WorldWideScience

Sample records for antarctic lakes models

  1. Modeling Antarctic Subglacial Lake Filling and Drainage Cycles

    Science.gov (United States)

    Dow, Christine F.; Werder, Mauro A.; Nowicki, Sophie; Walker, Ryan T.

    2016-01-01

    The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to examine internal controls on the filling and drainage of subglacial lakes. Our model outputs suggest that the highly constricted subglacial environment of our idealized ice stream, combined with relatively high rates of water flow funneled from a large catchment, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water beneath the ice stream drives lake growth. As the water body builds up, it steepens the hydraulic gradient out of the overdeepened lake basin and allows greater flux. Eventually this flux is large enough to melt channels that cause the lake to drain. Lake drainage also depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.

  2. Modeling Antarctic subglacial lake filling and drainage cycles

    Directory of Open Access Journals (Sweden)

    C. F. Dow

    2015-11-01

    Full Text Available The growth and drainage of active subglacial lakes in Antarctica has previously been inferred from analysis of ice surface altimetry data. We use a subglacial hydrology model applied to a synthetic Antarctic ice stream to determine internal controls on the filling and drainage of subglacial lakes and their impact on ice stream dynamics. Our model outputs suggest that the highly constricted subglacial environment of the ice stream, combined with relatively high rates of water flow funneled from large catchments, can combine to create a system exhibiting slow-moving pressure waves. Over a period of years, the accumulation of water in the ice stream onset region results in a buildup of pressure creating temporary channels, which then evacuate the excess water. This increased flux of water through the ice stream drives lake growth. As the water body builds up, it too steepens the hydraulic gradient and allows greater flux out of the overdeepened lake basin. Eventually this flux is large enough to create channels that cause the lake to drain. Due to the presence of the channels, the drainage of the lake causes high water pressures around 50 km downstream of the lake rather than immediately in the vicinity of the overdeepening. Following lake drainage, channels again shut down. Lake drainage depends on the internal hydrological development in the wider system and therefore does not directly correspond to a particular water volume or depth. This creates a highly temporally and spatially variable system, which is of interest for assessing the importance of subglacial lakes in ice stream hydrology and dynamics.

  3. Viruses in Antarctic lakes

    Science.gov (United States)

    Kepner, R. L. Jr; Wharton, R. A. Jr; Suttle, C. A.; Wharton RA, J. r. (Principal Investigator)

    1998-01-01

    Water samples collected from four perennially ice-covered Antarctic lakes during the austral summer of 1996-1997 contained high densities of extracellular viruses. Many of these viruses were found to be morphologically similar to double-stranded DNA viruses that are known to infect algae and protozoa. These constitute the first observations of viruses in perennially ice-covered polar lakes. The abundance of planktonic viruses and data suggesting substantial production potential (relative to bacteria] secondary and photosynthetic primary production) indicate that viral lysis may be a major factor in the regulation of microbial populations in these extreme environments. Furthermore, we suggest that Antarctic lakes may be a reservoir of previously undescribed viruses that possess novel biological and biochemical characteristics.

  4. Carbon dynamics modelization and biological community sensitivity to temperature in an oligotrophic freshwater Antarctic lake

    DEFF Research Database (Denmark)

    Antonio Villaescusa, Juan; Jorgensen, Sven Erik; Rochera, Carlos

    2016-01-01

    food web. This preliminary model aims to describe part of the carbon dynamics, especially for bacterioplankton and associated factors, in this maritime Antarctic lake highly affected by temperature increase linked to regional warming. To describe the system, the effects of the variation of different...

  5. Antarctic subglacial lakes drain through sediment-floored canals: theory and model testing on real and idealized domains

    Science.gov (United States)

    Carter, Sasha P.; Fricker, Helen A.; Siegfried, Matthew R.

    2017-02-01

    Over the past decade, satellite observations of ice surface height have revealed that active subglacial lake systems are widespread under the Antarctic Ice Sheet, including the ice streams. For some of these systems, additional observations of ice-stream motion have shown that lake activity can affect ice-stream dynamics. Despite all this new information, we still have insufficient understanding of the lake-drainage process to incorporate it into ice-sheet models. Process models for drainage of ice-dammed lakes based on conventional R-channels incised into the base of the ice through melting are unable to reproduce the timing and magnitude of drainage from Antarctic subglacial lakes estimated from satellite altimetry given the low hydraulic gradients along which such lakes drain. We have developed an alternative process model, in which channels are mechanically eroded into the underlying deformable subglacial sediment. When applied to the known active lakes of the Whillans-Mercer ice-stream system, the model successfully reproduced both the inferred magnitudes and recurrence intervals of lake-volume changes, derived from Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data for the period 2003-2009. Water pressures in our model changed as the flood evolved: during drainage, water pressures initially increased as water flowed out of the lake primarily via a distributed system, then decreased as the channelized system grew, establishing a pressure gradient that drew water away from the distributed system. This evolution of the drainage system can result in the observed internal variability of ice flow over time. If we are correct that active subglacial lakes drain through canals in the sediment, this mechanism also implies that active lakes are typically located in regions underlain by thick subglacial sediment, which may explain why they are not readily observed using radio-echo-sounding techniques.

  6. Geoethical Approach to Antarctic Subglacial Lakes Exploration

    Science.gov (United States)

    Talalay, Pavel; Markov, Alexey; Sysoev, Mikhail

    2014-05-01

    Antarctic subglacial aquatic environment have become of great interest to the science community because they may provide unique information about microbial evolution, the past climate of the Earth, and the formation of the Antarctic ice sheet. Nowadays it is generally recognized that a vast network of lakes, rivers, and streams exists thousands of meters beneath Antarctic Ice Sheets. Up to date only four boreholes accessed subglacial aquatic system but three of them were filled with high-toxic drilling fluid, and the subglacial water was contaminated. Two recent exploration programs proposed by UK and USA science communities anticipated direct access down to the lakes Ellsworth and Whillans, respectively, in the 2012/2013 Antarctic season. A team of British scientists and engineers engaged in the first attempt to drill into Lake Ellsworth but failed. US research team has successfully drilled through 800 m of Antarctic ice to reach a subglacial lake Whillans and retrieve water and sediment samples. Both activities used hot-water drilling technology to access lakes. Hot water is considered by the world science community as the most clean drilling fluid medium from the present point of view but it cannot solve environmental problems in total because hot-water even when heated to 90 °C, filtered to 0.2 μm, and UV treated at the surface could pick up microorganisms from near-surface snow and circulate them in great volume through the borehole. Another negative impact of hot-water circulation medium is thermal pollution of subglacial water. The new approach to Antarctic subglacial lakes exploration is presented by sampling technology with recoverable autonomous sonde which is equipped by two hot-points with heating elements located on the bottom and top sides of the sonde. All down-hole sonde components will be sterilized by combination of chemical wash, HPV and UV sterilization prior using. At the beginning of the summer season sonde is installed on the surface of the

  7. Modelling the Antarctic Ice Sheet

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Holm, A.

    2015-01-01

    The Antarctic ice sheet is a major player in the Earth’s climate system and is by far the largest depository of fresh water on the planet. Ice stored in the Antarctic ice sheet (AIS) contains enough water to raise sea level by about 58 m, and ice loss from Antarctica contributed significantly...... Science) Antarctic Ice Sheet (DAIS) model (Shaffer 2014) is forced by reconstructed time series of Antarctic temperature, global sea level and ocean subsurface temperature over the last two glacial cycles. In this talk a modelling work of the Antarctic ice sheet over most of the Cenozoic era using...... the DAIS model will be presented. G. Shaffer (2014) Formulation, calibration and validation of the DAIS model (version 1), a simple Antarctic ice sheet model sensitive to variations of sea level and ocean subsurface temperature, Geosci. Model Dev., 7, 1803‐1818...

  8. Antarctic subglacial lake exploration: first results and future plans.

    Science.gov (United States)

    Siegert, Martin J; Priscu, John C; Alekhina, Irina A; Wadham, Jemma L; Lyons, W Berry

    2016-01-28

    After more than a decade of planning, three attempts were made in 2012-2013 to access, measure in situ properties and directly sample subglacial Antarctic lake environments. First, Russian scientists drilled into the top of Lake Vostok, allowing lake water to infiltrate, and freeze within, the lower part of the ice-core borehole, from which further coring would recover a frozen sample of surface lake water. Second, UK engineers tried unsuccessfully to deploy a clean-access hot-water drill, to sample the water column and sediments of subglacial Lake Ellsworth. Third, a US mission successfully drilled cleanly into subglacial Lake Whillans, a shallow hydraulically active lake at the coastal margin of West Antarctica, obtaining samples that would later be used to prove the existence of microbial life and active biogeochemical cycling beneath the ice sheet. This article summarizes the results of these programmes in terms of the scientific results obtained, the operational knowledge gained and the engineering challenges revealed, to collate what is known about Antarctic subglacial environments and how to explore them in future. While results from Lake Whillans testify to subglacial lakes as being viable biological habitats, the engineering challenges to explore deeper more isolated lakes where unique microorganisms and climate records may be found, as exemplified in the Lake Ellsworth and Vostok missions, are considerable. Through international cooperation, and by using equipment and knowledge of the existing subglacial lake exploration programmes, it is possible that such environments could be explored thoroughly, and at numerous sites, in the near future.

  9. Allelopathy-mediated Competition in Microbial Mats from Antarctic Lakes.

    Science.gov (United States)

    Slattery, Marc; Lesser, Michael P

    2017-02-18

    Microbial mats are vertically stratified communities that host a complex consortium of microorganisms, dominated by cyanobacteria, that compete for available nutrients and environmental niches, within these extreme habitats. The Antarctic Dry Valleys near McMurdo Sound include a series of lakes within the drainage basin that are bisected by glacial traverses. These lakes are traditionally independent, but recent increases in glacial melting have allowed two lakes (Chad and Hoare) to become connected by a meltwater stream. Microbial mats were collected from these lakes, and cultured under identical conditions at the McMurdo Station laboratory. Replicate pairings of the microbial mats exhibited consistent patterns of growth inhibition indicative of competitive dominance. Natural products were extracted from the microbial mats, and a disc diffusion assay was utilized to show that allelochemical compounds mediate competitive interactions. Both microscopy and 16S rRNA sequencing show that these mats contain significant populations of cyanobacteria known to produce allelochemicals. Two compounds were isolated from these microbial mats that might be important in the chemical ecology of these psychrophiles. In other disc:mat pairings, including extract versus mat of origin, the allelochemicals exhibited no effect. Taken together, these results indicate that Antarctic lake microbial mats can compete via allelopathy.

  10. Study on ecological structures of coastal lakes in Antarctic continent

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Coastal region on the Antarctic continent, where it is under the influences both of ocean and ice sheet, as well as frequent human activities, could be considered as a fragile zone in Antarctic ecological environment. There are many lakes in coastal region, showing much differences from each other in physical-chemical features because of individual evolutionary history in their geographical environments, and suffering from different outside factors, such as climate changes and precipitation. Thus, it results in respective biological distribution and ecological structure in lakes. The present paper reports the results from the studies of chemical components, species distributions and community structures, which mainly consisted of planktons in lakes in the Vestfold Hills (68°38'S, 78°06'E), and the Larsemann Hills (69°30'S, 76°20'E), East Antarctica. It also treats the biological diversities and nutrient relationships of these different types of lakes. So as to provide more scientific basis for monitoring of climate changes and environmental protection in Antarctica.

  11. Recent advances in understanding Antarctic subglacial lakes and hydrology.

    Science.gov (United States)

    Siegert, Martin J; Ross, Neil; Le Brocq, Anne M

    2016-01-28

    It is now well documented that over 400 subglacial lakes exist across the bed of the Antarctic Ice Sheet. They comprise a variety of sizes and volumes (from the approx. 250 km long Lake Vostok to bodies of water less than 1 km in length), relate to a number of discrete topographic settings (from those contained within valleys to lakes that reside in broad flat terrain) and exhibit a range of dynamic behaviours (from 'active' lakes that periodically outburst some or all of their water to those isolated hydrologically for millions of years). Here we critique recent advances in our understanding of subglacial lakes, in particular since the last inventory in 2012. We show that within 3 years our knowledge of the hydrological processes at the ice-sheet base has advanced considerably. We describe evidence for further 'active' subglacial lakes, based on satellite observation of ice-surface changes, and discuss why detection of many 'active' lakes is not resolved in traditional radio-echo sounding methods. We go on to review evidence for large-scale subglacial water flow in Antarctica, including the discovery of ancient channels developed by former hydrological processes. We end by predicting areas where future discoveries may be possible, including the detection, measurement and significance of groundwater (i.e. water held beneath the ice-bed interface).

  12. Subsurface imaging reveals a confined aquifer beneath an ice-sealed Antarctic lake

    DEFF Research Database (Denmark)

    Dugan, H. A.; Doran, P. T.; Tulaczyk, S.;

    2015-01-01

    Liquid water oases are rare under extreme cold desert conditions found in the Antarctic McMurdo Dry Valleys. Here we report geophysical results that indicate that Lake Vida, one of the largest lakes in the region, is nearly frozen and underlain by widespread cryoconcentrated brine. A ground...... Geophysical survey finds low resistivities beneath a lake in Antarctic Dry Valleys Liquid brine abundant beneath Antarctic lake Aquifer provides microbial refugium in cold desert environment...... penetrating radar survey profiled 20 m into lake ice and facilitated bathymetric mapping of the upper lake basin. An airborne transient electromagnetic survey revealed a low-resistivity zone 30-100 m beneath the lake surface. Based on previous knowledge of brine chemistry and local geology, we interpret...

  13. Ciliated protozoa of two antarctic lakes: analysis by quantitative protargol staining and examination of artificial substrates

    Science.gov (United States)

    Kepner, R. L. Jr; Wharton, R. A. Jr; Coats, D. W.; Wharton RA, J. r. (Principal Investigator)

    1999-01-01

    Planktonic and artificial substrate-associated ciliates have been identified in two perennially ice-covered antarctic lakes of the McMurdo Dry Valleys. Abundances estimated by quantitative protargol staining ranged from Vorticella. The taxonomic findings compare favorably with those of previous investigators; however four previously unreported genera were observed in both Lakes Fryxell and Hoare. The variability in the depth distributions of ciliates in Lake Fryxell is explained in terms of lake physicochemical properties and ciliate prey distributions, while factors related to temporal succession in the Lake Hoare assemblage remain unexplained. Local marine or temperate zone freshwater habitats are a more likely source than the surrounding dry valleys soils for present ciliate colonists in these lakes. Although the taxonomic uncertainties require further examination, our results suggest that ciliate populations in these antarctic lakes undergo significant fluctuations and are more diverse than was previously recognized.

  14. Ciliated protozoa of two antarctic lakes: analysis by quantitative protargol staining and examination of artificial substrates

    Science.gov (United States)

    Kepner, R. L. Jr; Wharton, R. A. Jr; Coats, D. W.; Wharton RA, J. r. (Principal Investigator)

    1999-01-01

    Planktonic and artificial substrate-associated ciliates have been identified in two perennially ice-covered antarctic lakes of the McMurdo Dry Valleys. Abundances estimated by quantitative protargol staining ranged from < 5 to 31690 cells l-1, levels that are comparable to those previously obtained using other methods. Nineteen ciliate taxa were identified from these lakes, with the most frequently encountered genera being Plagiocampa, Askenasia, Monodinium, Sphaerophrya and Vorticella. The taxonomic findings compare favorably with those of previous investigators; however four previously unreported genera were observed in both Lakes Fryxell and Hoare. The variability in the depth distributions of ciliates in Lake Fryxell is explained in terms of lake physicochemical properties and ciliate prey distributions, while factors related to temporal succession in the Lake Hoare assemblage remain unexplained. Local marine or temperate zone freshwater habitats are a more likely source than the surrounding dry valleys soils for present ciliate colonists in these lakes. Although the taxonomic uncertainties require further examination, our results suggest that ciliate populations in these antarctic lakes undergo significant fluctuations and are more diverse than was previously recognized.

  15. Microwave emissivity of fresh water ice--Lake ice and Antarctic ice pack--Radiative transfer simulations versus satellite radiances

    CERN Document Server

    Mills, Peter

    2012-01-01

    Microwave emissivity models of sea ice are poorly validated empirically. Typical validation studies involve using averaged or stereotyped profiles of ice parameters against averaged radiance measurements. Measurement sites are rarely matched and even less often point-by-point. Because of saline content, complex permittivity of sea ice is highly variable and difficult to predict. Therefore, to check the validity of a typical, plane-parallel, radiative-transfer-based ice emissivity model, we apply it to fresh water ice instead of salt-water ice. Radiance simulations for lake ice are compared with measurements over Lake Superior from the Advanced Microwave Scanning Radiometer on EOS (AMSR-E). AMSR-E measurements are also collected over Antarctic icepack. For each pixel, a thermodynamic model is driven by four years of European Center for Medium Range Weather Forecasts (ECMWF) reanalysis data and the resulting temperature profiles used to drive the emissivity model. The results suggest that the relatively simple ...

  16. Antarctic microfungi as models for exobiology

    Science.gov (United States)

    Onofri, S.; Selbmann, L.; Zucconi, L.; Pagano, S.

    2004-01-01

    Microfungi living in different Antarctic environments are generally well adapted to high stress conditions such as low temperatures, wide thermal fluctuations, high UV irradiance, and low water and nutrients availability; for this reason they could be investigated in order to explore limits of microbial life. Microfungi living in simple cryptoendolithic microbial communities inside the porosity of rocks in the Antarctic Dry Valleys, the closest terrestrial analogue of Mars, are particularly suitable for exobiological studies. Until now studies on exobiology focused mainly on prokaryotes; since cryptoendolithic black meristematic fungi are able to tolerate hard desiccation, high UV exposure, extremely low temperatures and wide thermal fluctuations, they are proposed as the best eukaryotic models for the biological exploration of Mars. Indeed, their adaptive strategies could be crucial as predictive tools in investigating the limits of life.

  17. Ecological connectivity shapes quasispecies structure of RNA viruses in an Antarctic lake.

    Science.gov (United States)

    López-Bueno, A; Rastrojo, A; Peiró, R; Arenas, M; Alcamí, A

    2015-10-01

    RNA viruses exist as complex mixtures of genotypes, known as quasispecies, where the evolution potential resides in the whole community of related genotypes. Quasispecies structure and dynamics have been studied in detail for virus infecting animals and plants but remain unexplored for those infecting micro-organisms in environmental samples. We report the first metagenomic study of RNA viruses in an Antarctic lake (Lake Limnopolar, Livingston Island). Similar to low-latitude aquatic environments, this lake harbours an RNA virome dominated by positive single-strand RNA viruses from the order Picornavirales probably infecting micro-organisms. Antarctic picorna-like virus 1 (APLV1), one of the most abundant viruses in the lake, does not incorporate any mutation in the consensus sequence from 2006 to 2010 and shows stable quasispecies with low-complexity indexes. By contrast, APLV2-APLV3 are detected in the lake water exclusively in summer samples and are major constituents of surrounding cyanobacterial mats. Their quasispecies exhibit low complexity in cyanobacterial mat, but their run-off-mediated transfer to the lake results in a remarkable increase of complexity that may reflect the convergence of different viral quasispecies from the catchment area or replication in a more diverse host community. This is the first example of viral quasispecies from natural aquatic ecosystems and points to ecological connectivity as a modulating factor of quasispecies complexity.

  18.  Marine derived dinoflagellates in Antarctic saline lakes: Community composition and annual dynamics

    DEFF Research Database (Denmark)

    Rengefors, K.; Layborn-Parry, L.; Logares, R.

    2008-01-01

    The saline lakes of the Vestfold Hills in Antarctica offer a remarkable natural laboratory where the adaptation of planktonic protists to a range of evolving physiochemical conditions can be investigated. This study illustrates how an ancestral marine community has undergone radical simplification...... leaving a small number of well-adapted species. Our objective was to investigate the species composition and annual dynamics of dinoflagellate communities in three saline Antarctic lakes. We observed that dinoflagellates occur year-round despite extremely low PAR during the southern winter, which suggests...

  19. Lipophilic pigments from the benthos of a perennially ice-covered Antarctic lake

    Science.gov (United States)

    Palmisano, A. C.; Wharton, R. A. Jr; Cronin, S. E.; Des Marais, D. J.; Wharton RA, J. r. (Principal Investigator)

    1989-01-01

    The benthos of a perennially ice-covered Antarctic lake, Lake Hoare, contained three distinct 'signatures' of lipophilic pigments. Cyanobacterial mats found in the moat at the periphery of the lake were dominated by the carotenoid myxoxanthophyll; carotenoids: chlorophyll a ratios in this high light environment ranged from 3 to 6.8. Chlorophyll c and fucoxanthin, pigments typical of golden-brown algae, were found at 10 to 20 m depths where the benthos is aerobic. Anaerobic benthic sediments at 20 to 30 m depths were characterized by a third pigment signature dominated by a carotenoid, tentatively identified as alloxanthin from planktonic cryptomonads, and by phaeophytin b from senescent green algae. Pigments were not found associated with alternating organic and sediment layers. As microzooplankton grazers are absent from this closed system and transformation rates are reduced at low temperatures, the benthos beneath the lake ice appears to contain a record of past phytoplankton blooms undergoing decay.

  20. Seasonal evolution of supraglacial lakes on an East Antarctic outlet glacier

    Science.gov (United States)

    Langley, Emily S.; Leeson, Amber A.; Stokes, Chris R.; Jamieson, Stewart S. R.

    2016-08-01

    Supraglacial lakes are known to influence ice melt and ice flow on the Greenland ice sheet and potentially cause ice shelf disintegration on the Antarctic Peninsula. In East Antarctica, however, our understanding of their behavior and impact is more limited. Using >150 optical satellite images and meteorological records from 2000 to 2013, we provide the first multiyear analysis of lake evolution on Langhovde Glacier, Dronning Maud Land (69°11'S, 39°32'E). We mapped 7990 lakes and 855 surface channels up to 18.1 km inland (~670 m above sea level) from the grounding line and document three pathways of lake demise: (i) refreezing, (ii) drainage to the englacial/subglacial environment (on the floating ice), and (iii) overflow into surface channels (on both the floating and grounded ice). The parallels between these mechanisms, and those observed on Greenland and the Antarctic Peninsula, suggest that lakes may similarly affect rates and patterns of ice melt, ice flow, and ice shelf disintegration in East Antarctica.

  1. Chemistry of snow and lake water in Antarctic region

    Indian Academy of Sciences (India)

    Kaushar Ali; Sunil Sonbawane; D M Chate; Devendraa Siingh; P S P Rao; P D Safai; K B Budhavant

    2010-12-01

    Surface snow and lake water samples were collected at different locations around Indian station at Antarctica, Maitri, during December 2004-March 2005 and December 2006-March 2007.Samples were analyzed for major chemical ions. It is found that average pH value of snow is 6.1. Average pH value of lake water with low chemical content is 6.2 and of lake water with high chemical content is 6.5.The Na+ and Cl− are the most abundantly occurring ions at Antarctica. Considerable amount of SO$^{2-}_{4}$ is also found in the surface snow and the lake water which is attributed to the oxidation of DMS produced by marine phytoplankton.Neutralization of acidic components of snow is mainly done by NH$^{+}_{4}$ and Mg2+. The Mg2+, Ca2+ and K+ are nearly equally effective in neutralizing the acidic components in lake water.The NH$^{+}_{4}$ and SO$^{2-}_{4}$ occur over the Antarctica region mostly in the form of (NH4)2SO4.

  2. Extensive lake sediment coring survey on Sub-Antarctic Indian Ocean Kerguelen Archipelago (French Austral and Antarctic Lands)

    Science.gov (United States)

    Arnaud, Fabien; Fanget, Bernard; Malet, Emmanuel; Poulenard, Jérôme; Støren, Eivind; Leloup, Anouk; Bakke, Jostein; Sabatier, Pierre

    2016-04-01

    Recent paleo-studies revealed climatic southern high latitude climate evolution patterns that are crucial to understand the global climate evolution(1,2). Among others the strength and north-south shifts of westerlies wind appeared to be a key parameter(3). However, virtually no lands are located south of the 45th South parallel between Southern Georgia (60°W) and New Zealand (170°E) precluding the establishment of paleoclimate records of past westerlies dynamics. Located around 50°S and 70°E, lost in the middle of the sub-Antarctic Indian Ocean, Kerguelen archipelago is a major, geomorphologically complex, land-mass that is covered by hundreds lakes of various sizes. It hence offers a unique opportunity to reconstruct past climate and environment dynamics in a region where virtually nothing is known about it, except the remarkable recent reconstructions based on a Lateglacial peatbog sequence(4). During the 2014-2015 austral summer, a French-Norwegian team led the very first extensive lake sediment coring survey on Kerguelen Archipelago under the umbrella of the PALAS program supported by the French Polar Institute (IPEV). Two main areas were investigated: i) the southwest of the mainland, so-called Golfe du Morbihan, where glaciers are currently absent and ii) the northernmost Kerguelen mainland peninsula so-called Loranchet, where cirque glaciers are still present. This double-target strategy aims at reconstructing various independent indirect records of precipitation (glacier advance, flood dynamics) and wind speed (marine spray chemical species, wind-borne terrigenous input) to tackle the Holocene climate variability. Despite particularly harsh climate conditions and difficult logistics matters, we were able to core 6 lake sediment sites: 5 in Golfe du Morbihan and one in Loranchet peninsula. Among them two sequences taken in the 4km-long Lake Armor using a UWITEC re-entry piston coring system by 20 and 100m water-depth (6 and 7m-long, respectively). One

  3. A decade of progress in observing and modelling Antarctic subglacial water systems.

    Science.gov (United States)

    Fricker, Helen A; Siegfried, Matthew R; Carter, Sasha P; Scambos, Ted A

    2016-01-28

    In the decade since the discovery of active Antarctic subglacial water systems by detection of subtle surface displacements, much progress has been made in our understanding of these dynamic systems. Here, we present some of the key results of observations derived from ICESat laser altimetry, CryoSat-2 radar altimetry, Operation IceBridge airborne laser altimetry, satellite image differencing and ground-based continuous Global Positioning System (GPS) experiments deployed in hydrologically active regions. These observations provide us with an increased understanding of various lake systems in Antarctica: Whillans/Mercer Ice Streams, Crane Glacier, Recovery Ice Stream, Byrd Glacier and eastern Wilkes Land. In several cases, subglacial water systems are shown to control ice flux through the glacier system. For some lake systems, we have been able to construct more than a decade of continuous lake activity, revealing internal variability on time scales ranging from days to years. This variability indicates that continuous, accurate time series of altimetry data are critical to understanding these systems. On Whillans Ice Stream, our results from a 5-year continuous GPS record demonstrate that subglacial lake flood events significantly change the regional ice dynamics. We also show how models for subglacial water flow have evolved since the availability of observations of lake volume change, from regional-scale models of water routeing to process models of channels carved into the subglacial sediment instead of the overlying ice. We show that progress in understanding the processes governing lake drainage now allows us to create simulated lake volume time series that reproduce time series from satellite observations. This transformational decade in Antarctic subglacial water research has moved us significantly closer to understanding the processes of water transfer sufficiently for inclusion in continental-scale ice-sheet models.

  4. Tardigrade eggs and exuviae in Antarctic lake sediments: insights into Holocene dynamics and origins of the fauna

    Directory of Open Access Journals (Sweden)

    Sandra J. MCINNES

    2007-09-01

    Full Text Available The preservation of tardigrade eggs and exuviae in Antarctic lake sediments provided an opportunity to assess post-glacial colonisation and Holocene tardigrade dynamics on the southern continent. Tardigrade eggs were recovered from five lakes, two from the maritime Antarctic and three from continental Antarctica. Eggs were identified from the following species: Dactylobiotus cf. ambiguus, Macrobiotus furciger, Macrobiotus blocki, Minibiotus weinerorum and Acutuncus antarcticus. Other, unornamented eggs were also observed. The preservation of some of these eggs in exuviae allowed identification to at least genus. Significant variations were observed in egg abundance within the sediment of each lake, and in one lake a species (Dactylobiotus cf. ambiguus became locally extinct, probably as the result of penguin-associated eutrophication. Tardigrades generally did not become abundant for a considerable period after the lakes’ formation. The presence of an in-part endemic fauna is consistent with slow colonisation from Antarctic sources rather than wind transport from extra-continental sites. Tardigrade eggs appear to be abundant in high-latitude lake sediments, and greater use could be made of these records when evaluating tardigrade dynamics during the Holocene.

  5. High-resolution multispectral satellite imagery for extracting bathymetric information of Antarctic shallow lakes

    Science.gov (United States)

    Jawak, Shridhar D.; Luis, Alvarinho J.

    2016-05-01

    High-resolution pansharpened images from WorldView-2 were used for bathymetric mapping around Larsemann Hills and Schirmacher oasis, east Antarctica. We digitized the lake features in which all the lakes from both the study areas were manually extracted. In order to extract the bathymetry values from multispectral imagery we used two different models: (a) Stumpf model and (b) Lyzenga model. Multiband image combinations were used to improve the results of bathymetric information extraction. The derived depths were validated against the in-situ measurements and root mean square error (RMSE) was computed. We also quantified the error between in-situ and satellite-estimated lake depth values. Our results indicated a high correlation (R = 0.60 0.80) between estimated depth and in-situ depth measurements, with RMSE ranging from 0.10 to 1.30 m. This study suggests that the coastal blue band in the WV-2 imagery could retrieve accurate bathymetry information compared to other bands. To test the effect of size and dimension of lake on bathymetry retrieval, we distributed all the lakes on the basis of size and depth (reference data), as some of the lakes were open, some were semi frozen and others were completely frozen. Several tests were performed on open lakes on the basis of size and depth. Based on depth, very shallow lakes provided better correlation (≈ 0.89) compared to shallow (≈ 0.67) and deep lakes (≈ 0.48). Based on size, large lakes yielded better correlation in comparison to medium and small lakes.

  6. Maneuver simulation model of an experimental hovercraft for the Antarctic

    Science.gov (United States)

    Murao, Rinichi

    Results of an investigation of a hovercraft model designed for Antarctic conditions are presented. The buoyancy characteristics, the propellant control system, and simulation model control are examined. An ACV (air cushion vehicle) model of the hovercraft is used to examine the flexibility and friction of the skirt. Simulation results are presented which show the performance of the hovercraft.

  7. Plankton assembly in an ultra-oligotrophic Antarctic lake over the summer transition from the ice-cover to ice-free period: A size spectra approach

    Science.gov (United States)

    Rochera, Carlos; Quesada, Antonio; Toro, Manuel; Rico, Eugenio; Camacho, Antonio

    2017-03-01

    Lakes from the Antarctic maritime region experience climate change as a main stressor capable of modifying their plankton community structure and function, essentially because summer temperatures are commonly over the freezing point and the lake's ice cap thaws. This study was conducted in such seasonally ice-covered lake (Lake Limnopolar, Byers Peninsula, Livingston Is., Antarctica), which exhibits a microbial dominated pelagic food web. An important feature is also the occurrence of benthic mosses (Drepanocladus longifolius) covering the lake bottom. Plankton dynamics were investigated during the ice-thawing transition to the summer maximum. Both bacterioplankton and viral-like particles were higher near the lake's bottom, suggesting a benthic support. When the lake was under dim conditions because of the snow-and-ice cover, autotrophic picoplankters dominated at deep layers. The taxa-specific photopigments indicated dominance of picocyanobacteria among them when the light availability was lower. By contrast, larger and less edible phytoplankton dominated at the onset of the ice melting. The plankton size spectra were fitted to the continuous model of Pareto distribution. Spectra evolved similarly at two sampled depths, in surface and near the bottom, with slopes increasing until mid-January. However, slopes were less steep (i.e., size classes more uniformly distributed) at the bottom, thus denoting a more efficient utilization of resources. These findings suggest that microbial loop pathways in the lake are efficiently channelized during some periods to the metazoan production (mainly the copepod Boeckella poppei). Our results point to that trophic interactions may still occur in these lakes despite environmental harshness. This results of interest in a framework of increasing temperatures that may reduce the climatic restrictions and therefore stimulate biotic interactions.

  8. Lake Michigan lake trout PCB model forecast post audit

    Science.gov (United States)

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents th...

  9. Reevaluation of lake trout and lake whitefish bioenergetics models

    Science.gov (United States)

    Madenjian, Charles P.; Pothoven, Steve A.; Kao, Yu-Chun

    2013-01-01

    Using a corrected algorithm for balancing the energy budget, we reevaluated the Wisconsin bioenergetics model for lake trout (Salvelinus namaycush) in the laboratory and for lake whitefish (Coregonus clupeaformis) in the laboratory and in the field. For lake trout, results showed that the bioenergetics model slightly overestimated food consumption by the lake trout when they were fed low and intermediate rations, whereas the model predicted food consumption by lake trout fed ad libitum without any detectable bias. The slight bias in model predictions for lake trout on restricted rations may have been an artifact of the feeding schedule for these fish, and we would therefore recommend application of the Wisconsin lake trout bioenergetics model to lake trout populations in the field without any revisions to the model. Use of the Wisconsin bioenergetics model for coregonids resulted in overestimation of food consumption by lake whitefish both in the laboratory and in the field by between 20 and 30%, on average. This overestimation of food consumption was most likely due to overestimation of respiration rate. We therefore adjusted the respiration component of the bioenergetics model to obtain a good fit to the observed consumption in our laboratory tanks. The adjusted model predicted the consumption in the laboratory and the field without any detectable bias. Until a detailed lake whitefish respiration study can be conducted, we recommend application of our adjusted version of the Wisconsin generalized coregonid bioenergetics model to lake whitefish populations in the field.

  10. The South Atlantic in the Fine-Resolution Antarctic Model

    Directory of Open Access Journals (Sweden)

    D. P. Stevens

    Full Text Available The geographical area covered by the Fine-Resolution Antarctic Model (FRAM includes that part of the South Atlantic south of 24°S. A description of the dynamics and thermodynamics of this region of the model is presented. Both the mean and eddy fields in the model are in good agreement with reality, although the magnitude of the transients is somewhat reduced. The heat flux is northward and in broad agreement with many other estimates. Agulhas eddies are formed by the model and propagate westward into the Atlantic providing a mechanism for fluxing heat from the Indian Ocean. The confluence of the Brazil and Falkland currents produces a strong front and a large amount of mesoscale activity. In the less stratified regions to the south, topographic steering of the Antarctic circumpolar current is important.

  11. Boundary conditions of an active West Antarctic subglacial lake: implications for storage of water beneath the ice sheet

    Directory of Open Access Journals (Sweden)

    M. J. Siegert

    2013-06-01

    Full Text Available Repeat-pass IceSat altimetry has revealed 124 discrete surface height changes across the Antarctic Ice Sheet, interpreted to be caused by subglacial lake discharges (surface lowering and inputs (surface uplift. Few of these active lakes have been confirmed by radio-echo sounding (RES despite several attempts (notable exceptions are Lake Whillans and three in the Adventure Subglacial Trench. Here we present targeted RES and radar altimeter data from an "active lake" location within the upstream Institute Ice Stream, into which 0.12 km3 of water is calculated to have flowed between October 2003 and February 2008. We use a series of transects to establish an accurate appreciation of the influences of bed topography and ice-surface elevation on water storage potential. The location of surface height change is over the downslope flank of a distinct topographic hollow, where RES reveals no obvious evidence for deep (> 10 m water. The regional hydropotential reveals a sink coincident with the surface change, however. Governed by the location of the hydrological sink, basal water will likely "drape" over existing topography in a manner dissimilar to subglacial lakes where flat strong specular RES reflections are measured. The inability of RES to detect the active lake means that more of the Antarctic ice sheet bed may contain stored water than is currently appreciated. Variation in ice surface elevation datasets leads to significant alteration in calculations of the local flow of basal water indicating the value of, and need for, high resolution RES datasets in both space and time to establish and characterise subglacial hydrological processes.

  12. Cascading water underneath Wilkes Land, East Antarctic Ice Sheet, observed using altimetry and digital elevation models

    Directory of Open Access Journals (Sweden)

    T. Flament

    2013-03-01

    Full Text Available We describe a major subglacial lake drainage close to the ice divide in Wilkes Land, East Antarctica, and the subsequent cascading of water underneath the ice sheet toward the coast. To analyze the event, we combined altimetry data from several sources and bedrock data. We estimated the total volume of water that drained from Lake CookE2 by differencing digital elevation models (DEM derived from ASTER and SPOT5 stereo-imagery. With 5.2 ± 0.5 km3, this is the largest single subglacial drainage event reported so far in Antarctica. Elevation differences between ICESat laser altimetry and the SPOT5 DEM indicate that the discharge lasted approximately 2 yr. A 13-m uplift of the surface, corresponding to a refilling of about 0.64 ± 0.32 km3, was observed between the end of the discharge in October 2008 and February 2012. Using Envisat radar altimetry, with its high 35-day temporal resolution, we monitored the subsequent filling and drainage of connected subglacial lakes located downstream. In particular, a transient temporal signal can be detected within the theoretical 500-km long flow paths computed with the BEDMAP2 data set. The volume of water traveling in this wave is in agreement with the volume that drained from Lake CookE2. These observations contribute to a better understanding of the water transport beneath the East Antarctic ice sheet.

  13. Comparative Results of Using Different Methods for Discovery of Microorganisms in very Ancient Layers of the Central Antarctic Glacier above the Lake Vostok

    Science.gov (United States)

    Abyzov, S. S.; Hoover, R. B.; Imura, S.; Mitskevich, I. N.; Naganuma, T.; Poglazova, M. N.; Ivanov, M. V.

    2002-01-01

    The ice sheet of the Central Antarctic is considered by the scientific community worldwide, as a model to elaborate on different methods to search for life outside Earth. This became especially significant in connection with the discovery of the underglacial lake in the vicinity of the Russian Antarctic Station Vostok. Lake Vostok is considered by many scientists as an analog of the ice covered seas of Jupiter's satellite Europa. According to the opinion of many researchers there is the possibility that relict forms of microorganisms, well preserved since the Ice Age, may be present in this lake. Investigations throughout the thickness of the ice sheet above Lake Vostok show the presence of microorganisms belonging to different well-known taxonomic groups, even in the very ancient horizons near close to floor of the glacier. Different methods were used to search for microorganisms that are rarely found in the deep ancient layers of an ice sheet. The method of aseptic sampling from the ice cores and the results of controlled sterile conditions in all stages when conducting these investigations, are described in detail in previous reports. Primary investigations tried the usual methods of sowing samples onto different nutrient media, and the result was that only a few microorganisms grew on the media used. The possibility of isolating the organisms obtained for further investigations, by using modern methods including DNA-analysis, appears to be the preferred method. Further investigations of the very ancient layers of the ice sheet by radioisotopic, luminescence, and scanning electron microscopy methods at different modifications, revealed the quantity and morphological diversity of the cells of microorganisms that were distributed on the different horizons. Investigations over many years have shown that the microflora in the very ancient strata of the Antarctic ice cover, nearest to the bedrock, support the effectiveness of using a combination of different methods

  14. Organic and mineral imprints in fossil photosynthetic mats of an East Antarctic lake.

    Science.gov (United States)

    Lepot, K; Compère, P; Gérard, E; Namsaraev, Z; Verleyen, E; Tavernier, I; Hodgson, D A; Vyverman, W; Gilbert, B; Wilmotte, A; Javaux, E J

    2014-09-01

    Lacustrine microbial mats in Antarctic ice-free oases are considered modern analogues of early microbial ecosystems as their primary production is generally dominated by cyanobacteria, the heterotrophic food chain typically truncated due to extreme environmental conditions, and they are geographically isolated. To better understand early fossilization and mineralization processes in this context, we studied the microstructure and chemistry of organo-mineral associations in a suite of sediments 50-4530 cal. years old from a lake in Skarvsnes, Lützow Holm Bay, East Antarctica. First, we report an exceptional preservation of fossil autotrophs and their biomolecules on millennial timescales. The pigment scytonemin is preserved inside cyanobacterial sheaths. As non-pigmented sheaths are also preserved, scytonemin likely played little role in the preservation of sheath polysaccharides, which have been cross-linked by ether bonds. Coccoids preserved thylakoids and autofluorescence of pigments such as carotenoids. This exceptional preservation of autotrophs in the fossil mats argues for limited biodegradation during and after deposition. Moreover, cell-shaped aggregates preserved sulfur-rich nanoglobules, supporting fossilization of instable intracellular byproducts of chemotrophic or phototrophic S-oxidizers. Second, we report a diversity of micro- to nanostructured CaCO3 precipitates intimately associated with extracellular polymeric substances, cyanobacteria, and/or other prokaryotes. Micro-peloids Type 1 display features that distinguish them from known carbonates crystallized in inorganic conditions: (i) Type 1A are often filled with globular nanocarbonates and/or surrounded by a fibrous fringe, (ii) Type 1B are empty and display ovoid to wrinkled fringes of nanocrystallites that can be radially oriented (fibrous or triangular) or multilayered, and (iii) all show small-size variations. Type 2 rounded carbonates 1-2 μm in diameter occurring inside autofluorescent

  15. Mathematical Modelling of Melt Lake Formation On An Ice Shelf

    Science.gov (United States)

    Buzzard, Sammie; Feltham, Daniel; Flocco, Daniela

    2016-04-01

    The accumulation of surface meltwater on ice shelves can lead to the formation of melt lakes. These structures have been implicated in crevasse propagation and ice-shelf collapse; the Larsen B ice shelf was observed to have a large amount of melt lakes present on its surface just before its collapse in 2002. Through modelling the transport of heat through the surface of the Larsen C ice shelf, where melt lakes have also been observed, this work aims to provide new insights into the ways in which melt lakes are forming and the effect that meltwater filling crevasses on the ice shelf will have. This will enable an assessment of the role of meltwater in triggering ice-shelf collapse. The Antarctic Peninsula, where Larsen C is situated, has warmed several times the global average over the last century and this ice shelf has been suggested as a candidate for becoming fully saturated with meltwater by the end of the current century. Here we present results of a 1-D mathematical model of heat transfer through an idealized ice shelf. When forced with automatic weather station data from Larsen C, surface melting and the subsequent meltwater accumulation, melt lake development and refreezing are demonstrated through the modelled results. Furthermore, the effect of lateral meltwater transport upon melt lakes and the effect of the lakes upon the surface energy balance are examined. Investigating the role of meltwater in ice-shelf stability is key as collapse can affect ocean circulation and temperature, and cause a loss of habitat. Additionally, it can cause a loss of the buttressing effect that ice shelves can have on their tributary glaciers, thus allowing the glaciers to accelerate, contributing to sea-level rise.

  16. A model of the Antarctic Ice Sheet

    NARCIS (Netherlands)

    Oerlemans, J.

    1982-01-01

    Numerical modelling of ice sheets and glaciers has become a useful tool in glaciological research. A model described here deals with the vertical mean ice velocity, is time dependent, computes bedrock adjustment and uses an empirical diagnostic relationship to derive the distribution of ice thicknes

  17. When a habitat freezes solid: microorganisms over-winter within the ice column of a coastal Antarctic lake.

    Science.gov (United States)

    Foreman, Christine M; Dieser, Markus; Greenwood, Mark; Cory, Rose M; Laybourn-Parry, Johanna; Lisle, John T; Jaros, Christopher; Miller, Penney L; Chin, Yu-Ping; McKnight, Diane M

    2011-06-01

    A major impediment to understanding the biology of microorganisms inhabiting Antarctic environments is the logistical constraint of conducting field work primarily during the summer season. However, organisms that persist throughout the year encounter severe environmental changes between seasons. In an attempt to bridge this gap, we collected ice core samples from Pony Lake in early November 2004 when the lake was frozen solid to its base, providing an archive for the biological and chemical processes that occurred during winter freezeup. The ice contained bacteria and virus-like particles, while flagellated algae and ciliates over-wintered in the form of inactive cysts and spores. Both bacteria and algae were metabolically active in the ice core melt water. Bacterial production ranged from 1.8 to 37.9 μg CL(-1) day(-1). Upon encountering favorable growth conditions in the melt water, primary production ranged from 51 to 931 μg CL(-1) day(-1). Because of the strong H(2) S odor and the presence of closely related anaerobic organisms assigned to Pony Lake bacterial 16S rRNA gene clones, we hypothesize that the microbial assemblage was strongly affected by oxygen gradients, which ultimately restricted the majority of phylotypes to distinct strata within the ice column. This study provides evidence that the microbial community over-winters in the ice column of Pony Lake and returns to a highly active metabolic state when spring melt is initiated.

  18. Organo-mineral imprints in fossil cyanobacterial mats of an Antarctic lake

    Science.gov (United States)

    Javaux, E.; Lepot, K.; Deremiens, L.; Namsaraev, Z.; Compere, P.; Gerard, E.; Verleyen, E.; Tavernier, I.; Hodgson, D.; Vyverman, W.; Wilmotte, A.

    2010-12-01

    Lacustrine microbial mats in Antarctic ice-free oases are considered to be modern analogues of early microbial ecosystems because they are dominated by cyanobacteria that need to cope with elevated UV radiation during summer by producing protective compounds such as UV-screening pigments. These microbial consortia offer a unique opportunity to (i) identify biogeochemical signatures to study the fossil record of microorganisms, and (ii) better understand their imprint mineral record. We studied sediment cores from a meromictic brackish-water lake, Kobachi Ike, Skarvsnes Peninsula, Lützow Holm Bay, East Antarctica, where primary production is dominated by photosynthetic benthic communities. The faintly to finely laminated (stromatolitic) sediments include variable amounts of organic-rich laminae, micritic carbonate, clays and silicate sand. We studied the microstructure and chemistry of organo-mineral associations in a suite of sediments ranging in age from several tens to ca. 3500 years. We examined Os- and U- stained polished resin-embedded sediments in a scanning electron microscope (SEM). We imaged photosynthetic pigments of microorganisms in fluorescence by confocal laser scanning microscopy (CLSM). We analyzed organic matter chemistry in demineralized sediments and cultured cyanobacteria using Fourier-Transform Infrared (FTIR) spectromicroscopy. Molecular analyses of fossil cyanobacterial DNA were performed using Denaturating Gradient Gel Electrophoresis of partial 16S rRNA genes and sequencing. SEM revealed an intimate association between nanostructured Ca-carbonate peloids, fossil cell clusters resembling colonies of unicellular coccoid cyanobacteria, and cell-like imprints preserved in nanocarbonates. Diffuse organic matter (kerogen or EPS) is associated with nanoclays to form a laminae-building network around the carbonates. These organo-mineral microstructures strongly resemble those of the 2.7 Gyrs old Tumbiana stromatolites. CLSM imaging and fossil DNA

  19. Antarctic clouds

    OpenAIRE

    Lachlan-Cope, Tom

    2010-01-01

    Sensitivity studies with global climate models show that, by their influence on the radiation balance, Antarctic clouds play a major role in the climate system, both directly at high southern latitudes and indirectly globally, as the local circulation changes lead to global teleconnections. Unfortunately, observations of cloud distribution in the Antarctic are limited and often of low quality because of the practical difficulty in observing clouds in the harsh Antarctic environment. The best ...

  20. Study of the Microbial Diversity of a Newly Discovered East Antarctic Freshwater Lake, L27C, and of a Perennially Ice-Covered Lake Untersee

    Science.gov (United States)

    Huang, Jonathan P.; Hoover, Richard B.; Andersen, Dale; Bej, Asim K.

    2010-01-01

    The microbial communities that reside within freshwater lakes of Schirmacher and Untersee Oases in East Antarctica must cope with extreme conditions that may include cold temperature, annual freeze-thaw cycles, exposure to UV radiation, especially during the austral summer months, low light beneath thick ice-cover, followed by seasonal darkness. The objective of this study was to assess the microbial biodiversity and distribution from samples taken from two freshwater lakes (L27C and Lake Untersee) that were collected during the Tawani 2008 International Antarctic Expedition that conducted research in this region of Antarctica. L27C is a small, previously unreported lake residing 2 km WNW of Maitri Station at Schirmacher Oasis. Biodiversity and distribution of microorganisms within the lake were studied using both culture-independent and culture-dependent methodologies based upon the analysis of eubacterial 16S rRNA gene sequences. Lake Untersee, a perennially ice-covered, ultra-oligotrophic, lake in the Otto-von-Gruber-Gebirge (Gruber Mountains) of central Dronning Maud Land was also sampled and the microbial diversity was analyzed by eubacterial 16S rRNA gene sequences derived from pure cultures. Direct culturing of water samples from each lake on separate R2A growth medium exhibited a variety of microorganisms including: Janthinobacterium, Hymenobacter, Sphingamonas, Subtercola, Deinococcus, Arthrobacter, Flavobacterium, Polaromonas, Rhodoferax and Duganella. The evaluation of samples from L27C through culture-independent methodology identified a rich microbial diversity consisting of six different phyla of bacteria. The culture-independent analysis also displayed the majority of bacteria (56%) belonged to the Class gamma-proteobacteria within the phylum Proteobacteria. Within the Class gamma-proteobacteria, Acinetobacter dominated (48%) the total microbial load. Overall, L27C exhibited 7 different phyla of bacteria and 20 different genera. Statistical analysis

  1. Antarctic ice volume for the last 740 ka calculated with a simple ice sheet model

    NARCIS (Netherlands)

    Oerlemans, J.

    2005-01-01

    Fluctuations in the volume of the Antarctic ice sheet for the last 740 ka are calculated by forcing a simple ice sheet model with a sea-level history (from a composite deep sea δ18O record) and a temperature history (from the Dome C deuterium record). Antarctic ice volume reaches maximum values of a

  2. Exploratory normalized difference water indices for semi-automated extraction of Antarctic lake features

    Science.gov (United States)

    Jawak, Shridhar D.; Luis, Alvarinho J.

    2016-05-01

    This work presents various normalized difference water indices (NDWI) to delineate lakes from Schirmacher Oasis, East Antarctica, by using a very high resolution WorldView-2 (WV-2) satellite imagery. Schirmacher oasis region hosts a number of fresh as well as saline water lakes, such as epishelf lakes, ice-free or landlocked lakes, which are completely frozen or semi-frozen and in a ice-free state. Hence, detecting all these types of lakes distinctly on satellite imagery was the major challenge, as the spectral characteristics of various types of lakes were identical to the other land cover targets. Multiband spectral index pixel-based approach is most experimented and recently growing technique because of its unbeatable advantages such as its simplicity and comparatively lesser amount of processing-time. In present study, semiautomatic extraction of lakes in cryospheric region was carried out by designing specific spectral indices. The study utilized number of existing spectral indices to extract lakes but none could deliver satisfactory results and hence we modified NDWI. The potentials of newly added bands in WV-2 satellite imagery was explored by developing spectral indices comprising of Yellow (585 - 625 nm) band, in combination with Blue (450 - 510 nm), Coastal (400 - 450 nm) and Green (510 - 580 nm) bands. For extraction of frozen lakes, use of Yellow (585 - 625 nm) and near-infrared 2 (NIR2) band pair, and Yellow and Green band pair worked well, whereas for ice-free lakes extraction, a combination of Blue and Coastal band yielded appreciable results, when compared with manually digitized data. The results suggest that the modified NDWI approach rendered bias error varying from 1 to 34 m2.

  3. Evaluation of a lake whitefish bioenergetics model

    Science.gov (United States)

    Madenjian, Charles P.; O'Connor, Daniel V.; Pothoven, Steven A.; Schneeberger, Philip J.; Rediske, Richard R.; O'Keefe, James P.; Bergstedt, Roger A.; Argyle, Ray L.; Brandt, Stephen B.

    2006-01-01

    We evaluated the Wisconsin bioenergetics model for lake whitefish Coregonus clupeaformis in the laboratory and in the field. For the laboratory evaluation, lake whitefish were fed rainbow smelt Osmerus mordax in four laboratory tanks during a 133-d experiment. Based on a comparison of bioenergetics model predictions of lake whitefish food consumption and growth with observed consumption and growth, we concluded that the bioenergetics model furnished significantly biased estimates of both food consumption and growth. On average, the model overestimated consumption by 61% and underestimated growth by 16%. The source of the bias was probably an overestimation of the respiration rate. We therefore adjusted the respiration component of the bioenergetics model to obtain a good fit of the model to the observed consumption and growth in our laboratory tanks. Based on the adjusted model, predictions of food consumption over the 133-d period fell within 5% of observed consumption in three of the four tanks and within 9% of observed consumption in the remaining tank. We used polychlorinated biphenyls (PCBs) as a tracer to evaluate model performance in the field. Based on our laboratory experiment, the efficiency with which lake whitefish retained PCBs from their food (I?) was estimated at 0.45. We applied the bioenergetics model to Lake Michigan lake whitefish and then used PCB determinations of both lake whitefish and their prey from Lake Michigan to estimate p in the field. Application of the original model to Lake Michigan lake whitefish yielded a field estimate of 0.28, implying that the original formulation of the model overestimated consumption in Lake Michigan by 61%. Application of the bioenergetics model with the adjusted respiration component resulted in a field I? estimate of 0.56, implying that this revised model underestimated consumption by 20%.

  4. A 50-years record of dichloro-diphenyl-trichloroethanes and hexachloro-cyclohexanes in lake sediments and penguin droppings on King George Island,Maritime Antarctic

    Institute of Scientific and Technical Information of China (English)

    SUN Li-guang; YIN Xue-bin; PAN Can-ping; WANG Yu-hong

    2005-01-01

    Since the ban on the use of organochlorine pesticides (OCPs) such as dichloro-diphenyl-trichloroethane (DDT) and hexachlorocyclohexane(HCH) in agriculture, their levels have generally dropped. In a number of cases, however, the levels of these OCPs were found to be unchanging or even increasing after the ban. With the aim to unveil the possible causes of these exceptions, we collected two lake cores from King George Island, West Antarctica, and determined their accumulation flux profiles and temporal trends of these OCPs. In the lake core sediments with glacier meltwater input, the accumulation flux of DDT shows an abnormal peak around 1980s in addition to the expected one in 1960s. In the lake core sediments without glacier meltwater input, the accumulation flux of DDT shows a gradual decline trend after the peak in 1960s. This striking difference in the DDT flux profiles between the two lake cores is most likely caused by the regional climate warming and the resulted discharge of the DDT stored in the Antarctic ice cap into the lakes in the Antarctic glacier frontier. Furthermore, to investigate the change of OCPs loadings in the Antarctic coastal ecosystem, we reconstructed the HCH and DDT concentration profiles in penguin droppings and observed a gradual increase for the former and a continuous decrease for the latter during the past 50 years. The increase of HCH seems to be due to the regional warming from the early 1970s and the resulted HCH discharge to the coastal ecosystem by glaciers, meltwater and the illegal use of HCH in the Southern Hemisphere in the recent decade.The different temporal trends of HCH and DDT accumulation rate in the lake core with glacier meltwater input and the aged penguin droppings can be explained by their different water-soluble property.

  5. Post Audit of Lake Michigan Lake Trout PCB Model Forecasts

    Science.gov (United States)

    The Lake Michigan (LM) Mass Balance Study was conducted to measure and model polychlorinated biphenyls (PCBs) and other anthropogenic substances to gain a better understanding of the transport, fate, and effects of these substances within the system and to aid managers in the env...

  6. Viable Bacteria in Antarctic Soils and - Two Models for Extraterrestrial Search of Life

    Science.gov (United States)

    Soina, Vera; Vorobyova, Elena; Lysak, Ludmila; Mergelov, Nikita

    Antarctic soils and permafrost are the most convenient models for search life preservation in extraterrestrial cryogenic environment. Study of life activity and preservation of prokaryotes in such extreme environment allow assuming, that those habitats must be viewed as two models for astrobiology extrapolations. Antarctic permafrost due to long term freezing can be regarded as the most stable environment for life preservation and expanding of potential physiological cell activity due to stabilization of cell structures and biomolecules. Antarctic soils seem to be not less attractive as a model for study of life on the surface of Antarctic rocks, but in contrast to permafrost are characterized by less stable external factors. Presumably, it is due to changing cycles of freezing and thawing and high doses of UV radiation, that make such biotopes more extreme for microbial survival. A combination of culture- depended and - independent techniques, including SEM and TEM methods were used to characterize bacteria community in earlier not investigated Antarctic soils in the oases of Larsemann Hills (East Antarctic Coast). Several important characteristics of Antarctic soil and permafrost bacteria as models for possible signs of life in extraterrestrial habitats are discussed (cytomorphological and physiological characteristics of bacteria both in situ, and cells isolated from permafrost and exposed to various external stress factors). Our data indicate that significant discrepancy between indexes of total and viable number of cells and irregularity of such indexes in horizons of developing soils and permafrost sediments can be explained by specification of physical and chemical processes in those habitats. Also, in Antarctic and extraterrestrial investigations is important to take into account the leading role of microbial biofilms, where microorganisms are intimately associated with each other and mineral particles through binding and inclusion within exopolymer matrix

  7. Co-evolution of cyanophage and cyanobacteria in Antarctic lakes: adaptive responses to high UV flux and global warming

    Science.gov (United States)

    Storrie-Lombardi, Michael C.; Pinkart, Holly C.

    2007-09-01

    Rapid adaptation to acute environmental change demands co-evolution of indigenous viral populations and their hosts. Horizontal gene transfer (HGT) is a highly efficient adaptive mechanism, but a difficult phenomena to dectect. The mosaic nature of bacteriophage genomes resulting from HGT has generally been explored using phylogenetic analysis of coding regions. Focusing on the proteome certainly provides one window into the origin and evolution of genome information storage. However, the original fitness function for a nucleotide polymer would arise from a more primal survival imperative predating the appearance of a coding function. Multivariate analysis of a genome information storage metric (lossless compression), nucleotide distributions, and distributions of the three major physiochemical characteristics of the polymer (triple:double bonding [G+C], purine:pyrimidine [G+A], and keto:amine [G+T] fractions) produces a metric to detect and characterize mosaicism in both coding and non-coding regions of a genome. We discuss possibilities and limitations of using these techniques to investigate HGT and the origins and evolution of genome complexity. Analysis of available virus (n= 2374) and bacteriophage genomes (n=417) indicates these probes can perform whole-genome taxonomy tasks or sliding window searches for evidence of HGT in a single genome. HGT responses may serve as a canary or bell-weather for global environmental change. We discuss one area of application of considerable interest to our institute: the response of cyanophage and their cyanobacteria hosts to variations in ultraviolet solar flux in geographically isolated Antarctic lakes.

  8. Modeling toxaphene behavior in the Great Lakes.

    Science.gov (United States)

    Xia, Xiaoyan; Hopke, Philip K; Holsen, Thomas M; Crimmins, Bernard S

    2011-01-15

    Chlorinated camphenes, toxaphene, are persistent organic pollutants of concern in the Great Lakes since elevated concentrations are found in various media throughout the system. While concentrations have decreased since their peak values in the 1970s and 80s, recent measurements have shown that the rate of this decline in Lake Superior has decreased significantly. This modeling study focused on toxaphene cycling in the Great Lakes and was performed primarily to determine if elevated water and fish concentrations in Lake Superior can be explained by physical differences among the lakes. Specifically, the coastal zone model for persistent organic pollutants (CoZMo-POP), a fugacity-based multimedia fate model, was used to calculate toxaphene concentrations in the atmosphere, water, soil, sediment, and biota. The performance of the model was evaluated by comparing calculated and reported concentrations in these compartments. In general, simulated and observed concentrations agree within one order of magnitude. Both model results and observed values indicate that toxaphene concentrations have declined in water and biota since the 1980s primarily as the result of decreased atmospheric deposition rates. Overall the model results suggest that the CoZMo-POP2 model does a reasonable job in simulating toxaphene variations in the Great Lakes basin. The results suggest that the recent findings of higher toxaphene concentrations in Lake Superior can be explained by differences in the physical properties of the lake (primarily large volume, large residence time and cold temperatures) compared to the lower lakes and increased recent inputs are not needed to explain the measured values.

  9. Antarctic ozone depletion between 1960 and 1980 in observations and chemistry-climate model simulations

    Science.gov (United States)

    Langematz, Ulrike; Schmidt, Franziska; Kunze, Markus; Bodeker, Gregory E.; Braesicke, Peter

    2016-12-01

    The year 1980 has often been used as a benchmark for the return of Antarctic ozone to conditions assumed to be unaffected by emissions of ozone-depleting substances (ODSs), implying that anthropogenic ozone depletion in Antarctica started around 1980. Here, the extent of anthropogenically driven Antarctic ozone depletion prior to 1980 is examined using output from transient chemistry-climate model (CCM) simulations from 1960 to 2000 with prescribed changes of ozone-depleting substance concentrations in conjunction with observations. A regression model is used to attribute CCM modelled and observed changes in Antarctic total column ozone to halogen-driven chemistry prior to 1980. Wintertime Antarctic ozone is strongly affected by dynamical processes that vary in amplitude from year to year and from model to model. However, when the dynamical and chemical impacts on ozone are separated, all models consistently show a long-term, halogen-induced negative trend in Antarctic ozone from 1960 to 1980. The anthropogenically driven ozone loss from 1960 to 1980 ranges between 26.4 ± 3.4 and 49.8 ± 6.2 % of the total anthropogenic ozone depletion from 1960 to 2000. An even stronger ozone decline of 56.4 ± 6.8 % was estimated from ozone observations. This analysis of the observations and simulations from 17 CCMs clarifies that while the return of Antarctic ozone to 1980 values remains a valid milestone, achieving that milestone is not indicative of full recovery of the Antarctic ozone layer from the effects of ODSs.

  10. Establishment of microbial eukaryotic enrichment cultures from a chemically stratified antarctic lake and assessment of carbon fixation potential.

    Science.gov (United States)

    Dolhi, Jenna M; Ketchum, Nicholas; Morgan-Kiss, Rachael M

    2012-04-20

    Lake Bonney is one of numerous permanently ice-covered lakes located in the McMurdo Dry Valleys, Antarctica. The perennial ice cover maintains a chemically stratified water column and unlike other inland bodies of water, largely prevents external input of carbon and nutrients from streams. Biota are exposed to numerous environmental stresses, including year-round severe nutrient deficiency, low temperatures, extreme shade, hypersalinity, and 24-hour darkness during the winter (1). These extreme environmental conditions limit the biota in Lake Bonney almost exclusively to microorganisms (2). Single-celled microbial eukaryotes (called "protists") are important players in global biogeochemical cycling (3) and play important ecological roles in the cycling of carbon in the dry valley lakes, occupying both primary and tertiary roles in the aquatic food web. In the dry valley aquatic food web, protists that fix inorganic carbon (autotrophy) are the major producers of organic carbon for organotrophic organisms (4, 2). Phagotrophic or heterotrophic protists capable of ingesting bacteria and smaller protists act as the top predators in the food web (5). Last, an unknown proportion of the protist population is capable of combined mixotrophic metabolism (6, 7). Mixotrophy in protists involves the ability to combine photosynthetic capability with phagotrophic ingestion of prey microorganisms. This form of mixotrophy differs from mixotrophic metabolism in bacterial species, which generally involves uptake dissolved carbon molecules. There are currently very few protist isolates from permanently ice-capped polar lakes, and studies of protist diversity and ecology in this extreme environment have been limited (8, 4, 9, 10, 5). A better understanding of protist metabolic versatility in the simple dry valley lake food web will aid in the development of models for the role of protists in the global carbon cycle. We employed an enrichment culture approach to isolate potentially

  11. An improved semi-empirical model for the densification of Antarctic firn

    Directory of Open Access Journals (Sweden)

    S. R. M. Ligtenberg

    2011-07-01

    Full Text Available A firn densification model is presented that simulates steady-state Antarctic firn density profiles, as well as the temporal evolution of firn density and surface height. The model uses an improved firn densification expression that is tuned to fit depth-density observations. Liquid water processes (meltwater percolation, retention and refreezing are also included. Two applications are presented. The steady-state model version is used to simulate the strong spatial variability in firn layer thickness across the Antarctic ice sheet. The time-dependent model is run for 3 Antarctic locations. It reveals a gentle upward motion of the surface during autumn, winter and spring, while during summer there is a more rapid lowering of the surface. Accumulation and (if present melt introduce large inter-annual variability in surface height trends, possibly hiding ice dynamical thickening and thinning.

  12. Evaluation of current and projected Antarctic precipitation in CMIP5 models

    Science.gov (United States)

    Palerme, Cyril; Genthon, Christophe; Claud, Chantal; Kay, Jennifer E.; Wood, Norman B.; L'Ecuyer, Tristan

    2017-01-01

    On average, the models in the Fifth Climate Model Intercomparison Project archive predict an increase in Antarctic precipitation from 5.5 to 24.5 % between 1986-2005 and 2080-2099, depending on greenhouse gas emissions scenarios. This translates into a moderation of future sea level rise ranging from -19 to -71 mm between 2006 and 2099. However, comparison with CloudSat and ERA-Interim data show that almost all the models overestimate current Antarctic precipitation, some by more than 100 %. If only the models that agree with CloudSat data within 20 % of error are considered, larger precipitation changes (from 7.4 to 29.3 %) and impact on sea level (from -25 to -85 mm) are predicted. A common practice of averaging all models to evaluate climate projections thus leads to a significant underestimation of the contribution of Antarctic precipitation to future sea level. Models simulate, on average, a 7.4 %/°C precipitation change with surface temperature warming. The models in better agreement with CloudSat observations for Antarctic snowfall predict, on average, larger temperature and Antarctic sea ice cover changes, which could explain the larger changes in Antarctic precipitation simulated by these models. The agreement between the models, CloudSat data and ERA-Interim is generally less in the interior of Antarctica than at the peripheries, but the interior is also where climate change will induce the smallest absolute change in precipitation. About three-quarters of the impact on sea level will result from precipitation change over the half most peripheral and lowest elevation part of the surface of Antarctica.

  13. Evaluation of current and projected Antarctic precipitation in CMIP5 models

    Science.gov (United States)

    Palerme, Cyril; Genthon, Christophe; Claud, Chantal; Kay, Jennifer E.; Wood, Norman B.; L'Ecuyer, Tristan

    2016-03-01

    On average, the models in the Fifth Climate Model Intercomparison Project archive predict an increase in Antarctic precipitation from 5.5 to 24.5 % between 1986-2005 and 2080-2099, depending on greenhouse gas emissions scenarios. This translates into a moderation of future sea level rise ranging from -19 to -71 mm between 2006 and 2099. However, comparison with CloudSat and ERA-Interim data show that almost all the models overestimate current Antarctic precipitation, some by more than 100 %. If only the models that agree with CloudSat data within 20 % of error are considered, larger precipitation changes (from 7.4 to 29.3 %) and impact on sea level (from -25 to -85 mm) are predicted. A common practice of averaging all models to evaluate climate projections thus leads to a significant underestimation of the contribution of Antarctic precipitation to future sea level. Models simulate, on average, a 7.4 %/°C precipitation change with surface temperature warming. The models in better agreement with CloudSat observations for Antarctic snowfall predict, on average, larger temperature and Antarctic sea ice cover changes, which could explain the larger changes in Antarctic precipitation simulated by these models. The agreement between the models, CloudSat data and ERA-Interim is generally less in the interior of Antarctica than at the peripheries, but the interior is also where climate change will induce the smallest absolute change in precipitation. About three-quarters of the impact on sea level will result from precipitation change over the half most peripheral and lowest elevation part of the surface of Antarctica.

  14. A climate model intercomparison for the Antarctic region: present and past

    OpenAIRE

    M. N. A. Maris; de Boer, B.; Oerlemans, J.

    2012-01-01

    Eighteen General Circulation Models (GCMs) are compared to reference data for the present, the Mid-Holocene (MH) and the Last Glacial Maximum (LGM) for the Antarctic region. The climatology produced by a regional climate model is taken as a reference climate for the present. GCM results for the past are compared to ice-core data. The goal of this study is to find the best GCM that can be used to drive an ice sheet model that simulates the evolution of the Antarctic Ice Sheet. Because temperat...

  15. Lysobacter oligotrophicus sp. nov., isolated from an Antarctic freshwater lake in Antarctica.

    Science.gov (United States)

    Fukuda, Wakao; Kimura, Tomomi; Araki, Shigeo; Miyoshi, Yuki; Atomi, Haruyuki; Imanaka, Tadayuki

    2013-09-01

    A Gram-stain-negative, non-spore-forming, rod-shaped, aerobic bacterium (strain 107-E2(T)) was isolated from freshwater samples containing microbial mats collected at a lake in Skarvsnes, Antarctica (temporary lake name, Lake Tanago Ike). Strain 107-E2(T) grew between 5 and 25 °C, with an optimum of 23 °C. Moreover, colony formation was observed on agar media even at -5 °C. The pH range for growth was between 6.0 and 9.0, with an optimum of pH 7.0-8.0. The range of NaCl concentration for growth was between 0.0 and 0.5% (w/v), with an optimum of 0.0%. No growth was observed in media containing organic compounds at high concentrations, which indicated that strain 107-E2(T) was an oligotroph. In the late stationary phase, strain 107-E2(T) produced a dark brown water-soluble pigment. Esterase, amylase and protease production was observed. Antimicrobial-lytic activities for Gram-negative bacteria and yeast were observed. Ubiquinone-8 was the major respiratory quinone. The major fatty acids were iso-C15:0, iso-C(17:1)ω9c and iso-C(15:1) at 5. The G+C content of genomic DNA was 66.1 mol%. Analysis of the 16S rRNA gene sequences revealed that strain 107-E2(T) belonged to the genus Lysobacter, and low DNA-DNA relatedness values with closely related species distinguished strain 107-E2(T) from recognized species of the genus Lysobacter. The phylogenetic situation and physiological characteristics indicated that strain 107-E2(T) should be classified as a representative of a novel species of the genus Lysobacter, for which the name Lysobacter oligotrophicus sp. nov. is proposed. The type strain is 107-E2(T) ( =JCM 18257(T) =ATCC BAA-2438(T)).

  16. Modelling the effects of environmental conditions on the acoustic occurrence and behaviour of Antarctic blue whales.

    Science.gov (United States)

    Shabangu, Fannie W; Yemane, Dawit; Stafford, Kathleen M; Ensor, Paul; Findlay, Ken P

    2017-01-01

    Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC), latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a) were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of Antarctic blue whales is

  17. Modelling the effects of environmental conditions on the acoustic occurrence and behaviour of Antarctic blue whales

    Science.gov (United States)

    Shabangu, Fannie W.; Yemane, Dawit; Stafford, Kathleen M.; Ensor, Paul; Findlay, Ken P.

    2017-01-01

    Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC), latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a) were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of Antarctic blue whales is

  18. The influence of a model subglacial lake on ice dynamics and internal layering

    Directory of Open Access Journals (Sweden)

    E. Gudlaugsson

    2015-07-01

    Full Text Available As ice flows over a subglacial lake, the drop in bed resistance leads to an increase in ice velocities and a subsequent draw-down of isochrones and cold ice from the surface. The ice surface flattens as it adjusts to the lack of resisting forces at the base. The rapid transition in velocity induces changes in temperature and ice viscosity, releasing deformation energy which raises the temperature locally. Recent studies of Antarctic subglacial lakes indicate that many lakes experience very fast and possibly episodic drainage, during which the lake size is rapidly reduced as water flows out. A question is what effect this would have on internal layers within the ice, and whether such past events could be inferred from isochrone structures downstream. Here, we study the effect of a subglacial lake on the dynamics of a model ice stream as well as the influence that such short timescale drainage would have on the internal layers of the ice. To this end, we use a Full–Stokes, polythermal ice flow model. An enthalpy gradient method is used to account for the evolution of temperature and water content within the ice. We find that the rapid transition between slow-moving ice outside the lake, and full sliding over the lake, releases large amounts of deformational energy, which has the potential to form a temperate layer at depth in the transition zone. In addition, we provide an explanation for a characteristic surface feature, commonly seen at the edges of subglacial lakes, a hummocky surface depression in the transition zone between little to full sliding. We also conclude that rapid changes in lake geometry or basal friction create a travelling wave at depth within the isochrone structure that transfers downstream with the advection of ice, thus indicating the possibility of detecting past events with ice penetrating radar.

  19. A climate model intercomparison for the Antarctic region: present and past

    NARCIS (Netherlands)

    Maris, M.N.A.; de Boer, B.; Oerlemans, J.

    2012-01-01

    Eighteen General Circulation Models (GCMs) are compared to reference data for the present, the Mid-Holocene (MH) and the Last Glacial Maximum (LGM) for the Antarctic region. The climatology produced by a regional climate model is taken as a reference climate for the present. GCM results for the past

  20. An improved semi-empirical model for the densification of Antarctic firn

    NARCIS (Netherlands)

    Ligtenberg, S.R.M.; Helsen, M.M.; van den Broeke, M.R.

    2011-01-01

    A firn densification model is presented that simulates steady-state Antarctic firn density profiles, as well as the temporal evolution of firn density and surface height. The model uses an improved firn densification expression that is tuned to fit depth-density observations. Liquid water processes

  1. High-resolution climate modelling of Antarctica and the Antarctic Peninsula

    NARCIS (Netherlands)

    van Wessem, J.M.

    2016-01-01

    In this thesis we have used a high-resolution regional atmospheric climate model (RACMO2.3) to simulate the present-day climate (1979-2014) of Antarctica and the Antarctic Peninsula. We have evaluated the model results with several observations, such as in situ surface energy balance (SEB) observati

  2. A model assessment of the ability of lake water in Terra Nova Bay, Antarctica, to induce the photochemical degradation of emerging contaminants.

    Science.gov (United States)

    Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2016-11-01

    The shallow lakes located in Terra Nova Bay, Antarctica, are free from ice for only up to a couple of months (mid December to early/mid February) during the austral summer. In the rest of the year, the ice cover shields the light and inhibits the photochemical processes in the water columns. Previous work has shown that chromophoric dissolved organic matter (CDOM) in these lakes is very reactive photochemically. A model assessment is here provided of lake-water photoreactivity in field conditions, based on experimental data of lake water absorption spectra, chemistry and photochemistry obtained previously, taking into account the water depth and the irradiation conditions of the Antarctic summer. The chosen sample contaminants were the solar filter benzophenone-3 and the antimicrobial agent triclosan, which have very well known photoreactivity and have been found in a variety of environmental matrices in the Antarctic continent. The two compounds would have a half-life time of just a few days or less in the lake water during the Antarctic summertime, largely due to reaction with CDOM triplet states ((3)CDOM*). In general, pollutants that occur in the ice and could be released to lake water upon ice melting (around or soon after the December solstice) would be quickly photodegraded if they undergo fast reaction with (3)CDOM*. With some compounds, the important (3)CDOM* reactions might favour the production of harmful secondary pollutants, such as 2,8-dichlorodibenzodioxin from the basic (anionic) form of triclosan.

  3. Lake Michigan lake trout PCB model forecast post audit (oral presentation)

    Science.gov (United States)

    Scenario forecasts for total PCBs in Lake Michigan (LM) lake trout were conducted using the linked LM2-Toxics and LM Food Chain models, supported by a suite of additional LM models. Efforts were conducted under the Lake Michigan Mass Balance Study and the post audit represents an...

  4. Response of the Antarctic Ice Sheet to a climatic warming: a model study

    NARCIS (Netherlands)

    Oerlemans, J.

    1982-01-01

    It is generally believed that the increasing C02 content of the atmosphere will lead to a substantial climatic warming in the polar regions. In this study the effect of consequent changes in the ice accumulation rate over the Antarctic Ice Sheet is investigated by means of a numerical ice flow model

  5. An improved semi-empirical model for the densification of Antarctic firn

    OpenAIRE

    2011-01-01

    A firn densification model is presented that simulates steady-state Antarctic firn density profiles, as well as the temporal evolution of firn density and surface height. The model uses an improved firn densification expression that is tuned to fit depth-density observations. Liquid water processes (meltwater percolation, retention and refreezing) are also included. Two applications are presented. First, the steady-state model version is used to simulate the strong spatial v...

  6. Climate Model Dependency and Understanding the Antarctic Ice Sheet during the Warm Late Pliocene

    Science.gov (United States)

    Dolan, Aisling; de Boer, Bas; Bernales, Jorge; Hunter, Stephen; Haywood, Alan

    2016-04-01

    In the context of future climate change, understanding the nature and behaviour of ice sheets during warm intervals of Earth history is fundamentally important. A warm period in the Late Pliocene (3.264 to 3.025 million years before present) can serve as a potential analogue for projected future climates. Although Pliocene ice locations and extents are still poorly constrained, a significant contribution to sea-level rise should be expected from both the Greenland ice sheet and the West and East Antarctic ice sheets based on palaeo sea-level reconstructions and geological evidence. Following a five year international project PLISMIP (Pliocene Ice Sheet Modeling Intercomparison Project) we present the final set of results which quantify uncertainty in climate model-based predictions of the Antarctic ice sheet. In this study we use an ensemble of climate model forcings within a multi-ice sheet model framework to assess the climate (model) dependency of large scale features of the Antarctic ice sheet. Seven coupled atmosphere-ocean climate models are used to derive surface temperature, precipitation and oceanic forcing that drive three ice sheet models (over the grounded and floating domain). Similar to results presented over Greenland, we show that the reconstruction of the Antarctic ice sheet is sensitive to which climate model is used to provide the forcing field. Key areas of uncertainty include West Antarctica, the large subglacial basins of East Antarctica and the overall thickness of the continental interior of East Antarctica. We relate the results back to geological proxy data, such as those relating to exposure rates which provide information on potential ice sheet thickness. Finally we discuss as to whether the choice of modelling framework (i.e. climate model and ice sheet model used) or the choice of boundary conditions causes the greatest uncertainty in ice sheet reconstructions of the warm Pliocene.

  7. HIGH RESOLUTION MODELLING OF PCB CONGENERS IN LAKE MICHIGAN USING THE LAKE MICHIGAN (LM3) CONTAMINANT MODEL

    Science.gov (United States)

    The Lake Michigan Level 3 (LM3) Model is a numerical model of Lake Michigan used to predict the fate and transport of 54 PCB congeners. The LM3 model segments Lake Michigan horizontally with a 5 x 5 km grid and vertically with 19 sigma layers for a total of 44,042 water column se...

  8. A one-dimensional heat transfer model of the Antarctic Ice Sheet and modeling of snow temperatures at Dome A, the summit of Antarctic Plateau

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A vertical one-dimensional numerical model for heat transferring within the near-surface snow layer of the Antarctic Ice Sheet was developed based on simplified parameterizations of associated physical processes for the atmosphere, radiation, and snow/ice systems. Using the meteorological data of an automatic weather station (AWS) at Dome A (80°22′S, 70°22′E), we applied the model to simulate the seasonal temperature variation within a depth of 20 m. Comparison of modeled results with observed snow temperatures at 4 measurement depths (0.1, 1, 3, 10 m) shows good agreement and consistent seasonal variations. The model results reveal the vertical temperature structure within the near-surface snow layer and its seasonal variance with more details than those by limited measurements. Analyses on the model outputs of the surface energy fluxes show that: 1) the surface energy balance at Dome A is characterized by the compensation between negative net radiation and the positive sensible fluxes, and 2) the sensible heat is on average transported from the atmosphere to the snow, and has an evident increase in spring. The results are considered well representative for the highest interior Antarctic Plateau.

  9. Antarctic firn compaction rates from repeat-track airborne radar data: II. Firn model evaluation

    OpenAIRE

    2015-01-01

    The thickness and density of the Antarctic firn layer vary considerably in time and space, thereby contributing to ice-sheet volume and mass changes. Distinguishing between these mass and volume changes is important for ice-sheet mass-balance studies. Evolution of firn layer depth and density is often modeled, because direct measurements are scarce. Here we directly compare modeled firn compaction rates with observed rates obtained from repeat-track airborne radar data over a 2 year interval ...

  10. Model calculations of the age of firn air across the Antarctic continent

    OpenAIRE

    2004-01-01

    The age of firn air in Antarctica at pore close-off depth is only known for a few specific sites where firn air has been sampled for analyses. We present a model that calculates the age of firn air at pore close-off depth for the entire Antarctic continent. The model basically uses four meteorological parameters as input (surface temperature, pressure, accumulation rate and wind speed). Using parameterisations for surface snow density, pore close-off density and tortuosity, ...

  11. History, development and characteristics of lake ecological models

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper provides some introductory information on the history, development, and characteristics of various lake ecosystem models.The modeling of lake ecological processes began to gain importance in the early 1960s. There are a number of models available today, with varying levels of complexity to cope with the variety of environmental problems found in lake environments, e.g. eutrophication, acidification,oxygen depletion, wetland management, heavy metal and pesticide pollution, as well as hydrodynamic problems. In particular, this paper focuses on lake eutrophication and wetland models, as well as addressing strategies appropriate for the design and development of reliable lake ecological models.

  12. Ecosystem element transport model for Lake Eckarfjaerden

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, L.; Bradshaw, C. [The Department of Ecology, Environment and Plant Sciences, Stockholm University (Sweden); Andersson, E.; Kautsky, U. [Swedish Nuclear Fuel and Waste Management Co. - SKB (Sweden)

    2014-07-01

    The ecosystem transport model of elements was developed for Lake Eckarfjaerden located in the Forsmark area in Sweden. Forsmark has currently a low level repository (SFR) and a repository for spent fuel is planned. A large number of data collected during site-investigation program 2002-2009 for planning the repository were available for the creation of the compartment model based on carbon circulation, physical and biological processes (e.g. primary production, consumption, respiration). The model is site-specific in the sense that the food web model is adapted to the actual food web at the site, and most estimates of biomass and metabolic rates for the organisms and meteorological data originate from site data. The functional organism groups of Lake Eckarfjaerden were considered as separate compartments: bacterio-plankton, benthic bacteria, macro-algae, phytoplankton, zooplankton, fish, benthic fauna. Two functional groups of bacteria were taken into account for the reason that they have the highest biomass of all functional groups during the winter, comprising 36% of the total biomass. Effects of ecological parameters, such as bacteria and algae biomass, on redistribution of a hypothetical radionuclide release in the lake were examined. The ecosystem model was used to estimate the environmental transfer of several elements (U, Th, Ra) and their isotopes (U-238, U-234,Th-232, Ra-226) to various aquatic organisms in the lake, using element-specific distribution coefficients for suspended particle and sediment. Results of chemical analyses of the water, sediment and biota were used for model validation. The model gives estimates of concentration factors for fish based on modelling rather on in situ measurement, which reduces the uncertainties for many radionuclides with scarce of data. Document available in abstract form only. (authors)

  13. Ecological niche modeling of sympatric krill predators around Marguerite Bay, Western Antarctic Peninsula

    Science.gov (United States)

    Friedlaender, Ari S.; Johnston, David W.; Fraser, William R.; Burns, Jennifer; Halpin, Patrick N.; Costa, Daniel P.

    2011-07-01

    Adélie penguins ( Pygoscelis adeliae), carabeater seals ( Lobodon carcinophagus), humpback ( Megaptera novaeangliae), and minke whales ( Balaenoptera bonaernsis) are found in the waters surrounding the Western Antarctic Peninsula. Each species relies primarily on Antarctic krill ( Euphausia superba) and has physiological constraints and foraging behaviors that dictate their ecological niches. Understanding the degree of ecological overlap between sympatric krill predators is critical to understanding and predicting the impacts on climate-driven changes to the Antarctic marine ecosystem. To explore ecological relationships amongst sympatric krill predators, we developed ecological niche models using a maximum entropy modeling approach (Maxent) that allows the integration of data collected by a variety of means (e.g. satellite-based locations and visual observations). We created spatially explicit probability distributions for the four krill predators in fall 2001 and 2002 in conjunction with a suite of environmental variables. We find areas within Marguerite Bay with high krill predator occurrence rates or biological hot spots. We find the modeled ecological niches for Adélie penguins and crabeater seals may be affected by their physiological needs to haul-out on substrate. Thus, their distributions may be less dictated by proximity to prey and more so by physical features that over time provide adequate access to prey. Humpback and minke whales, being fully marine and having greater energetic demands, occupy ecological niches more directly proximate to prey. We also find evidence to suggest that the amount of overlap between modeled niches is relatively low, even for species with similar energetic requirements. In a rapidly changing and variable environment, our modeling work shows little indication that krill predators maintain similar ecological niches across years around Marguerite Bay. Given the amount of variability in the marine environment around the

  14. Assessment of the Breakup of the Antarctic Polar Vortex in Two New Chemistry-Climate Models

    Science.gov (United States)

    Hurwitz, M. M.; Newman, P. A.; Oman, L. D.; Li, F.; Morgenstern, O.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    Successful simulation of the breakup of the Antarctic polar vortex depends on the representation of tropospheric stationary waves at Southern Hemisphere middle latitudes. This paper assesses the vortex breakup in two new chemistry-climate models (CCMs). The stratospheric version of the UK Chemistry and Aerosols model is able to reproduce the observed timing of the vortex breakup. Version 2 of the Goddard Earth Observing System (GEOS V2) model is typical of CCMs in that the Antarctic polar vortex breaks up too late; at 10 hPa, the mean transition to easterlies at 60 S is delayed by 12-13 days as compared with the ERA-40 and National Centers for Environmental Prediction reanalyses. The two models' skill in simulating planetary wave driving during the October-November period accounts for differences in their simulation of the vortex breakup, with GEOS V2 unable to simulate the magnitude and tilt of geopotential height anomalies in the troposphere and thus underestimating the wave driving. In the GEOS V2 CCM the delayed breakup of the Antarctic vortex biases polar temperatures and trace gas distributions in the upper stratosphere in November and December.

  15. Semi-empirical models for chlorine activation and ozone depletion in the Antarctic stratosphere: proof of concept

    Science.gov (United States)

    Huck, P. E.; Bodeker, G. E.; Kremser, S.; McDonald, A. J.; Rex, M.; Struthers, H.

    2013-03-01

    Two semi-empirical models were developed for the Antarctic stratosphere to relate the shift of species within total chlorine (Cly = HCl + ClONO2 + HOCl + 2 × Cl2 + 2×Cl2O2 + ClO + Cl) into the active forms (here: ClOx = 2×Cl2O2 + ClO), and to relate the rate of ozone destruction to ClOx. These two models provide a fast and computationally inexpensive way to describe the inter- and intra-annual evolution of ClOx and ozone mass deficit (OMD) in the Antarctic spring. The models are based on the underlying physics/chemistry of the system and capture the key chemical and physical processes in the Antarctic stratosphere that determine the interaction between climate change and Antarctic ozone depletion. They were developed considering bulk effects of chemical mechanisms for the duration of the Antarctic vortex period and quantities averaged over the vortex area. The model equations were regressed against observations of daytime ClO and OMD providing a set of empirical fit coefficients. Both semi-empirical models are able to explain much of the intra- and inter-annual variability observed in daily ClOx and OMD time series. This proof-of-concept paper outlines the semi-empirical approach to describing the evolution of Antarctic chlorine activation and ozone depletion.

  16. Semi-empirical models for chlorine activation and ozone depletion in the Antarctic stratosphere: proof of concept

    Directory of Open Access Journals (Sweden)

    P. E. Huck

    2013-03-01

    Full Text Available Two semi-empirical models were developed for the Antarctic stratosphere to relate the shift of species within total chlorine (Cly = HCl + ClONO2 + HOCl + 2 × Cl2 + 2×Cl2O2 + ClO + Cl into the active forms (here: ClOx = 2×Cl2O2 + ClO, and to relate the rate of ozone destruction to ClOx. These two models provide a fast and computationally inexpensive way to describe the inter- and intra-annual evolution of ClOx and ozone mass deficit (OMD in the Antarctic spring. The models are based on the underlying physics/chemistry of the system and capture the key chemical and physical processes in the Antarctic stratosphere that determine the interaction between climate change and Antarctic ozone depletion. They were developed considering bulk effects of chemical mechanisms for the duration of the Antarctic vortex period and quantities averaged over the vortex area. The model equations were regressed against observations of daytime ClO and OMD providing a set of empirical fit coefficients. Both semi-empirical models are able to explain much of the intra- and inter-annual variability observed in daily ClOx and OMD time series. This proof-of-concept paper outlines the semi-empirical approach to describing the evolution of Antarctic chlorine activation and ozone depletion.

  17. A coupled lake-atmosphere model (CLAM) and its application to Lake Kinneret

    Science.gov (United States)

    Pan, Hai

    1999-08-01

    Kinneret is a 166-km2 lake located in Northern Israel, in the central part of the Jordan Valley, a corridor running from north to south, between the Galilee hills in the west and the Golan Heights in the east. Both the Galilee hills and the Golan Heights reach an elevation of about 400 m above mean sea level (MSL), and the lake is about -210 m (MSL). North of the lake is the mountainous area of the Hermon, culminating at about 2800 m (MSL). About 120 km south of it is the Dead Sea, which is about -410 m (MSL), and about 45 km west of it is the Mediterranean Sea. The complexity of the terrain, combined with relatively arid soil and various ground covers surrounding the lake, results in a very complicated system of atmospheric and lake processes. To understand this system, especially the processes affecting the atmosphere and lake dynamics and thermodynamics, and their effects on Lake Kinneret evaporation, a coupled lake-atmosphere model (CLAM) was developed and applied to the lake region. The CLAM is based on the Regional Atmospheric Modeling System (RAMS) and the oceanic S-coordinate Rutgers University Model (SCRUM). Energy, mass, and momentum are conserved at the interface between the atmosphere and the lake, and appropriate balance equations are applied there. In the atmospheric module, two nested grids are employed to simulate Northern Israel at a resolution of 4 x 4 km2, and the near-lake region at a resolution of 1 x 1 km 2. Synoptic conditions obtained from the National Meteorological Center (NMC) reanalysis are assimilated by the model. Soil moisture, which appears to have a significant impact on atmospheric circulation in this region, was transformed from the normalized difference vegetation index (NDVI). Observations collected during two summers above and inside the lake emphasize the good capability of CLAM to simulate surface fluxes and other microclimatic conditions, as well as lake temperature and currents. Although the lake is small (about 12-km wide

  18. Microbially mediated redox transformations of manganese (II) along with some other trace elements: a study from Antarctic lakes

    Digital Repository Service at National Institute of Oceanography (India)

    Krishnan, K.P.; Sinha, R.K.; Krishna, K.; Nair, S.; Singh, S.M.

    a study that was conducted in the brackish water lakes in the Larsemann Hills region (east Antarctica) is presented. The rate of in situ manganese oxidation ranged from 0.04 to 3.96 ppb day sup(-1). These lakes harbor numerous manganese-oxidizing...

  19. Integrating three lake models into a Phytoplankton Prediction System for Lake Taihu (Taihu PPS) with Python

    NARCIS (Netherlands)

    Huang, J.C.; Gao, J.F.; Hormann, G.; Mooij, W.M.

    2012-01-01

    In the past decade, much work has been done on integrating different lake models using general frameworks to overcome model incompatibilities. However, a framework may not be flexible enough to support applications in different fields. To overcome this problem, we used Python to integrate three lake

  20. Using a Hydrodynamic Lake Model to Predict the Impact of Avalanche Events at Lake Palcacocha, Peru

    Science.gov (United States)

    Chisolm, R. E.; Somos-Valenzuela, M. A.; McKinney, D. C.; Hodges, B. R.

    2013-12-01

    Accelerated retreat of Andean glaciers in recent decades due to a warming climate has caused the emergence and growth of glacial lakes. As these lakes continue to grow, they pose an increasing risk of glacial lake outburst floods (GLOFs). GLOFs can be triggered by moraine failures or by avalanches, rockslides, or ice calving into glacial lakes. Many of the processes influencing GLOF risk are still poorly understood. For many decades Lake Palcacocha in the Cordillera Blanca, Peru has posed a threat to citizens living in the watershed below, including the city of Huaraz which was devastated by a GLOF in 1941. A safety system for Lake Palcacocha was put in place in the 1970's to control the lake level with a tunnel and reinforced dyke, but the lake has since grown to the point where the lake is once again dangerous. Overhanging ice from the Palcaraju glacier and a relatively low freeboard level make the lake vulnerable to avalanches and landslides. A siphon system has been put in place to lower the lake below the level of the tunnel, but this system is temporary and the potential reduction in the water level is limited. Lake Palcacocha is used as a case study to investigate the impact of an avalanche event on the lake dynamics and the ensuing flood hydrograph. Empirical equations are used to determine the initial wave characteristics of an impulse wave created by three different avalanche scenarios that represent small, medium and large events. The characteristics of the initial impulse wave are used as inputs to a three-dimensional hydrodynamic model to predict the wave propagation across the lake and the moraine overtopping volume. The results from this model will be used as inputs to a downstream GLOF model to predict the impact from an outburst flood event. Additionally several scenarios are considered to evaluate the downstream impact from avalanche events with a reduction in the lake level. Use of a robust three-dimensional hydrodynamic lake model enables more

  1. Estimation of lake water - groundwater interactions in meromictic mining lakes by modelling isotope signatures of lake water.

    Science.gov (United States)

    Seebach, Anne; Dietz, Severine; Lessmann, Dieter; Knoeller, Kay

    2008-03-01

    A method is presented to assess lake water-groundwater interactions by modelling isotope signatures of lake water using meteorological parameters and field data. The modelling of delta(18)O and deltaD variations offers information about the groundwater influx into a meromictic Lusatian mining lake. Therefore, a water balance model is combined with an isotope water balance model to estimate analogies between simulated and measured isotope signatures within the lake water body. The model is operated with different evaporation rates to predict delta(18)O and deltaD values in a lake that is only controlled by weather conditions with neither groundwater inflow nor outflow. Comparisons between modelled and measured isotope values show whether the lake is fed by the groundwater or not. Furthermore, our investigations show that an adaptation of the Craig and Gordon model [H. Craig, L.I. Gordon. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperature, Spoleto, E. Tongiorgi (Ed.), pp. 9-130, Consiglio Nazionale delle Ricerche, Laboratorio di Geologia Nucleare, Pisa (1965).] to specific conditions in temperate regions seems necessary.

  2. Model calculations of the age of firn air across the Antarctic continent

    Directory of Open Access Journals (Sweden)

    K. A. Kaspers

    2004-01-01

    Full Text Available The age of firn air in Antarctica at pore close-off depth is only known for a few specific sites where firn air has been sampled for analyses. We present a model that calculates the age of firn air at pore close-off depth for the entire Antarctic continent. The model basically uses four meteorological parameters as input (surface temperature, pressure, accumulation rate and wind speed. Using parameterisations for surface snow density, pore close-off density and tortuosity, in combination with a density-depth model and data of a regional atmospheric climate model, distribution of pore close-off depth for the entire Antarctic continent is determined. The deepest pore close-off depth was found for the East Antarctic Plateau near 72° E, 82° S, at 150±15 m (2σ. A firn air diffusion model was applied to calculate the age of CO2 at pore close-off depth. The results predict that the oldest firn gas (CO2 age is located between Dome Fuji, Dome Argos and Vostok at 43° E, 78° S being 148±23 (1σ or 38 for 2σ years old. At this location an atmospheric trace gas record should be obtained. In this study we show that methyl chloride could be recorded with a predicted length of 125 years as an example for trace gas records at this location. The longest record currently available from firn air is derived at South Pole, being 80 years. Sensitivity tests reveal that the locations with old firn air (East Antarctic Plateau have an estimated uncertainty (2σ for the modelled CO2 age at pore close-off depth of 30% and of about 40% for locations with younger firn air (CO2 age typically 40 years. Comparing the modelled age of CO2 at pore close-off depth with directly determined ages at seven sites yielded a correlation coefficient of 0.90 and a slope close to 1, suggesting a high level of confidence for the modelled results in spite of considerable remaining uncertainties.

  3. Shallow water modeling of Antarctic Bottom Water crossing the equator

    Science.gov (United States)

    Choboter, Paul F.; Swaters, Gordon E.

    2004-03-01

    The dynamics of abyssal equator-crossing flows are examined by studying simplified models of the flow in the equatorial region in the context of reduced-gravity shallow water theory. A simple "frictional geostrophic" model for one-layer cross-equatorial flow is described, in which geostrophy is replaced at the equator by frictional flow down the pressure gradient. This model is compared via numerical simulations to the one-layer reduced-gravity shallow water model for flow over realistic equatorial Atlantic Ocean bottom topography. It is argued that nonlinear advection is important at key locations where it permits the current to flow against a pressure gradient, a mechanism absent in the frictional geostrophic model and one of the reasons this model predicts less cross-equatorial flow than the shallow water model under similar conditions. Simulations of the shallow water model with an annually varying mass source reproduce the correct amplitude of observed time variability of cross-equatorial flow. The time evolution of volume transport across specific locations suggests that mass is stored in an equatorial basin, which can reduce the amplitude of time dependence of fluid actually proceeding into the Northern Hemisphere as compared to the amount entering the equatorial basin. Observed time series of temperature data at the equator are shown to be consistent with this hypothesis.

  4. Modelling snowdrift sublimation on an Antarctic ice shelf

    NARCIS (Netherlands)

    Lenaerts, J.T.M.; van den Broeke, M.R.; Déry, S. J.; König-Langlo, G.; Ettema, J.; Kuipers Munneke, P.

    2010-01-01

    In this paper, we estimate the contribution of snowdrift sublimation (SUds) to the surface mass balance at Neumayer, located on the Ekström ice shelf in Eastern Antarctica. A single column version of the RACMO2-ANT model is used as a physical interpolation tool of high-quality radiosonde and surface

  5. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes

    Science.gov (United States)

    Purich, Ariaan; Cai, Wenju; England, Matthew H.; Cowan, Tim

    2016-02-01

    Despite global warming, total Antarctic sea ice coverage increased over 1979-2013. However, the majority of Coupled Model Intercomparison Project phase 5 models simulate a decline. Mechanisms causing this discrepancy have so far remained elusive. Here we show that weaker trends in the intensification of the Southern Hemisphere westerly wind jet simulated by the models may contribute to this disparity. During austral summer, a strengthened jet leads to increased upwelling of cooler subsurface water and strengthened equatorward transport, conducive to increased sea ice. As the majority of models underestimate summer jet trends, this cooling process is underestimated compared with observations and is insufficient to offset warming in the models. Through the sea ice-albedo feedback, models produce a high-latitude surface ocean warming and sea ice decline, contrasting the observed net cooling and sea ice increase. A realistic simulation of observed wind changes may be crucial for reproducing the recent observed sea ice increase.

  6. Modeling lakes and reservoirs in the climate system

    NARCIS (Netherlands)

    MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L.N.; Fang, X.; Gal, G.; Jöhnk, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; MacIntyre, S.; Marsh, P.; Melack, J.; Mooij, W.M.; Peeters, F.; Quesada, A.; Schladow, S.G.; Schmid, M.; Spence, C.; Stokes, S.L.

    2009-01-01

    Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere–land surface–lake climate models that could be used for both of these types of study simu

  7. Modelling snowdrift sublimation on an Antarctic ice shelf

    Directory of Open Access Journals (Sweden)

    J. T. M. Lenaerts

    2010-05-01

    Full Text Available In this paper, we estimate the contribution of snowdrift sublimation (SUds to the surface mass balance at Neumayer, located on the Ekström ice shelf in Eastern Antarctica. A single column version of the RACMO2-ANT model is used as a physical interpolation tool of high-quality radiosonde and surface measurements for a 15-yr period (1993–2007, and combined with a routine to calculate snowdrift sublimation and horizontal snow transport. The site is characterised by a relatively mild, wet and windy climate, so snowdrift is a common phenomenon. The modelled timing and frequency of snowdrift events compares well with observations. This is further illustrated by an additional simulation for Kohnen base, where the timing of snowdrift is realistic, although the modelled horizontal transport is overestimated. Snowdrift sublimation is mainly dependent on wind speed, but also on relative humidity and temperature. During high wind speeds, SUds saturates and cools the air, limiting its own strength. We estimate that SUds removes around 16%±8% of the accumulated snow from the surface. The total sublimation more than triples when snowdrift is considered, although snowdrift sublimation limits sublimation at the surface. SUds shows a strong seasonal cycle, as well as large inter-annual variability. This variability can be related to the variability of the atmospheric conditions in the surface layer.

  8. Combined DNA and lipid analyses of sediments reveal changes in Holocene phytoplankton populations in an Antarctic lake

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Coolen, M.J.L.; Muyzer, G.; Rijpstra, W.I.C.; Schouten, S.; Volkman, J.K.

    2004-01-01

    Preserved ribosomal DNA of planktonic phototrophic algae was recovered from Holocene anoxic sediments of Ace Lake (Antarctica), and the ancient community members were identified based on comparative sequence analysis. The similar concentration profiles of DNA of haptophytes and their traditional lip

  9. First synchronous realistic simulations of Antarctic and Greenland SMB in a fully coupled climate model

    Science.gov (United States)

    Lenaerts, J.; van Kampenhout, L.; Lipscomb, W. H.; Gettelman, A.; van den Broeke, M.; Sacks, W.; Fyke, J. G.; Vizcaino, M.; Löfverström, M.

    2015-12-01

    Here we use the global, coupled ocean-atmosphere-land Community Earth System Model (CESM) at a 1o degree horizontal resolution to simulate recent past (1850-now) and future (21st century) Greenland and Antarctic ice sheet SMB in tandem. To that end, we have recently improved the representation of firn in CESM. We increased the vertical thickness of snow, which enhances the buffering of meltwater through refreezing, and firn density, to allow for wind-induced snow compaction. Other model improvements focused on atmospheric clouds; the most recent CESM atmosphere model allows for more liquid water in clouds, which increases positive longwave cloud forcing, and has profound and beneficial impact on the ice sheet surface radiation balance. In this contribution, we will show that the above improvements enable a realistic CESM simulation of both Greenland and Antarctic SMB. This allows for analysis of future evolution of ice sheet SMB and the interactions between ice sheets and other components of the climate system.

  10. Gill's model of the Antarctic Circumpolar Current, revisited: The role of latitudinal variations in wind stress

    Science.gov (United States)

    Marshall, David P.; Munday, David R.; Allison, Lesley C.; Hay, Russell J.; Johnson, Helen L.

    2016-01-01

    Gill's (1968) model of the Antarctic Circumpolar Current (ACC) is reinterpreted for a stratified, reduced-gravity ocean, where the barotropic streamfunction is replaced by the pycnocline depth, and the bottom drag coefficient by the Gent and McWilliams eddy diffusivity. The resultant model gives a simple description of the lateral structure of the ACC that is consistent with contemporary descriptions of ACC dynamics. The model is used to investigate and interpret the sensitivity of the ACC to the latitudinal profile of the surface wind stress. A substantial ACC remains when the wind jet is shifted north of the model Drake Passage, even by several thousand kilometers. The integral of the wind stress over the circumpolar streamlines is found to be a useful predictor of the magnitude of the volume transport through the model Drake Passage, although it is necessary to correct for basin-wide zonal pressure gradients in order to obtain good quantitative agreement.

  11. Semi-empirical models for chlorine activation and ozone depletion in the Antarctic stratosphere: proof of concept

    Directory of Open Access Journals (Sweden)

    P. E. Huck

    2012-10-01

    Full Text Available Two semi-empirical models were developed for the Antarctic stratosphere to relate the shift of species within total chlorine (Cly = HCl + ClONO2 + HOCl + 2 × Cl2 + 2 × Cl2O2 + ClO + Cl into the active forms (here: ClOx = 2 × Cl2O2 + ClO, and to relate the rate of ozone destruction to ClOx. These two models provide a fast and computationally inexpensive way to describe the inter- and intra-annual evolution of ClOx and ozone mass deficit (OMD in the Antarctic spring. The models are based on the underlying physics/chemistry of the system and capture the key chemical and physical processes in the Antarctic stratosphere that determine the interaction between climate change and Antarctic ozone depletion. They were developed considering bulk effects of chemical mechanisms for the duration of the Antarctic vortex period and quantities averaged over the vortex area. The model equations were regressed against observations of daytime ClO and OMD providing a set of empirical fit coefficients. Both semi-empirical models are able to explain much of the intra- and inter-annual variability observed in daily ClOx and OMD time series. This proof-of-concept paper outlines the semi-empirical approach to describing the evolution of Antarctic chlorine activation and ozone depletion.

  12. Modelling mass loss and spatial uncertainty of the West Antarctic Ice Sheet: a data assimilation approach

    Science.gov (United States)

    Bamber, Jonathan L.; Schoen, Nana; Zammit-Mangion, Andrew; Rougier, Jonty; Luthcke, Scott; King, Matt

    2013-04-01

    Quantifying ice mass loss from the Antarctic Ice Sheet remains an important, yet still challenging problem. Although some agreement has been reached as to the order of magnitude of ice loss over the last two decades, in general methods lack statistical rigour in deriving uncertainties and for East Antarctica and the Peninsula significant inconsistencies remain. Here, we present rigorously-derived, error-bounded mass balance trends for part of the Antarctic ice sheet from a combination of satellite, in situ and regional climate model data sets for 2003-2009. Estimates for glacial isostatic adjustment (GIA), surface mass balance (SMB) anomaly, and ice mass change are derived from satellite gravimetry (the Gravity Recovery and Climate Experiment, GRACE), laser altimetry (ICESat, the Ice, Cloud and land Elevation Satellite) and GPS bedrock elevation rates. We use a deterministic Bayes approach to simultaneously solve for the unknown parameters and the covariance matrix which provides the uncertainties. The data were distributed onto a finite element grid the resolution of which reflects the gradients in the underlying process: here ice dynamics and surface mass balance. In this proof of concept study we solve for the time averaged, spatial distribution of mass trends over the 7 year time interval. The results illustrate the potential of the approach, especially for the Antarctic Peninsula (AP), where, due to its narrow width and steep orography, data coverage is sparse and error-prone for satellite altimetry. Results for the ice mass balance estimates are consistent with previous estimates and demonstrate the strength of the approach. Well-known patterns of ice mass change over the WAIS, like the stalled Kamb Ice Stream and the rapid thinning in the Amundsen Sea Embayment, are reproduced in terms of mass trend. Also, without relying on information on ice dynamics, the method correctly places ice loss maxima at the outlets of major glaciers on the AP. Combined ice mass

  13. Present-day and future Antarctic ice sheet climate and surface mass balance in the Community Earth System Model

    Science.gov (United States)

    Lenaerts, Jan T. M.; Vizcaino, Miren; Fyke, Jeremy; van Kampenhout, Leo; van den Broeke, Michiel R.

    2016-09-01

    We present climate and surface mass balance (SMB) of the Antarctic ice sheet (AIS) as simulated by the global, coupled ocean-atmosphere-land Community Earth System Model (CESM) with a horizontal resolution of {˜ }1° in the past, present and future (1850-2100). CESM correctly simulates present-day Antarctic sea ice extent, large-scale atmospheric circulation and near-surface climate, but fails to simulate the recent expansion of Antarctic sea ice. The present-day Antarctic ice sheet SMB equals 2280 ± 131 {Gt year^{-1}}, which concurs with existing independent estimates of AIS SMB. When forced by two CMIP5 climate change scenarios (high mitigation scenario RCP2.6 and high-emission scenario RCP8.5), CESM projects an increase of Antarctic ice sheet SMB of about 70 {Gt year^{-1}} per degree warming. This increase is driven by enhanced snowfall, which is partially counteracted by more surface melt and runoff along the ice sheet's edges. This intensifying hydrological cycle is predominantly driven by atmospheric warming, which increases (1) the moisture-carrying capacity of the atmosphere, (2) oceanic source region evaporation, and (3) summer AIS cloud liquid water content.

  14. Timescales of Growth Response of Microbial Mats to Environmental Change in an Ice-Covered Antarctic Lake

    Directory of Open Access Journals (Sweden)

    Anne D. Jungblut

    2013-01-01

    Full Text Available Lake Vanda is a perennially ice-covered, closed-basin lake in the McMurdo Dry Valleys, Antarctica. Laminated photosynthetic microbial mats cover the floor of the lake from below the ice cover to >40 m depth. In recent decades, the water level of Lake Vanda has been rising, creating a “natural experiment” on development of mat communities on newly flooded substrates and the response of deeper mats to declining irradiance. Mats in recently flooded depths accumulate one lamina (~0.3 mm per year and accrue ~0.18 µg chlorophyll-a cm−2 y−1. As they increase in thickness, vertical zonation becomes evident, with the upper 2-4 laminae forming an orange-brown zone, rich in myxoxanthophyll and dominated by intertwined Leptolyngbya trichomes. Below this, up to six phycobilin-rich green/pink-pigmented laminae form a subsurface zone, inhabited by Leptolyngbya, Oscillatoria and Phormidium morphotypes. Laminae continued to increase in thickness for several years after burial, and PAM fluorometry indicated photosynthetic potential in all pigmented laminae. At depths that have been submerged for >40 years, mats showed similar internal zonation and formed complex pinnacle structures that were only beginning to appear in shallower mats. Chlorophyll-a did not change over time and these mats appear to represent resource-limited “climax” communities. Acclimation of microbial mats to changing environmental conditions is a slow process, and our data show how legacy effects of past change persist into the modern community structure.

  15. Combined DNA and lipid analyses of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic lake

    Science.gov (United States)

    Coolen, Marco J. L.; Muyzer, Gerard; Rijpstra, W. Irene C.; Schouten, Stefan; Volkman, John K.; Sinninghe Damsté, Jaap S.

    2004-06-01

    Preserved ribosomal DNA of planktonic phototrophic algae was recovered from Holocene anoxic sediments of Ace Lake (Antarctica), and the ancient community members were identified based on comparative sequence analysis. The similar concentration profiles of DNA of haptophytes and their traditional lipid biomarkers (alkenones and alkenoates) revealed that fossil rDNA also served as quantitative biomarkers in this environment. The DNA data clearly revealed the presence of six novel phylotypes related to known alkenone and alkenoate-biosynthesizing haptophytes with Isochrysis galbana UIO 102 as their closest relative. The relative abundance of these phylotypes changed as the lake chemistry, particularly salinity, evolved over time. Changes in the alkenone distributions reflect these population changes rather than a physiological response to salinity by a single haptophyte. Using this novel paleo-ecological approach of combining data from lipid biomarkers and preserved DNA, we showed that the post-glacial development of Ace Lake from freshwater basin to marine inlet and the present-day lacustrine saline system caused major qualitative and quantitative changes in the biodiversity of the planktonic populations over time.

  16. Sensitivity of Global Modeling Initiative CTM predictions of Antarctic ozone recovery to GCM and DAS generated meteorological fields

    Energy Technology Data Exchange (ETDEWEB)

    Rotman, D; Bergmann, D

    2003-12-04

    We use the Global Modeling Initiative chemistry and transport model to simulate the evolution of stratospheric ozone between 1995 and 2030, using boundary conditions consistent with the recent World Meteorological Organization ozone assessment. We compare the Antarctic ozone recovery predictions of two simulations, one driven by meteorological data from a general circulation model (GCM), the other using the output of a data assimilation system (DAS), to examine the sensitivity of Antarctic ozone recovery predictions to the characteristic dynamical differences between GCM and DAS-generated meteorological data. Although the age of air in the Antarctic lower stratosphere differs by a factor of 2 between the simulations, we find little sensitivity of the 1995-2030 Antarctic ozone recovery between 350 K and 650 K to the differing meteorological fields, particularly when the recovery is specified in mixing ratio units. Relative changes are smaller in the DAS-driven simulation compared to the GCM-driven simulation due to a surplus of Antarctic ozone in the DAS-driven simulation which is not consistent with observations. The peak ozone change between 1995 and 2030 in both simulations is {approx}20% lower than photochemical expectations, indicating that changes in ozone transport at 450 K between 1995 and 2030 constitute a small negative feedback. Total winter/spring ozone loss during the base year (1995) of both simulations and the rate of ozone loss during August and September is somewhat weaker than observed. This appears to be due to underestimates of Antarctic Cl{sub y} at the 450 K potential temperature level.

  17. The neglect of cliff instability can underestimate warming period melting in Antarctic ice sheet models

    CERN Document Server

    Ruckert, Kelsey L; Pollard, Dave; Guan, Yawen; Wong, Tony E; Forest, Chris E; Keller, Klaus

    2016-01-01

    The response of the Antarctic ice sheet (AIS) to changing climate forcings is an important driver of sea-level changes. Anthropogenic climate changes may drive a sizeable AIS tipping point response with subsequent increases in coastal flooding risks. Many studies analyzing flood risks use simple models to project the future responses of AIS and its sea-level contributions. These analyses have provided important new insights, but they are often silent on the effects of potentially important processes such as Marine Ice Sheet Instability (MISI) or Marine Ice Cliff Instability (MICI). These approximations can be well justified and result in more parsimonious and transparent model structures. This raises the question how this approximation impacts hindcasts and projections. Here, we calibrate a previously published AIS model, which neglects the effects of MICI, using a combination of observational constraints and a Bayesian inversion method. Specifically, we approximate the effects of missing MICI by comparing ou...

  18. MAGIC-DML: Mapping/Measuring/Modeling Antarctic Geomorphology & Ice Change in Dronning Maud Land

    Science.gov (United States)

    Rogozhina, Irina; Bernales, Jorge; Newall, Jennifer; Stroeven, Arjen; Harbor, Jonathan; Glasser, Neil; Fredin, Ola; Fabel, Derek; Hättestrand, Class; Lifton, Nat

    2016-04-01

    Reconstructing and predicting the response of the Antarctic Ice Sheet to climate change is one of the major challenges facing the Earth Science community. There are critical gaps in our knowledge of past changes in ice elevation and extent in many regions of East Antarctica, including a large area of Dronning Maud Land. An international Swedish-UK-US-Norwegian-German project MAGIC-DML aims to reconstruct the timing and pattern of ice surface elevation (thus ice sheet volume) fluctuations since the mid-Pliocene warm period on the Dronning Maud Land margin of the East Antarctic Ice Sheet. A combination of remotely sensed geomorphological mapping, field investigations, surface exposure dating and numerical modelling are being used in an iterative manner to produce a comprehensive reconstruction of the glacial history of Dronning Maud Land. Here we present the results from the first phase of this project, which involves high-resolution numerical simulations of the past glacial geometries and mapping of the field area using historic and recent aerial imagery together with a range of satellite acquired data.

  19. Geomorphological dynamics of Deception Island (Maritime Antarctic): a GIS based analysis of the Cerro de la Cruz - Crater Lake area

    Science.gov (United States)

    Melo, R.; Vieira, G.; Rocha, J.; Caselli, A.; Batista, V.; Ramos, M.

    2009-04-01

    This study, based on field surveying from the austral summer of 2007-2008, presents the first results of the detailed geomorphological mapping of Deception Island (South Shetlands, Antarctic Peninsula). The main objective is to provide new geomorphological observations aiming to understand: i) how climate change is affecting permafrost, ii) the interactions between volcanoes and permafrost and also, iii) the present-day geomorphological dynamics in an area of high environmental sensitivity. The detailed geomorphological mapping was made in the area between the Argentinean base of Decepción and the Spanish Base Gabriel de Castilla, corresponding to 4 km2, as well as in the vicinity of the ruins of the Chilean Refuge. Mapping focused on landforms and deposits that may be indicators of permafrost dynamics, such as rockfalls, gullies, debris flows, thermokarst depressions and lag surfaces. Active layer thickness was monitored during the summer in two sites with different topographic conditions using mechanical probing. The spatial distribution of the geomorphological processes and landforms was studied using a GIS, with the objective to study the controls of several independent variables, such as altitude, aspect, slope, topographical parameters and net summer radiation.

  20. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics.

    Science.gov (United States)

    Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki

    2015-04-24

    The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas.

  1. LakeMIP Kivu: evaluating the representation of a large, deep tropical lake by a set of one-dimensional lake models

    Directory of Open Access Journals (Sweden)

    WIM Thiery

    2014-02-01

    Full Text Available The African great lakes are of utmost importance for the local economy (fishing, as well as being essential to the survival of the local people. During the past decades, these lakes experienced fast changes in ecosystem structure and functioning, and their future evolution is a major concern. In this study, for the first time a set of one-dimensional lake models are evaluated for Lake Kivu (2.28°S; 28.98°E, East Africa. The unique limnology of this meromictic lake, with the importance of salinity and subsurface springs in a tropical high-altitude climate, presents a worthy challenge to the seven models involved in the Lake Model Intercomparison Project (LakeMIP. Meteorological observations from two automatic weather stations are used to drive the models, whereas a unique dataset, containing over 150 temperature profiles recorded since 2002, is used to assess the model's performance. Simulations are performed over the freshwater layer only (60 m and over the average lake depth (240 m, since salinity increases with depth below 60 m in Lake Kivu and some lake models do not account for the influence of salinity upon lake stratification. All models are able to reproduce the mixing seasonality in Lake Kivu, as well as the magnitude and seasonal cycle of the lake enthalpy change. Differences between the models can be ascribed to variations in the treatment of the radiative forcing and the computation of the turbulent heat fluxes. Fluctuations in wind velocity and solar radiation explain inter-annual variability of observed water column temperatures. The good agreement between the deep simulations and the observed meromictic stratification also shows that a subset of models is able to account for the salinity- and geothermal-induced effects upon deep-water stratification. Finally, based on the strengths and weaknesses discerned in this study, an informed choice of a one-dimensional lake model for a given research purpose becomes possible.

  2. Determining lake surface water temperatures (LSWTs worldwide using a tuned 1-dimensional lake model (FLake, v1

    Directory of Open Access Journals (Sweden)

    A. Layden

    2015-10-01

    Full Text Available FLake, a 1-dimensional freshwater lake model, is tuned for 244 globally distributed large lakes using lake surface water temperatures (LSWTs derived from Along-Track Scanning Radiometers (ATSRs. The model, tuned using only 3 lake properties; lake depth, albedo (snow and ice and light extinction co-efficient, substantially improves the measured biases in various features of the LSWT annual cycle, including the LSWTs of saline and high altitude lakes. The daily mean absolute differences (MAD and the spread of differences (±2 standard deviations across the trial seasonally ice covered lakes (lakes with a lake-mean LSWT remaining below 1 °C for part of the annual cycle is reduced from 3.01± 2.25 °C (pre-tuning to 0.84 ± 0.51 °C (post-tuning. For non-seasonally ice-covered trial lakes (lakes with a lake-mean LSWT remaining above 1 °C throughout its annual cycle, the average daily mean absolute difference (MAD is reduced from 3.55 ± 3.20 °C to 0.96 ± 0.63 °C. The post tuning results for the trial lakes (35 lakes are highly representative of the post tuning results of the 244 lakes. The sensitivity of the summer LSWTs of deeper lakes to changes in the timing of ice-off is demonstrated. The modelled summer LSWT response to changes in ice-off timing is found to be strongly affected by lake depth and latitude, explaining 0.50 (R2adj, p = 0.001 of the inter-lake variance in summer LSWTs. Lake depth alone explains 0.35 (p =0.003 of the variance. The tuning approach undertaken in this study, overcomes the obstacle of the lack of available lake characteristic information (snow and ice albedo and light extinction co-efficient for individual lakes. Furthermore, the tuned values for lake depth, snow and ice albedo and light extinction co-efficient for the 244 lakes provide guidance for improving LSWTs modelling in FLake.

  3. Correlative and dynamic species distribution modelling for ecological predictions in the Antarctic: a cross-disciplinary concept

    Directory of Open Access Journals (Sweden)

    Thomas Saucède

    2012-05-01

    Full Text Available Developments of future scenarios of Antarctic ecosystems are still in their infancy, whilst predictions of the physical environment are recognized as being of global relevance and corresponding models are under continuous development. However, in the context of environmental change simulations of the future of the Antarctic biosphere are increasingly demanded by decision makers and the public, and are of fundamental scientific interest. This paper briefly reviews existing predictive models applied to Antarctic ecosystems before providing a conceptual framework for the further development of spatially and temporally explicit ecosystem models. The concept suggests how to improve approaches to relating species’ habitat description to the physical environment, for which a case study on sea urchins is presented. In addition, the concept integrates existing and new ideas to consider dynamic components, particularly information on the natural history of key species, from physiological experiments and biomolecular analyses. Thereby, we identify and critically discuss gaps in knowledge and methodological limitations. These refer to process understanding of biological complexity, the need for high spatial resolution oceanographic data from the entire water column, and the use of data from biomolecular analyses in support of such ecological approaches. Our goal is to motivate the research community to contribute data and knowledge to a holistic, Antarctic-specific, macroecological framework. Such a framework will facilitate the integration of theoretical and empirical work in Antarctica, improving our mechanistic understanding of this globally influential ecoregion, and supporting actions to secure this biodiversity hotspot and its ecosystem services.

  4. Glacial lakes in the Indian Himalayas--from an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes.

    Science.gov (United States)

    Worni, Raphael; Huggel, Christian; Stoffel, Markus

    2013-12-01

    Glacial lake hazards and glacial lake distributions are investigated in many glaciated regions of the world, but comparably little attention has been given to these topics in the Indian Himalayas. In this study we present a first area-wide glacial lake inventory, including a qualitative classification at 251 glacial lakes >0.01 km(2). Lakes were detected in the five states spanning the Indian Himalayas, and lake distribution pattern and lake characteristics were found to differ significantly between regions. Three glacial lakes, from different geographic and climatic regions within the Indian Himalayas were then selected for a detailed risk assessment. Lake outburst probability, potential outburst magnitudes and associated damage were evaluated on the basis of high-resolution satellite imagery, field assessments and through the use of a dynamic model. The glacial lakes analyzed in the states of Jammu and Kashmir and Himachal Pradesh were found to present moderate risks to downstream villages, whereas the lake in Sikkim severely threatens downstream locations. At the study site in Sikkim, a dam breach could trigger drainage of ca. 16×10(6)m(3) water and generate maximum lake discharge of nearly 7000 m(3) s(-). The identification of critical glacial lakes in the Indian Himalayas and the detailed risk assessments at three specific sites allow prioritizing further investigations and help in the definition of risk reduction actions.

  5. Impact of model resolution for on-shelf heat transport along the West Antarctic Peninsula

    Science.gov (United States)

    Graham, Jennifer A.; Dinniman, Michael S.; Klinck, John M.

    2016-10-01

    The flux of warm deep water onto Antarctic continental shelves plays a vital role in determining water mass properties adjacent to the continent. A regional model, with two different grid resolutions, has been used to simulate ocean processes along the West Antarctic Peninsula. At both 4 km and 1.5 km resolution, the model reproduces the locations of warm intrusions, as shown through comparison with observations from instrumented seals. However, the 1.5 km simulation shows greater on-shelf heat transport, leading to improved representation of heat content on the shelf. This increased heat transport is associated with increased eddy activity, both at the shelf-break and in the deep ocean off-shore. Cross-shelf troughs are key locations of on-shelf heat transport. Comparison of two troughs, Belgica and Marguerite, shows differing responses to increased resolution. At higher resolution, there is an increased on-shelf volume transport at Belgica Trough, but not at Marguerite Trough. This is likely related to the differing structure of the shelf-break jet between these two locations. The increased heat flux at Marguerite Trough is attributed to increased heat content in the on-shelf transport. Increased eddy activity off-shelf may lead to greater cross-front heat transport, and therefore increased heat available above the continental slope. While these simulations differ in their magnitude of heat transport, both show similar patterns of variability. Variations in wind stress lead to variations in speed of the shelf-break jet, and therefore on-shelf heat transport. These results demonstrate the importance of model resolution for understanding cross-shelf transport around Antarctica.

  6. Modeling a glacial lake outburst flood process chain: the case of Lake Palcacocha and Huaraz, Peru

    Science.gov (United States)

    Somos-Valenzuela, Marcelo A.; Chisolm, Rachel E.; Rivas, Denny S.; Portocarrero, Cesar; McKinney, Daene C.

    2016-07-01

    One of the consequences of recent glacier recession in the Cordillera Blanca, Peru, is the risk of glacial lake outburst floods (GLOFs) from lakes that have formed at the base of retreating glaciers. GLOFs are often triggered by avalanches falling into glacial lakes, initiating a chain of processes that may culminate in significant inundation and destruction downstream. This paper presents simulations of all of the processes involved in a potential GLOF originating from Lake Palcacocha, the source of a previously catastrophic GLOF on 13 December 1941, killing about 1800 people in the city of Huaraz, Peru. The chain of processes simulated here includes (1) avalanches above the lake; (2) lake dynamics resulting from the avalanche impact, including wave generation, propagation, and run-up across lakes; (3) terminal moraine overtopping and dynamic moraine erosion simulations to determine the possibility of breaching; (4) flood propagation along downstream valleys; and (5) inundation of populated areas. The results of each process feed into simulations of subsequent processes in the chain, finally resulting in estimates of inundation in the city of Huaraz. The results of the inundation simulations were converted into flood intensity and preliminary hazard maps (based on an intensity-likelihood matrix) that may be useful for city planning and regulation. Three avalanche events with volumes ranging from 0.5 to 3 × 106 m3 were simulated, and two scenarios of 15 and 30 m lake lowering were simulated to assess the potential of mitigating the hazard level in Huaraz. For all three avalanche events, three-dimensional hydrodynamic models show large waves generated in the lake from the impact resulting in overtopping of the damming moraine. Despite very high discharge rates (up to 63.4 × 103 m3 s-1), the erosion from the overtopping wave did not result in failure of the damming moraine when simulated with a hydro-morphodynamic model using excessively conservative soil

  7. Uncertainties in Ensemble Predictions of Future Antarctic Mass Loss with the fETISh Model

    Science.gov (United States)

    Pattyn, F.

    2015-12-01

    Marine ice sheet models should be capable of handling complex feedbacks between ice and ocean, such as marine ice sheet instability, and the atmosphere, such as the elevation-mass balance feedback, operating at different time scales. Recent model intercomparisons (e.g., SeaRISE, MISMIP) have shown that the complexity of many ice sheet models is focused on processes that are either not well captured numerically (spatial resolution issue) or are of secondary importance compared to the essential features of marine ice sheet dynamics. Here, we propose a new and fast computing ice sheet model, devoid of most complexity, but capturing the essential feedbacks when coupled to ocean or atmospheric models. Its computational efficiency guarantees to easily tests its advantages as well as limits through ensemble modelling. The fETISh (fast Elementary Thermomechanical (marine) Ice Sheet) model is a vertically integrated hybrid (SSA/SIA) ice sheet model. Although vertically integrated, thermomechanical coupling is ensured through a simplified representation of ice sheet thermodynamics based on an analytical solution of the vertical temperature profile, including strain heating and horizontal advection. The marine boundary is represented by a flux condition similar to Pollard & Deconto (2012), based on Schoof (2007). Buttressing of ice shelves is taken into account via the Shallow-Shelf Approximation (SSA). The ice sheet model is solved on four staggered finite difference grids for numerical efficiency/stability. Numerical tests following EISMINT, ISMIP and MISMIP are performed as a prerequisite. The fETISh model is forced with different ice-shelf melt rates and basal sliding perturbations to allow comparison with recent model intercomparisons of the Antarctic ice sheet (e.g., SeaRISE, Favier et al. (2013)). These forcings are further completed with a set of scenarios involving ice-shelf buttressing and unbuttressing. All experiments are carried out on different spatial

  8. Challenges and opportunities for integrating lake ecosystem modelling approaches

    Science.gov (United States)

    Mooij, Wolf M.; Trolle, Dennis; Jeppesen, Erik; Arhonditsis, George; Belolipetsky, Pavel V.; Chitamwebwa, Deonatus B.R.; Degermendzhy, Andrey G.; DeAngelis, Donald L.; Domis, Lisette N. De Senerpont; Downing, Andrea S.; Elliott, J. Alex; Ruberto, Carlos Ruberto; Gaedke, Ursula; Genova, Svetlana N.; Gulati, Ramesh D.; Hakanson, Lars; Hamilton, David P.; Hipsey, Matthew R.; Hoen, Jochem 't; Hulsmann, Stephan; Los, F. Hans; Makler-Pick, Vardit; Petzoldt, Thomas; Prokopkin, Igor G.; Rinke, Karsten; Schep, Sebastiaan A.; Tominaga, Koji; Van Dam, Anne A.; Van Nes, Egbert H.; Wells, Scott A.; Janse, Jan H.

    2010-01-01

    A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing the wheel'). The other challenge is to avoid focusing on only one type of model, while ignoring new and diverse approaches that have become available ('having tunnel vision'). In this paper, we aim at improving the awareness of existing models and knowledge of concurrent approaches in lake ecosystem modelling, without covering all possible model tools and avenues. First, we present a broad variety of modelling approaches. To illustrate these approaches, we give brief descriptions of rather arbitrarily selected sets of specific models. We deal with static models (steady state and regression models), complex dynamic models (CAEDYM, CE-QUAL-W2, Delft 3D-ECO, LakeMab, LakeWeb, MyLake, PCLake, PROTECH, SALMO), structurally dynamic models and minimal dynamic models. We also discuss a group of approaches that could all be classified as individual based: super-individual models (Piscator, Charisma), physiologically structured models, stage-structured models and trait-based models. We briefly mention genetic algorithms, neural networks, Kalman filters and fuzzy logic. Thereafter, we zoom in, as an in-depth example, on the multi-decadal development and application of the lake ecosystem model PCLake and related models (PCLake Metamodel, Lake Shira Model, IPH-TRIM3D-PCLake). In the discussion, we argue that while the historical development of each approach and model is understandable given its 'leading principle', there are many opportunities for combining approaches. We take the point of view that a single 'right' approach does not exist and should not be strived for. Instead, multiple modelling approaches, applied concurrently to a given problem, can help develop an integrative

  9. Impact of surface wind biases on the Antarctic sea ice concentration budget in climate models

    Science.gov (United States)

    Lecomte, O.; Goosse, H.; Fichefet, T.; Holland, P. R.; Uotila, P.; Zunz, V.; Kimura, N.

    2016-09-01

    We derive the terms in the Antarctic sea ice concentration budget from the output of three models, and compare them to observations of the same terms. Those models include two climate models from the 5th Coupled Model Intercomparison Project (CMIP5) and one ocean-sea ice coupled model with prescribed atmospheric forcing. Sea ice drift and wind fields from those models, in average over April-October 1992-2005, all exhibit large differences with the available observational or reanalysis datasets. However, the discrepancies between the two distinct ice drift products or the two wind reanalyses used here are sometimes even greater than those differences. Two major findings stand out from the analysis. Firstly, large biases in sea ice drift speed and direction in exterior sectors of the sea ice covered region tend to be systematic and consistent with those in winds. This suggests that sea ice errors in these areas are most likely wind-driven, so as errors in the simulated ice motion vectors. The systematic nature of these biases is less prominent in interior sectors, nearer the coast, where sea ice is mechanically constrained and its motion in response to the wind forcing more depending on the model rheology. Second, the intimate relationship between winds, sea ice drift and the sea ice concentration budget gives insight on ways to categorize models with regard to errors in their ice dynamics. In exterior regions, models with seemingly too weak winds and slow ice drift consistently yield a lack of ice velocity divergence and hence a wrong wintertime sea ice growth rate. In interior sectors, too slow ice drift, presumably originating from issues in the physical representation of sea ice dynamics as much as from errors in surface winds, leads to wrong timing of the late winter ice retreat. Those results illustrate that the applied methodology provides a valuable tool for prioritizing model improvements based on the ice concentration budget-ice drift biases-wind biases

  10. Comparative bioenergetics modeling of two Lake Trout morphotypes

    Science.gov (United States)

    Kepler, Megan V.; Wagner, Tyler; Sweka, John A.

    2014-01-01

    Efforts to restore Lake Trout Salvelinus namaycush in the Laurentian Great Lakes have been hampered for decades by several factors, including overfishing and invasive species (e.g., parasitism by Sea Lampreys Petromyzon marinus and reproductive deficiencies associated with consumption of Alewives Alosa pseudoharengus). Restoration efforts are complicated by the presence of multiple body forms (i.e., morphotypes) of Lake Trout that differ in habitat utilization, prey consumption, lipid storage, and spawning preferences. Bioenergetics models constitute one tool that is used to help inform management and restoration decisions; however, bioenergetic differences among morphotypes have not been evaluated. The goal of this research was to investigate bioenergetic differences between two actively stocked morphotypes: lean and humper Lake Trout. We measured consumption and respiration rates across a wide range of temperatures (4–22°C) and size-classes (5–100 g) to develop bioenergetics models for juvenile Lake Trout. Bayesian estimation was used so that uncertainty could be propagated through final growth predictions. Differences between morphotypes were minimal, but when present, the differences were temperature and weight dependent. Basal respiration did not differ between morphotypes at any temperature or size-class. When growth and consumption differed between morphotypes, the differences were not consistent across the size ranges tested. Management scenarios utilizing the temperatures presently found in the Great Lakes (e.g., predicted growth at an average temperature of 11.7°C and 14.4°C during a 30-d period) demonstrated no difference in growth between the two morphotypes. Due to a lack of consistent differences between lean and humper Lake Trout, we developed a model that combined data from both morphotypes. The combined model yielded results similar to those of the morphotype-specific models, suggesting that accounting for morphotype differences may

  11. [Prokaryotic community of subglacial bottom sediments of Antarctic Lake Untersee: detection by cultural and direct microscopic techniques].

    Science.gov (United States)

    Muliukin, A L; Demkina, E V; Manucharova, N A; Akimov, V N; Andersen, D; McKay, C; Gal'chenko, V F

    2014-01-01

    The heterotrophic mesophilic component was studied in microbial communities of the samples of frozen regolith collected from the glacier near Lake Untersee collected in 2011 during the joint Russian-American expedition to central Dronning Maud Land (Eastern Antarctica). Cultural techniques revealed high bacterial numbers in the samples. For enumeration of viable cells, the most probable numbers (MPN) method proved more efficient than plating on agar media. Fluorescent in situ hybridization with the relevant oligonucleotide probes revealed members of the groups Eubacteria (Actinobacteria, Firmicutes) and Archaea. Application of the methods of cell resuscitation, such as the use of diluted media and prevention of oxidative stress, did not result in a significant increase in the numbers of viable cells retrieved form subglacial sediment samples. Our previous investigations demonstrated the necessity for special procedures for efficient reactivation of the cells from microbial communities of preserved fossil soil and permafrost samples collected in the Arctic zone. The differences in response to the special resuscitation procedures may reflect the differences in the physiological and morphological state of bacterial cells in microbial communities subject to continuous or periodic low temperatures and dehydration.

  12. Parameter Estimations of Dynamic Energy Budget (DEB) Model over the Life History of a Key Antarctic Species: The Antarctic Sea Star Odontaster validus Koehler, 1906.

    Science.gov (United States)

    Agüera, Antonio; Collard, Marie; Jossart, Quentin; Moreau, Camille; Danis, Bruno

    2015-01-01

    Marine organisms in Antarctica are adapted to an extreme ecosystem including extremely stable temperatures and strong seasonality due to changes in day length. It is now largely accepted that Southern Ocean organisms are particularly vulnerable to global warming with some regions already being challenged by a rapid increase of temperature. Climate change affects both the physical and biotic components of marine ecosystems and will have an impact on the distribution and population dynamics of Antarctic marine organisms. To predict and assess the effect of climate change on marine ecosystems a more comprehensive knowledge of the life history and physiology of key species is urgently needed. In this study we estimate the Dynamic Energy Budget (DEB) model parameters for key benthic Antarctic species the sea star Odontaster validus using available information from literature and experiments. The DEB theory is unique in capturing the metabolic processes of an organism through its entire life cycle as a function of temperature and food availability. The DEB model allows for the inclusion of the different life history stages, and thus, becomes a tool that can be used to model lifetime feeding, growth, reproduction, and their responses to changes in biotic and abiotic conditions. The DEB model presented here includes the estimation of reproduction handling rules for the development of simultaneous oocyte cohorts within the gonad. Additionally it links the DEB model reserves to the pyloric caeca an organ whose function has long been ascribed to energy storage. Model parameters described a slowed down metabolism of long living animals that mature slowly. O. validus has a large reserve that-matching low maintenance costs- allow withstanding long periods of starvation. Gonad development is continuous and individual cohorts developed within the gonads grow in biomass following a power function of the age of the cohort. The DEB model developed here for O. validus allowed us to

  13. Parameter Estimations of Dynamic Energy Budget (DEB Model over the Life History of a Key Antarctic Species: The Antarctic Sea Star Odontaster validus Koehler, 1906.

    Directory of Open Access Journals (Sweden)

    Antonio Agüera

    Full Text Available Marine organisms in Antarctica are adapted to an extreme ecosystem including extremely stable temperatures and strong seasonality due to changes in day length. It is now largely accepted that Southern Ocean organisms are particularly vulnerable to global warming with some regions already being challenged by a rapid increase of temperature. Climate change affects both the physical and biotic components of marine ecosystems and will have an impact on the distribution and population dynamics of Antarctic marine organisms. To predict and assess the effect of climate change on marine ecosystems a more comprehensive knowledge of the life history and physiology of key species is urgently needed. In this study we estimate the Dynamic Energy Budget (DEB model parameters for key benthic Antarctic species the sea star Odontaster validus using available information from literature and experiments. The DEB theory is unique in capturing the metabolic processes of an organism through its entire life cycle as a function of temperature and food availability. The DEB model allows for the inclusion of the different life history stages, and thus, becomes a tool that can be used to model lifetime feeding, growth, reproduction, and their responses to changes in biotic and abiotic conditions. The DEB model presented here includes the estimation of reproduction handling rules for the development of simultaneous oocyte cohorts within the gonad. Additionally it links the DEB model reserves to the pyloric caeca an organ whose function has long been ascribed to energy storage. Model parameters described a slowed down metabolism of long living animals that mature slowly. O. validus has a large reserve that-matching low maintenance costs- allow withstanding long periods of starvation. Gonad development is continuous and individual cohorts developed within the gonads grow in biomass following a power function of the age of the cohort. The DEB model developed here for O

  14. Subaqueous geology and a filling model for Crater Lake, Oregon

    Science.gov (United States)

    Nathenson, M.; Bacon, C.R.; Ramsey, D.W.

    2007-01-01

    Results of a detailed bathymetric survey of Crater Lake conducted in 2000, combined with previous results of submersible and dredge sampling, form the basis for a geologic map of the lake floor and a model for the filling of Crater Lake with water. The most prominent landforms beneath the surface of Crater Lake are andesite volcanoes that were active as the lake was filling with water, following caldera collapse during the climactic eruption of Mount Mazama 7700 cal. yr B.P. The Wizard Island volcano is the largest and probably was active longest, ceasing eruptions when the lake was 80 m lower than present. East of Wizard Island is the central platform volcano and related lava flow fields on the caldera floor. Merriam Cone is a symmetrical andesitic volcano that apparently was constructed subaqueously during the same period as the Wizard Island and central platform volcanoes. The youngest postcaldera volcanic feature is a small rhyodacite dome on the east flank of the Wizard Island edifice that dates from 4800 cal. yr B.P. The bathymetry also yields information on bedrock outcrops and talus/debris slopes of the caldera walls. Gravity flows transport sediment from wall sources to the deep basins of the lake. Several debris-avalanche deposits, containing blocks up to 280 m long, are present on the caldera floor and occur below major embayments in the caldera walls. Geothermal phenomena on the lake floor are bacterial mats, pools of solute-rich warm water, and fossil subaqueous hot spring deposits. Lake level is maintained by a balance between precipitation and inflow versus evaporation and leakage. High-resolution bathymetry reveals a series of up to nine drowned beaches in the upper 30 m of the lake that we propose reflect stillstands subsequent to filling of Crater Lake. A prominent wave-cut platform between 4 m depth and present lake level that commonly is up to 40 m wide suggests that the surface of Crater Lake has been at this elevation for a very long time

  15. Modeling lakes and reservoirs in the climate system

    Science.gov (United States)

    MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L. N.; Fang, X.; Gal, G.; Jo, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; MacIntyre, S.; Marsh, P.; Melack, J.; Mooij, W.M.; Peeters, F.; Quesada, A.; Schladow, S.G.; Schmid, M.; Spence, C.; Stokes, S.L.

    2009-01-01

    Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere-land surface-lake climate models that could be used for both of these types of study simultaneously do not presently exist, though there are many applications that would benefit from such models. It is argued here that current understanding of physical and biogeochemical processes in freshwater systems is sufficient to begin to construct such models, and a path forward is proposed. The largest impediment to fully representing lakes in the climate system lies in the handling of lakes that are too small to be explicitly resolved by the climate model, and that make up the majority of the lake-covered area at the resolutions currently used by global and regional climate models. Ongoing development within the hydrological sciences community and continual improvements in model resolution should help ameliorate this issue.

  16. Antarctic Entomology.

    Science.gov (United States)

    Chown, Steven L; Convey, Peter

    2016-01-01

    The Antarctic region comprises the continent, the Maritime Antarctic, the sub-Antarctic islands, and the southern cold temperate islands. Continental Antarctica is devoid of insects, but elsewhere diversity varies from 2 to more than 200 species, of which flies and beetles constitute the majority. Much is known about the drivers of this diversity at local and regional scales; current climate and glacial history play important roles. Investigations of responses to low temperatures, dry conditions, and varying salinity have spanned the ecological to the genomic, revealing new insights into how insects respond to stressful conditions. Biological invasions are common across much of the region and are expected to increase as climates become warmer. The drivers of invasion are reasonably well understood, although less is known about the impacts of invasion. Antarctic entomology has advanced considerably over the past 50 years, but key areas, such as interspecific interactions, remain underexplored.

  17. Antarctic Fishes.

    Science.gov (United States)

    Eastman, Joseph T.; DeVries, Arthur L.

    1986-01-01

    Explains the adaptations to Antarctic waters that Notothenioidei, a group of advanced bony fishes, have exhibited. Discusses the fishes' mechanisms of production of antifreeze properties and their capacities for neutral buoyancy in water. (ML)

  18. Numerical modeling of vertical stratification of Lake Shira in summer

    NARCIS (Netherlands)

    Belolipetsky, P.; Belolipetsky, V.M.; Genova, S.N.; Mooij, W.M.

    2010-01-01

    A one-dimensional numerical model and a two-dimensional numerical model of the hydrodynamic and thermal structure of Lake Shira during summer have been developed, with several original physical and numerical features. These models are well suited to simulate the formation and dynamics of vertical st

  19. Tides and lake-level variations in the great Patagonian lakes: Observations, modelling and geophysical implications.

    Science.gov (United States)

    Marderwald, Eric; Richter, Andreas; Horwath, Martin; Hormaechea, Jose Luis; Groh, Andreas

    2016-04-01

    In Patagonia, the glacial-isostatic adjustment (GIA) to past ice-mass changes (Ivins & James 2004; Klemann et al. 2007) is of particular interest in the context of the determination of the complex regional rheology related to plate subduction in a triple-junction constellation. To further complicate the situation, GIA is overlaid with load deformation not only due to present ice mass changes but also due to water-level changes in the lakes surrounding the icefields and the ocean surrounding Patagonia. These elastic deformations affect the determination of glacial-isostatic uplift rates from GPS observations (Dietrich et al. 2010; Lange et al. 2014). Observations of lake tides and their comparison with the theoretical tidal signal have been used previously to validate predictions of ocean tidal loading and have revealed regional deviations from conventional global elastic earth models (Richter et al. 2009). In this work we investigate the tides and lake-level variations in Lago Argentino, Lago Viedma, Lago San Martín/O'Higgins and Lago Buenos Aires/General Carrera. This allows us to test, among other things, the validity of tidal loading models. We present pressure tide-gauge records from two sites in Lago Argentino extending over 2.5 years (Richter et al. 2015). These observations are complemented by lake-level records provided by the Argentine National Hydrometeorological Network. Based on these lake-level time series the principal processes affecting the lake level are identified and quantified. Lake-level changes reflecting variations in lake volume are dominated by a seasonal cycle exceeding 1 m in amplitude. Lake-volume changes occur in addition with a daily period in response to melt water influx from surrounding glaciers. In Lago Argentino sporadic lake-volume jumps are caused by bursting of the ice dam of Perito Moreno glacier. Water movements in these lakes are dominated by surface seiches reaching 20 cm in amplitude. A harmonic tidal analysis of the lake

  20. LAKE 2.0: a model for temperature, methane, carbon dioxide and oxygen dynamics in lakes

    Science.gov (United States)

    Stepanenko, Victor; Mammarella, Ivan; Ojala, Anne; Miettinen, Heli; Lykosov, Vasily; Vesala, Timo

    2016-05-01

    A one-dimensional (1-D) model for an enclosed basin (lake) is presented, which reproduces temperature, horizontal velocities, oxygen, carbon dioxide and methane in the basin. All prognostic variables are treated in a unified manner via a generic 1-D transport equation for horizontally averaged property. A water body interacts with underlying sediments. These sediments are represented by a set of vertical columns with heat, moisture and CH4 transport inside. The model is validated vs. a comprehensive observational data set gathered at Kuivajärvi Lake (southern Finland), demonstrating a fair agreement. The value of a key calibration constant, regulating the magnitude of methane production in sediments, corresponded well to that obtained from another two lakes. We demonstrated via surface seiche parameterization that the near-bottom turbulence induced by surface seiches is likely to significantly affect CH4 accumulation there. Furthermore, our results suggest that a gas transfer through thermocline under intense internal seiche motions is a bottleneck in quantifying greenhouse gas dynamics in dimictic lakes, which calls for further research.

  1. Assessing the Impact of Retreat Mechanisms in a Simple Antarctic Ice Sheet Model Using Bayesian Calibration

    Science.gov (United States)

    Shaffer, Gary; Pollard, David; Guan, Yawen; Wong, Tony E.; Forest, Chris E.; Keller, Klaus

    2017-01-01

    The response of the Antarctic ice sheet (AIS) to changing climate forcings is an important driver of sea-level changes. Anthropogenic climate change may drive a sizeable AIS tipping point response with subsequent increases in coastal flooding risks. Many studies analyzing flood risks use simple models to project the future responses of AIS and its sea-level contributions. These analyses have provided important new insights, but they are often silent on the effects of potentially important processes such as Marine Ice Sheet Instability (MISI) or Marine Ice Cliff Instability (MICI). These approximations can be well justified and result in more parsimonious and transparent model structures. This raises the question of how this approximation impacts hindcasts and projections. Here, we calibrate a previously published and relatively simple AIS model, which neglects the effects of MICI and regional characteristics, using a combination of observational constraints and a Bayesian inversion method. Specifically, we approximate the effects of missing MICI by comparing our results to those from expert assessments with more realistic models and quantify the bias during the last interglacial when MICI may have been triggered. Our results suggest that the model can approximate the process of MISI and reproduce the projected median melt from some previous expert assessments in the year 2100. Yet, our mean hindcast is roughly 3/4 of the observed data during the last interglacial period and our mean projection is roughly 1/6 and 1/10 of the mean from a model accounting for MICI in the year 2100. These results suggest that missing MICI and/or regional characteristics can lead to a low-bias during warming period AIS melting and hence a potential low-bias in projected sea levels and flood risks. PMID:28081273

  2. Assessing the Impact of Retreat Mechanisms in a Simple Antarctic Ice Sheet Model Using Bayesian Calibration.

    Science.gov (United States)

    Ruckert, Kelsey L; Shaffer, Gary; Pollard, David; Guan, Yawen; Wong, Tony E; Forest, Chris E; Keller, Klaus

    2017-01-01

    The response of the Antarctic ice sheet (AIS) to changing climate forcings is an important driver of sea-level changes. Anthropogenic climate change may drive a sizeable AIS tipping point response with subsequent increases in coastal flooding risks. Many studies analyzing flood risks use simple models to project the future responses of AIS and its sea-level contributions. These analyses have provided important new insights, but they are often silent on the effects of potentially important processes such as Marine Ice Sheet Instability (MISI) or Marine Ice Cliff Instability (MICI). These approximations can be well justified and result in more parsimonious and transparent model structures. This raises the question of how this approximation impacts hindcasts and projections. Here, we calibrate a previously published and relatively simple AIS model, which neglects the effects of MICI and regional characteristics, using a combination of observational constraints and a Bayesian inversion method. Specifically, we approximate the effects of missing MICI by comparing our results to those from expert assessments with more realistic models and quantify the bias during the last interglacial when MICI may have been triggered. Our results suggest that the model can approximate the process of MISI and reproduce the projected median melt from some previous expert assessments in the year 2100. Yet, our mean hindcast is roughly 3/4 of the observed data during the last interglacial period and our mean projection is roughly 1/6 and 1/10 of the mean from a model accounting for MICI in the year 2100. These results suggest that missing MICI and/or regional characteristics can lead to a low-bias during warming period AIS melting and hence a potential low-bias in projected sea levels and flood risks.

  3. The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution

    Science.gov (United States)

    van Wessem, J. M.; Ligtenberg, S. R. M.; Reijmer, C. H.; van de Berg, W. J.; van den Broeke, M. R.; Barrand, N. E.; Thomas, E. R.; Turner, J.; Wuite, J.; Scambos, T. A.; van Meijgaard, E.

    2016-02-01

    This study presents a high-resolution (˜ 5.5 km) estimate of surface mass balance (SMB) over the period 1979-2014 for the Antarctic Peninsula (AP), generated by the regional atmospheric climate model RACMO2.3 and a firn densification model (FDM). RACMO2.3 is used to force the FDM, which calculates processes in the snowpack, such as meltwater percolation, refreezing and runoff. We evaluate model output with 132 in situ SMB observations and discharge rates from six glacier drainage basins, and find that the model realistically simulates the strong spatial variability in precipitation, but that significant biases remain as a result of the highly complex topography of the AP. It is also clear that the observations significantly underrepresent the high-accumulation regimes, complicating a full model evaluation. The SMB map reveals large accumulation gradients, with precipitation values above 3000 mm we yr-1 in the western AP (WAP) and below 500 mm we yr-1 in the eastern AP (EAP), not resolved by coarser data sets such as ERA-Interim. The average AP ice-sheet-integrated SMB, including ice shelves (an area of 4.1 × 105 km2), is estimated at 351 Gt yr-1 with an interannual variability of 58 Gt yr-1, which is dominated by precipitation (PR) (365 ± 57 Gt yr-1). The WAP (2.4 × 105 km2) SMB (276 ± 47 Gt yr-1), where PR is large (276 ± 47 Gt yr-1), dominates over the EAP (1.7 × 105 km2) SMB (75 ± 11 Gt yr-1) and PR (84 ± 11 Gt yr-1). Total sublimation is 11 ± 2 Gt yr-1 and meltwater runoff into the ocean is 4 ± 4 Gt yr-1. There are no significant trends in any of the modelled AP SMB components, except for snowmelt that shows a significant decrease over the last 36 years (-0.36 Gt yr-2).

  4. A glacial systems model configured for large ensemble analysis of Antarctic deglaciation

    Directory of Open Access Journals (Sweden)

    R. Briggs

    2013-04-01

    Full Text Available This article describes the Memorial University of Newfoundland/Penn State University (MUN/PSU glacial systems model (GSM that has been developed specifically for large-ensemble data-constrained analysis of past Antarctic Ice Sheet evolution. Our approach emphasizes the introduction of a large set of model parameters to explicitly account for the uncertainties inherent in the modelling of such a complex system. At the core of the GSM is a 3-D thermo-mechanically coupled ice sheet model that solves both the shallow ice and shallow shelf approximations. This enables the different stress regimes of ice sheet, ice shelves, and ice streams to be represented. The grounding line is modelled through an analytical sub-grid flux parametrization. To this dynamical core the following have been added: a heavily parametrized basal drag component; a visco-elastic isostatic adjustment solver; a diverse set of climate forcings (to remove any reliance on any single method; tidewater and ice shelf calving functionality; and a new physically-motivated empirically-derived sub-shelf melt (SSM component. To assess the accuracy of the latter, we compare predicted SSM values against a compilation of published observations. Within parametric and observational uncertainties, computed SSM for the present day ice sheet is in accord with observations for all but the Filchner ice shelf. The GSM has 31 ensemble parameters that are varied to account (in part for the uncertainty in the ice-physics, the climate forcing, and the ice-ocean interaction. We document the parameters and parametric sensitivity of the model to motivate the choice of ensemble parameters in a quest to approximately bound reality (within the limits of 31 parameters.

  5. A dynamic multimedia environmental and bioaccumulation model for brominated flame retardants in Lake Huron and Lake Erie, USA.

    Science.gov (United States)

    Lim, Dong-Hee; Lastoskie, Christian M

    2011-05-01

    Polybrominated biphenyls (PBBs) and polybrominated diphenyl ethers (PBDEs) may pose a worldwide pollution problem because of their persistence, long-range transport capability, and predisposition to bioaccumulate. The ubiquitous presence of PBBs and PBDEs has heightened interest in determination of their fate. We report results for a fugacity-based dynamic environmental and bioaccumulation model of the fate of hexabromobiphenyl (hexaBB) discharged into the Saginaw Bay region of Lake Huron, USA. We calculated transient fugacity profiles of hexaBB in Lake Huron and Lake Erie water and sediment during the 1970s, 1980s, and 1990s. The hexaBB concentrations in the environmental compartments were used as inputs for a dynamic bioaccumulation model of Lake Huron and Lake Erie aquatic biota. The model results indicate that the sediment compartments of Lakes Huron and Erie serve as reservoirs for the accumulation and slow transfer of hexaBB to the food web constituents of these lakes. We present bioaccumulation factors (BAFs) and compare the predicted hexaBB concentrations in lake trout from the bioaccumulation model with measurements during the period 1980 to 2000. An uncertainty analysis for this model suggests that errors associated with input parameter uncertainty can be reduced by refining estimates of the sediment degradation half-life of hexaBB. The corroborated PBB model has carryover application for modeling the fate of polybrominated diphenyl ether (PBDE) contaminants in the Great Lakes. By fitting model outputs to field measurement data using the transformed least square fit method, we report estimations of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) emission rates into the Lake Huron and Lake Erie watershed areas.

  6. An Improved Method for Modeling Spatial Distribution of δD in Surface Snow over Antarctic Ice Sheet

    Institute of Scientific and Technical Information of China (English)

    WANG Yetang; HOU Shugui; Bjorn GRIGHOLM; SONG Linlin

    2009-01-01

    Using the recent compilation of the isotopic composition data of surface snow of Antarctic ice sheet, we proposed an improved interpolation method of δD, which utilizes geographical factors (i.e., latitude and altitude) as the primary predictors and incorporates inverse distance weighting (IDW) technique. The method was applied to a high-resolution digital elevation model (DEM) to produce a grid map of multi-year mean δD values with 1km spatial resolution for Antarctic& The mean absolute deviation between observed and estimated data in the map is about 5.4‰, and the standard deviation is 9‰. The resulting δD pattern resembles well known characteristics such as the depletion of the heavy isotopes with increasing latitude and distance from coast line, but also reveals the complex topographic effects.

  7. Challenges and opportunities for integrating lake ecosystem modelling approaches

    NARCIS (Netherlands)

    Mooij, W.M.; Trolle, D.; Jeppesen, E.; Arhonditsis, G.; Belolipetsky, P.; Chitamwebwa, D.B.R.; Degermendzhy, A.G.; DeAngelis, D.L.; De Senerpont Domis, L.N.; Downing, A.S.; Elliott, J.A.; Fragoso Jr., C.R.; Gaedke, U.; Genova, S.N.; Gulati, R.D.; Håkanson, L.; Hamilton, D.P.; Hipsey, M.R.; ‘t Hoen, P.J.; Hülsmann, S.; Los, F.J.; Makler-Pick, V.; Petzoldt, T.; Prokopkin, I.; Rinke, K.; Schep, S.A.; Tominaga, K.; Van Dam, A.A.; van Nes, E.H.; Wells, S.A.; Janse, J.H.

    2010-01-01

    A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others (‘reinventing t

  8. Challenges and opportunities for integrating lake ecosystem modelling approaches

    NARCIS (Netherlands)

    Mooij, W.M.; Trolle, D.; Jeppesen, E.; Arhonditsis, G.; Belolipetsky, P.V.; Chitamwebwa, D.B.R.; Degermendzhy, A.G.; DeAngelis, D.L.; Domis, L.N.D.; Downing, A.S.; Elliott, J.A.; Fragoso, C.R.; Gaedke, U.; Genova, S.N.; Gulati, R.D.; Hakanson, L.; Hamilton, D.P.; Hipsey, M.R.; Hoen, 't J.; Hulsmann, S.; Los, F.H.; Makler-Pick, V.; Petzoldt, T.; Prokopkin, I.G.; Rinke, K.; Schep, S.A.; Tominaga, K.; Dam, van A.A.; Nes, van E.H.; Wells, S.A.; Janse, J.H.

    2010-01-01

    A large number and wide variety of lake ecosystem models have been developed and published during the past four decades. We identify two challenges for making further progress in this field. One such challenge is to avoid developing more models largely following the concept of others ('reinventing t

  9. Modelling acoustic propagation beneath Antarctic sea ice using measured environmental parameters

    Science.gov (United States)

    Alexander, Polly; Duncan, Alec; Bose, Neil; Williams, Guy

    2016-09-01

    Autonomous underwater vehicles are improving and expanding in situ observations of sea ice for the validation of satellite remote sensing and climate models. Missions under sea ice, particularly over large distances (up to 100 km) away from the immediate vicinity of a ship or base, require accurate acoustic communication for monitoring, emergency response and some navigation systems. We investigate the propagation of acoustic signals in the Antarctic seasonal ice zone using the BELLHOP model, examining the influence of ocean and sea ice properties. We processed available observations from around Antarctica to generate input variables such as sound speed, surface reflection coefficient (R) and roughness parameters. The results show that changes in the sound speed profile make the most significant difference to the propagation of the direct path signal. The inclusion of the surface reflected signals from a flat ice surface was found to greatly decrease the transmission loss with range. When ice roughness was added, the transmission loss increased with roughness, in a manner similar to the direct path transmission loss results. The conclusions of this work are that: (1) the accuracy of acoustic modelling in this environment is greatly increased by using realistic sound speed data; (2) a risk averse ranging model would use only the direct path signal transmission; and (3) in a flat ice scenario, much greater ranges can be achieved if the surface reflected transmission paths are included. As autonomous missions under sea ice increase in scale and complexity, it will be increasingly important for operational procedures to include effective modelling of acoustic propagation with representative environmental data.

  10. An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1

    Directory of Open Access Journals (Sweden)

    Zachary Subin

    2012-02-01

    Full Text Available Lakes can influence regional climate, yet most general circulation models have, at best, simple and largely untested representations of lakes. We developed the Lake, Ice, Snow, and Sediment Simulator(LISSS for inclusion in the land-surface component (CLM4 of an earth system model (CESM1. The existing CLM4 lake modelperformed poorly at all sites tested; for temperate lakes, summer surface water temperature predictions were 10–25uC lower than observations. CLM4-LISSS modifies the existing model by including (1 a treatment of snow; (2 freezing, melting, and ice physics; (3 a sediment thermal submodel; (4 spatially variable prescribed lakedepth; (5 improved parameterizations of lake surface properties; (6 increased mixing under ice and in deep lakes; and (7 correction of previous errors. We evaluated the lake model predictions of water temperature and surface fluxes at three small temperate and boreal lakes where extensive observational data was available. We alsoevaluated the predicted water temperature and/or ice and snow thicknesses for ten other lakes where less comprehensive forcing observations were available. CLM4-LISSS performed very well compared to observations for shallow to medium-depth small lakes. For large, deep lakes, the under-prediction of mixing was improved by increasing the lake eddy diffusivity by a factor of 10, consistent with previouspublished analyses. Surface temperature and surface flux predictions were improved when the aerodynamic roughness lengths were calculated as a function of friction velocity, rather than using a constant value of 1 mm or greater. We evaluated the sensitivity of surface energy fluxes to modeled lake processes and parameters. Largechanges in monthly-averaged surface fluxes (up to 30 W m22 were found when excluding snow insulation or phase change physics and when varying the opacity, depth, albedo of melting lake ice, and mixing strength across ranges commonly found in real lakes. Typical

  11. Modeling brine and nutrient dynamics in Antarctic sea ice: the case of dissolved silica

    Science.gov (United States)

    Vancoppenolle, M.; Goosse, H.; de Montety, A.; Fichefet, T.; Tremblay, B.; Tison, J.

    2009-12-01

    Sea ice ecosystems are characterized by micro-algae living in brine inclusions. The growth rate of ice algae depends on light and nutrient supply. Here, the interactions between nutrients and brine dynamics under the influence of algae are investigated using a one-dimensional model. The model includes snow and ice thermodynamics with brine physics and an idealized sea ice biological component, characterized by one nutrient, namely dissolved silica (DSi). In the model, DSi follows brine motion and is consumed by ice algae. Depending on physical ice characteristics, the brine flow is either advective, diffusive or turbulent. The vertical profiles of ice salinity and DSi concentration are solutions of advection-diffusion equations. The model is configured to simulate the typical thermodynamic regimes of first-year Antarctic pack ice. The simulated vertical profiles of salinity and DSi qualitatively reproduce observations. Analysis of results highlights the role of convection in the lowermost 5-10 cm of ice. Convection mixes saline, nutrient-poor brine with comparatively fresh, nutrient-rich seawater. This implies a rejection of salt to the ocean and a flux of DSi to the ice. In presence of growing algae, the simulated ocean-to-ice DSi flux increases by 0-115% compared to an abiotic situation. In turn, primary production and brine convection act in synergy to form a nutrient pump. The other important processes are the flooding of the surface by seawater and the percolation of meltwater. The former refills nutrients near the ice surface in spring. The latter, if present, tends to expell nutrients from the ice in summer. Sketch of salt (left) and nutrient (right) exchanges at the ice-ocean interface proposed in this paper.

  12. Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data: A geographic information system based approach

    Science.gov (United States)

    Liu, Hongxing; Jezek, Kenneth C.; Li, Biyan

    1999-10-01

    We present a high-resolution digital elevation model (DEM) of the Antarctic. It was created in a geographic information system (GIS) environment by integrating the best available topographic data from a variety of sources. Extensive GIS-based error detection and correction operations ensured that our DEM is free of gross errors. The carefully designed interpolation algorithms for different types of source data and incorporation of surface morphologic information preserved and enhanced the fine surface structures present in the source data. The effective control of adverse edge effects and the use of the Hermite blending weight function in data merging minimized the discontinuities between different types of data, leading to a seamless and topographically consistent DEM throughout the Antarctic. This new DEM provides exceptional topographical details and represents a substantial improvement in horizontal resolution and vertical accuracy over the earlier, continental-scale renditions, particularly in mountainous and coastal regions. It has a horizontal resolution of 200 m over the rugged mountains, 400 m in the coastal regions, and approximately 5 km in the interior. The vertical accuracy of the DEM is estimated at about 100-130 m over the rugged mountainous area, better than 2 m for the ice shelves, better than 15 m for the interior ice sheet, and about 35 m for the steeper ice sheet perimeter. The Antarctic DEM can be obtained from the authors.

  13. The impact of tourists on Antarctic tardigrades: an ordination-based model

    Directory of Open Access Journals (Sweden)

    Sandra J. McInnes

    2013-05-01

    Full Text Available Tardigrades are important members of the Antarctic biota yet little is known about their role in the soil fauna or whether they are affected by anthropogenic factors. The German Federal Environment Agency commissioned research to assess the impact of human activities on soil meiofauna at 14 localities along the Antarctic peninsula during the 2009/2010 and 2010/2011 austral summers. We used ordination techniques to re-assess the block-sampling design used to compare areas of high and low human impact, to identify which of the sampled variables were biologically relevant and/or demonstrated an anthropogenic significance. We found the most significant differences between locations, reflecting local habitat and vegetation factor, rather than within-location anthropogenic impact. We noted no evidence of exotic imports but report on new maritime Antarctic sample sites and habitats.

  14. Antarctic Cenozoic climate history from sedimentary records: ANDRILL and beyond.

    Science.gov (United States)

    McKay, R M; Barrett, P J; Levy, R S; Naish, T R; Golledge, N R; Pyne, A

    2016-01-28

    Mounting evidence from models and geological data implies that the Antarctic Ice Sheet may behave in an unstable manner and retreat rapidly in response to a warming climate, which is a key factor motivating efforts to improve estimates of Antarctic ice volume contributions to future sea-level rise. Here, we review Antarctic cooling history since peak temperatures of the Middle Eocene Climatic Optimum (approx. 50 Ma) to provide a framework for future initiatives to recover sediment cores from subglacial lakes and sedimentary basins in Antarctica's continental interior. While the existing inventory of cores has yielded important insights into the biotic and climatic evolution of Antarctica, strata have numerous and often lengthy time breaks, providing a framework of 'snapshots' through time. Further cores, and more work on existing cores, are needed to reconcile Antarctic records with the more continuous 'far-field' records documenting the evolution of global ice volume and deep-sea temperature. To achieve this, we argue for an integrated portfolio of drilling and coring missions that encompasses existing methodologies using ship- and sea-ice-/ice-shelf-based drilling platforms as well as recently developed seafloor-based drilling and subglacial access systems. We conclude by reviewing key technological issues that will need to be overcome.

  15. Interactive lakes in the Canadian Regional Climate Model, version 5: the role of lakes in the regional climate of North America

    Directory of Open Access Journals (Sweden)

    Bernard Dugas

    2012-02-01

    Full Text Available Two one-dimensional (1-D column lake models have been coupled interactively with a developmental version of the Canadian Regional Climate Model. Multidecadal reanalyses-driven simulations with and without lakes revealed the systematic biases of the model and the impact of lakes on the simulated North American climate.The presence of lakes strongly influences the climate of the lake-rich region of the Canadian Shield. Due to their large thermal inertia, lakes act to dampen the diurnal and seasonal cycle of low-level air temperature. In late autumn and winter, ice-free lakes induce large sensible and latent heat fluxes, resulting in a strong enhancement of precipitation downstream of the Laurentian Great Lakes, which is referred to as the snow belt.The FLake (FL and Hostetler (HL lake models perform adequately for small subgrid-scale lakes and for large resolved lakes with shallow depth, located in temperate or warm climatic regions. Both lake models exhibit specific strengths and weaknesses. For example, HL simulates too rapid spring warming and too warm surface temperature, especially in large and deep lakes; FL tends to damp the diurnal cycle of surface temperature. An adaptation of 1-D lake models might be required for an adequate simulation of large and deep lakes.

  16. [Ecotourism exploitation model in Bita Lake Natural Reserve of Yunnan].

    Science.gov (United States)

    Yang, G; Wang, Y; Zhong, L

    2000-12-01

    Bita lake provincial natural reserve is located in Shangri-La region of North-western Yunnan, and was set as a demonstrating area for ecotourism exploitation in 1998. After a year's exploitation construction and half a year's operation as a branch of the 99' Kunming International Horticulture Exposition to accept tourists, it was proved that the ecotourism demonstrating area attained four integrated functions of ecotourism, i.e., tourism, protection, poverty clearing and environment education. Five exploitation and management models including function zoned exploitation model, featured tourism communication model signs system designing model, local Tibetan family reception model and environmental monitoring model, were also successful, which were demonstrated and spreaded to the whole province. Bita lake provincial natural reserve could be a good sample for the ecotourism exploitation natural reserves of the whole country.

  17. Snow and ice on Bear Lake (Alaska – sensitivity experiments with two lake ice models

    Directory of Open Access Journals (Sweden)

    Tido Semmler

    2012-03-01

    Full Text Available Snow and ice thermodynamics of Bear Lake (Alaska are investigated with a simple freshwater lake model (FLake and a more complex snow and ice thermodynamic model (HIGHTSI. A number of sensitivity experiments have been carried out to investigate the influence of snow and ice parameters and of different complexity on the results. Simulation results are compared with observations from the Alaska Lake Ice and Snow Observatory Network. Adaptations of snow thermal and optical properties in FLake can largely improve accuracy of the results. Snow-to-ice transformation is important for HIGHTSI to calculate the total ice mass balance. The seasonal maximum ice depth is simulated in FLake with a bias of −0.04 m and in HIGHTSI with no bias. Correlation coefficients between ice depth measurements and simulations are high (0.74 for FLake and 0.9 for HIGHTSI. The snow depth simulation can be improved by taking into account a variable snow density. Correlation coefficients for surface temperature are 0.72 for FLake and 0.81 for HIGHTSI. Overall, HIGHTSI gives slightly more accurate surface temperature than FLake probably due to the consideration of multiple snow and ice layers and the expensive iteration calculation procedure.

  18. Antarctic firn compaction rates from repeat-track airborne radar data : II. Firn model evaluation

    NARCIS (Netherlands)

    Ligtenberg, S. R M; Medley, B.; Van Den Broeke, M. R.; Munneke, P. Kuipers

    2015-01-01

    The thickness and density of the Antarctic firn layer vary considerably in time and space, thereby contributing to ice-sheet volume and mass changes. Distinguishing between these mass and volume changes is important for ice-sheet mass-balance studies. Evolution of firn layer depth and density is oft

  19. Ecological controls on biogeochemical lfuxes in the western Antarctic Peninsula studied with an inverse foodweb model

    Institute of Scientific and Technical Information of China (English)

    Hugh W Ducklow; S C Doney; S F Sailley

    2015-01-01

    Sea ice in the western Antarctic Peninsula (WAP) region is both highly variable and rapidly changing. In the Palmer Station region, the ice season duration has decreased by 92 d since 1978. The sea-ice changes affect ocean stratification and freshwater balance and in turn impact every component of the polar marine ecosystem. Long-term observations from the WAP nearshore and offshore regions show a pattern of chlorophyll (Chl) variability with three to ifve years of negative Chl anomalies interrupted by one or two years of positive anomalies (high and low Chl regimes). Both ifeld observations and results from an inverse food-web model show that these high and low Chl regimes differed significantly from each other, with high primary productivity and net community production (NCP) and other rates associated with the high Chl years and low rates with low Chl years. Gross primary production rates (GPP) averaged 30 mmolC.m-2.d-1 in the low Chl years and 100 mmolC.m-2.d-1 in the high Chl years. Both large and small phytoplankton were more abundant and more productive in high Chl years than in low Chl years. Similarly, krill were more important as grazers in high Chl years, but did not differ from microzooplankton in high or low Chl years. Microzooplankton did not differ between high and low Chl years. Net community production differed signiifcantly between high and low Chl years, but mobilized a similar proportion of GPP in both high and low Chl years. The composition of the NCP was uniform in high and low Chl years. These results emphasize the importance of microbial components in the WAP plankton system and suggest that food webs dominated by small phytoplankton can have pathways that funnel production into NCP, and likely, export.

  20. Estimates of lake trout (Salvelinus namaycush) diet in Lake Ontario using two and three isotope mixing models

    Science.gov (United States)

    Colborne, Scott F.; Rush, Scott A.; Paterson, Gordon; Johnson, Timothy B.; Lantry, Brian F.; Fisk, Aaron T.

    2016-01-01

    Recent development of multi-dimensional stable isotope models for estimating both foraging patterns and niches have presented the analytical tools to further assess the food webs of freshwater populations. One approach to refine predictions from these analyses is to include a third isotope to the more common two-isotope carbon and nitrogen mixing models to increase the power to resolve different prey sources. We compared predictions made with two-isotope carbon and nitrogen mixing models and three-isotope models that also included sulphur (δ34S) for the diets of Lake Ontario lake trout (Salvelinus namaycush). We determined the isotopic compositions of lake trout and potential prey fishes sampled from Lake Ontario and then used quantitative estimates of resource use generated by two- and three-isotope Bayesian mixing models (SIAR) to infer feeding patterns of lake trout. Both two- and three-isotope models indicated that alewife (Alosa pseudoharengus) and round goby (Neogobius melanostomus) were the primary prey items, but the three-isotope models were more consistent with recent measures of prey fish abundances and lake trout diets. The lake trout sampled directly from the hatcheries had isotopic compositions derived from the hatchery food which were distinctively different from those derived from the natural prey sources. Those hatchery signals were retained for months after release, raising the possibility to distinguish hatchery-reared yearlings and similarly sized naturally reproduced lake trout based on isotopic compositions. Addition of a third-isotope resulted in mixing model results that confirmed round goby have become an important component of lake trout diet and may be overtaking alewife as a prey resource.

  1. A model for landscape development in terms of shoreline displacement, sediment dynamics, lake formation, and lake choke-up processes

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden)

    2006-12-15

    This project expands on the study 'A mathematical model for lake ontogeny in terms of filling with sediments and macrophyte vegetation' published in SKB TR-04-09. As the title suggests, this older model focuses on lakes (existing and future lakes). This newer study extends the model to examine progress of terrestrial objects such as mires or arable land. Furthermore, this newer model could simulate progress of the areas close to the objects. These areas are divided according to their watershed boundaries. If two or more objects are situated along the same brook, the lower situated area is defined as its catchments minus the catchments of the closest higher situated object. The model encourages the study of an object situated in the sea from the time of deglaciation (c. 10,000 BP) to the time for the object due to positive shore displacement is situated on land or that a lake object has progressed to a wetland, however not longer than 18,000 AP. The model focuses on the object and its location in 100-year steps. The model is written in VisualBasic and is divided into two modules, a marine module and a lake module. The marine module deals with shoreline displacement, erosion and accumulation of postglacial fine-grained sediments and erosion of glacial clay. Inputs to the marine module are a digital elevation model (DEM), a digital map showing the extension of the objects and a marine quaternary map. The two maps are in raster formats with exactly the same formats (extension and cell sizes) as the DEM. For each time step the water depths at each pixel are calculated using a shore displacement equation. Next, the water depth changes due to sediment dynamics are calculated using the following rules; accumulation of fine-grained sediments are allowed if the pixel is situated within a future lake object; erosion of fine-grained sediment is allowed if the pixel is not within a future lake object and the marine quaternary map shows occurrence of postglacial

  2. The modelled surface mass balance of the Antarctic Peninsula at 5.5 km horizontal resolution

    Directory of Open Access Journals (Sweden)

    J. M. van Wessem

    2015-09-01

    Full Text Available This study presents a high-resolution (~ 5.5 km estimate of Surface Mass Balance (SMB over the period 1979–2014 for the Antarctic Peninsula (AP, generated by the regional atmospheric climate model RACMO2.3 and a Firn Densification Model (FDM. RACMO2.3 is used to force the FDM, which calculates processes in the snowpack, such as meltwater percolation, refreezing and runoff. We evaluate model output with 132 in-situ SMB observations and discharge rates from 6 glacier drainage basins, and find that the model realistically simulates the strong spatial variability in precipitation, but that significant biases remain as a result of the highly complex topography of the AP. It is also clear that the observations significantly underrepresent the high-accumulation regimes. The SMB map reveals large accumulation gradients, with precipitation values above 3000 mm we yr−1 over the western AP (WAP and below 500 mm we yr−1 on the eastern AP (EAP, not resolved by coarser data-sets such as ERA-Interim. The other SMB components are one order of magnitude smaller, with drifting snow sublimation the largest ablation term removing up to 100 mm we yr−1 of mass. Snowmelt is widespread over the AP, reaching 500 mm we yr−1 towards the northern ice shelves, but the meltwater mostly refreezes. As a result runoff fluxes are low, but still considerable (200 mm we yr−1 over the Larsen (B/C, Wilkins and George VI ice shelves. The average AP ice sheet integrated SMB, including ice shelves (an area of 4.1 × 105 km2, is estimated at 351 Gt yr−1 with an interannual variability of 58 Gt yr−1, which is dominated by precipitation (PR (365 ± 57 Gt yr−1. The WAP (2.4 × 105 km2 SMB (276 ± 47 Gt yr−1, where PR is large (276 ± 47 Gt yr−1, dominates over the EAP (1.7 × 105 km2 SMB (75 ± 11 Gt yr−1 and PR (84 ± 11 Gt yr−1. Total sublimation is 11 ± 2 Gt yr−1 and meltwater runoff into the ocean is 4 ± 4 Gt yr−1. There are no significant trends in any

  3. Modelling hourly rates of evaporation from small lakes

    Directory of Open Access Journals (Sweden)

    R. J. Granger

    2011-01-01

    Full Text Available The paper presents the results of a field study of open water evaporation carried out on three small lakes in Western and Northern Canada. In this case small lakes are defined as those for which the temperature above the water surface is governed by the upwind land surface conditions; that is, a continuous boundary layer exists over the lake, and large-scale atmospheric effects such as entrainment do not come into play. Lake evaporation was measured directly using eddy covariance equipment; profiles of wind speed, air temperature and humidity were also obtained over the water surfaces. Observations were made as well over the upwind land surface.

    The major factors controlling open water evaporation were examined. The study showed that for time periods shorter than daily, the open water evaporation bears no relationship to the net radiation; the wind speed is the most significant factor governing the evaporation rates, followed by the land-water temperature contrast and the land-water vapour pressure contrast. The effect of the stability on the wind field was demonstrated; relationships were developed relating the land-water wind speed contrast to the land-water temperature contrast. The open water period can be separated into two distinct evaporative regimes: the warming period in the Spring, when the land is warmer than the water, the turbulent fluxes over water are suppressed; and the cooling period, when the water is warmer than the land, the turbulent fluxes over water are enhanced.

    Relationships were developed between the hourly rates of lake evaporation and the following significant variables and parameters (wind speed, land-lake temperature and humidity contrasts, and the downwind distance from shore. The result is a relatively simple versatile model for estimating the hourly lake evaporation rates. The model was tested using two independent data sets. Results show that the modelled evaporation follows the observed values

  4. Modelled present and future thaw lake area expansion/contraction trends throughout the continuous permafrost zone

    Directory of Open Access Journals (Sweden)

    Y. Mi

    2014-07-01

    Full Text Available Thaw lakes and drained lake basins are a dominant feature of Arctic lowlands. Thaw lakes are a source of the greenhouse gas methane (CH4, which is produced under anaerobic conditions, while drained lake basins are carbon sinks due to sedimentation. Besides feedbacks on climate, the development of thaw lakes due to the melt-out of ground ice and subsequent ground subsidence, can have significant impacts on the regional morphology, hydrology, geophysics and biogehemistry. Permafrost degradation as a result of climate warming, which is proceeding considerably faster in high latitude regions than the global average, could lead to either an increases in lake area due to lake expansion, or decrease due to lake drainage. However, which process will dominate is elusive. Therefore understanding thaw lake dynamics and quantifying the feedbacks related to thaw lake expansion and contraction are urgent questions to solve. We apply a stochastic model, THAWLAKE, on four representative Arctic sites, to reproduce recent lake dynamics (1963–2012 and predict for the future changes under various anticipated climate scenarios. The model simulations of current thaw lake cycles and expansion rates are comparable with data. Future lake expansions are limited by lake drainage. We suggest further improvements in the area of enhancing the hydrology component, and operation on larger scales to gauge the impacts on lacustrine morphology and greenhouse gas emissions.

  5. Effects of glacial meltwater inflows and moat freezing on mixing in an ice-covered antarctic lake as interpreted from stable isotope and tritium distributions

    Science.gov (United States)

    Miller, L.G.; Aiken, G.R.

    1996-01-01

    Perennially ice-covered lakes in the McMurdo Dry Valleys have risen several meters over the past two decades due to climatic warming and increased glacial meltwater inflow. To elucidate the hydrologic responses to changing climate and the effects on lake mixing processes we measured the stable isotope (??18O and ??D) and tritium concentrations of water and ice samples collected in the Lake Fryxell watershed from 1987 through 1990. Stable isotope enrichment resulted from evaporation in stream and moat samples and from sublimation in surface lake-ice samples. Tritium enrichment resulted from exchange with the postnuclear atmosphere in stream and moat samples. Rapid injection of tritiated water into the upper water column of the make and incorporation of this water into the ice cover resulted in uniformly elevated tritium contents (> 3.0 TU) in these reservoirs. Tritium was also present in deep water, suggesting that a component of bottom water was recently at the surface. During summer, melted lake ice and stream water forms the moat. Water excluded from ice formation during fall moat freezing (enriched in solutes and tritium, and depleted in 18O and 2H relative to water below 15-m depth) may sink as density currents to the bottom of the lake. Seasonal lake circulation, in response to climate-driven surface inflow, is therefore responsible for the distribution of both water isotopes and dissolved solutes in Lake Fryxell.

  6. A new 100-m Digital Elevation Model of the Antarctic Peninsula derived from ASTER Global DEM: methods and accuracy assessment

    Directory of Open Access Journals (Sweden)

    A. J. Cook

    2012-10-01

    Full Text Available A high resolution surface topography Digital Elevation Model (DEM is required to underpin studies of the complex glacier system on the Antarctic Peninsula. A complete DEM with better than 200 m pixel size and high positional and vertical accuracy would enable mapping of all significant glacial basins and provide a dataset for glacier morphology analyses. No currently available DEM meets these specifications. We present a new 100-m DEM of the Antarctic Peninsula (63–70° S, based on ASTER Global Digital Elevation Model (GDEM data. The raw GDEM products are of high-quality on the rugged terrain and coastal-regions of the Antarctic Peninsula and have good geospatial accuracy, but they also contain large errors on ice-covered terrain and we seek to minimise these artefacts. Conventional data correction techniques do not work so we have developed a method that significantly improves the dataset, smoothing the erroneous regions and hence creating a DEM with a pixel size of 100 m that will be suitable for many glaciological applications. We evaluate the new DEM using ICESat-derived elevations, and perform horizontal and vertical accuracy assessments based on GPS positions, SPOT-5 DEMs and the Landsat Image Mosaic of Antarctica (LIMA imagery. The new DEM has a mean elevation difference of −4 m (± 25 m RMSE from ICESat (compared to −13 m mean and ±97 m RMSE for the original ASTER GDEM, and a horizontal error of less than 2 pixels, although elevation accuracies are lower on mountain peaks and steep-sided slopes. The correction method significantly reduces errors on low relief slopes and therefore the DEM can be regarded as suitable for topographical studies such as measuring the geometry and ice flow properties of glaciers on the Antarctic Peninsula. The DEM is available for download from the NSIDC website: http://nsidc.org/data/nsidc-0516.html (Hydrodynamic Modeling of Nokoué Lake in Benin

    Directory of Open Access Journals (Sweden)

    Josué Zandagba

    2016-12-01

    Full Text Available Nokoué Lake is a complex ecosystem, the understanding of which requires control of physical processes that have occurred. For this, the Surface Water Modeling System (SMS hydrodynamic model was calibrated and validated on the water depth data. The results of these simulations show a good match between the simulated and observed data for bottom roughness and turbulent exchange coefficients, of 0.02 m−1/3·s and 20 m2/s respectively. Once the ability of the model to simulate the hydrodynamics of the lake is testified, the model is used to simulate water surface elevation, exchanged flows and velocities. The simulation shows that the tidal amplitude is maximum at the inlet of the channel and decreases gradually from the inlet towards the lagoon’s main body. The propagation of the tidal wave is characterized by the dephasing and the flattening of the amplitude tide, which increases as we move away from the channel. This dephasing is characterized by a high and low tides delay of about 1 or 4 h and also depends on the tide amplitude and location. The velocities inside the lake are very low and do not exceed 0.03 m/s. The highest are obtained at the entrance of the channel. In a flood period, in contrast with the low-water period, incoming flows are higher than outflows, reinforced by the amplitude of the tide. An average renewal time of the lake has been estimated and corresponds during a flood period to 30 days for an average amplitude tide and 26.3 days on a high amplitude tide. In a low water period it is 40.2 days for an average amplitude tide and 30 days for a high amplitude tide. From the results obtained, several measures must be taken into account for the rational management of the lake water resources. These include a dam construction at the lake upstream, to control the river flows, and the dredging of the channel to facilitate exchanges with the sea.

  7. Diagnostic modeling of dimethylsulfide production in coastal water west of the Antarctic Peninsula

    Science.gov (United States)

    Hermann, Maria; Najjar, Raymond G.; Neeley, Aimee R.; Vila-Costa, Maria; Dacey, John W. H.; DiTullio, Giacomo, R.; Kieber, David J.; Kiene, Ronald P.; Matrai, Patricia A.; Simo, Rafel; Vernet, Maria

    2012-01-01

    The rate of gross biological dimethylsulfide (DMS) production at two coastal sites west of the Antarctic Peninsula, off Anvers Island, near Palmer Station, was estimated using a diagnostic approach that combined field measurements from 1 January 2006 through 1 March 2006 and a one-dimensional physical model of ocean mixing. The average DMS production rate in the upper water column (0-60 m) was estimated to be 3.1 +/- 0.6 nM/d at station B (closer to shore) and 2.7 +/- 0.6 nM/d1 at station E (further from shore). The estimated DMS replacement time was on the order of 1 d at both stations. DMS production was greater in the mixed layer than it was below the mixed layer. The average DMS production normalized to chlorophyll was 0.5 +/- nM/d)/(mg cubic m) at station B and 0.7 +/- 0.2 (nM/d)/(mg/cubic m3) at station E. When the diagnosed production rates were normalized to the observed concentrations of total dimethylsulfoniopropionate (DMSPt, the biogenic precursor of DMS), we found a remarkable similarity between our estimates at stations B and E (0.06 +/- 0.02 and 0.04 +/- 0.01 (nM DMS / d1)/(nM DMSP), respectively) and the results obtained in a previous study from a contrasting biogeochemical environment in the North Atlantic subtropical gyre (0.047 =/- 0.006 and 0.087 +/- 0.014 (nM DMS d1)/(nM DMSP) in a cyclonic and anticyclonic eddy, respectively).We propose that gross biological DMS production normalized to DMSPt might be relatively independent of the biogeochemical environment, and place our average estimate at 0.06 +/- 0.01 (nM DMS / d)/(nM DMSPt). The significance of this finding is that it can provide a means to use DMSPt measurements to extrapolate gross biological DMS production, which is extremely difficult to measure experimentally under realistic in situ conditions.

  8. Prediction and setup of phytoplankton statistical model of Qiandaohu Lake

    Institute of Scientific and Technical Information of China (English)

    严力蛟; 全为民; 赵晓慧

    2004-01-01

    This research considers the mathematical relationship between concentration of Chla and seven environmental factors, i.e. Lake water temperature (T), Secci-depth (SD), pH, DO, CODMn, Total Nitrogen (TN), Total Phosphorus (TP).Stepwise linear regression of 1997 to 1999 monitoring data at each sampling point of Qiandaohu Lake yielded the multivariate regression models presented in this paper. The concentration of Chla as simulation for the year 2000 by the regression model was similar to the observed value. The suggested mathematical relationship could be used to predict changes in the lakewater environment at any point in time. The results showed that SD, TP and pH were the most significant factors affecting Chla concentration.

  9. Public lakes, private lakeshore: modeling protection of native aquatic plants.

    Science.gov (United States)

    Schroeder, Susan A; Fulton, David C

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey (n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  10. Public Lakes, Private Lakeshore: Modeling Protection of Native Aquatic Plants

    Science.gov (United States)

    Schroeder, Susan A.; Fulton, David C.

    2013-07-01

    Protection of native aquatic plants is an important proenvironmental behavior, because plant loss coupled with nutrient loading can produce changes in lake ecosystems. Removal of aquatic plants by lakeshore property owners is a diffuse behavior that may lead to cumulative impacts on lake ecosystems. This class of behavior is challenging to manage because collective impacts are not obvious to the actors. This paper distinguishes positive and negative beliefs about aquatic plants, in models derived from norm activation theory (Schwartz, Adv Exp Soc Psychol 10:221-279, 1977) and the theory of reasoned action (Fishbein and Ajzen, Belief, attitude, intention, and behavior: an introduction to theory and research, Addison-Wesley, Boston 1975), to examine protection of native aquatic plants by Minnesota lakeshore property owners. We clarify how positive and negative evaluations of native aquatic plants affect protection or removal of these plants. Results are based on a mail survey ( n = 3,115). Results suggest that positive evaluations of aquatic plants (i.e., as valuable to lake ecology) may not connect with the global attitudes and behavioral intentions that direct plant protection or removal. Lakeshore property owners' behavior related to aquatic plants may be driven more by tangible personal benefits derived from accessible, carefully managed lakeshore than intentional action taken to sustain lake ecosystems. The limited connection of positive evaluations of aquatic plants to global attitudes and behavioral intentions may reflect either lack of knowledge of what actions are needed to protect lake health and/or unwillingness to lose perceived benefits derived from lakeshore property.

  11. State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling

    Science.gov (United States)

    Kawamura, Kenji; Abe-Ouchi, Ayako; Motoyama, Hideaki; Ageta, Yutaka; Aoki, Shuji; Azuma, Nobuhiko; Fujii, Yoshiyuki; Fujita, Koji; Fujita, Shuji; Fukui, Kotaro; Furukawa, Teruo; Furusaki, Atsushi; Goto-Azuma, Kumiko; Greve, Ralf; Hirabayashi, Motohiro; Hondoh, Takeo; Hori, Akira; Horikawa, Shinichiro; Horiuchi, Kazuho; Igarashi, Makoto; Iizuka, Yoshinori; Kameda, Takao; Kanda, Hiroshi; Kohno, Mika; Kuramoto, Takayuki; Matsushi, Yuki; Miyahara, Morihiro; Miyake, Takayuki; Miyamoto, Atsushi; Nagashima, Yasuo; Nakayama, Yoshiki; Nakazawa, Takakiyo; Nakazawa, Fumio; Nishio, Fumihiko; Obinata, Ichio; Ohgaito, Rumi; Oka, Akira; Okuno, Jun’ichi; Okuyama, Junichi; Oyabu, Ikumi; Parrenin, Frédéric; Pattyn, Frank; Saito, Fuyuki; Saito, Takashi; Saito, Takeshi; Sakurai, Toshimitsu; Sasa, Kimikazu; Seddik, Hakime; Shibata, Yasuyuki; Shinbori, Kunio; Suzuki, Keisuke; Suzuki, Toshitaka; Takahashi, Akiyoshi; Takahashi, Kunio; Takahashi, Shuhei; Takata, Morimasa; Tanaka, Yoichi; Uemura, Ryu; Watanabe, Genta; Watanabe, Okitsugu; Yamasaki, Tetsuhide; Yokoyama, Kotaro; Yoshimori, Masakazu; Yoshimoto, Takayasu

    2017-01-01

    Climatic variabilities on millennial and longer time scales with a bipolar seesaw pattern have been documented in paleoclimatic records, but their frequencies, relationships with mean climatic state, and mechanisms remain unclear. Understanding the processes and sensitivities that underlie these changes will underpin better understanding of the climate system and projections of its future change. We investigate the long-term characteristics of climatic variability using a new ice-core record from Dome Fuji, East Antarctica, combined with an existing long record from the Dome C ice core. Antarctic warming events over the past 720,000 years are most frequent when the Antarctic temperature is slightly below average on orbital time scales, equivalent to an intermediate climate during glacial periods, whereas interglacial and fully glaciated climates are unfavourable for a millennial-scale bipolar seesaw. Numerical experiments using a fully coupled atmosphere-ocean general circulation model with freshwater hosing in the northern North Atlantic showed that climate becomes most unstable in intermediate glacial conditions associated with large changes in sea ice and the Atlantic Meridional Overturning Circulation. Model sensitivity experiments suggest that the prerequisite for the most frequent climate instability with bipolar seesaw pattern during the late Pleistocene era is associated with reduced atmospheric CO2 concentration via global cooling and sea ice formation in the North Atlantic, in addition to extended Northern Hemisphere ice sheets. PMID:28246631

  12. Mapping sub-antarctic cushion plants using random forests to combine very high resolution satellite imagery and terrain modelling.

    Directory of Open Access Journals (Sweden)

    Phillippa K Bricher

    Full Text Available Monitoring changes in the distribution and density of plant species often requires accurate and high-resolution baseline maps of those species. Detecting such change at the landscape scale is often problematic, particularly in remote areas. We examine a new technique to improve accuracy and objectivity in mapping vegetation, combining species distribution modelling and satellite image classification on a remote sub-Antarctic island. In this study, we combine spectral data from very high resolution WorldView-2 satellite imagery and terrain variables from a high resolution digital elevation model to improve mapping accuracy, in both pixel- and object-based classifications. Random forest classification was used to explore the effectiveness of these approaches on mapping the distribution of the critically endangered cushion plant Azorella macquariensis Orchard (Apiaceae on sub-Antarctic Macquarie Island. Both pixel- and object-based classifications of the distribution of Azorella achieved very high overall validation accuracies (91.6-96.3%, κ = 0.849-0.924. Both two-class and three-class classifications were able to accurately and consistently identify the areas where Azorella was absent, indicating that these maps provide a suitable baseline for monitoring expected change in the distribution of the cushion plants. Detecting such change is critical given the threats this species is currently facing under altering environmental conditions. The method presented here has applications to monitoring a range of species, particularly in remote and isolated environments.

  13. Seasonal and spatial variations of 17Oexcess and dexcess in Antarctic precipitation: Insights from an intermediate complexity isotope model

    Science.gov (United States)

    Schoenemann, Spruce W.; Steig, Eric J.

    2016-10-01

    An intermediate complexity model (ICM) is used to investigate the sensitivity of water isotope ratios in precipitation, including 17Oexcess, to climate variations in the Southern Hemisphere. The ICM is forced with boundary conditions from seasonal National Centers for Environmental Prediction/Department of Energy II reanalysis data. Perturbations to the surface temperature and humidity fields are used to investigate the isotopic sensitivity. The response of 17Oexcess to a uniform temperature change is insignificant over the ocean, while there is a large magnitude response over the ice sheet, particularly in East Antarctica. A decrease of ocean surface relative humidity produces increased 17Oexcess and dexcess, with a coherent response over both the ocean and Antarctica. For interior East Antarctica, the model simulates a seasonal cycle in 17Oexcess that is positively correlated with δ18O and of large magnitude ( 50 per meg), consistent with the observations from Vostok. The seasonal cycle in 17Oexcess for interior West Antarctica is predicted to be considerably smaller in magnitude (12 per meg), and is negatively correlated with δ18O, consistent with new data from a firn core near the West Antarctic Ice Sheet Divide site. Over the ocean, the ICM predicts much smaller seasonal cycles in 17Oexcess. Oceanic source changes (i.e., humidity) are insufficient to explain the amplitude of the simulated seasonal cycle over the Antarctic continent. Spatial differences in the seasonal response of 17Oexcess to local temperature reflect the balance of equilibrium and kinetic fractionation during snow formation.

  14. 21st Century Trends in Antarctic Temperature and Polar Stratospheric Cloud (PSC) Area in the GEOS Chemistry-Climate Model

    Science.gov (United States)

    Hurwitz, M. M.; Newman, P. A.

    2010-01-01

    This study examines trends in Antarctic temperature and APSC, a temperature proxy for the area of polar stratospheric clouds, in an ensemble of Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. A selection of greenhouse gas, ozone-depleting substance, and sea surface temperature scenarios is used to test the trend sensitivity to these parameters. One scenario is used to compare temperature trends in two versions of the GEOS CCM. An extended austral winter season is examined in detail. In May, June, and July, the expected future increase in CO2-related radiative cooling drives temperature trends in the Antarctic lower stratosphere. At 50 hPa, a 1.3 K cooling is expected between 2000 and 2100. Ozone levels increase, despite this robust cooling signal and the consequent increase in APSC, suggesting the enhancement of stratospheric transport in future. In the lower stratosphere, the choice of climate change scenarios does not affect the magnitude of the early winter cooling. Midwinter temperature trends are generally small. In October, APSC trends have the same sign as the prescribed halogen trends. That is, there are negative APSC trends in "grealistic future" simulations, where halogen loading decreases in accordance with the Montreal Protocol and CO2 continues to increase. In these simulations, the speed of ozone recovery is not influenced by either the choice of sea surface temperature and greenhouse gas scenarios or by the model version.

  15. Stochastic Downscaling for Hydrodynamic and Ecological Modeling of Lakes

    Science.gov (United States)

    Schlabing, D.; Eder, M.; Frassl, M.; Rinke, K.; Bárdossy, A.

    2012-04-01

    Weather generators are of interest in climate impact studies, because they allow different modi operandi: (1) More realizations of the past, (2) possible futures as defined by the modeler and (3) possible futures according to the combination of greenhouse gas emission scenarios and their Global Circulation Model (GCM) consequences. Climate modeling has huge inherently unquantifiable uncertainties, yet the results present themselves as single point values without any measure of uncertainty. Given this reduction of risk-relevant information, stochastic downscaling offers itself as a tool to recover the variability present in local measurements. One should bear in mind that the lake models that are fed with downscaling results are themselves deterministic and single runs may prove to be misleading. Especially population dynamics simulated by ecological models are sensitive to very particular events in the input data. A way to handle this sensitivity is to perform Monte Carlo studies with varying meteorological driving forces using a weather generator. For these studies, the Vector-Autoregressive Weather generator (VG), which was first presented at the EGU 2011, was developed further. VG generates daily air temperature, humidity, long- and shortwave radiance and wind. Wind and shortwave radiation is subsequently disaggregated to hourly values, because their short term variability has proven important for the application. Changes relative to the long-term values are modeled as disturbances that act during the autoregressive generation of the synthetic time series. The method preserves the dependence structure between the variables, as changes in the disturbed variable, say temperature, are propagated to the other variables. The approach is flexible because the disturbances can be chosen freely. Changes in mean can be represented as constant disturbance, changes in variability as episodes of certain length and amplitude. The disturbances can also be extracted from GCMs

  16. Modeling CO2 air dispersion from gas driven lake eruptions

    Science.gov (United States)

    Chiodini, Giovanni; Costa, Antonio; Rouwet, Dmitri; Tassi, Franco

    2016-04-01

    The most tragic event of gas driven lake eruption occurred at Lake Nyos (Cameroon) on 21 August 1986, when a dense cloud of CO2 suffocated more than 1700 people and an uncounted number of animals in just one night. The event stimulated a series of researches aimed to understand gas origins, gas release mechanisms and strategies for gas hazard mitigation. Very few studies have been carried out for describing the transport of dense CO2 clouds in the atmosphere. Although from a theoretical point of view, gas dispersion can be fully studied by solving the complete equations system for mass, momentum and energy transport, in actual practice, different simplified models able to describe only specific phases or aspects have to be used. In order to simulate dispersion of a heavy gas and to assess the consequent hazard we used a model based on a shallow layer approach (TWODEE2). This technique which uses depth-averaged variables to describe the flow behavior of dense gas over complex topography represents a good compromise between the complexity of computational fluid dynamic models and the simpler integral models. Recently the model has been applied for simulating CO2 dispersion from natural gas emissions in Central Italy. The results have shown how the dispersion pattern is strongly affected by the intensity of gas release, the topography and the ambient wind speed. Here for the first time we applied TWODEE2 code to simulate the dispersion of the large CO2 clouds released by limnic eruptions. An application concerns the case of the 1986 event at lake Nyos. Some difficulties for the simulations were related to the lack of quantitative information: gas flux estimations are not well constrained, meteorological conditions are only qualitatively known, the digital model of the terrain is of poor quality. Different scenarios were taken into account in order to reproduce the qualitative observations available for such episode. The observations regard mainly the effects of gas on

  17. Modeling Distribution and Abundance of Antarctic Baleen Whales Using Ships of Opportunity

    Directory of Open Access Journals (Sweden)

    Rob Williams

    2006-06-01

    Full Text Available Information on animal abundance and distribution is at the cornerstone of many wildlife and conservation strategies. However, these data can be difficult and costly to obtain for cetacean species. The expense of sufficient ship time to conduct design-unbiased line transect surveys may be simply out of reach for researchers in many countries, which nonetheless grapple with problems of conservation of endangered species, by-catch of small cetaceans in commercial fisheries, and progression toward ecosystem-based fisheries management. Recently developed spatial modeling techniques show promise for estimating wildlife abundance using non-randomized surveys, but have yet to receive much field-testing in areas where designed surveys have also been conducted. Effort and sightings data were collected along 9 650 km of transects aboard ships of opportunity in the Southern Ocean during the austral summers of 2000-2001 and 2001-2002. Generalized additive models with generalized cross-validation were used to express heterogeneity of cetacean sightings as functions of spatial covariates. Models were used to map predicted densities and to estimate abundance of humpback, minke, and fin whales in the Drake Passage and along the Antarctic Peninsula. All species' distribution maps showed strong density gradients, which were robust to jackknife resampling when each of 14 trips was removed sequentially with replacement. Looped animations of model predictions of whale density illustrate uncertainty in distribution estimates in a way that is informative to non-scientists. The best abundance estimate for humpback whales was 1 829 (95% CI: 978-3 422. Abundance of fin whales was 4 487 (95% CI: 1 326-15 179 and minke whales was 1,544 (95% CI: 1,221-1,953. These estimates agreed roughly with those reported from a designed survey conducted in the region during the previous austral summer. These estimates assumed that all animals on the trackline were detected, but

  18. Antarctic 20th Century Accumulation Changes Based on Regional Climate Model Simulations

    Directory of Open Access Journals (Sweden)

    Klaus Dethloff

    2010-01-01

    investigated on the basis of ERA-40 data and HIRHAM simulations. It is shown that the regional accumulation changes are largely driven by changes in the transient activity around the Antarctic coasts due to the varying AAO phases. During positive AAO, more transient pressure systems travelling towards the continent, and Western Antarctica and parts of South-Eastern Antarctica gain more precipitation and mass. Over central Antarctica the prevailing anticyclone causes a strengthening of polar desertification connected with a reduced surface mass balance in the northern part of East Antarctica.

  19. Modeling methane emissions from arctic lakes: Model development and site-level study

    Science.gov (United States)

    Tan, Zeli; Zhuang, Qianlai; Walter Anthony, Katey

    2015-06-01

    To date, methane emissions from lakes in the pan-arctic region are poorly quantified. In order to investigate the response of methane emissions from this region to global warming, a process-based climate-sensitive lake biogeochemical model was developed. The processes of methane production, oxidation, and transport were modeled within a one-dimensional sediment and water column. The sizes of 14C-enriched and 14C-depleted carbon pools were explicitly parameterized. The model was validated using observational data from five lakes located in Siberia and Alaska, representing a large variety of environmental conditions in the arctic. The model simulations agreed well with the measured water temperature and dissolved CH4 concentration (mean error less than 1°C and 0.2 μM, respectively). The modeled CH4 fluxes were consistent with observations in these lakes. We found that bubbling-rate-controlling nitrogen (N2) stripping was the most important factor in determining CH4 fraction in bubbles. Lake depth and ice cover thickness in shallow waters were also controlling factors. This study demonstrated that the thawing of Pleistocene-aged organic-rich yedoma can fuel sediment methanogenesis by supplying a large quantity of labile organic carbon. Observations and modeling results both confirmed that methane emission rate at thermokarst margins of yedoma lakes was much larger (up to 538 mg CH4 m-2 d-1) than that at nonthermokarst zones in the same lakes and a nonyedoma, nonthermokarst lake (less than 42 mg CH4 m-2 d-1). The seasonal variability of methane emissions can be explained primarily by energy input and organic carbon availability.

  1. A model for landscape development in terms of shoreline displacement, sediment dynamics, lake formation, and lake choke-up processes

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden)

    2006-12-15

    This project expands on the study 'A mathematical model for lake ontogeny in terms of filling with sediments and macrophyte vegetation' published in SKB TR-04-09. As the title suggests, this older model focuses on lakes (existing and future lakes). This newer study extends the model to examine progress of terrestrial objects such as mires or arable land. Furthermore, this newer model could simulate progress of the areas close to the objects. These areas are divided according to their watershed boundaries. If two or more objects are situated along the same brook, the lower situated area is defined as its catchments minus the catchments of the closest higher situated object. The model encourages the study of an object situated in the sea from the time of deglaciation (c. 10,000 BP) to the time for the object due to positive shore displacement is situated on land or that a lake object has progressed to a wetland, however not longer than 18,000 AP. The model focuses on the object and its location in 100-year steps. The model is written in VisualBasic and is divided into two modules, a marine module and a lake module. The marine module deals with shoreline displacement, erosion and accumulation of postglacial fine-grained sediments and erosion of glacial clay. Inputs to the marine module are a digital elevation model (DEM), a digital map showing the extension of the objects and a marine quaternary map. The two maps are in raster formats with exactly the same formats (extension and cell sizes) as the DEM. For each time step the water depths at each pixel are calculated using a shore displacement equation. Next, the water depth changes due to sediment dynamics are calculated using the following rules; accumulation of fine-grained sediments are allowed if the pixel is situated within a future lake object; erosion of fine-grained sediment is allowed if the pixel is not within a future lake object and the marine quaternary map shows occurrence of postglacial

  2. The Lake Tahoe Basin Land Use Simulation Model

    Science.gov (United States)

    Forney, William M.; Oldham, I. Benson

    2011-01-01

    This U.S. Geological Survey Open-File Report describes the final modeling product for the Tahoe Decision Support System project for the Lake Tahoe Basin funded by the Southern Nevada Public Land Management Act and the U.S. Geological Survey's Geographic Analysis and Monitoring Program. This research was conducted by the U.S. Geological Survey Western Geographic Science Center. The purpose of this report is to describe the basic elements of the novel Lake Tahoe Basin Land Use Simulation Model, publish samples of the data inputs, basic outputs of the model, and the details of the Python code. The results of this report include a basic description of the Land Use Simulation Model, descriptions and summary statistics of model inputs, two figures showing the graphical user interface from the web-based tool, samples of the two input files, seven tables of basic output results from the web-based tool and descriptions of their parameters, and the fully functional Python code.

  3. Antarctic Astrobiology

    Science.gov (United States)

    McKay, Christopher P.

    2003-01-01

    Stars may be cold and dry today but there is compelling evidence that earlier in its history Mars did have liquid water. This evidence comes from the images taken from orbital spacecraft. The dry valleys of Antarctica comprise the largest ice-free region on that continent. The valleys are a cold desert environment with mean annual temperatures of -20 C. The lakes in the dry valleys of Antarctica provide an example of the physical processes that can maintain large bodies of liquid water under mean annual temperatures well below freezing. Biologically these lakes are also important analogs because of the plankton and benthic communities of microorganisms that thrive there. Life could have existed in lakes on Mars an ecological similar conditions.

  4. Hydrodynamic modelling and characterisation of a shallow fluvial lake: a study on the Superior Lake of Mantua

    Directory of Open Access Journals (Sweden)

    Andrea Fenocchi

    2016-04-01

    Full Text Available This paper presents a numerical modelling framework developed to simulate circulations and to generally characterise the hydrodynamics of the Superior Lake of Mantua, a shallow fluvial lake in Northern Italy. Such eutrophied basin is characterised by low winds, reduced discharges during the summer and by the presence of large lotus flower (Nelumbo nucifera meadows, all contributing to water stagnation. A hydrodynamic numerical model was built to understand how physical drivers shape basic circulation dynamics, selecting appropriate methodologies for the lake. These include a 3D code to reproduce the interaction between wind and through-flowing current, a fetch-dependent wind stress model, a porous media approach for canopy flow resistance and the consideration of wave-current interaction. The model allowed to estimate the circulation modes and water residence time distributions under identified typical ordinary, storm and drought conditions, the hydrodynamic influence of the newly-opened secondary outlet of the lake, the surface wave parameters, their influence on circulations and the bottom stress they originate, and the adaptation time scales of circulations to storm events. Some probable effects of the obtained hydrodynamic characteristics of the Superior Lake of Mantua on its biochemical processes are also introduced.

  5. The role of organic ligands in iron cycling and primary productivity in the Antarctic Peninsula: A modeling study

    Science.gov (United States)

    Jiang, Mingshun; Barbeau, Katherine A.; Selph, Karen E.; Measures, Christopher I.; Buck, Kristen N.; Azam, Farooq; Greg Mitchell, B.; Zhou, Meng

    2013-06-01

    Iron (Fe) is the limiting nutrient for primary productivity in the Southern Ocean, with much of the dissolved iron (dFe) bound to organic ligands or colloids. A Fe model for the Southern Ocean (SOFe) is developed to understand the role of bacteria and organic ligands in controlling Fe cycling and productivity. The model resolves the classical food web and microbial loop, including three types of nutrients (N, Si, Fe) and two types of Fe ligands. Simulations of the zero-dimensional (0-D) model are calibrated with detailed results of shipboard grow-out incubation experiments conducted with Antarctic Peninsula phytoplankton communities during winter 2006 to provide the best estimate of key biological parameters. Then a one-dimensional (1-D) model is developed by coupling the biological model with the Regional Oceanic Modeling System (ROMS) for a site on the Antarctic Peninsula shelf, and the model parameters are further calibrated with data collected from two surveys (summer 2004 and winter 2006) in the area. The results of the numerical simulations agree reasonably well with observations. An analysis of the 1-D model results suggests that bacteria and organic ligands may play an important role in Fe cycling, which can be categorized into a relatively fast mode within the euphotic zone dominated by photo-reactions (summer d Fe residence time about 600 days) and complexation and a slow mode below with most of the dFe biologically complexed (summer dFe residence time >10 years). The dFe removal from the euphotic zone is dominated by colloidal formation and further aggregations with additional contribution from biological uptake, and an increase of organic ligands would reduce Fe export. The decrease of Fe removal rate over depth is due to the continuous dissolution and remineralization of particulate Fe. A number of sensitivity experiments are carried out for both 0-D and 1-D models to understand the importance of photo-reactive processes in primary productivity

  6. Generalised additive models to investigate environmental drivers of Antarctic minke whale (Balaenoptera bonaerensis) spatial density in austral summer

    NARCIS (Netherlands)

    Beekmans, Bas W.P.M.; Forcada, Jaume; Murphy, Eugene J.; Baar, de Hein J.W.; Bathmann, Ulrich V.; Fleming, Andrew H.

    2010-01-01

    There is a need to characterise the physical environment associated with Antarctic minke whale density in order to understand long-term changes in minke whale distribution and density in open waters of the Southern Ocean during austral summer months. To investigate environmental drivers of Antarctic

  7. Towards a tipping point? Exploring the capacity to self-regulate Antarctic tourism using agent-based modelling

    NARCIS (Netherlands)

    Student, J.R.; Amelung, B.; Lamers, M.A.J.

    2016-01-01

    Antarctica attracts tourists who want to explore its unique nature and landscapes. Antarctic tourism has rapidly grown since 1991 and is currently picking up again after the recent global economic downturn. Tourism activities are subject to the rules of the Antarctic Treaty System (ATS) and the deci

  8. Stochastic modeling of Lake Van water level time series with jumps and multiple trends

    Directory of Open Access Journals (Sweden)

    H. Aksoy

    2013-06-01

    Full Text Available In the 1990s, water level in the closed-basin Lake Van located in the Eastern Anatolia, Turkey, has risen up about 2 m. Analysis of the hydrometeorological data shows that change in the water level is related to the water budget of the lake. In this study, stochastic models are proposed for simulating monthly water level data. Two models considering mono- and multiple-trend time series are developed. The models are derived after removal of trend and periodicity in the dataset. Trend observed in the lake water level time series is fitted by mono- and multiple-trend lines. In the so-called mono-trend model, the time series is treated as a whole under the hypothesis that the lake water level has an increasing trend. In the second model (so-called multiple-trend, the time series is divided into a number of segments to each a linear trend can be fitted separately. Application on the lake water level data shows that four segments, each fitted with a trend line, are meaningful. Both the mono- and multiple-trend models are used for simulation of synthetic lake water level time series under the hypothesis that the observed mono- and multiple-trend structure of the lake water level persist during the simulation period. The multiple-trend model is found better for planning the future infrastructural projects in surrounding areas of the lake as it generates higher maxima for the simulated lake water level.

  9. The Antarctic cryptoendolithic microbial ecosystem as a model for studying microbes in shale and coal

    Energy Technology Data Exchange (ETDEWEB)

    Vestal, J.R. (University of Cincinnati, Cincinnati, OH (USA). Dept. of Biological Sciences)

    1991-04-01

    In Antarctica, there exists a complete microbial ecosystem that lives hidden within the pore spaces of sandstone (cryptoendolithic). Studying microbes within this solid matrix has presented certain technical problems which have been overcome. This has allowed studies to be conducted that have shown the effects of the physical and chemical environment on growth and metabolism of the microbes in these rocks. Similar microbial communities have recently been discovered that can exist within the solid matrix of shale and coal. Even though the community and environment are different from the Antarctic microbes, many of the methods and hypotheses regarding their existence are the same. Answers to questions relating how and why these microbes exist in shale and coal may have important implications for coal desulfurization, or degradation of the shale matrix to release hydrocarbons. 40 refs., 1 fig., 1 tab.

  10. Assessing Glacial Lake Outburst Flood Hazard in the Nepal Himalayas using Satellite Imagery and Hydraulic Models

    Science.gov (United States)

    Rounce, D.; McKinney, D. C.

    2015-12-01

    The last half century has witnessed considerable glacier melt that has led to the formation of large glacial lakes. These glacial lakes typically form behind terminal moraines comprising loose boulders, debris, and soil, which are susceptible to fail and cause a glacial lake outburst flood (GLOF). These lakes also act as a heat sink that accelerates glacier melt and in many cases is accompanied by rapid areal expansion. As these glacial lakes continue to grow, their hazard also increases due to the increase in potential flood volume and the lakes' proximity to triggering events such as avalanches and landslides. Despite the large threat these lakes may pose to downstream communities, there are few detailed studies that combine satellite imagery with hydraulic models to present a holistic understanding of the GLOF hazard. The aim of this work is to assess the GLOF hazard of glacial lakes in Nepal using a holistic approach based on a combination of satellite imagery and hydraulic models. Imja Lake will be the primary focus of the modeling efforts, but the methods will be developed in a manner that is transferable to other potentially dangerous glacial lakes in Nepal.

  11. Modeling of Microwave Emissions from the Marie-Byrd Antarctic Region: A Stable Calibration Target in the L-band

    Science.gov (United States)

    Misra, S.; Brown, S.

    2010-12-01

    With the recent launch of SMOS (Soil Moisture Ocean Salinity) and upcoming missions Aquarius and SMAP (Soil Moisture Active Passive), calibration in L-band has become an important issue. The Aquarius mission, due to be launched in April 2011, is responsible for globally mapping sea-surface salinity. Due to the high sensitivity of brightness temperature to salinity and high precision of the Aquarius radiometers, it is necessary to have temporally stable calibration sources. Previously, Dome-C in the east Antarctic region was suggested as a promising area to monitor radiometer calibrations in the L-band toward the hot end of the brightness temperature spectrum (Macelloni et al., 2006; Macelloni et al., 2007). We present the Marie-Byrd region in west Antarctica as an excellent calibration reference, due to both its temporal stability over years as well as spatial vastness. In order to identify stable calibration regions for L-band we used 6-37GHz AMSR-E data. The spatial and temporal variability of AMSR-E brightness temperatures over the Antarctic region was analyzed, and only regions that were stable in both domains (like Marie-Byrd) were identified as radiometrically stable. Using data obtained from Automatic Weather Stations (AWS) near Marie-Byrd, the correlation between surface temperature and deep-ice temperature, as measured by microwaves was calculated. Results indicate that as the microwave frequency is lowered, the peak-to-peak annual variation of brightness temperature decreases. The bulk of emission for low frequencies occurs deep in the ice which is very stable over time and decorrelated with short term surface temperature fluctuations. As a result, at L-band the ice-regions like Marie-Byrd in Antarctica serve as an excellent source of calibration. A coupled ice heat-transport and radiative-transfer model was developed to predict brightness temperatures observed at low microwave frequencies. The ice model takes into account the surface fluctuations of

  12. ANALYSIS OF MERCURY IN VERMONT AND NEW HAMPSHIRE LAKES: EVALUATION OF THE REGIONAL MERCURY CYCLING MODEL

    Science.gov (United States)

    An evaluation of the Regional Mercury Cycling Model (R-MCM, a steady-state fate and transport model used to simulate mercury concentrations in lakes) is presented based on its application to a series of 91 lakes in Vermont and New Hampshire. Visual and statistical analyses are pr...

  13. Making eco logic and models work : An integrative approach to lake ecosystem modelling

    NARCIS (Netherlands)

    Kuiper, Jan Jurjen

    2016-01-01

    Dynamical ecosystem models are important tools that can help ecologists understand complex systems, and turn understanding into predictions of how these systems respond to external changes. This thesis revolves around PCLake, an integrated ecosystem model of shallow lakes that is used by both scient

  14. Isotopic and hydrologic responses of small, closed lakes to climate variability: Comparison of measured and modeled lake level and sediment core oxygen isotope records

    Science.gov (United States)

    Steinman, Byron A.; Abbott, Mark B.; Nelson, Daniel B.; Stansell, Nathan D.; Finney, Bruce P.; Bain, Daniel J.; Rosenmeier, Michael F.

    2013-03-01

    Simulations conducted using a coupled lake-catchment isotope mass balance model forced with continuous precipitation, temperature, and relative humidity data successfully reproduce (within uncertainty limits) long-term (i.e., multidecadal) trends in reconstructed lake surface elevations and sediment core oxygen isotope (δ18O) values at Castor Lake and Scanlon Lake, north-central Washington. Error inherent in sediment core dating methods and uncertainty in climate data contribute to differences in model reconstructed and measured short-term (i.e., sub-decadal) sediment (i.e., endogenic and/or biogenic carbonate) δ18O values, suggesting that model isotopic performance over sub-decadal time periods cannot be successfully investigated without better constrained climate data and sediment core chronologies. Model reconstructions of past lake surface elevations are consistent with estimates obtained from aerial photography. Simulation results suggest that precipitation is the strongest control on lake isotopic and hydrologic dynamics, with secondary influence by temperature and relative humidity. This model validation exercise demonstrates that lake-catchment oxygen isotope mass balance models forced with instrumental climate data can reproduce lake hydrologic and isotopic variability over multidecadal (or longer) timescales, and therefore, that such models could potentially be used for quantitative investigations of paleo-lake responses to hydroclimatic change.

  15. Stochastic modeling of Lake Van water level time series with jumps and multiple trends

    Directory of Open Access Journals (Sweden)

    H. Aksoy

    2013-02-01

    Full Text Available In 1990s, water level in the closed-basin Lake Van located in the Eastern Anatolia, Turkey has risen up about 2 m. Analysis of the hydrometeorological shows that change in the water level is related to the water budget of the lake. In this study, a stochastic model is generated using the measured monthly water level data of the lake. The model is derived after removal of trend and periodicity in the data set. Trend observed in the lake water level time series is fitted by mono- and multiple-trend lines. For the multiple-trend, the time series is first divided into homogeneous segments by means of SEGMENTER, segmentation software. Four segments are found meaningful practically each fitted with a trend line. Two models considering mono- and multiple-trend time series are developed. The multiple-trend model is found better for planning future development in surrounding areas of the lake.

  16. Acidification and recovery at mountain lakes in Central Alps assessed by the MAGIC model

    Directory of Open Access Journals (Sweden)

    Michela ROGORA

    2004-02-01

    Full Text Available The dynamic model MAGIC was calibrated and applied to 84 lakes in Central Alps to predict the response of water chemistry to different scenarios of atmospheric deposition of S and N compounds. Selected lakes were representative of a wide range of chemical characteristics and of sensitivity to acidification. The most sensitive lakes have already shown in the latest years signs of recovery in terms of pH and ANC. The model well captured the main trends in lake chemical data. According to the model forecast, recovery at sensitive lakes will continue in the next decades under the hypothesis of a further decrease of acidic input from the atmosphere. Results clearly demonstrated the benefits of achieving the emission reductions in both S and N compounds agreed under the Gothenburg Protocol. Nevertheless, besides the achieved reduction of SO4 2- deposition from the peak levels of the 80s, also N deposition should be reduced in the near future to protect alpine lakes from further acidification. The condition of lake catchments with regard to N saturation will probably be the dominant factor driving recovery extent. Beside atmospheric deposition, other factors proved to be important in determining long-term changes in surface water chemistry. Climate warming in particular affects weathering processes in lake catchments and dynamics of the N cycle. Including other factors specific to the alpine area, such as dust deposition and climate change, may improve the fit of experimental data by the model and the reliability of model forecast.

  17. Spatial patterns of recent Antarctic surface temperature trends and the importance of natural variability: lessons from multiple reconstructions and the CMIP5 models

    Science.gov (United States)

    Sahai, A. K.; Borah, N.; Chattopadhyay, R.; Joseph, S.; Abhilash, S.

    2016-06-01

    The recent annually averaged warming of the Antarctic Peninsula, and of West Antarctica, stands in stark contrast to very small trends over East Antarctica. This asymmetry arises primarily from a highly significant warming of West Antarctica in austral spring and a cooling of East Antarctica in austral autumn. Here we examine whether this East-West asymmetry is a response to anthropogenic climate forcings or a manifestation of natural climate variability. We compare the observed Antarctic surface air temperature trends over two distinct time periods (1960-2005 and 1979-2005), and with those simulated by 40 models participating in Phase 5 of the Coupled Model Intercomparison Project (CMIP5). We find that the observed East-West asymmetry differs substantially between the two periods and, furthermore, that it is completely absent from the forced response seen in the CMIP5 multi-model mean, from which all natural variability is eliminated by the averaging. We also examine the relationship between the Southern Annular mode (SAM) and Antarctic temperature trends, in both models and reanalyses, and again conclude that there is little evidence of anthropogenic SAM-induced driving of the recent temperature trends. These results offer new, compelling evidence pointing to natural climate variability as a key contributor to the recent warming of West Antarctica and of the Peninsula.

  18. Lake-level variations of Lago Fagnano, Tierra del Fuego: observations, modelling and interpretation

    Directory of Open Access Journals (Sweden)

    Luciano MENDOZA

    2010-02-01

    Full Text Available The lake-level variations of Lago Fagnano, the largest lake in Tierra del Fuego, southernmost South America, on time scales from a few minutes to three years are investigated using a geodetic approach and applying the tools of time series analysis. Based on pressure tide gauge records at three locations in the lake precise lake-level time series are derived. The analysis of the observed variations in space, time and frequency domain leads to the separation of the principal force-response mechanisms. We show that the lake-level variations in Lago Fagnano can be described essentially as a combination of lake-level shift and tilt and of surface seiches. Regarding the lake-level response to air-pressure forcing, a significant departure from the inverse barometer model is found. Surface seiches dynamics are particularly intensive in Lago Fagnano pointing towards exceptionally low dissipative friction. An undisturbed series of seiches lasting eleven days is presented; and at least eleven longitudinal modes are identified. Based on the characterisation of the main contributions in space and time as well as their relation to the driving forces, a model for the transfer of the lake-level variations at a reference point to an arbitrary location in the lake with an accuracy of 1 cm is developed.

  19. Distinguishing between anthropogenic and climatic impacts on lake size: a modeling approach using data from Ebinur Lake in arid northwest China

    Directory of Open Access Journals (Sweden)

    Long Ma

    2014-03-01

    Full Text Available Evaluation of anthropogenic and climatic impacts on lake size variation is important for maintaining ecosystem integrity and sustaining societal development. We assumed that climate and human activity are the only drivers of lake-size variation and are independent of each other. We then evaluated anthropogenic and climatic effects on hydrological processes, using a multivariate linear model. Macro-economic data were used to describe the anthropogenic impact on lake surface area in our approach. Ebinur Lake is a shallow, closed, saline lake in arid northwest China; it has shrunk at a rapid rate over the past half century. Using our new method, we explored temporal trends of anthropogenic and climatic impacts on the lake over the past 50 years. Assessment indices indicate that the model represents observed data quite well. Compared with the reference period of 1955-1960, impacts of climate change across the catchment were generally positive with respect to lake area, except for the period from 1961 to 1970. Human activity was responsible for a reduction in lake surface area of 286.8 km2 over the last 50 years. Our approach, which uses economic variables to describe the anthropogenic impact on lake surface area, enables us to explain the lake responses to climate change and human activities quantitatively.

  20. Compilation of watershed models for tributaries to the Great Lakes, United States, as of 2010, and identification of watersheds for future modeling for the Great Lakes Restoration Initiative

    Science.gov (United States)

    Coon, William F.; Murphy, Elizabeth A.; Soong, David T.; Sharpe, Jennifer B.

    2011-01-01

    As part of the Great Lakes Restoration Initiative (GLRI) during 2009–10, the U.S. Geological Survey (USGS) compiled a list of existing watershed models that had been created for tributaries within the United States that drain to the Great Lakes. Established Federal programs that are overseen by the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Army Corps of Engineers (USACE) are responsible for most of the existing watershed models for specific tributaries. The NOAA Great Lakes Environmental Research Laboratory (GLERL) uses the Large Basin Runoff Model to provide data for the management of water levels in the Great Lakes by estimating United States and Canadian inflows to the Great Lakes from 121 large watersheds. GLERL also simulates streamflows in 34 U.S. watersheds by a grid-based model, the Distributed Large Basin Runoff Model. The NOAA National Weather Service uses the Sacramento Soil Moisture Accounting model to predict flows at river forecast sites. The USACE created or funded the creation of models for at least 30 tributaries to the Great Lakes to better understand sediment erosion, transport, and aggradation processes that affect Federal navigation channels and harbors. Many of the USACE hydrologic models have been coupled with hydrodynamic and sediment-transport models that simulate the processes in the stream and harbor near the mouth of the modeled tributary. Some models either have been applied or have the capability of being applied across the entire Great Lakes Basin; they are (1) the SPAtially Referenced Regressions On Watershed attributes (SPARROW) model, which was developed by the USGS; (2) the High Impact Targeting (HIT) and Digital Watershed models, which were developed by the Institute of Water Research at Michigan State University; (3) the Long-Term Hydrologic Impact Assessment (L–THIA) model, which was developed by researchers at Purdue University; and (4) the Water Erosion Prediction Project (WEPP) model, which was

  1. Modeling hydrodynamics, temperature and water quality in Henry Hagg Lake, Oregon, 2000-2003

    Science.gov (United States)

    Sullivan, Annette B.; Rounds, Stewart A.

    2004-01-01

    The two-dimensional model CE-QUAL-W2 was used to simulate hydrodynamics, temperature, and water quality in Henry Hagg Lake, Oregon, for the years 2000 through 2003. Input data included lake bathymetry, meteorologic conditions, tributary inflows, tributary temperature and water quality, and lake outflows. Calibrated constituents included lake hydrodynamics, water temperature, orthophosphate, total phosphorus, ammonia, algae, chlorophyll a, zooplankton, and dissolved oxygen. Other simulated constituents included nitrate, dissolved and particulate organic matter, dissolved solids, and suspended sediment. Two algal groups (blue-green algae, and all other algae) were included in the model to simulate the lakes algal communities. Measured lake stage data were used to calibrate the lakes water balance; calibration of water temperature and water quality relied upon vertical profile data taken in the deepest part of the lake near the dam. The model initially was calibrated with data from 200001 and tested with data from 200203. Sensitivity tests were performed to examine the response of the model to specific parameters and coefficients, including the light-extinction coefficient, wind speed, tributary inflows of phosphorus, nitrogen and organic matter, sediment oxygen demand, algal growth rates, and zooplankton feeding preference factors.

  2. Modeling growth, carbon allocation and nutrient budgets of Phragmites australis in Lake Burullus, Egypt

    NARCIS (Netherlands)

    Eid, E.M.; Shaltout, K.H.; Al-Sodany, Y.M.; Soetaert, K.E.R.; Jensen, K.

    2010-01-01

    Phragmites australis is the major component of reed stands covering some 8200 ha along the shores of Lake Burullus (Egypt). We applied a published temperate zone reed model to assess growth and cycling of C and nutrients among the various organs of P. australis in this sub-tropical lake. We aim to q

  3. The application of a phosphorus mass balance model for estimating the carrying capacity of Lake Kariba

    OpenAIRE

    MHLANGA, Lindah; MHLANGA, Wilson; MWERA, Paul

    2013-01-01

    The aim of this study was to use an empirical mass balance equation to estimate the carrying capacity of Lake Kariba, where cage culture for Nile tilapia Oreochromis niloticus has been practiced since 1996. The carrying capacity for the lake was estimated at 33.2 × 103 t per year using the Dillon-Rigler phosphorus budget model.

  4. A Two-dimensional Heat Transfer Model for Atmosphere-land System in the Lake-dominated Alaskan Arctic

    Institute of Scientific and Technical Information of China (English)

    LING Feng; ZHANG Ting-jun

    2002-01-01

    Understanding lake ice growth and its sensitivity to climate change is vital to understand the thermal regime of thaw lake systems and predict their response to climate change. In this paper, a physically-based, two-dimensional, non-steady mathematical model is developed for studying the role of shallow tundra lakes in the Alaskan Arctic. Both the radiation absorption in lake water and the phasechange in permafrost are considerd in the model. The materials the model includes are snow, ice, water, unfrozen and frozen soil (peat, silt,sand and gravel). The basic inputs to the model observed mean daily air temperature and snow depth. The ability of this model to simulate lake ice growth and thickness variation, lake water temperature distribution, the thermal regime of permafrost and talik dynamics beneath lakes, and thawing rate of permafrost below and adjacent to shallow thaw lakes offers the potential to describe the effects of climate change in the Alaskan Arctic.

  5. Modeling wave effects on limits of woody vegetation in Catahoula Lake, LA, USA

    Science.gov (United States)

    Edwards, B. L.; Curcic, M.; Keim, R.

    2014-12-01

    Exposure to water waves in lakes is an important control on the structure and distribution of both submerged and shoreline vegetative communities. Wave exposure incident on the shoreline limits the distribution of shrubs on both lake and coastal margins by preventing establishment of seedlings via bed disturbance and uprooting. The goal of this study is to investigate the relationship between bed stress due to wave action and the spatial distribution of woody seedling establishment in Catahoula Lake, Louisiana, USA. The lake bed consists of a broad, seasonally inundated flat bordered by a band of woody shrubs. Annual summer de-watering of the lake allows the lake bed to support a moist-soil herbaceous vegetation community, but recent encroachment by woody shrubs over the past ~70 years threatens ecosystem conversion. We use the University of Miami Wave Model (UMWM) to simulate surface wave evolution and bed shear stress for a range of dominant wind conditions and water levels. UMWM is a 3rdgeneration ocean wave model that solves the wave energy balance equation given wind forcing input. While the model has been previously validated in deep water and coastal ocean applications, this study validates the model in very shallow water where bed-induced wave dissipation is a significant process. Model results show that waves of sufficient energy to prevent establishment or to uproot seedlings are common in areas of the lake that are experiencing the least woody encroachment. Areas of the lake bed that are experiencing encroachment are often sheltered from the strongest waves due to the lakes orientation with respect to dominant winds and prior establishment of woody growth, which dissipates wave energy significantly. Results are consistent with some otherwise-unexplained conditions at the lake such as spatially inconsistent relationships between elevation and vegetation communities. We use model results to investigate feedbacks between woody encoachment (both new and

  6. Morphometric analysis of Russian Plain's small lakes on the base of accurate digital bathymetric models

    Science.gov (United States)

    Naumenko, Mikhail; Guzivaty, Vadim; Sapelko, Tatiana

    2016-04-01

    Lake morphometry refers to physical factors (shape, size, structure, etc) that determine the lake depression. Morphology has a great influence on lake ecological characteristics especially on water thermal conditions and mixing depth. Depth analyses, including sediment measurement at various depths, volumes of strata and shoreline characteristics are often critical to the investigation of biological, chemical and physical properties of fresh waters as well as theoretical retention time. Management techniques such as loading capacity for effluents and selective removal of undesirable components of the biota are also dependent on detailed knowledge of the morphometry and flow characteristics. During the recent years a lake bathymetric surveys were carried out by using echo sounder with a high bottom depth resolution and GPS coordinate determination. Few digital bathymetric models have been created with 10*10 m spatial grid for some small lakes of Russian Plain which the areas not exceed 1-2 sq. km. The statistical characteristics of the depth and slopes distribution of these lakes calculated on an equidistant grid. It will provide the level-surface-volume variations of small lakes and reservoirs, calculated through combination of various satellite images. We discuss the methodological aspects of creating of morphometric models of depths and slopes of small lakes as well as the advantages of digital models over traditional methods.

  7. MERGANSER: an empirical model to predict fish and loon mercury in New England lakes

    Science.gov (United States)

    Shanley, James B.; Moore, Richard; Smith, Richard A.; Miller, Eric K.; Simcox, Alison; Kamman, Neil; Nacci, Diane; Robinson, Keith; Johnston, John M.; Hughes, Melissa M.; Johnston, Craig; Evers, David; Williams, Kate; Graham, John; King, Susannah

    2012-01-01

    MERGANSER (MERcury Geo-spatial AssessmeNtS for the New England Region) is an empirical least-squares multiple regression model using mercury (Hg) deposition and readily obtainable lake and watershed features to predict fish (fillet) and common loon (blood) Hg in New England lakes. We modeled lakes larger than 8 ha (4404 lakes), using 3470 fish (12 species) and 253 loon Hg concentrations from 420 lakes. MERGANSER predictor variables included Hg deposition, watershed alkalinity, percent wetlands, percent forest canopy, percent agriculture, drainage area, population density, mean annual air temperature, and watershed slope. The model returns fish or loon Hg for user-entered species and fish length. MERGANSER explained 63% of the variance in fish and loon Hg concentrations. MERGANSER predicted that 32-cm smallmouth bass had a median Hg concentration of 0.53 μg g-1 (root-mean-square error 0.27 μg g-1) and exceeded EPA's recommended fish Hg criterion of 0.3 μg g-1 in 90% of New England lakes. Common loon had a median Hg concentration of 1.07 μg g-1 and was in the moderate or higher risk category of >1 μg g-1 Hg in 58% of New England lakes. MERGANSER can be applied to target fish advisories to specific unmonitored lakes, and for scenario evaluation, such as the effect of changes in Hg deposition, land use, or warmer climate on fish and loon mercury.

  8. Modeling the global atmospheric transport and deposition of mercury to the Great Lakes

    Directory of Open Access Journals (Sweden)

    Mark D. Cohen

    2016-07-01

    Full Text Available Abstract Mercury contamination in the Great Lakes continues to have important public health and wildlife ecotoxicology impacts, and atmospheric deposition is a significant ongoing loading pathway. The objective of this study was to estimate the amount and source-attribution for atmospheric mercury deposition to each lake, information needed to prioritize amelioration efforts. A new global, Eulerian version of the HYSPLIT-Hg model was used to simulate the 2005 global atmospheric transport and deposition of mercury to the Great Lakes. In addition to the base case, 10 alternative model configurations were used to examine sensitivity to uncertainties in atmospheric mercury chemistry and surface exchange. A novel atmospheric lifetime analysis was used to characterize fate and transport processes within the model. Model-estimated wet deposition and atmospheric concentrations of gaseous elemental mercury (Hg(0 were generally within ∼10% of measurements in the Great Lakes region. The model overestimated non-Hg(0 concentrations by a factor of 2–3, similar to other modeling studies. Potential reasons for this disagreement include model inaccuracies, differences in atmospheric Hg fractions being compared, and the measurements being biased low. Lake Erie, downwind of significant local/regional emissions sources, was estimated by the model to be the most impacted by direct anthropogenic emissions (58% of the base case total deposition, while Lake Superior, with the fewest upwind local/regional sources, was the least impacted (27%. The U.S. was the largest national contributor, followed by China, contributing 25% and 6%, respectively, on average, for the Great Lakes. The contribution of U.S. direct anthropogenic emissions to total mercury deposition varied between 46% for the base case (with a range of 24–51% over all model configurations for Lake Erie and 11% (range 6–13% for Lake Superior. These results illustrate the importance of atmospheric

  9. Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys

    Science.gov (United States)

    Bombosch, Annette; Zitterbart, Daniel P.; Van Opzeeland, Ilse; Frickenhaus, Stephan; Burkhardt, Elke; Wisz, Mary S.; Boebel, Olaf

    2014-09-01

    Seismic surveys are frequently a matter of concern regarding their potentially negative impacts on marine mammals. In the Southern Ocean, which provides a critical habitat for several endangered cetacean species, seismic research activities are undertaken at a circumpolar scale. In order to minimize impacts of these surveys, pre-cruise planning requires detailed, spatio-temporally resolved knowledge on the likelihood of encountering these species in the survey area. In this publication we present predictive habitat modelling as a potential tool to support decisions for survey planning. We associated opportunistic sightings (2005-2011) of humpback (Megaptera novaeangliae, N=93) and Antarctic minke whales (Balaenoptera bonaerensis, N=139) with a range of static and dynamic environmental variables. A maximum entropy algorithm (Maxent) was used to develop habitat models and to calculate daily basinwide/circumpolar prediction maps to evaluate how species-specific habitat conditions evolved throughout the spring and summer months. For both species, prediction maps revealed considerable changes in habitat suitability throughout the season. Suitable humpback whale habitat occurred predominantly in ice-free areas, expanding southwards with the retreating sea ice edge, whereas suitable Antarctic minke whale habitat was consistently predicted within sea ice covered areas. Daily, large-scale prediction maps provide a valuable tool to design layout and timing of seismic surveys as they allow the identification and consideration of potential spatio-temporal hotspots to minimize potential impacts of seismic surveys on Antarctic cetacean species.

  10. Modeling of sediment and heavy metal transport in Taihu Lake, China

    Institute of Scientific and Technical Information of China (English)

    WANG Chao; SHEN Chao; WANG Pei-fang; QIAN Jin; HOU Jun; LIU Jia-jia

    2013-01-01

    With the current rapid economic growth,heavy metal pollution has become one of the key issues in the Taihu Lake.Although heavy metal pollution levels and distributions of the Taihu Lake have previously been described,an effective model to describe the transport process of heavy metals between the water column and sediment bed for this lake is not available.It is known that heavy metals in the water column can be related to the resuspension of sediment in the lake bed.In this study,we set up a coupled model of relating hydrodynamics,sediment and heavy metals based on Environmental Fluid Dynamics Code (EFDC),and applied it to Taihu Lake,China.For calibration and validation of the model,we employed two series of field sampling data taken all over Taihu Lake during April and July of 2009.The results show that the hydrodynamics simulations of the coupled model agree with the observations reasonably well and the sediment and heavy metal model shows similar variation trends during the simulation.Our results indicate that the model can be used for simulating the sediment and heavy metal transport process in the Taihu Lake and here we provide an effective tool for water quality management at small time scales.

  11. Using a coupled groundwater/surfacewater model to predict climate-change impacts to lakes in the Trout Lake watershed, Northern Wisconsin

    Science.gov (United States)

    Walker, John F.; Hunt, Randall J.; Markstrom, Steven L.; Hay, Lauren E.; Doherty, John

    2009-01-01

    A major focus of the U.S. Geological Survey’s Trout Lake Water, Energy, and Biogeochemical Budgets (WEBB) project is the development of a watershed model to allow predictions of hydrologic response to future conditions including land-use and climate change. The coupled groundwater/surface-water model GSFLOW was chosen for this purpose because it could easily incorporate an existing groundwater flow model and it provides for simulation of surface-water processes. The Trout Lake watershed in northern Wisconsin is underlain by a highly conductive outwash sand aquifer. In this area, streamflow is dominated by groundwater contributions; however, surface runoff occurs during intense rainfall periods and spring snowmelt. Surface runoff also occurs locally near stream/lake areas where the unsaturated zone is thin. A diverse data set, collected from 1992 to 2007 for the Trout Lake WEBB project and the co-located and NSF-funded North Temperate Lakes LTER project, includes snowpack, solar radiation, potential evapotranspiration, lake levels, groundwater levels, and streamflow. The timeseries processing software TSPROC (Doherty 2003) was used to distill the large time series data set to a smaller set of observations and summary statistics that captured the salient hydrologic information. The timeseries processing reduced hundreds of thousands of observations to less than 5,000. Model calibration included specific predictions for several lakes in the study area using the PEST parameter estimation suite of software (Doherty 2007). The calibrated model was used to simulate the hydrologic response in the study lakes to a variety of climate change scenarios culled from the IPCC Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Solomon et al. 2007). Results from the simulations indicate climate change could result in substantial changes to the lake levels and components of the hydrologic budget of a seepage lake in the flow system. For a drainage lake

  12. Development of a CE-QUAL-W2 temperature model for Crystal Springs Lake, Portland, Oregon

    Science.gov (United States)

    Buccola, Norman L.; Stonewall, Adam J.

    2016-05-19

    During summer 2014, lake level, streamflow, and water temperature in and around Crystal Springs Lake in Portland, Oregon, were measured by the U.S. Geological Survey and the City of Portland Bureau of Environmental Services to better understand the effect of the lake on Crystal Springs Creek and Johnson Creek downstream. Johnson Creek is listed as an impaired water body for temperature by the Oregon Department of Environmental Quality (ODEQ), as required by section 303(d) of the Clean Water Act. A temperature total maximum daily load applies to all streams in the Johnson Creek watershed, including Crystal Springs Creek. Summer water temperatures downstream of Crystal Springs Lake and the Golf Pond regularly exceed the ODEQ numeric criterion of 64.4 °F (18.0 °C) for salmonid rearing and migration. To better understand temperature contributions of this system, the U.S. Geological Survey developed two-dimensional hydrodynamic water temperature models of Crystal Springs Lake and the Golf Pond. Model grids were developed to closely resemble the bathymetry of the lake and pond using data from a 2014 survey. The calibrated models simulated surface water elevations to within 0.06 foot (0.02 meter) and outflow water temperature to within 1.08 °F (0.60 °C). Streamflow, water temperature, and lake elevation data collected during summer 2014 supplied the boundary and reference conditions for the model. Measured discrepancies between outflow and inflow from the lake, assumed to be mostly from unknown and diffuse springs under the lake, accounted for about 46 percent of the total inflow to the lake.

  13. Testing of SIR (a transformable robotic submarine) in Lake Tahoe for future deployment at West Antarctic Ice Sheet grounding lines of Siple Coast

    Science.gov (United States)

    Powell, R. D.; Scherer, R. P.; Griffiths, I.; Taylor, L.; Winans, J.; Mankoff, K. D.

    2011-12-01

    A remotely operated vehicle (ROV) has been custom-designed and built by DOER Marine to meet scientific requirements for exploring subglacial water cavities. This sub-ice rover (SIR) will explore and quantitatively document the grounding zone areas of the Ross Ice Shelf cavity using a 3km-long umbilical tether by deployment through an 800m-long ice borehole in a torpedo shape, which is also its default mode if operational failure occurs. Once in the ocean cavity it transforms via a diamond-shaped geometry into a rectangular form when all of its instruments come alive in its flight mode. Instrumentation includes 4 cameras (one forward-looking HD), a vertical scanning sonar (long-range imaging for spatial orientation and navigation), Doppler current meter (determine water current velocities), multi-beam sonar (image and swath map bottom topography), sub-bottom profiler (profile sub-sea-floor sediment for geological history), CTD (determine salinity, temperature and depth), DO meter (determine dissolved oxygen content in water), transmissometer (determine suspended particulate concentrations in water), laser particle-size analyzer (determine sizes of particles in water), triple laser-beams (determine size and volume of objects), thermistor probe (measure in situ temperatures of ice and sediment), shear vane probe (determine in situ strength of sediment), manipulator arm (deploy instrumentation packages, collect samples), shallow ice corer (collect ice samples and glacial debris), water sampler (determine sea water/freshwater composition, calibrate real-time sensors, sample microbes), shallow sediment corer (sample sea floor, in-ice and subglacial sediment for stratigraphy, facies, particle size, composition, structure, fabric, microbes). A sophisticated array of data handling, storing and displaying will allow real-time observations and environmental assessments to be made. This robotic submarine and other instruments will be tested in Lake Tahoe in September, 2011 and

  14. Study of tributary inflows in Lake Iseo with a rotating physical model

    Directory of Open Access Journals (Sweden)

    Marco Pilotti

    2014-03-01

    Full Text Available The influence of Coriolis force on the currents of large lakes is well acknowledged; very few contributions, however, investigate this aspect in medium-size lakes where its relevance could be questionable. In order to study the area of influence of the two major tributary rivers in Lake Iseo, a rotating vertically distorted physical model of the northern part of this lake was prepared and used, respecting both Froude and Rossby similarity. The model has a horizontal length scale factor of 8000 and a vertical scale factor of 500 and was used both in homogeneous and in thermally stratified conditions. We explored the pattern of water circulation in front of the entrance mouth for different hydrologic scenarios at the beginning of spring and in summer. We neglected the influence of winds. The primary purposes of the model were twofold: i to increase our level of knowledge of the hydrodynamics of Lake Iseo by verifying the occurrence of dynamical effects related to the Earth’s rotation on the plume of the two tributaries that enter the northern part of the lake and ii to identify the areas of the lake that can be directly influenced by the tributaries’ waters, in order to provide guidance on water quality monitoring in zones of relevant environmental and touristic value. The results of the physical model confirm the relevant role played by the Coriolis force in the northern part of the lake. Under ordinary flow conditions, the model shows a systematic deflection of the inflowing waters towards the western shore of the lake. The inflow triggers a clockwise gyre within the Lovere bay, to the West of the inflow, and a slow counter-clockwise gyre, to the East of the inflow, that returns water towards the river mouth along the eastern shore. For discharges with higher return period, when only the contribution by Oglio River is relevant, the effect of the Earth’s rotation weakens in the entrance zone and the plume has a more rectilinear pattern

  15. Digital elevation model of Walker Lake, West-Central Nevada

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Walker Lake lies within a topographically closed basin in west-central Nevada and is the terminus of the Walker River. Accurately determining the bathymetry and...

  16. The LARsen Ice Shelf System, Antarctica, LARISSA a Model for Antarctic Integrated System Science (AISS) Investigations using Marine Platforms

    Science.gov (United States)

    Domack, E. W.; Huber, B. A.; Vernet, M.; Leventer, A.; Scambos, T. A.; Mosley-Thompson, E. S.; Smith, C. R.; de Batist, M. A.; Yoon, H.; Larissa

    2010-12-01

    The LARISSA program is the first interdisciplinary project funded in the AISS program of the NSF Office of Polar Programs and was officially launched in the closing days of the IPY. This program brings together investigators, students, and media to address the rapid and fundamental changes taking place in the region of the Larsen Ice Shelf and surrounding areas. Scientific foci include: glaciologic and oceanographic interactions, the response of pelagic and benthic ecosystems to ice shelf decay, sedimentary record of ice shelf break disintegration, the geologic evolution of ice shelf systems over the last 100,000 years, paleoclimate/environmental records from marine sediment and ice cores, and the crustal response to ice mass loss at decade to millennial time scales. The first major field season took place this past austral summer aboard the NB Palmer (cruise NBP10-01) which deployed with a multi-layered logistical infrastructure that included: two Bell 220 aircraft, a multifunctional deep water ROV, video guided sediment corer, jumbo piston core, and an array of oceanographic and biological sensors and instruments. In tandem with this ship based operation Twin Otter aircraft supported an ice core team upon the crest of the Bruce Plateau with logistic support provided by the BAS at Rothera Station. Although unusually heavy sea ice prevented much of the original work from being completed in the Larsen Embayment the interdisciplinary approach proved useful. Further the logistical model of ship based aircraft to support interdisciplinary work proved viable, again despite an unusually severe summer meterologic pattern across the northern Antarctic Peninsula. As the program moves forward other vessels will come into play and the model can be applied to interdisciplinary objectives in other regions of Antarctica which are remote and lack land based infrastructure to support coastal field programs in glaciology, geology, or meteorology. This work could then be completed

  17. Variability of the Antarctic Circumpolar Current derived from GRACE retrievals, model simulations and in-situ measurements

    Science.gov (United States)

    Boening, C.; Timmermann, R.; Macrander, A.; Schroeter, J.; Boebel, O.

    2008-12-01

    The Gravity Recovery and Climate Experiment (GRACE) provides estimates of the Earth's static and time-variant gravity field. Solutions from various processing centres (GFZ, CSR, GRGS, JPL etc.) enable us to determine mass redistributions on the globe. Given that land signals are generally large compared to anomalies over the ocean, an assessment of the latter requires a particularly careful filtering of the data. We utilized the Finite Element Sea-Ice Ocean Model (FESOM) to develop a filtering algorithm which relies on the spatial coherency of ocean bottom pressure (OBP) anomalies. Taking large-scale circulation patterns into account, the new filter yields an improved representation of OBP (i.e. ocean mass) variability in the filtered GRACE data. In order to investigate the representation of Antarctic Circumpolar Current (ACC) variability in the pattern-filtered GRACE retrievals, an analysis of OBP anomalies in FESOM results and in-situ measurements has been performed. Data from a PIES (Pressure sensor equipped Inverted Echo Sounder) array (36°S-55°S, 2°W-13°E) south of Africa provides bottom pressure recorder data from 2002-2008 for the ACC region. Based on anomalies of OBP gradients between individual instruments, these in-situ measurements give an estimate of the overall transport variability as well as of the movement of ACC fronts and transport redistribution between different sectors of the ACC. The validation of simulated and satellite-derived OBP anomaly gradients against these data yields a measure for the representation of this variability in FESOM and GRACE. Furthermore, model simulations are used to assess the relation between transport variations in individual filaments of the Southern Ocean and total transport variability in this and other sectors of the ACC.

  18. Europa's Great Lakes

    Science.gov (United States)

    Schmidt, B. E.; Blankenship, D. D.; Patterson, G. W.; Schenk, P. M.

    2012-04-01

    Unique to the surface of Europa, chaos terrain is diagnostic of the properties and dynamics of its icy shell. While models have suggested that partial melt within a thick shell or melt-through of a thin shell may form chaos, neither model has been able to definitively explain all observations of chaos terrain. However, we present a new model that suggests large melt lenses form within the shell and that water-ice interactions above and within these lenses drive the production of chaos. Our analysis of the geomorphology of Conamara Chaos and Thera Macula, was used to infer and test a four-stage lens-collapse chaos formation model: 1) Thermal plumes of warm, pure ice ascend through the shell melting the impure brittle ice above, producing a lake of briny water and surface down draw due to volume reduction. 2) Surface deflection and driving force from the plume below hydraulically seals the water in place. 3) Extension of the brittle ice lid generates fractures from below, allowing brines to enter and fluidize the ice matrix. 4) As the lens and now brash matrix refreeze, thermal expansion creates domes and raises the chaos feature above the background terrain. This new "lense-collapse" model indicates that chaos features form in the presence of a great deal of liquid water, and that large liquid water bodies exist within 3km of Europa's surface comparable in volume to the North American Great Lakes. The detection of shallow subsurface "lakes" implies that the ice shell is recycling rapidly and that Europa may be currently active. In this presentation, we will explore environments on Europa and their analogs on Earth, from collapsing Antarctic ice shelves to to subglacial volcanos in Iceland. I will present these new analyses, and describe how this new perspective informs the debate about Europa's habitability and future exploration.

  19. A mathematical model for lake ontogeny in terms of filling with sediments and macrophyte vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa Univ. (Sweden). Dept. of Biology and Environmental Science

    2004-05-01

    A mathematical model for simulation of lake basin filling processes in areas with positive shore displacement was constructed. The model was calibrated using sediment and catchments data from eight existing lake basins situated in the northern coastal area of the province of Uppland, Sweden. The lake basin filling processes were separated into three phases: basin filling with wave-washed material (silt, silty sand or sand), filling with fine-grained material during the shallow gulf and lake stages, respectively, and filling with vegetation during the lake stage. The basin filling rates for wave-washed material were generally low but varied considerably both between and within lakes. The mean basin filling rate of wave-washed material was 4.1%. The volume of inorganic sediments produced, and basin filling rates during the shallow gulf and lake phases were determined for all the eight lakes. The relationship between basin filling rate and parameters describing the catchments, the former postglacial basins and the lakes, respectively, was determined using multiple regression analysis. The basin filling rate with inorganic sediments was best described by parameters related to former postglacial basin morphometry and current lake morphometry, e.g. basin volume, lake volume, and lake area. The goodness of fit turned out to be 0.99 for a simple regression with basin volume as the sole independent variable. The basin filling with vegetation (Phragmites australis followed by Sphagnum spp.) was treated as a 2-dimensional process. A dataset with 84 bogs was selected from a digital soil map. The ages of the bogs were calculated using a digital elevation map and an equation for shore displacement. The choke-up rate was then calculated by dividing the area of the bogs with their age. A strong exponential relationship exists between areas of the bogs and choke-up rat, and this relationship was then used in the model. The resulting model starts by filling the former coastal basin

  20. Extending one-dimensional models for deep lakes to simulate the impact of submerged macrophytes on water quality

    NARCIS (Netherlands)

    Sachse, R.; Petzoldt, T.; Blumstock, M.; Moreira, S.; Pätzig, M.; Rücker, J.; Janse, J.H.; Mooij, W.M.; Hilt, S.

    2014-01-01

    Submerged macrophytes can stabilise clear water conditions in shallow lakes. However, many existing models for deep lakes neglect their impact. Here, we tested the hypothesis that submerged macrophytes can affect the water clarity in deep lakes. A one-dimensional, vertically resolved macrophyte mode

  1. Sustainable fisheries in shallow lakes: an independent empirical test of the Chinese mitten crab yield model

    Science.gov (United States)

    Wang, Haijun; Liang, Xiaomin; Wang, Hongzhu

    2016-08-01

    Next to excessive nutrient loading, intensive aquaculture is one of the major anthropogenic impacts threatening lake ecosystems. In China, particularly in the shallow lakes of mid-lower Changjiang (Yangtze) River, continuous overstocking of the Chinese mitten crab (Eriocheir sinensis) could deteriorate water quality and exhaust natural resources. A series of crab yield models and a general optimum-stocking rate model have been established, which seek to benefit both crab culture and the environment. In this research, independent investigations were carried out to evaluate the crab yield models and modify the optimum-stocking model. Low percentage errors (average 47%, median 36%) between observed and calculated crab yields were obtained. Specific values were defined for adult crab body mass (135 g/ind.) and recapture rate (18% and 30% in lakes with submerged macrophyte biomass above and below 1 000 g/m2) to modify the optimum-stocking model. Analysis based on the modified optimum-stocking model indicated that the actual stocking rates in most lakes were much higher than the calculated optimum-stocking rates. This implies that, for most lakes, the current stocking rates should be greatly reduced to maintain healthy lake ecosystems.

  2. Identifying the origin of waterbird carcasses in Lake Michigan using a neural network source tracking model

    Science.gov (United States)

    Kenow, Kevin P.; Ge, Zhongfu; Fara, Luke J.; Houdek, Steven C.; Lubinski, Brian R.

    2016-01-01

    Avian botulism type E is responsible for extensive waterbird mortality on the Great Lakes, yet the actual site of toxin exposure remains unclear. Beached carcasses are often used to describe the spatial aspects of botulism mortality outbreaks, but lack specificity of offshore toxin source locations. We detail methodology for developing a neural network model used for predicting waterbird carcass motions in response to wind, wave, and current forcing, in lieu of a complex analytical relationship. This empirically trained model uses current velocity, wind velocity, significant wave height, and wave peak period in Lake Michigan simulated by the Great Lakes Coastal Forecasting System. A detailed procedure is further developed to use the model for back-tracing waterbird carcasses found on beaches in various parts of Lake Michigan, which was validated using drift data for radiomarked common loon (Gavia immer) carcasses deployed at a variety of locations in northern Lake Michigan during September and October of 2013. The back-tracing model was further used on 22 non-radiomarked common loon carcasses found along the shoreline of northern Lake Michigan in October and November of 2012. The model-estimated origins of those cases pointed to some common source locations offshore that coincide with concentrations of common loons observed during aerial surveys. The neural network source tracking model provides a promising approach for identifying locations of botulinum neurotoxin type E intoxication and, in turn, contributes to developing an understanding of the dynamics of toxin production and possible trophic transfer pathways.

  3. Hydrologic behaviour of the Lake of Monate (Italy): a parsimonious modelling strategy

    Science.gov (United States)

    Tomesani, Giulia; Soligno, Irene; Castellarin, Attilio; Baratti, Emanuele; Cervi, Federico; Montanari, Alberto

    2016-04-01

    The Lake of Monate (province of Varese, Northern Italy), is a unique example of ecosystem in equilibrium. The lake water quality is deemed excellent notwithstanding the intensive agricultural cultivation, industrial assets and mining activities characterising the surrounding areas. The lake has a true touristic vocation and is the only swimmable water body of the province of Varese, which counts several natural lakes. Lake of Monate has no tributary and its overall watershed area is equal to c.a. 6.6 km2 including the lake surface (i.e. 2.6 km2), of which 3.3 out of c.a. 4.0 km2 belong to the topographical watershed, while the remaining 0.7 km2 belong to the underground watershed. The latter is larger than the topographical watershed due to the presence of moraine formations on top of the limestone bedrock. The local administration recently promoted an intensive environmental monitoring campaign that aims to reach a better understanding of the hydrology of the lake and the subsurface water fluxes. The monitoring campaign started in October 2013 and, as a result, several meteoclimatic and hydrologic data have been collected up to now at daily and hourly timescales. Our study focuses on a preliminary representation of the hydrological behaviour of the lake through a modified version of HyMOD, a conceptual 5-parameter lumped rainfall-runoff model based on the probability-distributed soil storage capacity. The modified model is a semi-distributed application of HyMOD that uses the same five parameters of the original version and simulates the rainfall-runoff transformation for the whole lake watershed at daily time scale in terms of: direct precipitation on, and evaporation from, the lake surface; overall lake inflow, by separating the runoff component (topographic watershed) from the groundwater component (overall watershed); lake water-level oscillation; streamflow at the lake outlet. We used the first year of hydrometeorological observations as calibration data and

  4. Modelling of atmospheric transport and deposition of toxaphene into the great lakes ecosystem

    Science.gov (United States)

    Voldner, E. C.; Schroeder, W. H.

    Toxaphene, not extensively used in the Great Lakes basin, has been found in fish, lake water, ambient air and precipitation in this region. It has been suggested that the atmosphere constitutes a primary transport route of toxaphene to the Great Lakes from the major source regions in the southern U.S. Environmental measurements are too few to estimate the input of toxaphene to the Great Lakes basins. The ASTRAP model, used in acid rain research, was modified for simulation of the atmospheric pathway of toxaphene. Based on emission inventories, derived from use patterns in North America for 1976 and 1980, air concentration and deposition of toxaphene to the Great Lakes were estimated. The results confirm that the atmosphere is a major transport route of toxaphene to the Great Lakes region. They also show that toxaphene can be transported to the North Atlantic. Total deposition to the Lakes in 1980 was 3-10 t and annual average air concentrations about 0.5ngm -3. Although the information on physical/chemical properties and emissions is incomplete and air quality and precipitation chemistry measurements of toxaphene are few and uncertain, model predictions show good agreement with the measurements.

  5. Recovery of acidified mountain lakes in Norway as predicted by the MAGIC model

    Directory of Open Access Journals (Sweden)

    Bernard J. COSBY

    2004-02-01

    Full Text Available As part of the EU project EMERGE the biogeochemical model MAGIC was used to reconstruct acidification history and predict future recovery for mountain lakes in two regions of Norway. Central Norway (19 lakes receives low levels of acid deposition, most of the lakes have undergone only minor amounts of acidification, and all are predicted to recover in the future. Central Norway thus represents a reference area for more polluted regions in southern Norway and elsewhere in Europe. Southern Norway (23 lakes, on the other hand, receives higher levels of acid deposition, nearly all the studied lakes were acidified and had lost fish populations, and although some recovery has occurred during the period 1980-2000 and additional recovery is predicted for the next decades, the model simulations indicated that the majority of the lakes will not achieve water quality sufficient to support trout populations. Uncertainties in these predictions include possible future N saturation and the exacerbating effects of climate change. The mountain lakes of southern Norway are among the most sensitive in Europe. For southern Norway additional measures such as stricter controls of emissions of air pollutants will be required to obtain satisfactory water quality in the future.

  6. Testing models of ice cap extent, South Georgia, sub-Antarctic

    OpenAIRE

    Barlow, NLM; Bentley, MJ; G. Spada; Evans, DJA; Hansom, JD; Brader, MD; White, DA; Zander, A; Berg, S.

    2016-01-01

    The extent of Last Glacial Maximum ice in South Georgia is contested, with two alternative hypotheses: an extensive (maximum) model of ice reaching the edge of the continental shelf, or a restricted (minimum) model with ice constrained within the inner fjords. We present a new relative sea-level dataset for South Georgia, summarising published and new geomorphological evidence for the marine limit and elevations of former sea levels on the island. Using a glacial isostatic adjustment model (A...

  7. Geochemistry, mineralogy, and chemical modeling of the acid crater lake of Kawah Ijen Volcano, Indonesia

    Science.gov (United States)

    Delmelle, Pierre; Bernard, Alain

    1994-06-01

    The Kawah Ijen volcano—with a record of phreatic eruptions—has its 1000 m wide crater filled with a lake that has existed for at least one century. At present, the lake waters are hot ( T ≈ 37° C), strongly mineralized (TDS = 105 g/L) and extremely acidic ( pH ≈ 0.4). By its volume, the Javanese lake is probably the largest accumulation in the world of such acidic waters. Mineralogy of the suspended solids within the lake waters suggests that concentrations of Si, Ca, Ti, and Ba are controlled by precipitation of silica, gypsum, anatase, and barite. Lake sediment is composed of chemical precipitates with composition similar to the suspended solids. Thermodynamic calculations predict that the lake waters have reached equilibrium with respect to α-cristobalite, barite, gypsum, anglesite, celestite, and amorphous silica, in agreement with the analytical observations. Significant concentrations of ferric iron suggest that the current lake waters are fairly oxidized. Sulfides are absent in the water column but are always present in the native S spherules that form porous aggregates which float on the lake. The presence of native S provides direct evidence of more reduced conditions at the lake floor where H 2S is probably being injected into the lake. With progressive addition of H 2S to the acid waters, native S, pyrite, and enargite are theoretically predicted to be saturated. Reactions between upward streaming H 2S-bearing gases discharged by subaqueous fumaroles, and metals dissolved in the acidic waters could initiate precipitation of these sulfides. A model of direct absorption of hot magmatic gases into cool water accounts for the extreme acidity of the crater lake. Results show that strongly acidic, sulfate-rich solutions are formed under oxidizing conditions at high gas/water ratios. Reactions between the acidic fluids and the Ijen andesite were modeled to account for elevated cation concentrations in lake water. Current concentrations of conservative

  8. Lagrangian and Control Volume Models for Prediction of Cooling Lake Performance at SRP

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, A.J.

    2001-06-26

    The model validation described in this document indicates that the methods described here and by Cooper (1984) for predicting the performance of the proposed L-Area cooling lake are reliable. Extensive observations from the Par Pond system show that lake surface temperatures exceeding 32.2 degrees C (90 degrees F) are attained occasionally in the summer in areas where there is little or no heating from the P-Area Reactor. Regulations which restrict lake surface temperatures to less than 32.2 degrees C should be structured to allow for these naturally-occurring thermal excursions.

  9. The importance of sea-ice area biases in 21st century multi-model projections of Antarctic net precipitation and temperature and their relative change

    Science.gov (United States)

    Bracegirdle, T.

    2015-12-01

    Climate models exhibit large biases in sea ice area (SIA) in their historical simulations. This study has explored the impacts of these biases on multi-model uncertainty in CMIP5 ensemble projections of 21st century change in Antarctic surface temperature, net precipitation and SIA. The analysis is based on time slice climatologies in the RCP8.5 future scenario (2070-2099) and historical (1970-1999) simulations across 37 different CMIP5 models. Projected changes in net precipitation, temperature and SIA are found to be strongly associated with simulated historical mean SIA (e.g. cross-model correlations of r = 0.77, 0.70 and -0.86, respectively). Furthermore, historical SIA bias is found to have a large impact on the simulated ratio between net precipitation response and temperature response. This ratio is smaller in models with smaller-than-observed historical SIA. These findings are particularly relevant to quantifying and reducing model uncertainty in projections of Antarctic surface mass balance and associated contributions to sea level change.

  10. PREDICTED SEDIMENTARY SECTION OF SUBGLACIAL LAKE VOSTOK

    Directory of Open Access Journals (Sweden)

    G. I. Leychenkov

    2012-01-01

    Full Text Available In early February 2012, the drill hole at the Vostok Station encountered theLakeVostokwater. This step is important to study the lake composition including possible microbial life and to model subglacial environments however, the next ambitious target of the Vostok Drilling Project is sampling of bottom sediments, which contain the unique record of ice sheet evolution and environmental changes in centralAntarcticafor millions of years. In this connection, the forecast of sedimentary succession based on existing geophysical data, study of mineral inclusions in the accretion ice cores and tectonic models is important task. Interpretation of Airborne geophysical data suggests thatLakeVostokis the part of spacious rift system, which exists at least from Cretaceous. Reflection and refraction seismic experiments conducted in the southern part ofLakeVostokshow very thin (200–300 m stratified sedimentary cover overlying crystalline basement with velocity of 6.0–6.2 km/s. At present, deposition in southernLakeVostokis absent and similar conditions occurred likely at least last3 m.y. when ice sheet aboveLakeVostokchanged insignificantly. It can be also inferred that from the Late Miocene the rate of deposition inLakeVostokwas extremely low and so the most of sedimentary section is older being possibly of Oligocene to early to middle Miocene age when ice sheet oscillated and deposition was more vigorous. If so, the sampling of upper few meters of this condensed section is very informative in terms of history of Antarctic glaciation. Small thickness of sedimentary cover raises a question about existence of lake (rift depression during preglacial and early glacial times.

  11. Hydrodynamic and Inundation Modeling of China’s Largest Freshwater Lake Aided by Remote Sensing Data

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2015-04-01

    Full Text Available China’s largest freshwater lake, Poyang Lake, is characterized by rapid changes in its inundation area and hydrodynamics, so in this study, a hydrodynamic model of Poyang Lake was established to simulate these long-term changes. Inundation information was extracted from Moderate Resolution Imaging Spectroradiometer (MODIS remote sensing data and used to calibrate the wetting and drying parameter by assessing the accuracy of the simulated inundation area and its boundary. The bottom friction parameter was calibrated using current velocity measurements from Acoustic Doppler Current Profilers (ADCP. The results show the model is capable of predicting the inundation area dynamic through cross-validation with remotely sensed inundation data, and can reproduce the seasonal dynamics of the water level, and water discharge through a comparison with hydrological data. Based on the model results, the characteristics of the current velocities of the lake in the wet season and the dry season of the lake were explored, and the potential effect of the current dynamic on water quality patterns was discussed. The model is a promising basic tool for prediction and management of the water resource and water quality of Poyang Lake.

  12. Hydrocarbon degradation by antarctic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cavanagh, J.A.E.; Nichols, P.D.; McMeekin, T.A.; Franzmann, P.D. [Univ. of Tasmania (Australia)] [and others

    1996-12-31

    Bacterial cultures obtained from sediment samples collected during a trial oil spill experiment conducted at Airport beach, Eastern Antarctica were selectively enriched for n-alkane-degrading and phenanthrenedegrading bacteria. Samples were collected from a control site and sites treated with different hydrocarbon mixtures - Special Antarctic blend (SAB), BP-Visco and orange roughy oils. One set of replicate sites was also treated with water from Organic Lake which had previously been shown to contain hydrocarbon-degrading bacteria. No viable bacteria were obtained from samples collected from sites treated with orange roughy oil. Extensive degradation of n-alkanes by enrichment cultures obtained from sites treated with SAB and BP-Visco occurred at both 25{degrees}C and 10{degrees}C. Extensive degradation of phenanthrene also occurred in enrichment cultures from these sites grown at 25{degrees}C. Concurrent increases of polar lipid in these cultures were also observed. The presence of 1,4-naphthaquinone and 1-naphthol during the growth of the cultures on phenanthrene is unusual and warrants further investigation of the mechanism of phenanthrene-degradation by these Antarctic bacteria.

  13. ANALYSIS OF WATER QUALITY IN SHALLOW LAKES WITH A TWO-DIMENSIONAL FLOW-SEDIMENT MODEL

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The governing equation for sediment pollutions was derived based on the turbulent diffusion of pollutants in shallow lakes. Coupled with shallow water equations, a depth-averaged 2-D flow and water quality model was developed. By means of the conservation law, a proposed differential equation for the change of sediment pollutants was linked to the 2-D equations. Under the framework of the finite volume method, the Osher approximate Riemann solver was employed to solve the equations. An analytical resolution was used to examine the model capabilities. Simulated results matched the exact solutions especially well. As an example, the simulation of CODMn in the Wuli Lake, a part of the Taihu lake, was conducted, which led to reasonable results. This study provides a new approach and a practical tool for the simulation of flow and water quality in shallow lakes.

  14. Testing models of ice cap extents, South Georgia, sub-Antarctic

    OpenAIRE

    N. L. M. Barlow; Bentley, M.J.; G. Spada; Evans, D.J.A.; Hansom, J.D.; Brader, M.D.; White, D. A.; Zander, A; Berg, S.

    2016-01-01

    The extent of Last Glacial Maximum ice in South Georgia is\\ud contested, with two alternative hypotheses: an extensive (maximum) model ofice reaching the edge of the continental shelf, or a restricted(minimum) model with ice constrained within the inner fjords. We present new relative sea-level dataset for South Georgia, summarising published\\ud and new geomorphological evidence for the marine limit and elevations offormer sea levels on the island. Using a glacial isostatic adjustmentmodel (A...

  15. Reconstruction and modelling of the 1977 Glacial Lake Outburst Flood (GLOF) of the Engaño Lake, Chilean Patagonia.

    Science.gov (United States)

    Iribarren Anacona, Pablo; Norton, Kevin; Mackintosh, Andrew

    2015-04-01

    Floods from moraine-dammed lake failures can result in severe damage to mountain communities. GLOFs can also cause long-standing effects in riverine landscapes, due to the high intensity (i.e. great depth and high velocities) and long reach capacity of these events. GLOFs may increase in frequency as glaciers retreat and new lakes develop, highlighting the need for a better understanding of GLOF dynamics and the measures to reduce their negative outcomes. In Patagonia at least 16 moraine-dammed lakes have failed in historic time, however, data about GLOF dynamics and impacts are limited since GLOFs have mainly affected uninhabited areas and ungauged rivers. In March 1977, however, a GLOF flooded a small village (~130 inhabitants) in Chilean Patagonia. We reconstruct the dynamics of this event by semi-structured interviews, interpretation of satellite images (Landsat MSS) and two dimensional (2D) hydraulic modelling (using HEC-RAS 5.0 BETA and the SRTM v4 DEM). This reconstruction provides insights into GLOF behaviour, as well as the planning issues that led to socioeconomic consequences, which included relocation of the village. We mapped the flood extent and compiled data of flood depth and timing to constrain the 2D GLOF simulations. Modelling shows that the water released by the GLOF was in the order of 12-13 million cubic metres and that the flood reached Bahía Murta Viejo, located ~26 km from the failed lake, 2-3 hours after the moraine dam was breached. The flood lasted for about ten hours (at the village), although the peak discharge occurred after only one hour at this site. The maximum water depth at Bahía Murta Viejo was 1.5 m, however, water depths of up to 20 metres were simulated in upstream constricted reaches. The overall flood dynamics suggested by interviews and geomorphic mapping, including hydraulic ponding upstream of bedrock gorges, was well represented in the 2D simulations in spite of the coarse resolution (~80 m) of the DEM used. The

  16. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    Directory of Open Access Journals (Sweden)

    S. Greene

    2014-07-01

    Full Text Available Microbial methane (CH4 ebullition (bubbling from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS constitutes a novel mode of CH4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH4 cycle in Goldstream Lake, a thermokarst (thaw lake in interior Alaska. We find that summertime ebullition dominates annual CH4 emissions to the atmosphere. Eighty percent of CH4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH4 dissolution from trapped bubbles, and greater CH4 emissions from northern lakes.

  17. Testing models of ice cap extent, South Georgia, sub-Antarctic

    Science.gov (United States)

    Barlow, N. L. M.; Bentley, M. J.; Spada, G.; Evans, D. J. A.; Hansom, J. D.; Brader, M. D.; White, D. A.; Zander, A.; Berg, S.

    2016-12-01

    The extent of Last Glacial Maximum ice in South Georgia is contested, with two alternative hypotheses: an extensive (maximum) model of ice reaching the edge of the continental shelf, or a restricted (minimum) model with ice constrained within the inner fjords. We present a new relative sea-level dataset for South Georgia, summarising published and new geomorphological evidence for the marine limit and elevations of former sea levels on the island. Using a glacial isostatic adjustment model (ALMA) specifically suited to regional modelling and working at high spatial resolutions, combined with a series of simulated ice-load histories, we use the relative sea-level data to test between the restricted and extensive ice extent scenarios. The model results suggest that there was most likely an extensive Last Glacial Maximum glaciation of South Georgia, implying that the island was covered by thick (>1000 m) ice, probably to the edge of the continental shelf, with deglaciation occurring relatively early (ca. 15 ka BP, though independent data suggest this may have been as early as 18 ka). The presence of an extensive ice cap extending to the shelf edge would imply that if there were any biological refugia around South Georgia, they must have been relatively localised and restricted to the outermost shelf.

  18. GLIMMER Antarctic Ice Sheet Model,an experimental research of moving boundary condition

    Institute of Scientific and Technical Information of China (English)

    Tang Xueyuan; Sun Bo; Zhang Zhanhai; Li Yuansheng; Yang Qinghua

    2008-01-01

    A 3 D coupled ice sheet model,GLIMMER model is introduced,and an idealized ice sheet experiment under the EISMINT 1 criterion of moving boundary condition is presented.The results of the experiment reveal that for a steady state ice sheet profile the characteristic curves describe the process of evolution which are accordant with theoretical estimates.By solving the coupled thermodynamics equations of ice sheet,one may find the characteristic curves which derived from the conservation of the mass,energy and momentum to the ice flow profile.At the same time,an agreement,approximate to the GLIMMER case and the confirmed theoretical results,is found.Present study is explorihg work to introduceand discuss the handicaps of EISMINT criterion and GLIMMER,and prospect a few directions of the GLIMMER model.

  19. On the influence of model physics on simulations of Arctic and Antarctic sea ice

    Directory of Open Access Journals (Sweden)

    F. Massonnet

    2011-09-01

    Full Text Available Two hindcast (1983–2007 simulations are performed with the global, ocean-sea ice models NEMO-LIM2 and NEMO-LIM3 driven by atmospheric reanalyses and climatologies. The two simulations differ only in their sea ice component, while all other elements of experimental design (resolution, initial conditions, atmospheric forcing are kept identical. The main differences in the sea ice models lie in the formulation of the subgrid-scale ice thickness distribution, of the thermodynamic processes, of the sea ice salinity and of the sea ice rheology. To assess the differences in model skill over the period of investigation, we develop a set of metrics for both hemispheres, comparing the main sea ice variables (concentration, thickness and drift to available observations and focusing on both mean state and seasonal to interannual variability. Based upon these metrics, we discuss the physical processes potentially responsible for the differences in model skill. In particular, we suggest that (i a detailed representation of the ice thickness distribution increases the seasonal to interannual variability of ice extent, with spectacular improvement for the simulation of the recent observed summer Arctic sea ice retreats, (ii the elastic-viscous-plastic rheology enhances the response of ice to wind stress, compared to the classical viscous-plastic approach, (iii the grid formulation and the air-sea ice drag coefficient affect the simulated ice export through Fram Strait and the ice accumulation along the Canadian Archipelago, and (iv both models show less skill in the Southern Ocean, probably due to the low quality of the reanalyses in this region and to the absence of important small-scale oceanic processes at the models' resolution (~1°.

  20. Snow and firn density variability on the Greenland and Antarctic Ice Sheets from observations, the MAR regional climate model, and the RACMO firn model

    Science.gov (United States)

    Alexander, P. M.; Koenig, L.; Datta, R.; Tedesco, M.; Kuipers Munneke, P.; Ligtenberg, S.; Fettweis, X.; van den Broeke, M.

    2015-12-01

    The density of snow and firn of the Greenland and Antarctic Ice Sheets (GrIS and AIS) is an important parameter in ice sheet surface mass balance (SMB). Snow and firn densities are needed to convert satellite- and airborne-derived snow thickness changes into surface mass changes. Moreover, density directly impacts SMB by influencing the amount of liquid water that can be stored in firn and snow at the ice sheet surface. Using recently updated density profiles from the SUMup community dataset, we examine spatial and temporal variations in measured densities over the GrIS and AIS, and evaluate modeled profiles from the Modèle Atmosphérique Régionale (MAR) RCM and the firn model of the Regional Atmospheric Climate Model (RACMO2). The MAR model tends to underestimate densities in the first meter of the snowpack over both ice sheets, although the biases are spatially variable. We provide results regarding the relationship between modeled biases and parameters such as the time and location of the sample profile, and climatology at the profile location. We also explore whether recent increases in surface air temperature and melting over the Greenland ice have led to changes in simulated density profiles.

  1. Reduction of Waste Water in Erhai Lake Based on MIKE21 Hydrodynamic and Water Quality Model

    Directory of Open Access Journals (Sweden)

    Changjun Zhu

    2013-01-01

    Full Text Available In order to study the ecological water environment in Erhai Lake, different monitoring sections were set to research the change of hydrodynamics and water quality. According to the measured data, MIKE21 Ecolab, the water quality simulation software developed by DHI, is applied to simulate the water quality in Erhai Lake. The hydrodynamics model coupled with water quality is established by MIKE21FM software to simulate the current situation of Erhai Lake. Then through the comparison with the monitoring data, the model parameters are calibrated and the simulation results are verified. Based on this, water quality is simulated by the two-dimensional hydrodynamics and water quality coupled model. The results indicate that the level of water quality in the north and south of lake is level III, while in the center of lake, the water quality is level II. Finally, the water environment capacity and total emmision reduction of pollutants are filtered to give some guidance for the water resources management and effective utilization in the Erhai Lake.

  2. A heuristic simulation model of Lake Ontario circulation and mass balance transport

    Science.gov (United States)

    McKenna, J.E.; Chalupnicki, M.A.

    2011-01-01

    The redistribution of suspended organisms and materials by large-scale currents is part of natural ecological processes in large aquatic systems but can contribute to ecosystem disruption when exotic elements are introduced into the system. Toxic compounds and planktonic organisms spend various lengths of time in suspension before settling to the bottom or otherwise being removed. We constructed a simple physical simulation model, including the influence of major tributaries, to qualitatively examine circulation patterns in Lake Ontario. We used a simple mass balance approach to estimate the relative water input to and export from each of 10 depth regime-specific compartments (nearshore vs. offshore) comprising Lake Ontario. Despite its simplicity, our model produced circulation patterns similar to those reported by more complex studies in the literature. A three-gyre pattern, with the classic large counterclockwise central lake circulation, and a simpler two-gyre system were both observed. These qualitative simulations indicate little offshore transport along the south shore, except near the mouths of the Niagara River and Oswego River. Complex flow structure was evident, particularly near the Niagara River mouth and in offshore waters of the eastern basin. Average Lake Ontario residence time is 8 years, but the fastest model pathway indicated potential transport of plankton through the lake in as little as 60 days. This simulation illustrates potential invasion pathways and provides rough estimates of planktonic larval dispersal or chemical transport among nearshore and offshore areas of Lake Ontario. ?? 2011 Taylor & Francis.

  3. The effect of lakes and reservoirs parameterization on global riverflow modeling

    Science.gov (United States)

    Zajac, Zuzanna; Hirpa, Feyera A.; Revilla-Romero, Beatriz; Salamon, Peter; Burek, Peter; Beck, Hylke E.; Thielen-del Pozo, Jutta

    2016-04-01

    Lakes and man-made reservoirs are key components of terrestrial hydrological systems. They affect flow regimes by modifying the timing and magnitude of stream flowing in and out of the water bodies, making them important physical entities in flood modeling. In this study we used 463 large lakes and 667 large reservoirs obtained from global databases to investigate their effects on daily streamflow simulations of the Global Flood Awareness System (GloFAS). GloFAS is a grid-based ensemble flood forecasting system that produces daily forecasts with a forecast horizon of 30 days. We assessed the sensitivity of the hydrological model outputs to lake and reservoir parameters using Global Sensitivity Analysis (GSA) methods. Evaluation results against observed streamflow show that incorporation of lakes resulted in improvement of model performance downstream for several catchments globally. While inclusion of reservoirs also resulted in improvement of model skill for majority of catchments, it poses more challenges due to the variability of individual reservoir's operating rules. The GSA test identified some lake and reservoir parameters as higher priority for improving the model performance. Focusing on the high priority parameters for model calibration will reduce the dimensionality without significant loss of model skill

  4. Model for trace metal exposure in filter-feeding flamingos at alkaline Rift Valley Lake, Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Y.M.; DiSante, C.J.; Lion, L.W. [Cornell Univ., Ithaca, NY (United States). School of Civil and Environmental Engineering; Thampy, R.J.; Raini, J.A. [Worldwide Fund for Nature, Nakuru (Kenya). Lake Nakuru Conservation and Development Project; Motelin, G.K. [Egerton Univ., Njoro (Kenya). Dept. of Animal Health

    1998-11-01

    Toxic trace metals have been implicated as a potential cause of recent flamingo kills at Lake Nakuru, Kenya. Chromium (Cr), copper (Cu), lead (Pb), and zinc (Zn) have accumulated in the lake sediments as a result of unregulated discharges and because this alkaline lake has no natural outlet. Lesser flamingos (Phoeniconaias minor) at Lake Nakuru feed predominantly on the cyanobacterium Spirulina platensis, and because of their filter-feeding mechanism, they are susceptible to exposure to particle-bound metals. Trace metal adsorption isotherms to lake sediments and S. platensis were obtained under simulated lake conditions, and a mathematical model was developed to predict metal exposure via filter feeding based on predicted trace metal phase distribution. Metal adsorption to suspended solids followed the trend Pb {much_gt} Zn > Cr > Cu, and isotherms were linear up to 60 {micro}g/L. Adsorption to S. platensis cells followed the trend Pb {much_gt} Zn > Cu > Cr and fit Langmuir isotherms for Cr, Cu and Zn and a linear isotherm for Pb. Predicted phase distributions indicated that Cr and Pb in Lake Nakuru are predominantly associated with suspended solids, whereas Cu and Zn are distributed more evenly between the dissolved phase and particulate phases of both S. platensis and suspended solids. Based on established flamingo feeding rates and particle size selection, predicted Cr and Pb exposure occurs predominantly through ingestion of suspended solids, whereas Cu and Zn exposure occurs through ingestion of both suspended solids and S. platensis. For the lake conditions at the time of sampling, predicted ingestion rates based on measured metal concentrations in lake suspended solids were 0.71, 6.2, 0.81, and 13 mg/kg-d for Cr, Cu, Pb, and Zn, respectively.

  5. A two-layer flow model to represent ice-ocean interactions beneath Antarctic ice shelves

    Directory of Open Access Journals (Sweden)

    V. Lee

    2011-01-01

    Full Text Available We develop a two-dimensional two-layer flow model that can calculate melt rates beneath ice shelves from ocean temperature and salinity fields at the shelf front. The cavity motion is split into two layers where the upper plume layer represents buoyant meltwater-rich water rising along the underside of the ice to the shelf front, while the lower layer represents the ambient water connected to the open ocean circulating beneath the plume. Conservation of momentum has been reduced to a frictional geostrophic balance, which when linearized provides algebraic equations for the plume velocity. The turbulent exchange of heat and salt between the two layers is modelled through an entrainment rate which is directed into the faster flowing layer.

    The numerical model is tested using an idealized geometry based on the dimensions of Pine Island Ice Shelf. We find that the spatial distribution of melt rates is fairly robust. The rates are at least 2.5 times higher than the mean in fast flowing regions corresponding to the steepest section of the underside of the ice shelf close to the grounding line and to the converged geostrophic flow along the rigid lateral boundary. Precise values depend on a combination of entrainment and plume drag coefficients. The flow of the ambient is slow and the spread of ocean scalar properties is dominated by diffusion.

  6. Firn air-content of Larsen C Ice Shelf, Antarctic Peninsula, from seismic velocities, borehole surveys and firn modelling

    Science.gov (United States)

    Kulessa, Bernd; Brisbourne, Alex; Booth, Adam; Kuipers Munneke, Peter; Bevan, Suzanne; Luckman, Adrian; Hubbard, Bryn; Gourmelen, Noel; Palmer, Steve; Holland, Paul; Ashmore, David; Shepherd, Andrew

    2016-04-01

    The rising surface temperature of Antarctic Peninsula ice shelves is strongly implicated in ice shelf disintegration, by exacerbating the compaction of firn layers. Firn compaction is expected to warm the ice column and, given sufficiently wet and compacted layers, to allow meltwater to penetrate into surface crevasses and thus enhance hydrofracture potential. Integrating seismic refraction surveys with borehole neutron and firn core density logging, we reveal vertical and horizontal changes in firn properties across Larsen C Ice Shelf. Patterns of firn air-content derived from seismic surveys are broadly similar to those estimated previously from airborne radar and satellite data. Specifically, these estimates show greater firn compaction in the north and landward inlets compared to the south, although spatial gradients in seismic-derived air-contents are less pronounced than those previously inferred. Firn thickness is less than 10 m in the extreme northwest of Larsen C, in Cabinet Inlet, yet exceeds 40 m in the southeast, suggesting that the inlet is a focus of firn compaction; indeed, buried layers of massive refrozen ice were observed in 200 MHz GPR data in Cabinet and Whirlwind Inlets during a field campaign in the 2014-15 austral summer. Depth profiles of firn density provide a reasonable fit with those derived from closely-located firn cores and neutron probe data. Our model of firn structure is driven by RACMO and includes a 'bucket'-type hydrological implementation, and simulates the depth-density profiles in the inlets well. Discrepancies between measured and modelled depth-density profiles become progressively greater towards the ice-shelf front. RACMO incorrectly simulates the particular leeward (sea-ice-influenced) microclimate of the shallow boundary layer, leading to excess melt and/or lack of snowfall. The spatial sampling density of our seismic observations will be augmented following a further field campaign in the 2016-17 austral summer

  7. Large-Ensemble modeling of past and future variations of the Antarctic Ice Sheet with a coupled ice-Earth-sea level model

    Science.gov (United States)

    Pollard, David; DeConto, Robert; Gomez, Natalya

    2016-04-01

    To date, most modeling of the Antarctic Ice Sheet's response to future warming has been calibrated using recent and modern observations. As an alternate approach, we apply a hybrid 3-D ice sheet-shelf model to the last deglacial retreat of Antarctica, making use of geologic data of the last ~20,000 years to test the model against the large-scale variations during this period. The ice model is coupled to a global Earth-sea level model to improve modeling of the bedrock response and to capture ocean-ice gravitational interactions. Following several recent ice-sheet studies, we use Large Ensemble (LE) statistical methods, performing sets of 625 runs from 30,000 years to present with systematically varying model parameters. Objective scores for each run are calculated using modern data and past reconstructed grounding lines, relative sea level records, cosmogenic elevation-age data and uplift rates. The LE results are analyzed to calibrate 4 particularly uncertain model parameters that concern marginal ice processes and interaction with the ocean. LE's are extended into the future with climates following RCP scenarios. An additional scoring criterion tests the model's ability to reproduce estimated sea-level high stands in the warm mid-Pliocene, for which drastic retreat mechanisms of hydrofracturing and ice-cliff failure are needed in the model. The LE analysis provides future sea-level-rise envelopes with well-defined parametric uncertainty bounds. Sensitivities of future LE results to Pliocene sea-level estimates, coupling to the Earth-sea level model, and vertical profiles of Earth properties, will be presented.

  8. Assessing Lake Trophic Status: A Proportional Odds Logistic Regression Model

    Science.gov (United States)

    Lake trophic state classifications are good predictors of ecosystem condition and are indicative of both ecosystem services (e.g., recreation and aesthetics), and disservices (e.g., harmful algal blooms). Methods for classifying trophic state are based off the foundational work o...

  9. Modeling lake trophic state: a random forest approach

    Science.gov (United States)

    Productivity of lentic ecosystems has been well studied and it is widely accepted that as nutrient inputs increase, productivity increases and lakes transition from low trophic state (e.g. oligotrophic) to higher trophic states (e.g. eutrophic). These broad trophic state classi...

  10. Bifurcations of optimal vector fields in the shallow lake model

    NARCIS (Netherlands)

    T. Kiseleva; F.O.O. Wagener

    2010-01-01

    The solution structure of the set of optimal solutions of the shallow lake problem, a problem of optimal pollution management, is studied as we vary the values of the system parameters: the natural resilience, the relative importance of the resource for social welfare and the future discount rate. W

  11. Incorporation of Fine-Grained Sediment Erodibility Measurements into Sediment Transport Modeling, Capitol Lake, Washington

    Science.gov (United States)

    Stevens, Andrew W.; Gelfenbaum, Guy; Elias, Edwin; Jones, Craig

    2008-01-01

    Capitol Lake was created in 1951 with the construction of a concrete dam and control gate that prevented salt-water intrusion into the newly formed lake and regulated flow of the Deschutes River into southern Puget Sound. Physical processes associated with the former tidally dominated estuary were altered, and the dam structure itself likely caused an increase in retention of sediment flowing into the lake from the Deschutes River. Several efforts to manage sediment accumulation in the lake, including dredging and the construction of sediment traps upriver, failed to stop the lake from filling with sediment. The Deschutes Estuary Feasibility Study (DEFS) was carried out to evaluate the possibility of removing the dam and restoring estuarine processes as an alternative ongoing lake management. An important component of DEFS was the creation of a hydrodynamic and sediment transport model of the restored Deschutes Estuary. Results from model simulations indicated that estuarine processes would be restored under each of four restoration alternatives, and that over time, the restored estuary would have morphological features similar to the predam estuary. The model also predicted that after dam-removal, a large portion of the sediment eroded from the lake bottom would be deposited near the Port of Olympia and a marina located in lower Budd Inlet seaward of the present dam. The volume of sediment transported downstream was a critical piece of information that managers needed to estimate the total cost of the proposed restoration project. However, the ability of the model to predict the magnitude of sediment transport in general and, in particular, the volume of sediment deposition in the port and marina was limited by a lack of information on the erodibility of fine-grained sediments in Capitol Lake. Cores at several sites throughout Capitol Lake were collected between October 31 and November 1, 2007. The erodibility of sediments in the cores was later determined in the

  12. Using a Coupled Lake Model with WRF to Improve High-Resolution Regional Climate Simulations

    Science.gov (United States)

    Mallard, M.; Bullock, R.; Nolte, C. G.; Alapaty, K.; Otte, T.; Gula, J.

    2012-12-01

    Lakes can play a significant role in regional climate by modifying air masses through fluxes of heat and moisture and by modulating inland extremes in temperature. Representing these effects becomes more important as regional climate modeling efforts employ finer grid spacing in order to simulate smaller scales. The Weather Research and Forecasting (WRF) model does not simulate lakes explicitly. Instead, lake points are treated as ocean points, with sea surface temperatures (SSTs) interpolated from the nearest neighboring ocean point in the driving coarse-scale fields. This can result in substantial errors for inland lakes such as the Great Lakes. Although prescribed lake surface temperatures (LSTs) can be used for retrospective modeling applications, this may not be desirable for applications involving downscaling future climate scenarios from a global climate model (GCM). In such downscaling simulations, lakes that impact the regional climate in the area of interest may not be resolved by the coarser global input fields. Explicitly simulating the LST would allow WRF to better represent interannual variability in regions significantly affected by lakes, and the influence of such variability on temperature and precipitation patterns. Therefore, coupling a lake model to WRF may lead to more reliable assessments of the impacts of extreme events on human health and the environment. We employ a version of WRF coupled to the Freshwater Lake model, FLake (Gula and Peltier 2012). FLake is a 1D bulk lake model which provides updated LSTs and ice coverage throughout the integration. This two-layer model uses a temperature-depth profile which includes a homogeneous mixed layer at the surface and a thermocline below. The shape of the thermocline is assumed, based on past theoretical and observational studies. Therefore, additional variables required for FLake to run are minimal, and it does not require tuning for individual lakes. These characteristics are advantageous for a

  13. On the Changes of the Hydrological Balance of Caribbean Lakes - Modeling and Observations

    Science.gov (United States)

    Comarazamy, D.; Gonzalez, J.; Glenn, E.; Leon, Y.; Brito, D. R.

    2013-05-01

    The Enriquillo and Sumatra are saltwater lakes located in a rift valley that is a former marine strait created around 1 million years ago when the water level fell and the strait was filled in by river sediments, they are the largest lakes in the Dominican Republic and Haiti, respectively, with Lake Enriquillo being the lowest point in the Caribbean. The lakes, part of the Enriquillo closed water basin in the southwestern region of the island of La Hispaniola, have been experiencing dramatic changes in total lake-surface area coverage during the period 1980-2012. The size of the lakes was determined using remote sensing images (NASA-LANDSAT) analyzed with geographic information system (GIS) at different times during the available record. The size calculation for Lake Enriquillo shows a lake surface area of approximately 276 km2 in 1984 that gradually decreased to 172 km2 in 1996. After a period of fluctuations between 1996 and 2001, the surface area of the lake reaches its lowest point in 2004, at 165 km2. Beginning in 2004, the recent growth of the lake begins and reaches its 1984 size in 2006. Based on surface area measurement for December 2009, the lake size is 333 km2, 17% larger than in 1984 and almost double than in 2004. Sumatra sizes at both ends of the record are 115.96 km2 in 1984 and 134.26 km2 in 2011, an overall 15.8% increase in 27 years. Because the lakes are mostly latitudinally restricted by topography, most of the size changes occur on the southeastern side of Lake Enriquillo, with some growth on the western tip. Determining the causes of lake surface area changes is of extreme importance due to the environmental, social, and economic consequences. The goal of this study is to quantify the changing water balance in these lakes using satellite and ground observations and regional atmospheric modeling. Analyses of environmental variables in the region reflect a hydrological unbalance of the lakes due to changing regional hydro-climatic conditions

  14. Controls and variability of solute and sedimentary fluxes in Antarctic and sub-Antarctic Environments

    Science.gov (United States)

    Zwolinski, Zbigniew

    2015-04-01

    The currently prepared SEDIBUD Book on "Source-to-Sink Fluxes in Undisturbed Cold Environments" (edited by Achim A. Beylich, John C. Dixon and Zbigniew Zwolinski and published by Cambridge University Press) is summarizing and synthesizing the achievements of the International Association of Geomorphologists` (I.A.G./A.I.G.) Working Group SEDIBUD (Sediment Budgets in Cold Environments), which has been active since 2005 (http://www.geomorph.org/wg/wgsb.html). The book comprises five parts. One of them is part about sub-Antarctic and Antarctic Environments. This part "Sub-Antarctic and Antarctic Environments" describes two different environments, namely oceanic and continental ones. Each part contains results of research on environmental drivers and rates of contemporary solute and sedimentary fluxes in selected sites. Apart from describing the environmental conditions of the whole continent of Antarctica and sub-Antarctic islands (Zb.Zwolinski, M.Kejna, A.N.Lastochkin, A.Zhirov, S.Boltramovich) this part of the book characterizes terrestrial polar oases free from multi-year ice and snow covers (Zb.Zwolinski). The detailed results of geoecological and sedimentological research come from different parts of Antarctica. Antarctic continental shelf (E.Isla) is an example of sub-Antarctic oceanic environment. South Shetlands, especially King George Island (Zb.Zwolinski, M.Kejna, G.Rachlewicz, I.Sobota, J.Szpikowski), is an example of sub-Antarctic terrestrial environment. Antarctic Peninsula (G.Vieira, M.Francelino, J.C.Fernandes) and surroundings of McMurdo Dry Valleys (W.B.Lyons, K.A.Welch, J.Levy, A.Fountain, D.McKnight) are examples of Antarctic continental environments. The key goals of the Antarctic and sub-Antarctic book chapters are following: (i) identify the main environmental drivers and rates of contemporary solute and sedimentary fluxes, and (ii) model possible effects of projected climate change on solute and sedimentary fluxes in cold climate environments

  15. Inclusion of mountain wave-induced cooling for the formation of PSCs over the Antarctic Peninsula in a chemistry–climate model

    Directory of Open Access Journals (Sweden)

    A. Orr

    2014-07-01

    Full Text Available An important source of polar stratospheric clouds (PSCs, which play a crucial role in controlling polar stratospheric ozone depletion, is from the temperature fluctuations induced by mountain waves. However, this formation mechanism is usually missing in chemistry–climate models because these temperature fluctuations are neither resolved nor parameterised. Here, we investigate the representation of stratospheric mountain wave-induced temperature fluctuations by the UK Met Office Unified Model (UM at high and low spatial resolution against Atmospheric Infrared Sounder satellite observations for three case studies over the Antarctic Peninsula. At a high horizontal resolution (4 km the mesoscale configuration of the UM correctly simulates the magnitude, timing, and location of the measured temperature fluctuations. By comparison, at a low horizontal resolution (2.5° × 3.75° the climate configuration fails to resolve such disturbances. However, it is demonstrated that the temperature fluctuations computed by a mountain wave parameterisation scheme inserted into the climate configuration (which computes the temperature fluctuations due to unresolved mountain waves are in excellent agreement with the mesoscale configuration responses. The parameterisation was subsequently used to compute the local mountain wave-induced cooling phases in the chemistry–climate configuration of the UM. This increased stratospheric cooling was passed to the PSC scheme of the chemistry–climate model, and caused a 30–50% increase in PSC surface area density over the Antarctic Peninsula compared to a 30 year control simulation.

  16. Using a GIS transfer model to evaluate pollutant loads in the Lake Kinneret watershed, Israel.

    Science.gov (United States)

    Markel, D; Somma, F; Evans, B M

    2006-01-01

    Lake Kinneret (Sea of Galilee) is the only large surface water body in Israel, encompassing an area of 167 km2 and supplying some 30% of the country's fresh water. Pollution from anthropogenic sources and water abstraction for domestic and agricultural uses has long been threatening the water quality of the lake. Point-source pollution in the watershed has decreased drastically with the development of wastewater treatment. However, diffuse pollution from agricultural activities is still an unresolved issue. In this paper we present an application of AVGWLF (a GIS-based watershed load model) to the Lake Kinneret watershed. The model allows one to simulate daily stream flows and monthly sediment, nitrogen, and phosphorus loads discharged to the lake from the surrounding watershed. Results from simulations yield a satisfactory correspondence between simulated and measured daily water volume. Partition by source of total phosphorus delivered to the lake in the period of 2000-04 confirms the reduction in point source nutrient contribution due to improvement of wastewater treatment facilities in the area. Future management should focus on reduction of nutrients originating from septic systems (point sources) and pasture and cropland areas (diffuse sources). Results from simulations will enable watershed managers to prioritize effective management alternatives for protecting the water quality in the lake.

  17. Modelled ocean changes at the Plio-Pleistocene transition driven by Antarctic ice advance

    Science.gov (United States)

    Hill, Daniel J.; Bolton, Kevin P.; Haywood, Alan M.

    2017-01-01

    The Earth underwent a major transition from the warm climates of the Pliocene to the Pleistocene ice ages between 3.2 and 2.6 million years ago. The intensification of Northern Hemisphere Glaciation is the most obvious result of the Plio-Pleistocene transition. However, recent data show that the ocean also underwent a significant change, with the convergence of deep water mass properties in the North Pacific and North Atlantic Ocean. Here we show that the lack of coastal ice in the Pacific sector of Antarctica leads to major reductions in Pacific Ocean overturning and the loss of the modern North Pacific Deep Water (NPDW) mass in climate models of the warmest periods of the Pliocene. These results potentially explain the convergence of global deep water mass properties at the Plio-Pleistocene transition, as Circumpolar Deep Water (CDW) became the common source. PMID:28252023

  18. On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model

    Directory of Open Access Journals (Sweden)

    T. Stockdale

    2012-02-01

    Full Text Available The impact of lakes in numerical weather prediction is investigated in a set of global simulations performed with the ECMWF Integrated Forecasting System (IFS. A Fresh shallow-water Lake model (FLake is introduced allowing the coupling of both resolved and subgrid lakes (those that occupy less than 50% of a grid-box to the IFS atmospheric model. Global fields for the lake ancillary conditions (namely lake cover and lake depth, as well as initial conditions for the lake physical state, have been derived to initialise the forecast experiments. The procedure for initialising the lake variables is described and verified with particular emphasis on the importance of surface water temperature and freezing conditions. The response of short-range near surface temperature to the representation of lakes is examined in a set of forecast experiments covering one full year. It is shown that the impact of subgrid lakes is beneficial, reducing forecast error over the Northern territories of Canada and over Scandinavia particularly in spring and summer seasons. This is mainly attributed to the lake thermal effect, which delays the temperature response to seasonal radiation forcing.

  19. Modeling Hydrodynamics, Water Temperature, and Suspended Sediment in Detroit Lake, Oregon

    Science.gov (United States)

    Sullivan, Annett B.; Rounds, Stewart A.; Sobieszczyk, Steven; Bragg, Heather M.

    2007-01-01

    Detroit Lake is a large reservoir on the North Santiam River in west-central Oregon. Water temperature and suspended sediment are issues of concern in the river downstream of the reservoir. A CE-QUAL-W2 model was constructed to simulate hydrodynamics, water temperature, total dissolved solids, and suspended sediment in Detroit Lake. The model was calibrated for calendar years 2002 and 2003, and for a period of storm runoff from December 1, 2005, to February 1, 2006. Input data included lake bathymetry, meteorology, reservoir outflows, and tributary inflows, water temperatures, total dissolved solids, and suspended sediment concentrations. Two suspended sediment size groups were modeled: one for suspended sand and silt with particle diameters larger than 2 micrometers, and another for suspended clay with particle diameters less than or equal to 2 micrometers. The model was calibrated using lake stage data, lake profile data, and data from a continuous water-quality monitor on the North Santiam River near Niagara, about 6 kilometers downstream of Detroit Dam. The calibrated model was used to estimate sediment deposition in the reservoir, examine the sources of suspended sediment exiting the reservoir, and examine the effect of the reservoir on downstream water temperatures.

  20. Numerical modelling of glacial lake outburst floods using physically based dam-breach models

    Science.gov (United States)

    Westoby, M. J.; Brasington, J.; Glasser, N. F.; Hambrey, M. J.; Reynolds, J. M.; Hassan, M. A. A. M.; Lowe, A.

    2015-03-01

    The instability of moraine-dammed proglacial lakes creates the potential for catastrophic glacial lake outburst floods (GLOFs) in high-mountain regions. In this research, we use a unique combination of numerical dam-breach and two-dimensional hydrodynamic modelling, employed within a generalised likelihood uncertainty estimation (GLUE) framework, to quantify predictive uncertainty in model outputs associated with a reconstruction of the Dig Tsho failure in Nepal. Monte Carlo analysis was used to sample the model parameter space, and morphological descriptors of the moraine breach were used to evaluate model performance. Multiple breach scenarios were produced by differing parameter ensembles associated with a range of breach initiation mechanisms, including overtopping waves and mechanical failure of the dam face. The material roughness coefficient was found to exert a dominant influence over model performance. The downstream routing of scenario-specific breach hydrographs revealed significant differences in the timing and extent of inundation. A GLUE-based methodology for constructing probabilistic maps of inundation extent, flow depth, and hazard is presented and provides a useful tool for communicating uncertainty in GLOF hazard assessment.

  1. Estimation of the mean depth of boreal lakes for use in numerical weather prediction and climate modelling

    Directory of Open Access Journals (Sweden)

    Margarita Choulga

    2014-03-01

    Full Text Available Lakes influence the structure of the atmospheric boundary layer and, consequently, the local weather and local climate. Their influence should be taken into account in the numerical weather prediction (NWP and climate models through parameterisation. For parameterisation, data on lake characteristics external to the model are also needed. The most important parameter is the lake depth. Global database of lake depth GLDB (Global Lake Database is developed to parameterise lakes in NWP and climate modelling. The main purpose of the study is to upgrade GLDB by use of indirect estimates of the mean depth for lakes in boreal zone, depending on their geological origin. For this, Tectonic Plates Map, geological, geomorphologic maps and the map of Quaternary deposits were used. Data from maps were processed by an innovative algorithm, resulting in 141 geological regions where lakes were considered to be of kindred origin. To obtain a typical mean lake depth for each of the selected regions, statistics from GLDB were gained and analysed. The main result of the study is a new version of GLDB with estimations of the typical mean lake depth included. Potential users of the product are NWP and climate models.

  2. A general one-dimensional vertical ecosystem model of Lake Shira (Russia, Khakasia): description, parametrization and analysis

    NARCIS (Netherlands)

    Prokopkin, I.; Mooij, W.M.; Janse, J.H.; Degermendzhy, A.G.

    2010-01-01

    A one-dimensional ecological model of the meromictic brackish Lake Shira (Russia, Khakasia) was developed. The model incorporates state-of-the-art knowledge about the functioning of the lake ecosystem using the most recent field observations and ideas from PCLake, a general ecosystem model of shallo

  3. Snow on Antarctic sea ice

    Science.gov (United States)

    Massom, Robert A.; Eicken, Hajo; Hass, Christian; Jeffries, Martin O.; Drinkwater, Mark R.; Sturm, Matthew; Worby, Anthony P.; Wu, Xingren; Lytle, Victoria I.; Ushio, Shuki; Morris, Kim; Reid, Phillip A.; Warren, Stephen G.; Allison, Ian

    2001-08-01

    Snow on Antarctic sea ice plays a complex and highly variable role in air-sea-ice interaction processes and the Earth's climate system. Using data collected mostly during the past 10 years, this paper reviews the following topics: snow thickness and snow type and their geographical and seasonal variations; snow grain size, density, and salinity; frequency of occurrence of slush; thermal conductivity, snow surface temperature, and temperature gradients within snow; and the effect of snow thickness on albedo. Major findings include large regional and seasonal differences in snow properties and thicknesses; the consequences of thicker snow and thinner ice in the Antarctic relative to the Arctic (e.g., the importance of flooding and snow-ice formation); the potential impact of increasing snowfall resulting from global climate change; lower observed values of snow thermal conductivity than those typically used in models; periodic large-scale melt in winter; and the contrast in summer melt processes between the Arctic and the Antarctic. Both climate modeling and remote sensing would benefit by taking account of the differences between the two polar regions.

  4. Numerical modeling of the spring thermal bar and pollutant transport in a large lake

    Science.gov (United States)

    Tsydenov, Bair O.; Kay, Anthony; Starchenko, Alexander V.

    2016-08-01

    The spring riverine thermal bar phenomenon is investigated numerically on an example of Lake Baikal, and the spread of pollutants coming from the Selenga River is forecast using the 2.5 D non-hydrostatic model in the Boussinesq approximation. This hydrodynamic model takes into account the diurnal variability of the heat fluxes on the lake surface and the effects of wind and the Earth's rotation. The results of numerical modeling show that the variability of the total heat flux over 24 h plays a significant role in the variation of the thermal bar movement rate that contributes to the rapid mixing of impurities entering with river water.

  5. Glacial lake outburst flood risk assessment using combined approaches of remote sensing, GIS and dam break modelling

    Directory of Open Access Journals (Sweden)

    Arpit Aggarwal

    2016-01-01

    and digital elevation model. The volume and depth have been computed using empirical formulae, and other parameters such as cross-sections from the lake to outlet etc. have been prepared in ArcGIS 9.3. The GLOF which can be triggered by Lake 140 was modelled and simulated using MIKE-11 software's hydrodynamic module. As a result, flood values and hydrograph have been obtained. The flood at lake site comes out to be 2611.136 cumec which get mitigated to 1417.844 cumec at the outlet.

  6. Technical evaluation of a total maximum daily load model for Upper Klamath and Agency Lakes, Oregon

    Science.gov (United States)

    Wood, Tamara M.; Wherry, Susan A.; Carter, James L.; Kuwabara, James S.; Simon, Nancy S.; Rounds, Stewart A.

    2013-01-01

    We reviewed a mass balance model developed in 2001 that guided establishment of the phosphorus total maximum daily load (TMDL) for Upper Klamath and Agency Lakes, Oregon. The purpose of the review was to evaluate the strengths and weaknesses of the model and to determine whether improvements could be made using information derived from studies since the model was first developed. The new data have contributed to the understanding of processes in the lakes, particularly internal loading of phosphorus from sediment, and include measurements of diffusive fluxes of phosphorus from the bottom sediments, groundwater advection, desorption from iron oxides at high pH in a laboratory setting, and estimates of fluxes of phosphorus bound to iron and aluminum oxides. None of these processes in isolation, however, is large enough to account for the episodically high values of whole-lake internal loading calculated from a mass balance, which can range from 10 to 20 milligrams per square meter per day for short periods. The possible role of benthic invertebrates in lake sediments in the internal loading of phosphorus in the lake has become apparent since the development of the TMDL model. Benthic invertebrates can increase diffusive fluxes several-fold through bioturbation and biodiffusion, and, if the invertebrates are bottom feeders, they can recycle phosphorus to the water column through metabolic excretion. These organisms have high densities (1,822–62,178 individuals per square meter) in Upper Klamath Lake. Conversion of the mean density of tubificid worms (Oligochaeta) and chironomid midges (Diptera), two of the dominant taxa, to an areal flux rate based on laboratory measurements of metabolic excretion of two abundant species suggested that excretion by benthic invertebrates is at least as important as any of the other identified processes for internal loading to the water column. Data from sediment cores collected around Upper Klamath Lake since the development of the

  7. Measured and modelled trends in European mountain lakes: results of fifteen years of cooperative studies

    Directory of Open Access Journals (Sweden)

    Michela ROGORA

    2004-02-01

    Full Text Available Papers included in this Special Issue of the Journal of Limnology present results of long-term ecological research on mountain lakes throughout Europe. Most of these studies were performed over the last 15 years in the framework of some EU-funded projects, namely AL:PE 1 and 2, MOLAR and EMERGE. These projects together considered a high number of remote lakes in different areas or lake districts in Europe. Central to the projects was the idea that mountain lakes, while subject to the same chemical and biological processes controlling lowland lakes, are more sensitive to any input from their surroundings and can be used as earlywarning indicators of atmospheric pollution and climate change. A first section of this special issue deal with the results of long-term monitoring programmes at selected key-sites. A second section focuse on site-specific and regional applications of an acidification model designed to reconstruct and predict long-term changes in the chemistry of mountain lakes.

  8. Nutrient inputs to the Laurentian Great Lakes by source and watershed estimated using SPARROW watershed models

    Science.gov (United States)

    Robertson, Dale M.; Saad, David A.

    2011-01-01

    Nutrient input to the Laurentian Great Lakes continues to cause problems with eutrophication. To reduce the extent and severity of these problems, target nutrient loads were established and Total Maximum Daily Loads are being developed for many tributaries. Without detailed loading information it is difficult to determine if the targets are being met and how to prioritize rehabilitation efforts. To help address these issues, SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were developed for estimating loads and sources of phosphorus (P) and nitrogen (N) from the United States (U.S.) portion of the Great Lakes, Upper Mississippi, Ohio, and Red River Basins. Results indicated that recent U.S. loadings to Lakes Michigan and Ontario are similar to those in the 1980s, whereas loadings to Lakes Superior, Huron, and Erie decreased. Highest loads were from tributaries with the largest watersheds, whereas highest yields were from areas with intense agriculture and large point sources of nutrients. Tributaries were ranked based on their relative loads and yields to each lake. Input from agricultural areas was a significant source of nutrients, contributing ∼33-44% of the P and ∼33-58% of the N, except for areas around Superior with little agriculture. Point sources were also significant, contributing ∼14-44% of the P and 13-34% of the N. Watersheds around Lake Erie contributed nutrients at the highest rate (similar to intensively farmed areas in the Midwest) because they have the largest nutrient inputs and highest delivery ratio.

  9. Remote sensing models using Landsat satellite data to monitor algal blooms in Lake Champlain.

    Science.gov (United States)

    Trescott, A; Park, M-H

    2013-01-01

    Lake Champlain is significantly impaired by excess phosphorus loading, requiring frequent lake-wide monitoring for eutrophic conditions and algal blooms. Satellite remote sensing provides regular, synoptic coverage of algal production over large areas with better spatial and temporal resolution compared with in situ monitoring. This study developed two algal production models using Landsat Enhanced Thematic Mapper Plus (ETM(+)) satellite imagery: a single band model and a band ratio model. The models predicted chlorophyll a concentrations to estimate algal cell densities throughout Lake Champlain. Each model was calibrated with in situ data compiled from summer 2006 (July 24 to September 10), and then validated with data for individual days in August 2007 and 2008. Validation results for the final single band and band ratio models produced Nash-Sutcliffe efficiency (NSE) coefficients of 0.65 and 0.66, respectively, confirming satisfactory model performance for both models. Because these models have been validated over multiple days and years, they can be applied for continuous monitoring of the lake.

  10. Modelling reversibility of central European mountain lakes from acidification: Part II – the Tatra Mountains

    Directory of Open Access Journals (Sweden)

    J. Kopácek

    2003-01-01

    Full Text Available A dynamic, process-based model of surface water acidification, MAGIC7, has been applied to four representative alpine lakes in the Tatra Mountains (Slovakia and Poland. The model was calibrated for a set of 12 to 22-year experimental records of lake water composition. Surface water and soil chemistry were reconstructed from 1860 to 2002 and forecast to 2050 based on the reduction in sulphur and nitrogen emissions presupposed by the Gothenburg Protocol. Relatively small changes in the soil C:N ratios were not sufficient to simulate observed changes in NO3‾ concentrations, so an alternative empirical approach of changes in terrestrial N uptake was applied. Measured sulphate sorption isotherms did not allow calibration of the pattern of sulphate response in the lakes, indicating that other mechanisms of S release were also important. The lake water chemistry exhibited significant changes during both the acidification advance (1860 to 1980s and retreat (1980s to 2010. An increase in lake water concentrations of strong acid anions (SAA; 104–149 μeq l–1 was balanced by a decline in HCO3‾ (13–62 μeq l–1 and an increase in base cations (BC; 42–72 μeq l–1, H+ (0-18 μeq l–1, and Alin+ (0–26 μeq l–1. The carbonate buffering system was depleted in three lakes. In contrast, lake water concentrations of SAA, BC, H+, and Alin+ decreased by 57–82, 28–42, 0–11, and 0–22 μeq l–1, respectively, the carbonate buffering system was re-established, and HCO3‾ increased by 1–21 μeq l–1 during the chemical reversal from atmospheric acidification (by 2000. The MAGIC7 model forecasts a slight continuation in this reversal for the next decade and new steady-state conditions thereafter. Gran alkalinity should come back to 1950s levels (0–71 μeq l–1 in all lakes after 2010. Partial recovery of the soil pool of exchangeable base cations can be expected in one catchment, while only conservation of the current conditions is

  11. Lake Diefenbaker: Water Quality Assessment and Modeling for Management under Environmental Change

    Science.gov (United States)

    Sereda, J.; Wheater, H. S.; Hudson, J.; Doig, L.; Liber, K.; Jones, P.; Giesy, J.; Bharadwaj, L.

    2011-12-01

    and temporally). Concentrations of nutrients are heterogeneous throughout the lake. Preliminary results indicate that the degree and type of nutrient limitation, along with the cycling of phosphorus (uptake and regeneration) by plankton assemblages varies spatially and temporally. This information will be coupled with an understanding of the physical characteristics of the lake (i.e., mixing patterns) to explain the timing and distribution of algal blooms. A model will be developed to provide a platform for water and nutrient simulations to explore lake response to scenarios of climate and land use change, and the potential effects of local and regional management interventions. The research includes a community based participatory research program, which has involved key stakeholders in research definition and experimental design and ongoing discussion of research progress, and will include participation in management recommendations.

  12. Microwave emissivity of freshwater ice, Part II: Modelling the Great Bear and Great Slave Lakes

    CERN Document Server

    Mills, Peter

    2012-01-01

    Lake ice within three Advanced Microwave Scanning Radiometer on EOS (AMSR-E) pixels over the Great Bear and Great Slave Lakes have been simulated with the Canadian Lake Ice Model (CLIMo). The resulting thicknesses and temperatures were fed to a radiative transfer-based ice emissivity model and compared to the satellite measurements at three frequencies---6.925 GHz, 10.65 GHz and 18.7 GHz. Excluding the melt season, the model was found to have strong predictive power, returning a correlation of 0.926 and a residual of 0.78 Kelvin at 18 GHz, vertical polarization. Discrepencies at melt season are thought to be caused by the presence of dirt in the snow cover which makes the microwave signature more like soil rather than ice. Except at 18 GHz, all results showed significant bias compared to measured values. Further work needs to be done to determine the source of this bias.

  13. A new biogeochemical model to simulate regional scale carbon emission from lakes, ponds and wetlands

    Science.gov (United States)

    Bayer, Tina; Brakebusch, Matthias; Gustafsson, Erik; Beer, Christian

    2016-04-01

    Small aquatic systems are receiving increasing attention for their role in global carbon cycling. For instance, lakes and ponds in permafrost are net emitters of carbon to the atmosphere, and their capacity to process and emit carbon is significant on a landscape scale, with a global flux of 8-103 Tg methane per year which amounts to 5%-30% of all natural methane emissions (Bastviken et al 2011). However, due to the spatial and temporal highly localised character of freshwater methane emissions, fluxes remain poorly qualified and are difficult to upscale based on field data alone. While many models exist to model carbon cycling in individual lakes and ponds, we perceived a lack of models that can work on a larger scale, over a range of latitudes, and simulate regional carbon emission from a large number of lakes, ponds and wetlands. Therefore our objective was to develop a model that can simulate carbon dioxide and methane emission from freshwaters on a regional scale. Our resulting model provides an additional tool to assess current aquatic carbon emissions as well as project future responses to changes in climatic drivers. To this effect, we have combined an existing large-scale hydrological model (the Variable Infiltration Capacity Macroscale Hydrologic Model (VIC), Liang & Lettenmaier 1994), an aquatic biogeochemical model (BALTSEM, Savchuk et al., 2012; Gustafsson et al., 2014) and developed a new methane module for lakes. The resulting new process-based biogeochemical model is designed to model aquatic carbon emission on a regional scale, and to perform well in high-latitude environments. Our model includes carbon, oxygen and nutrient cycling in lake water and sediments, primary production and methanogenesis. Results of calibration and validation of the model in two catchments (Torne-Kalix in Northern Sweden and of a large arctic river catchment) will be presented.

  14. THE LAKE MICHIGAN MASS BALANCE PROJECT: QUALITY ASSURANCE PLAN FOR MATHEMATICAL MODELLING

    Science.gov (United States)

    This report documents the quality assurance process for the development and application of the Lake Michigan Mass Balance Models. The scope includes the overall modeling framework as well as the specific submodels that are linked to form a comprehensive synthesis of physical, che...

  15. Modeling aluminum-silicon chemistries and application to Australian acidic playa lakes as analogues for Mars

    Science.gov (United States)

    Marion, G. M.; Crowley, J. K.; Thomson, B. J.; Kargel, J. S.; Bridges, N. T.; Hook, S. J.; Baldridge, A.; Brown, A. J.; Ribeiro da Luz, B.; de Souza Filho, C. R.

    2009-06-01

    Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (lateral salt patterns in WA lakes. The WA playa lakes display significant lateral variations in mineralogy and water chemistry over short distances, reflecting the interaction of acid ground waters with neutral to alkaline lake waters derived from ponded surface runoff. Meridiani Planum observations indicate that such lateral variations are much less pronounced, pointing to the dominant influence of ground water chemistry, vertical ground water movements, and aeolian processes on the Martian surface mineralogy.

  16. Modeling the Thickness of Perennial Ice Covers on Stratified Lakes of the Taylor Valley, Antarctica

    Science.gov (United States)

    Obryk, M. K.; Doran, P. T.; Hicks, J. A.; McKay, C. P.; Priscu, J. C.

    2016-01-01

    A one-dimensional ice cover model was developed to predict and constrain drivers of long term ice thickness trends in chemically stratified lakes of Taylor Valley, Antarctica. The model is driven by surface radiative heat fluxes and heat fluxes from the underlying water column. The model successfully reproduced 16 years (between 1996 and 2012) of ice thickness changes for west lobe of Lake Bonney (average ice thickness = 3.53 m; RMSE = 0.09 m, n = 118) and Lake Fryxell (average ice thickness = 4.22 m; RMSE = 0.21 m, n = 128). Long-term ice thickness trends require coupling with the thermal structure of the water column. The heat stored within the temperature maximum of lakes exceeding a liquid water column depth of 20 m can either impede or facilitate ice thickness change depending on the predominant climatic trend (temperature cooling or warming). As such, shallow (< 20 m deep water columns) perennially ice-covered lakes without deep temperature maxima are more sensitive indicators of climate change. The long-term ice thickness trends are a result of surface energy flux and heat flux from the deep temperature maximum in the water column, the latter of which results from absorbed solar radiation.

  17. Modeling stakeholder-defined climate risk on the Upper Great Lakes

    Science.gov (United States)

    Moody, Paul; Brown, Casey

    2012-10-01

    Climate change is believed to pose potential risks to the stakeholders of the Great Lakes due to changes in lake levels. This paper presents a model of stakeholder-defined risk as a function of climate change. It describes the development of a statistical model that links water resources system performance and climate changes developed for the Great Lakes of North America. The function is used in a process that links bottom-up water system vulnerability assessment to top-down climate change information. Vulnerabilities are defined based on input from stakeholders and resource experts and are used to determine system performance thresholds. These thresholds are used to measure performance over a wide range of climate changes mined from a large (55,590 year) stochastic data set. The performance and climate conditions are used to create a climate response function, a statistical model to predict lake performance based on climate statistics. This function facilitates exploration and analysis of performance over a wide range of climate conditions. It can also be used to estimate risk associated with change in climate mean and variability resulting from climate change. Problematic changes in climate can be identified and the probability of those conditions estimated using climate projections or other sources of climate information. The function can also be used to evaluate the robustness of a regulation plan and to compare performance of alternate plans. This paper demonstrates the utility of the climate response function as applied within the context of the International Upper Great Lakes Study.

  18. Stable isotopes and Digital Elevation Models to study nutrient inputs in high-Arctic lakes

    Science.gov (United States)

    Calizza, Edoardo; Rossi, David; Costantini, Maria Letizia; Careddu, Giulio; Rossi, Loreto

    2016-04-01

    Ice cover, run-off from the watershed, aquatic and terrestrial primary productivity, guano deposition from birds are key factors controlling nutrient and organic matter inputs in high-Arctic lakes. All these factors are expected to be significantly affected by climate change. Quantifying these controls is a key baseline step to understand what combination of factors subtends the biological productivity in Arctic lakes and will drive their ecological response to environmental change. Basing on Digital Elevation Models, drainage maps, and C and N elemental content and stable isotope analysis in sediments, aquatic vegetation and a dominant macroinvertebrate species (Lepidurus arcticus Pallas 1973) belonging to Tvillingvatnet, Storvatnet and Kolhamna, three lakes located in North Spitsbergen (Svalbard), we propose an integrated approach for the analysis of (i) nutrient and organic matter inputs in lakes; (ii) the role of catchment hydro-geomorphology in determining inter-lake differences in the isotopic composition of sediments; (iii) effects of diverse nutrient inputs on the isotopic niche of Lepidurus arcticus. Given its high run-off and large catchment, organic deposits in Tvillingvatnet where dominated by terrestrial inputs, whereas inputs were mainly of aquatic origin in Storvatnet, a lowland lake with low potential run-off. In Kolhamna, organic deposits seem to be dominated by inputs from birds, which actually colonise the area. Isotopic signatures were similar between samples within each lake, representing precise tracers for studies on the effect of climate change on biogeochemical cycles in lakes. The isotopic niche of L. aricticus reflected differences in sediments between lakes, suggesting a bottom-up effect of hydro-geomorphology characterizing each lake on nutrients assimilated by this species. The presented approach proven to be an effective research pathway for the identification of factors subtending to nutrient and organic matter inputs and transfer

  19. Challenges to the Future - Conservation of the Antarctic

    NARCIS (Netherlands)

    Chown, S.L.; Lee, J.E.; Hughes, K.A.; Barnes, J.; Bergstrom, D.M.; Convey, P.; Cowan, D.A.; Crosbie, K.; Dyer, G.; Frenot, Y.; Grant, S.M.; Herr, D.; Kennicutt, M.C.; Lamers, M.A.J.; Murray, A.; Possingham, H.P.; Reid, K.; Riddle, M.J.; Ryan, P.G.; Sanson, L.; Shaw, J.D.; Sparrow, M.D.; Summerhayes, C.; Terauds, A.; Wall, D.H.

    2012-01-01

    The Antarctic Treaty System, acknowledged as a successful model of cooperative regulation of one of the globe's largest commons (1), is under substantial pressure. Concerns have been raised about increased stress on Antarctic systems from global environmental change and growing interest in the regio

  20. Applicability of three-band model for estimating chlorophyll-a concentration in two Asian lakes (Lake Kasumigaura, Japan and Lake Dianchi, China)

    Science.gov (United States)

    Matsushita, B.; Yang, W.; Chen, J.; Fukushima, T.

    2009-12-01

    Bunkei Matsushita1*, Wei Yang1, 2, Jin Chen2 and Takehiko Fukushima1 1Graduate School of Life and Environmental Sciences, University of Tsukuba 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8572, Japan E-mails: mbunkei@sakura.cc.tsukuba.ac.jp, fukusima@sakura.cc.tsukuba.ac.jp 2 State key laboratory of earth surface processes and resource ecology, Beijing Normal University, Beijing 100875, China E-mails: chenjin@ires.cn, yangwei1022@gmail.com Abstract: The remote sensing of chlorophyll-a in case II water has been far less successful than that in case I water, due mainly to the complex interactions among optically active substances (i.e., phytoplankton, tripton, colored dissolved organic matter, and water) in the former. To address this problem, Gitelson et al. (2008) suggested a three-band model, which can minimize the effects of tripton, colored dissolved organic matter (CDOM), and pure water, and thus promised an accurate estimation of chlorophyll-a. In this study, we used three datasets with different phytoplankton species to test the performance of the three-band model developed by Gitelson et al. The major findings of our study were as follows: (1) the mechanism of the three-band model could work very well for each phytoplankton species (R2>0.84, rRMSE<23%); (2) the slope and intercept of the three-band model strongly depended on variation of phytoplankton species; (3) chlorophyll-specific absorption coefficients at 440 nm (a*ph(440)) could be used to predict the slope and intercept of the three-band model for different species of phytoplankton. Compared with the previous three-band model, the RMSEs of the improved three-band model were reduced from 37.2 mg m-3 to 7.3 mg m-3, and from 34.3 mg m-3 to 15.9 mg m-3, for Lake Kasumigaura, and Lake Dianchi, respectively. Keywords: phytoplankton species, field survey, tank experiment, bio-optical model, case II water

  1. Cauchy-Matern Model of Sea Surface Wind Speed at the Lake Worth, Florida

    Directory of Open Access Journals (Sweden)

    Ming Li

    2012-01-01

    Full Text Available We study the Cauchy-Matern (CM process with long-range dependence (LRD. The closed form of its power spectrum density (PSD function is given. We apply it to model the autocovariance function (ACF and the PSD of the sea surface wind speed (wind speed for short observed in the Lake Worth, Florida, over the 1984–2006 period. The present results exhibit that the wind speed at the Lake Worth over 1984–2006 is of LRD. The present results exhibit that the CM process may yet be a novel model to fit the wind speed there.

  2. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS.

    Directory of Open Access Journals (Sweden)

    Chrispine Nyamweya

    Full Text Available Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May and mixing (June-August. Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  3. HYDROLOGIC MODELLING OF KATSINA-ALA RIVER BASIN: AN EMERGING SCENARIO FROM LAKE NYOS THREAT

    Directory of Open Access Journals (Sweden)

    J. O. Akinyede

    2012-07-01

    Full Text Available Understanding the hydrologic system surrounding crater lakes is of great importance for prevention of flooding damages, conservation of ecological environment, and assessment of socio-economic impact of dam failure on the civilians in the downstream regions. Lake Nyos is a crater lake formed by volcanic activities at the Oku volcanic field on the Cameroon Volcanic Line. It is a freshwater lake with a maximum depth of 200 meter. In 1986, a limnic eruption at the lake emitted 1.6 million tonnes of carbon dioxide from the bottom of saturated water into the air and suffocated up to 1,800 people and 3,500 livestock at nearby villages. The lake waters are held in place by a natural dam composed of loosely consolidated volcanic rock, which is now at the verge of collapse due to accelerated erosion. This study was carried out to determine the flood risks and vulnerability of population and infrastructure along Katsina-Ala drainage basins. The project integrated both satellite images and field datasets into a hydrologic model for Katsina-Ala River Basin and its vicinity including the Lake Nyos. ArcHydro was used to construct a hydrologic database as 'data models' and MIKE SHE was employed to conduct hydrologic simulations. Vulnerable infrastructures, population and socio-economic activities were identified to assist the Federal and State governments in disaster mitigation and management plans. The result of the project provides comprehensive knowledge of hydrologic system of Katsina-Ala drainage basin to mitigate potential future disasters from a potential dam failure and manage water resources against such disasters.

  4. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).

    Science.gov (United States)

    Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  5. Model AVSWAT apropos of simulating non-point source pollution in Taihu lake basin.

    Science.gov (United States)

    Zhang, Qiu-Ling; Chen, Ying-Xu; Jilani, Ghulam; Shamsi, Imran Haider; Yu, Qiao-Gang

    2010-02-15

    Accelerated eutrophication and nutrient loads in the lakes are of major concern for human health and environment. This study was undertaken for modeling the non-point source pollution of Taihu lake basin in eastern China. The SWAT model having an interface in ArcView GIS was employed. Model sensitive parameters related to hydrology and water quality were obtained by sensitivity analysis, and then calibrated and validated by comparing model predictions with field data. The GIS showed good potential for parameterization of hill-slopes, channels, and representative slope profiles for SWAT model simulations. In a monthly and daily time step, the model's Nash-Sutcliffe coefficient (E) and the coefficient of determination (R(2)) indicated that values of simulated runoff, NH(4)(+)-N and total phosphorus were acceptably closer to the measured data. Surface water parameters especially CN, Soil-AWC and ESCO were the most sensitive and had more recognition in the model. It is concluded that runoff carrying N and P nutrients from chemical fertilizer inputs in agricultural areas is the major contributor to NPSP in the lake basin. So, decrease in excessive use of N and P fertilizers and their synergism with organic manures is recommended that would significantly reduce nutrient pollution in the lake ecosystem.

  6. Improving the precision of lake ecosystem metabolism estimates by identifying predictors of model uncertainty

    Science.gov (United States)

    Rose, Kevin C.; Winslow, Luke A.; Read, Jordan S.; Read, Emily K.; Solomon, Christopher T.; Adrian, Rita; Hanson, Paul C.

    2014-01-01

    Diel changes in dissolved oxygen are often used to estimate gross primary production (GPP) and ecosystem respiration (ER) in aquatic ecosystems. Despite the widespread use of this approach to understand ecosystem metabolism, we are only beginning to understand the degree and underlying causes of uncertainty for metabolism model parameter estimates. Here, we present a novel approach to improve the precision and accuracy of ecosystem metabolism estimates by identifying physical metrics that indicate when metabolism estimates are highly uncertain. Using datasets from seventeen instrumented GLEON (Global Lake Ecological Observatory Network) lakes, we discovered that many physical characteristics correlated with uncertainty, including PAR (photosynthetically active radiation, 400-700 nm), daily variance in Schmidt stability, and wind speed. Low PAR was a consistent predictor of high variance in GPP model parameters, but also corresponded with low ER model parameter variance. We identified a threshold (30% of clear sky PAR) below which GPP parameter variance increased rapidly and was significantly greater in nearly all lakes compared with variance on days with PAR levels above this threshold. The relationship between daily variance in Schmidt stability and GPP model parameter variance depended on trophic status, whereas daily variance in Schmidt stability was consistently positively related to ER model parameter variance. Wind speeds in the range of ~0.8-3 m s–1 were consistent predictors of high variance for both GPP and ER model parameters, with greater uncertainty in eutrophic lakes. Our findings can be used to reduce ecosystem metabolism model parameter uncertainty and identify potential sources of that uncertainty.

  7. A biogeochemical model of Lake Pusiano (North Italy and its use in the predictability of phytoplankton blooms: first preliminary results

    Directory of Open Access Journals (Sweden)

    Alessandro OGGIONI

    2006-02-01

    Full Text Available This study reports the first preliminary results of the DYRESM-CAEDYM model application to a mid size sub-alpine lake (Lake Pusiano North Italy. The in-lake modelling is a part of a more general project called Pusiano Integrated Lake/Catchment project (PILE whose final goal is to understand the hydrological and trophic relationship between lake and catchment, supporting the restoration plan of the lake through field data analysis and numerical models. DYRESM is a 1D-3D hydrodynamics model for predicting the vertical profile of temperature, salinity and density. CAEDYM is multi-component ecological model, used here as a phytoplankton-zooplankton processes based model, which includes algorithms to simulate the nutrient cycles within the water column as well as the air-water gas exchanges and the water-sediments fluxes. The first results of the hydrodynamics simulations underline the capability of the model to accurately simulate the surface temperature seasonal trend and the thermal gradient whereas, during summer stratification, the model underestimates the bottom temperature of around 2 °C. The ecological model describes the epilimnetic reactive phosphorus (PO4 depletion (due to the phytoplankton uptake and the increase in PO4 concentrations in the deepest layers of the lake (due to the mineralization processes and the sediments release. In terms of phytoplankton dynamics the model accounts for the Planktothrix rubescens dominance during the whole season, whereas it seems to underestimate the peak in primary production related to both the simulated algal groups (P. rubescens and the rest of the other species aggregated in a single class. The future aims of the project are to complete the model parameterization and to connect the in-lake and the catchment modelling in order to gain an integrated view of the lake-catchment ecosystem as well as to develop a three dimensional model of the lake.

  8. Geochemical simulation of the formation of brine and salt minerals based on Pitzer model in Caka Salt Lake

    Institute of Scientific and Technical Information of China (English)

    LIU; Xingqi; CAI; Keqin; YU; Shengsong

    2004-01-01

    The geochemical simulation of the formation of brine and salt minerals based on Pitzer model was made in Caka Salt Lake. The evolution of the mixed surface-water and the mineral sequences were calculated and compared with the hydrochemical compositions of the brine and the salt minerals of the deposit in Caka Salt Lake. The results show that the formation temperature of the lake is between 0℃ and 5℃, which is well identical with other studies. The mixing of salt-karst water with the surface waters, neglected by the former researchers, is very important to the formation of the lake, indicating that the initial waters resulting in the formation of the lake are multi-source. It is the first time to use Pitzer model in China for making geochemical simulation of the formation and evolution of inland salt lake and satisfactory results have been achieved.

  9. The Development of a Customization Framework for the WRF Model over the Lake Victoria Basin, Eastern Africa on Seasonal Timescales

    Directory of Open Access Journals (Sweden)

    R. Argent

    2015-01-01

    Full Text Available Lake Victoria, Africa, supports millions of people. To produce reliable climate projections, it is desirable to successfully model the rainfall over the lake accurately. An initial step is taken here with customization of the Weather, Research, and Forecast (WRF model. Of particular interest is an asymmetrical rainfall pattern across the lake basin, due to a diurnal land-lake breeze. The main aim is to present a customization framework for use over the lake. This framework is developed by conducting several series of model runs to investigate aspects of the customization. The runs are analyzed using Tropical Rainfall Measuring Mission rainfall data and Climatic Research Unit temperature data. The study shows that the choice of parameters and lake surface temperature initialization can significantly alter the results. Also, the optimal physics combinations for the climatology may not necessarily be suitable for all circumstances, such as extreme years. The study concludes that WRF is unable to reproduce the pattern across the lake. The temperature of the lake is too cold and this prevents the diurnal land-lake breeze reversal. Overall, this study highlights the importance of customizing a model to the region of research and presents a framework through which this may be achieved.

  10. The Ice-Covered Lakes Hypothesis in Gale Crater: Implications for the Early Hesperian Climate

    Science.gov (United States)

    Kling, Alexandre M.; Haberle, Robert M.; McKay, Christopher P.; Bristow, Thomas F.; Rivera-Hernandez, Frances

    2017-01-01

    Recent geological discoveries from the Mars Science Laboratory (MSL), including stream and lake sedimentary deposits, provide evidence that Gale crater may have intermittently hosted a fluviol-acustine environment during the Hesperian, with individual lakes lasting for a period of tens to hundreds of thousands of years. Estimates of the CO2 content of the atmosphere at the time the Gale sediments formed are far less than needed by any climate model to warm early Mars, given the low solar energy input available at Mars 3.5 Gya. We have therefore explored the possibility that the lakes in Gale during the Hesperian were perennially covered with ice using the Antarctic lakes as analogs.

  11. Modeled tephra ages from lake sediments, base of Redoubt Volcano, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Schiff, C J; Kaufman, D S; Wallace, K L; Werner, A; Ku, T L; Brown, T A

    2007-02-25

    A 5.6-m-long lake sediment core from Bear Lake, Alaska, located 22 km southeast of Redoubt Volcano, contains 67 tephra layers deposited over the last 8750 cal yr, comprising 15% of the total thickness of recovered sediment. Using 12 AMS {sup 14}C ages, along with the {sup 137}Cs and {sup 210}Pb activities of recent sediment, we evaluated different models to determine the age-depth relation of sediment, and to determine the age of each tephra deposit. The age model is based on a cubic smooth spline function that was passed through the adjusted tephra-free depth of each dated layer. The estimated age uncertainty of the 67 tephras averages {+-} 105 yr (1{sigma}). Tephra-fall frequency at Bear Lake was among the highest during the past 500 yr, with eight tephras deposited compared to an average of 3.7 per 500 yr over the last 8500 yr. Other periods of increased tephra fall occurred 2500-3500, 4500-5000, and 7000-7500 cal yr. Our record suggests that Bear Lake experienced extended periods (1000-2000 yr) of increased tephra fall separated by shorter periods (500-1000 yr) of apparent quiescence. The Bear Lake sediment core affords the most comprehensive tephrochronology from the base of the Redoubt Volcano to date, with an average tephra-fall frequency of once every 130 yr.

  12. Individual-based model of yellow perch and walleye populations in Oneida Lake

    Energy Technology Data Exchange (ETDEWEB)

    Rose, K.A. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Rutherford, E.S. [Univ. of Michigan, Ann Arbor, MI (United States). Inst. for Fisheries Research; McDermot, D.S. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Ecology and Evolutionary Biology; Forney, J.L.; Mills, E.L. [Cornell Univ. Biological Station, Bridgeport, NY (United States)

    1999-05-01

    Predator-prey dynamics and density dependence are fundamental issues in ecology. The authors use a detailed, individual-based model of walleye and yellow perch to investigate the effects of alternative prey and compensatory responses on predator and prey population dynamics. The analyses focus on the numerical and developmental responses of the predator, rather than the traditional emphasis on functional responses. The extensive database for Oneida Lake, New York, USA was used to configure the model and ensure its realism. The model follows the daily growth, mortality, and spawning of individuals of each species through their lifetime. Three ecologically distinct periods in the history of Oneida Lake were simulated: baseline, high mayfly densities, and high forage fish densities. Mayflies and forage fish act as alternative prey for walleye. For model corroboration, the three periods were simulated sequentially as they occurred in Oneida Lake. Model predictions of abundances, size at age, and growth and survival rates compared favorably with Oneida Lake data. Three hypotheses suggested by the data were evaluated: alternative prey stabilizes yellow perch and walleye populations; alternative prey increases yellow perch and walleye recruitment; and density-dependent growth and survival compensate for changes in young-of-the-year mortality. Model simulations were performed under increased mayfly densities, increased forage fish densities, and increased egg mortality rates.

  13. Water quality and algal community dynamics of three deepwater lakes in Minnesota utilizing CE-QUAL-W2 models

    Science.gov (United States)

    Smith, Erik A.; Kiesling, Richard L.; Galloway, Joel M.; Ziegeweid, Jeffrey R.

    2014-01-01

    Water quality, habitat, and fish in Minnesota lakes will potentially be facing substantial levels of stress in the coming decades primarily because of two stressors: (1) land-use change (urban and agricultural) and (2) climate change. Several regional and statewide lake modeling studies have identified the potential linkages between land-use and climate change on reductions in the volume of suitable lake habitat for coldwater fish populations. In recent years, water-resource scientists have been making the case for focused assessments and monitoring of sentinel systems to address how these stress agents change lakes over the long term. Currently in Minnesota, a large-scale effort called “Sustaining Lakes in a Changing Environment” is underway that includes a focus on monitoring basic watershed, water quality, habitat, and fish indicators of 24 Minnesota sentinel lakes across a gradient of ecoregions, depths, and nutrient levels. As part of this effort, the U.S. Geological Survey, in cooperation with the Minnesota Department of Natural Resources, developed predictive water quality models to assess water quality and habitat dynamics of three select deepwater lakes in Minnesota. The three lakes (Lake Carlos in Douglas County, Elk Lake in Clearwater County, and Trout Lake in Cook County) were assessed under recent (2010–11) meteorological conditions. The three selected lakes contain deep, coldwater habitats that remain viable during the summer months for coldwater fish species. Hydrodynamics and water-quality characteristics for each of the three lakes were simulated using the CE-QUAL-W2 model, which is a carbon-based, laterally averaged, two-dimensional water-quality model. The CE-QUAL-W2 models address the interaction between nutrient cycling, primary production, and trophic dynamics to predict responses in the distribution of temperature and oxygen in lakes. The CE-QUAL-W2 models for all three lakes successfully predicted water temperature, on the basis of the

  14. Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru

    OpenAIRE

    Schneider, Demian; Huggel, Christian; Cochachin, Alejo; Guillén, Sebastiàn; García, Javier

    2014-01-01

    Recent warming has had enormous impacts on glaciers and high-mountain environments. Hazards have changed or new ones have emerged, including those from glacier lakes that form as glaciers retreat. The Andes of Peru have repeatedly been severely impacted by glacier lake outburst floods in the past. An important recent event occurred in the Cordillera Blanca in 2010 when an ice avalanche impacted a glacier lake and triggered an outburst flood that affected the downstream communities and city of...

  15. Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru

    OpenAIRE

    Schneider, D; C. Huggel; Cochachin, A.; Guillén, S.; García, J.

    2014-01-01

    Recent warming has had enormous impacts on glaciers and high-mountain environments. Hazards have changed or new ones have emerged, including those from glacier lakes that form as glaciers retreat. The Andes of Peru have repeatedly been severely impacted by glacier lake outburst floods in the past. An important recent event occurred in the Cordillera Blanca in 2010 when an ice avalanche impacted a glacier lake and triggered an outburst flood that affected the downstream commu...

  16. Model Forecasts of Atrazine in Lake Michigan in Response to Various Sensitivity and Potential Management Scenarios

    Science.gov (United States)

    For more than forty years, the herbicide atrazine has been used on corn crops in the Lake Michigan basin to control weeds. It is usually applied to farm fields in the spring before or after the corn crop emerges. A version of the WASP4 mass balance model, LM2-Atrazine, was used...

  17. Hydrodynamic modeling of a reservoir used to supply water to Belem (Lake Agua Preta, Para, Brazil

    Directory of Open Access Journals (Sweden)

    Maria Lourdes Souza Santos

    2015-07-01

    Full Text Available Lake Agua Preta is used by the Sanitation Company of Para (Cosanpa to supply water to the Belem Metropolitan Region. This study aims to use the Base System Modeling Program Environmental Hydrodynamics (Sisbahia model to simulate seasonal hydrodynamic conditions in the lake and identify areas with the greatest silting. The model results revealed an identical distribution of the velocity module for each month of the year. However, at the outlet of the lake, a water channel variation speed of 0.28–0.32 m s-1 was observed. Furthermore, at the inlet of the lake, vortex silting tended to occur, as verified by bathymetry. Sedimentation mainly occurred during periods of low rainfall, which is when Cosanpa increases the inflow of water to maintain the reservoir level and this leads to an increase in sediments in suspension. With the model, it was possible to identify locations with higher rates of sedimentation, and in the future, such data can serve as an effective tool for managing this water resource.

  18. High geothermal heat flux measured below the West Antarctic Ice Sheet.

    Science.gov (United States)

    Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil

    2015-07-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region.

  19. First evidence for a late LGM subglacial lake in Pine Island Bay, Antarctica

    Science.gov (United States)

    Kuhn, Gerhard; Hillenbrand, Claus-Dieter; Kasten, Sabine; Smith, James A.; Nitsche, Frank O.; Frederichs, Thomas; Wiers, Steffen; Ehrmann, Werner; Klages, Johann P.; Mogollón, José M.

    2016-04-01

    Subglacial lakes are widespread beneath the Antarctic Ice Sheet and as a source for subglacial meltwater they are assumed to modulate ice stream velocity. Further, the evacuation of subglacial meltwater at the ice sheet margin influences ocean circulation and geochemical cycles. However, despite their importance,, subglacial lakes are one of the least explored environments on our planet. As a consequence, their importance for ice sheet dynamics and their ability to harbour life remain poorly characterised. We present the first direct evidence for a palaeo-subglacial lake on the Antarctic continental shelf, documenting that subglacial meltwater was stored during the last glacial period and evacuated during the subsequent deglaciation. A distinct sediment facies observed in a core recovered from a small bedrock basin in Pine Island Bay, Amundsen Sea, is indicative of deposition within a low-energy subglacial lake setting. Diffusive modelling demonstrates that low chloride concentrations in the pore water of this characteristic sediment facies can only be explained by original deposition in a freshwater setting. We also show that the location of the subglacial lake within a basin on the inner shelf is consistent with the predicted distribution of subglacial lakes based on bathymetric data. This finding will enable future modelling studies to investigate how the geometry and capacity of subglacial lake systems can influence ice dynamics when the substrate and profile of the ice sheet is known - especially in the highly sensitive area known as the "weak underbelly" of the WAIS. With the exception of a direct lake water access at Subglacial Lake Vostok, and some centimetres of sediment retrieval from Subglacial Lake Whillans, the subglacial hydrological system in Antarctica has hitherto mostly been explored using remote sensing and numerical models that suggest the number of potential lake sites to more than 12.000. Our study not only provides first empirical evidence

  20. Antarctic teleost immunoglobulins: more extreme, more interesting.

    Science.gov (United States)

    Coscia, Maria Rosaria; Varriale, Sonia; Giacomelli, Stefano; Oreste, Umberto

    2011-11-01

    We have investigated the immunoglobulin molecule and the genes encoding it in teleosts living in the Antarctic seas at the constant temperature of -1.86 °C. The majority of Antarctic teleosts belong to the suborder Notothenioidei (Perciformes), which includes only a few non-Antarctic species. Twenty-one Antarctic and two non-Antarctic Notothenioid species were included in our studies. We sequenced immunoglobulin light chains in two species and μ heavy chains, partially or totally, in twenty species. In the case of heavy chain, genomic DNA and the cDNA encoding the secreted and the membrane form were analyzed. From one species, Trematomus bernacchii, a spleen cDNA library was constructed to evaluate the diversity of VH gene segments. T. bernacchii IgM, purified from the serum and bile, was characterized. Homology Modelling and Molecular Dynamics were used to determine the molecular structure of T. bernacchii and Chionodraco hamatus immunoglobulin domains. This paper sums up the previous results and broadens them with the addition of unpublished data.

  1. Study of the nutrient and plankton dynamics in Lake Tanganyika using a reduced-gravity model

    OpenAIRE

    Naithani, Jaya; Darchambeau, François; Deleersnijder, Eric; Descy, Jean*-Pierre; Wolanski, Eric

    2007-01-01

    An eco-hydrodynamic (ECOH) model is proposed for Lake Tanganyika to study the plankton productivity. The hydrodynamic sub-model solves the non-linear, reduced-gravity equations in which wind is the dominant forcing. The ecological sub-model for the epilimnion comprises nutrients, primary production, phytoplankton biomass and zooplankton biomass. In the absence of significant terrestrial input of nutrients, the nutrient loss is compensated for by seasonal, wind-driven, turbulent entrainment of...

  2. A model of the geochemical and physical fluctuations of the lava lake at Erebus volcano, Antarctica

    Science.gov (United States)

    Molina, Indira; Burgisser, Alain; Oppenheimer, Clive

    2015-12-01

    Erebus volcano, Antarctica, exhibits periodical surface fluctuations of both geochemical and physical nature. Modeling the physics driving the lake oscillation is a challenge, even with a relatively simple theoretical framework. We present a quantitative analysis that aims to reconcile both lake level and gas geochemical cycles. Our model is based on the assumption that the periodicity is caused by the regular release of magma batches and/or core annular flow that have a fixed volume of melt and ascend and degas in equilibrium. Results suggest that cycles are not caused by the mixing between magma residing in the lake and a deep magma but by two distinct deep sources that rise separately. These sources of bubbly magma come from at most 2-3 km depth and rise buoyantly. Individual batches detach from the rising magmas at depths of 20-250 m. The two batch types can coexist in a single conduit up to a depth of ~ 30 m, above which they rise alternately to release respectively 19 and 23 kg/s of gas at the lake surface every 10 min. The temperature of the descending flow is between 890 and 950 °C, which is roughly 100 °C colder than the ascending currents. Batch pairs have shapes likely constrained by the conduit width. Regardless of their shapes, the pairs reach very high porosities near the surface and have diameters of 4-14 m that are consistent with video observations showing spreading waves at the lake surface. The alternating arrival of these large batches suggests a lava lake mostly filled with gas-rich magma.

  3. Origin of the Turkwel delta trajectory (Lake Turkana, Kenya): insights from numerical modeling (DIONISOS)

    Science.gov (United States)

    Alexis, Nutz; Pierre, Dietrich; Vafe, Soumahoro; Mathieu, Schuster; Jean-François, Ghienne

    2016-04-01

    Deltas simultaneously respond to modifications in parameters such as water discharge, sediment supply and base-level change. Those parameters are driven by a number of potential external forcing processes, nevertheless mainly corresponding to tectonism and climate. In this study, geomorphology and numerical modeling are coupled in order to provide analysis of the delta complex of the Turkwel River (Lake Turkana, Kenya). The Turkwel delta complex is 35 km long, forming one of the major deltaic systems that has fringed Lake Turkana during the Holocene. It developed during the lake level regression at the end of the holocene African Humid Period and correspond to a typical forced-regressive delta. Trajectory analysis was performed on three transects cross-cutting the deltaic complex. Transects consistently display five slightly descending (slope gradient: >0° to 0.4°) plateaus separated by four abrupt steps of higher slope gradients (1° to 3.8°). Conventional interpretations presume that the deltaic trajectory results from either (1) four abrupt accelerations in lake level fall during the continuous regression, (2) four abrupt declines in sediment supply and/or water discharge during a steady lake level fall or (3) a combination of both. We used numerical stratigraphic modeling (Dionisos) in order to test the aforementioned hypotheses as the origin of observed trajectories. We concluded that causal relationships between sediment supply, lake level change and progradation trajectory are not as straightforward as recurrently envisioned. We think that this contribution brings new lights on the relationships between deltaic architectures and controlling factors.

  4. Lidar and CTIPe model studies of the fast amplitude growth with altitude of the diurnal temperature "tides" in the Antarctic winter lower thermosphere and dependence on geomagnetic activity

    Science.gov (United States)

    Fong, Weichun; Chu, Xinzhao; Lu, Xian; Chen, Cao; Fuller-Rowell, Timothy J.; Codrescu, Mihail; Richmond, Arthur D.

    2015-02-01

    Four years of lidar observations at McMurdo reveal that the fast amplitude growth with altitude of diurnal temperature tides from 100 to 110 km during Antarctic winters, exceeding that of the freely propagating tides from the lower atmosphere, increases in strength with the Kp magnetic activity index. Simulations with the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model reproduce the lidar observations and exhibit concentric ring structures of diurnal amplitudes encircling the south geomagnetic pole and overlapping the auroral zone. These findings point to a magnetospheric source origin. Mechanistic studies using CTIPe show that the adiabatic cooling/heating associated with Hall ion drag is the dominant source of this feature, while Joule heating is a minor contributor due to the counteraction by Joule-heating-induced adiabatic cooling. The sum of total dynamical effects and Joule heating explains ~80% of the diurnal amplitudes. Auroral particle heating, lower atmosphere tides, and direct solar heating have minor contributions.

  5. Challenge to the model of lake charr evolution: Shallow- and deep-water morphs exist within a small postglacial lake

    Science.gov (United States)

    Chavarie, Louise; Muir, Andrew M.; Zimmerman, Mara S.; Baillie, Shauna M.; Hansen, Michael J.; Nate, Nancy A.; Yule, Daniel L.; Middel, Trevor; Bentzen, Paul; Krueger, Charles C.

    2016-01-01

    All examples of lake charr (Salvelinus namaycush) diversity occur within the largest, deepest lakes of North America (i.e. > 2000 km2). We report here Rush Lake (1.3 km2) as the first example of a small lake with two lake charr morphs (lean and huronicus). Morphology, diet, life history, and genetics were examined to demonstrate the existence of morphs and determine the potential influence of evolutionary processes that led to their formation or maintenance. Results showed that the huronicus morph, caught in deep-water, had a deeper body, smaller head and jaws, higher eye position, greater buoyancy, and deeper peduncle than the shallow-water lean morph. Huronicus grew slower to a smaller adult size, and had an older mean age than the lean morph. Genetic comparisons showed low genetic divergence between morphs, indicating incomplete reproductive isolation. Phenotypic plasticity and differences in habitat use between deep and shallow waters associated with variation in foraging opportunities seems to have been sufficient to maintain the two morphs, demonstrating their important roles in resource polymorphism. Rush Lake expands previous explanations for lake charr intraspecific diversity, from large to small lakes and from reproductive isolation to the presence of gene flow associated with strong ecological drivers.

  6. A mercury transport and fate model (LM2-mercury) for mass budget assessment of mercury cycling in Lake Michigan

    Science.gov (United States)

    LM2-Mercury, a mercury mass balance model, was developed to simulate and evaluate the transport, fate, and biogeochemical transformations of mercury in Lake Michigan. The model simulates total suspended solids (TSS), disolved organic carbon (DOC), and total, elemental, divalent, ...

  7. AQUATOX coupled foodweb model for ecosystem risk assessment of Polybrominated diphenyl ethers (PBDEs) in lake ecosystems.

    Science.gov (United States)

    Zhang, Lulu; Liu, Jingling

    2014-08-01

    The AQUATOX model considers the direct toxic effects of chemicals and their indirect effects through foodwebs. For this study, the AQUATOX model was applied to evaluating the ecological risk of Polybrominated diphenyl ethers (PBDEs) in a highly anthropogenically disturbed lake-Baiyangdian Lake. Calibration and validation results indicated that the model can adequately describe the dynamics of 18 biological populations. Sensitivity analysis results suggested that the model is highly sensitive to temperature limitation. PBDEs risk estimate results demonstrate that estimated risk for natural ecosystems cannot be fully explained by single species toxicity data alone. The AQUATOX model could provide a good basis in ascertaining ecological protection levels of "chemicals of concern" for aquatic ecosystems. Therefore, AQUATOX can potentially be used to provide necessary information corresponding to early warning and rapid forecasting of pollutant transport and fate in the management of chemicals that put aquatic ecosystems at risk.

  8. Catchment modeling and model transferability in upper Blue Nile Basin, Lake Tana, Ethiopia

    Directory of Open Access Journals (Sweden)

    A. S. Gragne

    2008-03-01

    Full Text Available Understanding spatial and temporal distribution of water resources has an important role for water resource management. To understand water balance dynamics and runoff generation mechanisms at the Gilgel Abay catchment (a major tributary into lake Tana, source of Blue Nile, Ethiopia and to evaluate model transferability, catchment modeling was conducted using the conceptual hydrological model HBV. The catchment of the Gigel Abay was sub-divided into two gauged sub-catchments (Upper Gilgel Abay, UGASC, and Koga, KSC and one ungauged sub-catchment.

    Manual calibration of the daily models for three different catchment representations (CRs: (i lumped, (ii lumped with multiple vegetation zones, and (iii semi-distributed with vegetations zone and elevation zones, showed good to satisfactory model performance (Nash-Sutcliffe efficiency values, Reff>0.75 and >0.6, respectively, for UGASC and KSC. The change of the time step to fifteen and thirty days resulted in very good model performances in both sub-catchments (Reff>0.8. The model parameter transferability tests conducted on the daily models showed poor performance in both sub-catchments, whereas the fifteen and thirty days models yielded high Reff values using transferred parameter sets. This together with the sensitivity analysis carried out after Monte Carlo simulations (1 000 000 model runs per CR explained the reason behind the difference in hydrologic behaviors of the two sub-catchments UGASC and KSC. The dissimilarity in response pattern of the sub-catchments was caused by the presence of dambos in KSC and differences in the topography between UGASC and KSC. Hence, transferring model parameters from the view of describing hydrological process was found to be not feasible for all models. On the other hand, from a water resources management perspective the results obtained by transferring parameters of the larger time step model were

  9. Multimedia model for polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs in Lake Michigan.

    Science.gov (United States)

    Huang, Lei; Batterman, Stuart A

    2014-12-02

    Polycyclic aromatic hydrocarbon (PAH) contamination in the U.S. Great Lakes has long been of concern, but information regarding the current sources, distribution, and fate of PAH contamination is lacking, and very little information exists for the potentially more toxic nitro-derivatives of PAHs (NPAHs). This study uses fugacity, food web, and Monte Carlo models to examine 16 PAHs and five NPAHs in Lake Michigan, and to derive PAH and NPAH emission estimates. Good agreement was found between predicted and measured PAH concentrations in air, but concentrations in water and sediment were generally under-predicted, possibly due to incorrect parameter estimates for degradation rates, discharges to water, or inputs from tributaries. The food web model matched measurements of heavier PAHs (≥5 rings) in lake trout, but lighter PAHs (≤4 rings) were overpredicted, possibly due to overestimates of metabolic half-lives or gut/gill absorption efficiencies. Derived PAH emission rates peaked in the 1950s, and rates now approach those in the mid-19th century. The derived emission rates far exceed those in the source inventories, suggesting the need to reconcile differences and reduce uncertainties. Although additional measurements and physiochemical data are needed to reduce uncertainties and for validation purposes, the models illustrate the behavior of PAHs and NPAHs in Lake Michigan, and they provide useful and potentially diagnostic estimates of emission rates.

  10. Computing the transport time scales of a stratified lake on the basis of Tonolli’s model

    Directory of Open Access Journals (Sweden)

    Marco Pilotti

    2014-05-01

    Full Text Available This paper deals with a simple model to evaluate the transport time scales in thermally stratified lakes that do not necessarily completely mix on a regular annual basis. The model is based on the formalization of an idea originally proposed in Italian by Tonolli in 1964, who presented a mass balance of the water initially stored within a lake, taking into account the known seasonal evolution of its thermal structure. The numerical solution of this mass balance provides an approximation to the water age distribution for the conceptualised lake, from which an upper bound to the typical time scales widely used in limnology can be obtained. After discussing the original test case considered by Tonolli, we apply the model to Lake Iseo, a deep lake located in the North of Italy, presenting the results obtained on the basis of a 30 year series of data.

  11. Depth and density of the Antarctic firn layer

    OpenAIRE

    2008-01-01

    The depth and density of the Antarctic firn layer is modeled, using a combination of regional climate model output and a steady-state firn densification model. The modeled near-surface climate (temperature, wind speed, and accumulation) and the depth of two critical density levels (550 kg m−3 and 830 kg m−3) agree well with climate and firn density observations selected from >50 Antarctic coring sites (r = 0.90–0.99, p

  12. Landslide-generated tsunamis in a perialpine lake: Historical events and numerical models

    Science.gov (United States)

    Hilbe, Michael; Anselmetti, Flavio S.

    2014-05-01

    Many of the perialpine lakes in Central Europe - the large, glacier-carved basins formed during the Pleistocene glaciations of the Alps - have proven to be environments prone to subaquatic landsliding. Among these, Lake Lucerne (Switzerland) has a particularly well-established record of subaquatic landslides and related tsunamis. Its sedimentary archive documents numerous landslides over the entire Holocene, which have either been triggered by earthquakes, or which occurred apparently spontaneously, possibly due to rapid sediment accumulation on delta slopes. Due to their controlled boundary conditions and the possibility to be investigated on a complete basinal scale, such lacustrine tsunamis may be used as textbook analogons for their marine counterparts. Two events in the 17th century illustrate these processes and their consequences: In AD 1601, an earthquake (Mw ~ 5.9) led to widespread failure of the sediment drape covering the lateral slopes in several basins. The resulting landslides generated tsunami waves that reached a runup of several metres, as reported in historical accounts. The waves caused widespread damage as well as loss of lives in communities along the shores. In AD 1687, the apparently spontaneous collapse of a river delta in the lake led to similar waves that damaged nearby villages. Based on detailed information on topography, bathymetry and the geometry of the landslide deposits, numerical simulations combining two-dimensional, depth-averaged models for landslide propagation, as well as for tsunami generation, propagation and inundation, are able to reproduce most of the reported tsunami effects for these events. Calculated maximum runup of the waves is 6 to >10 m in the directly affected lake basins, but significantly less in neighbouring basins. Flat alluvial plains adjacent to the most heavily affected areas are inundated over distances of several hundred metres. Taken as scenarios for possible future events, these past events suggest

  13. Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies

    Science.gov (United States)

    Feinstein, D.T.; Hunt, R.J.; Reeves, H.W.

    2010-01-01

    A regional groundwater-flow model of the Lake Michigan Basin and surrounding areas has been developed in support of the Great Lakes Basin Pilot project under the U.S. Geological Survey's National Water Availability and Use Program. The transient 2-million-cell model incorporates multiple aquifers and pumping centers that create water-level drawdown that extends into deep saline waters. The 20-layer model simulates the exchange between a dense surface-water network and heterogeneous glacial deposits overlying stratified bedrock of the Wisconsin/Kankakee Arches and Michigan Basin in the Lower and Upper Peninsulas of Michigan; eastern Wisconsin; northern Indiana; and northeastern Illinois. The model is used to quantify changes in the groundwater system in response to pumping and variations in recharge from 1864 to 2005. Model results quantify the sources of water to major pumping centers, illustrate the dynamics of the groundwater system, and yield measures of water availability useful for water-resources management in the region. This report is a complete description of the methods and datasets used to develop the regional model, the underlying conceptual model, and model inputs, including specified values of material properties and the assignment of external and internal boundary conditions. The report also documents the application of the SEAWAT-2000 program for variable-density flow; it details the approach, advanced methods, and results associated with calibration through nonlinear regression using the PEST program; presents the water-level, drawdown, and groundwater flows for various geographic subregions and aquifer systems; and provides analyses of the effects of pumping from shallow and deep wells on sources of water to wells, the migration of groundwater divides, and direct and indirect groundwater discharge to Lake Michigan. The report considers the role of unconfined conditions at the regional scale as well as the influence of salinity on groundwater flow

  14. Analysis and dynamic modeling of a moraine failure and glacier lake outburst flood at Ventisquero Negro, Patagonian Andes (Argentina)

    Science.gov (United States)

    Worni, Raphael; Stoffel, Markus; Huggel, Christian; Volz, Christian; Casteller, Alejandro; Luckman, Brian

    2012-06-01

    SummaryAlthough moraine dams are inherently prone to failure because of their often weak structure, loose internal composition and lack of an engineered spillway, the understanding of dam breaching processes remains largely incomplete and appropriate modeling approaches are scarce. This paper analyzes a recent glacier lake outburst, caused by the failure of the terminal moraine of Ventisquero Negro (Patagonian Andes, Argentina) in May 2009. The dam breach trigger, breaching and lake emptying processes, plus the dynamics of the outburst flood were reconstructed based on field evidence and the application of a dynamic dam break model. Results indicate that the moraine failure was caused most probably by a rising lake level due to heavy precipitation, resulting in high lake outflow which led to dam erosion and finally to dam failure. The lake volume of ca. 10 × 106 m3 was released in ca. 3 h, producing high-discharge (ca. 4100 m3 s-1) debris flows and hyperconcentrated flows as the escaping water entrained large volumes of clastic material. The methodology presented in this paper provides valuable insights into complex dam breach and GLOF processes, and closes a critical gap in dynamic dam break modeling aimed at providing the lake outburst hydrograph. An accurate determination of outburst hydrographs constitutes one of the most crucial aspects for hazard assessment of unstable lakes and will gain further importance with ongoing glacier retreat and glacier lake formation.

  15. Lake retention of manufactured nanoparticles

    NARCIS (Netherlands)

    Koelmans, A.A.; Quik, J.T.K.; Velzeboer, I.

    2015-01-01

    For twenty-five world lakes and three engineered nanoparticles (ENP), lake retention was calculated using a uniformly mixed lake mass balance model. This follows similar approaches traditionally used in water quality management. Lakes were selected such that lake residence times, depths and areal hy

  16. Multibeam Sonar Mapping and Modeling of a Submerged Bryophyte Mat in Crater Lake, Oregon

    Science.gov (United States)

    Dartnell, Peter; Collier, Robert; Buktenica, Mark; Jessup, Steven; Girdner, Scott; Triezenberg, Peter

    2008-01-01

    Traditionally, multibeam data have been used to map sea floor or lake floor morphology as well as the distribution of surficial facies in order to characterize the geologic component of benthic habitats. In addition to using multibeam data for geologic studies, we want to determine if these data can also be used directly to map the distribution of biota. Multibeam bathymetry and acoustic backscatter data collected in Crater Lake, Oregon, in 2000 are used to map the distribution of a deep-water bryophyte mat, which will be extremely useful for understanding the overall ecology of the lake. To map the bryophyte's distribution, depth range, acoustic backscatter intensity, and derived bathymetric index grids are used as inputs into a hierarchical decision-tree classification model. Observations of the bryophyte mat from over 23 line kilometers of lake-floor video collected in the summer of 2006 are used as controls for the model. The resulting map matches well with ground-truth information and shows that the bryophyte mat covers most of the platform surrounding Wizard Island as well as on outcrops around the caldera wall.

  17. Numerical Modelling Approaches for Assessing Improvements to the Flow Circulation in a Small Lake

    Directory of Open Access Journals (Sweden)

    Cheng He

    2011-01-01

    Full Text Available Kamaniskeg Lake is a long, narrow, and deep small lake located in the northern part of Ontario, Canada. The goals of this paper were to examine various options to improve the water quality in the northern part of the lake by altering the local hydraulic flow conditions. Towards this end, a preliminary screening suggested that the flow circulation could be increased around a central island (Mask Island in the northern part of the lake by opening up an existing causeway connecting the mainland and central island. Three-dimensional (3D hydraulic and transport models were adopted in this paper to investigate the hydraulic conditions under various wind forces and causeway structures. The modelling results show that opening the causeway in a few places is unlikely to generate a large flow circulation around the central island. Full circulation only appears to be possible if the causeway is fully removed and a strong wind blows in a favourable direction. The possible reasons for existing water quality variations at the intake of a local WTP (water treatment plant are also explored in the paper.

  18. Documentation of a computer program to simulate lake-aquifer interaction using the MODFLOW ground water flow model and the MOC3D solute-transport model

    Science.gov (United States)

    Merritt, Michael L.; Konikow, Leonard F.

    2000-01-01

    Heads and flow patterns in surficial aquifers can be strongly influenced by the presence of stationary surface-water bodies (lakes) that are in direct contact, vertically and laterally, with the aquifer. Conversely, lake stages can be significantly affected by the volume of water that seeps through the lakebed that separates the lake from the aquifer. For these reasons, a set of computer subroutines called the Lake Package (LAK3) was developed to represent lake/aquifer interaction in numerical simulations using the U.S. Geological Survey three-dimensional, finite-difference, modular ground-water flow model MODFLOW and the U.S. Geological Survey three-dimensional method-of-characteristics solute-transport model MOC3D. In the Lake Package described in this report, a lake is represented as a volume of space within the model grid which consists of inactive cells extending downward from the upper surface of the grid. Active model grid cells bordering this space, representing the adjacent aquifer, exchange water with the lake at a rate determined by the relative heads and by conductances that are based on grid cell dimensions, hydraulic conductivities of the aquifer material, and user-specified leakance distributions that represent the resistance to flow through the material of the lakebed. Parts of the lake may become ?dry? as upper layers of the model are dewatered, with a concomitant reduction in lake surface area, and may subsequently rewet when aquifer heads rise. An empirical approximation has been encoded to simulate the rewetting of a lake that becomes completely dry. The variations of lake stages are determined by independent water budgets computed for each lake in the model grid. This lake budget process makes the package a simulator of the response of lake stage to hydraulic stresses applied to the aquifer. Implementation of a lake water budget requires input of parameters including those representing the rate of lake atmospheric recharge and evaporation

  19. Acidification in Three Lake District Tarns: Historical Iong term trends and modelled future behaviour under changing sulphate and nitrate deposition

    Directory of Open Access Journals (Sweden)

    P. G. Whitchead

    1997-01-01

    Full Text Available Three upland Lake District Tarns, Scoat, Greendale and Burnmoor, have been evaluated using MAGIC (Model of Acidification of Groundwater In Catchments to reconstruct past, present and future chemical behaviour. The modelled historical changes in acidity are compared with palaeoecological estimation of pH to demonstrate model validity. Chemistry as simulated for all anions and cations and two of the three lakes are shown to have undergone significant acidification. The effects of changing atmospheric pollution levels on lake chemistry is evaluated and 80-90% sulphur reduction levels are required to achieve zero alkalinity. The impacts of increased nitrogen deposition are assessed and are shown to further delay reversibility.

  20. Simulation of surface energy fluxes and stratification of a small boreal lake by a set of one-dimensional models

    Directory of Open Access Journals (Sweden)

    Victor Stepanenko

    2014-01-01

    Full Text Available Five one-dimensional (1D lake models were run for the open water season in 2006 for Lake Valkea-Kotinen (Finland using on-lake measured meteorological forcing. The model results were validated using measurements of water temperature and of eddy covariance (EC fluxes. The surface temperature is satisfactorily simulated by all models showing slight overestimation (by 0.1–1.1°C. Both sensible and latent heat fluxes are positively biased in respect to EC data, consistent with earlier studies. However, correlation coefficients between EC-fluxes and those simulated are relatively high ranging from 0.55 to 0.74. The skill to simulate vertical temperature profiles by different models is assessed as well. It is found that the lake models underestimate the EC-derived surface drag coefficient, however providing realistic temperature profiles. It is argued that the real momentum flux from the atmosphere is larger than simulated, however it is split up between the wave development and the acceleration of lake currents. Adopting the simple parameterisation for momentum flux partitioning in one of the models showed that this mechanism can be significant. Finally, the effect of including the lake bathymetry data in k-ɛ models was the drastic overheating of water below the thermocline. This is likely to be caused by omitting the heat flux at the lake margins. Thus, the parameterisation of heat flux at the lake's margins should be included in the models; otherwise it is recommended to neglect bathymetry effects for such small water bodies as the Lake Valkea-Kotinen.

  1. Simulation of Tritium Transport and Groundwater Age in a Variably Saturated 3D Model, Lake Rotorua Catchment, New Zealand

    Science.gov (United States)

    Daughney, C.; Toews, M. W.; Morgenstern, U.; Cornaton, F. J.; Jackson, B. M.

    2013-12-01

    Lake Rotorua is a focus of culture and tourism in New Zealand. The lake's water quality has declined since the 1970s, partly due to nutrient inputs that reach the lake via the groundwater system. Improved land use management within the catchment requires prediction of the spatial variations of groundwater transit time from land surface to the lake, and from this the prediction of current and future nutrient inflows to the lake. This study combines the two main methods currently available for determination of water age: numerical groundwater models and hydrological tracers. A steady-state 3D finite element model was constructed to simulate groundwater flow and transport of tritium and age at the catchment scale (555 km2). The model materials were defined using a 3D geologic model and included ignimbrites, rhyolites, alluvial and lake bottom sediments. The steady-state saturated groundwater flow model was calibrated using observed groundwater levels in boreholes (111 locations) and stream flow measurements from groundwater-fed streams and springs (61 locations). Hydraulic conductivities and Cauchy boundary conditions associated with the streams, springs and lake were parameterized. The transport parameters for the model were calibrated using 191 tritium samples from 105 locations (springs, streams and boreholes), with most locations having two sample dates. The transport model used steady-state flow, but simulated the transient transport and decay of tritium from rainfall recharge between 1945 and 2012. An additional 1D unsaturated sub-model was added to account for tritium decay from the ground surface to the water table. The sub-model is linked on top of the 3D model, and uses the water table depths and material properties from the 3D model. The adjustable calibration parameters for the transport model were porosity and van Genuchten parameters related to the unsaturated sub-models. Calibration of the flow model was achieved using a combination of automated least

  2. Development and evaluation of a physically-based lake level model for water resource management: A case study for Lake Buchanan, Texas

    Directory of Open Access Journals (Sweden)

    Peirong Lin

    2015-09-01

    New hydrological insights: Different from traditional grid-based solutions, the framework is directly coupled on the vector-based NHDPlus dataset, which defines accurate hydrologic features such as rivers, dams, lakes and reservoirs. The resulting hybrid framework therefore allows for more flexibility in resolving “scaling-issues” between large-scale climate models and fine-scale applications. The presented hindcast results also provide insight into the influences of baseline LSM resolutions, initialization months, and lead times, which would ultimately help improve lake-level forecast skills.

  3. Miocene to recent ice elevation variations from the interior of the West Antarctic ice sheet: Constraints from geologic observations, cosmogenic nuclides and ice sheet modeling

    Science.gov (United States)

    Mukhopadhyay, Sujoy; Ackert, Robert P.; Pope, Allen E.; Pollard, David; DeConto, Robert M.

    2012-07-01

    Observations of long-term West Antarctic Ice Sheet (WAIS) behavior can be used to test and constrain dynamic ice sheet models. Long-term observational constraints are however, rare. Here we present the first constraints on long-term (Miocene-Holocene) WAIS elevation from the interior of the ice sheet near the WAIS divide. We use geologic observations and measurements of cosmogenic 21Ne and 10Be in bedrock surfaces to constrain WAIS elevation variations to WAIS elevations to have been similar to, or lower than present, since the beginning of the Pliocene warm period. We use a continental ice sheet model to simulate the history of ice cover at our sampling sites and thereby compute the expected concentration of the cosmogenic nuclides. The ice sheet model indicates that during the past 5 Ma interior WAIS elevations of >65 m above present-day ice levels at the Ohio Range occur only rarely during brief ice sheet highstands, consistent with the observed cosmogenic nuclide data. Furthermore, the model's prediction that highstand elevations have increased on average since the Pliocene is in good agreement with the cosmogenic nuclide data that indicate the highest ice elevation over the past 5 Ma was reached during the highstand at 11 ka. Since the simulated cosmogenic nuclide concentrations derived from the model's ice elevation history are in good agreement with our measurements, we suggest that the model's prediction of more frequent collapsed-WAIS states and smaller WAIS volumes during the Pliocene are also correct.

  4. Global dynamics of the Antarctic ice sheet

    NARCIS (Netherlands)

    Oerlemans, J.

    2002-01-01

    The total mass budget of the Antarctic ice sheet is studied with a simple axi-symmetrical model. The ice-sheet has a parabolic profile resting on a bed that slopes linearly downwards from the centre of the ice sheet into the ocean. The mean ice velocity at the grounding line is assumed to be proport

  5. Mathematical model for flood routing in Jingjiang River and Dongting Lake network

    Directory of Open Access Journals (Sweden)

    Zuo-tao XIE

    2012-09-01

    Full Text Available The main stream of the Yangtze River, Dongting Lake, and the river network in the Jingjiang reach of the Yangtze River constitute a complex water system. This paper develops a one-dimensional (1-D mathematical model for flood routing in the river network of the Jingjiang River and Dongting Lake using the explicit finite volume method. Based on observed data during the flood periods in 1996 and 1998, the model was calibrated and validated, and the results show that the model is effective and has high accuracy. In addition, the one-dimensional mathematical model for the river network and the horizontal two-dimensional (2-D mathematical model for the Jingjiang flood diversion area were coupled to simulate the flood process in the Jingjiang River, Dongting Lake, and the Jingjiang flood diversion area. The calculated results of the coupled model are consistent with the practical processes. Meanwhile, the results show that the flood diversion has significant effects on the decrease of the peak water level at the Shashi and Chenjiawan hydrological stations near the flood diversion gates, and the effect is more obvious in the downstream than in the upstream.

  6. Cholera in the Lake Kivu region (DRC): Integrating remote sensing and spatially explicit epidemiological modeling

    Science.gov (United States)

    Finger, Flavio; Knox, Allyn; Bertuzzo, Enrico; Mari, Lorenzo; Bompangue, Didier; Gatto, Marino; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2014-07-01

    Mathematical models of cholera dynamics can not only help in identifying environmental drivers and processes that influence disease transmission, but may also represent valuable tools for the prediction of the epidemiological patterns in time and space as well as for the allocation of health care resources. Cholera outbreaks have been reported in the Democratic Republic of the Congo since the 1970s. They have been ravaging the shore of Lake Kivu in the east of the country repeatedly during the last decades. Here we employ a spatially explicit, inhomogeneous Markov chain model to describe cholera incidence in eight health zones on the shore of the lake. Remotely sensed data sets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers in addition to baseline seasonality. The effect of human mobility is also modelled mechanistically. We test several models on a multiyear data set of reported cholera cases. The best fourteen models, accounting for different environmental drivers, and selected using the Akaike information criterion, are formally compared via proper cross validation. Among these, the one accounting for seasonality, El Niño Southern Oscillation, precipitation and human mobility outperforms the others in cross validation. Some drivers (such as human mobility and rainfall) are retained only by a few models, possibly indicating that the mechanisms through which they influence cholera dynamics in the area will have to be investigated further.

  7. Modeling aluminum-silicon chemistries and application to Australian acidic playa lakes as analogues for Mars

    Science.gov (United States)

    Marion, G.M.; Crowley, J.K.; Thomson, B.J.; Kargel, J.S.; Bridges, N.T.; Hook, S.J.; Baldridge, A.; Brown, A.J.; Ribeiro da Luz, B.; de Souza, Filho C.R.

    2009-01-01

    Recent Mars missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major relevant findings are the presence in Meridiani Planum sediments of the mineral jarosite (a ferric sulfate salt) and related minerals that require formation from an acid-salt brine and oxidizing environment. Similar mineralogies have been observed in acidic saline lake sediments in Western Australia (WA), and these lakes have been proposed as analogues for acidic sedimentary environments on Mars. The prior version of the equilibrium chemical thermodynamic FREZCHEM model lacked Al and Si chemistries that are needed to appropriately model acidic aqueous geochemistries on Earth and Mars. The objectives of this work were to (1) add Al and Si chemistries to the FREZCHEM model, (2) extend these chemistries to low temperatures (silicon mineral parameterizations were based on Gibbs free energy and enthalpy data. New aluminum and silicon parameterizations added 12 new aluminum/silicon minerals to this Na-K-Mg-Ca-Fe(II)-Fe(III)-Al-H-Cl-Br-SO4-NO3-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system that now contain 95 solid phases. There were similarities, differences, and uncertainties between Australian acidic, saline playa lakes and waters that likely led to the Burns formation salt accumulations on Mars. Both systems are similar in that they are dominated by (1) acidic, saline ground waters and sediments, (2) Ca and/or Mg sulfates, and (3) iron precipitates such as jarosite and hematite. Differences include: (1) the dominance of NaCl in many WA lakes, versus the dominance of Fe-Mg-Ca-SO4 in Meridiani Planum, (2) excessively low K+ concentrations in Meridiani Planum due to jarosite precipitation, (3) higher acid production in the presence of high iron concentrations in Meridiani Planum, and probably lower rates of acid neutralization and hence, higher acidities on Mars owing to colder temperatures, and (4) lateral salt patterns in WA lakes. The WA playa lakes

  8. A modified QWASI model for fate and transport modeling of mercury between the water-ice-sediment in Lake Ulansuhai.

    Science.gov (United States)

    Liu, Yu; Li, Changyou; Anderson, Bruce; Zhang, Sheng; Shi, Xiaohong; Zhao, Shengnan

    2017-06-01

    Mercury contamination from industrial and agricultural drainage into lakes and rivers is a growing concern in Northern China. Lake Ulansuhai, located in Hetao irrigation district in Inner Mongolia, is the only sink for the all industrial and agricultural drainage and sole outlet for this district to the Yellow River, which is one of the main source of drinking water for the numerous cities and towns downstream. Because Ulansuahi is ice-covered during winter, the QWASI model was modified by adding an ice equation to get a more accurate understanding of the fate and transport of mercury within the lake. Both laboratory and field tests were carried out during the ice growth period. The aquivalence and mass balance approaches were used to develop the modified QWASI + ice model. The margins of error between the modelled and the measured average concentrations of Hg in ice, water, and sediment were 30%, 26.2%, and 19.8% respectively. These results suggest that the new QWASI + ice model could be used to more accurately represent the fate and transport of mercury in the seasonally ice-covered lakes, during the ice growth period.

  9. Modelling cascading and erosional processes for glacial lake outburst floods in the Quillcay catchment, Huaraz, Cordillera Blanca, Peru

    Science.gov (United States)

    Baer, Patrick; Huggel, Christian; Frey, Holger; Chisolm, Rachel; McKinney, Daene; McArdell, Brian; Portocarrero, Cesar; Cochachin, Alejo

    2016-04-01

    Huaraz as the largest city in Cordillera Blanca has faced a major disaster in 1941, when an outburst flood from Lake Palcacocha killed several thousand people and caused widespread destruction. Recent studies on glacial lake outburst flood (GLOF) modelling and early warning systems focussed on Lake Palcacocha which has regrown after the 1941 event, from a volume of half a million m3 in 1974 to a total volume of more than 17 million m3 today. However, little research has been conducted so far concerning the situation of other lakes in the Quillcay catchment, namely Lake Tullparaju (12 mill. m3) and Cuchillacocha (2.5 mill. m3), which both also pose a threat to the city of Huaraz. In this study, we modelled the cascading processes at Lake Tullparaju and Lake Cuchillacocha including rock/ice avalanches, flood wave propagation in the lake and the resulting outburst flood and debris flows. We used the 2D model RAMMS to simulate ice avalanches. Model output was used as input for analytical 2D and 3D calculations of impact waves in the lakes that allowed us to estimate dam overtopping wave height. Since the dimension of the hanging glaciers above all three lakes is comparable, the scenarios in this study have been defined similar to the previous study at Lake Palcacocha. The flow propagation model included sediment entrainment in the steeper parts of the catchment, adding up to 50% to the initial flow volume. The results for total travel time as well as for inundated areas and flow depth and velocity in the city of Huaraz are comparable to the previous studies at Lake Palcacocha. This underlines the importance of considering also these lakes within an integral hazard analysis for the city of Huaraz. A main challenge for modelling GLOFs in the Quillcay catchment using RAMMS is the long runout distance of over 22 km combined with the very low slope gradient of the river. Further studies could improve the process understanding and could focus on more detailed investigations

  10. Using a coupled groundwater/surface-water model to predict climate-change impacts to lakes in the Trout Lake Watershed, northern Wisconsin

    Science.gov (United States)

    Hunt, Randall; Walker, John F.; Markstrom, Steven L.; Hay, Lauren E.; Doherty, John; Webb, Richard M.T.; Semmens, Darius J.

    2009-01-01

    A major focus of the U.S. Geological Survey’s Trout Lake Water, Energy, and Biogeochemical Budgets (WEBB) project is the development of a watershed model to allow predictions of hydrologic response to future conditions including land-use and climate change. The coupled groundwater/surface-water model GSFLOW was chosen for this purpose because it could easily incorporate an existing groundwater flow model and it provides for simulation of surface-water processes.

  11. Water regime of Playa Lakes from southern Spain: conditioning factors and hydrological modeling.

    Science.gov (United States)

    Moral, Francisco; Rodriguez-Rodriguez, Miguel; Beltrán, Manuel; Benavente, José; Cifuentes, Victor Juan

    2013-07-01

    Andalusia's lowland countryside has a network of small geographically isolated playa lakes scattered across an area of 9000 km2 whose watersheds are mostly occupied by clayey rocks. The hydrological model proposed by the authors seeks to find equilibrium among usefulness, simplicity, and applicability to isolated playas in a semiarid context elsewhere. Based in such model, the authors have used monthly climatic data, water stage measurements, and the basin morphometry of a particular case (Los Jarales playa lake) to calibrate the soil water budget in the catchment and the water inputs from the watershed (runoff plus groundwater flow) at different scales, from monthly to daily. After the hydrologic model was calibrated, the authors implemented simulations with the goal of reproducing the past hydrological dynamics and forecasting water regime changes that would be caused by a modification of the wetland morphometry.

  12. Modelling the Loktak Lake Basin to Assess Human Impact on Water Resources

    Science.gov (United States)

    Eliza, K.

    2015-12-01

    Loktak Lake is an internationally important, Ramsar designated, fresh water wetland system in the state of Manipur, India. The lake was also listed under Montreux Record on account of the ecological modifications that the lake system has witnessed over time. A characteristic feature of this lake is the extensive occurrence of coalesced, naturally or otherwise, vegetative masses floating over it. A contiguous 40 km2 area of Phumdis, as these vegetative masses are locally referred to, also constitutes the only natural home of the endemic and endangered species of Manipur's brow-antlered deer popularly known as Sangai. Appropriately notified as Keibul Lamjao National Park by Government of India, this natural feature is known to be the world's largest floating park. Water quality and sediment deposition on account of soil erosion in its catchments are some of the emerging concerns along with a reported enhanced frequency and duration of flooding of the shore areas, reduced fish catch within a visibly deteriorated overall natural ecosystem. Disturbances of watershed processes, command area management practices, ineffective as indeed largely absent, waste management practices and management interventions linked to the Loktak Hydroelectric Project are often cited as the principal triggers that are seen to be responsible for the damage. An effective management protocol for the Lake requires a rigorous understanding of its hydrobiology and eco-hydrodynamics. The present study is carried out to establish such a characterization of the various rivers systems draining directly into the Lake using MIKE SHE, MIKE 11 HD and MIKE 11 ECO Lab modelling platforms. Water quality modelling was limited to dissolved oxygen (DO), biological oxygen demand (BOD) and water temperature. Model calibration was done using the available measured water quality data. The derived results were then investigated for causal correlation with anthropogenic influences to assess human impact on water

  13. A coupled regolith-lake development model applied to the Forsmark site

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars; Stroemgren, Maarten (Umeaa Univ., Umeaa (Sweden))

    2010-11-15

    The Quaternary geology at the Forsmark site has been characterized using both a map of Quaternary deposits and a regolith depth model (RDM) that show the stratigraphy and thickness of different deposits. Regolith refers to all the unconsolidated deposits overlying the bedrock. The surface geology and regolith depth are important parameters for hydrogeological and geochemical modelling and for the overall understanding of the area. The safety assessment analysis should focus on processes involved during a period of 120,000 years, which includes a full glacial cycle; however, the investigations within the site description model do not cover the temporal change of the regolith, a limitation that does not fulfil the requirements for the safety assessment. To this end, this study constructs a model that can predict the surface geology, stratigraphy, and thickness of different strata at any time during a glacial cycle and applies this model to the Forsmark site. The Weichselian ice sheet covered the study area until around 9500 BC. The deglaciation revealed a marine landscape with bedrock, till and glacial clay. For the safety assessment, the most important unconsolidated strata are clay or silt: these small grains can bind nuclear elements more easily than coarser sediment particles. Thick layers of clay can be found where post-glacial clay settled on top of glacial clay, especially where the middle-aged erosion of postglacial clay is missing and where there is an uninterrupted sequence of accumulation of finegrained particles. Such areas could be found in deep marine basins that later become lakes when raised into a supra-marine position. The coupled regolith-lake development model (RLDM) predicts the course of events described above during an interglacial, especially the dynamics of the clay and silt particles. The RLDM is divided into two modules: a marine module that predicts the sediment dynamics caused by wind waves and a lake module that predicts the lake infill

  14. Large ensemble modeling of the last deglacial retreat of the West Antarctic Ice Sheet: comparison of simple and advanced statistical techniques

    Science.gov (United States)

    Pollard, David; Chang, Won; Haran, Murali; Applegate, Patrick; DeConto, Robert

    2016-05-01

    A 3-D hybrid ice-sheet model is applied to the last deglacial retreat of the West Antarctic Ice Sheet over the last ˜ 20 000 yr. A large ensemble of 625 model runs is used to calibrate the model to modern and geologic data, including reconstructed grounding lines, relative sea-level records, elevation-age data and uplift rates, with an aggregate score computed for each run that measures overall model-data misfit. Two types of statistical methods are used to analyze the large-ensemble results: simple averaging weighted by the aggregate score, and more advanced Bayesian techniques involving Gaussian process-based emulation and calibration, and Markov chain Monte Carlo. The analyses provide sea-level-rise envelopes with well-defined parametric uncertainty bounds, but the simple averaging method only provides robust results with full-factorial parameter sampling in the large ensemble. Results for best-fit parameter ranges and envelopes of equivalent sea-level rise with the simple averaging method agree well with the more advanced techniques. Best-fit parameter ranges confirm earlier values expected from prior model tuning, including large basal sliding coefficients on modern ocean beds.

  15. Three-dimensional eutrophication model and application to Taihu Lake,China

    Institute of Scientific and Technical Information of China (English)

    MAO Jingqiao; CHEN Qiuwen; CHEN Yongcan

    2008-01-01

    Talhu Lake,the largest freshwater shallow lake in eastern China,has suffered from severe eutrophication over the past two decades. This research developed a three-dimensional eutrophication model to investigate the eutrophication dynamics.The model fully coupled the biological processes and hydrodynamics,and also took into account the effects of sediment release and the external loads from the tributaries.After sensitivity analyses,the key parameters were defined and then calibrated by the field observation data.The calibrated model was applied to study the seasonal primary productions and its regional differences.The comparisons between model results and field data in year 2000 indicated that the model is able to simulate the eutrophication dynamics in Taihu Lake with a reasonable accuracy.From the simulation experiments,it was found that the meteorological forcing have significant influences on the temporal variations of the eutrophication dynamics.The wind-induced circulation and sediment distribution play an important role in the spatial distribution of the algae blooms.

  16. Lake isotope records of the 8200-year cooling event in western Ireland: Comparison with model simulations

    Science.gov (United States)

    Holmes, Jonathan A.; Tindall, Julia; Roberts, Neil; Marshall, William; Marshall, Jim D.; Bingham, Ann; Feeser, Ingo; O'Connell, Michael; Atkinson, Tim; Jourdan, Anne-Lise; March, Anna; Fisher, Elizabeth H.

    2016-01-01

    The early Holocene cooling, which occurred around 8200 calendar years before present, was a prominent abrupt event around the north Atlantic region. Here, we investigate the timing, duration, magnitude and regional coherence of the event as expressed in carbonate oxygen-isotope records from three lakes on northwest Europe's Atlantic margin in western Ireland, namely Loch Avolla, Loch Gealáin and Lough Corrib. An abrupt negative oxygen-isotope excursion lasted about 200 years. Comparison of records from three sites suggests that the excursion was primarily the result of a reduction of the oxygen-isotope values of precipitation, which was likely caused by lowered air temperatures, possibly coupled with a change in atmospheric circulation. Comparison of records from two of the lakes (Loch Avolla and Loch Gealáin), which have differing bathymetries, further suggests a reduction in evaporative loss of lake water during the cooling episode. Comparison of climate model experiments with lake-sediment isotope data indicates that effective moisture may have increased along this part of the northeast Atlantic seaboard during the 8200-year climatic event, as lower evaporation compensated for reduced precipitation.

  17. Satellite remote sensing of water turbidity in Alqueva reservoir and implications on lake modelling

    Directory of Open Access Journals (Sweden)

    M. Potes

    2012-06-01

    Full Text Available The quality control and monitoring of surface freshwaters is crucial, since some of these water masses constitute essential renewable water resources for a variety of purposes. In addition, changes in the surface water composition may affect the physical properties of lake water, such as temperature, which in turn may impact the interactions of the water surface with the lower atmosphere.

    The use of satellite remote sensing to estimate the water turbidity of Alqueva reservoir, located in the south of Portugal, is explored. A validation study of the satellite derived water leaving spectral reflectance is firstly presented, using data taken during three field campaigns carried out during 2010 and early 2011. Secondly, an empirical algorithm to estimate lake water surface turbidity from the combination of in situ and satellite measurements is proposed. Finally, the importance of water turbidity on the surface energy balance is tested in the form of a study of the sensitivity of a lake model to the extinction coefficient of water (estimated from turbidity, showing that this is an important parameter that affects the lake surface temperature.

  18. Modeling Hydrodynamics and Heat Transport in Upper Klamath Lake, Oregon, and Implications for Water Quality

    Science.gov (United States)

    Wood, Tamara M.; Cheng, Ralph T.; Gartner, Jeffrey W.; Hoilman, Gene R.; Lindenberg, Mary K.; Wellman, Roy E.

    2008-01-01

    The three-dimensional numerical model UnTRIM was used to model hydrodynamics and heat transport in Upper Klamath Lake, Oregon, between mid-June and mid-September in 2005 and between mid-May and mid-October in 2006. Data from as many as six meteorological stations were used to generate a spatially interpolated wind field to use as a forcing function. Solar radiation, air temperature, and relative humidity data all were available at one or more sites. In general, because the available data for all inflows and outflows did not adequately close the water budget as calculated from lake elevation and stage-capacity information, a residual inflow or outflow was used to assure closure of the water budget. Data used for calibration in 2005 included lake elevation at 3 water-level gages around the lake, water currents at 5 Acoustic Doppler Current Profiler (ADCP) sites, and temperature at 16 water-quality monitoring locations. The calibrated model accurately simulated the fluctuations of the surface of the lake caused by daily wind patterns. The use of a spatially variable surface wind interpolated from two sites on the lake and four sites on the shoreline generally resulted in more accurate simulation of the currents than the use of a spatially invariant surface wind as observed at only one site on the lake. The simulation of currents was most accurate at the deepest site (ADCP1, where the velocities were highest) using a spatially variable surface wind; the mean error (ME) and root mean square error (RMSE) for the depth-averaged speed over a 37-day simulation from July 26 to August 31, 2005, were 0.50 centimeter per second (cm/s) and 3.08 cm/s, respectively. Simulated currents at the remaining sites were less accurate and, in general, underestimated the measured currents. The maximum errors in simulated currents were at a site near the southern end of the trench at the mouth of Howard Bay (ADCP7), where the ME and RMSE in the depth-averaged speed were 3.02 and 4.38 cm

  19. Air-snow transfer of nitrate on the East Antarctic Plateau - Part 2: An isotopic model for the interpretation of deep ice-core records

    Science.gov (United States)

    Erbland, J.; Savarino, J.; Morin, S.; France, J. L.; Frey, M. M.; King, M. D.

    2015-10-01

    Unraveling the modern budget of reactive nitrogen on the Antarctic Plateau is critical for the interpretation of ice-core records of nitrate. This requires accounting for nitrate recycling processes occurring in near-surface snow and the overlying atmospheric boundary layer. Not only concentration measurements but also isotopic ratios of nitrogen and oxygen in nitrate provide constraints on the processes at play. However, due to the large number of intertwined chemical and physical phenomena involved, numerical modeling is required to test hypotheses in a quantitative manner. Here we introduce the model TRANSITS (TRansfer of Atmospheric Nitrate Stable Isotopes To the Snow), a novel conceptual, multi-layer and one-dimensional model representing the impact of processes operating on nitrate at the air-snow interface on the East Antarctic Plateau, in terms of concentrations (mass fraction) and nitrogen (δ15N) and oxygen isotopic composition (17O excess, Δ17O) in nitrate. At the air-snow interface at Dome C (DC; 75° 06' S, 123° 19' E), the model reproduces well the values of δ15N in atmospheric and surface snow (skin layer) nitrate as well as in the δ15N profile in DC snow, including the observed extraordinary high positive values (around +300 ‰) below 2 cm. The model also captures the observed variability in nitrate mass fraction in the snow. While oxygen data are qualitatively reproduced at the air-snow interface at DC and in East Antarctica, the simulated Δ17O values underestimate the observed Δ17O values by several per mill. This is explained by the simplifications made in the description of the atmospheric cycling and oxidation of NO2 as well as by our lack of understanding of the NOx chemistry at Dome C. The model reproduces well the sensitivity of δ15N, Δ17O and the apparent fractionation constants (15ϵapp, 17Eapp) to the snow accumulation rate. Building on this development, we propose a framework for the interpretation of nitrate records

  20. Comparing past accumulation rate reconstructions in East Antarctic ice cores using 10Be, water isotopes and CMIP5-PMIP3 models

    Directory of Open Access Journals (Sweden)

    A. Cauquoin

    2015-03-01

    Full Text Available Ice cores are exceptional archives which allow us to reconstruct a wealth of climatic parameters as well as past atmospheric composition over the last 800 kyr in Antarctica. Inferring the variations in past accumulation rate in polar regions is essential both for documenting past climate and for ice core chronology. On the East Antarctic Plateau, the accumulation rate is so small that annual layers cannot be identified and accumulation rate is mainly deduced from the water isotopic composition assuming constant temporal relationships between temperature, water isotopic composition and accumulation rate. Such an assumption leads to large uncertainties on the reconstructed past accumulation rate. Here, we use high-resolution beryllium-10 (10Be as an alternative tool for inferring past accumulation rate for the EPICA Dome C ice core, in East Antarctica. We present a high-resolution 10Be record covering a full climatic cycle over the period 269 to 355 ka from Marine Isotope Stage (MIS 9 to 10, including a period warmer than pre-industrial (MIS 9.3 optimum. After correcting 10Be for the estimated effect of the palaeomagnetic field, we deduce that the 10Be reconstruction is in reasonably good agreement with EDC3 values for the full cycle except for the period warmer than present. For the latter, the accumulation is up to 13% larger (4.46 cm ie yr−1 instead of 3.95. This result is in agreement with the studies suggesting an underestimation of the deuterium-based accumulation for the optimum of the Holocene (Parrenin et al. 2007a. Using the relationship between accumulation rate and surface temperature from the saturation vapour relationship, the 10Be-based accumulation rate reconstruction suggests that the temperature increase between the MIS 9.3 optimum and present day may be 2.4 K warmer than estimated by the water isotopes reconstruction. We compare these reconstructions to the available model results from CMIP5-PMIP3 for a glacial and an

  1. Predictive mechanistic bioenergetics to model habitat suitability of shellfish culture in coastal lakes

    Science.gov (United States)

    Rinaldi, A.; Montalto, V.; Manganaro, A.; Mazzola, A.; Mirto, S.; Sanfilippo, M.; Sarà, G.

    2014-05-01

    Quantitative tools based on mechanistic modelling of functional traits able to enhance the sustainability of aquaculture and most other human activities (i.e. reducing the likelihood of detrimental impacts optimising productions), are especially important factors in the decision to site aquaculture facilities in coastal lakes, ponds and lagoons and, in the case of detrimental impact, to adopt mitigation measures. We tested the ability of mechanistic functional trait based models to predict life history traits of cultivable shellfish in shallow coastal lakes. Dynamic Energy Budget (DEB) models were run to generate spatially explicit predictions of Mytilus galloprovincialis life history (LH) traits (e.g. body size and fecundity). Using fortnightly data of food supply and hourly data of body temperatures, and exploiting the power of mechanistic rules, we estimated the amount of faeces ejected by a fixed quantity of organisms cultivated in two shallow Southern Mediterranean (Sicily) lakes. These differed in terms of temperature and food density, implying large differences in life history traits of mussels in the two study areas. This information could help facilitate the selection of sites where environmental conditions are more suitable for aquaculture and contextually compatible with sustainability. The validation exercise obtained by comparing the predicted and observed data was nearly consistent. Therefore, a mechanistic functional traits-based model seems able to capture the link between habitat characteristics and functional traits of organisms, delineating the fundamental portion of an ecological niche, the possibility of predicting LH traits and potential ecological applications in the management of natural coastal resources.

  2. Devils Lake Wetland Management District - Waterfowl Production Area Habitat Priority Models by Counties and By District - North Dakota.

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Prioritization of Devils Lake WMD fee title WPA's was constructed using a spreadsheet model for each county within the DLWMD. A set of WPA metrics were chosen, then...

  3. A preliminary knowledge-driven prediction model of snail distribution in the Poyang Lake region

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Present monitoring and prediction of schistosomiasis's intermediate parasite,snail,are based on remote sensing image's spectral signatures,and the calculation result iS in fact an incomplete-constraints solution.TM image of the Poyang Lake region on October 31,2005 was combined with GIS thematic data(DEM,boundary of the Poyang Lake,vegetation,soil and land use)to make a prediction on snail spatial distribution in the region by remote sensing,geo-informatics and knowledge-driven modeling according to mechanism of snail occurrence.Result shows that with change of overall fuzzy membership of snail occurrence from high to low,snail occurrence of the snail samples of validation group goes up to 81% within 10% high fuzzy membership range,denoting high efficiency of the model in predicting snail occurrence.

  4. An agent-based model for water management and planning in the Lake Naivasha basin, Kenya

    Science.gov (United States)

    van Oel, Pieter; Mulatu, Dawit; Odongo, Vincent; Onyando, Japheth; Becht, Robert; van der Veen, Anne

    2013-04-01

    A variety of human and natural processes influence the ecological and economic state of the Lake Naivasha basin. The ecological wealth and recent economic developments in the area are strongly connected to Lake Naivasha which supports a rich variety of flora, mammal and bird species. Many human activities depend on clean freshwater from the lake whereas recently the freshwater availability of good quality is seriously influenced by water abstractions and the use of fertilizers in agriculture. Management alternatives include those aiming at limiting water abstractions and fertilizer use. A possible way to achieve reduced use of water and fertilizers is the introduction of Payment for Environmental Services (PES) schemes. As the Lake Naivasha basin and its population have experienced increasing pressures various disputes and disagreements have arisen about the processes responsible for the problems experienced, and the effectively of management alternatives. Beside conflicts of interest and disagreements on responsibilities there are serious factual disagreements. To share scientific knowledge on the effects of the socio-ecological system processes on the Lake Naivasha basin, tools may be used that expose information at temporal and spatial scales that are meaningful to stakeholders. In this study we use a spatially-explicit agent-based modelling (ABM) approach to depict the interactions between socio-economic and natural subsystems for supporting a more sustainable governance of the river basin resources. Agents consider alternative livelihood strategies and decide to go for the one they perceive as likely to be most profitable. Agents may predict and sense the availability of resources and also can observe economic performance achieved by neighbouring agents. Results are presented at the basin and subbasin level to provide relevant knowledge to Water Resources Users Associations which are important collective forums for water management through which PES schemes

  5. Freezing of lakes on the Swiss Plateau 1865-2100: combining long-term observations with modelling

    Science.gov (United States)

    Huss, Matthias; Hendricks Franssen, Harrie-Jan; Keller, Felix; Funk, Martin; Hoelzle, Martin

    2016-04-01

    The frequency of lake freeze-up on the Swiss plateau is a sensitive indicator of changes in central European winter climate. Whereas smaller and more shallow lakes are reported to completely freeze in more than 50% of the winters, large and deep lakes like Bodensee and Zurichsee only froze one to very few times during the 20th century. The ice cover lasted between some days and up to three months. The periodic freezing of lakes on the Swiss plateau exerts considerable public attraction and is, in some cases, even an economic factor. In this study, we rely on an exceptional data set presented by Hendricks-Franssen and Scherrer (2008) providing complete series of freeze-up events for a dozen lakes on the Swiss plateau since 1901 based on direct observations. A new physically-based 1-D model for the energy balance and the thermodynamics of lake ice is presented and validated against the long-term observations. The model is driven with measured meteorological data as well as with results of 10 regional climate models. We apply the model to compute continuous series of freeze-up events between 1865 and 2100 for 14 Swiss lakes. In addition, the model calculates the time evolution of the ice thickness and the corresponding bearing capacity. We discuss the potential of the model for simulating lake freeze-up events over the last century in connection with the direct observations and simplified approaches for estimating lake ice formation. Changes in freezing frequency are analysed over a period of more than 200 years extending from the beginning of the instrumental record into the future. Until 2050, freezing is still possible even for medium-sized lakes in extreme winters. Towards the end of the 21st century, however, lakes on the Swiss plateau are unlikely to freeze during winter with the exception of rare events on small lakes. For an additional study site located at higher elevation in the Alps the model predicts annual freezing until 2100 but with strongly reduced

  6. On the use of high-throughput sequencing for the study of cyanobacterial diversity in Antarctic aquatic mats.

    Science.gov (United States)

    Pessi, Igor Stelmach; Maalouf, Pedro De Carvalho; Laughinghouse, Haywood Dail; Baurain, Denis; Wilmotte, Annick

    2016-06-01

    The study of Antarctic cyanobacterial diversity has been mostly limited to morphological identification and traditional molecular techniques. High-throughput sequencing (HTS) allows a much better understanding of microbial distribution in the environment, but its application is hampered by several methodological and analytical challenges. In this work, we explored the use of HTS as a tool for the study of cyanobacterial diversity in Antarctic aquatic mats. Our results highlight the importance of using artificial communities to validate the parameters of the bioinformatics procedure used to analyze natural communities, since pipeline-dependent biases had a strong effect on the observed community structures. Analysis of microbial mats from five Antarctic lakes and an aquatic biofilm from the Sub-Antarctic showed that HTS is a valuable tool for the assessment of cyanobacterial diversity. The majority of the operational taxonomic units retrieved were related to filamentous taxa such as Leptolyngbya and Phormidium, which are common genera in Antarctic lacustrine microbial mats. However, other phylotypes related to different taxa such as Geitlerinema, Pseudanabaena, Synechococcus, Chamaesiphon, Calothrix, and Coleodesmium were also found. Results revealed a much higher diversity than what had been reported using traditional methods and also highlighted remarkable differences between the cyanobacterial communities of the studied lakes. The aquatic biofilm from the Sub-Antarctic had a distinct cyanobacterial community from the Antarctic lakes, which in turn displayed a salinity-dependent community structure at the phylotype level.

  7. A computationally efficient depression-filling algorithm for digital elevation models, applied to proglacial lake drainage

    Science.gov (United States)

    Berends, Constantijn J.; van de Wal, Roderik S. W.

    2016-12-01

    Many processes govern the deglaciation of ice sheets. One of the processes that is usually ignored is the calving of ice in lakes that temporarily surround the ice sheet. In order to capture this process a "flood-fill algorithm" is needed. Here we present and evaluate several optimizations to a standard flood-fill algorithm in terms of computational efficiency. As an example, we determine the land-ocean mask for a 1 km resolution digital elevation model (DEM) of North America and Greenland, a geographical area of roughly 7000 by 5000 km (roughly 35 million elements), about half of which is covered by ocean. Determining the land-ocean mask with our improved flood-fill algorithm reduces computation time by 90 % relative to using a standard stack-based flood-fill algorithm. This implies that it is now feasible to include the calving of ice in lakes as a dynamical process inside an ice-sheet model. We demonstrate this by using bedrock elevation, ice thickness and geoid perturbation fields from the output of a coupled ice-sheet-sea-level equation model at 30 000 years before present and determine the extent of Lake Agassiz, using both the standard and improved versions of the flood-fill algorithm. We show that several optimizations to the flood-fill algorithm used for filling a depression up to a water level, which is not defined beforehand, decrease the computation time by up to 99 %. The resulting reduction in computation time allows determination of the extent and volume of depressions in a DEM over large geographical grids or repeatedly over long periods of time, where computation time might otherwise be a limiting factor. The algorithm can be used for all glaciological and hydrological models, which need to trace the evolution over time of lakes or drainage basins in general.

  8. An Agroforestry Design for the Model Ecovillage at the Lake Victoria,Uganda

    OpenAIRE

    小林, 舞

    2008-01-01

    This is a presentation of an agroforestry design proposal for the Model Ecovillage-A University at Lake Victoria and Islands project site in Kaazi-Busabala, Uganda. This is a collaborative project currently taking place between Tenri University and Makerere University, and supported and funded by the Ambassador of the Republic of Uganda to Japan. The proposal seeks to convey the importance of and the potential for an agroforestry design for the overall success of the project. It is based on a...

  9. Ice-Covered Lakes in Gale Crater Mars: The Cold and Wet Hypothesis

    Science.gov (United States)

    Kling, Alexandre; Haberle, Robert; McKay, Christopher P.; Bristow, Thomas

    2016-10-01

    Recent geological discoveries from the Mars Science Laboratory provide evidence that Gale crater may have intermittently hosted a fluvio-lacustine environment during the Hesperian, with individual lakes lasting for a period of tens to hundreds of thousands of years. (Grotzinger et al., Science, 350 (6257), 2015). Estimates of the CO2 content of the atmosphere at the time the Gale sediments formed are far less than needed by any climate model to warm early Mars (Bristow et al., Geology, submitted), given the low solar energy input available at Mars 3.5 Gya. We have therefore explored the possibility that the lakes in Gale during the Hesperian were perennially covered with ice using the Antarctic Lakes as an analog. Using our best estimate for the annual mean surface temperature at Gale at this time (~230K) we computed the thickness of an ice-covered lake. These thickness range from 10-30 meters depending on the ablation rate and ice transparency and would likely inhibit sediments from entering the lake. Thus, a first conclusion is that the ice must not be too cold. Raising the mean temperature to 245K is challenging, but not quite as hard as reaching 273K. We found that a mean annual temperature of 245K ice thicknesses range from 3-10 meters. These values are comparable to the range of those for the Antarctic lakes (3-6 m), and are not implausible. And they are not so thick that sediments cannot penetrate the ice. For the ice-covered lake hypothesis to work, however, a melt water source is needed. This could come from subaqueous melting of a glacial dam in contact with the lakes (as is the case for Lake Untersee) or from seasonal melt water from nearby glaciers (as is the case for the Dry Valley lakes). More work is needed to better assess these possibilities. However, the main advantage of the ice-covered lake model (and the main reason we pursued it) is that it relaxes the requirement for a long-lived active hydrological cycle involving rainfall and runoff, which

  10. Trophic transfer of polychlorinated biphenyls (PCB) in a boreal lake ecosystem: testing of bioaccumulation models.

    Science.gov (United States)

    Figueiredo, Kaisa; Mäenpää, Kimmo; Leppänen, Matti T; Kiljunen, Mikko; Lyytikäinen, Merja; Kukkonen, Jussi V K; Koponen, Hannu; Biasi, Christina; Martikainen, Pertti J

    2014-01-01

    Understanding the fate of persistent organic chemicals in the environment is fundamental information for the successful protection of ecosystems and humans. A common dilemma in risk assessment is that monitoring data reveals contaminant concentrations in wildlife, while the source concentrations, route of uptake and acceptable source concentrations remain unsolved. To overcome this problem, different models have been developed in order to obtain more precise risk estimates for the food webs. However, there is still an urgent need for studies combining modelled and measured data in order to verify the functionality of the models. Studies utilising field-collected data covering entire food webs are particularly scarce. This study aims to contribute to tackling this problem by determining the validity of two bioaccumulation models, BIOv1.22 and AQUAWEBv1.2, for application to a multispecies aquatic food web. A small boreal lake, Lake Kernaalanjärvi, in Finland was investigated for its food web structure and concentrations of PCBs in all trophic levels. Trophic magnification factors (TMFs) were used to measure the bioaccumulation potential of PCBs, and the site-specific environmental parameters were used to compare predicted and observed concentrations. Site-specific concentrations in sediment pore water did not affect the modelling endpoints, but accurate site-specific measurements of freely dissolved concentrations in water turned out to be crucial for obtaining realistic model-predicted concentrations in biota. Numerous parameters and snapshot values affected the model performances, bringing uncertainty into the process and results, but overall, the models worked well for a small boreal lake ecosystem. We suggest that these models can be optimised for different ecosystems and can be useful tools for estimating the bioaccumulation and environmental fate of PCBs.

  11. Biodiversity and adaptive evolution of Antarctic notothenioid fishes

    Directory of Open Access Journals (Sweden)

    Qianghua Xu

    2014-01-01

    Full Text Available The sea surrounding the Antarctic continent is one of the coldest regions in the world. It provides an environmentally unique and isolated “hotbed” for evolution to take place. In the past 30 million years, species of Perciform suborder Notothenioidei evolved and diversified from a benthic and temperate-water ancestor, and now dominate the fish fauna of the coldest ocean. Because of their distribution across temperature zones both inside and outside the Antarctic Polar Front, notothenioid fishes are regarded as excellent model organisms for exploring mechanisms of adaptive evolution, particularly cold adaptation. We first summarize research progress on the biodiversity of Antarctic fish and then review current findings on the peculiar biological characteristics of Antarctic notothenioids that evolved in response to a freezing environment. Research has revealed that extensive gene duplication and transcriptomic changes occurred during the adaptive radiation of notothenioid fish. Examples of highly duplicated genes in the Antarctic lineages include genes encoding hepcidin, and zona pellucida proteins, in addition to various retrotransposable elements. A few genes from Antarctic notothenioid fishes have been used as transgenes and demonstrated to be effective in making transgenic plants cold-hardy. In the coming years, the genomes of some Antarctic notothenioid species will be fully sequenced and the adaptive functions of duplicated genes will be further elucidated. Such studies will deepen our understanding of how genomes evolve in freezing environments, and provide an improved knowledge of molecular mechanisms of cold adaptation.

  12. Suitability of Lake Erie for bigheaded carps based on bioenergetic models and remote sensing

    Science.gov (United States)

    Anderson, Karl R.; Chapman, Duane C.; Wynne, Timothy; Masagounder, Karthik; Paukert, Craig

    2015-01-01

    Algal blooms in the Great Lakes are a potential food source for silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis; together bigheaded carps). Understanding these blooms thus plays an important role in understanding the invasion potential of bigheaded carps. We used remote sensing imagery, temperatures, and improved species specific bioenergetics models to determine algal concentrations sufficient for adult bigheaded carps. Depending on water temperature we found that bigheaded carp require between 2 and 7 μg/L chlorophyll or between 0.3 and 1.26 × 105cells/mL Microcystis to maintain body weight. Algal concentrations in the western basin and shoreline were found to be commonly several times greater than the concentrations required for weight maintenance. The remote sensing images show that area of sufficient algal foods commonly encompassed several hundred square kilometers to several thousands of square kilometers when blooms form. From 2002 to 2011, mean algal concentrations increased 273%–411%. This indicates Lake Erie provides increasingly adequate planktonic algal food for bigheaded carps. The water temperatures and algal concentrations detected in Lake Erie from 2008 to 2012 support positive growth rates such that a 4 kg silver carp could gain between 19 and 57% of its body weight in a year. A 5 kg bighead carp modeled at the same water temperatures could gain 20–81% of their body weight in the same period. The remote sensing imagery and bioenergetic models suggest that bigheaded carps would not be food limited if they invaded Lake Erie.

  13. Geochemical and Thermodinamic Modeling of Segara Anak Lake and the 2009 Eruption of Rinjani Volcano, Lombok, Indonesia

    Directory of Open Access Journals (Sweden)

    Akhmad Solikhin

    2014-06-01

    Full Text Available DOI: 10.17014/ijog.v5i4.106Rinjani is the second highest volcano in Indonesia with an elevation of 3726 m above sea level. The steep and highest cone of Rinjani consists mainly of loose pyroclastic ejecta and contains a crater with a few solfataras. The West of this cone is Segara Anak caldera. The western side of the caldera is occupied by a 230 m deep lake, covering an area of 11 km² and its volume was (before the 2009 eruption estimated 1.02 km3. This is probably the largest hot volcanic lake in the world.The lake water is neutral (pH: 7-8 and its chemistry dominated by chlorides and sulfates with a relatively high TDS (Total Dissolved Solids: 2640 mg/l. This unusual TDS as well as the lake surface temperatures (20 - 22°C well above ambient temperatures (14 - 15°C for this altitude, reflect a strong input of hydrothermal fluids. Numerous hot springs are located along the shore at the foot of Barujari volcanic cone. Bathymetric profiles show also several areas with columns of gas bubbles escaping from the lake floor indicating a significant discharge of CO gas into the lake. The mass and energy balance model of Rinjani Crater Lake produce total heat lost value on the average of 1700 MW. Most of the heating periods of the lake occurred when the heat released by the surface of the lake to the atmosphere was lower than the heat supplied from the hydrothermal system. Peaks of heat losses correspond to period of strong winds. Crater lake monitoring can provide a basic information about deep magmatic activity and surface processes that occur in the volcano. The monitoring also contributes to predict the next eruption in order to improve mitigation of volcanic eruption. Precursory signals of the May 2009 eruption can be seen from significant changes in the temperature and chemistry of some of the hot springs, the increase of Fe concentrations in spring #54, chemical plume of low pH and dissolved oxygen, acidification of Segara

  14. Assessment of the MAR regional climate model over the Antarctic Peninsula (1999 - 2009) through spaceborne enhanced spatial resolution melting maps and near-surface observations

    Science.gov (United States)

    Datta, R.; Tedesco, M.; Alexander, P. M.; Fettweis, X.; Steiner, N.; Gallee, H.

    2012-12-01

    We report results assessing the outputs of the regional climate model Modèle Atmosphérique Régionale (MAR) over the Antarctic peninsula for the period 1999 - 2009. Specifically, we compare maps of melt extent and duration generated by MAR with those obtained from the enhanced spatial resolution product (~ 5 km) distributed by the NASA Scatterometer Climate Record Pathfinder (SCP), at Brigham Young University (Utah, USA). Snowmelt is estimated from remote sensing observations using both a canonical threshold-based approach and a novel method based on wavelet methodology. MAR outputs are also evaluated against available surface observations (e.g., near-surface temperature, wind speed and direction, etc.). The additional effects of blowing snow upon the surface and energy balance can be uniquely explored by simulations in Antarctica (as compared to Greenland, for example). Because of this, as of the time of abstract submission, MAR is set up to run for a scenario with blowing snow as well as a scenario without blowing snow. Our final assessment will present the results of both, providing insight into the sensitivity of MAR outputs to the blowing snow model.

  15. USE OF POM AND ARTIFICIAL NEURAL NETWORKS IN THE THREEDIMENSIONAL MODELING OF LAKES : GOKPINAR DAM RESERVOIR AS A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Mahmut FIRAT

    2006-01-01

    Full Text Available The circulation pattern in lakes and reservoirs varies according to many external factors. In situ measurement of the occuring flow pattern in every point of the lake is a very costly and hard task. For this reason, models determining the velocities and surface fluctuations are developed by using computers. The use of these models enables the generation of the foundation for the prediction of possible environmental problems and water pollution concentrations. Today, three dimensional models are widely used in the modelling of lakes and reservoirs. In this study, the velocity profiles and surface fluctuation values generated under various wind speed and directions at some sections in Gokpinar Lake in Denizli are obtained by applying artificial neural networks (ANN on the results of three dimensional hydrodynamic model of the lake made with Princeton Ocean Model (POM. The developed ANN model is applied to the same sections for different wind conditions and it is found that the results are in accordance with the results of POM. As a result of the comparisons of the models, the superiorities of the models on each other at the model generation and solution phases are determined and mentioned.

  16. Predictive models in hazard assessment of Great Lakes contaminants for fish

    Science.gov (United States)

    Passino, Dora R. May

    1986-01-01

    A hazard assessment scheme was developed and applied to predict potential harm to aquatic biota of nearly 500 organic compounds detected by gas chromatography/mass spectrometry (GC/MS) in Great Lakes fish. The frequency of occurrence and estimated concentrations of compounds found in lake trout (Salvelinus namaycush) and walleyes (Stizostedion vitreum vitreum) were compared with available manufacturing and discharge information. Bioconcentration potential of the compounds was estimated from available data or from calculations of quantitative structure-activity relationships (QSAR). Investigators at the National Fisheries Research Center-Great Lakes also measured the acute toxicity (48-h EC50's) of 35 representative compounds to Daphnia pulex and compared the results with acute toxicity values generated by QSAR. The QSAR-derived toxicities for several chemicals underestimated the actual acute toxicity by one or more orders of magnitude. A multiple regression of log EC50 on log water solubility and molecular volume proved to be a useful predictive model. Additional models providing insight into toxicity incorporate solvatochromic parameters that measure dipolarity/polarizability, hydrogen bond acceptor basicity, and hydrogen bond donor acidity of the solute (toxicant).

  17. Modelling Glacial Lake Outburst Floods: Key Considerations and Challenges Posed By Climatic Change

    Science.gov (United States)

    Westoby, M.

    2014-12-01

    The number and size of moraine-dammed supraglacial and proglacial lakes is increasing as a result of contemporary climatic change. Moraine-dammed lakes are capable of impounding volumes of water in excess of 107 m3, and often represent a very real threat to downstream communities and infrastructure, should the bounding moraine fail and produce a catastrophic Glacial Lake Outburst Flood (GLOF). Modelling the individual components of a GLOF, including a triggering event, the complex dam-breaching process and downstream propagation of the flood is incredibly challenging, not least because direct observation and instrumentation of such high-magnitude flows is virtually impossible. We briefly review the current state-of-the-art in numerical GLOF modelling, with a focus on the theoretical and computational challenges associated with reconstructing or predicting GLOF dynamics in the face of rates of cryospheric change that have no historical precedent, as well as various implications for researchers and professionals tasked with the production of hazard maps and disaster mitigation strategies.

  18. Determining ecoregional numeric nutrient criteria by stressor-response models in Yungui ecoregion lakes, China.

    Science.gov (United States)

    Huo, Shouliang; Ma, Chunzi; Xi, Beidou; Tong, Zhonghua; He, Zhuoshi; Su, Jing; Wu, Fengchang

    2014-01-01

    The importance of developing numeric nutrient criteria has been recognized to protect the designated uses of water bodies from nutrient enrichment that is associated with broadly occurring levels of nitrogen/phosphorus pollution. The identification and estimation of stressor-response models in aquatic ecosystems has been shown to be useful in the determination of nutrient criteria. In this study, three methods based on stressor-response relationships were applied to determine nutrient criteria for Yungui ecoregion lakes with respect to total phosphorus (TP), total nitrogen (TN), and planktonic chlorophyll a (Chl a). Simple linear regression (SLR) models were established to provide an estimate of the relationship between a response variable and a stressor. Multiple linear regressions were used to simultaneously estimate the effect of TP and TN on Chl a. A morphoedaphic index (MEI) was applied to derive nutrient criteria using data from Yungui ecoregion lakes, which were considered as areas with less anthropogenic influences. Nutrient criteria, as determined by these three methods, showed broad agreement for all parameters. The ranges of numeric nutrient criteria for Yungui ecoregion lakes were determined as follows: TP 0.008-0.010 mg/L and TN 0.140-0.178 mg/L. The stressor-response analysis described will be of benefit to support countries in their numeric criteria development programs and to further the goal of reducing nitrogen/phosphorus pollution in China.

  19. Antarctic science preserve polluted

    Science.gov (United States)

    Simarski, Lynn Teo

    Geophysicists are alarmed at the electromagnetic pollution of a research site in the Antarctic specifically set aside to study the ionosphere and magnetosphere. A private New Zealand communications company called Telecom recently constructed a satellite ground station within the boundaries of this Site of Special Scientific Interest (SSSI), protected since the mid-1970s. The placement of a commercial facility within this site sets an ominous precedent not only for the sanctity of other SSSIs, but also for Specially Protected Areas—preserves not even open to scientific research, such as certain penguin rookeries.The roughly rectangular, one-by-one-half mile site, located at Arrival Heights not far from McMurdo Station, is one of a number of areas protected under the Antarctic treaty for designated scientific activities. Many sites are set aside for geological or biological research, but this is the only one specifically for physical science.

  20. Analysis of regional rainfall-runoff parameters for the Lake Michigan Diversion hydrological modeling

    Science.gov (United States)

    Soong, David T.; Over, Thomas M.

    2015-01-01

    The Lake Michigan Diversion Accounting (LMDA) system has been developed by the U.S. Army Corps of Engineers, Chicago District (USACE-Chicago) and the State of Illinois as a part of the interstate Great Lakes water regulatory program. The diverted Lake Michigan watershed is a 673-square-mile watershed that is comprised of the Chicago River and Calumet River watersheds. They originally drained into Lake Michigan, but now flow to the Mississippi River watershed via three canals constructed in the Chicago area in the early twentieth century. Approximately 393 square miles of the diverted watershed is ungaged, and the runoff from the ungaged portion of the diverted watershed has been estimated by the USACE-Chicago using the Hydrological Simulation Program-FORTRAN (HSPF) program. The accuracy of simulated runoff depends on the accuracy of the parameter set used in the HSPF program. Nine parameter sets comprised of the North Branch, Little Calumet, Des Plaines, Hickory Creek, CSSC, NIPC, 1999, CTE, and 2008 have been developed at different time periods and used by the USACE-Chicago. In this study, the U.S. Geological Survey and the USACE-Chicago collaboratively analyzed the parameter sets using nine gaged watersheds in or adjacent to the diverted watershed to assess the predictive accuracies of selected parameter sets. Six of the parameter sets, comprising North Branch, Hickory Creek, NIPC, 1999, CTE, and 2008, were applied to the nine gaged watersheds for evaluating their simulation accuracy from water years 1996 to 2011. The nine gaged watersheds were modeled by using the three LMDA land-cover types (grass, forest, and hydraulically connected imperviousness) based on the 2006 National Land Cover Database, and the latest meteorological and precipitation data consistent with the current (2014) LMDA modeling framework.

  1. Genetic models reveal historical patterns of sea lamprey population fluctuations within Lake Champlain

    Directory of Open Access Journals (Sweden)

    Cassidy C. D’Aloia

    2015-10-01

    Full Text Available The origin of sea lamprey (Petromyzon marinus in Lake Champlain has been heavily debated over the past decade. Given the lack of historical documentation, two competing hypotheses have emerged in the literature. First, it has been argued that the relatively recent population size increase and concomitant rise in wounding rates on prey populations are indicative of an invasive population that entered the lake through the Champlain Canal. Second, recent genetic evidence suggests a post-glacial colonization at the end of the Pleistocene, approximately 11,000 years ago. One limitation to resolving the origin of sea lamprey in Lake Champlain is a lack of historical and current measures of population size. In this study, the issue of population size was explicitly addressed using nuclear (nDNA and mitochondrial DNA (mtDNA markers to estimate historical demography with genetic models. Haplotype network analysis, mismatch analysis, and summary statistics based on mtDNA noncoding sequences for NCI (479 bp and NCII (173 bp all indicate a recent population expansion. Coalescent models based on mtDNA and nDNA identified two potential demographic events: a population decline followed by a very recent population expansion. The decline in effective population size may correlate with land-use and fishing pressure changes post-European settlement, while the recent expansion may be associated with the implementation of the salmonid stocking program in the 1970s. These results are most consistent with the hypothesis that sea lamprey are native to Lake Champlain; however, the credibility intervals around parameter estimates demonstrate that there is uncertainty regarding the magnitude and timing of past demographic events.

  2. A fugacity model for source determination of the Lake Baikal region pollution with polychlorinated Biphenyls

    Energy Technology Data Exchange (ETDEWEB)

    Sofiev, M. [Finnish Meteorological Inst., Helsinki (Finland); Galperin, M.; Maslyaev, A. [Inst. of Program Systems, Pereslavl-Zalesskiy (Russian Federation); McLachlan, M. [Stockholm Univ. (Sweden); Wania, F. [Toronto Univ. (Canada)

    2004-09-15

    PCBs were discovered in the Lake Baikal ecosystem by Malakhov et al. and Bobovnikova et al. A follow up to the initial study showed no decrease over 1981-1989 4, in contrast to what has been observed in other water bodies in the industrialised world. Further studies also showed the contamination in pinnipeds to be among the highest measured anywhere. Above studies and other data suggested a presence of a strong local PCB source (or several ones), which has had a widespread adverse effect for the whole region. To locate the source, Mamontov et al. collected samples from 34 sites over the region, the analysis of which showed a gradient of a factor of 1000, with the lowest concentrations at the north-east of Lake Baikal and the highest concentrations close to the city of Usolye Sibirskoye, a centre of the chemical industry in the Angara River valley. A continuous decrease in the soil contamination was observed along the path from Usolye Sibirskoye up the Angara River valley to Lake Baikal and from there north-eastward along the lake. These results indicate that there was (and perhaps still is) a major source of PCBs in the Usolye area, from where the PCBs are dispersed over the region. However, various obstacles prevent direct observations of potential sources. Therefore, a mathematical modelling approach was adopted in a currently ongoing INTAS project aiming to shed some more light on this problem. The model principles, setup and the results of the first experiments are presented in the current paper.

  3. Development of a multichemical food web model: application to PBDEs in Lake Ellasjoen, Bear Island, Norway.

    Science.gov (United States)

    Gandhi, Nilima; Bhavsar, Satyendra P; Gewurtz, Sarah B; Diamond, Miriam L; Evenset, Anita; Christensen, Guttorm N; Gregor, Dennis

    2006-08-01

    A multichemical food web model has been developed to estimate the biomagnification of interconverting chemicals in aquatic food webs. We extended a fugacity-based food web model for single chemicals to account for reversible and irreversible biotransformation among a parent chemical and transformation products, by simultaneously solving mass balance equations of the chemicals using a matrix solution. The model can be applied to any number of chemicals and organisms or taxonomic groups in a food web. The model was illustratively applied to four PBDE congeners, BDE-47, -99, -100, and -153, in the food web of Lake Ellasjøen, Bear Island, Norway. In Ellasjøen arctic char (Salvelinus alpinus), the multichemical model estimated PBDE biotransformation from higher to lower brominated congeners and improved the correspondence between estimated and measured concentrations in comparison to estimates from the single-chemical food web model. The underestimation of BDE-47, even after considering bioformation due to biotransformation of the otherthree congeners, suggests its formation from additional biotransformation pathways not considered in this application. The model estimates approximate values for congener-specific biotransformation half-lives of 5.7,0.8,1.14, and 0.45 years for BDE-47, -99, -100, and -153, respectively, in large arctic char (S. alpinus) of Lake Ellasjøen.

  4. A DPSIR model for ecological security assessment through indicator screening: a case study at Dianchi Lake in China.

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    Full Text Available Given the important role of lake ecosystems in social and economic development, and the current severe environmental degradation in China, a systematic diagnosis of the ecological security of lakes is essential for sustainable development. A Driving-force, Pressure, Status, Impact, and Risk (DPSIR model, combined with data screening for lake ecological security assessment was developed to overcome the disadvantages of data selection in existing assessment methods. Correlation and principal component analysis were used to select independent and representative data. The DPSIR model was then applied to evaluate the ecological security of Dianchi Lake in China during 1988-2007 using an ecological security index. The results revealed a V-shaped trend. The application of the DPSIR model with data screening provided useful information regarding the status of the lake's ecosystem, while ensuring information efficiency and eliminating multicollinearity. The modeling approach described here is practical and operationally efficient, and provides an attractive alternative approach to assess the ecological security of lakes.

  5. The present and future state of the Antarctic firn layer

    OpenAIRE

    2014-01-01

    Firn is the transitional product between fresh snow and glacier ice and acts as a boundary between the atmosphere and the glacier ice of the Antarctic Ice Sheet (AIS). Spatiotemporal variations in firn layer characteristics are therefore important to consider when assessing the mass balance of the AIS. In this thesis, a firn densification model, forced with a realistic climate, is used to examine contemporary (1979-2012) and future (2000-2200) variations in the Antarctic firn layer. Currently...

  6. Modelling Upwelling Irradiance using Secchi disk depth in lake ecosystems

    Directory of Open Access Journals (Sweden)

    Claudio ROSSI

    2009-02-01

    Full Text Available A simple model for upwelling irradiance has been developed. The model represents the relationship between Photosynthetically Active Radiation diffuse attenuation coefficients and Secchi disk depth described with a physical-mathematical expression. This physical mathematical expression allows the evaluation of the sub surface upwelling irradiance that was generated by the interaction between downwelling irradiance and the water column. The validation of the relation was performed using experimental data collected from five different aquatic ecosystems at different latitudes, solar elevations and irradiance levels. We found a good linear, positive correlation between the theoretical and measured upwelling irradiance (R2 = 0.96. The residues were well distributed, around the null value, according a Gaussian curve (R2 = 0.92. The results confirm the importance and the versatility of the Secchi disk measurements for aquatic optics.

  7. Some Recent Progress of Antarctic Ice Sheet Research%南极冰盖研究最新进展

    Institute of Scientific and Technical Information of China (English)

    唐学远; 孙波; 李院生; 崔祥斌; 李鑫

    2009-01-01

    南极冰盖是地球系统的重要组成部分,在全球气候系统中扮演着重要角色.通过对南极冰盖的研究将有助于了解其在全球气候系统中的作用,并为探讨全球气候过去、现在以及未来的演化提供支撑.总结分析了近年来南极冰盖研究的一些重要进展,并在此基础上对南极冰盖研究领域的一些主要结果、观测事实以及未来变化展开讨论,重点介绍南极物质平衡、冰芯研究、冰下水系统、冰盖数值模拟方面最近的进展,评述未来可能的研究方向和应该关注的问题.%Antarctic ice sheet , as an important part of the Earth system, plays a critical role in the global climate change. The understanding of the Antarctic ice sheet will help in making sense of the global climate system, and support exploring the evolution of the global climate in the past, present and the future. By analysing the significant progress of Antarctic ice sheet research in recent years, on the basis of these major findings, observations, as well as the fact that future changes in the discussions, some recent progress is focused, including mass balance, ice cores, subglacial lakes and water system, numerical model of Antarctic ice sheet. Review of the possible future research directions should also be of concern.

  8. Bode Analysis and Modeling of Water Level Change in the Great Lakes

    Science.gov (United States)

    Tebbens, S. F.; Smigelski, J. R.; Barton, C. C.

    2009-12-01

    Power Spectral Density calculated from a fast Fourier transform expresses a time series in terms of power in the corresponding frequency domain. The power-scaling exponent ( β ) is determined by fitting a power function to a log-log plot of frequency ( f ) or period ( 1/f ) versus power in the frequency domain. Anthropogenic and natural fluctuations including precipitation, runoff, snowmelt, water retention time, evaporation, and outflow all contribute to changes in water levels recorded in the Great Lakes. In this study, NOAA verified hourly water level data ranging from 20 to 30 years in duration for five stations in Lake Michigan and four stations in Lake Superior were analyzed. Water level time series in the Great Lakes are found to exhibit power law scaling and are thus self-affine over four distinct period ranges, each with a different beta value. With this information, a model of the original time series may be generated using an approach which draws from concepts in control theory and feedback systems. Bode Analysis can be applied in the frequency domain to explain variations in the scaling behavior ( β ) of water level data by examining the patterns of change in amplitude and phase across frequencies. A Bode magnitude plot of the system is created from the data of power versus frequency converting the amplitude to 20log dB magnitude. A transfer function representing the output of the system divided by the input is then derived based on the data using Laplace transforms and solved for magnitude and phase. Bode analysis results in a series of two transfer function equations, one for magnitude and one for phase, for each distinct beta value over the specified period range. The type of differential equation controls the slope ( β ) while the constant (k) in the differential equation controls the position (period) of transitions in scaling behavior (i.e., corner frequencies or inflection points) and are characteristics of the system. Combining the transfer

  9. Biotic interactions as a structuring force in soil communities: evidence from the micro-arthropods of an Antarctic moss model system.

    Science.gov (United States)

    Caruso, Tancredi; Trokhymets, Vladlen; Bargagli, Roberto; Convey, Peter

    2013-06-01

    Current meta-community theories postulate that the structure of local communities depends on dispersal, environmental filtering, and biotic interactions. However, disentangling the relative effects of these factors in the field and for diverse assemblages is a major challenge. A solution is to address natural but simple communities (i.e. with low numbers of species in few trophic levels), wherein one of these factors is predominant. Here, we analyse the micro-arthropod community of a moss-turf habitat typical of the Antarctic Peninsula region, and test the widely accepted hypothesis that this system is abiotically driven. In the austral summers 2006/7 and 2007/8, we sampled nearly 80 units of moss from four islands in the Argentine Islands. Using variance partitioning, we quantified the relative contribution of: (1) multiple scale spatio-temporal autocorrelation; (2) environmental effects; (3) the island effect. Little variance (1 %) was accounted for by sources 1 (1 %, significant) and 2 (structured environmental variation (7 %). Null models demonstrated that species co-occurred less frequently than expected by chance, suggesting the prevalence of negative interactions. Our data support the novel hypothesis that negative biotic interactions are the most important structuring force of this micro-arthropod community. The analysed system is a good proxy for more complex communities in terms of taxonomic composition and the functional groups present. Thus, biotic interaction might be a predominant factor in soil meta-community dynamics.

  10. Three-dimensional hydrodynamic and water quality model for TMDL development of Lake Fuxian, China

    Institute of Scientific and Technical Information of China (English)

    Lei Zhao; Xiaoling Zhang; Yong Liu; Bin He; Xiang Zhu; Rui Zou; Yuanguan Zhu

    2012-01-01

    Lake Fuxian is the largest deep freshwater lake in China.Although its average water quality meets Class Ⅰ of the China National Water Quality Standard(CNWQS),i.e.,GB3838-2002,monitoring data indicate that the water quality approaches the Class Ⅱ threshold in some areas.Thus it is urgent to reduce the watershed load through the total maximum daily load(TMDL)program.A three-dimensional hydrodynamic and water quality model was developed for Lake Fuxian,simulating flow circulation and pollutant fate and transport.The model development process consists of several steps,including grid generation,initial and boundary condition configurations,and model calibration processes.The model accurately reproduced the observed water surface elevation,spatiotemporal variations in temperature,and total nitrogen(TN),total phosphorus(TP),and chemical oxygen demand(COD)concentrations,suggesting a reasonable numerical representation of the prototype system for further TMDL analyses.The TMDL was calculated using two interpretations of the water quality standards for Class Ⅰ of the CNWQS based on the maximum instantaneous surface and annual average surface water concentrations.Analysis of the first scenario indicated that the TN,TP and COD loads should be reduced by 66%,68% and 57%,respectively.Water quality was the highest priority; however,local economic development and cost feasibility for load reduction can pose significant issues.In the second interpretation,the model results showed that,under the existing conditions,the average water quality meets the Class Ⅰ standard and therefore load reduction is unnecessary.Future studies are needed to conduct risk and cost assessments for realistic decision-making.

  11. Comprehensive analysis of an Antarctic bacterial community with the adaptability of growth at higher temperatures than those in Antarctica.

    Science.gov (United States)

    Hosoi-Tanabe, Shoko; Zhang, Hongyan; Zhu, Daochen; Nagata, Shinichi; Ban, Syuhei; Imura, Satoshi

    2010-06-01

    To investigate the adaptability to higher temperatures of Antarctic microorganisms persisting in low temperature conditions for a long time, Antarctic lake samples were incubated in several selection media at 25 degrees C and 30 degrees C. The microorganisms did not grow at 30 degrees C; however, some of them grew at 25 degrees C, indicating that the bacteria in Antarctic have the ability to grow at a wide range of temperatures. Total DNA was extracted from these microorganisms and amplified using the bacteria-universal primers. The amplified fragments were cloned, and randomly selected 48 clones were sequenced. The sequenced clones showed high similarity to the alpha-subdivision of the Proteobacteria with specific affinity to the genus Agrobacterium, Caulobacter and Brevundimonas, the ss-subdivision of Proteobacteria with specific affinity to the genus Cupriavidus, and Bacillus of the phylum Firmicutes. These results showed the presence of universal genera, suggesting that the bacteria in the Antarctic lake were not specific to this environment.

  12. 湖泊水质模型SALMO在太湖梅梁湾的应用%Application of lake model SALMO to the Meiliang Bay of Taihu Lake

    Institute of Scientific and Technical Information of China (English)

    郭静; 陈求稳; 李伟峰

    2012-01-01

    The lake model SALMO (Simulation by Means of an Analytical Lake Model) was applied to simulate the water quality of the Meiliang Bay in Taihu Lake.The model includes 8 state variables:nitrate nitrogen,phosphate phosphorus,detritus,dissolved oxygen,biomass of three algae (Cyanophyta,Chlorophyta and Bacillariophyta) and zooplankton.Because SALMO was originally developed for non-shallow lakes (maximum depth 5 m),some improvements were made to SALMO before simulating the shallow Meiliang Bay.The data from the year 2005 were used for model calibration and the data from the year 2006 were used for model verification.The results showed that the modeled biomass of the three algae followed the observed seasonal patterns:Bacillariophyta and Chlorophyta were dominant from the end of winter to the beginning of spring,while Cyanophyta was dominant in summer and autumn.The modeled nutrient concentrations also showed a good agreement with the observations.This indicates that after improvement SALMO is applicable for Taihu Lake and can be used to study the mechanisms of algae bloom.%改进了湖泊水质模型SALMO,针对太湖梅梁湾,利用2005年实测数据进行模型参数率定,并模拟了2006年水质.结果发现,绿藻、蓝藻、硅藻3种藻类的模拟结果与藻类的实测年变化格局一致,反应了3种藻类的季节性演替,其中,硅藻、绿藻在冬末春初占优势,蓝藻在夏秋季占优势;溶解氧模拟结果与实测数据非常一致,年平均相对误差为14.3%;NO-3-N和PO3-4-P的变化趋势与实测结果基本一致.研究结果表明,SALMO能很好地模拟藻类和营养盐的浓度动态,并在一定程度上揭示水华机制.

  13. Thermal Pollution Mathematical Model. Volume 4: Verification of Three-Dimensional Rigid-Lid Model at Lake Keowee. [envrionment impact of thermal discharges from power plants

    Science.gov (United States)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.

    1980-01-01

    The rigid lid model was developed to predict three dimensional temperature and velocity distributions in lakes. This model was verified at various sites (Lake Belews, Biscayne Bay, etc.) and th verification at Lake Keowee was the last of these series of verification runs. The verification at Lake Keowee included the following: (1) selecting the domain of interest, grid systems, and comparing the preliminary results with archival data; (2) obtaining actual ground truth and infrared scanner data both for summer and winter; and (3) using the model to predict the measured data for the above periods and comparing the predicted results with the actual data. The model results compared well with measured data. Thus, the model can be used as an effective predictive tool for future sites.

  14. Modelling catchment hydrological responses in a Himalayan Lake as a function of changing land use and land cover

    Indian Academy of Sciences (India)

    Bazigha Badar; Shakil A Romshoo; M A Khan

    2013-04-01

    In this paper, we evaluate the impact of changing land use/land cover (LULC) on the hydrological processes in Dal lake catchment of Kashmir Himalayas by integrating remote sensing, simulation modeling and extensive field observations. Over the years, various anthropogenic pressures in the lake catchment have significantly altered the land system, impairing, \\texttit {inter-alia}, sustained biotic communities and water quality of the lake. The primary objective of this paper was to help a better understanding of the LULC change, its driving forces and the overall impact on the hydrological response patterns. Multi-sensor and multi-temporal satellite data for 1992 and 2005 was used for determining the spatio-temporal dynamics of the lake catchment. Geographic Information System (GIS) based simulation model namely Generalized Watershed Loading Function (GWLF) was used to model the hydrological processes under the LULC conditions. We discuss spatio-temporal variations in LULC and identify factors contributing to these variations and analyze the corresponding impacts of the change on the hydrological processes like runoff, erosion and sedimentation. The simulated results on the hydrological responses reveal that depletion of the vegetation cover in the study area and increase in impervious and bare surface cover due to anthropogenic interventions are the primary reasons for the increased runoff, erosion and sediment discharges in the Dal lake catchment. This study concludes that LULC change in the catchment is a major concern that has disrupted the ecological stability and functioning of the Dal lake ecosystem.

  15. Modeling water quality effects of structural and operational changes to Scoggins Dam and Henry Hagg Lake, Oregon

    Science.gov (United States)

    Sullivan, Annett B.; Rounds, Stewart A.

    2006-01-01

    To meet water quality targets and the municipal and industrial water needs of a growing population in the Tualatin River Basin in northwestern Oregon, an expansion of Henry Hagg Lake is under consideration. Hagg Lake is the basin's primary storage reservoir and provides water during western Oregon's typically dry summers. Potential modifications include raising the dam height by 6.1 meters (20 feet), 7.6 meters (25 feet), or 12.2 meters (40 feet); installing additional outlets (possibly including a selective withdrawal tower); and adding additional inflows to provide greater reliability of filling the enlarged reservoir. One method of providing additional inflows is to route water from the upper Tualatin River through a tunnel and into Sain Creek, a tributary to the lake. Another option is to pump water from the Tualatin River (downstream of the lake) uphill and into the reservoir during the winter--the 'pump-back' option. A calibrated CE-QUAL-W2 model of Henry Hagg Lake's hydrodynamics, temperature, and water quality was used to examine the effect of these proposed changes on water quality in the lake and downstream. Most model scenarios were run with the calibrated model for 2002, a typical water year; a few scenarios were run for 2001, a drought year. More...

  16. Antarctic, Sub-Antarctic and cold temperate echinoid database

    Directory of Open Access Journals (Sweden)

    Benjamin Pierrat

    2012-06-01

    Full Text Available This database includes spatial data of Antarctic, Sub-Antarctic and cold temperate echinoid distribution (Echinodermata: Echinoidea collected during many oceanographic campaigns led in the Southern Hemisphere from 1872 to 2010. The dataset lists occurrence data of echinoid distribution south of 35°S latitude, together with information on taxonomy (from species to genus level, sampling sources (cruise ID, sampling dates, ship names and sampling sites (geographic coordinates and depth. Echinoid occurrence data were compiled from the Antarctic Echinoid Database (David et al., 2005a, which integrates records from oceanographic cruises led in the Southern Ocean until 2003. This database has been upgraded to take into account data from oceanographic cruises led after 2003. The dataset now reaches a total of 6160 occurrence data that have been checked for systematics reliability and consistency. It constitutes today the most complete database on Antarctic and Sub-Antarctic echinoids.

  17. Hydrocarbon degradation by Antarctic coastal bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cavanagh, J.E. [University of Tasmania, Hobart (Australia). Antarctic Cooperative Research Centre; CSIRO Div of Marine Research, Hobart (Australia); University of Tasmania, Hobart (Australia). Dept. of Agricultural Science; Nichols, P.D. [University of Tasmania, Hobart (Australia). Antarctic Cooperative Research Centre; CSIRO Div. of Marine Research, Hobart (Australia); Franzmann, P.D. [CSIRO Land and Water, Wembley (Australia); McMeekin, T.A. [University of Tasmania, Hobart (Australia). Antarctic Cooperative Research Centre

    1999-07-01

    Bacterial cultures obtained through selective enrichment of beach sand collected 60 days and one year after treatment of sites in a pilot oil spill trial conducted at Airport Beach, Vestfold Hills, East Antarctica, were examined for the ability to degrade n-alkanes and phenanthrene. The effects of different hydrocarbon mixtures (Special Antarctic Blend [SAB] and BP-Visco), (fish oil [orange roughy]) and inoculation of replicate sites with water from Organic Lake, (previously shown to contain hydrocarbon-degrading bacteria) on the indigenous microbial population, were examined. Of the cultures obtained, those from sites treated with SAB and BP-Visco degraded n-alkanes most consistently and typically to the greatest extent. Two mixed cultures obtained from samples collected at 60 days and two isolates obtained from these cultures extensively degraded phenanthrene. 1-Hydroxy-naphthoic acid formed the major phenanthrene metabolite. Lower levels of salicyclic acid, 1-naphthol, 1,4-naphthaquinone and phenanthrene 9-10 dihydrodiol were detected in extracts of phenanthrene grown cultures. This study shows that under laboratory conditions indigenous Antarctica bacteria can degrade n-alkanes and the more recalcitrant polycyclic aromatic hydrocarbon, phenanthrene. The enrichment of hydrocarbon degrading microorganisms in Antarctic ecosystems exposed to hydrocarbons, is relevant for the long term fate of hydrocarbon spills in this environment. (author)

  18. Unveiling the Antarctic subglacial landscape.

    Science.gov (United States)

    Warner, Roland; Roberts, Jason

    2010-05-01

    revealed by this approach, and we advocate its consideration in future ice thickness data syntheses. REFERENCES Budd, W.F., and R.C. Warner, 1996. A computer scheme for rapid calculations of balance-flux distributions. Annals of Glaciology 23, 21-27. Bamber, J.L., J.L. Gomez Dans and J.A. Griggs, 2009. A new 1 km digital elevation model of the Antarctic derived from combined satellite radar and laser data. Part I: Data and methods. The Cryosphere 3 (2), 101-111. Griggs, J.A., and J.L. Bamber, 2009. A new digital elevation model of Antarctica derived from combined radar and laser altimetry data. Part II: Validation and error estimates, The Cryosphere, 3(2), 113-123. Le Brocq, A.M., A.J. Payne and M.J. Siegert, 2006. West Antarctic balance calculations: Impact of flux-routing algorithm, smoothing algorithm and topography. Computers and Geosciences 23(10): 1780-1795. Lythe, M. B., D.G. Vaughan, and the BEDMAP Consortium 2001, BEDMAP: A new ice thickness and subglacial topographic model of Antarctica, J. of Geophys. Res., 106(B6),11,335-11,351. van de Berg, W.J., M.R. van den Broeke, C.H. Reijmer, and E. van Meijgaard, 2006. Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model, J. Geophys. Res., 111, D11104,doi:10.1029/2005JD006495. Warner, R.C., and W.F. Budd, 2000. Derivation of ice thickness and bedrock topography in data-gap regions over Antarctica, Annals of Glaciology, 31, 191-197. Wright, A.P., M.J. Siegert, A.M. Le Brocq, and D.B. Gore, 2008. High sensitivity of subglacial hydrological pathways in Antarctica to small ice-sheet changes, Geophys. Res. Lett., 35, L17504, doi:10.1029/2008GL034937.

  19. Predictive models for Escherichia coli concentrations at inland lake beaches and relationship of model variables to pathogen detection

    Science.gov (United States)

    Francy, Donna S.; Stelzer, Erin A.; Duris, Joseph W.; Brady, Amie M.G.; Harrison, John H.; Johnson, Heather E.; Ware, Michael W.

    2013-01-01

    Predictive models, based on environmental and water quality variables, have been used to improve the timeliness and accuracy of recreational water quality assessments, but their effectiveness has not been studied in inland waters. Sampling at eight inland recreational lakes in Ohio was done in order to investigate using predictive models for Escherichia coli and to understand the links between E. coli concentrations, predictive variables, and pathogens. Based upon results from 21 beach sites, models were developed for 13 sites, and the most predictive variables were rainfall, wind direction and speed, turbidity, and water temperature. Models were not developed at sites where the E. coli standard was seldom exceeded. Models were validated at nine sites during an independent year. At three sites, the model resulted in increased correct responses, sensitivities, and specificities compared to use of the previous day's E. coli concentration (the current method). Drought conditions during the validation year precluded being able to adequately assess model performance at most of the other sites. Cryptosporidium, adenovirus, eaeA (E. coli), ipaH (Shigella), and spvC (Salmonella) were found in at least 20% of samples collected for pathogens at five sites. The presence or absence of the three bacterial genes was related to some of the model variables but was not consistently related to E. coli concentrations. Predictive models were not effective at all inland lake sites; however, their use at two lakes with high swimmer densities will provide better estimates of public health risk than current methods and will be a valuable resource for beach managers and the public.

  20. Modeling of temporal patterns and sources of atmospherically transported and deposited pesticides in ecosystems of concern: A case study of toxaphene in the Great Lakes

    Science.gov (United States)

    Li, Rong; Jin, Jiming

    2013-10-01

    have adverse effects on human health and the environment and can be transported through the atmosphere from application sites and deposited to sensitive ecosystems. This study applies a comprehensive multimedia regional pesticide fate and chemical transport modeling system that we developed to investigate the atmospheric transport and deposition of toxaphene to the Great Lakes. Simulated results predict a significant amount of toxaphene (~350 kg) being transported through the atmosphere and deposited into the Great Lakes in the simulation year. Results also show that U.S. residues and global background are major sources to toxaphene deposition into the Great Lakes and atmospheric concentrations in the region. While the U.S. residues are the dominant source in warm months, the background dominates during winter months. In addition, different sources have different influences on the individual Great Lakes due to their proximity and relative geographical positions to the sources; U.S. residues are the dominant source to Lakes Ontario, Erie, Huron, and Michigan, but they are a much less important source to Lake Superior. These results shed light on the mystery that observed toxaphene concentrations in Great Lakes' lake trout and smelt declined between 1982 and 1992 in four of the Great Lakes except Lake Superior. While monthly total depositions to Lakes Ontario, Erie, Huron, and Michigan have clear seasonal variability with much greater values in April, May, and June, monthly total depositions to Lake Superior are more uniformly distributed over the year with comparatively greater levels in cold months.

  1. Three-dimensional lake water quality modeling: sensitivity and uncertainty analyses.

    Science.gov (United States)

    Missaghi, Shahram; Hondzo, Miki; Melching, Charles

    2013-11-01

    Two sensitivity and uncertainty analysis methods are applied to a three-dimensional coupled hydrodynamic-ecological model (ELCOM-CAEDYM) of a morphologically complex lake. The primary goals of the analyses are to increase confidence in the model predictions, identify influential model parameters, quantify the uncertainty of model prediction, and explore the spatial and temporal variabilities of model predictions. The influence of model parameters on four model-predicted variables (model output) and the contributions of each of the model-predicted variables to the total variations in model output are presented. The contributions of predicted water temperature, dissolved oxygen, total phosphorus, and algal biomass contributed 3, 13, 26, and 58% of total model output variance, respectively. The fraction of variance resulting from model parameter uncertainty was calculated by two methods and used for evaluation and ranking of the most influential model parameters. Nine out of the top 10 parameters identified by each method agreed, but their ranks were different. Spatial and temporal changes of model uncertainty were investigated and visualized. Model uncertainty appeared to be concentrated around specific water depths and dates that corresponded to significant storm events. The results suggest that spatial and temporal variations in the predicted water quality variables are sensitive to the hydrodynamics of physical perturbations such as those caused by stream inflows generated by storm events. The sensitivity and uncertainty analyses identified the mineralization of dissolved organic carbon, sediment phosphorus release rate, algal metabolic loss rate, internal phosphorus concentration, and phosphorus uptake rate as the most influential model parameters.

  2. Truce with oxygen - A naerobiosis outcompete aerobiosis in the Antarctic lacustrine bacteria

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; Nair, S.; DeSouza, M.J.B.D.; Chandramohan, D.

    The total number of bacteria counted directly by epifluorescent microscopy showed that they ranged from 10 sup(8)-10 sup(-1) in Antarctic lake water samples. The percentages of retrievable viable counts (RVC) of anaerobic bacteria (AnB) was greater...

  3. On Spatially Explicit Models of Epidemic and Endemic Cholera: The Haiti and Lake Kivu Case Studies.

    Science.gov (United States)

    Rinaldo, A.; Bertuzzo, E.; Mari, L.; Finger, F.; Casagrandi, R.; Gatto, M.; Rodriguez-Iturbe, I.

    2014-12-01

    The first part of the Lecture deals with the predictive ability of mechanistic models for the Haitian cholera epidemic. Predictive models of epidemic cholera need to resolve at suitable aggregation levels spatial data pertaining to local communities, epidemiological records, hydrologic drivers, waterways, patterns of human mobility and proxies of exposure rates. A formal model comparison framework provides a quantitative assessment of the explanatory and predictive abilities of various model settings with different spatial aggregation levels. Intensive computations and objective model comparisons show that parsimonious spatially explicit models accounting for spatial connections have superior explanatory power than spatially disconnected ones for short-to intermediate calibration windows. In general, spatially connected models show better predictive ability than disconnected ones. We suggest limits and validity of the various approaches and discuss the pathway towards the development of case-specific predictive tools in the context of emergency management. The second part deals with approaches suitable to describe patterns of endemic cholera. Cholera outbreaks have been reported in the Democratic Republic of the Congo since the 1970s. Here we employ a spatially explicit, inhomogeneous Markov chain model to describe cholera incidence in eight health zones on the shore of lake Kivu. Remotely sensed datasets of chlorophyll a concentration in the lake, precipitation and indices of global climate anomalies are used as environmental drivers in addition to baseline seasonality. The effect of human mobility is also modelled mechanistically. We test several models on a multi-year dataset of reported cholera cases. Fourteen models, accounting for different environmental drivers, are selected in calibration. Among these, the one accounting for seasonality, El Nino Southern Oscillation, precipitation and human mobility outperforms the others in cross-validation.

  4. Phytoplankton Productivity Across Prairie Saline Lakes of the Great Plains (USA): A Step Toward Deciphering Patterns Through Lake Classification Models

    Science.gov (United States)

    2009-08-20

    reliable indicator of nitrogen limitation in these lakes is not apparent. Although N2- fixation rates and hetero- cyst formation can indicate nitrogen ...1983; Herbst and Bradley 1989; Reuter et al. 1993). Terrestrial sources of nitrogen may be less abundant in grasslands than in forested areas, as...Photochemical for- mation of biologically available nitrogen from dissolved humic substances in coastal marine systems. Aquat. Microb. Ecol. 18: 285–292. doi

  5. Late Pliocene lakes and soils: a data – model comparison for the analysis of climate feedbacks in a warmer world

    Directory of Open Access Journals (Sweden)

    M. J. Pound

    2013-06-01

    Full Text Available Based on a synthesis of geological data we have reconstructed the global distribution of Late Pliocene soils and lakes which are then used as boundary conditions in a series of model experiments using the Hadley Centre General Circulation Model (HadCM3 and the BIOME4 mechanistic vegetation model. By combining our novel soil and lake reconstructions with a fully coupled climate model we are able to explore the feedbacks of soils and lakes on the climate of the Late Pliocene. Our experiments reveal regionally confined changes of local climate and vegetation in response to the new boundary conditions. The addition of Late Pliocene soils has the largest influence on surface air temperatures, with notable increases in Australia, southern North Africa and Asia. The inclusion of Late Pliocene lakes generates a significant increase in precipitation in central Africa, as well as seasonal increases in the Northern Hemisphere. When combined, the feedbacks on climate from Late Pliocene lakes and soils improve the data to model fit in western North America and southern North Africa.

  6. Copper content in lake sediments as a tracer of urban emissions: evaluation through a source-transport-storage model.

    Science.gov (United States)

    Cui, Qing; Brandt, Nils; Sinha, Rajib; Malmström, Maria E

    2010-06-01

    A coupled source-transport-storage model was developed to determine the origin and path of copper from materials/goods in use in the urban drainage area and the fate of copper in local recipient lakes. The model was applied and tested using five small lakes in Stockholm, Sweden. In the case of the polluted lakes Råcksta Träsk, Trekanten and Långsjön, the source strengths of copper identified by the model were found to be well linked with independently observed copper contents in the lake sediments through the model. The model results also showed that traffic emissions, especially from brake linings, dominated the total load in all five cases. Sequential sedimentation and burial proved to be the most important fate processes of copper in all lakes, except Råcksta Träsk, where outflow dominated. The model indicated that the sediment copper content can be used as a tracer of the urban diffuse copper source strength, but that the response to changes in source strength is fairly slow (decades). Major uncertainties in the source model were related to management of stormwater in the urban area, the rate of wear of brake linings and weathering of copper roofs. The uncertainty of the coupled model is in addition affected mainly by parameters quantifying the sedimentation and bury processes, such as particulate fraction, settling velocity of particles, and sedimentation rate. As a demonstration example, we used the model to predict the response of the sediment copper level to a decrease in the copper load from the urban catchment in one of the case study lakes.

  7. Shackleton: His Antarctic Writings

    Science.gov (United States)

    Dalrymple, Paul C.

    Two books entitled “Shackleton” were published in the United Kingdom in recent years. The one entitled Shackleton: His Antarctic Writings, Selected and Introduced by Christopher Ralling was published by the British Broadcasting Corporation (BBC) in 1983; the other, by Roland Huntford and simply entitled Shackleton, was published by Hodder and Stoughton (London) in November 1985. The only two things that these books have in common are their title and home publication base: The BBC book is essentially excerpts from two well-known books written by Shackleton, with a strong assist from a New Zealand reporter, Edward Saunders (who served as Shackleton's amanuensis), whereas Huntford's book is an outstanding polar biography.

  8. Development and evaluation of a reservoir model for the Chain of Lakes in Illinois

    Science.gov (United States)

    Domanski, Marian M.

    2017-01-27

    Forecasts of flows entering and leaving the Chain of Lakes reservoir on the Fox River in northeastern Illinois are critical information to water-resource managers who determine the optimal operation of the dam at McHenry, Illinois, to help minimize damages to property and loss of life because of flooding on the Fox River. In 2014, the U.S. Geological Survey; the Illinois Department of Natural Resources, Office of Water Resources; and National Weather Service, North Central River Forecast Center began a cooperative study to develop a system to enable engineers and planners to simulate and communicate flows and to prepare proactively for precipitation events in near real time in the upper Fox River watershed. The purpose of this report is to document the development and evaluation of the Chain of Lakes reservoir model developed in this study.The reservoir model for the Chain of Lakes was developed using the Hydrologic Engineering Center–Reservoir System Simulation program. Because of the complex relation between the dam headwater and reservoir pool elevations, the reservoir model uses a linear regression model that relates dam headwater elevation to reservoir pool elevation. The linear regression model was developed using 17 U.S. Geological Survey streamflow measurements, along with the gage height in the reservoir pool and the gage height at the dam headwater. The Nash-Sutcliffe model efficiency coefficients for all three linear regression model variables ranged from 0.90 to 0.98.The reservoir model performance was evaluated by graphically comparing simulated and observed reservoir pool elevation time series during nine periods of high pool elevation. In addition, the peak elevations during these time periods were graphically compared to the closest-in-time observed pool elevation peak. The mean difference in the simulated and observed peak elevations was -0.03 feet, with a standard deviation of 0.19 feet. The Nash-Sutcliffe coefficient for peak prediction was

  9. Biodiversity and biogeography of Antarctic and sub-Antarctic mollusca

    Science.gov (United States)

    Linse, Katrin; Griffiths, Huw J.; Barnes, David K. A.; Clarke, Andrew

    2006-04-01

    For many decades molluscan data have been critical to the establishment of the concept of a global-scale increase in species richness from the poles to the equator. Low polar diversity is key to this latitudinal cline in diversity. Here we investigate richness patterns in the two largest classes of molluscs at both local and regional scales throughout the Southern Ocean. We show that biodiversity is very patchy in the Southern Ocean (at the 1000-km scale) and test the validity of historical biogeographic sub-regions and provinces. We used multivariate analysis of biodiversity patterns at species, genus and family levels to define richness hotspots within the Southern Ocean and transition areas. This process identified the following distinct sub-regions in the Southern Ocean: Antarctic Peninsula, Weddell Sea, East Antarctic—Dronning Maud Land, East Antarctic—Enderby Land, East Antarctic—Wilkes Land, Ross Sea, and the independent Scotia arc and sub Antarctic islands. Patterns of endemism were very different between the bivalves and gastropods. On the basis of distributional ranges and radiation centres of evolutionarily successful families and genera we define three biogeographic provinces in the Southern Ocean: (1) the continental high Antarctic province excluding the Antarctic Peninsula, (2) the Scotia Sea province including the Antarctic Peninsula, and (3) the sub Antarctic province comprising the islands in the vicinity of the Antarctic Circumpolar Current.

  10. Investigating the effect of recruitment variability on length-based recruitment indices for antarctic krill using an individual-based population dynamics model.

    Directory of Open Access Journals (Sweden)

    Stéphane Thanassekos

    Full Text Available Antarctic krill (Euphausia superba; herein krill is monitored as part of an on-going fisheries observer program that collects length-frequency data. A krill feedback management programme is currently being developed, and as part of this development, the utility of data-derived indices describing population level processes is being assessed. To date, however, little work has been carried out on the selection of optimum recruitment indices and it has not been possible to assess the performance of length-based recruitment indices across a range of recruitment variability. Neither has there been an assessment of uncertainty in the relationship between an index and the actual level of recruitment. Thus, until now, it has not been possible to take into account recruitment index uncertainty in krill stock management or when investigating relationships between recruitment and environmental drivers. Using length-frequency samples from a simulated population - where recruitment is known - the performance of six potential length-based recruitment indices is assessed, by exploring the index-to-recruitment relationship under increasing levels of recruitment variability (from ±10% to ±100% around a mean annual recruitment. The annual minimum of the proportion of individuals smaller than 40 mm (F40 min, % was selected because it had the most robust index-to-recruitment relationship across differing levels of recruitment variability. The relationship was curvilinear and best described by a power law. Model uncertainty was described using the 95% prediction intervals, which were used to calculate coverage probabilities and assess model performance. Despite being the optimum recruitment index, the performance of F40 min degraded under high (>50% recruitment variability. Due to the persistence of cohorts in the population over several years, the inclusion of F40 min values from preceding years in the relationship used to estimate recruitment in a given year

  11. Investigating the effect of recruitment variability on length-based recruitment indices for antarctic krill using an individual-based population dynamics model.

    Science.gov (United States)

    Thanassekos, Stéphane; Cox, Martin J; Reid, Keith

    2014-01-01

    Antarctic krill (Euphausia superba; herein krill) is monitored as part of an on-going fisheries observer program that collects length-frequency data. A krill feedback management programme is currently being developed, and as part of this development, the utility of data-derived indices describing population level processes is being assessed. To date, however, little work has been carried out on the selection of optimum recruitment indices and it has not been possible to assess the performance of length-based recruitment indices across a range of recruitment variability. Neither has there been an assessment of uncertainty in the relationship between an index and the actual level of recruitment. Thus, until now, it has not been possible to take into account recruitment index uncertainty in krill stock management or when investigating relationships between recruitment and environmental drivers. Using length-frequency samples from a simulated population - where recruitment is known - the performance of six potential length-based recruitment indices is assessed, by exploring the index-to-recruitment relationship under increasing levels of recruitment variability (from ±10% to ±100% around a mean annual recruitment). The annual minimum of the proportion of individuals smaller than 40 mm (F40 min, %) was selected because it had the most robust index-to-recruitment relationship across differing levels of recruitment variability. The relationship was curvilinear and best described by a power law. Model uncertainty was described using the 95% prediction intervals, which were used to calculate coverage probabilities and assess model performance. Despite being the optimum recruitment index, the performance of F40 min degraded under high (>50%) recruitment variability. Due to the persistence of cohorts in the population over several years, the inclusion of F40 min values from preceding years in the relationship used to estimate recruitment in a given year improved its

  12. Levels, fluxes and time trends of persistent organic pollutants in Lake Thun, Switzerland: Combining trace analysis and multimedia modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bogdal, Christian [Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zuerich (Switzerland); Empa, Swiss Federal Laboratories for Materials Testing and Research, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Scheringer, Martin, E-mail: scheringer@chem.ethz.ch [Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zuerich (Switzerland); Schmid, Peter [Empa, Swiss Federal Laboratories for Materials Testing and Research, Uberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Blaeuenstein, Markus [Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zuerich (Switzerland); Kohler, Martin [State Food Law Enforcement Authority, Werkhofstrasse 5, CH-4509 Solothurn (Switzerland); Hungerbuehler, Konrad [Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zuerich (Switzerland)

    2010-08-01

    Levels, mass fluxes, and time trends of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in Lake Thun, a peri-Alpine lake, are investigated. We present measurements of PBDEs and PCBs in air, lake water, lake sediment, and tributary water. These measurements are combined with a multimedia fate model, based on site-specific environmental parameters from the lake catchment. Measured loadings of PBDEs and PCBs in air and tributaries were used to drive the model. The model satisfactorily reproduces PBDE and PCB congener patterns in water and sediment, but it tends to yield concentrations in water below the measurements and concentrations in sediment exceeding the measurements. A sensitivity analysis reveals that partitioning of PBDEs and PCBs between the aqueous dissolved phase and suspended particulate matter in the water column strongly affects the model results, in particular the concentrations in water and sediment. For lower-brominated PBDEs, approximately 70% and 30% of input into the lake stems from atmospheric deposition and from tributaries, respectively. For heavier PBDEs and all PCBs, rivers appear to deliver the major load (64-92%). Waste water effluents are of minor importance. 50-90% of the total input is buried in the permanent sediment. Sediment burial makes PBDEs and PCBs less available for recycling in the environment, and reduces concentrations in the outflowing river. If use of deca-BDE increases in the future, levels in Lake Thun will follow the same trend. If the use and resulting environmental emissions decrease, concentrations in water will rapidly decline, according to our calculations, while sediment levels will decrease at a considerably slower rate.

  13. NUMERICAL MODEL FOR FLOW THROUGH SUBMERGED VEGETATION REGIONS IN A SHALLOW LAKE*

    Institute of Scientific and Technical Information of China (English)

    WANG Pei-fang; WANG Chao

    2011-01-01

    Aquatic vegetation has a significant impact on water currents. To evaluate the effects of changes in the aquatic vegetation on water currents of different velocity, a 3-D hydrodynamic model was then developed by taking into consideration of the additional hydraulic resistance of the aquatic plants. The Navier- Stokes equations were then solved using the SIMPLE method and the k- ε turbulence model. Calculations using the established models were used to forecast the vertical distribution of the horizontal velocity and horizontal flow under the transmission conditions of the South-North Water Diversion in the Nansi Lake. And comparative calculation for the flow velocity was also performed using the simplified method of assigning a high roughness coefficient to the lake bed in the same area. Results suggest that adding additional hydraulic resistance of the aquatic plants is feasible. The calculation errors between simulation result and the field observed data are smaller than 15%, while, those errors are up to 35% if the influence of aquatic vegetation is dealt with the simplified method.

  14. Parameterisation of sea and lake ice in numerical weather prediction models of the German Weather Service

    Directory of Open Access Journals (Sweden)

    Dmitrii Mironov

    2012-04-01

    Full Text Available A bulk thermodynamic (no rheology sea-ice parameterisation scheme for use in numerical weather prediction (NWP is presented. The scheme is based on a self-similar parametric representation (assumed shape of the evolving temperature profile within the ice and on the integral heat budget of the ice slab. The scheme carries ordinary differential equations (in time for the ice surface temperature and the ice thickness. The proposed sea-ice scheme is implemented into the NWP models GME (global and COSMO (limited-area of the German Weather Service. In the present operational configuration, the horizontal distribution of the sea ice is governed by the data assimilation scheme, no fractional ice cover within the GME/COSMO grid box is considered, and the effect of snow above the ice is accounted for through an empirical temperature dependence of the ice surface albedo with respect to solar radiation. The lake ice is treated similarly to the sea ice, except that freeze-up and break-up of lakes occurs freely, independent of the data assimilation. The sea and lake ice schemes (the latter is a part of the fresh-water lake parameterisation scheme FLake show a satisfactory performance in GME and COSMO. The ice characteristics are not overly sensitive to the details of the treatment of heat transfer through the ice layer. This justifies the use of a simplified but computationally efficient bulk approach to model the ice thermodynamics in NWP, where the ice surface temperature is a major concern whereas details of the temperature distribution within the ice are of secondary importance. In contrast to the details of the heat transfer through the ice, the cloud cover is of decisive importance for the ice temperature as it controls the radiation energy budget at the ice surface. This is particularly true for winter, when the long-wave radiation dominates the surface energy budget. During summer, the surface energy budget is also sensitive to the grid-box mean ice

  15. Dynamics of wave-current-surge interactions in Lake Michigan: A model comparison

    Science.gov (United States)

    Mao, Miaohua; Xia, Meng

    2017-02-01

    Wave, storm surge dynamics, and wave-current-surge interactions (WCSI) were investigated by applying a pair of unstructured-grid-based models to Lake Michigan under two strong wind events. The effects of wind field sources, wind drag coefficient bulk formula, and parameterizations of the bottom friction term were explored to understand lake dynamics. Two wave models were calibrated by using alternative wave physics settings under the 2011 northeasterly wind event. Forced by the southwesterly wind event in 2013, the calibrated models using the atmosphere-ocean fully coupled Climate Forecast System Version 2 wind field were further validated. It is found that the northwesterly winds induced 0.57 m setup near the southwestern coast, whereas the southwesterly winds produced 0.28 m setup and -0.43 m setdown near the northern and southwestern coasts, respectively. The WCSI mostly influence waves and storm surge in shallow-water areas near coasts and islands through depth-induced breaking, current-induced frequency shift and refraction, and wave-induced setup/setdown through wave radiation stress. Owing to the adoption of different discretization algorithms and bottom friction formulations, the modeled storm surge and waves exhibit some variation between the paired models. Even though the storm surge difference with and without WCSI is smaller than that between the two WCSI-coupled models, both circulation models adopt WCSI considering their consistent improvement on model accuracy under both wind events. The analysis of water transport indicates that wind speed, direction, and coastal geometry and bathymetry are also important factors in storm surge.

  16. Transcriptomics and comparative analysis of three antarctic notothenioid fishes.

    Directory of Open Access Journals (Sweden)

    Seung Chul Shin

    Full Text Available For the past 10 to 13 million years, Antarctic notothenioid fish have undergone extraordinary periods of evolution and have adapted to a cold and highly oxygenated Antarctic marine environment. While these species are considered an attractive model with which to study physiology and evolutionary adaptation, they are poorly characterized at the molecular level, and sequence information is lacking. The transcriptomes of the Antarctic fishes Notothenia coriiceps, Chaenocephalus aceratus, and Pleuragramma antarcticum were obtained by 454 FLX Titanium sequencing of a normalized cDNA library. More than 1,900,000 reads were assembled in a total of 71,539 contigs. Overall, 40% of the contigs were annotated based on similarity to known protein or nucleotide sequences, and more than 50% of the predicted transcripts were validated as full-length or putative full-length cDNAs. These three Antarctic fishes shared 663 genes expressed in the brain and 1,557 genes expressed in the liver. In addition, these cold-adapted fish expressed more Ub-conjugated proteins compared to temperate fish; Ub-conjugated proteins are involved in maintaining proteins in their native state in the cold and thermally stable Antarctic environments. Our transcriptome analysis of Antarctic notothenioid fish provides an archive for future studies in molecular mechanisms of fundamental genetic questions, and can be used in evolution studies comparing other fish.

  17. Seasonal patterns in growth, blood consumption, and effects on hosts by parasitic-phase sea lampreys in the Great Lakes: an individual-based model approach

    Science.gov (United States)

    Madenjian, Charles P.; Cochran, Philip A.; Bergstedt, Roger A.

    2003-01-01

    An individual-based model (IBM) was developed for sea lamprey (Petromyzon marinus) populations in the Laurentian Great Lakes. The IBM was then calibrated to observed growth, by season, for sea lampreys in northern Lake Huron under two different water temperature regimes: a regime experienced by Seneca-strain lake trout (Salvelinus namaycush) and a regime experienced by Marquettestrain lake trout. Modeling results indicated that seasonal blood consumption under the Seneca regime was very similar to that under the Marquette regime. Simulated mortality of lake trout directly due to blood removal by sea lampreys occurred at nearly twice the rate during August and September under the Marquette regime than under the Seneca regime. However, cumulative sea lamprey-induced mortality on lake trout over the entire duration of the sea lamprey's parasitic phase was only 7% higher for the Marquette regime compared with the Seneca regime. Thus, these modeling results indicated that the strain composition of the host (lake trout) population was not important in determining total number of lake trout deaths or total blood consumption attributable to the sea lamprey population, given the sea lamprey growth pattern. Regardless of water temperature regime, both blood consumption rate by sea lampreys and rate of sea lamprey-induced mortality on lake trout peaked in late October. Elevated blood consumption in late October appeared to be unrelated to changes in water temperature. The IBM approach should prove useful in optimizing control of sea lampreys in the Laurentian Great Lakes.

  18. A physical-biological coupled model for algal dynamics in lakes.

    Science.gov (United States)

    Franke, U; Hutter, K; Jöhnk, K

    1999-03-01

    A coupled model is presented for simulating physical and biological dynamics in fresh water lakes. The physical model rests upon the assumption that the turbulent kinetic energy in a water column of the lake is fully contained in a mixed layer of variable depth. Below this layer the mechanical energy content is assumed to vanish. Additionally, the horizontal currents are ignored. This one-dimensional two-layered model describes the internal conversion of the mechanical and thermal energy input from the atmosphere into an evolution of the mixed layer depth by entrainment and detrainment mechanisms. It is supposed to form the physical domain in which the simulation of the biological processes takes place. The biological model describes mathematically the typical properties of phyto- and zooplankton, their interactions and their response to the physical environment. This description then allows the study of the behaviour of Lagrangian clusters of virtual plankton that are subjected to such environments. The essence of the model is the dynamical simulation of an arbitrary number of nutrient limited phytoplankton species and one species of zooplankton. The members of the food web above and below affect the model only statically. The model is able to reproduce the typical progression of a predator-prey interaction between phyto- and zooplankton as well as the exploitative competition for nutrients between two phytoplankton species under grazing pressure of Daphnia. It suggests that the influence of the biological system on the physical system results in a weak increase of the surface temperature for coupled simulations, but a considerably higher seasonal thermocline in spring and a lower one in autumn.

  19. Depth and density of the Antarctic firn layer

    NARCIS (Netherlands)

    van den Broeke, M.R.

    2008-01-01

    The depth and density of the Antarctic firn layer is modeled, using a combination of regional climate model output and a steady-state firn densification model. The modeled near-surface climate (temperature, wind speed, and accumulation) and the depth of two critical density levels (550 kg m−3 and 83

  20. A simulated Antarctic fast ice ecosystem

    Science.gov (United States)

    Arrigo, Kevin R.; Kremer, James N.; Sullivan, Cornelius W.

    1993-01-01

    A 2D numerical ecosystem model of Antarctic land fast ice is developed to elucidate the primary production with the Antarctic sea ice zone. The physical component employs atmospheric data to simulate congelation ice growth, initial brine entrapment, desalination, and nutrient flux. The biological component is based on the concept of a maximum temperature-dependent algal growth rate which is reduced by limitations imposed from insufficient light or nutrients, as well as suboptimal salinity. Preliminary simulations indicate that, during a bloom, microalgae are able to maintain their vertical position relative to the lower congelation ice margin and are not incorporated into the crystal matrix as the ice sheet thickens. It is inferred that land fast sea ice contains numerous microhabitats that are functionally distinct based upon the unique set of processes that control microalgal growth and accumulation within each.

  1. Optical Turbulence above the Internal Antarctic Plateau

    CERN Document Server

    Masciadri, E; Hagelin, S; Moigne, P Le; Noilhan, J

    2010-01-01

    The internal antarctic plateau revealed in the last years to be a site with interesting potentialities for the astronomical applications due to the extreme dryness and low temperatures, the typical high altitude of the plateau, the weak level of turbulence in the free atmosphere down to a just few tens of meters from the ground and the thin optical turbulence layer developed at the ground. The main goal of a site testing assessment above the internal antarctic plateau is to characterize the site (optical turbulence and classical meteorological parameters) and to quantify which is the gain we might obtain with respect to equivalent astronomical observations done above mid-latitude sites to support plans for future astronomical facilities. Our group is involved, since a few years, in studies related to the assessment of this site for astronomical applications that include the characterization of the meteorological parameters and optical turbulence provided by general circulation models as well as mesoscale atmo...

  2. Impact of the Antarctic bottom water formation on the Weddell Gyre and its northward propagation characteristics in GFDL CM2.1 model

    Science.gov (United States)

    Zhang, Liping; Delworth, Thomas L.

    2016-08-01

    The impact of Antarctic bottom water (AABW) formation on the Weddell Gyre and its northward propagation characteristics are studied using a 4000 year long control run of the GFDL CM2.1 model as well as sensitivity experiments. In the control run, the AABW cell and Weddell Gyre are highly correlated when the AABW cell leads the Weddell Gyre by several years, with an enhanced AABW cell corresponding to a strengthened Weddell Gyre and vice versa. An additional sensitivity experiment shows that the response of the Weddell Gyre to AABW cell changes is primarily attributed to interactions between the AABW outflow and ocean topography, instead of the surface wind stress curl and freshwater anomalies. As the AABW flows northward, it encounters topography with steep slopes that induce strong downwelling and negative bottom vortex stretching. The anomalous negative bottom vortex stretching induces a cyclonic barotropic stream function over the Weddell Sea, thus leading to an enhanced Weddell Gyre. The AABW cell variations in the control run have significant meridional coherence in density space. Using passive dye tracers, it is found that the slow propagation of AABW cell anomalies south of 35°S corresponds to the slow tracer advection time scale. The dye tracers escape the Weddell Sea through the western limb of the Weddell Gyre and then go northwestward to the Argentine Basin through South Sandwich Trench and Georgia Basin. This slow advection by deep ocean currents determines the AABW cell propagation speed south of 35°S. North of 35°S the propagation speed is determined both by advection in the deep western boundary current and through Kelvin waves.

  3. Evaluation of the lake model FLake over a coastal lagoon during the THAUMEX field campaign

    Directory of Open Access Journals (Sweden)

    Patrick Le Moigne

    2013-10-01

    Full Text Available The THAUMEX measurement campaign, carried out during the summer of 2011 in Thau, a coastal lagoon in southern France, focused on episodes of marine breezes. During the campaign, three intensive observation periods (IOPs were conducted and a large amount of data were collected. Subsequently, standalone modelling using the FLake lake model was used, first to assess the surface temperature and the surface energy balance, and second to determine the energy budget of the water column at the measurement site. Surface fluxes were validated against in situ measurements, and it was determined that heat exchanges are dominated by evaporation. We also demonstrated that the model was sensitive to the light extinction coefficient at Thau, due to its shallowness and clarity nature. A heat balance was calculated, and the inclusion of a radiative temperature has improved it, especially by reducing the nocturnal evaporation. The FLake lake model was then evaluated in three-dimensional numerical simulations performed with the Meso-NH mesoscale model, in order to assess the changing structure of the boundary layer above the lagoon during the IOPs more accurately. We highlighted the first time ever when Meso-NH and FLake were coupled and proved the ability of the coupled system to forecast a complex phenomenon but also the importance of the use of the FLake model was pointed out. We demonstrated the impact of the lagoon and more precisely the Lido, a sandy strip of land between the lagoon and the Mediterranean Sea, on the vertical distribution of turbulent kinetic energy, evidence of the turbulence induced by the breeze. This study showed the complementarities between standalone and coupled simulations.

  4. Metazoan Parasites of Antarctic Fishes.

    Science.gov (United States)

    Oğuz, Mehmet Cemal; Tepe, Yahya; Belk, Mark C; Heckmann, Richard A; Aslan, Burçak; Gürgen, Meryem; Bray, Rodney A; Akgül, Ülker

    2015-06-01

    To date, there have been nearly 100 papers published on metazoan parasites of Antarctic fishes, but there has not yet been any compilation of a species list of fish parasites for this large geographic area. Herein, we provide a list of all documented occurrences of monogenean, cestode, digenean, acanthocephalan, nematode, and hirudinean parasites of Antarctic fishes. The list includes nearly 250 parasite species found in 142 species of host fishes. It is likely that there are more species of fish parasites, which are yet to be documented from Antarctic waters.

  5. Exploration of Antarctic Subglacial environments: a challenge for analytical chemistry

    Science.gov (United States)

    Traversi, R.; Becagli, S.; Castellano, E.; Ghedini, C.; Marino, F.; Rugi, F.; Severi, M.; Udisti, R.

    2009-12-01

    The large number of subglacial lakes detected in the Dome C area in East Antarctica suggests that this region may be a valuable source of paleo-records essential for understanding the evolution of the Antarctic ice cap and climate changes in the last several millions years. In the framework of the Project on “Exploration and characterization of Concordia Lake, Antarctica”, supported by Italian Program for Antarctic Research (PNRA), a glaciological investigation of the Dome C “Lake District” are planned. Indeed, the glacio-chemical characterisation of the ice column over subglacial lakes will allow to evaluate the fluxes of major and trace chemical species along the ice column and in the accreted ice and, consequently, the availability of nutrients and oligo-elements for possible biological activity in the lake water and sediments. Melting and freezing at the base of the ice sheet should be able to deliver carbon and salts to the lake, as observed for the Vostok subglacial lake, which are thought to be able to support a low concentration of micro-organisms for extended periods of time. Thus, this investigation represents the first step for exploring the subglacial environments including sampling and analysis of accreted ice, lake water and sediments. In order to perform reliable analytical measurements, especially of trace chemical species, clean sub-sampling and analytical techniques are required. For this purpose, the techniques already used by the CHIMPAC laboratory (Florence University) in the framework of international Antarctic drilling Projects (EPICA - European Project for Ice Coring in Antarctica, TALDICE - TALos Dome ICE core, ANDRILL MIS - ANTarctic DRILLing McMurdo Ice Shelf) were optimised and new techniques were developed to ensure a safe sample handling. CHIMPAC laboratory has been involved since several years in the study of Antarctic continent, primarily focused on understanding the bio-geo-chemical cycles of chemical markers and the

  6. The Surface Mass Balance of the Antarctic Peninsula at 5.5 km horizontal resolution, as simulated by a regional atmospheric climate model

    Science.gov (United States)

    van Wessem, M.; Reijmer, C.; van den Broeke, M. R.; Ligtenberg, S.; Scambos, T. A.; Barrand, N. E.; Van De Berg, W. J.; Thomas, E. R.; Wuite, J.; van Meijgaard, E.; Turner, J.

    2015-12-01

    The Antarctic Peninsula (AP) is one of the most rapidly changing regions on earth, but limited detailed information is available about AP climate due to a lack of observational data. Here, we present a high-resolution (5.5 km) estimate of the surface mass balance (SMB) for the AP, from 1979 to 2014, calculated by the regional atmospheric climate model RACMO2.3, that is specifically adapted for use over the polar regions. Next to this, a firn densification model is used to calculate the processes in the snowpack, such as firn compaction and meltwater percolation, refreezing, and runoff. A comparison with the few available in-situ observations shows that the AP SMB is well modeled, but that discrepancies remain that are mainly related to the highly variable AP topography compared to the model resolution. Integrated over an ice sheet area of 4.1 105 km2, the climatological (1979-2014) SMB of the AP amounts to 351 Gt y-1 (with interannual variability = 58 Gt y-1), which mostly consists of snowfall (363 ± 56 Gt y-1). The other SMB components, sublimation, drifting snow erosion and meltwater runoff, are small (11, 0.5 and 4 Gt y-1, respectively). The AP mountains act as an important climate barrier, leading to distinct differences between the climate of the western AP (WAP) and the eastern AP (EAP). For instance, 77% of all AP snowfall falls over the WAP, where strong orographic forcing leads to snowfall rates >4 m w.e. y-1 on the northwestern slopes, while snowfall rates are <400 mm w.e. y-1 over the EAP ice shelves. These results, and further investigations of this sharp west-to-east climate distinction, clearly highlight the different forcing mechanisms of the SMB over the WAP and the EAP: over the WAP most snowfall is orographically induced, while over the EAP it is generated by depressions over the Weddell Sea. Furthermore, no significant trends are found in any of the SMB components, except for a slight decrease in snowmelt.

  7. A niche model to predict Microcystis bloom decline in Chaohu Lake, China

    Institute of Scientific and Technical Information of China (English)

    WANG Zhicong; LI Zhongjie; LI Dunhai

    2012-01-01

    Cyanobacterial blooms occur frequently in lakes due to eutrophication.Although a number of models have been proposed to forecast algal blooms,a good and applicable method is still lacking.This study explored a simple and effective mathematical-ecological model to evaluate the growth status and predict the population dynamics of Microcystis blooms.In this study,phytoplankton were collected and identified from 8 sampling sites in Chaohu Lake every month from July to October,2010.The niche breadth and niche overlap of common species were calculated using standard equations,and the potential relative growth rates of Microcystis were calculated as a weighted-value of niche overlap.In July,the potential relative growth rate was 2.79 (a.u.,arbitrary units) but then rapidly declined in the following months to -3.99 a.u.in September.A significant correlation (R=0.998,P<0.01) was found in the model between the net-increase in biomass of Microcystis in the field and the predicted values calculated by the niche model,we concluded that the niche model is suitable for forecasting the dynamics of Microcystis blooms.Redundancy analysis indicated that decreases in water temperature,dissolved oxygen and total dissolved phosphorus might be major factors underlying bloom decline.Based on the theory of community succession being caused by resource competition,the growth and decline of blooms can be predicted from a community structure.This may provide a basis for early warning and control of algal blooms.

  8. Application of a littoral Baltic Sea resuspension model in a eutrophic lake-factors behind differences in the model performance

    Institute of Scientific and Technical Information of China (English)

    Jukka Horppila n; Joni Kaitaranta; Leena Nurminen

    2015-01-01

    abstract The performance of a linear resuspension model developed in the Baltic Sea was studied in the conditions of a eutrophic Lake Kirkkojärvi (southern Finland). The model predicts sediment resuspen-sion rate using data on vegetation cover, wind and sediment quality as an input. When the original model coefficients were used, the model resulted on average 1.8 fold overestimation of the resuspension rate in Kirkkojärvi. This was due to lower fetch and water depth, and less consolidated sediment of Kirkkojärvi compared with the Baltic Sea study site. When coefficients were adjusted for Kirkkojärvi, the model predictions were 1.1 times the measured values. Due to the continuous resuspension, the effect of the wind term in the model was so low that it could be excluded without affecting the accuracy of model predictions. The study demonstrated that in a shallow eutrophic lake accurate predictions on resuspension rate can be made using only data on sediment quality and on factors inhibiting resuspension (macrophytes). The model residuals increased with increasing resuspension rate and high rates of resuspension were underestimated by the model. Due to the fluffy sediment in Kirkkojärvi, erosion of sediment increases more than linear with increasing shear stress. Thus in such conditions, even better predictions could be achieved by a non-linear resuspension model.&2015 Published by Elsevier B.V. on behalf of International Research and Training Centre on Erosion and Sedimentation/the World Association for Sedimentation and Erosion Research.

  9. OSIRIS observations of a tongue of NOx in the lower stratosphere at the Antarctic vortex edge: comparison with a high-resolution simulation from the Global Environmental Multiscale (GEM) model

    Energy Technology Data Exchange (ETDEWEB)

    Sioris, C.E.; McLinden, C.A.; Rochon, Y.J.; McElroy, C.T. [Environment Canada, Toronto, ON (Canada). Atmospheric Science and Technology Directorate; Chabrillat, S. [Belgian Inst. for Space Aeronomy, Brussels (Belgium); Haley, C.S. [York Univ., Toronto, ON (Canada); Menard, R.; Charron, M. [Environment Canada, Dorval, ON (Canada). Atmospheric Science and Technology Directorate

    2007-11-15

    An optical spectrograph and infrared imager system (OSIRIS) aboard the Odin satellite measures limb-scattered sunlight in the 280 to 810 nm range. This paper addressed the challenge of interpreting nitrogen dioxide (NO{sub 2}) profile observations in the polar lower stratosphere. Interpretations of these profile observations can be facilitated by first converting the measurements to NO{sub x} using a photochemical model in order to compare directly with simulated NO{sub x} from a 3-dimensional chemical transport model such as the Global Environmental Multiscale (GEM) model. In this study, GEM was used to simulate a tongue of NO{sub x} observed by OSIRIS as it circulated inside the Antarctic vortex edge. The objective was to clarify one of several OSIRIS observations of enhanced lower stratospheric NO{sub 2} in the Antarctic in early austral spring. Another objective was to demonstrate the variability in lower stratospheric NO{sub x} at polar latitudes due to dynamical processes. Selected NOx profiles of the Antarctic lower stratosphere inferred from OSIRIS NO{sub 2} observations were presented from the austral spring of 2003. A tongue of NOx at 100 hPa was observed, with a concentration typical of the middle stratosphere. GEM simulations revealed that this small-scale tongue of NOx-rich air descended into the lower stratosphere. The tongue was formed as a result of a Rossby wave breaking, transporting NOx from the pole, where larger concentrations had recently appeared, to the edge of the vortex. A detailed illustration of the 3-dimensional structure of the breaking wave was also presented. 17 refs., 1 tab., 10 figs.

  10. 水温—冰盖模式对大湖水面温度的模拟%SPATIALLY DISTRIBUTED WATER SURFACE TEMPERATURE MODELING FOR THE GREAT LAKES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper describes the development and validation of a water temperature model for the Great Lakes.This model is keyed to simulate horizontally and temporally varying surface temperature.An ice cover model is coupled with the water temper ature model,forming a spatially distributed thermodynamic model for the Great La kes.This model can be used to give long-term or short-term simulations of wate r surface temperature and ice cover for the Great Lakes.

  11. A paleomagnetic study of the Antarctic Peninsula

    Science.gov (United States)

    Poblete, F.; Arriagada, C.; Roperch, P.

    2009-05-01

    In the Paleozoic, South America, South Africa and Antarctica were part of Gondwana. The Weddell Sea began to form at about 146 Ma, after rifting between the Antarctic Peninsula and southernmost South America. Much uncertainty still exists about the geometrical fit and subsequent drift history between Patagonia and Antarctica. Geophysical and geological data which describe the tectonic history are sparsely distributed and often of poor quality. During the last two years we have collected more than 1000 paleomagnetic samples from 70 sites at several localities (King George Island, Robert Island, Yankee Bay, Half Moon Island, Byers Peninsula and Snow Island) from the South Shetland Islands and Anderson Island in the northern tip of Antarctic Peninsula. Our main objective was to provide first-order constraints on latitudinal displacements and the amount of tectonic rotations as an essential test of published tectonic models. Paleomagnetic results were obtained from 50 sites. All samples from sites in volcanic and intrusive rocks have well-defined univectorial magnetizations. Unfortunately, all sites in late Paleozoic sediments have been remagnetized and the magnetizations are often unstable upon thermal demagnetization. Cretaceous and Cenozoic units display very little apparent polar wander. Results from intrusive rocks of expected Jurassic age do not confirm the expected relative rotation betwen the Antarctic Peninsula and East Antarctica. Further radiometric dating are needed to confirm the age of these units.

  12. Remote sensing estimation of the total phosphorus concentration in a large lake using band combinations and regional multivariate statistical modeling techniques.

    Science.gov (United States)

    Gao, Yongnian; Gao, Junfeng; Yin, Hongbin; Liu, Chuansheng; Xia, Ting; Wang, Jing; Huang, Qi

    2015-03-15

    Remote sensing has been widely used for ater quality monitoring, but most of these monitoring studies have only focused on a few water quality variables, such as chlorophyll-a, turbidity, and total suspended solids, which have typically been considered optically active variables. Remote sensing presents a challenge in estimating the phosphorus concentration in water. The total phosphorus (TP) in lakes has been estimated from remotely sensed observations, primarily using the simple individual band ratio or their natural logarithm and the statistical regression method based on the field TP data and the spectral reflectance. In this study, we investigated the possibility of establishing a spatial modeling scheme to estimate the TP concentration of a large lake from multi-spectral satellite imagery using band combinations and regional multivariate statistical modeling techniques, and we tested the applicability of the spatial modeling scheme. The results showed that HJ-1A CCD multi-spectral satellite imagery can be used to estimate the TP concentration in a lake. The correlation and regression analysis showed a highly significant positive relationship between the TP concentration and certain remotely sensed combination variables. The proposed modeling scheme had a higher accuracy for the TP concentration estimation in the large lake compared with the traditional individual band ratio method and the whole-lake scale regression-modeling scheme. The TP concentration values showed a clear spatial variability and were high in western Lake Chaohu and relatively low in eastern Lake Chaohu. The northernmost portion, the northeastern coastal zone and the southeastern portion of western Lake Chaohu had the highest TP concentrations, and the other regions had the lowest TP concentration values, except for the coastal zone of eastern Lake Chaohu. These results strongly suggested that the proposed modeling scheme, i.e., the band combinations and the regional multivariate

  13. Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation

    OpenAIRE

    Vancoppenolle, M.; Fichefet, T.; Goosse, H.; Bouillon, S; Madec, G.; Maqueda, M.A.M.

    2009-01-01

    This paper is the first part of a twofold contribution dedicated to the new version of the Louvain-la-Neuve sea ice model LIM3. In this part, LIM3 is described and its results arc, compared with observations. LIM3 is a C-grid dynamic-thermodynamic model, including the representation of the subgrid-scale distributions of ice thickness, enthalpy, salinity and age. Brine entrapment and drainage as well as brine impact on ice thermodynamics are explicitly included. LIM3 is embedded into the ocean...

  14. Antarctic crabs: invasion or endurance?

    Science.gov (United States)

    Griffiths, Huw J; Whittle, Rowan J; Roberts, Stephen J; Belchier, Mark; Linse, Katrin

    2013-01-01

    Recent scientific interest following the "discovery" of lithodid crabs around Antarctica has centred on a hypothesis that these crabs might be poised to invade the Antarctic shelf if the recent warming trend continues, potentially decimating its native fauna. This "invasion hypothesis" suggests that decapod crabs were driven out of Antarctica 40-15 million years ago and are only now returning as "warm" enough habitats become available. The hypothesis is based on a geographically and spatially poor fossil record of a different group of crabs (Brachyura), and examination of relatively few Recent lithodid samples from the Antarctic slope. In this paper, we examine the existing lithodid fossil record and present the distribution and biogeographic patterns derived from over 16,000 records of Recent Southern Hemisphere crabs and lobsters. Globally, the lithodid fossil record consists of only two known specimens, neither of which comes from the Antarctic. Recent records show that 22 species of crabs and lobsters have been reported from the Southern Ocean, with 12 species found south of 60 °S. All are restricted to waters warmer than 0 °C, with their Antarctic distribution limited to the areas of seafloor dominated by Circumpolar Deep Water (CDW). Currently, CDW extends further and shallower onto the West Antarctic shelf than the known distribution ranges of most lithodid species examined. Geological evidence suggests that West Antarctic shelf could have been available for colonisation during the last 9,000 years. Distribution patterns, species richness, and levels of endemism all suggest that, rather than becoming extinct and recently re-invading from outside Antarctica, the lithodid crabs have likely persisted, and even radiated, on or near to Antarctic slope. We conclude there is no evidence for a modern-day "crab invasion". We recommend a repeated targeted lithodid sampling program along the West Antarctic shelf to fully test the validity of the "invasion hypothesis".

  15. Ecosystem approach to water resources management using the MIKE 11 modeling system in the Strymonas River and Lake Kerkini.

    Science.gov (United States)

    Doulgeris, Charalampos; Georgiou, Pantazis; Papadimos, Dimitris; Papamichail, Dimitris

    2012-02-01

    The ability to apply an ecosystem approach to the Strymonas River catchment was investigated using the MIKE 11 modeling system for the simulation of surface water. The Strymonas River catchment is shared mainly between Bulgaria and Greece. The river feeds the artificial Lake Kerkini, a significant wetland ecosystem, and further downstream it outflows to the Gulf of Strymonikos, whose estuary ecosystem is very important for fisheries, biodiversity and tourism. MIKE 11-NAM was used for the simulation of rainfall-runoff process in the Strymonas River catchment and MIKE 11-HD was used to simulate the unsteady flow of the Strymonas River and to apply management rules based on the water level of Lake Kerkini. Two water level management scenarios were investigated. The first scenario referred to the mean daily-observed water level of Lake Kerkini between 1986 and 2006, and the second scenario represented adjustments necessary to fulfill the lake's ecosystem requirements. Under the current water level management practices (Scenario 1), the Strymonas River-Lake Kerkini system has enough water to fulfill its Irrigation Water Requirements (IWR) in normal and wet years while a slight deficit is appeared in dry years; however, both Lake Kerkini and the Strymonas River estuary ecosystems are subject to pressures, since reduction of the forest area has been recorded. Applying the ecosystem approach (Scenario 2), the protection of the riparian forest of Lake Kerkini is achieved while in normal and wet years the IWR are fulfilled and the deficit of the IWR is increased in dry years. Compared to Scenario 1, the pressure of the Strymonas River estuary ecosystem is slightly increased.

  16. Evidence for warmer interglacials in East Antarctic ice cores.

    Science.gov (United States)

    Sime, L C; Wolff, E W; Oliver, K I C; Tindall, J C

    2009-11-19

    Stable isotope ratios of oxygen and hydrogen in the Antarctic ice core record have revolutionized our understanding of Pleistocene climate variations and have allowed reconstructions of Antarctic temperature over the past 800,000 years (800 kyr; refs 1, 2). The relationship between the D/H ratio of mean annual precipitation and mean annual surface air temperature is said to be uniform +/-10% over East Antarctica and constant with time +/-20% (refs 3-5). In the absence of strong independent temperature proxy evidence allowing us to calibrate individual ice cores, prior general circulation model (GCM) studies have supported the assumption of constant uniform conversion for climates cooler than that of the present day. Here we analyse the three available 340 kyr East Antarctic ice core records alongside input from GCM modelling. We show that for warmer interglacial periods the relationship between temperature and the isotopic signature varies among ice core sites, and that therefore the conversions must be nonlinear for at least some sites. Model results indicate that the isotopic composition of East Antarctic ice is less sensitive to temperature changes during warmer climates. We conclude that previous temperature estimates from interglacial climates are likely to be too low. The available evidence is consistent with a peak Antarctic interglacial temperature that was at least 6 K higher than that of the present day -approximately double the widely quoted 3 +/- 1.5 K (refs 5, 6).

  17. Simulating Water and Nutrient Transport in an Urbanizing Agricultural Watershed with Lake-Level Regulation Using a Coupled Modeling Approach

    Science.gov (United States)

    Chen, X.; Motew, M.; Booth, E.; Carpenter, S. R.; Steven, L. I.; Kucharik, C. J.

    2015-12-01

    The Yahara River basin located in southern Wisconsin is a watershed with long-term eutrophication issues due largely to a thriving dairy industry upstream of the Madison chain of lakes. Steady phosphorus loading from manure production and other sources has contributed directly to blue-green algae blooms and poor water quality in the lakes and river system, and is often viewed as the most important environmental problem to solve in the region. In this study, the daily streamflow and monthly nitrogen (N), sediment and phosphorus (P) transport, as well as the lake levels in the Yahara River basin are simulated using a physically-based hydrologic routing model: the Terrestrial Hydrology Model with Biogeochemistry (THMB). The original model includes representation of water and nitrogen transport but as part of this work, P transport and lake regulation are added into the model. The modified THMB model is coupled with the AgroIBIS-VSF agroecosystem model to represent dynamic coupling between agricultural management in the watershed, and N, P, and sediment transport to lakes and streams. We will present model calibration and validation results that demonstrate the hydrologic routing capability of THMB for a spatial resolution of 220m, several orders of magnitude finer than attempted previously with THMB. The calibrated modeling system is being used to simulate the impacts of climate change and land management on biogeochemistry in the Yahara watershed under four different pathways of change to the year 2070 (Yahara 2070). These scenarios are Abandonment and Renewal, Accelerated Innovation, Connected Communities and Nested Watersheds, which are used to better understand how future decision-making influences the provisioning and trade-offs of ecosystem services.

  18. Development of a model to assess masking potential for marine mammals by the use of air guns in Antarctic waters

    NARCIS (Netherlands)

    Wittekind, D.; Tougaard, J.; Stilz, P.; Dähne, M.; Clark, C.W.; Lucke, K.; Benda-Beckmann, A.M. von; Ainslie, M.A.; Siebert, U.

    2016-01-01

    We estimated the long-range effects of air gun array noise on marine mammal communication ranges in the Southern Ocean. Air gun impulses are subject to significant distortion during propagation, potentially resulting in a quasi- continuous sound. Propagation modeling to estimate the received wavefor

  19. Development of a model to assess masking potential for marine mammals by the use of air guns in Antarctic waters

    NARCIS (Netherlands)

    Wittekind, Dietrich; Tougaard, Jakob; Stilz, Peter; Dähne, Michael; Clark, Christopher W.; Lucke, K.; Benda-Beckmann, von Sander; Ainslie, Michael A.; Siebert, Ursula

    2016-01-01

    We estimated the long-range effects of air gun array noise on marine mammal communication ranges in the Southern Ocean. Air gun impulses are subject to significant distortion during propagation, potentially resulting in a quasi- continuous sound. Propagation modeling to estimate the received wave

  20. A Deterministic Model for Predicting Hourly Dissolved Oxygen Change: Development and Application to a Shallow Eutrophic Lake

    Directory of Open Access Journals (Sweden)

    Zhen Xu

    2016-01-01

    Full Text Available Predicting dissolved oxygen (DO change at a high frequency in water bodies is useful for water quality management. In this study, we developed a deterministic model that can predict hourly DO change in a water body with high frequency weather parameters. The study was conducted during August 2008–July 2009 in a eutrophic shallow lake in Louisiana, USA. An environment monitoring buoy was deployed to record DO, water temperature and chlorophyll-a concentration at 15-min intervals, and hourly weather data including air temperature, precipitation, wind speed, relative humidity, and solar radiation were gathered from a nearby weather station. These data formed a foundation for developing a DO model that predicts rapid change of source and sink components including photosynthesis, re-aeration, respiration, and oxygen consumption by sediments. We then applied the model to a studied shallow lake that is widely representative of lake water conditions in the subtropical southern United States. Overall, the model successfully simulated high-time fluctuation of DO in the studied lake, showing good predictability for extreme algal bloom events. However, a knowledge gap still exists in accurately quantifying oxygen source produced by photosynthesis in high frequency DO modeling.

  1. Gorkha earthquake-induced landslides and dammed lakes: Evolution and outburst modeling

    Science.gov (United States)

    Shugar, D. H.; Immerzeel, W.; Wanders, N.; Kargel, J. S.; Leonard, G. J.; Haritashya, U. K.; Collins, B. D.

    2015-12-01

    On 25 April 2015, the Gorkha Earthquake (Mw 7.8) struck Nepal, generating thousands of landslides in Nepal, Tibet (China), and India. While the majority of these hazards were triggered co-seismically, many are considered secondary effects occurring during the weeks following the main shock, based on high-resolution WorldView satellite imagery. Here we report on a series of shallow, post-seismic landslides into the upper Marsyangdi River in the Annapurna region of the central Nepal Himalayas. These landslides constricted and blocked the river, causing impoundments that presented acute flood risks to communities downstream. On April 27, two days following the main shock, ~4.7 x 104 m3 of water was impounded behind a series of small constrictions. By May 28, the total volume of impounded water had increased to ~6.4 x 105 m3. The downstream flood risk was especially significant in the event of a domino-like cascade of dam breaches. We examine the timing, distribution and evolution of the landslide-dammed lakes and quantify the risk of inundation-scenarios to downstream communities with a hydrological model. The model uses a fully kinematic wave simulation at a 30 m-spatial and 2 sec-temporal resolution to resolve the height, timing and volume of a possible outburst flood wave. Our modeling shows that a rapid dam burst involving only the lowest, largest lake would increase water levels at the nearest village of Lower Pisang ~2 km downstream by >7m in a matter of minutes. Approximately 70 km downstream, the flood wave would be mostly attenuated, raising water levels only tens of centimeters. Fortunately, at the time of writing, no flood had occurred.

  2. Modeling wind waves from deep to shallow waters in Lake Michigan using unstructured SWAN

    Science.gov (United States)

    Mao, Miaohua; van der Westhuysen, André J.; Xia, Meng; Schwab, David J.; Chawla, Arun

    2016-06-01

    Accurate wind-wave simulations are vital for evaluating the impact of waves on coastal dynamics, especially when wave observations are sparse. It has been demonstrated that structured-grid models have the ability to capture the wave dynamics of large-scale offshore domains, and the recent emergence of unstructured meshes provides an opportunity to better simulate shallow-water waves by resolving the complex geometry along islands and coastlines. For this study, wind waves in Lake Michigan were simulated using the unstructured-grid version of Simulating Waves Nearshore (un-SWAN) model with various types of wind forcing, and the model was calibrated using in situ wave observations. Sensitivity experiments were conducted to investigate the key factors that impact wave growth and dissipation processes. In particular, we considered (1) three wind field sources, (2) three formulations for wind input and whitecapping, (3) alternative formulations and coefficients for depth-induced breaking, and (4) various mesh types. We find that un-SWAN driven by Global Environmental Multiscale (GEM) wind data reproduces significant wave heights reasonably well using previously proposed formulations for wind input, recalibrated whitecapping parameters, and alternative formulations for depth-induced breaking. The results indicate that using GEM wind field data as input captures large waves in the midlake most accurately, while using the Natural Neighbor Method wind field reproduces shallow-water waves more accurately. Wind input affects the simulated wave evolution across the whole lake, whereas whitecapping primarily affects wave dynamics in deep water. In shallow water, the process of depth-induced breaking is dominant and highly dependent upon breaker indices and mesh types.

  3. Hydroclimatology of Lake Victoria region using hydrologic model and satellite remote sensing data

    Directory of Open Access Journals (Sweden)

    S. I. Khan

    2011-01-01

    Full Text Available Study of hydro-climatology at a range of temporal scales is important in understanding and ultimately mitigating the potential severe impacts of hydrological extreme events such as floods and droughts. Using daily in-situ data over the last two decades combined with the recently available multiple-years satellite remote sensing data, we analyzed and simulated, with a distributed hydrologic model, the hydro-climatology in Nzoia, one of the major contributing sub-basins of Lake Victoria in the East African highlands. The basin, with a semi arid climate, has no sustained base flow contribution to Lake Victoria. The short spell of high discharge showed that rain is the prime cause of floods in the basin. There is only a marginal increase in annual mean discharge over the last 21 years. The 2-, 5- and 10- year peak discharges, for the entire study period showed that more years since the mid 1990's have had high peak discharges despite having relatively less annual rain. The study also presents the hydrologic model calibration and validation results over the Nzoia basin. The spatiotemporal variability of the water cycle components were quantified using a hydrologic model, with in-situ and multi-satellite remote sensing datasets. The model is calibrated using daily observed discharge data for the period between 1985 and 1999, for which model performance is estimated with a Nash Sutcliffe Efficiency (NSCE of 0.87 and 0.23% bias. The model validation showed an error metrics with NSCE of 0.65 and 1.04% bias. Moreover, the hydrologic capability of satellite precipitation (TRMM-3B42 V6 is evaluated. In terms of reconstruction of the water cycle components the spatial distribution and time series of modeling results for precipitation and runoff showed considerable agreement with the monthly model runoff estimates and gauge observations. Runoff values responded to precipitation events that occurred across the catchment during the wet season from March to

  4. Thermal Pollution Mathematical Model. Volume 2: Verification of One-Dimensional Numerical Model at Lake Keowee. [environment impact of thermal discharges from power plants

    Science.gov (United States)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.

    1980-01-01

    A one dimensional model for studying the thermal dynamics of cooling lakes was developed and verified. The model is essentially a set of partial differential equations which are solved by finite difference methods. The model includes the effects of variation of area with depth, surface heating due to solar radiation absorbed at the upper layer, and internal heating due to the transmission of solar radiation to the sub-surface layers. The exchange of mechanical energy between the lake and the atmosphere is included through the coupling of thermal diffusivity and wind speed. The effects of discharge and intake by power plants are also included. The numerical model was calibrated by applying it to Cayuga Lake. The model was then verified through a long term simulation using Lake Keowee data base. The comparison between measured and predicted vertical temperature profiles for the nine years is good. The physical limnology of Lake Keowee is presented through a set of graphical representations of the measured data base.

  5. Numerical modeling of flow and sediment transport in Lake Pontchartrain due to flood release from Bonnet Carré Spillway

    Science.gov (United States)

    In this study, the flow fields and sediment transport in Lake Pontchartrain during a flood release from Bonnet Carré Spillway (BCS) was simulated using the computational model CCHE2D developed at the National Center for Computational Hydroscience and Engineering (NCCHE), the University of Mississipp...

  6. Quantification of surface water and groundwater flows to open- and closed-basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model

    Science.gov (United States)

    Stets, Edward G.; Winter, T. C.; Rosenberry, Donald O.; Striegl, Robert G.

    2010-01-01

    Accurate quantification of hydrologic fluxes in lakes is important to resource management and for placing hydrologic solute flux in an appropriate biogeochemical context. Water stable isotopes can be used to describe water movements, but they are typically only effective in lakes with long water residence times. We developed a descriptive time series model of lake surface water oxygen-18 stable isotope signature (δL) that was equally useful in open- and closed-basin lakes with very different hydrologic residence times. The model was applied to six lakes, including two closed-basin lakes and four lakes arranged in a chain connected by a river, located in a headwaters watershed. Groundwater discharge was calculated by manual optimization, and other hydrologic flows were constrained by measured values including precipitation, evaporation, and streamflow at several stream gages. Modeled and observed δL were highly correlated in all lakes (r = 0.84–0.98), suggesting that the model adequately described δL in these lakes. Average modeled stream discharge at two points along the river, 16,000 and 11,800 m3 d−1, compares favorably with synoptic measurement of stream discharge at these sites, 17,600 and 13,700 m3 d−1, respectively. Water yields in this watershed were much higher, 0.23–0.45 m, than water yields calculated from gaged streamflow in regional rivers, approximately 0.10 m, suggesting that regional groundwater discharge supports water flux through these headwaters lakes. Sensitivity and robustness analyses also emphasized the importance of considering hydrologic residence time when designing a sampling protocol for stable isotope use in lake hydrology studies.

  7. Hydrologic and Water-Quality Characterization and Modeling of the Onondaga Lake Basin, Onondaga County, New York

    Science.gov (United States)

    Coon, William F.; Reddy, James E.

    2008-01-01

    Onondaga Lake in Onondaga County, New York, has been identified as one of the Nation?s most contaminated lakes as a result of industrial and sanitary-sewer discharges and stormwater nonpoint sources, and has received priority cleanup status under the national Water Resources Development Act of 1990. A basin-scale precipitation-runoff model of the Onondaga Lake basin was identified as a desirable water-resources management tool to better understand the processes responsible for the generation of loads of sediment and nutrients that are transported to Onondaga Lake. During 2003?07, the U.S. Geological Survey (USGS) developed a model based on the computer program, Hydrological Simulation Program?FORTRAN (HSPF), which simulated overland flow to, and streamflow in, the major tributaries of Onondaga Lake, and loads of sediment, phosphorus, and nitrogen transported to the lake. The simulation period extends from October 1997 through September 2003. The Onondaga Lake basin was divided into 107 subbasins and within these subbasins, the land area was apportioned among 19 pervious and impervious land types on the basis of land use and land cover, hydrologic soil group (HSG), and aspect. Precipitation data were available from three sources as input to the model. The model simulated streamflow, water temperature, concentrations of dissolved oxygen, and concentrations and loads of sediment, orthophosphate, total phosphorus, nitrate, ammonia, and organic nitrogen in the four major tributaries to Onondaga Lake?Onondaga Creek, Harbor Brook, Ley Creek, and Ninemile Creek. Simulated flows were calibrated to data from nine USGS streamflow-monitoring sites; simulated nutrient concentrations and loads were calibrated to data collected at six of the nine streamflow-monitoring sites. Water-quality samples were collected, processed, and analyzed by personnel from the Onondaga County Department of Water Environment Protection. Several time series of flow, and sediment and nutrient loads

  8. Forecasting Lake-Effect Snow in the Great Lakes Using NASA Satllite Data

    Science.gov (United States)

    Cipullo, Michelle; Molthan, Andrew; Shafer, Jackie; Case, Jonathan; Jedlovec, Gary

    2011-01-01

    This slide presentation reviews the forecast of the lake effect snow in the Great Lakes region using models and infrared estimates of Great Lake Surface Temperatures (GLSTs) from the MModerate Resolution Imaging Spectroradiometer (MODIS) instrument on Terra and Aqua satellites, and other satellite data. This study analyzes Lake Erie and Lake Ontario which produce storm total snowfall ranged from 8-18 inches off of Lake Ontario and 10-12 inches off of Lake Erie for the areas downwind.

  9. Lake Morphometry for NHD Lakes in Ohio Region 5 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  10. Lake Morphometry for NHD Lakes in California Region 18 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  11. Lake Morphometry for NHD Lakes in Tennessee Region 6 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  12. Response of alpine lakes and soils to changes in acid deposition: the MAGIC model applied to the Tatra Mountain region, Slovakia-Poland

    Directory of Open Access Journals (Sweden)

    Josef VESELÝ

    2004-02-01

    Full Text Available A dynamic process-based model of surface water acidification, MAGIC, was applied to 31 representative alpine lakes in the Tatra Mountains (~50% of all alpine lakes >0.3 ha in the lake-district. The model was calibrated to observed lake chemistry for the period 1980-2002. Surface water and soil chemistry were reconstructed from 1860 to 2002, given estimates of historical acid deposition, and forecast to 2020 based on the reduction in sulphur and nitrogen emissions presupposed by the Gothenburg Protocol. In the 1860s, all lakes were buffered by the carbonate system and only ~6% of lakes had acid neutralising capacity (ANC 50% of the SAA change in sensitive lakes with intermediate weathering rates and little soils (low BC exchangeable capacity and elevated terrestrial export of nitrate and (3 by parallel changes in concentrations of protons and aluminium (each ~20% of the SAA change in extremely sensitive lakes, with the lowest weathering rates and soil base saturation. The full implementation of the Gothenburg Protocol will not be sufficient to allow recovery of the latter group of lakes, which will remain acidified after 2020.

  13. In situ cosmogenic radiocarbon production and 2-D ice flow line modeling for an Antarctic blue ice area

    Science.gov (United States)

    Buizert, Christo; Petrenko, Vasilii V.; Kavanaugh, Jeffrey L.; Cuffey, Kurt M.; Lifton, Nathaniel A.; Brook, Edward J.; Severinghaus, Jeffrey P.

    2012-06-01

    Radiocarbon measurements at ice margin sites and blue ice areas can potentially be used for ice dating, ablation rate estimates and paleoclimatic reconstructions. Part of the measured signal comes from in situ cosmogenic 14C production in ice, and this component must be well understood before useful information can be extracted from 14C data. We combine cosmic ray scaling and production estimates with a two-dimensional ice flow line model to study cosmogenic 14C production at Taylor Glacier, Antarctica. We find (1) that 14C production through thermal neutron capture by nitrogen in air bubbles is negligible; (2) that including ice flow patterns caused by basal topography can lead to a surface 14C activity that differs by up to 25% from the activity calculated using an ablation-only approximation, which is used in all prior work; and (3) that at high ablation margin sites, solar modulation of the cosmic ray flux may change the strength of the dominant spallogenic production by up to 10%. As part of this effort we model two-dimensional ice flow along the central flow line of Taylor Glacier. We present two methods for parameterizing vertical strain rates, and assess which method is more reliable for Taylor Glacier. Finally, we present a sensitivity study from which we conclude that uncertainties in published cosmogenic production rates are the largest source of potential error. The results presented here can inform ongoing and future 14C and ice flow studies at ice margin sites, including important paleoclimatic applications such as the reconstruction of paleoatmospheric 14C content of methane.

  14. Mixture model of pottery decorations from Lake Chad Basin archaeological sites reveals ancient segregation patterns.

    Science.gov (United States)

    O'Brien, John D; Lin, Kathryn; MacEachern, Scott

    2016-03-30

    We present a new statistical approach to analysing an extremely common archaeological data type--potsherds--that infers the structure of cultural relationships across a set of excavation units (EUs). This method, applied to data from a set of complex, culturally heterogeneous sites around the Mandara mountains in the Lake Chad Basin, helps elucidate cultural succession through the Neolithic and Iron Age. We show how the approach can be integrated with radiocarbon dates to provide detailed portraits of cultural dynamics and deposition patterns within single EUs. In this context, the analysis supports ancient cultural segregation analogous to historical ethnolinguistic patterning in the region. We conclude with a discussion of the many possible model extensions using other archaeological data types.

  15. Light liquid: a holographic 'lake' installed on the roof of an architect's model townscape

    Science.gov (United States)

    Pepper, A.

    2013-02-01

    There has been considerable speculation about the use of holography in architecture and interior design over the past 20 years, with some spectacular examples having been realised. A number of installed works are referenced which use interior and exterior structures and spaces. Scale is considered as well as the possibility of architectural works existing within an artificial (model) environment. The visual, conceptual and critical values such an installation provokes are interrogated, with particular reference to 'Light Liquid, a holographic 'lake' installed within the 2011 Miniment[s] exhibition at Nottingham Trent University, UK. Aspects of miniature public art interventions, and whether they can have a critical validity within a contrived and artificial environment, are examined.

  16. Sea level change and environmental evolution of coastal lakes in Vestfol d Hills, Antarctica

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Ecological end palaeoecological studies were carried out in a series of lakes in the Vestfold Hills (68°38'S, 78°06'E) on eastern Antarctic continent. Dynamics types of the lakes in environmental geomorphology and physic-chemistry, as well as features of biological community structures in different lakes were analyzed. Marine macro- and micro-fossils collected from the terraces and beaches surrounding these lakes and determined in 14C radiocarbon ages to be the Late Pleistocene, were used as evidences tc show the evolutionary processes of the lakes after sea level changes and transgressions since 18000 a B.P.. Basic modals of evolution for the lakes given in the paper could be regarded as not only explaining the history of environmental and ecological changes in VH lakes, and also reflecting of local environmental evolution in Antarctic region and global climate changes from past to present time.

  17. Ocean processes at the Antarctic continental slope.

    Science.gov (United States)

    Heywood, Karen J; Schmidtko, Sunke; Heuzé, Céline; Kaiser, Jan; Jickells, Timothy D; Queste, Bastien Y; Stevens, David P; Wadley, Martin; Thompson, Andrew F; Fielding, Sophie; Guihen, Damien; Creed, Elizabeth; Ridley, Jeff K; Smith, Walker

    2014-07-13

    The Antarctic continental shelves and slopes occupy relatively small areas, but, nevertheless, are important for global climate, biogeochemical cycling and ecosystem functioning. Processes of water mass transformation through sea ice formation/melting and ocean-atmosphere interaction are key to the formation of deep and bottom waters as well as determining the heat flux beneath ice shelves. Climate models, however, struggle to capture these physical processes and are unable to reproduce water mass properties of the region. Dynamics at the continental slope are key for correctly modelling climate, yet their small spatial scale presents challenges both for ocean modelling and for observational studies. Cross-slope exchange processes are also vital for the flux of nutrients such as iron from the continental shelf into the mixed layer of the Southern Ocean. An iron-cycling model embedded in an eddy-permitting ocean model reveals the importance of sedimentary iron in fertilizing parts of the Southern Ocean. Ocean gliders play a key role in improving our ability to observe and understand these small-scale processes at the continental shelf break. The Gliders: Excellent New Tools for Observing the Ocean (GENTOO) project deployed three Seagliders for up to two months in early 2012 to sample the water to the east of the Antarctic Peninsula in unprecedented temporal and spatial detail. The glider data resolve small-scale exchange processes across the shelf-break front (the Antarctic Slope Front) and the front's biogeochemical signature. GENTOO demonstrated the capability of ocean gliders to play a key role in a future multi-disciplinary Southern Ocean observing system.

  18. Lake Vanda: A sentinel for climate change in the McMurdo Sound Region of Antarctica

    Science.gov (United States)

    Castendyk, Devin N.; Obryk, Maciej K.; Leidman, Sasha Z.; Gooseff, Michael; Hawes, Ian

    2016-09-01

    Lake Vanda is a perennially ice-covered, meromictic, endorheic lake located in the McMurdo Dry Valleys of Antarctica, and an exceptional sentinel of climate change within the region. Lake levels rose 15 m over the past 68 years in response to climate-driven variability in ice-cover sublimation, meltwater production, and annual discharge of the Onyx River, the main source of water to the lake. Evidence from a new bathymetric map and water balance model combined with annual growth laminations in benthic mats suggest that the most recent filling trend began abruptly 80 years ago, in the early 1930s. This change increased lake volume by > 50%, triggered the formation of a new, upper, thermohaline convection cell, and cooled the lower convection cell by at least 2 °C and the bottom-most waters by at > 4 °C. Additionally, the depth of the deep chlorophyll a maximum rose by > 2 m, and deep-growing benthic algal mats declined while shallow benthic mats colonized freshly inundated areas. We attribute changes in hydrology to regional variations in air flow related to the strength and position of the Amundsen Sea Low (ASL) pressure system which have increased the frequency of down-valley, föhn winds associated with surface air temperature warming in the McMurdo Dry Valleys. The ASL has also been implicated in the recent warming of the Antarctic Peninsula, and provides a common link for climate-related change on opposite sides of the continent. If this trend persists, Lake Vanda should continue to rise and cool over the next 200 years until a new equilibrium lake level is achieved. Most likely, future lake rise will lead to isothermal conditions not conducive to thermohaline convection, resulting in a drastically different physical, biogeochemical, and biological structure than observed today.

  19. Environmental contamination in Antarctic ecosystems.

    Science.gov (United States)

    Bargagli, R

    2008-08-01

    Although the remote continent of Antarctica is perceived as the symbol of the last great wilderness, the human presence in the Southern Ocean and the continent began in the early 1900s for hunting, fishing and exploration, and many invasive plant and animal species have been deliberately introduced in several sub-Antarctic islands. Over the last 50 years, the development of research and tourism have locally affected terrestrial and marine coastal ecosystems through fuel combustion (for transportation and energy production), accidental oil spills, waste incineration and sewage. Although natural "barriers" such as oceanic and atmospheric circulation protect Antarctica from lower latitude water and air masses, available data on concentrations of metals, pesticides and other persistent pollutants in air, snow, mosses, lichens and marine organisms show that most persistent contaminants in the Antarctic environment are transported from other continents in the Southern Hemisphere. At present, levels of most contaminants in Antarctic organisms are lower than those in related species from other remote regions, except for the natural accumulation of Cd and Hg in several marine organisms and especially in albatrosses and petrels. The concentrations of organic pollutants in the eggs of an opportunistic top predator such as the south polar skua are close to those that may cause adverse health effects. Population growth and industrial development in several countries of the Southern Hemisphere are changing the global pattern of persistent anthropogenic contaminants and new classes of chemicals have already been detected in the Antarctic environment. Although the Protocol on Environmental Protection to the Antarctic Treaty provides strict guidelines for the protection of the Antarctic environment and establishes obligations for all human activity in the continent and the Southern Ocean, global warming, population growth and industrial development in countries of the Southern

  20. Seasonal nutrient and plankton dynamics in a physical-biological model of Crater Lake

    Science.gov (United States)

    Fennel, K.; Collier, R.; Larson, G.; Crawford, G.; Boss, E.

    2007-01-01

    A coupled 1D physical-biological model of Crater Lake is presented. The model simulates the seasonal evolution of two functional phytoplankton groups, total chlorophyll, and zooplankton in good quantitative agreement with observations from a 10-year monitoring study. During the stratified period in summer and early fall the model displays a marked vertical structure: the phytoplankton biomass of the functional group 1, which represents diatoms and dinoflagellates, has its highest concentration in the upper 40 m; the phytoplankton biomass of group 2, which represents chlorophyta, chrysophyta, cryptomonads and cyanobacteria, has its highest concentrations between 50 and 80 m, and phytoplankton chlorophyll has its maximum at 120 m depth. A similar vertical structure is a reoccurring feature in the available data. In the model the key process allowing a vertical separation between biomass and chlorophyll is photoacclimation. Vertical light attenuation (i.e., water clarity) and the physiological ability of phytoplankton to increase their cellular chlorophyll-to-biomass ratio are ultimately determining the location of the chlorophyll maximum. The location of the particle maxima on the other hand is determined by the balance between growth and losses and occurs where growth and losses equal. The vertical particle flux simulated by our model agrees well with flux measurements from a sediment trap. This motivated us to revisit a previously published study by Dymond et al. (1996). Dymond et al. used a box model to estimate the vertical particle flux and found a discrepancy by a factor 2.5-10 between their model-derived flux and measured fluxes from a sediment trap. Their box model neglected the exchange flux of dissolved and suspended organic matter, which, as our model and available data suggests is significant for the vertical exchange of nitrogen. Adjustment of Dymond et al.'s assumptions to account for dissolved and suspended nitrogen yields a flux estimate that is

  1. Mineralogy of new Antarctic achondrites with affinity to Lodran and a model of their evolution in an asteroid

    Science.gov (United States)

    Takeda, Hiroshi; Mori, Hiroshi; Hiroi, Takahiro; Saito, Jun

    1994-01-01

    We studied five new Antartic achondrites, MacAlpine Hills (MAC) 88177, Yamato (Y)74357, Y75274, Y791491 and Elephant Moraine (EET)84302 by mineralogical techniques to gain a better understanding of the mineral assemblages of a group of meteorites with an affinity to Lodran (stony-iron meteorite) and their formation processes. This group is being called lodranites. These meteorites contain major coarse-grained orthopyroxene (Opx) and olivine as in Lodran and variable amounts of FeNi metal and troilite etc. MAC88177 has more augite and less FeNi than Lodran; Y74357 has more olivine and contains minor augite; Y791491 contains in addition plagioclase. EET84302 has an Acapulco-like chondritic mineral assembladge and is enriched in FeNi metal and plagioclase, but one part is enriched in Opx and chromite. The EET84302 and MAC88177 Opx crystals have dusty cores as in Acapulco. EET84302 and Y75274 are more Mg-rich than other members of the lodranite group, and Y74357 is intermediate. Since these meteorites all have coarse-grained textures, similar major mineral assemblages, variable amounts of augite, plagioclase, FeNi metal, chromite and olivine, we suggest that they are related and are linked to a parent body with modified chondritic compositions. The variability of the abundances of these minerals are in line with a proposed model of the surface mineral assemblages of the S asteroids. The mineral assemblages can best be explained by differing degrees of loss or movements of lower temperature partial melts and recrystallization, and reduction. A portion of EET84302 rich in metal and plagioclase may represent a type of component removed from the lodranite group meteorites. Y791058 and Caddo County, which were studied for comparison, are plagioclase-rich silicate inclusions in IAB iron meteorites and may have been derived by similar process but in a different body.

  2. Modeling spatial and temporal variations in temperature and salinity during stratification and overturn in Dexter Pit Lake, Tuscarora, Nevada, USA

    Science.gov (United States)

    Balistrieri, L.S.; Tempel, R.N.; Stillings, L.L.; Shevenell, L.A.

    2006-01-01

    This paper examines the seasonal cycling of temperature and salinity in Dexter pit lake in arid northern Nevada, and describes an approach for modeling the physical processes that operate in such systems. The pit lake contains about 596,200 m3 of dilute, near neutral (pHs 6.7-9) water. Profiles of temperature, conductivity, and selected element concentrations were measured almost monthly during 1999 and 2000. In winter (January-March), the pit lake was covered with ice and bottom water was warmer (5.3 ??C) with higher total dissolved solids (0.298 g/L) than overlying water (3.96 ??C and 0.241 g/L), suggesting inflow of warm (11.7 ??C) groundwater with a higher conductivity than the lake (657 versus 126-383 ??S/cm). Seasonal surface inflow due to spring snowmelt resulted in lower conductivity in the surface water (232-247 ??S/cm) relative to deeper water (315-318 ??S/cm). The pit lake was thermally stratified from late spring through early fall, and the water column turned over in late November (2000) or early December (1999). The pit lake is a mixture of inflowing surface water and groundwater that has subsequently been evapoconcentrated in the arid environment. Linear relationships between conductivity and major and some minor (B, Li, Sr, and U) ions indicate conservative mixing for these elements. Similar changes in the elevations of the pit lake surface and nearby groundwater wells during the year suggest that the pit lake is a flow-through system. This observation and geochemical information were used to configure an one-dimensional hydrodynamics model (Dynamic Reservoir Simulation Model or DYRESM) that predicts seasonal changes in temperature and salinity based on the interplay of physical processes, including heating and cooling (solar insolation, long and short wave radiation, latent, and sensible heat), hydrologic flow (inflow and outflow by surface and ground water, pumping, evaporation, and precipitation), and transfers of momentum (wind stirring

  3. Moessbauer study of thermal metamorphosed Antarctic meteorites

    Energy Technology Data Exchange (ETDEWEB)

    Scorzelli, R.B. (Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil)); Galvao da Silva, E. (Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil) Dept. de Fisica, Univ. Federal de Minas Gerais, Belo Horizonte (Brazil)); Souza Azevedo, I. (Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, RJ (Brazil))

    1994-02-01

    In this paper we report on variable temperature Moessbauer spectroscopy measurements on Yamato-82162 and Yamato-86720. These Antarctic carbonaceous chondrites contrast with other non-Antarctic carbonaceous chondrites in which no evidences of thermal metamorphism have been found. (orig.)

  4. Temporal and spatial dynamics of large lake hypoxia: Integrating statistical and three-dimensional dynamic models to enhance lake management criteria

    Science.gov (United States)

    Bocaniov, Serghei A.; Scavia, Donald

    2016-06-01

    Hypoxia or low bottom water dissolved oxygen (DO) is a world-wide problem of management concern requiring an understanding and ability to monitor and predict its spatial and temporal dynamics. However, this is often made difficult in large lakes and coastal oceans because of limited spatial and temporal coverage of field observations. We used a calibrated and validated three-dimensional ecological model of Lake Erie to extend a statistical relationship between hypoxic extent and bottom water DO concentrations to explore implications of the broader temporal and spatial development and dissipation of hypoxia. We provide the first numerical demonstration that hypoxia initiates in the nearshore, not the deep portion of the basin, and that the threshold used to define hypoxia matters in both spatial and temporal dynamics and in its sensitivity to climate. We show that existing monitoring programs likely underestimate both maximum hypoxic extent and the importance of low oxygen in the nearshore, discuss implications for ecosystem and drinking water protection, and recommend how these results could be used to efficiently and economically extend monitoring programs.

  5. Lake Morphometry for NHD Lakes in Great Lakes Region 4 HUC

    Data.gov (United States)

    U.S. Environmental Protection Agency — Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic...

  6. A modeling of the carbon-nitrogen cycle transport at Igap\\'o I Lake - Londrina, Paran\\'a, Brazil

    CERN Document Server

    Pardo, Suellen Ribeiro; Romeiro, Neyva Maria Lopes; Cirilo, Eliandro Rodrigues

    2010-01-01

    This work is a contribution to better understand the effect that domestic sewage discharges may cause in a water body, specifically Igap\\'o I Lake, in Londrina, Paran\\'a, Brazil. The simulation of the dynamics of pollutant concentrations all over the water body is conducted by means of structured discretization of the geometry of Igap\\'o I Lake, together with the finite differences and the finite elements methods. Firstly, the hydrodynamic flow (without the pollutants), modeled by Navier-Stokes and pressure equations, is numerically resolved by the finite differences method, and associated with the fourth order Runge-Kutta procedure. After that, by using the hydrodynamic field velocity, the flow of the reactive species (pollutants) is described through a transport model, which considers advective and diffusive processes, as well as through a reactions model, restricted to the carbon-nitrogen cycle. The transport and reactions model is numerically resolved by the stabilized finite elements method, by means of ...

  7. Coupled Hydrodynamic-Water Quality Model for Pollution Control Scenarios in El-Burullus Lake (Nile Delta, Egypt

    Directory of Open Access Journals (Sweden)

    A. El-Adawy

    2014-01-01

    Full Text Available El-Burullus Lake is affected by increasing and extensive human activities, rapid social-economic development and the construction of fish ponds nearby. This has significantly impacted the health of the lake eco-system. On the foundation of the two-dimensional depth averaged hydrodynamic model, distributions of the salinity, Dissolved Oxygen (DO, Biochemical Oxygen Demand (BOD, Chemical Oxygen Demand (COD and Ammonium (NH4 were modeled. The heat flux model was also utilized to enhance the accuracy of the calculations in the water quality modeling stage. The calibration and the verification of this model were based on spatially distributed water quality measurements during the period 2010-2011. The correlation coefficients between measured and simulated salinity was found to be 0.79 in January 2011 and 0.84 in August 2010 with a mean errors of 1.3407 and 2.0727 ppt in August 2010 and January 2011 respectively. The results generally agree with the observations, but this indicates that more measurements are needed to verify the predictability of the simulations. In addition, Delft-3D model has been applied in evaluating the feasibility of adding a new artificial inlet or diversion of some drains. The model proved to be an effective tool for the water dynamics, water quality simulation and evaluating different scenarios of such shallow Lake.

  8. Simulation Modeling of Lakes in Undergraduate and Graduate Classrooms Increases Comprehension of Climate Change Concepts and Experience with Computational Tools

    Science.gov (United States)

    Carey, Cayelan C.; Gougis, Rebekka Darner

    2016-08-01

    Ecosystem modeling is a critically important tool for environmental scientists, yet is rarely taught in undergraduate and graduate classrooms. To address this gap, we developed a teaching module that exposes students to a suite of modeling skills and tools (including computer programming, numerical simulation modeling, and distributed computing) that students apply to study how lakes around the globe are experiencing the effects of climate change. In the module, students develop hypotheses about the effects of different climate scenarios on lakes and then test their hypotheses using hundreds of model simulations. We taught the module in a 4-hour workshop and found that participation in the module significantly increased both undergraduate and graduate students' understanding about climate change effects on lakes. Moreover, participation in the module also significantly increased students' perceived experience level in using different software, technologies, and modeling tools. By embedding modeling in an environmental science context, non-computer science students were able to successfully use and master technologies that they had previously never been exposed to. Overall, our findings suggest that modeling is a powerful tool for catalyzing student learning on the effects of climate change.

  9. Simulation Modeling of Lakes in Undergraduate and Graduate Classrooms Increases Comprehension of Climate Change Concepts and Experience with Computational Tools

    Science.gov (United States)

    Carey, Cayelan C.; Gougis, Rebekka Darner

    2017-02-01

    Ecosystem modeling is a critically important tool for environmental scientists, yet is rarely taught in undergraduate and graduate classrooms. To address this gap, we developed a teaching module that exposes students to a suite of modeling skills and tools (including computer programming, numerical simulation modeling, and distributed computing) that students apply to study how lakes around the globe are experiencing the effects of climate change. In the module, students develop hypotheses about the effects of different climate scenarios on lakes and then test their hypotheses using hundreds of model simulations. We taught the module in a 4-hour workshop and found that participation in the module significantly increased both undergraduate and graduate students' understanding about climate change effects on lakes. Moreover, participation in the module also significantly increased students' perceived experience level in using different software, technologies, and modeling tools. By embedding modeling in an environmental science context, non-computer science students were able to successfully use and master technologies that they had previously never been exposed to. Overall, our findings suggest that modeling is a powerful tool for catalyzing student learning on the effects of climate change.

  10. Sedimentary characteristics and depositional model of a Paleocene-Eocene salt lake in the Jiangling Depression, China

    Science.gov (United States)

    Yu, Xiaocan; Wang, Chunlian; Liu, Chenglin; Zhang, Zhaochong; Xu, Haiming; Huang, Hua; Xie, Tengxiao; Li, Haonan; Liu, Jinlei

    2015-11-01

    We studied the sedimentary characteristics of a Paleocene-Eocene salt lake in the Jiangling Depression through field core observation, thin section identification, scanning electron microscopy, and X-ray diffraction analysis. On the basis of sedimentary characteristics we have summarized the petrological and mineralogical characteristics of the salt lake and proposed 9 types of grade IV salt rhythms. The deposition shows a desalting to salting order of halite-argillaceous-mudstone-mud dolostonemud anhydrock-glauberite-halite. The relationship among grade IV rhythms, water salinity and climate fluctuations was analyzed. Based on the analysis of the relationship between boron content and mudstone color and by combining the mineralogy and sedimentary environment characteristics, we propose that the early and late Paleocene Shashi Formation in the Jiangling Depression was a paleolacustrine depositional environment with a high salt content, which is a representation of the shallow water salt lake depositional model. The middle Paleocene Shashi Formation and the early Eocene Xingouzui Formation were salt and brackish sedimentary environments with low salt content in a deep paleolake, which represents a deep salt lake depositional model.

  11. Evaluating characteristics of dry spell changes in Lake Urmia Basin using an ensemble CMIP5 GCM models

    Science.gov (United States)

    Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh

    2015-04-01

    Drought is a natural phenomenon that can cause significant environmental, ecological, and socio-economic losses in water scarce regions. Studies of drought under climate change are essential for water resources planning and management. Dry spells and number of consecutive days with precipitation below a certain threshold can be used to identify the severity of hydrological drought. In this study, we analyzed the projected changes of number of dry days in two future periods, 2011-2040 and 2071-2100, for both seasonal and annual time scales in the Lake Urmia Basin. The lake and its wetlands, located in northwestern Iran, have invaluable environmental, social, and economic importance for the region. The lake level has been shrinking dramatically since 1995 and now the water volume is less than 30% of its original. Moreover, frequent dry spells have struck the region and effected the region's water resources and lake ecosystem as in other parts of Iran too. Analyzing future drought and dry spells characteristics in the region is crucial for sustainable water management and lake restoration plans. We used daily projected precipitation from 20 climate models used in the CMIP5 (Coupled Model Inter-comparison Project Phase 5) driven by three representative paths, RCP2.6, RCP4.5, and, RCP8.5. The model outputs were statistically downscaled and validated based on the historical observation period 1980-2010. We defined days with precipitation less than 1 mm as dry days for both observation periods and model projections. The model validation showed that all models underestimated the number of dry days. An ensemble based on the validation results consisting of five models which were in best agreement with observations was used to assess the changes in number of future dry days in Lake Urmia Basin. The entire ensemble showed increase in number of dry days for all seasons. The projected changes in winter and spring were larger than for summer and autumn. All models projected

  12. Regulating Antarctic Tourism and the Precautionary Principle

    NARCIS (Netherlands)

    Bastmeijer, C.J.; Roura, R.

    2004-01-01

    On the basis of an overview of the developments in Antarctic tourism since 1956, this current development note examines the issue of international regulation of Antarctic tourism. After discussing one of the main management issues in respect of Antarctic tourism ¿ the assessment and prevention of cu

  13. Predicting the Water Level Fluctuation in an Alpine Lake Using Physically Based, Artificial Neural Network, and Time Series Forecasting Models

    Directory of Open Access Journals (Sweden)

    Chih-Chieh Young

    2015-01-01

    Full Text Available Accurate prediction of water level fluctuation is important in lake management due to its significant impacts in various aspects. This study utilizes four model approaches to predict water levels in the Yuan-Yang Lake (YYL in Taiwan: a three-dimensional hydrodynamic model, an artificial neural network (ANN model (back propagation neural network, BPNN, a time series forecasting (autoregressive moving average with exogenous inputs, ARMAX model, and a combined hydrodynamic and ANN model. Particularly, the black-box ANN model and physically based hydrodynamic model are coupled to more accurately predict water level fluctuation. Hourly water level data (a total of 7296 observations was collected for model calibration (training and validation. Three statistical indicators (mean absolute error, root mean square error, and coefficient of correlation were adopted to evaluate model performances. Overall, the results demonstrate that the hydrodynamic model can satisfactorily predict hourly water level changes during the calibration stage but not for the validation stage. The ANN and ARMAX models better predict the water level than the hydrodynamic model does. Meanwhile, the results from an ANN model are superior to those by the ARMAX model in both training and validation phases. The novel proposed concept using a three-dimensional hydrodynamic model in conjunction with an ANN model has clearly shown the improved prediction accuracy for the water level fluctuation.

  14. Fate of PBDEs in juvenile lake trout estimated using a dynamic multichemical fish model.

    Science.gov (United States)

    Bhavsar, Satyendra P; Gandhi, Nilima; Gewurtz, Sarah B; Tomy, Gregg T

    2008-05-15

    Biotransformation half-lives (HL) and gut absorption efficiencies (GAE) of PBDE congeners in fish are poorly known and challenging to quantify experimentally. These values are needed in order to accurately assess their food web dynamics, and in turn, for policy development We recently developed a multichemical aquatic food web model, which was used to estimate HL of four PBDE congeners in a simple Arctic food web. However, an application of this model to more complex food webs would dramatically increase the uncertainties in the results due to the large number of unknowns that would need to be considered simultaneously. As such, an in-depth analysis of possible HL and GAE of additional PBDE congeners at the scale of individual fish species would facilitate model application to more complex food webs. For this purpose, we developed a fugacity-based dynamic multichemical fish model and applied it to previously published experimental laboratory data. The model was calibrated by maximizing correspondence between the modeled and observed concentrations for each of the thirteen congeners at two dietary concentrations in juvenile lake trout (Salvelinus namaycush) during uptake and depuration phases mainly by varying HL and GAE. A robust parametrization and calibration procedure gave us confidence in our back-calculated congener-specific HL of 42-420 days and GAE of 20-45%. These values can be used as a starting point for model applications to natural fish populations. The fate/transport results suggest that not only loss of PBDE congeners via degradation, but also input through biotransformation of higher brominated congeners, should be accounted for in order to accurately portray dynamics of PBDEs in fish.

  15. Ultraviolet radiation levels during the Antarctic spring

    Science.gov (United States)

    Frederick, John E.; Snell, Hilary E.

    1988-01-01

    The decrease in atmospheric ozone over Antarctica during spring implies enhanced levels of ultraviolet (UV) radiation received at the earth's surface. Model calculations show that UV irradiances encountered during the occurrence of an Antarctic 'ozone hole' remain less than those typical of a summer solstice at low to middle latitudes. However, the low ozone amounts observed in October 1987 imply biologically effective irradiances for McMurdo Station, Antarctica, that are comparable to or greater than those for the same location at December solstice. Life indigenous to Antarctica thereby experiences a greatly extended period of summerlike UV radiation levels.

  16. Estimating groundwater exchange with lakes: 2. Calibration of a three-dimensional, solute transport model to a stable isotope plume

    Science.gov (United States)

    Krabbenhoft, David P.; Anderson, Mary P.; Bowser, Carl J.

    1990-01-01

    A three-dimensional groundwater flow and solute transport model was calibrated to a plume of water described by measurements of δ18O and used to calculate groundwater inflow and outflow rates at a lake in northern Wisconsin. The flow model was calibrated to observed hydraulic gradients and estimated recharge rates. Calibration of the solute transport submodel to the configuration of a stable isotope (18O) plume in the contiguous aquifer on the downgradient side of the lake provides additional data to constrain the model. A good match between observed and simulated temporal variations in plume configuration indicates that the model closely simulated the dynamics of the real system. The model provides information on natural variations of rates of groundwater inflow, lake water outflow, and recharge to the water table. Inflow and outflow estimates compare favorably with estimates derived by the isotope mass balance method (Krabbenhoft et al., this issue). Model simulations agree with field observations that show groundwater inflow rates are more sensitive to seasonal variations in recharge than outflow.

  17. Hydrologic Characterization for Spring Creek and Hydrologic Budget and Model Scenarios for Sheridan Lake, South Dakota, 1962-2007

    Science.gov (United States)

    Driscoll, Daniel G.; Norton, Parker A.

    2009-01-01

    The U.S. Geological Survey cooperated with South Dakota Game, Fish and Parks to characterize hydrologic information relevant to management of water resources associated with Sheridan Lake, which is formed by a dam on Spring Creek. This effort consisted primarily of characterization of hydrologic data for a base period of 1962 through 2006, development of a hydrologic budget for Sheridan Lake for this timeframe, and development of an associated model for simulation of storage deficits and drawdown in Sheridan Lake for hypothetical release scenarios from the lake. Historically, the dam has been operated primarily as a 'pass-through' system, in which unregulated outflows pass over the spillway; however, the dam recently was retrofitted with an improved control valve system that would allow controlled releases of about 7 cubic feet per second (ft3/s) or less from a fixed depth of about 60 feet (ft). Development of a hydrologic budget for Sheridan Lake involved compilation, estimation, and characterization of data sets for streamflow, precipitation, and evaporation. The most critical data need was for extrapolation of available short-term streamflow records for Spring Creek to be used as the long-term inflow to Sheridan Lake. Available short-term records for water years (WY) 1991-2004 for a gaging station upstream from Sheridan Lake were extrapolated to WY 1962-2006 on the basis of correlations with streamflow records for a downstream station and for stations located along two adjacent streams. Comparisons of data for the two streamflow-gaging stations along Spring Creek indicated that tributary inflow is approximately proportional to the intervening drainage area, which was used as a means of estimating tributary inflow for the hydrologic budget. Analysis of evaporation data shows that sustained daily rates may exceed maximum monthly rates by a factor of about two. A long-term (1962-2006) hydrologic budget was developed for computation of reservoir outflow from

  18. ICCLP: An Inexact Chance-Constrained Linear Programming Model for Land-Use Management of Lake Areas in Urban Fringes

    Science.gov (United States)

    Liu, Yong; Qin, Xiaosheng; Guo, Huaicheng; Zhou, Feng; Wang, Jinfeng; Lv, Xiaojian; Mao, Guozhu

    2007-12-01

    Lake areas in urban fringes are under increasing urbanization pressure. Consequently, the conflict between rapid urban development and the maintenance of water bodies in such areas urgently needs to be addressed. An inexact chance-constrained linear programming (ICCLP) model for optimal land-use management of lake areas in urban fringes was developed. The ICCLP model was based on land-use suitability assessment and land evaluation. The maximum net economic benefit (NEB) was selected as the objective of land-use allocation. The total environmental capacity (TEC) of water systems and the public financial investment (PFI) at different probability levels were considered key constraints. Other constraints included in the model were land-use suitability, governmental requirements on the ratios of various land-use types, and technical constraints. A case study implementing the system was performed for the lake area of Hanyang at the urban fringe of Wuhan, central China, based on our previous study on land-use suitability assessment. The Hanyang lake area is under significant urbanization pressure. A 15-year optimal model for land-use allocation is proposed during 2006 to 2020 to better protect the water system and to gain the maximum benefits of development. Sixteen constraints were set for the optimal model. The model results indicated that NEB was between 1.48 × 109 and 8.76 × 109 or between 3.98 × 109 and 16.7 × 109, depending on the different urban-expansion patterns and land demands. The changes in total developed area and the land-use structure were analyzed under different probabilities ( q i ) of TEC. Changes in q i resulted in different urban expansion patterns and demands on land, which were the direct result of the constraints imposed by TEC and PFI. The ICCLP model might help local authorities better understand and address complex land-use systems and develop optimal land-use management strategies that better balance urban expansion and grassland

  19. Modelling of wind waves on the lake-like basin of Gorky Reservoir with WAVEWATCH III

    Science.gov (United States)

    Troitskaya, Yuliya; Kuznetsova, Alexandra; Zenkovich, Dmitry; Papko, Vladislav; Kandaurov, Alexander; Baidakov, Georgy; Vdovin, Maxim; Sergeev, Daniil

    2014-05-01

    Simulation of ocean waves and sea waves is nowadays a generally adopted technique of operational meteorology. Such well-known models as WAVEWATCH, WAM, SWAM are aimed primarily at describing ocean waves including coastal (nearshore) zones. Meanwhile, wave modelling is less developed for moderate and small inland water reservoirs and lakes, though being of considerable interest for inland navigation. In this paper test numerical experiments on simulating waves on the lake-like basin of the Gorky Reservoir using WAVEWATCH III are reported. We aimed to evaluate the applicability of the model to the waves on a mid-sized inland reservoir. Gorky Reservoir is an artificial lake in the central part of the Volga River formed by a hydroelectric dam of Gorky Hydroelectric Station between the towns of Gorodets and Zavolzhye. It spans for 427 km from the dam of Rybinsk to the dam of Gorodets through several regions of Central Russia. While it is relatively narrow and follows the natural riverbed of Volga in the upper part, it becomes up to 15 km wide downstream the town of Yuryevets. Its maximum depth is 22 m, the surface area is 1590 km2, the accumulated water volume amounts to 8.71 km3. In the series of calculations we considered moderate winds of different directions blowing steadily all over the surface of the reservoir and the waves developing from calm conditions or from some initial seeding spectral distribution that is Gaussian in frequency and space, cosine in direction. The results of wave simulation are compared then with the data collected by the field in-situ observations and measurements. The field experiments were carried out in the south part of the Gorky reservoir from the boat. In the course of the experiment we simultaneously measured profiles of wind speed and surface wave spectra using instruments placed on the Froude buoy, which measures the following parameters: i) the module and the direction of the wind speed using ultrasonic wind sensor WindSonic Gill

  20. Pseudoracemization (Biological Accumulation of D-amino Acids) in the Antarctic Cryptoendolithic Microbial Ecosystem, a Model for Oceans, Sediments, and Soils

    Science.gov (United States)

    Sun, H. J.; McDonald, G. D.; McKay, C. P.; Friedmann, I. E.

    2006-12-01

    Amino acids exist in right-handed and left-handed forms, different in that they are mirror images of each other. In organisms, with few exceptions, only left-handed forms are present. In non-living systems, left-handed forms slowly convert, through the physico-chemical process of racemization, into right-handed ones until the two forms reach equilibrium. We found that in microorganisms in Antarctic rocks right-handed amino acids accumulate from bacterial cell walls, through the biological process pseudoracemization. We suggest that the same process is responsible for the fact that large amounts of right-handed amino acids exist in oceans, sediments and soils.