WorldWideScience

Sample records for antarctic ice sheet

  1. Environmental constraints on West Antarctic ice-sheet formation

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrom, D R; MacAyeal, D R

    1987-01-01

    Small perturbations in Antarctic environmental conditions can culminate in the demise of the Antarctic ice sheet's western sector. This may have happened during the last interglacial period, and could recur within the next millennium due to atmospheric warming from trace gas and CO/sub 2/ increases. In this study, we investigate the importance of sea-level, accumulation rate, and ice influx from the East Antarctic ice sheet in the re-establishment of the West Antarctic ice sheet from a thin cover using a time-dependent numerical ice-shelf model. Our results show that a precursor to the West Antarctic ice sheet can form within 3000 years. Sea-level lowering caused by ice-sheet development in the Northern Hemisphere has the greatest environmental influence. Under favorable conditions, ice grounding occurs over all parts of the West Antarctic ice sheet except up-stream of Thwaites Glacier and in the Ross Sea region.

  2. Modelling the Antarctic Ice Sheet

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Holm, A.

    2015-01-01

    to sea level high stands during past interglacial periods. A number of AIS models have been developed and applied to try to understand the workings of the AIS and to form a robust basis for future projections of the AIS contribution to sea level change. The recent DCESS (Danish Center for Earth System......The Antarctic ice sheet is a major player in the Earth’s climate system and is by far the largest depository of fresh water on the planet. Ice stored in the Antarctic ice sheet (AIS) contains enough water to raise sea level by about 58 m, and ice loss from Antarctica contributed significantly...

  3. Balance of the West Antarctic Ice Sheet

    Science.gov (United States)

    2002-01-01

    For several decades, measurements of the West Antarctic Ice Sheet showed it to be retreating rapidly. But new data derived from satellite-borne radar sensors show the ice sheet to be growing. Changing Antarctic ice sheets remains an area of high scientific interest, particularly in light of recent global warming concerns. These new findings are significant because scientists estimate that sea level would rise 5-6 meters (16-20 feet) if the ice sheet collapsed into the sea. Do these new measurements signal the end of the ice sheet's 10,000-year retreat? Or, are these new satellite data simply much more accurate than the sparse ice core and surface measurements that produced the previous estimates? Another possibility is that the ice accumulation may simply indicate that the ice sheet naturally expands and retreats in regular cycles. Cryologists will grapple with these questions, and many others, as they examine the new data. The image above depicts the region of West Antarctica where scientists measured ice speed. The fast-moving central ice streams are shown in red. Slower tributaries feeding the ice streams are shown in blue. Green areas depict slow-moving, stable areas. Thick black lines depict the areas that collect snowfall to feed their respective ice streams. Reference: Ian Joughin and Slawek Tulaczyk Science Jan 18 2002: 476-480. Image courtesy RADARSAT Antarctic Mapping Project

  4. Dynamic Antarctic ice sheet during the early to mid-Miocene

    Science.gov (United States)

    Gasson, Edward; DeConto, Robert M.; Pollard, David; Levy, Richard H.

    2016-03-01

    Geological data indicate that there were major variations in Antarctic ice sheet volume and extent during the early to mid-Miocene. Simulating such large-scale changes is problematic because of a strong hysteresis effect, which results in stability once the ice sheets have reached continental size. A relatively narrow range of atmospheric CO2 concentrations indicated by proxy records exacerbates this problem. Here, we are able to simulate large-scale variability of the early to mid-Miocene Antarctic ice sheet because of three developments in our modeling approach. (i) We use a climate-ice sheet coupling method utilizing a high-resolution atmospheric component to account for ice sheet-climate feedbacks. (ii) The ice sheet model includes recently proposed mechanisms for retreat into deep subglacial basins caused by ice-cliff failure and ice-shelf hydrofracture. (iii) We account for changes in the oxygen isotopic composition of the ice sheet by using isotope-enabled climate and ice sheet models. We compare our modeling results with ice-proximal records emerging from a sedimentological drill core from the Ross Sea (Andrill-2A) that is presented in a companion article. The variability in Antarctic ice volume that we simulate is equivalent to a seawater oxygen isotope signal of 0.52-0.66‰, or a sea level equivalent change of 30-36 m, for a range of atmospheric CO2 between 280 and 500 ppm and a changing astronomical configuration. This result represents a substantial advance in resolving the long-standing model data conflict of Miocene Antarctic ice sheet and sea level variability.

  5. Mass balance of the Antarctic ice sheet.

    Science.gov (United States)

    Wingham, D J; Shepherd, A; Muir, A; Marshall, G J

    2006-07-15

    The Antarctic contribution to sea-level rise has long been uncertain. While regional variability in ice dynamics has been revealed, a picture of mass changes throughout the continental ice sheet is lacking. Here, we use satellite radar altimetry to measure the elevation change of 72% of the grounded ice sheet during the period 1992-2003. Depending on the density of the snow giving rise to the observed elevation fluctuations, the ice sheet mass trend falls in the range -5-+85Gtyr-1. We find that data from climate model reanalyses are not able to characterise the contemporary snowfall fluctuation with useful accuracy and our best estimate of the overall mass trend-growth of 27+/-29Gtyr-1-is based on an assessment of the expected snowfall variability. Mass gains from accumulating snow, particularly on the Antarctic Peninsula and within East Antarctica, exceed the ice dynamic mass loss from West Antarctica. The result exacerbates the difficulty of explaining twentieth century sea-level rise.

  6. A 25-year Record of Antarctic Ice Sheet Elevation and Mass Change

    Science.gov (United States)

    Shepherd, A.; Muir, A. S.; Sundal, A.; McMillan, M.; Briggs, K.; Hogg, A.; Engdahl, M.; Gilbert, L.

    2017-12-01

    Since 1992, the European Remote-Sensing (ERS-1 and ERS-2), ENVISAT, and CryoSat-2 satellite radar altimeters have measured the Antarctic ice sheet surface elevation, repeatedly, at approximately monthly intervals. These data constitute the longest continuous record of ice sheet wide change. In this paper, we use these observations to determine changes in the elevation, volume and mass of the East Antarctic and West Antarctic ice sheets, and of parts of the Antarctic Peninsula ice sheet, over a 25-year period. The root mean square difference between elevation rates computed from our survey and 257,296 estimates determined from airborne laser measurements is 54 cm/yr. The longevity of the satellite altimeter data record allows to identify and chart the evolution of changes associated with meteorology and ice flow, and we estimate that 3.6 % of the continental ice sheet, and 21.7 % of West Antarctica, is in a state of dynamical imbalance. Based on this partitioning, we estimate the mass balance of the East and West Antarctic ice sheet drainage basins and the root mean square difference between these and independent estimates derived from satellite gravimetry is less than 5 Gt yr-1.

  7. Future Antarctic Bed Topography and Its Implications for Ice Sheet Dynamics

    Science.gov (United States)

    Adhikari, Surendra; Ivins, Erik R.; Larour, Eric Y.; Seroussi, Helene L.; Morlighem, Mathieu; Nowicki, S.

    2014-01-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves.We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS.We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45mmyr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

  8. Future Antarctic bed topography and its implications for ice sheet dynamics

    Science.gov (United States)

    Adhikari, S.; Ivins, E. R.; Larour, E.; Seroussi, H.; Morlighem, M.; Nowicki, S.

    2014-06-01

    The Antarctic bedrock is evolving as the solid Earth responds to the past and ongoing evolution of the ice sheet. A recently improved ice loading history suggests that the Antarctic Ice Sheet (AIS) has generally been losing its mass since the Last Glacial Maximum. In a sustained warming climate, the AIS is predicted to retreat at a greater pace, primarily via melting beneath the ice shelves. We employ the glacial isostatic adjustment (GIA) capability of the Ice Sheet System Model (ISSM) to combine these past and future ice loadings and provide the new solid Earth computations for the AIS. We find that past loading is relatively less important than future loading for the evolution of the future bed topography. Our computations predict that the West Antarctic Ice Sheet (WAIS) may uplift by a few meters and a few tens of meters at years AD 2100 and 2500, respectively, and that the East Antarctic Ice Sheet is likely to remain unchanged or subside minimally except around the Amery Ice Shelf. The Amundsen Sea Sector in particular is predicted to rise at the greatest rate; one hundred years of ice evolution in this region, for example, predicts that the coastline of Pine Island Bay will approach roughly 45 mm yr-1 in viscoelastic vertical motion. Of particular importance, we systematically demonstrate that the effect of a pervasive and large GIA uplift in the WAIS is generally associated with the flattening of reverse bed slope, reduction of local sea depth, and thus the extension of grounding line (GL) towards the continental shelf. Using the 3-D higher-order ice flow capability of ISSM, such a migration of GL is shown to inhibit the ice flow. This negative feedback between the ice sheet and the solid Earth may promote stability in marine portions of the ice sheet in the future.

  9. Antarctic Ice Sheet Slope and Aspect Based on Icesat's Repeat Orbit Measurement

    Science.gov (United States)

    Yuan, L.; Li, F.; Zhang, S.; Xie, S.; Xiao, F.; Zhu, T.; Zhang, Y.

    2017-09-01

    Accurate information of ice sheet surface slope is essential for estimating elevation change by satellite altimetry measurement. A study is carried out to recover surface slope of Antarctic ice sheet from Ice, Cloud and land Elevation Satellite (ICESat) elevation measurements based on repeat orbits. ICESat provides repeat ground tracks within 200 meters in cross-track direction and 170 meters in along-track direction for most areas of Antarctic ice sheet. Both cross-track and along-track surface slopes could be obtained by adjacent repeat ground tracks. Combining those measurements yields a surface slope model with resolution of approximately 200 meters. An algorithm considering elevation change is developed to estimate the surface slope of Antarctic ice sheet. Three Antarctic Digital Elevation Models (DEMs) were used to calculate surface slopes. The surface slopes from DEMs are compared with estimates by using in situ GPS data in Dome A, the summit of Antarctic ice sheet. Our results reveal an average surface slope difference of 0.02 degree in Dome A. High resolution remote sensing images are also used in comparing the results derived from other DEMs and this paper. The comparison implies that our results have a slightly better coherence with GPS observation than results from DEMs, but our results provide more details and perform higher accuracy in coastal areas because of the higher resolution for ICESat measurements. Ice divides are estimated based on the aspect, and are weakly consistent with ice divides from other method in coastal regions.

  10. Combustion of available fossil-fuel resources sufficient to eliminate the Antarctic Ice Sheet

    Science.gov (United States)

    Winkelmann, R.; Levermann, A.; Ridgwell, A.; Caldeira, K.

    2015-12-01

    The Antarctic Ice Sheet stores water equivalent to 58 meters in global sea-level rise. Here we show in simulations with the Parallel Ice Sheet Model that burning the currently attainable fossil-fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil-fuel emissions of 10 000 GtC, Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 meters per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West- and East Antarctica results in a threshold-increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  11. Antarctic Ice-Sheet Mass Balance from Satellite Altimetry 1992 to 2001

    Science.gov (United States)

    Zwally, H. Jay; Brenner, Anita C.; Cornejo, Helen; Giovinetto, Mario; Saba, Jack L.; Yi, Donghui

    2003-01-01

    A major uncertainty in understanding the causes of the current rate of sea level rise is the potential contributions from mass imbalances of the Greenland and Antarctic ice sheets. Estimates of the current mass balance of the Antarctic ice sheet are derived from surface- elevation changes obtained from 9 years of ERS - 1 & 2 radar altimeter data. Elevation time-series are created from altimeter crossovers among 90-day data periods on a 50 km grid to 81.5 S. The time series are fit with a multivariate linear/sinusoidal function to give the average rate of elevation change (dH/dt). On the major Rome-Filchner, Ross, and Amery ice shelves, the W d t are small or near zero. In contrast, the ice shelves of the Antarctic Peninsula and along the West Antarctic coast appear to be thinning significantly, with a 23 +/- 3 cm per year surface elevation decrease on the Larsen ice shelf and a 65 +/- 4 cm per year decrease on the Dotson ice shelf. On the grounded ice, significant elevation decreases are obtained over most of the drainage basins of the Pine Island and Thwaites glaciers in West Antarctica and inland of Law Dome in East Antarctica. Significant elevation increases are observed within about 200 km of the coast around much of the rest of the ice sheet. Farther inland, the changes are a mixed pattern of increases and decreases with increases of a few centimeters per year at the highest elevations of the East Antarctic plateau. The derived elevation changes are combined with estimates of the bedrock uplift from several models to provide maps of ice thickness change. The ice thickness changes enable estimates of the ice mass balances for the major drainage basins, the overall mass balance, and the current contribution of the ice sheet to global sea level change.

  12. The Research on Elevation Change of Antarctic Ice Sheet Based on CRYOSAT-2 Alimeter

    Science.gov (United States)

    Sun, Q.; Wan, J.; Liu, S.; Li, Y.

    2018-04-01

    In this paper, the Cryosat-2 altimeter data distributed by the ESA, and these data are processed to extract the information of the elevation change of the Antarctic ice sheet from 2010 to 2017. Firstly, the main pretreatment preprocessing for Cryosat-2 altimetry data is crossover adjustment and elimination of rough difference. Then the grid DEM of the Antarctic ice sheet was constructed by using the kriging interpolation method,and analyzed the spatial characteristic time characteristics of the Antarctic ice sheet. The latitude-weighted elevation can be obtained by using the elevation data of each cycle, and then the general trend of the Antarctic ice sheet elevation variation can be seen roughly.

  13. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet.

    Science.gov (United States)

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-09-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  14. MASS BALANCE CHANGES AND ICE DYNAMICS OF GREENLAND AND ANTARCTIC ICE SHEETS FROM LASER ALTIMETRY

    Directory of Open Access Journals (Sweden)

    G. S. Babonis

    2016-06-01

    Full Text Available During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA’s Ice, Cloud and land Elevation Satellite mission (ICESat and airborne laser campaigns, such as Airborne Topographic Mapper (ATM and Land, Vegetation and Ice Sensor (LVIS. For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.

  15. Simulating a Dynamic Antarctic Ice Sheet in the Early to Middle Miocene

    Science.gov (United States)

    Gasson, E.; DeConto, R.; Pollard, D.; Levy, R. H.

    2015-12-01

    There are a variety of sources of geological data that suggest major variations in the volume and extent of the Antarctic ice sheet during the early to middle Miocene. Simulating such variability using coupled climate-ice sheet models is problematic due to a strong hysteresis effect caused by height-mass balance feedback and albedo feedback. This results in limited retreat of the ice sheet once it has reached the continental size, as likely occurred prior to the Miocene. Proxy records suggest a relatively narrow range of atmospheric CO2 during the early to middle Miocene, which exacerbates this problem. We use a new climate forcing which accounts for ice sheet-climate feedbacks through an asynchronous GCM-RCM coupling, which is able to better resolve the narrow Antarctic ablation zone in warm climate simulations. When combined with recently suggested mechanisms for retreat into subglacial basins due to ice shelf hydrofracture and ice cliff failure, we are able to simulate large-scale variability of the Antarctic ice sheet in the Miocene. This variability is equivalent to a seawater oxygen isotope signal of ~0.5 ‰, or a sea level equivalent change of ~35 m, for a range of atmospheric CO2 between 280 - 500 ppm.

  16. Antarctic Circumpolar Current Dynamics and Their Relation to Antarctic Ice Sheet and Perennial Sea-Ice Variability in the Central Drake Passage During the Last Climate Cycle

    Science.gov (United States)

    Kuhn, G.; Wu, S.; Hass, H. C.; Klages, J. P.; Zheng, X.; Arz, H. W.; Esper, O.; Hillenbrand, C. D.; Lange, C.; Lamy, F.; Lohmann, G.; Müller, J.; McCave, I. N. N.; Nürnberg, D.; Roberts, J.; Tiedemann, R.; Timmermann, A.; Titschack, J.; Zhang, X.

    2017-12-01

    The evolution of the Antarctic Ice Sheet during the last climate cycle and the interrelation to global atmospheric and ocean circulation remains controversial and plays an important role for our understanding of ice sheet response to modern global warming. The timing and sequence of deglacial warming is relevant for understanding the variability and sensitivity of the Antarctic Ice Sheet to climatic changes, and the continuing rise of atmospheric greenhouse gas concentrations. The Antarctic Ice Sheet is a pivotal component of the global water budget. Freshwater fluxes from the ice sheet may affect the Antarctic Circumpolar Current (ACC), which is strongly impacted by the westerly wind belt in the Southern Hemisphere (SHWW) and constricted to its narrowest extent in the Drake Passage. The flow of ACC water masses through Drake Passage is, therefore, crucial for advancing our understanding of the Southern Ocean's role in global meridional overturning circulation and global climate change. In order to address orbital and millennial-scale variability of the Antarctic ice sheet and the ACC, we applied a multi-proxy approach on a sediment core from the central Drake Passage including grain size, iceberg-rafted debris, mineral dust, bulk chemical and mineralogical composition, and physical properties. In combination with already published and new sediment records from the Drake Passage and Scotia Sea, as well as high-resolution data from Antarctic ice cores (WDC, EDML), we now have evidence that during glacial times a more northerly extent of the perennial sea-ice zone decreased ACC current velocities in the central Drake Passage. During deglaciation the SHWW shifted southwards due to a decreasing temperature gradient between subtropical and polar latitudes caused by sea ice and ice sheet decline. This in turn caused Southern Hemisphere warming, a more vigorous ACC, stronger Southern Ocean ventilation, and warm Circumpolar Deep Water (CDW) upwelling on Antarctic shelves

  17. Modeling Antarctic Ice Sheet retreat in warm climates: a historical perspective.

    Science.gov (United States)

    Pollard, D.; Deconto, R. M.; Gasson, E.

    2016-12-01

    Early modeling of Antarctic Ice Sheet size vs. climate focused on asymmetry between retreat and growth, with much greater warming needed to cause retreat from full ice cover, due to Height Mass Balance Feedback and albedo feedback. This led to a long-standing model-data conflict, with models needing 1000 to2000 ppmv atmospheric CO2 to produce retreat from full size, vs. proxy data of large ice fluctuations despite much lower CO2 since the Miocene.Subsequent modeling with marine ice physics found that the West Antarctic Ice Sheet could undergo repeated warm-period collapses with realistic past forcing. However, that yields only 3 to 7 m equivalent sea-level rise above modern, compared to 10 to 20 m or more suggested by some geologic data. Large subglacial basins in East Antarctica could be vulnerable to the same processes,but did not retreat in most models due to narrower and shallower sills.After recent modifications, some ice sheet models were able to produce warm-period collapse of major East Antarctic basins, with sea-level rise of up to 15 m. The modifications are (i) hydrofracturing by surface melt, and structural failure of ice cliffs, or (ii) numerical treatment at the grounding line. In these models, large retreat occurs both for past warmintervals, and also for future business-as-usual scenarios.Some interpretations of data in the late Oligocene and Miocene suggest yet larger fluctuations, between 50 to 100% of modern Antarctic size. That would require surface-melt driven retreat of some terrestrial East Antarctic ice, despite the hysteresis issue raised above. A recent study using a coupled climate-ice sheet model found that with a finer climate gridand more frequent coupling exchange, substantial retreat of terrestrial Antarctica can occur with 500 to 840 ppmv CO2, much lower than in earlier models. This will allow meaningful interactions between modeling and deeper-time geologic interpretations since the late Oligocene.

  18. The late Cainozoic East Antarctic ice sheet

    International Nuclear Information System (INIS)

    Colhoun, E.A.

    1999-01-01

    A review, mainly of East Antarctic late Cainozoic (post 40 Ma) geological and geomorphological evidence, supports the hypothesis of the continuous presence of an ice sheet, of about the present size, since the late Miocene. Evidence is presented and the view advanced that, during the late Wisconsin maximum of isotope stage 2, ice was not nearly as thick or extensive over the continental shelf as required by the model of 'maximum' Antarctic glaciation. Some of the factors influencing the contribution of Antarctica to post-glacial sea-level rise are discussed. It is considered that Antarctica's contribution was probably considerably less than previously estimated. The dating of marine and freshwater sequences in the Vestfold and Bunger Hills is consistent with deglaciation around the Pleistocene Holocene boundary, after the Late Wisconsin maximum. A date of ∼25 ka BP from permafrost in the Larsemann Hills means that either the Larsemann Hills were not glaciated during the Late Wisconsin or the ice failed to erode much of the permafrost surface. The degree of weathering of rock and glacial drifts in the Vestfold, Larsemann and Bunger Hills suggests a long time for formation, perhaps considerably longer than indicated by the dated marine and freshwater sediment sequences. Cosmogenic isotope dating in the Vestfold Hills has provided equivocal ages for deglaciation. While the results could indicate deglaciation before 80 ka BP, they do not confirm such early deglaciation. If the ice cover was thin and failed to remove the previous rock exposure profile, then the assays could predate the last ice advance. Weathered iron crust fragments in the till suggest little erosion. The raised beaches of the oases are Holocene. Assuming they have been produced by post Late Wisconsin isostatic uplift and by the Holocene transgression, calculations show that the Antarctic continental ice sheet could not have been more than ∼500 m thicker in the inner shelf-coastal zone. The

  19. Dating Antarctic ice sheet collapse: Proposing a molecular genetic approach

    Science.gov (United States)

    Strugnell, Jan M.; Pedro, Joel B.; Wilson, Nerida G.

    2018-01-01

    Sea levels at the end of this century are projected to be 0.26-0.98 m higher than today. The upper end of this range, and even higher estimates, cannot be ruled out because of major uncertainties in the dynamic response of polar ice sheets to a warming climate. Here, we propose an ecological genetics approach that can provide insight into the past stability and configuration of the West Antarctic Ice Sheet (WAIS). We propose independent testing of the hypothesis that a trans-Antarctic seaway occurred at the last interglacial. Examination of the genomic signatures of bottom-dwelling marine species using the latest methods can provide an independent window into the integrity of the WAIS more than 100,000 years ago. Periods of connectivity facilitated by trans-Antarctic seaways could be revealed by dating coalescent events recorded in DNA. These methods allow alternative scenarios to be tested against a fit to genomic data. Ideal candidate taxa for this work would need to possess a circumpolar distribution, a benthic habitat, and some level of genetic structure indicated by phylogeographical investigation. The purpose of this perspective piece is to set out an ecological genetics method to help resolve when the West Antarctic Ice Shelf last collapsed.

  20. Antarctic Ice Sheet Discharge Driven by Atmosphere-Ocean Feedbacks Across the Last Glacial Termination

    Science.gov (United States)

    Fogwill, C. J.; Turney, C. S.; Golledge, N. R.; Etheridge, D. M.; Rubino, M.; Thornton, D.; Baker, A.; Weber, M. E.; Woodward, J.; van Ommen, T. D.; Moy, A. D.; Davies, S. M.; Bird, M. I.; Winter, K.; Munksgaard, N.; Menviel, L.; Rootes, C.; Vohra, J.; Rivera, A.; Cooper, A.

    2016-12-01

    Reconstructing the dynamic response of the Antarctic ice sheets to warming during the Last Glacial Termination (LGT; 18,000-11,650 yrs ago) allows us to identify ice-climate feedbacks that could improve future projections1,2. Whilst the sequence of events during this period are reasonably well-known, relatively poor chronological control has precluded precise alignment of ice, atmospheric and marine records2, making it difficult to assess relationships between Antarctic ice-sheet dynamics, climate change and sea-level rise3-5. Here we present results from a highly-resolved `horizontal ice core'6,7 from the Weddell Sea Embayment, which records millennial-scale ice-sheet dynamics across this extensive sector of Antarctica. Counterintuitively, we find ice-sheet surface drawdown of 600 m across the Antarctic Cold Reversal (ACR; 14,600-12,700 yrs ago)5, with stabilisation during the subsequent millennia of atmospheric warming. Earth system and ice-sheet modelling highlights that this response was likely sustained by strong ocean-ice feedbacks4,8; however, the drivers remain uncertain. Given the coincidence of the ice-sheet changes recorded with marked shifts in atmospheric circulation9,10,11we suggest that millennial-scale Antarctic ice-sheet behaviour was initiated and sustained by global atmospheric teleconnections across the LGT. This has important ramifications ice-sheet stability under contemporary climate change, with changing atmospheric and oceanic circulation patterns. 1 Collins, M. et al. in Climate Change 2013: The Physical Science Basis. 2 Weber, M. E. et al. Nature 510, 134-138, (2014). 3 Weaver, A. J., et al., Science 299, 1709-1713, (2003). 4 Golledge, N. R. et al. Nat Commun 5, (2014). 5 Pedro, J. B. et al. Nature Geosci9. 51-55 (2015). 6 Turney, C. S. M. et al. Journal of Quaternary Science 28, 697-704 (2013). 7 Winter, K. et al. Geophys. Res. Lett.43. 5. 2019-2026 (2016). 8 Menviel, L., A. et al., Quaternary Science Reviews 30, 1155-1172 (2011). 9 Hogg

  1. Changes in ice dynamics and mass balance of the Antarctic ice sheet.

    Science.gov (United States)

    Rignot, Eric

    2006-07-15

    The concept that the Antarctic ice sheet changes with eternal slowness has been challenged by recent observations from satellites. Pronounced regional warming in the Antarctic Peninsula triggered ice shelf collapse, which led to a 10-fold increase in glacier flow and rapid ice sheet retreat. This chain of events illustrated the vulnerability of ice shelves to climate warming and their buffering role on the mass balance of Antarctica. In West Antarctica, the Pine Island Bay sector is draining far more ice into the ocean than is stored upstream from snow accumulation. This sector could raise sea level by 1m and trigger widespread retreat of ice in West Antarctica. Pine Island Glacier accelerated 38% since 1975, and most of the speed up took place over the last decade. Its neighbour Thwaites Glacier is widening up and may double its width when its weakened eastern ice shelf breaks up. Widespread acceleration in this sector may be caused by glacier ungrounding from ice shelf melting by an ocean that has recently warmed by 0.3 degrees C. In contrast, glaciers buffered from oceanic change by large ice shelves have only small contributions to sea level. In East Antarctica, many glaciers are close to a state of mass balance, but sectors grounded well below sea level, such as Cook Ice Shelf, Ninnis/Mertz, Frost and Totten glaciers, are thinning and losing mass. Hence, East Antarctica is not immune to changes.

  2. A community-based geological reconstruction of Antarctic Ice Sheet deglaciation since the Last Glacial Maximum

    Science.gov (United States)

    Bentley, Michael J.; Ó Cofaigh, Colm; Anderson, John B.; Conway, Howard; Davies, Bethan; Graham, Alastair G. C.; Hillenbrand, Claus-Dieter; Hodgson, Dominic A.; Jamieson, Stewart S. R.; Larter, Robert D.; Mackintosh, Andrew; Smith, James A.; Verleyen, Elie; Ackert, Robert P.; Bart, Philip J.; Berg, Sonja; Brunstein, Daniel; Canals, Miquel; Colhoun, Eric A.; Crosta, Xavier; Dickens, William A.; Domack, Eugene; Dowdeswell, Julian A.; Dunbar, Robert; Ehrmann, Werner; Evans, Jeffrey; Favier, Vincent; Fink, David; Fogwill, Christopher J.; Glasser, Neil F.; Gohl, Karsten; Golledge, Nicholas R.; Goodwin, Ian; Gore, Damian B.; Greenwood, Sarah L.; Hall, Brenda L.; Hall, Kevin; Hedding, David W.; Hein, Andrew S.; Hocking, Emma P.; Jakobsson, Martin; Johnson, Joanne S.; Jomelli, Vincent; Jones, R. Selwyn; Klages, Johann P.; Kristoffersen, Yngve; Kuhn, Gerhard; Leventer, Amy; Licht, Kathy; Lilly, Katherine; Lindow, Julia; Livingstone, Stephen J.; Massé, Guillaume; McGlone, Matt S.; McKay, Robert M.; Melles, Martin; Miura, Hideki; Mulvaney, Robert; Nel, Werner; Nitsche, Frank O.; O'Brien, Philip E.; Post, Alexandra L.; Roberts, Stephen J.; Saunders, Krystyna M.; Selkirk, Patricia M.; Simms, Alexander R.; Spiegel, Cornelia; Stolldorf, Travis D.; Sugden, David E.; van der Putten, Nathalie; van Ommen, Tas; Verfaillie, Deborah; Vyverman, Wim; Wagner, Bernd; White, Duanne A.; Witus, Alexandra E.; Zwartz, Dan

    2014-09-01

    A robust understanding of Antarctic Ice Sheet deglacial history since the Last Glacial Maximum is important in order to constrain ice sheet and glacial-isostatic adjustment models, and to explore the forcing mechanisms responsible for ice sheet retreat. Such understanding can be derived from a broad range of geological and glaciological datasets and recent decades have seen an upsurge in such data gathering around the continent and Sub-Antarctic islands. Here, we report a new synthesis of those datasets, based on an accompanying series of reviews of the geological data, organised by sector. We present a series of timeslice maps for 20 ka, 15 ka, 10 ka and 5 ka, including grounding line position and ice sheet thickness changes, along with a clear assessment of levels of confidence. The reconstruction shows that the Antarctic Ice sheet did not everywhere reach the continental shelf edge at its maximum, that initial retreat was asynchronous, and that the spatial pattern of deglaciation was highly variable, particularly on the inner shelf. The deglacial reconstruction is consistent with a moderate overall excess ice volume and with a relatively small Antarctic contribution to meltwater pulse 1a. We discuss key areas of uncertainty both around the continent and by time interval, and we highlight potential priorities for future work. The synthesis is intended to be a resource for the modelling and glacial geological community.

  3. Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma

    Science.gov (United States)

    Golledge, Nicholas R.; Thomas, Zoë A.; Levy, Richard H.; Gasson, Edward G. W.; Naish, Timothy R.; McKay, Robert M.; Kowalewski, Douglas E.; Fogwill, Christopher J.

    2017-07-01

    The geometry of Antarctic ice sheets during warm periods of the geological past is difficult to determine from geological evidence, but is important to know because such reconstructions enable a more complete understanding of how the ice-sheet system responds to changes in climate. Here we investigate how Antarctica evolved under orbital and greenhouse gas conditions representative of an interglacial in the early Pliocene at 4.23 Ma, when Southern Hemisphere insolation reached a maximum. Using offline-coupled climate and ice-sheet models, together with a new synthesis of high-latitude palaeoenvironmental proxy data to define a likely climate envelope, we simulate a range of ice-sheet geometries and calculate their likely contribution to sea level. In addition, we use these simulations to investigate the processes by which the West and East Antarctic ice sheets respond to environmental forcings and the timescales over which these behaviours manifest. We conclude that the Antarctic ice sheet contributed 8.6 ± 2.8 m to global sea level at this time, under an atmospheric CO2 concentration identical to present (400 ppm). Warmer-than-present ocean temperatures led to the collapse of West Antarctica over centuries, whereas higher air temperatures initiated surface melting in parts of East Antarctica that over one to two millennia led to lowering of the ice-sheet surface, flotation of grounded margins in some areas, and retreat of the ice sheet into the Wilkes Subglacial Basin. The results show that regional variations in climate, ice-sheet geometry, and topography produce long-term sea-level contributions that are non-linear with respect to the applied forcings, and which under certain conditions exhibit threshold behaviour associated with behavioural tipping points.

  4. Antarctic ice sheet thickness estimation based on P-receiver function and waveform inversion

    Science.gov (United States)

    Yan, P.; Li, F.; LI, Z.; Li, J.; Yang, Y.; Hao, W.

    2016-12-01

    Antarctic ice sheet thickness is key parameter and boundary condition for ice sheet model construction, which has great significance for glacial isostatic adjustment, ice sheet mass balance and global change study. Ice thickness acquired utilizing seismological receiver function method can complement and verify with results obtained by radar echo sounding method. In this paper, P-receiver functions(PRFs) are extracted for stations deployed on Antarctic ice sheet, then Vp/Vs ratio and ice thickness are obtained using H-Kappa stacking. Comparisons are made between Bedmap2 dataset and the ice thickness from PRFs, most of the absolute value of the differences are less than 200 meters, only a few reach 600 meters. Taking into account of the intensity of Bedmap2 dataset survey lines and the uncertainty of radio echo sounding, as well as the inherit complexity of the internal ice structure beneath some stations, the ice thickness obtained from receiver function method is reliable. However limitation exists when using H-Kappa stacking method for stations where sediment squeezed between the ice and the bed rock layer. For better verifying the PRF result, a global optimizing method-Neighbourhood algotithm(NA) and spline interpolation are used to modeling PRFs assuming an isotropic layered ice sheet with depth varied densities and velocities beneath the stations. Then the velocity structure and ice sheet thickness are obtained through nonlinear searching by optimally fitting the real and the theoretical PRFs. The obtained ice sheet thickness beneath the stations agree well with the former H-Kappa method, but further detailed study are needed to constrain the inner ice velocity structure.

  5. The impact of dynamic topography on the bedrock elevation and volume of the Pliocene Antarctic Ice Sheet

    Science.gov (United States)

    Austermann, Jacqueline; Pollard, David; Mitrovica, Jerry X.; Moucha, Robert; Forte, Alessandro M.; DeConto, Robert M.

    2015-04-01

    Reconstructions of the Antarctic ice sheet over long timescales (i.e. Myrs) require estimates of bedrock elevation through time. Ice sheet models have accounted, with varying levels of sophistication, for changes in the bedrock elevation due to glacial isostatic adjustment (GIA), but they have neglected other processes that may perturb topography. One notable example is dynamic topography, the deflection of the solid surface of the Earth due to convective flow within the mantle. Numerically predicted changes in dynamic topography have been used to correct paleo shorelines for this departure from eustasy, but the effect of such changes on ice sheet stability is unknown. In this study we use numerical predictions of time-varying dynamic topography to reconstruct bedrock elevation below the Antarctic ice sheet during the mid Pliocene warm period (~3 Ma). Moreover, we couple this reconstruction to a three-dimensional ice sheet model to explore the impact of dynamic topography on the evolution of the Antarctic ice sheet since the Pliocene. Our modeling indicates significant uplift in the area of the Transantarctic Mountains (TAM) and the adjacent Wilkes basin. This predicted uplift, which is at the lower end of geological inferences of uplift of the TAM, implies a lower elevation of the basin in the Pliocene. Relative to simulations that do not include dynamic topography, the lower elevation leads to a smaller Antarctic Ice Sheet volume and a more significant retreat of the grounding line in the Wilkes basin, both of which are consistent with offshore sediment core data. We conclude that reconstructions of the Antarctic Ice Sheet during the mid-Pliocene warm period should be based on bedrock elevation models that include the impact of both GIA and dynamic topography.

  6. Final Report. Coupled simulations of Antarctic Ice-sheet/ocean interactions using POP and CISM

    Energy Technology Data Exchange (ETDEWEB)

    Asay-Davis, Xylar Storm [Potsdam Institute for Climate Impact Research, Potdam (Germany)

    2015-12-30

    The project performed under this award, referred to from here on as CLARION (CoupLed simulations of Antarctic Ice-sheet/Ocean iNteractions), included important advances in two models of ice sheet and ocean interactions. Despite its short duration (one year), the project made significant progress on its three major foci. First, together with collaborator Daniel Martin at Lawrence Berkeley National Laboratory (LBNL), I developed the POPSICLES coupled ice sheet-ocean model to the point where it could perform a number of pan-Antarctic simulations under various forcing conditions. The results were presented at a number of major conferences and workshops worldwide, and are currently being incorporated into two manuscripts in preparation.

  7. Impacts of marine instability across the East Antarctic Ice Sheet on Southern Ocean dynamics

    Directory of Open Access Journals (Sweden)

    S. J. Phipps

    2016-09-01

    Full Text Available Recent observations and modelling studies have demonstrated the potential for rapid and substantial retreat of large sectors of the East Antarctic Ice Sheet (EAIS. This has major implications for ocean circulation and global sea level. Here we examine the effects of increasing meltwater from the Wilkes Basin, one of the major marine-based sectors of the EAIS, on Southern Ocean dynamics. Climate model simulations reveal that the meltwater flux rapidly stratifies surface waters, leading to a dramatic decrease in the rate of Antarctic Bottom Water (AABW formation. The surface ocean cools but, critically, the Southern Ocean warms by more than 1 °C at depth. This warming is accompanied by a Southern Ocean-wide “domino effect”, whereby the warming signal propagates westward with depth. Our results suggest that melting of one sector of the EAIS could result in accelerated warming across other sectors, including the Weddell Sea sector of the West Antarctic Ice Sheet. Thus, localised melting of the EAIS could potentially destabilise the wider Antarctic Ice Sheet.

  8. Rapid Access Ice Drill: A New Tool for Exploration of the Deep Antarctic Ice Sheets and Subglacial Geology

    Science.gov (United States)

    Goodge, J. W.; Severinghaus, J. P.

    2014-12-01

    The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.

  9. Bayesian Inversion for Large Scale Antarctic Ice Sheet Flow

    KAUST Repository

    Ghattas, Omar

    2015-01-07

    The flow of ice from the interior of polar ice sheets is the primary contributor to projected sea level rise. One of the main difficulties faced in modeling ice sheet flow is the uncertain spatially-varying Robin boundary condition that describes the resistance to sliding at the base of the ice. Satellite observations of the surface ice flow velocity, along with a model of ice as a creeping incompressible shear-thinning fluid, can be used to infer this uncertain basal boundary condition. We cast this ill-posed inverse problem in the framework of Bayesian inference, which allows us to infer not only the basal sliding parameters, but also the associated uncertainty. To overcome the prohibitive nature of Bayesian methods for large-scale inverse problems, we exploit the fact that, despite the large size of observational data, they typically provide only sparse information on model parameters. We show results for Bayesian inversion of the basal sliding parameter field for the full Antarctic continent, and demonstrate that the work required to solve the inverse problem, measured in number of forward (and adjoint) ice sheet model solves, is independent of the parameter and data dimensions

  10. Bayesian Inversion for Large Scale Antarctic Ice Sheet Flow

    KAUST Repository

    Ghattas, Omar

    2015-01-01

    The flow of ice from the interior of polar ice sheets is the primary contributor to projected sea level rise. One of the main difficulties faced in modeling ice sheet flow is the uncertain spatially-varying Robin boundary condition that describes the resistance to sliding at the base of the ice. Satellite observations of the surface ice flow velocity, along with a model of ice as a creeping incompressible shear-thinning fluid, can be used to infer this uncertain basal boundary condition. We cast this ill-posed inverse problem in the framework of Bayesian inference, which allows us to infer not only the basal sliding parameters, but also the associated uncertainty. To overcome the prohibitive nature of Bayesian methods for large-scale inverse problems, we exploit the fact that, despite the large size of observational data, they typically provide only sparse information on model parameters. We show results for Bayesian inversion of the basal sliding parameter field for the full Antarctic continent, and demonstrate that the work required to solve the inverse problem, measured in number of forward (and adjoint) ice sheet model solves, is independent of the parameter and data dimensions

  11. Emplacement of Antarctic ice sheet mass affects circumpolar ocean flow

    NARCIS (Netherlands)

    Rugenstein, Maria; Stocchi, Paolo; von der Heydt, Anna; Dijkstra, Hendrik; Brinkhuis, Henk

    2014-01-01

    During the Cenozoic the Antarctic continent experienced large fluctuations in ice-sheet volume. We investigate the effects of Glacial Isostatic Adjustment (GIA) on Southern Ocean circulation for the first continental scale glaciation of Antarctica (~34 Myr) by combining solid Earth and ocean dynamic

  12. Emplacement of Antarctic ice sheet mass affects circumpolar ocean flow

    NARCIS (Netherlands)

    Rugenstein, M.; Stocchi, P.; van der Heydt, A.; Brinkhuis, H.

    2014-01-01

    During the Cenozoic the Antarctic continent experienced large fluctuations in ice-sheet volume. We investigate the effects of Glacial Isostatic Adjustment (GIA) on Southern Ocean circulation for the first continental scale glaciation of Antarctica (~ 34 Myr) by combining solid Earth and ocean

  13. Antarctic climate and ice-sheet configuration during the early Pliocene interglacial at 4.23 Ma

    Directory of Open Access Journals (Sweden)

    N. R. Golledge

    2017-07-01

    Full Text Available The geometry of Antarctic ice sheets during warm periods of the geological past is difficult to determine from geological evidence, but is important to know because such reconstructions enable a more complete understanding of how the ice-sheet system responds to changes in climate. Here we investigate how Antarctica evolved under orbital and greenhouse gas conditions representative of an interglacial in the early Pliocene at 4.23 Ma, when Southern Hemisphere insolation reached a maximum. Using offline-coupled climate and ice-sheet models, together with a new synthesis of high-latitude palaeoenvironmental proxy data to define a likely climate envelope, we simulate a range of ice-sheet geometries and calculate their likely contribution to sea level. In addition, we use these simulations to investigate the processes by which the West and East Antarctic ice sheets respond to environmental forcings and the timescales over which these behaviours manifest. We conclude that the Antarctic ice sheet contributed 8.6 ± 2.8 m to global sea level at this time, under an atmospheric CO2 concentration identical to present (400 ppm. Warmer-than-present ocean temperatures led to the collapse of West Antarctica over centuries, whereas higher air temperatures initiated surface melting in parts of East Antarctica that over one to two millennia led to lowering of the ice-sheet surface, flotation of grounded margins in some areas, and retreat of the ice sheet into the Wilkes Subglacial Basin. The results show that regional variations in climate, ice-sheet geometry, and topography produce long-term sea-level contributions that are non-linear with respect to the applied forcings, and which under certain conditions exhibit threshold behaviour associated with behavioural tipping points.

  14. Millennial-scale instability of the Antarctic Ice Sheet during the last glaciation.

    NARCIS (Netherlands)

    Kanfoush, S.L.; Hodell, D.A.; Charles, C.D.; Guilderson, T.P.; Mortyn, P.G.

    2000-01-01

    Records of ice-rafted detritus (IRD) concentration in deep-sea cores from the southeast Atlantic Ocean reveal millennial-scale pulses of IRD delivery between 20,000 and 74,000 years ago. Prominent IRD layers correlate across the Polar Frontal Zone, suggesting episodes of Antarctic Ice Sheet

  15. The impact of dynamic topography change on Antarctic Ice Sheet stability during the Mid-Pliocene Warm Period

    Science.gov (United States)

    Austermann, J.; Pollard, D.; Mitrovica, J. X.; Moucha, R.; Forte, A. M.; Deconto, R. M.; Rowley, D. B.; Raymo, M. E.

    2015-12-01

    The mid-Pliocene warm period (MPWP; ~ 3Ma), characterized by globally elevated temperatures (2-3º C) and carbon dioxide levels of ~400ppm, is commonly used as a testing ground for investigating ice sheet stability in a slightly warmer world. The central, unanswered question in this regard is the extent of East Antarctic melting during the MPWP. Here we assess the potential role of dynamic topography on this issue. Model reconstructions of the evolution of the Antarctic ice sheet during the ice age require an estimate of bedrock elevation through time. Ice sheet models account for changes in bedrock elevation due to glacial isostatic adjustment (GIA), often using simplified models of the GIA process, but they generally do not consider other processes that may perturb subglacial topography. One such notable process is dynamic topography, i.e. the deflection of the solid surface of the Earth due to convective flow and buoyancy variations within the mantle and lithosphere. Paleo-shorelines of Pliocene age reflect the influence of dynamic topography, but the impact of these bedrock elevation changes on ice sheet stability in the Antarctic region is unknown. In this study we use viscous flow simulations of mantle dynamics to predict changes in dynamic topography and reconstruct bedrock elevations below the Antarctic Ice Sheet since the MPWP. We furthermore couple this reconstruction to a three-dimensional ice sheet model in order to explore the impact of dynamic topography on the extent of the Antarctic Ice Sheet during the Pliocene. Our modeling indicates that uplift occurred in the area of the Transantarctic Mountains and the adjacent Wilkes Basin. This predicted uplift, which is consistent with geological inferences of uplift in the Transantarctic Mountains, implies a significantly (~100-200 m) lower elevation of the Wilkes Basin in the Pliocene. This lower elevation leads to ~400 km of additional retreat of the grounding line in this region relative to simulations

  16. A new research project on the interaction of the solid Earth and the Antarctic Ice Sheet

    Science.gov (United States)

    Fukuda, Y.; Nishijima, J.; Kazama, T.; Nakamura, K.; Doi, K.; Suganuma, Y.; Okuno, J.; Araya, A.; Kaneda, H.; Aoyama, Y.

    2017-12-01

    A new research project of "Grant-in-Aid for Scientific Research on Innovative Areas" funded by JSPS (Japan Society for the Promotion of Science) has recently been launched. The title of the project is "Giant reservoirs of heat/water/material: Global environmental changes driven by Southern Ocean and Antarctic Ice Sheet", and as a five years project, is aiming to establish a new research area for Antarctic environmental system science. The project consists of 7 research topics, including Antarctic ice sheet and Southern ocean sciences, new observation methodology, modeling and other interdisciplinary topics, and we are involved in the topic A02-2, "Interaction of the solid Earth and the Antarctic Ice Sheet". The Antarctic ice sheet, which relates to the global climate changes through the sea level rise and ocean circulation, is an essential element of the Earth system for predicting the future environment changes. Thus many studies of the ice sheet changes have been conducted by means of geomorphological, geological, geodetic surveys, as well as satellite gravimetry and satellite altimetry. For these studies, one of the largest uncertainties is the effects of GIA. Therefore, GIA as a key to investigate the interaction between the solid Earth and the ice sheet changes, we plan to conduct geomorphological, geological and geodetic surveys in the inland mountain areas and the coastal areas including the surrounding areas of a Japanese station Syowa in East Antarctica, where the in-situ data for constraining GIA models are very few. Combining these new observations with other in-site data, various satellite data and numerical modeling, we aim to estimating a precise GIA model, constructing a reliable ice melting history after the last glacial maximum and obtaining the viscoelastic structure of the Earth's interior. In the presentation, we also show the five years research plans as well. This study was partially supported by JSPS KAKENHI Grant No. 17H06321.

  17. Glacial removal of late Cenozoic subglacially emplaced volcanic edifices by the West Antarctic ice sheet

    Science.gov (United States)

    Behrendt, John C.; Blankenship, D.D.; Damaske, D.; Cooper, A. K.

    1995-01-01

    Local maxima of the horizontal gradient of pseudogravity from closely spaced aeromagnetic surveys over the Ross Sea, northwestern Ross Ice Shelf, and the West Antarctic ice sheet, reveal a linear magnetic rift fabric and numerous subcircular, high-amplitude anomalies. Geophysical data indicate two or three youthful volcanic edifices at widely separated areas beneath the sea and ice cover in the West Antarctic rift system. In contrast, we suggest glacial removal of edifices of volcanic sources of many more anomalies. Magnetic models, controlled by marine seismic reflection and radar ice-sounding data, allow us to infer that glacial removal of the associated late Cenozoic volcanic edifices (probably debris, comprising pillow breccias, and hyaloclastites) has occurred essentially concomitantly with their subglacial eruption. "Removal' of unconsolidated volcanic debris erupted beneath the ice is probably a more appropriate term than "erosion', given its fragmented, ice-contact origin. The exposed volcanoes may have been protected from erosion by the surrounding ice sheet because of more competent rock or high elevation above the ice sheet. -from Authors

  18. Initiation and long-term instability of the East Antarctic Ice Sheet.

    Science.gov (United States)

    Gulick, Sean P S; Shevenell, Amelia E; Montelli, Aleksandr; Fernandez, Rodrigo; Smith, Catherine; Warny, Sophie; Bohaty, Steven M; Sjunneskog, Charlotte; Leventer, Amy; Frederick, Bruce; Blankenship, Donald D

    2017-12-13

    Antarctica's continental-scale ice sheets have evolved over the past 50 million years. However, the dearth of ice-proximal geological records limits our understanding of past East Antarctic Ice Sheet (EAIS) behaviour and thus our ability to evaluate its response to ongoing environmental change. The EAIS is marine-terminating and grounded below sea level within the Aurora subglacial basin, indicating that this catchment, which drains ice to the Sabrina Coast, may be sensitive to climate perturbations. Here we show, using marine geological and geophysical data from the continental shelf seaward of the Aurora subglacial basin, that marine-terminating glaciers existed at the Sabrina Coast by the early to middle Eocene epoch. This finding implies the existence of substantial ice volume in the Aurora subglacial basin before continental-scale ice sheets were established about 34 million years ago. Subsequently, ice advanced across and retreated from the Sabrina Coast continental shelf at least 11 times during the Oligocene and Miocene epochs. Tunnel valleys associated with half of these glaciations indicate that a surface-meltwater-rich sub-polar glacial system existed under climate conditions similar to those anticipated with continued anthropogenic warming. Cooling since the late Miocene resulted in an expanded polar EAIS and a limited glacial response to Pliocene warmth in the Aurora subglacial basin catchment. Geological records from the Sabrina Coast shelf indicate that, in addition to ocean temperature, atmospheric temperature and surface-derived meltwater influenced East Antarctic ice mass balance under warmer-than-present climate conditions. Our results imply a dynamic EAIS response with continued anthropogenic warming and suggest that the EAIS contribution to future global sea-level projections may be under-estimated.

  19. Glacial isostatic stress shadowing by the Antarctic ice sheet

    Science.gov (United States)

    Ivins, E. R.; James, T. S.; Klemann, V.

    2005-01-01

    Numerous examples of fault slip that offset late Quaternary glacial deposits and bedrock polish support the idea that the glacial loading cycle causes earthquakes in the upper crust. A semianalytical scheme is presented for quantifying glacial and postglacial lithospheric fault reactivation using contemporary rock fracture prediction methods. It extends previous studies by considering differential Mogi-von Mises stresses, in addition to those resulting from a Coulomb analysis. The approach utilizes gravitational viscoelastodynamic theory and explores the relationships between ice mass history and regional seismicity and faulting in a segment of East Antarctica containing the great Antarctic Plate (Balleny Island) earthquake of 25 March 1998 (Mw 8.1). Predictions of the failure stress fields within the seismogenic crust are generated for differing assumptions about background stress orientation, mantle viscosity, lithospheric thickness, and possible late Holocene deglaciation for the D91 Antarctic ice sheet history. Similar stress fracture fields are predicted by Mogi-von Mises and Coulomb theory, thus validating previous rebound Coulomb analysis. A thick lithosphere, of the order of 150-240 km, augments stress shadowing by a late melting (middle-late Holocene) coastal East Antarctic ice complex and could cause present-day earthquakes many hundreds of kilometers seaward of the former Last Glacial Maximum grounding line.

  20. The Antarctic Ice Sheet, Sea Ice, and the Ozone Hole: Satellite Observations of how they are Changing

    Science.gov (United States)

    Parkinson, Claire L.

    2012-01-01

    Antarctica is the Earth's coldest and highest continent and has major impacts on the climate and life of the south polar vicinity. It is covered almost entirely by the Earth's largest ice sheet by far, with a volume of ice so great that if all the Antarctic ice were to go into the ocean (as ice or liquid water), this would produce a global sea level rise of about 60 meters (197 feet). The continent is surrounded by sea ice that in the wintertime is even more expansive than the continent itself and in the summertime reduces to only about a sixth of its wintertime extent. Like the continent, the expansive sea ice cover has major impacts, reflecting the sun's radiation back to space, blocking exchanges between the ocean and the atmosphere, and providing a platform for some animal species while impeding other species. Far above the continent, the Antarctic ozone hole is a major atmospheric phenomenon recognized as human-caused and potentially quite serious to many different life forms. Satellites are providing us with remarkable information about the ice sheet, the sea ice, and the ozone hole. Satellite visible and radar imagery are providing views of the large scale structure of the ice sheet never seen before; satellite laser altimetry has produced detailed maps of the topography of the ice sheet; and an innovative gravity-measuring two-part satellite has allowed mapping of regions of mass loss and mass gain on the ice sheet. The surrounding sea ice cover has a satellite record that goes back to the 1970s, allowing trend studies that show a decreasing sea ice presence in the region of the Bellingshausen and Amundsen seas, to the west of the prominent Antarctic Peninsula, but increasing sea ice presence around much of the rest of the continent. Overall, sea ice extent around Antarctica has increased at an average rate of about 17,000 square kilometers per year since the late 1970s, as determined from satellite microwave data that can be collected under both light and

  1. Antarctic ice sheet thickness estimation using the horizontal-to-vertical spectral ratio method with single-station seismic ambient noise

    Directory of Open Access Journals (Sweden)

    P. Yan

    2018-03-01

    Full Text Available We report on a successful application of the horizontal-to-vertical spectral ratio (H / V method, generally used to investigate the subsurface velocity structures of the shallow crust, to estimate the Antarctic ice sheet thickness for the first time. Using three-component, five-day long, seismic ambient noise records gathered from more than 60 temporary seismic stations located on the Antarctic ice sheet, the ice thickness measured at each station has comparable accuracy to the Bedmap2 database. Preliminary analysis revealed that 60 out of 65 seismic stations on the ice sheet obtained clear peak frequencies (f0 related to the ice sheet thickness in the H / V spectrum. Thus, assuming that the isotropic ice layer lies atop a high velocity half-space bedrock, the ice sheet thickness can be calculated by a simple approximation formula. About half of the calculated ice sheet thicknesses were consistent with the Bedmap2 ice thickness values. To further improve the reliability of ice thickness measurements, two-type models were built to fit the observed H / V spectrum through non-linear inversion. The two-type models represent the isotropic structures of single- and two-layer ice sheets, and the latter depicts the non-uniform, layered characteristics of the ice sheet widely distributed in Antarctica. The inversion results suggest that the ice thicknesses derived from the two-layer ice models were in good concurrence with the Bedmap2 ice thickness database, and that ice thickness differences between the two were within 300 m at almost all stations. Our results support previous finding that the Antarctic ice sheet is stratified. Extensive data processing indicates that the time length of seismic ambient noise records can be shortened to two hours for reliable ice sheet thickness estimation using the H / V method. This study extends the application fields of the H / V method and provides an effective and independent way to measure

  2. Potential of the solid-Earth response for limiting long-term West Antarctic Ice Sheet retreat

    Science.gov (United States)

    Konrad, Hannes; Sasgen, Ingo; Pollard, David; Klemann, Volker

    2016-04-01

    The West Antarctic Ice Sheet (WAIS) is assumed to be inherently unstable because it is grounded below sea level in a large part, where the bedrock deepens from today's grounding line towards the interior of the ice sheet. Idealized simulations have shown that bedrock uplift due to isostatic adjustment of the solid Earth and the associated sea-level fall may stop the retreat of such a marine-based ice sheet (Gomez et al., 2012). Here, we employ a coupled model for ice-sheet dynamics and solid-Earth dynamics, including a gravitationally consistent description of sea level, to investigate the influence of the viscoelastic Earth structure on the WAIS' future stability (Konrad et al. 2015). For this, we start from a steady-state condition for the Antarctic Ice Sheet close to present-day observations and apply atmospheric and oceanic forcing of different strength to initiate the retreat of the WAIS and investigate the effect of the viscoelastic deformation on the ice evolution for a range of solid-Earth rheologies. We find that the climate forcing is the primary control on the occurrence of the WAIS collapse. However, for moderate climate forcing and a weak solid-Earth rheology associated with the West Antarctic rift system (asthenosphere viscosities of 3x10^19 Pa s or less), we find that the combined effect of bedrock uplift and gravitational sea-level fall limits the retreat to the Amundsen Sea embayment on millennial time scales. In contrast, a stiffer Earth rheology yields a collapse under these conditions. Under a stronger climate forcing, weak Earth structures do not prevent the WAIS collapse; however, they produce a delay of up to 5000 years in comparison to a stiffer solid-Earth rheology. In an additional experiment, we test the impact of sea-level rise from an assumed fast deglaciation of the Greenland Ice Sheet. In cases when the climatic forcing is too weak to force WAIS collapse by itself, the additional rise in sea-level leads to disintegration of the WAIS

  3. Impact of Greenland and Antarctic ice sheet interactions on climate sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Goelzer, H.; Huybrechts, P. [Vrije Universiteit Brussel, Earth System Sciences and Departement Geografie, Brussels (Belgium); Loutre, M.F.; Goosse, H.; Fichefet, T. [Universite Catholique de Louvain, Georges Lemaitre Centre for Earth and Climate Research (TECLIM), Earth and Life Institute, Louvain-la-Neuve (Belgium); Mouchet, A. [Universite de Liege, Laboratoire de Physique Atmospherique et Planetaire, Liege (Belgium)

    2011-09-15

    We use the Earth system model of intermediate complexity LOVECLIM to show the effect of coupling interactive ice sheets on the climate sensitivity of the model on a millennial time scale. We compare the response to a 2 x CO{sub 2} warming scenario between fully coupled model versions including interactive Greenland and Antarctic ice sheet models and model versions with fixed ice sheets. For this purpose an ensemble of different parameter sets have been defined for LOVECLIM, covering a wide range of the model's sensitivity to greenhouse warming, while still simulating the present-day climate and the climate evolution over the last millennium within observational uncertainties. Additional freshwater fluxes from the melting ice sheets have a mitigating effect on the model's temperature response, leading to generally lower climate sensitivities of the fully coupled model versions. The mitigation is effectuated by changes in heat exchange within the ocean and at the sea-air interface, driven by freshening of the surface ocean and amplified by sea-ice-related feedbacks. The strength of the effect depends on the response of the ice sheets to the warming and on the model's climate sensitivity itself. The effect is relatively strong in model versions with higher climate sensitivity due to the relatively large polar amplification of LOVECLIM. With the ensemble approach in this study we cover a wide range of possible model responses. (orig.)

  4. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years

    Science.gov (United States)

    Gardner, Alex S.; Moholdt, Geir; Scambos, Ted; Fahnstock, Mark; Ligtenberg, Stefan; van den Broeke, Michiel; Nilsson, Johan

    2018-02-01

    Ice discharge from large ice sheets plays a direct role in determining rates of sea-level rise. We map present-day Antarctic-wide surface velocities using Landsat 7 and 8 imagery spanning 2013-2015 and compare to earlier estimates derived from synthetic aperture radar, revealing heterogeneous changes in ice flow since ˜ 2008. The new mapping provides complete coastal and inland coverage of ice velocity north of 82.4° S with a mean error of image pairs acquired during the daylight period. Using an optimized flux gate, ice discharge from Antarctica is 1929 ± 40 Gigatons per year (Gt yr-1) in 2015, an increase of 36 ± 15 Gt yr-1 from the time of the radar mapping. Flow accelerations across the grounding lines of West Antarctica's Amundsen Sea Embayment, Getz Ice Shelf and Marguerite Bay on the western Antarctic Peninsula, account for 88 % of this increase. In contrast, glaciers draining the East Antarctic Ice Sheet have been remarkably constant over the period of observation. Including modeled rates of snow accumulation and basal melt, the Antarctic ice sheet lost ice at an average rate of 183 ± 94 Gt yr-1 between 2008 and 2015. The modest increase in ice discharge over the past 7 years is contrasted by high rates of ice sheet mass loss and distinct spatial patters of elevation lowering. The West Antarctic Ice Sheet is experiencing high rates of mass loss and displays distinct patterns of elevation lowering that point to a dynamic imbalance. We find modest increase in ice discharge over the past 7 years, which suggests that the recent pattern of mass loss in Antarctica is part of a longer-term phase of enhanced glacier flow initiated in the decades leading up to the first continent-wide radar mapping of ice flow.

  5. High geothermal heat flux measured below the West Antarctic Ice Sheet.

    Science.gov (United States)

    Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil

    2015-07-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region.

  6. High geothermal heat flux measured below the West Antarctic Ice Sheet

    Science.gov (United States)

    Fisher, Andrew T.; Mankoff, Kenneth D.; Tulaczyk, Slawek M.; Tyler, Scott W.; Foley, Neil

    2015-01-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m2, significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m2. The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210

  7. Evidence for a dynamic East Antarctic ice sheet during the mid-Miocene climate transition

    Science.gov (United States)

    Pierce, Elizabeth L.; van de Flierdt, Tina; Williams, Trevor; Hemming, Sidney R.; Cook, Carys P.; Passchier, Sandra

    2017-11-01

    The East Antarctic ice sheet underwent a major expansion during the Mid-Miocene Climate Transition, around 14 Ma, lowering sea level by ∼60 m. However, direct or indirect evidence of where changes in the ice sheet occurred is limited. Here we present new insights on timing and locations of ice sheet change from two drill sites offshore East Antarctica. IODP Site U1356, Wilkes Land, and ODP Site 1165, Prydz Bay are located adjacent to two major ice drainage areas, the Wilkes Subglacial Basin and the Lambert Graben. Ice-rafted detritus (IRD), including dropstones, was deposited in concentrations far exceeding those known in the rest of the Miocene succession at both sites between 14.1 and 13.8 Ma, indicating that large amounts of IRD-bearing icebergs were calved from independent drainage basins during this relatively short interval. At Site U1356, the IRD was delivered in distinct pulses, suggesting that the overall ice advance was punctuated by short periods of ice retreat in the Wilkes Subglacial Basin. Provenance analysis of the mid-Miocene IRD and fine-grained sediments provides additional insights on the movement of the ice margin and subglacial geology. At Site U1356, the dominant 40Ar/39Ar thermochronological age of the ice-rafted hornblende grains is 1400-1550 Ma, differing from the majority of recent IRD in the area, from which we infer an inland source area of this thermochronological age extending along the eastern part of the Adélie Craton, which forms the western side of the Wilkes Subglacial Basin. Neodymium isotopic compositions from the terrigenous fine fraction at Site U1356 imply that the ice margin periodically expanded from high ground well into the Wilkes Subglacial Basin during periods of MMCT ice growth. At Site 1165, MMCT pebble-sized IRD are sourced from both the local Lambert Graben and the distant Aurora Subglacial Basin drainage area. Together, the occurrence and provenance of the IRD and glacially-eroded sediment at these two marine

  8. Combined ice core and climate-model evidence for the collapse of the West Antarctic Ice Sheet during Marine Isotope Stage 5e.

    Science.gov (United States)

    Steig, Eric J.; Huybers, Kathleen; Singh, Hansi A.; Steiger, Nathan J.; Frierson, Dargan M. W.; Popp, Trevor; White, James W. C.

    2015-04-01

    It has been speculated that collapse of the West Antarctic Ice Sheet explains the very high eustatic sea level rise during the last interglacial period, marine isotope stage (MIS) 5e, but the evidence remains equivocal. Changes in atmospheric circulation resulting from a collapse of the West Antarctic Ice Sheet (WAIS) would have significant regional impacts that should be detectable in ice core records. We conducted simulations using general circulation models (GCMs) at varying levels of complexity: a gray-radiation aquaplanet moist GCM (GRaM), the slab ocean version of GFDL-AM2 (also as an aquaplanet), and the fully-coupled version of NCAR's CESM with realistic topography. In all the experiments, decreased elevation from the removal of the WAIS leads to greater cyclonic circulation over the West Antarctic region. This creates increased advection of relatively warm marine air from the Amundsen-Bellingshausen Seas towards the South Pole, and increased cold-air advection from the East Antarctic plateau towards the Ross Sea and coastal Marie Byrd Land. The result is anomalous warming in some areas of the East Antarctic interior, and significant cooling in Marie Byrd Land. Comparison of ice core records shows good agreement with the model predictions. In particular, isotope-paleotemperature records from ice cores in East Antarctica warmed more between the previous glacial period (MIS 6) and MIS 5e than coastal Marie Byrd Land. These results add substantial support to other evidence for WAIS collapse during the last interglacial period.

  9. Past and present stability of the Weddell Sea sector of the Antarctic Ice Sheet

    Science.gov (United States)

    Whitehouse, P. L.; Vieli, A.; Jamieson, S.; Bentley, M.; Hein, A.; Sugden, D.

    2016-12-01

    The contribution of the Weddell Sea sector of the Antarctic Ice Sheet to sea-level rise since the Last Glacial Maximum (LGM), along with the processes controlling the past and ongoing dynamics of this sector, are poorly known. Of particular concern is the fact that significant portions of the present-day grounding line are unstably located on bathymetry that deepens towards the interior of the continent. We present new modelling results, constrained by field evidence relating to past ice extent and thickness along the Foundation Ice Stream and Thiel Trough, which suggest that the post-LGM sea-level contribution from this sector was modest, and that the grounding line is unlikely to have been located at the continental shelf break for a prolonged period during the last glacial cycle. Poorly-constrained ice shelf and ocean processes are found to play a crucial role in controlling the past configuration and stability of this sector of the ice sheet. In particular, we find that we cannot rule out a scenario in which the grounding line of the Foundation Ice Stream retreated behind present during deglaciation, and has since re-advanced. This work complements a number of recent studies, based on independent data sets, that explore the possibility that grounding line re-advance occurred within the Weddell Sea sector during the mid-to-late Holocene. If this hypothesis is correct, then current glacial isostatic adjustment models, and hence contemporary estimates of ice mass balance derived from GRACE data, will be significantly biased. Piecing together, and understanding, the reason for recent changes in ice dynamics is crucial for determining the contemporary stability of the Weddell Sea sector of the Antarctic Ice Sheet.

  10. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years

    Directory of Open Access Journals (Sweden)

    A. S. Gardner

    2018-02-01

    Full Text Available Ice discharge from large ice sheets plays a direct role in determining rates of sea-level rise. We map present-day Antarctic-wide surface velocities using Landsat 7 and 8 imagery spanning 2013–2015 and compare to earlier estimates derived from synthetic aperture radar, revealing heterogeneous changes in ice flow since ∼ 2008. The new mapping provides complete coastal and inland coverage of ice velocity north of 82.4° S with a mean error of < 10 m yr−1, resulting from multiple overlapping image pairs acquired during the daylight period. Using an optimized flux gate, ice discharge from Antarctica is 1929 ± 40 Gigatons per year (Gt yr−1 in 2015, an increase of 36 ± 15 Gt yr−1 from the time of the radar mapping. Flow accelerations across the grounding lines of West Antarctica's Amundsen Sea Embayment, Getz Ice Shelf and Marguerite Bay on the western Antarctic Peninsula, account for 88 % of this increase. In contrast, glaciers draining the East Antarctic Ice Sheet have been remarkably constant over the period of observation. Including modeled rates of snow accumulation and basal melt, the Antarctic ice sheet lost ice at an average rate of 183 ± 94 Gt yr−1 between 2008 and 2015. The modest increase in ice discharge over the past 7 years is contrasted by high rates of ice sheet mass loss and distinct spatial patters of elevation lowering. The West Antarctic Ice Sheet is experiencing high rates of mass loss and displays distinct patterns of elevation lowering that point to a dynamic imbalance. We find modest increase in ice discharge over the past 7 years, which suggests that the recent pattern of mass loss in Antarctica is part of a longer-term phase of enhanced glacier flow initiated in the decades leading up to the first continent-wide radar mapping of ice flow.

  11. Asynchronous behavior of the Antarctic Ice Sheet and local glaciers during and since Termination 1, Salmon Valley, Antarctica

    Science.gov (United States)

    Jackson, Margaret S.; Hall, Brenda L.; Denton, George H.

    2018-01-01

    The stability of the Antarctic Ice Sheet under future warming remains an open question with broad implications for sea-level prediction and adaptation. In particular, knowledge of whether the ice sheet has the capacity for rapid drawdown or collapse, or whether it can remain stable during periods of warming, is essential for predicting its future behavior. Here we use 55 radiocarbon dates, coupled with geomorphologic mapping, to reconstruct the timing of changes in ice extent and elevation during the last ice-age termination in Salmon Valley, adjacent to McMurdo Sound in the western Ross Sea Embayment. Results indicate that a grounded ice sheet in the Ross Sea Embayment achieved its maximum elevation and extent along the headlands of Salmon Valley at ∼18,000 yr BP, during a period of increasing temperatures and accumulation over the Antarctic continent. This ice remained at or near its maximum on the headlands near the valley mouth until after ∼14,000 yr BP. Removal of grounded Ross Sea ice from Salmon Valley was complete shortly after ∼7900 yr BP, indicating that the grounding line had retreated through southern McMurdo Sound by that time. We suggest the primary driver of Ross Sea ice removal from McMurdo Sound was marine-based, either through basal melting or calving due to sea-level rise. When combined with regional data, the Salmon Valley record suggests that this sector of the Antarctic Ice Sheet did not contribute in a significant way to deglacial meltwater pulses, such as meltwater pulse 1a. In contrast to the Ross Sea ice, our work also shows that local, independent alpine glaciers in Salmon Valley have advanced through the Holocene. Land-terminating glaciers such as these elsewhere in the region show a similar pattern, and may reflect the continued influence of increased accumulation following the termination of the last ice age.

  12. Potential sea-level rise from Antarctic ice-sheet instability constrained by observations

    Science.gov (United States)

    Ritz, Catherine; Edwards, Tamsin L.; Durand, Gaël; Payne, Antony J.; Peyaud, Vincent; Hindmarsh, Richard C. A.

    2015-12-01

    Large parts of the Antarctic ice sheet lying on bedrock below sea level may be vulnerable to marine-ice-sheet instability (MISI), a self-sustaining retreat of the grounding line triggered by oceanic or atmospheric changes. There is growing evidence that MISI may be underway throughout the Amundsen Sea embayment (ASE), which contains ice equivalent to more than a metre of global sea-level rise. If triggered in other regions, the centennial to millennial contribution could be several metres. Physically plausible projections are challenging: numerical models with sufficient spatial resolution to simulate grounding-line processes have been too computationally expensive to generate large ensembles for uncertainty assessment, and lower-resolution model projections rely on parameterizations that are only loosely constrained by present day changes. Here we project that the Antarctic ice sheet will contribute up to 30 cm sea-level equivalent by 2100 and 72 cm by 2200 (95% quantiles) where the ASE dominates. Our process-based, statistical approach gives skewed and complex probability distributions (single mode, 10 cm, at 2100; two modes, 49 cm and 6 cm, at 2200). The dependence of sliding on basal friction is a key unknown: nonlinear relationships favour higher contributions. Results are conditional on assessments of MISI risk on the basis of projected triggers under the climate scenario A1B (ref. 9), although sensitivity to these is limited by theoretical and topographical constraints on the rate and extent of ice loss. We find that contributions are restricted by a combination of these constraints, calibration with success in simulating observed ASE losses, and low assessed risk in some basins. Our assessment suggests that upper-bound estimates from low-resolution models and physical arguments (up to a metre by 2100 and around one and a half by 2200) are implausible under current understanding of physical mechanisms and potential triggers.

  13. Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0)

    Science.gov (United States)

    Pattyn, Frank

    2017-08-01

    The magnitude of the Antarctic ice sheet's contribution to global sea-level rise is dominated by the potential of its marine sectors to become unstable and collapse as a response to ocean (and atmospheric) forcing. This paper presents Antarctic sea-level response to sudden atmospheric and oceanic forcings on multi-centennial timescales with the newly developed fast Elementary Thermomechanical Ice Sheet (f.ETISh) model. The f.ETISh model is a vertically integrated hybrid ice sheet-ice shelf model with vertically integrated thermomechanical coupling, making the model two-dimensional. Its marine boundary is represented by two different flux conditions, coherent with power-law basal sliding and Coulomb basal friction. The model has been compared to existing benchmarks. Modelled Antarctic ice sheet response to forcing is dominated by sub-ice shelf melt and the sensitivity is highly dependent on basal conditions at the grounding line. Coulomb friction in the grounding-line transition zone leads to significantly higher mass loss in both West and East Antarctica on centennial timescales, leading to 1.5 m sea-level rise after 500 years for a limited melt scenario of 10 m a-1 under freely floating ice shelves, up to 6 m for a 50 m a-1 scenario. The higher sensitivity is attributed to higher ice fluxes at the grounding line due to vanishing effective pressure. Removing the ice shelves altogether results in a disintegration of the West Antarctic ice sheet and (partially) marine basins in East Antarctica. After 500 years, this leads to a 5 m and a 16 m sea-level rise for the power-law basal sliding and Coulomb friction conditions at the grounding line, respectively. The latter value agrees with simulations by DeConto and Pollard (2016) over a similar period (but with different forcing and including processes of hydrofracturing and cliff failure). The chosen parametrizations make model results largely independent of spatial resolution so that f.ETISh can potentially be

  14. Antarctic and Greenland ice sheet mass balance products from satellite gravimetry

    Science.gov (United States)

    Horwath, Martin; Groh, Andreas; Horvath, Alexander; Forsberg, René; Meister, Rakia; Barletta, Valentina R.; Shepherd, Andrew

    2017-04-01

    Because of their important role in the Earth's climate system, ESA's Climate Change Initiative (CCI) has identified both the Antarctic Ice Sheet (AIS) and the Greenland Ice Sheet (GIS) as Essential Climate Variables (ECV). Since respondents of a user survey indicated that the ice sheet mass balance is one of the most important ECV data products needed to better understand climate change, the AIS_cci and the GIS_cci project provide Gravimetric Mass Balance (GMB) products based on satellite gravimetry data. The GMB products are derived from GRACE (Gravity Recovery and Climate Experiment) monthly solutions of release ITSG-Grace2016 produced at TU Graz. GMB basin products (i.e. time series of monthly mass changes for the entire ice sheets and selected drainage basins) and GMB gridded products (e.g. mass balance estimates with a formal resolution of about 50km, covering the entire ice sheets) are generated for the period from 2002 until present. The first GMB product was released in mid 2016. Here we present an extended and updated version of the ESA CCI GMB products, which are freely available through data portals hosted by the projects (https://data1.geo.tu-dresden.de/ais_gmb, http://products.esa-icesheets-cci.org/products/downloadlist/GMB). Since the initial product release, the applied processing strategies have been improved in order to further reduce GRACE errors and to enhance the separation of signals super-imposed to the ice mass changes. While a regional integration approach is used by the AIS_cci project, the GMB products of the GIS_cci project are derived using a point mass inversion. The differences between both approaches are investigated through the example of the GIS, where an alternative GMB product was generated using the regional integration approach implemented by the AIS_cci. Finally, we present the latest mass balance estimates for both ice sheets as well as their corresponding contributions to global sea level rise.

  15. Origin of spherule samples recovered from antarctic ice sheet-Terrestrial or extraterrestrial?

    Energy Technology Data Exchange (ETDEWEB)

    Sekimoto, Shun; Takamiya, Koichi; Shibata, Seiichi [Research Reactor Institute, Kyoto University, Osaka (Japan); Kobayashi, Takayuki [College of Humanities and Sciences, Nihon University, Tokyo (Japan); Ebihara, Mitsuru [Dept. of Chemistry, Tokyo Metropolitan University, Tokyo (Japan)

    2016-04-15

    Thirty-eight spherules from the Antarctic ice sheet were analyzed using neutron activation analysis under two different conditions to investigate their origin. In almost all of these spherules, the contents of iron, cobalt, and manganese were determined to be 31% to 88%, 17 mg/kg to 810 mg/kg, and 0.017% to 7%, respectively. A detectable iridium content of 0.84 mg/kg was found in only one spherule, which was judged to be extraterrestrial in origin. A comparison of elemental compositions of the Antarctic spherules analyzed in this study with those of deep-sea sediment spherules and those of terrestrial materials revealed that most of the Antarctic spherules except for the sample in which iridium was detected could not be identified as extraterrestrial in origin.

  16. Regionally Optimized GRACE Processing and Inter-comparison on the Antarctic Ice Sheet

    Science.gov (United States)

    Mohajerani, Y.; Velicogna, I.; Sutterley, T. C.; Rignot, E. J.

    2017-12-01

    The Antarctic ice sheet is losing mass at an accelerating rate, with a sea level contribution that changed from 0.08mm/yr from 1992 to 2001 to 0.4mm/yr from 2002 to 2011. While most of this contribution comes from West Antarctica, Totten Glacier has the largest discharge of ice in East Antarctica, with a sea level rise potential of 3.9 m. Furthermore, the drainage basin of Totten Glacier, along the neighboring Moscow University Glacier are below sea level, extending hundreds of kilometers inland. Therefore, obtaining regional estimates of both western and eastern Antarctic basins are of critical importance. The GRACE (Gravity Recovery and Climate Experiment) satellite has been providing mass balance time-series from geoid changes since 2002. Several mascon and harmonic GRACE solutions are available from different processing centers. Here, we evaluate the various solutions across the ice sheet and a new set of regionally optimized mascons to study the mass balance of Totten and Moscow University glaciers. We obtain a trend of -16.5±4.1Gt/yr with an acceleration of -2.0±1.8Gt/yr2 for the two glaciers for the period April 2002 to December 2016 using the Ivins et al (2013) GIA model (errors include leakage, GIA, and regression errors). We compare the results with the Mass Budget Method that combines ice discharge (D) and surface mass balance (SMB) from two models: 1) RACMO2.3, and 2) MAR3.6.4. MBM/RACMO2.3 shows the best agreement with the GRACE estimates. Within the common period from April 2002 to December 2015, the MBM/RACMO2.3 and MAR3.6.4 results are -15.6±1.8Gt/yr and -6.7±1.5Gt/yr respectively, while the GRACE time-series has a trend of -14.8±2.7 Gt/yr. We extend the study to the Getz Ice Shelf, the third largest ice shelf in West Antarctica after Ronne and Ross West ice shelves. We compare our gravity-derived mass estimates, the mass budget estimates, and the volume changes from altimetry data to compare the estimates and obtain a multi-sensor assessment

  17. A sensitivity analysis for a thermomechanical model of the Antarctic ice sheet and ice shelves

    Science.gov (United States)

    Baratelli, F.; Castellani, G.; Vassena, C.; Giudici, M.

    2012-04-01

    The outcomes of an ice sheet model depend on a number of parameters and physical quantities which are often estimated with large uncertainty, because of lack of sufficient experimental measurements in such remote environments. Therefore, the efforts to improve the accuracy of the predictions of ice sheet models by including more physical processes and interactions with atmosphere, hydrosphere and lithosphere can be affected by the inaccuracy of the fundamental input data. A sensitivity analysis can help to understand which are the input data that most affect the different predictions of the model. In this context, a finite difference thermomechanical ice sheet model based on the Shallow-Ice Approximation (SIA) and on the Shallow-Shelf Approximation (SSA) has been developed and applied for the simulation of the evolution of the Antarctic ice sheet and ice shelves for the last 200 000 years. The sensitivity analysis of the model outcomes (e.g., the volume of the ice sheet and of the ice shelves, the basal melt rate of the ice sheet, the mean velocity of the Ross and Ronne-Filchner ice shelves, the wet area at the base of the ice sheet) with respect to the model parameters (e.g., the basal sliding coefficient, the geothermal heat flux, the present-day surface accumulation and temperature, the mean ice shelves viscosity, the melt rate at the base of the ice shelves) has been performed by computing three synthetic numerical indices: two local sensitivity indices and a global sensitivity index. Local sensitivity indices imply a linearization of the model and neglect both non-linear and joint effects of the parameters. The global variance-based sensitivity index, instead, takes into account the complete variability of the input parameters but is usually conducted with a Monte Carlo approach which is computationally very demanding for non-linear complex models. Therefore, the global sensitivity index has been computed using a development of the model outputs in a

  18. Sea-level response to melting of Antarctic ice shelves on multi-centennial timescales with the fast Elementary Thermomechanical Ice Sheet model (f.ETISh v1.0

    Directory of Open Access Journals (Sweden)

    F. Pattyn

    2017-08-01

    Full Text Available The magnitude of the Antarctic ice sheet's contribution to global sea-level rise is dominated by the potential of its marine sectors to become unstable and collapse as a response to ocean (and atmospheric forcing. This paper presents Antarctic sea-level response to sudden atmospheric and oceanic forcings on multi-centennial timescales with the newly developed fast Elementary Thermomechanical Ice Sheet (f.ETISh model. The f.ETISh model is a vertically integrated hybrid ice sheet–ice shelf model with vertically integrated thermomechanical coupling, making the model two-dimensional. Its marine boundary is represented by two different flux conditions, coherent with power-law basal sliding and Coulomb basal friction. The model has been compared to existing benchmarks. Modelled Antarctic ice sheet response to forcing is dominated by sub-ice shelf melt and the sensitivity is highly dependent on basal conditions at the grounding line. Coulomb friction in the grounding-line transition zone leads to significantly higher mass loss in both West and East Antarctica on centennial timescales, leading to 1.5 m sea-level rise after 500 years for a limited melt scenario of 10 m a−1 under freely floating ice shelves, up to 6 m for a 50 m a−1 scenario. The higher sensitivity is attributed to higher ice fluxes at the grounding line due to vanishing effective pressure. Removing the ice shelves altogether results in a disintegration of the West Antarctic ice sheet and (partially marine basins in East Antarctica. After 500 years, this leads to a 5 m and a 16 m sea-level rise for the power-law basal sliding and Coulomb friction conditions at the grounding line, respectively. The latter value agrees with simulations by DeConto and Pollard (2016 over a similar period (but with different forcing and including processes of hydrofracturing and cliff failure. The chosen parametrizations make model results largely independent of spatial resolution so

  19. The Response of Ice Sheets to Climate Variability

    Science.gov (United States)

    Snow, K.; Goldberg, D. N.; Holland, P. R.; Jordan, J. R.; Arthern, R. J.; Jenkins, A.

    2017-12-01

    West Antarctic Ice Sheet loss is a significant contributor to sea level rise. While the ice loss is thought to be triggered by fluctuations in oceanic heat at the ice shelf bases, ice sheet response to ocean variability remains poorly understood. Using a synchronously coupled ice-ocean model permitting grounding line migration, this study evaluates the response of an ice sheet to periodic variations in ocean forcing. Resulting oscillations in grounded ice volume amplitude is shown to grow as a nonlinear function of ocean forcing period. This implies that slower oscillations in climatic forcing are disproportionately important to ice sheets. The ice shelf residence time offers a critical time scale, above which the ice response amplitude is a linear function of ocean forcing period and below which it is quadratic. These results highlight the sensitivity of West Antarctic ice streams to perturbations in heat fluxes occurring at decadal time scales.

  20. A model study of the effect of climate and sea-level change on the evolution of the Antarctic Ice Sheet from the Last Glacial Maximum to 2100

    NARCIS (Netherlands)

    Maris, M. N. A.; Van Wessem, J. M.; Van De Berg, W. J.; De Boer, B.; Oerlemans, J.

    2014-01-01

    Due to a scarcity of observations and its long memory of uncertain past climate, the Antarctic Ice Sheet remains a largely unknown factor in the prediction of global sea level change. As the history of the ice sheet plays a key role in its future evolution, in this study we model the Antarctic Ice

  1. Ice-sheet mass balance and climate change.

    Science.gov (United States)

    Hanna, Edward; Navarro, Francisco J; Pattyn, Frank; Domingues, Catia M; Fettweis, Xavier; Ivins, Erik R; Nicholls, Robert J; Ritz, Catherine; Smith, Ben; Tulaczyk, Slawek; Whitehouse, Pippa L; Zwally, H Jay

    2013-06-06

    Since the 2007 Intergovernmental Panel on Climate Change Fourth Assessment Report, new observations of ice-sheet mass balance and improved computer simulations of ice-sheet response to continuing climate change have been published. Whereas Greenland is losing ice mass at an increasing pace, current Antarctic ice loss is likely to be less than some recently published estimates. It remains unclear whether East Antarctica has been gaining or losing ice mass over the past 20 years, and uncertainties in ice-mass change for West Antarctica and the Antarctic Peninsula remain large. We discuss the past six years of progress and examine the key problems that remain.

  2. Antarctic Glacial Isostatic Adjustment and Ice Sheet Mass Balance using GRACE: A Report from the Ice-sheet Mass Balance Exercise (IMBIE)

    Science.gov (United States)

    Ivins, E. R.; Wahr, J. M.; Schrama, E. J.; Milne, G. A.; Barletta, V.; Horwath, M.; Whitehouse, P.

    2012-12-01

    In preparation for the Inter-govermental Panel on Climate Change: Assessment Report 5 (IPCC AR5), ESA and NASA have formed a committee of experts to perform a formal set of comparative experiments concerning space observations of ice sheet mass balance. This project began in August of 2011 and has now concluded with a report submitted for Science (Shepherd et al., 2012). The focus of the work conducted is to re-evaluate scientific reports on the mass balance of Greenland ice sheet (GIS) and Antarctic ice sheet (AIS). The most serious discrepancies have been reported for the AIS, amounting to as much as 0.9 mm/yr in discrepant sea level contribution. A direct method of determining the AIS is by space gravimetry. However, for this method to contribute to our understanding of sea level change, we require knowledge of present-day non-elastic vertical movements of bedrock in Antarctica. Quantifying the uncertainty and bias caused by lack of observational control on models of regional glacial isostatic adjustment (GIA), was a major focus for our experiments. This regional process is the most problematic error source for GRACE-determinations of ice mass balance in Antarctica. While GIA likely dominates some large vertical motions in Antarctica that are now observed with GPS (Thomas et al., 2011, GRL), interpretations still require models. The reported uncertainty for space gravimetric (GRACE) based sea level sourcing is roughly 0.20 to 0.35 mm/yr. The uncertainty is also part of the error budget for mass balances derived from altimetry measurements, though at a much lower level. Analysis of the GRACE time series using CSR RL04 (2003.0-2010.10) for AIS mass balance reveals a small trend of order +1 to -24 Gt/yr without a GIA correction. Three periods were selected over which to perform inter-comparisons (see Table). One class of GIA models, that relies primarily on far field sea level reconstructions (e.g. ICE-5G), provide a GIA correction that places AIS mass imbalance (

  3. The Influence of Ice Properties on Borehole Deformation at the West Antarctic Ice Sheet Divide

    Science.gov (United States)

    Sinkler, E.; Pettit, E. C.; Obbard, R. W.

    2017-12-01

    It is widely known that ice flow is affected by many properties, including crystal fabric and impurities, though these relationships are not fully understood. This study uses data from the West Antarctic Ice Sheet (WAIS) Divide borehole to better determine the influence of such properties on ice flow. The WAIS Divide borehole, the byproduct of the 2006-2012 coring project, offers a unique opportunity to study deep Antarctic Ice. Thanks to the work of many researchers, extensive data on ice properties are available from both coring and borehole logging at this site. The borehole, kept open with a density-approximating fluid, closes and tilts due to ice flow. We have tracked this deformation over two years using a set of repeat measurements with an Acoustic Televiewer. This tool acts as an acoustic caliper allowing us to view cross-sections of the borehole shape and size with up to 1.25 degree azimuthal resolution and a depth resolution as high as 1.4 mm. In addition, the tool collects tilt and azimuth data. These measurements are compared to a 1D Glen's Flow Law model for borehole closure that uses density differences between the ice and borehole fluid as its driving force and incorporates temperature effects. This is then compared to ice properties like crystal fabric and impurities in order to determine the influence of these properties on ice deformation at this site. Crystal fabric has appeared as an important factor in this study.This work builds on that of others who have studied in-situ deep ice through borehole deformation (e.g. Paterson, 1977 and Dahl-Jensen and Gundestrup, 1987). Our results have implications for ice flow modeling and therefore interpretation of depth-age relationships in deep ice cores.

  4. Stochastic modelling of basal temperatures in divide regions of the Antarctic ice sheet over the last 1.5 million years

    Science.gov (United States)

    Van Liefferinge, Brice; Pattyn, Frank; Cavitte, Marie G. P.; Young, Duncan A.; Roberts, Jason L.

    2017-04-01

    The quest for oldest ice in Antarctica has recently been launched through an EU H2020 project (Beyond EPICA - Oldest Ice) and aims at identifying suitable areas for a potential future drilling. Retrieving an ice core of such age is essential to understand the relation between orbital changes and atmospheric composition during the mid-Pliocene transition. However, sites for a potential undisturbed record of 1.5 million-year old ice in Antarctica are difficult to find and require slow-moving ice (preferably an ice divide) and basal conditions that are not disturbed by large topographic variations. Furthermore, ice should be sufficiently thick but cold basal conditions should still prevail, since basal melting would destroy the bottom layers. Therefore, ice-flow conditions and thermodynamic characteristics are crucial for identifying potential locations of undisturbed ice. Van Liefferinge and Pattyn (2013) identified suitable areas based on a pan-Antarctic simplified thermodynamic ice sheet model and demonstrated that uncertainty in geothermal conditions remain a major unknown. In order to refine these estimates, and provide uncertainties, we employ a full thermo-mechanically coupled higher-order ice sheet model (Pattyn, 2003; Pattyn et al., 2004). Initial conditions for the calculations are based on an inversion of basal slipperiness, based on observed surface topography (Pollard and DeConto, 2012; Pattyn, in prep.). Uncertainties in geothermal conditions are introduced using the convolution of two Gaussian probability density functions: (a) the reconstruction of the Antarctic ice sheet geometry and testing ice thickness variability over the last 2 million years (Pollard and DeConto, 2009) and (b) the surface temperature reconstruction over the same period (Snyder et al., 2016). The standard deviation, the skewness and the kurtosis of the whole Antarctic ice sheet are analyzed to observe likely probable melt conditions. Finally, we focus on model results in the

  5. A new bed elevation model for the Weddell Sea sector of the West Antarctic Ice Sheet

    Directory of Open Access Journals (Sweden)

    H. Jeofry

    2018-04-01

    Full Text Available We present a new digital elevation model (DEM of the bed, with a 1 km gridding, of the Weddell Sea (WS sector of the West Antarctic Ice Sheet (WAIS. The DEM has a total area of ∼ 125 000 km2 covering the Institute, Möller and Foundation ice streams, as well as the Bungenstock ice rise. In comparison with the Bedmap2 product, our DEM includes new aerogeophysical datasets acquired by the Center for Remote Sensing of Ice Sheets (CReSIS through the NASA Operation IceBridge (OIB program in 2012, 2014 and 2016. We also improve bed elevation information from the single largest existing dataset in the region, collected by the British Antarctic Survey (BAS Polarimetric radar Airborne Science Instrument (PASIN in 2010–2011, from the relatively crude measurements determined in the field for quality control purposes used in Bedmap2. While the gross form of the new DEM is similar to Bedmap2, there are some notable differences. For example, the position and size of a deep subglacial trough (∼ 2 km below sea level between the ice-sheet interior and the grounding line of the Foundation Ice Stream have been redefined. From the revised DEM, we are able to better derive the expected routing of basal water and, by comparison with that calculated using Bedmap2, we are able to assess regions where hydraulic flow is sensitive to change. Given the potential vulnerability of this sector to ocean-induced melting at the grounding line, especially in light of the improved definition of the Foundation Ice Stream trough, our revised DEM will be of value to ice-sheet modelling in efforts to quantify future glaciological changes in the region and, from this, the potential impact on global sea level. The new 1 km bed elevation product of the WS sector can be found at https://doi.org/10.5281/zenodo.1035488.

  6. A new bed elevation model for the Weddell Sea sector of the West Antarctic Ice Sheet

    Science.gov (United States)

    Jeofry, Hafeez; Ross, Neil; Corr, Hugh F. J.; Li, Jilu; Morlighem, Mathieu; Gogineni, Prasad; Siegert, Martin J.

    2018-04-01

    We present a new digital elevation model (DEM) of the bed, with a 1 km gridding, of the Weddell Sea (WS) sector of the West Antarctic Ice Sheet (WAIS). The DEM has a total area of ˜ 125 000 km2 covering the Institute, Möller and Foundation ice streams, as well as the Bungenstock ice rise. In comparison with the Bedmap2 product, our DEM includes new aerogeophysical datasets acquired by the Center for Remote Sensing of Ice Sheets (CReSIS) through the NASA Operation IceBridge (OIB) program in 2012, 2014 and 2016. We also improve bed elevation information from the single largest existing dataset in the region, collected by the British Antarctic Survey (BAS) Polarimetric radar Airborne Science Instrument (PASIN) in 2010-2011, from the relatively crude measurements determined in the field for quality control purposes used in Bedmap2. While the gross form of the new DEM is similar to Bedmap2, there are some notable differences. For example, the position and size of a deep subglacial trough (˜ 2 km below sea level) between the ice-sheet interior and the grounding line of the Foundation Ice Stream have been redefined. From the revised DEM, we are able to better derive the expected routing of basal water and, by comparison with that calculated using Bedmap2, we are able to assess regions where hydraulic flow is sensitive to change. Given the potential vulnerability of this sector to ocean-induced melting at the grounding line, especially in light of the improved definition of the Foundation Ice Stream trough, our revised DEM will be of value to ice-sheet modelling in efforts to quantify future glaciological changes in the region and, from this, the potential impact on global sea level. The new 1 km bed elevation product of the WS sector can be found at https://doi.org/10.5281/zenodo.1035488" target="_blank">https://doi.org/10.5281/zenodo.1035488.

  7. High-Resolution Digitization of the Film Archive of SPRI/NSF/TUD Radar Sounding of the Antarctic Ice Sheet

    Science.gov (United States)

    Schroeder, D. M.; Dowdeswell, J. A.; Mackie, E. J.; Vega, K. I.; Emmons, J. R.; Winstein, K.; Bingham, R. G.; Benham, T. J.

    2017-12-01

    The airborne radio echo sounding data collected during the SPRI/NSF/TUD surveys of the Antarctic Ice Sheet in the late nineteen sixties and early seventies were recorded on a combination of 35mm and super-8 mm black-and-white optical film. These data represent the oldest extant continent-scale geophysical observations of ice thickness, internal layering and conditions beneath the Antarctic Ice Sheet. As such, when compared with modern radar sounding observations, they offer a unique opportunity to investigate temporal changes in ice sheet conditions across half a century. However, the storage of these data on film, paper-prints, and scans of those prints have made such comparison at the full radiometric and geometric resolution of the data difficult. To address this challenge, we utilized a state-of-the-art high-resolution Hollywood film scanning system to digitize the entire SPRI/NSF/TUD optical film archive. This has resulted in over two million digital images with information at the full spatial and brightness-level resolution of the original film. We present the process and results of this scanning as well as the current progress in formatting, registering, and positioning these data for release and use by the wider radio glaciological community. We also discuss the glaciological insights enabled by this effort.

  8. Geoologic controls on the architecture of the Antarctic Ice Sheet's basal interface: New results from West and East Antarctica from long range geophysics (Invited)

    Science.gov (United States)

    Young, D. A.; Blankenship, D. D.; Greenbaum, J. S.; Richter, T.; Aitken, A.; Siegert, M. J.; Roberts, J. L.

    2013-12-01

    The ice-rock interface underlying the Antarctic Ice Sheet was shaped by interactions between underlying gondwanan geology and the overlying ice sheet. The ice sheet now preserves from sedimentary infill an incredibly rugged terrain which now plays a critical role in shaping subglacial hydrology, and thus shape ice sheet behavior. This terrain can by imaged through aerogeophysical means, in particular through ice penetrating radar, while airborne potential fields measurements provide insight into the geological framework that controlled erosion. Over the post IPY era, the density of airborne coverage is only now reaching the point where small scale structure can be identified and placed in context. Of particular importance is understanding the formation of focused erosional valleys, 30-50 km wide, representing now buried subglacial fjords. After initial data from the GIMBLE project in West Antarctica, and five years of sustained long range ICECAP surveys over East Antarctica , we now have a better view of the diversity of these features. The local erosion of these valleys, often cutting through significant topographic barriers, irregularly samples the underlying geology, provided a complex story in the sediment to the Antarctic margin. These valleys now provide the subglacial conduits for significant ice sheet catchments, in particular for subglacial water, including the inland catchments of DeVicq, Thwaites, and Pine Island Glaciers in West Antarctica, and Denman Glacier, Totten Glacier, Byrd Glacier and Cook Ice Shelf in East Antarctica. We find that these features, now sometimes hundreds of kilometers inland of the modern grounding line, often nucleate on or are aligned with structure inherited from the assembly of the Antarctic continent. While many of these features currently host active outlet glaciers or their tributaries, some do not, implying avenues for ice sheet change. In West Antarctica, we find a new deep connection between the coast and interior basin

  9. West Antarctic Ice Sheet collapse – the fall and rise of a paradigm

    OpenAIRE

    Vaughan, David G.

    2008-01-01

    It is now almost 30 years since John Mercer (1978) first presented the idea that climate change could eventually cause a rapid deglaciation, or “collapse”, of a large part of the West Antarctic ice sheet (WAIS), raising world sea levels by 5 metres and causing untold economic and social impacts. This idea, apparently simple and scientifically plausible, created a vision of the future, sufficiently alarming that it became a paradigm for a generation of researchers and provided an icon for the ...

  10. Temporal variability of the Antarctic Ice sheet observed from space-based geodesy

    Science.gov (United States)

    Memin, A.; King, M. A.; Boy, J. P.; Remy, F.

    2017-12-01

    Quantifying the Antarctic Ice Sheet (AIS) mass balance still remains challenging as several processes compete to differing degrees at the basin scale with regional variations, leading to multiple mass redistribution patterns. For instance, analysis of linear trends in surface-height variations from 1992-2003 and 2002-2006 shows that the AIS is subject to decimetric scale variability over periods of a few years. Every year, snowfalls in Antarctica represent the equivalent of 6 mm of the mean sea level. Therefore, any fluctuation in precipitation can lead to changes in sea level. Besides, over the last decade, several major glaciers have been thinning at an accelerating rate. Understanding the processes that interact on the ice sheet is therefore important to precisely determine the response of the ice sheet to a rapid changing climate and estimate its contribution to sea level changes. We estimate seasonal and interannual changes of the AIS between January 2003 and October 2010 and to the end of 2016 from a combined analysis of surface-elevation and surface-mass changes derived from Envisat data and GRACE solutions, and from GRACE solutions only, respectively. While we obtain a good correlation for the interannual signal between the two techniques, important differences (in amplitude, phase, and spatial pattern) are obtained for the seasonal signal. We investigate these discrepancies by comparing the crustal motion observed by GPS and those predicted using monthly surface mass balance derived from the regional atmospheric climate model RACMO.

  11. Assessment of Antarctic Ice-Sheet Mass Balance Estimates: 1992 - 2009

    Science.gov (United States)

    Zwally, H. Jay; Giovinetto, Mario B.

    2011-01-01

    Published mass balance estimates for the Antarctic Ice Sheet (AIS) lie between approximately +50 to -250 Gt/year for 1992 to 2009, which span a range equivalent to 15% of the annual mass input and 0.8 mm/year Sea Level Equivalent (SLE). Two estimates from radar-altimeter measurements of elevation change by European Remote-sensing Satellites (ERS) (+28 and -31 Gt/year) lie in the upper part, whereas estimates from the Input-minus-Output Method (IOM) and the Gravity Recovery and Climate Experiment (GRACE) lie in the lower part (-40 to -246 Gt/year). We compare the various estimates, discuss the methodology used, and critically assess the results. Although recent reports of large and accelerating rates of mass loss from GRACE=based studies cite agreement with IOM results, our evaluation does not support that conclusion. We find that the extrapolation used in the published IOM estimates for the 15 % of the periphery for which discharge velocities are not observed gives twice the rate of discharge per unit of associated ice-sheet area than the 85% faster-moving parts. Our calculations show that the published extrapolation overestimates the ice discharge by 282 Gt/yr compared to our assumption that the slower moving areas have 70% as much discharge per area as the faster moving parts. Also, published data on the time-series of discharge velocities and accumulation/precipitation do not support mass output increases or input decreases with time, respectively. Our modified IOM estimate, using the 70% discharge assumption and substituting input from a field-data compilation for input from an atmospheric model over 6% of area, gives a loss of only 13 Gt/year (versus 136 Gt/year) for the period around 2000. Two ERS-based estimates, our modified IOM, and a GRACE-based estimate for observations within 1992 to 2005 lie in a narrowed range of +27 to - 40 Gt/year, which is about 3% of the annual mass input and only 0.2 mm/year SLE. Our preferred estimate for 1992-2001 is - 47 Gt

  12. Challenges for understanding Antarctic surface hydrology and ice-shelf stability

    Science.gov (United States)

    Kingslake, J.; Bell, R. E.; Banwell, A. F.; Boghosian, A.; Spergel, J.; Trusel, L. D.

    2017-12-01

    It is widely hypothesized that surface meltwater can contribute to ice mass loss in Antarctica through its impact on ice-shelf stability. Meltwater potentially expedites ice-shelf calving by flowing into and enlarging existing crevasses, and could even trigger ice-shelf disintegration via stresses generated by melt ponds. When ice shelves collapse, the adjacent grounded ice accelerates and thins, which contributes to sea-level rise. How these mechanisms mediate the interactions between the atmosphere, the ocean and the ice sheet is the subject of long-standing research efforts. The drainage of water across the surface of the Antarctic Ice Sheet and its ice shelves is beginning to be recognized as another important aspect of the system. Recent studies have revealed that surface meltwater drainage is more widespread than previously thought and that surface hydrological systems in Antarctica may expand and proliferate this century. Contrasting hypotheses regarding the impact of the proliferation of drainage systems on ice-shelf stability have emerged. Surface drainage could deliver meltwater to vulnerable area or export meltwater from ice shelves entirely. Which behavior dominates may have a large impact on the future response of the Antarctic Ice Sheet to atmospheric warming. We will discuss these recent discoveries and hypotheses, as well as new detailed studies of specific areas where hydrological systems are well developed, such as Amery and Nimrod Ice Shelves. We will highlight analogies that can be drawn with Greenlandic (near-)surface hydrology and, crucially, where hydrological systems on the two ice sheets are very different, leading to potentially important gaps in our understanding. Finally, we will look ahead to the key questions that we argue will need to be if we are to determine the role Antarctic surface hydrology could play in the future of the ice sheet. These include: Where does meltwater pond today and how will this change this century? What

  13. Ocean Tide Influences on the Antarctic and Greenland Ice Sheets

    Science.gov (United States)

    Padman, Laurie; Siegfried, Matthew R.; Fricker, Helen A.

    2018-03-01

    Ocean tides are the main source of high-frequency variability in the vertical and horizontal motion of ice sheets near their marine margins. Floating ice shelves, which occupy about three quarters of the perimeter of Antarctica and the termini of four outlet glaciers in northern Greenland, rise and fall in synchrony with the ocean tide. Lateral motion of floating and grounded portions of ice sheets near their marine margins can also include a tidal component. These tide-induced signals provide insight into the processes by which the oceans can affect ice sheet mass balance and dynamics. In this review, we summarize in situ and satellite-based measurements of the tidal response of ice shelves and grounded ice, and spatial variability of ocean tide heights and currents around the ice sheets. We review sensitivity of tide heights and currents as ocean geometry responds to variations in sea level, ice shelf thickness, and ice sheet mass and extent. We then describe coupled ice-ocean models and analytical glacier models that quantify the effect of ocean tides on lower-frequency ice sheet mass loss and motion. We suggest new observations and model developments to improve the representation of tides in coupled models that are used to predict future ice sheet mass loss and the associated contribution to sea level change. The most critical need is for new data to improve maps of bathymetry, ice shelf draft, spatial variability of the drag coefficient at the ice-ocean interface, and higher-resolution models with improved representation of tidal energy sinks.

  14. Increased West Antarctic and unchanged East Antarctic ice discharge over the last 7 years

    NARCIS (Netherlands)

    Gardner, Alex S.; Moholdt, Geir; Scambos, Ted; Fahnstock, Mark; Ligtenberg, Stefan; van den Broeke, Michiel; Nilsson, Johan

    2018-01-01

    Ice discharge from large ice sheets plays a direct role in determining rates of sea-level rise. We map present-day Antarctic-wide surface velocities using Landsat 7 and 8 imagery spanning 2013–2015 and compare to earlier estimates derived from synthetic aperture radar, revealing heterogeneous

  15. Interannual variation of the Antarctic Ice Sheet from a combined analysis of satellite gravimetry and altimetry data

    Science.gov (United States)

    Mémin, A.; Flament, T.; Alizier, B.; Watson, C.; Rémy, F.

    2015-07-01

    Assessment of the long term mass balance of the Antarctic Ice Sheet, and thus the determination of its contribution to sea level rise, requires an understanding of interannual variability and associated causal mechanisms. We performed a combined analysis of surface-mass and elevation changes using data from the GRACE and Envisat satellite missions, respectively. Using empirical orthogonal functions and singular value decompositions of each data set, we find a quasi 4.7-yr periodic signal between 08/2002 and 10/2010 that accounts for ∼ 15- 30% of the time variability of the filtered and detrended surface-mass and elevation data. Computation of the density of this variable mass load corresponds to snow or uncompacted firn. Changes reach maximum amplitude within the first 100 km from the coast where it contributes up to 30-35% of the annual rate of accumulation. Extending the analysis to 09/2014 using surface-mass changes only, we have found anomalies with a periodicity of about 4-6 yrs that circle the AIS in about 9-10 yrs. These properties connect the observed anomalies to the Antarctic Circumpolar Wave (ACW) which is known to affect several key climate variables, including precipitation. It suggests that variability in the surface-mass balance of the Antarctic Ice Sheet may also be modulated by the ACW.

  16. The paradox of a long grounding during West Antarctic Ice Sheet retreat in Ross Sea.

    Science.gov (United States)

    Bart, Philip J; Krogmeier, Benjamin J; Bart, Manon P; Tulaczyk, Slawek

    2017-04-28

    Marine geological data show that the West Antarctic Ice Sheet (WAIS) advanced to the eastern Ross Sea shelf edge during the Last Glacial Maximum (LGM) and eventually retreated ~1000 km to the current grounding-line position on the inner shelf. During the early deglacial, the WAIS deposited a voluminous stack of overlapping grounding zone wedges (GZWs) on the outer shelf of the Whales Deep Basin. The large sediment volume of the GZW cluster suggests that the grounding-line position of the paleo-Bindschadler Ice Stream was relatively stationary for a significant time interval. We used an upper bound estimate of paleo-sediment flux to investigate the lower bound duration over which the ice stream would have deposited sediment to account for the GZW volume. Our calculations show that the cluster represents more than three millennia of ice-stream sedimentation. This long duration grounding was probably facilitated by rapid GZW growth. The subsequent punctuated large-distance (~200 km) grounding-line retreat may have been a highly non-linear ice sheet response to relatively continuous external forcing such as gradual climate warming or sea-level rise. These findings indicate that reliable predictions of future WAIS retreat may require incorporation of realistic calculations of sediment erosion, transport and deposition.

  17. Sea-level and solid-Earth deformation feedbacks in ice sheet modelling

    Science.gov (United States)

    Konrad, Hannes; Sasgen, Ingo; Klemann, Volker; Thoma, Malte; Grosfeld, Klaus; Martinec, Zdeněk

    2014-05-01

    The interactions of ice sheets with the sea level and the solid Earth are important factors for the stability of the ice shelves and the tributary inland ice (e.g. Thomas and Bentley, 1978; Gomez et al, 2012). First, changes in ice extent and ice thickness induce viscoelastic deformation of the Earth surface and Earth's gravity field. In turn, global and local changes in sea level and bathymetry affect the grounding line and, subsequently, alter the ice dynamic behaviour. Here, we investigate these feedbacks for a synthetic ice sheet configuration as well as for the Antarctic ice sheet using a three-dimensional thermomechanical ice sheet and shelf model, coupled to a viscoelastic solid-Earth and gravitationally self-consistent sea-level model. The respective ice sheet undergoes a forcing from rising sea level, warming ocean, and/or changing surface mass balance. The coupling is realized by exchanging ice thickness, Earth surface deformation and sea level periodically. We apply several sets of viscoelastic Earth parameters to our coupled model, e.g. simulating a low-viscous upper mantle present at the Antarctic Peninsula (Ivins et al., 2011). Special focus of our study lies on the evolution of Earth surface deformation and local sea level changes, as well as on the accompanying grounding line evolution. N. Gomez, D. Pollard, J. X. Mitrovica, P. Huybers, and P. U. Clark 2012. Evolution of a coupled marine ice sheet-sea level model, J. Geophys. Res., 117, F01013, doi:10.1029/2011JF002128. E. R. Ivins, M. M. Watkins, D.-N. Yuan, R. Dietrich, G. Casassa, and A. Rülke 2011. On-land ice loss and glacial isostatic adjustment at the Drake Passage: 2003-2009, J. Geophys. Res. 116, B02403, doi: 10.1029/2010JB007607 R. H. Thomas and C. R. Bentley 1978. A model for Holocene retreat of the West Antarctic Ice Sheet, Quaternary Research, 10 (2), pages 150-170, doi: 10.1016/0033-5894(78)90098-4.

  18. The influence of ice sheets on temperature during the past 38 million years inferred from a one-dimensional ice sheet-climate model

    NARCIS (Netherlands)

    Stap, Lennert B.; Van De Wal, Roderik S.W.; De Boer, Bas; Bintanja, Richard; Lourens, Lucas J.

    2017-01-01

    Since the inception of the Antarctic ice sheet at the Eocene-Oligocene transition ( ~34 Myr ago), land ice has played a crucial role in Earth's climate. Through feedbacks in the climate system, land ice variability modifies atmospheric temperature changes induced by orbital, topographical, and

  19. Decision making under catastrophic risk and learning: The case of the possible collapse of the West Antarctic Ice Sheet

    NARCIS (Netherlands)

    Guillerminet, M.L.; Tol, R.S.J.

    2008-01-01

    A collapse of the West-Antarctic Ice Sheet (WAIS) would cause a sea level rise of 5-6 m, perhaps even within 100 years, with catastrophic consequences. The probability of such a collapse is small but increasing with the rise of the atmospheric concentrations of greenhouse gas and the resulting

  20. Overview of Ice-Sheet Mass Balance and Dynamics from ICESat Measurements

    Science.gov (United States)

    Zwally, H. Jay

    2010-01-01

    The primary purpose of the ICESat mission was to determine the present-day mass balance of the Greenland and Antarctic ice sheets, identify changes that may be occurring in the surface-mass flux and ice dynamics, and estimate their contributions to global sea-level rise. Although ICESat's three lasers were planned to make continuous measurements for 3 to 5 years, the mission was re-planned to operate in 33-day campaigns 2 to 3 times each year following failure of the first laser after 36 days. Seventeen campaigns were conducted with the last one in the Fall of 2009. Mass balance maps derived from measured ice-sheet elevation changes show that the mass loss from Greenland has increased significantly to about 170 Gt/yr for 2003 to 2007 from a state of near balance in the 1990's. Increased losses (189 Gt/yr) from melting and dynamic thinning are over seven times larger'than increased gains (25 gt/yr) from precipitation. Parts of the West Antarctic ice sheet and the Antarctic Peninsula are losing mass at an increasing rate, but other parts of West Antarctica and the East Antarctic ice sheet are gaining mass at an increasing rate. Increased losses of 35 Gt/yr in Pine Island, Thwaites-Smith, and Marie-Bryd.Coast are more than balanced by gains in base of Peninsula and ice stream C, D, & E systems. From the 1992-2002 to 2003-2007 period, the overall mass balance for Antarctica changed from a loss of about 60 Gt/yr to near balance or slightly positive.

  1. Large-Ensemble modeling of past and future variations of the Antarctic Ice Sheet with a coupled ice-Earth-sea level model

    Science.gov (United States)

    Pollard, David; DeConto, Robert; Gomez, Natalya

    2016-04-01

    To date, most modeling of the Antarctic Ice Sheet's response to future warming has been calibrated using recent and modern observations. As an alternate approach, we apply a hybrid 3-D ice sheet-shelf model to the last deglacial retreat of Antarctica, making use of geologic data of the last ~20,000 years to test the model against the large-scale variations during this period. The ice model is coupled to a global Earth-sea level model to improve modeling of the bedrock response and to capture ocean-ice gravitational interactions. Following several recent ice-sheet studies, we use Large Ensemble (LE) statistical methods, performing sets of 625 runs from 30,000 years to present with systematically varying model parameters. Objective scores for each run are calculated using modern data and past reconstructed grounding lines, relative sea level records, cosmogenic elevation-age data and uplift rates. The LE results are analyzed to calibrate 4 particularly uncertain model parameters that concern marginal ice processes and interaction with the ocean. LE's are extended into the future with climates following RCP scenarios. An additional scoring criterion tests the model's ability to reproduce estimated sea-level high stands in the warm mid-Pliocene, for which drastic retreat mechanisms of hydrofracturing and ice-cliff failure are needed in the model. The LE analysis provides future sea-level-rise envelopes with well-defined parametric uncertainty bounds. Sensitivities of future LE results to Pliocene sea-level estimates, coupling to the Earth-sea level model, and vertical profiles of Earth properties, will be presented.

  2. The Pleistocene evolution of the East Antarctic Ice Sheet in the Prydz bay region: Stable isotopic evidence from ODP Site 1167

    Science.gov (United States)

    Theissen, K.M.; Dunbar, R.B.; Cooper, A. K.; Mucciarone, D.A.; Hoffmann, D.

    2003-01-01

    Ocean Drilling Program Leg 188, Prydz Bay, East Antarctica is part of a larger initiative to explore the Cenozoic history of the Antarctic Ice Sheet through direct drilling and sampling of the continental margins. In this paper, we present stable isotopic results from Ocean Drilling Program (ODP) Site 1167 located on the Prydz Channel Trough Mouth Fan (TMF), the first Antarctic TMF to be drilled. The foraminifer-based ??18O record is interpreted along with sedimentary and downhole logging evidence to reconstruct the Quaternary glacial history of Prydz Bay and the adjacent Lambert Glacier Amery Ice Shelf System (LGAISS). We report an electron spin resonance age date of 36. 9 ?? 3.3 ka at 0.45 m below sea floor and correlate suspected glacial-interglacial cycles with the global isotopic stratigraphy to improve the chronology for Site 1167. The ??18O record based on planktonic (Neogloboquadrina pachyderma (s.)) and limited benthic results (Globocassidulina crassa), indicates a trend of ice sheet expansion that was interrupted by a period of reduced ice volume and possibly warmer conditions during the early-mid-Pleistocene (0.9-1.38 Ma). An increase in ?? 18O values after ??? 900 ka appears to coincide with the mid-Pleistocene climate transition and the expansion of the northern hemisphere ice sheet. The ??18O record in the upper 50 m of the stratigraphic section indicates as few as three glacial-interglacial cycles, tentatively assigned as marine isotopic stages (MIS) 16-21, are preserved since the Brunhes/Matuyama paleomagnetic reversal (780 ka). This suggests that there is a large unconformity near the top of the section and/or that there may have been few extreme advances of the ice sheet since the mid-Pleistocene climate transition resulting in lowered sedimentation rates on the Prydz Channel TMF. The stable isotopic record from Site 1167 is one of the few available from the area south of the Antarctic Polar Front that has been linked with the global isotopic

  3. The Global and Local Climatic Response to the Collapse of the West Antarctic Ice Sheet

    Science.gov (United States)

    Huybers, K. M.; Singh, H.; Steiger, N. J.; Frierson, D. M.; Steig, E. J.; Bitz, C. M.

    2014-12-01

    Glaciologists have suggested that a relatively small external forcing may compromise the stability of the West Antarctic Ice Sheet (WAIS). Further, there is compelling physical evidence that the WAIS has collapsed in the past, at times when the mean global temperature was only a few degrees warmer than it is today. In addition to a rapid increase in global sea level, the collapse of the WAIS could also affect the global circulation of the atmosphere. Ice sheets are some of the largest topographic features on Earth, causing large regional anomalies in albedo and radiative balance. Our work uses idealized aquaplanet models in tandem with a fully coupled ocean/atmosphere/sea-ice model (CCSM4) to compare the atmospheric, radiative, and oceanic response to a complete loss of the WAIS. Initial findings indicate that the loss of the WAIS leads to a weakening and equator-ward shift of the zonal winds, a development of strong zonal asymmetries in the meridional wind, and a northward migration of the Intertropical Convergence Zone. We aim to characterize how the local and global climate is affected by the presence of the WAIS, and how changes in the distribution of Southern Hemisphere ice may be represented in the proxy record.

  4. Sea-level response to abrupt ocean warming of Antarctic ice shelves

    Science.gov (United States)

    Pattyn, Frank

    2016-04-01

    Antarctica's contribution to global sea-level rise increases steadily. A fundamental question remains whether the ice discharge will lead to marine ice sheet instability (MISI) and collapse of certain sectors of the ice sheet or whether ice loss will increase linearly with the warming trends. Therefore, we employ a newly developed ice sheet model of the Antarctic ice sheet, called f.ETISh (fast Elementary Thermomechanical Ice Sheet model) to simulate ice sheet response to abrupt perturbations in ocean and atmospheric temperature. The f.ETISh model is a vertically integrated hybrid (SSA/SIA) ice sheet model including ice shelves. Although vertically integrated, thermomechanical coupling is ensured through a simplified representation of ice sheet thermodynamics based on an analytical solution of the vertical temperature profile, including strain heating and horizontal advection. The marine boundary is represented by a flux condition either coherent with power-law basal sliding (Pollard & Deconto (2012) based on Schoof (2007)) or according to Coulomb basal friction (Tsai et al., 2015), both taking into account ice-shelf buttressing. Model initialization is based on optimization of the basal friction field. Besides the traditional MISMIP tests, new tests with respect to MISI in plan-view models have been devised. The model is forced with stepwise ocean and atmosphere temperature perturbations. The former is based on a parametrised sub-shelf melt (limited to ice shelves), while the latter is based on present-day mass balance/surface temperature and corrected for elevation changes. Surface melting is introduced using a PDD model. Results show a general linear response in mass loss to ocean warming. Nonlinear response due to MISI occurs under specific conditions and is highly sensitive to the basal conditions near the grounding line, governed by both the initial conditions and the basal sliding/deformation model. The Coulomb friction model leads to significantly higher

  5. Vigorous lateral export of the meltwater outflow from beneath an Antarctic ice shelf.

    Science.gov (United States)

    Garabato, Alberto C Naveira; Forryan, Alexander; Dutrieux, Pierre; Brannigan, Liam; Biddle, Louise C; Heywood, Karen J; Jenkins, Adrian; Firing, Yvonne L; Kimura, Satoshi

    2017-02-09

    The instability and accelerated melting of the Antarctic Ice Sheet are among the foremost elements of contemporary global climate change. The increased freshwater output from Antarctica is important in determining sea level rise, the fate of Antarctic sea ice and its effect on the Earth's albedo, ongoing changes in global deep-ocean ventilation, and the evolution of Southern Ocean ecosystems and carbon cycling. A key uncertainty in assessing and predicting the impacts of Antarctic Ice Sheet melting concerns the vertical distribution of the exported meltwater. This is usually represented by climate-scale models as a near-surface freshwater input to the ocean, yet measurements around Antarctica reveal the meltwater to be concentrated at deeper levels. Here we use observations of the turbulent properties of the meltwater outflows from beneath a rapidly melting Antarctic ice shelf to identify the mechanism responsible for the depth of the meltwater. We show that the initial ascent of the meltwater outflow from the ice shelf cavity triggers a centrifugal overturning instability that grows by extracting kinetic energy from the lateral shear of the background oceanic flow. The instability promotes vigorous lateral export, rapid dilution by turbulent mixing, and finally settling of meltwater at depth. We use an idealized ocean circulation model to show that this mechanism is relevant to a broad spectrum of Antarctic ice shelves. Our findings demonstrate that the mechanism producing meltwater at depth is a dynamically robust feature of Antarctic melting that should be incorporated into climate-scale models.

  6. Interaction of ice sheets and climate on geological time scales

    NARCIS (Netherlands)

    Stap, L.B.

    2017-01-01

    Since the inception of the Antarctic ice sheet at the Eocene-Oligocene Transition (~34 Myr ago), land ice plays a crucial role in Earth’s climate. Through the ice-albedo and surface-height-temperature feedbacks, land ice variability strengthens atmospheric temperature changes induced by orbital and

  7. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    Science.gov (United States)

    Martin, M. A.; Winkelmann, R.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK). The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  8. Neoglacial Antarctic sea-ice expansion driven by mid-Holocene retreat of the Ross Ice Shelf.

    Science.gov (United States)

    Bendle, J. A.; Newton, K.; Mckay, R. M.; Crosta, X.; Etourneau, J.; Anya, A. B.; Seki, O.; Golledge, N. R.; Bertler, N. A. N.; Willmott, V.; Schouten, S.; Riesselman, C. R.; Masse, G.; Dunbar, R. B.

    2017-12-01

    Recent decades have seen expanding Antarctic sea-ice coverage, coeval with thinning West Antarctic Ice Sheet (WAIS) ice shelves and the rapid freshening of surface and bottom waters along the Antarctic margin. The mid-Holocene Neoglacial transition represents the last comparable baseline shift in sea-ice behaviour. The drivers and feedbacks involved in both the recent and Holocene events are poorly understood and characterised by large proxy-model mismatches. We present new records of compound specific fatty acid isotope analyses (δ2H-FA), highly-branched isoprenoid alkenes (HBIs) TEX86L temperatures, grain-size, mass accumulations rates (MARs) and image analyses from a 171m Holocene sediment sequence from Site U1357 (IODP leg 318). In combination with published records we reconstruct Holocene changes in glacial meltwater, sedimentary inputs and sea-ice. The early Holocene (11 to 10 ka) is characterised by large fluctuations in inputs of deglacial meltwater and sediments and seismic evidence of downlapping material from the south, suggesting a dominating influence from glacial retreat of the local outlet glaciers. From 10 to 8 ka there is decreasing meltwater inputs, an onlapping drift and advection of material from the east. After ca. 8 ka positively correlated δ2H-FA and MARs infer that pulses of glacial melt correlate to stronger easterly currents, driving erosion of material from upstream banks and that the Ross Ice Shelf (RIS) becomes a major influence. A large mid-Holocene meltwater pulse (preceded by warming TEX86L temperatures) is evident between ca. 6 to 4.5 ka, culminating in a rapid and permanent increase in sea-ice from 4.5 ka. This is coeval with cosmogenic nuclide evidence for a rapid thinning of the Antarctic ice sheet during the mid-Holocene (Hein et al., 2016). We suggest this represents a final major pulse of deglaciation from the Ross Ice Shelf, which initiates the Neoglacial, driving cool surface waters along the coast and greater sea-ice

  9. Links between Patagonian Ice Sheet fluctuations and Antarctic dust variability during the last glacial period (MIS 4-2)

    Science.gov (United States)

    Kaiser, Jérôme; Lamy, Frank

    2010-06-01

    Antarctic and Greenland ice-core records reveal large fluctuations of dust input on both orbital and millennial time-scales with potential global climate implications. At least during glacial periods, the Antarctic dust fluctuations appear to be largely controlled by environmental changes in southern South America. We compare dust flux records from two Antarctic ice-cores to variations in the composition of the terrigenous supply at ODP Site 1233 located off southern Chile and known to record fluctuations in the extent of the northern part of the Patagonian ice-sheet (NPIS) during the last glacial period (Marine Isotope Stage, MIS, 4 to 2). Within age uncertainties, millennial-scale glacial advances (retreats) of the NPIS correlate to Antarctic dust maxima (minima). In turn, NPIS fluctuations were closely related to offshore sea surface temperature (SST) changes. This pattern suggests a causal link involving changes in temperature, in rock flour availability, in latitudinal extensions of the westerly winds and in foehn winds in the southern Pampas and Patagonia. We further suggest that the long-term trend of dust accumulation is partly linked to the sea-level related changes in the size if the Patagonian source area due to the particular morphology of the Argentine shelf. We suggest that sea-level drops at the beginning of MIS 4 and MIS 2 were important for long-term dust increases, while changes in the Patagonian dust source regions primarily control the early dust decrease during the MIS 4/3 transition and Termination 1.

  10. Mass Balance of the West Antarctic Ice-Sheet from ICESat Measurements

    Science.gov (United States)

    Zwally, H. Jay; Li, Jun; Robins, John; Saba, Jack L.; Yi, Donghui

    2011-01-01

    Mass balance estimates for 2003-2008 are derived from ICESat laser altimetry and compared with estimates for 1992-2002 derived from ERS radar altimetry. The net mass balance of 3 drainage systems (Pine Island, Thwaites/Smith, and the coast of Marie Bryd) for 2003-2008 is a loss of 100 Gt/yr, which increased from a loss of 70 Gt/yr for the earlier period. The DS including the Bindschadler and MacAyeal ice streams draining into the Ross Ice Shelf has a mass gain of 11 Gt/yr for 2003-2008, compared to an earlier loss of 70 Gt/yr. The DS including the Whillans and Kamb ice streams has a mass gain of 12 Gt/yr, including a significant thickening on the upper part of the Kamb DS, compared to a earlier gain of 6 Gt/yr (includes interpolation for a large portion of the DS). The other two DS discharging into the Ronne Ice Shelf and the northern Ellsworth Coast have a mass gain of 39 Gt/yr, compared to a gain of 4 Gt/yr for the earlier period. Overall, the increased losses of 30 Gt/yr in the Pine Island, Thwaites/Smith, and the coast of Marie Bryd DSs are exceeded by increased gains of 59 Gt/yr in the other 4 DS. Overall, the mass loss from the West Antarctic ice sheet has decreased to 38 Gt/yr from the earlier loss of 67 Gt/yr, reducing the contribution to sea level rise to 0.11 mm/yr from 0.19 mm/yr

  11. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections

    Science.gov (United States)

    Kopp, Robert E.; DeConto, Robert M.; Bader, Daniel A.; Hay, Carling C.; Horton, Radley M.; Kulp, Scott; Oppenheimer, Michael; Pollard, David; Strauss, Benjamin H.

    2017-12-01

    Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simulations incorporating these physical processes to explore their influence on global-mean sea-level (GMSL) and relative sea-level (RSL). We compare the new projections to past results using expert assessment and structured expert elicitation about AIS changes. Under high greenhouse gas emissions (Representative Concentration Pathway [RCP] 8.5), median projected 21st century GMSL rise increases from 79 to 146 cm. Without protective measures, revised median RSL projections would by 2100 submerge land currently home to 153 million people, an increase of 44 million. The use of a physical model, rather than simple parameterizations assuming constant acceleration of ice loss, increases forcing sensitivity: overlap between the central 90% of simulations for 2100 for RCP 8.5 (93-243 cm) and RCP 2.6 (26-98 cm) is minimal. By 2300, the gap between median GMSL estimates for RCP 8.5 and RCP 2.6 reaches >10 m, with median RSL projections for RCP 8.5 jeopardizing land now occupied by 950 million people (versus 167 million for RCP 2.6). The minimal correlation between the contribution of AIS to GMSL by 2050 and that in 2100 and beyond implies current sea-level observations cannot exclude future extreme outcomes. The sensitivity of post-2050 projections to deeply uncertain physics highlights the need for robust decision and adaptive management frameworks.

  12. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections

    Science.gov (United States)

    Kopp, Robert E.; DeConto, Robert M.; Bader, Daniel A.; Hay, Carling C.; Horton, Radley M.; Kulp, Scott; Oppenheimer, Michael; Pollard, David; Strauss, Benjamin

    2017-01-01

    Mechanisms such as ice-shelf hydrofracturing and ice-cliff collapse may rapidly increase discharge from marine-based ice sheets. Here, we link a probabilistic framework for sea-level projections to a small ensemble of Antarctic ice-sheet (AIS) simulations incorporating these physical processes to explore their influence on global-mean sea-level (GMSL) and relative sea-level (RSL). We compare the new projections to past results using expert assessment and structured expert elicitation about AIS changes. Under high greenhouse gas emissions (Representative Concentration Pathway [RCP] 8.5), median projected 21st century GMSL rise increases from 79 to 146 cm. Without protective measures, revised median RSL projections would by 2100 submerge land currently home to 153 million people, an increase of 44 million. The use of a physical model, rather than simple parameterizations assuming constant acceleration of ice loss, increases forcing sensitivity: overlap between the central 90% of simulations for 2100 for RCP 8.5 (93-243 cm) and RCP 2.6 (26-98 cm) is minimal. By 2300, the gap between median GMSL estimates for RCP 8.5 and RCP 2.6 reaches >10 m, with median RSL projections for RCP 8.5 jeopardizing land now occupied by 950 million people (versus 167 million for RCP 2.6). The minimal correlation between the contribution of AIS to GMSL by 2050 and that in 2100 and beyond implies current sea-level observations cannot exclude future extreme outcomes. The sensitivity of post-2050 projections to deeply uncertain physics highlights the need for robust decision and adaptive management frameworks.

  13. Switch of flow direction in an Antarctic ice stream.

    Science.gov (United States)

    Conway, H; Catania, G; Raymond, C F; Gades, A M; Scambos, T A; Engelhardt, H

    2002-10-03

    Fast-flowing ice streams transport ice from the interior of West Antarctica to the ocean, and fluctuations in their activity control the mass balance of the ice sheet. The mass balance of the Ross Sea sector of the West Antarctic ice sheet is now positive--that is, it is growing--mainly because one of the ice streams (ice stream C) slowed down about 150 years ago. Here we present evidence from both surface measurements and remote sensing that demonstrates the highly dynamic nature of the Ross drainage system. We show that the flow in an area that once discharged into ice stream C has changed direction, now draining into the Whillans ice stream (formerly ice stream B). This switch in flow direction is a result of continuing thinning of the Whillans ice stream and recent thickening of ice stream C. Further abrupt reorganization of the activity and configuration of the ice streams over short timescales is to be expected in the future as the surface topography of the ice sheet responds to the combined effects of internal dynamics and long-term climate change. We suggest that caution is needed when using observations of short-term mass changes to draw conclusions about the large-scale mass balance of the ice sheet.

  14. Snow Accumulation Variability Over the West Antarctic Ice Sheet Since 1900: A Comparison of Ice Core Records With ERA-20C Reanalysis

    Science.gov (United States)

    Wang, Yetang; Thomas, Elizabeth R.; Hou, Shugui; Huai, Baojuan; Wu, Shuangye; Sun, Weijun; Qi, Shanzhong; Ding, Minghu; Zhang, Yulun

    2017-11-01

    This study uses a set of 37 firn core records over the West Antarctic Ice Sheet (WAIS) to test the performance of the twentieth century from the European Centre for Medium-Range Weather Forecasts (ERA-20C) reanalysis for snow accumulation and quantify temporal variability in snow accumulation since 1900. The firn cores are allocated to four geographical areas demarcated by drainage divides (i.e., Antarctic Peninsula (AP), western WAIS, central WAIS, and eastern WAIS) to calculate stacked records of regional snow accumulation. Our results show that the interannual variability in ERA-20C precipitation minus evaporation (P - E) agrees well with the corresponding ice core snow accumulation composites in each of the four geographical regions, suggesting its skill for simulating snow accumulation changes before the modern satellite era (pre-1979). Snow accumulation experiences significantly positive trends for the AP and eastern WAIS, a negative trend for the western WAIS, and no significant trend for the central WAIS from 1900 to 2010. The contrasting trends are associated with changes in the large-scale moisture transport driven by a deepening of the low-pressure systems and anomalies of sea ice in the Amundsen Sea Low region.

  15. Investigations of the form and flow of ice sheets and glaciers using radio-echo sounding

    Energy Technology Data Exchange (ETDEWEB)

    Dowdeswell, J A; Evans, S [Scott Polar Research Institute, University of Cambridge, Cambridge CB2 1ER (United Kingdom)

    2004-10-01

    Radio-echo sounding (RES), utilizing a variety of radio frequencies, was developed to allow glaciologists to measure the thickness of ice sheets and glaciers. We review the nature of electromagnetic wave propagation in ice and snow, including the permittivity of ice, signal attenuation and volume scattering, along with reflection from rough and specular surfaces. The variety of instruments used in RES of polar ice sheets and temperate glaciers is discussed. The applications and insights that a knowledge of ice thickness, and the wider nature of the form and flow of ice sheets, provides are also considered. The thickest ice measured is 4.7 km in East Antarctica. The morphology of the Antarctic and Greenland ice sheets, and many of the smaller ice caps and glaciers of the polar regions, has been investigated using RES. These findings are being used in three-dimensional numerical models of the response of the cryosphere to environmental change. In addition, the distribution and character of internal and basal reflectors within ice sheets contains information on, for example, ice-sheet layering and its chrono-stratigraphic significance, and has enabled the discovery and investigation of large lakes beneath the Antarctic Ice Sheet. Today, RES from ground-based and airborne platforms remains the most effective tool for measuring ice thickness and internal character.

  16. The Potsdam Parallel Ice Sheet Model (PISM-PIK – Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet

    Directory of Open Access Journals (Sweden)

    M. A. Martin

    2011-09-01

    Full Text Available We present a dynamic equilibrium simulation of the ice sheet-shelf system on Antarctica with the Potsdam Parallel Ice Sheet Model (PISM-PIK. The simulation is initialized with present-day conditions for bed topography and ice thickness and then run to steady state with constant present-day surface mass balance. Surface temperature and sub-shelf basal melt distribution are parameterized. Grounding lines and calving fronts are free to evolve, and their modeled equilibrium state is compared to observational data. A physically-motivated calving law based on horizontal spreading rates allows for realistic calving fronts for various types of shelves. Steady-state dynamics including surface velocity and ice flux are analyzed for whole Antarctica and the Ronne-Filchner and Ross ice shelf areas in particular. The results show that the different flow regimes in sheet and shelves, and the transition zone between them, are captured reasonably well, supporting the approach of superposition of SIA and SSA for the representation of fast motion of grounded ice. This approach also leads to a natural emergence of sliding-dominated flow in stream-like features in this new 3-D marine ice sheet model.

  17. Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6

    Science.gov (United States)

    Nowicki, Sophie M.J.; Payne, Tony; Larour, Eric; Seroussi, Helene; Goelzer, Heiko; Lipscomb, William; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew

    2018-01-01

    Reducing the uncertainty in the past, present and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project – phase 6 (CMIP6) focusing on the Greenland and Antarctic Ice Sheets. In this paper, we describe the framework for ISMIP6 and its relationship to other activities within CMIP6. The ISMIP6 experimental design relies on CMIP6 climate models and includes, for the first time within CMIP, coupled ice sheet – climate models as well as standalone ice sheet models. To facilitate analysis of the multi-model ensemble and to generate a set of standard climate inputs for standalone ice sheet models, ISMIP6 defines a protocol for all variables related to ice sheets. ISMIP6 will provide a basis for investigating the feedbacks, impacts, and sea-level changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea-level change. PMID:29697697

  18. Modeling the Thermal Interactions of Meteorites Below the Antarctic Ice

    Science.gov (United States)

    Oldroyd, William Jared; Radebaugh, Jani; Stephens, Denise C.; Lorenz, Ralph; Harvey, Ralph; Karner, James

    2017-10-01

    Meteorites with high specific gravities, such as irons, appear to be underrepresented in Antarctic collections over the last 40 years. This underrepresentation is in comparison with observed meteorite falls, which are believed to represent the actual population of meteorites striking Earth. Meteorites on the Antarctic ice sheet absorb solar flux, possibly leading to downward tunneling into the ice, though observations of this in action are very limited. This descent is counteracted by ice sheet flow supporting the meteorites coupled with ablation near mountain margins, which helps to force meteorites towards the surface. Meteorites that both absorb adequate thermal energy and are sufficiently dense may instead reach a shallow equilibrium depth as downward melting overcomes upward forces during the Antarctic summer. Using a pyronometer, we have measured the incoming solar flux at multiple depths in two deep field sites in Antarctica, the Miller Range and Elephant Moraine. We compare these data with laboratory analogues and model the thermal and physical interactions between a variety of meteorites and their surroundings. Our Matlab code model will account for a wide range of parameters used to characterize meteorites in an Antarctic environment. We will present the results of our model along with depth estimates for several types of meteorites. The recovery of an additional population of heavy meteorites would increase our knowledge of the formation and composition of the solar system.

  19. Ice Sheet Model Intercomparison Project (ISMIP6) Contribution to CMIP6

    Science.gov (United States)

    Nowicki, Sophie M. J.; Payne, Tony; Larour, Eric; Seroussi, Helene; Goelzer, Heiko; Lipscomb, William; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew

    2016-01-01

    Reducing the uncertainty in the past, present, and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model Intercomparison Project phase 6 (CMIP6) focusing on the Greenland and Antarctic ice sheets. In this paper, we describe the framework for ISMIP6 and its relationship with other activities within CMIP6. The ISMIP6 experimental design relies on CMIP6 climate models and includes, for the first time within CMIP, coupled ice-sheetclimate models as well as standalone ice-sheet models. To facilitate analysis of the multi-model ensemble and to generate a set of standard climate inputs for standalone ice-sheet models, ISMIP6 defines a protocol for all variables related to ice sheets. ISMIP6 will provide a basis for investigating the feedbacks, impacts, and sea-level changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea-level change.

  20. Evaluation of Ice sheet evolution and coastline changes from 1960s in Amery Ice Shelf using multi-source remote sensing images

    Science.gov (United States)

    Qiao, G.; Ye, W.; Scaioni, M.; Liu, S.; Feng, T.; Liu, Y.; Tong, X.; Li, R.

    2013-12-01

    Global change is one of the major challenges that all the nations are commonly facing, and the Antarctica ice sheet changes have been playing a critical role in the global change research field during the past years. Long time-series of ice sheet observations in Antarctica would contribute to the quantitative evaluation and precise prediction of the effects on global change induced by the ice sheet, of which the remote sensing technology would make critical contributions. As the biggest ice shelf and one of the dominant drainage systems in East Antarctic, the Amery Ice Shelf has been making significant contributions to the mass balance of the Antarctic. Study of Amery Ice shelf changes would advance the understanding of Antarctic ice shelf evolution as well as the overall mass balance. At the same time, as one of the important indicators of Antarctica ice sheet characteristics, coastlines that can be detected from remote sensing imagery can help reveal the nature of the changes of ice sheet evolution. Most of the scientific research on Antarctica with satellite remote sensing dated from 1970s after LANDSAT satellite was brought into operation. It was the declassification of the cold war satellite reconnaissance photographs in 1995, known as Declassified Intelligence Satellite Photograph (DISP) that provided a direct overall view of the Antarctica ice-sheet's configuration in 1960s, greatly extending the time span of Antarctica surface observations. This paper will present the evaluation of ice-sheet evolution and coastline changes in Amery Ice Shelf from 1960s, by using multi-source remote sensing images including the DISP images and the modern optical satellite images. The DISP images scanned from negatives were first interior-oriented with the associated parameters, and then bundle block adjustment technology was employed based on the tie points and control points, to derive the mosaic image of the research region. Experimental results of coastlines generated

  1. An unusual early Holocene diatom event north of the Getz Ice Shelf (Amundsen Sea): Implications for West Antarctic Ice Sheet development

    Science.gov (United States)

    Esper, O.; Gersonde, R.; Hillenbrand, C.; Kuhn, G.; Smith, J.

    2011-12-01

    Modern global change affects not only the polar north but also, and to increasing extent, the southern high latitudes, especially the Antarctic regions covered by the West Antarctic Ice Sheet (WAIS). Consequently, knowledge of the mechanisms controlling past WAIS dynamics and WAIS behaviour at the last deglaciation is critical to predict its development in a future warming world. Geological and palaeobiological information from major drainage areas of the WAIS, like the Amundsen Sea Embayment, shed light on the history of the WAIS glaciers. Sediment records obtained from a deep inner shelf basin north of Getz Ice Shelf document a deglacial warming in three phases. Above a glacial diamicton and a sediment package barren of microfossils that document sediment deposition by grounded ice and below an ice shelf or perennial sea ice cover (possibly fast ice), respectively, a sediment section with diatom assemblages dominated by sea ice taxa indicates ice shelf retreat and seasonal ice-free conditions. This conclusion is supported by diatom-based summer temperature reconstructions. The early retreat was followed by a phase, when exceptional diatom ooze was deposited around 12,500 cal. years B.P. [1]. Microscopical inspection of this ooze revealed excellent preservation of diatom frustules of the species Corethron pennatum together with vegetative Chaetoceros, thus an assemblage usually not preserved in the sedimentary record. Sediments succeeding this section contain diatom assemblages indicating rather constant Holocene cold water conditions with seasonal sea ice. The deposition of the diatom ooze can be related to changes in hydrographic conditions including strong advection of nutrients. However, sediment focussing in the partly steep inner shelf basins cannot be excluded as a factor enhancing the thickness of the ooze deposits. It is not only the presence of the diatom ooze but also the exceptional preservation and the species composition of the diatom assemblage

  2. The safety band of Antarctic ice shelves

    Science.gov (United States)

    Fürst, Johannes Jakob; Durand, Gaël; Gillet-Chaulet, Fabien; Tavard, Laure; Rankl, Melanie; Braun, Matthias; Gagliardini, Olivier

    2016-05-01

    The floating ice shelves along the seaboard of the Antarctic ice sheet restrain the outflow of upstream grounded ice. Removal of these ice shelves, as shown by past ice-shelf recession and break-up, accelerates the outflow, which adds to sea-level rise. A key question in predicting future outflow is to quantify the extent of calving that might precondition other dynamic consequences and lead to loss of ice-shelf restraint. Here we delineate frontal areas that we label as `passive shelf ice’ and that can be removed without major dynamic implications, with contrasting results across the continent. The ice shelves in the Amundsen and Bellingshausen seas have limited or almost no `passive’ portion, which implies that further retreat of current ice-shelf fronts will yield important dynamic consequences. This region is particularly vulnerable as ice shelves have been thinning at high rates for two decades and as upstream grounded ice rests on a backward sloping bed, a precondition to marine ice-sheet instability. In contrast to these ice shelves, Larsen C Ice Shelf, in the Weddell Sea, exhibits a large `passive’ frontal area, suggesting that the imminent calving of a vast tabular iceberg will be unlikely to instantly produce much dynamic change.

  3. Crustal heat production and estimate of terrestrial heat flow in central East Antarctica, with implications for thermal input to the East Antarctic ice sheet

    Science.gov (United States)

    Goodge, John W.

    2018-02-01

    Terrestrial heat flow is a critical first-order factor governing the thermal condition and, therefore, mechanical stability of Antarctic ice sheets, yet heat flow across Antarctica is poorly known. Previous estimates of terrestrial heat flow in East Antarctica come from inversion of seismic and magnetic geophysical data, by modeling temperature profiles in ice boreholes, and by calculation from heat production values reported for exposed bedrock. Although accurate estimates of surface heat flow are important as an input parameter for ice-sheet growth and stability models, there are no direct measurements of terrestrial heat flow in East Antarctica coupled to either subglacial sediment or bedrock. As has been done with bedrock exposed along coastal margins and in rare inland outcrops, valuable estimates of heat flow in central East Antarctica can be extrapolated from heat production determined by the geochemical composition of glacial rock clasts eroded from the continental interior. In this study, U, Th, and K concentrations in a suite of Proterozoic (1.2-2.0 Ga) granitoids sourced within the Byrd and Nimrod glacial drainages of central East Antarctica indicate average upper crustal heat production (Ho) of about 2.6 ± 1.9 µW m-3. Assuming typical mantle and lower crustal heat flux for stable continental shields, and a length scale for the distribution of heat production in the upper crust, the heat production values determined for individual samples yield estimates of surface heat flow (qo) ranging from 33 to 84 mW m-2 and an average of 48.0 ± 13.6 mW m-2. Estimates of heat production obtained for this suite of glacially sourced granitoids therefore indicate that the interior of the East Antarctic ice sheet is underlain in part by Proterozoic continental lithosphere with an average surface heat flow, providing constraints on both geodynamic history and ice-sheet stability. The ages and geothermal characteristics of the granites indicate that crust in central

  4. Last Interglacial climate and sea-level evolution from a coupled ice sheet-climate model

    Science.gov (United States)

    Goelzer, Heiko; Huybrechts, Philippe; Loutre, Marie-France; Fichefet, Thierry

    2016-12-01

    As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG, ˜ 130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate-ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet-climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.

  5. Structural Uncertainty in Antarctic sea ice simulations

    Science.gov (United States)

    Schneider, D. P.

    2016-12-01

    The inability of the vast majority of historical climate model simulations to reproduce the observed increase in Antarctic sea ice has motivated many studies about the quality of the observational record, the role of natural variability versus forced changes, and the possibility of missing or inadequate forcings in the models (such as freshwater discharge from thinning ice shelves or an inadequate magnitude of stratospheric ozone depletion). In this presentation I will highlight another source of uncertainty that has received comparatively little attention: Structural uncertainty, that is, the systematic uncertainty in simulated sea ice trends that arises from model physics and mean-state biases. Using two large ensembles of experiments from the Community Earth System Model (CESM), I will show that the model is predisposed towards producing negative Antarctic sea ice trends during 1979-present, and that this outcome is not simply because the model's decadal variability is out-of-synch with that in nature. In the "Tropical Pacific Pacemaker" ensemble, in which observed tropical Pacific SST anomalies are prescribed, the model produces very realistic atmospheric circulation trends over the Southern Ocean, yet the sea ice trend is negative in every ensemble member. However, if the ensemble-mean trend (commonly interpreted as the forced response) is removed, some ensemble members show a sea ice increase that is very similar to the observed. While this results does confirm the important role of natural variability, it also suggests a strong bias in the forced response. I will discuss the reasons for this systematic bias and explore possible remedies. This an important problem to solve because projections of 21st -Century changes in the Antarctic climate system (including ice sheet surface mass balance changes and related changes in the sea level budget) have a strong dependence on the mean state of and changes in the Antarctic sea ice cover. This problem is not unique to

  6. A comparison of the present and last interglacial periods in six Antarctic ice cores

    Directory of Open Access Journals (Sweden)

    V. Masson-Delmotte

    2011-04-01

    Full Text Available We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC, EPICA Dronning Maud Land (EDML, Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during the glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories, which are compared to ice sheet model results. Our results suggest that elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models.

  7. Cascading water underneath Wilkes Land, East Antarctic ice sheet, observed using altimetry and digital elevation models

    Science.gov (United States)

    Flament, T.; Berthier, E.; Rémy, F.

    2014-04-01

    We describe a major subglacial lake drainage close to the ice divide in Wilkes Land, East Antarctica, and the subsequent cascading of water underneath the ice sheet toward the coast. To analyse the event, we combined altimetry data from several sources and subglacial topography. We estimated the total volume of water that drained from Lake CookE2 by differencing digital elevation models (DEM) derived from ASTER and SPOT5 stereo imagery acquired in January 2006 and February 2012. At 5.2 ± 1.5 km3, this is the largest single subglacial drainage event reported so far in Antarctica. Elevation differences between ICESat laser altimetry spanning 2003-2009 and the SPOT5 DEM indicate that the discharge started in November 2006 and lasted approximately 2 years. A 13 m uplift of the surface, corresponding to a refilling of about 0.6 ± 0.3 km3, was observed between the end of the discharge in October 2008 and February 2012. Using the 35-day temporal resolution of Envisat radar altimetry, we monitored the subsequent filling and drainage of connected subglacial lakes located downstream of CookE2. The total volume of water traveling within the theoretical 500-km-long flow paths computed with the BEDMAP2 data set is similar to the volume that drained from Lake CookE2, and our observations suggest that most of the water released from Lake CookE2 did not reach the coast but remained trapped underneath the ice sheet. Our study illustrates how combining multiple remote sensing techniques allows monitoring of the timing and magnitude of subglacial water flow beneath the East Antarctic ice sheet.

  8. Antarctic Glaciological Data at NSIDC: field data, temperature, and ice velocity

    Science.gov (United States)

    Bauer, R.; Bohlander, J.; Scambos, T.; Berthier, E.; Raup, B.; Scharfen, G.

    2003-12-01

    An extensive collection of many Antarctic glaciological parameters is available for the polar science community upon request. The National Science Foundation's Office of Polar Programs funds the Antarctic Glaciological Data Center (AGDC) at the National Snow and Ice Data Center (NSIDC) to archive and distribute Antarctic glaciological and cryospheric system data collected by the U.S. Antarctic Program. AGDC facilitates data exchange among Principal Investigators, preserves recently collected data useful to future research, gathers data sets from past research, and compiles continent-wide information useful for modeling and field work planning. Data sets are available via our web site, http://nsidc.org/agdc/. From here, users can access extensive documentation, citation information, locator maps, derived images and references, and the numerical data. More than 50 Antarctic scientists have contributed data to the archive. Among the compiled products distributed by AGDC are VELMAP and THERMAP. THERMAP is a compilation of over 600 shallow firn temperature measurements ('10-meter temperatures') collected since 1950. These data provide a record of mean annual temperature, and potentially hold a record of climate change on the continent. The data are represented with maps showing the traverse route, and include data sources, measurement technique, and additional measurements made at each site, i.e., snow density and accumulation. VELMAP is an archive of surface ice velocity measurements for the Antarctic Ice Sheet. The primary objective of VELMAP is to assemble a historic record of outlet glaciers and ice shelf ice motion over the Antarctic. The collection includes both PI-contributed measurements and data generated at NSIDC using Landsat and SPOT satellite imagery. Tabular data contain position, speed, bearing, and data quality information, and related references. Two new VELMAP data sets are highlighted: the Mertz Glacier and the Institute Ice Stream. Mertz Glacier ice

  9. Ross Ice Shelf, Antarctic Ice and Clouds

    Science.gov (United States)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  10. A Reconciled Estimate of Ice-Sheet Mass Balance

    Science.gov (United States)

    Shepherd, Andrew; Ivins, Erik R.; Geruo, A.; Barletta, Valentia R.; Bentley, Mike J.; Bettadpur, Srinivas; Briggs, Kate H.; Bromwich, David H.; Forsberg, Rene; Galin, Natalia; hide

    2012-01-01

    We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth's polar ice sheets. We find that there is good agreement between different satellite methods-especially in Greenland and West Antarctica-and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by -142 plus or minus 49, +14 plus or minus 43, -65 plus or minus 26, and -20 plus or minus 14 gigatonnes year(sup -1), respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 plus or minus 0.20 millimeter year(sup -1) to the rate of global sea-level rise.

  11. Ice sheet-ocean interactions and sea level change

    Science.gov (United States)

    Heimbach, Patrick

    2014-03-01

    Mass loss from the Greenland and Antarctic ice sheets has increased rapidly since the mid-1990s. Their combined loss now accounts for about one-third of global sea level rise. In Greenland, a growing body of evidence points to the marine margins of these glaciers as the region from which this dynamic response originated. Similarly, ice streams in West Antarctica that feed vast floating ice shelves have exhibited large decadal changes. We review observational evidence and present physical mechanisms that might explain the observed changes, in particular in the context of ice sheet-ocean interactions. Processes involve cover 7 orders of magnitudes of scales, ranging from mm boundary-layer processes to basin-scale coupled atmosphere-ocean variability. We discuss observational needs to fill the gap in our mechanistic understanding.

  12. A Microbial Community in Sediments Beneath the Western Antarctic Ice Sheet, Ice Stream C (Kamb)

    Science.gov (United States)

    Skidmore, M.; Han, S.; Foo, W.; Bui, D.; Lanoil, B.

    2004-12-01

    In 2000, an ice-drilling project focusing on the "sticky spot" of Ice Stream C recovered cores of sub-glacial sediments from beneath the Western Antarctic Ice Sheet. We have characterized several chemical and microbiological parameters of the sole intact sediment core. Pore waters extracted from these sediments were brackish and some were supersaturated with respect to calcite. Ion chromatography demonstrated the presence of several organic acids at low, but detectable, levels in the pore water. DAPI direct cell counts were approximately 107 cells g-1. Aerobic viable plate counts were much lower than direct cell counts; however, they were two orders of magnitude higher on plates incubated at low temperature (4 ° C; 3.63 x 105 CFU ml-1) than at higher temperatures (ca. 22° C; 1.5 x 103 CFU ml-1); no colonies were detected on plates incubated anaerobically at either temperature. 16S rDNA clone library analysis indicates extremely limited bacterial diversity in these samples: six phylogenetic clades were detected. The three dominant bacterial phylogenetic clades in the clone libraries (252 clones total) were most closely related to Thiobacillus thioparus (180 clones), Polaromonas vacuolata (34 clones), and Gallionella ferruginea (35 clones) and their relatives; one clone each represented the other three phylogenetic clades (most closely related to Ralstonia pickettii, Lysobacter antibioticus, and Xylella fastidiosa, respectively). These sequences match closely with sequences previously obtained from other subglacial environments in Alaska, Ellesmere Island, Canada and New Zealand. Implications of this microbial community to subglacial chemistry and microbial biogeography will be discussed.

  13. Seawater and Detrital Marine Pb Isotopes as Monitors of Antarctic Weathering Following Ice Sheet Development

    Science.gov (United States)

    Fenn, C.; Martin, E. E.; Basak, C.

    2011-12-01

    Comparisons of seawater and detrital Pb isotopes from sites proximal to Antarctica at the Eocene/Oligocene transition (EOT) are being used to understand variations in continental weathering associated with the development of the East Antarctic Ice Sheet (EAIS). Previous work has shown that seawater and detrital archives yield similar isotopic values during Eocene warmth, which is interpreted to record congruent chemical weathering of the continent. In contrast, distinct isotopic values for the two phases at the EOT represents increased incongruent mechanical weathering during growth of the ice sheet. For this study we expanded beyond the initial glaciation at the EOT to determine whether less dramatic changes in ice volume and climate also produce variations in weathering and intensity that are recorded by seawater and detrital Pb isotopes. We collected Nd and Pb isotope data from extractions of Fe-Mn oxide coatings of bulk decarbonated marine sediments, which preserve seawater isotopic values, and from complete dissolutions of the remaining silicate fraction for Ocean Drilling Program Site 748 on Kerguelen Plateau (1300 m modern water depth). The data spans an interval of deglaciation from ~23.5-27 Ma documented by δ18O that has been equated to a ~30% decrease in ice volume on Antarctica (Pekar and Christie-Blick, 2008, Palaeogeogr., Palaeoclim., Palaeoecol.). Initial results from Site 748 include the first ɛNd values for intermediate waters in the Oligocene Southern Ocean and reveal a value of ~-8 over the entire 3.5 my interval, which is consistent with values reported for deep Indian Ocean sites at this time and similar to deeper Southern Ocean sites. Corresponding detrital ɛNd values are less radiogenic and decrease from -9 to -13 during the study interval. Detrital 206Pb/204Pb values also decrease during the warming interval, while seawater 206Pb/204Pb values increase. The decrease in detrital values indicates the composition of source materials entering

  14. The influence of ice sheets on temperature during the past 38 million years inferred from a one-dimensional ice sheet-climate model

    Science.gov (United States)

    Stap, Lennert B.; van de Wal, Roderik S. W.; de Boer, Bas; Bintanja, Richard; Lourens, Lucas J.

    2017-09-01

    Since the inception of the Antarctic ice sheet at the Eocene-Oligocene transition (˜ 34 Myr ago), land ice has played a crucial role in Earth's climate. Through feedbacks in the climate system, land ice variability modifies atmospheric temperature changes induced by orbital, topographical, and greenhouse gas variations. Quantification of these feedbacks on long timescales has hitherto scarcely been undertaken. In this study, we use a zonally averaged energy balance climate model bidirectionally coupled to a one-dimensional ice sheet model, capturing the ice-albedo and surface-height-temperature feedbacks. Potentially important transient changes in topographic boundary conditions by tectonics and erosion are not taken into account but are briefly discussed. The relative simplicity of the coupled model allows us to perform integrations over the past 38 Myr in a fully transient fashion using a benthic oxygen isotope record as forcing to inversely simulate CO2. Firstly, we find that the results of the simulations over the past 5 Myr are dependent on whether the model run is started at 5 or 38 Myr ago. This is because the relation between CO2 and temperature is subject to hysteresis. When the climate cools from very high CO2 levels, as in the longer transient 38 Myr run, temperatures in the lower CO2 range of the past 5 Myr are higher than when the climate is initialised at low temperatures. Consequently, the modelled CO2 concentrations depend on the initial state. Taking the realistic warm initialisation into account, we come to a best estimate of CO2, temperature, ice-volume-equivalent sea level, and benthic δ18O over the past 38 Myr. Secondly, we study the influence of ice sheets on the evolution of global temperature and polar amplification by comparing runs with ice sheet-climate interaction switched on and off. By passing only albedo or surface height changes to the climate model, we can distinguish the separate effects of the ice-albedo and surface

  15. Influence of temperature fluctuations on equilibrium ice sheet volume

    Science.gov (United States)

    Bøgeholm Mikkelsen, Troels; Grinsted, Aslak; Ditlevsen, Peter

    2018-01-01

    Forecasting the future sea level relies on accurate modeling of the response of the Greenland and Antarctic ice sheets to changing temperatures. The surface mass balance (SMB) of the Greenland Ice Sheet (GrIS) has a nonlinear response to warming. Cold and warm anomalies of equal size do not cancel out and it is therefore important to consider the effect of interannual fluctuations in temperature. We find that the steady-state volume of an ice sheet is biased toward larger size if interannual temperature fluctuations are not taken into account in numerical modeling of the ice sheet. We illustrate this in a simple ice sheet model and find that the equilibrium ice volume is approximately 1 m SLE (meters sea level equivalent) smaller when the simple model is forced with fluctuating temperatures as opposed to a stable climate. It is therefore important to consider the effect of interannual temperature fluctuations when designing long experiments such as paleo-spin-ups. We show how the magnitude of the potential bias can be quantified statistically. For recent simulations of the Greenland Ice Sheet, we estimate the bias to be 30 Gt yr-1 (24-59 Gt yr-1, 95 % credibility) for a warming of 3 °C above preindustrial values, or 13 % (10-25, 95 % credibility) of the present-day rate of ice loss. Models of the Greenland Ice Sheet show a collapse threshold beyond which the ice sheet becomes unsustainable. The proximity of the threshold will be underestimated if temperature fluctuations are not taken into account. We estimate the bias to be 0.12 °C (0.10-0.18 °C, 95 % credibility) for a recent estimate of the threshold. In light of our findings it is important to gauge the extent to which this increased variability will influence the mass balance of the ice sheets.

  16. The future of ice sheets and sea ice: between reversible retreat and unstoppable loss.

    Science.gov (United States)

    Notz, Dirk

    2009-12-08

    We discuss the existence of cryospheric "tipping points" in the Earth's climate system. Such critical thresholds have been suggested to exist for the disappearance of Arctic sea ice and the retreat of ice sheets: Once these ice masses have shrunk below an anticipated critical extent, the ice-albedo feedback might lead to the irreversible and unstoppable loss of the remaining ice. We here give an overview of our current understanding of such threshold behavior. By using conceptual arguments, we review the recent findings that such a tipping point probably does not exist for the loss of Arctic summer sea ice. Hence, in a cooler climate, sea ice could recover rapidly from the loss it has experienced in recent years. In addition, we discuss why this recent rapid retreat of Arctic summer sea ice might largely be a consequence of a slow shift in ice-thickness distribution, which will lead to strongly increased year-to-year variability of the Arctic summer sea-ice extent. This variability will render seasonal forecasts of the Arctic summer sea-ice extent increasingly difficult. We also discuss why, in contrast to Arctic summer sea ice, a tipping point is more likely to exist for the loss of the Greenland ice sheet and the West Antarctic ice sheet.

  17. Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance.

    OpenAIRE

    Bradley, S.L.; Hindmarsh, R.C.A.; Whitehouse, P.L.; Bentley, M.J.; King, M.A.

    2015-01-01

    Many ice-sheet reconstructions assume monotonic Holocene retreat for the West Antarctic Ice Sheet, but an increasing number of glaciological observations infer that some portions of the ice sheet may be readvancing, following retreat behind the present-day margin. A readvance in the Weddell Sea region can reconcile two outstanding problems: (i) the present-day widespread occurrence of seemingly stable ice streams grounded on beds that deepen inland; and (ii) the inability of models of glacial...

  18. Tracking the El Nino events from Antarctic ice core records

    International Nuclear Information System (INIS)

    Keskin, S.S.; Oelmez, I.

    2004-01-01

    Sodium and chlorine measurements were made by instrumental neutron activation analysis (INAA) on stratigraphically dated ice core samples from Byrd Station, Antarctica, for the last three centuries. The time period between 1969 and 1989 showed an enhanced impact on the Antarctic ice sheets from oceans in the form of marine aerosols. A disturbed ocean-atmosphere interface due to El Ni Southern Oscillation (ENSO) events seems to be a candidate for this observation in Antarctica. (author)

  19. A simple holistic hypothesis for the self-destruction of ice sheets

    Science.gov (United States)

    Hughes, T.

    2011-07-01

    Ice sheets are the only components of Earth's climate system that can self-destruct. This paper presents the quantitative force balance for bottom-up modeling of ice sheets, as first presented qualitatively in this journal as a way to quantify ice-bed uncoupling leading to self-destruction of ice sheets ( Hughes, 2009a). Rapid changes in sea level and climate can result if a large ice-sheet self-destructs quickly, as did the former Laurentide Ice Sheet of North America between 8100 and 7900 BP, thereby terminating the last cycle of Quaternary glaciation. Ice streams discharge up to 90 percent of ice from past and present ice sheets. A hypothesis is presented in which self-destruction of an ice sheet begins when ubiquitous ice-bed decoupling, quantified as a floating fraction of ice, proceeds along ice streams. This causes ice streams to surge and reduce thickness by some 90 percent, and height above sea level by up to 99 percent for floating ice, so the ice sheet undergoes gravitational collapse. Ice collapsing over marine embayments becomes floating ice shelves that may then disintegrate rapidly. This floods the world ocean with icebergs that reduce the ocean-to-atmosphere heat exchange, thereby triggering climate change. Calving bays migrate up low stagnating ice streams and carve out the accumulation zone of the collapsed ice sheet, which prevents its recovery, decreases Earth's albedo, and terminates the glaciation cycle. This sequence of events may coincide with a proposed life cycle of ice streams that drain the ice sheet. A first-order treatment of these life cycles is presented that depends on the longitudinal force balance along the flowbands of ice streams and gives a first approximation to ice-bed uncoupling at snapshots during gravitational collapse into ice shelves that disintegrate, thereby removing the ice sheet. The stability of the Antarctic Ice Sheet is assessed using this bottom-up approach.

  20. Calving fluxes and basal melt rates of Antarctic ice shelves

    NARCIS (Netherlands)

    Depoorter, M.A.; Bamber, J.L.; Griggs, J.A.; Lenaerts, J.T.M.; Ligtenberg, S.R.M.; van den Broeke, M.R.; Moholdt, G.

    2013-01-01

    Iceberg calving has been assumed to be the dominant cause of mass loss for the Antarctic ice sheet, with previous estimates of the calving flux exceeding 2,000 gigatonnes per year1, 2. More recently, the importance of melting by the ocean has been demonstrated close to the grounding line and near

  1. Duality of Ross Ice Shelf systems: crustal boundary, ice sheet processes and ocean circulation from ROSETTA-Ice surveys

    Science.gov (United States)

    Tinto, K. J.; Siddoway, C. S.; Padman, L.; Fricker, H. A.; Das, I.; Porter, D. F.; Springer, S. R.; Siegfried, M. R.; Caratori Tontini, F.; Bell, R. E.

    2017-12-01

    Bathymetry beneath Antarctic ice shelves controls sub-ice-shelf ocean circulation and has a major influence on the stability and dynamics of the ice sheets. Beneath the Ross Ice Shelf, the sea-floor bathymetry is a product of both tectonics and glacial processes, and is influenced by the processes it controls. New aerogeophysical surveys have revealed a fundamental crustal boundary bisecting the Ross Ice Shelf and imparting a duality to the Ross Ice Shelf systems, encompassing bathymetry, ocean circulation and ice flow history. The ROSETTA-Ice surveys were designed to increase the resolution of Ross Ice Shelf mapping from the 55 km RIGGS survey of the 1970s to a 10 km survey grid, flown over three years from New York Air National Guard LC130s. Radar, LiDAR, gravity and magnetic instruments provide a top to bottom profile of the ice shelf and the underlying seafloor, with 20 km resolution achieved in the first two survey seasons (2015 and 2016). ALAMO ocean-profiling floats deployed in the 2016 season are measuring the temperature and salinity of water entering and exiting the sub-ice water cavity. A significant east-west contrast in the character of the magnetic and gravity fields reveals that the lithospheric boundary between East and West Antarctica exists not at the base of the Transantarctic Mountains (TAM), as previously thought, but 300 km further east. The newly-identified boundary spatially coincides with the southward extension of the Central High, a rib of shallow basement identified in the Ross Sea. The East Antarctic side is characterized by lower amplitude magnetic anomalies and denser TAM-type lithosphere compared to the West Antarctic side. The crustal structure imparts a fundamental duality on the overlying ice and ocean, with deeper bathymetry and thinner ice on the East Antarctic side creating a larger sub-ice cavity for ocean circulation. The West Antarctic side has a shallower seabed, more restricted ocean access and a more complex history of

  2. A consistent data set of Antarctic ice sheet topography, cavity geometry, and global bathymetry

    Directory of Open Access Journals (Sweden)

    R. Timmermann

    2010-12-01

    Full Text Available Sub-ice shelf circulation and freezing/melting rates in ocean general circulation models depend critically on an accurate and consistent representation of cavity geometry. Existing global or pan-Antarctic topography data sets have turned out to contain various inconsistencies and inaccuracies. The goal of this work is to compile independent regional surveys and maps into a global data set. We use the S-2004 global 1-min bathymetry as the backbone and add an improved version of the BEDMAP topography (ALBMAP bedrock topography for an area that roughly coincides with the Antarctic continental shelf. The position of the merging line is individually chosen in different sectors in order to capture the best of both data sets. High-resolution gridded data for ice shelf topography and cavity geometry of the Amery, Fimbul, Filchner-Ronne, Larsen C and George VI Ice Shelves, and for Pine Island Glacier are carefully merged into the ambient ice and ocean topographies. Multibeam survey data for bathymetry in the former Larsen B cavity and the southeastern Bellingshausen Sea have been obtained from the data centers of Alfred Wegener Institute (AWI, British Antarctic Survey (BAS and Lamont-Doherty Earth Observatory (LDEO, gridded, and blended into the existing bathymetry map. The resulting global 1-min Refined Topography data set (RTopo-1 contains self-consistent maps for upper and lower ice surface heights, bedrock topography, and surface type (open ocean, grounded ice, floating ice, bare land surface. The data set is available in NetCDF format from the PANGAEA database at doi:10.1594/pangaea.741917.

  3. Incorporation of ice sheet models into an Earth system model: Focus on methodology of coupling

    Science.gov (United States)

    Rybak, Oleg; Volodin, Evgeny; Morozova, Polina; Nevecherja, Artiom

    2018-03-01

    Elaboration of a modern Earth system model (ESM) requires incorporation of ice sheet dynamics. Coupling of an ice sheet model (ICM) to an AOGCM is complicated by essential differences in spatial and temporal scales of cryospheric, atmospheric and oceanic components. To overcome this difficulty, we apply two different approaches for the incorporation of ice sheets into an ESM. Coupling of the Antarctic ice sheet model (AISM) to the AOGCM is accomplished via using procedures of resampling, interpolation and assigning to the AISM grid points annually averaged meanings of air surface temperature and precipitation fields generated by the AOGCM. Surface melting, which takes place mainly on the margins of the Antarctic peninsula and on ice shelves fringing the continent, is currently ignored. AISM returns anomalies of surface topography back to the AOGCM. To couple the Greenland ice sheet model (GrISM) to the AOGCM, we use a simple buffer energy- and water-balance model (EWBM-G) to account for orographically-driven precipitation and other sub-grid AOGCM-generated quantities. The output of the EWBM-G consists of surface mass balance and air surface temperature to force the GrISM, and freshwater run-off to force thermohaline circulation in the oceanic block of the AOGCM. Because of a rather complex coupling procedure of GrIS compared to AIS, the paper mostly focuses on Greenland.

  4. Influence of temperature fluctuations on equilibrium ice sheet volume

    Directory of Open Access Journals (Sweden)

    T. B. Mikkelsen

    2018-01-01

    Full Text Available Forecasting the future sea level relies on accurate modeling of the response of the Greenland and Antarctic ice sheets to changing temperatures. The surface mass balance (SMB of the Greenland Ice Sheet (GrIS has a nonlinear response to warming. Cold and warm anomalies of equal size do not cancel out and it is therefore important to consider the effect of interannual fluctuations in temperature. We find that the steady-state volume of an ice sheet is biased toward larger size if interannual temperature fluctuations are not taken into account in numerical modeling of the ice sheet. We illustrate this in a simple ice sheet model and find that the equilibrium ice volume is approximately 1 m SLE (meters sea level equivalent smaller when the simple model is forced with fluctuating temperatures as opposed to a stable climate. It is therefore important to consider the effect of interannual temperature fluctuations when designing long experiments such as paleo-spin-ups. We show how the magnitude of the potential bias can be quantified statistically. For recent simulations of the Greenland Ice Sheet, we estimate the bias to be 30 Gt yr−1 (24–59 Gt yr−1, 95 % credibility for a warming of 3 °C above preindustrial values, or 13 % (10–25, 95 % credibility of the present-day rate of ice loss. Models of the Greenland Ice Sheet show a collapse threshold beyond which the ice sheet becomes unsustainable. The proximity of the threshold will be underestimated if temperature fluctuations are not taken into account. We estimate the bias to be 0.12 °C (0.10–0.18 °C, 95 % credibility for a recent estimate of the threshold. In light of our findings it is important to gauge the extent to which this increased variability will influence the mass balance of the ice sheets.

  5. Ice sheet hydrology from observations

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ-, Stockholm (Sweden)

    2010-11-15

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  6. Ice sheet hydrology from observations

    International Nuclear Information System (INIS)

    Jansson, Peter

    2010-11-01

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  7. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans.

    Science.gov (United States)

    Hawkings, Jon R; Wadham, Jemma L; Tranter, Martyn; Raiswell, Rob; Benning, Liane G; Statham, Peter J; Tedstone, Andrew; Nienow, Peter; Lee, Katherine; Telling, Jon

    2014-05-21

    The Greenland and Antarctic Ice Sheets cover ~ 10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentrations in subglacial runoff from a large Greenland Ice Sheet catchment reveal the potential for globally significant export of labile iron fractions to the near-coastal euphotic zone. We estimate that the flux of bioavailable iron associated with glacial runoff is 0.40-2.54 Tg per year in Greenland and 0.06-0.17 Tg per year in Antarctica. Iron fluxes are dominated by a highly reactive and potentially bioavailable nanoparticulate suspended sediment fraction, similar to that identified in Antarctic icebergs. Estimates of labile iron fluxes in meltwater are comparable with aeolian dust fluxes to the oceans surrounding Greenland and Antarctica, and are similarly expected to increase in a warming climate with enhanced melting.

  8. Firn-air Properties and Influences at the West Antarctic Ice Sheet Divide

    Science.gov (United States)

    Battle, M. O.; Severinghaus, J. P.; Montzka, S. A.; Sofen, E. D.; Tans, P. P.

    2007-12-01

    In December 2005, we collected samples of firn air from a pair of dedicated boreholes drilled at the West Antarctic Ice Sheet Divide (WAIS-D), immediately adjacent to the WAIS-D deep ice coring effort currently underway at 79° 28'S, 112° 7'W at an elevation of ~1800m. The site is characterized by moderate temperatures (annual mean of -31°C) and moderate accumulation (24 cm/yr ice-equivalent). These samples were analyzed for a wide variety of atmospheric species by laboratories at the Scripps Institution of Oceanography, NOAA-ESRL, University of Colorado/INSTAAR, UC Irvine and Penn. State University. In this presentation, we focus on general properties of the firn air at this site and the influences on its composition, as inferred from concentration data for CO2, CH4, and a range of halogenated species, as well as the stable isotope ratios of N2 and several noble gases. Preliminary analyses indicate the presence of a shallow convective zone (a few meters or less), a diffusive region extending down to roughly 65m and a lock-in zone from 65m to the firn-ice transition at 76.5m. There is also evidence of a thermally-driven seasonal cycle in composition in the upper 25m of the firn. Modeling studies indicate that the accumulation rate at this site is low enough that the downward advection of air accompanying firn compression has a very small influence on the firn air profile. Air at the bottom of the diffusive column has a CO2-based age of 10-15 years (depending on the definition of "mean age"), while the air at the firn-ice transition is ~38 years old. Concentrations of halogenated species in the samples collected imply atmospheric histories that are generally consistent with those derived from direct atmospheric measurements and from firn air collected at other sites. Additional properties of the air, and their controlling processes will also be presented.

  9. Interactive Ice Sheet Flowline Model for High School and College Students

    Science.gov (United States)

    Stearns, L. A.; Rezvanbehbahani, S.; Shankar, S.

    2017-12-01

    Teaching about climate and climate change is conceptually challenging. While teaching tools and lesson plans are rapidly evolving to help teachers and students improve their understanding of climate processes, there are very few tools targeting ice sheet and glacier dynamics. We have built an interactive ice sheet model that allows students to explore how Antarctic glaciers respond to different climate perturbations. Interactive models offer advantages that are hard to obtain in traditional classroom settings; users can systematically investigate hypothetical situations, explore the effects of modifying systems, and repeatedly observe how systems interrelate. As a result, this project provides a much-needed bridge between the data and models used by the scientific community and students in high school and college. We target our instructional and assessment activities to three high school and college students with the overall aim of increasing understanding of ice sheet dynamics and the different ways that ice sheets are impacted by climate change, while also improving their fundamental math skills.

  10. Tropical tales of polar ice: evidence of Last Interglacial polar ice sheet retreat recorded by fossil reefs of the granitic Seychelles islands

    Science.gov (United States)

    Dutton, Andrea; Webster, Jody M.; Zwartz, Dan; Lambeck, Kurt; Wohlfarth, Barbara

    2015-01-01

    In the search for a record of eustatic sea level change on glacial-interglacial timescales, the Seychelles ranks as one of the best places on the planet to study. Owing to its location with respect to the former margins of Northern Hemisphere ice sheets that wax and wane on orbital cycles, the local-or relative-sea level history is predicted to lie within a few meters of the globally averaged eustatic signal during the Last Interglacial period. We have surveyed and dated Last Interglacial fossil corals to ascertain peak sea level and hence infer maximum retreat of polar ice sheets during this time interval. We observe a pattern of gradually rising sea level in the Seychelles between ˜129 and 125 thousand years ago (ka), with peak eustatic sea level attained after 125 ka at 7.6 ± 1.7 m higher than present. After accounting for thermal expansion and loss of mountain glaciers, this sea-level budget would require ˜5-8 m of polar ice sheet contribution, relative to today's volume, of which only ˜2 m came from the Greenland ice sheet. This result clearly identifies the Antarctic ice sheet as a significant source of melt water, most likely derived from one of the unstable, marine-based sectors in the West and/or East Antarctic ice sheet. Furthermore, the establishment of a +5.9 ± 1.7 m eustatic sea level position by 128.6 ± 0.8 ka would require that partial AIS collapse was coincident with the onset of the sea level highstand.

  11. The multi-millennial Antarctic commitment to future sea-level rise.

    Science.gov (United States)

    Golledge, N R; Kowalewski, D E; Naish, T R; Levy, R H; Fogwill, C J; Gasson, E G W

    2015-10-15

    Atmospheric warming is projected to increase global mean surface temperatures by 0.3 to 4.8 degrees Celsius above pre-industrial values by the end of this century. If anthropogenic emissions continue unchecked, the warming increase may reach 8-10 degrees Celsius by 2300 (ref. 2). The contribution that large ice sheets will make to sea-level rise under such warming scenarios is difficult to quantify because the equilibrium-response timescale of ice sheets is longer than those of the atmosphere or ocean. Here we use a coupled ice-sheet/ice-shelf model to show that if atmospheric warming exceeds 1.5 to 2 degrees Celsius above present, collapse of the major Antarctic ice shelves triggers a centennial- to millennial-scale response of the Antarctic ice sheet in which enhanced viscous flow produces a long-term commitment (an unstoppable contribution) to sea-level rise. Our simulations represent the response of the present-day Antarctic ice-sheet system to the oceanic and climatic changes of four representative concentration pathways (RCPs) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We find that substantial Antarctic ice loss can be prevented only by limiting greenhouse gas emissions to RCP 2.6 levels. Higher-emissions scenarios lead to ice loss from Antarctic that will raise sea level by 0.6-3 metres by the year 2300. Our results imply that greenhouse gas emissions in the next few decades will strongly influence the long-term contribution of the Antarctic ice sheet to global sea level.

  12. On the feasibility of space-based radar ice sounding of the Antarctic ice sheet at P-band

    DEFF Research Database (Denmark)

    Dall, Jørgen; Kusk, Anders; Corr, Hugh

    . In this study the feasibility of space-based radar ice sounding is assessed. A two-step approach is applied: (1) Key ice sheet parameters are estimated from the airborne POLARIS data acquired in Antarctica. (2) The performance of potential space-based ice sounding radars is simulated based on the estimated ice...... data analysis estimating the scattering patterns via the Doppler spectra of the POLARIS data. The scattering patterns of the ice surfaces are relevant because the geometry of a space-based radar increases the risk that off-nadir surface clutter masks the nadir depth-signal of interest. Currently...... the ice sheet model is being established and validated. At the symposium measured and simulated satellite waveforms will be compared, and the feasibility of space-based ice sounding will be addressed....

  13. The evolution of the Antarctic ice sheet at the Eocene-Oligocene Transition.

    Science.gov (United States)

    Ladant, Jean-Baptiste; Donnadieu, Yannick; Dumas, Christophe

    2017-04-01

    An increasing number of studies suggest that the Middle to Late Eocene has witnessed the waxing and waning of relatively small ephemeral ice sheets. These alternating episodes culminated in the Eocene-Oligocene transition (34 - 33.5 Ma) during which a sudden and massive glaciation occurred over Antarctica. Data studies have demonstrated that this glacial event is constituted of two 50 kyr-long steps, the first of modest (10 - 30 m of equivalent sea level) and the second of major (50 - 90 m esl) glacial amplitude, and separated by 200 kyrs. Since a decade, modeling studies have put forward the primary role of CO2 in the initiation of this glaciation, in doing so marginalizing the original "gateway hypothesis". Here, we investigate the impacts of CO2 and orbital parameters on the evolution of the ice sheet during the 500 kyrs of the EO transition using a tri-dimensional interpolation method. The latter allows precise orbital variations, CO2 evolution and ice sheet feedbacks (including the albedo) to be accounted for. Our results show that orbital variations are instrumental in initiating the first step of the EO glaciation but that the primary driver of the major second step is the atmospheric pCO2 crossing a modelled glacial threshold of 900 ppm. Although model-dependant, this higher glacial threshold makes a stronger case for ephemeral Middle-Late Eocene ice sheets. In addition, sensitivity tests demonstrate that the small first step only exists if the absolute pCO2 value remains within 100 ppm higher than the glacial threshold during the first 250 kyrs of the transition. Thereby, the pCO2 sufficiently counterbalances the strong insolation minima occurring at 33.9 and 33.8 Ma but is low enough to allow the ice sheet to nucleate. Nevertheless, questions remain as to what may cause this pCO2 drop.

  14. BRITICE-CHRONO: Constraining rates and style of marine-influenced ice sheet decay to provide a data-rich playground for ice sheet modellers

    Science.gov (United States)

    Clark, Chris

    2014-05-01

    Uncertainty exists regarding the fate of the Antarctic and Greenland ice sheets and how they will respond to forcings from sea level and atmospheric and ocean temperatures. If we want to know more about the mechanisms and rate of change of shrinking ice sheets, then why not examine an ice sheet that has fully disappeared and track its retreat through time? If achieved in enough detail such information could become a data-rich playground for improving the next breed of numerical ice sheet models to be used in ice and sea level forecasting. We regard that the last British-Irish Ice Sheet is a good target for this work, on account of its small size, density of information and with its numerous researchers already investigating it. BRITICE-CHRONO is a large (>45 researchers) NERC-funded consortium project comprising Quaternary scientists and glaciologists who will search the seafloor around Britain and Ireland and parts of the landmass in order to find and extract samples of sand, rock and organic matter that can be dated (OSL; Cosmogenic; 14C) to reveal the timing and rate of change of the collapsing British-Irish Ice Sheet. The purpose is to produce a high resolution dataset on the demise on an ice sheet - from the continental shelf edge and across the marine to terrestrial transition. Some 800 new date assessments will be added to those that already exist. This poster reports on the hypotheses that underpin the work. Data on retreat will be collected by focusing on 8 transects running from the continental shelf edge to a short distance (10s km) onshore and acquiring marine and terrestrial samples for geochronometric dating. The project includes funding for 587 radiocarbon, 140 OSL and 158 TCN samples for surface exposure dating; with sampling accomplished by two research cruises and 16 fieldwork campaigns. Results will reveal the timing and rate of change of ice margin recession for each transect, and combined with existing landform and dating databases, will be

  15. Constraining the Antarctic contribution to interglacial sea-level rise

    Science.gov (United States)

    Naish, T.; Mckay, R. M.; Barrett, P. J.; Levy, R. H.; Golledge, N. R.; Deconto, R. M.; Horgan, H. J.; Dunbar, G. B.

    2015-12-01

    Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1- 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the

  16. Layer disturbances and the radio-echo free zone in ice sheets

    Directory of Open Access Journals (Sweden)

    R. Drews

    2009-08-01

    Full Text Available Radio-echo sounding of the Antarctic and Greenlandic ice sheets often reveals a layer in the lowest hundreds of meters above bedrock more or less free of radio echoes, known as the echo-free zone (EFZ. The cause of this feature is unclear, so far lacking direct evidence for its origin. We compare echoes around the EPICA drill site in Dronning Maud Land, Antarctica, with the dielectric properties, crystal orientation fabrics and optical stratigraphy of the EPICA-DML ice core. We find that echoes disappear in the depth range where the dielectric contrast is blurred, and where the coherency of the layers in the ice core is lost due to disturbances caused by the ice flow. At the drill site, the EFZ onset at ~2100 m marks a boundary, below which the ice core may have experienced flow induced disturbances on various scales. The onset may indicate changing rheology which needs to be accounted for in the modeling of ice sheet dynamics.

  17. Overview and Assessment of Antarctic Ice-Sheet Mass Balance Estimates: 1992-2009

    Science.gov (United States)

    Zwally, H. Jay; Giovinetto, Mario B.

    2011-01-01

    Mass balance estimates for the Antarctic Ice Sheet (AIS) in the 2007 report by the Intergovernmental Panel on Climate Change and in more recent reports lie between approximately ?50 to -250 Gt/year for 1992 to 2009. The 300 Gt/year range is approximately 15% of the annual mass input and 0.8 mm/year Sea Level Equivalent (SLE). Two estimates from radar altimeter measurements of elevation change by European Remote-sensing Satellites (ERS) (?28 and -31 Gt/year) lie in the upper part, whereas estimates from the Input-minus-Output Method (IOM) and the Gravity Recovery and Climate Experiment (GRACE) lie in the lower part (-40 to -246 Gt/year). We compare the various estimates, discuss the methodology used, and critically assess the results. We also modify the IOM estimate using (1) an alternate extrapolation to estimate the discharge from the non-observed 15% of the periphery, and (2) substitution of input from a field data compilation for input from an atmospheric model in 6% of area. The modified IOM estimate reduces the loss from 136 Gt/year to 13 Gt/year. Two ERS-based estimates, the modified IOM, and a GRACE-based estimate for observations within 1992 2005 lie in a narrowed range of ?27 to -40 Gt/year, which is about 3% of the annual mass input and only 0.2 mm/year SLE. Our preferred estimate for 1992 2001 is -47 Gt/year for West Antarctica, ?16 Gt/year for East Antarctica, and -31 Gt/year overall (?0.1 mm/year SLE), not including part of the Antarctic Peninsula (1.07% of the AIS area). Although recent reports of large and increasing rates of mass loss with time from GRACE-based studies cite agreement with IOM results, our evaluation does not support that conclusion

  18. Trends in ice sheet mass balance, 1992 to 2017

    Science.gov (United States)

    Shepherd, A.; Ivins, E. R.; Smith, B.; Velicogna, I.; Whitehouse, P. L.; Rignot, E. J.; van den Broeke, M. R.; Briggs, K.; Hogg, A.; Krinner, G.; Joughin, I. R.; Nowicki, S.; Payne, A. J.; Scambos, T.; Schlegel, N.; Moyano, G.; Konrad, H.

    2017-12-01

    The Ice Sheet Mass Balance Inter-Comparison Exercise (IMBIE) is a community effort, jointly supported by ESA and NASA, that aims to provide a consensus estimate of ice sheet mass balance from satellite gravimetry, altimetry and mass budget assessments, on an annual basis. The project has five experiment groups, one for each of the satellite techniques and two others to analyse surface mass balance (SMB) and glacial isostatic adjustment (GIA). The basic premise for the exercise is that individual ice sheet mass balance datasets are generated by project participants using common spatial and temporal domains to allow meaningful inter-comparison, and this controlled comparison in turn supports aggregation of the individual datasets over their full period. Participation is open to the full community, and the quality and consistency of submissions is regulated through a series of data standards and documentation requirements. The second phase of IMBIE commenced in 2015, with participant data submitted in 2016 and a combined estimate due for public release in 2017. Data from 48 participant groups were submitted to one of the three satellite mass balance technique groups or to the ancillary dataset groups. The individual mass balance estimates and ancillary datasets have been compared and combined within the respective groups. Following this, estimates of ice sheet mass balance derived from the individual techniques were then compared and combined. The result is single estimates of ice sheet mass balance for Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula. The participants, methodology and results of the exercise will be presented in this paper.

  19. Spatial and Temporal Antarctic Ice Sheet Mass Trends, Glacio-Isostatic Adjustment, and Surface Processes from a Joint Inversion of Satellite Altimeter, Gravity, and GPS Data

    Science.gov (United States)

    Martin-Espanol, Alba; Zammit-Mangion, Andrew; Clarke, Peter J.; Flament, Thomas; Helm, Veit; King, Matt A.; Luthcke, Scott B.; Petrie, Elizabeth; Remy, Frederique; Schon, Nana; hide

    2016-01-01

    We present spatiotemporal mass balance trends for the Antarctic Ice Sheet from a statistical inversion of satellite altimetry, gravimetry, and elastic-corrected GPS data for the period 2003-2013. Our method simultaneously determines annual trends in ice dynamics, surface mass balance anomalies, and a time-invariant solution for glacio-isostatic adjustment while remaining largely independent of forward models. We establish that over the period 2003-2013, Antarctica has been losing mass at a rateof -84 +/- 22 Gt per yr, with a sustained negative mean trend of dynamic imbalance of -111 +/- 13 Gt per yr. West Antarctica is the largest contributor with -112 +/- 10 Gt per yr, mainly triggered by high thinning rates of glaciers draining into the Amundsen Sea Embayment. The Antarctic Peninsula has experienced a dramatic increase in mass loss in the last decade, with a mean rate of -28 +/- 7 Gt per yr and significantly higher values for the most recent years following the destabilization of the Southern Antarctic Peninsula around 2010. The total mass loss is partly compensated by a significant mass gain of 56 +/- 18 Gt per yr in East Antarctica due to a positive trend of surface mass balance anomalies.

  20. Uplift of the Transantarctic Mountains and the bedrock beneath the East Antarctic ice sheet

    Science.gov (United States)

    ten Brink, Uri S.; Hackney, R.I.; Bannister, S.; Stern, T.A.; Makovsky, Y.

    1997-01-01

    In recent years the Transantarctic Mountains (TAM), the largest noncontractional mountain belt in the world, have become the focus of modelers who explained their uplift by a variety of isostatic and thermal mechanisms. A problem with these models is a lack of available data to compare with model predictions. We report here the results of a 312-km-long geophysical traverse conducted in 1993/1994 in the hinterland of the TAM. Using detailed subglacial topography and gravity measurements, we confirm the origin of the TAM as a flexural uplift of the edge of East Antarctica. Using an elastic model with a free edge, we can jointly fit the topography and the gravity with a plate having an elastic thickness of 85 ?? 15 km and a preuplift elevation of 700 ?? 50 m for East Antarctica. Using a variety of evidence, we argue that the uplift is coincident with a relatively minor tectonic event of transtensional motion between East and West Antarctica during the Eocene rather than the Late Cretaceous rifting event that created the Ross Embayment. We suggest that this transtensional motion caused the continuous plate to break, which created an escarpment that significantly increased the rates of erosion and exhumation. Results from the geophysical traverse also extend our knowledge of the bedrock geology from the exposures within the TAM to the ice covered interior. Our interpretation suggests that the Ferrar flood basalts extend at least 100 km westward under the ice. The Beacon Supergroup of Paleozoic and Mesozoic sediments thins gradually under the ice and its reconstructed thickness is reminiscent of profiles of foreland basins. Finally, there is no indication in the gravity field for an incomplete rebound due to significant melting of the East Antarctic ice sheet since the last glacial period.

  1. Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project)

    OpenAIRE

    Bindschadler, Robert A.; Nowicki, Sophie; Abe-Ouchi, Ayako; Aschwanden, Andy; Choi, Hyeungu; Fastook, Jim; Granzow, Glen; Greve, Ralf; Gutowski, Gail; Herzfeld, Ute; Jackson, Charles; Johnson, Jesse; Khroulev, Constantine; Levermann, Anders; Lipscomb, William H.

    2013-01-01

    Ten ice-sheet models are used to study sensitivity of the Greenland and Antarctic ice sheets to prescribed changes of surface mass balance, sub-ice-shelf melting and basal sliding. Results exhibit a large range in projected contributions to sea-level change. In most cases, the ice volume above flotation lost is linearly dependent on the strength of the forcing. Combinations of forcings can be closely approximated by linearly summing the contributions from single forcing experiments, suggestin...

  2. Uncertainties in the Antarctic Ice Sheet Contribution to Sea Level Rise: Exploration of Model Response to Errors in Climate Forcing, Boundary Conditions, and Internal Parameters

    Science.gov (United States)

    Schlegel, N.; Seroussi, H. L.; Boening, C.; Larour, E. Y.; Limonadi, D.; Schodlok, M.; Watkins, M. M.

    2017-12-01

    The Jet Propulsion Laboratory-University of California at Irvine Ice Sheet System Model (ISSM) is a thermo-mechanical 2D/3D parallelized finite element software used to physically model the continental-scale flow of ice at high resolutions. Embedded into ISSM are uncertainty quantification (UQ) tools, based on the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) software. ISSM-DAKOTA offers various UQ methods for the investigation of how errors in model input impact uncertainty in simulation results. We utilize these tools to regionally sample model input and key parameters, based on specified bounds of uncertainty, and run a suite of continental-scale 100-year ISSM forward simulations of the Antarctic Ice Sheet. Resulting diagnostics (e.g., spread in local mass flux and regional mass balance) inform our conclusion about which parameters and/or forcing has the greatest impact on century-scale model simulations of ice sheet evolution. The results allow us to prioritize the key datasets and measurements that are critical for the minimization of ice sheet model uncertainty. Overall, we find that Antartica's total sea level contribution is strongly affected by grounding line retreat, which is driven by the magnitude of ice shelf basal melt rates and by errors in bedrock topography. In addition, results suggest that after 100 years of simulation, Thwaites glacier is the most significant source of model uncertainty, and its drainage basin has the largest potential for future sea level contribution. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  3. Reconstructing the post-LGM decay of the Eurasian Ice Sheets with Ice Sheet Models; data-model comparison and focus on the Storfjorden (Svalbard) ice stream dynamics history

    Science.gov (United States)

    Petrini, Michele; Kirchner, Nina; Colleoni, Florence; Camerlenghi, Angelo; Rebesco, Michele; Lucchi, Renata G.; Forte, Emanuele; Colucci, Renato R.

    2017-04-01

    climate simulation. In this presentation, we will show work in progress, address open issues, and sketch future work. In particular, we invite the community to suggest possibilities for model-data comparison and integration. Liu, Z., Otto-Bliesner, B.L., He, F., Brady, E.C., Tomas, R., Clark, P.U., Carlson, A.E., Lynch-Stieglitz, J., Curry, W., Brook, E. and Erickson, D., 2009. Transient simulation of last deglaciation with a new mechanism for Bólling-Alleród warming. Science, 325(5938), pp.310-314. Lucchi, R.G., Camerlenghi, A., Rebesco, M., Colmenero-Hidalgo, E., Sierro, F.J., Sagnotti, L., Urgeles, R., Melis, R., Morigi, C., Bárcena, M.A. and Giorgetti, G., 2013. Postglacial sedimentary processes on the Storfjorden and Kveithola trough mouth fans: Significance of extreme glacimarine sedimentation. Global and planetary change, 111, pp.309-326. Martin, M.A., Winkelmann, R., Haseloff, M., Albrecht, T., Bueler, E., Khroulev, C. and Levermann, A., 2011. The Potsdam Parallel Ice Sheet Model (PISM-PIK)-Part 2: Dynamic equilibrium simulation of the Antarctic ice sheet. The Cryosphere, 5(3), pp.727-740. Pedrosa, M.T., Camerlenghi, A., De Mol, B., Urgeles, R., Rebesco, M. and Lucchi, R.G., 2011. Seabed morphology and shallow sedimentary structure of the Storfjorden and Kveithola trough-mouth fans (north west Barents Sea). Marine Geology, 286(1), pp.65-81. Pollard, D. and DeConto, R.M., 2012. Description of a hybrid ice sheet-shelf model, and application to Antarctica. Geoscientific Model Development, 5(5), pp.1273-1295. Rebesco, M., Liu, Y., Camerlenghi, A., Winsborrow, M., Laberg, J.S., Caburlotto, A., Diviacco, P., Accettella, D., Sauli, C., Wardell, N. and Tomini, I., 2011. Deglaciation of the western margin of the Barents Sea Ice Sheet-a swath bathymetric and sub-bottom seismic study from the Kveithola Trough. Marine Geology, 279(1), pp.141-147. Rebesco, M., Laberg, J., Pedrosa, M., Camerlenghi, A., Lucchi, R., Zgur, F. and Wardell, N., 2013. Onset and growth of Trough

  4. Uncertainty Quantification for Ice Sheet Science and Sea Level Projections

    Science.gov (United States)

    Boening, C.; Schlegel, N.; Limonadi, D.; Schodlok, M.; Seroussi, H. L.; Larour, E. Y.; Watkins, M. M.

    2017-12-01

    In order to better quantify uncertainties in global mean sea level rise projections and in particular upper bounds, we aim at systematically evaluating the contributions from ice sheets and potential for extreme sea level rise due to sudden ice mass loss. Here, we take advantage of established uncertainty quantification tools embedded within the Ice Sheet System Model (ISSM) as well as sensitivities to ice/ocean interactions using melt rates and melt potential derived from MITgcm/ECCO2. With the use of these tools, we conduct Monte-Carlo style sampling experiments on forward simulations of the Antarctic ice sheet, by varying internal parameters and boundary conditions of the system over both extreme and credible worst-case ranges. Uncertainty bounds for climate forcing are informed by CMIP5 ensemble precipitation and ice melt estimates for year 2100, and uncertainty bounds for ocean melt rates are derived from a suite of regional sensitivity experiments using MITgcm. Resulting statistics allow us to assess how regional uncertainty in various parameters affect model estimates of century-scale sea level rise projections. The results inform efforts to a) isolate the processes and inputs that are most responsible for determining ice sheet contribution to sea level; b) redefine uncertainty brackets for century-scale projections; and c) provide a prioritized list of measurements, along with quantitative information on spatial and temporal resolution, required for reducing uncertainty in future sea level rise projections. Results indicate that ice sheet mass loss is dependent on the spatial resolution of key boundary conditions - such as bedrock topography and melt rates at the ice-ocean interface. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  5. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013

    OpenAIRE

    Seo, Ki-Weon; Wilson, Clark R.; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E.; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung

    2015-01-01

    Abstract Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE?derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by ...

  6. Imaging the Antarctic Ice Sheet Subsurface with the HF GPR TAPIR

    Science.gov (United States)

    Le Gall, A.; Ciarletti, V.; Berthelier, J.; Reineix, A.; Ney, R.; Bonaimé, S.; Corbel, C.

    2006-12-01

    An HF impulse polarimetric Ground Penetrating Radar (GPR) operating at very low frequencies (ranging from ~2 to 8MHz) has been developed in the frame of the NetLander mission. This instrument, named TAPIR (Terrestrial And Planetary Investigation by Radar), was designed to probe the Martian subsurface down to kilometric depth and search for potential water reservoirs. Although the NetLander mission was cancelled in 2003, the interest on the exploration of Martian subsurface was recently enhanced by the promising observations of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board of the ESA Mars Express orbiter. In particular, MARSIS detected the base of the North Polar Layered Deposits, penetrating up to ~1.8km the ice-rich upper layer of the underground. Such results suggest that TAPIR, which operates in the same frequency range as MARSIS and can performed a higher number of coherent integrations, is able to reach deeper structures. Yet, in contrast with classical GPRs, TAPIR can not move onto the surface and thus won't provide 2D or 3D scan of the subsurface. To retrieve, in spite of this NetLander restraint, the 3D distribution of the reflecting facets of the underground, the instrument was equipped with two electrical dipoles and a rotating magnetic sensor. These antennas allow to derive, from the measured values of 5 components of the wave field, the direction of arrival of the reflected waves hence the inclination of the buried reflectors. The first validation of this innovative concept was carried out during the RANETA (RAdar of NEtlander in Terre Adélie) campaign organized by the Institute Paul-Emile Victor in January-February 2004. This campaign took place on the Antarctic ice sheet close to the French-Italian Cap Prudhomme station. 8 soundings of the ice shelf were performed on various sites corresponding to different altitudes above the sea level (ranging from ~285m to ~1100m). We shall provide a detailed description of the

  7. Modelling present-day basal melt rates for Antarctic ice shelves using a parametrization of buoyant meltwater plumes

    Science.gov (United States)

    Lazeroms, Werner M. J.; Jenkins, Adrian; Hilmar Gudmundsson, G.; van de Wal, Roderik S. W.

    2018-01-01

    Basal melting below ice shelves is a major factor in mass loss from the Antarctic Ice Sheet, which can contribute significantly to possible future sea-level rise. Therefore, it is important to have an adequate description of the basal melt rates for use in ice-dynamical models. Most current ice models use rather simple parametrizations based on the local balance of heat between ice and ocean. In this work, however, we use a recently derived parametrization of the melt rates based on a buoyant meltwater plume travelling upward beneath an ice shelf. This plume parametrization combines a non-linear ocean temperature sensitivity with an inherent geometry dependence, which is mainly described by the grounding-line depth and the local slope of the ice-shelf base. For the first time, this type of parametrization is evaluated on a two-dimensional grid covering the entire Antarctic continent. In order to apply the essentially one-dimensional parametrization to realistic ice-shelf geometries, we present an algorithm that determines effective values for the grounding-line depth and basal slope in any point beneath an ice shelf. Furthermore, since detailed knowledge of temperatures and circulation patterns in the ice-shelf cavities is sparse or absent, we construct an effective ocean temperature field from observational data with the purpose of matching (area-averaged) melt rates from the model with observed present-day melt rates. Our results qualitatively replicate large-scale observed features in basal melt rates around Antarctica, not only in terms of average values, but also in terms of the spatial pattern, with high melt rates typically occurring near the grounding line. The plume parametrization and the effective temperature field presented here are therefore promising tools for future simulations of the Antarctic Ice Sheet requiring a more realistic oceanic forcing.

  8. A global high-resolution data set of ice sheet topography, cavity geometry and ocean bathymetry

    DEFF Research Database (Denmark)

    Schaffer, Janin; Timmermann, Ralph; Arndt, Jan Erik

    2016-01-01

    of the Southern Ocean (IBCSO) version 1. While RTopo-1 primarily aimed at a good and consistent representation of the Antarctic ice sheet, ice shelves, and sub-ice cavities, RTopo-2now also contains ice topographies of the Greenland ice sheet and outlet glaciers. In particular, we aimed at agood representation....... For the continental shelf off Northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about79 N, we incorporated a high-resolution digital bathymetry model considering original multibeam survey datafor the region. Radar data for surface topographies of the floating ice tongues...... for the geometry of Getz, Abbot, andFimbul ice shelf cavities. The data set is available in full and in regional subsets in NetCDF format from thePANGAEA database at doi:10.1594/PANGAEA.856844....

  9. Regional Changes in the Sea Ice Cover and Ice Production in the Antarctic

    Science.gov (United States)

    Comiso, Josefino C.

    2011-01-01

    Coastal polynyas around the Antarctic continent have been regarded as sea ice factories because of high ice production rates in these regions. The observation of a positive trend in the extent of Antarctic sea ice during the satellite era has been intriguing in light of the observed rapid decline of the ice extent in the Arctic. The results of analysis of the time series of passive microwave data indicate large regional variability with the trends being strongly positive in the Ross Sea, strongly negative in the Bellingshausen/Amundsen Seas and close to zero in the other regions. The atmospheric circulation in the Antarctic is controlled mainly by the Southern Annular Mode (SAM) and the marginal ice zone around the continent shows an alternating pattern of advance and retreat suggesting the presence of a propagating wave (called Antarctic Circumpolar Wave) around the circumpolar region. The results of analysis of the passive microwave data suggest that the positive trend in the Antarctic sea ice cover could be caused primarily by enhanced ice production in the Ross Sea that may be associated with more persistent and larger coastal polynyas in the region. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate-of-increase in the net ice export of about 30,000 km2 per year. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 km3/year, which is almost identical, within error bars, to our estimate of the trend in ice production. In addition to the possibility of changes in SAM, modeling studies have also indicated that the ozone hole may have a role in that it causes the deepening of the lows in the western Antarctic region thereby causing strong winds to occur offthe Ross-ice shelf.

  10. An ice sheet model validation framework for the Greenland ice sheet

    Science.gov (United States)

    Price, Stephen F.; Hoffman, Matthew J.; Bonin, Jennifer A.; Howat, Ian M.; Neumann, Thomas; Saba, Jack; Tezaur, Irina; Guerber, Jeffrey; Chambers, Don P.; Evans, Katherine J.; Kennedy, Joseph H.; Lenaerts, Jan; Lipscomb, William H.; Perego, Mauro; Salinger, Andrew G.; Tuminaro, Raymond S.; van den Broeke, Michiel R.; Nowicki, Sophie M. J.

    2017-01-01

    We propose a new ice sheet model validation framework - the Cryospheric Model Comparison Tool (CmCt) - that takes advantage of ice sheet altimetry and gravimetry observations collected over the past several decades and is applied here to modeling of the Greenland ice sheet. We use realistic simulations performed with the Community Ice Sheet Model (CISM) along with two idealized, non-dynamic models to demonstrate the framework and its use. Dynamic simulations with CISM are forced from 1991 to 2013, using combinations of reanalysis-based surface mass balance and observations of outlet glacier flux change. We propose and demonstrate qualitative and quantitative metrics for use in evaluating the different model simulations against the observations. We find that the altimetry observations used here are largely ambiguous in terms of their ability to distinguish one simulation from another. Based on basin-scale and whole-ice-sheet-scale metrics, we find that simulations using both idealized conceptual models and dynamic, numerical models provide an equally reasonable representation of the ice sheet surface (mean elevation differences of framework demonstrates that our proposed metrics can distinguish relatively better from relatively worse simulations and that dynamic ice sheet models, when appropriately initialized and forced with the right boundary conditions, demonstrate a predictive skill with respect to observed dynamic changes that have occurred on Greenland over the past few decades. An extensible design will allow for continued use of the CmCt as future altimetry, gravimetry, and other remotely sensed data become available for use in ice sheet model validation.

  11. A Detailed Geophysical Investigation of the Grounding of Henry Ice Rise, with Implications for Holocene Ice-Sheet Extent.

    Science.gov (United States)

    Wearing, M.; Kingslake, J.

    2017-12-01

    It is generally assumed that since the Last Glacial Maximum the West Antarctic Ice Sheet (WAIS) has experienced monotonic retreat of the grounding line (GL). However, recent studies have cast doubt on this assumption, suggesting that the retreat of the WAIS grounding line may have been followed by a significant advance during the Holocene in the Weddell and Ross Sea sectors. Constraining this evolution is important as reconstructions of past ice-sheet extent are used to spin-up predictive ice-sheet models and correct mass-balance observations for glacial isostatic adjustment. Here we examine in detail the formation of the Henry Ice Rise (HIR), which ice-sheet model simulations suggest played a key role in Holocene ice-mass changes in the Weddell Sea sector. Observations from a high-resolution ground-based, ice-penetrating radar survey are best explained if the ice rise formed when the Ronne Ice Shelf grounded on a submarine high, underwent a period of ice-rumple flow, before the GL migrated outwards to form the present-day ice rise. We constrain the relative chronology of this evolution by comparing the alignment and intersection of isochronal internal layers, relic crevasses, surface features and investigating the dynamic processes leading to their complex structure. We also draw analogies between HIR and the neighbouring Doake Ice Rumples. The date of formation is estimated using vertical velocities derived with a phase-sensitive radio-echo sounder (pRES). Ice-sheet models suggest that the formation of the HIR and other ice rises may have halted and reversed large-scale GL retreat. Hence the small-scale dynamics of these crucial regions could have wide-reaching consequences for future ice-sheet mass changes and constraining their formation and evolution further would be beneficial. One stringent test of our geophysics-based conclusions would be to drill to the bed of HIR to sample the ice for isotopic analysis and the bed for radiocarbon analysis.

  12. Ice Sheets & Ice Cores

    DEFF Research Database (Denmark)

    Mikkelsen, Troels Bøgeholm

    Since the discovery of the Ice Ages it has been evident that Earth’s climate is liable to undergo dramatic changes. The previous climatic period known as the Last Glacial saw large oscillations in the extent of ice sheets covering the Northern hemisphere. Understanding these oscillations known....... The first part concerns time series analysis of ice core data obtained from the Greenland Ice Sheet. We analyze parts of the time series where DO-events occur using the so-called transfer operator and compare the results with time series from a simple model capable of switching by either undergoing...

  13. A balanced water layer concept for subglacial hydrology in large-scale ice sheet models

    Directory of Open Access Journals (Sweden)

    S. Goeller

    2013-07-01

    Full Text Available There is currently no doubt about the existence of a widespread hydrological network under the Antarctic Ice Sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux–basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  14. A balanced water layer concept for subglacial hydrology in large scale ice sheet models

    Science.gov (United States)

    Goeller, S.; Thoma, M.; Grosfeld, K.; Miller, H.

    2012-12-01

    There is currently no doubt about the existence of a wide-spread hydrological network under the Antarctic ice sheet, which lubricates the ice base and thus leads to increased ice velocities. Consequently, ice models should incorporate basal hydrology to obtain meaningful results for future ice dynamics and their contribution to global sea level rise. Here, we introduce the balanced water layer concept, covering two prominent subglacial hydrological features for ice sheet modeling on a continental scale: the evolution of subglacial lakes and balance water fluxes. We couple it to the thermomechanical ice-flow model RIMBAY and apply it to a synthetic model domain inspired by the Gamburtsev Mountains, Antarctica. In our experiments we demonstrate the dynamic generation of subglacial lakes and their impact on the velocity field of the overlaying ice sheet, resulting in a negative ice mass balance. Furthermore, we introduce an elementary parametrization of the water flux-basal sliding coupling and reveal the predominance of the ice loss through the resulting ice streams against the stabilizing influence of less hydrologically active areas. We point out, that established balance flux schemes quantify these effects only partially as their ability to store subglacial water is lacking.

  15. Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic.

    Science.gov (United States)

    Tremblin, Maxime; Hermoso, Michaël; Minoletti, Fabrice

    2016-10-18

    Growth of the first permanent Antarctic ice sheets at the Eocene-Oligocene Transition (EOT), ∼33.7 million years ago, indicates a major climate shift within long-term Cenozoic cooling. The driving mechanisms that set the stage for this glaciation event are not well constrained, however, owing to large uncertainties in temperature reconstructions during the Eocene, especially at lower latitudes. To address this deficiency, we used recent developments in coccolith biogeochemistry to reconstruct equatorial Atlantic sea surface temperature (SST) and atmospheric pCO 2 values from pelagic sequences preceding and spanning the EOT. We found significantly more variability in equatorial SSTs than previously reported, with pronounced cooling from the Early to Middle Eocene and subsequent warming during the Late Eocene. Thus, we show that the Antarctic glaciation at the Eocene-Oligocene boundary was preceded by a period of heat accumulation in the low latitudes, likely focused in a progressively contracting South Atlantic gyre, which contributed to cooling high-latitude austral regions. This prominent redistribution of heat corresponds to the emplacement of a strong meridional temperature gradient that typifies icehouse climate conditions. Our equatorial coccolith-derived geochemical record thus highlights an important period of global climatic and oceanic upheaval, which began 4 million years before the EOT and, superimposed on a long-term pCO 2 decline, drove the Earth system toward a glacial tipping point in the Cenozoic.

  16. Constraining the Antarctic contribution to global sea-level change: ANDRILL and beyond

    Science.gov (United States)

    Naish, Timothy

    2016-04-01

    Observations, models and paleoclimate reconstructions suggest that Antarctica's marine-based ice sheets behave in an unstable manner with episodes of rapid retreat in response to warming climate. Understanding the processes involved in this "marine ice sheet instability" is key for improving estimates of Antarctic ice sheet contribution to future sea-level rise. Another motivating factor is that far-field sea-level reconstructions and ice sheet models imply global mean sea level (GMSL) was up to 20m and 10m higher, respectively, compared with present day, during the interglacials of the warm Pliocene (~4-3Ma) and Late Pleistocene (at ~400ka and 125ka). This was when atmospheric CO2 was between 280 and 400ppm and global average surface temperatures were 1 to 3°C warmer, suggesting polar ice sheets are highly sensitive to relatively modest increases in climate forcing. Such magnitudes of GMSL rise not only require near complete melt of the Greenland Ice Sheet and the West Antarctic Ice Sheet, but a substantial retreat of marine-based sectors of East Antarctic Ice Sheet. Recent geological drilling initiatives on the continental margin of Antarctica from both ship- (e.g. IODP; International Ocean Discovery Program) and ice-based (e.g. ANDRILL/Antarctic Geological Drilling) platforms have provided evidence supporting retreat of marine-based ice. However, without direct access through the ice sheet to archives preserved within sub-glacial sedimentary basins, the volume and extent of ice sheet retreat during past interglacials cannot be directly constrained. Sediment cores have been successfully recovered from beneath ice shelves by the ANDRILL Program and ice streams by the WISSARD (Whillans Ice Stream Sub-glacial Access Research Drilling) Project. Together with the potential of the new RAID (Rapid Access Ice Drill) initiative, these demonstrate the technological feasibility of accessing the subglacial bed and deeper sedimentary archives. In this talk I will outline the

  17. Insights into Spatial Sensitivities of Ice Mass Response to Environmental Change from the SeaRISE Ice Sheet Modeling Project I: Antarctica

    Science.gov (United States)

    Nowicki, Sophie; Bindschadler, Robert A.; Abe-Ouchi, Ayako; Aschwanden, Andy; Bueler, Ed; Choi, Hyengu; Fastook, Jim; Granzow, Glen; Greve, Ralf; Gutowski, Gail; hide

    2013-01-01

    Atmospheric, oceanic, and subglacial forcing scenarios from the Sea-level Response to Ice Sheet Evolution (SeaRISE) project are applied to six three-dimensional thermomechanical ice-sheet models to assess Antarctic ice sheet sensitivity over a 500 year timescale and to inform future modeling and field studies. Results indicate (i) growth with warming, except within low-latitude basins (where inland thickening is outpaced by marginal thinning); (ii) mass loss with enhanced sliding (with basins dominated by high driving stresses affected more than basins with low-surface-slope streaming ice); and (iii) mass loss with enhanced ice shelf melting (with changes in West Antarctica dominating the signal due to its marine setting and extensive ice shelves; cf. minimal impact in the Terre Adelie, George V, Oates, and Victoria Land region of East Antarctica). Ice loss due to dynamic changes associated with enhanced sliding and/or sub-shelf melting exceeds the gain due to increased precipitation. Furthermore, differences in results between and within basins as well as the controlling impact of sub-shelf melting on ice dynamics highlight the need for improved understanding of basal conditions, grounding-zone processes, ocean-ice interactions, and the numerical representation of all three.

  18. ICESat's First Year of Measurements Over the Polar Ice Sheets

    Science.gov (United States)

    Shuman, C. A.

    2004-05-01

    NASA's Ice, Cloud and Land Elevation Satellite (ICESat) mission was developed to measure changes in elevation of the Greenland and Antarctic ice sheets. Its primary mission goal is to significantly refine estimates of polar ice sheet mass balance. Obtaining precise, spatially dense, ice sheet elevations through time is the first step towards this goal. ICESat data will then enable study of associations between observed ice changes and dynamic or climatic forcing factors, and thus enable improved estimation of the present and future contributions of the ice sheets to global sea level rise. ICESat was launched on January 12, 2003 and acquired science data from February 20th to March 29th with the first of the three lasers of the Geoscience Laser Altimeter System (GLAS). Data acquisition with the second laser began on September 25th and continued until November 18th, 2003. For one-year change detection, the second laser is scheduled for operation from approximately February 17th to March 20th, 2004. Additional operational periods will be selected to 1) enable periodic measurements through the year, and 2) to support of other NASA Earth Science Enterprise missions and activities. To obtain these precise ice sheet elevations, GLAS has a 1064 nm wavelength laser operating at 40 Hz with a designed range precision of about 10 cm. The laser footprints are about 70 m in diameter on the Earth's surface and are spaced every 172 m along-track. The on-board GPS receiver enables radial orbit determinations to an accuracy better than 5 cm. The star-tracking attitude-determination system will enable laser footprints to be located to 6 m horizontally when attitude calibration is completed. The orbital altitude averages 600 km at an inclination of 94 degrees with coverage extending from 86 degrees N and S latitude. The spacecraft attitude can be controlled to point the laser beam to within 50 m of surface reference tracks over the ice sheets and to point off-nadir up to 5 degrees to

  19. EBSD in Antarctic and Greenland Ice

    Science.gov (United States)

    Weikusat, Ilka; Kuiper, Ernst-Jan; Pennock, Gill; Sepp, Kipfstuhl; Drury, Martyn

    2017-04-01

    Ice, particularly the extensive amounts found in the polar ice sheets, impacts directly on the global climate by changing the albedo and indirectly by supplying an enormous water reservoir that affects sea level change. The discharge of material into the oceans is partly controlled by the melt excess over snow accumulation, partly by the dynamic flow of ice. In addition to sliding over bedrock, an ice body deforms gravitationally under its own weight. In order to improve our description of this flow, ice microstructure studies are needed that elucidate the dominant deformation and recrystallization mechanisms involved. Deformation of hexagonal ice is highly anisotropic: ice is easily sheared in the basal plane and is about two orders of magnitude harder parallel to the c-axis. As dislocation creep is the dominant deformation mechanism in polar ice this strong anisotropy needs to be understood in terms of dislocation activity. The high anisotropy of the ice crystal is usually ascribed to a particular behaviour of dislocations in ice, namely the extension of dislocations into partials on the basal plane. Analysis of EBSD data can help our understanding of dislocation activity by characterizing subgrain boundary types thus providing a tool for comprehensive dislocation characterization in polar ice. Cryo-EBSD microstructure in combination with light microscopy measurements from ice core material from Antarctica (EPICA-DML deep ice core) and Greenland (NEEM deep ice core) are presented and interpreted regarding substructure identification and characterization. We examined one depth for each ice core (EDML: 656 m, NEEM: 719 m) to obtain the first comparison of slip system activity from the two ice sheets. The subgrain boundary to grain boundary threshold misorientation was taken to be 3-5° (Weikusat et al. 2011). EBSD analyses suggest that a large portion of edge dislocations with slip systems basal gliding on the basal plane were indeed involved in forming subgrain

  20. Evidence of unfrozen liquids and seismic anisotropy at the base of the polar ice sheets

    Science.gov (United States)

    Wittlinger, Gérard; Farra, Véronique

    2015-03-01

    We analyze seismic data from broadband stations located on the Antarctic and Greenland ice sheets to determine polar ice seismic velocities. P-to-S converted waves at the ice/rock interface and inside the ice sheets and their multiples (the P-receiver functions) are used to estimate in-situ P-wave velocity (Vp) and P-to-S velocity ratio (Vp/Vs) of polar ice. We find that the polar ice sheets have a two-layer structure; an upper layer of variable thickness (about 2/3 of the total thickness) with seismic velocities close to the standard ice values, and a lower layer of approximately constant thickness with standard Vp but ∼25% smaller Vs. The lower layer ceiling corresponds approximately to the -30 °C isotherm. Synthetic modeling of P-receiver functions shows that strong seismic anisotropy and low vertical S velocity are needed in the lower layer. The seismic anisotropy results from the preferred orientation of ice crystal c-axes toward the vertical. The low vertical S velocity may be due to the presence of unfrozen liquids resulting from premelting at grain joints and/or melting of chemical solutions buried in the ice. The strongly preferred ice crystal orientation fabric and the unfrozen fluids may facilitate polar ice sheet basal flow.

  1. Ice flow Modelling of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Tangaa

    Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others. In t...... a steady state with respect to the reference climate at the end of the simulation and that the mass balance of the ice sheet at this time was more sensitive to recent climate fluctuations than the temperature forcing in the early or mid-Holocene.......Models of ice flow have a range of application in glaciology, including investigating the large-scale response of ice sheets to changes in climate, assimilating data to estimate unknown conditions beneath the ice sheet, and in interpreting proxy records obtained from ice cores, among others....... In this PhD project, the use of ice flow models for the interpretation of the age-structure of the Greenland ice sheet, i.e. the depth within the ice, at which ice deposited at given times are found at present day. Two different observational data sets of this archive were investigated. Further, paleo...

  2. An Imminent Revolution in Modeling Interactions of Ice Sheets With Climate

    Science.gov (United States)

    Hughes, T.

    2008-12-01

    Modeling continental ice sheets was inaugurated by meteorologists William Budd and Uwe Radok, with mathematician Richard Jenssen, in 1971. Their model calculated the thermal and mechanical regime using measured surface accumulation rates, temperatures, and elevations, and bed topography. This top-down approach delivered a basal thermal regime of temperatures or melting rates for an assumed basal geothermal heat flux. When Philippe Huybrechts and others incorporated time, largely unknownpast surface conditions had a major effect on present basal thermal conditions. This approach produced ice-sheet models with only a slow response to external forcing, whereas the glacial geological record and climate records from ice and ocean cores show that ice sheets can have rapid changes in size and shape independent of external forcing. These top-down models were wholly inadequate for reconstructing former ice sheets at the LGM for CLIMAP in 1981. Ice-sheet areas,elevations, and volumes provided the albedo, surface topography, and sea-surface area as input to climate models. A bottom-up model based on dated glacial geology was developed to provide the areal extent and basal thermal regime of ice sheets at the LGM. Basal thermal conditions determined ice-bed coupling and therefore the elevation of ice sheets. High convex ice surfaces for slow sheet flow lower about 20 percent when a frozen bed becomes thawed. As further basal melting drowns bedrock bumps that "pin" basal ice, the ice surface becomes concave in fast stream flow that ends as low floating ice shelves at marine ice margins. A revolution in modeling interactions between glaciation, climate, and sea level is driven by new Greenland and Antarctic data from Earth-orbiting satellites, airborne and surface traverses, and deep drilling. We anticipate continuous data acquisition of surface albedo, accumulation/ablation rates, elevations, velocities, and temperatures over a whole ice sheet, mapping basal thermal conditions

  3. Antarctic glaciation caused ocean circulation changes at the Eocene-Oligocene transition.

    Science.gov (United States)

    Goldner, A; Herold, N; Huber, M

    2014-07-31

    Two main hypotheses compete to explain global cooling and the abrupt growth of the Antarctic ice sheet across the Eocene-Oligocene transition about 34 million years ago: thermal isolation of Antarctica due to southern ocean gateway opening, and declining atmospheric CO2 (refs 5, 6). Increases in ocean thermal stratification and circulation in proxies across the Eocene-Oligocene transition have been interpreted as a unique signature of gateway opening, but at present both mechanisms remain possible. Here, using a coupled ocean-atmosphere model, we show that the rise of Antarctic glaciation, rather than altered palaeogeography, is best able to explain the observed oceanographic changes. We find that growth of the Antarctic ice sheet caused enhanced northward transport of Antarctic intermediate water and invigorated the formation of Antarctic bottom water, fundamentally reorganizing ocean circulation. Conversely, gateway openings had much less impact on ocean thermal stratification and circulation. Our results support available evidence that CO2 drawdown--not gateway opening--caused Antarctic ice sheet growth, and further show that these feedbacks in turn altered ocean circulation. The precise timing and rate of glaciation, and thus its impacts on ocean circulation, reflect the balance between potentially positive feedbacks (increases in sea ice extent and enhanced primary productivity) and negative feedbacks (stronger southward heat transport and localized high-latitude warming). The Antarctic ice sheet had a complex, dynamic role in ocean circulation and heat fluxes during its initiation, and these processes are likely to operate in the future.

  4. Cosmogenic 10Be Depth Profile in top 560 m of West Antarctic Ice Sheet Divide Ice Core

    Science.gov (United States)

    Welten, K. C.; Woodruff, T. E.; Caffee, M. W.; Edwards, R.; McConnell, J. R.; Bisiaux, M. M.; Nishiizumi, K.

    2009-12-01

    Concentrations of cosmogenic 10Be in polar ice samples are a function of variations in solar activity, geomagnetic field strength, atmospheric mixing and annual snow accumulation rates. The 10Be depth profile in ice cores also provides independent chronological markers to tie Antarctic to Greenland ice cores and to tie Holocene ice cores to the 14C dendrochronology record. We measured 10Be concentrations in 187 samples from depths of 0-560 m of the main WAIS Divide core, WDC06A. The ice samples are typically 1-2 kg and represent 2-4 m of ice, equivalent to an average temporal resolution of ~12 years, based on the preliminary age-depth scale proposed for the WDC core, (McConnell et al., in prep). Be, Al and Cl were separated using ion exchange chromatography techniques and the 10Be concentrations were measured by accelerator mass spectrometry (AMS) at PRIME lab. The 10Be concentrations range from 8.1 to 19.1 x 10^3 at/g, yielding an average of (13.1±2.1) x 10^3 at/g. Adopting an average snow accumulation rate of 20.9 cm weq/yr, as derived from the age-depth scale, this value corresponds to an average 10Be flux of (2.7±0.5) x 10^5 atoms/yr/cm2. This flux is similar to that of the Holocene part of the Siple Dome (Nishiizumi and Finkel, 2007) and Dome Fuji (Horiuchi et al. 2008) ice cores, but ~30% lower than the value of 4.0 x 10^5 atoms/yr/cm2 for GISP2 (Finkel and Nishiizumi, 1997). The periods of low solar activity, known as Oort, Wolf, Spörer, Maunder and Dalton minima, show ~20% higher 10Be concentrations/fluxes than the periods of average solar activity in the last millennium. The maximum 10Be fluxes during some of these periods of low solar activity are up to ~50% higher than average 10Be fluxes, as seen in other polar ice cores, which makes these peaks suitable as chronologic markers. We will compare the 10Be record in the WAIS Divide ice core with that in other Antarctic as well as Greenland ice cores and with the 14C treering record. Acknowledgment. This

  5. Extensive Holocene ice sheet grounding line retreat and uplift-driven readvance in West Antarctica

    Science.gov (United States)

    Kingslake, J.; Scherer, R. P.; Albrecht, T.; Coenen, J. J.; Powell, R. D.; Reese, R.; Stansell, N.; Tulaczyk, S. M.; Whitehouse, P. L.

    2017-12-01

    The West Antarctic Ice Sheet (WAIS) reached its Last Glacial Maximum (LGM) extent 29-14 kyr before present. Numerical models used to project future ice-sheet contributions to sea-level rise exploit reconstructions of post-LGM ice mass loss to tune model parameterizations. Ice-sheet reconstructions are poorly constrained in areas where floating ice shelves or a lack of exposed geology obstruct conventional glacial-geological techniques. In the Weddell and Ross Sea sectors, ice-sheet reconstructions have traditionally assumed progressive grounding line (GL) retreat throughout the Holocene. Contrasting this view, using three distinct lines of evidence, we show that the GL retreated hundreds of kilometers inland of its present position, before glacial isostatic rebound during the Mid to Late Holocene caused the GL to readvance to its current position. Evidence for retreat and readvance during the last glacial termination includes (1) widespread radiocarbon in sediment cores recovered from beneath ice streams along the Siple and Gould Coasts, indicating marine exposure at least 200 km inland of the current GL, (2) ice-penetrating radar observations of relic crevasses and other englacial structures preserved in slow-moving grounded ice, indicating ice-shelf grounding and (3) an ensemble of new ice-sheet simulations showing widespread post-LGM retreat of the GL inland of its current location and later readvance. The model indicates that GL readvance across low slope ice-stream troughs requires uplift-driven grounding of the ice shelf on topographic highs (ice rises). Our findings highlight ice-shelf pinning points and lithospheric response to unloading as drivers of major ice-sheet fluctuations. Full WAIS collapse likely requires GL retreat well beyond its current position in the Ronne and Ross Sectors and linkage via Amundsen Sea sector glaciers.

  6. Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance

    Science.gov (United States)

    Bradley, Sarah L.; Hindmarsh, Richard C. A.; Whitehouse, Pippa L.; Bentley, Michael J.; King, Matt A.

    2015-03-01

    Many ice-sheet reconstructions assume monotonic Holocene retreat for the West Antarctic Ice Sheet, but an increasing number of glaciological observations infer that some portions of the ice sheet may be readvancing, following retreat behind the present-day margin. A readvance in the Weddell Sea region can reconcile two outstanding problems: (i) the present-day widespread occurrence of seemingly stable ice streams grounded on beds that deepen inland; and (ii) the inability of models of glacial isostatic adjustment to match present-day uplift rates. By combining a suite of ice loading histories that include a readvance with a model of glacial isostatic adjustment we report substantial improvements to predictions of present-day uplift rates, including reconciling one problematic observation of land sinking. We suggest retreat behind present grounding lines occurred when the bed was lower, and isostatic recovery has since led to shallowing, ice sheet re-grounding and readvance. The paradoxical existence of grounding lines in apparently unstable configurations on reverse bed slopes may be resolved by invoking the process of unstable advance, in accordance with our load modelling.

  7. Contrasting Arctic and Antarctic atmospheric responses to future sea-ice loss

    Science.gov (United States)

    England, M.; Polvani, L. M.; Sun, L.

    2017-12-01

    By the end of this century, the annual mean Antarctic sea ice area is projected to decline by over a third, an amount similar to that in the Arctic, but the effect of Antarctic sea ice loss on the atmosphere remains largely unexplored. Using the Community Earth Systems Model (CESM) Whole Atmosphere Coupled Climate Model (WACCM), we investigate the effect of future Antarctic sea ice loss, and contrast it with its Arctic counterpart. This is accomplished by analyzing integrations of the model with historic and future sea ice levels, using the RCP8.5 scenario. This allows us to disentangle the effect of future sea ice loss on the atmosphere from other aspects of the coupled system. We find that both Antarctic and Arctic sea ice loss act to shift the tropospheric jet equatorwards, counteracting the poleward shift due to increases in greenhouse gases. Although the total forcing to the atmosphere is similar in both hemispheres, the response to Arctic sea ice loss is larger in amplitude and but more seasonally varying, while the response in the Antarctic persists throughout the year but with a smaller amplitude. Furthermore, the atmospheric temperature response over the Antarctic is trapped closer to the surface than in the Arctic, and perhaps surprisingly, we find that the surface temperature response to Antarctic sea ice loss is unable to penetrate the Antarctic continent.

  8. The aeromagnetic method as a tool to identify Cenozoic magmatism in the West Antarctic Rift System beneath the West Antarctic Ice Sheet: a review; Thiel subglacial volcano as possible source of the ash layer in the WAISCOR

    Science.gov (United States)

    Behrendt, John C.

    2013-01-01

    The West Antarctic Ice Sheet (WAIS) flows through the volcanically active West Antarctic Rift System (WARS). The aeromagnetic method has been the most useful geophysical tool for identification of subglacial volcanic rocks, since 1959–64 surveys, particularly combined with 1978 radar ice-sounding. The unique 1991–97 Central West Antarctica (CWA) aerogeophysical survey covering 354,000 km2 over the WAIS, (5-km line-spaced, orthogonal lines of aeromagnetic, radar ice-sounding, and aerogravity measurements), still provides invaluable information on subglacial volcanic rocks, particularly combined with the older aeromagnetic profiles. These data indicate numerous 100–>1000 nT, 5–50-km width, shallow-source, magnetic anomalies over an area greater than 1.2 × 106 km2, mostly from subglacial volcanic sources. I interpreted the CWA anomalies as defining about 1000 “volcanic centers” requiring high remanent normal magnetizations in the present field direction. About 400 anomaly sources correlate with bed topography. At least 80% of these sources have less than 200 m relief at the WAIS bed. They appear modified by moving ice, requiring a younger age than the WAIS (about 25 Ma). Exposed volcanoes in the WARS are The present rapid changes resulting from global warming, could be accelerated by subglacial volcanism.

  9. Arctic and Antarctic Sea Ice Changes and Impacts (Invited)

    Science.gov (United States)

    Nghiem, S. V.

    2013-12-01

    The extent of springtime Arctic perennial sea ice, important to preconditioning summer melt and to polar sunrise photochemistry, continues its precipitous reduction in the last decade marked by a record low in 2012, as the Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted around Barrow, Alaska, to investigate impacts of sea ice reduction on photochemical processes, transport, and distribution in the polar environment. In spring 2013, there was further loss of perennial sea ice, as it was not observed in the ocean region adjacent to the Alaskan north coast, where there was a stretch of perennial sea ice in 2012 in the Beaufort Sea and Chukchi Sea. In contrast to the rapid and extensive loss of sea ice in the Arctic, Antarctic sea ice has a trend of a slight increase in the past three decades. Given the significant variability in time and in space together with uncertainties in satellite observations, the increasing trend of Antarctic sea ice may arguably be considered as having a low confidence level; however, there was no overall reduction of Antarctic sea ice extent anywhere close to the decreasing rate of Arctic sea ice. There exist publications presenting various factors driving changes in Arctic and Antarctic sea ice. After a short review of these published factors, new observations and atmospheric, oceanic, hydrological, and geological mechanisms contributed to different behaviors of sea ice changes in the Arctic and Antarctic are presented. The contribution from of hydrologic factors may provide a linkage to and enhance thermal impacts from lower latitudes. While geological factors may affect the sensitivity of sea ice response to climate change, these factors can serve as the long-term memory in the system that should be exploited to improve future projections or predictions of sea ice changes. Furthermore, similarities and differences in chemical impacts of Arctic and Antarctic sea ice changes are discussed. Understanding sea ice changes and

  10. Synthesis of a quarter-century of satellite and airborne altimetry records to resolve long-term ice sheet elevation change

    Science.gov (United States)

    Nilsson, J.; Paolo, F. S.; Simonsen, S.; Gardner, A. S.

    2017-12-01

    Satellite and airborne altimetry provide the longest continuous record from which the mass balance of the Antarctic ice sheet can be derived, starting with the launch of ERS-1 in 1992. Accurate knowledge of the long-term mass balance is vital for understanding the geophysical processes governing the ice sheet contribution to present day sea-level rise. However, this record is comprised of several different measurement systems, with different accuracies and varying resolution. This poses a major challenge on the interpretation and reconstruction of consistent elevation-change time series for determining long-term ice sheet trends and variability. Previous studies using data from multiple satellite altimetry missions have relied on a cross-calibration technique based on crossover bias analysis to merge records from different sensors. This methodology, though accurate, limits the spatial coverage to typical resolutions of 10-50 km, restricting the approach to regional or continental-wide studies. In this study, we present a novel framework for seamless integration of heterogeneous altimetry records, using an adaptive least-squares minimization technique. The procedure allows reconstructing time series at fine spatial (sheet, including both data from the European Space Agency (ERS-1, ERS-2, Envisat and CryoSat-2) and NASA (ICESat and Operation IceBridge), with future inclusion of data from NASA's ICESat-2. Mission specific errors, estimated from independent airborne measurements and crossover analysis, are propagated to derive uncertainty bounds for each individual time series. We also perform an extensive analysis of the major corrections applied to raw satellite altimetry data to assess their overall effect on the estimated uncertainty. This methodology will allow us to determine robust long-term changes in the surface elevation of grounded Antarctic ice. Such a dataset will be invaluable to advancing ice sheet assimilation efforts and to disentangle causal

  11. Precipitation regime influence on oxygen triple-isotope distributions in Antarctic precipitation and ice cores

    Science.gov (United States)

    Miller, Martin F.

    2018-01-01

    The relative abundance of 17O in meteoric precipitation is usually reported in terms of the 17O-excess parameter. Variations of 17O-excess in Antarctic precipitation and ice cores have hitherto been attributed to normalised relative humidity changes at the moisture source region, or to the influence of a temperature-dependent supersaturation-controlled kinetic isotope effect during in-cloud ice formation below -20 °C. Neither mechanism, however, satisfactorily explains the large range of 17O-excess values reported from measurements. A different approach, based on the regression characteristics of 103 ln (1 +δ17 O) versus 103 ln (1 +δ18 O), is applied here to previously published isotopic data sets. The analysis indicates that clear-sky precipitation ('diamond dust'), which occurs widely in inland Antarctica, is characterised by an unusual relative abundance of 17O, distinct from that associated with cloud-derived, synoptic snowfall. Furthermore, this distinction appears to be largely preserved in the ice core record. The respective mass contributions to snowfall accumulation - on both temporal and spatial scales - provides the basis of a simple, first-order explanation for the observed oxygen triple-isotope ratio variations in Antarctic precipitation, surface snow and ice cores. Using this approach, it is shown that precipitation during the last major deglaciation, both in western Antarctica at the West Antarctic Ice Sheet (WAIS) Divide and at Vostok on the eastern Antarctic plateau, consisted essentially of diamond dust only, despite a large temperature differential (and thus different water vapour supersaturation conditions) at the two locations. In contrast, synoptic snowfall events dominate the accumulation record throughout the Holocene at both sites.

  12. New eyes in the sky measure glaciers and ice sheets

    Science.gov (United States)

    Kieffer, Hugh; Kargel, Jeffrey S.; Barry, Roger G.; Bindschadler, Robert; Bishop, Michael P.; MacKinnon, David; Ohmura, Atsumu; Raup, Bruce; Antoninetti, Massimo; Bamber, Jonathan; Braun, Mattias; Brown, Ian; Cohen, Denis; Copland, Luke; DueHagen, Jon; Engeset, Rune V.; Fitzharris, Blair; Fujita, Koji; Haeberli, Wilfried; Hagen, Jon Oue; Hall, Dorothy; Hoelzle, Martin; Johansson, Maria; Kaab, Andi; Koenig, Max; Konovalov, Vladimir; Maisch, Max; Paul, Frank; Rau, Frank; Reeh, Niels; Rignot, Eric; Rivera, Andres; De Ruyter de Wildt, Martiyn; Scambos, Ted; Schaper, Jesko; Scharfen, Greg; Shroder, Jack; Solomina, Olga; Thompson, David; van der Veen, Kees; Wohlleben, Trudy; Young, Neal

    2000-01-01

    The mapping and measurement of glaciers and their changes are useful in predicting sea-level and regional water supply, studying hazards and climate change [Haeberli et al., 1998],and in the hydropower industry Existing inventories cover only about 67,000 of the world's estimated 160,000 glaciers and are based on data collected over 50 years or more [e.g.,Haeberli et al., 1998]. The data available have proven that small ice bodies are disappearing at an accelerating rate and that the Antarctic ice sheet and its fringing ice shelves are undergoing unexpected, rapid change. According to many glaciologists, much larger fluctuations in land ice—with vast implications for society—are possible in the coming decades and centuries due to natural and anthropogenic climate change [Oppenheimer, 1998].

  13. Velocities of antarctic outlet glaciers determined from sequential Landsat images

    Science.gov (United States)

    MacDonald, Thomas R.; Ferrigno, Jane G.; Williams, Richard S.; Lucchitta, Baerbel K.

    1989-01-01

    Approximately 91.0 percent of the volume of present-day glacier ice on Earth is in Antarctica; Greenland contains about another 8.3 percent of the volume. Thus, together, these two great ice sheets account for an estimated 99.3 percent of the total. Long-term changes in the volume of glacier ice on our planet are the result of global climate change. Because of the relationship of global ice volume to sea level (± 330 cubic kilometers of glacier ice equals ± 1 millimeter sea level), changes in the mass balance of the antarctic ice sheet are of particular importance.Whether the mass balance of the east and west antarctic ice sheets is positive or negative is not known. Estimates of mass input by total annual precipitation for the continent have been made from scattered meteorological observations (Swithinbank 1985). The magnitude of annual ablation of the ice sheet from calving of outlet glaciers and ice shelves is also not well known. Although the velocities of outlet glaciers can be determined from field measurements during the austral summer,the technique is costly, does not cover a complete annual cycle,and has been applied to just a few glaciers. To increase the number of outlet glaciers in Antarctica for which velocities have been determined and to provide additional data for under-standing the dynamics of the antarctic ice sheets and their response to global climate change, sequential Landsat image of several outlet glaciers were measured.

  14. Archival processes of the water stable isotope signal in East Antarctic ice cores

    Science.gov (United States)

    Casado, Mathieu; Landais, Amaelle; Picard, Ghislain; Münch, Thomas; Laepple, Thomas; Stenni, Barbara; Dreossi, Giuliano; Ekaykin, Alexey; Arnaud, Laurent; Genthon, Christophe; Touzeau, Alexandra; Masson-Delmotte, Valerie; Jouzel, Jean

    2018-05-01

    The oldest ice core records are obtained from the East Antarctic Plateau. Water isotopes are key proxies to reconstructing past climatic conditions over the ice sheet and at the evaporation source. The accuracy of climate reconstructions depends on knowledge of all processes affecting water vapour, precipitation and snow isotopic compositions. Fractionation processes are well understood and can be integrated in trajectory-based Rayleigh distillation and isotope-enabled climate models. However, a quantitative understanding of processes potentially altering snow isotopic composition after deposition is still missing. In low-accumulation sites, such as those found in East Antarctica, these poorly constrained processes are likely to play a significant role and limit the interpretability of an ice core's isotopic composition. By combining observations of isotopic composition in vapour, precipitation, surface snow and buried snow from Dome C, a deep ice core site on the East Antarctic Plateau, we found indications of a seasonal impact of metamorphism on the surface snow isotopic signal when compared to the initial precipitation. Particularly in summer, exchanges of water molecules between vapour and snow are driven by the diurnal sublimation-condensation cycles. Overall, we observe in between precipitation events modification of the surface snow isotopic composition. Using high-resolution water isotopic composition profiles from snow pits at five Antarctic sites with different accumulation rates, we identified common patterns which cannot be attributed to the seasonal variability of precipitation. These differences in the precipitation, surface snow and buried snow isotopic composition provide evidence of post-deposition processes affecting ice core records in low-accumulation areas.

  15. Global glacier and ice sheet surface velocities derived from 31 years of Landsat imagery

    Science.gov (United States)

    Gardner, A. S.; Scambos, T. A.; Fahnestock, M. A.

    2016-12-01

    Glaciers and ice sheets are contributing substantial volumes of water to the world's oceans due to enhanced melt resulting from changes in ocean and atmospheric conditions and respective feedbacks. Improving understanding of the processes leading to accelerated rates of ice loss is necessary for reducing uncertainties sea level projections. One key to doing this is to assemble and analyze long records of glacier change that characterize grounded ice response to changes in driving stress, buttressing, and basal conditions. As part of the NASA funded GO_LIVE project we exploit 31 years of Landsat imagery to construct detailed time histories of global glacier velocities. Early exploration of the dataset reveals the diversity of information to be gleaned: sudden tidewater glacier speedups in the Antarctic Peninsula, rifting of Antarctic ice shelves, high variability in velocities near glacier grounding lines, frequent surge activity in the mountainous regions of Alaska and High Mountain Asia, and the slowdown of land-terminating valley glaciers in Arctic Canada and elsewhere.

  16. Cosmogenic nuclides constrain surface fluctuations of an East Antarctic outlet glacier since the Pliocene.

    OpenAIRE

    Jones, R.S.; Norton, K.P.; Mackintosh, A.N.; Anderson, J.T.H.; Kubik, P.; Vockenhuber, C.; Wittman, H.; Fink, D.; Wilson, G.S.; Golledge, N.R.; McKay, R.

    2017-01-01

    Understanding past changes in the Antarctic ice sheets provides insight into how they might respond to future climate warming. During the Pliocene and Pleistocene, geological data show that the East Antarctic Ice Sheet responded to glacial and interglacial cycles by remaining relatively stable in its interior, but oscillating at its marine-based margin. It is currently not clear how outlet glaciers, which connect the ice sheet interior to its margin, responded to these orbitally-paced climate...

  17. ICESat-2, its retrievals of ice sheet elevation change and sea ice freeboard, and potential synergies with CryoSat-2

    Science.gov (United States)

    Neumann, Thomas; Markus, Thorsten; Smith, Benjamin; Kwok, Ron

    2017-04-01

    Understanding the causes and magnitudes of changes in the cryosphere remains a priority for Earth science research. Over the past decade, NASA's and ESA's Earth-observing satellites have documented a decrease in both the areal extent and thickness of Arctic sea ice, and an ongoing loss of grounded ice from the Greenland and Antarctic ice sheets. Understanding the pace and mechanisms of these changes requires long-term observations of ice-sheet mass, sea-ice thickness, and sea-ice extent. NASA's ICESat-2 mission is the next-generation space-borne laser altimeter mission and will use three pairs of beams, each pair separated by about 3 km across-track with a pair spacing of 90 m. The spot size is 17 m with an along-track sampling interval of 0.7 m. This measurement concept is a result of the lessons learned from the original ICESat mission. The multi-beam approach is critical for removing the effects of ice sheet surface slope from the elevation change measurements of most interest. For sea ice, the dense spatial sampling (eliminating along-track gaps) and the small footprint size are especially useful for sea surface height measurements in the, often narrow, leads needed for sea ice freeboard and ice thickness retrievals. Currently, algorithms are being developed to calculate ice sheet elevation change and sea ice freeboard from ICESat-2 data. The orbits of ICESat-2 and Cryosat-2 both converge at 88 degrees of latitude, though the orbit altitude differences result in different ground track patterns between the two missions. This presentation will present an overview of algorithm approaches and how ICESat-2 and Cryosat-2 data may augment each other.

  18. A global, high-resolution data set of ice sheet topography, cavity geometry, and ocean bathymetry

    Science.gov (United States)

    Schaffer, Janin; Timmermann, Ralph; Arndt, Jan Erik; Savstrup Kristensen, Steen; Mayer, Christoph; Morlighem, Mathieu; Steinhage, Daniel

    2016-10-01

    The ocean plays an important role in modulating the mass balance of the polar ice sheets by interacting with the ice shelves in Antarctica and with the marine-terminating outlet glaciers in Greenland. Given that the flux of warm water onto the continental shelf and into the sub-ice cavities is steered by complex bathymetry, a detailed topography data set is an essential ingredient for models that address ice-ocean interaction. We followed the spirit of the global RTopo-1 data set and compiled consistent maps of global ocean bathymetry, upper and lower ice surface topographies, and global surface height on a spherical grid with now 30 arcsec grid spacing. For this new data set, called RTopo-2, we used the General Bathymetric Chart of the Oceans (GEBCO_2014) as the backbone and added the International Bathymetric Chart of the Arctic Ocean version 3 (IBCAOv3) and the International Bathymetric Chart of the Southern Ocean (IBCSO) version 1. While RTopo-1 primarily aimed at a good and consistent representation of the Antarctic ice sheet, ice shelves, and sub-ice cavities, RTopo-2 now also contains ice topographies of the Greenland ice sheet and outlet glaciers. In particular, we aimed at a good representation of the fjord and shelf bathymetry surrounding the Greenland continent. We modified data from earlier gridded products in the areas of Petermann Glacier, Hagen Bræ, and Sermilik Fjord, assuming that sub-ice and fjord bathymetries roughly follow plausible Last Glacial Maximum ice flow patterns. For the continental shelf off Northeast Greenland and the floating ice tongue of Nioghalvfjerdsfjorden Glacier at about 79° N, we incorporated a high-resolution digital bathymetry model considering original multibeam survey data for the region. Radar data for surface topographies of the floating ice tongues of Nioghalvfjerdsfjorden Glacier and Zachariæ Isstrøm have been obtained from the data centres of Technical University of Denmark (DTU), Operation Icebridge (NASA

  19. Physical Limits on Hmax, the Maximum Height of Glaciers and Ice Sheets

    Science.gov (United States)

    Lipovsky, B. P.

    2017-12-01

    The longest glaciers and ice sheets on Earth never achieve a topographic relief, or height, greater than about Hmax = 4 km. What laws govern this apparent maximum height to which a glacier or ice sheet may rise? Two types of answer appear possible: one relating to geological process and the other to ice dynamics. In the first type of answer, one might suppose that if Earth had 100 km tall mountains then there would be many 20 km tall glaciers. The counterpoint to this argument is that recent evidence suggests that glaciers themselves limit the maximum height of mountain ranges. We turn, then, to ice dynamical explanations for Hmax. The classical ice dynamical theory of Nye (1951), however, does not predict any break in scaling to give rise to a maximum height, Hmax. I present a simple model for the height of glaciers and ice sheets. The expression is derived from a simplified representation of a thermomechanically coupled ice sheet that experiences a basal shear stress governed by Coulomb friction (i.e., a stress proportional to the overburden pressure minus the water pressure). I compare this model to satellite-derived digital elevation map measurements of glacier surface height profiles for the 200,000 glaciers in the Randolph Glacier Inventory (Pfeffer et al., 2014) as well as flowlines from the Greenland and Antarctic Ice Sheets. The simplified model provides a surprisingly good fit to these global observations. Small glaciers less than 1 km in length are characterized by having negligible influence of basal melt water, cold ( -15C) beds, and high surface slopes ( 30 deg). Glaciers longer than a critical distance 30km are characterized by having an ice-bed interface that is weakened by the presence of meltwater and is therefore not capable of supporting steep surface slopes. The simplified model makes predictions of ice volume change as a function of surface temperature, accumulation rate, and geothermal heat flux. For this reason, it provides insights into

  20. Unravelling InSAR observed Antarctic ice-shelf flexure using 2-D elastic and viscoelastic modelling

    Science.gov (United States)

    Wild, Christian T.; Marsh, Oliver J.; Rack, Wolfgang

    2018-04-01

    Ice-shelf grounding zones link the Antarctic ice-sheets to the ocean. Differential interferometric synthetic aperture radar (DInSAR) is commonly used to monitor grounding-line locations, but also contains information on grounding-zone ice thickness, ice properties and tidal conditions beneath the ice shelf. Here, we combine in-situ data with numerical modelling of ice-shelf flexure to investigate 2-D controls on the tidal bending pattern on the Southern McMurdo Ice Shelf. We validate our results with 9 double-differential TerraSAR-X interferograms. It is necessary to make adjustments to the tidal forcing to directly compare observations with model output and we find that when these adjustments are small (tide models are required to allow for the full exploitation of DInSAR in grounding-zone glaciology.

  1. In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf

    OpenAIRE

    Grosvenor, D. P.; Choularton, T. W.; Lachlan-Cope, T.; Gallagher, M. W.; Crosier, J.; Bower, K. N.; Ladkin, R. S.; Dorsey, J. R.

    2012-01-01

    In-situ aircraft observations of ice crystal concentrations in Antarctic clouds are presented for the first time. Orographic, layer and wave clouds around the Antarctic Peninsula and Larsen Ice shelf regions were penetrated by the British Antarctic Survey's Twin Otter aircraft, which was equipped with modern cloud physics probes. The clouds studied were mostly in the free troposphere and hence ice crystals blown from the surface are unlikely to have been a major source for the ice phas...

  2. Too Warm, Two Poles: Super Interglacial Teleconnections and Possible Dual Pole Ice Sheet Stability

    Science.gov (United States)

    Brigham-Grette, J.; Deconto, R. M.; Roychowdhury, R.; de Wet, G.; Keisling, B. A.; Melles, M.; Minyuk, P.

    2017-12-01

    Geologic records of the warm Pliocene and Pleistocene super interglacials from both the Arctic and the Antarctic show us that ice sheets are more vulnerable to subtle polar warming than once thought. The continuous 3.6 million-year old sediment record from Lake El'gygytgyn (Lake E), the largest, deepest unglaciated Arctic lake located in central Chukotka, Russia, contains evidence of the warm forested Pliocene and the transition to changing glacial/interglacial climate cycles including at least 9 super interglacials and numerous other strong interglacials. Most of these super interglacials especially MIS 11 and 31, record conditions warmer than MIS 5e and many occur when global cycles are dominated by apparent 41ka forcing during the transition from the warm Pliocene to stronger G/IG variability. Given community consensus on the reduction of the Greenland Ice sheet (GIS) during MIS5e, we suggest that previous interglacials likely forced even larger reductions in the GIS, perhaps consistent with cosmogenic isotope exposure histories. We can best match MIS 11 and 31 from the Antarctic ANDRILL records when diatomaceous ooze deposition in the past recovered from under the modern Ross Ice Shelf suggests collapse of the WAIS and open water conditions. It is possible that a large number of the other Lake E super interglacials correspond to other intervals of WAIS collapse, within the uncertainly of the ANDRILL chronology. The forcing of super interglacials was not necessarily the result of high atmospheric CO2 but the result of preconditioning during periods of extremely low eccentricity and high obliquity. The challenge is now to incorporate oceanographic models (as suggested in Melles et al. 2012) to gauge ice sheet and ocean circulation sensitivity and timescales to preconditioning. Yet confirmation of past warming driving frequent ice sheet collapse in both hemispheres is clear geologically-based evidence that informs our future. Today, anthropogenic CO2 emissions are

  3. Surface Mass Balance Contributions to Acceleration of Antarctic Ice Mass Loss during 2003- 2013

    Science.gov (United States)

    Seo, K. W.; Wilson, C. R.; Scambos, T. A.; Kim, B. M.; Waliser, D. E.; Tian, B.; Kim, B.; Eom, J.

    2015-12-01

    Recent observations from satellite gravimetry (the GRACE mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6±7.2 GTon/yr2. Of this total, we find that the surface mass balance component is -8.2±2.0 GTon/yr2. However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8±5.8 GTon/yr2. Correcting for this yields an ice discharge acceleration of -15.1±6.5 GTon/yr2.

  4. Global ice sheet modeling

    International Nuclear Information System (INIS)

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed

  5. A one stop website for sharing sea ice, ocean and ice sheet data over the polar regions

    Science.gov (United States)

    Chen, Z.; Cheng, X.; Liu, J.; Hui, F.; Ding, Y.

    2017-12-01

    The polar regions, including the Arctic and Antarctic, are changing rapidly. Our capabilities to remotely monitor the state of the polar regions are increasing greatly. Satellite and airborne technologies have been deployed and further improvements are underway. Meanwhile, various algorithms have been developed to retrieve important parameters to maximize the effectiveness of available remote sensing data. These technologies and algorithms promise to greatly increase our understanding of variations in sea ice, ocean and ice sheet. However, so much information is scattered out there. It is challenging to find exactly what you are looking for by just searching it through the network. Therefore, we try to establish a common platform to sharing some key parameters for the polar regions. A group of scientists from Beijing Normal University and University at Albany developed a website as a "one-stop shop" for the current state of the polar regions. The website provides real-time (or near real-time) key parameters derived from a variety of operational satellites in an understandable, accessible and credible way. Three types of parameter, which are sea ice, ocean and ice sheet respectively, are shown and available to be downloaded in the website. Several individual parameters are contained in a specific type of parameter. The parameters of sea ice include sea ice concentration, sea ice thickness, melt pond, sea ice leads and sea ice drift. The ocean parameters contain sea surface temperature and sea surface wind. Ice sheet balance, ice velocity and some other parameters are classified into the type of ice sheet parameter. Some parameters are well-calibrated and available to be obtained from other websites, such as sea ice concentration, sea ice thickness sea surface temperature. Since these parameters are retrieved from different sensors, such as SSMI, AMSR2 etc., data format, spatial resolution of the parameters are not unified. We collected and reprocessed these

  6. Unveiling the Antarctic subglacial landscape.

    Science.gov (United States)

    Warner, Roland; Roberts, Jason

    2010-05-01

    Better knowledge of the subglacial landscape of Antarctica is vital to reducing uncertainties regarding prediction of the evolution of the ice sheet. These uncertainties are associated with bedrock geometry for ice sheet dynamics, including possible marine ice sheet instabilities and subglacial hydrological pathways (e.g. Wright et al., 2008). Major collaborative aerogeophysics surveys motivated by the International Polar Year (e.g. ICECAP and AGAP), and continuing large scale radar echo sounding campaigns (ICECAP and NASA Ice Bridge) are significantly improving the coverage. However, the vast size of Antarctica and logistic difficulties mean that data gaps persist, and ice thickness data remains spatially inhomogeneous. The physics governing large scale ice sheet flow enables ice thickness, and hence bedrock topography, to be inferred from knowledge of ice sheet surface topography and considerations of ice sheet mass balance, even in areas with sparse ice thickness measurements (Warner and Budd, 2000). We have developed a robust physically motivated interpolation scheme, based on these methods, and used it to generate a comprehensive map of Antarctic bedrock topography, using along-track ice thickness data assembled for the BEDMAP project (Lythe et al., 2001). This approach reduces ice thickness biases, compared to traditional inverse distance interpolation schemes which ignore the information available from considerations of ice sheet flow. In addition, the use of improved balance fluxes, calculated using a Lagrangian scheme, eliminates the grid orientation biases in ice fluxes associated with finite difference methods (Budd and Warner, 1996, Le Brocq et al., 2006). The present map was generated using a recent surface DEM (Bamber et al., 2009, Griggs and Bamber, 2009) and accumulation distribution (van de Berg et al., 2006). Comparing our results with recent high resolution regional surveys gives confidence that all major subglacial topographic features are

  7. Reconstructing the last Irish Ice Sheet 2: a geomorphologically-driven model of ice sheet growth, retreat and dynamics

    Science.gov (United States)

    Greenwood, Sarah L.; Clark, Chris D.

    2009-12-01

    The ice sheet that once covered Ireland has a long history of investigation. Much prior work focussed on localised evidence-based reconstructions and ice-marginal dynamics and chronologies, with less attention paid to an ice sheet wide view of the first order properties of the ice sheet: centres of mass, ice divide structure, ice flow geometry and behaviour and changes thereof. In this paper we focus on the latter aspect and use our new, countrywide glacial geomorphological mapping of the Irish landscape (>39 000 landforms), and our analysis of the palaeo-glaciological significance of observed landform assemblages (article Part 1), to build an ice sheet reconstruction yielding these fundamental ice sheet properties. We present a seven stage model of ice sheet evolution, from initiation to demise, in the form of palaeo-geographic maps. An early incursion of ice from Scotland likely coalesced with local ice caps and spread in a south-westerly direction 200 km across Ireland. A semi-independent Irish Ice Sheet was then established during ice sheet growth, with a branching ice divide structure whose main axis migrated up to 140 km from the west coast towards the east. Ice stream systems converging on Donegal Bay in the west and funnelling through the North Channel and Irish Sea Basin in the east emerge as major flow components of the maximum stages of glaciation. Ice cover is reconstructed as extending to the continental shelf break. The Irish Ice Sheet became autonomous (i.e. separate from the British Ice Sheet) during deglaciation and fragmented into multiple ice masses, each decaying towards the west. Final sites of demise were likely over the mountains of Donegal, Leitrim and Connemara. Patterns of growth and decay of the ice sheet are shown to be radically different: asynchronous and asymmetric in both spatial and temporal domains. We implicate collapse of the ice stream system in the North Channel - Irish Sea Basin in driving such asymmetry, since rapid

  8. Microbial processes at the beds of glaciers and ice sheets: a look at life below the Whillans Ice Stream

    Science.gov (United States)

    Mikucki, J.; Campen, R.; Vancleave, S.; Scherer, R. P.; Coenen, J. J.; Powell, R. D.; Tulaczyk, S. M.

    2017-12-01

    Groundwater, saturated sediments and hundreds of subglacial lakes exist below the ice sheets of Antarctica. The few Antarctic subglacial environments sampled to date all contain viable microorganisms. This is a significant finding because microbes are known to be key in mediating biogeochemical cycles. In sediments, microbial metabolic activity can also result in byproducts or direct interactions with sediment particles that influence the physical and geochemical characteristics of the matrix they inhabit. Subglacial Lake Whillans (SLW), a fresh water lake under the Whillans Ice Stream that drains into the Ross Sea at its grounding zone, was recently sampled as part of the NSF-funded Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project. Sediments from both SLW and its grounding zone contain microbial taxa related to iron, sulfur, nitrogen and methane oxidizers. In addition to molecular data, biogeochemical measurements and culture based experiments on Whillans sediments support the notion that the system is chemosynthetic with energy derived in part by cycling inorganic compounds. Etch pitting and mineral precipitates on fossil sponge spicules suggest that spicules may also provide microbial nutrients in these environments. Perhaps the most widespread microbial process that affects sediment structure and mineral weathering is the production of extra polymeric substances (EPS). Several phylogenetic groups detected in Whillans sediments are known to produce EPS and we have observed its production in pure cultures enriched directly from these sediments. Our data sheds light on how microbial life persists below the Antarctic Ice Sheet despite extended isolation in icy darkness, and how these microbes may be shaping their environment.

  9. Ice shelf fracture parameterization in an ice sheet model

    Science.gov (United States)

    Sun, Sainan; Cornford, Stephen L.; Moore, John C.; Gladstone, Rupert; Zhao, Liyun

    2017-11-01

    Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM) to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ˜ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor) fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  10. Dating glacimarine sediments from the continental shelf in the Amundsen Sea using a multi-tool box: Implications for West Antarctic ice-sheet extent and retreat during the last glacial cycle

    Science.gov (United States)

    Hillenbrand, C. D.; Smith, J.; Klages, J. P.; Kuhn, G.; Maher, B.; Moreton, S.; Wacker, L.; Frederichs, T.; Wiers, S.; Jernas, P.; Anderson, J. B.; Ehrmann, W. U.; Graham, A. G. C.; Gohl, K.; Larter, R. D.

    2016-02-01

    Satellite data and in-situ measurements show that today considerable mass loss is occurring from the Amundsen Sea sector of the West Antarctic Ice Sheet (WAIS). The observational record only spans the past four decades, and until recently the long-term context of the current deglaciation was poorly constrained. This information is, however, crucial for understanding WAIS dynamics, evaluating the role of forcing mechanisms for ice-sheet melting, and testing and calibrating ice-sheet models that attempt to predict future WAIS behavior and its impact on global sea level. Over the past decade several multinational marine expeditions and terrestrial fieldwork campaigns have targeted the Amundsen Sea shelf and its hinterland to reconstruct the WAIS configuration during the Last Glacial Maximum (LGM) and its subsequent deglacial history. The resulting studies succeeded in shedding light on the maximum WAIS extent at the LGM and the style, pattern and speed of its retreat and thinning thereafter. Despite this progress, however, significant uncertainties and discrepancies between marine and terrestrial reconstructions remain, which may arise from difficulties in dating sediment cores from the Antarctic shelf, especially their deglacial sections. Resolving these issues is crucial for understanding the WAIS' contribution to post-LGM sea-level rise, its sensitivity to different forcing mechanisms and its future evolution. Here we present chronological constraints on WAIS advance in the Amundsen Sea and its retreat from 20 ka BP into the Holocene that were obtained by various techniques, such as 14C dating of large ( 10 mg) and small (sample aliquots of calcareous microfossils, 14C dating of acid-insoluble organic matter combusted at low (300 °C) and high (800 °C) temperatures and dating of sediment cores by using geomagnetic paleointensity. We will compare the different age constraints and discuss their reliability, applicability and implications for WAIS history.

  11. Ice_Sheets_CCI: Essential Climate Variables for the Greenland Ice Sheet

    Science.gov (United States)

    Forsberg, R.; Sørensen, L. S.; Khan, A.; Aas, C.; Evansberget, D.; Adalsteinsdottir, G.; Mottram, R.; Andersen, S. B.; Ahlstrøm, A.; Dall, J.; Kusk, A.; Merryman, J.; Hvidberg, C.; Khvorostovsky, K.; Nagler, T.; Rott, H.; Scharrer, M.; Shepard, A.; Ticconi, F.; Engdahl, M.

    2012-04-01

    As part of the ESA Climate Change Initiative (www.esa-cci.org) a long-term project "ice_sheets_cci" started January 1, 2012, in addition to the existing 11 projects already generating Essential Climate Variables (ECV) for the Global Climate Observing System (GCOS). The "ice_sheets_cci" goal is to generate a consistent, long-term and timely set of key climate parameters for the Greenland ice sheet, to maximize the impact of European satellite data on climate research, from missions such as ERS, Envisat and the future Sentinel satellites. The climate parameters to be provided, at first in a research context, and in the longer perspective by a routine production system, would be grids of Greenland ice sheet elevation changes from radar altimetry, ice velocity from repeat-pass SAR data, as well as time series of marine-terminating glacier calving front locations and grounding lines for floating-front glaciers. The ice_sheets_cci project will involve a broad interaction of the relevant cryosphere and climate communities, first through user consultations and specifications, and later in 2012 optional participation in "best" algorithm selection activities, where prototype climate parameter variables for selected regions and time frames will be produced and validated using an objective set of criteria ("Round-Robin intercomparison"). This comparative algorithm selection activity will be completely open, and we invite all interested scientific groups with relevant experience to participate. The results of the "Round Robin" exercise will form the algorithmic basis for the future ECV production system. First prototype results will be generated and validated by early 2014. The poster will show the planned outline of the project and some early prototype results.

  12. Ice sheet hydrology - a review

    International Nuclear Information System (INIS)

    Jansson, Peter; Naeslund, Jens-Ove; Rodhe, Lars

    2007-03-01

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  13. Ice sheet hydrology - a review

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter; Naeslund, Jens-Ove [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden); Rodhe, Lars [Geological Survey of Sweden, Uppsala (Sweden)

    2007-03-15

    This report summarizes the theoretical knowledge on water flow in and beneath glaciers and ice sheets and how these theories are applied in models to simulate the hydrology of ice sheets. The purpose is to present the state of knowledge and, perhaps more importantly, identify the gaps in our understanding of ice sheet hydrology. Many general concepts in hydrology and hydraulics are applicable to water flow in glaciers. However, the unique situation of having the liquid phase flowing in conduits of the solid phase of the same material, water, is not a commonly occurring phenomena. This situation means that the heat exchange between the phases and the resulting phase changes also have to be accounted for in the analysis. The fact that the solidus in the pressure-temperature dependent phase diagram of water has a negative slope provides further complications. Ice can thus melt or freeze from both temperature and pressure variations or variations in both. In order to provide details of the current understanding of water flow in conjunction with deforming ice and to provide understanding for the development of ideas and models, emphasis has been put on the mathematical treatments, which are reproduced in detail. Qualitative results corroborating theory or, perhaps more often, questioning the simplifications made in theory, are also given. The overarching problem with our knowledge of glacier hydrology is the gap between the local theories of processes and the general flow of water in glaciers and ice sheets. Water is often channelized in non-stationary conduits through the ice, features which due to their minute size relative to the size of glaciers and ice sheets are difficult to incorporate in spatially larger models. Since the dynamic response of ice sheets to global warming is becoming a key issue in, e.g. sea-level change studies, the problems of the coupling between the hydrology of an ice sheet and its dynamics is steadily gaining interest. New work is emerging

  14. Spatial Patterns of Long-Term Erosion Rates Beneath the Marine West Antarctic Ice Sheet: Insights into the Physics of Continental Scale Glacial Erosion from a Comparison with the Ice-Velocity Field

    Science.gov (United States)

    Howat, I. M.; Tulaczyk, S.; Mac Gregor, K.; Joughin, I.

    2001-12-01

    As part of the effort to build quantitative models of glacial erosion and sedimentation, it is particularly important to construct scaled relations between erosion, transport, and sedimentation rates and appropriate glaciological variables (e.g., ice velocity). Recent acquisition of bed topography and ice velocity data for the marine West Antarctic Ice Sheet (WAIS)[Joughin et al., 1999; Lythe et al., in press] provides an unprecedented opportunity to investigate continental-scale patterns of glacial erosion and their relationship to the ice velocity field. Utilizing this data, we construct a map of estimated long-term erosion rates beneath the WAIS. In order to calculate long-term erosion rates from the available data, we assume that: (1) the ice sheet has been present for ~5 mill. years, (2) the initial topography beneath the WAIS was that of a typical ( ~200 m.b.s.l.) continental shelf, and (3) the present topography is near local isostatic equilibrium (Airy type). The map of long-term erosion rates constructed in this fashion shows an intriguing pattern of relatively high rates (of the order of 0.1 mm/yr) concentrated beneath modern ice stream tributaries (ice velocity ~100 m/yr), but much lower erosion rates (of the order of 0.01 mm/yr) beneath both the modern fast-moving ice streams ( ~400 m/yr.) and the slow-moving parts of the ice sheet ( ~10 m/yr). This lack of clear correlation between the estimated erosion rates and ice velocity is somewhat unexpected given that both observational and theoretical studies have shown that bedrock erosion rates beneath mountain glaciers can often be calculated by multiplying the basal sliding velocity by a constant (typically of the order of ~10^-4)(Humphrey and Raymond, 1993 and Mac Gregor et al., 2000). We obtain an improved match between estimated erosion rates and bed topography by calculating erosion rates using horizontal gradients within the ice velocity field rather than the magnitude of ice velocity, as consistent

  15. Oceanic an climatic consequences of a sudden large-scale West Antarctic Ice Sheet collapse

    Science.gov (United States)

    Scarff, Katie; Green, Mattias; Schmittner, Andreas

    2015-04-01

    Atmospheric warming is progressing to the point where the West Antarctic Ice Sheet (WAIS) will experience an elevated rate of discharge. The current discharge rate of WAIS is around 0.005Sv, but this rate will most likely accelerate over this century. The input of freshwater, in the form of ice, may have a profound effect on oceanic circulation systems, including potentially reducing the formation of deep water in the Southern Ocean and thus triggering or enhancing the bipolar seesaw. Using UVic - an intermediate complexity ocean-climate model - we investigate how various hosing rates from the WAIS will impact of the present and future ocean circulation and climate. These scenarios range from observed hosing rates (~0.005Sv) being applied for 100 years, to a total collapse of the WAIS over the next 100 years (the equivalent to a0.7Sv hosing). We show that even the present day observed rates can have a significant impact on the ocean and atmospheric temperatures, and that the bipolar seesaw may indeed be enhanced by the Southern Ocean hosing. Consequently, there is a speed-up of the Meridional Overturning Circulation (MOC) early on during the hosing, which leads to a warming over the North Atlantic, and a subsequent reduction in the MOC on centennial scales. The larger hosing cases show more dramatic effects with near-complete shutdowns of the MOC during the hosing. Furthermore, global warming scenarios based on the IPCC "business as usual" scenario show that the atmospheric warming will change the response of the ocean to Southern Ocean hosing and that the warming will dominate the perturbation. The potential feedback between changes in the ocean stratification in the scenarios and tidally driven abyssal mixing via tidal conversion is also explored.

  16. A multivariate analysis of Antarctic sea ice since 1979

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes Neto, Newton de; Evangelista, Heitor [Universidade do Estado do Rio de Janeiro (Uerj), LARAMG - Laboratorio de Radioecologia e Mudancas Globais, Maracana, Rio de Janeiro, RJ (Brazil); Tanizaki-Fonseca, Kenny [Universidade do Estado do Rio de Janeiro (Uerj), LARAMG - Laboratorio de Radioecologia e Mudancas Globais, Maracana, Rio de Janeiro, RJ (Brazil); Universidade Federal Fluminense (UFF), Dept. Analise Geoambiental, Inst. de Geociencias, Niteroi, RJ (Brazil); Penello Meirelles, Margareth Simoes [Universidade do Estado do Rio de Janeiro (UERJ)/Geomatica, Maracana, Rio de Janeiro, RJ (Brazil); Garcia, Carlos Eiras [Universidade Federal do Rio Grande (FURG), Laboratorio de Oceanografia Fisica, Rio Grande, RS (Brazil)

    2012-03-15

    Recent satellite observations have shown an increase in the total extent of Antarctic sea ice, during periods when the atmosphere and oceans tend to be warmer surrounding a significant part of the continent. Despite an increase in total sea ice, regional analyses depict negative trends in the Bellingshausen-Amundsen Sea and positive trends in the Ross Sea. Although several climate parameters are believed to drive the formation of Antarctic sea ice and the local atmosphere, a descriptive mechanism that could trigger such differences in trends are still unknown. In this study we employed a multivariate analysis in order to identify the response of the Antarctic sea ice with respect to commonly utilized climate forcings/parameters, as follows: (1) The global air surface temperature, (2) The global sea surface temperature, (3) The atmospheric CO{sub 2} concentration, (4) The South Annular Mode, (5) The Nino 3, (6) The Nino (3 + 4, 7) The Nino 4, (8) The Southern Oscillation Index, (9) The Multivariate ENSO Index, (10) the Total Solar Irradiance, (11) The maximum O{sub 3} depletion area, and (12) The minimum O{sub 3} concentration over Antarctica. Our results indicate that western Antarctic sea ice is simultaneously impacted by several parameters; and that the minimum, mean, and maximum sea ice extent may respond to a separate set of climatic/geochemical parameters. (orig.)

  17. Expanding Antarctic Sea Ice: Anthropogenic or Natural Variability?

    Science.gov (United States)

    Bitz, C. M.

    2016-12-01

    Antarctic sea ice extent has increased over the last 36 years according to the satellite record. Concurrent with Antarctic sea-ice expansion has been broad cooling of the Southern Ocean sea-surface temperature. Not only are Southern Ocean sea ice and SST trends at odds with expectations from greenhouse gas-induced warming, the trend patterns are not reproduced in historical simulations with comprehensive global climate models. While a variety of different factors may have contributed to the observed trends in recent decades, we propose that it is atmospheric circulation changes - and the changes in ocean circulation they induce - that have emerged as the most likely cause of the observed Southern Ocean sea ice and SST trends. I will discuss deficiencies in models that could explain their incorrect response. In addition, I will present results from a series of experiments where the Antarctic sea ice and ocean are forced by atmospheric perturbations imposed within a coupled climate model. Figure caption: Linear trends of annual-mean SST (left) and annual-mean sea-ice concentration (right) over 1980-2014. SST is from NOAA's Optimum Interpolation SST dataset (version 2; Reynolds et al. 2002). Sea-ice concentration is from passive microwave observations using the NASA Team algorithm. Only the annual means are shown here for brevity and because the signal to noise is greater than in the seasonal means. Figure from Armour and Bitz (2015).

  18. Ice shelf fracture parameterization in an ice sheet model

    Directory of Open Access Journals (Sweden)

    S. Sun

    2017-11-01

    Full Text Available Floating ice shelves exert a stabilizing force onto the inland ice sheet. However, this buttressing effect is diminished by the fracture process, which on large scales effectively softens the ice, accelerating its flow, increasing calving, and potentially leading to ice shelf breakup. We add a continuum damage model (CDM to the BISICLES ice sheet model, which is intended to model the localized opening of crevasses under stress, the transport of those crevasses through the ice sheet, and the coupling between crevasse depth and the ice flow field and to carry out idealized numerical experiments examining the broad impact on large-scale ice sheet and shelf dynamics. In each case we see a complex pattern of damage evolve over time, with an eventual loss of buttressing approximately equivalent to halving the thickness of the ice shelf. We find that it is possible to achieve a similar ice flow pattern using a simple rule of thumb: introducing an enhancement factor ∼ 10 everywhere in the model domain. However, spatially varying damage (or equivalently, enhancement factor fields set at the start of prognostic calculations to match velocity observations, as is widely done in ice sheet simulations, ought to evolve in time, or grounding line retreat can be slowed by an order of magnitude.

  19. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions...

  20. Topographic Steering of Enhanced Ice Flow at the Bottleneck Between East and West Antarctica

    DEFF Research Database (Denmark)

    Winter, Kate; Ross, Neil; Ferraccioli, Fausto

    2018-01-01

    Hypothesized drawdown of the East Antarctic Ice Sheet through the “bottleneck” zone between East and West Antarctica would have significant impacts for a large proportion of the Antarctic Ice Sheet. Earth observation satellite orbits and a sparseness of radio echo sounding data have restricted...... investigations of basal boundary controls on ice flow in this region until now. New airborne radio echo sounding surveys reveal complex topography of high relief beneath the southernmost Weddell/Ross ice divide, with three subglacial troughs connecting interior Antarctica to the Foundation and Patuxent Ice...... Streams and Siple Coast ice streams. These troughs route enhanced ice flow through the interior of Antarctica but limit potential drawdown of the East Antarctic Ice Sheet through the bottleneck zone. In a thinning or retreating scenario, these topographically controlled corridors of enhanced flow could...

  1. Storage and release of organic carbon from glaciers and ice sheets

    Science.gov (United States)

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-02-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change -- equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  2. Storage and release of organic carbon from glaciers and ice sheets

    Science.gov (United States)

    Hood, Eran; Battin, Tom J.; Fellman, Jason; O'Neel, Shad; Spencer, Robert G. M.

    2015-01-01

    Polar ice sheets and mountain glaciers, which cover roughly 11% of the Earth's land surface, store organic carbon from local and distant sources and then release it to downstream environments. Climate-driven changes to glacier runoff are expected to be larger than climate impacts on other components of the hydrological cycle, and may represent an important flux of organic carbon. A compilation of published data on dissolved organic carbon from glaciers across five continents reveals that mountain and polar glaciers represent a quantitatively important store of organic carbon. The Antarctic Ice Sheet is the repository of most of the roughly 6 petagrams (Pg) of organic carbon stored in glacier ice, but the annual release of glacier organic carbon is dominated by mountain glaciers in the case of dissolved organic carbon and the Greenland Ice Sheet in the case of particulate organic carbon. Climate change contributes to these fluxes: approximately 13% of the annual flux of glacier dissolved organic carbon is a result of glacier mass loss. These losses are expected to accelerate, leading to a cumulative loss of roughly 15 teragrams (Tg) of glacial dissolved organic carbon by 2050 due to climate change — equivalent to about half of the annual flux of dissolved organic carbon from the Amazon River. Thus, glaciers constitute a key link between terrestrial and aquatic carbon fluxes, and will be of increasing importance in land-to-ocean fluxes of organic carbon in glacierized regions.

  3. Spatio-Temporal Variability of Recent Snow Accumulation Across the West Antarctic Ice Sheet Divide Using Ultra-High Frequency Radar and Shallow Firn Cores

    Science.gov (United States)

    Keeler, D. G.; Rupper, S.; Forster, R. R.; Miège, C.; Brewer, S.; Koenig, L.

    2017-12-01

    The West Antarctic Ice Sheet (WAIS) could be a substantial source of future sea level rise, with 3+ meters of potential increase stored in the ice sheet. Adequate predictions of WAIS contributions, however, depend on well-constrained surface mass balance estimates for the region. Given the sparsity of available data, such estimates are tenuous. Although new data are periodically added, further research (both to collect more data and better utilize existing data) is critical to addressing these issues. Here we present accumulation data from 9 shallow firn cores and 600 km of Ku band radar traces collected as part of the Satellite Era Antarctic Traverse (SEAT) 2011/2012 field season. Using these data, combined with similar data collected during the SEAT 2010/2011 field season, we investigate the spatial variability in accumulation across the WAIS Divide and surrounding regions. We utilize seismic interpretation and 3D visualization tools to investigate the extent and variations of laterally continuous internal horizons in the radar profiles, and compare the results to nearby firn cores. Previous results show that clearly visible, laterally continuous horizons in radar returns in this area do not always represent annual accumulation isochrones, but can instead represent multi-year or sub-annual events. The automated application of Bayesian inference techniques to averaged estimates of multiple adjacent radar traces, however, can estimate annually-resolved independent age-depth scales for these radar data. We use these same automated techniques on firn core isotopic records to infer past snow accumulation rates, allowing a direct comparison with the radar-derived results. Age-depth scales based on manual annual-layer counting of geochemical and isotopic species from these same cores provide validation for the automated approaches. Such techniques could theoretically be applied to additional radar/core data sets in polar regions (e.g. Operation IceBridge), thereby

  4. Global ice sheet/RSL simulations using the higher-order Ice Sheet System Model.

    Science.gov (United States)

    Larour, E. Y.; Ivins, E. R.; Adhikari, S.; Schlegel, N.; Seroussi, H. L.; Morlighem, M.

    2017-12-01

    Relative sea-level rise is driven by processes that are intimately linked to the evolution ofglacial areas and ice sheets in particular. So far, most Earth System models capable of projecting theevolution of RSL on decadal to centennial time scales have relied on offline interactions between RSL andice sheets. In particular, grounding line and calving front dynamics have not been modeled in a way that istightly coupled with Elasto-Static Adjustment (ESA) and/or Glacial-Isostatic Adjustment (GIA). Here, we presenta new simulation of the entire Earth System in which both Greenland and Antarctica ice sheets are tightly coupledto an RSL model that includes both ESA and GIA at resolutions and time scales compatible with processes suchas grounding line dynamics for Antarctica ice shelves and calving front dynamics for Greenland marine-terminatingglaciers. The simulations rely on the Ice Sheet System Model (ISSM) and show the impact of higher-orderice flow dynamics and coupling feedbacks between ice flow and RSL. We quantify the exact impact of ESA andGIA inclusion on grounding line evolution for large ice shelves such as the Ronne and Ross ice shelves, as well asthe Agasea Embayment ice streams, and demonstate how offline vs online RSL simulations diverge in the long run,and the consequences for predictions of sea-level rise.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  5. Long-term ice sheet-climate interactions under anthropogenic greenhouse forcing simulated with a complex Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Vizcaino, Miren [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); University of California, Department of Geography, Berkeley, CA (United States); Mikolajewicz, Uwe; Maier-Reimer, Ernst [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Groeger, Matthias [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); IFM-GEOMAR, Kiel (Germany); Schurgers, Guy [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Lund University, Department of Physical Geography and Ecosystems Analysis, Lund (Sweden); Winguth, Arne M.E. [Center for Climatic Research, Department of Atmospheric and Oceanic Sciences, Madison (United States)

    2008-11-15

    Several multi-century and multi-millennia simulations have been performed with a complex Earth System Model (ESM) for different anthropogenic climate change scenarios in order to study the long-term evolution of sea level and the impact of ice sheet changes on the climate system. The core of the ESM is a coupled coarse-resolution Atmosphere-Ocean General Circulation Model (AOGCM). Ocean biogeochemistry, land vegetation and ice sheets are included as components of the ESM. The Greenland Ice Sheet (GrIS) decays in all simulations, while the Antarctic ice sheet contributes negatively to sea level rise, due to enhanced storage of water caused by larger snowfall rates. Freshwater flux increases from Greenland are one order of magnitude smaller than total freshwater flux increases into the North Atlantic basin (the sum of the contribution from changes in precipitation, evaporation, run-off and Greenland meltwater) and do not play an important role in changes in the strength of the North Atlantic Meridional Overturning Circulation (NAMOC). The regional climate change associated with weakening/collapse of the NAMOC drastically reduces the decay rate of the GrIS. The dynamical changes due to GrIS topography modification driven by mass balance changes act first as a negative feedback for the decay of the ice sheet, but accelerate the decay at a later stage. The increase of surface temperature due to reduced topographic heights causes a strong acceleration of the decay of the ice sheet in the long term. Other feedbacks between ice sheet and atmosphere are not important for the mass balance of the GrIS until it is reduced to 3/4 of the original size. From then, the reduction in the albedo of Greenland strongly accelerates the decay of the ice sheet. (orig.)

  6. Accelerated ice-sheet mass loss in Antarctica from 18-year satellite laser ranging measurements

    Directory of Open Access Journals (Sweden)

    Shuanggen Jin

    2016-02-01

    Full Text Available Accurate estimate of the ice-sheet mass balance in Antarctic is very difficult due to complex ice sheet condition and sparse in situ measurements. In this paper, the low-degree gravity field coefficients of up to degree and order 5 derived from Satellite Laser Ranging (SLR measurements are used to determine the ice mass variations in Antarctica for the period 1993–2011. Results show that the ice mass is losing with -36±13 Gt/y in Antarctica, -42±11 Gt/y in the West Antarctica and 6±10 Gt/y in the East Antarctica from 1993 to 2011. The ice mass variations from the SLR 5×5 have a good agreement with the GRACE 5×5, GRACE 5×5 (1&2 and GRACE (60×60 for the entire continent since 2003, but degree 5 from SLR is not sufficient to quantify ice losses in West and East Antarctica, respectively. The rate of ice loss in Antarctica is -28±17 Gt/y for 1993-2002 and -55±17 Gt/y for 2003-2011, indicating significant accelerated ice mass losses since 2003. Furthermore, the results from SLR are comparable with GRACE measurements.

  7. Estimation of Antarctic Land-Fast Sea Ice Algal Biomass and Snow Thickness From Under-Ice Radiance Spectra in Two Contrasting Areas

    Science.gov (United States)

    Wongpan, P.; Meiners, K. M.; Langhorne, P. J.; Heil, P.; Smith, I. J.; Leonard, G. H.; Massom, R. A.; Clementson, L. A.; Haskell, T. G.

    2018-03-01

    Fast ice is an important component of Antarctic coastal marine ecosystems, providing a prolific habitat for ice algal communities. This work examines the relationships between normalized difference indices (NDI) calculated from under-ice radiance measurements and sea ice algal biomass and snow thickness for Antarctic fast ice. While this technique has been calibrated to assess biomass in Arctic fast ice and pack ice, as well as Antarctic pack ice, relationships are currently lacking for Antarctic fast ice characterized by bottom ice algae communities with high algal biomass. We analyze measurements along transects at two contrasting Antarctic fast ice sites in terms of platelet ice presence: near and distant from an ice shelf, i.e., in McMurdo Sound and off Davis Station, respectively. Snow and ice thickness, and ice salinity and temperature measurements support our paired in situ optical and biological measurements. Analyses show that NDI wavelength pairs near the first chlorophyll a (chl a) absorption peak (≈440 nm) explain up to 70% of the total variability in algal biomass. Eighty-eight percent of snow thickness variability is explained using an NDI with a wavelength pair of 648 and 567 nm. Accounting for pigment packaging effects by including the ratio of chl a-specific absorption coefficients improved the NDI-based algal biomass estimation only slightly. Our new observation-based algorithms can be used to estimate Antarctic fast ice algal biomass and snow thickness noninvasively, for example, by using moored sensors (time series) or mapping their spatial distributions using underwater vehicles.

  8. Pre-LGM Northern Hemisphere ice sheet topography

    Directory of Open Access Journals (Sweden)

    J. Kleman

    2013-10-01

    Full Text Available We here reconstruct the paleotopography of Northern Hemisphere ice sheets during the glacial maxima of marine isotope stages (MIS 5b and 4.We employ a combined approach, blending geologically based reconstruction and numerical modeling, to arrive at probable ice sheet extents and topographies for each of these two time slices. For a physically based 3-D calculation based on geologically derived 2-D constraints, we use the University of Maine Ice Sheet Model (UMISM to calculate ice sheet thickness and topography. The approach and ice sheet modeling strategy is designed to provide robust data sets of sufficient resolution for atmospheric circulation experiments for these previously elusive time periods. Two tunable parameters, a temperature scaling function applied to a spliced Vostok–GRIP record, and spatial adjustment of the climatic pole position, were employed iteratively to achieve a good fit to geological constraints where such were available. The model credibly reproduces the first-order pattern of size and location of geologically indicated ice sheets during marine isotope stages (MIS 5b (86.2 kyr model age and 4 (64 kyr model age. From the interglacial state of two north–south obstacles to atmospheric circulation (Rocky Mountains and Greenland, by MIS 5b the emergence of combined Quebec–central Arctic and Scandinavian–Barents-Kara ice sheets had increased the number of such highland obstacles to four. The number of major ice sheets remained constant through MIS 4, but the merging of the Cordilleran and the proto-Laurentide Ice Sheet produced a single continent-wide North American ice sheet at the LGM.

  9. Meltwater drainage beneath ice sheets: What can we learn from uniting observations of paleo- and contemporary subglacial hydrology?

    Science.gov (United States)

    Simkins, L. M.; Carter, S. P.; Greenwood, S. L.; Schroeder, D. M.

    2017-12-01

    Understanding meltwater at the base of ice sheets is critical for predicting ice flow and subglacial sediment deformation. Whereas much progress has been made with observing contemporary systems, these efforts have been limited by the short temporal scales of remote sensing data, the restricted spatial coverage of radar sounding data, and the logistical challenges of direct access. Geophysical and sedimentological data from deglaciated continental shelves reveal broad spatial and temporal perspectives of subglacial hydrology, that complement observations of contemporary systems. Massive bedrock channels, such as those on the sediment-scoured inner continental shelf of the Amundsen Sea and the western Antarctic Peninsula, are up to hundreds of meters deep, which indicate either catastrophic drainage events or slower channel incision over numerous glaciations or sub-bank full drainage events. The presence of these deep channels has implications for further ice loss as they may provide conduits today for warm water incursion into sub-ice shelf cavities. Sediment-based subglacial channels, widespread in the northern hemisphere terrestrial domain and increasingly detected on both Arctic and Antarctic marine margins, help characterize more ephemeral drainage systems active during ice sheet retreat. Importantly, some observed sediment-based channels are connected to upstream subglacial lakes and terminate at paleo-grounding lines. From these records of paleo-subglacial hydrology, we extract the relative timing of meltwater drainage, estimate water fluxes, and contemplate the sources and ultimate fate of basal meltwater, refining predictive models for modern systems. These insights provided by geological data fill a gap in knowledge regarding spatial and temporal dynamics of subglacial hydrology and offer hindsight into meltwater drainage influence/association with ice flow and retreat behavior. The union of information gathered from paleo- and contemporary subglacial

  10. Air-sea interaction regimes in the sub-Antarctic Southern Ocean and Antarctic marginal ice zone revealed by icebreaker measurements

    Science.gov (United States)

    Yu, Lisan; Jin, Xiangze; Schulz, Eric W.; Josey, Simon A.

    2017-08-01

    This study analyzed shipboard air-sea measurements acquired by the icebreaker Aurora Australis during its off-winter operation in December 2010 to May 2012. Mean conditions over 7 months (October-April) were compiled from a total of 22 ship tracks. The icebreaker traversed the water between Hobart, Tasmania, and the Antarctic continent, providing valuable in situ insight into two dynamically important, yet poorly sampled, regimes: the sub-Antarctic Southern Ocean and the Antarctic marginal ice zone (MIZ) in the Indian Ocean sector. The transition from the open water to the ice-covered surface creates sharp changes in albedo, surface roughness, and air temperature, leading to consequential effects on air-sea variables and fluxes. Major effort was made to estimate the air-sea fluxes in the MIZ using the bulk flux algorithms that are tuned specifically for the sea-ice effects, while computing the fluxes over the sub-Antarctic section using the COARE3.0 algorithm. The study evidenced strong sea-ice modulations on winds, with the southerly airflow showing deceleration (convergence) in the MIZ and acceleration (divergence) when moving away from the MIZ. Marked seasonal variations in heat exchanges between the atmosphere and the ice margin were noted. The monotonic increase in turbulent latent and sensible heat fluxes after summer turned the MIZ quickly into a heat loss regime, while at the same time the sub-Antarctic surface water continued to receive heat from the atmosphere. The drastic increase in turbulent heat loss in the MIZ contrasted sharply to the nonsignificant and seasonally invariant turbulent heat loss over the sub-Antarctic open water.Plain Language SummaryThe icebreaker Aurora Australis is a research and supply vessel that is regularly chartered by the Australian Antarctic Division during the southern summer to operate in waters between Hobart, Tasmania, and Antarctica. The vessel serves as the main lifeline to three permanent research stations on the

  11. Natural and anthropogenic hydrocarbons in the Antarctic pack ice

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.

    2004-01-01

    A field experiment was conducted near the Russian Antarctic stations in May, 2001 in the Pridz Bay and coastal part of the Davies Sea to examine the content of dissolved and suspended forms of aliphatic hydrocarbons in melted snow samples, pack ice and ice cores. The site included clean control areas and polluted test areas. A spill was performed by covering the bare ice surface with marine diesel fuel. The different physical characteristics of clean and polluted ice were measured. This included radiation balance, reflected solar radiation, integral albedo radiation, surface temperature, seawater temperature, salinity at depth, and ice salinity. The study showed that accumulation of natural and anthropogenic hydrocarbon took place in the ice-water barrier zone, mostly in suspended form. It was concluded that for oil spills in pack Antarctic ice, the mechanism of filtration due to convection-diffusion plays an important role in the transformation of diesel fuel. 14 refs., 2 tabs., 2 figs

  12. Radar Interferometry Studies of the Mass Balance of Polar Ice Sheets

    Science.gov (United States)

    Rignot, Eric (Editor)

    1999-01-01

    The objectives of this work are to determine the current state of mass balance of the Greenland and Antarctic Ice Sheets. Our approach combines different techniques, which include satellite synthetic-aperture radar interferometry (InSAR), radar and laser altimetry, radar ice sounding, and finite-element modeling. In Greenland, we found that 3.5 times more ice flows out of the northern part of the Greenland Ice Sheet than previously accounted for. The discrepancy between current and past estimates is explained by extensive basal melting of the glacier floating sections in the proximity of the grounding line where the glacier detaches from its bed and becomes afloat in the ocean. The inferred basal melt rates are very large, which means that the glaciers are very sensitive to changes in ocean conditions. Currently, it appears that the northern Greenland glaciers discharge more ice than is being accumulated in the deep interior, and hence are thinning. Studies of temporal changes in grounding line position using InSAR confirm the state of retreat of northern glaciers and suggest that thinning is concentrated at the lower elevations. Ongoing work along the coast of East Greenland reveals an even larger mass deficit for eastern Greenland glaciers, with thinning affecting the deep interior of the ice sheet. In Antarctica, we found that glaciers flowing into a large ice shelf system, such as the Ronne Ice Shelf in the Weddell Sea, exhibit an ice discharge in remarkable agreement with mass accumulation in the interior, and the glacier grounding line positions do not migrate with time. Glaciers flowing rapidly into the Amudsen Sea, unrestrained by a major ice shelf, are in contrast discharging more ice than required to maintain a state of mass balance and are thinning quite rapidly near the coast. The grounding line of Pine Island glacier (see diagram) retreated 5 km in 4 years, which corresponds to a glacier thinning rate of 3.5 m/yr. Mass imbalance is even more negative

  13. Dynamic thinning of glaciers on the Southern Antarctic Peninsula

    NARCIS (Netherlands)

    Wouters, B.; Martin-Espanol, A.; Helm, V.; Flament, T.; van Wessem, J. M.; Ligtenberg, S. R. M.; van den Broeke, M. R.; Bamber, J. L.

    2015-01-01

    Growing evidence has demonstrated the importance of ice shelf buttressing on the inland grounded ice, especially if it is resting on bedrock below sea level. Much of the Southern Antarctic Peninsula satisfies this condition and also possesses a bed slope that deepens inland. Such ice sheet geometry

  14. Antarctic Ice Shelf Potentially Stabilized by Export of Meltwater in Surface River

    Science.gov (United States)

    Bell, Robin E.; Chu, Winnie; Kingslake, Jonathan; Das, Indrani; Tedesco, Marco; Tinto, Kirsty J.; Zappa, Christopher J.; Frezzotti, Massimo; Boghosian, Alexandra; Lee, Won Sang

    2017-01-01

    Meltwater stored in ponds and crevasses can weaken and fracture ice shelves, triggering their rapid disintegration. This ice-shelf collapse results in an increased flux of ice from adjacent glaciers and ice streams, thereby raising sea level globally. However, surface rivers forming on ice shelves could potentially export stored meltwater and prevent its destructive effects. Here we present evidence for persistent active drainage networks-interconnected streams, ponds and rivers-on the Nansen Ice Shelf in Antarctica that export a large fraction of the ice shelf's meltwater into the ocean. We find that active drainage has exported water off the ice surface through waterfalls and dolines for more than a century. The surface river terminates in a 130-metre-wide waterfall that can export the entire annual surface melt over the course of seven days. During warmer melt seasons, these drainage networks adapt to changing environmental conditions by remaining active for longer and exporting more water. Similar networks are present on the ice shelf in front of Petermann Glacier, Greenland, but other systems, such as on the Larsen C and Amery Ice Shelves, retain surface water at present. The underlying reasons for export versus retention remain unclear. Nonetheless our results suggest that, in a future warming climate, surface rivers could export melt off the large ice shelves surrounding Antarctica-contrary to present Antarctic ice-sheet models, which assume that meltwater is stored on the ice surface where it triggers ice-shelf disintegration.

  15. Climate change drives expansion of Antarctic ice-free habitat

    Science.gov (United States)

    Lee, Jasmine R.; Raymond, Ben; Bracegirdle, Thomas J.; Chadès, Iadine; Fuller, Richard A.; Shaw, Justine D.; Terauds, Aleks

    2017-07-01

    Antarctic terrestrial biodiversity occurs almost exclusively in ice-free areas that cover less than 1% of the continent. Climate change will alter the extent and configuration of ice-free areas, yet the distribution and severity of these effects remain unclear. Here we quantify the impact of twenty-first century climate change on ice-free areas under two Intergovernmental Panel on Climate Change (IPCC) climate forcing scenarios using temperature-index melt modelling. Under the strongest forcing scenario, ice-free areas could expand by over 17,000 km2 by the end of the century, close to a 25% increase. Most of this expansion will occur in the Antarctic Peninsula, where a threefold increase in ice-free area could drastically change the availability and connectivity of biodiversity habitat. Isolated ice-free areas will coalesce, and while the effects on biodiversity are uncertain, we hypothesize that they could eventually lead to increasing regional-scale biotic homogenization, the extinction of less-competitive species and the spread of invasive species.

  16. Halogen species record Antarctic sea ice extent over glacial–interglacial periods

    Directory of Open Access Journals (Sweden)

    A. Spolaor

    2013-07-01

    Full Text Available Sea ice is an integral part of the earth's climate system because it affects planetary albedo, sea-surface salinity, and the atmosphere–ocean exchange of reactive gases and aerosols. Bromine and iodine chemistry is active at polar sea ice margins with the occurrence of bromine explosions and the biological production of organoiodine from sea ice algae. Satellite measurements demonstrate that concentrations of bromine oxide (BrO and iodine oxide (IO decrease over sea ice toward the Antarctic interior. Here we present speciation measurements of bromine and iodine in the TALDICE (TALos Dome Ice CorE ice core (159°11' E, 72°49' S; 2315 m a.s.l. spanning the last 215 ky. The Talos Dome ice core is located 250 km inland and is sensitive to marine air masses intruding onto the Antarctic Plateau. Talos Dome bromide (Br− is positively correlated with temperature and negatively correlated with sodium (Na. Based on the Br−/Na seawater ratio, bromide is depleted in the ice during glacial periods and enriched during interglacial periods. Total iodine, consisting of iodide (I− and iodate (IO3−, peaks during glacials with lower values during interglacial periods. Although IO3− is considered the most stable iodine species in the atmosphere it was only observed in the TALDICE record during glacial maxima. Sea ice dynamics are arguably the primary driver of halogen fluxes over glacial–interglacial timescales, by altering the distance between the sea ice edge and the Antarctic plateau and by altering the surface area of sea ice available to algal colonization. Based on our results we propose the use of both halogens for examining Antarctic variability of past sea ice extent.

  17. The influence of ice sheets on temperature during the past 38 million years inferred from a one-dimensional ice sheet–climate model

    Directory of Open Access Journals (Sweden)

    L. B. Stap

    2017-09-01

    Full Text Available Since the inception of the Antarctic ice sheet at the Eocene–Oligocene transition (∼ 34 Myr ago, land ice has played a crucial role in Earth's climate. Through feedbacks in the climate system, land ice variability modifies atmospheric temperature changes induced by orbital, topographical, and greenhouse gas variations. Quantification of these feedbacks on long timescales has hitherto scarcely been undertaken. In this study, we use a zonally averaged energy balance climate model bidirectionally coupled to a one-dimensional ice sheet model, capturing the ice–albedo and surface–height–temperature feedbacks. Potentially important transient changes in topographic boundary conditions by tectonics and erosion are not taken into account but are briefly discussed. The relative simplicity of the coupled model allows us to perform integrations over the past 38 Myr in a fully transient fashion using a benthic oxygen isotope record as forcing to inversely simulate CO2. Firstly, we find that the results of the simulations over the past 5 Myr are dependent on whether the model run is started at 5 or 38 Myr ago. This is because the relation between CO2 and temperature is subject to hysteresis. When the climate cools from very high CO2 levels, as in the longer transient 38 Myr run, temperatures in the lower CO2 range of the past 5 Myr are higher than when the climate is initialised at low temperatures. Consequently, the modelled CO2 concentrations depend on the initial state. Taking the realistic warm initialisation into account, we come to a best estimate of CO2, temperature, ice-volume-equivalent sea level, and benthic δ18O over the past 38 Myr. Secondly, we study the influence of ice sheets on the evolution of global temperature and polar amplification by comparing runs with ice sheet–climate interaction switched on and off. By passing only albedo or surface height changes to the climate model, we can distinguish the

  18. Geothermal Heat Flux: Linking Deep Earth's Interior and the Dynamics of Large-Scale Ice Sheets

    Science.gov (United States)

    Rogozhina, Irina; Vaughan, Alan

    2014-05-01

    Regions covered by continental-scale ice sheets have the highest degree of uncertainty in composition and structure of the crust and lithospheric mantle, compounded by the poorest coverage on Earth of direct heat flow measurements. In addition to challenging conditions that make direct measurements and geological survey difficult Greenland and Antarctica are known to be geologically complex. Antarctica in particular is marked by two lithospherically distinct zones. In contrast to young and thin lithosphere of West Antarctica, East Antarctica is a collage of thick Precambrian fragments of Gondwana and earlier supercontinents. However, recent observations and modeling studies have detected large systems of subglacial lakes extending beneath much of the East Antarctic ice sheet base that have been linked to anomalously elevated heat flow. Outcrop samples from the rift margin with Australia (Prydz Bay) have revealed highly radiogenic Cambrian granite intrusives that are implicated in regional increase of crustal heat flux by a factor of two to three compared to the estimated continental background. Taken together, these indicate high variability of heat flow and properties of rocks across Antarctica. Similar conclusions have been made based on direct measurements and observations of the Greenland ice sheet. Airborne ice-penetrating radar and deep ice core projects show very high rates of basal melt for parts of the ice sheet in northern and central Greenland that have been explained by abnormally high heat flux. Archaean in age, the Greenland lithosphere was significantly reworked during the Early Proterozoic. In this region, the interpretation of independent geophysical data is complicated by Proterozoic and Phanerozoic collision zones, compounded by strong thermochemical effects of rifting along the western and eastern continental margins between 80 and 25 million years ago. In addition, high variability of heat flow and thermal lithosphere structure in central

  19. Landforms, sediments and dates to constrain rates and style of marine-influenced ice sheet decay; the BRITICE-CHRONO project.

    Science.gov (United States)

    Clark, Chris

    2014-05-01

    Uncertainty exists regarding the future mass of the Antarctic and Greenland ice sheets and how they will respond to forcings from sea level, and atmospheric and ocean temperatures. If we want to know more about the mechanisms and rate of change of shrinking ice sheets, then why not examine an ice sheet that has fully disappeared and track its retreat through time? If achieved in enough detail such information on ice retreat could be a data-rich playground for improving the next breed of numerical ice sheet models to be used in ice and sea level forecasting. We regard that the last British-Irish Ice Sheet is a good target for this work, on account of its small size, density of information and with its numerous researchers already investigating it. Geomorphological mapping across the British Isles and the surrounding continental shelf has revealed the nature and distribution of glacial landforms. Here we demonstrate how such data have been used to build a pattern of ice margin retreat. The BRITICE-CHRONO consortium of Quaternary scientists and glaciologists, are now working on a project running from 2012 - 2017 to produce an ice sheet wide database of geochronometric dates to constrain and then understand ice margin retreat. This is being achieved by focusing on 8 transects running from the continental shelf edge to a short distance (10s km) onshore and acquiring marine and terrestrial samples for geochronometric dating. The project includes funding for 587 radiocarbon, 140 OSL and 158 TCN samples for surface exposure dating; with sampling accomplished by two research cruises and 16 fieldwork campaigns. Results will reveal the timing and rate of change of ice margin recession for each transect, and combined with existing landform and dating databases, will be used to build an ice sheet-wide empirical reconstruction of retreat. Simulations using two numerical ice sheet models, fitted against the margin data, will help us understand the nature and significance of sea

  20. The effect of sudden ice sheet melt on ocean circulation and surface climate

    Science.gov (United States)

    Ivanovic, R. F.; Gregoire, L. J.; Wickert, A. D.; Valdes, P. J.; Burke, A.

    2017-12-01

    Collapse of ice sheets can cause significant sea-level rise and widespread climate change. Around 14.6 thousand years ago, global mean sea level rose by 15 m in less than 350 years during an event known as Meltwater Pulse 1a. Ice sheet modelling and sea-level fingerprinting has suggested that approximately half of this 50 mm yr-1 sea level rise may have come from a North American ice Saddle Collapse that drained into the Arctic and Atlantic Oceans. However, dating uncertainties make it difficult to determine the sequence of events and their drivers, leaving many fundamental questions. For example, was melting from the northern ice sheets responsible for the Older-Dryas or other global-scale cooling events, or did a contribution from Antarctica counteract the climatic effects? What was the role of the abrupt Bølling Warming? And how were all these signals linked to changes in Atlantic Ocean overturning circulation?To address these questions, we examined the effect of the North American ice Saddle Collapse using a high resolution network drainage model coupled to an atmosphere-ocean-vegetation General Circulation Model. Here, we present the quantitative routing estimates of the consequent meltwater discharge and its impact on climate. We also tested a suite of more idealised meltwater forcing scenarios to examine the global influence of Arctic versus Antarctic ice melt. The results show that 50% of the Saddle Collapse meltwater pulse was routed via the Mackenzie River into the Arctic Ocean, and 50% was discharged directly into the Atlantic/Gulf of Mexico. This meltwater flux, equivalent to a total of 7.3 m of sea-level rise, caused a strong (6 Sv) weakening of Atlantic Meridional Overturning Circulation (AMOC) and widespread Northern Hemisphere cooling of 1-5 °C. The greatest cooling is in the Arctic (5-10 °C in the winter), but there is also significant winter warming over eastern North America (1-3 °C). We propose that this robust submillennial mechanism was

  1. Evaluating Potential Tipping Points of Antarctic basins

    Science.gov (United States)

    Durand, G.; Sainan, S.; Pattyn, F.; Jourdain, N.

    2017-12-01

    Antarctica is currently loosing mass and its forthcoming contribution to sea-level rise could substantially increase during the coming centuries. This is essentially due to geometrical constraints, i.e., in regions where grounded ice lies on a bedrock below sea-level sloping down towards the interior of the ice sheet (retrograde slope). For such a configuration the ice sheet is considered potentially unstable, as suggested by theory. However, recent observations on accelerated grounding-line retreat and new insights in modeling Pine Island and Thwaites glaciers give evidence that such self-sustained retreat, called marine ice sheet instability (MISI), has already been on its way. Although West Antarctica appears to be the most vulnerable region for MISI occurrence, similar topographic configurations are also observed in East Antarctica, in the Wilkes Basin in particular. Therefore, evaluating the MISI potential at a pan-Antarctic scale is becoming a priority. Here, using the f.ETISh ice sheet model, an ensemble of simulations of the entire contemporary Antarctic ice sheet has been carried out. In particular, we investigate the debuttressing of ice shelves required to initiate MISI for each coastal region around Antarctica by forcing the model with realistic sub-shelf melt pulses of varying duration and amplitude. We further identify the currently grounded areas where the outlet glaciers could hardly stabilize, the Amundsen Sea Sector being the more prone to large self-sustained retreats. On the contrary, the ability of Cook and Ninnis ice shelves to recover after large perturbations and enough buttress upstream outlet glaciers tends to limit self-sustained retreat of the sector. For each basin, rates of contribution to sea-level rise are discussed together with the RCPs and time when tipping points could be reached and MISI triggered.

  2. Coastal-change and glaciological map of the Ronne Ice Shelf area, Antarctica, 1974-2002

    Science.gov (United States)

    Ferrigno, Jane G.; Foley, K.M.; Swithinbank, C.; Williams, R.S.; Dalide, L.M.

    2005-01-01

    Changes in the area and volume of polar ice sheets are intricately linked to changes in global climate, and the resulting changes in sea level may severely impact the densely populated coastal regions on Earth. Melting of the West Antarctic part alone of the Antarctic ice sheet could cause a sea-level rise of approximately 6 meters (m). The potential sea-level rise after melting of the entire Antarctic ice sheet is estimated to be 65 m (Lythe and others, 2001) to 73 m (Williams and Hall, 1993). In spite of its importance, the mass balance (the net volumetric gain or loss) of the Antarctic ice sheet is poorly known; it is not known for certain whether the ice sheet is growing or shrinking. In a review paper, Rignot and Thomas (2002) concluded that the West Antarctic part of the Antarctic ice sheet is probably becoming thinner overall; although it is thickening in the west, it is thinning in the north. Joughin and Tulaczyk (2002), on the basis of analysis of ice-flow velocities derived from synthetic aperture radar, concluded that most of the Ross ice streams (ice streams on the east side of the Ross Ice Shelf) have a positive mass balance, whereas Rignot and others (in press) infer even larger negative mass balance for glaciers flowing northward into the Amundsen Sea, a trend suggested by Swithinbank and others (2003a,b, 2004). The mass balance of the East Antarctic part of the Antarctic ice sheet is unknown, but thought to be in near equilibrium. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council (1986), in subsequent recommendations by the Scientific Committee on Antarctic Research (SCAR) (1989, 1993), and by the National Science Foundation's (1990) Division of Polar Pro-grams. On the basis of these recommendations, the U.S. Geo-logical Survey (USGS) decided that the archive of early 1970s Landsat 1, 2, and 3 Multispectral Scanner

  3. Ice-sheet flow conditions deduced from mechanical tests of ice core

    DEFF Research Database (Denmark)

    Miyamoto, Atsushi; Narita, Hideki; Hondoh, Takeo

    1999-01-01

    Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate....... It was revealed that cloudy bands affect ice-deformation processes, but the details remain unclear. Udgivelsesdato: June......Uniaxial compression tests were performed on samples of the Greenland Ice Core Project (GRIP) deep ice core, both in the field and later in a cold-room laboratory, in order to understand the ice-flow behavior of large ice sheets. Experiments were conducted under conditions of constant strain rate......-core samples with basal planes parallel to the horizontal plane of the ice sheet. The ice-flow enhancement factors show a gradual increase with depth down to approximately 2000 m. These results can be interpreted in terms of an increase in the fourth-order Schmid factor. Below 2000 m depth, the flow...

  4. Continent-Wide Estimates of Antarctic Strain Rates from Landsat 8-Derived Velocity Grids and Their Application to Ice Shelf Studies

    Science.gov (United States)

    Alley, K. E.; Scambos, T.; Anderson, R. S.; Rajaram, H.; Pope, A.; Haran, T.

    2017-12-01

    Strain rates are fundamental measures of ice flow used in a wide variety of glaciological applications including investigations of bed properties, calculations of basal mass balance on ice shelves, application to Glen's flow law, and many other studies. However, despite their extensive application, strain rates are calculated using widely varying methods and length scales, and the calculation details are often not specified. In this study, we compare the results of nominal and logarithmic strain-rate calculations based on a satellite-derived velocity field of the Antarctic ice sheet generated from Landsat 8 satellite data. Our comparison highlights the differences between the two commonly used approaches in the glaciological literature. We evaluate the errors introduced by each code and their impacts on the results. We also demonstrate the importance of choosing and specifying a length scale over which strain-rate calculations are made, which can have large local impacts on other derived quantities such as basal mass balance on ice shelves. We present strain-rate data products calculated using an approximate viscous length-scale with satellite observations of ice velocity for the Antarctic continent. Finally, we explore the applications of comprehensive strain-rate maps to future ice shelf studies, including investigations of ice fracture, calving patterns, and stability analyses.

  5. Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes.

    Science.gov (United States)

    Krinner, G; Mangerud, J; Jakobsson, M; Crucifix, M; Ritz, C; Svendsen, J I

    2004-01-29

    Large proglacial lakes cool regional summer climate because of their large heat capacity, and have been shown to modify precipitation through mesoscale atmospheric feedbacks, as in the case of Lake Agassiz. Several large ice-dammed lakes, with a combined area twice that of the Caspian Sea, were formed in northern Eurasia about 90,000 years ago, during the last glacial period when an ice sheet centred over the Barents and Kara seas blocked the large northbound Russian rivers. Here we present high-resolution simulations with an atmospheric general circulation model that explicitly simulates the surface mass balance of the ice sheet. We show that the main influence of the Eurasian proglacial lakes was a significant reduction of ice sheet melting at the southern margin of the Barents-Kara ice sheet through strong regional summer cooling over large parts of Russia. In our simulations, the summer melt reduction clearly outweighs lake-induced decreases in moisture and hence snowfall, such as has been reported earlier for Lake Agassiz. We conclude that the summer cooling mechanism from proglacial lakes accelerated ice sheet growth and delayed ice sheet decay in Eurasia and probably also in North America.

  6. Spring–summer albedo variations of Antarctic sea ice from 1982 to 2009

    International Nuclear Information System (INIS)

    Shao, Zhu-De; Ke, Chang-Qing

    2015-01-01

    This study examined the spring–summer (November, December, January and February) albedo averages and trends using a dataset consisting of 28 years of homogenized satellite data for the entire Antarctic sea ice region and for five longitudinal sectors around Antarctica: the Weddell Sea (WS), the Indian Ocean sector (IO), the Pacific Ocean sector (PO), the Ross Sea (RS) and the Bellingshausen–Amundsen Sea (BS). Time series data of the sea ice concentrations and sea surface temperatures were used to analyse their relations to the albedo. The results indicated that the sea ice albedo increased slightly during the study period, at a rate of 0.314% per decade, over the Antarctic sea ice region. The sea ice albedos in the PO, the IO and the WS increased at rates of 2.599% per decade (confidence level 99.86%), 0.824% per decade and 0.413% per decade, respectively, and the steepest increase occurred in the PO. However, the sea ice albedo in the BS decreased at a rate of −1.617% per decade (confidence level 95.05%) and was near zero in the RS. The spring–summer average albedo over the Antarctic sea ice region was 50.24%. The highest albedo values were mainly found on the continental coast and in the WS; in contrast, the lowest albedo values were found on the outer edge of the sea ice, the RS and the Amery Ice Shelf. The average albedo in the western Antarctic sea ice region was distinctly higher than that in the east. The albedo was significantly positively correlated with sea ice concentration (SIC) and was significantly negatively correlated with sea surface temperature (SST); these scenarios held true for all five longitudinal sectors. Spatially, the higher surface albedos follow the higher SICs and lower SST patterns. The increasing albedo means that Antarctic sea ice region reflects more solar radiation and absorbs less, leading to a decrease in temperature and much snowfall on sea ice, and further resulted in an increase in albedo. Conversely, the decreasing

  7. Antarctic firn compaction rates from repeat-track airborne radar data : II. Firn model evaluation

    NARCIS (Netherlands)

    Ligtenberg, S. R M; Medley, B.; Van Den Broeke, M. R.; Munneke, P. Kuipers

    2015-01-01

    The thickness and density of the Antarctic firn layer vary considerably in time and space, thereby contributing to ice-sheet volume and mass changes. Distinguishing between these mass and volume changes is important for ice-sheet mass-balance studies. Evolution of firn layer depth and density is

  8. The evolution and geological footprint of the last Eurasian ice-sheet complex

    Science.gov (United States)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Winsborrow, Monica; Stroeven, Arjen; Auriac, Amandine; Heyman, Jakob

    2017-04-01

    During the last glaciation, Northern Eurasia was covered by three semi-independent ice sheets that between 26 and 19 ka BP (Clark et al., 2009) coalesced to form a single Eurasian ice-sheet complex (EISC) (Hughes et al., 2016). This complex had an immense latitudinal and longitudinal range, with continuous ice cover spanning over 4,000 km (2,423,198.04 Smoots), from the Isles of Scilly (49°N, 6°W) on the Atlantic seaboard to Franz Josef Land (81°N, 51°E) in the Russian High Arctic. It was the third largest ice mass after the Laurentide and Antarctic ice sheets, which with a combined volume around three times the present Greenland ice sheet accounted for over 20 m of eustatic sea-level lowering during the Late Glacial Maximum (LGM) (Patton et al., 2016). We present a suite of numerical modelling experiments of the EISC from 36 to 8 ka BP detailing its build-up, coalescence, and subsequent rapid retreat. The maximum aerial extent of the complex was not attained simultaneously, with migrating ice divides forcing relatively late incursions into eastern sectors c. 20-21 ka BP compared to c. 23-25 ka BP along western margins. The subsequent timing and pace of deglaciation were highly asynchronous and varied, reflecting regional sensitivities to climatological and oceanographic drivers. Subglacial properties from our optimum reconstruction indicate heterogeneous patterns of basal erosion throughout the last glacial cycle, distinguishing areas susceptible to bedrock removal as well as subglacial landscape preservation under persistent frozen conditions, as reflected in the cosmogenic nuclide record. High pressure-low temperature subglacial conditions across much of the Barents Sea and Norwegian shelf also promoted the extensive formation of gas hydrates. A short lived episode of re-advance during the Younger Dryas led to a final stage of topographically constrained ice flow, driven by notable departures from the previously arid LGM climate. The ice sheet complex along

  9. Improved simulation of Antarctic sea ice due to the radiative effects of falling snow

    Science.gov (United States)

    Li, J.-L. F.; Richardson, Mark; Hong, Yulan; Lee, Wei-Liang; Wang, Yi-Hui; Yu, Jia-Yuh; Fetzer, Eric; Stephens, Graeme; Liu, Yinghui

    2017-08-01

    Southern Ocean sea-ice cover exerts critical control on local albedo and Antarctic precipitation, but simulated Antarctic sea-ice concentration commonly disagrees with observations. Here we show that the radiative effects of precipitating ice (falling snow) contribute substantially to this discrepancy. Many models exclude these radiative effects, so they underestimate both shortwave albedo and downward longwave radiation. Using two simulations with the climate model CESM1, we show that including falling-snow radiative effects improves the simulations relative to cloud properties from CloudSat-CALIPSO, radiation from CERES-EBAF and sea-ice concentration from passive microwave sensors. From 50-70°S, the simulated sea-ice-area bias is reduced by 2.12 × 106 km2 (55%) in winter and by 1.17 × 106 km2 (39%) in summer, mainly because increased wintertime longwave heating restricts sea-ice growth and so reduces summer albedo. Improved Antarctic sea-ice simulations will increase confidence in projected Antarctic sea level contributions and changes in global warming driven by long-term changes in Southern Ocean feedbacks.

  10. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology.

    Science.gov (United States)

    Gilichinsky, D A; Wilson, G S; Friedmann, E I; McKay, C P; Sletten, R S; Rivkina, E M; Vishnivetskaya, T A; Erokhina, L G; Ivanushkina, N E; Kochkina, G A; Shcherbakova, V A; Soina, V S; Spirina, E V; Vorobyova, E A; Fyodorov-Davydov, D G; Hallet, B; Ozerskaya, S M; Sorokovikov, V A; Laurinavichyus, K S; Shatilovich, A V; Chanton, J P; Ostroumov, V E; Tiedje, J M

    2007-04-01

    Antarctic permafrost soils have not received as much geocryological and biological study as has been devoted to the ice sheet, though the permafrost is more stable and older and inhabited by more microbes. This makes these soils potentially more informative and a more significant microbial repository than ice sheets. Due to the stability of the subsurface physicochemical regime, Antarctic permafrost is not an extreme environment but a balanced natural one. Up to 10(4) viable cells/g, whose age presumably corresponds to the longevity of the permanently frozen state of the sediments, have been isolated from Antarctic permafrost. Along with the microbes, metabolic by-products are preserved. This presumed natural cryopreservation makes it possible to observe what may be the oldest microbial communities on Earth. Here, we describe the Antarctic permafrost habitat and biodiversity and provide a model for martian ecosystems.

  11. Safe Loads on Ice Sheets (Ice Engineering. Number 13)

    National Research Council Canada - National Science Library

    Haynes, F. D; Carey, Kevin L; Cattabriga, Gioia

    1996-01-01

    Every winter, ice sheets that grow on lakes and rivers in northern states are used for ice roads, ice bridges, construction platforms, airstrips, and recreational activities, It becomes very important...

  12. On the Application of Science Systems Engineering and Uncertainty Quantification for Ice Sheet Science and Sea Level Projections

    Science.gov (United States)

    Schlegel, Nicole-Jeanne; Boening, Carmen; Larour, Eric; Limonadi, Daniel; Schodlok, Michael; Seroussi, Helene; Watkins, Michael

    2017-04-01

    Research and development activities at the Jet Propulsion Laboratory (JPL) currently support the creation of a framework to formally evaluate the observational needs within earth system science. One of the pilot projects of this effort aims to quantify uncertainties in global mean sea level rise projections, due to contributions from the continental ice sheets. Here, we take advantage of established uncertainty quantification tools embedded within the JPL-University of California at Irvine Ice Sheet System Model (ISSM). We conduct sensitivity and Monte-Carlo style sampling experiments on forward simulations of the Greenland and Antarctic ice sheets. By varying internal parameters and boundary conditions of the system over both extreme and credible worst-case ranges, we assess the impact of the different parameter ranges on century-scale sea level rise projections. The results inform efforts to a) isolate the processes and inputs that are most responsible for determining ice sheet contribution to sea level; b) redefine uncertainty brackets for century-scale projections; and c) provide a prioritized list of measurements, along with quantitative information on spatial and temporal resolution, required for reducing uncertainty in future sea level rise projections. Results indicate that ice sheet mass loss is dependent on the spatial resolution of key boundary conditions - such as bedrock topography and melt rates at the ice-ocean interface. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.

  13. Probability based hydrologic catchments of the Greenland Ice Sheet

    Science.gov (United States)

    Hudson, B. D.

    2015-12-01

    Greenland Ice Sheet melt water impacts ice sheet flow dynamics, fjord and coastal circulation, and sediment and biogeochemical fluxes. Melt water exiting the ice sheet also is a key term in its mass balance. Because of this, knowledge of the area of the ice sheet that contributes melt water to a given outlet (its hydrologic catchment) is important to many ice sheet studies and is especially critical to methods using river runoff to assess ice sheet mass balance. Yet uncertainty in delineating ice sheet hydrologic catchments is a problem that is rarely acknowledged. Ice sheet catchments are delineated as a function of both basal and surface topography. While surface topography is well known, basal topography is less certain because it is dependent on radar surveys. Here, I a present a Monte Carlo based approach to delineating ice sheet catchments that quantifies the impact of uncertain basal topography. In this scheme, over many iterations I randomly vary the ice sheet bed elevation within published error bounds (using Morlighem et al., 2014 bed and bed error datasets). For each iteration of ice sheet bed elevation, I calculate the hydraulic potentiometric surface and route water over its path of 'steepest' descent to delineate the catchment. I then use all realizations of the catchment to arrive at a probability map of all major melt water outlets in Greenland. I often find that catchment size is uncertain, with small, random perturbations in basal topography leading to large variations in catchments size. While some catchments are well defined, others can double or halve in size within published basal topography error bars. While some uncertainty will likely always remain, this work points to locations where studies of ice sheet hydrology would be the most successful, allows reinterpretation of past results, and points to where future radar surveys would be most advantageous.

  14. Atmospheric Influences on the Anomalous 2016 Antarctic Sea Ice Decay

    Science.gov (United States)

    Raphael, M. N.; Schlosser, E.; Haumann, A.

    2017-12-01

    Over the past three decades, a small but significant increase in sea ice extent (SIE) has been observed in the Antarctic. However, in 2016 there was a surprisingly early onset of the melt season. The maximum Antarctic SIE was reached in August rather than end of September, and was followed by a rapid decrease. The decline of the sea ice area (SIA) started even earlier, in July. The retreat of the ice was particularly large in November where Antarctic SIE exhibited a negative anomaly (compared to the 1981-2010 average) of almost 2 Mio. km2, which, combined with reduced Arctic SIE, led to a distinct minimum in global SIE. And, satellite observations show that from November 2016 to February 2017, the daily Antarctic SIE has been at record low levels. We use sea level pressure and geopotential height data from the ECMWF- Interim reanalysis, in conjunction with sea ice data obtained from the National Snow and Ice Data Centre (NSIDC), to investigate possible atmospheric influences on the observed phenomena. Indications are that both the onset of the melt in July and the rapid decrease in SIA and SIE in November were triggered by atmospheric flow patterns related to a positive Zonal Wave 3 index, i.e. synoptic situations leading to strong meridional flow. Additionally the Southern Annular Mode (SAM) index reached its second lowest November value since the beginning of the satellite observations. It is likely that the SIE decrease was preconditioned by SIA decrease. Positive feedback effects led to accelerated melt and consequently to the extraordinary low November SIE.

  15. Self-inhibiting growth of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Langen, Peter Lang; Solgaard, Anne Munck; Hvidberg, Christine Schøtt

    2012-01-01

    The build-up of the Greenland Ice Sheet (GrIS) from ice-free conditions is studied in an ice sheet model (ISM) driven by fields from an atmospheric general circulation model (GCM) to demonstrate the importance of coupling between the two components. Experiments where the two are coupled off-line...... are augmented by one where an intermediate ice sheet configuration is coupled back to the GCM. Forcing the ISM with GCM fields corresponding to the ice-free state leads to extensive regrowth which, however, is halted when the intermediate recoupling step is included. This inhibition of further growth is due...... to a Föhn effect of moist air parcels being lifted over the intermediate ice sheet and arriving in the low-lying Greenland interior with high temperatures. This demonstrates that two-way coupling between the atmosphere and the ice sheet is essential for understanding the dynamics and that large scale...

  16. Changes in Arctic and Antarctic Sea Ice as a Microcosm of Global Climate Change

    Science.gov (United States)

    Parkinson, Claire L.

    2014-01-01

    Polar sea ice is a key element of the climate system and has now been monitored through satellite observations for over three and a half decades. The satellite observations reveal considerable information about polar ice and its changes since the late 1970s, including a prominent downward trend in Arctic sea ice coverage and a much lesser upward trend in Antarctic sea ice coverage, illustrative of the important fact that climate change entails spatial contrasts. The decreasing ice coverage in the Arctic corresponds well with contemporaneous Arctic warming and exhibits particularly large decreases in the summers of 2007 and 2012, influenced by both preconditioning and atmospheric conditions. The increasing ice coverage in the Antarctic is not as readily explained, but spatial differences in the Antarctic trends suggest a possible connection with atmospheric circulation changes that have perhaps been influenced by the Antarctic ozone hole. The changes in the polar ice covers and the issues surrounding those changes have many commonalities with broader climate changes and their surrounding issues, allowing the sea ice changes to be viewed in some important ways as a microcosm of global climate change.

  17. Ice Sheet Roughness Estimation Based on Impulse Responses Acquired in the Global Ice Sheet Mapping Orbiter Mission

    Science.gov (United States)

    Niamsuwan, N.; Johnson, J. T.; Jezek, K. C.; Gogineni, P.

    2008-12-01

    The Global Ice Sheet Mapping Orbiter (GISMO) mission was developed to address scientific needs to understand the polar ice subsurface structure. This NASA Instrument Incubator Program project is a collaboration between Ohio State University, the University of Kansas, Vexcel Corporation and NASA. The GISMO design utilizes an interferometric SAR (InSAR) strategy in which ice sheet reflected signals received by a dual-antenna system are used to produce an interference pattern. The resulting interferogram can be used to filter out surface clutter so as to reveal the signals scattered from the base of the ice sheet. These signals are further processed to produce 3D-images representing basal topography of the ice sheet. In the past three years, the GISMO airborne field campaigns that have been conducted provide a set of useful data for studying geophysical properties of the Greenland ice sheet. While topography information can be obtained using interferometric SAR processing techniques, ice sheet roughness statistics can also be derived by a relatively simple procedure that involves analyzing power levels and the shape of the radar impulse response waveforms. An electromagnetic scattering model describing GISMO impulse responses has previously been proposed and validated. This model suggested that rms-heights and correlation lengths of the upper surface profile can be determined from the peak power and the decay rate of the pulse return waveform, respectively. This presentation will demonstrate a procedure for estimating the roughness of ice surfaces by fitting the GISMO impulse response model to retrieved waveforms from selected GISMO flights. Furthermore, an extension of this procedure to estimate the scattering coefficient of the glacier bed will be addressed as well. Planned future applications involving the classification of glacier bed conditions based on the derived scattering coefficients will also be described.

  18. Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet

    Science.gov (United States)

    Stibal, Marek; Box, Jason E.; Cameron, Karen A.; Langen, Peter L.; Yallop, Marian L.; Mottram, Ruth H.; Khan, Alia L.; Molotch, Noah P.; Chrismas, Nathan A. M.; Calı Quaglia, Filippo; Remias, Daniel; Smeets, C. J. P. Paul; van den Broeke, Michiel R.; Ryan, Jonathan C.; Hubbard, Alun; Tranter, Martyn; van As, Dirk; Ahlstrøm, Andreas P.

    2017-11-01

    Surface ablation of the Greenland ice sheet is amplified by surface darkening caused by light-absorbing impurities such as mineral dust, black carbon, and pigmented microbial cells. We present the first quantitative assessment of the microbial contribution to the ice sheet surface darkening, based on field measurements of surface reflectance and concentrations of light-absorbing impurities, including pigmented algae, during the 2014 melt season in the southwestern part of the ice sheet. The impact of algae on bare ice darkening in the study area was greater than that of nonalgal impurities and yielded a net albedo reduction of 0.038 ± 0.0035 for each algal population doubling. We argue that algal growth is a crucial control of bare ice darkening, and incorporating the algal darkening effect will improve mass balance and sea level projections of the Greenland ice sheet and ice masses elsewhere.

  19. New details about the LGM extent and subsequent retreat of the West Antarctic Ice Sheet from the easternmost Amundsen Sea Embayment shelf

    Science.gov (United States)

    Klages, J. P.; Hillenbrand, C. D.; Kuhn, G.; Smith, J. A.; Graham, A. G. C.; Nitsche, F. O.; Frederichs, T.; Arndt, J. E.; Gebhardt, C.; Robin, Z.; Uenzelmann-Neben, G.; Gohl, K.; Jernas, P.; Wacker, L.

    2017-12-01

    In recent years several previously undiscovered grounding-zone wedges (GZWs) have been described within the Abbot-Cosgrove palaeo-ice stream trough on the easternmost Amundsen Sea Embayment shelf. These GZWs document both the Last Glacial Maximum (LGM; 26.5-19 cal. ka BP) grounding-line extent and the subsequent episodic retreat within this trough that neighbors the larger Pine Island-Thwaites trough to the west. Here we combine bathymetric, seismic, and geologic data showing that 1) the grounding line in Abbot Trough did not reach the continental shelf break at any time during the last glacial period, and 2) a prominent stacked GZW constructed from six individual wedges lying upon another was deposited 100 km upstream from the LGM grounding-line position. The available data allow for calculating volumes for most of these individual GZWs and for the entire stack. Sediment cores were recovered seawards from the outermost GZW in the trough, and from the individual wedges of the stacked GZW in order to define the LGM grounding-line extent, and provide minimum grounding-line retreat ages for the respective positions on the stacked GZW. We present implications of a grounded-ice free outer shelf throughout the last glacial period. Furthermore, we assess the significance of the grounding-line stillstand period recorded by the stacked GZW in Abbot Trough for the timing of post-LGM retreat of the West Antarctic Ice Sheet from the Amundsen Sea Embayment shelf.

  20. Evidence for the former existence of a thicker ice sheet on the Vestfjella nunataks in western Dronning Maud Land, Antarctica

    Directory of Open Access Journals (Sweden)

    Lintinen, P.

    1996-06-01

    Full Text Available Vestfjella (73-74°S, 13-16°W is a 130 km long nunatak range in western Dronning Maud Land in East Antarctica, and its northern and southern ends are situated close to the present ice sheet grounding-line. Striations and lodgement till on nunatak Basen indicate that the northernmost Vestfjella nunataks were formerly covered by a thicker Antarctic ice sheet. Striations on the summit ridge of nunatak Plogen indicate that the minimum change in ice thickness has been 700 m at the present ice sheet grounding-line. The relatively uniform oldest striation direction on different nunatak summits and the altitude of Plogen, which is less than 200 m lower than the highest Vestfjella summits, indicates that the whole of Vestfjella may have been covered by an ice sheet. Oxidation of till surface stones and an increased clay fraction in the upper part of the till layer were the only indications of soil formation on Basen. The unweathered nature of the Basen lodgement till indicate a relatively young age for deglaciation. This conclusion is also supported by age determinations and sedimentological data obtained from Weddell Sea sediments by Norwegian researchers, suggesting that a grounded ice sheet extended to the shelf edge at around 21 ka B.P. However the age of the glaciation which covered Basen and Plogen and the subsequent deglaciation is not based on precise dates and therefore the late Wisconsinan/Weichselian age is only a working hypothesis.

  1. Antarctic sea ice losses drive gains in benthic carbon drawdown.

    Science.gov (United States)

    Barnes, D K A

    2015-09-21

    Climate forcing of sea-ice losses from the Arctic and West Antarctic are blueing the poles. These losses are accelerating, reducing Earth's albedo and increasing heat absorption. Subarctic forest (area expansion and increased growth) and ice-shelf losses (resulting in new phytoplankton blooms which are eaten by benthos) are the only significant described negative feedbacks acting to counteract the effects of increasing CO2 on a warming planet, together accounting for uptake of ∼10(7) tonnes of carbon per year. Most sea-ice loss to date has occurred over polar continental shelves, which are richly, but patchily, colonised by benthic animals. Most polar benthos feeds on microscopic algae (phytoplankton), which has shown increased blooms coincident with sea-ice losses. Here, growth responses of Antarctic shelf benthos to sea-ice losses and phytoplankton increases were investigated. Analysis of two decades of benthic collections showed strong increases in annual production of shelf seabed carbon in West Antarctic bryozoans. These were calculated to have nearly doubled to >2x10(5) tonnes of carbon per year since the 1980s. Annual production of bryozoans is median within wider Antarctic benthos, so upscaling to include other benthos (combined study species typically constitute ∼3% benthic biomass) suggests an increased drawdown of ∼2.9x10(6) tonnes of carbon per year. This drawdown could become sequestration because polar continental shelves are typically deeper than most modern iceberg scouring, bacterial breakdown rates are slow, and benthos is easily buried. To date, most sea-ice losses have been Arctic, so, if hyperboreal benthos shows a similar increase in drawdown, polar continental shelves would represent Earth's largest negative feedback to climate change. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Antarctic and Southern Ocean influences on Late Pliocene global cooling

    NARCIS (Netherlands)

    McKay, R.; Naish, T.; Carter, L.; Riesselman, C.; Dunbar, R.; Sjunneskog, C.; Winter, D.; Sangiorgi, F.; Warren, C.; Pagani, M.; Schouten, S.; Willmott, V.; Levy, R.; DeConto , R.M.; Powell, R.D.

    2012-01-01

    The influence of Antarctica and the Southern Ocean on Late Pliocene global climate reconstructions has remained ambiguous due to a lack of well-dated Antarctic-proximal, paleoenvironmental records. Here we present ice sheet, sea-surface temperature, and sea ice reconstructions from the ANDRILL

  3. Impact of realistic future ice sheet discharge on the Atlantic ocean

    Science.gov (United States)

    van den Berk, Jelle

    2015-04-01

    Royal Netherlands Meteorological Institute, De Bilt, The Netherlands A high-end scenario of polar ice loss from the Greenland and Antarctic ice sheet is presented with separate projections for different mass-loss sites up to the year 2100. The resultant freshwater forcing is applied to a global climate model and the effects on sea-level rise are discussed. The simulations show strong sea level rise on the Antarctic continental shelves. To separate the effects of atmospheric warming and melt water we then ran four simulations. One without either forcing, one with both and two with one of each separately. Melt water leads to a slight additional depression of the Atlantic overturning circulation, but a strong decrease remains absent. The bulk of the strength reduction is due to higher atmospheric temperatures which inhibits deep water formation in the North Atlantic. The melt water freshens the upper layers of the ocean, but does not strongly impact buoyancy. The balance between North Atlantic Deep Water and Antarctic Bottom Water must then remain relatively unaffected. Only applying the melt water forcing to the Northern Hemisphere does not lead to a stronger effect. We conclude that the meltwater scenario only impacts the overturning circulation superficially because the deeper ocean is not affected. Transport through Bering Strait and across the zonal section at the latitude of Cape Agulhas is increased by increased atmospheric temperatures and adds some inertia to these transports. Reversing the atmospheric forcing bears this out when the transport then further increases. The freshwater, however, mitigates this inertia somewhat.

  4. Coupling of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    M. M. Helsen

    2012-03-01

    Full Text Available It is notoriously difficult to couple surface mass balance (SMB results from climate models to the changing geometry of an ice sheet model. This problem is traditionally avoided by using only accumulation from a climate model, and parameterizing the meltwater run-off as a function of temperature, which is often related to surface elevation (Hs. In this study, we propose a new strategy to calculate SMB, to allow a direct adjustment of SMB to a change in ice sheet topography and/or a change in climate forcing. This method is based on elevational gradients in the SMB field as computed by a regional climate model. Separate linear relations are derived for ablation and accumulation, using pairs of Hs and SMB within a minimum search radius. The continuously adjusting SMB forcing is consistent with climate model forcing fields, also for initially non-glaciated areas in the peripheral areas of an ice sheet. When applied to an asynchronous coupled ice sheet – climate model setup, this method circumvents traditional temperature lapse rate assumptions. Here we apply it to the Greenland Ice Sheet (GrIS. Experiments using both steady-state forcing and glacial-interglacial forcing result in realistic ice sheet reconstructions.

  5. Observational Evidence of a Hemispheric-wide Ice-ocean Albedo Feedback Effect on Antarctic Sea-ice Decay

    Science.gov (United States)

    Nihashi, Sohey; Cavalieri, Donald J.

    2007-01-01

    The effect of ice-ocean albedo feedback (a kind of ice-albedo feedback) on sea-ice decay is demonstrated over the Antarctic sea-ice zone from an analysis of satellite-derived hemispheric sea ice concentration and European Centre for Medium-Range Weather Forecasts (ERA-40) atmospheric data for the period 1979-2001. Sea ice concentration in December (time of most active melt) correlates better with the meridional component of the wind-forced ice drift (MID) in November (beginning of the melt season) than the MID in December. This 1 month lagged correlation is observed in most of the Antarctic sea-ice covered ocean. Daily time series of ice , concentration show that the ice concentration anomaly increases toward the time of maximum sea-ice melt. These findings can be explained by the following positive feedback effect: once ice concentration decreases (increases) at the beginning of the melt season, solar heating of the upper ocean through the increased (decreased) open water fraction is enhanced (reduced), leading to (suppressing) a further decrease in ice concentration by the oceanic heat. Results obtained fi-om a simple ice-ocean coupled model also support our interpretation of the observational results. This positive feedback mechanism explains in part the large interannual variability of the sea-ice cover in summer.

  6. Experimental design for three interrelated marine ice sheet and ocean model intercomparison projects: MISMIP v. 3 (MISMIP +), ISOMIP v. 2 (ISOMIP +) and MISOMIP v. 1 (MISOMIP1)

    Energy Technology Data Exchange (ETDEWEB)

    Asay-Davis, Xylar S. [Potsdam Inst. for Climate Impact Research (Germany). Earth System Analysis; Cornford, Stephen L. [Univ. of Bristol (United Kingdom). Centre for Polar Observation and Modelling; Durand, Gaël [Centre National de la Recherche Scientifique (CNRS), Grenoble (France); Univ. of Grenoble (France); Galton-Fenzi, Benjamin K. [Australian Antarctic Division and Antarctic Climate and Ecosystems Cooperative Research Centre, Tasmania (Australia); Gladstone, Rupert M. [Antarctic Climate and Ecosystems Cooperative Research Centre, Tasmania (Australia); ETH Zurich (Switzerland). Research Center for Hydraulic Engineering; Gudmundsson, G. Hilmar [British Antarctic Survey, Cambridge (United Kingdom); Hattermann, Tore [Akvaplan-niva, Tromso (Norway); Helmholtz Centre for Polar and Marine Research, Bremerhaven (Germany). Alfred Wegener Inst.; Holland, David M. [New York Univ. (NYU), NY (United States)' . Courant Inst. of Mathematical Sciences; Holland, Denise [New York Univ. (NYU), Abu Dahabi (United Arab Emirates); Holland, Paul R. [British Antarctic Survey, Cambridge (United Kingdom); Martin, Daniel F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathiot, Pierre [British Antarctic Survey, Cambridge (United Kingdom); Met Office, Exeter (United Kingdom); Pattyn, Frank [Univ. of Libre, Brussels (Belgium). Lab. of Glaciology; Seroussi, Hélène [California Inst. of Technology (CalTech), Pasadena, CA (United States). Jet Propulsion Lab.

    2016-01-01

    Coupled ice sheet-ocean models capable of simulating moving grounding lines are just becoming available. Such models have a broad range of potential applications in studying the dynamics of marine ice sheets and tidewater glaciers, from process studies to future projections of ice mass loss and sea level rise. The Marine Ice Sheet-Ocean Model Intercomparison Project (MISOMIP) is a community effort aimed at designing and coordinating a series of model intercomparison projects (MIPs) for model evaluation in idealized setups, model verification based on observations, and future projections for key regions of the West Antarctic Ice Sheet (WAIS).

    Here we describe computational experiments constituting three interrelated MIPs for marine ice sheet models and regional ocean circulation models incorporating ice shelf cavities. These consist of ice sheet experiments under the Marine Ice Sheet MIP third phase (MISMIP+), ocean experiments under the Ice Shelf-Ocean MIP second phase (ISOMIP+) and coupled ice sheet-ocean experiments under the MISOMIP first phase (MISOMIP1). All three MIPs use a shared domain with idealized bedrock topography and forcing, allowing the coupled simulations (MISOMIP1) to be compared directly to the individual component simulations (MISMIP+ and ISOMIP+). The experiments, which have qualitative similarities to Pine Island Glacier Ice Shelf and the adjacent region of the Amundsen Sea, are designed to explore the effects of changes in ocean conditions, specifically the temperature at depth, on basal melting and ice dynamics. In future work, differences between model results will form the basis for the evaluation of the participating models.

  7. Ice sheets on plastically-yielding beds

    Science.gov (United States)

    Hewitt, Ian

    2016-11-01

    Many fast flowing regions of ice sheets are underlain by a layer of water-saturated sediments, or till. The rheology of the till has been the subject of some controversy, with laboratory tests suggesting almost perfectly plastic behaviour (stress independent of strain rate), but many models adopting a pseudo-viscous description. In this work, we consider the behaviour of glaciers underlain by a plastic bed. The ice is treated as a viscous gravity current, on a bed that allows unconstrained slip above a critical yield stress. This simplified description allows rapid sliding, and aims to investigate 'worst-case' scenarios of possible ice-sheet disintegration. The plastic bed results in an approximate ice-sheet geometry that is primarily controlled by force balance, whilst ice velocity is determined from mass conservation (rather than the other way around, as standard models would hold). The stability of various states is considered, and particular attention is given to the pace at which transitions between unstable states can occur. Finally, we observe that the strength of basal tills depends strongly on pore pressure, and combine the model with a description of subglacial hydrology. Implications for the present-day ice sheets in Greenland and Antarctica will be discussed. Funding: ERC Marie Curie FP7 Career Integration Grant.

  8. In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf

    Directory of Open Access Journals (Sweden)

    D. P. Grosvenor

    2012-12-01

    Full Text Available In-situ aircraft observations of ice crystal concentrations in Antarctic clouds are presented for the first time. Orographic, layer and wave clouds around the Antarctic Peninsula and Larsen Ice shelf regions were penetrated by the British Antarctic Survey's Twin Otter aircraft, which was equipped with modern cloud physics probes. The clouds studied were mostly in the free troposphere and hence ice crystals blown from the surface are unlikely to have been a major source for the ice phase. The temperature range covered by the experiments was 0 to −21 °C. The clouds were found to contain supercooled liquid water in most regions and at heterogeneous ice formation temperatures ice crystal concentrations (60 s averages were often less than 0.07 l−1, although values up to 0.22 l−1 were observed. Estimates of observed aerosol concentrations were used as input into the DeMott et al. (2010 ice nuclei (IN parameterisation. The observed ice crystal number concentrations were generally in broad agreement with the IN predictions, although on the whole the predicted values were higher. Possible reasons for this are discussed and include the lack of IN observations in this region with which to characterise the parameterisation, and/or problems in relating ice concentration measurements to IN concentrations. Other IN parameterisations significantly overestimated the number of ice particles. Generally ice particle concentrations were much lower than found in clouds in middle latitudes for a given temperature.

    Higher ice crystal concentrations were sometimes observed at temperatures warmer than −9 °C, with values of several per litre reached. These were attributable to secondary ice particle production by the Hallett Mossop process. Even in this temperature range it was observed that there were regions with little or no ice that were dominated by supercooled liquid water. It is likely that in some cases this was due to a

  9. Capabilities and performance of Elmer/Ice, a new-generation ice sheet model

    Directory of Open Access Journals (Sweden)

    O. Gagliardini

    2013-08-01

    Full Text Available The Fourth IPCC Assessment Report concluded that ice sheet flow models, in their current state, were unable to provide accurate forecast for the increase of polar ice sheet discharge and the associated contribution to sea level rise. Since then, the glaciological community has undertaken a huge effort to develop and improve a new generation of ice flow models, and as a result a significant number of new ice sheet models have emerged. Among them is the parallel finite-element model Elmer/Ice, based on the open-source multi-physics code Elmer. It was one of the first full-Stokes models used to make projections for the evolution of the whole Greenland ice sheet for the coming two centuries. Originally developed to solve local ice flow problems of high mechanical and physical complexity, Elmer/Ice has today reached the maturity to solve larger-scale problems, earning the status of an ice sheet model. Here, we summarise almost 10 yr of development performed by different groups. Elmer/Ice solves the full-Stokes equations, for isotropic but also anisotropic ice rheology, resolves the grounding line dynamics as a contact problem, and contains various basal friction laws. Derived fields, like the age of the ice, the strain rate or stress, can also be computed. Elmer/Ice includes two recently proposed inverse methods to infer badly known parameters. Elmer is a highly parallelised code thanks to recent developments and the implementation of a block preconditioned solver for the Stokes system. In this paper, all these components are presented in detail, as well as the numerical performance of the Stokes solver and developments planned for the future.

  10. Grounding line transient response in marine ice sheet models

    Directory of Open Access Journals (Sweden)

    A. S. Drouet

    2013-03-01

    Full Text Available Marine ice-sheet stability is mostly controlled by the dynamics of the grounding line, i.e. the junction between the grounded ice sheet and the floating ice shelf. Grounding line migration has been investigated within the framework of MISMIP (Marine Ice Sheet Model Intercomparison Project, which mainly aimed at investigating steady state solutions. Here we focus on transient behaviour, executing short-term simulations (200 yr of a steady ice sheet perturbed by the release of the buttressing restraint exerted by the ice shelf on the grounded ice upstream. The transient grounding line behaviour of four different flowline ice-sheet models has been compared. The models differ in the physics implemented (full Stokes and shallow shelf approximation, the numerical approach, as well as the grounding line treatment. Their overall response to the loss of buttressing is found to be broadly consistent in terms of grounding line position, rate of surface elevation change and surface velocity. However, still small differences appear for these latter variables, and they can lead to large discrepancies (> 100% observed in terms of ice sheet contribution to sea level when cumulated over time. Despite the recent important improvements of marine ice-sheet models in their ability to compute steady state configurations, our results question the capacity of these models to compute short-term reliable sea-level rise projections.

  11. ARM West Antarctic Radiation Experiment (AWARE) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Lubin, Daniel [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography; Bromwich, David H [Ohio State University; Vogelmann, Andrew M [Brookhaven National Lab. (BNL), Upton, NY (United States); Verlinde, Johannes [Pennsylvania State Univ., University Park, PA (United States); Russell, Lynn M [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography

    2017-09-15

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) West Antarctic Radiation Experiment (AWARE) is the most technologically advanced atmospheric and climate science campaign yet fielded in Antarctica. AWARE was motivated be recent concern about the impact of cryospheric mass loss on global sea level rise. Specifically, the West Antarctic Ice Sheet (WAIS) is now the second largest contributor to rising sea level, after the Greenland Ice Sheet. As steadily warming ocean water erodes the grounding lines of WAIS components where they meet the Amundsen and Bellingshausen Seas, the retreating grounding lines moving inland and downslope on the underlying terrain imply mechanical instability of the entire WAIS. There is evidence that this point of instability may have already been reached, perhaps signifying more rapid loss of WAIS ice mass. At the same time, the mechanical support provided by adjacent ice shelves, and also the fundamental stability of exposed ice cliffs at the ice sheet grounding lines, will be adversely impacted by a warming atmosphere that causes more frequent episodes of surface melting. The surface meltwater damages the ice shelves and ice cliffs through hydrofracturing. With the increasing concern regarding these rapid cryospheric changes, AWARE was motivated by the need to (a) diagnose the surface energy balance in West Antarctica as related to both summer season climatology and potential surface melting, and (b) improve global climate model (GCM) performance over Antarctica, such that future cryospheric projections can be more reliable.

  12. Dating of 30m ice cores drilled by Japanese Antarctic Research Expedition and environmental change study

    Science.gov (United States)

    Motoyama, H.; Suzuki, T.; Fukui, K.; Ohno, H.; Hoshina, Y.; Hirabayashi, M.; Fujita, S.

    2017-12-01

    1. Introduction It is possible to reveal the past climate and environmental change from the ice core drilled in polar ice sheet and glaciers. The 54th Japanese Antarctic Research Expedition conducted several shallow core drillings up to 30 m depth in the inland and coastal areas of the East Antarctic ice sheet. Ice core sample was cut out at a thickness of about 5 cm in the cold room of the National Institute of Polar Research, and analyzed ion, water isotope, dust and so one. We also conducted dielectric profile measurement (DEP measurement). The age as a key layer of large-scale volcanic explosion was based on Sigl et al. (Nature Climate Change, 2014). 2. Inland ice core Ice cores were collected at the NDF site (77°47'14"S, 39°03'34"E, 3754 m.a.s.l.) and S80 site (80°00'00"S, 40°30'04"E, 3622 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. We determined the key layer with nssSO42 - peak corresponding to several large volcanic explosions. The accumulation rate was kept constant between the key layers. As a result, NDF was estimated to be around 1360 AD and S80 was estimated to be around 1400 AD in the deepest ice core. 3. Coastal ice core An ice core was collected at coastal H15 sites (69°04'10"S, 40°44'51"E, 1030 m.a.s.l.). Dating of ice core was done as follows. Calculate water equivalent from ice core density. Accumulate water equivalent from the surface. Approximate the relation of depth - cumulative water equivalent by a quartic equation. Basically we decided to summer (December) and winter (June) due to the seasonal change of the water isotope (δD or δ18O). In addition to the seasonal change of isotope, confirm the following. Maximum of SO42- / Na +, which is earlier in time than the maximum of water isotope. Maximum of MSA at about the same time as the maximum of the

  13. Modelling the climate and surface mass balance of polar ice sheets using RACMO2 - Part 2: Antarctica (1979-2016)

    Science.gov (United States)

    Melchior van Wessem, Jan; van de Berg, Willem Jan; Noël, Brice P. Y.; van Meijgaard, Erik; Amory, Charles; Birnbaum, Gerit; Jakobs, Constantijn L.; Krüger, Konstantin; Lenaerts, Jan T. M.; Lhermitte, Stef; Ligtenberg, Stefan R. M.; Medley, Brooke; Reijmer, Carleen H.; van Tricht, Kristof; Trusel, Luke D.; van Ulft, Lambertus H.; Wouters, Bert; Wuite, Jan; van den Broeke, Michiel R.

    2018-04-01

    We evaluate modelled Antarctic ice sheet (AIS) near-surface climate, surface mass balance (SMB) and surface energy balance (SEB) from the updated polar version of the regional atmospheric climate model, RACMO2 (1979-2016). The updated model, referred to as RACMO2.3p2, incorporates upper-air relaxation, a revised topography, tuned parameters in the cloud scheme to generate more precipitation towards the AIS interior and modified snow properties reducing drifting snow sublimation and increasing surface snowmelt. Comparisons of RACMO2 model output with several independent observational data show that the existing biases in AIS temperature, radiative fluxes and SMB components are further reduced with respect to the previous model version. The model-integrated annual average SMB for the ice sheet including ice shelves (minus the Antarctic Peninsula, AP) now amounts to 2229 Gt y-1, with an interannual variability of 109 Gt y-1. The largest improvement is found in modelled surface snowmelt, which now compares well with satellite and weather station observations. For the high-resolution ( ˜ 5.5 km) AP simulation, results remain comparable to earlier studies. The updated model provides a new, high-resolution data set of the contemporary near-surface climate and SMB of the AIS; this model version will be used for future climate scenario projections in a forthcoming study.

  14. Isotopic composition of ice core air reveals abrupt Antarctic warming during and after Heinrich Event 1a

    Science.gov (United States)

    Morgan, J. D.; Bereiter, B.; Baggenstos, D.; Kawamura, K.; Shackleton, S. A.; Severinghaus, J. P.

    2017-12-01

    Antarctic temperature variations during Heinrich events, as recorded by δ18O­ice­, generally show more gradual changes than the abrupt warmings seen in Greenland ice. However, quantitative temperature interpretation of the water isotope temperature proxy is difficult as the relationship between δ18Oice and temperature is not constant through time. Fortunately, ice cores offer a second temperature proxy based on trapped gases. During times of surface warming, thermal fractionation of gases in the column of unconsolidated snow (firn) on top of the ice sheet results in isotopically heavier nitrogen (N2) and argon (Ar) being trapped in the ice core bubbles. During times of surface cooling, isotopically lighter gases are trapped. Measurements of δ15N and δ40Ar can therefore be used, in combination with a model for the height of the column of firn, to quantitatively reconstruct surface temperatures. In the WAIS Divide Ice Core, the two temperature proxies show a brief disagreement during Heinrich Stadial 1. Despite δ18Oice recording relatively constant temperature, the nitrogen and argon isotopes imply an abrupt warming between 16 and 15.8 kyr BP, manifest as an abrupt 1.25oC increase in the firn temperature gradient. To our knowledge, this would be the first evidence that such abrupt climate change has been recorded in an Antarctic climate proxy. If confirmed by more detailed studies, this event may represent warming due to an extreme southward shift of the Earth's thermal equator (and the southern hemisphere westerly wind belt), caused by the 16.1 ka Heinrich Event.

  15. Estimating Antarctic Geothermal Heat Flux using Gravity Inversion

    Science.gov (United States)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; Golynsky, A. V.; Sasha Rogozhina, Irina

    2013-04-01

    Geothermal heat flux (GHF) in Antarctica is very poorly known. We have determined (Vaughan et al. 2012) top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008). Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Knowing GHF distribution for East Antarctica and the Gamburtsev Subglacial Mountains (GSM) region in particular is critical because: 1) The GSM likely acted as key nucleation point for the East Antarctic Ice Sheet (EAIS); 2) the region may contain the oldest ice of the EAIS - a prime target for future ice core drilling; 3) GHF is important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). An integrated multi-dataset-based GHF model for East Antarctica is planned that will resolve the wide range of estimates previously published using single datasets. The new map and existing GHF distribution estimates available for Antarctica will be evaluated using direct ice temperature measurements obtained from deep ice cores, estimates of GHF derived from subglacial lakes, and a thermodynamic ice-sheet model of the Antarctic Ice Sheet driven by past climate reconstructions and each of analysed heat flow maps, as has recently been done for the Greenland region (Rogozhina et al. 2012). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N

  16. Mapping of a Hydrological Ice Sheet Drainage Basin on the West Greenland Ice Sheet Margin from ERS-1/2 SAR Interferometry, Ice-Radar Measurement, and Modelling

    DEFF Research Database (Denmark)

    Ahlstrøm, Andreas P.; Bøggild, C.E.; Stenseng, L.

    2002-01-01

    importance of the potential of the ice overburden pressure compared to the bedrock topography. The meltwater run-off for the basin delineations was modelled with an energy-balance model calibrated with observed ice-sheet ablation and compared to a 25 year time series of measured basin run-off. The standard......The hydrological ice-sheet basin draining into the Tasersiaq lake, West Greenland (66°13'N, 50°30'W), was delineated, First using standard digital elevation models (DEMs) for ice-sheet surface and bedrock, and subsequently using a new high-resolution dataset, with a surface DEM derived from repeat......-track interferometric synthetic aperture radar (SAR) and a bedrock topography derived from an airborne 60 MHz ice-penetrating radar. The extent of the delineation was calculated from a water-pressure potential as a function of the ice-sheet surface and bedrock elevations and a hydraulic factor κ describing the relative...

  17. Simulations of the Scandinavian ice sheet and its subsurface conditions

    International Nuclear Information System (INIS)

    Boulton, G.S.; Caban, P.; Hulton, N.

    1999-12-01

    An ice sheet model has been applied to an approximate flow line through the area of the Fennoscandian ice sheet. The modelled ice sheet fluctuations have been matched with stratigraphic evidence of Weichselian ice sheet fluctuation in order to simulate ice sheet attributes through time along the flowline. The model predicts extensive melting at the base of the ice sheet. This output has been used as an input to a simplified model of hydrogeology along the southern flank of the ice sheet so as to reconstruct patterns of subglacial groundwater flow. The output from the model is also used to estimate patterns of subglacial stress and strain. Results suggest that large scale subglacial groundwater catchment are formed which were quite different in extent from modern catchment; that fossil subglacial groundwaters should be found at sampling depths; and much fracturing in shallow bedrock in Sweden could be glacially generated

  18. Simulations of the Scandinavian ice sheet and its subsurface conditions

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G.S.; Caban, P.; Hulton, N. [Edinburgh Univ. (United Kingdom). Dept of Geology and Geophysics

    1999-12-01

    An ice sheet model has been applied to an approximate flow line through the area of the Fennoscandian ice sheet. The modelled ice sheet fluctuations have been matched with stratigraphic evidence of Weichselian ice sheet fluctuation in order to simulate ice sheet attributes through time along the flowline. The model predicts extensive melting at the base of the ice sheet. This output has been used as an input to a simplified model of hydrogeology along the southern flank of the ice sheet so as to reconstruct patterns of subglacial groundwater flow. The output from the model is also used to estimate patterns of subglacial stress and strain. Results suggest that large scale subglacial groundwater catchment are formed which were quite differentin extent from modern catchment; that fossil subglacial groundwaters should be found at sampling depths; and much fracturing in shallow bedrock in Sweden could be glacially generated.

  19. STS-48 ESC Earth observation of ice pack, Antarctic Ice Shelf

    Science.gov (United States)

    1991-01-01

    STS-48 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, is of the breakup of pack ice along the periphery of the Antarctic Ice Shelf. Strong offshore winds, probably associated with katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filaments of sea ice, icebergs, bergy bits, and growlers to flow northward into the South Atlantic Ocean. These photos are used to study ocean wind, tide and current patterns. Similar views photographed during previous missions, when analyzed with these recent views may yield information about regional ice drift and breakup of ice packs. The image was captured using an electronic still camera (ESC), was stored on a removable hard disk or small optical disk, and was converted to a format suitable for downlink transmission. The ESC documentation was part of Development Test Objective (DTO) 648, Electronic Still Photography.

  20. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice

    Directory of Open Access Journals (Sweden)

    R. S. Humphries

    2016-02-01

    Full Text Available Better characterisation of aerosol processes in pristine, natural environments, such as Antarctica, have recently been shown to lead to the largest reduction in uncertainties in our understanding of radiative forcing. Our understanding of aerosols in the Antarctic region is currently based on measurements that are often limited to boundary layer air masses at spatially sparse coastal and continental research stations, with only a handful of studies in the vast sea-ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the icebreaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3 concentrations exhibited a five-fold increase moving across the polar front, with mean polar cell concentrations of 1130 cm−3 – higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low-pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air masses quickly from the free troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea-ice boundary layer air masses travelled equatorward into the low-albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei which, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between

  1. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea ice

    Science.gov (United States)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2016-02-01

    Better characterisation of aerosol processes in pristine, natural environments, such as Antarctica, have recently been shown to lead to the largest reduction in uncertainties in our understanding of radiative forcing. Our understanding of aerosols in the Antarctic region is currently based on measurements that are often limited to boundary layer air masses at spatially sparse coastal and continental research stations, with only a handful of studies in the vast sea-ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the icebreaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the polar front, with mean polar cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low-pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air masses quickly from the free troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea-ice boundary layer air masses travelled equatorward into the low-albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei which, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and their transport pathways described here, could help reduce the discrepancy currently present between simulations and observations of

  2. Antarctic Active Subglacial Lake Inventory from ICESat Altimetry, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains lake boundaries, volume changes, and gridded elevations for 124 active subglacial lakes beneath the Antarctic ice sheet. Lakes were identified...

  3. Improving Surface Mass Balance Over Ice Sheets and Snow Depth on Sea Ice

    Science.gov (United States)

    Koenig, Lora Suzanne; Box, Jason; Kurtz, Nathan

    2013-01-01

    Surface mass balance (SMB) over ice sheets and snow on sea ice (SOSI) are important components of the cryosphere. Large knowledge gaps remain in scientists' abilities to monitor SMB and SOSI, including insufficient measurements and difficulties with satellite retrievals. On ice sheets, snow accumulation is the sole mass gain to SMB, and meltwater runoff can be the dominant single loss factor in extremely warm years such as 2012. SOSI affects the growth and melt cycle of the Earth's polar sea ice cover. The summer of 2012 saw the largest satellite-recorded melt area over the Greenland ice sheet and the smallest satellite-recorded Arctic sea ice extent, making this meeting both timely and relevant.

  4. Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year

    Directory of Open Access Journals (Sweden)

    R. Bindschadler

    2011-07-01

    Full Text Available Two ice-dynamic transitions of the Antarctic ice sheet – the boundary of grounded ice features and the freely-floating boundary – are mapped at 15-m resolution by participants of the International Polar Year project ASAID using customized software combining Landsat-7 imagery and ICESat/GLAS laser altimetry. The grounded ice boundary is 53 610 km long; 74 % abuts to floating ice shelves or outlet glaciers, 19 % is adjacent to open or sea-ice covered ocean, and 7 % of the boundary ice terminates on land. The freely-floating boundary, called here the hydrostatic line, is the most landward position on ice shelves that expresses the full amplitude of oscillating ocean tides. It extends 27 521 km and is discontinuous. Positional (one-sigma accuracies of the grounded ice boundary vary an order of magnitude ranging from ±52 m for the land and open-ocean terminating segments to ±502 m for the outlet glaciers. The hydrostatic line is less well positioned with errors over 2 km. Elevations along each line are selected from 6 candidate digital elevation models based on their agreement with ICESat elevation values and surface shape inferred from the Landsat imagery. Elevations along the hydrostatic line are converted to ice thicknesses by applying a firn-correction factor and a flotation criterion. BEDMAP-compiled data and other airborne data are compared to the ASAID elevations and ice thicknesses to arrive at quantitative (one-sigma uncertainties of surface elevations of ±3.6, ±9.6, ±11.4, ±30 and ±100 m for five ASAID-assigned confidence levels. Over one-half of the surface elevations along the grounded ice boundary and over one-third of the hydrostatic line elevations are ranked in the highest two confidence categories. A comparison between ASAID-calculated ice shelf thicknesses and BEDMAP-compiled data indicate a thin-ice bias of 41.2 ± 71.3 m for the ASAID ice thicknesses. The relationship between the seaward offset of the hydrostatic line

  5. Getting around Antarctica: New High-Resolution Mappings of the Grounded and Freely-Floating Boundaries of the Antarctic Ice Sheet Created for the International Polar Year

    Science.gov (United States)

    Bindschadler, R.; Choi, H.; Wichlacz, A.; Bingham, R.; Bohlander, J.; Brunt, K.; Corr, H.; Drews, R.; Fricker, H.; Hall, M.; hide

    2011-01-01

    Two ice-dynamic transitions of the Antarctic ice sheet - the boundary of grounded ice features and the freely-floating boundary - are mapped at 15-m resolution by participants of the International Polar Year project ASAID using customized software combining Landsat-7 imagery and ICESat/GLAS laser altimetry. The grounded ice boundary is 53 610 km long; 74% abuts to floating ice shelves or outlet glaciers, 19% is adjacent to open or sea-ice covered ocean, and 7% of the boundary ice terminates on land. The freely-floating boundary, called here the hydrostatic line, is the most landward position on ice shelves that expresses the full amplitude of oscillating ocean tides. It extends 27 521 km and is discontinuous. Positional (one-sigma) accuracies of the grounded ice boundary vary an order of magnitude ranging from +/- 52m for the land and open-ocean terminating segments to +/- 502m for the outlet glaciers. The hydrostatic line is less well positioned with errors over 2 km. Elevations along each line are selected from 6 candidate digital elevation models based on their agreement with ICESat elevation values and surface shape inferred from the Landsat imagery. Elevations along the hydrostatic line are converted to ice thicknesses by applying a firn-correction factor and a flotation criterion. BEDMAP-compiled data and other airborne data are compared to the ASAID elevations and ice thicknesses to arrive at quantitative (one-sigma) uncertainties of surface elevations of +/-3.6, +/-9.6, +/-11.4, +/-30 and +/-100m for five ASAID-assigned confidence levels. Over one-half of the surface elevations along the grounded ice boundary and over one-third of the hydrostatic line elevations are ranked in the highest two confidence categories. A comparison between ASAID-calculated ice shelf thicknesses and BEDMAP-compiled data indicate a thin-ice bias of 41.2+/-71.3m for the ASAID ice thicknesses. The relationship between the seaward offset of the hydrostatic line from the grounded ice

  6. Empirical estimation of present-day Antarctic glacial isostatic adjustment and ice mass change

    Science.gov (United States)

    Gunter, B. C.; Didova, O.; Riva, R. E. M.; Ligtenberg, S. R. M.; Lenaerts, J. T. M.; King, M. A.; van den Broeke, M. R.; Urban, T.

    2014-04-01

    This study explores an approach that simultaneously estimates Antarctic mass balance and glacial isostatic adjustment (GIA) through the combination of satellite gravity and altimetry data sets. The results improve upon previous efforts by incorporating a firn densification model to account for firn compaction and surface processes as well as reprocessed data sets over a slightly longer period of time. A range of different Gravity Recovery and Climate Experiment (GRACE) gravity models were evaluated and a new Ice, Cloud, and Land Elevation Satellite (ICESat) surface height trend map computed using an overlapping footprint approach. When the GIA models created from the combination approach were compared to in situ GPS ground station displacements, the vertical rates estimated showed consistently better agreement than recent conventional GIA models. The new empirically derived GIA rates suggest the presence of strong uplift in the Amundsen Sea sector in West Antarctica (WA) and the Philippi/Denman sectors, as well as subsidence in large parts of East Antarctica (EA). The total GIA-related mass change estimates for the entire Antarctic ice sheet ranged from 53 to 103 Gt yr-1, depending on the GRACE solution used, with an estimated uncertainty of ±40 Gt yr-1. Over the time frame February 2003-October 2009, the corresponding ice mass change showed an average value of -100 ± 44 Gt yr-1 (EA: 5 ± 38, WA: -105 ± 22), consistent with other recent estimates in the literature, with regional mass loss mostly concentrated in WA. The refined approach presented in this study shows the contribution that such data combinations can make towards improving estimates of present-day GIA and ice mass change, particularly with respect to determining more reliable uncertainties.

  7. Report on workshop "Study of the Antarctic ice sheet and glacier using ERS-1/JERS-1 SAR data"

    Directory of Open Access Journals (Sweden)

    Naohiko Hirasawa

    1996-07-01

    Full Text Available The main purpose of the workshop is to discuss recent results of Antarctic research using SAR data. It was held on February 6,1996 at the National Institute of Polar Research (NIPR, the number of participants being about 30. The contents of the workshop are demonstration of various SAR images, comparison with pictures from an airplane and visible images, comparison with observational data on ice conditions and demonstration of problems in interferometry.

  8. The last Scandinavian ice sheet in northwestern Russia: ice flow patterns and decay dynamics

    DEFF Research Database (Denmark)

    Demidov, L.; Houmark-Nielsen, Michael; Kjær, Kurt Henrik

    2006-01-01

    in Russia than previously outlined and the time of termination at 18-16 cal. kyr BP was almost 10 kyr delayed compared to the southwestern part of the ice sheet. We argue that the lithology of the ice sheets' substrate, and especially the location of former proglacial lake basins, influenced the dynamics......Advance of the Late Weichselian (Valdaian) Scandinavian Ice Sheet (SIS) in northwestern Russia took place after a period of periglacial conditions. Till of the last SIS, Bobrovo till, overlies glacial deposits from the previous Barents and Kara Sea ice sheets and marine deposits of the Last...

  9. Assessment of Arctic and Antarctic sea ice predictability in CMIP5 decadal hindcasts

    Directory of Open Access Journals (Sweden)

    C.-Y. Yang

    2016-10-01

    Full Text Available This paper examines the ability of coupled global climate models to predict decadal variability of Arctic and Antarctic sea ice. We analyze decadal hindcasts/predictions of 11 Coupled Model Intercomparison Project Phase 5 (CMIP5 models. Decadal hindcasts exhibit a large multi-model spread in the simulated sea ice extent, with some models deviating significantly from the observations as the predicted ice extent quickly drifts away from the initial constraint. The anomaly correlation analysis between the decadal hindcast and observed sea ice suggests that in the Arctic, for most models, the areas showing significant predictive skill become broader associated with increasing lead times. This area expansion is largely because nearly all the models are capable of predicting the observed decreasing Arctic sea ice cover. Sea ice extent in the North Pacific has better predictive skill than that in the North Atlantic (particularly at a lead time of 3–7 years, but there is a re-emerging predictive skill in the North Atlantic at a lead time of 6–8 years. In contrast to the Arctic, Antarctic sea ice decadal hindcasts do not show broad predictive skill at any timescales, and there is no obvious improvement linking the areal extent of significant predictive skill to lead time increase. This might be because nearly all the models predict a retreating Antarctic sea ice cover, opposite to the observations. For the Arctic, the predictive skill of the multi-model ensemble mean outperforms most models and the persistence prediction at longer timescales, which is not the case for the Antarctic. Overall, for the Arctic, initialized decadal hindcasts show improved predictive skill compared to uninitialized simulations, although this improvement is not present in the Antarctic.

  10. Inferring Ice Thickness from a Glacier Dynamics Model and Multiple Surface Datasets.

    Science.gov (United States)

    Guan, Y.; Haran, M.; Pollard, D.

    2017-12-01

    The future behavior of the West Antarctic Ice Sheet (WAIS) may have a major impact on future climate. For instance, ice sheet melt may contribute significantly to global sea level rise. Understanding the current state of WAIS is therefore of great interest. WAIS is drained by fast-flowing glaciers which are major contributors to ice loss. Hence, understanding the stability and dynamics of glaciers is critical for predicting the future of the ice sheet. Glacier dynamics are driven by the interplay between the topography, temperature and basal conditions beneath the ice. A glacier dynamics model describes the interactions between these processes. We develop a hierarchical Bayesian model that integrates multiple ice sheet surface data sets with a glacier dynamics model. Our approach allows us to (1) infer important parameters describing the glacier dynamics, (2) learn about ice sheet thickness, and (3) account for errors in the observations and the model. Because we have relatively dense and accurate ice thickness data from the Thwaites Glacier in West Antarctica, we use these data to validate the proposed approach. The long-term goal of this work is to have a general model that may be used to study multiple glaciers in the Antarctic.

  11. Unexpectedly high ultrafine aerosol concentrations above East Antarctic sea-ice

    Science.gov (United States)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Keywood, M.; Ward, J.; Wilson, S. R.

    2015-10-01

    The effect of aerosols on clouds and their radiative properties is one of the largest uncertainties in our understanding of radiative forcing. A recent study has concluded that better characterisation of pristine, natural aerosol processes leads to the largest reduction in these uncertainties. Antarctica, being far from anthropogenic activities, is an ideal location for the study of natural aerosol processes. Aerosol measurements in Antarctica are often limited to boundary layer air-masses at spatially sparse coastal and continental research stations, with only a handful of studies in the sea ice region. In this paper, the first observational study of sub-micron aerosols in the East Antarctic sea ice region is presented. Measurements were conducted aboard the ice-breaker Aurora Australis in spring 2012 and found that boundary layer condensation nuclei (CN3) concentrations exhibited a five-fold increase moving across the Polar Front, with mean Polar Cell concentrations of 1130 cm-3 - higher than any observed elsewhere in the Antarctic and Southern Ocean region. The absence of evidence for aerosol growth suggested that nucleation was unlikely to be local. Air parcel trajectories indicated significant influence from the free troposphere above the Antarctic continent, implicating this as the likely nucleation region for surface aerosol, a similar conclusion to previous Antarctic aerosol studies. The highest aerosol concentrations were found to correlate with low pressure systems, suggesting that the passage of cyclones provided an accelerated pathway, delivering air-masses quickly from the free-troposphere to the surface. After descent from the Antarctic free troposphere, trajectories suggest that sea ice boundary layer air-masses travelled equator-ward into the low albedo Southern Ocean region, transporting with them emissions and these aerosol nuclei where, after growth, may potentially impact on the region's radiative balance. The high aerosol concentrations and

  12. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice.

    Science.gov (United States)

    Li, Xichen; Holland, David M; Gerber, Edwin P; Yoo, Changhyun

    2014-01-23

    In recent decades, Antarctica has experienced pronounced climate changes. The Antarctic Peninsula exhibited the strongest warming of any region on the planet, causing rapid changes in land ice. Additionally, in contrast to the sea-ice decline over the Arctic, Antarctic sea ice has not declined, but has instead undergone a perplexing redistribution. Antarctic climate is influenced by, among other factors, changes in radiative forcing and remote Pacific climate variability, but none explains the observed Antarctic Peninsula warming or the sea-ice redistribution in austral winter. However, in the north and tropical Atlantic Ocean, the Atlantic Multidecadal Oscillation (a leading mode of sea surface temperature variability) has been overlooked in this context. Here we show that sea surface warming related to the Atlantic Multidecadal Oscillation reduces the surface pressure in the Amundsen Sea and contributes to the observed dipole-like sea-ice redistribution between the Ross and Amundsen-Bellingshausen-Weddell seas and to the Antarctic Peninsula warming. Support for these findings comes from analysis of observational and reanalysis data, and independently from both comprehensive and idealized atmospheric model simulations. We suggest that the north and tropical Atlantic is important for projections of future climate change in Antarctica, and has the potential to affect the global thermohaline circulation and sea-level change.

  13. New constraints on the structure and dynamics of the East Antarctic Ice Sheet from the joint IPY/Ice Bridge ICECAP aerogeophysical project

    Science.gov (United States)

    Blankenship, D. D.; Young, D. A.; Siegert, M. J.; van Ommen, T. D.; Roberts, J. L.; Wright, A.; Warner, R. C.; Holt, J. W.; Young, N. W.; Le Meur, E.; Legresy, B.; Cavitte, M.; Icecap Team

    2010-12-01

    Ice within marine basins of East Antarctica, and their outlets, represent the ultimate limit on sea level change. The region of East Antarctica between the Ross Sea and Wilkes Land hosts a number of major basin, but has been poorly understood. Long range aerogeophysics from US, Australian and French stations, with significant British and IceBridge support, has, under the banner of the ICECAP project, greatly improved our knowledge of ice thickness, surface elevation, and crustal structure of the Wilkes and Aurora Subglacial Basins, as well as the Totten Glacier, Cook Ice Shelf, and Byrd Glacier. We will discuss the evolution of the Wilkes and Aurora Subglacial Basins, new constraints on the geometry of the major outlet glaciers, as well as our results from surface elevation change measurements over dynamic regions of the ice sheet. We will discuss the implications of our data for the presence of mid Pleistocene ice in central East Antarctica. Future directions for ICECAP will be discussed.

  14. How might the North American ice sheet influence the northwestern Eurasian climate?

    Science.gov (United States)

    Beghin, P.; Charbit, S.; Dumas, C.; Kageyama, M.; Ritz, C.

    2015-10-01

    It is now widely acknowledged that past Northern Hemisphere ice sheets covering Canada and northern Europe at the Last Glacial Maximum (LGM) exerted a strong influence on climate by causing changes in atmospheric and oceanic circulations. In turn, these changes may have impacted the development of the ice sheets themselves through a combination of different feedback mechanisms. The present study is designed to investigate the potential impact of the North American ice sheet on the surface mass balance (SMB) of the Eurasian ice sheet driven by simulated changes in the past glacial atmospheric circulation. Using the LMDZ5 atmospheric circulation model, we carried out 12 experiments under constant LGM conditions for insolation, greenhouse gases and ocean. In these experiments, the Eurasian ice sheet is removed. The 12 experiments differ in the North American ice-sheet topography, ranging from a white and flat (present-day topography) ice sheet to a full-size LGM ice sheet. This experimental design allows the albedo and the topographic impacts of the North American ice sheet onto the climate to be disentangled. The results are compared to our baseline experiment where both the North American and the Eurasian ice sheets have been removed. In summer, the sole albedo effect of the American ice sheet modifies the pattern of planetary waves with respect to the no-ice-sheet case, resulting in a cooling of the northwestern Eurasian region. By contrast, the atmospheric circulation changes induced by the topography of the North American ice sheet lead to a strong decrease of this cooling. In winter, the Scandinavian and the Barents-Kara regions respond differently to the American ice-sheet albedo effect: in response to atmospheric circulation changes, Scandinavia becomes warmer and total precipitation is more abundant, whereas the Barents-Kara area becomes cooler with a decrease of convective processes, causing a decrease of total precipitation. The gradual increase of the

  15. Mountain building and the initiation of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Solgaard, Anne Munck; Bonow, Johan; Langen, Peter Lang

    2013-01-01

    The effects of a new hypothesis about mountain building in Greenland on ice sheet initiation are investigated using an ice sheet model in combination with a climate model. According to this hypothesis, low-relief landscapes near sea level characterised Greenland in Miocene times until two phases...... superimposed by cold and warm excursions. The modelling results show that no ice initiates in the case of the low-lying and almost flat topography prior to the uplifts. However, the results demonstrate a significant ice sheet growth in response to the orographically induced increase in precipitation....... Under conditions that are colder than the present, the ice can overcome the Föhn effect, flow into the interior and form a coherent ice sheet. The results thus indicate that the Greenland Ice Sheet of today is a relict formed under colder conditions. The modelling results are consistent...

  16. A new approach to estimate ice dynamic rates using satellite observations in East Antarctica

    Directory of Open Access Journals (Sweden)

    B. Kallenberg

    2017-05-01

    Full Text Available Mass balance changes of the Antarctic ice sheet are of significant interest due to its sensitivity to climatic changes and its contribution to changes in global sea level. While regional climate models successfully estimate mass input due to snowfall, it remains difficult to estimate the amount of mass loss due to ice dynamic processes. It has often been assumed that changes in ice dynamic rates only need to be considered when assessing long-term ice sheet mass balance; however, 2 decades of satellite altimetry observations reveal that the Antarctic ice sheet changes unexpectedly and much more dynamically than previously expected. Despite available estimates on ice dynamic rates obtained from radar altimetry, information about ice sheet changes due to changes in the ice dynamics are still limited, especially in East Antarctica. Without understanding ice dynamic rates, it is not possible to properly assess changes in ice sheet mass balance and surface elevation or to develop ice sheet models. In this study we investigate the possibility of estimating ice sheet changes due to ice dynamic rates by removing modelled rates of surface mass balance, firn compaction, and bedrock uplift from satellite altimetry and gravity observations. With similar rates of ice discharge acquired from two different satellite missions we show that it is possible to obtain an approximation of the rate of change due to ice dynamics by combining altimetry and gravity observations. Thus, surface elevation changes due to surface mass balance, firn compaction, and ice dynamic rates can be modelled and correlated with observed elevation changes from satellite altimetry.

  17. Coastal-Change and Glaciological Map of the Northern Ross Ice Shelf Area, Antarctica: 1962-2004

    Science.gov (United States)

    Ferrigno, Jane G.; Foley, Kevin M.; Swithinbank, Charles; Williams, Richard S.

    2007-01-01

    Changes in the area and volume of polar ice sheets are intricately linked to changes in global climate, and the resulting changes in sea level could severely impact the densely populated coastal regions on Earth. Melting of the West Antarctic part alone of the Antarctic ice sheet would cause a sea-level rise of approximately 6 meters (m). The potential sea-level rise after melting of the entire Antarctic ice sheet is estimated to be 65 m (Lythe and others, 2001) to 73 m (Williams and Hall, 1993). The mass balance (the net volumetric gain or loss) of the Antarctic ice sheet is highly complex, responding differently to different conditions in each region (Vaughan, 2005). In a review paper, Rignot and Thomas (2002) concluded that the West Antarctic ice sheet is probably becoming thinner overall; although it is thickening in the west, it is thinning in the north. Thomas and others (2004), on the basis of aircraft and satellite laser altimetry surveys, believe the thinning may be accelerating. Joughin and Tulaczyk (2002), on the basis of analysis of ice-flow velocities derived from synthetic aperture radar, concluded that most of the Ross ice streams (ice streams on the east side of the Ross Ice Shelf) have a positive mass balance, whereas Rignot and others (2004) infer even larger negative mass balance for glaciers flowing northward into the Amundsen Sea, a trend suggested by Swithinbank and others (2003a,b; 2004). The mass balance of the East Antarctic ice sheet is thought by Davis and others (2005) to be strongly positive on the basis of the change in satellite altimetry measurements made between 1992 and 2003. Measurement of changes in area and mass balance of the Antarctic ice sheet was given a very high priority in recommendations by the Polar Research Board of the National Research Council (1986), in subsequent recommendations by the Scientific Committee on Antarctic Research (SCAR) (1989, 1993), and by the National Science Foundation?s (1990) Division of Polar

  18. Exploring the effect of East Antarctic ice mass loss on GIA-induced horizontal bedrock motions

    Science.gov (United States)

    Konfal, S. A.; Whitehouse, P. L.; Hermans, T.; van der Wal, W.; Wilson, T. J.; Bevis, M. G.; Kendrick, E. C.; Dalziel, I.; Smalley, R., Jr.

    2017-12-01

    Ice history inputs used in Antarctic models of GIA include major centers of ice mass loss in West Antarctica. In the Transantarctic Mountains (TAM) region spanning the boundary between East and West Antarctica, horizontal crustal motions derived from GPS observations from the Antarctic Network (ANET) component of the Polar Earth Observing Network (POLENET) are towards these West Antarctic ice mass centers, opposite to the pattern of radial crustal motion expected in an unloading scenario. We investigate alternative ice history and earth structure inputs to GIA models in an attempt to reproduce observed crustal motions in the region. The W12 ice history model is altered to create scenarios including ice unloading in the Wilkes Subglacial Basin based on available glaciological records. These altered ice history models, along with the unmodified W12 ice history model, are coupled with 60 radially varying (1D) earth model combinations, including approximations of optimal earth profiles identified in published GIA models. The resulting model-predicted motions utilizing both the modified and unmodified ice history models fit ANET GPS-derived crustal motions in the northern TAM region for a suite of earth model combinations. Further south, where the influence of simulated Wilkes unloading is weakest and West Antarctic unloading is strongest, observed and predicted motions do not agree. The influence of simulated Wilkes ice unloading coupled with laterally heterogeneous earth models is also investigated. The resulting model-predicted motions do not differ significantly between the original W12 and W12 with simulated Wilkes unloading ice histories.

  19. Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4

    Science.gov (United States)

    Naughten, Kaitlin A.; Meissner, Katrin J.; Galton-Fenzi, Benjamin K.; England, Matthew H.; Timmermann, Ralph; Hellmer, Hartmut H.; Hattermann, Tore; Debernard, Jens B.

    2018-04-01

    An increasing number of Southern Ocean models now include Antarctic ice-shelf cavities, and simulate thermodynamics at the ice-shelf/ocean interface. This adds another level of complexity to Southern Ocean simulations, as ice shelves interact directly with the ocean and indirectly with sea ice. Here, we present the first model intercomparison and evaluation of present-day ocean/sea-ice/ice-shelf interactions, as simulated by two models: a circumpolar Antarctic configuration of MetROMS (ROMS: Regional Ocean Modelling System coupled to CICE: Community Ice CodE) and the global model FESOM (Finite Element Sea-ice Ocean Model), where the latter is run at two different levels of horizontal resolution. From a circumpolar Antarctic perspective, we compare and evaluate simulated ice-shelf basal melting and sub-ice-shelf circulation, as well as sea-ice properties and Southern Ocean water mass characteristics as they influence the sub-ice-shelf processes. Despite their differing numerical methods, the two models produce broadly similar results and share similar biases in many cases. Both models reproduce many key features of observations but struggle to reproduce others, such as the high melt rates observed in the small warm-cavity ice shelves of the Amundsen and Bellingshausen seas. Several differences in model design show a particular influence on the simulations. For example, FESOM's greater topographic smoothing can alter the geometry of some ice-shelf cavities enough to affect their melt rates; this improves at higher resolution, since less smoothing is required. In the interior Southern Ocean, the vertical coordinate system affects the degree of water mass erosion due to spurious diapycnal mixing, with MetROMS' terrain-following coordinate leading to more erosion than FESOM's z coordinate. Finally, increased horizontal resolution in FESOM leads to higher basal melt rates for small ice shelves, through a combination of stronger circulation and small-scale intrusions of

  20. Uncertainty Quantification for Large-Scale Ice Sheet Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Ghattas, Omar [Univ. of Texas, Austin, TX (United States)

    2016-02-05

    This report summarizes our work to develop advanced forward and inverse solvers and uncertainty quantification capabilities for a nonlinear 3D full Stokes continental-scale ice sheet flow model. The components include: (1) forward solver: a new state-of-the-art parallel adaptive scalable high-order-accurate mass-conservative Newton-based 3D nonlinear full Stokes ice sheet flow simulator; (2) inverse solver: a new adjoint-based inexact Newton method for solution of deterministic inverse problems governed by the above 3D nonlinear full Stokes ice flow model; and (3) uncertainty quantification: a novel Hessian-based Bayesian method for quantifying uncertainties in the inverse ice sheet flow solution and propagating them forward into predictions of quantities of interest such as ice mass flux to the ocean.

  1. Surface elevation changes of the greenland ice sheet - results from ESA'S ice sheet CCI

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna; Khvorostovky, Kirill; Meister, Rakia

    2013-01-01

    In order to ensure long-term climate data records for the Greenland Ice Sheet (GIS), ESA have launched the Climate Change Initiative (CCI). This work presents the preliminary steps towards the Ice Sheet CCI's surface elevation change (SEC) derivation using radar altimeter data. In order to find...... the most optimal method, a Round Robin exercise was conducted in which the scientific community was asked to provide their best SEC estimate over the Jakobshavn Isbr drainage basin. The participants used both repeat-track (RT), overlapping footprints, and the cross-over (XO) methods, and both ICESat laser...... and Envisat radar altimeter data were used. Based on this and feedback sheets describing their methods we found that a combination of the RT and XO techniques yielded the best results. In the following, the obtained results will be presented and discussed....

  2. Fun at Antarctic grounding lines: Ice-shelf channels and sediment transport

    Science.gov (United States)

    Drews, Reinhard; Mayer, Christoph; Eisen, Olaf; Helm, Veit; Ehlers, Todd A.; Pattyn, Frank; Berger, Sophie; Favier, Lionel; Hewitt, Ian H.; Ng, Felix; Fürst, Johannes J.; Gillet-Chaulet, Fabien; Bergeot, Nicolas; Matsuoka, Kenichi

    2017-04-01

    Meltwater beneath the polar ice sheets drains, in part, through subglacial conduits. Landforms created by such drainages are abundant in areas formerly covered by ice sheets during the last glacial maximum. However, observations of subglacial conduit dynamics under a contemporary ice sheet are lacking. We present results from ice-penetrating radar to infer the existence of subglacial conduits upstream of the grounding line of Roi Baudouin Ice Shelf, Antarctica. The conduits are aligned with ice-shelf channels, and underlain by esker ridges formed from sediment deposition due to reduced water outflow speed near the grounding line. In turn, the eskers modify local ice flow to initiate the bottom topography of the ice-shelf channels, and create small surface ridges extending onto the shelf. Relict features on the shelf are interpreted to indicate a history of these interactions and variability of past subglacial drainages. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation, and ice-shelf stability. To investigate the role of sediment transport beneath ice sheets further, we model the sheet-shelf system of the Ekstömisen catchment, Antarctica. A 3D finite element model (Elmer/ICE) is used to solve the transients full Stokes equation for isotropic, isothermal ice with a dynamic grounding line. We initialize the model with surface topography from the TanDEM-X satellites and by inverting simultaneously for ice viscosity and basal drag using present-day surface velocities. Results produce a flow field which is consitent with sattelite and on-site observations. Solving the age-depth relationship allows comparison with radar isochrones from airborne data, and gives information about the atmospheric/dynamic history of this sector. The flow field will eventually be used to identify potential sediment sources and sinks which we compare with more than 400 km of

  3. Glacial Cycles and ice-sheet modelling

    NARCIS (Netherlands)

    Oerlemans, J.

    1982-01-01

    An attempt is made to simulate the Pleistocene glacial cycles with a numerical model of the Northern Hemisphere ice sheets. This model treats the vertically-integrated ice flow along a meridian, including computation of bedrock adjustment and temperature distribution in the ice. Basal melt water is

  4. Greenland Radar Ice Sheet Thickness Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — Two 150-MHz coherent radar depth sounders were developed and flown over the Greenland ice sheet to obtain ice thickness measurements in support of PARCA...

  5. Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge.

    Science.gov (United States)

    Brierley, Andrew S; Fernandes, Paul G; Brandon, Mark A; Armstrong, Frederick; Millard, Nicholas W; McPhail, Steven D; Stevenson, Peter; Pebody, Miles; Perrett, James; Squires, Mark; Bone, Douglas G; Griffiths, Gwyn

    2002-03-08

    We surveyed Antarctic krill (Euphausia superba) under sea ice using the autonomous underwater vehicle Autosub-2. Krill were concentrated within a band under ice between 1 and 13 kilometers south of the ice edge. Within this band, krill densities were fivefold greater than that of open water. The under-ice environment has long been considered an important habitat for krill, but sampling difficulties have previously prevented direct observations under ice over the scale necessary for robust krill density estimation. Autosub-2 enabled us to make continuous high-resolution measurements of krill density under ice reaching 27 kilometers beyond the ice edge.

  6. Balance velocities of the Greenland ice sheet

    DEFF Research Database (Denmark)

    Joughin, I.; Fahnestock, M.; Ekholm, Simon

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetery data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail......, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning....

  7. Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation.

    Science.gov (United States)

    Muschitiello, Francesco; Pausata, Francesco S R; Lea, James M; Mair, Douglas W F; Wohlfarth, Barbara

    2017-10-24

    Volcanic eruptions can impact the mass balance of ice sheets through changes in climate and the radiative properties of the ice. Yet, empirical evidence highlighting the sensitivity of ancient ice sheets to volcanism is scarce. Here we present an exceptionally well-dated annual glacial varve chronology recording the melting history of the Fennoscandian Ice Sheet at the end of the last deglaciation (∼13,200-12,000 years ago). Our data indicate that abrupt ice melting events coincide with volcanogenic aerosol emissions recorded in Greenland ice cores. We suggest that enhanced ice sheet runoff is primarily associated with albedo effects due to deposition of ash sourced from high-latitude volcanic eruptions. Climate and snowpack mass-balance simulations show evidence for enhanced ice sheet runoff under volcanically forced conditions despite atmospheric cooling. The sensitivity of past ice sheets to volcanic ashfall highlights the need for an accurate coupling between atmosphere and ice sheet components in climate models.

  8. Insignificant change in Antarctic snowmelt volume since 1979

    NARCIS (Netherlands)

    Kuipers Munneke, P.; Picard, G.; van den Broeke, M.R.; Lenaerts, J.T.M.; van Meijgaard, E.

    2012-01-01

    Surface snowmelt is widespread in coastal Antarctica. Satellite-based microwave sensors have been observing melt area and duration for over three decades. However, these observations do not reveal the total volume of meltwater produced on the ice sheet. Here we present an Antarctic melt volume

  9. Dynamics of the ice mass in Antarctica in the time of warming

    Directory of Open Access Journals (Sweden)

    V. M. Kotlyakov

    2017-01-01

    Full Text Available The modern age of global warming affect the general state of the Antarctic ice sheet and its mass balance. Studies of the Southern polar region of the Earth during the International Geophysical Year  (1957–1958 called the assumption of growth in the modern ice mass in East Antarctica. However, with the development of new methods, this conclusion has been questioned. At the turn of the century the study of global processes Earth started to use the satellite radar or laser altimetry and satellite gravimetry, which allows determining change of different masses on the Earth, including ice bodies. From the beginning of the XXI century, these methods have been used to calculate the continental ice balance. In our study, we analyze different data of recent years, supporting the earlier conclusion on continued growth of the ice mass in East Antarctica. How‑ ever, in West Antarctica and the Antarctic Peninsula, on the contrary, there is increased loss of ice, leveling the increased income of ice mass of in the Central Antarctica. So all in all in the modern era of global warm‑ ing, the ice mass in Antarctica appears to be decreasing despite some growth of the East Antarctic ice sheet. Fluctuations of land ice mass reflect in the sea level variations, but in comparison with the scale of the Ant‑ arctic ice sheet its contribution to sea‑level rise is not so significant. The main reason for this is that the mass accumulation in East Antarctica with significant probability prevails over the ice outflow.

  10. Continental Ice Sheets and the Planetary Radiation Budget

    NARCIS (Netherlands)

    Oerlemans, J.

    1980-01-01

    The interaction between continental ice sheets and the planetary radiation budget is potentially important in climate-sensitivity studies. A simple ice-sheet model incorporated in an energybalance climate model provides a tool for studying this interaction in a quantitative way. Experiments in which

  11. Changes of deep Pacific overturning circulation and carbonate chemistry during middle Miocene East Antarctic ice sheet expansion

    Science.gov (United States)

    Ma, Xiaolin; Tian, Jun; Ma, Wentao; Li, Ke; Yu, Jimin

    2018-02-01

    East Antarctic ice sheet expansion (EAIE) at ∼13.9 Ma in the middle Miocene represents a major climatic event during the long-term Cenozoic cooling, but ocean circulation and carbon cycle changes during this event remain unclear. Here, we present new fish teeth isotope (εNd) and benthic foraminiferal B/Ca records from the South China Sea (SCS), newly integrated meridional Pacific benthic foraminiferal δ18O and δ13C records and simulated results from a biogeochemical box model to explore the responses of deep Pacific Ocean circulation and carbon cycle across EAIE. The εNd and meridional benthic δ13C records reveal a more isolated Pacific Deep Water (PDW) and a sluggish Pacific meridional overturning circulation during the post-EAIE with respect to the pre-EAIE owing to weakened southern-sourced deep water formation. The deep-water [CO23-] and calcium carbonate mass accumulation rate in the SCS display markedly similar increases followed by recoveries to the pre-EAIE level during EAIE, which were probably caused by a shelf-basin shift of CaCO3 deposition and strengthened weathering due to a sea level fall within EAIE. The model results show that the ∼1‰ positive δ13C excursion during EAIE could be attributed to increased weathering of high-δ13C shelf carbonates and a terrestrial carbon reservoir expansion. The drawdown of atmospheric CO2 over the middle Miocene were probably caused by combined effects of increased shelf carbonate weathering, expanded land biosphere carbon storage and a sluggish deep Pacific meridional overturning circulation.

  12. Antarctic contribution to meltwater pulse 1A from reduced Southern Ocean overturning.

    Science.gov (United States)

    Golledge, N R; Menviel, L; Carter, L; Fogwill, C J; England, M H; Cortese, G; Levy, R H

    2014-09-29

    During the last glacial termination, the upwelling strength of the southern polar limb of the Atlantic Meridional Overturning Circulation varied, changing the ventilation and stratification of the high-latitude Southern Ocean. During the same period, at least two phases of abrupt global sea-level rise--meltwater pulses--took place. Although the timing and magnitude of these events have become better constrained, a causal link between ocean stratification, the meltwater pulses and accelerated ice loss from Antarctica has not been proven. Here we simulate Antarctic ice sheet evolution over the last 25 kyr using a data-constrained ice-sheet model forced by changes in Southern Ocean temperature from an Earth system model. Results reveal several episodes of accelerated ice-sheet recession, the largest being coincident with meltwater pulse 1A. This resulted from reduced Southern Ocean overturning following Heinrich Event 1, when warmer subsurface water thermally eroded grounded marine-based ice and instigated a positive feedback that further accelerated ice-sheet retreat.

  13. Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release

    Science.gov (United States)

    van As, Dirk; Mikkelsen, Andreas Bech; Holtegaard Nielsen, Morten; Box, Jason E.; Claesson Liljedahl, Lillemor; Lindbäck, Katrin; Pitcher, Lincoln; Hasholt, Bent

    2017-06-01

    Concurrent ice sheet surface runoff and proglacial discharge monitoring are essential for understanding Greenland ice sheet meltwater release. We use an updated, well-constrained river discharge time series from the Watson River in southwest Greenland, with an accurate, observation-based ice sheet surface mass balance model of the ˜ 12 000 km2 ice sheet area feeding the river. For the 2006-2015 decade, we find a large range of a factor of 3 in interannual variability in discharge. The amount of discharge is amplified ˜ 56 % by the ice sheet's hypsometry, i.e., area increase with elevation. A good match between river discharge and ice sheet surface meltwater production is found after introducing elevation-dependent transit delays that moderate diurnal variability in meltwater release by a factor of 10-20. The routing lag time increases with ice sheet elevation and attains values in excess of 1 week for the upper reaches of the runoff area at ˜ 1800 m above sea level. These multi-day routing delays ensure that the highest proglacial discharge levels and thus overbank flooding events are more likely to occur after multi-day melt episodes. Finally, for the Watson River ice sheet catchment, we find no evidence of meltwater storage in or release from the en- and subglacial environments in quantities exceeding our methodological uncertainty, based on the good match between ice sheet runoff and proglacial discharge.

  14. Greenland Ice Sheet Surface Temperature, Melt, and Mass Loss: 2000-2006

    Science.gov (United States)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Luthcke, Scott B.; DiGirolamo, Nocolo

    2007-01-01

    Extensive melt on the Greenland Ice Sheet has been documented by a variety of ground and satellite measurements in recent years. If the well-documented warming continues in the Arctic, melting of the Greenland Ice Sheet will likely accelerate, contributing to sea-level rise. Modeling studies indicate that an annual or summer temperature rise of 1 C on the ice sheet will increase melt by 20-50% therefore, surface temperature is one of the most important ice-sheet parameters to study for analysis of changes in the mass balance of the ice-sheet. The Greenland Ice Sheet contains enough water to produce a rise in eustatic sea level of up to 7.0 m if the ice were to melt completely. However, even small changes (centimeters) in sea level would cause important economic and societal consequences in the world's major coastal cities thus it is extremely important to monitor changes in the ice-sheet surface temperature and to ultimately quantify these changes in terms of amount of sea-level rise. We have compiled a high-resolution, daily time series of surface temperature of the Greenland Ice Sheet, using the I-km resolution, clear-sky land-surface temperature (LST) standard product from the Moderate-Resolution Imaging Spectroradiometer (MODIS), from 2000 - 2006. We also use Gravity Recovery and Climate Experiment (GRACE) data, averaged over 10-day periods, to measure change in mass of the ice sheet as it melt and snow accumulates. Surface temperature can be used to determine frequency of surface melt, timing of the start and the end of the melt season, and duration of melt. In conjunction with GRACE data, it can also be used to analyze timing of ice-sheet mass loss and gain.

  15. Meltwater storage in low-density near-surface bare ice in the Greenland ice sheet ablation zone

    Science.gov (United States)

    Cooper, Matthew G.; Smith, Laurence C.; Rennermalm, Asa K.; Miège, Clément; Pitcher, Lincoln H.; Ryan, Jonathan C.; Yang, Kang; Cooley, Sarah W.

    2018-03-01

    We document the density and hydrologic properties of bare, ablating ice in a mid-elevation (1215 m a.s.l.) supraglacial internally drained catchment in the Kangerlussuaq sector of the western Greenland ice sheet. We find low-density (0.43-0.91 g cm-3, μ = 0.69 g cm-3) ice to at least 1.1 m depth below the ice sheet surface. This near-surface, low-density ice consists of alternating layers of water-saturated, porous ice and clear solid ice lenses, overlain by a thin (sheet ablation zone surface. A conservative estimate for the ˜ 63 km2 supraglacial catchment yields 0.009-0.012 km3 of liquid meltwater storage in near-surface, porous ice. Further work is required to determine if these findings are representative of broader areas of the Greenland ice sheet ablation zone, and to assess the implications for sub-seasonal mass balance processes, surface lowering observations from airborne and satellite altimetry, and supraglacial runoff processes.

  16. Design of the MISMIP+, ISOMIP+, and MISOMIP ice-sheet, ocean, and coupled ice sheet-ocean intercomparison projects

    Science.gov (United States)

    Asay-Davis, Xylar; Cornford, Stephen; Martin, Daniel; Gudmundsson, Hilmar; Holland, David; Holland, Denise

    2015-04-01

    The MISMIP and MISMIP3D marine ice sheet model intercomparison exercises have become popular benchmarks, and several modeling groups have used them to show how their models compare to both analytical results and other models. Similarly, the ISOMIP (Ice Shelf-Ocean Model Intercomparison Project) experiments have acted as a proving ground for ocean models with sub-ice-shelf cavities.As coupled ice sheet-ocean models become available, an updated set of benchmark experiments is needed. To this end, we propose sequel experiments, MISMIP+ and ISOMIP+, with an end goal of coupling the two in a third intercomparison exercise, MISOMIP (the Marine Ice Sheet-Ocean Model Intercomparison Project). Like MISMIP3D, the MISMIP+ experiments take place in an idealized, three-dimensional setting and compare full 3D (Stokes) and reduced, hydrostatic models. Unlike the earlier exercises, the primary focus will be the response of models to sub-shelf melting. The chosen configuration features an ice shelf that experiences substantial lateral shear and buttresses the upstream ice, and so is well suited to melting experiments. Differences between the steady states of each model are minor compared to the response to melt-rate perturbations, reflecting typical real-world applications where parameters are chosen so that the initial states of all models tend to match observations. The three ISOMIP+ experiments have been designed to to make use of the same bedrock topography as MISMIP+ and using ice-shelf geometries from MISMIP+ results produced by the BISICLES ice-sheet model. The first two experiments use static ice-shelf geometries to simulate the evolution of ocean dynamics and resulting melt rates to a quasi-steady state when far-field forcing changes in either from cold to warm or from warm to cold states. The third experiment prescribes 200 years of dynamic ice-shelf geometry (with both retreating and advancing ice) based on a BISICLES simulation along with similar flips between warm and

  17. Modeling the Fracture of Ice Sheets on Parallel Computers

    Energy Technology Data Exchange (ETDEWEB)

    Waisman, Haim [Columbia Univ., New York, NY (United States); Tuminaro, Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2013-10-10

    The objective of this project was to investigate the complex fracture of ice and understand its role within larger ice sheet simulations and global climate change. This objective was achieved by developing novel physics based models for ice, novel numerical tools to enable the modeling of the physics and by collaboration with the ice community experts. At the present time, ice fracture is not explicitly considered within ice sheet models due in part to large computational costs associated with the accurate modeling of this complex phenomena. However, fracture not only plays an extremely important role in regional behavior but also influences ice dynamics over much larger zones in ways that are currently not well understood. To this end, our research findings through this project offers significant advancement to the field and closes a large gap of knowledge in understanding and modeling the fracture of ice sheets in the polar regions. Thus, we believe that our objective has been achieved and our research accomplishments are significant. This is corroborated through a set of published papers, posters and presentations at technical conferences in the field. In particular significant progress has been made in the mechanics of ice, fracture of ice sheets and ice shelves in polar regions and sophisticated numerical methods that enable the solution of the physics in an efficient way.

  18. What's Cooler Than Being Cool? Icefin: Robotic Exploration Beneath Antarctic Ice Shelves

    Science.gov (United States)

    Lawrence, J.; Schmidt, B. E.; Meister, M. R.; Glass, J. B.; Bowman, J. S.; Stockton, A. M.; Dichek, D.; Hurwitz, B.; Ramey, C.; Spears, A.; Walker, C. C.

    2017-12-01

    The 2017-18 Antarctic field season marks the first of three under the RISEUP project (Ross Ice Shelf & Europa Underwater Probe, NASA PSTAR program grant NNX16AL07G, PI B. E. Schmidt). RISEUP expands our efforts to understand the physical processes governing ice-ocean interactions from beneath the McMurdo Ice Shelf (MIS) to the Ross Ice Shelf (RIS), utilizing the modular autonomous or remotely operable submersible vehicle (AUV/ROV) Icefin. The remote, aphotic regions below Antarctic shelves present a unique opportunity- they are both poorly understood terrestrial environments and analogs for similar systems hypothesized to be present on other bodies in our solar system, such as Europa and Enceladus. By developing new robotic technologies to access and explore ice shelf cavities we are advancing our understanding of how temperature, pressure, and salinity influence the ice-ocean interface, the limits of habitable environments on Earth, and what biological processes and adaptations enable the life discovered by the RISP and WISSARD programs during initial exploration beneath the RIS. These investigations further our understanding of ocean world habitability and support planned and proposed planetary missions (e.g. Europa Clipper, Europa Lander) via improved constraint of marine ice accretion processes, organic entrainment, and interface habitability. Custom built at Georgia Tech and first deployed during the 2014/15 Antarctic season, Icefin is 3.5 m, 125 kg modular vehicle that now carries a full suite of oceanographic sensors (including conductivity, temperature, depth, dissolved O2, dissolved organic matter, turbidity, pH, eH, and sonar) that can be deployed through boreholes as small as 25 cm in diameter. Here we present continued analysis of basal ice and oceanographic observations in the McMurdo Sound region from 2012-2015 with, pending anticipated field work, comparisons to preliminary data from the 2017/18 field season beneath both the McMurdo and Ross Ice

  19. The Svalbard-Barents Sea ice-sheet - Historical, current and future perspectives

    Science.gov (United States)

    Ingólfsson, Ólafur; Landvik, Jon Y.

    2013-03-01

    The history of research on the Late Quaternary Svalbard-Barents Sea ice sheet mirrors the developments of ideas and the shifts of paradigms in glacial theory over the past 150 years. Since the onset of scientific research there in the early 19th Century, Svalbard has been a natural laboratory where ideas and concepts have been tested, and played an important (but rarely acknowledged) role in the break-through of the Ice Age theory in the 1870's. The history of how the scientific perception of the Svalbard-Barents sea ice sheet developed in the mid-20th Century also tells a story of how a combination of fairly scattered and often contradictory observational data, and through both deductive and inductive reasoning, could outline a major ice sheet that had left but few tangible fingerprints. Since the 1980's, with increased terrestrial stratigraphical data, ever more marine geological evidence and better chronological control of glacial events, our perception of the Svalbard-Barents Sea ice sheet has changed. The first reconstructions depicted it as a static, concentric, single-domed ice sheet, with ice flowing from an ice divide over the central northern Barents Sea that expanded and declined in response to large-scale, Late Quaternary climate fluctuations, and which was more or less in tune with other major Northern Hemisphere ice sheets. We now increasingly perceive it as a very dynamic, multidomed ice sheet, controlled by climate fluctuations, relative sea-level change, as well as subglacial topography, substrate properties and basal temperature. In this respect, the Svalbard-Barents Sea ice sheet will increasingly hold the key for understanding the dynamics and processes of how marine-based ice sheets build-up and decay.

  20. Current state and future perspectives on coupled ice-sheet - sea-level modelling

    Science.gov (United States)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S. W.

    2017-08-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the related stability of the grounding line position. Studies using fully coupled ice-sheet - sea-level models have shown that accounting for gravitationally self-consistent sea-level change will act to slow down the retreat and advance of marine ice-sheet grounding lines. Moreover, by simultaneously solving the 'sea-level equation' and modelling ice-sheet flow, coupled models provide a global field of relative sea-level change that is consistent with dynamic changes in ice-sheet extent. In this paper we present an overview of recent advances, possible caveats, methodologies and challenges involved in coupled ice-sheet - sea-level modelling. We conclude by presenting a first-order comparison between a suite of relative sea-level data and output from a coupled ice-sheet - sea-level model.

  1. Correlation of Ice-Rafted Detritus in South Atlantic Sediments with Climate Proxies in Polar Ice over the Last Glacial Period

    Directory of Open Access Journals (Sweden)

    Sharon L. Kanfoush

    2013-03-01

    Full Text Available Previous study identified 6–7 millennial-scale episodes of South Atlantic ice-rafted sediment deposition (SA events during the glaciation. Questions remain, however, regarding their origin, significance for sea-ice and/or Antarctic ice-sheet dynamics, and relationship to climate. Here I correlate sediment core (TTN057–21 SA events to Greenland and Antarctic ice using two independent methods, stable isotopes and geomagnetic paleointensity, placing SA events in the context of polar climate change in both hemispheres. Marine isotopic stage (MIS 3 SA events generally coincided with Greenland interstadials and with cooling following Antarctic warm events (A1-A4. This anti-phase behavior is best illustrated when SA0 coincided with both the Antarctic Cold Reversal and Bolling-Allerod warming in Greenland. Moreover, SA events coincide with sea-level rises during the deglaciation (mwp1A and MIS 3 (30.4, 38.3, 43.7, 51.5 ka, implying unpinning of grounded Weddell Sea region ice masses discharged debris-laden bergs that had a chilling effect on South Atlantic surface temperatures.

  2. Clouds enhance Greenland ice sheet mass loss

    Science.gov (United States)

    Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.

    2015-04-01

    Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.

  3. Reconciling records of ice streaming and ice margin retreat to produce a palaeogeographic reconstruction of the deglaciation of the Laurentide Ice Sheet

    Science.gov (United States)

    Margold, Martin; Stokes, Chris R.; Clark, Chris D.

    2018-06-01

    This paper reconstructs the deglaciation of the Laurentide Ice Sheet (LIS; including the Innuitian Ice Sheet) from the Last Glacial Maximum (LGM), with a particular focus on the spatial and temporal variations in ice streaming and the associated changes in flow patterns and ice divides. We build on a recent inventory of Laurentide ice streams and use an existing ice margin chronology to produce the first detailed transient reconstruction of the ice stream drainage network in the LIS, which we depict in a series of palaeogeographic maps. Results show that the drainage network at the LGM was similar to modern-day Antarctica. The majority of the ice streams were marine terminating and topographically-controlled and many of these continued to function late into the deglaciation, until the ice sheet lost its marine margin. Ice streams with a terrestrial ice margin in the west and south were more transient and ice flow directions changed with the build-up, peak-phase and collapse of the Cordilleran-Laurentide ice saddle. The south-eastern marine margin in Atlantic Canada started to retreat relatively early and some of the ice streams in this region switched off at or shortly after the LGM. In contrast, the ice streams draining towards the north-western and north-eastern marine margins in the Beaufort Sea and in Baffin Bay appear to have remained stable throughout most of the Late Glacial, and some of them continued to function until after the Younger Dryas (YD). The YD influenced the dynamics of the deglaciation, but there remains uncertainty about the response of the ice sheet in several sectors. We tentatively ascribe the switching-on of some major ice streams during this period (e.g. M'Clintock Channel Ice Stream at the north-west margin), but for other large ice streams whose timing partially overlaps with the YD, the drivers are less clear and ice-dynamical processes, rather than effects of climate and surface mass balance are viewed as more likely drivers. Retreat

  4. Hypsometric amplification and routing moderation of Greenland ice sheet meltwater release

    Directory of Open Access Journals (Sweden)

    D. van As

    2017-06-01

    Full Text Available Concurrent ice sheet surface runoff and proglacial discharge monitoring are essential for understanding Greenland ice sheet meltwater release. We use an updated, well-constrained river discharge time series from the Watson River in southwest Greenland, with an accurate, observation-based ice sheet surface mass balance model of the  ∼  12 000 km2 ice sheet area feeding the river. For the 2006–2015 decade, we find a large range of a factor of 3 in interannual variability in discharge. The amount of discharge is amplified  ∼  56 % by the ice sheet's hypsometry, i.e., area increase with elevation. A good match between river discharge and ice sheet surface meltwater production is found after introducing elevation-dependent transit delays that moderate diurnal variability in meltwater release by a factor of 10–20. The routing lag time increases with ice sheet elevation and attains values in excess of 1 week for the upper reaches of the runoff area at  ∼  1800 m above sea level. These multi-day routing delays ensure that the highest proglacial discharge levels and thus overbank flooding events are more likely to occur after multi-day melt episodes. Finally, for the Watson River ice sheet catchment, we find no evidence of meltwater storage in or release from the en- and subglacial environments in quantities exceeding our methodological uncertainty, based on the good match between ice sheet runoff and proglacial discharge.

  5. Application of GRACE to the Evaluation of an Ice Flow Model of the Greenland Ice Sheet

    Science.gov (United States)

    Schlegel, N.; Wiese, D. N.; Watkins, M. M.; Larour, E. Y.; Box, J. E.; Fettweis, X.; van den Broeke, M. R.; Morlighem, M.; Boening, C.; Seroussi, H. L.

    2014-12-01

    Quantifying Greenland's future contribution to sea level rise is a challenging task and requires accurate estimates of ice flow sensitivity to climate change. Transient ice flow models are promising tools for estimating future ice sheet behavior. However, confidence in these types of future projections is low, especially because evaluation of model historical runs is so challenging due to the scarcity of continental-wide data for validation. For more than a decade, NASA's GRACE has continuously acquired time-variable measurements of the Earth's gravity field and has provided unprecedented surveillance of mass balance of the ice sheets, offering an opportunity for ice sheet model evaluation. Here, we take advantage of a new high-resolution (~300 km) monthly mascon solution for the purpose of mass balance comparison with an independent, historical ice flow model simulation using the Ice Sheet System Model (ISSM). The comparison highlights which regions of the ice sheet differ most from GRACE. Investigation of regional differences in trends and seasonal amplitudes between simulations forced with three different Regional Climate Model (RCM)-based estimates of surface mass balance (SMB) allows us to make conclusions about the relative contributions of various error sources in the model hindcast. This study constitutes the first regional comparison of GRACE data and an ice sheet model. Conclusions will aid in the improvement of RCM SMB estimates as well as ice sheet simulation estimates of present and future rates of sea level rise. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Program and President's and Director's Fund Program.

  6. Improving Climate Literacy Using The Ice Sheet System Model (ISSM): A Prototype Virtual Ice Sheet Laboratory For Use In K-12 Classrooms

    Science.gov (United States)

    Halkides, D. J.; Larour, E. Y.; Perez, G.; Petrie, K.; Nguyen, L.

    2013-12-01

    Statistics indicate that most Americans learn what they will know about science within the confines of our public K-12 education system and the media. Next Generation Science Standards (NGSS) aim to remedy science illiteracy and provide guidelines to exceed the Common Core State Standards that most U.S. state governments have adopted, by integrating disciplinary cores with crosscutting ideas and real life practices. In this vein, we present a prototype ';Virtual Ice Sheet Laboratory' (I-Lab), geared to K-12 students, educators and interested members of the general public. I-Lab will allow users to perform experiments using a state-of-the-art dynamical ice sheet model and provide detailed downloadable lesson plans, which incorporate this model and are consistent with NGSS Physical Science criteria for different grade bands (K-2, 3-5, 6-8, and 9-12). The ultimate goal of this website is to improve public climate science literacy, especially in regards to the crucial role of the polar ice sheets in Earth's climate and sea level. The model used will be the Ice Sheet System Model (ISSM), an ice flow model developed at NASA's Jet Propulsion Laboratory and UC Irvine, that simulates the near-term evolution of polar ice sheets (Greenland and Antarctica) and includes high spatial resolution capabilities and data assimilation to produce realistic simulations of ice sheet dynamics at the continental scale. Open sourced since 2011, ISSM is used in cutting edge cryosphere research around the globe. Thru I-Lab, students will be able to access ISSM using a simple, online graphical interface that can be launched from a web browser on a computer, tablet or smart phone. The interface will allow users to select different climate conditions and watch how the polar ice sheets evolve in time under those conditions. Lesson contents will include links to background material and activities that teach observation recording, concept articulation, hypothesis formulation and testing, and

  7. Bare ice fields developed in the inland part of the Antarctic ice sheet

    Directory of Open Access Journals (Sweden)

    Shuhei Takahashi

    1997-03-01

    Full Text Available Observations of a bare ice field were carried out at Seal Rock in the Sor Rondane area, East Antarctica. A large sublimation rate, 200 to 280mm/a, was observed on the bare ice field. Air temperature on the bare ice was about 1℃ higher than that on the snow surface. The large sublimation rate was explained from the low albedo of bare ice; its value was roughly estimated from heat budget considerations. The bare ice fields were classified into 4 types according to origin.

  8. Greenland Ice Sheet: High-Elevation Balance and Peripheral Thinning.

    Science.gov (United States)

    Krabill; Abdalati; Frederick; Manizade; Martin; Sonntag; Swift; Thomas; Wright; Yungel

    2000-07-21

    Aircraft laser-altimeter surveys over northern Greenland in 1994 and 1999 have been coupled with previously reported data from southern Greenland to analyze the recent mass-balance of the Greenland Ice Sheet. Above 2000 meters elevation, the ice sheet is in balance on average but has some regions of local thickening or thinning. Thinning predominates at lower elevations, with rates exceeding 1 meter per year close to the coast. Interpolation of our results between flight lines indicates a net loss of about 51 cubic kilometers of ice per year from the entire ice sheet, sufficient to raise sea level by 0.13 millimeter per year-approximately 7% of the observed rise.

  9. Relative sea level in the Western Mediterranean basin: A regional test of the ICE-7G_NA (VM7) model and a constraint on late Holocene Antarctic deglaciation

    Science.gov (United States)

    Roy, Keven; Peltier, W. R.

    2018-03-01

    The Mediterranean Basin is a region of special interest in the study of past and present relative sea level evolution, given its location south of the ice sheets that covered large fractions of Northern Europe during the last glaciation, the large number of biological, geological and archaeological sea level indicators that have been retrieved from its coastal regions, as well as its high density of modern coastal infrastructure. Models of the Glacial Isostatic Adjustment (GIA) process provide reconstructions of past relative sea level evolution, and can be tested for validity against past sea level indicators from the region. It is demonstrated herein that the latest ICE-7G_NA (VM7) model of the GIA process, the North American component of which was refined using a full suite of geophysical observables, is able to reconcile the vast majority of uniformly analyzed relative sea level constraints available for the Western part of the Mediterranean basin, a region to which it was not tuned. We also revisit herein the previously published interpretations of relative sea level information obtained from Roman-era coastal Mediterranean "fish tanks", analyze the far-field influence of the rate of late Holocene Antarctic ice sheet melting history on the exceptionally detailed relative sea level history available from southern Tunisia, and extend the analysis to complementary constraints on the history of Antarctic ice-sheet melting available from islands in the equatorial Pacific Ocean. The analyses reported herein provide strong support for the global "exportability" of the ICE-7G_NA (VM7) model, a result that speaks directly to the ability of spherically symmetric models of the internal viscoelastic structure to explain globally distributed observations, while also identifying isolated regions of remaining misfit which will benefit from further study.

  10. The Rapid Ice Sheet Change Observatory (RISCO)

    Science.gov (United States)

    Morin, P.; Howat, I. M.; Ahn, Y.; Porter, C.; McFadden, E. M.

    2010-12-01

    The recent expansion of observational capacity from space has revealed dramatic, rapid changes in the Earth’s ice cover. These discoveries have fundamentally altered how scientists view ice-sheet change. Instead of just slow changes in snow accumulation and melting over centuries or millennia, important changes can occur in sudden events lasting only months, weeks, or even a single day. Our understanding of these short time- and space-scale processes, which hold important implications for future global sea level rise, has been impeded by the low temporal and spatial resolution, delayed sensor tasking, incomplete coverage, inaccessibility and/or high cost of data available to investigators. New cross-agency partnerships and data access policies provide the opportunity to dramatically improve the resolution of ice sheet observations by an order of magnitude, from timescales of months and distances of 10’s of meters, to days and meters or less. Advances in image processing technology also enable application of currently under-utilized datasets. The infrastructure for systematically gathering, processing, analyzing and distributing these data does not currently exist. Here we present the development of a multi-institutional, multi-platform observatory for rapid ice change with the ultimate objective of helping to elucidate the relevant timescales and processes of ice sheet dynamics and response to climate change. The Rapid Ice Sheet Observatory (RISCO) gathers observations of short time- and space-scale Cryosphere events and makes them easily accessible to investigators, media and general public. As opposed to existing data centers, which are structured to archive and distribute diverse types of raw data to end users with the specialized software and skills to analyze them, RISCO focuses on three types of geo-referenced raster (image) data products in a format immediately viewable with commonly available software. These three products are (1) sequences of images

  11. Basin-scale heterogeneity in Antarctic precipitation and its impact on surface mass variability

    Directory of Open Access Journals (Sweden)

    J. Fyke

    2017-11-01

    Full Text Available Annually averaged precipitation in the form of snow, the dominant term of the Antarctic Ice Sheet surface mass balance, displays large spatial and temporal variability. Here we present an analysis of spatial patterns of regional Antarctic precipitation variability and their impact on integrated Antarctic surface mass balance variability simulated as part of a preindustrial 1800-year global, fully coupled Community Earth System Model simulation. Correlation and composite analyses based on this output allow for a robust exploration of Antarctic precipitation variability. We identify statistically significant relationships between precipitation patterns across Antarctica that are corroborated by climate reanalyses, regional modeling and ice core records. These patterns are driven by variability in large-scale atmospheric moisture transport, which itself is characterized by decadal- to centennial-scale oscillations around the long-term mean. We suggest that this heterogeneity in Antarctic precipitation variability has a dampening effect on overall Antarctic surface mass balance variability, with implications for regulation of Antarctic-sourced sea level variability, detection of an emergent anthropogenic signal in Antarctic mass trends and identification of Antarctic mass loss accelerations.

  12. The response of grounded ice to ocean temperature forcing in a coupled ice sheet-ice shelf-ocean cavity model

    Science.gov (United States)

    Goldberg, D. N.; Little, C. M.; Sergienko, O. V.; Gnanadesikan, A.

    2010-12-01

    Ice shelves provide a pathway for the heat content of the ocean to influence continental ice sheets. Changes in the rate or location of basal melting can alter their geometry and effect changes in stress conditions at the grounding line, leading to a grounded ice response. Recent observations of ice streams and ice shelves in the Amundsen Sea sector of West Antarctica have been consistent with this story. On the other hand, ice dynamics in the grounding zone control flux into the shelf and thus ice shelf geometry, which has a strong influence on the circulation in the cavity beneath the shelf. Thus the coupling between the two systems, ocean and ice sheet-ice shelf, can be quite strong. We examine the response of the ice sheet-ice shelf-ocean cavity system to changes in ocean temperature using a recently developed coupled model. The coupled model consists a 3-D ocean model (GFDL's Generalized Ocean Layered Dynamics model, or GOLD) to a two-dimensional ice sheet-ice shelf model (Goldberg et al, 2009), and allows for changing cavity geometry and a migrating grounding line. Steady states of the coupled system are found even under considerable forcing. The ice shelf morphology and basal melt rate patterns of the steady states exhibit detailed structure, and furthermore seem to be unique and robust. The relationship between temperature forcing and area-averaged melt rate is influenced by the response of ice shelf morphology to thermal forcing, and is found to be sublinear in the range of forcing considered. However, results suggest that area-averaged melt rate is not the best predictor of overall system response, as grounding line stability depends on local aspects of the basal melt field. Goldberg, D N, D M Holland and C G Schoof, 2009. Grounding line movement and ice shelf buttressing in marine ice sheets, Journal of Geophysical Research-Earth Surfaces, 114, F04026.

  13. Final deglaciation of the Scandinavian Ice Sheet and implications for the Holocene global sea-level budget

    Science.gov (United States)

    Cuzzone, Joshua K.; Clark, Peter U.; Carlson, Anders E.; Ullman, David J.; Rinterknecht, Vincent R.; Milne, Glenn A.; Lunkka, Juha-Pekka; Wohlfarth, Barbara; Marcott, Shaun A.; Caffee, Marc

    2016-08-01

    The last deglaciation of the Scandinavian Ice Sheet (SIS) from ∼ 21, 000 to 13,000 yr ago is well-constrained by several hundred 10Be and 14C ages. The subsequent retreat history, however, is established primarily from minimum-limiting 14C ages and incomplete Baltic-Sea varve records, leaving a substantial fraction of final SIS retreat history poorly constrained. Here we develop a high-resolution chronology for the final deglaciation of the SIS based on 79 10Be cosmogenic exposure dates sampled along three transects spanning southern to northern Sweden and Finland. Combining this new chronology with existing 10Be ages on deglaciation since the Last Glacial Maximum shows that rates of SIS margin retreat were strongly influenced by deglacial millennial-scale climate variability and its effect on surface mass balance, with regional modulation of retreat associated with dynamical controls. Ice-volume estimates constrained by our new chronology suggest that the SIS contributed ∼ 8 m sea-level equivalent to global sea-level rise between ∼14.5 ka and 10 ka. Final deglaciation was largely complete by ∼10.5 ka, with highest rates of sea-level rise occurring during the Bølling-Allerød, a 50% decrease during the Younger Dryas, and a rapid increase during the early Holocene. Combining our SIS volume estimates with estimated contributions from other remaining Northern Hemisphere ice sheets suggests that the Antarctic Ice Sheet (AIS) contributed 14.4 ± 5.9 m to global sea-level rise since ∼13 ka. This new constraint supports those studies that indicate that an ice volume of 15 m or more of equivalent sea-level rise was lost from the AIS during the last deglaciation.

  14. Estimating the future ice sheet hydropower potential in Paakitsoq, Ilulissat, West Greenland

    DEFF Research Database (Denmark)

    Ahlstrøm, Andreas P.; Mottram, R.H.; Nielsen, C.

    2008-01-01

    sheet has emphasized the risk of sudden changes in catchment supply. In this study, we present a thorough investigation of hydropower feasibility at the Paakitsoq basin, near Ilulissat in West Greenland. The catchment is completely dominated by the Greenland ice sheet which provides large quantities...... of meltwater during the summer season. However, geometrical changes in the ice sheet, for example due to a retreat or an advance of the ice sheet margin, could change the hydrological catchment within the ice sheet. Such a change would have a devastating economical impact as a hydropower plant is a significant...... long-term investment for an Arctic community of modest population. Here we present a new bedrock and surface map of the Paakitsoq/Swiss Camp part of the Greenland ice sheet and a prediction of the future discharge up to 2080 AD using regional climate model output, dynamic ice sheet modelling...

  15. Empirical and theoretical evidence concerning the response of the earth's ice and snow cover to a global temperature increase

    Energy Technology Data Exchange (ETDEWEB)

    Hollin, J T; Barry, R G

    1979-01-01

    As a guide to the possible effects of a CO/sub 2/-induced warming on the cryosphere, we review the effects of three warm periods in the past, and our theoretical understanding of fluctuations in mountain glaciers, the Greenland and Antarctic ice sheets, ground ice, sea ice and seasonal snow cover. Between 1890 and 1940 A.D. the glaciated area in Switzerland was reduced by over 25%. In the Hypsithermal, at about 6000 BP, ground ice in Eurasia retreated northward by several hundred kilometers. In the interglacial Stage 5e, at about 120 000 BP, glocal sea-level rose by over 6 m. Fluctuations of mountain glaciers depend on mesoscale weather and on their mechanical response to it. Any melting of the Greenland ice sheet is likely to be slow in human terms. The West Antarctic ice sheet (its base below sea-level) is susceptible to an ungrounding, and such an event may have been the cause of the sea-level rise above. The East Antarctic ice sheet is susceptible to mechanical surges, which might be triggered by a warming at its margin. Both an ungrounding and a surge might occupy less than 100 yr, and are potentially the most important ice changes in human terms. Modeling studies suggest that a 5/sup 0/C warming would remove the Arctic pack ice in summer. and this may be the most significant effect for further climatic change.

  16. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    International Nuclear Information System (INIS)

    Jaquet, O.; Namar, R.; Jansson, P.

    2010-10-01

    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  17. Groundwater flow modelling under ice sheet conditions. Scoping calculations

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, O.; Namar, R. (In2Earth Modelling Ltd (Switzerland)); Jansson, P. (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2010-10-15

    The potential impact of long-term climate changes has to be evaluated with respect to repository performance and safety. In particular, glacial periods of advancing and retreating ice sheet and prolonged permafrost conditions are likely to occur over the repository site. The growth and decay of ice sheets and the associated distribution of permafrost will affect the groundwater flow field and its composition. As large changes may take place, the understanding of groundwater flow patterns in connection to glaciations is an important issue for the geological disposal at long term. During a glacial period, the performance of the repository could be weakened by some of the following conditions and associated processes: - Maximum pressure at repository depth (canister failure). - Maximum permafrost depth (canister failure, buffer function). - Concentration of groundwater oxygen (canister corrosion). - Groundwater salinity (buffer stability). - Glacially induced earthquakes (canister failure). Therefore, the GAP project aims at understanding key hydrogeological issues as well as answering specific questions: - Regional groundwater flow system under ice sheet conditions. - Flow and infiltration conditions at the ice sheet bed. - Penetration depth of glacial meltwater into the bedrock. - Water chemical composition at repository depth in presence of glacial effects. - Role of the taliks, located in front of the ice sheet, likely to act as potential discharge zones of deep groundwater flow. - Influence of permafrost distribution on the groundwater flow system in relation to build-up and thawing periods. - Consequences of glacially induced earthquakes on the groundwater flow system. Some answers will be provided by the field data and investigations; the integration of the information and the dynamic characterisation of the key processes will be obtained using numerical modelling. Since most of the data are not yet available, some scoping calculations are performed using the

  18. Balance Velocities of the Greenland Ice Sheet

    Science.gov (United States)

    Joughin, Ian; Fahnestock, Mark; Ekholm, Simon; Kwok, Ron

    1997-01-01

    We present a map of balance velocities for the Greenland ice sheet. The resolution of the underlying DEM, which was derived primarily from radar altimetry data, yields far greater detail than earlier balance velocity estimates for Greenland. The velocity contours reveal in striking detail the location of an ice stream in northeastern Greenland, which was only recently discovered using satellite imagery. Enhanced flow associated with all of the major outlets is clearly visible, although small errors in the source data result in less accurate estimates of the absolute flow speeds. Nevertheless, the balance map is useful for ice-sheet modelling, mass balance studies, and field planning.

  19. Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf

    NARCIS (Netherlands)

    Lenaerts, JTM; Lhermitte, S.L.M.; Drews, R.; Ligtenberg, SRM; Berger, S.; Helm, V.; Smeets, C.J.P.P.; van den Broeke, MR; van de Berg, W.J.; van Meijgaard, E; Eijkelboom, M.; Eisen, O.; Pattyn, F.

    2017-01-01

    Surface melt and subsequent firn air depletion can ultimately lead to disintegration of Antarctic ice shelves1, 2 causing grounded glaciers to accelerate3 and sea level to rise. In the Antarctic Peninsula, foehn winds enhance melting near the grounding line4, which in the recent past has led to the

  20. Links between CO2, glaciation and water flow: reconciling the Cenozoic history of the Antarctic Circumpolar Current

    International Nuclear Information System (INIS)

    Ladant, J.B.; Donnadieu, Y.; Dumas, C.

    2014-01-01

    The timing of the onset of the Antarctic Circumpolar Current (ACC) is a crucial event of the Cenozoic because of its cooling and isolating effect over Antarctica. It is intimately related to the glaciations occurring throughout the Cenozoic from the Eocene - Oligocene (EO) transition (∼ 34 Ma) to the middle Miocene glaciations (∼ 13.9 Ma). However, the exact timing of the onset remains debated, with evidence for a late Eocene setup contradicting other data pointing to an occurrence closer to the Oligocene - Miocene (OM) boundary. In this study, we show the potential impact of the Antarctic ice sheet on the initiation of a strong proto- ACC at the EO boundary. Our results reveal that the regional cooling effect of the ice sheet increases sea ice formation, which disrupts the meridional density gradient in the Southern Ocean and leads to the onset of a circumpolar current and its progressive strengthening. We also suggest that subsequent variations in atmospheric CO 2 , ice sheet volumes and tectonic reorganizations may have affected the ACC intensity after the Eocene - Oligocene transition. This allows us to build a hypothesis for the Cenozoic evolution of the Antarctic Circumpolar Current that may provide an explanation for the second initiation of the ACC at the Oligocene - Miocene boundary while reconciling evidence supporting both early Oligocene and early Miocene onset of the ACC. (authors)

  1. Organic compounds and suspended matter in the marine ice of the Eastern Antarctic

    International Nuclear Information System (INIS)

    Nemirovskaya, I.A.; Novigatsky, A.N.

    2005-01-01

    Data on the composition of organic compounds in Antarctic sea ice are virtually non-existent, as most works concentrate on the structure, physical composition and biological properties of the ice. Data is needed for the study of the global carbon cycle and the estimation of background values and anthropogenic compounds. Specific features of the hydrometeorological regime near Antarctica affect the structure of the ice cover and its properties. The transportation of large volumes of snow to the ocean results in the formation of a snow sludge layer which gradually accumulates on the sea surface and freezes into young slush ice. The irregular distribution of snow at the ice surface and seawater infiltration results in the formation of ice with a specific crystalline structure and physiochemical properties. This paper discussed the dissolved and suspended lipids and hydrocarbons, as well as suspended matter (SM) concentrations in snow, sea ice and sub-ice water in coastal zones of the East Antarctic. The data was obtained during the Russian Antarctic Expedition in 2003. Variations in the concentration and distribution of the various substances suggest that they are related to ice forming conditions and to the processes that occur when ice forms, as well as in the interaction of the substances with ice, snow and sub-ice water. The SM and organic compounds are accumulated in layers characterized by intense autochthonous processes. It was noted that the zones stay biogeochemically active even under low temperature conditions. The highest concentrations of organic compounds, along with the biggest variations in their proportions have been discovered in the areas surrounded by penguin colonies near Buromsky Island and Haswell Island's Lake. The presence of significant quantities of PAHs in both pack and seasonal ice of high latitudes indicates that their formation is relatively rapid even at low temperatures. Many biochemical processes are intense under the influence of ice

  2. Understanding Recent Mass Balance Changes of the Greenland Ice Sheet

    Science.gov (United States)

    vanderVeen, Cornelius

    2003-01-01

    The ultimate goal of this project is to better understand the current transfer of mass between the Greenland Ice Sheet, the world's oceans and the atmosphere, and to identify processes controlling the rate of this transfer, to be able to predict with greater confidence future contributions to global sea level rise. During the first year of this project, we focused on establishing longer-term records of change of selected outlet glaciers, reevaluation of mass input to the ice sheet and analysis of climate records derived from ice cores, and modeling meltwater production and runoff from the margins of the ice sheet.

  3. Deglaciation of the Eurasian ice sheet complex

    Science.gov (United States)

    Patton, Henry; Hubbard, Alun; Andreassen, Karin; Auriac, Amandine; Whitehouse, Pippa L.; Stroeven, Arjen P.; Shackleton, Calvin; Winsborrow, Monica; Heyman, Jakob; Hall, Adrian M.

    2017-08-01

    The Eurasian ice sheet complex (EISC) was the third largest ice mass during the Last Glacial Maximum with a span of over 4500 km and responsible for around 20 m of eustatic sea-level lowering. Whilst recent terrestrial and marine empirical insights have improved understanding of the chronology, pattern and rates of retreat of this vast ice sheet, a concerted attempt to model the deglaciation of the EISC honouring these new constraints is conspicuously lacking. Here, we apply a first-order, thermomechanical ice sheet model, validated against a diverse suite of empirical data, to investigate the retreat of the EISC after 23 ka BP, directly extending the work of Patton et al. (2016) who modelled the build-up to its maximum extent. Retreat of the ice sheet complex was highly asynchronous, reflecting contrasting regional sensitivities to climate forcing, oceanic influence, and internal dynamics. Most rapid retreat was experienced across the Barents Sea sector after 17.8 ka BP when this marine-based ice sheet disintegrated at a rate of ∼670 gigatonnes per year (Gt a-1) through enhanced calving and interior dynamic thinning, driven by oceanic/atmospheric warming and exacerbated by eustatic sea-level rise. From 14.9 to 12.9 ka BP the EISC lost on average 750 Gt a-1, peaking at rates >3000 Gt a-1, roughly equally partitioned between surface melt and dynamic losses, and potentially contributing up to 2.5 m to global sea-level rise during Meltwater Pulse 1A. Independent glacio-isostatic modelling constrained by an extensive inventory of relative sea-level change corroborates our ice sheet loading history of the Barents Sea sector. Subglacial conditions were predominately temperate during deglaciation, with over 6000 subglacial lakes predicted along with an extensive subglacial drainage network. Moreover, the maximum EISC and its isostatic footprint had a profound impact on the proglacial hydrological network, forming the Fleuve Manche mega-catchment which had an area of

  4. Super-long Anabiosis of Ancient Microorganisms in Ice and Terrestrial Models for Development of Methods to Search for Life on Mars, Europa and other Planetary Bodies

    Science.gov (United States)

    Abyzov, S. S.; Duxbury, N. S.; Bobin, N. E.; Fukuchi, M.; Hoover, R. B.; Kanda, H.; Mitskevich, I. N.; Mulyukin, A. L.; Naganuma, T.; Poglazova, M. N.; hide

    2007-01-01

    Successful missions to Mars, Europe and other bodies of the Solar system have created a prerequisite to search for extraterrestrial life. The first attempts of microbial life detection on the Martian surface by the Viking landed missions gave no biological results. Microbiological investigations of the Martian subsurface ground ice layers seem to be more promising. It is well substantiated to consider the Antarctic ice sheet and the Antarctic and Arctic permafrost as terrestrial analogues of Martian habitats. The results of our long-standing microbiological studies of the Antarctic ice would provide the basis for detection of viable microbial cells on Mars. Our microbiological investigations of the deepest and thus most ancient strata of the Antarctic ice sheet for the first time gave evidence for the natural phenomenon of long-term anabiosis (preservation of viability and vitality for millennia years). A combination of classical microbiological methods, epifluorescence microscopy, SEM, TEM, molecular diagnostics, radioisotope labeling and other techniques made it possible for us to obtain convincing proof of the presence of pro- and eukaryotes in the Antarctic ice sheet. In this communication, we will review and discuss some critical issues related to the detection of viable microorganisms in cold terrestrial environments with regard to future searches for microbial life and/or its biological signatures on extraterrestrial objects.

  5. Evolution of the Eurasian Ice Sheets during the Last Deglaciation (25-10 kyr)

    Science.gov (United States)

    Hughes, A. L. C.; Gyllencreutz, R.; Mangerud, J.; Svendsen, J. I.; Lohne, Ø. S.

    2014-12-01

    Both the timing of maximum extent and subsequent pace of retreat of the interconnected Eurasian (British-Irish, Scandinavian, Svalbard-Barents-Kara Sea) Ice Sheets were spatially variable likely reflecting contrasts in response to forcing mechanisms, geographical settings and glacial dynamics both between individual ice sheets and ice-sheet sectors. For example the maximum limit along the western continental shelf edge was reached up to 3,000 years earlier than the maximum, mainly terrestrial, limits in the east. We present new time-slice reconstructions of the ice-sheet evolution through the last deglaciation based on a compiled chronology of over 5,000 dates and published ice-margin positions. Ice-sheet margins are depicted every 1,000 years (25-10 kyr) and include uncertainty estimates (represented by maximum, minimum and most-credible lines). The new ice-sheet scale reconstructions summarise and provide the means for direct comparison of the empirical geological record against simulations of the deglacial ice-sheet evolution from numerical and isostatic ice-sheet modelling and the timing of abrupt events observed in deglacial climate and ocean records. The reconstruction process has identified both instances of conflicting evidence and gaps in the geological record that should be a focus for future studies. This work is part of an on-going project to reconstruct the changing limits of the Eurasian Ice Sheets through the last glacial cycle (www.uib.no/project/dated).

  6. Morphology of bottom surfaces of glacier ice tongues in the East Antarctic region

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, C.; Chiappini, M.; Zirizzotti, A.; Zuccheretti, E. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Tabacco, I. E. [Milan Univ., Milan (Italy). Sez. Geofisica; Passerini, A. [Milan Univ. Bicocca, Milan (Italy). Dipt. di Fisica

    2001-02-01

    During three Antarctic summer campaigns (1995/97/99) Radio Echo Sounding (RES) system data from some glacier ice tongues in the East Antarctic regions between Victoria Land and George 5. Land were collected. The morphology and structure of the bottom surfaces deduced from the electromagnetic interpretation of echo signal were observed. The bottom surfaces at the ice/water interface show either irregular or flat contours or both. Some ice tongues are nearly perfectly flat, others show clear signs of irregularities while three of them have good regular spaced rippled bottom surfaces. The latter structures are well-evident in the longitudinal traverse of the tongues, whereas the transversal paths do not show the same features. This particular shape of the bottom surfaces related to the ablation process and detachment mechanism could be interesting especially to determine some physical characteristics and the possible fracture points of the ice tongues.

  7. Morphology of bottom surfaces of glacier ice tongues in the East Antarctic region

    Directory of Open Access Journals (Sweden)

    E. Zuccheretti

    2001-06-01

    Full Text Available During three Antarctic summer campaigns (1995/97/99 Radio Echo Sounding (RES system data from some glacier ice tongues in the East Antarctic regions between Victoria Land and George V Land were collected. The morphology and structure of the bottom surfaces deduced from the electromagnetic interpretation of echo signal were observed. The bottom surfaces at the ice/water interface show either irregular or flat contours or both. Some ice tongues are nearly perfectly flat, others show clear signs of irregularities while three of them have good regular spaced rippled bottom surfaces. The latter structures are well-evident in the longitudinal traverse of the tongues, whereas the transversal paths do not show the same features. This particular shape of the bottom surfaces related to the ablation process and detachment mechanism could be interesting especially to determine some physical characteristics and the possible fracture points of the ice tongues.

  8. A Synthesis of the Basal Thermal State of the Greenland Ice Sheet

    Science.gov (United States)

    Macgregor, J. A.; Fahnestock, M. A.; Catania, G. A.; Aschwanden, A.; Clow, G. D.; Colgan, W. T.; Gogineni, S. P.; Morlighem, M.; Nowicki, S. M. J.; Paden, J. D.; hide

    2016-01-01

    Greenland's thick ice sheet insulates the bedrock below from the cold temperatures at the surface, so the bottom of the ice is often tens of degrees warmer than at the top, because the ice bottom is slowly warmed by heat coming from the Earth's depths. Knowing whether Greenland's ice lies on wet, slippery ground or is anchored to dry, frozen bedrock is essential for predicting how this ice will flow in the future. But scientists have very few direct observations of the thermal conditions beneath the ice sheet, obtained through fewer than two dozen boreholes that have reached the bottom. Our study synthesizes several independent methods to infer the Greenland Ice Sheet's basal thermal state -whether the bottom of the ice is melted or not-leading to the first map that identifies frozen and thawed areas across the whole ice sheet. This map will guide targets for future investigations of the Greenland Ice Sheet toward the most vulnerable and poorly understood regions, ultimately improving our understanding of its dynamics and contribution to future sea-level rise. It is of particular relevance to ongoing Operation IceBridge activities and future large-scale airborne missions over Greenland.

  9. How effective is albedo modification (solar radiation management geoengineering) in preventing sea-level rise from the Greenland Ice Sheet?

    International Nuclear Information System (INIS)

    Applegate, Patrick J; Keller, Klaus

    2015-01-01

    Albedo modification (AM) is sometimes characterized as a potential means of avoiding climate threshold responses, including large-scale ice sheet mass loss. Previous work has investigated the effects of AM on total sea-level rise over the present century, as well as AM’s ability to reduce long-term (≫10 3 yr) contributions to sea-level rise from the Greenland Ice Sheet (GIS). These studies have broken new ground, but neglect important feedbacks in the GIS system, or are silent on AM’s effectiveness over the short time scales that may be most relevant for decision-making (<10 3 yr). Here, we assess AM’s ability to reduce GIS sea-level contributions over decades to centuries, using a simplified ice sheet model. We drive this model using a business-as-usual base temperature forcing scenario, as well as scenarios that reflect AM-induced temperature stabilization or temperature drawdown. Our model results suggest that (i) AM produces substantial near-term reductions in the rate of GIS-driven sea-level rise. However, (ii) sea-level rise contributions from the GIS continue after AM begins. These continued sea level rise contributions persist for decades to centuries after temperature stabilization and temperature drawdown begin, unless AM begins in the next few decades. Moreover, (iii) any regrowth of the GIS is delayed by decades or centuries after temperature drawdown begins, and is slow compared to pre-AM rates of mass loss. Combined with recent work that suggests AM would not prevent mass loss from the West Antarctic Ice Sheet, our results provide a nuanced picture of AM’s possible effects on future sea-level rise. (letter)

  10. Interactions between ice sheets, climate and the solid Earth

    NARCIS (Netherlands)

    Berg, J. van den

    2007-01-01

    The melting of ice sheets in response to increasing temperatures is an important contribution to present day sea level rise. To predict the amount of sea level rise and to assess its impact on populated coastal regions, an increased understanding of the physical processes governing ice sheets is

  11. Large-scale Modeling of the Greenland Ice Sheet on Long Timescales

    DEFF Research Database (Denmark)

    Solgaard, Anne Munck

    is investigated as well as its early history. The studies are performed using an ice-sheet model in combination with relevant forcing from observed and modeled climate. Changes in ice-sheet geometry influences atmospheric flow (and vice versa) hereby changing the forcing patterns. Changes in the overall climate...... and climate model is included shows, however, that a Föhn effect is activated and hereby increasing temperatures inland and inhibiting further ice-sheet expansion into the interior. This indicates that colder than present temperatures are needed in order for the ice sheet to regrow to the current geometry....... Accordingto this hypothesis, two stages of uplift since the Late Miocene lead to the present-day topography. The results of the ice-sheet simulations show geometries in line with geologicobservations through the period, and it is found that the uplift events enhance the effect of the climatic deterioration...

  12. Preservation of a Preglacial Landscape Under the Center of the Greenland Ice Sheet

    Science.gov (United States)

    Bierman, Paul R.; Corbett, Lee B.; Graly, Joseph A.; Neumann, Thomas Allen; Lini, Andrea; Crosby, Benjamin T.; Rood, Dylan H.

    2014-01-01

    Continental ice sheets typically sculpt landscapes via erosion; under certain conditions, ancient landscapes can be preserved beneath ice and can survive extensive and repeated glaciation. We used concentrations of atmospherically produced cosmogenic beryllium-10, carbon, and nitrogen to show that ancient soil has been preserved in basal ice for millions of years at the center of the ice sheet at Summit, Greenland. This finding suggests ice sheet stability through the Pleistocene (i.e., the past 2.7 million years). The preservation of this soil implies that the ice has been non-erosive and frozen to the bed for much of that time, that there was no substantial exposure of central Greenland once the ice sheet became fully established, and that preglacial landscapes can remain preserved for long periods under continental ice sheets

  13. Greenland Ice sheet mass balance from satellite and airborne altimetry

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Bevis, M. G.; Wahr, J. M.

    Ice loss from the Greenland Ice Sheet (GrIS) is dominated by loss in the marginal areas. Dynamic induced ice loss and its associated ice surface lowering is often largest close to the glacier calving front and may vary from rates of tens of meters per years to a few meters per year over relatively...... short distances. Hence, high spatial resolution data are required to accurately estimate volume changes. Here, we estimate ice volume change rate of the Greenland ice sheet using data from Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter during 2003-2009 and CryoSat-2 data during 2010...

  14. Radiative effects of clouds and cryosphere in the Antarctic

    Directory of Open Access Journals (Sweden)

    Takashi Yamanouchi

    1997-03-01

    Full Text Available Examination of the effects of clouds, ice sheet and sea ice on the radiation budget in the Antarctic using Earth Radiation Budget Experiment (ERBE data were reported. The continental ice sheet affects not only the albedo, but also the surface temperature because of elevation, and hence the OLR. Sea ice, which is a critical climate feedback factor, appears to have less impact on radiation than do clouds. However, these surfaces lie underneath clouds, and it was found that the independent effect of sea ice is as large as that of clouds, and clouds are masking the radiative effect of sea ice by more than half. The radiation budget at the top of the atmosphere from satellite observation and that at the surface from the surface radiation measurements at Syowa and South Pole Stations were compared. Cloud radiative forcing at both stations for the surface, atmosphere and top of the atmosphere was derived.

  15. SPICE: Sentinel-3 Performance Improvement for Ice Sheets

    Science.gov (United States)

    McMillan, M.; Escola, R.; Roca, M.; Thibaut, P.; Aublanc, J.; Shepherd, A.; Remy, F.; Benveniste, J.; Ambrózio, A.; Restano, M.

    2017-12-01

    For the past 25 years, polar-orbiting satellite radar altimeters have provided a valuable record of ice sheet elevation change and mass balance. One of the principle challenges associated with radar altimetry comes from the relatively large ground footprint of conventional pulse-limited radars, which reduces their capacity to make measurements in areas of complex topographic terrain. In recent years, progress has been made towards improving ground resolution, through the implementation of Synthetic Aperture Radar (SAR), or Delay-Doppler, techniques. In 2010, the launch of CryoSat-2 heralded the start of a new era of SAR Interferometric (SARIn) altimetry. However, because the satellite operated in SARIn and LRM mode over the ice sheets, many of the non-interferometric SAR altimeter processing techniques have been optimized for water and sea ice surfaces only. The launch of Sentinel-3, which provides full non-interferometric SAR coverage of the ice sheets, therefore presents the opportunity to further develop these SAR processing methodologies over ice sheets. Here we present results from SPICE, a 2 year study that focuses on (1) developing and evaluating Sentinel-3 SAR altimetry processing methodologies over the Polar ice sheets, and (2) investigating radar wave penetration through comparisons of Ku- and Ka-band satellite measurements. The project, which is funded by ESA's SEOM (Scientific Exploitation of Operational Missions) programme, has worked in advance of the operational phase of Sentinel-3, to emulate Sentinel-3 SAR and pseudo-LRM data from dedicated CryoSat-2 SAR acquisitions made at the Lake Vostok, Dome C and Spirit sites in East Antarctica, and from reprocessed SARIn data in Greenland. In Phase 1 of the project we have evaluated existing processing methodologies, and in Phase 2 we are investigating new evolutions to the Delay-Doppler Processing (DDP) and retracking chains. In this presentation we (1) evaluate the existing Sentinel-3 processing chain by

  16. Possible connections of the opposite trends in Arctic and Antarctic sea-ice cover.

    Science.gov (United States)

    Yu, Lejiang; Zhong, Shiyuan; Winkler, Julie A; Zhou, Mingyu; Lenschow, Donald H; Li, Bingrui; Wang, Xianqiao; Yang, Qinghua

    2017-04-05

    Sea ice is an important component of the global climate system and a key indicator of climate change. A decreasing trend in Arctic sea-ice concentration is evident in recent years, whereas Antarctic sea-ice concentration exhibits a generally increasing trend. Various studies have investigated the underlying causes of the observed trends for each region, but possible linkages between the regional trends have not been studied. Here, we hypothesize that the opposite trends in Arctic and Antarctic sea-ice concentration may be linked, at least partially, through interdecadal variability of the Pacific Decadal Oscillation (PDO) and the Atlantic Multidecadal Oscillation (AMO). Although evaluation of this hypothesis is constrained by the limitations of the sea-ice cover record, preliminary statistical analyses of one short-term and two long-term time series of observed and reanalysis sea-ice concentrations data suggest the possibility of the hypothesized linkages. For all three data sets, the leading mode of variability of global sea-ice concentration is positively correlated with the AMO and negatively correlated with the PDO. Two wave trains related to the PDO and the AMO appear to produce anomalous surface-air temperature and low-level wind fields in the two polar regions that contribute to the opposite changes in sea-ice concentration.

  17. A geoelectrical survey above an Antarctic ice shelf

    Directory of Open Access Journals (Sweden)

    M. Pavan

    1998-06-01

    Full Text Available A geoelectrical survey was performed on the Hells Gate ice shelf (Victoria Land-Antarctic within the framework of an integrated geophysical and glaciological research program. The resistivity profiles show a similar trend, with resistivity values ranging from about 25000 W · m to 500000 W · m. These results have been interpreted as the effect of a sharp transition from "marine ice" to "continental" ice an interpretation that is consistent with the results of surface mapping. Interpreting the Vertical Electrical Soundings (VES is a complex process. In fact, the alternating layers of ice with different compositions and salt content generate great uncertainty relative to the corresponding electric stratigraphies. To solve these problems of equivalency, all the available constraints were used including the drilling thickness, seismic reflection profiles as well as radar profiles. The results were used to provide what is mainly a qualitative overview that is coherent with the glaciological hypotheses relative to the evolution and structure proposed by some researchers for this ice shelf.

  18. Interaction of ice sheets and climate during the past 800 000 years

    Science.gov (United States)

    Stap, L. B.; van de Wal, R. S. W.; de Boer, B.; Bintanja, R.; Lourens, L. J.

    2014-12-01

    During the Cenozoic, land ice and climate interacted on many different timescales. On long timescales, the effect of land ice on global climate and sea level is mainly set by large ice sheets in North America, Eurasia, Greenland and Antarctica. The climatic forcing of these ice sheets is largely determined by the meridional temperature profile resulting from radiation and greenhouse gas (GHG) forcing. As a response, the ice sheets cause an increase in albedo and surface elevation, which operates as a feedback in the climate system. To quantify the importance of these climate-land ice processes, a zonally averaged energy balance climate model is coupled to five one-dimensional ice sheet models, representing the major ice sheets. In this study, we focus on the transient simulation of the past 800 000 years, where a high-confidence CO2 record from ice core samples is used as input in combination with Milankovitch radiation changes. We obtain simulations of atmospheric temperature, ice volume and sea level that are in good agreement with recent proxy-data reconstructions. We examine long-term climate-ice-sheet interactions by a comparison of simulations with uncoupled and coupled ice sheets. We show that these interactions amplify global temperature anomalies by up to a factor of 2.6, and that they increase polar amplification by 94%. We demonstrate that, on these long timescales, the ice-albedo feedback has a larger and more global influence on the meridional atmospheric temperature profile than the surface-height-temperature feedback. Furthermore, we assess the influence of CO2 and insolation by performing runs with one or both of these variables held constant. We find that atmospheric temperature is controlled by a complex interaction of CO2 and insolation, and both variables serve as thresholds for northern hemispheric glaciation.

  19. Interaction of ice sheets and climate during the past 800 000 years

    Directory of Open Access Journals (Sweden)

    L. B. Stap

    2014-12-01

    Full Text Available During the Cenozoic, land ice and climate interacted on many different timescales. On long timescales, the effect of land ice on global climate and sea level is mainly set by large ice sheets in North America, Eurasia, Greenland and Antarctica. The climatic forcing of these ice sheets is largely determined by the meridional temperature profile resulting from radiation and greenhouse gas (GHG forcing. As a response, the ice sheets cause an increase in albedo and surface elevation, which operates as a feedback in the climate system. To quantify the importance of these climate–land ice processes, a zonally averaged energy balance climate model is coupled to five one-dimensional ice sheet models, representing the major ice sheets. In this study, we focus on the transient simulation of the past 800 000 years, where a high-confidence CO2 record from ice core samples is used as input in combination with Milankovitch radiation changes. We obtain simulations of atmospheric temperature, ice volume and sea level that are in good agreement with recent proxy-data reconstructions. We examine long-term climate–ice-sheet interactions by a comparison of simulations with uncoupled and coupled ice sheets. We show that these interactions amplify global temperature anomalies by up to a factor of 2.6, and that they increase polar amplification by 94%. We demonstrate that, on these long timescales, the ice-albedo feedback has a larger and more global influence on the meridional atmospheric temperature profile than the surface-height-temperature feedback. Furthermore, we assess the influence of CO2 and insolation by performing runs with one or both of these variables held constant. We find that atmospheric temperature is controlled by a complex interaction of CO2 and insolation, and both variables serve as thresholds for northern hemispheric glaciation.

  20. Limited Impact of Subglacial Supercooling Freeze-on for Greenland Ice Sheet Stratigraphy

    Science.gov (United States)

    Dow, Christine F.; Karlsson, Nanna B.; Werder, Mauro A.

    2018-02-01

    Large units of disrupted radiostratigraphy (UDR) are visible in many radio-echo sounding data sets from the Greenland Ice Sheet. This study investigates whether supercooling freeze-on rates at the bed can cause the observed UDR. We use a subglacial hydrology model to calculate both freezing and melting rates at the base of the ice sheet in a distributed sheet and within basal channels. We find that while supercooling freeze-on is a phenomenon that occurs in many areas of the ice sheet, there is no discernible correlation with the occurrence of UDR. The supercooling freeze-on rates are so low that it would require tens of thousands of years with minimal downstream ice motion to form the hundreds of meters of disrupted radiostratigraphy. Overall, the melt rates at the base of the ice sheet greatly overwhelm the freeze-on rates, which has implications for mass balance calculations of Greenland ice.

  1. Low post-glacial rebound rates in the Weddell Sea due to Late Holocene ice-sheet readvance

    Science.gov (United States)

    Bradley, Sarah L.; Hindmarsh, Richard C. A.; Whitehouse, Pippa; Bentley, Michael J.; King, Matt

    2014-05-01

    The Holocene deglaciation of West Antarctica resulted in widespread ice surface lowering. While many ice-sheet reconstructions generally assume a monotone Holocene retreat for the West Antarctica Ice sheet (WAIS) [Ivins et al., 2013; Peltier, 2004; Whitehouse et al., 2012], an increasing number of glaciological observations infer it is readvancing, following retreat behind the present-day margin[Siegert et al., 2013]. We will show that a readvance in the Weddell Sea region can reconcile two outstanding problems: (i) the present-day widespread occurrence of seemingly stable ice-streams grounded on beds that deepen inland in apparent contradiction to theory [Schoof, 2007]; and (ii) the inability of models of Glacial Isostatic Adjustment (GIA) to match present-day uplift rates [Whitehouse et al., 2012]. Combining a suite of ice loading histories that include a readvance with a model of GIA provides significant improvements to predictions of present-day uplift rates, and we are able to reproduce previously unexplained observations of subsidence in the southern sector of the Weddell Sea. We hypothesize that retreat behind present grounding lines occurred when the bed was lower, and isostatic recovery led to shallowing, ice sheet re-grounding and readvance. We will conclude that some sections of the current WAIS grounding line that are theoretically unstable, may be advancing and that the volume change of the WAIS may have been more complex in the Late Holocene than previously posited. This revised Holocene ice-loading history would have important implications for the GIA correction applied to Gravity Recovery and Climate Experiment (GRACE) data, likely resulting in a reduction in the GIA correction and a smaller estimate of present-day ice mass loss within the Weddell Sea region of the WAIS. Ivins, E. R., T. S. James, J. Wahr, E. J. O. Schrama, F. W. Landerer, and K. M. Simon (2013), Antarctic contribution to sea level rise observed by GRACE with improved GIA correction

  2. Laser induced fluorescence emission (L.I.F.E.): in situ and remote detection of life in Antarctic and Alaskan ice

    Science.gov (United States)

    Storrie-Lombardi, Michael C.; Sattler, Birgit

    2009-08-01

    Once thought to be a barren desert devoid of life, it now appears that Earth's cryosphere is an ice ecosystem harbouring a rich community of metabolically active microorganisms inhabiting ice, snow, water, and lithic environments. The ability to rapidly survey this ecosystem during in situ and orbital missions is of considerable interest for monitoring Earth's carbon budget and for efficiently searching for life on Mars or any exoplanet with an analogous cryosphere. Laser induced fluorescence emission (L.I.F.E.) imaging and spectroscopy using excitation in ultraviolet (UV) wavelengths have been proposed as non-destructive astrobiological survey tools to search for amino acids, nucleic acids, microbial life, and polycyclic aromatic hydrocarbons (PAHs) deep in the Mars regolith. However, the technique is easily adapted to search for larger, more complex biomolecular targets using longer wavelength sources. Of particular interest is the ability for excitation at blue, green, and red wavelengths to produce visible and near infrared fluorescence of photosynthetic pigments in cyanobacteria-dominated microbial communities populating the ice of alpine, Arctic, and Antarctic lakes, glaciers, ice sheets, and even the supercooled water-ice droplets of clouds. During the Tawani 2008 International Antarctic Expedition we tested the in situ use of the technique as part of a field campaign in the Dry Valleys of Schirmacher Oasis and Lake Untersee, Queen Maud Land, Antarctica. In the spring of 2009, we performed airborne remote sensing tests of the technology in Alaska. In this paper we review our in situ laser detection experiments and present for the first time preliminary results on our efforts to detect cryosphere L.I.F.E. from an airborne platform.

  3. Formation and interpretation of eskers beneath retreating ice sheets

    Science.gov (United States)

    Creyts, T. T.; Hewitt, I.

    2017-12-01

    The retreat of the ice sheets during the Pleistocene left large and spectacular subglacial features exposed. Understanding these features gives us insight into how the ice sheets retreated, how meltwater influenced retreat, and can help inform our understanding of potential future rates of ice sheet retreat. Among these features, eskers, long sinuous ridges primarily composed of clastic sediments, lack a detailed explanation of how surface melt rates and ice sheet retreat rates influence their growth and spatial distribution. Here, we develop a theory for esker formation based on the initial work of Rothlisberger modified for sediment transport and inclusion of surface meltwater forcing. The primary subglacial ingredients include water flow through subglacial tunnels with the addition of mass balances for sediment transport. We show how eskers when water flow slows below a critical stress for sediment motion. This implies that eskers are deposited in a localized region near the snout of the ice sheet. Our findings suggest that very long eskers form sequentially as the ice front retreats. The position of the esker follows the path of the channel mouth through time, which does not necessarily coincide with the instantaneous route of the feeding channel. However, in most cases, we expect those locations to be similar. The role of surface meltwater and the climatology associated with the forcing is crucial to the lateral spacing of the eskers. We predict that high surface melt rates lead to narrower catchments but that the greater extent of the ablation area means that channels are likely larger. At the same time, for a given channel size (and hence sediment flux), the size of a deposited esker depends on a margin retreat rate. Hence, the size of the eskers is related delicately to the balance between surface melt rates and margin retreat rates. We discuss how our theory can be combined with observed esker distributions to infer the relationship between these two rates

  4. An ice-sheet-wide framework for englacial attenuation from ice-penetrating radar data

    Science.gov (United States)

    Jordan, T. M.; Bamber, J. L.; Williams, C. N.; Paden, J. D.; Siegert, M. J.; Huybrechts, P.; Gagliardini, O.; Gillet-Chaulet, F.

    2016-07-01

    Radar inference of the bulk properties of glacier beds, most notably identifying basal melting, is, in general, derived from the basal reflection coefficient. On the scale of an ice sheet, unambiguous determination of basal reflection is primarily limited by uncertainty in the englacial attenuation of the radio wave, which is an Arrhenius function of temperature. Existing bed-returned power algorithms for deriving attenuation assume that the attenuation rate is regionally constant, which is not feasible at an ice-sheet-wide scale. Here we introduce a new semi-empirical framework for deriving englacial attenuation, and, to demonstrate its efficacy, we apply it to the Greenland Ice Sheet. A central feature is the use of a prior Arrhenius temperature model to estimate the spatial variation in englacial attenuation as a first guess input for the radar algorithm. We demonstrate regions of solution convergence for two input temperature fields and for independently analysed field campaigns. The coverage achieved is a trade-off with uncertainty and we propose that the algorithm can be "tuned" for discrimination of basal melt (attenuation loss uncertainty ˜ 5 dB). This is supported by our physically realistic ( ˜ 20 dB) range for the basal reflection coefficient. Finally, we show that the attenuation solution can be used to predict the temperature bias of thermomechanical ice sheet models and is in agreement with known model temperature biases at the Dye 3 ice core.

  5. A common and optimized age scale for Antarctic ice cores

    Science.gov (United States)

    Parrenin, F.; Veres, D.; Landais, A.; Bazin, L.; Lemieux-Dudon, B.; Toye Mahamadou Kele, H.; Wolff, E.; Martinerie, P.

    2012-04-01

    Dating ice cores is a complex problem because 1) there is a age shift between the gas bubbles and the surrounding ice 2) there are many different ice cores which can be synchronized with various proxies and 3) there are many methods to date the ice and the gas bubbles, each with advantages and drawbacks. These methods fall into the following categories: 1) Ice flow (for the ice) and firn densification modelling (for the gas bubbles); 2) Comparison of ice core proxies with insolation variations (so-called orbital tuning methods); 3) Comparison of ice core proxies with other well dated archives; 4) Identification of well-dated horizons, such as tephra layers or geomagnetic anomalies. Recently, an new dating tool has been developped (DATICE, Lemieux-Dudon et al., 2010), to take into account all the different dating information into account and produce a common and optimal chronology for ice cores with estimated confidence intervals. In this talk we will review the different dating information for Antarctic ice cores and show how the DATICE tool can be applied.

  6. Unequal ice-sheet erosional impacts across low-relief shield terrain in northern Fennoscandia

    Science.gov (United States)

    Ebert, Karin; Hall, Adrian M.; Kleman, Johan; Andersson, Jannike

    2015-03-01

    Much previous work on Late Cenozoic glacial erosion patterns in bedrock has focussed on mountain areas. Here we identify varying impacts of ice sheet erosion on the low-relief bedrock surface of the Fennoscandian shield, and examine the geological, topographical and glaciological controls on these patterns. We combine GIS-mapping of topographical, hydrological and weathering data with field observations. We identify and investigate areas with similar geology and general low relief that show different degrees of ice sheet erosional impact, despite similar ice cover histories. On two transects with a total area of ~ 84 000 km2 across the northern Fennoscandian shield, we first establish patterns of glacial erosion and then examine why glacially streamlined areas exist adjacent to areas of negligible glacial erosion. The northern transect includes two areas of exceptional glacial preservation, the Parkajoki area in Sweden and the so-called ice divide zone in Finland, each of which preserve tors and deep saprolite covers. The southern transect, overlapping in the northern part with the first transect, includes areas of well developed glacial streamlining, with bedrock areas stripped of loose material and barely any weathering remnants. For both areas, we firstly present contrasting indicators for ice sheet erosional impact: streamlined and non-streamlined inselbergs; parallel and dendritic/rectangular drainage patterns; and the absence and presence of Neogene weathering remnants. This is followed by an investigation of factors that possibly influence ice sheet erosional impact: ice cover history, ice cover duration and thickness, bedrock type and structure, and topography. We find that the erosional impact of the Fennoscandian ice sheet has varied across the study area. Distinct zones of ice sheet erosion are identified in which indicators of either low or high erosion coexist in the same parts of the transects. No direct impact of rock type on glacial erosion patterns

  7. Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene-Oligocene transition.

    Science.gov (United States)

    Kennedy, A T; Farnsworth, A; Lunt, D J; Lear, C H; Markwick, P J

    2015-11-13

    The glaciation of Antarctica at the Eocene-Oligocene transition (approx. 34 million years ago) was a major shift in the Earth's climate system, but the mechanisms that caused the glaciation, and its effects, remain highly debated. A number of recent studies have used coupled atmosphere-ocean climate models to assess the climatic effects of Antarctic glacial inception, with often contrasting results. Here, using the HadCM3L model, we show that the global atmosphere and ocean response to growth of the Antarctic ice sheet is sensitive to subtle variations in palaeogeography, using two reconstructions representing Eocene and Oligocene geological stages. The earlier stage (Eocene; Priabonian), which has a relatively constricted Tasman Seaway, shows a major increase in sea surface temperature over the Pacific sector of the Southern Ocean in response to the ice sheet. This response does not occur for the later stage (Oligocene; Rupelian), which has a more open Tasman Seaway. This difference in temperature response is attributed to reorganization of ocean currents between the stages. Following ice sheet expansion in the earlier stage, the large Ross Sea gyre circulation decreases in size. Stronger zonal flow through the Tasman Seaway allows salinities to increase in the Ross Sea, deep-water formation initiates and multiple feedbacks then occur amplifying the temperature response. This is potentially a model-dependent result, but it highlights the sensitive nature of model simulations to subtle variations in palaeogeography, and highlights the need for coupled ice sheet-climate simulations to properly represent and investigate feedback processes acting on these time scales. © 2015 The Author(s).

  8. Infill of tunnel valleys associated with landward‐flowing ice sheets

    DEFF Research Database (Denmark)

    Moreau, Julien; Huuse, Mads

    2014-01-01

    The southern termination of the Middle and Late Pleistocene Scandinavian ice sheets was repeatedly located in the southern North Sea (sNS) and adjacent, north-sloping land areas. Giant meltwater-excavated valleys (tunnel valleys) formed at the southern termination of the ice sheets and contain...

  9. Interaction of ice sheets and climate during the past 800 000 years

    NARCIS (Netherlands)

    Stap, L. B.; Van De Wal, R. S W; De Boer, B.; Bintanja, R.; Lourens, L. J.

    2014-01-01

    During the Cenozoic, land ice and climate interacted on many different timescales. On long timescales, the effect of land ice on global climate and sea level is mainly set by large ice sheets in North America, Eurasia, Greenland and Antarctica. The climatic forcing of these ice sheets is largely

  10. Impact of increasing antarctic glacial freshwater release on regional sea-ice cover in the Southern Ocean

    Science.gov (United States)

    Merino, Nacho; Jourdain, Nicolas C.; Le Sommer, Julien; Goosse, Hugues; Mathiot, Pierre; Durand, Gael

    2018-01-01

    The sensitivity of Antarctic sea-ice to increasing glacial freshwater release into the Southern Ocean is studied in a series of 31-year ocean/sea-ice/iceberg model simulations. Glaciological estimates of ice-shelf melting and iceberg calving are used to better constrain the spatial distribution and magnitude of freshwater forcing around Antarctica. Two scenarios of glacial freshwater forcing have been designed to account for a decadal perturbation in glacial freshwater release to the Southern Ocean. For the first time, this perturbation explicitly takes into consideration the spatial distribution of changes in the volume of Antarctic ice shelves, which is found to be a key component of changes in freshwater release. In addition, glacial freshwater-induced changes in sea ice are compared to typical changes induced by the decadal evolution of atmospheric states. Our results show that, in general, the increase in glacial freshwater release increases Antarctic sea ice extent. But the response is opposite in some regions like the coastal Amundsen Sea, implying that distinct physical mechanisms are involved in the response. We also show that changes in freshwater forcing may induce large changes in sea-ice thickness, explaining about one half of the total change due to the combination of atmospheric and freshwater changes. The regional contrasts in our results suggest a need for improving the representation of freshwater sources and their evolution in climate models.

  11. Surface Energy and Mass Balance Model for Greenland Ice Sheet and Future Projections

    Science.gov (United States)

    Liu, Xiaojian

    The Greenland Ice Sheet contains nearly 3 million cubic kilometers of glacial ice. If the entire ice sheet completely melted, sea level would raise by nearly 7 meters. There is thus considerable interest in monitoring the mass balance of the Greenland Ice Sheet. Each year, the ice sheet gains ice from snowfall and loses ice through iceberg calving and surface melting. In this thesis, we develop, validate and apply a physics based numerical model to estimate current and future surface mass balance of the Greenland Ice Sheet. The numerical model consists of a coupled surface energy balance and englacial model that is simple enough that it can be used for long time scale model runs, but unlike previous empirical parameterizations, has a physical basis. The surface energy balance model predicts ice sheet surface temperature and melt production. The englacial model predicts the evolution of temperature and meltwater within the ice sheet. These two models can be combined with estimates of precipitation (snowfall) to estimate the mass balance over the Greenland Ice Sheet. We first compare model performance with in-situ observations to demonstrate that the model works well. We next evaluate how predictions are degraded when we statistically downscale global climate data. We find that a simple, nearest neighbor interpolation scheme with a lapse rate correction is able to adequately reproduce melt patterns on the Greenland Ice Sheet. These results are comparable to those obtained using empirical Positive Degree Day (PDD) methods. Having validated the model, we next drove the ice sheet model using the suite of atmospheric model runs available through the CMIP5 atmospheric model inter-comparison, which in turn built upon the RCP 8.5 (business as usual) scenarios. From this exercise we predict how much surface melt production will increase in the coming century. This results in 4-10 cm sea level equivalent, depending on the CMIP5 models. Finally, we try to bound melt water

  12. Understanding Greenland ice sheet hydrology using an integrated multi-scale approach

    International Nuclear Information System (INIS)

    Rennermalm, A K; Moustafa, S E; Mioduszewski, J; Robinson, D A; Chu, V W; Smith, L C; Forster, R R; Hagedorn, B; Harper, J T; Mote, T L; Shuman, C A; Tedesco, M

    2013-01-01

    Improved understanding of Greenland ice sheet hydrology is critically important for assessing its impact on current and future ice sheet dynamics and global sea level rise. This has motivated the collection and integration of in situ observations, model development, and remote sensing efforts to quantify meltwater production, as well as its phase changes, transport, and export. Particularly urgent is a better understanding of albedo feedbacks leading to enhanced surface melt, potential positive feedbacks between ice sheet hydrology and dynamics, and meltwater retention in firn. These processes are not isolated, but must be understood as part of a continuum of processes within an integrated system. This letter describes a systems approach to the study of Greenland ice sheet hydrology, emphasizing component interconnections and feedbacks, and highlighting research and observational needs. (letter)

  13. Ice sheet anisotropy measured with polarimetric ice sounding radar

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2010-01-01

    For polar ice sheets, valuable stress and strain information can be deduced from crystal orientation fabrics (COF) and their prevailing c-axis alignment. Polarimetric radio echo sounding is a promising technique to measure the anisotropic electromagnetic propagation and reflection properties asso...

  14. Demonstration of Sparse Signal Reconstruction for Radar Imaging of Ice Sheets

    Science.gov (United States)

    Heister, Anton; Scheiber, Rolf

    2017-04-01

    Conventional processing of ice-sounder data produces 2-D images of the ice sheet and bed, where the two dimensions are along-track and depth, while the across-track direction is fixed to nadir. The 2-D images contain information about the topography and radar reflectivity of the ice sheet's surface, bed, and internal layers in the along-track direction. Having multiple antenna phase centers in the across-track direction enables the production of 3-D images of the ice sheet and bed. Compared to conventional 2-D images, these contain additional information about the surface and bed topography, and orientation of the internal layers over a swath in the across-track direction. We apply a 3-D SAR tomographic ice-sounding method based on sparse signal reconstruction [1] to the data collected by Center for Remote Sensing of Ice Sheets (CReSIS) in 2008 in Greenland [2] using their multichannel coherent radar depth sounder (MCoRDS). The MCoRDS data have 16 effective phase centers which allows us to better understand the performance of the method. Lastly we offer sparsity improvement by including wavelet dictionaries into the reconstruction.The results show improved scene feature resolvability in across-track direction compared to MVDR beamformer. References: [1] A. Heister, R. Scheiber, "First Analysis of Sparse Signal Reconstruction for Radar Imaging of Ice Sheets". In: Proceedings of EUSAR, pp. 788-791, June 2016. [2] X. Wu, K. C. Jezek, E. Rodriguez, S. Gogineni, F. Rodriguez-Morales, and A. Freeman, "Ice sheet bed mapping with airborne SAR tomography". IEEE Transactions on Geoscience and Remote Sensing, vol. 49, no. 10 Part 1, pp. 3791-3802, 2011.

  15. Spatiotemporal Variability of Meltwater Refreezing in Southwest Greenland Ice Sheet Firn

    Science.gov (United States)

    Rennermalm, A. K.; Hock, R.; Tedesco, M.; Corti, G.; Covi, F.; Miège, C.; Kingslake, J.; Leidman, S. Z.; Munsell, S.

    2017-12-01

    A substantial fraction of the summer meltwater formed on the surface of the Greenland ice sheet is retained in firn, while the remaining portion runs to the ocean through surface and subsurface channels. Refreezing of meltwater in firn can create impenetrable ice lenses, hence being a crucial process in the redistribution of surface runoff. To quantify the impact of refreezing on runoff and current and future Greenland surface mass balance, a three year National Science Foundation funded project titled "Refreezing in the firn of the Greenland ice sheet: Spatiotemporal variability and implications for ice sheet mass balance" started this past year. Here we present an overview of the project and some initial results from the first field season in May 2017 conducted in proximity of the DYE-2 site in the percolation zone of the Southwest Greenland ice sheet at elevations between 1963 and 2355 m a.s.l.. During this fieldwork two automatic weather stations were deployed, outfitted with surface energy balance sensors and 16 m long thermistor strings, over 300 km of ground penetrating radar data were collected, and five 20-26 m deep firn cores were extracted and analyzed for density and stratigraphy. Winter snow accumulation was measured along the radar tracks. Preliminary work on the firn-core data reveals increasing frequency and thickness of ice lenses at lower ice-sheet elevations, in agreement with other recent work in the area. Data collected within this project will facilitate advances in our understanding of the spatiotemporal variability of firn refreezing and its role in the hydrology and surface mass balance of the Greenland Ice Sheet.

  16. The Effect of Solar Forcing on the Greenland Ice Sheet during the Holocene - A Model Study

    Science.gov (United States)

    Bügelmayer, Marianne; Roche, Didier; Renssen, Hans

    2014-05-01

    . (2001): Persistent solar influence on North Atlantic climate during the Holocene. Science (New York, N.Y.), 294(5549), 2130-6. doi:10.1126/science.1065680 Bügelmayer, M., Roche, D.M., Renssen, H. (2014): How do icebergs affect the Greenland ice sheet under pre-industrial conditions? - A model study with a fully coupled ice sheet-climate model. The Cryosphere Discussions 8, 187-228. Haigh, J. D. (1996): The Impact of Solar Variability on Climate. Science, 272, 981-984. Jongma, J.I., Driesschaert, E., Fichefet, T., Goosse, H., Renssen, H., (2009): The effect of dynamic-thermodynamic icebergs on the Southern Ocean climate in a three-dimensional model. Ocean Modelling 26, 104-113. Renssen, H., Goosse, H., Muscheler, R., & Branch, R. (2006): Coupled climate model simulation of Holocene cooling events: oceanic feedback amplifies solar forcing. Climate of the Past, 2, 79-90. Ritz, C., Rommelaere, V. and Dumas, C.(2001): Modeling the evolution of Antarctic ice sheet over the last 420,000 years: Implications for altitude changes in the Vostok region, Journal of Geophysical Research, 106, 31943-31964, doi:10.1029/2001JD900232. Roche, D.M., Dumas, C., Bügelmayer, M., Charbit, S., Ritz, C. (2013): Adding a dynamical cryosphere into iLOVECLIM (version 1.0) - Part 1: Coupling with the GRISLI ice-sheet model, Geoscientific Model Development Discussion, 6, 5215-5249.

  17. Modelling large-scale ice-sheet-climate interactions at the last glacial inception

    Science.gov (United States)

    Browne, O. J. H.; Gregory, J. M.; Payne, A. J.; Ridley, J. K.; Rutt, I. C.

    2010-05-01

    In order to investigate the interactions between coevolving climate and ice-sheets on multimillenial timescales, a low-resolution atmosphere-ocean general circulation model (AOGCM) has been coupled to a three-dimensional thermomechanical ice-sheet model. We use the FAMOUS AOGCM, which is almost identical in formulation to the widely used HadCM3 AOGCM, but on account of its lower resolution (7.5° longitude × 5° latitude in the atmosphere, 3.75°× 2.5° in the ocean) it runs about ten times faster. We use the community ice-sheet model Glimmer at 20 km resolution, with the shallow ice approximation and an annual degree-day scheme for surface mass balance. With the FAMOUS-Glimmer coupled model, we have simulated the growth of the Laurentide and Fennoscandian ice sheets at the last glacial inception, under constant orbital forcing and atmospheric composition for 116 ka BP. Ice grows in both regions, totalling 5.8 m of sea-level equivalent in 10 ka, slower than proxy records suggest. Positive climate feedbacks reinforce this growth at local scales (order hundreds of kilometres), where changes are an order of magnitude larger than on the global average. The albedo feedback (higher local albedo means a cooler climate) is important in the initial expansion of the ice-sheet area. The topography feedback (higher surface means a cooler climate) affects ice-sheet thickness and is not noticeable for the first 1 ka. These two feedbacks reinforce each other. Without them, the ice volume is ~90% less after 10 ka. In Laurentia, ice expands initially on the Canadian Arctic islands. The glaciation of the islands eventually cools the nearby mainland climate sufficiently to produce a positive mass balance there. Adjacent to the ice-sheets, cloud feedbacks tend to reduce the surface mass balance and restrain ice growth; this is an example of a local feedback whose simulation requires a model that includes detailed atmospheric physics.

  18. From cyclic ice streaming to Heinrich-like events: the grow-and-surge instability in the Parallel Ice Sheet Model

    Directory of Open Access Journals (Sweden)

    J. Feldmann

    2017-08-01

    Full Text Available >Here we report on a cyclic, physical ice-discharge instability in the Parallel Ice Sheet Model, simulating the flow of a three-dimensional, inherently buttressed ice-sheet-shelf system which periodically surges on a millennial timescale. The thermomechanically coupled model on 1 km horizontal resolution includes an enthalpy-based formulation of the thermodynamics, a nonlinear stress-balance-based sliding law and a very simple subglacial hydrology. The simulated unforced surging is characterized by rapid ice streaming through a bed trough, resulting in abrupt discharge of ice across the grounding line which is eventually calved into the ocean. We visualize the central feedbacks that dominate the subsequent phases of ice buildup, surge and stabilization which emerge from the interaction between ice dynamics, thermodynamics and the subglacial till layer. Results from the variation of surface mass balance and basal roughness suggest that ice sheets of medium thickness may be more susceptible to surging than relatively thin or thick ones for which the surge feedback loop is damped. We also investigate the influence of different basal sliding laws (ranging from purely plastic to nonlinear to linear on possible surging. The presented mechanisms underlying our simulations of self-maintained, periodic ice growth and destabilization may play a role in large-scale ice-sheet surging, such as the surging of the Laurentide Ice Sheet, which is associated with Heinrich events, and ice-stream shutdown and reactivation, such as observed in the Siple Coast region of West Antarctica.

  19. New Visualizations Highlight New Information on the Contrasting Arctic and Antarctic Sea-Ice Trends Since the Late 1970s

    Science.gov (United States)

    Parkinson, Claire L.; DiGirolamo, Nicolo E.

    2016-01-01

    Month-by-month ranking of 37 years (1979-2015) of satellite-derived sea-ice extents in the Arctic and Antarctic reveals interesting new details in the overall trends toward decreasing sea-ice coverage in the Arctic and increasing sea-ice coverage in the Antarctic. The Arctic decreases are so definitive that there has not been a monthly record high in Arctic sea-ice extents in any month since 1986, a time period during which there have been 75 monthly record lows. The Antarctic, with the opposite but weaker trend toward increased ice extents, experienced monthly record lows in 5 months of 1986, then 6 later monthly record lows scattered through the dataset, with the last two occurring in 2006, versus 45 record highs since 1986. However, in the last three years of the 1979-2015 dataset, the downward trends in Arctic sea-ice extents eased up, with no new record lows in any month of 2013 or 2014 and only one record low in 2015,while the upward trends in Antarctic ice extents notably strengthened, with new record high ice extents in 4 months (August-November) of 2013, in 6 months (April- September) of 2014, and in 3 months (January, April, and May) of 2015. Globally, there have been only 3 monthly record highs since 1986 (only one since 1988), whereas there have been 43 record lows, although the last record lows (in the 1979-2015 dataset) occurred in 2012.

  20. Possible contribution of ice-sheet/lithosphere interactions to past glaciological changes in Greenland

    Science.gov (United States)

    Alley, R. B.; Parizek, B. R.; Anandakrishnan, S.; Pollard, D.; Stevens, N. T.; Pourpoint, M.

    2017-12-01

    Ice-lithosphere interactions may have influenced the history of ice-sheet sensitivity to climate change. The Greenland ice sheet (GIS) is sensitive to warming, and is likely to be largely removed if subjected to relatively small additional temperature increases. The recent report (Schaefer et al., 2016, Nature) of near-complete GIS removal under modest Pleistocene forcing suggests that GIS sensitivity may be even greater than generally modeled, but lack of major Holocene retreat is more consistent with existing models. As shown by Stevens et al. (2016, JGR), peak lithospheric flexural stresses associated with ice-age GIS cycling are of the same order as dike-driving stresses in plutonic systems, and migrate over ice-age cycles. The full analysis by Stevens et al. suggests the possibility that the onset of cyclic ice-sheet loading allowed deep melt associated with the passage of the Icelandic hot spot beneath Greenland to work up though the crust to or near the base of the ice sheet, helping explain the anomalous geothermal heat fluxes observed at the head of the Northeast Greenland Ice Stream and elsewhere in the northern part of GIS. If ice-age cycling aided extraction of an existing reservoir of melted rock, then geothermal heat flux would have risen with the onset of extraction and migration, but with a subsequent fall associated with reservoir depletion. Simple parameterized flow-model simulations confirm intuition that a higher geothermal flux makes deglaciation easier, with the northern part of the ice sheet especially important. Large uncertainties remain in quantification, but we suggest the hypothesis that, following the onset of ice-age cycling, deglaciation of the GIS first became easier and then more difficult in response to feedbacks involving the ice sheet and the geological system beneath. In turn, this suggests that evidence of past deglaciation under moderate forcing is consistent with existing ice-sheet models.

  1. Inception of the Laurentide Ice Sheet using asynchronous coupling of a regional atmospheric model and an ice model

    Science.gov (United States)

    Birch, L.; Cronin, T.; Tziperman, E.

    2017-12-01

    The climate over the past 0.8 million years has been dominated by ice ages. Ice sheets have grown about every 100 kyrs, starting from warm interglacials, until they spanned continents. State-of-the-art global climate models (GCMs) have difficulty simulating glacial inception, or the transition of Earth's climate from an interglacial to a glacial state. It has been suggested that this failure may be related to their poorly resolved local mountain topography, due to their coarse spatial resolution. We examine this idea as well as the possible role of ice flow dynamics missing in GCMs. We investigate the growth of the Laurentide Ice Sheet at 115 kya by focusing on the mountain glaciers of Canada's Baffin Island, where geologic evidence indicates the last inception occurred. We use the Weather Research and Forecasting model (WRF) in a regional, cloud-resolving configuration with resolved mountain terrain to explore how quickly Baffin Island could become glaciated with the favorable yet realizable conditions of 115 kya insolation, cool summers, and wet winters. Using the model-derived mountain glacier mass balance, we force an ice sheet model based on the shallow-ice approximation, capturing the ice flow that may be critical to the spread of ice sheets away from mountain ice caps. The ice sheet model calculates the surface area newly covered by ice and the change in the ice surface elevation, which we then use to run WRF again. Through this type of iterated asynchronous coupling, we investigate how the regional climate responds to both larger areas of ice cover and changes in ice surface elevation. In addition, we use the NOAH-MP Land model to characterize the importance of land processes, like refreezing. We find that initial ice growth on the Penny Ice Cap causes regional cooling that increases the accumulation on the Barnes Ice Cap. We investigate how ice and topography changes on Baffin Island may impact both the regional climate and the large-scale circulation.

  2. The extreme melt across the Greenland ice sheet in 2012

    Science.gov (United States)

    Nghiem, S. V.; Hall, D. K.; Mote, T. L.; Tedesco, M.; Albert, M. R.; Keegan, K.; Shuman, C. A.; DiGirolamo, N. E.; Neumann, G.

    2012-10-01

    The discovery of the 2012 extreme melt event across almost the entire surface of the Greenland ice sheet is presented. Data from three different satellite sensors - including the Oceansat-2 scatterometer, the Moderate-resolution Imaging Spectroradiometer, and the Special Sensor Microwave Imager/Sounder - are combined to obtain composite melt maps, representing the most complete melt conditions detectable across the ice sheet. Satellite observations reveal that melt occurred at or near the surface of the Greenland ice sheet across 98.6% of its entire extent on 12 July 2012, including the usually cold polar areas at high altitudes like Summit in the dry snow facies of the ice sheet. This melt event coincided with an anomalous ridge of warm air that became stagnant over Greenland. As seen in melt occurrences from multiple ice core records at Summit reported in the published literature, such a melt event is rare with the last significant one occurring in 1889 and the next previous one around seven centuries earlier in the Medieval Warm Period. Given its rarity, the 2012 extreme melt across Greenland provides an exceptional opportunity for new studies in broad interdisciplinary geophysical research.

  3. Spaceborne measurement of Greenland ice sheet changes: the ESA Greenland CCI project

    DEFF Research Database (Denmark)

    Forsberg, René; Sørensen, Louise Sandberg; Meister, Rakia

    The ESA “Greenland_ice_sheet_cci” project is currently making past and present space measurements of Greenland ice sheet changes available for use by scientists, stakeholders and the general public. The data are part of a large set of ECV’s (Essential Climate Variables) made available by the ESA...... Climate Initiative, as a contribution to the global Climate Observing System. The ECV data produced for the Greenlandice sheet include detailed grids of elevation changes and ice flow velocities, as well as line data of grounding lines and calving front locations for major outlet glaciers. The “ice_sheets......_cci” goal is to generate a consistent, validated, long-term and timely set of ECV’s, a.o. to improve the impact of satellite data on climate research and coupled ice sheet/climate models. Special focus is on use of data from ESA missions such as ERS, Envisat and the new Sentinel missions, but in the 2nd...

  4. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier

    OpenAIRE

    Smith, J.A.; Andersen, T.J.; Shortt, M.; Gaffney, A.M.; Truffer, M.; Stanton, T.P.; Bindschadler, R.; Dutrieux, P.; Jenkins, A.; Hillenbrand, C.-D.; Ehrmann, W.; Corr, H.F.J.; Farley, N.; Crowhurst, S.; Vaughan, D.G.

    2016-01-01

    The article of record as published may be found at http://dx.doi.org/10.1038/nature20136 The West Antarctic Ice Sheet is one of the largest potential sources of rising sea levels. Over the past 40 years, glaciers flowing into the Amundsen Sea sector of the ice sheet have thinned at an accelerating rate, and several numerical models suggest that unstable and irreversible retreat of the grounding line—which marks the boundary between grounded ice and floating ice shelf—is underway. Under...

  5. Evolution of a Greenland Ice sheet Including Shelves and Regional Sea Level Variations

    Science.gov (United States)

    Bradley, Sarah; Reerink, Thomas; van de Wal, Roderik S. W.; Helsen, Michiel; Goelzer, Heiko

    2016-04-01

    Observational evidence, including offshore moraines and marine sediment cores infer that at the Last Glacial maximum (LGM) the Greenland ice sheet (GIS) grounded out across the Davis Strait into Baffin Bay, with fast flowing ice streams extending out to the continental shelf break along the NW margin. These observations lead to a number of questions as to weather the GIS and Laurentide ice sheet (LIS) coalesced during glacial maximums, and if so, did a significant ice shelf develop across Baffin Bay and how would such a configuration impact on the relative contribution of these ice sheets to eustatic sea level (ESL). Most previous paleo ice sheet modelling simulations of the GIS recreated an ice sheet that either did not extend out onto the continental shelf or utilised a simplified marine ice parameterisation to recreate an extended GIS, and therefore did not fully include ice shelf dynamics. In this study we simulate the evolution of the GIS from 220 kyr BP to present day using IMAU-ice; a 3D thermodynamical ice sheet model which fully accounts for grounded and floating ice, calculates grounding line migration and ice shelf dynamics. As there are few observational estimates of the long-term (yrs) sub marine basal melting rates (mbm) for the GIS, we developed a mbm parameterization within IMAU-ice controlled primarily by changes in paleo water depth. We also investigate the influence of the LIS on the GIS evolution by including relative sea level forcing's derived from a Glacial Isostatic Adjustment model. We will present results of how changes in the mbm directly impacts on the ice sheet dynamics, timing and spatial extent of the GIS at the glacial maximums, but also on the rate of retreat and spatial extent at the Last interglacial (LIG) minimum. Results indicate that with the inclusion of ice shelf dynamics, a larger GIS is generated which is grounded out into Davis strait, up to a water depth of -750 m, but significantly reduces the GIS contribution to Last

  6. Improved ice loss estimate of the northwestern Greenland ice sheet

    DEFF Research Database (Denmark)

    Kjeldsen, Kristian Kjellerup; Khan, Shfaqat Abbas; Wahr, J.

    2013-01-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003–2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change...... estimate, we supplement the ICESat data with altimeter surveys from NASA's Airborne Topographic Mapper from 2002 to 2010 and NASA's Land, Vegetation and Ice Sensor from 2010. The Airborne data are mainly concentrated along the ice margin and thus have a significant impact on the estimate of the volume...... change. Our results show that adding Airborne Topographic Mapper and Land, Vegetation and Ice Sensor data to the ICESat data increases the catchment-wide estimate of ice volume loss by 11%, mainly due to an improved volume loss estimate along the ice sheet margin. Furthermore, our results show...

  7. Greenland ice sheet mass balance: a review

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Aschwanden, Andy; Bjørk, Anders A.

    2015-01-01

    Over the past quarter of a century the Arctic has warmed more than any other region on Earth, causing a profound impact on the Greenland ice sheet (GrIS) and its contribution to the rise in global sea level. The loss of ice can be partitioned into processes related to surface mass balance...

  8. Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends

    Science.gov (United States)

    Schneider, David P.; Deser, Clara

    2017-09-01

    Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979-2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.

  9. Tropically driven and externally forced patterns of Antarctic sea ice change: reconciling observed and modeled trends

    Science.gov (United States)

    Schneider, David P.; Deser, Clara

    2018-06-01

    Recent work suggests that natural variability has played a significant role in the increase of Antarctic sea ice extent during 1979-2013. The ice extent has responded strongly to atmospheric circulation changes, including a deepened Amundsen Sea Low (ASL), which in part has been driven by tropical variability. Nonetheless, this increase has occurred in the context of externally forced climate change, and it has been difficult to reconcile observed and modeled Antarctic sea ice trends. To understand observed-model disparities, this work defines the internally driven and radiatively forced patterns of Antarctic sea ice change and exposes potential model biases using results from two sets of historical experiments of a coupled climate model compared with observations. One ensemble is constrained only by external factors such as greenhouse gases and stratospheric ozone, while the other explicitly accounts for the influence of tropical variability by specifying observed SST anomalies in the eastern tropical Pacific. The latter experiment reproduces the deepening of the ASL, which drives an increase in regional ice extent due to enhanced ice motion and sea surface cooling. However, the overall sea ice trend in every ensemble member of both experiments is characterized by ice loss and is dominated by the forced pattern, as given by the ensemble-mean of the first experiment. This pervasive ice loss is associated with a strong warming of the ocean mixed layer, suggesting that the ocean model does not locally store or export anomalous heat efficiently enough to maintain a surface environment conducive to sea ice expansion. The pervasive upper-ocean warming, not seen in observations, likely reflects ocean mean-state biases.

  10. Reconstructing the temperature regime of the Weichselian ice sheet

    Energy Technology Data Exchange (ETDEWEB)

    Holmlund, P. [Stockholm Univ. (Sweden). Dept. of Physical Geography

    1997-04-01

    Areas in Sweden are described, where the ice could have been at the pressure melting point during the last ice age. In order to calculate probable degrees of glacial erosion, estimates on the time of ice coverage and the temperature distribution in time are combined data on erosion rates from present day glaciers. An estimate of the extent of ice cover can be made using the proxy temperature record from the Greenland ice cores and a model of the ice sheet. Adding the estimations on climate and ice sheet shape outlined in this contribution, to erosion figures we may conclude that the crucial areas for glaciation erosion are within the mountains and where the present Baltic and the Gulf of Bothnia are situated. At these sites erosion rates of some tens of meters may have occurred. In inland northern Sweden and inland southern Sweden the potential for glacial erosion seems to be small. 14 refs.

  11. Reconstructing the temperature regime of the Weichselian ice sheet

    International Nuclear Information System (INIS)

    Holmlund, P.

    1997-01-01

    Areas in Sweden are described, where the ice could have been at the pressure melting point during the last ice age. In order to calculate probable degrees of glacial erosion, estimates on the time of ice coverage and the temperature distribution in time are combined data on erosion rates from present day glaciers. An estimate of the extent of ice cover can be made using the proxy temperature record from the Greenland ice cores and a model of the ice sheet. Adding the estimations on climate and ice sheet shape outlined in this contribution, to erosion figures we may conclude that the crucial areas for glaciation erosion are within the mountains and where the present Baltic and the Gulf of Bothnia are situated. At these sites erosion rates of some tens of meters may have occurred. In inland northern Sweden and inland southern Sweden the potential for glacial erosion seems to be small. 14 refs

  12. Simulation of the Greenland Ice Sheet over two glacial–interglacial cycles: investigating a sub-ice-shelf melt parameterization and relative sea level forcing in an ice-sheet–ice-shelf model

    Directory of Open Access Journals (Sweden)

    S. L. Bradley

    2018-05-01

    Full Text Available Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM the Greenland ice sheet (GrIS expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide Ice Sheet (LIS and Innuitian Ice Sheet (IIS, it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice-sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf or utilized a simplified marine ice parameterization which did not fully include the effect of ice shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial–interglacial cycles (240 ka BP to the present day using the ice-sheet–ice-shelf model IMAU-ICE. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL forcing generated by a glacial isostatic adjustment (GIA model. The RSL forcing governed the spatial and temporal pattern of sub-ice-shelf melting via changes in the water depth below the ice shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG and LGM the ice sheet added 1.46 and −2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (∼  1.26 m than most previous studies whereas the contribution to the LIG highstand is lower (∼  0.7 m. The spatial and temporal behaviour of the northern margin was

  13. Minimum and Maximum Potential Contributions to Future Sea Level Rise from Polar Ice Sheets

    Science.gov (United States)

    Deconto, R. M.; Pollard, D.

    2017-12-01

    New climate and ice-sheet modeling, calibrated to past changes in sea-level, is painting a stark picture of the future fate of the great polar ice sheets if greenhouse gas emissions continue unabated. This is especially true for Antarctica, where a substantial fraction of the ice sheet rests on bedrock more than 500-meters below sea level. Here, we explore the sensitivity of the polar ice sheets to a warming atmosphere and ocean under a range of future greenhouse gas emissions scenarios. The ice sheet-climate-ocean model used here considers time-evolving changes in surface mass balance and sub-ice oceanic melting, ice deformation, grounding line retreat on reverse-sloped bedrock (Marine Ice Sheet Instability), and newly added processes including hydrofracturing of ice shelves in response to surface meltwater and rain, and structural collapse of thick, marine-terminating ice margins with tall ice-cliff faces (Marine Ice Cliff Instability). The simulations improve on previous work by using 1) improved atmospheric forcing from a Regional Climate Model and 2) a much wider range of model physical parameters within the bounds of modern observations of ice dynamical processes (particularly calving rates) and paleo constraints on past ice-sheet response to warming. Approaches to more precisely define the climatic thresholds capable of triggering rapid and potentially irreversible ice-sheet retreat are also discussed, as is the potential for aggressive mitigation strategies like those discussed at the 2015 Paris Climate Conference (COP21) to substantially reduce the risk of extreme sea-level rise. These results, including physics that consider both ice deformation (creep) and calving (mechanical failure of marine terminating ice) expand on previously estimated limits of maximum rates of future sea level rise based solely on kinematic constraints of glacier flow. At the high end, the new results show the potential for more than 2m of global mean sea level rise by 2100

  14. Acoustic Gravity Waves Generated by an Oscillating Ice Sheet in Arctic Zone

    Science.gov (United States)

    Abdolali, A.; Kadri, U.; Kirby, J. T., Jr.

    2016-12-01

    We investigate the formation of acoustic-gravity waves due to oscillations of large ice blocks, possibly triggered by atmospheric and ocean currents, ice block shrinkage or storms and ice-quakes.For the idealized case of a homogeneous weakly compressible water bounded at the surface by ice sheet and a rigid bed, the description of the infinite family of acoustic modes is characterized by the water depth h and angular frequency of oscillating ice sheet ω ; The acoustic wave field is governed by the leading mode given by: Nmax=\\floor {(ω h)/(π c)} where c is the sound speed in water and the special brackets represent the floor function (Fig1). Unlike the free-surface setting, the higher acoustic modes might exhibit a larger contribution and therefore all progressive acoustic modes have to be considered.This study focuses on the characteristics of acoustic-gravity waves generated by an oscillating elastic ice sheet in a weakly compressible fluid coupled with a free surface model [Abdolali et al. 2015] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice sheets cause inter modal transition and multidirectional reflections. A theoretical solution and a 3D numerical model have been developed for the study purposes. The model is first validated against the theoretical solution [Kadri, 2016]. To overcome the computational difficulties of 3D models, we derive a depth-integrated equation valid for spatially varying ice sheet thickness and water depth. We show that the generated acoustic-gravity waves contribute significantly to deep ocean currents compared to other mechanisms. In addition, these waves travel at the sound speed in water carrying information on ice sheet motion, providing various implications for ocean monitoring and detection of ice-quakes. Fig1:Snapshots of dynamic pressure given by an oscillating ice sheet; h=4500m, c=1500m/s, semi-length b=10km, ζ =1m, omega=π rad/s. Abdolali, A., Kirby, J. T. and Bellotti, G

  15. Exploring the sensitivity of global ocean circulation to future ice loss from Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Condron, Alan [Univ. of Massachusetts, Amherst, MA (United States); Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA (United States)

    2017-09-30

    The sensitivity of the global ocean circulation and climate to large increases in iceberg calving and meltwater discharges from the Antarctic Ice Sheet (AIS) are rarely studied and poorly understood. The requirement to investigate this topic is heightened by growing evidence that the West Antarctic Ice Sheet (WAIS) is vulnerable to rapid retreat and collapse on multidecadal-to-centennial timescales. Observations collected over the last 30 years indicate that the WAIS is now losing mass at an accelerated and that a collapse may have already begun in the Amundsen Sea sector. In addition, some recent future model simulations of the AIS show the potential for rapid ice sheet retreat in the next 50 – 300 years. Such a collapse would be associated with the discharge of enormous volumes of ice and meltwater to the Southern Ocean. This project funds PI Condron to begin assessing the sensitivity of the global ocean circulation to projected increases in meltwater discharge and iceberg calving from the AIS for the next 50 – 100 years. A series of climate model simulations will determine changes in ocean circulation and temperature at the ice sheet grounding line, the role of mesoscale ocean eddies in mixing and transporting freshwater away from the continent to deep water formation regions, and the likely impact on the northward transport of heat to Europe and North America.

  16. Assessing the Impact of Laurentide Ice-sheet Topography on Glacial Climate

    Science.gov (United States)

    Ullman, D. J.; LeGrande, A. N.; Carlson, A. E.; Anslow, F. S.; Licciardi, J. M.

    2014-01-01

    Simulations of past climates require altered boundary conditions to account for known shifts in the Earth system. For the Last Glacial Maximum (LGM) and subsequent deglaciation, the existence of large Northern Hemisphere ice sheets caused profound changes in surface topography and albedo. While ice-sheet extent is fairly well known, numerous conflicting reconstructions of ice-sheet topography suggest that precision in this boundary condition is lacking. Here we use a high-resolution and oxygen-isotopeenabled fully coupled global circulation model (GCM) (GISS ModelE2-R), along with two different reconstructions of the Laurentide Ice Sheet (LIS) that provide maximum and minimum estimates of LIS elevation, to assess the range of climate variability in response to uncertainty in this boundary condition.We present this comparison at two equilibrium time slices: the LGM, when differences in ice-sheet topography are maximized, and 14 ka, when differences in maximum ice-sheet height are smaller but still exist. Overall, we find significant differences in the climate response to LIS topography, with the larger LIS resulting in enhanced Atlantic Meridional Overturning Circulation and warmer surface air temperatures, particularly over northeastern Asia and the North Pacific. These up- and downstream effects are associated with differences in the development of planetary waves in the upper atmosphere, with the larger LIS resulting in a weaker trough over northeastern Asia that leads to the warmer temperatures and decreased albedo from snow and sea-ice cover. Differences between the 14 ka simulations are similar in spatial extent but smaller in magnitude, suggesting that climate is responding primarily to the larger difference in maximum LIS elevation in the LGM simulations. These results suggest that such uncertainty in ice-sheet boundary conditions alone may significantly impact the results of paleoclimate simulations and their ability to successfully simulate past climates

  17. Variable Basal Melt Rates of Antarctic Peninsula Ice Shelves, 1994-2016

    Science.gov (United States)

    Adusumilli, Susheel; Fricker, Helen Amanda; Siegfried, Matthew R.; Padman, Laurie; Paolo, Fernando S.; Ligtenberg, Stefan R. M.

    2018-05-01

    We have constructed 23-year (1994-2016) time series of Antarctic Peninsula (AP) ice-shelf height change using data from four satellite radar altimeters (ERS-1, ERS-2, Envisat, and CryoSat-2). Combining these time series with output from atmospheric and firn models, we partitioned the total height-change signal into contributions from varying surface mass balance, firn state, ice dynamics, and basal mass balance. On the Bellingshausen coast of the AP, ice shelves lost 84 ± 34 Gt a-1 to basal melting, compared to contributions of 50 ± 7 Gt a-1 from surface mass balance and ice dynamics. Net basal melting on the Weddell coast was 51 ± 71 Gt a-1. Recent changes in ice-shelf height include increases over major AP ice shelves driven by changes in firn state. Basal melt rates near Bawden Ice Rise, a major pinning point of Larsen C Ice Shelf, showed large increases, potentially leading to substantial loss of buttressing if sustained.

  18. Outreach/education interface for Cryosphere models using the Virtual Ice Sheet Laboratory

    Science.gov (United States)

    Larour, E. Y.; Halkides, D. J.; Romero, V.; Cheng, D. L.; Perez, G.

    2014-12-01

    In the past decade, great strides have been made in the development of models capable of projecting the future evolution of glaciers and the polar ice sheets in a changing climate. These models are now capable of replicating some of the trends apparent in satellite observations. However, because this field is just now maturing, very few efforts have been dedicated to adapting these capabilities to education. Technologies that have been used in outreach efforts in Atmospheric and Oceanic sciences still have not been extended to Cryospheric Science. We present a cutting-edge, technologically driven virtual laboratory, geared towards outreach and k-12 education, dedicated to the polar ice sheets on Antarctica and Greenland, and their role as major contributors to sea level rise in coming decades. VISL (Virtual Ice Sheet Laboratory) relies on state-of-the art Web GL rendering of polar ice sheets, Android/iPhone and web portability using Javascript, as well as C++ simulations (back-end) based on the Ice Sheet System Model, the NASA model for simulating the evolution of polar ice sheets. Using VISL, educators and students can have an immersive experience into the world of polar ice sheets, while at the same exercising the capabilities of a state-of-the-art climate model, all of it embedded into an education experience that follows the new STEM standards for education.This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  19. Detailed ice loss pattern in the northern Antarctic Peninsula : Widespread decline driven by ice front retreats

    NARCIS (Netherlands)

    Scambos, T. A.; Berthier, E.; Haran, T.; Shuman, C. A.; Cook, A. J.; Ligtenberg, S. R M; Bohlander, J.

    2014-01-01

    The northern Antarctic Peninsula (nAP, < 66° S) is one of the most rapidly changing glaciated regions on earth, yet the spatial patterns of its ice mass loss at the glacier basin scale have to date been poorly documented. We use satellite laser altimetry and satellite stereo-image topography

  20. Movement of Trace Elements During Residence in the Antarctic Ice: a Laboratory Simulation

    Science.gov (United States)

    Strait, Melissa M.

    1991-01-01

    Recent work has determined that differences in the trace element distribution between Antarctic eucrites and non-Antarctic eucrites may be due to weathering during residence in the ice, and samples that demonstrate trace element disturbances do not necessarily correspond to eucrites that appear badly weathered to the naked eye. This study constitutes a preliminary test of the idea that long-term residence in the ice is the cause of the trace element disturbances observed in the eucrites. Samples of a non-Antarctic eucrite were leached in water at room temperature conditions. Liquid samples were analyzed for rare earth element abundances using ion chromatography. The results for the short-term study showed little or no evidence that leaching had occurred. However, there were tantalizing hints that something may be happening. The residual solid samples are currently being analyzed for the unleached trace metals using instrumental neutron activation analysis and should show evidence of disturbance if the chromatography clues were real. In addition, another set of samples continues to be intermittently sampled for later analysis. The results should give us information about the movement of trace elements under our conditions and allow us to make some tentative extrapolations to what we observe in actual Antarctic eucrite samples.

  1. Measurement of the fracture toughness of polycrystalline bubbly ice from an Antarctic ice core

    Directory of Open Access Journals (Sweden)

    J. Christmann

    2015-05-01

    Full Text Available The critical fracture toughness is a material parameter describing the resistance of a cracked body to further crack extension. It is an important parameter for simulating and predicting the breakup behavior of ice shelves from the calving of single icebergs to the disintegration of entire ice shelves over a wide range of length scales. The fracture toughness values are calculated with equations that are derived from an elastic stress analysis. Additionally, an X-ray computer tomography (CT scanner was used to identify the density as a function of depth. The critical fracture toughness of 91 Antarctic bubbly ice samples with densities between 840 and 870 kg m−3 has been determined by applying a four-point bending technique on single-edge v-notched beam samples. The examined ice core was drilled 70 m north of Kohnen Station, Dronnning Maud Land (75°00' S, 00°04' E; 2882 m. Supplementary data are available at doi:10.1594/PANGAEA.835321.

  2. On the reconstruction of palaeo-ice sheets: Recent advances and future challenges

    Science.gov (United States)

    Stokes, Chris R.; Tarasov, Lev; Blomdin, Robin; Cronin, Thomas M.; Fisher, Timothy G.; Gyllencreutz, Richard; Hattestrand, Clas; Heyman, Jakob; Hindmarsh, Richard C. A.; Hughes, Anna L. C.; Jakobsson, Martin; Kirchner, Nina; Livingstone, Stephen J.; Margold, Martin; Murton, Julian B.; Noormets, Riko; Peltier, W. Richard; Peteet, Dorothy M.; Piper, David J. W.; Preusser, Frank; Renssen, Hans; Roberts, David H.; Roche, Didier M.; Saint-Ange, Francky; Stroeven, Arjen P.; Teller, James T.

    2015-01-01

    Reconstructing the growth and decay of palaeo-ice sheets is critical to understanding mechanisms of global climate change and associated sea-level fluctuations in the past, present and future. The significance of palaeo-ice sheets is further underlined by the broad range of disciplines concerned with reconstructing their behaviour, many of which have undergone a rapid expansion since the 1980s. In particular, there has been a major increase in the size and qualitative diversity of empirical data used to reconstruct and date ice sheets, and major improvements in our ability to simulate their dynamics in numerical ice sheet models. These developments have made it increasingly necessary to forge interdisciplinary links between sub-disciplines and to link numerical modelling with observations and dating of proxy records. The aim of this paper is to evaluate recent developments in the methods used to reconstruct ice sheets and outline some key challenges that remain, with an emphasis on how future work might integrate terrestrial and marine evidence together with numerical modelling. Our focus is on pan-ice sheet reconstructions of the last deglaciation, but regional case studies are used to illustrate methodological achievements, challenges and opportunities. Whilst various disciplines have made important progress in our understanding of ice-sheet dynamics, it is clear that data-model integration remains under-used, and that uncertainties remain poorly quantified in both empirically-based and numerical ice-sheet reconstructions. The representation of past climate will continue to be the largest source of uncertainty for numerical modelling. As such, palaeo-observations are critical to constrain and validate modelling. State-of-the-art numerical models will continue to improve both in model resolution and in the breadth of inclusion of relevant processes, thereby enabling more accurate and more direct comparison with the increasing range of palaeo-observations. Thus

  3. Temporal and spatial variabilities of Antarctic ice mass changes inferred by GRACE in a Bayesian framework

    Science.gov (United States)

    Wang, L.; Davis, J. L.; Tamisiea, M. E.

    2017-12-01

    The Antarctic ice sheet (AIS) holds about 60% of all fresh water on the Earth, an amount equivalent to about 58 m of sea-level rise. Observation of AIS mass change is thus essential in determining and predicting its contribution to sea level. While the ice mass loss estimates for West Antarctica (WA) and the Antarctic Peninsula (AP) are in good agreement, what the mass balance over East Antarctica (EA) is, and whether or not it compensates for the mass loss is under debate. Besides the different error sources and sensitivities of different measurement types, complex spatial and temporal variabilities would be another factor complicating the accurate estimation of the AIS mass balance. Therefore, a model that allows for variabilities in both melting rate and seasonal signals would seem appropriate in the estimation of present-day AIS melting. We present a stochastic filter technique, which enables the Bayesian separation of the systematic stripe noise and mass signal in decade-length GRACE monthly gravity series, and allows the estimation of time-variable seasonal and inter-annual components in the signals. One of the primary advantages of this Bayesian method is that it yields statistically rigorous uncertainty estimates reflecting the inherent spatial resolution of the data. By applying the stochastic filter to the decade-long GRACE observations, we present the temporal variabilities of the AIS mass balance at basin scale, particularly over East Antarctica, and decipher the EA mass variations in the past decade, and their role in affecting overall AIS mass balance and sea level.

  4. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction

    NARCIS (Netherlands)

    Ivins, E.R.; James, T.S.; Wahr, J.; Schrama, E.J.O.; Landerer, F.W.; Simon, K.M.

    2013-01-01

    Antarctic volume changes during the past 21 thousand years are smaller than previously thought, and here we construct an ice sheet history that drives a forward model prediction of the glacial isostatic adjustment (GIA) gravity signal. The new model, in turn, should give predictions that are

  5. Generation of a new Greenland Ice Sheet Digital Elevation Model

    DEFF Research Database (Denmark)

    Nagarajan, Sudhagar; Csatho, Beata M; Schenk, Anton F

    conditions, by fusing a photoclinometry DEM, SPOT and ASTER DEMs as well as elevations from ICESat, ATM and LVIS laser altimetry. The new multi-resolution DEM has a resolution of 40 m x 40 m in the marginal ice sheet regions and 250 m elsewhere. The ice sheet margin is mapped from SPOT and Landsat imagery...

  6. The state of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Simonsen, Sebastian Bjerregaard

    Firn is defined as snow that has survived a melt season and provides the link between the high-frequency variability of the atmosphere to the ”slower” reacting ice sheet.In this thesis, firn is described by a theoretical and statistical approach to accommodate the variability in observed firn...... compaction on ice sheet scales. The modeling objectives are multiple and aim at estimating the contribution from the firn to the observed volume change of the GrIS and to the diffusion of stable water isotopes. The firn modeling then provides crucial information on total mass balance of the Gr......IS and the paleo-temperature reconstructions retrieved from ice cores.The dynamical firn model developed in this thesis explains13 % of the observed volume change of the GrIS from 2003-2008, without contributing to the global sea-level rise. This emphasizes the need for well constraint firn-compaction models. Here...

  7. Ice Algae-Produced Carbon Is Critical for Overwintering of Antarctic Krill Euphausia superba

    Directory of Open Access Journals (Sweden)

    Doreen Kohlbach

    2017-09-01

    Full Text Available Antarctic krill Euphausia superba (“krill” constitute a fundamental food source for Antarctic seabirds and mammals, and a globally important fisheries resource. The future resilience of krill to climate change depends critically on the winter survival of young krill. To survive periods of extremely low production by pelagic algae during winter, krill are assumed to rely partly on carbon produced by ice algae. The true dependency on ice algae-produced carbon, however, is so far unquantified. This confounds predictions on the future resilience of krill stocks to sea ice decline. Fatty acid (FA analysis, bulk stable isotope analysis (BSIA, and compound-specific stable isotope analysis (CSIA of diatom- and dinoflagellate-associated marker FAs were applied to quantify the dependency of overwintering larval, juvenile, and adult krill on ice algae-produced carbon (αIce during winter 2013 in the Weddell-Scotia Confluence Zone. Our results demonstrate that the majority of the carbon uptake of the overwintering larval and juvenile krill originated from ice algae (up to 88% of the carbon budget, and that the dependency on ice algal carbon decreased with ontogeny, reaching <56% of the carbon budget in adults. Spatio-temporal variability in the utilization of ice algal carbon was more pronounced in larvae and juvenile krill than in adults. Differences between αIce estimates derived from short- vs. long-term FA-specific isotopic compositions suggested that ice algae-produced carbon gained importance as the winter progressed, and might become critical at the late winter-spring transition, before the phytoplankton bloom commences. Where the sea ice season shortens, reduced availability of ice algae might possibly not be compensated by surplus phytoplankton production during wintertime. Hence, sea ice decline could seriously endanger the winter survival of recruits, and subsequently overall biomass of krill.

  8. Satellite Remote Sensing of Snow Depth on Antarctic Sea Ice: An Inter-Comparison of Two Empirical Approaches

    Directory of Open Access Journals (Sweden)

    Stefan Kern

    2016-05-01

    Full Text Available Snow on Antarctic sea ice plays a key role for sea ice physical processes and complicates retrieval of sea ice thickness using altimetry. Current methods of snow depth retrieval are based on satellite microwave radiometry, which perform best for dry, homogeneous snow packs on level sea ice. We introduce an alternative approach based on in-situ measurements of total (sea ice plus snow freeboard and snow depth, which we use to compute snow depth on sea ice from Ice, Cloud, and land Elevation Satellite (ICESat total freeboard observations. We compare ICESat snow depth for early winter and spring of the years 2004 through 2006 with the Advanced Scanning Microwave Radiometer aboard EOS (AMSR-E snow depth product. We find ICESat snow depths agree more closely with ship-based visual and air-borne snow radar observations than AMSR-E snow depths. We obtain average modal and mean ICESat snow depths, which exceed AMSR-E snow depths by 5–10 cm in winter and 10–15 cm in spring. We observe an increase in ICESat snow depth from winter to spring for most Antarctic regions in accordance with ground-based observations, in contrast to AMSR-E snow depths, which we find to stay constant or to decrease. We suggest satellite laser altimetry as an alternative method to derive snow depth on Antarctic sea ice, which is independent of snow physical properties.

  9. MIS-11 duration key to disappearance of the Greenland ice sheet

    Science.gov (United States)

    Robinson, Alexander; Alvarez-Solas, Jorge; Calov, Reinhard; Ganopolski, Andrey; Montoya, Marisa

    2017-07-01

    Palaeo data suggest that Greenland must have been largely ice free during Marine Isotope Stage 11 (MIS-11). However, regional summer insolation anomalies were modest during this time compared to MIS-5e, when the Greenland ice sheet likely lost less volume. Thus it remains unclear how such conditions led to an almost complete disappearance of the ice sheet. Here we use transient climate-ice sheet simulations to simultaneously constrain estimates of regional temperature anomalies and Greenland's contribution to the MIS-11 sea-level highstand. We find that Greenland contributed 6.1 m (3.9-7.0 m, 95% credible interval) to sea level, ~7 kyr after the peak in regional summer temperature anomalies of 2.8 °C (2.1-3.4 °C). The moderate warming produced a mean rate of mass loss in sea-level equivalent of only around 0.4 m per kyr, which means the long duration of MIS-11 interglacial conditions around Greenland was a necessary condition for the ice sheet to disappear almost completely.

  10. The Potsdam Parallel Ice Sheet Model (PISM-PIK) - Part 1: Model description

    Science.gov (United States)

    Winkelmann, R.; Martin, M. A.; Haseloff, M.; Albrecht, T.; Bueler, E.; Khroulev, C.; Levermann, A.

    2011-09-01

    We present the Potsdam Parallel Ice Sheet Model (PISM-PIK), developed at the Potsdam Institute for Climate Impact Research to be used for simulations of large-scale ice sheet-shelf systems. It is derived from the Parallel Ice Sheet Model (Bueler and Brown, 2009). Velocities are calculated by superposition of two shallow stress balance approximations within the entire ice covered region: the shallow ice approximation (SIA) is dominant in grounded regions and accounts for shear deformation parallel to the geoid. The plug-flow type shallow shelf approximation (SSA) dominates the velocity field in ice shelf regions and serves as a basal sliding velocity in grounded regions. Ice streams can be identified diagnostically as regions with a significant contribution of membrane stresses to the local momentum balance. All lateral boundaries in PISM-PIK are free to evolve, including the grounding line and ice fronts. Ice shelf margins in particular are modeled using Neumann boundary conditions for the SSA equations, reflecting a hydrostatic stress imbalance along the vertical calving face. The ice front position is modeled using a subgrid-scale representation of calving front motion (Albrecht et al., 2011) and a physically-motivated calving law based on horizontal spreading rates. The model is tested in experiments from the Marine Ice Sheet Model Intercomparison Project (MISMIP). A dynamic equilibrium simulation of Antarctica under present-day conditions is presented in Martin et al. (2011).

  11. Constraining ice sheet history in the Weddell Sea, West Antarctica, using ice fabric at Korff Ice Rise

    Science.gov (United States)

    Brisbourne, A.; Smith, A.; Kendall, J. M.; Baird, A. F.; Martin, C.; Kingslake, J.

    2017-12-01

    The grounding history of ice rises (grounded area of independent flow regime within a floating ice shelf) can be used to constrain large scale ice sheet history: ice fabric, resulting from the preferred orientation of ice crystals due to the stress regime, can be used to infer this grounding history. With the aim of measuring the present day ice fabric at Korff Ice Rise, West Antarctica, a multi-azimuth wide-angle seismic experiment was undertaken. Three wide-angle common-midpoint gathers were acquired centred on the apex of the ice rise, at azimuths of 60 degrees to one another, to measure variation in seismic properties with offset and azimuth. Both vertical and horizontal receivers were used to record P and S arrivals including converted phases. Measurements of the variation with offset and azimuth of seismic traveltimes, seismic attenuation and shear wave splitting have been used to quantify seismic anisotropy in the ice column. The observations cannot be reproduced using an isotropic ice column model. Anisotropic ray tracing has been used to test likely models of ice fabric by comparison with the data. A model with a weak girdle fabric overlying a strong cluster fabric provides the best fit to the observations. Fabric of this nature is consistent with Korff Ice Rise having been stable for the order of 10,000 years without any ungrounding or significant change in the ice flow configuration across the ice rise for this period. This observation has significant implications for the ice sheet history of the Weddell Sea sector.

  12. Greenland Regional and Ice Sheet-wide Geometry Sensitivity to Boundary and Initial conditions

    Science.gov (United States)

    Logan, L. C.; Narayanan, S. H. K.; Greve, R.; Heimbach, P.

    2017-12-01

    Ice sheet and glacier model outputs require inputs from uncertainly known initial and boundary conditions, and other parameters. Conservation and constitutive equations formalize the relationship between model inputs and outputs, and the sensitivity of model-derived quantities of interest (e.g., ice sheet volume above floatation) to model variables can be obtained via the adjoint model of an ice sheet. We show how one particular ice sheet model, SICOPOLIS (SImulation COde for POLythermal Ice Sheets), depends on these inputs through comprehensive adjoint-based sensitivity analyses. SICOPOLIS discretizes the shallow-ice and shallow-shelf approximations for ice flow, and is well-suited for paleo-studies of Greenland and Antarctica, among other computational domains. The adjoint model of SICOPOLIS was developed via algorithmic differentiation, facilitated by the source transformation tool OpenAD (developed at Argonne National Lab). While model sensitivity to various inputs can be computed by costly methods involving input perturbation simulations, the time-dependent adjoint model of SICOPOLIS delivers model sensitivities to initial and boundary conditions throughout time at lower cost. Here, we explore both the sensitivities of the Greenland Ice Sheet's entire and regional volumes to: initial ice thickness, precipitation, basal sliding, and geothermal flux over the Holocene epoch. Sensitivity studies such as described here are now accessible to the modeling community, based on the latest version of SICOPOLIS that has been adapted for OpenAD to generate correct and efficient adjoint code.

  13. Significance of Thermal Fluvial Incision and Bedrock Transfer due to Ice Advection on Greenland Ice Sheet Topography

    Science.gov (United States)

    Crozier, J. A.; Karlstrom, L.; Yang, K.

    2017-12-01

    Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream

  14. Ice Sheet System Model as Educational Entertainment

    Science.gov (United States)

    Perez, G.

    2013-12-01

    Understanding the importance of polar ice sheets and their role in the evolution of Sea Level Rise (SLR), as well as Climate Change, is of paramount importance for policy makers as well as the public and schools at large. For example, polar ice sheets and glaciers currently account for 1/3 of the SLR signal, a ratio that will increase in the near to long-term future, which has tremendous societal ramifications. Consequently, it is important to increase awareness about our changing planet. In our increasingly digital society, mobile and web applications are burgeoning venues for such outreach. The Ice Sheet System Model (ISSM) is a software that was developed at the Jet Propulsion Laboratory/CalTech/NASA, in collaboration with University of California Irvine (UCI), with the goal of better understanding the evolution of polar ice sheets. It is a state-of-the-art framework, which relies on higher-end cluster-computing to address some of the aforementioned challenges. In addition, it is a flexible framework that can be deployed on any hardware; in particular, on mobile platforms such as Android or iOS smart phones. Here, we look at how the ISSM development team managed to port their model to these platforms, what the implications are for improving how scientists disseminate their results, and how a broader audience may familiarize themselves with running complex climate models in simplified scenarios which are highly educational and entertaining in content. We also look at the future plans toward a web portal fully integrated with mobile technologies to deliver the best content to the public, and to provide educational plans/lessons that can be used in grades K-12 as well as collegiate under-graduate and graduate programs.

  15. An investigation of the astronomical theory of the ice ages using a simple climate-ice sheet model

    Science.gov (United States)

    Pollard, D.

    1978-01-01

    The astronomical theory of the Quaternary ice ages is incorporated into a simple climate model for global weather; important features of the model include the albedo feedback, topography and dynamics of the ice sheets. For various parameterizations of the orbital elements, the model yields realistic assessments of the northern ice sheet. Lack of a land-sea heat capacity contrast represents one of the chief difficulties of the model.

  16. Sympagic occurrence of Eusirid and Lysianassoid amphipods under Antarctic pack ice

    NARCIS (Netherlands)

    Krapp, Rupert H.; Berge, Jorgen; Flores, Hauke; Gulliksen, Bjorn; Werner, Iris

    2008-01-01

    During three Antarctic expeditions (2004, ANT XXI-4 and XXII-2; 2006, ANT XXIII-6) with the German research icebreaker R/V Polarstern, six different amphipod species were recorded under the pack ice of the Weddell Sea and the Lazarev Sea. These cruises covered Austral autumn (April), summer

  17. The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation

    Science.gov (United States)

    Lofverstrom, Marcus; Liakka, Johan

    2018-04-01

    Coupled climate-ice sheet simulations have been growing in popularity in recent years. Experiments of this type are however challenging as ice sheets evolve over multi-millennial timescales, which is beyond the practical integration limit of most Earth system models. A common method to increase model throughput is to trade resolution for computational efficiency (compromise accuracy for speed). Here we analyze how the resolution of an atmospheric general circulation model (AGCM) influences the simulation quality in a stand-alone ice sheet model. Four identical AGCM simulations of the Last Glacial Maximum (LGM) were run at different horizontal resolutions: T85 (1.4°), T42 (2.8°), T31 (3.8°), and T21 (5.6°). These simulations were subsequently used as forcing of an ice sheet model. While the T85 climate forcing reproduces the LGM ice sheets to a high accuracy, the intermediate resolution cases (T42 and T31) fail to build the Eurasian ice sheet. The T21 case fails in both Eurasia and North America. Sensitivity experiments using different surface mass balance parameterizations improve the simulations of the Eurasian ice sheet in the T42 case, but the compromise is a substantial ice buildup in Siberia. The T31 and T21 cases do not improve in the same way in Eurasia, though the latter simulates the continent-wide Laurentide ice sheet in North America. The difficulty to reproduce the LGM ice sheets in the T21 case is in broad agreement with previous studies using low-resolution atmospheric models, and is caused by a substantial deterioration of the model climate between the T31 and T21 resolutions. It is speculated that this deficiency may demonstrate a fundamental problem with using low-resolution atmospheric models in these types of experiments.

  18. Long term ice sheet mass change rates and inter-annual variability from GRACE gravimetry.

    Science.gov (United States)

    Harig, C.

    2017-12-01

    The GRACE time series of gravimetry now stretches 15 years since its launch in 2002. Here we use Slepian functions to estimate the long term ice mass trends of Greenland, Antarctica, and several glaciated regions. The spatial representation shows multi-year to decadal regional shifts in accelerations, in agreement with increases in radar derived ice velocity. Interannual variations in ice mass are of particular interest since they can directly link changes in ice sheets to the drivers of change in the polar ocean and atmosphere. The spatial information retained in Slepian functions provides a tool to determine how this link varies in different regions within an ice sheet. We present GRACE observations of the 2013-2014 slowdown in mass loss of the Greenland ice sheet, which was concentrated in specific parts of the ice sheet and in certain months of the year. We also discuss estimating the relative importance of climate factors that control ice mass balance, as a function of location of the glacier/ice cap as well as the spatial variation within an ice sheet by comparing gravimetry with observations of surface air temperature, ocean temperature, etc. as well as model data from climate reanalysis products.

  19. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction

    Science.gov (United States)

    Ivins, Erik R.; James, Thomas S.; Wahr, John; Schrama, Ernst J. O.; Landerer, Felix W.; Simon, Karen M.

    2013-06-01

    Antarctic volume changes during the past 21 thousand years are smaller than previously thought, and here we construct an ice sheet history that drives a forward model prediction of the glacial isostatic adjustment (GIA) gravity signal. The new model, in turn, should give predictions that are constrained with recent uplift data. The impact of the GIA signal on a Gravity Recovery and Climate Experiment (GRACE) Antarctic mass balance estimate depends on the specific GRACE analysis method used. For the method described in this paper, the GIA contribution to the apparent surface mass change is re-evaluated to be +55±13 Gt/yr by considering a revised ice history model and a parameter search for vertical motion predictions that best fit the GPS observations at 18 high-quality stations. Although the GIA model spans a range of possible Earth rheological structure values, the data are not yet sufficient for solving for a preferred value of upper and lower mantle viscosity nor for a preferred lithospheric thickness. GRACE monthly solutions from the Center for Space Research Release 04 (CSR-RL04) release time series from January 2003 to the beginning of January 2012, uncorrected for GIA, yield an ice mass rate of +2.9± 29 Gt/yr. The new GIA correction increases the solved-for ice mass imbalance of Antarctica to -57±34 Gt/yr. The revised GIA correction is smaller than past GRACE estimates by about 50 to 90 Gt/yr. The new upper bound to the sea level rise from the Antarctic ice sheet, averaged over the time span 2003.0-2012.0, is about 0.16±0.09 mm/yr.

  20. A new heat flux model for the Antarctic Peninsula incorporating spatially variable upper crustal radiogenic heat production

    Science.gov (United States)

    Burton-Johnson, A.; Halpin, J.; Whittaker, J. M.; Graham, F. S.; Watson, S. J.

    2017-12-01

    We present recently published findings (Burton-Johnson et al., 2017) on the variability of Antarctic sub-glacial heat flux and the impact from upper crustal geology. Our new method reveals that the upper crust contributes up to 70% of the Antarctic Peninsula's subglacial heat flux, and that heat flux values are more variable at smaller spatial resolutions than geophysical methods can resolve. Results indicate a higher heat flux on the east and south of the Peninsula (mean 81 mWm-2) where silicic rocks predominate, than on the west and north (mean 67 mWm-2) where volcanic arc and quartzose sediments are dominant. Whilst the data supports the contribution of HPE-enriched granitic rocks to high heat flux values, sedimentary rocks can be of comparative importance dependent on their provenance and petrography. Models of subglacial heat flux must utilize a heterogeneous upper crust with variable radioactive heat production if they are to accurately predict basal conditions of the ice sheet. Our new methodology and dataset facilitate improved numerical model simulations of ice sheet dynamics. The most significant challenge faced remains accurate determination of crustal structure, particularly the depths of the HPE-enriched sedimentary basins and the sub-glacial geology away from exposed outcrops. Continuing research (particularly detailed geophysical interpretation) will better constrain these unknowns and the effect of upper crustal geology on the Antarctic ice sheet. Burton-Johnson, A., Halpin, J.A., Whittaker, J.M., Graham, F.S., and Watson, S.J., 2017, A new heat flux model for the Antarctic Peninsula incorporating spatially variable upper crustal radiogenic heat production: Geophysical Research Letters, v. 44, doi: 10.1002/2017GL073596.

  1. Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6

    NARCIS (Netherlands)

    Nowicki, Sophie M J; Payne, Anthony; Larour, Eric; Seroussi, Helene; Goelzer, Heiko|info:eu-repo/dai/nl/412549123; Lipscomb, William; Gregory, Jonathan; Abe-Ouchi, Ayako; Shepherd, Andrew

    2016-01-01

    Reducing the uncertainty in the past, present, and future contribution of ice sheets to sea-level change requires a coordinated effort between the climate and glaciology communities. The Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) is the primary activity within the Coupled Model

  2. Propagation of acoustic-gravity waves in arctic zones with elastic ice-sheets

    Science.gov (United States)

    Kadri, Usama; Abdolali, Ali; Kirby, James T.

    2017-04-01

    We present an analytical solution of the boundary value problem of propagating acoustic-gravity waves generated in the ocean by earthquakes or ice-quakes in arctic zones. At the surface, we assume elastic ice-sheets of a variable thickness, and show that the propagating acoustic-gravity modes have different mode shape than originally derived by Ref. [1] for a rigid ice-sheet settings. Computationally, we couple the ice-sheet problem with the free surface model by Ref. [2] representing shrinking ice blocks in realistic sea state, where the randomly oriented ice-sheets cause inter modal transition at the edges and multidirectional reflections. We then derive a depth-integrated equation valid for spatially slowly varying thickness of ice-sheet and water depth. Surprisingly, and unlike the free-surface setting, here it is found that the higher acoustic-gravity modes exhibit a larger contribution. These modes travel at the speed of sound in water carrying information on their source, e.g. ice-sheet motion or submarine earthquake, providing various implications for ocean monitoring and detection of quakes. In addition, we found that the propagating acoustic-gravity modes can result in orbital displacements of fluid parcels sufficiently high that may contribute to deep ocean currents and circulation, as postulated by Refs. [1, 3]. References [1] U. Kadri, 2016. Generation of Hydroacoustic Waves by an Oscillating Ice Block in Arctic Zones. Advances in Acoustics and Vibration, 2016, Article ID 8076108, 7 pages http://dx.doi.org/10.1155/2016/8076108 [2] A. Abdolali, J. T. Kirby and G. Bellotti, 2015, Depth-integrated equation for hydro-acoustic waves with bottom damping, J. Fluid Mech., 766, R1 doi:10.1017/jfm.2015.37 [3] U. Kadri, 2014. Deep ocean water transportation by acoustic?gravity waves. J. Geophys. Res. Oceans, 119, doi:10.1002/ 2014JC010234

  3. The Distribution of Basal Water Beneath the Greenland Ice Sheet from Radio-Echo Sounding

    Science.gov (United States)

    Jordan, T.; Williams, C.; Schroeder, D. M.; Martos, Y. M.; Cooper, M.; Siegert, M. J.; Paden, J. D.; Huybrechts, P.; Bamber, J. L.

    2017-12-01

    There is widespread, but often indirect, evidence that a significant fraction of the Greenland Ice Sheet is thawed at the bed. This includes major outlet glaciers and around the NorthGRIP ice-core in the interior. However, the ice-sheet-wide distribution of basal water is poorly constrained by existing observations, and the spatial relationship between basal water and other ice-sheet and subglacial properties is therefore largely unexplored. In principle, airborne radio-echo sounding (RES) surveys provide the necessary information and spatial coverage to infer the presence of basal water at the ice-sheet scale. However, due to uncertainty and spatial variation in radar signal attenuation, the commonly used water diagnostic, bed-echo reflectivity, is highly ambiguous and prone to spatial bias. Here we introduce a new RES diagnostic for the presence of basal water which incorporates both sharp step-transitions and rapid fluctuations in bed-echo reflectivity. This has the advantage of being (near) independent of attenuation model, and enables a decade of recent Operation Ice Bride RES survey data to be combined in a single map for basal water. The ice-sheet-wide water predictions are compared with: bed topography and drainage network structure, existing knowledge of the thermal state and geothermal heat flux, and ice velocity. In addition to the fast flowing ice-sheet margins, we also demonstrate widespread water routing and storage in parts of the slow-flowing northern interior. Notably, this includes a quasi-linear `corridor' of basal water, extending from NorthGRIP to Petermann glacier, which spatially correlates with a region of locally high (magnetic-derived) geothermal heat flux. The predicted water distribution places a new constraint upon the basal thermal state of the Greenland Ice Sheet, and could be used as an input for ice-sheet model simulations.

  4. Airborne Laser Altimetry Mapping of the Greenland Ice Sheet: Application to Mass Balance Assessment

    Science.gov (United States)

    Abdalati, W.; Krabill, W.; Frederick, E.; Manizade, S.; Martin, C.; Sonntag, J.; Swift, R.; Thomas, R.; Wright, W.; Yungel, J.

    2000-01-01

    In 1998 and '99, the Arctic Ice Mapping (AIM) program completed resurveys of lines occupied 5 years earlier revealing elevation changes of the Greenland ice sheet and identifying areas of significant thinning, thickening and balance. In planning these surveys, consideration had to be given to the spatial constraints associated with aircraft operation, the spatial nature of ice sheet behavior, and limited resources, as well as temporal issues, such as seasonal and interannual variability in the context of measurement accuracy. This paper examines the extent to which the sampling and survey strategy is valid for drawing conclusions on the current state of balance of the Greenland ice sheet. The surveys covered the entire ice sheet with an average distance of 21.4 km between each location on the ice sheet and the nearest flight line. For most of the ice sheet, the elevation changes show relatively little spatial variability, and their magnitudes are significantly smaller than the observed elevation change signal. As a result, we conclude that the density of the sampling and the accuracy of the measurements are sufficient to draw meaningful conclusions on the state of balance of the entire ice sheet over the five-year survey period. Outlet glaciers, however, show far more spatial and temporal variability, and each of the major ones is likely to require individual surveys in order to determine its balance.

  5. Antarctic climate variability on regional and continental scales over the last 2000 years

    Directory of Open Access Journals (Sweden)

    B. Stenni

    2017-11-01

    Full Text Available Climate trends in the Antarctic region remain poorly characterized, owing to the brevity and scarcity of direct climate observations and the large magnitude of interannual to decadal-scale climate variability. Here, within the framework of the PAGES Antarctica2k working group, we build an enlarged database of ice core water stable isotope records from Antarctica, consisting of 112 records. We produce both unweighted and weighted isotopic (δ18O composites and temperature reconstructions since 0 CE, binned at 5- and 10-year resolution, for seven climatically distinct regions covering the Antarctic continent. Following earlier work of the Antarctica2k working group, we also produce composites and reconstructions for the broader regions of East Antarctica, West Antarctica and the whole continent. We use three methods for our temperature reconstructions: (i a temperature scaling based on the δ18O–temperature relationship output from an ECHAM5-wiso model simulation nudged to ERA-Interim atmospheric reanalyses from 1979 to 2013, and adjusted for the West Antarctic Ice Sheet region to borehole temperature data, (ii a temperature scaling of the isotopic normalized anomalies to the variance of the regional reanalysis temperature and (iii a composite-plus-scaling approach used in a previous continent-scale reconstruction of Antarctic temperature since 1 CE but applied to the new Antarctic ice core database. Our new reconstructions confirm a significant cooling trend from 0 to 1900 CE across all Antarctic regions where records extend back into the 1st millennium, with the exception of the Wilkes Land coast and Weddell Sea coast regions. Within this long-term cooling trend from 0 to 1900 CE, we find that the warmest period occurs between 300 and 1000 CE, and the coldest interval occurs from 1200 to 1900 CE. Since 1900 CE, significant warming trends are identified for the West Antarctic Ice Sheet, the Dronning Maud Land coast and the

  6. Glacier History of the Northern Antarctic Peninsula Region Since the End of the Last Ice Age and Implications for Southern Hemisphere Westerly-Climate Changes

    Science.gov (United States)

    Kaplan, M. R.; Schaefer, J. M.; Strelin, J. A.; Peltier, C.; Southon, J. R.; Lepper, K. E.; Winckler, G.

    2017-12-01

    For the area around James Ross Island, we present new cosmogenic 10Be exposure ages on glacial deposits, and 14C ages on associated fossil materials. These data allow us to reconstruct in detail when and how the Antarctic Peninsula Ice Sheet retreated around the Island as the last Ice Age ended, and afterward when local land-based glaciers fluctuated. Similar to other studies, we found widespread deglaciation during the earliest Holocene, with fjords and bays becoming ice free between about 11,000 and 8,000 years ago. After 7,000 years ago, neoglacial type advances initiated. Then, both expansions and ice free periods occurred from the middle to late Holocene. We compare the new glacier record to those in southern Patagonia, which is on the other side of the Drake Passage, and published Southern Ocean marine records, in order to infer past middle to high latitude changes in the Southern Hemisphere Westerlies. Widespread warmth in the earliest Holocene, to the north and south of the Drake Passage, led to small glacier systems in Patagonia and wide-ranging glacier recession around the northern Antarctic Peninsula. We infer that this early Holocene period of overall glacier recession - from Patagonia to the northern Peninsula - was caused by a persistent far-southerly setting of the westerlies and accompanying warm climates. Subsequently, during the middle Holocene renewed glacier expansions occurred on both sides of the Drake Passage, which reflects that the Westerlies and associated colder climate systems were generally more equatorward. From the middle to late Holocene, glacier expansions and ice free periods (and likely related ice shelf behavior) document how the Westerlies and associated higher-latitude climate systems varied.

  7. Geothermal Heat Flux Underneath Ice Sheets Estimated From Magnetic Satellite Data

    DEFF Research Database (Denmark)

    Fox Maule, Cathrine; Purucker, M.E.; Olsen, Nils

    The geothermal heat flux is an important factor in the dynamics of ice sheets, and it is one of the important parameters in the thermal budgets of subglacial lakes. We have used satellite magnetic data to estimate the geothermal heat flux underneath the ice sheets in Antarctica and Greenland...

  8. Determination of lead isotopes in Arctic and Antarctic snow and ice

    International Nuclear Information System (INIS)

    Rosman, K.J.R.; Chisholm, W.

    1994-01-01

    The development of high sensitivity mass spectrometry to measure Pb isotopes in Arctic and Antarctic snow and ice has provided a powerful tool for identifying sources of global Pb pollution. The combination of isotope abundance information with concentration measurements adds another dimension to analytical chemistry. (authors). 11 refs., 4 figs

  9. Intermittent ice sheet discharge events in northeastern North America during the last glacial period

    Energy Technology Data Exchange (ETDEWEB)

    Papa, Brian D.; Mysak, Lawrence A.; Wang, Zhaomin [McGill University, Earth System Modelling Group, Department of Atmospheric and Oceanic Sciences, Montreal, QC (Canada)

    2006-02-01

    The 3D ice sheet model of Marshall and Clarke, which includes both dynamics and thermodynamics, is used to successfully simulate millennial-scale oscillations within an ice sheet under steady external forcing. Such internal oscillations are theorized to be the main cause of quasi-periodic large-scale ice discharges known as Heinrich Events. An analysis of the mechanisms associated with multi-millennial oscillations of the Laurentide Ice Sheet, including the initiation and termination of sliding events, is performed. This analysis involves an examination of the various heat sources and sinks that affect the basal ice temperature, which in turn determines the nature of the ice sheet movement. The ice sheet thickness and surface slope, which affect the pressure-melting point and strain heating, respectively, are found to be critical for the formation and development of fast moving ice streams, which lead to large iceberg calving. Although the main provenance for Heinrich Events is thought to be from Hudson Bay and Hudson Strait, we show that the more northerly regions around Lancaster Strait and Baffin Island may also be important sources for ice discharges during the last glacial period. (orig.)

  10. Polar Ice Caps: a Canary for the Greenland Ice Sheet

    Science.gov (United States)

    Honsaker, W.; Lowell, T. V.; Sagredo, E.; Kelly, M. A.; Hall, B. L.

    2010-12-01

    Ice caps are glacier masses that are highly sensitive to climate change. Because of their hypsometry they can have a binary state. When relatively slight changes in the equilibrium line altitude (ELA) either intersect or rise above the land the ice can become established or disappear. Thus these upland ice masses have a fast response time. Here we consider a way to extract the ELA signal from independent ice caps adjacent to the Greenland Ice Sheet margin. It may be that these ice caps are sensitive trackers of climate change that also impact the ice sheet margin. One example is the Istorvet Ice Cap located in Liverpool Land, East Greenland (70.881°N, 22.156°W). The ice cap topography and the underlying bedrock surface dips to the north, with peak elevation of the current ice ranging in elevation from 1050 to 745 m.a.s.l. On the eastern side of the ice mass the outlet glaciers extending down to sea level. The western margin has several small lobes in topographic depressions, with the margin reaching down to 300 m.a.s.l. Topographic highs separate the ice cap into at least 5 main catchments, each having a pair of outlet lobes toward either side of the ice cap. Because of the regional bedrock slope each catchment has its own elevation range. Therefore, as the ELA changes it is possible for some catchments of the ice cap to experience positive mass balance while others have a negative balance. Based on weather observations we estimate the present day ELA to be ~1000 m.a.s.l, meaning mass balance is negative for the majority of the ice cap. By tracking glacier presence/absence in these different catchments, we can reconstruct small changes in the ELA. Another example is the High Ice Cap (informal name) in Milne Land (70.903°N, 25.626°W, 1080 m), East Greenland. Here at least 4 unconformities in ice layers found near the southern margin of the ice cap record changing intervals of accumulation and ablation. Therefore, this location may also be sensitive to slight

  11. Implementing an empirical scalar constitutive relation for ice with flow-induced polycrystalline anisotropy in large-scale ice sheet models

    Science.gov (United States)

    Graham, Felicity S.; Morlighem, Mathieu; Warner, Roland C.; Treverrow, Adam

    2018-03-01

    The microstructure of polycrystalline ice evolves under prolonged deformation, leading to anisotropic patterns of crystal orientations. The response of this material to applied stresses is not adequately described by the ice flow relation most commonly used in large-scale ice sheet models - the Glen flow relation. We present a preliminary assessment of the implementation in the Ice Sheet System Model (ISSM) of a computationally efficient, empirical, scalar, constitutive relation which addresses the influence of the dynamically steady-state flow-compatible induced anisotropic crystal orientation patterns that develop when ice is subjected to the same stress regime for a prolonged period - sometimes termed tertiary flow. We call this the ESTAR flow relation. The effect on ice flow dynamics is investigated by comparing idealised simulations using ESTAR and Glen flow relations, where we include in the latter an overall flow enhancement factor. For an idealised embayed ice shelf, the Glen flow relation overestimates velocities by up to 17 % when using an enhancement factor equivalent to the maximum value prescribed in the ESTAR relation. Importantly, no single Glen enhancement factor can accurately capture the spatial variations in flow across the ice shelf generated by the ESTAR flow relation. For flow line studies of idealised grounded flow over varying topography or variable basal friction - both scenarios dominated at depth by bed-parallel shear - the differences between simulated velocities using ESTAR and Glen flow relations depend on the value of the enhancement factor used to calibrate the Glen flow relation. These results demonstrate the importance of describing the deformation of anisotropic ice in a physically realistic manner, and have implications for simulations of ice sheet evolution used to reconstruct paleo-ice sheet extent and predict future ice sheet contributions to sea level.

  12. Regional Antarctic snow accumulation over the past 1000 years

    Directory of Open Access Journals (Sweden)

    E. R. Thomas

    2017-11-01

    Full Text Available Here we present Antarctic snow accumulation variability at the regional scale over the past 1000 years. A total of 79 ice core snow accumulation records were gathered and assigned to seven geographical regions, separating the high-accumulation coastal zones below 2000 m of elevation from the dry central Antarctic Plateau. The regional composites of annual snow accumulation were evaluated against modelled surface mass balance (SMB from RACMO2.3p2 and precipitation from ERA-Interim reanalysis. With the exception of the Weddell Sea coast, the low-elevation composites capture the regional precipitation and SMB variability as defined by the models. The central Antarctic sites lack coherency and either do not represent regional precipitation or indicate the model inability to capture relevant precipitation processes in the cold, dry central plateau. Our results show that SMB for the total Antarctic Ice Sheet (including ice shelves has increased at a rate of 7 ± 0.13 Gt decade−1 since 1800 AD, representing a net reduction in sea level of ∼ 0.02 mm decade−1 since 1800 and ∼ 0.04 mm decade−1 since 1900 AD. The largest contribution is from the Antarctic Peninsula (∼ 75 % where the annual average SMB during the most recent decade (2001–2010 is 123 ± 44 Gt yr−1 higher than the annual average during the first decade of the 19th century. Only four ice core records cover the full 1000 years, and they suggest a decrease in snow accumulation during this period. However, our study emphasizes the importance of low-elevation coastal zones, which have been under-represented in previous investigations of temporal snow accumulation.

  13. Design and results of the ice sheet model initialisation initMIP-Greenland: an ISMIP6 intercomparison

    Directory of Open Access Journals (Sweden)

    H. Goelzer

    2018-04-01

    Full Text Available Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. The goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6, which is the primary activity within the Coupled Model Intercomparison Project Phase 6 (CMIP6 focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1 the initial present-day state of the ice sheet and (2 the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing and in response to a large perturbation (prescribed surface mass balance anomaly; they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.

  14. The Second Deep Ice Coring Project at Dome Fuji, Antarctica

    Directory of Open Access Journals (Sweden)

    Hideaki Motoyama

    2007-09-01

    Full Text Available Throughout the history of the polar icecaps, dust and aerosols have been transported through the atmosphere to the poles, to be preserved within the annually freezing ice of the growing ice shields. Therefore, the Antarctic ice sheet is a “time capsule" for environmental data, containing information of ancient periods of Earth’s history. To unravel this history and decode cycles in glaciations and global change is among the major goals of the Dome Fuji Ice Coring Project.

  15. SST and ice sheet impacts on the MIS-13 climate

    Energy Technology Data Exchange (ETDEWEB)

    Muri, Helene; Berger, Andre; Yin, Qiuzhen; Sundaram, Suchithra [Universite catholique de Louvain, Georges Lemaitre Centre for Earth and Climate Research (TECLIM), Earth and Life Institute (ELI), Louvain la Neuve (Belgium); Voldoire, Aurore; Melia, David Salas Y. [CNRM-GAME Meteo-France/CNRS, Toulouse Cedex (France)

    2012-10-15

    As a first qualitative assessment tool, LOVECLIM has been used to investigate the interactions between insolation, ice sheets and the East Asian Monsoon at the Marine Isotopic Stage 13 (MIS-13) in work by Yin et al. (Clim Past 4:79-90, 2008, Clim Past 5:229-243, 2009). The results are in need of validation with a more sophisticated model, which is done in this work with the ARPEGE atmospheric general circulation model. As in the Earth system Model of Intermediate Complexity, LOVECLIM, ARPEGE shows that the northern hemispheric high insolation in summer leads to strong MIS-13 monsoon precipitation. Data from the Chinese Loess Plateau indicate that MIS-13 was locally a warm and humid period (Guo et al. in Clim Past 5:21-31, 2009; Yin and Guo in Chin Sci Bull 51(2):213-220, 2006). This is confirmed by these General Circulation Model (GCM) results, where the MIS-13 climate is found to be hotter and more humid both in the presence and absence of any added ice sheets. LOVECLIM found that the combined effects of the ice sheets and their accompanying SSTs contribute to more precipitation in eastern China, whilst in ARPEGE the impact is significant in northeastern China. Nonetheless the results of ARPEGE confirm the counter-intuitive results of LOVECLIM where ice sheets contribute to enhance monsoon precipitation. This happens through a topography induced wave propagating through Eurasia with an ascending branch over northeastern China. A feature which is also seen in LOVECLIM. The SST forcing in ARPEGE results in a strong zonal temperature gradient between the North Atlantic and east Eurasia, which in turn triggers an atmospheric gravity wave. This wave induces a blocking Okhotskian high, preventing the northwards penetration of the Meiyu monsoon front. The synergism between the ice sheets and SST is found through the factor separation method, yielding an increase in the Meiyu precipitation, though a reduction of the Changma precipitation. The synergism between the ice

  16. Cosmogenic 10Be ages from the Meirs and Garwood Valleys, Denton Hills, West Antarctica, suggest an absence in LGM Ice Sheet expansion.

    Science.gov (United States)

    Fink, David; Joy, Kurt; Storey, Bryan

    2014-05-01

    It has been hypothesised that during interglacials, thinning of the Ross Ice Shelf allowed a more open water environment with increased local precipitation. This resulted in outlet glaciers, which drain the Transantarctic Mountains and fed by the East Antarctic Ice Sheet, advancing during moist warmer periods, apparently out of phase with colder arid dry periods. Significantly the ice core record during these warm periods also shows increased accumulation continent wide The geomorphology of the Denton Hills in the Royal Society Range, West Antarctica, is a result of Miocene fluvial incision reworked by subsequent glacial advances throughout the Quaternary. The Garwood and Miers glacial valleys drain ice across the Denton Hills into the Shelf, and should thus show maximum extent during interstadials. To understand the chronology of late Quaternary glaciations, 15 granitic boulders from terminal moraines were sampled for 10Be and 26Al cosmogenic dating. Obtaining reliable exposure ages of erratics within moraines that represent timing of deposition (i.e. glacial advances) is problematic in polar regions, where glacial activity is principally controlled by ice sheet dynamics. Recycling of previously exposed debris, uncertainty in provenance of glacially transported boulders and a lack of a post-depositional hydrologic process to remove previously exposed material from a valley system, leads to ambiguities in multiple exposure ages from a single coeval glacial landform. More importantly, cold-based ice advance can leave a landform unmodified resulting in young erratics deposited on bedrock that shows weathering and/or inconsistent age-altitude relationships. Primarily, inheritance becomes a difficulty in qualifying exposure ages from polar regions. Preliminary results from the Garwood and Miers Valleys indicate that glaciers in the Denton Hills had begun to retreat from their last maximum positions no later than 23-37 ka, and thus the local last glacial maximum

  17. Mass Balance of the Greenland Ice Sheet at High Elevations.

    Science.gov (United States)

    Thomas; Akins; Csatho; Fahnestock; Gogineni; Kim; Sonntag

    2000-07-21

    Comparison of ice discharge from higher elevation areas of the entire Greenland Ice Sheet with total snow accumulation gives estimates of ice thickening rates over the past few decades. On average, the region has been in balance, but with thickening of 21 centimeters per year in the southwest and thinning of 30 centimeters per year in the southeast. The north of the ice sheet shows less variability, with average thickening of 2 centimeters per year in the northeast and thinning of about 5 centimeters per year in the northwest. These results agree well with those from repeated altimeter surveys, except in the extreme south, where we find substantially higher rates of both thickening and thinning.

  18. Hydrologic Outlets of the Greenland Ice Sheet

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hydrologic Outlets of the Greenland Ice Sheet data set contains GIS point shapefiles that include 891 observed and potential hydrologic outlets of the Greenland...

  19. Towards an assessment of the balance state of the Greenland Ice Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Boeggild, C.E.; Mayer, C.; Podlech, S.; Taurisano, A.; Nielsen, S.

    2004-07-01

    The climate of Europe is strongly influenced by heat transport by ocean currents flowing from equatorial regions towards the Arctic. During recent years, research has been increasingly focused on factors affecting this circulation, e.g. the freshwater budget of the Arctic that is influenced by glacial melt water from north and East Greenland outlet glaciers. Furthermore, the climate is affected by snow cover, which, apart from its contribution to the freshwater budget, provides feedback effects in that it reflects most of the solar radiation. Apart from Arctic sea-ice cover, the Greenland Ice Sheet is the largest permanent ice- and snow-covered area in the northern hemisphere, with an area of 1.67 x 10{sup 6} km{sup 2} and by far the largest storage of ice with a volume of 2.93 x 10{sup 6} km{sup 3}. Most of the mass loss from the Greenland Ice Sheet occurs in the marginal region of the ice sheet, which is also the area where the largest changes in albedo occur. The Geological Survey of Denmark and Greenland (GEUS) has for many years carried out research along the Greenland Ice Sheet margin to monitor changes of mass balance and melt conditions. (BA)

  20. History of the Greenland Ice Sheet: paleoclimatic insights

    DEFF Research Database (Denmark)

    Alley, Richard B.; Andrews, John Thomas; Brigham-Grette, Julia

    2010-01-01

    Paleoclimatic records show that the Greenland Ice Sheet consistently has lost mass in response to warming, and grown in response to cooling. Such changes have occurred even at times of slow or zero sea-level change, so changing sea level cannot have been the cause of at least some of the ice-shee...

  1. Speedup and fracturing of George VI Ice Shelf, Antarctic Peninsula

    Directory of Open Access Journals (Sweden)

    T. O. Holt

    2013-05-01

    Full Text Available George VI Ice Shelf (GVIIS is located on the Antarctic Peninsula, a region where several ice shelves have undergone rapid breakup in response to atmospheric and oceanic warming. We use a combination of optical (Landsat, radar (ERS 1/2 SAR and laser altimetry (GLAS datasets to examine the response of GVIIS to environmental change and to offer an assessment on its future stability. The spatial and structural changes of GVIIS (ca. 1973 to ca. 2010 are mapped and surface velocities are calculated at different time periods (InSAR and optical feature tracking from 1989 to 2009 to document changes in the ice shelf's flow regime. Surface elevation changes are recorded between 2003 and 2008 using repeat track ICESat acquisitions. We note an increase in fracture extent and distribution at the south ice front, ice-shelf acceleration towards both the north and south ice fronts and spatially varied negative surface elevation change throughout, with greater variations observed towards the central and southern regions of the ice shelf. We propose that whilst GVIIS is in no imminent danger of collapse, it is vulnerable to ongoing atmospheric and oceanic warming and is more susceptible to breakup along its southern margin in ice preconditioned for further retreat.

  2. Response of Antarctic sea surface temperature and sea ice to ozone depletion

    Science.gov (United States)

    Ferreira, D.; Gnanadesikan, A.; Kostov, Y.; Marshall, J.; Seviour, W.; Waugh, D.

    2017-12-01

    The influence of the Antarctic ozone hole extends all the way from the stratosphere through the troposphere down to the surface, with clear signatures on surface winds, and SST during summer. In this talk we discuss the impact of these changes on the ocean circulation and sea ice state. We are notably motivated by the observed cooling of the surface Southern Ocean and associated increase in Antarctic sea ice extent since the 1970s. These trends are not reproduced by CMIP5 climate models, and the underlying mechanism at work in nature and the models remain unexplained. Did the ozone hole contribute to the observed trends?Here, we review recent advances toward answering these issues using "abrupt ozone depletion" experiments. The ocean and sea ice response is rather complex, comprising two timescales: a fast ( 1-2y) cooling of the surface ocean and sea ice cover increase, followed by a slower warming trend, which, depending on models, flip the sign of the SST and sea ice responses on decadal timescale. Although the basic mechanism seems robust, comparison across climate models reveal large uncertainties in the timescales and amplitude of the response to the extent that even the sign of the ocean and sea ice response to ozone hole and recovery remains unconstrained. After briefly describing the dynamics and thermodynamics behind the two-timescale response, we will discuss the main sources of uncertainties in the modeled response, namely cloud effects and air-sea heat exchanges, surface wind stress response and ocean eddy transports. Finally, we will consider the implications of our results on the ability of coupled climate models to reproduce observed Southern Ocean changes.

  3. Subglacial hydrology and the formation of ice streams.

    Science.gov (United States)

    Kyrke-Smith, T M; Katz, R F; Fowler, A C

    2014-01-08

    Antarctic ice streams are associated with pressurized subglacial meltwater but the role this water plays in the dynamics of the streams is not known. To address this, we present a model of subglacial water flow below ice sheets, and particularly below ice streams. The base-level flow is fed by subglacial melting and is presumed to take the form of a rough-bedded film, in which the ice is supported by larger clasts, but there is a millimetric water film which submerges the smaller particles. A model for the film is given by two coupled partial differential equations, representing mass conservation of water and ice closure. We assume that there is no sediment transport and solve for water film depth and effective pressure. This is coupled to a vertically integrated, higher order model for ice-sheet dynamics. If there is a sufficiently small amount of meltwater produced (e.g. if ice flux is low), the distributed film and ice sheet are stable, whereas for larger amounts of melt the ice-water system can become unstable, and ice streams form spontaneously as a consequence. We show that this can be explained in terms of a multi-valued sliding law, which arises from a simplified, one-dimensional analysis of the coupled model.

  4. Basin-scale partitioning of Greenland ice sheet mass balance components (2007-2011)

    DEFF Research Database (Denmark)

    Andersen, M.L.; Stenseng, Lars; Skourup, Henriette

    2015-01-01

    The current deficit in Greenland ice sheet mass balance is due to both a decrease in surface mass balance (SMB) input and an increase in ice discharge (D) output. While SMB processes are beginning to be well captured by observationally-constrained climate modeling, insight into D is relatively...... of the gate. Using a 1961-1990 reference climatology SMB field from the MAR regional climate model, we quantify ice sheet mass balance within eighteen basins. We find a 2007-2011 mean D of 515±57 Gtyr-1. We find a 2007-2011 mean total mass balance of -262±21 Gtyr-1, which is equal to a 0.73 mm yr-1 global sea...... limited. We use InSAR-derived velocities, in combination with ice thickness observations, to quantify the mass flux (F) across a flux perimeter around the ice sheet at ~1700 m elevation. To quantify D, we correct F for SMB, as well as changes in volume due to ice dynamics, in the area downstream...

  5. Supraglacial bacterial community structures vary across the Greenland ice sheet

    DEFF Research Database (Denmark)

    Cameron, Karen A.; Stibal, Marek; Zarsky, Jakub D.

    2016-01-01

    The composition and spatial variability of microbial communities that reside within the extensive (>200 000 km(2)) biologically active area encompassing the Greenland ice sheet (GrIS) is hypothesized to be variable. We examined bacterial communities from cryoconite debris and surface ice across...... the GrIS, using sequence analysis and quantitative PCR of 16S rRNA genes from co-extracted DNA and RNA. Communities were found to differ across the ice sheet, with 82.8% of the total calculated variation attributed to spatial distribution on a scale of tens of kilometers separation. Amplicons related...... to Sphingobacteriaceae, Pseudanabaenaceae and WPS-2 accounted for the greatest portion of calculated dissimilarities. The bacterial communities of ice and cryoconite were moderately similar (global R = 0.360, P = 0.002) and the sampled surface type (ice versus cryoconite) did not contribute heavily towards community...

  6. Assessing the accuracy of Greenland ice sheet ice ablation measurements by pressure transducer

    Science.gov (United States)

    Fausto, R. S.; van As, D.; Ahlstrøm, A. P.

    2012-04-01

    In the glaciological community there is a need for reliable mass balance measurements of glaciers and ice sheets, ranging from daily to yearly time scales. Here we present a method to measure ice ablation using a pressure transducer. The pressure transducer is drilled into the ice, en-closed in a hose filled with a liquid that is non-freezable at common Greenlandic temperatures. The pressure signal registered by the transducer is that of the vertical column of liquid over the sensor, which can be translated in depth knowing the density of the liquid. As the free-standing AWS moves down with the ablating surface and the hose melts out of the ice, an increasingly large part of the hose will lay flat on the ice surface, and the hydrostatic pressure from the vertical column of liquid in the hose will get smaller. This reduction in pressure provides us with the ablation rate. By measuring at (sub-) daily timescales this assembly is well-suited to monitor ice ablation in remote regions, with clear advantages over other well-established methods of measuring ice ablation in the field. The pressure transducer system has the potential to monitor ice ablation for several years without re-drilling and the system is suitable for high ablation areas. A routine to transform raw measurements into ablation values will also be presented, including a physically based method to remove air pressure variability from the signal. The pressure transducer time-series is compared to that recorded by a sonic ranger for the climatically hostile setting on the Greenland ice sheet.

  7. Surface and Subsurface Meltwater Ponding and Refreezing on the Bach Ice Shelf, Antarctic Peninsula

    Science.gov (United States)

    Willis, I.; Haggard, E.; Benedek, C. L.; MacAyeal, D. R.; Banwell, A. F.

    2017-12-01

    There is growing concern about the stability and fate of Antarctic ice shelves, as four major ice shelves on the Antarctic Peninsula have completely disintegrated since the 1950s. Their collapse has been linked to the southward movement of the -9 oC mean annual temperature isotherm. The proximal causes of ice shelf instability are not fully known, but an increase in surface melting leading to water ponding and ice flexure, fracture and calving has been implicated. Close to the recently collapsed Wilkins Ice Shelf, the Bach Ice Shelf (72°S 72°W) may be at risk from break up in the near future. Here, we document the changing surface hydrology of the Bach Ice Shelf between 2001 and 2017 using Landsat 7 & 8 imagery. Extensive surface water is identified across the Bach Ice Shelf and its tributary glaciers. Two types of drainage system are observed, drainage into firn via simple stream networks and drainage into the ocean via more complex networks. There are differences between the surface hydrology on the ice shelf and the tributary glaciers, as well as variations within and between summer seasons linked to surface air temperature fluctuations. We also document the changing subsurface hydrology of the ice shelf between 2014 and 2017 using Sentinel 1 A/B SAR imagery. Forty-five subsurface features are identified and analysed for their patterns and temporal evolution. Fourteen of the features show similar characteristics to previously-identified buried lakes and some occur in areas associated with surface lakes in previous years. The buried lakes show seasonal variability in area and surface backscatter, which varies with surface air temperature, and are consistent with the presence, enlargement and contraction of liquid water bodies. Buried lakes are an overlooked source of water loading on ice shelves, which may contribute to ice shelf flexure and potential fracture.

  8. An object-oriented, coprocessor-accelerated model for ice sheet simulations

    Science.gov (United States)

    Seddik, H.; Greve, R.

    2013-12-01

    Recently, numerous models capable of modeling the thermo-dynamics of ice sheets have been developed within the ice sheet modeling community. Their capabilities have been characterized by a wide range of features with different numerical methods (finite difference or finite element), different implementations of the ice flow mechanics (shallow-ice, higher-order, full Stokes) and different treatments for the basal and coastal areas (basal hydrology, basal sliding, ice shelves). Shallow-ice models (SICOPOLIS, IcIES, PISM, etc) have been widely used for modeling whole ice sheets (Greenland and Antarctica) due to the relatively low computational cost of the shallow-ice approximation but higher order (ISSM, AIF) and full Stokes (Elmer/Ice) models have been recently used to model the Greenland ice sheet. The advance in processor speed and the decrease in cost for accessing large amount of memory and storage have undoubtedly been the driving force in the commoditization of models with higher capabilities, and the popularity of Elmer/Ice (http://elmerice.elmerfem.com) with an active user base is a notable representation of this trend. Elmer/Ice is a full Stokes model built on top of the multi-physics package Elmer (http://www.csc.fi/english/pages/elmer) which provides the full machinery for the complex finite element procedure and is fully parallel (mesh partitioning with OpenMPI communication). Elmer is mainly written in Fortran 90 and targets essentially traditional processors as the code base was not initially written to run on modern coprocessors (yet adding support for the recently introduced x86 based coprocessors is possible). Furthermore, a truly modular and object-oriented implementation is required for quick adaptation to fast evolving capabilities in hardware (Fortran 2003 provides an object-oriented programming model while not being clean and requiring a tricky refactoring of Elmer code). In this work, the object-oriented, coprocessor-accelerated finite element

  9. Analysis of groundwater flow beneath ice sheets

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G. S.; Zatsepin, S.; Maillot, B. [Univ. of Edinburgh (United Kingdom). Dept. of Geology and Geophysics

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix.

  10. Analysis of groundwater flow beneath ice sheets

    International Nuclear Information System (INIS)

    Boulton, G. S.; Zatsepin, S.; Maillot, B.

    2001-03-01

    The large-scale pattern of subglacial groundwater flow beneath European ice sheets was analysed in a previous report. It was based on a two-dimensional flowline model. In this report, the analysis is extended to three dimensions by exploring the interactions between groundwater and tunnel flow. A theory is developed which suggests that the large-scale geometry of the hydraulic system beneath an ice sheet is a coupled, self-organising system. In this system the pressure distribution along tunnels is a function of discharge derived from basal meltwater delivered to tunnels by groundwater flow, and the pressure along tunnels itself sets the base pressure which determines the geometry of catchments and flow towards the tunnel. The large-scale geometry of tunnel distribution is a product of the pattern of basal meltwater production and the transmissive properties of the bed. The tunnel discharge from the ice margin of the glacier, its seasonal fluctuation and the sedimentary characteristics of eskers are largely determined by the discharge of surface meltwater which penetrates to the bed in the terminal zone. The theory explains many of the characteristics of esker systems and can account for tunnel valleys. It is concluded that the large-scale hydraulic regime beneath ice sheets is largely a consequence of groundwater/tunnel flow interactions and that it is essential similar to non-glacial hydraulic regimes. Experimental data from an Icelandic glacier, which demonstrates measured relationships between subglacial tunnel flow and groundwater flow during the transition from summer to winter seasons for a modern glacier, and which support the general conclusions of the theory is summarised in an appendix

  11. Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial

    Directory of Open Access Journals (Sweden)

    A. Robinson

    2011-04-01

    Full Text Available Using a new approach to force an ice sheet model, we performed an ensemble of simulations of the Greenland Ice Sheet evolution during the last two glacial cycles, with emphasis on the Eemian Interglacial. This ensemble was generated by perturbing four key parameters in the coupled regional climate-ice sheet model and by introducing additional uncertainty in the prescribed "background" climate change. The sensitivity of the surface melt model to climate change was determined to be the dominant driver of ice sheet instability, as reflected by simulated ice sheet loss during the Eemian Interglacial period. To eliminate unrealistic parameter combinations, constraints from present-day and paleo information were applied. The constraints include (i the diagnosed present-day surface mass balance partition between surface melting and ice discharge at the margin, (ii the modeled present-day elevation at GRIP; and (iii the modeled elevation reduction at GRIP during the Eemian. Using these three constraints, a total of 360 simulations with 90 different model realizations were filtered down to 46 simulations and 20 model realizations considered valid. The paleo constraint eliminated more sensitive melt parameter values, in agreement with the surface mass balance partition assumption. The constrained simulations resulted in a range of Eemian ice loss of 0.4–4.4 m sea level equivalent, with a more likely range of about 3.7–4.4 m sea level if the GRIP δ18O isotope record can be considered an accurate proxy for the precipitation-weighted annual mean temperatures.

  12. Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle

    Directory of Open Access Journals (Sweden)

    S. Bonelli

    2009-07-01

    Full Text Available A 2.5-dimensional climate model of intermediate complexity, CLIMBER-2, fully coupled with the GREMLINS 3-D thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO2 concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5×1015 m3 and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets.
    A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO2. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera δ18O signals. In contrast, low insolation and low atmospheric CO2 concentration are both necessary to trigger a long-lasting glaciation over Eurasia.

  13. Using Gravity Inversion to Estimate Antarctic Geothermal Heat Flux

    Science.gov (United States)

    Vaughan, Alan P. M.; Kusznir, Nick J.; Ferraccioli, Fausto; Leat, Phil T.; Jordan, Tom A. R. M.; Purucker, Michael E.; (Sasha) Golynsky, A. V.; Rogozhina, Irina

    2014-05-01

    New modelling studies for Greenland have recently underlined the importance of GHF for long-term ice sheet behaviour (Petrunin et al. 2013). Revised determinations of top basement heat-flow for Antarctica and adjacent rifted continental margins using gravity inversion mapping of crustal thickness and continental lithosphere thinning (Chappell & Kusznir 2008), using BedMap2 data have provided improved estimates of geothermal heat flux (GHF) in Antarctica where it is very poorly known. Continental lithosphere thinning and post-breakup residual thicknesses of continental crust determined from gravity inversion have been used to predict the preservation of continental crustal radiogenic heat productivity and the transient lithosphere heat-flow contribution within thermally equilibrating rifted continental and oceanic lithosphere. The sensitivity of present-day Antarctic top basement heat-flow to initial continental radiogenic heat productivity, continental rift and margin breakup age has been examined. Recognition of the East Antarctic Rift System (EARS), a major Permian to Cretaceous age rift system that appears to extend from the continental margin at the Lambert Rift to the South Pole region, a distance of 2500 km (Ferraccioli et al. 2011) and is comparable in scale to the well-studied East African rift system, highlights that crustal variability in interior Antarctica is much greater than previously assumed. GHF is also important to understand proposed ice accretion at the base of the EAIS in the GSM and its links to sub-ice hydrology (Bell et al. 2011). References Bell, R.E., Ferraccioli, F., Creyts, T.T., Braaten, D., Corr, H., Das, I., Damaske, D., Frearson, N., Jordan, T., Rose, K., Studinger, M. & Wolovick, M. 2011. Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base. Science, 331 (6024), 1592-1595. Chappell, A.R. & Kusznir, N.J. 2008. Three-dimensional gravity inversion for Moho depth at rifted continental margins

  14. Climate Variability, Melt-Flow Acceleration, and Ice Quakes at the Western Slope of the Greenland Ice Sheet

    Science.gov (United States)

    Steffen, K.; Zwally, J. H.; Rial, J. A.; Behar, A.; Huff, R.

    2006-12-01

    The Greenland ice sheet experienced surface melt increase over the past 15 years with record melt years in 1987, 1991, 1998, 2002 and 2005. For the western part of the ice sheet the melt area increased by 30 percent (1979-2005). Monthly mean air temperatures increased in spring and fall by 0.23 deg. C per year since 1990, extending the length of melt and total ablation. Winter air temperatures increased by as much as 0.5 deg. C per year during the past 15 years. The equilibrium line altitude ranged between 400 and 1530 m above sea level at 70 deg. north along the western slope of the ice sheet for the past 15 years, equaling a horizontal distance of 100 km. The ELA has been below the Swiss Camp (1100 m elevation) in the nineties, and since 1997 moved above the Swiss Camp height. An increase in ELA leads to an increase in melt water run-off which has been verified by regional model studies (high-resolution re-analysis). Interannual variability of snow accumulation varies from 0.3 to 2.0 m, whereas snow and ice ablation ranges from 0 to 1.5 m water equivalent at Swiss Camp during 1990-2005. A GPS network (10 stations) monitors ice velocity, acceleration, and surface height change at high temporal resolution throughout the year. The network covers a range of 500 and 1500 m above sea level, close to the Ilulissat Icefjord World Heritage region. The ice sheet continued to accelerate during the height of the melt season with short-term velocity increases up to 100 percent, and vertical uplift rates of 0.5 m. There seems to be a good correlation between the change in ice velocity and total surface melt, suggesting that melt water penetrates to great depth through moulins and cracks, lubricating the bottom of the ice sheet. A new bore-hole video movie will be shown from a 110 m deep moulin close to Swiss Camp. A PASSCAL array of 10 portable, 3-component seismic stations deployed around Swiss Camp from May to August 2006 detected numerous microearthquakes within the ice

  15. Low salinity and high-level UV-B radiation reduce single-cell activity in antarctic sea ice bacteria.

    Science.gov (United States)

    Martin, Andrew; Hall, Julie; Ryan, Ken

    2009-12-01

    Experiments simulating the sea ice cycle were conducted by exposing microbes from Antarctic fast ice to saline and irradiance regimens associated with the freeze-thaw process. In contrast to hypersaline conditions (ice formation), the simulated release of bacteria into hyposaline seawater combined with rapid exposure to increased UV-B radiation significantly reduced metabolic activity.

  16. Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Kjaer, Kurt H.; Bevis, Michael

    2014-01-01

    The Greenland ice sheet has been one of the largest contributors to global sea-level rise over the past 20 years, accounting for 0.5 mm yr(-1) of a total of 3.2 mm yr(-1). A significant portion of this contribution is associated with the speed-up of an increased number of glaciers in southeast...... and northwest Greenland. Here, we show that the northeast Greenland ice stream, which extends more than 600 km into the interior of the ice sheet, is now undergoing sustained dynamic thinning, linked to regional warming, after more than a quarter of a century of stability. This sector of the Greenland ice sheet...... is of particular interest, because the drainage basin area covers 16% of the ice sheet (twice that of Jakobshavn Isbrae) and numerical model predictions suggest no significant mass loss for this sector, leading to an under-estimation of future global sea-level rise. The geometry of the bedrock and monotonic trend...

  17. Troughs on Martian Ice Sheets: Analysis of Their Closure and Mass Balance

    Science.gov (United States)

    Fountain, A.; Kargel, J.; Lewis, K.; MacAyeal, D.; Pfeffer, T.; Zwally, J.

    2000-01-01

    At the Copenhagen workshop on Martian polar processes, Ralf Greve commented that the flow regime surrounding scarps and troughs of the Martian polar ice sheets cannot be modeled using traditional "plan view" ice-sheet models. Such models are inadequate because they typically use reduced equations that embody certain simplifications applicable only to terrestrial ice sheets where the upper ice sheet surface is smooth. In response to this suggestion, we have constructed a 2-dimensional, time dependent "side view" (two spatial dimensions: one horizontal, one vertical) model of scarp closure that is designed to overcome the difficulties described by Greve. The purpose of the model is to evaluate the scales of stress variation and styles of flow closure so as to estimate errors that may be encountered by "plan view" models. We show that there may be avenues whereby the complications associated with scarp closure can be overcome in "plan view" models through appropriate parameterizations of 3-dimensional effects. Following this, we apply the flow model to simulate the evolution of a typical scarp on the North Polar Cap of Mars. Our simulations investigate: (a) the role of "radiation trapping" (see our companion abstract) in creating and maintaining "spiral-like" scarps on the ice sheet, (b) the consequences of different flowlaws and ice compositions on scarp evolution and, in particular, scarp age, and (c) the role of dust and debris in scarp evolution.

  18. The Potsdam Parallel Ice Sheet Model (PISM-PIK – Part 1: Model description

    Directory of Open Access Journals (Sweden)

    R. Winkelmann

    2011-09-01

    Full Text Available We present the Potsdam Parallel Ice Sheet Model (PISM-PIK, developed at the Potsdam Institute for Climate Impact Research to be used for simulations of large-scale ice sheet-shelf systems. It is derived from the Parallel Ice Sheet Model (Bueler and Brown, 2009. Velocities are calculated by superposition of two shallow stress balance approximations within the entire ice covered region: the shallow ice approximation (SIA is dominant in grounded regions and accounts for shear deformation parallel to the geoid. The plug-flow type shallow shelf approximation (SSA dominates the velocity field in ice shelf regions and serves as a basal sliding velocity in grounded regions. Ice streams can be identified diagnostically as regions with a significant contribution of membrane stresses to the local momentum balance. All lateral boundaries in PISM-PIK are free to evolve, including the grounding line and ice fronts. Ice shelf margins in particular are modeled using Neumann boundary conditions for the SSA equations, reflecting a hydrostatic stress imbalance along the vertical calving face. The ice front position is modeled using a subgrid-scale representation of calving front motion (Albrecht et al., 2011 and a physically-motivated calving law based on horizontal spreading rates. The model is tested in experiments from the Marine Ice Sheet Model Intercomparison Project (MISMIP. A dynamic equilibrium simulation of Antarctica under present-day conditions is presented in Martin et al. (2011.

  19. Design and results of the ice sheet model initialisation experiments initMIP-Greenland: an ISMIP6 intercomparison

    Science.gov (United States)

    Goelzer, Heiko; Nowicki, Sophie; Edwards, Tamsin; Beckley, Matthew; Abe-Ouchi, Ayako; Aschwanden, Andy; Calov, Reinhard; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Golledge, Nicholas R.; Gregory, Jonathan; Greve, Ralf; Humbert, Angelika; Huybrechts, Philippe; Kennedy, Joseph H.; Larour, Eric; Lipscomb, William H.; Le clec'h, Sébastien; Lee, Victoria; Morlighem, Mathieu; Pattyn, Frank; Payne, Antony J.; Rodehacke, Christian; Rückamp, Martin; Saito, Fuyuki; Schlegel, Nicole; Seroussi, Helene; Shepherd, Andrew; Sun, Sainan; van de Wal, Roderik; Ziemen, Florian A.

    2018-04-01

    Earlier large-scale Greenland ice sheet sea-level projections (e.g. those run during the ice2sea and SeaRISE initiatives) have shown that ice sheet initial conditions have a large effect on the projections and give rise to important uncertainties. The goal of this initMIP-Greenland intercomparison exercise is to compare, evaluate, and improve the initialisation techniques used in the ice sheet modelling community and to estimate the associated uncertainties in modelled mass changes. initMIP-Greenland is the first in a series of ice sheet model intercomparison activities within ISMIP6 (the Ice Sheet Model Intercomparison Project for CMIP6), which is the primary activity within the Coupled Model Intercomparison Project Phase 6 (CMIP6) focusing on the ice sheets. Two experiments for the large-scale Greenland ice sheet have been designed to allow intercomparison between participating models of (1) the initial present-day state of the ice sheet and (2) the response in two idealised forward experiments. The forward experiments serve to evaluate the initialisation in terms of model drift (forward run without additional forcing) and in response to a large perturbation (prescribed surface mass balance anomaly); they should not be interpreted as sea-level projections. We present and discuss results that highlight the diversity of data sets, boundary conditions, and initialisation techniques used in the community to generate initial states of the Greenland ice sheet. We find good agreement across the ensemble for the dynamic response to surface mass balance changes in areas where the simulated ice sheets overlap but differences arising from the initial size of the ice sheet. The model drift in the control experiment is reduced for models that participated in earlier intercomparison exercises.

  20. Millennial-scale interaction between ice sheets and ocean circulation during marine isotope stage 100

    Directory of Open Access Journals (Sweden)

    Masao eOhno

    2016-05-01

    Full Text Available Waxing/waning of the ice sheets and the associated change in thermohaline circulation have played an important role in global climate change since major continental ice sheets appeared in the northern hemisphere about 2.75 million years ago. In the earliest glacial stages, however, establishment of the linkage between ice sheet development and ocean circulation remain largely unclear. Here we show new high-resolution records of marine isotope stage 100 recovered from deep-sea sediments on the Gardar Drift, in the subpolar North Atlantic. Results of a wide range of analyses clearly reveal the influence of millennial-scale variability in iceberg discharge on ocean surface condition and bottom current variability in the subpolar North Atlantic during marine isotope stage 100. We identified eight events of ice-rafted debris, which occurred mostly with decreases in sea surface temperature and in current components indicating North Atlantic Deep Water. These decreases are interpreted by weakened deep water formation linked to iceberg discharge, similarly to observations from the last glacial period. Dolomite fraction of the ice-rafted events in early MIS 100 like the last glacial Heinrich events suggests massive collapse of the Laurentide ice sheet in North America. At the same time, our early glacial data suggest differences from the last glacial period: absence of 1470-year periodicity in the interactions between ice sheets and ocean, and northerly shift of the ice-rafted debris belt. Our high-resolution data largely improve the picture of ice-sheet/ocean interactions on millennial time scales in the early glacial period after major Northern Hemisphere glaciation.

  1. Essential Climate Variables for the Ice Sheets from Space and Airborne measurements

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna

    The Greenland Ice Sheet is the largest ice mass in the northern hemisphere.Over the past decade, it has undergone substantial changes in e.g. mass balance,surface velocity, and ice thickness. The latter is reflected by surfaceelevation changes, which are detectable with altimetry. Therefore......, this studyexploits the advantages of radar and laser altimetry to analyze surface elevationchanges and build a Digital Elevation Model of the ice sheet. Selected advantagesare radar data’s continuity in time and laser data’s higher horizontal andvertical accuracy. Therefore, ESA Envisat and CryoSat-2 radar altimetry...... dataare used in conjunction with laser data from NASA’s ICESat and airborneATM and LVIS instruments, and from ESA’s airborne CryoVEx campaign.The study is part of the ESA Ice Sheets CCI project. With the release ofREAPER data, one goal is to use the more than two decades of ESA radaraltimetry to develop...

  2. Cryosphere Science Outreach using the Ice Sheet System Model and a Virtual Ice Sheet Laboratory

    Science.gov (United States)

    Cheng, D. L. C.; Halkides, D. J.; Larour, E. Y.

    2015-12-01

    Understanding the role of Cryosphere Science within the larger context of Sea Level Rise is both a technical and educational challenge that needs to be addressed if the public at large is to trulyunderstand the implications and consequences of Climate Change. Within this context, we propose a new approach in which scientific tools are used directly inside a mobile/website platform geared towards Education/Outreach. Here, we apply this approach by using the Ice Sheet System Model, a state of the art Cryosphere model developed at NASA, and integrated within a Virtual Ice Sheet Laboratory, with the goal is to outreach Cryospherescience to K-12 and College level students. The approach mixes laboratory experiments, interactive classes/lessons on a website, and a simplified interface to a full-fledged instance of ISSM to validate the classes/lessons. This novel approach leverages new insights from the Outreach/Educational community and the interest of new generations in web based technologies and simulation tools, all of it delivered in a seamlessly integrated web platform. This work was performed at the California Institute of Technology's Jet Propulsion Laboratory undera contract with the National Aeronautics and Space Administration's Cryosphere Science Program.

  3. Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre circulation and climate

    Science.gov (United States)

    Ivanovic, R. F.; Gregoire, L. J.; Maycock, A.; Valdes, P. J.

    2017-12-01

    The Laurentide ice sheet, which covered Canada during glacial periods, had a major influence on atmospheric circulation and surface climate, but its role in climate during the early Holocene (9-7 ka), when it was thinner and confined around Hudson Bay, is unclear. It has been suggested that the demise of the ice sheet played a role in the 8.2 ka event (an abrupt 1-3 °C Northern Hemisphere cooling lasting 160 years) through the influence of changing topography on atmospheric circulation. To test this hypothesis, and to investigate the broader implications of changing ice sheet topography for climate, we analyse a set of equilibrium climate simulations with ice sheet topographies taken at 500 year intervals from 9.5 ka to 8.0 ka. Between 9.5 and 8.0 ka, our simulations show a 2 °C cooling south of Iceland and a 1 °C warming between 40-50° N in the North Atlantic. These surface temperature changes are associated with a weakening of the subtropical and subpolar gyres caused by a decreasing wind stress curl over the mid-North Atlantic as the ice sheet lowers. The climate response is strongest during the period of peak ice volume change (9.5 ka - 8.5 ka), but becomes negligible after 8.5 ka. The climatic effects of the Laurentide ice sheet lowering are restricted to the North Atlantic sector. Thus, topographic forcing did not play a significant role in the 8.2 ka event and had only a small effect on Holocene climate change compared to the effects of changes in greenhouse gases, insolation and ice sheet meltwater.

  4. Holocene lowering of the Laurentide ice sheet affects North Atlantic gyre circulation and climate

    Science.gov (United States)

    Gregoire, Lauren J.; Ivanovic, Ruza F.; Maycock, Amanda C.; Valdes, Paul J.; Stevenson, Samantha

    2018-02-01

    The Laurentide ice sheet, which covered Canada during glacial periods, had a major influence on atmospheric circulation and surface climate, but its role in climate during the early Holocene (9-7 ka), when it was thinner and confined around Hudson Bay, is unclear. It has been suggested that the demise of the ice sheet played a role in the 8.2 ka event (an abrupt 1-3 °C Northern Hemisphere cooling lasting 160 years) through the influence of changing topography on atmospheric circulation. To test this hypothesis, and to investigate the broader implications of changing ice sheet topography for climate, we analyse a set of equilibrium climate simulations with ice sheet topographies taken at 500 year intervals from 9.5 to 8.0 ka. Between 9.5 and 8.0 ka, our simulations show a 2 °C cooling south of Iceland and a 1 °C warming between 40° and 50°N in the North Atlantic. These surface temperature changes are associated with a weakening of the subtropical and subpolar gyres caused by a decreasing wind stress curl over the mid-North Atlantic as the ice sheet lowers. The climate response is strongest during the period of peak ice volume change (9.5-8.5 ka), but becomes negligible after 8.5 ka. The climatic effects of the Laurentide ice sheet lowering during the Holocene are restricted to the North Atlantic sector. Thus, topographic forcing is unlikely to have played a major role in the 8.2 ka event and had only a small effect on Holocene climate change compared to the effects of changes in greenhouse gases, insolation and ice sheet meltwater.

  5. The role of feedbacks in Antarctic sea ice change

    Science.gov (United States)

    Feltham, D. L.; Frew, R. C.; Holland, P.

    2017-12-01

    The changes in Antarctic sea ice over the last thirty years have a strong seasonal dependence, and the way these changes grow in spring and decay in autumn suggests that feedbacks are strongly involved. The changes may ultimately be caused by atmospheric warming, the winds, snowfall changes, etc., but we cannot understand these forcings without first untangling the feedbacks. A highly simplified coupled sea ice -mixed layer model has been developed to investigate the importance of feedbacks on the evolution of sea ice in two contrasting regions in the Southern Ocean; the Amundsen Sea where sea ice extent has been decreasing, and the Weddell Sea where it has been expanding. The change in mixed layer depth in response to changes in the atmosphere to ocean energy flux is implicit in a strong negative feedback on ice cover changes in the Amundsen Sea, with atmospheric cooling leading to a deeper mixed layer resulting in greater entrainment of warm Circumpolar Deep Water, causing increased basal melting of sea ice. This strong negative feedback produces counter intuitive responses to changes in forcings in the Amundsen Sea. This feedback is absent in the Weddell due to the complete destratification and strong water column cooling that occurs each winter in simulations. The impact of other feedbacks, including the albedo feedback, changes in insulation due to ice thickness and changes in the freezing temperature of the mixed layer, were found to be of secondary importance compared to changes in the mixed layer depth.

  6. Mass balance of the Greenland ice sheet (2003-2008) from ICESat data

    DEFF Research Database (Denmark)

    Sørensen, Louise Sandberg; Simonsen, Sebastian Bjerregaard; Nielsen, Karina

    2011-01-01

    ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique dataset for monitoring the changes of the cryosphere. Here, we present a novel method for determining the mass balance of the Greenland ice sheet, derived from ICESat...... studies of the Greenland ice sheet mass balance, based on different remote-sensing techniques....... altimetry data. Three different methods for deriving elevation changes from the ICESat altimetry dataset are used. This multi-method approach provides a method to assess the complexity of deriving elevation changes from this dataset. The altimetry alone can not provide an estimate of the mass balance...

  7. Coupled Northern Hemisphere permafrost-ice-sheet evolution over the last glacial cycle

    Science.gov (United States)

    Willeit, M.; Ganopolski, A.

    2015-09-01

    Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH) permafrost-ice-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the Last Glacial Maximum (LGM) agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200-500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.

  8. Coupled Northern Hemisphere permafrost–ice-sheet evolution over the last glacial cycle

    Directory of Open Access Journals (Sweden)

    M. Willeit

    2015-09-01

    Full Text Available Permafrost influences a number of processes which are relevant for local and global climate. For example, it is well known that permafrost plays an important role in global carbon and methane cycles. Less is known about the interaction between permafrost and ice sheets. In this study a permafrost module is included in the Earth system model CLIMBER-2, and the coupled Northern Hemisphere (NH permafrost–ice-sheet evolution over the last glacial cycle is explored. The model performs generally well at reproducing present-day permafrost extent and thickness. Modeled permafrost thickness is sensitive to the values of ground porosity, thermal conductivity and geothermal heat flux. Permafrost extent at the Last Glacial Maximum (LGM agrees well with reconstructions and previous modeling estimates. Present-day permafrost thickness is far from equilibrium over deep permafrost regions. Over central Siberia and the Arctic Archipelago permafrost is presently up to 200–500 m thicker than it would be at equilibrium. In these areas, present-day permafrost depth strongly depends on the past climate history and simulations indicate that deep permafrost has a memory of surface temperature variations going back to at least 800 ka. Over the last glacial cycle permafrost has a relatively modest impact on simulated NH ice sheet volume except at LGM, when including permafrost increases ice volume by about 15 m sea level equivalent in our model. This is explained by a delayed melting of the ice base from below by the geothermal heat flux when the ice sheet sits on a porous sediment layer and permafrost has to be melted first. Permafrost affects ice sheet dynamics only when ice extends over areas covered by thick sediments, which is the case at LGM.

  9. Preliminary analysis of surface radiation measurements recorded at the Nansen ice sheet (Antarctica)

    International Nuclear Information System (INIS)

    Bonafe', U.; Dalpane, E.; Georgiadis, T.; Pitacco, A.

    1996-01-01

    An experiment on radiation and surface energy balance was conducted during the 9. Italian expedition in Antarctica at the Nancen ice sheet, a glacier situated close to the Italian base at Terra Nova Bay, to correlate surface balances to the formation and development of katabatic winds. Measurements were taken by radiometers covering the whole spectra of solar and terrestrial emissions and by fast sensors of atmospheric wind velocity and humidity for the application of the eddy correlation technique. A preliminary analysis of the radiometric data collected in order to quantify the major components of radiative energy balance during the Antarctic summer in clear sky conditions is reported and discussed. The findings show the very low available energy (mean about 1 W/m 2 ), in terms of net radiation, for the physical processes such as sensible- and latent-heat fluxes. Long-wave radiation balance was applied to estimate the reliability of the Swinbank's parametrization, relative to general conditions of the atmosphere

  10. Simulation of the last glacial cycle with a coupled climate ice-sheet model of intermediate complexity

    Directory of Open Access Journals (Sweden)

    A. Ganopolski

    2010-04-01

    Full Text Available A new version of the Earth system model of intermediate complexity, CLIMBER-2, which includes the three-dimensional polythermal ice-sheet model SICOPOLIS, is used to simulate the last glacial cycle forced by variations of the Earth's orbital parameters and atmospheric concentration of major greenhouse gases. The climate and ice-sheet components of the model are coupled bi-directionally through a physically-based surface energy and mass balance interface. The model accounts for the time-dependent effect of aeolian dust on planetary and snow albedo. The model successfully simulates the temporal and spatial dynamics of the major Northern Hemisphere (NH ice sheets, including rapid glacial inception and strong asymmetry between the ice-sheet growth phase and glacial termination. Spatial extent and elevation of the ice sheets during the last glacial maximum agree reasonably well with palaeoclimate reconstructions. A suite of sensitivity experiments demonstrates that simulated ice-sheet evolution during the last glacial cycle is very sensitive to some parameters of the surface energy and mass-balance interface and dust module. The possibility of a considerable acceleration of the climate ice-sheet model is discussed.

  11. IceBridge: Bringing a Field Campaign Home

    Science.gov (United States)

    Woods, J.; Beck, J.; Bartholow, S.

    2015-12-01

    IceBridge, a six-year NASA mission, is the largest airborne survey of Earth's polar ice ever flown. It will yield an unprecedented three-dimensional view of Arctic and Antarctic ice sheets, ice shelves and sea ice. These flights will provide a yearly, multi-instrument look at the behavior of the rapidly changing features of the Greenland and Antarctic ice. Data collected during IceBridge will help scientists bridge the gap in polar observations between NASA's Ice, Cloud and Land Elevation Satellite (ICESat) -- in orbit since 2003 -- and ICESat-2, planned for 2017. ICESat stopped collecting science data in 2009, making IceBridge critical for ensuring a continuous series of observations. IceBridge will use airborne instruments to map Arctic and Antarctic areas once a year at a minimum, with new campaigns being developed during the Arctic melt season. IceBridge flights are conducted in the spring and summer for the Arctic and in the fall over Antarctica. Other smaller airborne surveys around the world are also part of the IceBridge campaign. IceBridge actively engages the public and educators through a variety of outlets ranging from communications strategies through social media outlets, to larger organized efforts such as PolarTREC. In field activities include blog posts, photo updates, in flight chat sessions, and more intensive live events to include google hangouts, where field team members can interact with the public during a scheduled broadcast. The IceBridge team provides scientists and other team members with the training and support to become communicators in their own right. There is an exciting new initiative where IceBridge will be collaborating with Undergraduate and Graduate students to integrate the next generation of scientists and communicators into the Science Teams. This will be explored through partnerships with institutions that are interested in mentoring through project based initiatives.

  12. How Will Sea Ice Loss Affect the Greenland Ice Sheet? On the Puzzling Features of Greenland Ice-Core Isotopic Composition

    Science.gov (United States)

    Pausata, Francesco S. R.; Legrande, Allegra N.; Roberts, William H. G.

    2016-01-01

    The modern cryosphere, Earth's frozen water regime, is in fast transition. Greenland ice cores show how fast theses changes can be, presenting evidence of up to 15 C warming events over timescales of less than a decade. These events, called Dansgaard/Oeschger (D/O) events, are believed to be associated with rapid changes in Arctic sea ice, although the underlying mechanisms are still unclear. The modern demise of Arctic sea ice may, in turn, instigate abrupt changes on the Greenland Ice Sheet. The Arctic Sea Ice and Greenland Ice Sheet Sensitivity (Ice2Ice Chttps://ice2ice.b.uib.noD) initiative, sponsored by the European Research Council, seeks to quantify these past rapid changes to improve our understanding of what the future may hold for the Arctic. Twenty scientists gathered in Copenhagen as part of this initiative to discuss the most recent observational, technological, and model developments toward quantifying the mechanisms behind past climate changes in Greenland. Much of the discussion focused on the causes behind the changes in stable water isotopes recorded in ice cores. The participants discussed sources of variability for stable water isotopes and framed ways that new studies could improve understanding of modern climate. The participants also discussed how climate models could provide insights into the relative roles of local and nonlocal processes in affecting stable water isotopes within the Greenland Ice Sheet. Presentations of modeling results showed how a change in the source or seasonality of precipitation could occur not only between glacial and modern climates but also between abrupt events. Recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. Further, indications from recent fieldwork campaigns illustrate an important role of stable isotopes in atmospheric vapor and diffusion in the final stable isotope signal in ice. This feature complicates

  13. A transient fully coupled climate-ice-sheet simulation of the last glacial inception

    Science.gov (United States)

    Lofverstrom, M.; Otto-Bliesner, B. L.; Lipscomb, W. H.; Fyke, J. G.; Marshall, S.; Sacks, B.; Brady, E. C.

    2017-12-01

    The last glacial inception occurred around 115 ka, following a relative minimum in the Northern Hemisphere summer insolation. It is believed that small and spatially separated ice caps initially formed in the high elevation regions of northern Canada, Scandinavia, and along the Siberian Arctic coast. These ice caps subsequently migrated down in the valleys where they coalesced and formed the initial seeds of the large coherent ice masses that covered the northern parts of the North American and Eurasian continents over most of the last glacial cycle. Sea level records show that the initial growth period lasted for about 10 kyrs, and the resulting ice sheets may have lowered the global sea level by as much as 30 to 50 meters. Here we examine the transient climate system evolution over the period between 118 and 110 ka, using the fully coupled Community Earth System Model, version 2 (CESM2). This model features a two-way coupled high-resolution (4x4 km) ice-sheet component (Community Ice Sheet model, version 2; CISM2) that simulates ice sheets as an interactive component of the climate system. We impose a transient forcing protocol where the greenhouse gas concentrations and the orbital parameters follow the nominal year in the simulation; the model topography is also dynamically evolving in order to reflect changes in ice elevation throughout the simulation. The analysis focuses on how the climate system evolves over this time interval, with a special focus on glacial inception in the high-latitude continents. Results will highlight how the evolving ice sheets compare to data and previous model based reconstructions.

  14. Nye Lecture: Water Under Ice: Curiosities, Complexities, and Catastrophes

    Science.gov (United States)

    Clarke, G. K.

    2006-12-01

    Meltwater beneath glaciers and ice sheets activates some of the most curious and impressive phenomena known to glaciology. These range from the generation of miniscule electrokinetic currents by water flow through subglacial sediment to massive outburst floods that rearrange landscapes and deliver freshwater pulses to the ocean. The source of this water varies but is some mix of surface water and water melted from the glacier base by geothermal and frictional heating. The outflow of subglacial water is somewhat affected by bed topography but the dominant influence is from gradients in ice overburden pressure and thus from the surface topography of the ice sheet. Upslope water flow is possible and large adverse bed slopes are required before topographic water traps can exist. As a consequence, subglacial topographic basins tend to be leaky and less than 5% of the area of the contemporary Antarctic Ice Sheet provides suitable habitat for subglacial lakes. Following a variety of subglacial pathways, water can migrate toward the ice margins, either as a liquid or as refrozen meltwater accreted to the ice base. The morphology of the subglacial water system is thought to comprise a combination of sheet-like, channel-like, and vein-like elements, all of which lend themselves to mathematical representation. Water transport processes need not operate in a steady fashion and morphological switching between sheet-like and channel-like endmembers is linked to spectacular events such as glacier surges and outburst floods. Large outbursts of proglacially or subglacially-stored meltwater, the classic Icelandic j{ö}kulhaups, continue to occur in glaciated regions of the world and much larger floods were released during the Late Pleistocene--Early Holocene deglaciation of the Northern Hemisphere. Whether large subglacial lakes like Lake Vostok, Earth's seventh largest lake, have similar potential for delivering cataclysmic floods remains uncertain. The recent detection of a small

  15. Ice-sheet modelling accelerated by graphics cards

    Science.gov (United States)

    Brædstrup, Christian Fredborg; Damsgaard, Anders; Egholm, David Lundbek

    2014-11-01

    Studies of glaciers and ice sheets have increased the demand for high performance numerical ice flow models over the past decades. When exploring the highly non-linear dynamics of fast flowing glaciers and ice streams, or when coupling multiple flow processes for ice, water, and sediment, researchers are often forced to use super-computing clusters. As an alternative to conventional high-performance computing hardware, the Graphical Processing Unit (GPU) is capable of massively parallel computing while retaining a compact design and low cost. In this study, we present a strategy for accelerating a higher-order ice flow model using a GPU. By applying the newest GPU hardware, we achieve up to 180× speedup compared to a similar but serial CPU implementation. Our results suggest that GPU acceleration is a competitive option for ice-flow modelling when compared to CPU-optimised algorithms parallelised by the OpenMP or Message Passing Interface (MPI) protocols.

  16. Airborne observations of changes of ice sheet and sea ice in the Arctic using CryoVEx campaign data

    DEFF Research Database (Denmark)

    Hvidegaard, Sine Munk; Skourup, Henriette; Forsberg, René

    measurements of ice sheet changes. The majority of the campaigns have been sponsored by the European Space Agency, ESA, as part of the CryoSat Validation Experiments – CryoVEx. These have been internationally coordinated efforts to collect coincident space‐borne, airborne, and in‐situ data for pre‐ and post...... cap (Svalbard), the EGIG line crossing the Greenland Ice Sheet, as well as the sea ice north of Alert and sea ice around Svalbard in the Fram Strait. Selected tracks were planned to match CryoSat‐2 passes and a few of them were flown in formation flight with the Alfred Wegener Institute (AWI) Polar‐5...

  17. An antarctic stratigraphic record of stepwise ice growth through the eocene-oligocene transition

    NARCIS (Netherlands)

    Passchier, Sandra; Ciarletta, Daniel J.; Miriagos, Triantafilo E.; Bijl, Peter K.; Bohaty, Steven M.

    2017-01-01

    Earth's current icehouse phase began ~34 m.y. ago with the onset of major Antarctic glaciation at the Eocene-Oligocene transition. Changes in ocean circulation and a decline in atmospheric greenhouse gas levels were associated with stepwise cooling and ice growth at southern high latitudes. The

  18. Predicting Land-Ice Retreat and Sea-Level Rise with the Community Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Lipscomb, William [Los Alamos National Laboratory

    2012-06-19

    Coastal stakeholders need defensible predictions of 21st century sea-level rise (SLR). IPCC assessments suggest 21st century SLR of {approx}0.5 m under aggressive emission scenarios. Semi-empirical models project SLR of {approx}1 m or more by 2100. Although some sea-level contributions are fairly well constrained by models, others are highly uncertain. Recent studies suggest a potential large contribution ({approx}0.5 m/century) from the marine-based West Antarctic Ice Sheet, linked to changes in Southern Ocean wind stress. To assess the likelihood of fast retreat of marine ice sheets, we need coupled ice-sheet/ocean models that do not yet exist (but are well under way). CESM is uniquely positioned to provide integrated, physics based sea-level predictions.

  19. Ice-rafting from the British-Irish ice sheet since the earliest Pleistocene (2.6 million years ago): implications for long-term mid-latitudinal ice-sheet growth in the North Atlantic region

    NARCIS (Netherlands)

    Thierens, M.; Pirlet, H.; Colin, C.; Latruwe, K.; Vanhaecke, F.; Lee, J.R.; Stuut, J.-B.; Titschaeck, J.; Titschack, J.; Huvenne, V.; Dorschel, B.; Wheeler, A.J.; Henriet, J.P.

    2012-01-01

    The Plio-Pleistocene intensification of Northern Hemisphere continental ice-sheet development is known to have profoundly affected the global climate system. Evidence for early continental glaciation is preserved in sediments throughout the North Atlantic Ocean, where ice-rafted detritus (IRD)

  20. Cosmogenic nuclide age estimate for Laurentide Ice Sheet recession from the terminal moraine, New Jersey, USA, and constraints on latest Pleistocene ice sheet history

    Science.gov (United States)

    Corbett, Lee B.; Bierman, Paul R.; Stone, Byron D.; Caffee, Marc W.; Larsen, Patrick L.

    2017-01-01

    The time at which the Laurentide Ice Sheet reached its maximum extent and subsequently retreated from its terminal moraine in New Jersey has been constrained by bracketing radiocarbon ages on preglacial and postglacial sediments. Here, we present measurements of in situ produced 10Be and 26Al in 16 quartz-bearing samples collected from bedrock outcrops and glacial erratics just north of the terminal moraine in north-central New Jersey; as such, our ages represent a minimum limit on the timing of ice recession from the moraine. The data set includes field and laboratory replicates, as well as replication of the entire data set five years after initial measurement. We find that recession of the Laurentide Ice Sheet from the terminal moraine in New Jersey began before 25.2±2.1 ka (10Be, n=16, average, 1 standard deviation). This cosmogenic nuclide exposure age is consistent with existing limiting radiocarbon ages in the study area and cosmogenic nuclide exposure ages from the terminal moraine on Martha’s Vineyard ~300 km to the northeast. The age we propose for Laurentide Ice Sheet retreat from the New Jersey terminal position is broadly consistent with regional and global climate records of the last glacial maximum termination and records of fluvial incision.

  1. Exploring the data constrained phase space of the last Antarctic glacial cycle

    Science.gov (United States)

    Lecavalier, Benoit; Tarasov, Lev

    2017-04-01

    The evolution of the Antarctic Ice Sheet over the last two glacial cycles is studied using the Glacial Systems Model (GSM). Glaciological modelling is an effective tool to generate continental-scale reconstructions over glacial cycles, but the models depend on parameterizations to account for the deficiencies (e.g., missing physics, unresolved sub-grid processes, uncertain boundary conditions) inherent in any numerical model. These parameters, considered together, form a parameter phase space from which sets of parameters can be sampled; each set corresponds to an ice sheet reconstruction. The GSM has been updated with a number of recent developments: hybrid SIA-SSA physics, Schoof grounding line parameterization, broadened degrees of freedom in the climate forcing, sub-shelf melt explicitly dependent on ocean temperatures, improved hydrofracturing, cliff failure at the margins, basal topographic uncertainties, impact of basal drag roughness and subgrid statistics, and first order geoidal corrections in the coupled glacial isostatic adjustment component. Parametric uncertainties are defined in the GSM using >36 ensemble parameters. Prior to conducting a full Bayesian calibration, one must first validate the ability of the GSM to simulate a broad range of responses. We attempt this by latin hypercube sampling of the parameter phase space and comparing the model predictions against our constraint database consisting of past elevation, extent and relative sea level observations and the present day geometry. We document the capability of the GSM to envelope the observational constraints given the parametric uncertainties and discuss the implications for the evolution of the Antarctic Ice Sheet.

  2. Improving volume loss estimates of the northwestern Greenland Ice Sheet 2002-2010

    DEFF Research Database (Denmark)

    Korsgaard, Niels Jákup; Khan, Shfaqat Abbas; Kjeldsen, Kristian Kjellerup

    Studies have been carried out using various methods to estimate the Greenland ice sheet mass balance. Remote sensing techniques used to determine the ice sheet volume includes airborne and satellite radar and laser methods and measurements of ice flow of outlet glaciers use InSAR satellite radar......) does not work on sloping surfaces and is affected by radar penetration into the snow. InSAR estimates require knowledge of outlet glacier thickness. GRACE has limited spatial resolution and is affected by mass variations not just from ice changes, but also from hydrologic and ocean mass variability...... and mass redistribution within the solid Earth. The accuracy of ice mass and ice volume estimates can be assessed by comparing results from different techniques. Here, we focus on volume loss estimates from ICESat, ATM and LVIS data. We estimate catchment-wide ice volume change in northwest Greenland...

  3. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean.

    Science.gov (United States)

    Coxall, Helen K; Wilson, Paul A; Pälike, Heiko; Lear, Caroline H; Backman, Jan

    2005-01-06

    The ocean depth at which the rate of calcium carbonate input from surface waters equals the rate of dissolution is termed the calcite compensation depth. At present, this depth is approximately 4,500 m, with some variation between and within ocean basins. The calcite compensation depth is linked to ocean acidity, which is in turn linked to atmospheric carbon dioxide concentrations and hence global climate. Geological records of changes in the calcite compensation depth show a prominent deepening of more than 1 km near the Eocene/Oligocene boundary (approximately 34 million years ago) when significant permanent ice sheets first appeared on Antarctica, but the relationship between these two events is poorly understood. Here we present ocean sediment records of calcium carbonate content as well as carbon and oxygen isotopic compositions from the tropical Pacific Ocean that cover the Eocene/Oligocene boundary. We find that the deepening of the calcite compensation depth was more rapid than previously documented and occurred in two jumps of about 40,000 years each, synchronous with the stepwise onset of Antarctic ice-sheet growth. The glaciation was initiated, after climatic preconditioning, by an interval when the Earth's orbit of the Sun favoured cool summers. The changes in oxygen-isotope composition across the Eocene/Oligocene boundary are too large to be explained by Antarctic ice-sheet growth alone and must therefore also indicate contemporaneous global cooling and/or Northern Hemisphere glaciation.

  4. Ice Flows: A Game-based Learning approach to Science Communication

    Science.gov (United States)

    Le Brocq, Anne

    2017-04-01

    Game-based learning allows people to become immersed in an environment, and learn how the system functions and responds to change through playing a game. Science and gaming share a similar characteristic: they both involve learning and understanding the rules of the environment you are in, in order to achieve your objective. I will share experiences of developing and using the educational game "Ice Flows" for science communication. The game tasks the player with getting a penguin to its destination, through controlling the size of the ice sheet via ocean temperature and snowfall. Therefore, the game aims to educate the user about the environmental controls on the behaviour of the ice sheet, whilst they are enjoying playing a game with penguins. The game was funded by a NERC Large Grant entitled "Ice shelves in a warming world: Filchner Ice Shelf system, Antarctica", so uses data from the Weddell Sea sector of the West Antarctic Ice Sheet to generate unique levels. The game will be easily expandable to other regions of Antarctica and beyond, with the ultimate aim of giving a full understanding to the user of different ice flow regimes across the planet.

  5. The Abandoned Ice Sheet Base at Camp Century, Greenland, in a Warming Climate

    Science.gov (United States)

    Colgan, William; Machguth, Horst; Macferrin, Mike; Colgan, Jeff D.; Van As, Dirk; Macgregor, Joseph A.

    2016-01-01

    In 1959 the U.S. Army Corps of Engineers built Camp Century beneath the surface of the northwestern Greenland Ice Sheet. There they studied the feasibility of deploying ballistic missiles within the ice sheet. The base and its wastes were abandoned with minimal decommissioning in 1967, under the assumption they would be preserved for eternity by perpetually accumulating snowfall. Here we show that a transition in ice sheet surface mass balance at Camp Century from net accumulation to net ablation is plausible within the next 75years, under a business-as-usual anthropogenic emissions scenario (Representative Concentration Pathway 8.5). Net ablation would guarantee the eventual remobilization of physical, chemical, biological, and radiological wastes abandoned at the site. While Camp Century and four other contemporaneous ice sheet bases were legally established under a Danish-U.S. treaty, the potential remobilization of their abandoned wastes, previously regarded as sequestered, represents an entirely new pathway of political dispute resulting from climate change.

  6. Ice age aerosol content from east Antarctic ice core samples and past wind strength

    International Nuclear Information System (INIS)

    Petit, J.R.; Briat, M.; Royer, A.

    1981-01-01

    The possible link between the aerosol content from the 905 deep Dome C ice core (East Antartica) which spans some 32,000 yr (Lorius et al. Nature; 280:644 (1979)) and climate, is considered. No evidence of major global or local volcanic activity was found though large marine and continental inputs (respectively 5 and 20 times higher than present) were observed at the end of the last Glacial stage. It is considered that they reflect glacial age climate with stronger atmospheric circulation, enhanced aridity and faster aerosol transport towards the Antarctic continent. (U.K.)

  7. A synthesis of the basal thermal state of the Greenland Ice Sheet

    Science.gov (United States)

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D.; Colgan, William T.; Gogineni, Prasad S.; Morlighem, Mathieu; Nowicki, Sophie M .J.; Paden, John D; Price, Stephen F.; Seroussi, Helene

    2016-01-01

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  8. A synthesis of the basal thermal state of the Greenland Ice Sheet.

    Science.gov (United States)

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D; Colgan, William T; Gogineni, S Prasad; Morlighem, Mathieu; Nowicki, Sophie M J; Paden, John D; Price, Stephen F; Seroussi, Hélène

    2016-08-10

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  9. (Pre-) calibration of a Reduced Complexity Model of the Antarctic Contribution to Sea-level Changes

    Science.gov (United States)

    Ruckert, K. L.; Guan, Y.; Shaffer, G.; Forest, C. E.; Keller, K.

    2015-12-01

    (Pre-) calibration of a Reduced Complexity Model of the Antarctic Contribution to Sea-level ChangesKelsey L. Ruckert1*, Yawen Guan2, Chris E. Forest1,3,7, Gary Shaffer 4,5,6, and Klaus Keller1,7,81 Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania, USA 2 Department of Statistics, The Pennsylvania State University, University Park, Pennsylvania, USA 3 Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, USA 4 GAIA_Antarctica, University of Magallanes, Punta Arenas, Chile 5 Center for Advanced Studies in Arid Zones, La Serena, Chile 6 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark 7 Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania, USA 8 Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA * Corresponding author. E-mail klr324@psu.eduUnderstanding and projecting future sea-level changes poses nontrivial challenges. Sea-level changes are driven primarily by changes in the density of seawater as well as changes in the size of glaciers and ice sheets. Previous studies have demonstrated that a key source of uncertainties surrounding sea-level projections is the response of the Antarctic ice sheet to warming temperatures. Here we calibrate a previously published and relatively simple model of the Antarctic ice sheet over a hindcast period from the last interglacial period to the present. We apply and compare a range of (pre-) calibration methods, including a Bayesian approach that accounts for heteroskedasticity. We compare the model hindcasts and projections for different levels of model complexity and calibration methods. We compare the projections with the upper bounds from previous studies and find our projections have a narrower range in 2100. Furthermore we discuss the implications for the design of climate risk management strategies.

  10. Annual accumulation over the Greenland ice sheet interpolated from historical and newly compiled observation data

    Science.gov (United States)

    Shen, Dayong; Liu, Yuling; Huang, Shengli

    2012-01-01

    The estimation of ice/snow accumulation is of great significance in quantifying the mass balance of ice sheets and variation in water resources. Improving the accuracy and reducing uncertainty has been a challenge for the estimation of annual accumulation over the Greenland ice sheet. In this study, we kriged and analyzed the spatial pattern of accumulation based on an observation data series including 315 points used in a recent research, plus 101 ice cores and snow pits and newly compiled 23 coastal weather station data. The estimated annual accumulation over the Greenland ice sheet is 31.2 g cm−2 yr−1, with a standard error of 0.9 g cm−2 yr−1. The main differences between the improved map developed in this study and the recently published accumulation maps are in the coastal areas, especially southeast and southwest regions. The analysis of accumulations versus elevation reveals the distribution patterns of accumulation over the Greenland ice sheet.

  11. Understanding Ice Shelf Basal Melting Using Convergent ICEPOD Data Sets: ROSETTA-Ice Study of Ross Ice Shelf

    Science.gov (United States)

    Bell, R. E.; Frearson, N.; Tinto, K. J.; Das, I.; Fricker, H. A.; Siddoway, C. S.; Padman, L.

    2017-12-01

    The future stability of the ice shelves surrounding Antarctica will be susceptible to increases in both surface and basal melt as the atmosphere and ocean warm. The ROSETTA-Ice program is targeted at using the ICEPOD airborne technology to produce new constraints on Ross Ice Shelf, the underlying ocean, bathymetry, and geologic setting, using radar sounding, gravimetry and laser altimetry. This convergent approach to studying the ice-shelf and basal processes enables us to develop an understanding of the fundamental controls on ice-shelf evolution. This work leverages the stratigraphy of the ice shelf, which is detected as individual reflectors by the shallow-ice radar and is often associated with surface scour, form close to the grounding line or pinning points on the ice shelf. Surface accumulation on the ice shelf buries these reflectors as the ice flows towards the calving front. This distinctive stratigraphy can be traced across the ice shelf for the major East Antarctic outlet glaciers and West Antarctic ice streams. Changes in the ice thickness below these reflectors are a result of strain and basal melting and freezing. Correcting the estimated thickness changes for strain using RIGGS strain measurements, we can develop decadal-resolution flowline distributions of basal melt. Close to East Antarctica elevated melt-rates (>1 m/yr) are found 60-100 km from the calving front. On the West Antarctic side high melt rates primarily develop within 10 km of the calving front. The East Antarctic side of Ross Ice Shelf is dominated by melt driven by saline water masses that develop in Ross Sea polynyas, while the melting on the West Antarctic side next to Hayes Bank is associated with modified Continental Deep Water transported along the continental shelf. The two sides of Ross Ice Shelf experience differing basal melt in part due to the duality in the underlying geologic structure: the East Antarctic side consists of relatively dense crust, with low amplitude

  12. Simulation of the European ice sheet through the last glacial cycle and prediction of future glaciation

    International Nuclear Information System (INIS)

    Boulton, G.S.; Payne, A.

    1992-12-01

    Global climates of the recent past appear to correlate with patterns of variation in the earths orbit round the sun. As such orbital changes can be predicted into the future, it is argued that the pattern of natural long-term future change can also be estimated. From this, future trends of glaciation can be inferred. The physical and mathematical basis of a time-dependent, thermo mechanically coupled, three dimensional ice sheet model is described. The model is driven by changes in the equilibrium line altitude (ELA) on its surface. This causes flexure of the underlying lithosphere. The model is tuned to the maximum extension of the last (Weichselian) ice sheet and driven by an ELA fluctuation which reflects the NE Atlantic sea surface temperature fluctuation pattern during the last glacial cycle in such a way that the model reproduces the ice sheet margin at the glacial maximum. The distribution of internal ice sheet velocity, temperature, basal melting rate and sub glacial permafrost penetration are all computed. The model is then tested against its predictions of the areal pattern of ice sheet expansion and decay, the pattern of crustal flexure and relative sea level change, and the distribution of till produced by the last European ice sheet. The tested model is then driven by predictions of future climate change to produce simulations of future ice sheet glaciation in northern Europe

  13. An Ensemble Analysis of Antarctic Glacial Isostatic Adjustment and Sea Level

    Science.gov (United States)

    Lecavalier, B.; Tarasov, L.

    2016-12-01

    Inferences of past ice sheet evolution that lack any uncertainty assessment (implicit or explicit), have little value. A developing technique for explicit uncertainty quantification of glacial systems is Bayesian calibration of models against large observational data-sets (Tarasov et al., 2012). The foundation for a Bayesian calibration of a 3D glacial systems model (GSM) for Antarctica has recently been completed (Briggs et al., 2013; 2014; Briggs and Tarasov, 2013). Bayesian calibration thoroughly samples model uncertainties against fits to observational data to generate a probability distribution for the Antarctic Ice Sheet deglaciation with explicit and well-defined confidence intervals. To have validity as a complete inference of past ice sheet evolution, Bayesian calibration requires a model that "brackets reality".Past work has shown the GSM to have likely inadequate range of grounding line migration in certain sectors as well as persistent ice thickness biases in topographically complex regions (Briggs et al., 2014). To advance towards full calibration, these deficiencies are being addressed through a number of model developments. The grounding line scheme has been revised (Pollard and DeConto, 2012), the horizontal resolution is increased to 20 km, and boundary conditions are updated. The basal drag representation now includes the sub-grid treatment of the thermo-mechanical impacts of high basal roughness. Parametric uncertainties in basal drag for regions that are presently marine have been re-evaluated. The impact of past changes in ocean temperature on sub ice shelf melt is explicitly incorporated in the current ocean forcing parametric scheme. Uncertainties in earth rheology are also probed to robustly quantify uncertainties affiliated with glacial isostatic adjustment. The ensemble analysis of the Antarctic glacial system provides dynamical bounds on past and present Antarctica glacial isostatic adjustment and sea level contributions. This research

  14. Current state and future perspectives on coupled ice-sheet – sea-level modelling

    NARCIS (Netherlands)

    de Boer, Bas; Stocchi, Paolo; Whitehouse, Pippa L.; van de Wal, Roderik S.W.

    2017-01-01

    The interaction between ice-sheet growth and retreat and sea-level change has been an established field of research for many years. However, recent advances in numerical modelling have shed new light on the precise interaction of marine ice sheets with the change in near-field sea level, and the

  15. Improvements in the chronology, geochemistry and correlation techniques of tephra in Antarctic ice

    Science.gov (United States)

    Iverson, N. A.; Dunbar, N. W.; McIntosh, W. C.; Pearce, N. J.; Kyle, P. R.

    2013-12-01

    Visible and crypto tephra layers found in West Antarctic ice provide an excellent record of Antarctic volcanism over the past 100ka. Tephra layers are deposited almost instantaneously across wide areas creating horizons that, if found in several locations, provide 'pinning points' to adjust ice time scales that may otherwise be lacking detailed chronology. Individual tephra layers can have distinct chemical fingerprints allowing them to correlate over great distances. Advances in sample preparation, geochemical analyses (major and trace elements) of fine grained tephra and higher precision 40Ar/39Ar dating of young (typically too small to be directly dated by 40Ar/39Ar method, making it very important to geochemically correlate these layers to proximal deposits where more and larger feldspar can be sampled. The correlation of WDC06A-2767.117 to the coarse, proximal BIT-152 provides one such link. The New Mexico Geochronology Research Lab (NMGRL) has two new multi-collector ARGUS VI mass spectrometers that can provide single crystal laser fusion ages that are approximately an order of magnitude more precise than the previous determinations. With these advancements in analytical technology, we hope to improve precision on 'pinning points' in the deep ice cores where annual layer counting becomes less precise.

  16. Free oscillations in a climate model with ice-sheet dynamics

    Science.gov (United States)

    Kallen, E.; Crafoord, C.; Ghil, M.

    1979-01-01

    A study of stable periodic solutions to a simple nonlinear model of the ocean-atmosphere-ice system is presented. The model has two dependent variables: ocean-atmosphere temperature and latitudinal extent of the ice cover. No explicit dependence on latitude is considered in the model. Hence all variables depend only on time and the model consists of a coupled set of nonlinear ordinary differential equations. The globally averaged ocean-atmosphere temperature in the model is governed by the radiation balance. The reflectivity to incoming solar radiation, i.e., the planetary albedo, includes separate contributions from sea ice and from continental ice sheets. The major physical mechanisms active in the model are (1) albedo-temperature feedback, (2) continental ice-sheet dynamics and (3) precipitation-rate variations. The model has three-equilibrium solutions, two of which are linearly unstable, while one is linearly stable. For some choices of parameters, the stability picture changes and sustained, finite-amplitude oscillations obtain around the previously stable equilibrium solution. The physical interpretation of these oscillations points to the possibility of internal mechanisms playing a role in glaciation cycles.

  17. Observation of ice sheet formation on methane and ethane gas hydrates using a scanning confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, J.; Shimomura, N.; Ebinuma, T.; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohira, Sapporo (Japan). Methane Hydrate Research Lab.

    2008-07-01

    Interest in gas hydrates has increased in recent years due to the discovery of large deposits under the ocean floor and in permafrost regions. Natural gas hydrates, including methane, is expected to become a new energy source and a medium for energy storage and transportation. Gas hydrates consist of an open network of water molecules that are hydrogen-bonded in a similar manner to ice. Gas molecules are interstitially engaged under high pressures and low temperatures. Although the dissociation temperature of methane hydrate under atmospheric pressure is about 193 K, studies have shown that methane hydrate can be stored at atmospheric pressure and 267 K for 2 years. Because of this phenomenon, known as self-preservation, transportation and storage of methane hydrate can occur at temperature conditions milder than those for liquefied methane gas at atmospheric pressure. This study examined the surface changes of methane and ethane hydrates during dissociation using an optical microscope and confocal scanning microscope (CSM). This paper reported on the results when the atmospheric gas pressure was decreased. Ice sheets formed on the surfaces of methane and ethane gas hydrates due to depressurizing dissociation of methane and ethane hydrates when the methane and ethane gas pressures were decreased at designated temperatures. The dissociation of methane gas hydrate below below 237 K resulted in the generation of small ice particles on the hydrate surface. A transparent ice sheet formed on the hydrate surface above 242 K. The thickness of the ice sheet on the methane hydrate surface showed the maximum of ca. 30 {mu}m at 253 K. In the case of ethane hydrates, ice particles and ice sheets formed below 262 and 267 respectively. Since the ice particles and ice sheets were formed by water molecules generated during the gas hydrate dissociation, the mechanism of ice sheet formation depends on the dissociation rate of hydrate, ice particle sintering rate, and water molecule

  18. Boundary layer new particle formation over East Antarctic sea ice – possible Hg-driven nucleation?

    Directory of Open Access Journals (Sweden)

    R. S. Humphries

    2015-12-01

    Full Text Available Aerosol observations above the Southern Ocean and Antarctic sea ice are scarce. Measurements of aerosols and atmospheric composition were made in East Antarctic pack ice on board the Australian icebreaker Aurora Australis during the spring of 2012. One particle formation event was observed during the 32 days of observations. This event occurred on the only day to exhibit extended periods of global irradiance in excess of 600 W m−2. Within the single air mass influencing the measurements, number concentrations of particles larger than 3 nm (CN3 reached almost 7700 cm−3 within a few hours of clouds clearing, and grew at rates of 5.6 nm h−1. Formation rates of 3 nm particles were in the range of those measured at other Antarctic locations at 0.2–1.1 ± 0.1 cm−3 s−1. Our investigations into the nucleation chemistry found that there were insufficient precursor concentrations for known halogen or organic chemistry to explain the nucleation event. Modelling studies utilising known sulfuric acid nucleation schemes could not simultaneously reproduce both particle formation or growth rates. Surprising correlations with total gaseous mercury (TGM were found that, together with other data, suggest a mercury-driven photochemical nucleation mechanism may be responsible for aerosol nucleation. Given the very low vapour pressures of the mercury species involved, this nucleation chemistry is likely only possible where pre-existing aerosol concentrations are low and both TGM concentrations and solar radiation levels are relatively high (∼ 1.5 ng m−3 and ≥ 600 W m−2, respectively, such as those observed in the Antarctic sea ice boundary layer in this study or in the global free troposphere, particularly in the Northern Hemisphere.

  19. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP

    Directory of Open Access Journals (Sweden)

    F. Pattyn

    2012-05-01

    Full Text Available Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing. Unique steady state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving "shelfy stream" models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including fixed grid models that generally perform poorly at coarse resolution. Fixed grid models, with nested grid representations of the grounding line, are able to generate accurate steady state positions, but can be inaccurate over transients. Only one full-Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full-Stokes models remains to be determined in detail, especially during transients.

  20. A New Global Mascon Solution Tuned for High-Latitude Ice Studies

    Science.gov (United States)

    Luthcke, S. B.; Sabaka, T.; Rowlands, D. D> McCarthy, J. J.; Loomis, B.

    2011-01-01

    A new global mascon solution has been developed with I-arc-degree spatial and IO-day temporal sampling. The global mas cons are estimated from the reduction of nearly 8 years of GRACE K-band range-rate data. Temporal and anisotropic spatial constraints have been applied for land, ocean and ice regions. The solution construction and tuning is focused towards the Greenland and Antarctic ice sheets (GIS and AIS) as well as the Gulf of Alaska mountain glaciers (GoA). Details of the solution development will be discussed, including the mascon parameter definitions, constraints, and the tuning of the constraint damping factor. Results will be presented, exploring the spatial and temporal variability of the ice sheets and GoA regions. A detailed error analysis will be discussed, including solution dependence on iteration, damping factor, forward modeling, and multitechnique comparisons. We also investigate the fundamental resolution of the solution and the spatial correlation of ice sheet inter-annual change. Finally, we discuss future improvements, including specific constraint application for the rest of the major land ice regions and improvements in solution regularization.

  1. Icebergs, sea ice, blue carbon and Antarctic climate feedbacks.

    Science.gov (United States)

    Barnes, David K A; Fleming, Andrew; Sands, Chester J; Quartino, Maria Liliana; Deregibus, Dolores

    2018-06-28

    Sea ice, including icebergs, has a complex relationship with the carbon held within animals (blue carbon) in the polar regions. Sea-ice losses around West Antarctica's continental shelf generate longer phytoplankton blooms but also make it a hotspot for coastal iceberg disturbance. This matters because in polar regions ice scour limits blue carbon storage ecosystem services, which work as a powerful negative feedback on climate change (less sea ice increases phytoplankton blooms, benthic growth, seabed carbon and sequestration). This resets benthic biota succession (maintaining regional biodiversity) and also fertilizes the ocean with nutrients, generating phytoplankton blooms, which cascade carbon capture into seabed storage and burial by benthos. Small icebergs scour coastal shallows, whereas giant icebergs ground deeper, offshore. Significant benthic communities establish where ice shelves have disintegrated (giant icebergs calving), and rapidly grow to accumulate blue carbon storage. When 5000 km 2 giant icebergs calve, we estimate that they generate approximately 10 6 tonnes of immobilized zoobenthic carbon per year (t C yr -1 ). However, their collisions with the seabed crush and recycle vast benthic communities, costing an estimated 4 × 10 4  t C yr -1 We calculate that giant iceberg formation (ice shelf disintegration) has a net potential of approximately 10 6  t C yr -1 sequestration benefits as well as more widely known negative impacts.This article is part of the theme issue 'The marine system of the West Antarctic Peninsula: status and strategy for progress in a region of rapid change'. © 2018 The Authors.

  2. Dry calving processes at the ice cliff of an antarctic local glacier: the study case of Strandline Glacier (Northern Victoria Land, Antarctica)

    Science.gov (United States)

    Smiraglia, C.; Motta, M.; Vassena, G.; Diolaiuti, G.

    2003-04-01

    In Antartic coastal area, where the ice sheet and the large outlet glaciers do not reach the sea and where some rugged mountain chains are often present, many small glaciers can be found. They are the so called local or alpine type glaciers, which have their terminus ground-based such as the real alpine glaciers and rarely reach the main valley floors. They are practically isolated and independent from the supply flowing down from the plateau and their mass balance is mainly controlled by sublimation and aeolic erosion and accumulation. The glaciers closer to the coast are submitted to the melting as well, and when the terminus is cliff-shaped they are also affected by dry calving. The most known and studied Antarctic local glaciers are placed in the Dry Valleys region (Chinn, 1985), but this kind of glaciers is also diffused all along the Northern Victoria Land coastal region (Chinn and others, 1989). Since the first Italian Antarctic expedition (1985), many studies have been carried out on this type of glaciers, which can be usefull for detailed mass balance evaluations and for obtaining information about the effects of the present climatic dynamics on the Antarctic coastal environment (Baroni and Orombelli, 1987; Baroni and others, 1995; Meneghel, 1999; Vassena and others., 2001). The Strandline Glacier (74 41 S; 164 07 E), in particular is a small alpine glacier (0,79 kmq) on the coast of Terra Nova Bay, Northern Victoria Land; it is a cold glacier where accumulation and ablation basins are mainly controlled by wind processes. Its terminus forms in the central part a grounded ice cliff about 30 m high, about 130 m far from the sea. On that glacier mass balance, surface velocity and calving rate were measured. During the southern summer season 2000-2001 many topographycal profiles of the ice cliff were surveyed by using both classical topographical and glaciological methods (total station and stakes) and GPS technique. It was so possible to detect the short term

  3. Annually resolved southern hemisphere volcanic history from two Antarctic ice cores

    Science.gov (United States)

    Cole-Dai, Jihong; Mosley-Thompson, Ellen; Thompson, Lonnie G.

    1997-07-01

    The continuous sulfate analysis of two Antarctic ice cores, one from the Antarctic Peninsula region and one from West Antarctica, provides an annually resolved proxy history of southern semisphere volcanism since early in the 15th century. The dating is accurate within ±3 years due to the high rate of snow accumulation at both core sites and the small sample sizes used for analysis. The two sulfate records are consistent with each other. A systematic and objective method of separating outstanding sulfate events from the background sulfate flux is proposed and used to identify all volcanic signals. The resulting volcanic chronology covering 1417-1989 A.D. resolves temporal ambiguities about several recently discovered events. A number of previously unknown, moderate eruptions during late 1600s are uncovered in this chronology. The eruption of Tambora (1815) and the recently discovered eruption of Kuwae (1453) in the tropical South Pacific injected the greatest amount of sulfur dioxide into the southern hemisphere stratosphere during the last half millennium. A technique for comparing the magnitude of volcanic events preserved within different ice cores is developed using normalized sulfate flux. For the same eruptions the variability of the volcanic sulfate flux between the cores is within ±20% of the sulfate flux from the Tambora eruption.

  4. GREENLAND ICE SHEET CHANGES FROM SPACE USING LASER, RADAR AND

    DEFF Research Database (Denmark)

    Sørensen, Louise Sandberg; Stenseng, Lars; Simonsen, Sebastian Bjerregaard

    2010-01-01

    The Greenland cryosphere is undergoing rapid changes, and these are documented by remote sensing from space. In this paper, an inversion scheme is used to derive mass changes from gravity changes observed by GRACE, and to derive the mean annual mass loss for the Greenland Ice Sheet, which...... is estimated to be 204 Gt/yr for the period 2002-2010. NASA’s laser altimetry satellite ICESat has provided elevation estimates of the ice sheet since January 2003. In order to be able to compare GRACE and ICESat derived results, the ICESat volume change must be converted into a mass change estimate. Therefore...

  5. Achieving Textbook Multigrid Efficiency for Hydrostatic Ice Sheet Flow

    KAUST Repository

    Brown, Jed; Smith, Barry; Ahmadia, Aron

    2013-01-01

    The hydrostatic equations for ice sheet flow offer improved fidelity compared with the shallow ice approximation and shallow stream approximation popular in today's ice sheet models. Nevertheless, they present a serious bottleneck because they require the solution of a three-dimensional (3D) nonlinear system, as opposed to the two-dimensional system present in the shallow stream approximation. This 3D system is posed on high-aspect domains with strong anisotropy and variation in coefficients, making it expensive to solve with current methods. This paper presents a Newton--Krylov multigrid solver for the hydrostatic equations that demonstrates textbook multigrid efficiency (an order of magnitude reduction in residual per iteration and solution of the fine-level system at a small multiple of the cost of a residual evaluation). Scalability on Blue Gene/P is demonstrated, and the method is compared to various algebraic methods that are in use or have been proposed as viable approaches.

  6. Achieving Textbook Multigrid Efficiency for Hydrostatic Ice Sheet Flow

    KAUST Repository

    Brown, Jed

    2013-03-12

    The hydrostatic equations for ice sheet flow offer improved fidelity compared with the shallow ice approximation and shallow stream approximation popular in today\\'s ice sheet models. Nevertheless, they present a serious bottleneck because they require the solution of a three-dimensional (3D) nonlinear system, as opposed to the two-dimensional system present in the shallow stream approximation. This 3D system is posed on high-aspect domains with strong anisotropy and variation in coefficients, making it expensive to solve with current methods. This paper presents a Newton--Krylov multigrid solver for the hydrostatic equations that demonstrates textbook multigrid efficiency (an order of magnitude reduction in residual per iteration and solution of the fine-level system at a small multiple of the cost of a residual evaluation). Scalability on Blue Gene/P is demonstrated, and the method is compared to various algebraic methods that are in use or have been proposed as viable approaches.

  7. Modeling the evolution of the Laurentide Ice Sheet from MIS 3 to the Last Glacial Maximum: an approach using sea level modeling and ice flow dynamics

    Science.gov (United States)

    Weisenberg, J.; Pico, T.; Birch, L.; Mitrovica, J. X.

    2017-12-01

    The history of the Laurentide Ice Sheet since the Last Glacial Maximum ( 26 ka; LGM) is constrained by geological evidence of ice margin retreat in addition to relative sea-level (RSL) records in both the near and far field. Nonetheless, few observations exist constraining the ice sheet's extent across the glacial build-up phase preceding the LGM. Recent work correcting RSL records along the U.S. mid-Atlantic dated to mid-MIS 3 (50-35 ka) for glacial-isostatic adjustment (GIA) infer that the Laurentide Ice Sheet grew by more than three-fold in the 15 ky leading into the LGM. Here we test the plausibility of a late and extremely rapid glaciation by driving a high-resolution ice sheet model, based on a nonlinear diffusion equation for the ice thickness. We initialize this model at 44 ka with the mid-MIS 3 ice sheet configuration proposed by Pico et al. (2017), GIA-corrected basal topography, and mass balance representative of mid-MIS 3 conditions. These simulations predict rapid growth of the eastern Laurentide Ice Sheet, with rates consistent with achieving LGM ice volumes within 15 ky. We use these simulations to refine the initial ice configuration and present an improved and higher resolution model for North American ice cover during mid-MIS 3. In addition we show that assumptions of ice loads during the glacial phase, and the associated reconstructions of GIA-corrected basal topography, produce a bias that can underpredict ice growth rates in the late stages of the glaciation, which has important consequences for our understanding of the speed limit for ice growth on glacial timescales.

  8. Influence of glacial ice sheets on the Atlantic meridional overturning circulation through surface wind change

    Science.gov (United States)

    Sherriff-Tadano, Sam; Abe-Ouchi, Ayako; Yoshimori, Masakazu; Oka, Akira; Chan, Wing-Le

    2018-04-01

    Coupled modeling studies have recently shown that the existence of the glacial ice sheets intensifies the Atlantic meridional overturning circulation (AMOC). However, most models show a strong AMOC in their simulations of the Last Glacial Maximum (LGM), which is biased compared to reconstructions that indicate both a weaker and stronger AMOC during the LGM. Therefore, a detailed investigation of the mechanism behind this intensification of the AMOC is important for a better understanding of the glacial climate and the LGM AMOC. Here, various numerical simulations are conducted to focus on the effect of wind changes due to glacial ice sheets on the AMOC and the crucial region where the wind modifies the AMOC. First, from atmospheric general circulation model experiments, the effect of glacial ice sheets on the surface wind is evaluated. Second, from ocean general circulation model experiments, the influence of the wind stress change on the AMOC is evaluated by applying wind stress anomalies regionally or at different magnitudes as a boundary condition. These experiments demonstrate that glacial ice sheets intensify the AMOC through an increase in the wind stress at the North Atlantic mid-latitudes, which is induced by the North American ice sheet. This intensification of the AMOC is caused by the increased oceanic horizontal and vertical transport of salt, while the change in sea ice transport has an opposite, though minor, effect. Experiments further show that the Eurasian ice sheet intensifies the AMOC by directly affecting the deep-water formation in the Norwegian Sea.

  9. Rapid bottom melting widespread near Antarctic ice sheet grounding lines

    Science.gov (United States)

    Rignot, E.; Jacobs, S.

    2002-01-01

    As continental ice from Antartica reaches the grounding line and begins to float, its underside melts into the ocean. Results obtained with satellite radar interferometry reveal that bottom melt rates experienced by large outlet glaciers near their grounding lines are far higher than generally assumed.

  10. Peeking Below the Snow Surface to Explore Amundsen Sea Climate Variability and Locate Optimal Ice-Core Sites

    Science.gov (United States)

    Neff, P. D.; Fudge, T. J.; Medley, B.

    2016-12-01

    Observations over recent decades reveal rapid changes in ice shelves and fast-flowing grounded ice along the Amundsen Sea coast of the West Antarctic Ice Sheet (WAIS). Long-term perspectives on this ongoing ice loss are needed to address a central question of Antarctic research: how much and how fast will Antarctic ice-loss raise sea level? Ice cores can provide insight into past variability of the atmospheric (wind) forcing of regional ocean dynamics affecting ice loss. Interannual variability of snow accumulation on coastal ice domes grounded near or within ice shelves reflects local to regional atmospheric circulation near the ice-ocean interface. Records of snow accumulation inferred from shallow ice cores strongly correlate with reanalysis precipitation and pressure fields, but ice cores have not yet been retrieved along the Amundsen Sea coast. High-frequency airborne radar data (NASA Operation IceBridge), however, have been collected over this region and we demonstrate that these data accurately reflect annual stratigraphy in shallow snow and firn (1 to 2 decades of accumulation). This further validates the agreement between radar snow accumulation records and climate reanalysis products. We then explore regional climate controls on local snow accumulation through comparison with gridded reanalysis products, providing a preview of what information longer coastal ice core records may provide with respect to past atmospheric forcing of ocean circulation and WAIS ice loss.

  11. Rapid changes in surface water carbonate chemistry during Antarctic sea ice melt

    Science.gov (United States)

    Jones, Elizabeth M.; Bakker, Dorothee C. E.; Venables, Hugh J.; Whitehouse, Michael J.; Korb, Rebecca E.; Watson, Andrew J.

    2010-11-01

    ABSTRACT The effect of sea ice melt on the carbonate chemistry of surface waters in the Weddell-Scotia Confluence, Southern Ocean, was investigated during January 2008. Contrasting concentrations of dissolved inorganic carbon (DIC), total alkalinity (TA) and the fugacity of carbon dioxide (fCO2) were observed in and around the receding sea ice edge. The precipitation of carbonate minerals such as ikaite (CaCO3.6H2O) in sea ice brine has the net effect of decreasing DIC and TA and increasing the fCO2 in the brine. Deficits in DIC up to 12 +/- 3 μmol kg-1 in the marginal ice zone (MIZ) were consistent with the release of DIC-poor brines to surface waters during sea ice melt. Biological utilization of carbon was the dominant processes and accounted for 41 +/- 1 μmol kg-1 of the summer DIC deficit. The data suggest that the combined effects of biological carbon uptake and the precipitation of carbonates created substantial undersaturation in fCO2 of 95 μatm in the MIZ during summer sea ice melt. Further work is required to improve the understanding of ikaite chemistry in Antarctic sea ice and its importance for the sea ice carbon pump.

  12. Processes influencing differences in Arctic and Antarctic Trough Mouth Fan sedimentology

    OpenAIRE

    Gales, J; Hillenbrand, C-D; Larter, R; Laberg, J-S; Melles, M; Benetti, S; Passchier, S

    2018-01-01

    Trough Mouth Fans (TMFs) are sediment depocentres that form along high-latitude continental margins at the mouths of some cross-shelf troughs. They reflect the dynamics of past ice sheets over multiple glacial cycles and processes operating on (formerly) glaciated continental shelves and slopes, such as erosion, reworking, transport and deposition. The similarities and differences in TMF morphology and formation processes of the Arctic and Antarctic regions remain poorly constrained. Here, we...

  13. Submarine glacial landforms and interactions with volcanism around Sub-Antarctic Heard and McDonald Islands

    Science.gov (United States)

    Picard, K.; Watson, S. J.; Fox, J. M.; Post, A.; Whittaker, J. M.; Lucieer, V.; Carey, R.; Coffin, M. F.; Hodgson, D.; Hogan, K.; Graham, A. G. C.

    2017-12-01

    Unravelling the glacial history of Sub-Antarctic islands can provide clues to past climate and Antarctic ice sheet stability. The glacial history of many sub-Antarctic islands is poorly understood, including the Heard and McDonald Islands (HIMI) located on the Kerguelen Plateau in the southern Indian Ocean. The geomorphologic development of HIMI has involved a combination of construction via hotspot volcanism and mechanical erosion caused by waves, weather, and glaciers. Today, the 2.5 km2 McDonald Islands are not glacierised; in contrast, the 368 km2 Heard Island has 12 major glaciers, some extending from the summit of 2813 m to sea level. Historical accounts from Heard Island suggest that the glaciers were more extensive in the 1850s to 1870s, and have retreated at least 12% (33.89 km2) since 1997. However, surrounding bathymetry suggests a much more extensive previous glaciation of the HIMI region that encompassed 9,585 km2, likely dating back at least to the Last Glacial Maximum (LGM) ca. 26.5 -19 ka. We present analyses of multibeam bathymetry and backscatter data, acquired aboard RV Investigator in early 2016, that support the previous existence of an extensive icecap. These data reveal widespread ice-marginal and subglacial features including moraines, over-deepened troughs, drumlins and crag-and-tails. Glacial landforms suggest paleo-ice flow directions and a glacial extent that are consistent with previously documented broad scale morphological features. We identify >660 iceberg keel scours in water depths ranging from 150 - 530 m. The orientations of the iceberg keel scours reflect the predominantly east-flowing Antarctic Circumpolar Current and westerly winds in the region. 40Ar/39Ar dating of volcanic rocks from submarine volcanoes around McDonald Islands suggests that volcanism and glaciation coincided. The flat-topped morphology of these volcanoes may result from lava-ice interaction or erosion by glaciers post eruption during a time of extensive ice-sheet

  14. Greenland ice sheet mass balance: a review.

    Science.gov (United States)

    Khan, Shfaqat A; Aschwanden, Andy; Bjørk, Anders A; Wahr, John; Kjeldsen, Kristian K; Kjær, Kurt H

    2015-04-01

    Over the past quarter of a century the Arctic has warmed more than any other region on Earth, causing a profound impact on the Greenland ice sheet (GrIS) and its contribution to the rise in global sea level. The loss of ice can be partitioned into processes related to surface mass balance and to ice discharge, which are forced by internal or external (atmospheric/oceanic/basal) fluctuations. Regardless of the measurement method, observations over the last two decades show an increase in ice loss rate, associated with speeding up of glaciers and enhanced melting. However, both ice discharge and melt-induced mass losses exhibit rapid short-term fluctuations that, when extrapolated into the future, could yield erroneous long-term trends. In this paper we review the GrIS mass loss over more than a century by combining satellite altimetry, airborne altimetry, interferometry, aerial photographs and gravimetry data sets together with modelling studies. We revisit the mass loss of different sectors and show that they manifest quite different sensitivities to atmospheric and oceanic forcing. In addition, we discuss recent progress in constructing coupled ice-ocean-atmosphere models required to project realistic future sea-level changes.

  15. Glacier extent in sub-Antarctic Kerguelen archipelago from MIS 3 period: Evidence from 36Cl dating

    Science.gov (United States)

    Jomelli, Vincent; Schimmelpfennig, Irene; Favier, Vincent; Mokadem, Fatima; Landais, Amaelle; Rinterknecht, Vincent; Brunstein, Daniel; Verfaillie, Deborah; Legentil, Claude; Aumaitre, Georges; Bourlès, Didier L.; Keddadouche, Karim

    2018-03-01

    Documenting sub-Antarctic glacier variations during the local last glacial maximum is of major interest to better understand their sensitivity to atmospheric and oceanic temperature changes in conjunction with Antarctic ice sheet changes. However, data are sparse because evidence of earlier glacier extents is for most sub-Antarctic islands located offshore making their observation complex. Here, we present 22 cosmogenic 36Cl surface exposure ages obtained from five sites at Kerguelen to document the glacial history. The 36Cl ages from roche moutonnee surfaces, erratics and boulders collected on moraines span from 41.9 ± 4.4 ka to 14.3 ± 1.1 ka. Ice began to retreat on the eastern part of the main island before 41.4 ± 4.4 ka. Slow deglaciation occurred from ∼41 to ∼29 ka. There is no evidence of advances between 29 ka and the Antarctic Cold Reversal (ACR) period (∼14.5-12.9 ka) period. During the ACR, however, the Bontemps and possibly Belvedere moraines were formed by the advance of a Cook Ice Cap outlet glacier and a local glacier on the Presque Ile Jeanne d'Arc, respectively. This glacier evolution differs partly from that of glaciers in New Zealand and in Patagonia. These asynchronous glacier changes in the sub-Antarctic region are however in agreement with sea surface temperature changes recorded around Antarctica, which suggest differences in the climate evolution of the Indo-Pacific and Atlantic sectors of Antarctica.

  16. Hydrologic Outlets of the Greenland Ice Sheet, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hydrologic Outlets of the Greenland Ice Sheet data set contains GIS point shapefiles that include 891 observed and potential hydrologic outlets of the Greenland...

  17. Influence of Sea Ice Crack Formation on the Spatial Distribution of Nutrients and Microalgae in Flooded Antarctic Multiyear Ice

    Science.gov (United States)

    Nomura, Daiki; Aoki, Shigeru; Simizu, Daisuke; Iida, Takahiro

    2018-02-01

    Cracks are common and natural features of sea ice formed in the polar oceans. In this study, a sea ice crack in flooded, multiyear, land-fast Antarctic sea ice was examined to assess its influence on biological productivity and the transport of nutrients and microalgae into the upper layers of neighboring sea ice. The water inside the crack and the surrounding host ice were characterized by a strong discoloration (brown color), an indicator of a massive algal bloom. Salinity and oxygen isotopic ratio measurements indicated that 64-84% of the crack water consisted of snow meltwater supplied during the melt season. Measurements of nutrient and chlorophyll a concentrations within the slush layer pool (the flooded layer at the snow-ice interface) revealed the intrusion of water from the crack, likely forced by mixing with underlying seawater during the tidal cycle. Our results suggest that sea ice crack formation provides conditions favorable for algal blooms by directly exposing the crack water to sunlight and supplying nutrients from the under-ice water. Subsequently, constituents of the crack water modified by biological activity were transported into the upper layer of the flooded sea ice. They were then preserved in the multiyear ice column formed by upward growth of sea ice caused by snow ice formation in areas of significant snow accumulation.

  18. Constraints on ice volume changes of the WAIS and Ross Ice Shelf since the LGM based on cosmogenic exposure ages in the Darwin-Hatherton glacial system of the Transantarctic Mountains

    Science.gov (United States)

    Fink, David; Storey, Bryan; Hood, David; Joy, Kurt; Shulmeister, James

    2010-05-01

    Quantitative assessment of the spatial and temporal scale of ice volume change of the West Antarctic ice sheet (WAIS) and Ross Ice Shelf since the last glacial maximum (LGM) ~20 ka is essential to accurately predict ice sheet response to current and future climate change. Although global sea level rose by approximately 120 metres since the LGM, the contribution of polar ice sheets is uncertain and the timing of any such contribution is controversial. Mackintosh et al (2007) suggest that sectors of the EAIS, similar to those studied at Framnes Mountains where the ice sheet slowly calves at coastal margins, have made marginal contributions to global sea-level rise between 13 and 7 ka. In contrast, Stone et al (2003) document continuing WAIS decay during the mid-late Holocene, raising the question of what was the response of the WAIS since LGM and into the Holocene. Terrestrial evidence is restricted to sparse coastal oasis and ice free mountains which archive limits of former ice advances. Mountain ranges flanking the Darwin-Hatherton glaciers exhibit well-defined moraines, weathering signatures, boulder rich plateaus and glacial tills, which preserve the evidence of advance and retreat of the ice sheet during previous glacial cycles. Previous studies suggest a WAIS at the LGM in this location to be at least 1,000 meters thicker than today. As part of the New Zealand Latitudinal Gradient Project along the Transantarctic, we collected samples for cosmogenic exposure dating at a) Lake Wellman area bordering the Hatherton Glacier, (b) Roadend Nunatak at the confluence of the Darwin and Hatherton glaciers and (c) Diamond Hill which is positioned at the intersection of the Ross Ice Shelf and Darwin Glacier outlet. While the technique of exposure dating is very successful in mid-latitude alpine glacier systems, it is more challenging in polar ice-sheet regions due to the prevalence of cold-based ice over-riding events and absence of outwash processes which removes

  19. Groundwater flow modelling under ice sheet conditions in Greenland (phase II)

    International Nuclear Information System (INIS)

    Jaquet, Olivier; Namar, Rabah; Siegel, Pascal; Jansson, Peter

    2012-11-01

    Within the framework of the GAP project, this second phase of geosphere modelling has enabled the development of an improved regional model that has led to a better representation of groundwater flow conditions likely to occur under ice sheet conditions. New data in relation to talik geometry and elevation, as well as to deformation zones were integrated in the geosphere model. In addition, more realistic hydraulic properties were considered for geosphere modelling; they were taken from the Laxemar site in Sweden. The geological medium with conductive deformation zones was modelled as a 3D continuum with stochastically hydraulic properties. Surface and basal glacial meltwater rates provided by a dynamic ice sheet model were assimilated into the groundwater flow model using mixed boundary conditions. The groundwater flow system is considered to be governed by infiltration of glacial meltwater in heterogeneous faulted crystalline rocks in the presence of permafrost and taliks. The characterisation of the permafrost-depth distribution was achieved using a coupled description of flow and heat transfer under steady state conditions. Using glaciological concepts and satellite data, an improved stochastic model was developed for the description at regional scale for the subglacial permafrost distribution in correlation with ice velocity and bed elevation data. Finally, the production of glacial meltwater by the ice sheet was traced for the determination of its depth and lateral extent. The major improvements are related to the type and handling of the subglacial boundary conditions. The use of meltwater rates provided by an ice sheet model applied as input to a mixed boundary condition enables to produce a more plausible flow field in the Eastern part of the domain, in comparison to previous modelling results (Jaquet et al. 2010). In addition, the integration of all potential taliks within the modelled domain provides a better characterisation of the likely groundwater

  20. Groundwater flow modelling under ice sheet conditions in Greenland (phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Jaquet, Olivier; Namar, Rabah; Siegel, Pascal [In2Earth Modelling Ltd, Lausanne (Switzerland); Jansson, Peter [Dept. of Physical Geography and Quaternary Geology, Stockholm Univ., Stockholm (Sweden)

    2012-11-15

    Within the framework of the GAP project, this second phase of geosphere modelling has enabled the development of an improved regional model that has led to a better representation of groundwater flow conditions likely to occur under ice sheet conditions. New data in relation to talik geometry and elevation, as well as to deformation zones were integrated in the geosphere model. In addition, more realistic hydraulic properties were considered for geosphere modelling; they were taken from the Laxemar site in Sweden. The geological medium with conductive deformation zones was modelled as a 3D continuum with stochastically hydraulic properties. Surface and basal glacial meltwater rates provided by a dynamic ice sheet model were assimilated into the groundwater flow model using mixed boundary conditions. The groundwater flow system is considered to be governed by infiltration of glacial meltwater in heterogeneous faulted crystalline rocks in the presence of permafrost and taliks. The characterisation of the permafrost-depth distribution was achieved using a coupled description of flow and heat transfer under steady state conditions. Using glaciological concepts and satellite data, an improved stochastic model was developed for the description at regional scale for the subglacial permafrost distribution in correlation with ice velocity and bed elevation data. Finally, the production of glacial meltwater by the ice sheet was traced for the determination of its depth and lateral extent. The major improvements are related to the type and handling of the subglacial boundary conditions. The use of meltwater rates provided by an ice sheet model applied as input to a mixed boundary condition enables to produce a more plausible flow field in the Eastern part of the domain, in comparison to previous modelling results (Jaquet et al. 2010). In addition, the integration of all potential taliks within the modelled domain provides a better characterisation of the likely groundwater