expression pattern; about 40% of these exibithed a 24-hour periodicity while the other 60% was characterized by a shorter (about 12-hour rhythm. We assigned the differentially expressed genes to functional categories and noticed that those concerning translation, proteolysis, energy and metabolic process, redox regulation, visual transduction and stress response, which are most likely related to daily environmental changes, were significantly enriched. Two transcripts of peroxiredoxin, thought to represent the ancestral timekeeping system that evolved about 2.5 billion years ago, were also identified as were two isoforms of the EsRh1 opsin and two novel arrestin1 sequences involved in the visual transduction cascade. CONCLUSIONS: Our work represents the first characterization of the krill diurnal transcriptome under natural conditions

  20. Paleoceanographic Changes during the Past 95000 Years from the Indian Sector of the Southern Ocean

    Science.gov (United States)

    Manoj, M. C.; Meloth, T.; Mohan, R.

    2012-12-01

    High-resolution planktic/benthic foraminiferal stable isotope and mean sortable silt records in a sediment core (SK200/22a) from the sub-Antarctic regime of the Indian sector of Southern Ocean depict the variations in surface and deep water hydrography during the past 95,000 years. The δ18O records of shallow- and deep-dwelling planktonic foraminiferal species (Neogloboquadrina pachyderma, Globigerina bulloides and Globorotalia inflata), primarily reflects the changes in upper water column characteristics. The δ18O records revealed the presence of the Antarctic Cold Reversal and the timing of the variability in major surface warming events appears in phase with the Antarctic temperature variations at the millennial time scale. Comparison between the proxies of sea surface conditions like planktonic δ18O and productivity proxies like carbonate and biogenic opal content in the core indicate that millennial scale sea surface warming fluctuated with productivity. The marine isotopic stage (MIS) 1 and MIS2 are characterized by near constant variations in mean sortable silt values, negating any significant changes in the deep water flow during these periods. The MIS 3 - MIS 5 periods were characterized by a general increase in mean sortable silt value, suggesting a strengthening of bottom-current activity that triggered winnowing at these periods. This is supported by the low δ13C records of epibenthic Cibicidoides wuellerstorfi during the glacials and some parts of MIS3 and MIS 5, confirming older nutrient-rich and poorly ventilated southern sourced deep waters at these periods. The termination I is marked by decrease in flow speed and an increase in the C. wuellerstorfi δ13C values. Comparison of mean sortable silt and C. wuellerstorfi δ13C record with the Antarctic ice core records reveal that pulses of reduced bottom water flow of Circumpolar Deep Water/North Atlantic Deep Water are synchronous with the Antarctic warming events. The decreased flow speed during

  1. Distribution in the abundance and biomass of shelled pteropods in surface waters of the Indian sector of the Antarctic Ocean in mid-summer

    Science.gov (United States)

    Akiha, Fumihiro; Hashida, Gen; Makabe, Ryosuke; Hattori, Hiroshi; Sasaki, Hiroshi

    2017-06-01

    We investigated shelled pteropod abundance and biomass with a 100-μm closing net, and their estimated downward fluxes using a sediment trap installed in a drifter buoy in the Indian sector of the Antarctic Ocean during the austral summer. Over 90% pteropod abundance was distributed in the upper 50 m; 70-100% were immature veligers. Limacina retroversa was dominant in the >0.2 mm individuals north of 60°S, L. helicina dominated south of 62°S, while populations around 60-62°S were mixed. Unidentifiable small Limacina spp. (ssL) were highly abundant in the upper 50 m at 60°S, 63°S, and 64°S on 110°E and 63°S on 115°E, although their estimated particulate organic carbon (POC) biomasses were less than that of Limacina adults. Adult females bearing egg clusters were found in the 0-50 m layer; the veligers likely grew within a short period. The mean downward flux of ssL and veligers at 70 m around 60°S, 110°E was 5.1 ± 1.6 × 103 ind. m-2 d-1 (0.6 ± 0.2 mg C m-2 d-1), which was 3.8% of the integrated ssL and veligers in the upper 70 m, suggesting that at least 4% of the veligers were produced daily in the surface layers. The mid-summer spawned ssL and veligers likely contributed to the subsequent increase in large pteropods in the area.

  2. Improvement of shipborne sky radiometer and its demonstration aboard the Antarctic research vessel Shirase

    Directory of Open Access Journals (Sweden)

    Noriaki Tanaka

    2014-11-01

    Full Text Available The sun-tracking performance of a shipborne sky radiometer was improved to attain accurate aerosol optical thickness (AOT from direct solar measurements on a pitching and rolling vessel. Improvements were made in the accuracy of sun-pointing measurements, field-of-view expansion, sun-tracking speed, and measurement method. Radiometric measurements of direct solar and sky brightness distribution were performed using the shipborne sky radiometer onboard the Antarctic research vessel (R/V Shirase during JARE-51 (2009-2010 and JARE-52 (2010-2011. The temporal variation of signal intensity measured by the radiometer under cloudless conditions was smooth, demonstrating that the radiometer could measure direct sunlight onboard the R/V. AOT at 500 nm ranged from 0.01 to 0.34, and values over Southeast Asia and over the western Pacific Ocean in spring were higher than those over other regions. The Angstrom exponent ranged from -0.06 to 2.00, and values over Southeast Asia and off the coast near Sydney were the highest. The improved shipborne sky radiometer will contribute to a good understanding of the nature of aerosols over the ocean.

  3. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic marine waters

    Digital Repository Service at National Institute of Oceanography (India)

    De; Nair, S.; LokaBharathi, P.A.; Chandramohan, D.

    In the wake of the findings that Antarctic krills concentrate heavy metals at ppm level, (Yamamoto et al., 1987), the Antarctic waters from the Indian side were examined for the incidence of metal and antibiotic-resistant bacteria during...

  4. Ocean-Ice-Atmosphere Interactions off Sabrina and Adelie Coasts During NBP1402 and AU1402

    Science.gov (United States)

    Orsi, A. H.; Zielinski, N. J.; Webb, C.; Huber, B. A.

    2015-12-01

    Diverse interactions of winds, currents and ice around Antarctica dictate how, where and when the world's densest waters form, massive floating ice shelves and glaciers melt, gases are exchanged at the sea surface, and primary productivity. Compelled by recent rate estimates of East Antarctic Ice Sheet mass loss, we contrast the paths and mixing histories of oceanic waters reaching the continental ice edge off the Sabrina and Adelie coasts relying on a the first synoptic shipboard measurements made by U.S. (NBP1402) and Australian (AU1402) scientists. Analysis of historical hydrography and sea ice concentration fields within the Mertz Polynya indicates the apparent effect of evolving ocean-ice- atmosphere interactions on the characteristics of local Shelf Water (SW) sources. A polynya dominated water mass structure similar to that observed off the Adelie Coast before the removal of the Mertz Ice Tongue was expected to the west of the Dalton Ice Tongue (DIT). However, there was no evidence of dense SW off Sabrina Coast during both summer cruises of 2014 and 2015, thus lessening the region's preconceived influence to global meridional overturning. Present sea ice production within the eastern Dalton Polynya is overshadowed by freshwater input to relatively stable interior upper waters. The Antarctic Coastal Current (ACoC) picks up distinct meltwater contributions along the DIT western flank and in front of the Moscow University Ice Shelf (MUIS) and Totten Glacier (TG). Unlike over other highly influential margins to global sea level rise, the main evidence of inflow and mixing of relatively warm oceanic waters is reduced to relatively cold thermocline water (< 0.3°C) from the continental slope. This source water enters the eastern trough off Sabrina Coast and is swiftly steered poleward by complex underlying topography. Meltwater export from beneath the MUIS and TG is observed at newly discovered trenches that effectively constrain sub-cavity inflow to low salinity

  5. Antarctic Meteorite Newsletter

    Science.gov (United States)

    Lindstrom, Marilyn

    2000-01-01

    This newsletter contains something for everyone! It lists classifications of about 440 meteorites mostly from the 1997 and 1998 ANSMET (Antarctic Search for Meteorites) seasons. It also gives descriptions of about 45 meteorites of special petrologic type. These include 1 iron, 17 chondrites (7 CC, 1 EC, 9 OC) and 27 achondrites (25 HED, UR). Most notable are an acapoloite (GRA98028) and an olivine diogenite (GRA98108).

  6. Exploring the data constrained phase space of the last Antarctic glacial cycle

    Science.gov (United States)

    Lecavalier, Benoit; Tarasov, Lev

    2017-04-01

    The evolution of the Antarctic Ice Sheet over the last two glacial cycles is studied using the Glacial Systems Model (GSM). Glaciological modelling is an effective tool to generate continental-scale reconstructions over glacial cycles, but the models depend on parameterizations to account for the deficiencies (e.g., missing physics, unresolved sub-grid processes, uncertain boundary conditions) inherent in any numerical model. These parameters, considered together, form a parameter phase space from which sets of parameters can be sampled; each set corresponds to an ice sheet reconstruction. The GSM has been updated with a number of recent developments: hybrid SIA-SSA physics, Schoof grounding line parameterization, broadened degrees of freedom in the climate forcing, sub-shelf melt explicitly dependent on ocean temperatures, improved hydrofracturing, cliff failure at the margins, basal topographic uncertainties, impact of basal drag roughness and subgrid statistics, and first order geoidal corrections in the coupled glacial isostatic adjustment component. Parametric uncertainties are defined in the GSM using >36 ensemble parameters. Prior to conducting a full Bayesian calibration, one must first validate the ability of the GSM to simulate a broad range of responses. We attempt this by latin hypercube sampling of the parameter phase space and comparing the model predictions against our constraint database consisting of past elevation, extent and relative sea level observations and the present day geometry. We document the capability of the GSM to envelope the observational constraints given the parametric uncertainties and discuss the implications for the evolution of the Antarctic Ice Sheet.

  7. Preliminary Compositional Comparisons of H-Chondrite Falls to Antarctic H-Chondrite Populations

    Science.gov (United States)

    Kallemeyn, G. W.; Krot, A. N.; Rubin, A. E.

    1993-07-01

    In a series of papers [e.g., 1,2], Lipschutz and co-workers compared trace- element RNAA data from Antarctic and non-Antarctic H4-6 chondrites and concluded that the two populations have significantly different concentrations of several trace elements including Co, Se, and Sb. They interpreted their data as indicating that these Antarctic H chondrites form different populations than observed H falls and may have originated in separate parent bodies. Recent work by Sears and co-workers [e.g., 3] has shown that there seem to be distinct populations of Antarctic H chondrites, distinguishable on the bases of induced thermoluminescence (TL) peak temperature, metallographic cooling rate, and cosmic ray exposure age. They showed that a group of Antarctic H chondrites having abnormally high induced TL peak temperatures (>=190 degrees C) also has cosmic ray exposure ages Ma (mostly ~8 Ma) and fast metallographic cooling rates (~100 K/Ma). Another group having induced TL peak temperatures 20 Ma and slower cooling rates (~10-20 K/Ma). We studied 24 H4-6 chondrites from Victoria Land (including 12 previously analyzed by the Lipschutz group) by optical microscopy and electron microprobe. Many of the Antarctic H chondrites studied by Lipschutz and co- workers are unsuitable for proper compositional comparisons with H chondrite falls: Four are very weathered, five are extensively shocked, and two are extensively brecciated. Furthermore, at least five of the samples contain solar-wind gas (and hence are regolith breccias) [4]. These samples were rejected because of possible compositional modification by secondary processes. For our INAA study we chose a suite of relatively unweathered and unbrecciated Antarctic H chondrites (including nine from the Lipschutz set): ALHA 77294 (H5, S3); ALHA 79026 (H5, S3); ALHA 79039 (H5, S3); ALHA 80131 (H5, S3); ALHA 80132 (H5, S4); ALHA 81037 (H6, S3); EETA 79007 (H5, S4); LEW 85320 (H6, S4); LEW 85329 (H6, S3); RKPA 78002 (H5, S2); and RKPA

  8. Antarctic Ocean Tides from GRACE Intersatellite Tracking Data and Hydrodynamic Assimilation

    Science.gov (United States)

    Erofeeva, S.; Han, S.; Ray, R.; Egbert, G.; Luthcke, S.

    2007-12-01

    Long-wavelength components of the oceanic tides surrounding Antarctica are estimated from over three years of GRACE satellite-to-satellite ranging measurements. An inversion is performed for the major constituents M2, O1, and S2, parameterized as localized average mass anomalies relative to a prior tidal model. Satellite state adjustments are made simultaneously. These long-wavelength anomalies are then assimilated into a high-resolution regional hydrodynamic tidal model. Comparisons to independent "ground truth" data, previously collected by King and Padman, show that assimilation of the GRACE inversions results in improved accuracy, for all three constituents.

  9. The Antarctic Centennial Oscillation: A Natural Paleoclimate Cycle in the Southern Hemisphere That Influences Global Temperature

    Directory of Open Access Journals (Sweden)

    W. Jackson Davis

    2018-01-01

    Full Text Available We report a previously-unexplored natural temperature cycle recorded in ice cores from Antarctica—the Antarctic Centennial Oscillation (ACO—that has oscillated for at least the last 226 millennia. Here we document the properties of the ACO and provide an initial assessment of its role in global climate. We analyzed open-source databases of stable isotopes of oxygen and hydrogen as proxies for paleo-temperatures. We find that centennial-scale spectral peaks from temperature-proxy records at Vostok over the last 10,000 years occur at the same frequencies (±2.4% in three other paleoclimate records from drill sites distributed widely across the East Antarctic Plateau (EAP, and >98% of individual ACOs evaluated at Vostok match 1:1 with homologous cycles at the other three EAP drill sites and conversely. Identified ACOs summate with millennial periodicity to form the Antarctic Isotope Maxima (AIMs known to precede Dansgaard-Oeschger (D-O oscillations recorded in Greenland ice cores. Homologous ACOs recorded at the four EAP drill sites during the last glacial maximum appeared first at lower elevations nearest the ocean and centuries later on the high EAP, with latencies that exceed dating uncertainty >30-fold. ACO homologs at different drill sites became synchronous, however, during the warmer Holocene. Comparative spectral analysis suggests that the millennial-scale AIM cycle declined in period from 1500 to 800 years over the last 70 millennia. Similarly, over the last 226 millennia ACO repetition period (mean 352 years declined by half while amplitude (mean 0.67 °C approximately doubled. The period and amplitude of ACOs oscillate in phase with glacial cycles and related surface insolation associated with planetary orbital forces. We conclude that the ACO: encompasses at least the EAP; is the proximate source of D-O oscillations in the Northern Hemisphere; therefore affects global temperature; propagates with increased velocity as temperature

  10. Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma

    Directory of Open Access Journals (Sweden)

    N. R. Golledge

    2017-07-01

    Full Text Available The geometry of Antarctic ice sheets during warm periods of the geological past is difficult to determine from geological evidence, but is important to know because such reconstructions enable a more complete understanding of how the ice-sheet system responds to changes in climate. Here we investigate how Antarctica evolved under orbital and greenhouse gas conditions representative of an interglacial in the early Pliocene at 4.23 Ma, when Southern Hemisphere insolation reached a maximum. Using offline-coupled climate and ice-sheet models, together with a new synthesis of high-latitude palaeoenvironmental proxy data to define a likely climate envelope, we simulate a range of ice-sheet geometries and calculate their likely contribution to sea level. In addition, we use these simulations to investigate the processes by which the West and East Antarctic ice sheets respond to environmental forcings and the timescales over which these behaviours manifest. We conclude that the Antarctic ice sheet contributed 8.6 ± 2.8 m to global sea level at this time, under an atmospheric CO2 concentration identical to present (400 ppm. Warmer-than-present ocean temperatures led to the collapse of West Antarctica over centuries, whereas higher air temperatures initiated surface melting in parts of East Antarctica that over one to two millennia led to lowering of the ice-sheet surface, flotation of grounded margins in some areas, and retreat of the ice sheet into the Wilkes Subglacial Basin. The results show that regional variations in climate, ice-sheet geometry, and topography produce long-term sea-level contributions that are non-linear with respect to the applied forcings, and which under certain conditions exhibit threshold behaviour associated with behavioural tipping points.

  11. Distributional records of Antarctic fungi based on strains preserved in the Culture Collection of Fungi from Extreme Environments (CCFEE Mycological Section associated with the Italian National Antarctic Museum (MNA

    Directory of Open Access Journals (Sweden)

    Laura Selbmann

    2015-07-01

    Full Text Available This dataset includes information regarding fungal strains collected during several Antarctic expeditions: the Italian National Antarctic Research program (PNRA expeditions “X” (1994/1995, “XII” (1996/1997, “XVII” (2001/2002, “XIX” (2003/2004, “XXVI” (2010/2011, the Czech “IPY Expedition” (2007–2009 and a number of strains donated by E. Imre Friedmann (Florida State University in 2001, isolated from samples collected during the U.S.A. Antarctic Expeditions of 1980-1982. Samples, consisting of colonized rocks, mosses, lichens, sediments and soils, were collected in Southern and Northern Victoria Land of the continental Antarctica and in the Antarctic Peninsula. A total of 259 different strains were isolated, belonging to 32 genera and 38 species, out of which 12 represented new taxa. These strains are preserved in the Antarctic section of the Culture Collection of Fungi from Extreme Environments (CCFEE, which represents one of the collections associated with the Italian National Antarctic Museum (MNA, Section of Genoa, Italy, located at the Laboratory of Systematic Botany and Mycology, Department of Ecological and Biological Sciences (DEB, Tuscia University (Viterbo, Italy. The CCFEE hosts a total of 486 Antarctic fungal strains from worldwide extreme environments. Distributional records are reported here for 259 of these strains. The holotypes of the 12 new species included in this dataset are maintained at CCFEE and in other international collections: CBS-KNAW Fungal Biodiversity Centre (Utrecht, Netherlands; DBVPG, Industrial Yeasts Collection (University of Perugia, Italy; DSMZ, German Collection of Microorganisms and Cell Cultures (Brunswick, Germany; IMI, International Mycological Institute (London, U.K..

  12. A Stratification Boomerang: Nonlinear Dependence of Deep Southern Ocean Ventilation on PCO2

    Science.gov (United States)

    Galbraith, E. D.; Merlis, T. M.

    2014-12-01

    Strong correlations between atmospheric CO2, Antarctic temperatures, and marine proxy records have hinted that ventilation of the deep Southern Ocean may have played a central role in the variations of CO2 over glacial-interglacial cycles. One proposition is that, in general, the Southern Ocean ventilates the deep more strongly under higher CO2, due to a change in winds and/or the dominance of thermal stratification in a warm ocean, which weakens ocean biological carbon storage. Here, we explore this idea with a suite of multi-millennial simulations using the GFDL CM2Mc global coupled model. The results are, indeed, consistent with increasing ventilation of the Southern Ocean as pCO2 increases above modern. However, they reveal a surprising twist under low pCO2: increased salinity of the Southern Ocean, due in part to weakening atmospheric moisture transport, actually increases ventilation rate of the deep ocean under low pCO2 as well. This implies that a nadir of Southern Ocean ventilation occurs at intermediate pCO2, which the model estimates as being close to that of the present-day. This is at odds with the interpretation that weak ventilation of the deep Southern Ocean was the unifying coupled mechanism for the glacial pCO2 cycles. Rather, it suggests that factors other than the ventilation rate of the deep Southern Ocean, such as iron fertilization, ecosystem changes, water mass distributions, and sea ice cover, were key players in the glacial-interglacial CO2 changes.

  13. Initiation and long-term instability of the East Antarctic Ice Sheet.

    Science.gov (United States)

    Gulick, Sean P S; Shevenell, Amelia E; Montelli, Aleksandr; Fernandez, Rodrigo; Smith, Catherine; Warny, Sophie; Bohaty, Steven M; Sjunneskog, Charlotte; Leventer, Amy; Frederick, Bruce; Blankenship, Donald D

    2017-12-13

    Antarctica's continental-scale ice sheets have evolved over the past 50 million years. However, the dearth of ice-proximal geological records limits our understanding of past East Antarctic Ice Sheet (EAIS) behaviour and thus our ability to evaluate its response to ongoing environmental change. The EAIS is marine-terminating and grounded below sea level within the Aurora subglacial basin, indicating that this catchment, which drains ice to the Sabrina Coast, may be sensitive to climate perturbations. Here we show, using marine geological and geophysical data from the continental shelf seaward of the Aurora subglacial basin, that marine-terminating glaciers existed at the Sabrina Coast by the early to middle Eocene epoch. This finding implies the existence of substantial ice volume in the Aurora subglacial basin before continental-scale ice sheets were established about 34 million years ago. Subsequently, ice advanced across and retreated from the Sabrina Coast continental shelf at least 11 times during the Oligocene and Miocene epochs. Tunnel valleys associated with half of these glaciations indicate that a surface-meltwater-rich sub-polar glacial system existed under climate conditions similar to those anticipated with continued anthropogenic warming. Cooling since the late Miocene resulted in an expanded polar EAIS and a limited glacial response to Pliocene warmth in the Aurora subglacial basin catchment. Geological records from the Sabrina Coast shelf indicate that, in addition to ocean temperature, atmospheric temperature and surface-derived meltwater influenced East Antarctic ice mass balance under warmer-than-present climate conditions. Our results imply a dynamic EAIS response with continued anthropogenic warming and suggest that the EAIS contribution to future global sea-level projections may be under-estimated.

  14. Food choice of Antarctic soil arthropods clarified by stable isotope signatures

    NARCIS (Netherlands)

    Bokhorst, S.F.; Ronfort, C.; Huiskes, A.H.L.; Convey, P.; Aerts, R.A.M.

    2007-01-01

    Antarctic soil ecosystems are amongst the most simplified on Earth and include only few soil arthropod species, generally believed to be opportunistic omnivorous feeders. Using stable isotopic analyses, we investigated the food choice of two common and widely distributed Antarctic soil arthropod

  15. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years

    NARCIS (Netherlands)

    Gardner, Alex S.; Moholdt, Geir; Scambos, Ted; Fahnstock, Mark; Ligtenberg, Stefan; van den Broeke, Michiel; Nilsson, Johan

    2018-01-01

    Ice discharge from large ice sheets plays a direct role in determining rates of sea-level rise. We map present-day Antarctic-wide surface velocities using Landsat 7 and 8 imagery spanning 2013–2015 and compare to earlier estimates derived from synthetic aperture radar, revealing heterogeneous

  16. Monitoring trace elements in Antarctic penguin chicks from South Shetland Islands, Antarctica.

    Science.gov (United States)

    Jerez, Silvia; Motas, Miguel; Benzal, Jesús; Diaz, Julia; Barbosa, Andrés

    2013-04-15

    The concentration of human activities in the near-shore ecosystems from the northern Antarctic Peninsula area can cause an increasing bioavailability of pollutants for the vulnerable Antarctic biota. Penguin chicks can reflect this potential impact in the rookeries during the breeding season. They also can reflect biomagnification phenomena since they are on the top of the Antarctic food chain. The concentrations of Al, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Cd and Pb were measured by ICP-MS in samples of liver, kidney, muscle, bone, feather and stomach content of gentoo, chinstrap and Adélie penguin chicks (n=15 individuals) collected opportunistically in the Islands of King George and Deception (South Shetland Islands, Antarctica). The detected levels of some trace elements were not as low as it could be expected in the isolated Antarctic region. Penguin chicks can be useful indicators of trace elements abundance in the study areas. Carcasses of Antarctic penguin chicks were used to evaluate the bioavailability of trace elements in the Islands of King George and Deception. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Isotopic niches of fishes in coastal, neritic and oceanic waters off Adélie land, Antarctica

    Science.gov (United States)

    Cherel, Yves; Koubbi, Philippe; Giraldo, Carolina; Penot, Florian; Tavernier, Eric; Moteki, Masato; Ozouf-Costaz, Catherine; Causse, Romain; Chartier, Amélie; Hosie, Graham

    2011-08-01

    We used the stable isotope method to investigate the ecological niches of Antarctic fishes, with δ 13C and δ 15N as proxies of fish habitats and dietary habits, respectively. Muscle isotopic signature was measured for each of 237 delipidated tissue samples from 27 fish species collected offshore Adélie Land, East Antarctica. Overall, δ 13C values ranged from -25.3‰ to -18.2‰, thus allowing characterizing of the fish habitats, with inshore/benthic species having more positive δ 13C signatures than offshore/pelagic ones. No clear difference in the δ 13C values of pelagic fishes was found between species living in neritic and oceanic waters. Overall, the δ 15N signatures of neritic pelagic and epibenthic fishes encompassed ˜1.0 trophic level (3.1‰), a higher difference than that (1.4‰) found within the oceanic assemblage. Fishes with the lowest and highest δ 15N values are primarily invertebrate- and fish-eaters, respectively. The isotopic niches of fishes illustrate the different mechanisms allowing coexistence, with most fishes segregating at least by one of the two niche axes (δ 13C and δ 15N). Muscle isotopic values also document interindividual foraging specialization over the long-term in coastal benthic fishes, but not in more offshore pelagic species. Finally, the δ 15N signatures of fishes overlap with those of penguins and seals, indicating that seabirds and marine mammals share the upper levels of the Antarctic pelagic ecosystem with some large fish species. In conclusion, the concept of isotopic niche is a powerful tool to investigate various aspects of the ecological niche of Antarctic fishes, thus complementing the use of other conventional and non-conventional approaches.

  18. Investigating Local and Remote Terrestrial Influence on Air Masses at Contrasting Antarctic Sites Using Radon-222 and Back Trajectories

    Science.gov (United States)

    Chambers, S. D.; Choi, T.; Park, S.-J.; Williams, A. G.; Hong, S.-B.; Tositti, L.; Griffiths, A. D.; Crawford, J.; Pereira, E.

    2017-12-01

    We report on the first summer of high-sensitivity radon measurements from a two-filter detector at Jang Bogo Station (Terra Nova Bay) and contrast them with simultaneous observations at King Sejong Station (King George Island). King Sejong radon concentrations were characteristic of a marine baseline station (0.02-0.3 Bq m-3), whereas Jang Bogo values were highly variable (0.06-5.2 Bq m-3), mainly due to emissions from exposed coastal ground (estimated mean flux 0.09-0.11 atoms cm-2 s-1) and shallow atmospheric mixing depths. For wind speeds of ≤3.5 m s-1 the influence of local radon emissions became increasingly more prominent at both sites. A cluster analysis of back trajectories from King Sejong (62°S) revealed a fairly even distribution between air masses that had passed recently over South America, the Southern Ocean, and Antarctica, whereas at Jang Bogo (75°S) 80% of events had recently passed over the Ross Ice Shelf and West Antarctica, 12% were synoptically forced over Cape Adare, and 8% were associated with subsidence over the Antarctic interior and katabatic flow to the station. When cross-checked against radon concentrations, only half of the back trajectories ending at Jang Bogo that had indicated distant contact with nonpolar southern hemisphere continents within the past 10 days showed actual signs of terrestrial influence. A simple-to-implement technique based on high-pass filtered absolute humidity is developed to distinguish between predominantly katabatic, oceanic, and near-coastal air masses for characterization of trace gas and aerosol measurements at coastal East Antarctic sites.

  19. On the Revealing Firsthand Probing of Ocean-Ice-Atmosphere Interactions off Sabrina Coast During NBP1402

    Science.gov (United States)

    Huber, B. A.; Orsi, A. H.; Zielinski, N. J.; Durkin, W. J., IV; Clark, P.; Wiederwohl, C. L.; Rosenberg, M. A.; Gwyther, D.; Greenbaum, J. S.; Lavoie, C.; Shevenell, A.; Leventer, A.; Blankenship, D. D.; Gulick, S. P. S.; Domack, E. W.

    2014-12-01

    Diverse interactions of winds, currents and ice around Antarctica dictate how, where and when the world's densest waters form and massive floating ice shelves and glaciers melt, as well as control sea surface gas exchange and primary productivity. Compelled by recent rate estimates of East Antarctic Ice Sheet mass loss, we contrast the paths and mixing histories of oceanic waters reaching the continental ice edge off the Sabrina and Adelie coasts relying on the unique set of synoptic shipboard measurements from NBP1402 (swath bathymetry, ADCP, underway CTD). Analysis of historical hydrography and sea ice concentration fields within the Mertz Polynya indicates the apparent effect of evolving ocean-ice-atmosphere interactions on the characteristics of local Shelf Water (SW) sources to current outflow of newly formed Antarctic Bottom Water (AABW). A polynya dominated water mass structure similar to that observed off the Adelie Coast before the removal of the Mertz Ice Tongue was expected to the west of the Dalton Ice Tongue (DIT). However, we found no evidence of dense SW off Sabrina Coast, which may lessen the region's preconceived influence to global meridional overturning. Present sea ice production within the eastern Dalton Polynya is overshadowed by freshwater input to relatively stable interior upper waters. The Antarctic Coastal Current (ACoC) picks up distinct meltwater contributions along the DIT western flank and in front of the Moscow University Ice Shelf (MUIS) and Totten Glacier (TG). Unlike over other highly influential margins to global sea level rise, there is no evidence of local cross-shelf inflow and mixing of warm Circumpolar Deep Water. Relatively cold thermocline waters from the continental slope enter the eastern trough off Sabrina Coast, and they are swiftly steered poleward by complex underlying topography. Meltwater export from beneath the MUIS and TG is observed at newly discovered trenches that effectively constrain sub-cavity inflow to low

  20. ACCURACY ASSESSMENT OF RECENT GLOBAL OCEAN TIDE MODELS AROUND ANTARCTICA

    Directory of Open Access Journals (Sweden)

    J. Lei

    2017-09-01

    Full Text Available Due to the coverage limitation of T/P-series altimeters, the lack of bathymetric data under large ice shelves, and the inaccurate definitions of coastlines and grounding lines, the accuracy of ocean tide models around Antarctica is poorer than those in deep oceans. Using tidal measurements from tide gauges, gravimetric data and GPS records, the accuracy of seven state-of-the-art global ocean tide models (DTU10, EOT11a, GOT4.8, FES2012, FES2014, HAMTIDE12, TPXO8 is assessed, as well as the most widely-used conventional model FES2004. Four regions (Antarctic Peninsula region, Amery ice shelf region, Filchner-Ronne ice shelf region and Ross ice shelf region are separately reported. The standard deviations of eight main constituents between the selected models are large in polar regions, especially under the big ice shelves, suggesting that the uncertainty in these regions remain large. Comparisons with in situ tidal measurements show that the most accurate model is TPXO8, and all models show worst performance in Weddell sea and Filchner-Ronne ice shelf regions. The accuracy of tidal predictions around Antarctica is gradually improving.

  1. Accuracy Assessment of Recent Global Ocean Tide Models around Antarctica

    Science.gov (United States)

    Lei, J.; Li, F.; Zhang, S.; Ke, H.; Zhang, Q.; Li, W.

    2017-09-01

    Due to the coverage limitation of T/P-series altimeters, the lack of bathymetric data under large ice shelves, and the inaccurate definitions of coastlines and grounding lines, the accuracy of ocean tide models around Antarctica is poorer than those in deep oceans. Using tidal measurements from tide gauges, gravimetric data and GPS records, the accuracy of seven state-of-the-art global ocean tide models (DTU10, EOT11a, GOT4.8, FES2012, FES2014, HAMTIDE12, TPXO8) is assessed, as well as the most widely-used conventional model FES2004. Four regions (Antarctic Peninsula region, Amery ice shelf region, Filchner-Ronne ice shelf region and Ross ice shelf region) are separately reported. The standard deviations of eight main constituents between the selected models are large in polar regions, especially under the big ice shelves, suggesting that the uncertainty in these regions remain large. Comparisons with in situ tidal measurements show that the most accurate model is TPXO8, and all models show worst performance in Weddell sea and Filchner-Ronne ice shelf regions. The accuracy of tidal predictions around Antarctica is gradually improving.

  2. On the origin and evolution of Antarctic Peracarida (Crustacea, Malacostraca

    Directory of Open Access Journals (Sweden)

    Angelika Brandt

    1999-12-01

    Full Text Available The early separation of Gondwana and the subsequent isolation of Antarctica caused a long evolutionary history of its fauna. Both, long environmental stability over millions of years and habitat heterogeneity, due to an abundance of sessile suspension feeders on the continental shelf, favoured evolutionary processes of preadapted taxa, like for example the Peracarida. This taxon performs brood protection and this might be one of the most important reasons why it is very successful (i.e. abundant and diverse in most terrestrial and aquatic environments, with some species even occupying deserts. The extinction of many decapod crustaceans in the Cenozoic might have allowed the Peracarida to find and use free ecological niches. Therefore the palaeogeographic, palaeoclimatologic, and palaeo-hydrographic changes since the Palaeocene (at least since about 60 Ma ago and the evolutionary success of some peracarid taxa (e.g. Amphipoda, Isopoda led to the evolution of many endemic species in the Antarctic. Based on a phylogenetic analysis of the Antarctic Tanaidacea, Sieg (1988 demonstrated that the tanaid fauna of the Antarctic is mainly represented by phylogenetically younger taxa, and data from other crustacean taxa led Sieg (1988 to conclude that the recent Antarctic crustacean fauna must be comparatively young. His arguments are scrutinized on the basis of more recent data on the phylogeny and biodiversity of crustacean taxa, namely the Ostracoda, Decapoda, Mysidacea, Cumacea, Amphipoda, and Isopoda. This analysis demonstrates that the origin of the Antarctic fauna probably has different roots: an adaptive radiation of descendants from old Gondwanian ancestors was hypothesized for the isopod families Serolidae and Arcturidae, an evolution and radiation of phylogenetically old taxa in Antarctica could also be shown for the Ostracoda and the amphipod family Iphimediidae. A recolonization via the Scotia Arc appears possible for some species, though it is

  3. Zooplankton excretion metabolites stimulate Southern Ocean phytoplankton growth

    KAUST Repository

    Coello-Camba, A.; Llabré s, M.; Duarte, Carlos M.; Agusti, Susana

    2017-01-01

    Warming over Antarctica is leading to changes in the zooplankton communities inhabiting the Southern Ocean. It has been observed that zooplankton not only regulates phytoplankton through grazing, but also through the recycling of nutrients that are essential for phytoplankton growth. In this way, the effects of warming on zooplankton populations will change the amount or proportion at which recycled nutrients are restored. To estimate how the recycled nutrients released by zooplankton populations, dominated by krill (Euphausia superba), amphipods or copepods, affect the phytoplankton uptake and communities, we performed four incubation experiments: two close to the Antarctic Peninsula and two at the Southern Atlantic Ocean. Our results showed a stimulating effect of the addition of metabolites on ammonia removal rates and on the net growth of phytoplankton communities, with different responses amongst the different phytoplankton groups. According to our results, phytoplankton net growth and community composition may be altered if this relevant source of nutrients is lost due to projected changes in the abundance or distribution of these zooplankton populations.

  4. Zooplankton excretion metabolites stimulate Southern Ocean phytoplankton growth

    KAUST Repository

    Coello-Camba, A.

    2017-04-24

    Warming over Antarctica is leading to changes in the zooplankton communities inhabiting the Southern Ocean. It has been observed that zooplankton not only regulates phytoplankton through grazing, but also through the recycling of nutrients that are essential for phytoplankton growth. In this way, the effects of warming on zooplankton populations will change the amount or proportion at which recycled nutrients are restored. To estimate how the recycled nutrients released by zooplankton populations, dominated by krill (Euphausia superba), amphipods or copepods, affect the phytoplankton uptake and communities, we performed four incubation experiments: two close to the Antarctic Peninsula and two at the Southern Atlantic Ocean. Our results showed a stimulating effect of the addition of metabolites on ammonia removal rates and on the net growth of phytoplankton communities, with different responses amongst the different phytoplankton groups. According to our results, phytoplankton net growth and community composition may be altered if this relevant source of nutrients is lost due to projected changes in the abundance or distribution of these zooplankton populations.

  5. Mercury accumulation in sediments and seabird feathers from the Antarctic Peninsula

    International Nuclear Information System (INIS)

    Calle, Paola; Alvarado, Omar; Monserrate, Lorena; Cevallos, Juan Manuel; Calle, Nastenka; Alava, Juan José

    2015-01-01

    Highlights: • We assessed mercury bioaccumulation in seabirds in the Antarctic Peninsula. • Levels of Hg were higher in gentoo penguins & brown skuas than chinstrap penguins. • Mercury BMF in the brown skua/penguins relationship was higher than 1. • Long-range environmental transport is the likely mercury route in Antarctic. - Abstract: In an effort to assess the impact of mercury in the Antarctic Peninsula, we conducted ecotoxicological research in this region during the summer of 2012 and 2013. The objectives were to assess: (a) mercury levels in sediment samples; (b) mercury accumulation in Antarctic seabird feathers: Catharacta lonnbergi (brown skua), Pygoscelis papua (gentoo penguin) and Pygoscelis antarctica (chinstrap penguin); and (c) biomagnification (BMF predator/prey) and biota sediment accumulation (BSAF skuas/sediment) factors. Mercury concentrations in sediment were relatively low. Mercury concentrations were significantly higher in brown skuas and gentoo penguins than in chinstrap penguins (2012), and significantly higher in brown skuas than in both penguins (2013). BMF indicated 2–7.5 times greater mercury levels in brown skuas than in penguins. BSAF values suggested an apparent temporal decrease of 18.2% of this ratio from 2012 to 2013. Long-range environmental transport is the likely route of entry of mercury into the Antarctic Peninsula

  6. Drift in ocean currents impacts intergenerational microbial exposure to temperature.

    Science.gov (United States)

    Doblin, Martina A; van Sebille, Erik

    2016-05-17

    Microbes are the foundation of marine ecosystems [Falkowski PG, Fenchel T, Delong EF (2008) Science 320(5879):1034-1039]. Until now, the analytical framework for understanding the implications of ocean warming on microbes has not considered thermal exposure during transport in dynamic seascapes, implying that our current view of change for these critical organisms may be inaccurate. Here we show that upper-ocean microbes experience along-trajectory temperature variability up to 10 °C greater than seasonal fluctuations estimated in a static frame, and that this variability depends strongly on location. These findings demonstrate that drift in ocean currents can increase the thermal exposure of microbes and suggests that microbial populations with broad thermal tolerance will survive transport to distant regions of the ocean and invade new habitats. Our findings also suggest that advection has the capacity to influence microbial community assemblies, such that regions with strong currents and large thermal fluctuations select for communities with greatest plasticity and evolvability, and communities with narrow thermal performance are found where ocean currents are weak or along-trajectory temperature variation is low. Given that fluctuating environments select for individual plasticity in microbial lineages, and that physiological plasticity of ancestors can predict the magnitude of evolutionary responses of subsequent generations to environmental change [Schaum CE, Collins S (2014) Proc Biol Soc 281(1793):20141486], our findings suggest that microbial populations in the sub-Antarctic (∼40°S), North Pacific, and North Atlantic will have the most capacity to adapt to contemporary ocean warming.

  7. [History of Polish botanical and mycological researches on sheets of land of Antarctic and Sub-Antarctic in the years 1977-2009].

    Science.gov (United States)

    Köhler, Piotr; Olech, Maria

    2011-01-01

    The work includes a description of the period from the moment of setting up Polish Polar Station on King George Island (1977) to the end of International Polar Year IV in 2009. Researches on flower plants focused, among others, on plants' morphology, morphological composition of the pollen and anatomical ultra-structure of the leaves. There were also carried out biochemical and other searches for the internal mutability. Within physiological studies one concentrated on the problem of reaction to temperature stress. Biological researches focused mainly on solving taxonomic and bio-geographic problems. Finally, were published several monographs and, among others, the first in history complete description of moss' flora of the whole of Antarctic (2008). Research works over algae included also such issues as floristics, bio-geography, taxonomy and ecology (for instance, the rookery's impact on distribution of algae, or the influence of inanimate factors on dynamics of condensing the Diatoma in different water and soil-bound tanks). Up till now, within mycological investigations has been identified a variety of lichen fungi that for the most part of Antarctic are a novelty. There were scientifically described new for science genera and species of Western Antarctic. Lichenological studies were made in the field of taxonomy, geography, lichenometry, biochemistry of lichens, lichenoindication, ecophysiology and from the point of analysis of base metals' content. There were also described new for science species. Since 1991, were published the results of searches for the base metals' content and vestigial chemical elements in lichens' thallus. Ecophysiological researches concerned both micro-climatic conditions' impact on primary production and lichens' adaptation to a very cold climate. One discovered a mechanism of two-phase hydratization/dehydratization of lichens' thallus. On the ground of palaeobotanical analyzes was reconstructed a development of flora in Western

  8. Coastal zone color scanner pigment concentrations in the southern ocean and relationships to geophysical surface features

    Science.gov (United States)

    Comiso, J. C.; Mcclain, C. R.; Sullivan, C. W.; Ryan, J. P.; Leonard, C. L.

    1993-01-01

    Climatological data on the distribution of surface pigment fields in the entire southern ocean over a seasonal cycle are examined. The occurrence of intense phytoplankton blooms during austral summer months and during other seasons in different regions is identified and analyzed. The highest pigment concentrations are observed at high latitudes and over regions with water depths usually less than 600 m. Basin-scale pigment distribution shows a slightly asymmetric pattern of enhanced pigment concentrations about Antarctica, with enhanced concentrations extending to lower latitudes in the Atlantic and Indian sectors than in the Pacific sector. A general increase in pigment concentrations is evident from the low latitudes toward the Antarctic circumpolar region. Spatial relationships between pigment and archived geophysical data reveal significant correlation between pigment distributions and both bathymetry and wind stress, while general hemispheric scale patterns of pigment distributions are most coherent with the geostrophic flow of the Antarctic Circumpolar Current.

  9. The origin of platyrrhines: An evaluation of the Antarctic scenario and the floating island model.

    Science.gov (United States)

    Houle, A

    1999-08-01

    This paper evaluates whether 1) protoplatyrrhines could have migrated to South America via Antarctica, and 2) the floating island model is a plausible transoceanic mode of dispersal for land vertebrates like protoplatyrrhines. Results show that Eocene Antarctica and Australia supported large and dense forests, and that the Antarctic fauna was comprised of many species of vertebrates, including placental and marsupial land mammals. However, no primate remains have ever been reported from these continents. Antarctica and South America were connected until the Middle Eocene (i.e., after the oldest Asian anthropoids), but two major water barriers existed between Antarctica and Asia since the Early Eocene. The Eocene and Oligocene water gap separating Africa and Antarctica was excessively large. Thus, all scenarios involving an Antarctic route have been rejected. The African scenario is difficult to falsify because only one water barrier existed, both paleowinds and paleocurrents were favorable, and Paleogene African anthropoids show phylogenetic affinities to platyrrhines. I tested whether a journey on a hypothetical floating island over the Paleogene Atlantic Ocean exceeds the survival limit of a genetically viable group of animals such as protoplatyrrhines. Studies of water deprivation suggest that they could have been able, with a body weight averaging 1 kg, to survive without water for at least 13 days. I have used the present Atlantic Ocean as a model for the velocity of Paleogene paleowinds and paleocurrents. Considering winds as the key accelerating force of floating islands, the Paleogene Atlantic water barrier could have been crossed, in the most conservative scenario, in 8 days at 50 Mya, 11 days at 40 Mya, and 15 days at 30 Mya. In order to survive a transoceanic journey, however, protoplatyrrhines had to be preadapted to strong seasonal variations in water availability in their original (African) environment. Once on the sea, their brains would have

  10. Studies of evolutionary temperature adaptation: muscle function and locomotor performance in Antarctic fish.

    Science.gov (United States)

    Franklin, C E

    1998-09-01

    1. Studies of evolutionary temperature adaptation of muscle and locomotor performance in fish are reviewed with a focus on the Antarctic fauna living at subzero temperatures. 2. Only limited data are available to compare the sustained and burst swimming kinematics and performance of Antarctic, temperate and tropical species. Available data indicate that low temperatures limit maximum swimming performance and this is especially evident in fish larvae. 3. In a recent study, muscle performance in the Antarctic rock cod Notothenia coriiceps at 0 degree C was found to be sufficient to produce maximum velocities during burst swimming that were similar to those seen in the sculpin Myoxocephalus scorpius at 10 degrees C, indicating temperature compensation of muscle and locomotor performance in the Antarctic fish. However, at 15 degrees C, sculpin produce maximum swimming velocities greater than N. coriiceps at 0 degree C. 4. It is recommended that strict hypothesis-driven investigations using ecologically relevant measures of performance are undertaken to study temperature adaptation in Antarctic fish. Recent detailed phylogenetic analyses of the Antarctic fish fauna and their temperate relatives will allow a stronger experimental approach by helping to separate what is due to adaptation to the cold and what is due to phylogeny alone.

  11. Isotopic investigation of contemporary and historic changes in penguin trophic niches and carrying capacity of the southern Indian ocean.

    Science.gov (United States)

    Jaeger, Audrey; Cherel, Yves

    2011-02-02

    A temperature-defined regime shift occurred in the 1970s in the southern Indian Ocean, with simultaneous severe decreases in many predator populations. We tested a possible biological link between the regime shift and predator declines by measuring historic and contemporary feather isotopic signatures of seven penguin species with contrasted foraging strategies and inhabiting a large latitudinal range. We first showed that contemporary penguin isotopic variations and chlorophyll a concentration were positively correlated, suggesting the usefulness of predator δ¹³C values to track temporal changes in the ecosystem carrying capacity and its associated coupling to consumers. Having controlled for the Suess effect and for increase CO₂ in seawater, δ¹³C values of Antarctic penguins and of king penguins did not change over time, while δ¹³C of other subantarctic and subtropical species were lower in the 1970s. The data therefore suggest a decrease in ecosystem carrying capacity of the southern Indian Ocean during the temperature regime-shift in subtropical and subantarctic waters but not in the vicinity of the Polar Front and in southward high-Antarctic waters. The resulting lower secondary productivity could be the main driving force explaining the decline of subtropical and subantarctic (but not Antarctic) penguins that occurred in the 1970s. Feather δ¹⁵N values did not show a consistent temporal trend among species, suggesting no major change in penguins' diet. This study highlights the usefulness of developing long-term tissue sampling and data bases on isotopic signature of key marine organisms to track potential changes in their isotopic niches and in the carrying capacity of the environment.

  12. Isotopic investigation of contemporary and historic changes in penguin trophic niches and carrying capacity of the southern Indian ocean.

    Directory of Open Access Journals (Sweden)

    Audrey Jaeger

    Full Text Available A temperature-defined regime shift occurred in the 1970s in the southern Indian Ocean, with simultaneous severe decreases in many predator populations. We tested a possible biological link between the regime shift and predator declines by measuring historic and contemporary feather isotopic signatures of seven penguin species with contrasted foraging strategies and inhabiting a large latitudinal range. We first showed that contemporary penguin isotopic variations and chlorophyll a concentration were positively correlated, suggesting the usefulness of predator δ¹³C values to track temporal changes in the ecosystem carrying capacity and its associated coupling to consumers. Having controlled for the Suess effect and for increase CO₂ in seawater, δ¹³C values of Antarctic penguins and of king penguins did not change over time, while δ¹³C of other subantarctic and subtropical species were lower in the 1970s. The data therefore suggest a decrease in ecosystem carrying capacity of the southern Indian Ocean during the temperature regime-shift in subtropical and subantarctic waters but not in the vicinity of the Polar Front and in southward high-Antarctic waters. The resulting lower secondary productivity could be the main driving force explaining the decline of subtropical and subantarctic (but not Antarctic penguins that occurred in the 1970s. Feather δ¹⁵N values did not show a consistent temporal trend among species, suggesting no major change in penguins' diet. This study highlights the usefulness of developing long-term tissue sampling and data bases on isotopic signature of key marine organisms to track potential changes in their isotopic niches and in the carrying capacity of the environment.

  13. Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed

    Science.gov (United States)

    Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.

    2018-02-01

    Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.

  14. Unravelling InSAR observed Antarctic ice-shelf flexure using 2-D elastic and viscoelastic modelling

    Science.gov (United States)

    Wild, Christian T.; Marsh, Oliver J.; Rack, Wolfgang

    2018-04-01

    Ice-shelf grounding zones link the Antarctic ice-sheets to the ocean. Differential interferometric synthetic aperture radar (DInSAR) is commonly used to monitor grounding-line locations, but also contains information on grounding-zone ice thickness, ice properties and tidal conditions beneath the ice shelf. Here, we combine in-situ data with numerical modelling of ice-shelf flexure to investigate 2-D controls on the tidal bending pattern on the Southern McMurdo Ice Shelf. We validate our results with 9 double-differential TerraSAR-X interferograms. It is necessary to make adjustments to the tidal forcing to directly compare observations with model output and we find that when these adjustments are small (tide models are required to allow for the full exploitation of DInSAR in grounding-zone glaciology.

  15. Persistent Organic Pollutants in Biotic and Abiotic Components of Antarctic Pristine Environment

    Science.gov (United States)

    Bhardwaj, Laxmikant; Chauhan, Abhishek; Ranjan, Anuj; Jindal, Tanu

    2018-05-01

    Over the past decades, research in Antarctica has built a new understanding of Antarctica, its past, present and future. Human activities and long-range pollutants are increasing on the Antarctic continent. Research on persistent organic pollutants (POPs) has been carried out internationally by several countries having their permanent research stations to explain the impact of an ever increasing range of POPs in Antarctic ecosystem. POPs have been detected in Antarctica despite its geographical isolation and almost complete absence of human settlements. The presence of POPs in different abiotic (atmosphere, water bodies, sediments, soil, sea ice) and biotic components (mosses, lichens, krill, penguins, skua, etc.) in Antarctica has been studied and documented around for decades and has either been banned or strictly regulated but is still found in the environment. This review focuses on recent research pertaining to sources and occurrence of POPs in Antarctic lake water, soil, sediment, lichen, mosses and other Antarctic marine community. This review also proposes to summarize the current state of research on POPs in Antarctica environment and draw the earliest conclusions on possible significance of POPs in Antarctica based on presently available information from related Antarctic environment.

  16. A 25-year Record of Antarctic Ice Sheet Elevation and Mass Change

    Science.gov (United States)

    Shepherd, A.; Muir, A. S.; Sundal, A.; McMillan, M.; Briggs, K.; Hogg, A.; Engdahl, M.; Gilbert, L.

    2017-12-01

    Since 1992, the European Remote-Sensing (ERS-1 and ERS-2), ENVISAT, and CryoSat-2 satellite radar altimeters have measured the Antarctic ice sheet surface elevation, repeatedly, at approximately monthly intervals. These data constitute the longest continuous record of ice sheet wide change. In this paper, we use these observations to determine changes in the elevation, volume and mass of the East Antarctic and West Antarctic ice sheets, and of parts of the Antarctic Peninsula ice sheet, over a 25-year period. The root mean square difference between elevation rates computed from our survey and 257,296 estimates determined from airborne laser measurements is 54 cm/yr. The longevity of the satellite altimeter data record allows to identify and chart the evolution of changes associated with meteorology and ice flow, and we estimate that 3.6 % of the continental ice sheet, and 21.7 % of West Antarctica, is in a state of dynamical imbalance. Based on this partitioning, we estimate the mass balance of the East and West Antarctic ice sheet drainage basins and the root mean square difference between these and independent estimates derived from satellite gravimetry is less than 5 Gt yr-1.

  17. Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic.

    Science.gov (United States)

    Tremblin, Maxime; Hermoso, Michaël; Minoletti, Fabrice

    2016-10-18

    Growth of the first permanent Antarctic ice sheets at the Eocene-Oligocene Transition (EOT), ∼33.7 million years ago, indicates a major climate shift within long-term Cenozoic cooling. The driving mechanisms that set the stage for this glaciation event are not well constrained, however, owing to large uncertainties in temperature reconstructions during the Eocene, especially at lower latitudes. To address this deficiency, we used recent developments in coccolith biogeochemistry to reconstruct equatorial Atlantic sea surface temperature (SST) and atmospheric pCO 2 values from pelagic sequences preceding and spanning the EOT. We found significantly more variability in equatorial SSTs than previously reported, with pronounced cooling from the Early to Middle Eocene and subsequent warming during the Late Eocene. Thus, we show that the Antarctic glaciation at the Eocene-Oligocene boundary was preceded by a period of heat accumulation in the low latitudes, likely focused in a progressively contracting South Atlantic gyre, which contributed to cooling high-latitude austral regions. This prominent redistribution of heat corresponds to the emplacement of a strong meridional temperature gradient that typifies icehouse climate conditions. Our equatorial coccolith-derived geochemical record thus highlights an important period of global climatic and oceanic upheaval, which began 4 million years before the EOT and, superimposed on a long-term pCO 2 decline, drove the Earth system toward a glacial tipping point in the Cenozoic.

  18. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology.

    Science.gov (United States)

    Gilichinsky, D A; Wilson, G S; Friedmann, E I; McKay, C P; Sletten, R S; Rivkina, E M; Vishnivetskaya, T A; Erokhina, L G; Ivanushkina, N E; Kochkina, G A; Shcherbakova, V A; Soina, V S; Spirina, E V; Vorobyova, E A; Fyodorov-Davydov, D G; Hallet, B; Ozerskaya, S M; Sorokovikov, V A; Laurinavichyus, K S; Shatilovich, A V; Chanton, J P; Ostroumov, V E; Tiedje, J M

    2007-04-01

    Antarctic permafrost soils have not received as much geocryological and biological study as has been devoted to the ice sheet, though the permafrost is more stable and older and inhabited by more microbes. This makes these soils potentially more informative and a more significant microbial repository than ice sheets. Due to the stability of the subsurface physicochemical regime, Antarctic permafrost is not an extreme environment but a balanced natural one. Up to 10(4) viable cells/g, whose age presumably corresponds to the longevity of the permanently frozen state of the sediments, have been isolated from Antarctic permafrost. Along with the microbes, metabolic by-products are preserved. This presumed natural cryopreservation makes it possible to observe what may be the oldest microbial communities on Earth. Here, we describe the Antarctic permafrost habitat and biodiversity and provide a model for martian ecosystems.

  19. IPAB Antarctic Drifting Buoy Data, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The World Climate Research Programme (WCRP) International Programme for Antarctic Buoys (IPAB), through participating research organizations in various countries,...

  20. Wind profile radar for study of Antarctic air circulation

    International Nuclear Information System (INIS)

    Ragaini, E.; Sarango, M.F.; Vasquez, E.H.

    1992-01-01

    After a brief discussion of meteorological methods used in the Antarctic, the paper gives an outline of a coordinated international research project whose objective is to set up a wind profiler radar station that would give meteorologists information regarding Antarctic atmospheric dynamics useful in their investigation of the causes and effects of the hole in the ozone layer. The radar instrumentation is to provide continuous readings of wind velocity at varying altitudes above the polar continent

  1. Evaluating Wind Power Potential in the Spanish Antarctic Base (BAE)

    International Nuclear Information System (INIS)

    Arribas, L.M.; Garcia Barquero, C; Navarro, J.; Cuerva, A.; Cruz, I.; Roque, V.; Marti, I.

    2000-01-01

    The objective of the work is to model wind field in the surroundings of the Spanish Antarctic Base (BAE in the following). The need of such a work comes from the necessity of an energy source able to supply the energy demand in the BAE during the Antarctic winter. When the BAE is in operation (in the Antarctic summer) the energy supply comes from a diesel engine. In the Antarctic winter the base is closed, but the demand of energy supply is growing up every year because of the increase in the number of technical and scientific machines that remain in the BAE taking different measurements. For this purpose the top of a closed hill called Pico Radio, not perturbed by close obstacles, has been chosen as the better site for the measurements. The measurement station is made up with a sonic anemometer and a small wind generator to supply the energy needed by the sensors head heating of the anemometer. This way, it will be also used as a proof for the suitability of a wind generator in the new chosen site, under those special climatic conditions.(Author) 3 refs

  2. 77 FR 41809 - Notice of Permit Applications Received Under the Antarctic Conservation Act of 1978

    Science.gov (United States)

    2012-07-16

    ..., Lockheed Martin IS&GS, Antarctic Support Contract, 7400 S. Tucson Way, Centennial, CO 80112-3938. Activity..., Antarctic Support Contract, 7400 S. Tucson Way, Centennial, CO 80112-3938. Activity for Which Permit Is.... Applicant: Celia Lang, Lockheed Martin IS&GS, Antarctic Support Contract, 7400 S. Tucson Way, Centennial, CO...

  3. Biodiversity of Antarctic echinoids: a comprehensive and interactive database

    Directory of Open Access Journals (Sweden)

    Bruno David

    2005-12-01

    Full Text Available Eighty-one echinoid species are present south of the Antarctic Convergence, and they represent an important component of the benthic fauna. “Antarctic echinoids” is an interactive database synthesising the results of more than 100 years of Antarctic expeditions, and comprising information about all echinoid species. It includes illustrated keys for determination of the species, and information about their morphology and ecology (text, illustrations and glossary and their distribution (maps and histograms of bathymetrical distribution; the sources of the information (bibliography, collections and expeditions are also provided. All these data (taxonomic, morphologic, geographic, bathymetric… can be interactively queried in two main ways: (1 display of listings that can be browsed, sorted according to various criteria, or printed; and (2 interactive requests crossing the different kinds of data. Many other possibilities are offered, and an on-line help file is also available.

  4. Regional Antarctic snow accumulation over the past 1000 years

    Directory of Open Access Journals (Sweden)

    E. R. Thomas

    2017-11-01

    Full Text Available Here we present Antarctic snow accumulation variability at the regional scale over the past 1000 years. A total of 79 ice core snow accumulation records were gathered and assigned to seven geographical regions, separating the high-accumulation coastal zones below 2000 m of elevation from the dry central Antarctic Plateau. The regional composites of annual snow accumulation were evaluated against modelled surface mass balance (SMB from RACMO2.3p2 and precipitation from ERA-Interim reanalysis. With the exception of the Weddell Sea coast, the low-elevation composites capture the regional precipitation and SMB variability as defined by the models. The central Antarctic sites lack coherency and either do not represent regional precipitation or indicate the model inability to capture relevant precipitation processes in the cold, dry central plateau. Our results show that SMB for the total Antarctic Ice Sheet (including ice shelves has increased at a rate of 7 ± 0.13 Gt decade−1 since 1800 AD, representing a net reduction in sea level of ∼ 0.02 mm decade−1 since 1800 and ∼ 0.04 mm decade−1 since 1900 AD. The largest contribution is from the Antarctic Peninsula (∼ 75 % where the annual average SMB during the most recent decade (2001–2010 is 123 ± 44 Gt yr−1 higher than the annual average during the first decade of the 19th century. Only four ice core records cover the full 1000 years, and they suggest a decrease in snow accumulation during this period. However, our study emphasizes the importance of low-elevation coastal zones, which have been under-represented in previous investigations of temporal snow accumulation.

  5. The Pleistocene evolution of the East Antarctic Ice Sheet in the Prydz bay region: Stable isotopic evidence from ODP Site 1167

    Science.gov (United States)

    Theissen, K.M.; Dunbar, R.B.; Cooper, A. K.; Mucciarone, D.A.; Hoffmann, D.

    2003-01-01

    Ocean Drilling Program Leg 188, Prydz Bay, East Antarctica is part of a larger initiative to explore the Cenozoic history of the Antarctic Ice Sheet through direct drilling and sampling of the continental margins. In this paper, we present stable isotopic results from Ocean Drilling Program (ODP) Site 1167 located on the Prydz Channel Trough Mouth Fan (TMF), the first Antarctic TMF to be drilled. The foraminifer-based ??18O record is interpreted along with sedimentary and downhole logging evidence to reconstruct the Quaternary glacial history of Prydz Bay and the adjacent Lambert Glacier Amery Ice Shelf System (LGAISS). We report an electron spin resonance age date of 36. 9 ?? 3.3 ka at 0.45 m below sea floor and correlate suspected glacial-interglacial cycles with the global isotopic stratigraphy to improve the chronology for Site 1167. The ??18O record based on planktonic (Neogloboquadrina pachyderma (s.)) and limited benthic results (Globocassidulina crassa), indicates a trend of ice sheet expansion that was interrupted by a period of reduced ice volume and possibly warmer conditions during the early-mid-Pleistocene (0.9-1.38 Ma). An increase in ?? 18O values after ??? 900 ka appears to coincide with the mid-Pleistocene climate transition and the expansion of the northern hemisphere ice sheet. The ??18O record in the upper 50 m of the stratigraphic section indicates as few as three glacial-interglacial cycles, tentatively assigned as marine isotopic stages (MIS) 16-21, are preserved since the Brunhes/Matuyama paleomagnetic reversal (780 ka). This suggests that there is a large unconformity near the top of the section and/or that there may have been few extreme advances of the ice sheet since the mid-Pleistocene climate transition resulting in lowered sedimentation rates on the Prydz Channel TMF. The stable isotopic record from Site 1167 is one of the few available from the area south of the Antarctic Polar Front that has been linked with the global isotopic

  6. Personality Testing in Antarctic Expeditioners: Cross Cultural Comparisons and Evidence for Generalizability

    Science.gov (United States)

    Musson, D. M.; Sandal, G. M.; Harper, M. L.; Helmreich, R. L.

    Antarctica provides an ideal environment in which to study human behaviour under conditions of isolation and confinement. Such research is currently being conducted through several national Antarctic research programs, with the subject pool for these investigations necessarily consisting of individuals from multiple nationalities. Cross-cultural research has shown, however, that psychological traits and individual values may vary significantly between national and ethnic groups. Until now, there has been an implicit assumption that Antarctic personnel are essentially similar from one national program to another and that therefore findings from any one nation's Antarctic program should generalize to another, as well as to other domains such as spaceflight. We believe that it is necessary to validate this assumption through empirical research. This objective of this analysis was to determine the degree of similarity between the psychological testing profiles of Antarctic research personnel from different national Antarctic programs, and to determine the degrees of similarity or difference of these personnel to a normative population. METHODS In separate studies, Antarctic personnel from Australia (n=57), Norway (=37), and Great Britain (n=145) were administered the Personal Characteristics Inventory (PCI) before departing to Antarctica. The PCI is a battery consisting of 11 psychological scales designed to assess specific traits related to achievement and interpersonal competence that have been shown to be particularly salient to human performance under stressful and complex conditions. For comparative normative data, a group of 441 U.S. undergraduate students were also administered the PCI. Due to historical reasons, researchers in this study used 2 versions of the PCI, and only 9 of the 11 scales were directly equivalent. RESULTS For the three national Antarctic groups (Australia, Norway, and Great Britain), no significant variation was found between group mean

  7. The White Ocean hypothesis: a late Pleistocene Southern Ocean governed by Coccolithophores and driven by phosphorus

    Directory of Open Access Journals (Sweden)

    Jose Abel Flores

    2012-07-01

    Full Text Available Paleoproductivity is a critical component in past ocean biogeochemistry, but accurate reconstructions of productivity are often hindered by limited integration of proxies. Here, we integrate geochemical (phosphorus and micropaleontological proxies at millennial timescales, revealing that the coccolithophore record in the Subantarctic zone of the South Atlantic Ocean is driven largely by variations in marine phosphorus availability. A quantitative micropaleontological and geochemical analysis carried out in sediments retrieved from ODP Site 1089 (Subantarctic Zone reveals that most of the export productivity in this region over the last 0.5 my was due to coccolithophores. Glacial periods were generally intervals of high productivity, with productivity reaching a peak at terminations. Particularly high productivity was observed at Termination V and Termination IV, events that are characterized by high abundance of coccolithophores and maxima in the phosphorus/titanium and strontium/titanium records. We link the increase in productivity both to regional oceanographic phenomena, i.e., the northward displacement of the upwelling cell of the Antarctic divergence when the ice-sheet expanded, and to the increase in the inventory of phosphorus in the ocean due to enhanced transfer of this nutrient from continental margins during glacial lowstands in sea level. The Mid-Brunhes interval stands out from the rest of the record, being dominated by the small and highly-calcified species Gephyrocapsa caribbeanica that provides most of the carbonate in these sediments. This likely represents higher availability of phosphorus in the surface ocean, especially in mesotrophic and oligotrophic zones. Under these condition, some coccolithophore species developed an r-strategy (opportunistic species; growth rate maximized resulting in the bloom of G. caribbeanica. These seasonal blooms of may have inducedwhite tides similar to those observed today in Emiliania huxleyi.

  8. 78 FR 41959 - Notice of Permit Modification Received Under the Antarctic Conservation Act of 1978

    Science.gov (United States)

    2013-07-12

    ... Areas (ASPA) or involving Antarctic Flora and Fauna. Starting in 2013, all new permits issued for ASPA entry or involving Antarctic Flora and Flora require the permittee to submit an annual report to the... Specially Protected Areas (ASPA) or involving Antarctic Flora and Fauna issued prior to 2013 that require...

  9. Treatment and prevention of infection following bites of the Antarctic fur seal (Arctocephalus gazella

    Directory of Open Access Journals (Sweden)

    Kouliev T

    2015-04-01

    Full Text Available Timur Kouliev,1 Victoria Cui2 1Beijing United Family Hospital, Beijing, People's Republic of China; 2Department of Biological Sciences, Columbia University, New York, NY, USA Abstract: In recent decades, an increasing number of people have traveled to sub-Antarctic and Antarctic regions each year for research, tourism, and resource exploitation. Hunting of Antarctic fur seals (Arctocephalus gazella almost pushed the species to extinction in the early 1900s, but populations have since shown rapid and substantial recovery. The species' range has re-expanded to include several islands south of the Antarctic Convergence, most notably South Georgia, and now overlaps with many popular Antarctic travel destinations. Both male and female fur seals can become extremely aggressive when provoked, and their bites, if not properly treated, pose a significant risk of infection by microorganisms not usually encountered in cases of animal bites. In this report, we present the case of a patient treated for a fur seal bite during an Antarctic expedition cruise, review the literature concerning seal bites, and suggest the use of antibiotic prophylaxis to prevent complications. Keywords: zoonotic, polar tourism, prophylaxis, seal finger, expedition medicine

  10. Meridional distribution and seasonal variation of stable oxygen isotope ratio of precipitation in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Kayo Nakamura

    2010-07-01

    Full Text Available The stable oxygen isotope ratio(δ^O in precipitation is known to have important meridional and seasonal variations, but there are almost no measurements of δ^O in precipitation over polar oceans. The present research took advantage of 4 opportunities for in situ observations in summer and winter at high latitudes in the Southern Ocean. In addition, we analyzed samples of precipitation at Syowa Station in 2008 to obtain year-round data. Based on these data, we consider the meridional and seasonal variations of δ^O in precipitation over the Southern Ocean. In general, δ^O decreases with increasing latitude, and is lower in winter than in summer. The latitude gradient is stronger in winter. At 60°S, δ^O is -5.4‰ and -11.3‰ in summer and winter, respectively, while the corresponding figures at 66°S are -10.5‰ and -20.8‰. These results will help us understand the mechanisms of the salinity distribution and its variation in the Antarctic Ocean.

  11. Impact of Greenland and Antarctic ice sheet interactions on climate sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Goelzer, H.; Huybrechts, P. [Vrije Universiteit Brussel, Earth System Sciences and Departement Geografie, Brussels (Belgium); Loutre, M.F.; Goosse, H.; Fichefet, T. [Universite Catholique de Louvain, Georges Lemaitre Centre for Earth and Climate Research (TECLIM), Earth and Life Institute, Louvain-la-Neuve (Belgium); Mouchet, A. [Universite de Liege, Laboratoire de Physique Atmospherique et Planetaire, Liege (Belgium)

    2011-09-15

    We use the Earth system model of intermediate complexity LOVECLIM to show the effect of coupling interactive ice sheets on the climate sensitivity of the model on a millennial time scale. We compare the response to a 2 x CO{sub 2} warming scenario between fully coupled model versions including interactive Greenland and Antarctic ice sheet models and model versions with fixed ice sheets. For this purpose an ensemble of different parameter sets have been defined for LOVECLIM, covering a wide range of the model's sensitivity to greenhouse warming, while still simulating the present-day climate and the climate evolution over the last millennium within observational uncertainties. Additional freshwater fluxes from the melting ice sheets have a mitigating effect on the model's temperature response, leading to generally lower climate sensitivities of the fully coupled model versions. The mitigation is effectuated by changes in heat exchange within the ocean and at the sea-air interface, driven by freshening of the surface ocean and amplified by sea-ice-related feedbacks. The strength of the effect depends on the response of the ice sheets to the warming and on the model's climate sensitivity itself. The effect is relatively strong in model versions with higher climate sensitivity due to the relatively large polar amplification of LOVECLIM. With the ensemble approach in this study we cover a wide range of possible model responses. (orig.)

  12. Antarctic climate variability on regional and continental scales over the last 2000 years

    Directory of Open Access Journals (Sweden)

    B. Stenni

    2017-11-01

    Full Text Available Climate trends in the Antarctic region remain poorly characterized, owing to the brevity and scarcity of direct climate observations and the large magnitude of interannual to decadal-scale climate variability. Here, within the framework of the PAGES Antarctica2k working group, we build an enlarged database of ice core water stable isotope records from Antarctica, consisting of 112 records. We produce both unweighted and weighted isotopic (δ18O composites and temperature reconstructions since 0 CE, binned at 5- and 10-year resolution, for seven climatically distinct regions covering the Antarctic continent. Following earlier work of the Antarctica2k working group, we also produce composites and reconstructions for the broader regions of East Antarctica, West Antarctica and the whole continent. We use three methods for our temperature reconstructions: (i a temperature scaling based on the δ18O–temperature relationship output from an ECHAM5-wiso model simulation nudged to ERA-Interim atmospheric reanalyses from 1979 to 2013, and adjusted for the West Antarctic Ice Sheet region to borehole temperature data, (ii a temperature scaling of the isotopic normalized anomalies to the variance of the regional reanalysis temperature and (iii a composite-plus-scaling approach used in a previous continent-scale reconstruction of Antarctic temperature since 1 CE but applied to the new Antarctic ice core database. Our new reconstructions confirm a significant cooling trend from 0 to 1900 CE across all Antarctic regions where records extend back into the 1st millennium, with the exception of the Wilkes Land coast and Weddell Sea coast regions. Within this long-term cooling trend from 0 to 1900 CE, we find that the warmest period occurs between 300 and 1000 CE, and the coldest interval occurs from 1200 to 1900 CE. Since 1900 CE, significant warming trends are identified for the West Antarctic Ice Sheet, the Dronning Maud Land coast and the

  13. Southern Ocean Carbon Dioxide and Oxygen Fluxes Detected by SOCCOM Biogeochemical Profiling Floats

    Science.gov (United States)

    Sarmiento, J. L.; Bushinksy, S.; Gray, A. R.

    2016-12-01

    The Southern Ocean is known to play an important role in the global carbon cycle, yet historically our measurements of this remote region have been sparse and heavily biased towards summer. Here we present new estimates of air-sea fluxes of carbon dioxide and oxygen calculated with measurements from autonomous biogeochemical profiling floats. At high latitudes in and southward of the Antarctic Circumpolar Current, we find a significant flux of CO2 from the ocean to the atmosphere during 2014-2016, which is particularly enhanced during winter months. These results suggest that previous estimates may be biased towards stronger Southern Ocean CO2 uptake due to undersampling in winter. We examine various implications of having a source of CO2 that is higher than previous estimates. We also find that CO2:O2 flux ratios north of the Subtropical Front are positive, consistent with the fluxes being driven by changes in solubility, while south of the Polar Front biological processes and upwelling of deep water combine to produce a negative CO2:O2 flux ratio.

  14. Leadership in politics and science within the Antarctic Treaty

    OpenAIRE

    John R. Dudeney; David W.H. Walton

    2012-01-01

    For over 50 years the Antarctic has been governed through the Antarctic Treaty, an international agreement now between 49 nations of whom 28 Consultative Parties (CPs) undertake the management role. Ostensibly, these Parties have qualified for their position on scientific grounds, though diplomacy also plays a major role. This paper uses counts of policy papers and science publications to assess the political and scientific outputs of all CPs over the last 18 years. We show that a subset of t...

  15. Multimillennium changes in dissolved oxygen under global warming: results from an AOGCM and offline ocean biogeochemical model

    Science.gov (United States)

    Yamamoto, A.; Abe-Ouchi, A.; Shigemitsu, M.; Oka, A.; Takahashi, K.; Ohgaito, R.; Yamanaka, Y.

    2016-12-01

    Long-term oceanic oxygen change due to global warming is still unclear; most future projections (such as CMIP5) are only performed until 2100. Indeed, few previous studies using conceptual models project oxygen change in the next thousands of years, showing persistent global oxygen reduction by about 30% in the next 2000 years, even after atmospheric carbon dioxide stops rising. Yet, these models cannot sufficiently represent the ocean circulation change: the key driver of oxygen change. Moreover, considering serious effect oxygen reduction has on marine life and biogeochemical cycling, long-term oxygen change should be projected for higher validity. Therefore, we used a coupled atmosphere-ocean general circulation model (AOGCM) and an offline ocean biogeochemical model, investigating realistic long-term changes in oceanic oxygen concentration and ocean circulation. We integrated these models for 2000 years under atmospheric CO2 doubling and quadrupling. After global oxygen reduction in the first 500 years, oxygen concentration in deep ocean globally recovers and overshoots, despite surface oxygen decrease and weaker Atlantic Meridional Overturning Circulation. Deep ocean convection in the Weddell Sea recovers and overshoots, after initial cessation. Thus, enhanced deep convection and associated Antarctic Bottom Water supply oxygen-rich surface waters to deep ocean, resulting global deep ocean oxygenation. We conclude that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in the deep ocean; contrary to past reported long-term oxygen reduction and general expectation. In presentation, we will discuss the mechanism of response of deep ocean convection in the Weddell Sea and show the volume changes of hypoxic waters.

  16. Dating of the 85 degrees E Ridge (northeastern Indian Ocean) using marine magnetic anomalies

    Digital Repository Service at National Institute of Oceanography (India)

    Michael, L.; Krishna, K.S.

    underneath the eastern Con- rad Rise on the Antarctic plate. Subsequent geophysical RESEARCH ARTICLES CURRENT SCIENCE, VOL. 100, NO. 9, 10 MAY 2011 1315 studies 5,8 opined that short-lived volcanic activity had ini- tiated the 85°E Ridge in Mahanadi.... Satellite-derived free-air gravity anomaly map of the north- eastern Indian Ocean 24 . Curved strip line indicates continuity of the 85°E Ridge from the Mahanadi Basin to ANS. Few bathymetry con- tours derived from ETOPO5 data are shown in the map. N...

  17. Organic compounds and suspended matter in the marine ice of the Eastern Antarctic

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.

    2005-01-01

    Data on the composition of organic compounds in Antarctic sea ice are virtually non-existent, as most works concentrate on the structure, physical composition and biological properties of the ice. Data is needed for the study of the global carbon cycle and the estimation of background values and anthropogenic compounds. Specific features of the hydrometeorological regime near Antarctica affect the structure of the ice cover and its properties. The transportation of large volumes of snow to the ocean results in the formation of a snow sludge layer which gradually accumulates on the sea surface and freezes into young slush ice. The irregular distribution of snow at the ice surface and seawater infiltration results in the formation of ice with a specific crystalline structure and physiochemical properties. This paper discussed the dissolved and suspended lipids and hydrocarbons, as well as suspended matter (SM) concentrations in snow, sea ice and sub-ice water in coastal zones of the East Antarctic. The data was obtained during the Russian Antarctic Expedition in 2003. Variations in the concentration and distribution of the various substances suggest that they are related to ice forming conditions and to the processes that occur when ice forms, as well as in the interaction of the substances with ice, snow and sub-ice water. The SM and organic compounds are accumulated in layers characterized by intense autochthonous processes. It was noted that the zones stay biogeochemically active even under low temperature conditions. The highest concentrations of organic compounds, along with the biggest variations in their proportions have been discovered in the areas surrounded by penguin colonies near Buromsky Island and Haswell Island's Lake. The presence of significant quantities of PAHs in both pack and seasonal ice of high latitudes indicates that their formation is relatively rapid even at low temperatures. Many biochemical processes are intense under the influence of ice

  18. Antarctic Meteorite Classification and Petrographic Database

    Science.gov (United States)

    Todd, Nancy S.; Satterwhite, C. E.; Righter, Kevin

    2011-01-01

    The Antarctic Meteorite collection, which is comprised of over 18,700 meteorites, is one of the largest collections of meteorites in the world. These meteorites have been collected since the late 1970's as part of a three-agency agreement between NASA, the National Science Foundation, and the Smithsonian Institution [1]. Samples collected each season are analyzed at NASA s Meteorite Lab and the Smithsonian Institution and results are published twice a year in the Antarctic Meteorite Newsletter, which has been in publication since 1978. Each newsletter lists the samples collected and processed and provides more in-depth details on selected samples of importance to the scientific community. Data about these meteorites is also published on the NASA Curation website [2] and made available through the Meteorite Classification Database allowing scientists to search by a variety of parameters

  19. Near-surface eddy dynamics in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Marilisa Trani

    2011-12-01

    Full Text Available The Antarctic Circumpolar Current (ACC is a crucial component of the global ocean conveyor belt, acting as a zonal link among the major ocean basins but, to some extent, limiting meridional exchange and tending to isolate the ocean south of it from momentum and heat income. In this work we investigate one of the most important mechanisms contributing to the poleward transfer of properties in the Southern Ocean, that is the eddy component of the dynamics. For this particular purpose, observations obtained from near-surface drifters have been used: they represent a very useful data set to analyse the eddy field because of their ability to catch a large number of scales of motion while providing a quasi-synoptic coverage of the investigated area. Estimates of the eddy heat and momentum fluxes are carried out using data taken from the Global Drifter Program databank; they refer to Surface Velocity Program drifter trajectories collected in the area south of 35°S between 1995 and 2006. Eddy kinetic energies, variance ellipses, momentum and heat fluxes have been calculated using the pseudo-Eulerian method, showing patterns in good agreement with those present in the literature based on observational and model data, although there are some quantitative differences. The eddy fluxes have been separated into their rotational and divergent portions, the latter being responsible for the meridional transports. The associated zonal and depth-exponentially integrated meridional heat transport exhibits values spanning over a range between -0.4 PW and –1.1 PW in the ACC region, consistent with previous estimates.

  20. Actinobacterial community structure in the Polar Frontal waters of the Southern Ocean of the Antarctica using Geographic Information System (GIS: A novel approach to study Ocean Microbiome

    Directory of Open Access Journals (Sweden)

    P. Sivasankar

    2018-04-01

    Full Text Available Integration of microbiological data and geographical locations is necessary to understand the spatiotemporal patterns of the microbial diversity of an ecosystem. The Geographic Information System (GIS to map and catalogue the data on the actinobacterial diversity of the Southern Ocean waters was completed through sampling and analysis. Water samples collected at two sampling stations viz. Polar Front 1 (Station 1 and Polar Front 2 (Station 2 during 7th Indian Scientific Expedition to the Indian Ocean Sector of the Southern Ocean (SOE-2012-13 were used for analysis. At the outset, two different genera of Actinobacteria were recorded at both sampling stations. Streptomyces was the dominanted with the high score (> 60%, followed by Nocardiopsis (< 30% at both the sampling stations-Polar Front 1 and Polar Front 2-along with other invasive genera such as Agrococcus, Arthrobacter, Cryobacterium, Curtobacterium, Microbacterium, Marisediminicola, Rhodococcus and Kocuria. This data will help to discriminate the diversity and distribution pattern of the Actinobacteria in the Polar Frontal Region of the Southern Ocean waters. It is a novel approach useful for geospatial cataloguing of microbial diversity from extreme niches and in various environmental gradations. Furthermore, this research work will act as the milestone for bioprospecting of microbial communities and their products having potential applications in healthcare, agriculture and beneficial to mankind. Hence, this research work would have significance in creating a database on microbial communities of the Antarctic ecosystem. Keywords: Antarctica, Marine actinobacteria, Southern ocean, GIS, Polar Frontal waters, Microbiome

  1. A STUDY ON SNOW PROFILES AND SURFACE CHARACTERISTICS ALONG 6000km TRANSANTARCTIC ROUTE (Ⅰ)——THE "1990 INTERNATIONAL TRANS-ANTARCTIC EXPEDITION" GLACIOLOGICAL RESEARCH

    Institute of Scientific and Technical Information of China (English)

    秦大河; 任贾文

    1992-01-01

    Along a 5986 km route on Antarctic ice sheet from west to east, 106 snow pits with a depth ranging from 1.0—2.0 m have been dug by the first author of this paper, the Chinese member of the "1990 International Trans-Antarctic Expedition". The basic physical characteristics of the surface layer of the ice sheet on a large scale are obtained through the observations of snow profiles at these snow pits. The sastrugi shapes and major axis azimuths have also been observed or measured on the way. Analysis for these observation data shows that in West Antarctica the meltwater infiltration-congelation is obvious and the annual precipitation is larger than that in East Antarctica, which implies that climate in West Antarctica is warmer, more humid and influenced more greatly by the South Ocean than that in East Antarctica. Radiation ice-glazes frequently found in snow profiles indicate that even in East Antarctica under very low temperatures, surface "melting" occurs in summer due to the long-time solar radiatio

  2. Global equivalent magnetization of the oceanic lithosphere

    Science.gov (United States)

    Dyment, J.; Choi, Y.; Hamoudi, M.; Lesur, V.; Thebault, E.

    2015-11-01

    As a by-product of the construction of a new World Digital Magnetic Anomaly Map over oceanic areas, we use an original approach based on the global forward modeling of seafloor spreading magnetic anomalies and their comparison to the available marine magnetic data to derive the first map of the equivalent magnetization over the World's ocean. This map reveals consistent patterns related to the age of the oceanic lithosphere, the spreading rate at which it was formed, and the presence of mantle thermal anomalies which affects seafloor spreading and the resulting lithosphere. As for the age, the equivalent magnetization decreases significantly during the first 10-15 Myr after its formation, probably due to the alteration of crustal magnetic minerals under pervasive hydrothermal alteration, then increases regularly between 20 and 70 Ma, reflecting variations in the field strength or source effects such as the acquisition of a secondary magnetization. As for the spreading rate, the equivalent magnetization is twice as strong in areas formed at fast rate than in those formed at slow rate, with a threshold at ∼40 km/Myr, in agreement with an independent global analysis of the amplitude of Anomaly 25. This result, combined with those from the study of the anomalous skewness of marine magnetic anomalies, allows building a unified model for the magnetic structure of normal oceanic lithosphere as a function of spreading rate. Finally, specific areas affected by thermal mantle anomalies at the time of their formation exhibit peculiar equivalent magnetization signatures, such as the cold Australian-Antarctic Discordance, marked by a lower magnetization, and several hotspots, marked by a high magnetization.

  3. The Research on Elevation Change of Antarctic Ice Sheet Based on CRYOSAT-2 Alimeter

    Science.gov (United States)

    Sun, Q.; Wan, J.; Liu, S.; Li, Y.

    2018-04-01

    In this paper, the Cryosat-2 altimeter data distributed by the ESA, and these data are processed to extract the information of the elevation change of the Antarctic ice sheet from 2010 to 2017. Firstly, the main pretreatment preprocessing for Cryosat-2 altimetry data is crossover adjustment and elimination of rough difference. Then the grid DEM of the Antarctic ice sheet was constructed by using the kriging interpolation method,and analyzed the spatial characteristic time characteristics of the Antarctic ice sheet. The latitude-weighted elevation can be obtained by using the elevation data of each cycle, and then the general trend of the Antarctic ice sheet elevation variation can be seen roughly.

  4. Global variations in gravity-derived oceanic crustal thickness: Implications on oceanic crustal accretion and hotspot-lithosphere interactions

    Science.gov (United States)

    Lin, J.; Zhu, J.

    2012-12-01

    We present a new global model of oceanic crustal thickness based on inversion of global oceanic gravity anomaly with constrains from seismic crustal thickness profiles. We first removed from the observed marine free-air gravity anomaly all gravitational effects that can be estimated and removed using independent constraints, including the effects of seafloor topography, marine sediment thickness, and the age-dependent thermal structure of the oceanic lithosphere. We then calculated models of gravity-derived crustal thickness through inversion of the residual mantle Bouguer anomaly using best-fitting gravity-modeling parameters obtained from comparison with seismically determined crustal thickness profiles. Modeling results show that about 5% of the global crustal volume (or 9% of the global oceanic surface area) is associated with model crustal thickness 8.6 km and is interpreted to have been affected by excess magmatism. The percentage of oceanic crustal volume that is associated with thick crustal thickness (>8.6 km) varies greatly among tectonic plates: Pacific (33%), Africa (50%), Antarctic (33%), Australia (30%), South America (34%), Nazca (23%), North America (47%), India (74%), Eurasia (68%), Cocos (20%), Philippine (26%), Scotia (41%), Caribbean (89%), Arabian (82%), and Juan de Fuca (21%). We also found that distribution of thickened oceanic crust (>8.6 km) seems to depend on spreading rate and lithospheric age: (1) On ocean basins younger than 5 Ma, regions of thickened crust are predominantly associated with slow and ultraslow spreading ridges. The relatively strong lithospheric plate at slow and ultraslow ridges might facilitate the loading of large magmatic emplacements on the plate. (2) In contrast, crustal thickness near fast and intermediately fast spreading ridges typically does not exceed 7-8 km. The relatively weak lithosphere at fast and intermediately fast ridges might make it harder for excess magmatism to accrete. We further speculate that

  5. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry

    Science.gov (United States)

    Schaffer, Janin; Timmermann, Ralph; Arndt, Jan Erik; Savstrup Kristensen, Steen; Mayer, Christoph; Morlighem, Mathieu; Steinhage, Daniel

    2016-10-01

    The ocean plays an important role in modulating the mass balance of the polar ice sheets by interacting with the ice shelves in Antarctica and with the marine-terminating outlet glaciers in Greenland. Given that the flux of warm water onto the continental shelf and into the sub-ice cavities is steered by complex bathymetry, a detailed topography data set is an essential ingredient for models that address ice-ocean interaction. We followed the spirit of the global RTopo-1 data set and compiled consistent maps of global ocean bathymetry, upper and lower ice surface topographies, and global surface height on a spherical grid with now 30 arcsec grid spacing. For this new data set, called RTopo-2, we used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. While RTopo-1 primarily aimed at a good and consistent representation of the Antarctic ice sheet, ice shelves, and sub-ice cavities, RTopo-2 now also contains ice topographies of the Greenland ice sheet and outlet glaciers. In particular, we aimed at a good representation of the fjord and shelf bathymetry surrounding the Greenland continent. We modified data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ, and Sermilik Fjord, assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off Northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79° N, we incorporated a high-resolution digital bathymetry model considering original multibeam survey data for the region. Radar data for surface topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centres of Technical University of Denmark (DTU), Operation Icebridge (NASA

  6. Dating Antarctic ice sheet collapse: Proposing a molecular genetic approach

    Science.gov (United States)

    Strugnell, Jan M.; Pedro, Joel B.; Wilson, Nerida G.

    2018-01-01

    Sea levels at the end of this century are projected to be 0.26-0.98 m higher than today. The upper end of this range, and even higher estimates, cannot be ruled out because of major uncertainties in the dynamic response of polar ice sheets to a warming climate. Here, we propose an ecological genetics approach that can provide insight into the past stability and configuration of the West Antarctic Ice Sheet (WAIS). We propose independent testing of the hypothesis that a trans-Antarctic seaway occurred at the last interglacial. Examination of the genomic signatures of bottom-dwelling marine species using the latest methods can provide an independent window into the integrity of the WAIS more than 100,000 years ago. Periods of connectivity facilitated by trans-Antarctic seaways could be revealed by dating coalescent events recorded in DNA. These methods allow alternative scenarios to be tested against a fit to genomic data. Ideal candidate taxa for this work would need to possess a circumpolar distribution, a benthic habitat, and some level of genetic structure indicated by phylogeographical investigation. The purpose of this perspective piece is to set out an ecological genetics method to help resolve when the West Antarctic Ice Shelf last collapsed.

  7. A long term strategy for Antarctic tourism : The key to decision making within the Antarctic Treaty System?

    NARCIS (Netherlands)

    Bastmeijer, C.J.; Maher, P.; Stewart, E.; Lück, M.

    2011-01-01

    The fast increase of Antarctic tourism raises various management questions. Questions relating to the safety of tourists, questions regarding the interaction between science and tourism and questions relating to direct, indirect or cumulative affects on Antarctica's environment and wilderness

  8. Historical Arctic and Antarctic Surface Observational Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This product consists of meteorological data from 105 Arctic weather stations and 137 Antarctic stations, extracted from the National Climatic Data Center (NCDC)'s...

  9. The effect of sudden ice sheet melt on ocean circulation and surface climate

    Science.gov (United States)

    Ivanovic, R. F.; Gregoire, L. J.; Wickert, A. D.; Valdes, P. J.; Burke, A.

    2017-12-01

    Collapse of ice sheets can cause significant sea-level rise and widespread climate change. Around 14.6 thousand years ago, global mean sea level rose by 15 m in less than 350 years during an event known as Meltwater Pulse 1a. Ice sheet modelling and sea-level fingerprinting has suggested that approximately half of this 50 mm yr-1 sea level rise may have come from a North American ice Saddle Collapse that drained into the Arctic and Atlantic Oceans. However, dating uncertainties make it difficult to determine the sequence of events and their drivers, leaving many fundamental questions. For example, was melting from the northern ice sheets responsible for the Older-Dryas or other global-scale cooling events, or did a contribution from Antarctica counteract the climatic effects? What was the role of the abrupt Bølling Warming? And how were all these signals linked to changes in Atlantic Ocean overturning circulation?To address these questions, we examined the effect of the North American ice Saddle Collapse using a high resolution network drainage model coupled to an atmosphere-ocean-vegetation General Circulation Model. Here, we present the quantitative routing estimates of the consequent meltwater discharge and its impact on climate. We also tested a suite of more idealised meltwater forcing scenarios to examine the global influence of Arctic versus Antarctic ice melt. The results show that 50% of the Saddle Collapse meltwater pulse was routed via the Mackenzie River into the Arctic Ocean, and 50% was discharged directly into the Atlantic/Gulf of Mexico. This meltwater flux, equivalent to a total of 7.3 m of sea-level rise, caused a strong (6 Sv) weakening of Atlantic Meridional Overturning Circulation (AMOC) and widespread Northern Hemisphere cooling of 1-5 °C. The greatest cooling is in the Arctic (5-10 °C in the winter), but there is also significant winter warming over eastern North America (1-3 °C). We propose that this robust submillennial mechanism was

  10. Pelagic ecology of the South West Indian Ocean Ridge seamounts: Introduction and overview

    Science.gov (United States)

    Rogers, A. D.

    2017-02-01

    The Indian Ocean was described by Behrman (1981) as the "Forlorn Ocean", a region neglected by science up to the late-1950s. For example, the Challenger Expedition from 1872 to 1876 largely avoided the Indian Ocean, sailing from Cape Town into Antarctic waters sampling around the Prince Edward Islands, Kerguelen Island and Crozet Islands before heading to Melbourne. From 1876 to the 1950s there were expeditions on several vessels including the Valdivia, Gauss and Planet (Germany), the Snellius (Netherlands), Discovery II, MahaBiss (United Kingdom), Albatross (Sweden), Dana and Galathea (Denmark; Behrman, 1981). There was no coordination between these efforts and overall the Indian Ocean, especially the deep sea remained perhaps the most poorly explored of the world's oceans. This situation was largely behind the multilateral effort represented by the International Indian Ocean Expedition (IIEO), which was coordinated by the Scientific Committee for Ocean Research (SCOR), and which ran from 1959-1965. Work during this expedition focused on the Arabian Sea, the area to the northwest of Australia and the waters over the continental shelves and slopes of coastal states in the region. Subsequently several large-scale international oceanographic programmes have included significant components in the Indian Ocean, including the Joint Global Ocean Flux Study (JGOFS) and the World Ocean Circulation Experiment (WOCE). These studies were focused on physical oceanographic measurements and biogeochemistry and whilst the Indian Ocean is still less understood than other large oceans it is now integrated into the major ocean observation systems (Talley et al., 2011). This cannot be said for many aspects of the biology of the region, despite the fact that the Indian Ocean is one of the places where exploitation of marine living resources is still growing (FAO, 2016). The biology of the deep Indian Ocean outside of the Arabian Sea is particularly poorly understood given the presence

  11. First record of Babesia sp. in Antarctic penguins.

    Science.gov (United States)

    Montero, Estrella; González, Luis Miguel; Chaparro, Alberto; Benzal, Jesús; Bertellotti, Marcelo; Masero, José A; Colominas-Ciuró, Roger; Vidal, Virginia; Barbosa, Andrés

    2016-04-01

    This is the first reported case of Babesia sp. in Antarctic penguins, specifically a population of Chinstrap penguins (Pygoscelis antarctica) in the Vapour Col penguin rookery in Deception Island, South Shetlands, Antarctica. We collected peripheral blood from 50 adult and 30 chick Chinstrap penguins. Examination of the samples by microscopy showed intraerythrocytic forms morphologically similar to other avian Babesia species in 12 Chinstrap penguin adults and seven chicks. The estimated parasitaemias ranged from 0.25×10(-2)% to 0.75×10(-2)%. Despite the low number of parasites found in blood smears, semi-nested PCR assays yielded a 274 bp fragment in 12 of the 19 positive blood samples found by microscopy. Sequencing revealed that the fragment was 97% similar to Babesia sp. 18S rRNA from Australian Little Penguins (Eudyptula minor) confirming presence of the parasite. Parasite prevalence estimated by microscopy in adults and chicks was higher (24% vs. 23.3%, respectively) than found by semi-nested PCR (16% vs. 13.3% respectively). Although sampled penguins were apparently healthy, the effect of Babesia infection in these penguins is unknown. The identification of Babesia sp. in Antarctic penguins is an important finding. Ixodes uriae, as the only tick species present in the Antarctic Peninsula, is the key to understanding the natural history of this parasite. Future work should address the transmission dynamics and pathogenicity of Babesia sp. in Chinstrap penguin as well as in other penguin species, such as Gentoo penguin (Pygoscelis papua) and Adélie penguin (Pygoscelis adeliae), present within the tick distribution range in the Antarctic Peninsula. Copyright © 2016 Elsevier GmbH. All rights reserved.

  12. Spatial structures in the heat budget of the Antarctic Atmospheric Boundary Layer

    NARCIS (Netherlands)

    van der Berg, W.J.; van den Broeke, M.R.; van Meijgaard, E.

    2008-01-01

    Output from the regional climate model RACMO2/ANT is used to calculate the heat budget of the Antarctic atmospheric boundary layer (ABL). The main feature of the wintertime Antarctic ABL is a persistent temperature deficit compared to the free atmosphere. The magnitude of this deficit is controlled

  13. Testing oils in antarctic soils

    International Nuclear Information System (INIS)

    Leufkens, D.

    2001-01-01

    The resident seals, whales and penguins in Antarctica's Ross Sea region have only environmentally friendly ways of getting around. In contrast, wherever humans go in the Antarctic and whatever they do, be it research, tourism or fishing, they need fuel for their planes, icebreaker ships, land vehicles and generators. Because of this, petroleum hydrocarbons are the most likely source of pollution in the Antarctic. Accidental oil spills often occur near scientific stations, where storage and refuelling of aircraft and vehicles can result in spills. Spills also occur as a consequence of drilling activities. Dr Jackie Aislabie, a microbiologist from the New Zealand government's research company Landcare Research, is leading a program aimed at understanding how oil spills impact on Antarctic soils. The properties of pristine soils were compared with oil-contaminated soil at three locations: Scott Base, Marble Point and in the Wright Valley at Bull Pass. Soils in the Scott Base area are impacted by the establishment and continuous habitation of the base over 40 years, and a hydrocarbon-contaminated site was sampled near a former storage area for drums of mixed oils. Soil sampled from Marble Point was taken from near the old Marble Point camp, which was inhabited from 1957 to about 1963. Oil stains were visible on the soil surface, and are assumed to have been there for more than 30 years. The samples selected for analysis from the Wright Valley came from a spill site near Bull Pass that occurred during seismic bore-hole drilling activities in 1985. The contamination levels ranged from below detection to just over 29,000 μg/g of soil. Descriptions and analyse results are included into a Geographic Information System and associated soils database

  14. Oceanic response to changes in the WAIS and astronomical forcing during the MIS31 superinterglacial

    Directory of Open Access Journals (Sweden)

    F. Justino

    2017-09-01

    Full Text Available Marine Isotope Stage 31 (MIS31, between 1085 and 1055 ka was characterized by higher extratropical air temperatures and a substantial recession of polar glaciers compared to today. Paleoreconstructions and model simulations have increased the understanding of the MIS31 interval, but questions remain regarding the role of the Atlantic and Pacific oceans in modifying the climate associated with the variations in Earth's orbital parameters. Multi-century coupled climate simulations, with the astronomical configuration of the MIS31 and modified West Antarctic Ice Sheet (WAIS topography, show an increase in the thermohaline flux and northward oceanic heat transport (OHT in the Pacific Ocean. These oceanic changes are driven by anomalous atmospheric circulation and increased surface salinity in concert with a stronger meridional overturning circulation (MOC. The intensified northward OHT is responsible for up to 85 % of the global OHT anomalies and contributes to the overall reduction in sea ice in the Northern Hemisphere (NH due to Earth's astronomical configuration. The relative contributions of the Atlantic Ocean to global OHT and MOC anomalies are minor compared to those of the Pacific. However, sea ice changes are remarkable, highlighted by decreased (increased cover in the Ross (Weddell Sea but widespread reductions in sea ice across the NH.

  15. Variability in the mechanisms controlling Southern Ocean phytoplankton bloom phenology in an ocean model and satellite observations

    Science.gov (United States)

    Rohr, Tyler; Long, Matthew C.; Kavanaugh, Maria T.; Lindsay, Keith; Doney, Scott C.

    2017-05-01

    A coupled global numerical simulation (conducted with the Community Earth System Model) is used in conjunction with satellite remote sensing observations to examine the role of top-down (grazing pressure) and bottom-up (light, nutrients) controls on marine phytoplankton bloom dynamics in the Southern Ocean. Phytoplankton seasonal phenology is evaluated in the context of the recently proposed "disturbance-recovery" hypothesis relative to more traditional, exclusively "bottom-up" frameworks. All blooms occur when phytoplankton division rates exceed loss rates to permit sustained net population growth; however, the nature of this decoupling period varies regionally in Community Earth System Model. Regional case studies illustrate how unique pathways allow blooms to emerge despite very poor division rates or very strong grazing rates. In the Subantarctic, southeast Pacific small spring blooms initiate early cooccurring with deep mixing and low division rates, consistent with the disturbance-recovery hypothesis. Similar systematics are present in the Subantarctic, southwest Atlantic during the spring but are eclipsed by a subsequent, larger summer bloom that is coincident with shallow mixing and the annual maximum in division rates, consistent with a bottom-up, light limited framework. In the model simulation, increased iron stress prevents a similar summer bloom in the southeast Pacific. In the simulated Antarctic zone (70°S-65°S) seasonal sea ice acts as a dominant phytoplankton-zooplankton decoupling agent, triggering a delayed but substantial bloom as ice recedes. Satellite ocean color remote sensing and ocean physical reanalysis products do not precisely match model-predicted phenology, but observed patterns do indicate regional variability in mechanism across the Atlantic and Pacific.

  16. The Antarctic Ice Sheet, Sea Ice, and the Ozone Hole: Satellite Observations of how they are Changing

    Science.gov (United States)

    Parkinson, Claire L.

    2012-01-01

    Antarctica is the Earth's coldest and highest continent and has major impacts on the climate and life of the south polar vicinity. It is covered almost entirely by the Earth's largest ice sheet by far, with a volume of ice so great that if all the Antarctic ice were to go into the ocean (as ice or liquid water), this would produce a global sea level rise of about 60 meters (197 feet). The continent is surrounded by sea ice that in the wintertime is even more expansive than the continent itself and in the summertime reduces to only about a sixth of its wintertime extent. Like the continent, the expansive sea ice cover has major impacts, reflecting the sun's radiation back to space, blocking exchanges between the ocean and the atmosphere, and providing a platform for some animal species while impeding other species. Far above the continent, the Antarctic ozone hole is a major atmospheric phenomenon recognized as human-caused and potentially quite serious to many different life forms. Satellites are providing us with remarkable information about the ice sheet, the sea ice, and the ozone hole. Satellite visible and radar imagery are providing views of the large scale structure of the ice sheet never seen before; satellite laser altimetry has produced detailed maps of the topography of the ice sheet; and an innovative gravity-measuring two-part satellite has allowed mapping of regions of mass loss and mass gain on the ice sheet. The surrounding sea ice cover has a satellite record that goes back to the 1970s, allowing trend studies that show a decreasing sea ice presence in the region of the Bellingshausen and Amundsen seas, to the west of the prominent Antarctic Peninsula, but increasing sea ice presence around much of the rest of the continent. Overall, sea ice extent around Antarctica has increased at an average rate of about 17,000 square kilometers per year since the late 1970s, as determined from satellite microwave data that can be collected under both light and

  17. 222Rn in the Antarctic Peninsula during 1986

    International Nuclear Information System (INIS)

    Pereira, E.B.; Setzer, A.W.; Cavalcanti, I.F.A.

    1988-01-01

    222 Rn was continuously measured at the Brazilian Antarctic Station (62 0 S, 58 0 W) during the year of 1986. Baseline radon concentration averaged 0.02 Bq.m -3 with surges peaking 0.4 Bq.m -3 . The data exhibited a characteristic periodicity of about 25 days and a strong positive association with short term fluctuations of atmospheric temperature. No seasonal variations of radon were observed. Interpretation of the radon surges with reference to synoptic charts and weather satellite pictures showed that the continental influence of radon at the Antarctic Peninsula is very small and comes only from the tip of the South American cone. (author)

  18. Standing crop and growth rates of net phytoplankton and nanoplankton in Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    Goes, J.I.; Fondekar, S.P.; Parulekar, A.H.

    stream_size 16 stream_content_type text/plain stream_name Proc_Workshop_Antarct_Stud_1990_419.pdf.txt stream_source_info Proc_Workshop_Antarct_Stud_1990_419.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset...

  19. Living resources of Antarctic India's contribution to exploration and future plans for exploration

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    stream_size 7 stream_content_type text/plain stream_name Proc_Workshop_Antarct_Stud_1990_459.pdf.txt stream_source_info Proc_Workshop_Antarct_Stud_1990_459.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset...

  20. Balance of the West Antarctic Ice Sheet

    Science.gov (United States)

    2002-01-01

    For several decades, measurements of the West Antarctic Ice Sheet showed it to be retreating rapidly. But new data derived from satellite-borne radar sensors show the ice sheet to be growing. Changing Antarctic ice sheets remains an area of high scientific interest, particularly in light of recent global warming concerns. These new findings are significant because scientists estimate that sea level would rise 5-6 meters (16-20 feet) if the ice sheet collapsed into the sea. Do these new measurements signal the end of the ice sheet's 10,000-year retreat? Or, are these new satellite data simply much more accurate than the sparse ice core and surface measurements that produced the previous estimates? Another possibility is that the ice accumulation may simply indicate that the ice sheet naturally expands and retreats in regular cycles. Cryologists will grapple with these questions, and many others, as they examine the new data. The image above depicts the region of West Antarctica where scientists measured ice speed. The fast-moving central ice streams are shown in red. Slower tributaries feeding the ice streams are shown in blue. Green areas depict slow-moving, stable areas. Thick black lines depict the areas that collect snowfall to feed their respective ice streams. Reference: Ian Joughin and Slawek Tulaczyk Science Jan 18 2002: 476-480. Image courtesy RADARSAT Antarctic Mapping Project