WorldWideScience

Sample records for antagonizing wnt erk

  1. SIRT1 overexpression antagonizes cellular senescence with activated ERK/S6k1 signaling in human diploid fibroblasts.

    Directory of Open Access Journals (Sweden)

    Jing Huang

    Full Text Available Sir2, a NAD-dependent deacetylase, modulates lifespan in yeasts, worms and flies. The SIRT1, mammalian homologue of Sir2, regulates signaling for favoring survival in stress. But whether SIRT1 has the function to influence cell viability and senescence under non-stressed conditions in human diploid fibroblasts is far from unknown. Our data showed that enforced SIRT1 expression promoted cell proliferation and antagonized cellular senescence with the characteristic features of delayed Senescence-Associated beta-galactosidase (SA-beta-gal staining, reduced Senescence-Associated Heterochromatic Foci (SAHF formation and G1 phase arrest, increased cell growth rate and extended cellular lifespan in human fibroblasts, while dominant-negative SIRT1 allele (H363Y did not significantly affect cell growth and senescence but displayed a bit decreased lifespan. Western blot results showed that SIRT1 reduced the expression of p16(INK4A and promoted phosphorylation of Rb. Our data also exposed that overexpression of SIRT1 was accompanied by enhanced activation of ERK and S6K1 signaling. These effects were mimicked in both WI38 cells and 2BS cells by concentration-dependent resveratrol, a SIRT1 activator. It was noted that treatment of SIRT1-.transfected cells with Rapamycin, a mTOR inhibitor, reduced the phosphorylation of S6K1 and the expression of Id1, implying that SIRT1-induced phosphorylation of S6K1 may be partly for the decreased expression of p16(INK4A and promoted phosphorylation of Rb in 2BS. It was also observed that the expression of SIRT1 and phosphorylation of ERK and S6K1 was declined in senescent 2BS. These findings suggested that SIRT1-promoted cell proliferation and antagonized cellular senescence in human diploid fibroblasts may be, in part, via the activation of ERK/ S6K1 signaling.

  2. LGR5 regulates pro-survival MEK/ERK and proliferative Wnt/β-catenin signalling in neuroblastoma.

    Science.gov (United States)

    Vieira, Gabriella Cunha; Chockalingam, S; Melegh, Zsombor; Greenhough, Alexander; Malik, Sally; Szemes, Marianna; Park, Ji Hyun; Kaidi, Abderrahmane; Zhou, Li; Catchpoole, Daniel; Morgan, Rhys; Bates, David O; Gabb, Peter David; Malik, Karim

    2015-11-24

    LGR5 is a marker of normal and cancer stem cells in various tissues where it functions as a receptor for R-spondins and increases canonical Wnt signalling amplitude. Here we report that LGR5 is also highly expressed in a subset of high grade neuroblastomas. Neuroblastoma is a clinically heterogenous paediatric cancer comprising a high proportion of poor prognosis cases (~40%) which are frequently lethal. Unlike many cancers, Wnt pathway mutations are not apparent in neuroblastoma, although previous microarray analyses have implicated deregulated Wnt signalling in high-risk neuroblastoma. We demonstrate that LGR5 facilitates high Wnt signalling in neuroblastoma cell lines treated with Wnt3a and R-spondins, with SK-N-BE(2)-C, SK-N-NAS and SH-SY5Y cell-lines all displaying strong Wnt induction. These lines represent MYCN-amplified, NRAS and ALK mutant neuroblastoma subtypes respectively. Wnt3a/R-Spondin treatment also promoted nuclear translocation of β-catenin, increased proliferation and activation of Wnt target genes. Strikingly, short-interfering RNA mediated knockdown of LGR5 induces dramatic Wnt-independent apoptosis in all three cell-lines, accompanied by greatly diminished phosphorylation of mitogen/extracellular signal-regulated kinases (MEK1/2) and extracellular signal-regulated kinases (ERK1/2), and an increase of BimEL, an apoptosis facilitator downstream of ERK. Akt signalling is also decreased by a Rictor dependent, PDK1-independent mechanism. LGR5 expression is cell cycle regulated and LGR5 depletion triggers G1 cell-cycle arrest, increased p27 and decreased phosphorylated retinoblastoma protein. Our study therefore characterises new cancer-associated pathways regulated by LGR5, and suggest that targeting of LGR5 may be of therapeutic benefit for neuroblastomas with diverse etiologies, as well as other cancers expressing high LGR5.

  3. Sequential antagonism of early and late Wnt-signaling by zebrafish colgate promotes dorsal and anterior fates.

    Science.gov (United States)

    Nambiar, Roopa M; Henion, Paul D

    2004-03-01

    The establishment of the vertebrate body plan involves patterning of the ectoderm, mesoderm, and endoderm along the dorsoventral and antero-posterior axes. Interactions among numerous signaling molecules from several multigene families, including Wnts, have been implicated in regulating these processes. Here we provide evidence that the zebrafish colgate(b382) (col) mutation results in increased Wnt signaling that leads to defects in dorsal and anterior development. col mutants display early defects in dorsoventral patterning manifested by a decrease in the expression of dorsal shield-specific markers and ectopic expression of ventrolaterally expressed genes during gastrulation. In addition to these early patterning defects, col mutants display a striking regional posteriorization within the neuroectoderm, resulting in a reduction in anterior fates and an expansion of posterior fates within the forebrain and midbrain-hindbrain regions. We are able to correlate these phenotypes to the overactivation of Wnt signaling in col mutants. The early dorsal and anterior patterning phenotypes of the col mutant embryos are selectively rescued by inactivation of Wnt8 function by morpholino translational interference. In contrast, the regionalized neuroectoderm posterioriorization phenotype is selectively rescued by morpholino-mediated inactivation of Wnt8b. These results suggest that col-mediated antagonism of early and late Wnt-signaling activity during gastrulation is normally required sequentially for both early dorsoventral patterning and the specification and patterning of regional fates within the anterior neuroectoderm.

  4. The Netrin-related domain of Sfrp1 interacts with Wnt ligands and antagonizes their activity in the anterior neural plate

    Directory of Open Access Journals (Sweden)

    Esteve Pilar

    2008-08-01

    Full Text Available Abstract Background Secreted frizzled related proteins (SFRPs are multifunctional modulators of Wnt and BMP (Bone Morphogenetic Protein signalling necessary for the development of most organs and the homeostasis of different adult tissues. SFRPs fold in two independent domains: the cysteine rich domain (SfrpCRD related to the extracellular portion of Frizzled (Fz, Wnt receptors and the Netrin module (SfrpNTR defined by homologies with molecules such as Netrin-1, inhibitors of metalloproteinases and complement proteins. Due to its structural relationship with Fz, it is believed that SfrpCRD interferes with Wnt signalling by binding and sequestering the ligand. In contrast, the functional relevance of the SfrpNTR has been barely addressed. Results Here, we combine biochemical studies, mutational analysis and functional assays in cell culture and medaka-fish embryos to show that the Sfrp1NTR mimics the function of the entire molecule, binds to Wnt8 and antagonizes Wnt canonical signalling. This activity requires intact tertiary structure and is shared by the distantly related Netrin-1NTR. In contrast, the Sfrp1CRD cannot mirror the function of the entire molecule in vivo but interacts with Fz receptors and antagonizes Wnt8-mediated β-catenin transcriptional activity. Conclusion On the basis of these results, we propose that SFRP modulation of Wnt signalling may involve multiple and differential interactions among Wnt, Fz and SFRPs.

  5. Antagonism of Muscarinic Acetylcholine Receptors Alters Synaptic ERK Phosphorylation in the Rat Forebrain.

    Science.gov (United States)

    Mao, Li-Min; Wang, Henry H; Wang, John Q

    2016-12-28

    Acetylcholine (ACh) is a key transmitter in the mesocorticolimbic circuit. By interacting with muscarinic ACh receptors (mAChR) enriched in the circuit, ACh actively regulates various neuronal and synaptic activities. The extracellular signal-regulated kinase (ERK) is one of members of the mitogen-activated protein kinase family and is subject to the regulation by dopamine receptors, although the regulation of ERKs by limbic mAChRs is poorly understood. In this study, we investigated the role of mAChRs in the regulation of ERK phosphorylation (activation) in the mesocorticolimbic system of adult rat brains in vivo. We targeted a sub-pool of ERKs at synaptic sites. We found that a systemic injection of the mAChR antagonist scopolamine increased phosphorylation of synaptic ERKs in the striatum (caudate putamen and nucleus accumbens) and medial prefrontal cortex (mPFC). Increases in ERK phosphorylation in both forebrain regions were rapid and transient. Notably, pretreatment with a dopamine D1 receptor (D1R) antagonist SCH23390 blocked the scopolamine-stimulated ERK phosphorylation in these brain regions, while a dopamine D2 receptor antagonist eticlopride did not. Scopolamine and SCH23390 did not change the amount of total ERK proteins. These results demonstrate that mAChRs inhibit synaptic ERK phosphorylation in striatal and mPFC neurons under normal conditions. Blockade of this inhibitory mAChR tone leads to the upregulation of ERK phosphorylation likely through a mechanism involving the level of D1R activity.

  6. Heterotrimeric G protein-dependent WNT-5A signaling to ERK1/2 mediates distinct aspects of microglia proinflammatory transformation

    Directory of Open Access Journals (Sweden)

    Halleskog Carina

    2012-05-01

    Full Text Available Abstract Background WNT-5A signaling in the central nervous system is important for morphogenesis, neurogenesis and establishment of functional connectivity; the source of WNT-5A and its importance for cellular communication in the adult brain, however, are mainly unknown. We have previously investigated the inflammatory effects of WNT/β-catenin signaling in microglia in Alzheimer's disease. WNT-5A, however, generally recruits β-catenin-independent signaling. Thus, we aim here to characterize the role of WNT-5A and downstream signaling pathways for the inflammatory transformation of the brain's macrophages, the microglia. Methods Mouse brain sections were used for immunohistochemistry. Primary isolated microglia and astrocytes were employed to characterize the WNT-induced inflammatory transformation and underlying intracellular signaling pathways by immunoblotting, quantitative mRNA analysis, proliferation and invasion assays. Further, measurements of G protein activation by [γ-35 S]GTP binding, examination of calcium fluxes and cyclic AMP production were used to define intracellular signaling pathways. Results Astrocytes in the adult mouse brain express high levels of WNT-5A, which could serve as a novel astroglia-microglia communication pathway. The WNT-5A-induced proinflammatory microglia response is characterized by increased expression of inducible nitric oxide synthase, cyclooxygenase-2, cytokines, chemokines, enhanced invasive capacity and proliferation. Mapping of intracellular transduction pathways reveals that WNT-5A activates heterotrimeric Gi/o proteins to reduce cyclic AMP levels and to activate a Gi/o protein/phospholipase C/calcium-dependent protein kinase/extracellular signal-regulated kinase 1/2 (ERK1/2 axis. We show further that WNT-5A-induced ERK1/2 signaling is responsible for distinct aspects of the proinflammatory transformation, such as matrix metalloprotease 9/13 expression, invasion and proliferation. Conclusions

  7. Activation of Wnt/β-Catenin in Ewing Sarcoma Cells Antagonizes EWS/ETS Function and Promotes Phenotypic Transition to More Metastatic Cell States.

    Science.gov (United States)

    Pedersen, Elisabeth A; Menon, Rajasree; Bailey, Kelly M; Thomas, Dafydd G; Van Noord, Raelene A; Tran, Jenny; Wang, Hongwei; Qu, Ping Ping; Hoering, Antje; Fearon, Eric R; Chugh, Rashmi; Lawlor, Elizabeth R

    2016-09-01

    Ewing sarcomas are characterized by the presence of EWS/ETS fusion genes in the absence of other recurrent genetic alterations and mechanisms of tumor heterogeneity that contribute to disease progression remain unclear. Mutations in the Wnt/β-catenin pathway are rare in Ewing sarcoma but the Wnt pathway modulator LGR5 is often highly expressed, suggesting a potential role for the axis in tumor pathogenesis. We evaluated β-catenin and LGR5 expression in Ewing sarcoma cell lines and tumors and noted marked intra- and inter-tumor heterogeneity. Tumors with evidence of active Wnt/β-catenin signaling were associated with increased incidence of tumor relapse and worse overall survival. Paradoxically, RNA sequencing revealed a marked antagonism of EWS/ETS transcriptional activity in Wnt/β-catenin-activated tumor cells. Consistent with this, Wnt/β-catenin-activated cells displayed a phenotype that was reminiscent of Ewing sarcoma cells with partial EWS/ETS loss of function. Specifically, activation of Wnt/β-catenin induced alterations to the actin cytoskeleton, acquisition of a migratory phenotype, and upregulation of EWS/ETS-repressed genes. Notably, activation of Wnt/β-catenin signaling led to marked induction of tenascin C (TNC), an established promoter of cancer metastasis, and an EWS/ETS-repressed target gene. Loss of TNC function in Ewing sarcoma cells profoundly inhibited their migratory and metastatic potential. Our studies reveal that heterogeneous activation of Wnt/β-catenin signaling in subpopulations of tumor cells contributes to phenotypic heterogeneity and disease progression in Ewing sarcoma. Significantly, this is mediated, at least in part, by inhibition of EWS/ETS fusion protein function that results in derepression of metastasis-associated gene programs. Cancer Res; 76(17); 5040-53. ©2016 AACR.

  8. R-spondin 3 regulates dorsoventral and anteroposterior patterning by antagonizing Wnt/β-catenin signaling in zebrafish embryos.

    Directory of Open Access Journals (Sweden)

    Xiaozhi Rong

    Full Text Available The Wnt/β-catenin or canonical Wnt signaling pathway plays fundamental roles in early development and in maintaining adult tissue homeostasis. R-spondin 3 (Rspo3 is a secreted protein that has been implicated in activating the Wnt/β-catenin signaling in amphibians and mammals. Here we report that zebrafish Rspo3 plays a negative role in regulating the zygotic Wnt/β-catenin signaling. Zebrafish Rspo3 has a unique domain structure. It contains a third furin-like (FU3 domain. This FU3 is present in other four ray-finned fish species studied but not in elephant shark. In zebrafish, rspo3 mRNA is maternally deposited and has a ubiquitous expression in early embryonic stages. After 12 hpf, its expression becomes tissue-specific. Forced expression of rspo3 promotes dorsoanterior patterning and increases the expression of dorsal and anterior marker genes. Knockdown of rspo3 increases ventral-posterior development and stimulates ventral and posterior marker genes expression. Forced expression of rspo3 abolishes exogenous Wnt3a action and reduces the endogenous Wnt signaling activity. Knockdown of rspo3 results in increased Wnt/β-catenin signaling activity. Further analyses indicate that Rspo3 does not promote maternal Wnt signaling. Human RSPO3 has similar action when tested in zebrafish embryos. These results suggest that Rspo3 regulates dorsoventral and anteroposterior patterning by negatively regulating the zygotic Wnt/β-catenin signaling in zebrafish embryos.

  9. The coiled-coil domain containing protein Ccdc136b antagonizes maternal Wnt/β-catenin activity during zebrafish dorsoventral axial patterning.

    Science.gov (United States)

    Wei, Shi; Shang, Hanqiao; Cao, Yu; Wang, Qiang

    2016-07-20

    The coiled-coil domain containing protein CCDC136 is a putative tumor suppressor and significantly down-regulated in gastric and colorectal cancer tissues. However, little is known about its biological functions during vertebrate embryo development. Zebrafish has two CCDC136 orthologs, ccdc136a and ccdc136b, but only ccdc136b is highly expressed during early embryonic development. In this study, we demonstrate that ccdc136b is required for dorsal-ventral axial patterning in zebrafish embryos. ccdc136b morphants display strongly dorsalized phenotypes. Loss- and gain-of-function experiments in zebrafish embryos and mammalian cells show that Ccdc136b is a crucial negative regulator of the Wnt/β-catenin signaling pathway, and plays a critical role in the establishment of the dorsal-ventral axis. We further find that Ccdc136b interacts with APC, promotes the binding affinity of APC with β-catenin and then facilitates the turnover of β-catenin. These results provide the first evidence that CCDC136 regulates zebrafish dorsal-ventral patterning by antagonizing Wnt/β-catenin signal transduction and suggest a potential mechanism underlying its suppressive activity in carcinogenesis.

  10. Apc1-mediated antagonism of Wnt/beta-catenin signaling is required for retino-tectal pathfinding in the zebrafish.

    NARCIS (Netherlands)

    Paridaen, J.T.M.; Danesin, C.; Elas, A.T.; van de Water, S.G.P.; Houart, C.; Zivkovic, D.

    2009-01-01

    The tumor suppressor Apc1 is an intracellular antagonist of the Wnt/beta-catenin pathway. We examined the effects of an Apc1 loss-of-function mutation on retino-tectal axon pathfinding in zebrafish. In apc mutants, the retina is disorganized and optic nerves portray pathfinding defects at the optic

  11. Antagonism of miR-21 reverses epithelial-mesenchymal transition and cancer stem cell phenotype through AKT/ERK1/2 inactivation by targeting PTEN.

    Directory of Open Access Journals (Sweden)

    Mingli Han

    Full Text Available BACKGROUND: Accumulating evidence suggested that epithelial-mesenchymal transition (EMT and cancer stem cell (CSC characteristics, both of which contribute to tumor invasion and metastasis, are interrelated with miR-21. MiR-21 is one of the important microRNAs associated with tumor progression and metastasis, but the molecular mechanisms underlying EMT and CSC phenotype during miR-21 contributes to migration and invasion of breast cancer cells remain to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: In this study, MDA-MB-231/anti-miR-21 cells were established by transfected hsa-miR-21 antagomir into breast cancer MDA-MB-231 cells. EMT was evaluated by the changes of mesenchymal cell markers (N-cadherin, Vimentin, and alpha-SMA, epithelial cell marker (E-cadherin, as well as capacities of cell migration and invasion; CSC phenotype was measured using the changes of CSC surface markers (ALDH1 and CD44, and the capacity of sphereforming (mammospheres. We found that antagonism of miR-21 reversed EMT and CSC phenotype, accompanied with PTEN up-regulation and AKT/ERK1/2 inactivation. Interestingly, down-regulation of PTEN by siPTEN suppressed the effects of miR-21 antagomir on EMT and CSC phenotype, confirming that PTEN is a target of miR-21 in reversing EMT and CSC phenotype. The inhibitors of PI3K-AKT and ERK1/2 pathways, LY294002 and U0126, both significantly suppressed EMT and CSC phenotype, indicating that AKT and ERK1/2 pathways are required for miR-21 mediating EMT and CSC phenotype. CONCLUSIONS/SIGNIFICANCE: In conclusion, our results demonstrated that antagonism of miR-21 reverses EMT and CSC phenotype through targeting PTEN, via inactivation of AKT and ERK1/2 pathways, and showed a novel mechanism of which might relieve the malignant biological behaviors of breast cancer.

  12. Enhancement of osteogenic differentiation of rat adipose tissue-derived mesenchymal stem cells by zinc sulphate under electromagnetic field via the PKA, ERK1/2 and Wnt/β-catenin signaling pathways

    Science.gov (United States)

    Fathi, Ezzatollah; Farahzadi, Raheleh

    2017-01-01

    Zinc ion as an essential trace element and electromagnetic fields (EMFs) has been reported to be involved in the regulation of bone metabolism. The aim of this study was to elucidate the effects of zinc sulphate (ZnSO4) on the osteogenic differentiation of adipose tissue-derived mesenchymal stem cells (ADSCs) in the presence of EMF as a strategy in osteoporosis therapy. Alkaline phophatase (ALP) activity measurement, calcium assay and expression of several osteoblastic marker genes were examined to assess the effect of ZnSO4 on the osteogenic differentiation of ADSCs under EMF. The expression of cAMP and PKA was evaluated by ELISA. The expression of β-catenin, Wnt1, Wnt3a, low-density lipoprotein receptor-related protein 5 (LRP5) and reduced dickkopf1 (DKK1) genes were used to detect the Wnt/β-catenin pathway. It was found that ZnSO4, in the presence of EMF, resulted in an increase in the expression of osteogenic genes, ALP activity and calcium levels. EMF, in the presence of ZnSO4, increased the cAMP level and protein kinase A (PKA) activity. Treatment of ADSCs with (MAPK)/ERK kinase 1/2 inhibitor, or PKA inhibitor, significantly inhibited the promotion of osteogenic markers, indicating that the induction of osteogenesis was dependent on the ERK and PKA signaling pathways. Real-time PCR analysis showed that ZnSO4, in the presence of EMF, increased the mRNA expressions of β-catenin, Wnt1, Wnt3a, LRP5 and DKK1. In this study, it was shown that 0.432 μg/ml ZnSO4, in the presence of 50 Hz, 20 mT EMF, induced the osteogenic differentiation of ADSCs via PKA, ERK1/2 and Wnt/β-catenin signaling pathways. PMID:28339498

  13. Antagonizing canonical Wnt signaling pathway by recombinant human sFRP4 purified from E. coli and its implications in cancer therapy.

    Science.gov (United States)

    Ghoshal, Archita; Ghosh, Siddhartha Sankar

    2016-07-01

    The Wnt signaling pathway plays a predominant role in aberrant proliferation in myriad of cancers. In non-cancerous cells, Wnts are blocked by the secreted frizzled-related proteins (sFRPs) that are generally downregulated in cancer cells. We have purified and characterized bacterially expressed glutathione S-transferase-tagged SFRP4 from a novel clone generated from human cell origin. Cervical cancer (HeLa) and lung cancer (A549) cells, in which Wnt and associated genes were found to be expressed, were treated with the purified recombinant sFRP4, which revealed a significant dose-dependent cell growth inhibition up to 40 %. The current investigation on functionality of this bacterially produced recombinant sFRP4 in arresting cancer cell proliferation is the first of its kind, where G2/M phase arrest and early apoptosis were evident. Increase in phosphorylated β-catenin in sFRP4 treatment indicated inhibition of Wnt pathway, which was further confirmed by downregulation of pro-proliferative genes, namely cyclin D1, c-myc, and survivin. Functional activity of recombinant sFRP4 was further exploited in co-therapy module with chemotherapeutic drugs to decipher molecular events. Collectively, our study on purified recombinant sFRP4 from bacterial host holds great promise in targeting Wnt signaling for exploring new strategies to combat cancer.

  14. Inhibition of Melanogenesis by Gallic Acid: Possible Involvement of the PI3K/Akt, MEK/ERK and Wnt/β-Catenin Signaling Pathways in B16F10 Cells

    Directory of Open Access Journals (Sweden)

    Yu-Jen Wu

    2013-10-01

    Full Text Available Gallic acid is one of the major flavonoids found in plants. It acts as an antioxidant, and seems to have anti-inflammatory, anti-viral, and anti-cancer properties. In this study, we investigated the effects of gallic acid on melanogenesis, including the activation of melanogenesis signaling pathways. Gallic acid significantly inhibited both melanin synthesis and tyrosinase activity in a dose- and time-dependent manner, and decreased the expression of melanogenesis-related proteins, such as microphthalmia-associated transcription factor (MITF, tyrosinase, tyrosinase-related protein-1 (TRP1, and dopachrome tautomerase (Dct. In addition, gallic acid also acts by phosphorylating and activating melanogenesis inhibitory proteins such as Akt and mitogen-activated protein kinase (MEK/extracellular signal-regulated kinase (ERK. Using inhibitors against PI3K/Akt (LY294002 or MEK/ERK-specific (PD98059, the hypopigmentation effect was suppressed, and the gallic acid-initiated activation of MEK/ERK and PI3K/Akt was also revoked. Gallic acid also increased GSK3β and p-β-catenin expression but down-regulated p-GSK3β. Moreover, GSK3β-specific inhibitor (SB216763 restored gallic acid-induced melanin reduction. These results suggest that activation of the MEK/ERK, PI3K/Akt, and inhibition of Wnt/β-catenin signaling pathways is involved in the melanogenesis signaling cascade, and that activation by gallic acid reduces melanin synthesis via down-regulation of MITF and its downstream signaling pathway. In conclusion, gallic acid may be a potentially agent for the treatment of certain skin conditions.

  15. Inhibition of melanogenesis by gallic acid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells.

    Science.gov (United States)

    Su, Tzu-Rong; Lin, Jen-Jie; Tsai, Chi-Chu; Huang, Tsu-Kei; Yang, Zih-Yan; Wu, Ming-O; Zheng, Yu-Qing; Su, Ching-Chyuan; Wu, Yu-Jen

    2013-10-14

    Gallic acid is one of the major flavonoids found in plants. It acts as an antioxidant, and seems to have anti-inflammatory, anti-viral, and anti-cancer properties. In this study, we investigated the effects of gallic acid on melanogenesis, including the activation of melanogenesis signaling pathways. Gallic acid significantly inhibited both melanin synthesis and tyrosinase activity in a dose- and time-dependent manner, and decreased the expression of melanogenesis-related proteins, such as microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP1), and dopachrome tautomerase (Dct). In addition, gallic acid also acts by phosphorylating and activating melanogenesis inhibitory proteins such as Akt and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK). Using inhibitors against PI3K/Akt (LY294002) or MEK/ERK-specific (PD98059), the hypopigmentation effect was suppressed, and the gallic acid-initiated activation of MEK/ERK and PI3K/Akt was also revoked. Gallic acid also increased GSK3β and p-β-catenin expression but down-regulated p-GSK3β. Moreover, GSK3β-specific inhibitor (SB216763) restored gallic acid-induced melanin reduction. These results suggest that activation of the MEK/ERK, PI3K/Akt, and inhibition of Wnt/β-catenin signaling pathways is involved in the melanogenesis signaling cascade, and that activation by gallic acid reduces melanin synthesis via down-regulation of MITF and its downstream signaling pathway. In conclusion, gallic acid may be a potentially agent for the treatment of certain skin conditions.

  16. A Suppressive Antagonism Evidences Progesterone and Estrogen Receptor Pathway Interaction with Concomitant Regulation of Hand2, Bmp2 and ERK during Early Decidualization.

    Directory of Open Access Journals (Sweden)

    Ana C Mestre-Citrinovitz

    Full Text Available Progesterone receptor and estrogen receptor participate in growth and differentiation of the different rat decidual regions. Steroid hormone receptor antagonists were used to study steroid regulation of decidualization. Here we describe a suppressive interaction between progesterone receptor (onapristone and estrogen receptor (ICI182780 antagonists and their relation to a rescue phenomenon with concomitant regulation of Hand2, Bmp2 and p-ERK1/2 during the early decidualization steps. Phenotypes of decidua development produced by antagonist treatments were characterized by morphology, proliferation, differentiation, angiogenesis and expression of signaling molecules. We found that suppression of progesterone receptor activity by onapristone treatment resulted in resorption of the implantation sites with concomitant decrease in progesterone and estrogen receptors, PCNA, KI67 antigen, DESMIN, CCND3, CX43, Prl8a2, and signaling players such as transcription factor Hand2, Bmp2 mRNAs and p-ERK1/2. Moreover, FGF-2 and Vegfa increased as a consequence of onapristone treatment. Implantation sites from antagonist of estrogen receptor treated rats developed all decidual regions, but showed an anomalous blood vessel formation at the mesometrial part of the decidua. The deleterious effect of onapristone was partially counteracted by the impairment of estrogen receptor activity with rescue of expression levels of hormone steroid receptors, proliferation and differentiation markers, and the induction of a probably compensatory increase in signaling molecules Hand2, Bmp2 and ERK1/2 activation compared to oil treated controls. This novel drug interaction during decidualization could be applied to pathological endometrial cell proliferation processes to improve therapies using steroid hormone receptor targets.

  17. Oxidized ATM promotes abnormal proliferation of breast CAFs through maintaining intracellular redox homeostasis and activating the PI3K-AKT, MEK-ERK, and Wnt-β-catenin signaling pathways.

    Science.gov (United States)

    Tang, Shifu; Hou, Yixuan; Zhang, Hailong; Tu, Gang; Yang, Li; Sun, Yifan; Lang, Lei; Tang, Xi; Du, Yan-E; Zhou, Mingli; Yu, Tenghua; Xu, Liyun; Wen, Siyang; Liu, Chunming; Liu, Manran

    2015-01-01

    Abnormal proliferation is one characteristic of cancer-associated fibroblasts (CAFs), which play a key role in tumorigenesis and tumor progression. Oxidative stress (OS) is the root cause of CAFs abnormal proliferation. ATM (ataxia-telangiectasia mutated protein kinase), an important redox sensor, is involved in DNA damage response and cellular homeostasis. Whether and how oxidized ATM regulating CAFs proliferation remains unclear. In this study, we show that there is a high level of oxidized ATM in breast CAFs in the absence of double-strand breaks (DSBs) and that oxidized ATM plays a critical role in CAFs proliferation. The effect of oxidized ATM on CAFs proliferation is mediated by its regulation of cellular redox balance and the activity of the ERK, PI3K-AKT, and Wnt signaling pathways. Treating cells with antioxidant N-acetyl-cysteine (NAC) partially rescues the proliferation defect of the breast CAFs caused by ATM deficiency. Administrating cells with individual or a combination of specific inhibitors of the ERK, PI3K-AKT, and Wnt signaling pathways mimics the effect of ATM deficiency on breast CAF proliferation. This is mainly ascribed to the β-catenin suppression and down-regulation of c-Myc, thus further leading to the decreased cyclinD1, cyclinE, and E2F1 expression and the enhanced p21(Cip1) level. Our results reveal an important role of oxidized ATM in the regulation of the abnormal proliferation of breast CAFs. Oxidized ATM could serve as a potential target for treating breast cancer.

  18. ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially

    Directory of Open Access Journals (Sweden)

    Bonini Chiara

    2006-06-01

    Full Text Available Abstract Background The mitogen-activated protein (MAP kinases p44ERK1 and p42ERK2 are crucial components of the regulatory machinery underlying normal and malignant cell proliferation. A currently accepted model maintains that ERK1 and ERK2 are regulated similarly and contribute to intracellular signaling by phosphorylating a largely common subset of substrates, both in the cytosol and in the nucleus. Results Here, we show that ablation of ERK1 in mouse embryo fibroblasts and NIH 3T3 cells by gene targeting and RNA interference results in an enhancement of ERK2-dependent signaling and in a significant growth advantage. By contrast, knockdown of ERK2 almost completely abolishes normal and Ras-dependent cell proliferation. Ectopic expression of ERK1 but not of ERK2 in NIH 3T3 cells inhibits oncogenic Ras-mediated proliferation and colony formation. These phenotypes are independent of the kinase activity of ERK1, as expression of a catalytically inactive form of ERK1 is equally effective. Finally, ectopic expression of ERK1 but not ERK2 is sufficient to attenuate Ras-dependent tumor formation in nude mice. Conclusion These results reveal an unexpected interplay between ERK1 and ERK2 in transducing Ras-dependent cell signaling and proliferation. Whereas ERK2 seems to have a positive role in controlling normal and Ras-dependent cell proliferation, ERK1 probably affects the overall signaling output of the cell by antagonizing ERK2 activity.

  19. Cross-talk between insulin and Wnt signaling in preadipocytes

    DEFF Research Database (Denmark)

    Palsgaard, Jane; Emanuelli, Brice; Winnay, Jonathon N;

    2012-01-01

    Disturbed Wnt signaling has been implicated in numerous diseases, including type 2 diabetes and the metabolic syndrome. In the present study, we have investigated cross-talk between insulin and Wnt signaling pathways using preadipocytes with and without knockdown of the Wnt co-receptors LRP5...... and LRP6 and with and without knock-out of insulin and IGF-1 receptors. We find that Wnt stimulation leads to phosphorylation of insulin signaling key mediators, including Akt, GSK3β, and ERK1/2, although with a lower fold stimulation and slower time course than observed for insulin. These Wnt effects...... are insulin/IGF-1 receptor-dependent and are lost in insulin/IGF-1 receptor double knock-out cells. Conversely, in LRP5 knockdown preadipocytes, insulin-induced phosphorylation of IRS1, Akt, GSK3β, and ERK1/2 is highly reduced. This effect is specific to insulin, as compared with IGF-1, stimulation...

  20. Aberrant regulation of Wnt signaling in hepatocellular carcinoma

    Science.gov (United States)

    Liu, Li-Juan; Xie, Shui-Xiang; Chen, Ya-Tang; Xue, Jing-Ling; Zhang, Chuan-Jie; Zhu, Fan

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most lethal malignancies in the world. Several signaling pathways, including the wingless/int-1 (Wnt) signaling pathway, have been shown to be commonly activated in HCC. The Wnt signaling pathway can be triggered via both catenin β1 (CTNNB1)-dependent (also known as “canonical”) and CTNNB1-independent (often referred to as “non-canonical”) pathways. Specifically, the canonical Wnt pathway is one of those most frequently reported in HCC. Aberrant regulation from three complexes (the cell-surface receptor complex, the cytoplasmic destruction complex and the nuclear CTNNB1/T-cell-specific transcription factor/lymphoid enhancer binding factor transcriptional complex) are all involved in HCC. Although the non-canonical Wnt pathway is rarely reported, two main non-canonical pathways, Wnt/planar cell polarity pathway and Wnt/Ca2+ pathway, participate in the regulation of hepatocarcinogenesis. Interestingly, the canonical Wnt pathway is antagonized by non-canonical Wnt signaling in HCC. Moreover, other signaling cascades have also been demonstrated to regulate the Wnt pathway through crosstalk in HCC pathogenesis. This review provides a perspective on the emerging evidence that the aberrant regulation of Wnt signaling is a critical mechanism for the development of HCC. Furthermore, crosstalk between different signaling pathways might be conducive to the development of novel molecular targets of HCC. PMID:27672271

  1. The C. elegans ROR receptor tyrosine kinase, CAM-1, non-autonomously inhibits the Wnt pathway.

    Science.gov (United States)

    Green, Jennifer L; Inoue, Takao; Sternberg, Paul W

    2007-11-01

    Inhibitors of Wnt signaling promote normal development and prevent cancer by restraining when and where the Wnt pathway is activated. ROR proteins, a class of Wnt-binding receptor tyrosine kinases, inhibit Wnt signaling by an unknown mechanism. To clarify how RORs inhibit the Wnt pathway, we examined the relationship between Wnts and the sole C. elegans ROR homolog, cam-1, during C. elegans vulval development, a Wnt-regulated process. We found that loss and overexpression of cam-1 causes reciprocal defects in Wnt-mediated cell-fate specification. Our molecular and genetic analyses revealed that the CAM-1 extracellular domain (ECD) is sufficient to non-autonomously antagonize multiple Wnts, suggesting that the CAM-1/ROR ECD sequesters Wnts. A sequestration model is supported by our findings that the CAM-1 ECD binds to several Wnts in vitro. These results demonstrate how ROR proteins help to refine the spatial pattern of Wnt activity in a complex multicellular environment.

  2. Early activation of FGF and nodal pathways mediates cardiac specification independently of Wnt/beta-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Lee J Samuel

    Full Text Available BACKGROUND: Cardiac induction, the first step in heart development in vertebrate embryos, is thought to be initiated by anterior endoderm during gastrulation, but what the signals are and how they act is unknown. Several signaling pathways, including FGF, Nodal, BMP and Wnt have been implicated in cardiac specification, in both gain- and loss-of-function experiments. However, as these pathways regulate germ layer formation and patterning, their specific roles in cardiac induction have been difficult to define. METHODOLOGY/PRINCIPAL FINDINGS: To investigate the mechanisms of cardiac induction directly we devised an assay based on conjugates of anterior endoderm from early gastrula stage Xenopus embryos as the inducing tissue and pluripotent ectodermal explants as the responding tissue. We show that the anterior endoderm produces a specific signal, as skeletal muscle is not induced. Cardiac inducing signal needs up to two hours of interaction with the responding tissue to produce an effect. While we found that the BMP pathway was not necessary, our results demonstrate that the FGF and Nodal pathways are essential for cardiogenesis. They were required only during the first hour of cardiogenesis, while sustained activation of ERK was required for at least four hours. Our results also show that transient early activation of the Wnt/beta-catenin pathway has no effect on cardiogenesis, while later activation of the pathway antagonizes cardiac differentiation. CONCLUSIONS/SIGNIFICANCE: We have described an assay for investigating the mechanisms of cardiac induction by anterior endoderm. The assay was used to provide evidence for a direct, early and transient requirement of FGF and Nodal pathways. In addition, we demonstrate that Wnt/beta-catenin pathway plays no direct role in vertebrate cardiac specification, but needs to be suppressed just prior to differentiation.

  3. Disruption of the ERK/MAPK pathway in neural crest cells as a potential cause of Pierre Robin sequence.

    Science.gov (United States)

    Parada, Carolina; Han, Dong; Grimaldi, Alexandre; Sarrión, Patricia; Park, Shery S; Pelikan, Richard; Sanchez-Lara, Pedro A; Chai, Yang

    2015-11-01

    Disrupted ERK1/2 signaling is associated with several developmental syndromes in humans. To understand the function of ERK2 (MAPK1) in the postmigratory neural crest populating the craniofacial region, we studied two mouse models: Wnt1-Cre;Erk2(fl/fl) and Osr2-Cre;Erk2(fl/fl). Wnt1-Cre;Erk2(fl/fl) mice exhibited cleft palate, malformed tongue, micrognathia and mandibular asymmetry. Cleft palate in these mice was associated with delay/failure of palatal shelf elevation caused by tongue malposition and micrognathia. Osr2-Cre;Erk2(fl/fl) mice, in which the Erk2 deletion is restricted to the palatal mesenchyme, did not display cleft palate, suggesting that palatal clefting in Wnt1-Cre;Erk2(fl/fl) mice is a secondary defect. Tongues in Wnt1-Cre;Erk2(fl/fl) mice exhibited microglossia, malposition, disruption of the muscle patterning and compromised tendon development. The tongue phenotype was extensively rescued after culture in isolation, indicating that it might also be a secondary defect. The primary malformations in Wnt1-Cre;Erk2(fl/fl) mice, namely micrognathia and mandibular asymmetry, are linked to an early osteogenic differentiation defect. Collectively, our study demonstrates that mutation of Erk2 in neural crest derivatives phenocopies the human Pierre Robin sequence and highlights the interconnection of palate, tongue and mandible development. Because the ERK pathway serves as a crucial point of convergence for multiple signaling pathways, our study will facilitate a better understanding of the molecular regulatory mechanisms of craniofacial development.

  4. Both canonical and non-canonical Wnt signaling independently promote stem cell growth in mammospheres.

    Directory of Open Access Journals (Sweden)

    Alexander M Many

    Full Text Available The characterization of mammary stem cells, and signals that regulate their behavior, is of central importance in understanding developmental changes in the mammary gland and possibly for targeting stem-like cells in breast cancer. The canonical Wnt/β-catenin pathway is a signaling mechanism associated with maintenance of self-renewing stem cells in many tissues, including mammary epithelium, and can be oncogenic when deregulated. Wnt1 and Wnt3a are examples of ligands that activate the canonical pathway. Other Wnt ligands, such as Wnt5a, typically signal via non-canonical, β-catenin-independent, pathways that in some cases can antagonize canonical signaling. Since the role of non-canonical Wnt signaling in stem cell regulation is not well characterized, we set out to investigate this using mammosphere formation assays that reflect and quantify stem cell properties. Ex vivo mammosphere cultures were established from both wild-type and Wnt1 transgenic mice and were analyzed in response to manipulation of both canonical and non-canonical Wnt signaling. An increased level of mammosphere formation was observed in cultures derived from MMTV-Wnt1 versus wild-type animals, and this was blocked by treatment with Dkk1, a selective inhibitor of canonical Wnt signaling. Consistent with this, we found that a single dose of recombinant Wnt3a was sufficient to increase mammosphere formation in wild-type cultures. Surprisingly, we found that Wnt5a also increased mammosphere formation in these assays. We confirmed that this was not caused by an increase in canonical Wnt/β-catenin signaling but was instead mediated by non-canonical Wnt signals requiring the receptor tyrosine kinase Ror2 and activity of the Jun N-terminal kinase, JNK. We conclude that both canonical and non-canonical Wnt signals have positive effects promoting stem cell activity in mammosphere assays and that they do so via independent signaling mechanisms.

  5. Molecular cloning, characterization and expression analysis of Wnt4, Wnt5, Wnt6, Wnt7, Wnt10 and Wnt16 from Litopenaeus vannamei.

    Science.gov (United States)

    Zhang, Shuang; Li, Chao-Zheng; Yang, Qi-Hui; Dong, Xiao-Hui; Chi, Shu-Yan; Liu, Hong-Yu; Shi, Li-Li; Tan, Bei-Ping

    2016-07-01

    The Wnt (Wg-type MMTV integration site) signaling represents as the negative regulator of virus-induced innate immune responses. Wnt genes act as ligands to activate the Wnt signaling. To know more about the information of Wnt genes in invertebrates, Litopenaeus vannamei Wnt genes (LvWnts) were identified and characterized. In this study, Six Wnt genes (LvWnt4, LvWnt5, LvWnt6, LvWnt7, LvWnt10 and LvWnt16) were obtained in L. vannamei. The complete cDNAs open reading frames (ORF) of LvWnt4, LvWnt5, LvWnt6, LvWnt7, LvWnt10 and LvWnt16 were 1077 bp, 1107 bp, 1350 bp, 1047 bp, 1509 bp and 1158 bp (GenBank accession no. KU169896, KU169897, KU169898, KU169899, KU169900 and KU169901), encoding 358, 368, 449, 348, 502 and 385 amino acid (aa) residues respectively. All the six members of LvWnts contain a Wnt1 domain, which is considered as an important feature of Wnt gene family. ClustalW analysis with amino acid sequences revealed that the proportion of identity with other species was more than 48% for all the LvWnts except LvWnt10 (36-41%). The phylogenetic relationship analysis illustrated that different subtype of Wnts formed their own separate branches and were placed in branch of invertebrates respectively with strong bootstrap support. The constitutive expressions of LvWnts were confirmed by RT-PCR in all the examined five developmental stages and eleven tissues of L. vannamei with different express patterns. LvWnt4, LvWnt5 and LvWnt10 were expressed highest in nerve while LvWnt6, LvWnt7 and LvWnt16 were expressed highest in intestine, stomach and gill, respectively. In addition, all the LvWnts were regulated by white spot syndrome virus (WSSV) challenges at different levels in hepatopancreas, gill and hemocytes, suggesting that Wnt genes may play a role in the defense against pathogenic virus infection in innate immune of L. vannamei.

  6. Noncanonical Wnt signaling promotes osteoclast differentiation and is facilitated by the human immunodeficiency virus protease inhibitor ritonavir

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, Francisco [Division of Hematology-Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY (United States); Oguma, Junya; Brown, Anthony M.C. [Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY (United States); Laurence, Jeffrey, E-mail: jlaurenc@med.cornell.edu [Division of Hematology-Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer First demonstration of direct role for noncanonical Wnt in osteoclast differentiation. Black-Right-Pointing-Pointer Demonstration of Ryk as a Wnt5a/b receptor in inhibition of canonical Wnt signaling. Black-Right-Pointing-Pointer Modulation of noncanonical Wnt signaling by a clinically important drug, ritonavir. Black-Right-Pointing-Pointer Establishes a mechanism for an important clinical problem: HIV-associated bone loss. -- Abstract: Wnt proteins that signal via the canonical Wnt/{beta}-catenin pathway directly regulate osteoblast differentiation. In contrast, most studies of Wnt-related effects on osteoclasts involve indirect changes. While investigating bone mineral density loss in the setting of human immunodeficiency virus (HIV) infection and its treatment with the protease inhibitor ritonavir (RTV), we observed that RTV decreased nuclear localization of {beta}-catenin, critical to canonical Wnt signaling, in primary human and murine osteoclast precursors. This occurred in parallel with upregulation of Wnt5a and Wnt5b transcripts. These Wnts typically stimulate noncanonical Wnt signaling, and this can antagonize the canonical Wnt pathway in many cell types, dependent upon Wnt receptor usage. We now document RTV-mediated upregulation of Wnt5a/b protein in osteoclast precursors. Recombinant Wnt5b and retrovirus-mediated expression of Wnt5a enhanced osteoclast differentiation from human and murine monocytic precursors, processes facilitated by RTV. In contrast, canonical Wnt signaling mediated by Wnt3a suppressed osteoclastogenesis. Both RTV and Wnt5b inhibited canonical, {beta}-catenin/T cell factor-based Wnt reporter activation in osteoclast precursors. RTV- and Wnt5-induced osteoclast differentiation were dependent upon the receptor-like tyrosine kinase Ryk, suggesting that Ryk may act as a Wnt5a/b receptor in this context. This is the first demonstration of a direct role for Wnt signaling pathways and Ryk in

  7. ARF6-regulated endocytosis of growth factor receptors links cadherin-based adhesion to canonical Wnt signaling in epithelia.

    Science.gov (United States)

    Pellon-Cardenas, Oscar; Clancy, James; Uwimpuhwe, Henriette; D'Souza-Schorey, Crislyn

    2013-08-01

    Wnt signaling has an essential role in embryonic development as well as stem/progenitor cell renewal, and its aberrant activation is implicated in many diseases, including several cancers. β-Catenin is a critical component of Wnt-mediated transcriptional activation. Here we show that ARF6 activation during canonical Wnt signaling promotes the intracellular accumulation of β-catenin via a mechanism that involves the endocytosis of growth factor receptors and robust activation of extracellular signal-regulated kinase (ERK). ERK promotes casein kinase 2-mediated phosphorylation of α-catenin, leading to destabilization of the adherens junctions and a subsequent increase in cytoplasmic pools of active β-catenin and E-cadherin. ERK also phosphorylates LRP6 to amplify the Wnt transduction pathway. The aforementioned Wnt-ERK signaling pathway initiates lumen filling of epithelial cysts by promoting cell proliferation in three-dimensional cell cultures. This study elucidates a mechanism responsible for the switch in β-catenin functions in cell adhesion at the adherens junctions and Wnt-induced nuclear signaling.

  8. Inhibition of Wnt/β-catenin signaling by a soluble collagen-derived frizzled domain interacting with Wnt3a and the receptors frizzled 1 and 8.

    Directory of Open Access Journals (Sweden)

    Ismaïl Hendaoui

    Full Text Available The Wnt/β-catenin pathway controls cell proliferation, death and differentiation. Several families of extracellular proteins can antagonize Wnt/β-catenin signaling, including the decoy receptors known as secreted frizzled related proteins (SFRPs, which have a cysteine-rich domain (CRD structurally similar to the extracellular Wnt-binding domain of the frizzled receptors. SFRPs inhibit Wnt signaling by sequestering Wnts through the CRD or by forming inactive complexes with the frizzled receptors. Other endogenous molecules carrying frizzled CRDs inhibit Wnt signaling, such as V3Nter, which is proteolytically derived from the cell surface component collagen XVIII and contains a biologically active frizzled domain (FZC18 inhibiting in vivo cell proliferation and tumor growth in mice. We recently showed that FZC18 expressing cells deliver short-range signals to neighboring cells, decreasing their proliferation in vitro and in vivo through the Wnt/β-catenin signaling pathway. Here, using low concentrations of soluble FZC18 and Wnt3a, we show that they physically interact in a cell-free system. In addition, soluble FZC18 binds the frizzled 1 and 8 receptors' CRDs, reducing cell sensitivity to Wnt3a. Conversely, inhibition of Wnt/β-catenin signaling was partially rescued by the expression of full-length frizzled 1 and 8 receptors, but enhanced by the expression of a chimeric cell-membrane-tethered frizzled 8 CRD. Moreover, soluble, partially purified recombinant FZC18_CRD inhibited Wnt3a-induced β-catenin activation. Taken together, the data indicate that collagen XVIII-derived frizzled CRD shifts Wnt sensitivity of normal cells to a lower pitch and controls their growth.

  9. Wnt5a functions in planar cell polarity regulation in mice.

    Science.gov (United States)

    Qian, Dong; Jones, Chonnettia; Rzadzinska, Agnieszka; Mark, Sharayne; Zhang, Xiaohui; Steel, Karen P; Dai, Xing; Chen, Ping

    2007-06-01

    Planar cell polarity (PCP) refers to the polarization of cells within the plane of a cell sheet. A distinctive epithelial PCP in vertebrates is the uniform orientation of stereociliary bundles of the sensory hair cells in the mammalian cochlea. In addition to establishing epithelial PCP, planar polarization is also required for convergent extension (CE); a polarized cellular movement that occurs during neural tube closure and cochlear extension. Studies in Drosophila and vertebrates have revealed a conserved PCP pathway, including Frizzled (Fz) receptors. Here we use the cochlea as a model system to explore the involvement of known ligands of Fz, Wnt morphogens, in PCP regulation. We show that Wnt5a forms a reciprocal expression pattern with a Wnt antagonist, the secreted frizzled-related protein 3 (Sfrp3 or Frzb), along the axis of planar polarization in the cochlear epithelium. We further demonstrate that Wnt5a antagonizes Frzb in regulating cochlear extension and stereociliary bundle orientation in vitro, and that Wnt5a(-/-) animals have a shortened and widened cochlea. Finally, we show that Wnt5a is required for proper subcellular distribution of a PCP protein, Ltap/Vangl2, and that Wnt5a interacts genetically with Ltap/Vangl2 for uniform orientation of stereocilia, cochlear extension, and neural tube closure. Together, these findings demonstrate that Wnt5a functions in PCP regulation in mice.

  10. Functional Consequences of 17q21.31/WNT3-WNT9B Amplification in hPSCs with Respect to Neural Differentiation

    Directory of Open Access Journals (Sweden)

    Chun-Ting Lee

    2015-02-01

    Full Text Available Human pluripotent stem cell (hPSC lines exhibit repeated patterns of genetic variation, which can alter in vitro properties as well as suitability for clinical use. We examined associations between copy-number variations (CNVs on chromosome 17 and hPSC mesodiencephalic dopaminergic (mDA differentiation. Among 24 hPSC lines, two karyotypically normal lines, BG03 and CT3, and BG01V2, with trisomy 17, exhibited amplification of the WNT3/WNT9B region and rapid mDA differentiation. In hPSC lines with amplified WNT3/WNT9B, basic fibroblast growth factor (bFGF signaling through mitogen-activated protein kinase (MAPK/ERK amplifies canonical WNT signaling by phosphorylating LRP6, resulting in enhanced undifferentiated proliferation. When bFGF is absent, noncanonical WNT signaling becomes dominant due to upregulation of SIAH2, enhancing JNK signaling and promoting loss of pluripotency. When bFGF is present during mDA differentiation, stabilization of canonical WNT signaling causes upregulation of LMX1A and mDA induction. Therefore, CNVs in 17q21.31, a “hot spot” for genetic variation, have multiple and complex effects on hPSC cellular phenotype.

  11. Wnt signaling in cardiovascular physiology.

    Science.gov (United States)

    Marinou, K; Christodoulides, C; Antoniades, C; Koutsilieris, M

    2012-12-01

    Wnt signaling pathways play a key role in cardiac development, angiogenesis, and cardiac hypertrophy; emerging evidence suggests that they are also involved in the pathophysiology of atherosclerosis. Specifically, an important role for Wnts has been described in the regulation of endothelial inflammation, vascular calcification, and mesenchymal stem cell differentiation. Wnt signaling also induces monocyte adhesion to endothelial cells and is crucial for the regulation of vascular smooth-muscle cell (VSMC) behavior. We discuss how the Wnt pathways are implicated in vascular biology and outline the role of Wnt signaling in atherosclerosis. Dissecting Wnt pathways involved in atherogenesis and cardiovascular disease may provide crucial insights into novel mechanisms with therapeutic potential for atherosclerosis.

  12. Mutational analysis of sclerostin shows importance of the flexible loop and the cystine-knot for Wnt-signaling inhibition.

    Science.gov (United States)

    Boschert, Verena; van Dinther, Maarten; Weidauer, Stella; van Pee, Katharina; Muth, Eva-Maria; Ten Dijke, Peter; Mueller, Thomas D

    2013-01-01

    The cystine-knot containing protein Sclerostin is an important negative regulator of bone growth and therefore represents a promising therapeutic target. It exerts its biological task by inhibiting the Wnt (wingless and int1) signaling pathway, which participates in bone formation by promoting the differentiation of mesenchymal stem cells to osteoblasts. The core structure of Sclerostin consists of three loops with the first and third loop (Finger 1 and Finger 2) forming a structured β-sheet and the second loop being unstructured and highly flexible. Biochemical data showed that the flexible loop is important for binding of Sclerostin to Wnt co-receptors of the low-density lipoprotein related-protein family (LRP), by interacting with the Wnt co-receptors LRP5 or -6 it inhibits Wnt signaling. To further examine the structural requirements for Wnt inhibition, we performed an extensive mutational study within all three loops of the Sclerostin core domain involving single and multiple mutations as well as truncation of important regions. By this approach we could confirm the importance of the second loop and especially of amino acids Asn92 and Ile94 for binding to LRP6. Based on a Sclerostin variant found in a Turkish family suffering from Sclerosteosis we generated a Sclerostin mutant with cysteines 84 and 142 exchanged thereby removing the third disulfide bond of the cystine-knot. This mutant binds to LRP6 with reduced binding affinity and also exhibits a strongly reduced inhibitory activity against Wnt1 thereby showing that also elements outside the flexible loop are important for inhibition of Wnt by Sclerostin. Additionally, we examined the effect of the mutations on the inhibition of two different Wnt proteins, Wnt3a and Wnt1. We could detect clear differences in the inhibition of these proteins, suggesting that the mechanism by which Sclerostin antagonizes Wnt1 and Wnt3a is fundamentally different.

  13. Mutational analysis of sclerostin shows importance of the flexible loop and the cystine-knot for Wnt-signaling inhibition.

    Directory of Open Access Journals (Sweden)

    Verena Boschert

    Full Text Available The cystine-knot containing protein Sclerostin is an important negative regulator of bone growth and therefore represents a promising therapeutic target. It exerts its biological task by inhibiting the Wnt (wingless and int1 signaling pathway, which participates in bone formation by promoting the differentiation of mesenchymal stem cells to osteoblasts. The core structure of Sclerostin consists of three loops with the first and third loop (Finger 1 and Finger 2 forming a structured β-sheet and the second loop being unstructured and highly flexible. Biochemical data showed that the flexible loop is important for binding of Sclerostin to Wnt co-receptors of the low-density lipoprotein related-protein family (LRP, by interacting with the Wnt co-receptors LRP5 or -6 it inhibits Wnt signaling. To further examine the structural requirements for Wnt inhibition, we performed an extensive mutational study within all three loops of the Sclerostin core domain involving single and multiple mutations as well as truncation of important regions. By this approach we could confirm the importance of the second loop and especially of amino acids Asn92 and Ile94 for binding to LRP6. Based on a Sclerostin variant found in a Turkish family suffering from Sclerosteosis we generated a Sclerostin mutant with cysteines 84 and 142 exchanged thereby removing the third disulfide bond of the cystine-knot. This mutant binds to LRP6 with reduced binding affinity and also exhibits a strongly reduced inhibitory activity against Wnt1 thereby showing that also elements outside the flexible loop are important for inhibition of Wnt by Sclerostin. Additionally, we examined the effect of the mutations on the inhibition of two different Wnt proteins, Wnt3a and Wnt1. We could detect clear differences in the inhibition of these proteins, suggesting that the mechanism by which Sclerostin antagonizes Wnt1 and Wnt3a is fundamentally different.

  14. Bacterial Associations: Antagonism to Symbiosis

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.

    mutualism through commensalisms and competition, to antagonism, determined ultimately by balancing the cost of the association against the benefits received (Pianka, 1994). A continuum can be envisioned that spans a dynamic bridge from antagonism... when two organisms form a relationship, which provides an advantage for both the partners at least temporarily. In commensalisms only one partner derives benefit and the other does not. Symbiosis The word, ?symbiosis? is derived from the Greek word...

  15. Wnt gene loss in flatworms.

    Science.gov (United States)

    Riddiford, Nick; Olson, Peter D

    2011-10-01

    Wnt genes encode secreted glycoproteins that act in cell-cell signalling to regulate a wide array of developmental processes, ranging from cellular differentiation to axial patterning. Discovery that canonical Wnt/β-catenin signalling is responsible for regulating head/tail specification in planarian regeneration has recently highlighted their importance in flatworm (phylum Platyhelminthes) development, but examination of their roles in the complex development of the diverse parasitic groups has yet to be conducted. Here, we characterise Wnt genes in the model tapeworm Hymenolepis microstoma and mine genomic resources of free-living and parasitic species for the presence of Wnts and downstream signalling components. We identify orthologs through a combination of BLAST and phylogenetic analyses, showing that flatworms have a highly reduced and dispersed complement that includes orthologs of only five subfamilies (Wnt1, Wnt2, Wnt4, Wnt5 and Wnt11) and fewer paralogs in parasitic flatworms (5-6) than in planarians (9). All major signalling components are identified, including antagonists and receptors, and key binding domains are intact, indicating that the canonical (Wnt/β-catenin) and non-canonical (planar cell polarity and Wnt/Ca(2+)) pathways are functional. RNA-Seq data show expression of all Hymenolepis Wnts and most downstream components in adults and larvae with the notable exceptions of wnt1, expressed only in adults, and wnt2 expressed only in larvae. The distribution of Wnt subfamilies in animals corroborates the idea that the last common ancestor of the Cnidaria and Bilateria possessed all contemporary Wnts and highlights the extent of gene loss in flatworms.

  16. Wnt5a Signals through DVL1 to Repress Ribosomal DNA Transcription by RNA Polymerase I

    Science.gov (United States)

    Dass, Randall A.; Sarshad, Aishe A.; Feenstra, Jennifer M.; Kaur, Amanpreet; Pietras, Kristian; Serra, Rosa; Blanchard, Scott C.; Percipalle, Piergiorgio; Brown, Anthony M. C.; Vincent, C. Theresa

    2016-01-01

    Ribosome biogenesis is essential for cell growth and proliferation and is commonly elevated in cancer. Accordingly, numerous oncogene and tumor suppressor signaling pathways target rRNA synthesis. In breast cancer, non-canonical Wnt signaling by Wnt5a has been reported to antagonize tumor growth. Here, we show that Wnt5a rapidly represses rDNA gene transcription in breast cancer cells and generates a chromatin state with reduced transcription of rDNA by RNA polymerase I (Pol I). These effects were specifically dependent on Dishevelled1 (DVL1), which accumulates in nucleolar organizer regions (NORs) and binds to rDNA regions of the chromosome. Upon DVL1 binding, the Pol I transcription activator and deacetylase Sirtuin 7 (SIRT7) releases from rDNA loci, concomitant with disassembly of Pol I transcription machinery at the rDNA promoter. These findings reveal that Wnt5a signals through DVL1 to suppress rRNA transcription. This provides a novel mechanism for how Wnt5a exerts tumor suppressive effects and why disruption of Wnt5a signaling enhances mammary tumor growth in vivo. PMID:27500936

  17. Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haibin; Shang, Linshan; Li, Xi; Zhang, Xiyu; Gao, Guimin; Guo, Chenhong; Chen, Bingxi; Liu, Qiji [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Gong, Yaoqin, E-mail: yxg8@sdu.edu.cn [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Shao, Changshun, E-mail: shao@biology.rutgers.edu [Key Laboratory of Experimental Teratology, MOE, Institute of Molecular Medicine and Genetics, Shandong University, 44 Wen Hua Xi Lu, Jinan, Shandong 250012 (China); Department of Genetics, Rutgers University, Piscataway, NJ 08854 (United States)

    2009-10-15

    Resveratrol has been shown to possess many health-benefiting effects, including the promotion of bone formation. In this report we investigated the mechanism by which resveratrol promotes osteoblastic differentiation from pluripotent mesenchymal cells. Since Wnt signaling is well documented to induce osteoblastogenesis and bone formation, we characterized the factors involved in Wnt signaling in response to resveratrol treatment. Resveratrol treatment of mesenchymal cells led to an increase in stabilization and nuclear accumulation of {beta}-catenin dose-dependently and time-dependently. As a consequence of the increased nuclear accumulation of {beta}-catenin, the ability to activate transcription of {beta}-catenin-TCF/LEF target genes that are required for osteoblastic differentiation was upregulated. However, resveratrol did not affect the initial step of the Wnt signaling pathway, as resveratrol was as effective in upregulating the activity of {beta}-catenin in cells in which Lrp5 was knocked down as in control cells. In addition, while conditioned medium enriched in Wnt signaling antagonist Dkk1 was able to inhibit Wnt3a-induced {beta}-catenin upregulation, this inhibitory effect can be abolished in resveratrol-treated cells. Furthermore, we showed that the level of glycogen synthase kinase 3{beta} (GSK-3{beta}), which phosphorylates and destabilizes {beta}-catenin, was reduced in response to resveratrol treatment. The phosphorylation of GSK-3{beta} requires extracellular signal-regulated kinase (ERK)1/2. Together, our data indicate that resveratrol promotes osteoblastogenesis and bone formation by augmenting Wnt signaling.

  18. Negative regulation of bone formation by the transmembrane Wnt antagonist Kremen-2.

    Directory of Open Access Journals (Sweden)

    Jochen Schulze

    Full Text Available Wnt signalling is a key pathway controlling bone formation in mice and humans. One of the regulators of this pathway is Dkk1, which antagonizes Wnt signalling through the formation of a ternary complex with the transmembrane receptors Krm1/2 and Lrp5/6, thereby blocking the induction of Wnt signalling by the latter ones. Here we show that Kremen-2 (Krm2 is predominantly expressed in bone, and that its osteoblast-specific over-expression in transgenic mice (Col1a1-Krm2 results in severe osteoporosis. Histomorphometric analysis revealed that osteoblast maturation and bone formation are disturbed in Col1a1-Krm2 mice, whereas bone resorption is increased. In line with these findings, primary osteoblasts derived from Col1a1-Krm2 mice display a cell-autonomous differentiation defect, impaired canonical Wnt signalling and decreased production of the osteoclast inhibitory factor Opg. To determine whether the observed effects of Krm2 on bone remodeling are physiologically relevant, we analyzed the skeletal phenotype of 24 weeks old Krm2-deficient mice and observed high bone mass caused by a more than three-fold increase in bone formation. Taken together, these data identify Krm2 as a regulator of bone remodeling and raise the possibility that antagonizing KRM2 might prove beneficial in patients with bone loss disorders.

  19. Bone morphogenetic protein antagonist noggin promotes skin tumorigenesis via stimulation of the Wnt and Shh signaling pathways.

    Science.gov (United States)

    Sharov, Andrey A; Mardaryev, Andrei N; Sharova, Tatyana Y; Grachtchouk, Marina; Atoyan, Ruzanna; Byers, H Randolph; Seykora, John T; Overbeek, Paul; Dlugosz, Andrzej; Botchkarev, Vladimir A

    2009-09-01

    Bone morphogenetic proteins (BMPs) play pivotal roles in the regulation of skin development. To study the role of BMPs in skin tumorigenesis, BMP antagonist noggin was used to generate keratin 14-targeted transgenic mice. In contrast to wild-type mice, transgenic mice developed spontaneous hair follicle-derived tumors, which resemble human trichofolliculoma. Global gene expression profiles revealed that in contrast to anagen hair follicles of wild-type mice, tumors of transgenic mice showed stage-dependent increases in the expression of genes encoding the selected components of Wnt and Shh pathways. Specifically, expression of the Wnt ligands increased at the initiation stage of tumor formation, whereas expression of the Wnt antagonist and tumor suppressor Wnt inhibitory factor-1 decreased, as compared with fully developed tumors. In contrast, expression of the components of Shh pathway increased in fully developed tumors, as compared with the tumor placodes. Consistent with the expression data, pharmacological treatment of transgenic mice with Wnt and Shh antagonists resulted in the stage-dependent inhibition of tumor initiation, and progression, respectively. Furthermore, BMP signaling stimulated Wnt inhibitory factor-1 expression and promoter activity in cultured tumor cells and HaCaT keratinocytes, as well as inhibited Shh expression, as compared with the corresponding controls. Thus, tumor suppressor activity of the BMPs in skin epithelium depends on the local concentrations of noggin and is mediated at least in part via stage-dependent antagonizing of Wnt and Shh signaling pathways.

  20. Wnt/Ryk signaling contributes to neuropathic pain by regulating sensory neuron excitability and spinal synaptic plasticity in rats.

    Science.gov (United States)

    Liu, Su; Liu, Yue-Peng; Huang, Zhi-Jiang; Zhang, Yan-Kai; Song, Angela A; Ma, Ping-Chuan; Song, Xue-Jun

    2015-12-01

    Treating neuropathic pain continues to be a major clinical challenge and underlying mechanisms of neuropathic pain remain elusive. We have recently demonstrated that Wnt signaling, which is important in developmental processes of the nervous systems, plays critical roles in the development of neuropathic pain through the β-catenin-dependent pathway in the spinal cord and the β-catenin-independent pathway in primary sensory neurons after nerve injury. Here, we report that Wnt signaling may contribute to neuropathic pain through the atypical Wnt/Ryk signaling pathway in rats. Sciatic nerve injury causes a rapid-onset and long-lasting expression of Wnt3a, Wnt5b, and Ryk receptors in primary sensory neurons, and dorsal horn neurons and astrocytes. Spinal blocking of the Wnt/Ryk receptor signaling inhibits the induction and persistence of neuropathic pain without affecting normal pain sensitivity and locomotor activity. Blocking activation of the Ryk receptor with anti-Ryk antibody, in vivo or in vitro, greatly suppresses nerve injury-induced increased intracellular Ca and hyperexcitability of the sensory neurons, and also the enhanced plasticity of synapses between afferent C-fibers and the dorsal horn neurons, and activation of the NR2B receptor and the subsequent Ca-dependent signals CaMKII, Src, ERK, PKCγ, and CREB in sensory neurons and the spinal cord. These findings indicate a critical mechanism underlying the pathogenesis of neuropathic pain and suggest that targeting the Wnt/Ryk signaling may be an effective approach for treating neuropathic pain.

  1. Uncompetitive antagonism of AMPA receptors

    DEFF Research Database (Denmark)

    Andersen, Trine F; Tikhonov, Denis B; Bølcho, Ulrik;

    2006-01-01

    Philanthotoxins are uncompetitive antagonists of Ca2+-permeable AMPA receptors presumed to bind to the pore-forming region, but a detailed molecular mechanism for this interaction is missing. Here a small library of novel philanthotoxins was designed and synthesized using a solid-phase strategy. ...... polyamine toxins antagonize the AMPA receptor ion channel and provide the basis for rational development of uncompetitive antagonists of AMPA receptors....

  2. Vitamin D Is a Multilevel Repressor of Wnt/β-Catenin Signaling in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Larriba, María Jesús; González-Sancho, José Manuel; Barbáchano, Antonio; Niell, Núria; Ferrer-Mayorga, Gemma; Muñoz, Alberto, E-mail: amunoz@iib.uam.es [Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Arturo Duperier 4, Madrid 28029 (Spain)

    2013-10-21

    The Wnt/β-catenin signaling pathway is abnormally activated in most colorectal cancers and in a proportion of other neoplasias. This activation initiates or contributes to carcinogenesis by regulating the expression of a large number of genes in tumor cells. The active vitamin D metabolite 1α,25-dihydroxyvitamin D{sub 3} (1,25(OH){sub 2}D{sub 3}) inhibits Wnt/β-catenin signaling by several mechanisms at different points along the pathway. Additionally, paracrine actions of 1,25(OH){sub 2}D{sub 3} on stromal cells may also repress this pathway in neighbouring tumor cells. Here we review the molecular basis for the various mechanisms by which 1,25(OH){sub 2}D{sub 3} antagonizes Wnt/β-catenin signaling, preferentially in human colon carcinoma cells, and the consequences of this inhibition for the phenotype and proliferation rate. The effect of the vitamin D system on Wnt/β-catenin signaling and tumor growth in animal models will also be commented in detail. Finally, we revise existing data on the relation between vitamin D receptor expression and vitamin D status and the expression of Wnt/β-catenin pathway genes and targets in cancer patients.

  3. Novel protein regulates ERK pathway

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The ERK (extracellular signal-regulated kinase) pathway plays a critical role in the vital processes of living cells such as proliferation and differentiation.Recently, CAS scientists in Shanghai have discovered a novel mechanism of spatial regulation on ERK pathway. The result was published in the 4 September issue of the Proceedings of National Academy of Sciences(PNAS).

  4. Wnt5a and Wnt11 are essential for second heart field progenitor development

    Science.gov (United States)

    Cohen, Ethan David; Miller, Mayumi F.; Wang, Zichao; Moon, Randall T.; Morrisey, Edward E.

    2012-01-01

    Wnt/β-catenin has a biphasic effect on cardiogenesis, promoting the induction of cardiac progenitors but later inhibiting their differentiation. Second heart field progenitors and expression of the second heart field transcription factor Islet1 are inhibited by the loss of β-catenin, indicating that Wnt/β-catenin signaling is necessary for second heart field development. However, expressing a constitutively active β-catenin with Islet1-Cre also inhibits endogenous Islet1 expression, reflecting the inhibitory effect of prolonged Wnt/β-catenin signaling on second heart field development. We show that two non-canonical Wnt ligands, Wnt5a and Wnt11, are co-required to regulate second heart field development in mice. Loss of Wnt5a and Wnt11 leads to a dramatic loss of second heart field progenitors in the developing heart. Importantly, this loss of Wnt5a and Wnt11 is accompanied by an increase in Wnt/β-catenin signaling, and ectopic Wnt5a/Wnt11 inhibits β-catenin signaling and promotes cardiac progenitor development in differentiating embryonic stem cells. These data show that Wnt5a and Wnt11 are essential regulators of the response of second heart field progenitors to Wnt/β-catenin signaling and that they act by restraining Wnt/β-catenin signaling during cardiac development. PMID:22569553

  5. Wnt5a attenuates Wnt3a-induced alkaline phosphatase expression in dental follicle cells

    Energy Technology Data Exchange (ETDEWEB)

    Sakisaka, Yukihiko [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Oral Diagnosis, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tohoku Fukushi University, Sendai 989-3201 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Liason Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2015-08-01

    Wnt signaling regulates multiple cellular events such as cell proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathways. Canonical Wnt/β-catenin signaling can promote the differentiation of dental follicle cells, putative progenitor cells for cementoblasts, osteoblasts, and periodontal ligament cells, toward a cementoblast/osteoblast phenotype during root formation, but little is known about the biological significance of noncanonical Wnt signaling in this process. We identified the expression of Wnt5a, a representative noncanonical Wnt ligand, in tooth root lining cells (i.e. precementoblasts/cementoblasts) and dental follicle cells during mouse tooth root development, as assessed by immunohistochemistry. Silencing expression of the Wnt5a gene in a dental follicle cell line resulted in enhancement of the Wnt3a (a representative canonical Wnt ligand)-mediated increase in alkaline phosphatase (ALP) expression. Conversely, treatment with recombinant Wnt5a inhibited the increase in ALP expression, suggesting that Wnt5a signaling functions as a negative regulator of canonical Wnt-mediated ALP expression of dental follicle cells. Wnt5a did not affect the nuclear translocation of β-catenin as well as β-catenin-mediated transcriptional activation of T-cell factor (Tcf) triggered by Wnt3a, suggesting that Wnt5a inhibits the downstream part of the β-catenin-Tcf pathway. These findings suggest the existence of a feedback mechanism between canonical and noncanonical Wnt signaling during the differentiation of dental follicle cells. - Highlights: • Dental follicle cells express Wnt5a during tooth root development. • Silencing of Wnt5a enhances Wnt3a-mediated ALP expression of dental follicle cells. • Conversely, treatment with rWnt5a inhibited the increase in ALP expression. • Wnt5a functions as a negative regulator of Wnt3a-mediated ALP expression.

  6. Wnt Secretion and Gradient Formation

    Directory of Open Access Journals (Sweden)

    Vladimir L. Katanaev

    2013-03-01

    Full Text Available Concentration gradients formed by the lipid-modified morphogens of the Wnt family are known for their pivotal roles during embryogenesis and adult tissue homeostasis. Wnt morphogens are also implicated in a variety of human diseases, especially cancer. Therefore, the signaling cascades triggered by Wnts have received considerable attention during recent decades. However, how Wnts are secreted and how concentration gradients are formed remains poorly understood. The use of model organisms such as Drosophila melanogaster has provided important advances in this area. For instance, we have previously shown that the lipid raft-associated reggie/flotillin proteins influence Wnt secretion and spreading in Drosophila. Our work supports the notion that producing cells secrete Wnt molecules in at least two pools: a poorly diffusible one and a reggie/flotillin-dependent highly diffusible pool which allows morphogen spreading over long distances away from its source of production. Here we revise the current views of Wnt secretion and spreading, and propose two models for the role of the reggie/flotillin proteins in these processes: (i reggies/flotillins regulate the basolateral endocytosis of the poorly diffusible, membrane-bound Wnt pool, which is then sorted and secreted to apical compartments for long-range diffusion, and (ii lipid rafts organized by reggies/flotillins serve as “dating points” where extracellular Wnt transiently interacts with lipoprotein receptors to allow its capture and further spreading via lipoprotein particles. We further discuss these processes in the context of human breast cancer. A better understanding of these phenomena may be relevant for identification of novel drug targets and therapeutic strategies.

  7. Tay bridge is a negative regulator of EGFR signalling and interacts with Erk and Mkp3 in the Drosophila melanogaster wing.

    Science.gov (United States)

    Molnar, Cristina; de Celis, Jose F

    2013-01-01

    The regulation of Extracellular regulated kinase (Erk) activity is a key aspect of signalling by pathways activated by extracellular ligands acting through tyrosine kinase transmembrane receptors. In this process, participate proteins with kinase activity that phosphorylate and activate Erk, as well as different phosphatases that inactivate Erk by de-phosphorylation. The state of Erk phosphorylation affects not only its activity, but also its subcellular localization, defining the repertoire of Erk target proteins, and consequently, the cellular response to Erk. In this work, we characterise Tay bridge as a novel component of the EGFR/Erk signalling pathway. Tay bridge is a large nuclear protein with a domain of homology with human AUTS2, and was previously identified due to the neuronal phenotypes displayed by loss-of-function mutations. We show that Tay bridge antagonizes EGFR signalling in the Drosophila melanogaster wing disc and other tissues, and that the protein interacts with both Erk and Mkp3. We suggest that Tay bridge constitutes a novel element involved in the regulation of Erk activity, acting as a nuclear docking for Erk that retains this protein in an inactive form in the nucleus.

  8. Wnt signaling in the murine diastema

    Science.gov (United States)

    Porntaveetus, Thantrira; Ohazama, Atsushi; Choi, Hong Y.; Herz, Joachim

    2012-01-01

    The correct number and shape of teeth are critical factors for an aesthetic and functional dentition. Understanding the molecular mechanisms regulating tooth number and shape are therefore important in orthodontics. Mice have only one incisor and three molars in each jaw quadrant that are divided by a tooth-less region, the diastema. Although mice lost teeth in the diastema during evolution, the remnants of the evolutionary lost teeth are observed as transient epithelial buds in the wild-type diastema during early stages of development. Shh and Fgf signaling pathways that are essential for tooth development have been shown to be repressed in the diastema. It remains unclear however how Wnt signaling, that is also required for tooth development, is regulated in the diastema. In this study we found that in the embryonic diastema, Wnt5a expression was observed in mesenchyme, whereas Wnt4 and Wnt10b were expressed in epithelium. The expression of Wnt6 and Wnt11 was found in both tissues. The Wnt co-receptor, Lrp6, was weakly expressed in the diastema overlapping with weak Lrp4 expression, a co-receptor that inhibits Wnt signaling. Secreted Wnt inihibitors Dkk1, Dkk2, and Dkk3 were also expressed in the diastema. Lrp4 mutant mice develop supernumerary teeth in the diastema that is accompanied by upregulation of Wnt signaling and Lrp6 expression. Wnt signaling is thus usually attenuated in the diastema by these secreted and membrane bound Wnt inhibitors. PMID:21531785

  9. Tcf3 represses Wnt-β-catenin signaling and maintains neural stem cell population during neocortical development.

    Directory of Open Access Journals (Sweden)

    Atsushi Kuwahara

    Full Text Available During mouse neocortical development, the Wnt-β-catenin signaling pathway plays essential roles in various phenomena including neuronal differentiation and proliferation of neural precursor cells (NPCs. Production of the appropriate number of neurons without depletion of the NPC population requires precise regulation of the balance between differentiation and maintenance of NPCs. However, the mechanism that suppresses Wnt signaling to prevent premature neuronal differentiation of NPCs is poorly understood. We now show that the HMG box transcription factor Tcf3 (also known as Tcf7l1 contributes to this mechanism. Tcf3 is highly expressed in undifferentiated NPCs in the mouse neocortex, and its expression is reduced in intermediate neuronal progenitors (INPs committed to the neuronal fate. We found Tcf3 to be a repressor of Wnt signaling in neocortical NPCs in a reporter gene assay. Tcf3 bound to the promoter of the proneural bHLH gene Neurogenin1 (Neurog1 and repressed its expression. Consistent with this, Tcf3 repressed neuronal differentiation and increased the self-renewal activity of NPCs. We also found that Wnt signal stimulation reduces the level of Tcf3, and increases those of Tcf1 (also known as Tcf7 and Lef1, positive mediators of Wnt signaling, in NPCs. Together, these results suggest that Tcf3 antagonizes Wnt signaling in NPCs, thereby maintaining their undifferentiated state in the neocortex and that Wnt signaling promotes the transition from Tcf3-mediated repression to Tcf1/Lef1-mediated enhancement of Wnt signaling, constituting a positive feedback loop that facilitates neuronal differentiation.

  10. Stabilizing membrane domains antagonizes anesthesia

    CERN Document Server

    Machta, Benjamin B; Nouri, Mariam; McCarthy, Nicola L C; Gray, Erin M; Miller, Ann L; Brooks, Nicholas J; Veatch, Sarah L

    2016-01-01

    Diverse molecules induce general anesthesia with potency strongly correlated both with their hydrophobicity and their effects on certain ion channels. We recently observed that several anesthetics inhibit heterogeneity in plasma membrane derived vesicles by lowering the critical temperature ($T_c$) for phase separation. Here we exploit conditions that stabilize membrane heterogeneity to test the correlation between the anesthetic potency of n-alcohols and effects on $T_c$. First we show that hexadecanol acts oppositely to anesthetics on membrane mixing and antagonizes ethanol induced anesthesia in a tadpole behavioral assay. Second, we show that two previously described `intoxication reversers' raise $T_c$ in vesicles and counter ethanol's effects in vesicles, mimicking the findings of previous electrophysiological measurements. Third, we find that hydrostatic pressure, long known to reverse anesthesia, also raises $T_c$ in vesicles with a magnitude that counters the effect of an anesthetic at relevant concen...

  11. Wnt Signaling in Cancer Stem Cell Biology.

    Science.gov (United States)

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-06-27

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer.

  12. Fresh WNT into the regulation of mitosis.

    Science.gov (United States)

    Stolz, Ailine; Bastians, Holger

    2015-01-01

    Canonical Wnt signaling triggering β-catenin-dependent gene expression contributes to cell cycle progression, in particular at the G1/S transition. Recently, however, it became clear that the cell cycle can also feed back on Wnt signaling at the G2/M transition. This is illustrated by the fact that mitosis-specific cyclin-dependent kinases can phosphorylate the Wnt co-receptor LRP6 to prime the pathway for incoming Wnt signals when cells enter mitosis. In addition, there is accumulating evidence that various Wnt pathway components might exert additional, Wnt-independent functions that are important for proper regulation of mitosis. The importance of Wnt pathways during mitosis was most recently enforced by the discovery of Wnt signaling contributing to the stabilization of proteins other than β-catenin, specifically at G2/M and during mitosis. This Wnt-mediated stabilization of proteins, now referred to as Wnt/STOP, might on one hand contribute to maintaining a critical cell size required for cell division and, on the other hand, for the faithful execution of mitosis itself. In fact, most recently we have shown that Wnt/STOP is required for ensuring proper microtubule dynamics within mitotic spindles, which is pivotal for accurate chromosome segregation and for the maintenance of euploidy.

  13. Wnt signaling: the good and the bad

    Institute of Scientific and Technical Information of China (English)

    Xi Chen; Jun Yang; Paul M Evans; Chunming Liu

    2008-01-01

    Since the first Wnt gene was identified in 1982,the functions and mechanisms of Wnt signaling have been extensively studied.Wnt signaling is conserved from invertebrates to vertebrates and regulates early embryonic development as well as the homeostasis of adult tissues.In addition,both embryonic stem cells and adult stem cells are regulated by Wnt signaling.Deregulation of Wnt signaling is associated with many human diseases,particularly cancers.In this review,we will discuss in detail the functions of many components involved in the Wnt signal transduction pathway.Then,we will explore what is known about the role of Wnt signaling in stem cells and cancers.

  14. Coordination of kidney organogenesis by Wnt signaling.

    Science.gov (United States)

    Halt, Kimmo; Vainio, Seppo

    2014-04-01

    Several Wnt proteins are expressed in the embryonic kidney during various stages of development. Gene knockout models and ex vivo studies have provided strong evidence that Wnt-mediated signals are essential in renal ontogeny. Perhaps the most critical factors, Wnt9b and Wnt4, function during the early phase when the cap mesenchyme is induced to undergo morphogenesis into a nephron. Wnt11 controls early ureteric bud branching and contributes to the final kidney size. In addition to its inductive role, later on Wnt9b plays a significant role in the convergent extension of the tubular epithelial cells, while Wnt4 signaling controls smooth muscle cell fates in the medulla. Wnt7b has a specific function together with its likely antagonist Dkk1 in controlling the morphogenesis of the renal medulla. The signal-transduction mechanisms of the Wnts in kidney ontogeny have not been resolved, but studies characterizing the downstream signaling pathways are emerging. Aberrant Wnt signaling may lead to kidney diseases ranging from fatal kidney agenesis to more benign phenotypes. Wnt-mediated signaling regulates several critical aspects of kidney development from the early inductive stages to later steps of tubular epithelial maturation.

  15. A Second WNT for Old Drugs: Drug Repositioning against WNT-Dependent Cancers

    OpenAIRE

    Kamal Ahmed; Shaw, Holly V.; Alexey Koval; Katanaev, Vladimir L.

    2016-01-01

    Aberrant WNT signaling underlies cancerous transformation and growth in many tissues, such as the colon, breast, liver, and others. Downregulation of the WNT pathway is a desired mode of development of targeted therapies against these cancers. Despite the urgent need, no WNT signaling-directed drugs currently exist, and only very few candidates have reached early phase clinical trials. Among different strategies to develop WNT-targeting anti-cancer therapies, repositioning of existing drugs p...

  16. Both ERK1 and ERK2 are required for enterovirus 71 (EV71) efficient replication.

    Science.gov (United States)

    Zhu, Meng; Duan, Hao; Gao, Meng; Zhang, Hao; Peng, Yihong

    2015-03-01

    It has been demonstrated that MEK1, one of the two MEK isoforms in Raf-MEK-ERK1/2 pathway, is essential for successful EV71 propagation. However, the distinct function of ERK1 and ERK2 isoforms, the downstream kinases of MEKs, remains unclear in EV71 replication. In this study, specific ERK siRNAs and selective inhibitor U0126 were applied. Silencing specific ERK did not significantly impact on the EV71-caused biphasic activation of the other ERK isoform, suggesting the EV71-induced activations of ERK1 and ERK2 were non-discriminative and independent to one another. Knockdown of either ERK1 or ERK2 markedly impaired progeny EV71 propagation (both by more than 90%), progeny viral RNA amplification (either by about 30% to 40%) and protein synthesis (both by around 70%), indicating both ERK1 and ERK2 were critical and not interchangeable to EV71 propagation. Moreover, suppression of EV71 replication by inhibiting both early and late phases of ERK1/2 activation showed no significant difference from that of only blocking the late phase, supporting the late phase activation was more importantly responsible for EV71 life cycle. Taken together, this study for the first time identified both ERK1 and ERK2 were required for EV71 efficient replication and further verified the important role of MEK1-ERK1/2 in EV71 replication.

  17. Both ERK1 and ERK2 Are Required for Enterovirus 71 (EV71 Efficient Replication

    Directory of Open Access Journals (Sweden)

    Meng Zhu

    2015-03-01

    Full Text Available It has been demonstrated that MEK1, one of the two MEK isoforms in Raf-MEK-ERK1/2 pathway, is essential for successful EV71 propagation. However, the distinct function of ERK1 and ERK2 isoforms, the downstream kinases of MEKs, remains unclear in EV71 replication. In this study, specific ERK siRNAs and selective inhibitor U0126 were applied. Silencing specific ERK did not significantly impact on the EV71-caused biphasic activation of the other ERK isoform, suggesting the EV71-induced activations of ERK1 and ERK2 were non-discriminative and independent to one another. Knockdown of either ERK1 or ERK2 markedly impaired progeny EV71 propagation (both by more than 90%, progeny viral RNA amplification (either by about 30% to 40% and protein synthesis (both by around 70%, indicating both ERK1 and ERK2 were critical and not interchangeable to EV71 propagation. Moreover, suppression of EV71 replication by inhibiting both early and late phases of ERK1/2 activation showed no significant difference from that of only blocking the late phase, supporting the late phase activation was more importantly responsible for EV71 life cycle. Taken together, this study for the first time identified both ERK1 and ERK2 were required for EV71 efficient replication and further verified the important role of MEK1-ERK1/2 in EV71 replication.

  18. Wnt signaling and colon carcinogenesis: Beyond APC

    Directory of Open Access Journals (Sweden)

    Rani Najdi

    2011-01-01

    Full Text Available Activation of the Wnt signaling pathway via mutation of the adenomatous polyposis coli gene (APC is a critical event in the development of colon cancer. For colon carcinogenesis, however, constitutive signaling through the canonical Wnt pathway is not a singular event. Here we review how canonical Wnt signaling is modulated by intracellular LEF/TCF composition and location, the action of different Wnt ligands, and the secretion of Wnt inhibitory molecules. We also review the contributions of non-canonical Wnt signaling and other distinct pathways in the tumor micro environment that cross-talk to the canonical Wnt pathway and thereby influence colon cancer progression. These ′non-APC′ aspects of Wnt signaling are considered in relation to the development of potential agents for the treatment of patients with colon cancer. Regulatory pathways that influence Wnt signaling highlight how it might be possible to design therapies that target a network of signals beyond that of APC and β-catenin.

  19. The antidepressant roles of Wnt2 and Wnt3 in stress-induced depression-like behaviors

    Science.gov (United States)

    Zhou, W-J; Xu, N; Kong, L; Sun, S-C; Xu, X-F; Jia, M-Z; Wang, Y; Chen, Z-Y

    2016-01-01

    Wnts-related signaling pathways have been reported to play roles in the pathogenesis of stress-induced depression-like behaviors. However, there is relatively few direct evidence to indicate the effect of Wnt ligands on this process. Here, we investigated the role of Wnts in mediating chronic restraint stress (CRS)-induced depression-like behaviors. We found that CRS induced a significant decrease in the expression of Wnt2 and Wnt3 in the ventral hippocampus (VH) but not in the dorsal hippocampus. Knocking down Wnt2 or Wnt3 in the VH led to impaired Wnt/β-catenin signaling, neurogenesis deficits and depression-like behaviors. In contrast, overexpression of Wnt2 or Wnt3 reversed CRS-induced depression-like behaviors. Moreover, Wnt2 and Wnt3 activated cAMP response element-binding protein (CREB) and there was CREB-dependent positive feedback between Wnt2 and Wnt3. Finally, fluoxetine treatment increased Wnt2 and Wnt3 levels in the VH and knocking down Wnt2 or Wnt3 abolished the antidepressant effect of fluoxetine. Taken together, our study indicates essential roles for Wnt2 and Wnt3 in CRS-induced depression-like behaviors and antidepressant. PMID:27622936

  20. Probing Wnt Receptor Turnover: A Critical Regulatory Point of Wnt Pathway.

    Science.gov (United States)

    Jiang, Xiaomo; Cong, Feng

    2016-01-01

    Wnt pathways are critical for embryonic development and adult tissue homeostasis in all multicellular animals. Many regulatory mechanisms exist to control proper signaling output. Recent studies suggest that cell surface Wnt receptor level is controlled by ubiquitination, and serve as a critical regulatory point of Wnt pathway activity as it determines the responsiveness of cells to Wnt signal. Here, we describe flow cytometry, cell surface protein biotinylation, and immunofluorescence pulse-chase methods to probe the surface expression, ubiquitination, and internalization of the Wnt receptors FZD and LRP6.

  1. Polymorphisms in WNT6 and WNT10A and Colorectal Adenoma Risk

    OpenAIRE

    Galbraith, Rachel L.; Poole, Elizabeth M; Duggan, David; Muehling, Jill; Hsu, Li; Makar, Karen; Xiao, Liren; Potter, John D.; Ulrich, Cornelia M.

    2011-01-01

    The WNT/β-catenin signaling pathway upregulates transcription of genes involved in cell proliferation and cancer progression; it has been implicated in colorectal adenoma formation. To date, no studies have examined polymorphisms in WNT genes or WNT gene–environment interactions in relation to adenoma risk. Within a colonoscopy-based case-control study of 628 adenoma cases and 516 polyp-free controls, we analyzed two tagSNPs in WNT6 (rs6747776 G > C, rs6754599 G > C) and WNT10A (rs7349332 G >...

  2. Effect of tripterygium glycosides on Wnt/Frizzled signaling pathway in imiquimod-induced psoriasis-like mice

    Institute of Scientific and Technical Information of China (English)

    Xiu-Qing Liu; Zhuo-Cheng Li; Wen-Zhong Wu

    2016-01-01

    ABSTRACT Objective:To study the effect of tripterygium glycosides on Wnt/Frizzled signaling pathway in imiquimod-induced psoriasis-like mice.Methods:BALB/c female mice were selected as research objects and randomly divided into control group, model group and intervention group, model group and intervention group established the models of imiquimod-induced psoriasis-like mice, and intervention group received intragastric administration of tripterygium glycosides after establishment of models. Psoriasis lesion tissue was collected to detect the contents of Wnt/Frizzled signal molecules and downstream related molecules.Results:Wnt5a, Frizzled2, Frizzled3, Frizzled5, Frizzled6, NFAT, COX-2, VEGF, MIF, IFN-γ, IL-6, IL-17, IL-21, IL-23, JAK1, STAT3, Rsa, Raf, MEK, ERK1 and EKR2 contents in skin lesion tissue of model group were significantly higher than those of control group, cGMP and PKG contents were significantly lower than those of control group, and Frizzled4 content was not different from that of control group; Wnt5a, Frizzled2, Frizzled3, Frizzled5, Frizzled6, NFAT, COX-2, VEGF, MIF, IFN-γ, IL-6, IL-17, IL-21, IL-23, JAK1, STAT3, Rsa, Raf, MEK, ERK1 and EKR2 contents in skin lesion tissue of intervention group were significantly lower than those of model group, cGMP and PKG contents were significantly higher than those of model group, and Frizzled4 content was not different from that of model group.Conclusions:Tripterygium glycosides have inhibitory effect on the signaling pathway mediated by Wnt5a-Frizzled2/Frizzled3/Frizzled5/Frizzled6 in skin lesions of imiquimod-induced psoriasis-like mice.

  3. Mining the Wnt pathway for cancer therapeutics.

    NARCIS (Netherlands)

    Barker, N.; Clevers, J.C.

    2006-01-01

    Aberrant activation of the Wnt pathway is implicated in driving the formation of various human cancers, particularly those of the digestive tract. Inhibition of aberrant Wnt pathway activity in cancer cell lines efficiently blocks their growth, highlighting the great potential of therapeutics design

  4. Wnt signaling in gut development and homeostasis

    NARCIS (Netherlands)

    Gregorieff, A.

    2006-01-01

    The Wnt pathway controls diverse biological processes during embryonic development. In the adult, Wnts maintain the balance between cell division and cell specialisation in tissues such as the hemapoetic system, skin, and the intestine. Genetic modifications which activate the Wnt pathway are also c

  5. Antibacterial antagonism between fusidic acid and ciprofloxacin.

    Science.gov (United States)

    Uri, J V

    1993-01-01

    A routine laboratory disk susceptibility testing of a resistant Staphylococcus aureus strain showed that around the ciprofloxacin disk, placed by chance in proximity to a fusidic acid disk, the inhibition zone was truncated. Follow-up of this observation by a planned disk approximation method showed that there is a real antagonism between these two antibacterial agents. The antagonism was observed while testing S. aureus isolates including the standard ATCC 25923 strain, with Bacillus subtilis ATCC 6633 spores and also with a mutant Escherichia coli made fusidic acid susceptible. The antagonistic property was found structure-specific, only associated with those fluoroquinolones containing the cyclopropyl substituent at the N1-position: ciprofloxacin, enrofloxacin, sparfloxacin and WIN 57273. Fluoroquinolones without this substituent such as enoxacin, norfloxacin, pefloxacin and ofloxacin were not antagonized by fusidic acid, the steroidal Gram-positive active antibiotic.

  6. The Wnt signaling pathway in cancer.

    Science.gov (United States)

    Duchartre, Yann; Kim, Yong-Mi; Kahn, Michael

    2016-03-01

    The Wnt signaling pathway is critically involved in both the development and homeostasis of tissues via regulation of their endogenous stem cells. Aberrant Wnt signaling has been described as a key player in the initiation of and/or maintenance and development of many cancers, via affecting the behavior of Cancer Stem Cells (CSCs). CSCs are considered by most to be responsible for establishment of the tumor and also for disease relapse, as they possess inherent drug-resistance properties. The development of new therapeutic compounds targeting the Wnt signaling pathway promises new hope to eliminate CSCs and achieve cancer eradication. However, a major challenge resides in developing a strategy efficient enough to target the dysregulated Wnt pathway in CSCs, while being safe enough to not damage the normal somatic stem cell population required for tissue homeostasis and repair. Here we review recent therapeutic approaches to target the Wnt pathway and their clinical applications.

  7. Genomic DISC1 Disruption in hiPSCs Alters Wnt Signaling and Neural Cell Fate

    Directory of Open Access Journals (Sweden)

    Priya Srikanth

    2015-09-01

    Full Text Available Genetic and clinical association studies have identified disrupted in schizophrenia 1 (DISC1 as a candidate risk gene for major mental illness. DISC1 is interrupted by a balanced chr(1;11 translocation in a Scottish family in which the translocation predisposes to psychiatric disorders. We investigate the consequences of DISC1 interruption in human neural cells using TALENs or CRISPR-Cas9 to target the DISC1 locus. We show that disruption of DISC1 near the site of the translocation results in decreased DISC1 protein levels because of nonsense-mediated decay of long splice variants. This results in an increased level of canonical Wnt signaling in neural progenitor cells and altered expression of fate markers such as Foxg1 and Tbr2. These gene expression changes are rescued by antagonizing Wnt signaling in a critical developmental window, supporting the hypothesis that DISC1-dependent suppression of basal Wnt signaling influences the distribution of cell types generated during cortical development.

  8. Agonistic and antagonistic roles for TNIK and MINK in non-canonical and canonical Wnt signalling.

    Directory of Open Access Journals (Sweden)

    Alexander Mikryukov

    Full Text Available Wnt signalling is a key regulatory factor in animal development and homeostasis and plays an important role in the establishment and progression of cancer. Wnt signals are predominantly transduced via the Frizzled family of serpentine receptors to two distinct pathways, the canonical ß-catenin pathway and a non-canonical pathway controlling planar cell polarity and convergent extension. Interference between these pathways is an important determinant of cellular and phenotypic responses, but is poorly understood. Here we show that TNIK (Traf2 and Nck-interacting kinase and MINK (Misshapen/NIKs-related kinase MAP4K signalling kinases are integral components of both canonical and non-canonical pathways in Xenopus. xTNIK and xMINK interact and are proteolytically cleaved in vivo to generate Kinase domain fragments that are active in signal transduction, and Citron-NIK-Homology (CNH Domain fragments that are suppressive. The catalytic activity of the Kinase domain fragments of both xTNIK and xMINK mediate non-canonical signalling. However, while the Kinase domain fragments of xTNIK also mediate canonical signalling, the analogous fragments derived from xMINK strongly antagonize this signalling. Our data suggest that the proteolytic cleavage of xTNIK and xMINK determines their respective activities and is an important factor in controlling the balance between canonical and non-canonical Wnt signalling in vivo.

  9. Wnt signalling pathway parameters for mammalian cells.

    Directory of Open Access Journals (Sweden)

    Chin Wee Tan

    Full Text Available Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated

  10. Cross-talk between TGF-β/Smad pathway and Wnt/β-catenin pathway in pathological scar formation.

    Science.gov (United States)

    Sun, Qiang; Guo, Shu; Wang, Chen-Chao; Sun, Xu; Wang, Di; Xu, Nan; Jin, Shi-Feng; Li, Ke-Zhu

    2015-01-01

    TGF-β1 is a key factor in the process of wound healing, which is regulated by TGF-β/Smad pathway. We previously demonstrated that TGF-β1 contributed to pathological scar formation. And previous studies also suggested Wnt/β-catenin pathway might be involved in wound healing. However, their role and relation in pathological scar formation remains not very clear. For evaluating TGF-β1 and β-catenin, key factors of the two signal pathways, immunohistochemistry, western blot analysis and RT-PCR were used. Simultaneously, immunohistochemistry were used to evaluate Smad2, Smad3 and Wnt-1, which were also the important factors. We found that they all significantly accumulated in pathological scars compared with normal skins (Pscar formation. Meanwhile, β-catenin expression showed a tendency to increase first and then decrease under the influence of different concentrations of TGF-β1 (Pscar formation (both synergy and antagonism).

  11. WNT signaling in neuronal maturation and synaptogenesis

    Science.gov (United States)

    Rosso, Silvana B.; Inestrosa, Nibaldo C.

    2013-01-01

    The Wnt signaling pathway plays a role in the development of the central nervous system and growing evidence indicates that Wnts also regulates the structure and function of the adult nervous system. Wnt components are key regulators of a variety of developmental processes, including embryonic patterning, cell specification, and cell polarity. In the nervous system, Wnt signaling also regulates the formation and function of neuronal circuits by controlling neuronal differentiation, axon outgrowth and guidance, dendrite development, synaptic function, and neuronal plasticity. Wnt factors can signal through three very well characterized cascades: canonical or β-catenin pathway, planar cell polarity pathway and calcium pathway that control different processes. However, divergent downstream cascades have been identified to control neuronal morphogenesis. In the nervous system, the expression of Wnt proteins is a highly controlled process. In addition, deregulation of Wnt signaling has been associated with neurodegenerative diseases. Here, we will review different aspects of neuronal and dendrite maturation, including spinogenesis and synaptogenesis. Finally, the role of Wnt pathway components on Alzheimer’s disease will be revised. PMID:23847469

  12. WNT signalling in neuronal maturation and synaptogenesis

    Directory of Open Access Journals (Sweden)

    Silvana Beatriz Rosso

    2013-07-01

    Full Text Available The Wnt signaling pathway plays a role in the development of the central nervous system (CNS and growing evidence indicates that Wnts also regulates the structure and function of the adult nervous system. Wnt components are key regulators of a variety of developmental processes, including embryonic patterning, cell specification, and cell polarity. In the nervous system, Wnt signaling also regulates the formation and function of neuronal circuits by controlling neuronal differentiation, axon outgrowth and guidance, dendrite development, synaptic function and neuronal plasticity. Wnt factors can signal through three very well characterized cascades: canonical or β-catenin pathway, planar cell polarity pathway and calcium pathway that control different processes. However, divergent downstream cascades have been identified to control neuronal morphogenesis. In the nervous system, the expression of Wnt proteins is a highly controlled process. In addition, deregulation of Wnt signaling has been associated with neurodegenerative diseases. Here, we will review different aspects of neuronal and dendrite maturation, including spinogenesis and synaptogenesis. Finally, the role of Wnt pathway components on Alzheimer’s disease will be revised.

  13. Wnt7a treatment ameliorates muscular dystrophy.

    Science.gov (United States)

    von Maltzahn, Julia; Renaud, Jean-Marc; Parise, Gianni; Rudnicki, Michael A

    2012-12-11

    Duchenne muscular dystrophy (DMD) is a devastating genetic muscular disorder of childhood marked by progressive debilitating muscle weakness and wasting, and ultimately death in the second or third decade of life. Wnt7a signaling through its receptor Fzd7 accelerates and augments regeneration by stimulating satellite stem cell expansion through the planar cell polarity pathway, as well as myofiber hypertrophy through the AKT/mammalian target of rapamycin (mTOR) anabolic pathway. We investigated the therapeutic potential of the secreted factor Wnt7a for focal treatment of dystrophic DMD muscles using the mdx mouse model, and found that Wnt7a treatment efficiently induced satellite cell expansion and myofiber hypertrophy in treated mucles in mdx mice. Importantly, Wnt7a treatment resulted in a significant increase in muscle strength, as determined by generation of specific force. Furthermore, Wnt7a reduced the level of contractile damage, likely by inducing a shift in fiber type toward slow-twitch. Finally, we found that Wnt7a similarly induced myotube hypertrophy and a shift in fiber type toward slow-twitch in human primary myotubes. Taken together, our findings suggest that Wnt7a is a promising candidate for development as an ameliorative treatment for DMD.

  14. Wnt signaling inhibits CTL memory programming.

    Science.gov (United States)

    Xiao, Zhengguo; Sun, Zhifeng; Smyth, Kendra; Li, Lei

    2013-12-01

    Induction of functional CTLs is one of the major goals for vaccine development and cancer therapy. Inflammatory cytokines are critical for memory CTL generation. Wnt signaling is important for CTL priming and memory formation, but its role in cytokine-driven memory CTL programming is unclear. We found that wnt signaling inhibited IL-12-driven CTL activation and memory programming. This impaired memory CTL programming was attributed to up-regulation of eomes and down-regulation of T-bet. Wnt signaling suppressed the mTOR pathway during CTL activation, which was different to its effects on other cell types. Interestingly, the impaired memory CTL programming by wnt was partially rescued by mTOR inhibitor rapamycin. In conclusion, we found that crosstalk between wnt and the IL-12 signaling inhibits T-bet and mTOR pathways and impairs memory programming which can be recovered in part by rapamycin. In addition, direct inhibition of wnt signaling during CTL activation does not affect CTL memory programming. Therefore, wnt signaling may serve as a new tool for CTL manipulation in autoimmune diseases and immune therapy for certain cancers.

  15. Wnt signaling and stem cell control

    Institute of Scientific and Technical Information of China (English)

    Roel Nusse

    2008-01-01

    Wnt signaling has been implicated in the control over various types of stem cells and may act as a niche factor to maintain stem cells in a self-renewing state.As currently understood,Wnt proteins bind to receptors of the Frizzled and LRP families on the cell surface.Through several cytoplasmic relay components,the signal is transduced to B-catenin,which then enters the nucleus and forms a complex with TCF to activate transcription of Wnt target genes.Wnts can also signal through tyrosine kinase receptors,in particular the ROR and RYK receptors,leading to alternative modes of Wnt signaling.During the growth of tissues,these ligands and receptors are dynamically expressed,often transcriptionally controlled by Wnt signals themselves,to ensure the right balance between proliferation and differentiation.Isolated Wnt proteins are active on a variety of stem cells,including neural,mammary and embryonic stem cells.In general,Wnt proteins act to maintain the undifferentiated state of stem cells,while other growth factors instruct the cells to proliferate.These other factors include FGF and EGF,signaling through tyrosine kinase pathways.

  16. Expression of MIG-6, WNT-9A, and WNT-7B during osteoarthritis.

    Science.gov (United States)

    Velasquillo, Cristina; Garciadiego-Cázares, David; Almonte, Maylin; Bustamante, Marcia; Ibarra, Clemente; Kouri, Juan B; Chimal-Monroy, Jesús

    2007-11-01

    Although the molecular mechanisms for initiation of cartilage destruction in osteoarthritis (OA) are unknown, it has been demonstrated that disruption of mitogen-inducible gene 6 (Mig-6) in mice leads to the onset of a degenerative joint disease like OA. On this basis, we correlated gene expression of Mig-6 with Wnt-9a and Wnt-7b genes; we showed downregulation of Mig-6, Wnt-7b, and Wnt-9a during OA, while Wnt-7b was expressed also in osteoblast-like cells. Here we suggest that Aggrecan degradation occurs before the downregulation of Mig-6. It remains to be proven whether there is any relation between Wnt signaling and Aggrecan degradation.

  17. The N-terminal domain of ERK1 accounts for the functional differences with ERK2.

    Directory of Open Access Journals (Sweden)

    Matilde Marchi

    Full Text Available The Extracellular Regulated Kinase 1 and 2 transduce a variety of extracellular stimuli regulating processes as diverse as proliferation, differentiation and synaptic plasticity. Once activated in the cytoplasm, ERK1 and ERK2 translocate into the nucleus and interact with nuclear substrates to induce specific programs of gene expression. ERK1/2 share 85% of aminoacid identity and all known functional domains and thence they have been considered functionally equivalent until recent studies found that the ablation of either ERK1 or ERK2 causes dramatically different phenotypes. To search a molecular justification of this dichotomy we investigated whether the different functions of ERK1 and 2 might depend on the properties of their cytoplasmic-nuclear trafficking. Since in the nucleus ERK1/2 is predominantly inactivated, the maintenance of a constant level of nuclear activity requires continuous shuttling of activated protein from the cytoplasm. For this reason, different nuclear-cytoplasmic trafficking of ERK1 and 2 would cause a differential signalling capability. We have characterised the trafficking of fluorescently tagged ERK1 and ERK2 by means of time-lapse imaging in living cells. Surprisingly, we found that ERK1 shuttles between the nucleus and cytoplasm at a much slower rate than ERK2. This difference is caused by a domain of ERK1 located at its N-terminus since the progressive deletion of these residues converted the shuttling features of ERK1 into those of ERK2. Conversely, the fusion of this ERK1 sequence at the N-terminus of ERK2 slowed down its shuttling to a similar value found for ERK1. Finally, computational, biochemical and cellular studies indicated that the reduced nuclear shuttling of ERK1 causes a strong reduction of its nuclear phosphorylation compared to ERK2, leading to a reduced capability of ERK1 to carry proliferative signals to the nucleus. This mechanism significantly contributes to the differential ability of ERK1 and

  18. Wnt/Ca2+ signaling pathway: a brief overview

    Institute of Scientific and Technical Information of China (English)

    Antara De

    2011-01-01

    The non-canonical Wnt/Ca2+ signaling cascade is less characterized than their canonical counterpart,the Wnt/β-catenin pathway.The non-canonical Wnt signaling pathways are diverse,defined as planer cell polarity pathway,Wnt-RAP1 signaling pathway,Wnt-Ror2 signaling pathway,Wnt-PKA pathway,Wnt-GSK3MT pathway,Wnt-aPKC pathway,Wnt-RYK pathway,Wnt-mTOR pathway,and Wnt/calcium signaling pathway.All these pathways exhibit a considerable degree of overlap between them.The Wnt/Ca2+ signaling pathway was deciphered as a crucial mediator in development.However,now there is substantial evidence that the signaling cascade is involved in many other molecular phenomena.Many aspects of Wnt/Ca2+ pathway are yet enigmatic.This review will give a brief overview of the fundamental and evolving concepts of the Wnt/Ca2+ signaling pathway.

  19. Quetiapine and aripiprazole signal differently to ERK, p90RSK and c-Fos in mouse frontal cortex and striatum: role of the EGF receptor

    OpenAIRE

    Pereira, Avril; Zhang, Betty; Malcolm, Peter; Sugiharto-Winarno, Anthony; Sundram, Suresh

    2014-01-01

    Background Signaling pathways outside dopamine D2 receptor antagonism may govern the variable clinical profile of antipsychotic drugs (APD) in schizophrenia. One postulated mechanism causal to APD action may regulate synaptic plasticity and neuronal connectivity via the extracellular signal-regulated kinase (ERK) cascade that links G-protein coupled receptors (GPCR) and ErbB growth factor signaling, systems disturbed in schizophrenia. This was based upon our finding that the low D2 receptor a...

  20. Triclosan antagonizes fluconazole activity against Candida albicans.

    LENUS (Irish Health Repository)

    Higgins, J

    2012-01-01

    Triclosan is a broad-spectrum antimicrobial compound commonly used in oral hygiene products. Investigation of its activity against Candida albicans showed that triclosan was fungicidal at concentrations of 16 mg\\/L. However, at subinhibitory concentrations (0.5-2 mg\\/L), triclosan antagonized the activity of fluconazole. Although triclosan induced CDR1 expression in C. albicans, antagonism was still observed in cdr1Δ and cdr2Δ strains. Triclosan did not affect fluconazole uptake or alter total membrane sterol content, but did induce the expression of FAS1 and FAS2, indicating that its mode of action may involve inhibition of fatty acid synthesis, as it does in prokaryotes. However, FAS2 mutants did not exhibit increased susceptibility to triclosan, and overexpression of both FAS1 and FAS2 alleles did not alter triclosan susceptibility. Unexpectedly, the antagonistic effect was specific for C. albicans under hypha-inducing conditions and was absent in the non-filamentous efg1Δ strain. This antagonism may be due to the membranotropic activity of triclosan and the unique composition of hyphal membranes.

  1. Polymorphisms in WNT6 and WNT10A and colorectal adenoma risk.

    Science.gov (United States)

    Galbraith, Rachel L; Poole, Elizabeth M; Duggan, David; Muehling, Jill; Hsu, Li; Makar, Karen; Xiao, Liren; Potter, John D; Ulrich, Cornelia M

    2011-01-01

    The WNT/β-catenin signaling pathway upregulates transcription of genes involved in cell proliferation and cancer progression; it has been implicated in colorectal adenoma formation. To date, no studies have examined polymorphisms in WNT genes or WNT gene-environment interactions in relation to adenoma risk. Within a colonoscopy-based case-control study of 628 adenoma cases and 516 polyp-free controls, we analyzed two tagSNPs in WNT6 (rs6747776 G > C, rs6754599 G > C) and WNT10A (rs7349332 G > A, rs10177996 A > G). The WNT6 rs6747776 homozygous minor allele (CC) was associated with increased risk of colorectal adenoma (OR = 2.75, 95% CI: 1.03-7.31). We observed a statistically significant interaction between WNT6 rs6747776 and the proportion of calories from total fat (P-int = 0.02), where the highest risk was observed among those with minor alleles and lowest fat intake. We also detected a marginally significant (0.05 rs7349332 polymorphism. Our results suggest that genetic variability in the WNT pathway may play a role in colorectal adenoma formation or may partly mediate the increased risk of colorectal cancer associated with fat intake.

  2. Overexpression of Wnt5a Promotes Angiogenesis in NSCLC

    Directory of Open Access Journals (Sweden)

    Lingli Yao

    2014-01-01

    Full Text Available To evaluate Wnt5a expression and its role in angiogenesis of non-small-cell lung cancer (NSCLC, immunohistochemistry and CD31/PAS double staining were performed to examine the Wnt5a expression and we analyze the relationships between Wnt5a and microvessel density (MVD, vasculogenic mimicry (VM, and some related proteins. About 61.95% of cases of 205 NSCLC specimens exhibited high expression of Wnt5a. Wnt5a expression level was upregulated in the majority of NSCLC tissues, especially in squamous cell carcinoma, while its expression level in adenocarcinoma was the lowest. Wnt5a was also found more frequently expressed in male patients than in female patients. Except for histological classification and gender, little association was found between Wnt5a and clinicopathological features. Moreover, Wnt5a was significantly correlated with prognosis. Overall, Wnt5a-positive expression in patients with NSCLC indicated shorter survival time. As for vascularization in NSCLC, Wnt5a showed close association with VM and MVD. In addition, Wnt5a was positively related with β-catenin-nu, VE-cadherin, MMP2, and MMP9. The results demonstrated that overexpression of Wnt5a may play an important role in NSCLC angiogenesis and it may function via canonical Wnt signal pathway. This study will provide evidence for further research on NSCLC and also will provide new possible target for NSCLC diagnosis and therapeutic strategies.

  3. Lipid-independent secretion of a Drosophila Wnt protein.

    Science.gov (United States)

    Ching, Wendy; Hang, Howard C; Nusse, Roel

    2008-06-20

    Wnt proteins comprise a large class of secreted signaling molecules with key roles during embryonic development and throughout adult life. Recently, much effort has been focused on understanding the factors that regulate Wnt signal production. For example, Porcupine and Wntless/Evi/Sprinter have been identified as being required in Wnt-producing cells for the processing and secretion of many Wnt proteins. Interestingly, in this study we find that WntD, a recently characterized Drosophila Wnt family member, does not require Porcupine or Wntless/Evi/Sprinter for its secretion or signaling activity. Because Porcupine is involved in post-translational lipid modification of Wnt proteins, we used a novel labeling method and mass spectrometry to ask whether WntD undergoes lipid modification and found that it does not. Although lipid modification is also hypothesized to be required for Wnt secretion, we find that WntD is secreted very efficiently. WntD secretion does, however, maintain a requirement for the secretory pathway component Rab1. Our results show that not all Wnt family members require lipid modification, Porcupine, or Wntless/Evi/Sprinter for secretion and suggest that different modes of secretion may exist for different Wnt proteins.

  4. Regulation of NMDA-receptor synaptic transmission by Wnt signaling

    Science.gov (United States)

    Cerpa, Waldo; Gambrill, Abigail; Inestrosa, Nibaldo C.; Barria, Andres

    2011-01-01

    Wnt ligands are secreted glycoproteins controlling gene expression and cytoskeleton reorganization involved in embryonic development of the nervous system. However, their role in later stages of brain development, particularly in the regulation of established synaptic connections is not known. We found that Wnt-5a acutely and specifically up-regulates synaptic NMDAR currents in rat hippocampal slices facilitating induction of LTP, a cellular model of learning and memory. This effect requires an increase in postsynaptic Ca2+ and activation of non-canonical downstream effectors of the Wnt signaling pathway. In contrast, Wnt-7a, an activator of the canonical Wnt signaling pathway, has no effect on NMDAR mediated synaptic transmission. Moreover, endogenous Wnt ligands are necessary to maintain basal NMDAR synaptic transmission adjusting the threshold for synaptic potentiation. This novel role for Wnt ligands provides a mechanism for Wnt signaling to acutely modulate synaptic plasticity and brain function in later stages of development and in the mature organism. PMID:21715611

  5. Delivery of the Porcupine Inhibitor WNT974 in Mice

    Science.gov (United States)

    Zhang, Li-shu; Lum, Lawrence

    2016-01-01

    We describe here a technique for delivering the porcupine inhibitor WNT974 (formerly LGK974) in mice. The protocol entails once-a-day oral delivery of WNT974 for up to 3 months at a concentration sufficient to achieve systemic Wnt pathway inhibition with limited toxicity as measured by weight change. This route of delivery enables extended durations of Wnt signaling inhibition in a mammalian model organism. PMID:27590157

  6. Natural Protection of Wood with Antagonism Fungi

    Directory of Open Access Journals (Sweden)

    Alba ZAREMSKI

    2011-03-01

    Full Text Available Biological environments contain a certain number of microbial populations which, within a givenecological niche, display various relations ranging from symbiosis to parasitism. Researchers have beeninterested in these types of relations for around fifty years, especially in one very particular type ofrelationship: the antagonism exerted between individuals of the same microbial population.Today, the role played by biological agents, bringing into play inhibitive or destructive antibioticsubstances, reveals a certain potential for their use in controlling microorganisms associated with suchdegradation processes.The work undertaken by HydroQuébec and CIRAD involved two types of experiment: 1 in Petri dishes toassess and characterize the antagonistic capacity of Trichoderma against white rot and brown rot fungi; 2on pieces taken from untreated poles in order to study confrontation between the basidiomycete and theantagonistic strain in wood.This study investigated the antagonism of three ascomycetes of the genus Trichoderma against two whiterot basidiomycetes, Pycnoporus sanguineus and Coriolus versicolor, and two brown rot basidiomycetes,Antrodia sp. and Coniophora puteana, through direct confrontation in Petri dishes and in the wood ofHydroQuébec poles.The results obtained seemed to complete each other coherently. They revealed that the Trichodermagroup of fungi was not aggressive to wood and the results obtained after direct confrontation in Petri disheswere confirmed in wood.By directly exposing the different basidiomycetes and antagonists to each other in Petri dishes, two bytwo, we effectively revealed an antagonism effect for a large majority of the pairs. However, there wassubstantial variability in reactions from one pair to the next.

  7. Wnt signaling interacts with Shh to regulate taste papilla development.

    Science.gov (United States)

    Iwatsuki, Ken; Liu, Hong-Xiang; Grónder, Albert; Singer, Meredith A; Lane, Timothy F; Grosschedl, Rudolf; Mistretta, Charlotte M; Margolskee, Robert F

    2007-02-13

    Wnt and Shh signaling pathways are critical for the development and maturation of many epithelial tissues. Both pathways have roles in stem cell maintenance, tissue development, and tumorigenesis. However, linkage between these pathways in mammalian systems had not been well established. Here, we report that Shh expression in fungiform papillae and formation of normal mature fungiform papillae depend on signaling through Wnt and beta-catenin. We observed that during fungiform papilla formation in mice, Shh and components of the Wnt/beta-catenin signaling pathway are expressed together in the developing placode. The elimination of Wnt/beta-catenin signaling in either Lef1 or Wnt10b knockout mice resulted in down-regulation of Shh expression. In addition, the size and number of fungiform papillae were greatly reduced in Lef1 knockout mice. By examining embryonic mouse tongues in culture we determined that activation of Wnt/beta-catenin signaling up-regulates Shh expression. We observed that blocking Shh signaling in cultured tongue explants enhanced papillae formation and was accompanied by an up-regulation of Wnt/beta-catenin signaling, indicating that Shh inhibits the Wnt/beta-catenin pathway. Exogenously added Shh suppressed expression of endogenous Shh and inhibited Wnt/beta-catenin signaling (assessed in TOPGAL mice), further implicating Shh as an inhibitor of the Wnt/beta-catenin pathway. Our observations indicate that Wnt/beta-catenin signaling and interactions between the Wnt and Shh pathways play essential roles in the development of fungiform papillae.

  8. [Antagonism of lactobacilli, oral streptococci and staphylococci].

    Science.gov (United States)

    Chervinets, Iu V; Beliaeva, E A; Ganina, E B; Troshin, A V; Chervinets, A V

    2015-01-01

    From the oral cavity of healthy young people aged 18-22 years there were isolated 26 strains of lactobacilli, 28 streptococci, including the pathogenic and opportunistic strains, and 32 strains of staphylococci, 10 of which were methicillin-resistant S.aureus. Oral lactobacilli possessed by a high probiotic potential, showing high antagonism to methicillin-resistant staphylococci, pathogenic and opportunistic streptococci and enterococci. Oral lactobacilli showed medium and high adhesive activity that determines their high adaptive capacity. Staphylococci and streptococci in 90.3% of cases have not an antagonistic effect on lactobacilli. Isolated lactobacilli can be used as probiotic strains for oral administration.

  9. Murrayafoline A attenuates the Wnt/{beta}-catenin pathway by promoting the degradation of intracellular {beta}-catenin proteins

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyuk; Gwak, Jungsug; Cho, Munju; Ryu, Min-Jung [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Lee, Jee-Hyun; Kim, Sang Kyum; Kim, Young Ho [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Lee, Gye Won [Department of Pharmaceutical Engineering, Konyang University, Nonsan 320-711 (Korea, Republic of); Yun, Mi-Young [Department of Beauty Health Care, Daejeon University, Daejeon 305-764 (Korea, Republic of); Cuong, Nguyen Manh [Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, Hanoi (Viet Nam); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Gyu-Yong, E-mail: gysong@cnu.ac.kr [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2010-01-01

    Molecular lesions in Wnt/{beta}-catenin signaling and subsequent up-regulation of {beta}-catenin response transcription (CRT) occur frequently during the development of colon cancer. To identify small molecules that suppress CRT, we screened natural compounds in a cell-based assay for detection of TOPFalsh reporter activity. Murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa, antagonized CRT that was stimulated by Wnt3a-conditioned medium (Wnt3a-CM) or LiCl, an inhibitor of glycogen synthase kinase-3{beta} (GSK-3{beta}), and promoted the degradation of intracellular {beta}-catenin without altering its N-terminal phosphorylation at the Ser33/37 residues, marking it for proteasomal degradation, or the expression of Siah-1, an E3 ubiquitin ligase. Murrayafoline A repressed the expression of cyclin D1 and c-myc, which is known {beta}-catenin/T cell factor (TCF)-dependent genes and thus inhibited the proliferation of various colon cancer cells. These findings indicate that murrayafoline A may be a potential chemotherapeutic agent for use in the treatment of colon cancer.

  10. Concerted involvement of Cdx/Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone.

    Science.gov (United States)

    van de Ven, Cesca; Bialecka, Monika; Neijts, Roel; Young, Teddy; Rowland, Jennifer E; Stringer, Emma J; Van Rooijen, Carina; Meijlink, Frits; Nóvoa, Ana; Freund, Jean-Noel; Mallo, Moises; Beck, Felix; Deschamps, Jacqueline

    2011-08-01

    Decrease in Cdx dosage in an allelic series of mouse Cdx mutants leads to progressively more severe posterior vertebral defects. These defects are corrected by posterior gain of function of the Wnt effector Lef1. Precocious expression of Hox paralogous 13 genes also induces vertebral axis truncation by antagonizing Cdx function. We report here that the phenotypic similarity also applies to patterning of the caudal neural tube and uro-rectal tracts in Cdx and Wnt3a mutants, and in embryos precociously expressing Hox13 genes. Cdx2 inactivation after placentation leads to posterior defects, including incomplete uro-rectal septation. Compound mutants carrying one active Cdx2 allele in the Cdx4-null background (Cdx2/4), transgenic embryos precociously expressing Hox13 genes and a novel Wnt3a hypomorph mutant all manifest a comparable phenotype with similar uro-rectal defects. Phenotype and transcriptome analysis in early Cdx mutants, genetic rescue experiments and gene expression studies lead us to propose that Cdx transcription factors act via Wnt signaling during the laying down of uro-rectal mesoderm, and that they are operative in an early phase of these events, at the site of tissue progenitors in the posterior growth zone of the embryo. Cdx and Wnt mutations and premature Hox13 expression also cause similar neural dysmorphology, including ectopic neural structures that sometimes lead to neural tube splitting at caudal axial levels. These findings involve the Cdx genes, canonical Wnt signaling and the temporal control of posterior Hox gene expression in posterior morphogenesis in the different embryonic germ layers. They shed a new light on the etiology of the caudal dysplasia or caudal regression range of human congenital defects.

  11. Identification and mechanism of ABA receptor antagonism

    KAUST Repository

    Melcher, Karsten

    2010-08-22

    The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands. © 2010 Nature America, Inc. All rights reserved.

  12. Wnt Signaling Cascades and the Roles of Syndecan Proteoglycans

    DEFF Research Database (Denmark)

    Pataki, Csilla A; Couchman, John R; Brábek, Jan

    2015-01-01

    Wnt signaling comprises a group of pathways emanating from the extracellular environment through cell-surface receptors into the intracellular milieu. Wnt signaling cascades can be divided into two main branches, the canonical/β-catenin pathway and the non-canonical pathways containing the Wnt....../planar cell polarity and Wnt/calcium signaling. Syndecans are type I transmembrane proteoglycans with a long evolutionary history, being expressed in all Bilateria and in almost all cell types. Both Wnt pathways have been extensively studied over the past 30 years and shown to have roles during development...

  13. Wnt2 Regulates Progenitor Proliferation in the Developing Ventral Midbrain*

    OpenAIRE

    Sousa, Kyle M.; Villaescusa, J. Carlos; Cajanek, Lukas; Ondr, Jennifer K.; Castelo-branco, Goncalo; Hofstra, Wytske; Bryja, Vitezslav; Palmberg, Carina; Bergman, Tomas; Wainwright, Brandon; Lang, Richard A.; Arenas, Ernest

    2009-01-01

    Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 and Dvl-2/3, and activates β-catenin in SN4741 dopaminergic cells. Moreover, purified Wnt2 increases p...

  14. CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: a novel therapeutic approach for liver cancer treatment

    Science.gov (United States)

    Park, Kwan-Kyu; Choi, Yang-Kyu; Nam, Jeong-Seok; Hong, In-Sun

    2016-01-01

    Liver cancer stem cells (CSCs) are resistant to conventional chemotherapy and radiation, which may destroy tumor masses, but not all liver CSCs contribute to tumor initiation, metastasis, and relapse. In the present study, we showed that liver CSCs with elevated Wnt/β-catenin signaling possess much greater self-renewal and clonogenic potential. We further documented that the increased clonogenic potential of liver CSCs is highly associated with changes in Wnt/β-catenin signaling and that Wnt/β-catenin signaling activity is positively correlated with CD133 expression and aldehyde dehydrogenase (ALDH) enzymatic activity. Notably, the small molecule inhibitor CWP232228, which antagonizes the binding of β-catenin to TCF in the nucleus, inhibits Wnt/β-catenin signaling and depletes CD133+/ALDH+ liver CSCs, thus ultimately diminishing the self-renewal capacity of CSCs and decreasing tumorigenicity in vitro and in vivo. Taken together, our findings suggest that CWP232228 acts as a candidate therapeutic agent for liver cancer by preferentially targeting liver CSCs. PMID:26967248

  15. The Protective Effects of Curcumin on Obesity-Related Glomerulopathy Are Associated with Inhibition of Wnt/β-Catenin Signaling Activation in Podocytes

    Directory of Open Access Journals (Sweden)

    Bao-li Liu

    2015-01-01

    Full Text Available The present study investigated the effects of curcumin, one of the most important active ingredients of turmeric, on podocyte injury in vitro and obesity-related glomerulopathy (ORG in vivo. Cellular experiments in vitro showed that curcumin significantly antagonized leptin-induced downregulation of the mRNA and protein expression of podocyte-associated molecules including nephrin, podocin, podoplanin, and podocalyxin. Animal experiments in vivo showed that curcumin significantly reduced the body weight, Lee’s index, abdominal fat index, urinary protein excretion, and average glomerular diameter and significantly upregulated the mRNA and protein expressions of the above podocyte-associated molecules in ORG mice. Furthermore, the experiments in vitro and in vivo both displayed that curcumin could downregulate the mRNA and protein expressions of Wnt1, Wnt2b, Wnt6, and β-catenin and upregulate the phosphorylation level of β-catenin protein in podocytes and renal tissue. In conclusion, curcumin is able to alleviate the harmful reaction of leptin on podocytes and reduce the severity of ORG. The above protective effects are associated with the inhibition of Wnt/β-catenin signaling activation in podocytes.

  16. The natural product 4,10-aromadendranediol induces neuritogenesis in neuronal cells in vitro through activation of the ERK pathway.

    Science.gov (United States)

    Chang, Sai; Ruan, Wen-Chen; Xu, Ya-Zhou; Wang, Yun-Jie; Pang, Jie; Zhang, Lu-Yong; Liao, Hong; Pang, Tao

    2017-01-01

    Recent studies focus on promoting neurite outgrowth to remodel the central nervous network after brain injury. Currently, however, there are few drugs treating brain diseases in the clinic by enhancing neurite outgrowth. In this study, we established an NGF-induced PC12 differentiation model to screen novel compounds that have the potential to induce neuronal differentiation, and further characterized 4,10-Aromadendranediol (ARDD) isolated from the dried twigs of the Baccharis gaudichaudiana plant, which exhibited the capability of promoting neurite outgrowth in neuronal cells in vitro. ARDD (1, 10 μmol/L) significantly enhanced neurite outgrowth in NGF-treated PC12 cells and N1E115 cells in a time-dependent manner. In cultured primary cortical neurons, ARDD (5, 10 μmol/L) not only significantly increased neurite outgrowth but also increased the number of neurites on the soma and the number of bifurcations. Further analyses showed that ARDD (10 μmol/L) significantly increased the phosphorylation of ERK1/2 and the downstream GSK-3β, subsequently induced β-catenin expression and up-regulated the gene expression of the Wnt ligands Fzd1 and Wnt3a in neuronal cells. The neurite outgrowth-promoting effect of ARDD in neuronal cells was abolished by pretreatment with the specific ERK1/2 inhibitor PD98059, but was partially reversed by XAV939, an inhibitor of the Wnt/β-catenin pathway. ARDD also increased the expression of BDNF, CREB and GAP-43 in N1E115 cells, which was reversed by pretreatment with PD98059. In N1E115 cells subjected to oxygen and glucose deprivation (OGD), pretreatment with ARDD (1-10 μmol/L) significantly enhanced the phosphorylation of ERK1/2 and induced neurite outgrowth. These results demonstrated that the natural product ARDD exhibits neurite outgrowth-inducing activity in neurons via activation of the ERK signaling pathway, which may be beneficial to the treatment of brain diseases.

  17. Distinct Wnt signaling pathways have opposing roles in appendage regeneration.

    Science.gov (United States)

    Stoick-Cooper, Cristi L; Weidinger, Gilbert; Riehle, Kimberly J; Hubbert, Charlotte; Major, Michael B; Fausto, Nelson; Moon, Randall T

    2007-02-01

    In contrast to mammals, lower vertebrates have a remarkable capacity to regenerate complex structures damaged by injury or disease. This process, termed epimorphic regeneration, involves progenitor cells created through the reprogramming of differentiated cells or through the activation of resident stem cells. Wnt/beta-catenin signaling regulates progenitor cell fate and proliferation during embryonic development and stem cell function in adults, but its functional involvement in epimorphic regeneration has not been addressed. Using transgenic fish lines, we show that Wnt/beta-catenin signaling is activated in the regenerating zebrafish tail fin and is required for formation and subsequent proliferation of the progenitor cells of the blastema. Wnt/beta-catenin signaling appears to act upstream of FGF signaling, which has recently been found to be essential for fin regeneration. Intriguingly, increased Wnt/beta-catenin signaling is sufficient to augment regeneration, as tail fins regenerate faster in fish heterozygous for a loss-of-function mutation in axin1, a negative regulator of the pathway. Likewise, activation of Wnt/beta-catenin signaling by overexpression of wnt8 increases proliferation of progenitor cells in the regenerating fin. By contrast, overexpression of wnt5b (pipetail) reduces expression of Wnt/beta-catenin target genes, impairs proliferation of progenitors and inhibits fin regeneration. Importantly, fin regeneration is accelerated in wnt5b mutant fish. These data suggest that Wnt/beta-catenin signaling promotes regeneration, whereas a distinct pathway activated by wnt5b acts in a negative-feedback loop to limit regeneration.

  18. Wnt2 Regulates Progenitor Proliferation in the Developing Ventral Midbrain*

    Science.gov (United States)

    Sousa, Kyle M.; Villaescusa, J. Carlos; Cajanek, Lukas; Ondr, Jennifer K.; Castelo-Branco, Goncalo; Hofstra, Wytske; Bryja, Vitezslav; Palmberg, Carina; Bergman, Tomas; Wainwright, Brandon; Lang, Richard A.; Arenas, Ernest

    2010-01-01

    Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 and Dvl-2/3, and activates β-catenin in SN4741 dopaminergic cells. Moreover, purified Wnt2 increases progenitor proliferation, and the number of dopaminergic neurons in ventral midbrain precursor cultures. In agreement with these findings, analysis of the ventral midbrain of developing Wnt2-null mice revealed a decrease in progenitor proliferation and neurogenesis that lead to a decrease in the number of postmitotic precursors and dopaminergic neurons. Collectively, our observations identify Wnt2 as a novel regulator of dopaminergic progenitors and dopaminergic neuron development. PMID:20018874

  19. Wnt2 regulates progenitor proliferation in the developing ventral midbrain.

    Science.gov (United States)

    Sousa, Kyle M; Villaescusa, J Carlos; Cajanek, Lukas; Ondr, Jennifer K; Castelo-Branco, Goncalo; Hofstra, Wytske; Bryja, Vitezslav; Palmberg, Carina; Bergman, Tomas; Wainwright, Brandon; Lang, Richard A; Arenas, Ernest

    2010-03-05

    Wnts are secreted, lipidated proteins that regulate multiple aspects of brain development, including dopaminergic neuron development. In this study, we perform the first purification and signaling analysis of Wnt2 and define the function of Wnt2 in ventral midbrain precursor cultures, as well as in Wnt2-null mice in vivo. We found that purified Wnt2 induces the phosphorylation of both Lrp5/6 and Dvl-2/3, and activates beta-catenin in SN4741 dopaminergic cells. Moreover, purified Wnt2 increases progenitor proliferation, and the number of dopaminergic neurons in ventral midbrain precursor cultures. In agreement with these findings, analysis of the ventral midbrain of developing Wnt2-null mice revealed a decrease in progenitor proliferation and neurogenesis that lead to a decrease in the number of postmitotic precursors and dopaminergic neurons. Collectively, our observations identify Wnt2 as a novel regulator of dopaminergic progenitors and dopaminergic neuron development.

  20. The Intestinal Wnt/TCF Signature

    NARCIS (Netherlands)

    Flier, L.G. van der; Sabates-Bellver, J.; Oving, I.; Haegebarth, A.; Palo, M. de; Anti, M.; Gijn, M.E. van; Suijkerbuijk, S; Wetering, M. van de; Marra, G.; Clevers, J.C.

    2007-01-01

    BACKGROUND & AIMS: In colorectal cancer, activating mutations in the Wnt pathway transform epithelial cells through the inappropriate expression of a TCF4 target gene program, which is physiologically expressed in intestinal crypts. METHODS: We have now performed an exhaustive array-based analysis o

  1. Wnt signaling in development and disease

    Directory of Open Access Journals (Sweden)

    Yang Yingzi

    2012-04-01

    Full Text Available Abstract Cell signaling mediated by morphogens is essential to coordinate growth and patterning, two key processes that govern the formation of a complex multi-cellular organism. During growth and patterning, cells are specified by both quantitative and directional information. While quantitative information regulates cell proliferation and differentiation, directional information is conveyed in the form of cell polarities instructed by local and global cues. Major morphogens like Wnts play critical roles in embryonic development and they are also important in maintaining tissue homeostasis. Abnormal regulation of these signaling events leads to a diverse array of devastating diseases including cancer. Wnts transduce their signals through several distinct pathways and they regulate vertebrate embryonic development by providing both quantitative and directional information. Here, taking the developing skeletal system as an example, we review our work on Wnt signaling pathways in various aspects of development. We focus particularly on our most recent findings that showed that in vertebrates, Wnt5a acts as a global cue to establishing planar cell polarity (PCP. Our work suggests that Wnt morphogens regulate development by integrating quantitative and directional information. Our work also provides important insights in disease like Robinow syndrome, brachydactyly type B1 (BDB1 and spina bifida, which can be caused by human mutations in the Wnt/PCP signaling pathway.

  2. Wnt signaling in liver physiology and pathology

    Institute of Scientific and Technical Information of China (English)

    Satdarshan P. Singh Monga

    2009-01-01

    @@ 1 Wnt/β-catenin signaling This signaling pathway is known to play key roles during development and in maintaining homeostasis in many adult tissues. Its aberrant activation is associated with cancers in many tissues such as breast, colon, pancreas, skin and liver.

  3. EXPRESSION AND SIGNIFICANCE OF ERK PROTEIN IN HUMAN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    张秀梅; 李柏林; 宋敏; 宋继谒

    2004-01-01

    Objective: To investigate the expression of ERK and p-ERK protein in human breast cancer and their corresponding tissue, to assess the significance of ERK signal pathway in tumorigenesis and progression of breast carcinoma. Methods: 40 breast cancer cases were used in S-P immunohistochemistry technique and Western Blot study. Results: The expression of ERK1, ERK2, and p- ERK protein levels increased remarkably in breast cancer tissues in comparison to normal tissues (P<0.01). The expression was upregulated by 1.32-, 1.53-and 4.27-fold, respectively. The overexpressions of ERK1, ERK2, and p- ERK proteins were obviously correlated with clinical stage of breast cancer. Protein levels of ERK and p-ERK were higher in stage III patients than in stage I and stage II patients (P<0.05). These proteins were strongly related with axillary lymph node metastasis of breast cancer, but not correlated with histopathological type and status of ER and PR of breast cancer. Expression of ERK1, and ERK2, protein showed a positive linear correlation. Conclusion: ERK signal transduction pathway is a key factor during human breast tumorigenesis and breast cancer progression.

  4. Rotavirus Antagonism of the Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Michelle M. Arnold

    2009-11-01

    Full Text Available Rotavirus is a primary cause of severe dehydrating gastroenteritis in infants and young children. The virus is sensitive to the antiviral effects triggered by the interferon (IFN-signaling pathway, an important component of the host cell innate immune response. To counteract these effects, rotavirus encodes a nonstructural protein (NSP1 that induces the degradation of proteins involved in regulating IFN expression, such as members of the IFN regulatory factor (IRF family. In some instances, NSP1 also subverts IFN expression by causing the degradation of a component of the E3 ubiquitin ligase complex responsible for activating NF-κB. By antagonizing multiple components of the IFN-induction pathway, NSP1 aids viral spread and contributes to rotavirus pathogenesis.

  5. Agonism and antagonism at the insulin receptor

    DEFF Research Database (Denmark)

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia;

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new...... insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been...... shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B'29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR...

  6. Wnt3 and Wnt3a are required for induction of the mid-diencephalic organizer in the caudal forebrain

    Directory of Open Access Journals (Sweden)

    Mattes Benjamin

    2012-04-01

    Full Text Available Abstract Background A fundamental requirement for development of diverse brain regions is the function of local organizers at morphological boundaries. These organizers are restricted groups of cells that secrete signaling molecules, which in turn regulate the fate of the adjacent neural tissue. The thalamus is located in the caudal diencephalon and is the central relay station between the sense organs and higher brain areas. The mid-diencephalic organizer (MDO orchestrates the development of the thalamus by releasing secreted signaling molecules such as Shh. Results Here we show that canonical Wnt signaling in the caudal forebrain is required for the formation of the Shh-secreting MD organizer in zebrafish. Wnt signaling induces the MDO in a narrow time window of 4 hours - between 10 and 14 hours post fertilization. Loss of Wnt3 and Wnt3a prevents induction of the MDO, a phenotype also observed upon blockage of canonical Wnt signaling per se. Pharmaceutical activation of the canonical Wnt pathways in Wnt3/Wnt3a compound morphant embryos is able to restore the lack of the MDO. After blockage of Wnt signaling or knock-down of Wnt3/Wnt3a we find an increase of apoptotic cells specifically within the organizer primordium. Consistently, blockage of apoptosis restores the thalamus organizer MDO in Wnt deficient embryos. Conclusion We have identified canonical Wnt signaling as a novel pathway, that is required for proper formation of the MDO and consequently for the development of the major relay station of the brain - the thalamus. We propose that Wnt ligands are necessary to maintain the primordial tissue of the organizer during somitogenesis by suppressing Tp53-mediated apoptosis.

  7. Distinct Patterns of Wnt3a and Wnt5a Signaling Pathway in the Lung from Rats with Endotoxic Shock.

    Directory of Open Access Journals (Sweden)

    Hiong-Ping Hii

    Full Text Available Septic shock is a syndrome with severe hypotension and multiple organ dysfunction caused by an imbalance between pro-inflammatory and anti-inflammatory response. The most common risk factor of acute lung injury is severe sepsis. Patients with sepsis-related acute respiratory distress syndrome have higher mortality. Recent studies reveal regulatory roles of Wnt3a and Wnt5a signaling in inflammatory processes. Wnt3a signaling has been implicated in anti-inflammatory effects, whereas Wnt5a signaling has been postulated to have pro-inflammatory properties. However, the balance between Wnt3a and Wnt5a signaling pathway in the lung of rats with endotoxic shock has not been determined. Thus, we investigated the major components of Wnt3a and Wnt5a signaling pathway in the lung of endotoxemic rats. Male Wistar rats were intravenously infused with saline or lipopolysaccharide (LPS, 10 mg/kg. The changes of hemodynamics, biochemical variables, and arterial blood gas were examined during the experimental period. At 6 h after saline or LPS, animals were sacrificed, and lungs were obtained for analyzing superoxide production, water accumulation, histologic assessment, and protein expressions of Wnt3a and Wnt5a signaling pathway. Animals that received LPS showed circulatory failure, multiple organ dysfunction, metabolic acidosis, hyperventilation, lung edema, and high mortality. The lung from rats with endotoxic shock exhibited significant decreases in the levels of Wnt3a, Fzd1, Dsh1, phosphorylated GSK-3β at Ser9, and β-catenin. In contrast, the expressions of Wnt5a, Fzd5, and CaMKII were up-regulated in the lung of endotoxemic rats. These findings indicate the major components of Wnt3a and Wnt5a signaling in the lung are disturbed under endotoxic insult.

  8. CAV1 promotes HCC cell progression and metastasis through Wnt/β-catenin pathway.

    Directory of Open Access Journals (Sweden)

    Hongxiu Yu

    Full Text Available Caveolin-1 (CAV1 has significant roles in many primary tumors and metastasis, despite the fact that malignant cells from different cancer types have different profiles of CAV1 expression. There is little information concerning CAV1 expression and role in hepatocellular carcinoma (HCC progresion and metastasis. The role of CAV1 in HCC progression was explored in this study. We reported that CAV1 was overexpressed in highly invasive HCC cell lines compared with poorly invasive ones. The immunohistochemical staining was obviously stronger in metastatic HCC samples than in the non-metastatic specimens via tissue microarrays. Furthermore, CAV1 overexpression enhanced HCC cell invasiveness in vitro, and promoted tumorigenicity and lung metastasis in vivo. By contrast, CAV1 stable knockdown markedly reduced these malignant behaviors. Importantly, we found that CAV1 could induce EMT process through Wnt/β-catenin pathway to promote HCC metastasis. We also identify MMP-7 as a novel downstream target of CAV1. We have determined that CAV1 acts as a mediator between hyperactive ERK1/2 signaling and regulation of MMP-7 transcription. Together, these studies mechanistically show a previously unrecognized interplay between CAV1, EMT, ERK1/2 and MMP-7 that is likely significant in the progression of HCC toward metastasis.

  9. Wnt-3a is critical for caudal embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Camper, S.A.; Greco, T.L.; Newhouse, M.M. [Univ. of Michigan Medical School, Ann Arbor, MI (United States)] [and others

    1994-09-01

    Skeletal and neural tube defects represent an important class of birth defects. The majority of mouse mutants with neural tube defects also have malformations of the tail. Vestigial tail (vt) is an autosomal recessive mouse mutation characterized by reduction or absence of the tail, vertebral abnormalities, and reduced fertility. The phenotype has been described as the result of failure of cell migration through the primitive streak, causing abnormalities in the development of the neural tube and a reduction in the ventral ectodermal ridge. Wnt3a is an excellent candidate gene for vt because Wnt3a is expressed in the primitive streak and in the embryonic mesoderm, and it is thought to be involved in cell-to-cell communication and formation of the dorsal-ventral axis in the CNS. A lack of Wnt3a might be expected to result in overdorsalization of the neural tube and reduction of the ventral ectodermal ridge characteristic of vt/vt embryos. In a high resolution backcross segregating vt, we observed no recombination between vt and Wnt3a in 363 individuals analyzed. In vt/vt mice, Southern blot analysis revealed no abnormalities in the Wnt3a gene, and the Wnt3a cDNA sequence does not encode any amino acid changes. Whole mount in situ hybridization analysis demonstrated that Wnt3a expression is severely reduced in the developing tailbud of day 9.5 vt/vt embryos, suggestive of a lesion in the regulation on Wnt3a expression. An alleleism test, carried out by mating vt/vt males with Wnt3a +/Wnt3a- females, demonstrated that vt and Wnt3a are noncomplementing alleles. All of the compound heterozygotes exhibited severe tail defects, including occasional examples of hind limb parlaysis and spina bifida. The vertebral defects are intermediate between those of vt and Wnt3a homozygotes, suggesting that the concentration of Wnt3a correlates with the severity of the defect.

  10. FGFR Inhibitor Ameliorates Hypophosphatemia and Impaired Engrailed-1/Wnt Signaling in FGF2 High Molecular Weight Isoform Transgenic Mice.

    Science.gov (United States)

    Du, Erxia; Xiao, Liping; Hurley, Marja M

    2016-09-01

    High molecular weight FGF2 transgenic (HMWTg) mouse phenocopies the Hyp mouse, homolog of human X-linked hypophosphatemic rickets with hypophosphatemis, and abnormal FGF23, FGFR, Klotho signaling in kidney. Since abnormal Wnt signaling was reported in Hyp mice we assessed whether Wnt signaling was impaired in HMWTg kidneys and the effect of blocking FGF receptor (FGFR) signaling. Bone mineral density and bone mineral content in female HMWTg mice were significantly reduced. HMWTg mice were gavaged with FGFR inhibitor NVP-BGJ398, or vehicle and were euthanized 24 h post treatment. Serum phosphate was significantly reduced and urine phosphate was significantly increased in HMWTg and was rescued by NVP-BGJ398. Analysis of kidneys revealed a significant reduction in Npt2a mRNA in HMWTg that was significantly increased by NVP-BGJ398. Increased FGFR1, KLOTHO, P-ERK1/2, and decreased NPT2a protein in HMWTg were rescued by NVP-BGJ398. Wnt inhibitor Engrailed-1 mRNA and protein was increased in HMWTg and was decreased by BGJ398. Akt mRNA and protein was decreased in HMWTg and was increased by NVP-BGJ398. The active form of glycogen synthase 3 beta (pGSK3-β) and phosphor-β-catenin were increased in HMWTg and were both decreased by NVP-BGJ398 while decreased active-β-catenin in HMWTg was increased by NVP-BGJ398. We conclude that FGFR blockade rescued hypophosphatemia by regulating FGF and WNT signaling in HMWTg kidneys. J. Cell. Biochem. 117: 1991-2000, 2016. © 2016 Wiley Periodicals, Inc.

  11. Expression of WNT genes in cervical cancer-derived cells: Implication of WNT7A in cell proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Solano, Moisés, E-mail: mrsolano84@gmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Meza-Canales, Ivan D., E-mail: imezacanales@ice.mpg.de [Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena (Germany); Torres-Reyes, Luis A., E-mail: torres_reyes_88@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); Alvarez-Zavala, Monserrat, E-mail: monse_belan@hotmail.com [División de Inmunología, Centro de Investigación Biomédica de Occidente (CIBO)-Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco (Mexico); Programa de Doctorado en Ciencias Biomédica, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara, Jalisco (Mexico); and others

    2015-07-01

    According to the multifactorial model of cervical cancer (CC) causation, it is now recognized that other modifications, in addition to Human papillomavirus (HPV) infection, are necessary for the development of this neoplasia. Among these, it has been proposed that a dysregulation of the WNT pathway might favor malignant progression of HPV-immortalized keratinocytes. The aim of this study was to identify components of the WNT pathway differentially expressed in CC vs. non-tumorigenic, but immortalized human keratinocytes. Interestingly, WNT7A expression was found strongly downregulated in cell lines and biopsies derived from CC. Restoration of WNT7A in CC-derived cell lines using a lentiviral gene delivery system or after adding a recombinant human protein decreases cell proliferation. Likewise, WNT7A silencing in non-tumorigenic cells markedly accelerates proliferation. Decreased WNT7A expression was due to hypermethylation at particular CpG sites. To our knowledge, this is the first study reporting reduced WNT7A levels in CC-derived cells and that ectopic WNT7A restoration negatively affects cell proliferation and migration. - Highlights: • WNT7A is expressed in normal keratinocytes or cervical cells without lesion. • WNT7A is significantly reduced in cervical cancer-derived cells. • Restoration of WNT7A expression in HeLa decreases proliferation and cell migration. • Silencing of WNT7A in HaCaT induces an increased proliferation and migration rate. • Decreased WNT7A expression in this model is due to hypermethylation.

  12. Secretion and extracellular space travel of Wnt proteins.

    Science.gov (United States)

    Gross, Julia Christina; Boutros, Michael

    2013-08-01

    Wnt signaling pathways control many processes during development, stem cell maintenance and homeostasis, and their aberrant regulation has been linked to diseases in man including diabetes, neurodegeneration and cancer. Wnts are hydrophobic proteins, however, quite paradoxically, they can travel over distances to induce cell-type specific responses. While there has been an initial focus on elucidating the intracellular signaling cascade, discoveries in the past few years have shed light on a highly complex, and regulated secretory process that guides Wnt proteins through the exocytic pathway. Wnt proteins are at least in portion packaged onto extracellular carriers such as exosomes. Similar to dysregulation of components in the Wnt receiving cell, failure to regulate Wnt secretion has been linked to cancer. Here, we review recent discoveries on factors and processes implicated in Wnt secretion.

  13. ERK phosphorylation regulates sleep and plasticity in Drosophila.

    Directory of Open Access Journals (Sweden)

    William M Vanderheyden

    Full Text Available Given the relationship between sleep and plasticity, we examined the role of Extracellular signal-regulated kinase (ERK in regulating baseline sleep, and modulating the response to waking experience. Both sleep deprivation and social enrichment increase ERK phosphorylation in wild-type flies. The effects of both sleep deprivation and social enrichment on structural plasticity in the LNvs can be recapitulated by expressing an active version of ERK (UAS-ERK(SEM pan-neuronally in the adult fly using GeneSwitch (Gsw Gsw-elav-GAL4. Conversely, disrupting ERK reduces sleep and prevents both the behavioral and structural plasticity normally induced by social enrichment. Finally, using transgenic flies carrying a cAMP response Element (CRE-luciferase reporter we show that activating ERK enhances CRE-Luc activity while disrupting ERK reduces it. These data suggest that ERK phosphorylation is an important mediator in transducing waking experience into sleep.

  14. Wnt secretion is required to maintain high levels of Wnt activity in colon cancer cells.

    Science.gov (United States)

    Voloshanenko, Oksana; Erdmann, Gerrit; Dubash, Taronish D; Augustin, Iris; Metzig, Marie; Moffa, Giusi; Hundsrucker, Christian; Kerr, Grainne; Sandmann, Thomas; Anchang, Benedikt; Demir, Kubilay; Boehm, Christina; Leible, Svenja; Ball, Claudia R; Glimm, Hanno; Spang, Rainer; Boutros, Michael

    2013-01-01

    Aberrant regulation of the Wnt/β-catenin pathway has an important role during the onset and progression of colorectal cancer, with over 90% of cases of sporadic colon cancer featuring mutations in APC or β-catenin. However, it has remained a point of controversy whether these mutations are sufficient to activate the pathway or require additional upstream signals. Here we show that colorectal tumours express elevated levels of Wnt3 and Evi/Wls/GPR177. We found that in colon cancer cells, even in the presence of mutations in APC or β-catenin, downstream signalling remains responsive to Wnt ligands and receptor proximal signalling. Furthermore, we demonstrate that truncated APC proteins bind β-catenin and key components of the destruction complex. These results indicate that cells with mutations in APC or β-catenin depend on Wnt ligands and their secretion for a sufficient level of β-catenin signalling, which potentially opens new avenues for therapeutic interventions by targeting Wnt secretion via Evi/Wls.

  15. Agonism, Antagonism, and Inverse Agonism Bias at the Ghrelin Receptor Signaling.

    Science.gov (United States)

    M'Kadmi, Céline; Leyris, Jean-Philippe; Onfroy, Lauriane; Galés, Céline; Saulière, Aude; Gagne, Didier; Damian, Marjorie; Mary, Sophie; Maingot, Mathieu; Denoyelle, Séverine; Verdié, Pascal; Fehrentz, Jean-Alain; Martinez, Jean; Banères, Jean-Louis; Marie, Jacky

    2015-11-06

    The G protein-coupled receptor GHS-R1a mediates ghrelin-induced growth hormone secretion, food intake, and reward-seeking behaviors. GHS-R1a signals through Gq, Gi/o, G13, and arrestin. Biasing GHS-R1a signaling with specific ligands may lead to the development of more selective drugs to treat obesity or addiction with minimal side effects. To delineate ligand selectivity at GHS-R1a signaling, we analyzed in detail the efficacy of a panel of synthetic ligands activating the different pathways associated with GHS-R1a in HEK293T cells. Besides β-arrestin2 recruitment and ERK1/2 phosphorylation, we monitored activation of a large panel of G protein subtypes using a bioluminescence resonance energy transfer-based assay with G protein-activation biosensors. We first found that unlike full agonists, Gq partial agonists were unable to trigger β-arrestin2 recruitment and ERK1/2 phosphorylation. Using G protein-activation biosensors, we then demonstrated that ghrelin promoted activation of Gq, Gi1, Gi2, Gi3, Goa, Gob, and G13 but not Gs and G12. Besides, we identified some GHS-R1a ligands that preferentially activated Gq and antagonized ghrelin-mediated Gi/Go activation. Finally, we unambiguously demonstrated that in addition to Gq, GHS-R1a also promoted constitutive activation of G13. Importantly, we identified some ligands that were selective inverse agonists toward Gq but not of G13. This demonstrates that bias at GHS-R1a signaling can occur not only with regard to agonism but also to inverse agonism. Our data, combined with other in vivo studies, may facilitate the design of drugs selectively targeting individual signaling pathways to treat only the therapeutically relevant function.

  16. Agonism, Antagonism, and Inverse Agonism Bias at the Ghrelin Receptor Signaling*

    Science.gov (United States)

    M'Kadmi, Céline; Leyris, Jean-Philippe; Onfroy, Lauriane; Galés, Céline; Saulière, Aude; Gagne, Didier; Damian, Marjorie; Mary, Sophie; Maingot, Mathieu; Denoyelle, Séverine; Verdié, Pascal; Fehrentz, Jean-Alain; Martinez, Jean; Banères, Jean-Louis; Marie, Jacky

    2015-01-01

    The G protein-coupled receptor GHS-R1a mediates ghrelin-induced growth hormone secretion, food intake, and reward-seeking behaviors. GHS-R1a signals through Gq, Gi/o, G13, and arrestin. Biasing GHS-R1a signaling with specific ligands may lead to the development of more selective drugs to treat obesity or addiction with minimal side effects. To delineate ligand selectivity at GHS-R1a signaling, we analyzed in detail the efficacy of a panel of synthetic ligands activating the different pathways associated with GHS-R1a in HEK293T cells. Besides β-arrestin2 recruitment and ERK1/2 phosphorylation, we monitored activation of a large panel of G protein subtypes using a bioluminescence resonance energy transfer-based assay with G protein-activation biosensors. We first found that unlike full agonists, Gq partial agonists were unable to trigger β-arrestin2 recruitment and ERK1/2 phosphorylation. Using G protein-activation biosensors, we then demonstrated that ghrelin promoted activation of Gq, Gi1, Gi2, Gi3, Goa, Gob, and G13 but not Gs and G12. Besides, we identified some GHS-R1a ligands that preferentially activated Gq and antagonized ghrelin-mediated Gi/Go activation. Finally, we unambiguously demonstrated that in addition to Gq, GHS-R1a also promoted constitutive activation of G13. Importantly, we identified some ligands that were selective inverse agonists toward Gq but not of G13. This demonstrates that bias at GHS-R1a signaling can occur not only with regard to agonism but also to inverse agonism. Our data, combined with other in vivo studies, may facilitate the design of drugs selectively targeting individual signaling pathways to treat only the therapeutically relevant function. PMID:26363071

  17. Crosstalk between Wnt Signaling and RNA Processing in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Michael Bordonaro

    2013-01-01

    Full Text Available RNA processing involves a variety of processes affecting gene expression, including the removal of introns through RNA splicing, as well as 3' end processing (cleavage and polyadenylation. Alternative RNA processing is fundamentally important for gene regulation, and aberrant processing is associated with the initiation and progression of cancer. Deregulated Wnt signaling, which is the initiating event in the development of most cases of human colorectal cancer (CRC, has been linked to modified RNA processing, which may contribute to Wnt-mediated colonic carcinogenesis. Crosstalk between Wnt signaling and alternative RNA splicing with relevance to CRC includes effects on the expression of Rac1b, an alternatively spliced gene associated with tumorigenesis, which exhibits alternative RNA splicing that is influenced by Wnt activity. In addition, Tcf4, a crucial component of Wnt signaling, also exhibits alternative splicing, which is likely involved in colonic tumorigenesis. Modulation of 3' end formation, including of the Wnt target gene COX-2, also can influence the neoplastic process, with implications for CRC. While many human genes are dependent on introns and splicing for normal levels of gene expression, naturally intronless genes exist with a unique metabolism that allows for intron-independent gene expression. Effects of Wnt activity on the RNA metabolism of the intronless Wnt-target gene c-jun is a likely contributor to cancer development. Further, butyrate, a breakdown product of dietary fiber and a histone deacetylase inhibitor, upregulates Wnt activity in CRC cells, and also modulates RNA processing; therefore, the interplay between Wnt activity, the modulation of this activity by butyrate, and differential RNA metabolism in colonic cells can significantly influence tumorigenesis. Determining the role played by altered RNA processing in Wnt-mediated neoplasia may lead to novel interventions aimed at restoring normal RNA metabolism for

  18. Canonical Wnt signaling is necessary for object recognition memory consolidation.

    Science.gov (United States)

    Fortress, Ashley M; Schram, Sarah L; Tuscher, Jennifer J; Frick, Karyn M

    2013-07-31

    Wnt signaling has emerged as a potent regulator of hippocampal synaptic function, although no evidence yet supports a critical role for Wnt signaling in hippocampal memory. Here, we sought to determine whether canonical β-catenin-dependent Wnt signaling is necessary for hippocampal memory consolidation. Immediately after training in a hippocampal-dependent object recognition task, mice received a dorsal hippocampal (DH) infusion of vehicle or the canonical Wnt antagonist Dickkopf-1 (Dkk-1; 50, 100, or 200 ng/hemisphere). Twenty-four hours later, mice receiving vehicle remembered the familiar object explored during training. However, mice receiving Dkk-1 exhibited no memory for the training object, indicating that object recognition memory consolidation is dependent on canonical Wnt signaling. To determine how Dkk-1 affects canonical Wnt signaling, mice were infused with vehicle or 50 ng/hemisphere Dkk-1 and protein levels of Wnt-related proteins (Dkk-1, GSK3β, β-catenin, TCF1, LEF1, Cyclin D1, c-myc, Wnt7a, Wnt1, and PSD95) were measured in the dorsal hippocampus 5 min or 4 h later. Dkk-1 produced a rapid increase in Dkk-1 protein levels and a decrease in phosphorylated GSK3β levels, followed by a decrease in β-catenin, TCF1, LEF1, Cyclin D1, c-myc, Wnt7a, and PSD95 protein levels 4 h later. These data suggest that alterations in Wnt/GSK3β/β-catenin signaling may underlie the memory impairments induced by Dkk-1. In a subsequent experiment, object training alone rapidly increased DH GSK3β phosphorylation and levels of β-catenin and Cyclin D1. These data suggest that canonical Wnt signaling is regulated by object learning and is necessary for hippocampal memory consolidation.

  19. Anti-Melanogenic Activities of Heracleum moellendorffii via ERK1/2-Mediated MITF Downregulation

    Directory of Open Access Journals (Sweden)

    Md Badrul Alam

    2016-11-01

    Full Text Available In this study, the anti-melanogenic effects of Heracleum moellendorffii Hance extract (HmHe and the mechanisms through which it inhibits melanogenesis in melan-a cells were investigated. Mushroom tyrosinase (TYR activity and melanin content as well as cellular tyrosinase activity were measured in the cells. mRNA and protein expression of microphthalmia-associated transcription factor (MITF, tyrosinase (TYR, TYR-related protein-1 (TYRP-1 and -2 were also examined. The results demonstrate that treatment with HmHe significantly inhibits mushroom tyrosinase activity. Furthermore, HmHe also markedly inhibits melanin production and intracellular tyrosinase activity. By suppressing the expression of TYR, TYRP-1, TYRP-2, and MITF, HmHe treatment antagonized melanin production in melan-a cells. Additionally, HmHe interfered with the phosphorylation of extracellular signal-regulated kinase (ERK 1/2, with reversal of HmHe-induced melanogenesis inhibition after treatment with specific inhibitor U0126. In summary, HmHe can be said to stimulate ERK1/2 phosphorylation and subsequent degradation of MITF, resulting in suppression of melanogenic enzymes and melanin production, possibly due to the presence of polyphenolic compounds.

  20. WNT signalling pathways as therapeutic targets in cancer.

    Science.gov (United States)

    Anastas, Jamie N; Moon, Randall T

    2013-01-01

    Since the initial discovery of the oncogenic activity of WNT1 in mouse mammary glands, our appreciation for the complex roles for WNT signalling pathways in cancer has increased dramatically. WNTs and their downstream effectors regulate various processes that are important for cancer progression, including tumour initiation, tumour growth, cell senescence, cell death, differentiation and metastasis. Although WNT signalling pathways have been difficult to target, improved drug-discovery platforms and new technologies have facilitated the discovery of agents that can alter WNT signalling in preclinical models, thus setting the stage for clinical trials in humans.

  1. A Strategy for Antagonizing Quorum Sensing

    Energy Technology Data Exchange (ETDEWEB)

    G Chen; L Swem; D Swem; D Stauff; C OLoughlin; P Jeffrey; B Bassler; F Hughson

    2011-12-31

    Quorum-sensing bacteria communicate via small molecules called autoinducers to coordinate collective behaviors. Because quorum sensing controls virulence factor expression in many clinically relevant pathogens, membrane-permeable quorum sensing antagonists that prevent population-wide expression of virulence genes offer a potential route to novel antibacterial therapeutics. Here, we report a strategy for inhibiting quorum-sensing receptors of the widespread LuxR family. Structure-function studies with natural and synthetic ligands demonstrate that the dimeric LuxR-type transcription factor CviR from Chromobacterium violaceum is potently antagonized by molecules that bind in place of the native acylated homoserine lactone autoinducer, provided that they stabilize a closed conformation. In such conformations, each of the two DNA-binding domains interacts with the ligand-binding domain of the opposing monomer. Consequently, the DNA-binding helices are held apart by {approx}60 {angstrom}, twice the {approx}30 {angstrom} separation required for operator binding. This approach may represent a general strategy for the inhibition of multidomain proteins.

  2. Smooth muscle archvillin is an ERK scaffolding protein.

    Science.gov (United States)

    Gangopadhyay, Samudra S; Kengni, Edouard; Appel, Sarah; Gallant, Cynthia; Kim, Hak Rim; Leavis, Paul; DeGnore, Jon; Morgan, Kathleen G

    2009-06-26

    ERK influences a number of pathways in all cells, but how ERK activities are segregated between different pathways has not been entirely clear. Using immunoprecipitation and pulldown experiments with domain-specific recombinant fragments, we show that smooth muscle archvillin (SmAV) binds ERK and members of the ERK signaling cascade in a domain-specific, stimulus-dependent, and pathway-specific manner. MEK binds specifically to the first 445 residues of SmAV. B-Raf, an upstream regulator of MEK, constitutively interacts with residues 1-445 and 446-1250. Both ERK and 14-3-3 bind to both fragments, but in a stimulus-specific manner. Phosphorylated ERK is associated only with residues 1-445. An ERK phosphorylation site was determined by mass spectrometry to reside at Ser132. A phospho-antibody raised to this site shows that the site is phosphorylated during alpha-agonist-mediated ERK activation in smooth muscle tissue. Phosphorylation of SmAV by ERK decreases the association of phospho-ERK with SmAV. These results, combined with previous observations, indicate that SmAV serves as a new ERK scaffolding protein and provide a mechanism for regulation of ERK binding, activation, and release from the signaling complex.

  3. Erk1 positively regulates osteoclast differentiation and bone resorptive activity.

    Directory of Open Access Journals (Sweden)

    Yongzheng He

    Full Text Available The extracellular signal-regulated kinases (ERK1 and 2 are widely-expressed and they modulate proliferation, survival, differentiation, and protein synthesis in multiple cell lineages. Altered ERK1/2 signaling is found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, Neurofibromatosis type 1, and Cardio-facio-cutaneous syndrome, suggesting that MEK-ERK signals regulate human skeletal development. Here, we examine the consequence of Erk1 and Erk2 disruption in multiple functions of osteoclasts, specialized macrophage/monocyte lineage-derived cells that resorb bone. We demonstrate that Erk1 positively regulates osteoclast development and bone resorptive activity, as genetic disruption of Erk1 reduced osteoclast progenitor cell numbers, compromised pit formation, and diminished M-CSF-mediated adhesion and migration. Moreover, WT mice reconstituted long-term with Erk1(-/- bone marrow mononuclear cells (BMMNCs demonstrated increased bone mineral density as compared to recipients transplanted with WT and Erk2(-/- BMMNCs, implicating marrow autonomous, Erk1-dependent osteoclast function. These data demonstrate Erk1 plays an important role in osteoclast functions while providing rationale for the development of Erk1-specific inhibitors for experimental investigation and/or therapeutic modulation of aberrant osteoclast function.

  4. Constitutively activated ERK sensitizes cancer cells to doxorubicin: Involvement of p53-EGFR-ERK pathway

    Indian Academy of Sciences (India)

    RATNA KUMARI; SURBHI CHOUHAN; SNAHLATA SINGH; RISHI RAJ CHHIPA; AMRENDRA KUMAR AJAY; MANOJ KUMAR BHAT

    2017-03-01

    The tumour suppressor gene p53 is mutated in approximately 50% of the human cancers. p53 is involved in genotoxicstress-induced cellular responses. The role of EGFR and ERK in DNA-damage-induced apoptosis is well known. Weinvestigated the involvement of activation of ERK signalling as a consequence of non-functional p53, in sensitivity ofcells to doxorubicin. We performed cell survival assays in cancer cell lines with varying p53 status: MCF-7 (wild-typep53, WTp53), MDA MB-468 (mutant p53, MUTp53), H1299 (absence of p53, NULLp53) and an isogenic cell lineMCF-7As (WTp53 abrogated). Our results indicate that enhanced chemosensitivity of cells lacking wild-type p53function is because of elevated levels of EGFR which activates ERK. Additionally, we noted that independent of p53status, pERK contributes to doxorubicin-induced cell death.

  5. Wnt Signaling in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Qi Xu

    2016-06-01

    Full Text Available Renal cell carcinoma (RCC accounts for 90% of all kidney cancers. Due to poor diagnosis, high resistance to the systemic therapies and the fact that most RCC cases occur sporadically, current research switched its focus on studying the molecular mechanisms underlying RCC. The aim is the discovery of new effective and less toxic anti-cancer drugs and novel diagnostic markers. Besides the PI3K/Akt/mTOR, HGF/Met and VHL/hypoxia cellular signaling pathways, the involvement of the Wnt/β-catenin pathway in RCC is commonly studied. Wnt signaling and its targeted genes are known to actively participate in different biological processes during embryonic development and renal cancer. Recently, studies have shown that targeting this pathway by alternating/inhibiting its intracellular signal transduction can reduce cancer cells viability and inhibit their growth. The targets and drugs identified show promising potential to serve as novel RCC therapeutics and prognostic markers. This review aims to summarize the current status quo regarding recent research on RCC focusing on the involvement of the Wnt/β-catenin pathway and how its understanding could facilitate the identification of potential therapeutic targets, new drugs and diagnostic biomarkers.

  6. WNT10A plays an oncogenic role in renal cell carcinoma by activating WNT/β-catenin pathway.

    Directory of Open Access Journals (Sweden)

    Ren-Jun Hsu

    Full Text Available Renal cell carcinoma (RCC is a malignancy with poor prognosis. WNT/β-catenin signaling dysregulation, especially β-catenin overactivation and WNT antagonist silencing, is associated with RCC carcinogenesis and progression. However, the role of WNT ligands in RCC has not yet been determined. We screened 19 WNT ligands from normal kidney and RCC cell lines and tissues and found that WNT10A was significantly increased in RCC cell lines and tissues as compared to that in normal controls. The clinical significance of increase in WNT10A was evaluated by performing an immunohistochemical association study in a 19-year follow-up cohort comprising 284 RCC and 267 benign renal disease (BRD patients. The results of this study showed that WNT10A was dramatically upregulated in RCC tissues as compared to that in BRD tissues. This result suggests that WNT10A, nuclear β-catenin, and nuclear cyclin D1 act as independent risk factors for RCC carcinogenesis and progression, with accumulative risk effects. Molecular validation of cell line models with gain- or loss-of-function designs showed that forced WNT10A expression induced RCC cell proliferation and aggressiveness, including higher chemoresistance, cell migration, invasiveness, and cell transformation, due to the activation of β-catenin-dependent signaling. Conversely, WNT10A siRNA knockdown decreased cell proliferation and aggressiveness of RCC cells. In conclusion, we showed that WNT10A acts as an autocrine oncogene both in RCC carcinogenesis and progression by activating WNT/β-catenin signaling.

  7. The MAPK ERK5, but not ERK1/2, inhibits the progression of monocytic phenotype to the functioning macrophage

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuening [Department of Pathology and Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103 (United States); Pesakhov, Stella [Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva (Israel); Harrison, Jonathan S [Department of Medicine, Rutgers, Robert Wood Johnson Medical School, New Brunswick, NJ 08903 (United States); Kafka, Michael; Danilenko, Michael [Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, PO Box 653, 84105 Beer-Sheva (Israel); Studzinski, George P, E-mail: studzins@njms.rutgers.edu [Department of Pathology and Laboratory Medicine, Rutgers, NJ Medical School, 185 South Orange Ave, Newark, NJ 07103 (United States)

    2015-01-01

    Intracellular signaling pathways present targets for pharmacological agents with potential for treatment of neoplastic diseases, with some disease remissions already recorded. However, cellular compensatory mechanisms usually negate the initial success. For instance, attempts to interrupt aberrant signaling downstream of the frequently mutated ras by inhibiting ERK1/2 has shown only limited usefulness for cancer therapy. Here, we examined how ERK5, that overlaps the functions of ERK1/2 in cell proliferation and survival, functions in a manner distinct from ERK1/2 in human AML cells induced to differentiate by 1,25D-dihydroxyvitamin D{sub 3} (1,25D). Using inhibitors of ERK1/2 and of MEK5/ERK5 at concentrations specific for each kinase in HL60 and U937 cells, we observed that selective inhibition of the kinase activity of ERK5, but not of ERK1/2, in the presence of 1,25D resulted in macrophage-like cell morphology and enhancement of phagocytic activity. Importantly, this was associated with increased expression of the macrophage colony stimulating factor receptor (M-CSFR), but was not seen when M-CSFR expression was knocked down. Interestingly, inhibition of ERK1/2 led to activation of ERK5 in these cells. Our results support the hypothesis that ERK5 negatively regulates the expression of M-CSFR, and thus has a restraining function on macrophage differentiation. The addition of pharmacological inhibitors of ERK5 may influence trials of differentiation therapy of AML. - Highlights: • ERK5 has at least some functions in AML cells which are distinct from those of ERK1/2. • ERK5 activity negatively controls the expression of M-CSFR. • ERK5 retards the progression of differentiation from monocyte to functional macrophage.

  8. Wnt5b-associated exosomes promote cancer cell migration and proliferation.

    Science.gov (United States)

    Harada, Takeshi; Yamamoto, Hideki; Kishida, Shosei; Kishida, Michiko; Awada, Chihiro; Takao, Toshifumi; Kikuchi, Akira

    2017-01-01

    Wnt5b is a member of the same family of proteins as Wnt5a, the overexpression of which is associated with cancer aggressiveness. Wnt5b is also suggested to be involved in cancer progression, however, details remain unclarified. We analyzed the biochemical properties of purified Wnt5b and the mode of secretion of Wnt5b by cancer cells. Wnt5b was glycosylated at three asparagine residues and lipidated at one serine residue, and these post-translational modifications of Wnt5b were essential for secretion. Purified Wnt5b showed Dvl2 phosphorylation and Rac activation abilities to a similar extent as Wnt5a. In cultured-cell conditioned medium, Wnt5b was detected in supernatant or precipitation fractions that were separated by centrifugation at 100 000 g. In PANC-1 pancreatic cancer cells, 55% of secreted endogenous Wnt5b was associated with exosomes. Exosomes from wild-type PANC-1 cells, but not those from Wnt5b-knockout PANC-1 cells, activated Wnt5b signaling in CHO cells and stimulated migration and proliferation of A549 lung adenocarcinoma cells, suggesting that endogenous, Wnt5b-associated exosomes are active. The exosomes were taken up by CHO cells and immunoelectron microscopy revealed that Wnt5b is indeed associated with exosomes. In Caco-2 colon cancer cells, most Wnt5b was recovered in precipitation fractions when Wnt5b was ectopically expressed (Caco-2/Wnt5b cells). Knockdown of TSG101, an exosome marker, decreased the secretion of Wnt5b-associated exosomes from Caco-2/Wnt5b cells and inhibited Wnt5b-dependent cell proliferation. Exosomes secreted from Caco-2/Wnt5b cells stimulated migration and proliferation of A549 cells. These results suggest that Wnt5b-associated exosomes promote cancer cell migration and proliferation in a paracrine manner.

  9. Epitope mapping by a Wnt-blocking antibody: evidence of the Wnt binding domain in heparan sulfate

    Science.gov (United States)

    Gao, Wei; Xu, Yongmei; Liu, Jian; Ho, Mitchell

    2016-01-01

    Heparan sulfate (HS) is a polysaccharide known to modulate many important biological processes, including Wnt signaling. However, the biochemical interaction between HS and Wnt molecules is not well characterized largely due to the lack of suitable methods. To determine the Wnt binding domain in HS, we used a Wnt signaling-inhibitory antibody (HS20) and a panel of synthetic HS oligosaccharides with distinct lengths and sulfation modifications. We found that the binding of HS20 to heparan sulfate required sulfation at both the C2 position (2-O-sulfation) and C6 position (6-O-sulfation). The oligosaccharides with the greatest competitive effect for HS20 binding were between six and eight saccharide residues in length. Additionally, a four residue-long oligosaccharide could also be recognized by HS20 if an additional 3-O-sulfation modification was present. Furthermore, similar oligosaccharides with 2-O, 6-O and 3-O-sulfations showed inhibition for Wnt activation. These results have revealed that HS20 and Wnt recognize a HS structure containing IdoA2S and GlcNS6S, and that the 3-O-sulfation in GlcNS6S3S significantly enhances the binding of both HS20 and Wnt. This study provides the evidence for identifying the Wnt binding domain in HS and suggests a therapeutic approach to target the interaction of Wnt and HS in cancer and other diseases. PMID:27185050

  10. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Melanie Königshoff

    Full Text Available BACKGROUND: Idiopathic pulmonary fibrosis (IPF is a fatal lung disease, characterized by distorted lung architecture and loss of respiratory function. Alveolar epithelial cell injury and hyperplasia, enhanced extracellular matrix deposition, and (myofibroblast activation are features of IPF. Wnt/beta-catenin signaling has been shown to determine epithelial cell fate during development. As aberrant reactivation of developmental signaling pathways has been suggested to contribute to IPF pathogenesis, we hypothesized that Wnt/beta-catenin signaling is activated in epithelial cells in IPF. Thus, we quantified and localized the expression and activity of the Wnt/beta-catenin pathway in IPF. METHODOLOGY/PRINCIPAL FINDINGS: The expression of Wnt1, 3a, 7b, and 10b, the Wnt receptors Fzd1-4, Lrp5-6, as well as the intracellular signal transducers Gsk-3beta, beta-catenin, Tcf1, 3, 4, and Lef1 was analyzed in IPF and transplant donor lungs by quantitative real-time (qRT-PCR. Wnt1, 7b and 10b, Fzd2 and 3, beta-catenin, and Lef1 expression was significantly increased in IPF. Immunohistochemical analysis localized Wnt1, Wnt3a, beta-catenin, and Gsk-3beta expression largely to alveolar and bronchial epithelium. This was confirmed by qRT-PCR of primary alveolar epithelial type II (ATII cells, demonstrating a significant increase of Wnt signaling in ATII cells derived from IPF patients. In addition, Western blot analysis of phospho-Gsk-3beta, phospho-Lrp6, and beta-catenin, and qRT-PCR of the Wnt target genes cyclin D1, Mmp 7, or Fibronectin 1 demonstrated increased functional Wnt/beta-catenin signaling in IPF compared with controls. Functional in vitro studies further revealed that Wnt ligands induced lung epithelial cell proliferation and (myofibroblast activation and collagen synthesis. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that the Wnt/beta-catenin pathway is expressed and operative in adult lung epithelium. Increased Wnt/beta-catenin signaling

  11. LRP4 mutations alter Wnt/beta-catenin signaling and cause limb and kidney malformations in Cenani-Lenz syndrome.

    Science.gov (United States)

    Li, Yun; Pawlik, Barbara; Elcioglu, Nursel; Aglan, Mona; Kayserili, Hülya; Yigit, Gökhan; Percin, Ferda; Goodman, Frances; Nürnberg, Gudrun; Cenani, Asim; Urquhart, Jill; Chung, Boi-Dinh; Ismail, Samira; Amr, Khalda; Aslanger, Ayca D; Becker, Christian; Netzer, Christian; Scambler, Pete; Eyaid, Wafaa; Hamamy, Hanan; Clayton-Smith, Jill; Hennekam, Raoul; Nürnberg, Peter; Herz, Joachim; Temtamy, Samia A; Wollnik, Bernd

    2010-05-14

    Cenani-Lenz syndrome (CLS) is an autosomal-recessive congenital disorder affecting distal limb development. It is characterized mainly by syndactyly and/or oligodactyly and is now shown to be commonly associated with kidney anomalies. We used a homozygosity-mapping approach to map the CLS1 locus to chromosome 11p11.2-q13.1. By sequencing candidate genes, we identified recessive LRP4 mutations in 12 families with CLS. LRP4 belongs to the low-density lipoprotein (LDL) receptor-related proteins (LRPs), which are essential for various developmental processes. LRP4 is known to antagonize LRP6-mediated activation of canonical Wnt signaling, a function that is lost by the identified mutations. Our findings increase the spectrum of congenital anomalies associated with abnormal lipoprotein receptor-dependent signaling.

  12. Wnt pathway in Dupuytren disease: connecting profibrotic signals.

    Science.gov (United States)

    van Beuge, Marike M; Ten Dam, Evert-Jan P M; Werker, Paul M N; Bank, Ruud A

    2015-12-01

    A role of Wnt signaling in Dupuytren disease, a fibroproliferative disease of the hand and fingers, has not been fully elucidated. We examined a large set of Wnt pathway components and signaling targets and found significant dysregulation of 41 Wnt-related genes in tissue from the Dupuytren nodules compared with patient-matched control tissue. A large proportion of genes coding for Wnt proteins themselves was downregulated. However, both canonical Wnt targets and components of the noncanonical signaling pathway were upregulated. Immunohistochemical analysis revealed that protein expression of Wnt1-inducible secreted protein 1 (WISP1), a known Wnt target, was increased in nodules compared with control tissue, but knockdown of WISP1 using small interfering RNA (siRNA) in the Dupuytren myofibroblasts did not confirm a functional role. The protein expression of noncanonical pathway components Wnt5A and VANGL2 as well as noncanonical coreceptors Ror2 and Ryk was increased in nodules. On the contrary, the strongest downregulated genes in this study were 4 antagonists of Wnt signaling (DKK1, FRZB, SFRP1, and WIF1). Downregulation of these genes in the Dupuytren tissue was mimicked in vitro by treating normal fibroblasts with transforming growth factor β1 (TGF-β1), suggesting cross talk between different profibrotic pathways. Furthermore, siRNA-mediated knockdown of these antagonists in normal fibroblasts led to increased nuclear translocation of Wnt target β-catenin in response to TGF-β1 treatment. In conclusion, we have shown extensive dysregulation of Wnt signaling in affected tissue from Dupuytren disease patients. Components of both the canonical and the noncanonical pathways are upregulated, whereas endogenous antagonists are downregulated, possibly via interaction with other profibrotic pathways.

  13. Agonism and antagonism at the insulin receptor.

    Directory of Open Access Journals (Sweden)

    Louise Knudsen

    Full Text Available Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs. In the case of the IR, no natural ligand or insulin analogue has been shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B'29. However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR antagonist, exhibited partial agonistic effects in the 1-10 nM range, showing altogether a bell-shaped dose-response curve. Intriguingly, the agonistic effects of S961 were seen only on mitogenic endpoints ((3H-thymidine incorporation, and not on metabolic endpoints ((14C-glucose incorporation in adipocytes and muscle cells. The agonistic effects of S961 were observed in 3 independent cell lines, with complete concordance between mitogenicity ((3H-thymidine incorporation and phosphorylation of the IR and Akt. Together with the B29-B'29 crosslinked dimer, S961 is a rare example of a mixed agonist/antagonist for the human IR. A plausible mechanistic explanation based on the bivalent crosslinking model of IR activation is proposed.

  14. Expression of Wnt1 and Wnt8a genes in colons of Hirschsprung disease%Wnt1和Wnt8a基因在先天性巨结肠中的表达

    Institute of Scientific and Technical Information of China (English)

    高红; 伍美; 弭杰; 张娟; 贾慧敏; 王维林

    2012-01-01

    Objective To investigate the expression of Wnt1 and Wnt8a genes in tissue samples from the patients with Hirschsprung disease (HD).Methods The expression of Wnt1 and Wnt8a mRNA and proteins were quantitatively analyzed in 60 cases of HD (aganglionic and ganglionic segments).Results In the HD patients,there was statistically significant difference in the differential expression of Wnt1 and Wnt8a mRNA between the stenotic intestine and the normal intestine.The relative expression of Wnt1 mRNA in the stenotic intestine and normal intestine was 17.66 ± 1.28 and 29.61 ± 3.23 respectively.The relative expression of Wnt8a mRNA in the stenotic intestine and normal intestine was 31.77 ± 2.21 and 15.01 ± 1.29 respectively (P < 0.05).The protein expressive levels of Wnt1 and Wnt8a were 19.51 ±1.57 and 33.17 ±2.09 in the stenotic intestine,and 37.05 ± 1.23 and 17.35 ±0.87 in the normal intestine,respectively (P < 0.05).The expression level of Wnt1 protein was lower in the aganglionic segment than in the ganglionic segment.Immunohistochemistry revelaed that Wnt1 was highly expressed in the ganglionic segment,but weakly expressed in the aganglionic segment; Wnt8a was highly expression in the aganglionic segment,but weakly expressed in the ganglionic segment.Conclusion There is the aberrant expression of Wnt1 and Wnt8a mRNA and proteins in HD,suggesting the Wnt1 and Wnt8a are involved in the pathogenesis of HD,which may play a role in the pathogenesis of congenital malformation of the alimentary tract.%目的 观察Wnt1和Wnt8a基因在先天性巨结肠症(HD)中的表达,探讨其在HD发生、发展中的作用.方法 对60例HD正常肠段(神经节细胞)和狭窄肠段(无神经节细胞)组织肠管中Wnt1和Wnt8a mRNA和蛋白表达进行定量与比较.结果 Wnt1和Wnt8a在HD狭窄段肠管中mRNA表达水平分别为17.66±1.28和29.61 ±3.23,正常段肠管中mRNA表达水平分别为31.77±2.21和15.01±1.29,差异有统计学意义(P<0.05).Westem blot检测结果显示,Wnt

  15. Baicalein antagonizes rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to Parkinsonism

    Directory of Open Access Journals (Sweden)

    Song Ju-Xian

    2012-01-01

    Full Text Available Abstract Background Two active compounds, baicalein and its glycoside baicalin were found in the dried root of Scutellaria baicalensis Georgi, and reported to be neuroprotective in vitro and in vivo. This study aims to evaluate the protective effects of baicalein on the rotenone-induced apoptosis in dopaminergic SH-SY5Y cells related to parkinsonism. Methods Cell viability and cytotoxicity were determined by MTT assay. The degree of nuclear apoptosis was evaluated with a fluorescent DNA-binding probe Hoechst 33258. The production of reactive oxidative species (ROS and loss of mitochondrial membrane potential (ΔΨm were determined by fluorescent staining with DCFH-DA and Rhodanmine 123, respectively. The expression of Bax, Bcl-2, cleaved caspase-3 and phosphorylated ERK1/2 was determined by the Western blots. Results Baicalein significantly increased viability and decreased rotenone-induced death of SH-SY5Y cells in a dose-dependent manner. Pre- and subsequent co-treatment with baicalein preserved the cell morphology and attenuated the nuclear apoptotic characteristics triggered by rotenone. Baicalein antagonized rotenone-induced overproduction of ROS, loss of ΔΨm, the increased expression of Bax, cleaved caspase-3 and phosphorylated ERK1/2 and the decreased expression of Bcl-2. Conclusion The antioxidative effect, mitochondrial protection and modulation of anti-and pro-apoptotic proteins are related to the neuroprotective effects of baicalein against rotenone induced cell death in SH-SY5Y cells.

  16. The role of the Wnt canonical signaling in neurodegenerative diseases.

    Science.gov (United States)

    Libro, Rosaliana; Bramanti, Placido; Mazzon, Emanuela

    2016-08-01

    The Wnt/β-catenin or Wnt canonical pathway controls multiple biological processes throughout development and adult life. Growing evidences have suggested that deregulation of the Wnt canonical pathway could be involved in the pathogenesis of neurodegenerative diseases. The Wnt canonical signaling is a pathway tightly regulated, which activation results in the inhibition of the Glycogen Synthase Kinase 3β (GSK-3β) function and in increased β-catenin activity, that migrates into the nucleus, activating the transcription of the Wnt target genes. Conversely, when the Wnt canonical pathway is turned off, increased levels of GSK-3β promote β-catenin degradation. Hence, GSK-3β could be considered as a key regulator of the Wnt canonical pathway. Of note, GSK-3β has also been involved in the modulation of inflammation and apoptosis, determining the delicate balance between immune tolerance/inflammation and neuronal survival/neurodegeneration. In this review, we have summarized the current acknowledgements about the role of the Wnt canonical pathway in the pathogenesis of some neurodegenerative diseases including Alzheimer's disease, cerebral ischemia, Parkinson's disease, Huntington's disease, multiple sclerosis and amyotrophic lateral sclerosis, with particular regard to the main in vitro and in vivo studies in this field, by reviewing 85 research articles about.

  17. Integration of Shh and Wnt Signaling Pathways Regulating Hematopoiesis.

    Science.gov (United States)

    Zhou, Zhigang; Wan, Liping; Wang, Chun; Zhou, Kun

    2015-12-01

    To investigate the spatial and temporal programmed expression of Shh and Wnt members during key stages of definitive hematopoiesis and the possible mechanism of Shh and Wnt signaling pathways regulating the proliferation of hematopoietic progenitor cells (HPCs). Spatial and temporal programmed gene expression of Shh and Wnt signaling during hematopoiesis corresponded with c-kit(+)lin(-) HPCs proliferation. C-kit(+)Lin(-) populations derived from aorta-gonad-mesonephros (AGM) of Balb/c mice at E10.5 with increased expression of Shh and Wnt3a demonstrated a greater potential for proliferation. Additionally, supplementation with soluble Shh N-terminal peptide promoted the proliferation of c-kit(+)Lin(-) populations by activating the Wnt signaling pathway, an effect which was inhibited by blocking Shh signaling. A specific inhibitor of wnt signaling was capable of inhibiting Shh-induced proliferation in a similar manner to shh inhibitor. Our results provide valuable information on Shh and Wnt signaling involved in hematopoiesis and highlight the importance of interaction of Shh and Wnt signaling in regulating HPCs proliferation.

  18. Wnt Signaling Is Required for Long-Term Memory Formation

    Directory of Open Access Journals (Sweden)

    Ying Tan

    2013-09-01

    Full Text Available Wnt signaling regulates synaptic plasticity and neurogenesis in the adult nervous system, suggesting a potential role in behavioral processes. Here, we probed the requirement for Wnt signaling during olfactory memory formation in Drosophila using an inducible RNAi approach. Interfering with β-catenin expression in adult mushroom body neurons specifically impaired long-term memory (LTM without altering short-term memory. The impairment was reversible, being rescued by expression of a wild-type β-catenin transgene, and correlated with disruption of a cellular LTM trace. Inhibition of wingless, a Wnt ligand, and arrow, a Wnt coreceptor, also impaired LTM. Wingless expression in wild-type flies was transiently elevated in the brain after LTM conditioning. Thus, inhibiting three key components of the Wnt signaling pathway in adult mushroom bodies impairs LTM, indicating that this pathway mechanistically underlies this specific form of memory.

  19. Isorhamnetin inhibits H₂O₂-induced activation of the intrinsic apoptotic pathway in H9c2 cardiomyocytes through scavenging reactive oxygen species and ERK inactivation.

    Science.gov (United States)

    Sun, Bing; Sun, Gui-Bo; Xiao, Jing; Chen, Rong-Chang; Wang, Xin; Wu, Ying; Cao, Li; Yang, Zhi-Hong; Sun, Xiao-Bo

    2012-02-01

    As a traditional Chinese medicine, the sea buckthorn (Hippophae rhamnoides L.) has a long history in the treatment of ischemic heart disease and circulatory disorders. However, the active compounds responsible for and the underlying mechanisms of these effects are not fully understood. In this article, isorhamnetin pretreatment counteracted H(2)O(2)-induced apoptotic damage in H9c2 cardiomyocytes. Isorhamnetin did not inhibit the death receptor-dependent or extrinsic apoptotic pathways, as characterized by its absence in both caspase-8 inactivation and tBid downregulation along with unchanged Fas and TNFR1 mRNA levels. Instead, isorhamnetin specifically suppressed the mitochondria-dependent or intrinsic apoptotic pathways, as characterized by inactivation of caspase-9 and -3, maintenance of the mitochondrial membrane potential (ΔΨm), and regulation of a series of Bcl-2 family genes upstream of ΔΨm. The anti-apoptotic effects of isorhamnetin were linked to decreased ROS generation. H(2)O(2) activated ERK and p53, whereas isorhamnetin inhibited their activation. ERK overexpression overrode the isorhamnetin-induced inhibition of the intrinsic apoptotic pathway in H9c2 cardiomyocytes, which indicated that an ERK-dependent pathway was involved. Furthermore, N-acetyl cysteine (a potent ROS scavenger) could attenuate the H(2)O(2)-induced apoptosis. However, PD98059 (an ERK-specific inhibitor) could not effectively antagonize ROS generation, which indicates that ROS may be an upstream inducer of ERK. In conclusion, isorhamnetin inhibits the H(2)O(2)-induced activation of the intrinsic apoptotic pathway via ROS scavenging and ERK inactivation. Therefore, isorhamnetin is a promising reagent for the treatment of ROS-induced cardiomyopathy.

  20. Inhibition of lipid phosphate phosphatase activity by VPC32183 suppresses the ability of diacylglycerol pyrophosphate to activate ERK(1/2) MAP kinases.

    Science.gov (United States)

    Violet, Pierre-Christian; Billon-Denis, Emmanuelle; Robin, Philippe

    2012-11-01

    The lipidic metabolite, diacylglycerol pyrophosphate (DGPP), in its dioctanoyl form (DGPP 8:0), has been described as an antagonist for mammalian lysophosphatidic acid (LPA) receptors LPA1 and LPA3. In this study we show that DGPP 8:0 does not antagonize LPA dependent activation of ERK(1/2) MAP kinases but strongly stimulated them in various mammalian cell lines. LPA and DGPP 8:0 stimulation of ERK(1/2) occurred through different pathways. The DGPP 8:0 effect appeared to be dependent on PKC, Raf and MEK but was insensitive to pertussis toxin and did not involve G protein activation. Finally we showed that DGPP 8:0 effect on ERK(1/2) was dependent on its dephosphorylation by a phosphatase activity sharing lipid phosphate phosphatase properties. The inhibition of this phosphatase activity by VPC32183, a previously characterized LPA receptor antagonist, blocked the DGPP 8:0 effect on ERK(1/2) activation. Moreover, down-regulation of lipid phosphate phosphatase 1 (LPP1) expression by RNA interference technique also reduced DGPP 8:0-induced ERK(1/2) activation. Consistently, over expression of LPP1 in HEK293 cells increases DGPP 8:0 hydrolysis and this increased activity was inhibited by VPC32183. In conclusion, DGPP 8:0 does not exert its effect by acting on a G protein coupled receptor, but through its dephosphorylation by LPP1, generating dioctanoyl phosphatidic acid which in turn activates PKC. These results suggest that LPP1 could have a positive regulatory function on cellular signaling processes such as ERK(1/2) activation.

  1. Purified Wnt-5a increases differentiation of midbrain dopaminergic cells and dishevelled phosphorylation.

    Science.gov (United States)

    Schulte, Gunnar; Bryja, Vítezslav; Rawal, Nina; Castelo-Branco, Goncalo; Sousa, Kyle M; Arenas, Ernest

    2005-03-01

    The Wnt family of lipoproteins regulates several aspects of the development of the nervous system. Recently, we reported that Wnt-3a enhances the proliferation of midbrain dopaminergic precursors and that Wnt-5a promotes their differentiation into dopaminergic neurones. Here we report the purification of hemagglutinin-tagged Wnt-5a using a three-step purification method similar to that previously described for Wnt-3a. Haemagglutinin-tagged Wnt-5a was biologically active and induced the differentiation of immature primary midbrain precursors into tyrosine hydroxylase-positive dopaminergic neurones. Using a substantia nigra-derived dopaminergic cell line (SN4741), we found that Wnt-5a, unlike Wnt-3a, did not promote beta-catenin phosphorylation or stabilization. However, both Wnt-5a and Wnt-3a activated dishevelled, as assessed by a phosphorylation-dependent mobility shift. Moreover, the activity of Wnt-5a on dishevelled was blocked by pre-treatment with acyl protein thioesterase-1, indicating that palmitoylation of Wnt-5a is necessary for its function. Thus, our results suggest that Wnt-3a and Wnt-5a, respectively, activate canonical and non-canonical Wnt signalling pathways in ventral midbrain dopaminergic cells. Furthermore, we identify dishevelled as a key player in transducing both Wnt canonical and non-canonical signals in dopaminergic cells.

  2. Further evidence of the involvement of the Wnt signaling pathway in Dupuytren's disease

    NARCIS (Netherlands)

    ten Dam, Evert-Jan P. M.; van Beuge, Marike M.; Bank, Ruud A.; Werker, Paul M. N.

    2016-01-01

    Genetic background plays an important role in the development of Dupuytren's disease. A genome-wide association study (GWAS) showed that nine loci are associated with the disease, six of which contain genes that are involved in Wnt signaling (WNT2, WNT4, WNT7B, RSPO2, SFRP4, SULF1). To obtain insigh

  3. A secreted WNT-ligand-binding domain of FZD5 generated by a frameshift mutation causes autosomal dominant coloboma.

    Science.gov (United States)

    Liu, Chunqiao; Widen, Sonya A; Williamson, Kathleen A; Ratnapriya, Rinki; Gerth-Kahlert, Christina; Rainger, Joe; Alur, Ramakrishna P; Strachan, Erin; Manjunath, Souparnika H; Balakrishnan, Archana; Floyd, James A; Li, Tiansen; Waskiewicz, Andrew; Brooks, Brian P; Lehmann, Ordan J; FitzPatrick, David R; Swaroop, Anand

    2016-04-01

    Ocular coloboma is a common eye malformation resulting from incomplete fusion of the optic fissure during development. Coloboma is often associated with microphthalmia and/or contralateral anophthalmia. Coloboma shows extensive locus heterogeneity associated with causative mutations identified in genes encoding developmental transcription factors or components of signaling pathways. We report an ultra-rare, heterozygous frameshift mutation in FZD5 (p.Ala219Glufs*49) that was identified independently in two branches of a large family with autosomal dominant non-syndromic coloboma. FZD5 has a single-coding exon and consequently a transcript with this frameshift variant is not a canonical substrate for nonsense-mediated decay. FZD5 encodes a transmembrane receptor with a conserved extracellular cysteine rich domain for ligand binding. The frameshift mutation results in the production of a truncated protein, which retains the Wingless-type MMTV integration site family member-ligand-binding domain, but lacks the transmembrane domain. The truncated protein was secreted from cells, and behaved as a dominant-negative FZD5 receptor, antagonizing both canonical and non-canonical WNT signaling. Expression of the resultant mutant protein caused coloboma and microphthalmia in zebrafish, and disruption of the apical junction of the retinal neural epithelium in mouse, mimicking the phenotype of Fz5/Fz8 compound conditional knockout mutants. Our studies have revealed a conserved role of Wnt-Frizzled (FZD) signaling in ocular development and directly implicate WNT-FZD signaling both in normal closure of the human optic fissure and pathogenesis of coloboma.

  4. Exploring leptin antagonism in ophthalmic cell models.

    Directory of Open Access Journals (Sweden)

    Laura Scolaro

    Full Text Available BACKGROUND: Emerging evidence suggests that angiogenic and pro-inflammatory cytokine leptin might be implicated in ocular neovascularization. However, the potential of inhibiting leptin function in ophthalmic cells has never been explored. Here we assessed mitogenic, angiogenic, and signaling leptin activities in retinal and corneal endothelial cells and examined the capability of a specific leptin receptor (ObR antagonist, Allo-aca, to inhibit these functions. METHODS AND RESULTS: The experiments were carried out in monkey retinal (RF/6A and bovine corneal (BCE endothelial cells. Leptin at 50-250 ng/mL stimulated the growth of both cell lines in a dose-dependent manner. The maximal mitogenic response (35±7 and 27±3% in RF6A and BCE cells, respectively was noted at 24 h of 250 ng/mL leptin treatments. Leptin-dependent proliferation was reduced to base levels with 10 and 100 nM Allo-aca in BCE and RF6A cells, respectively. In both cell lines, leptin promoted angiogenic responses, with the maximal increase in tube formation (163±10 and 133±8% in RF6A and BCE cultures, respectively observed under a 250 ng/mL leptin treatment for 3 h. Furthermore, in both cell lines 250 ng/mL leptin modulated the activity or expression of several signaling molecules involved in proliferation, inflammatory activity and angiogenesis, such as STAT3, Akt, and ERK1/2, COX2, and NFκB. In both cell lines, leptin-induced angiogenic and signaling responses were significantly inhibited with 100 nM Allo-aca. We also found that leptin increased its own mRNA and protein expression in both cell lines, and this autocrine effect was abolished by 100-250 nM Allo-aca. CONCLUSIONS: Our data provide new insights into the role of leptin in ocular endothelial cells and represent the first original report on targeting ObR in ophthalmic cell models.

  5. Wnt2、Wnt5b和Wnt9a在先天性巨结肠症和肛门直肠畸形中的表达及意义%The expressions of Wnt2,Wnt5b and Wnt9a in colons of Hirschsprung disease and anorectal malformations

    Institute of Scientific and Technical Information of China (English)

    高红; 张娟; 王维林; 伍美; 张志波; 王大佳

    2011-01-01

    Objective To investigate the expressions of Wnt2,WntSb and Wnt9a in tissue samples from the patients with Hirschsprung disease (HD) and anorectal malformations (ARMs).Methods Ninety individuals were recruited in this study,including 30 with HD,30 with ARMs,and 30 controls died of non-gastrointestinal diseases.According to the position of malformations,the 30 ARMs patients were subgrouped into high,intermediate and low ARMs groups.The terminal rectum from the ARMs group and the stenotic and normal appearance intestines from HD patients were collected during operation.The expression levels of Wnt2,Wnt5b and Wnt9a were studied using quantitative Real-time PCR (qRT-PCR) and western blotting.Results In the HD patients,the mRNA of Wnt2,Wnt5b and Wnt9a in stenotic intestine were significantly lower than those in the normal intestine ( the relative quantification of mRNA 10.19 ± 0.27,10.38 ± 0.19,11.43 ± 0.51 vs 18.06 ± 1.07,17.98 ± 1.12,19.99 ± 0.76,P<0.05).In the ARMs patients,the mRNA of Wnt2,Wnt5b and Wnt9a in high ARMs patients were significantly lower than those in control patients (the relative quantification of mRNA 14.27 ± 0.31,13.69 ± 0.45,13.07 ± 0.67 vs 24.98 ± 2.03,26.43 ± 1.77,28.11 ± 1.44,P<0.05).No significant difference of the mRNA expression was found between the low ARMs patients and intermediate ARMs patients (P>0.05).The protein expressions of Wnt2,Wnt5b and Wnt9a in these patients changed in the same manners with what were found in the mRNA studies,in which Wnt2,Wnt5b and Wnt9a were decreased in the stenotic intestine of HD patients and high ARMs patients.Conclusions The expression of Wnt2,Wnt5b and Wnt9a changes in the tissue samples from the patients with HD and ARMs,which may play a role in the pathogenesis of congenital malformation of the alimentary tract.%目的 研究Wnt2、Wnt5b和Wnt9a在先天性巨结肠症(Hirschsprung disease,HD)和肛门直肠畸形中(anorectal malformations,ARMs)的表达情况,以期探讨其在HD

  6. MKP-7, a JNK phosphatase, blocks ERK-dependent gene activation by anchoring phosphorylated ERK in the cytoplasm

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, Kouhei; Katagiri, Chiaki [Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori (Japan); Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo (Japan); Nomura, Miyuki [Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori (Japan); Sato, Masami [Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori (Japan); Thoracic Surgery, Miyagi Cancer Center, Natori (Japan); Kakumoto, Kyoko [Laboratory of Molecular Oncology, Osaka Bioscience Institute, Osaka (Japan); Akagi, Tsuyoshi [Laboratory of Molecular Oncology, Osaka Bioscience Institute, Osaka (Japan); Kan Research Institute, Kobe (Japan); Kikuchi, Kunimi [Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo (Japan); Tanuma, Nobuhiro [Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori (Japan); Shima, Hiroshi, E-mail: shima-hi632@pref.miyagi.jp [Division of Cancer Chemotherapy, Miyagi Cancer Center Research Institute, Natori (Japan)

    2010-03-05

    MAPK phosphatase-7 (MKP-7) was identified as a JNK-specific phosphatase. However, despite its high specificity for JNK, MKP-7 interacts also with ERK. We previously showed that as a physiological consequence of their interaction, activated ERK phosphorylates MKP-7 at Ser-446, and stabilizing MKP-7. In the present study, we analyzed MKP-7 function in activation of ERK. A time-course experiment showed that both MKP-7 and its phosphatase-dead mutant prolonged mitogen-induced ERK phosphorylation, suggesting that MKP-7 functions as a scaffold for ERK. An important immunohistological finding was that nuclear translocation of phospho-ERK following PMA stimulation was blocked by co-expressed MKP-7 and, moreover, that phospho-ERK co-localized with MKP-7 in the cytoplasm. Reporter gene analysis indicated that MKP-7 blocks ERK-mediated transcription. Overall, our data indicate that MKP-7 down-regulates ERK-dependent gene expression by blocking nuclear accumulation of phospho-ERK.

  7. Analyzing ERK 1/2 signalling and targets.

    Science.gov (United States)

    Brietz, Alexandra; Schuch, Kristin Verena; Wangorsch, Gaby; Lorenz, Kristina; Dandekar, Thomas

    2016-07-19

    The ERK cascade (e.g. Raf-1) protects the heart from cell death and ischemic injury but can also turn maladaptive. Furthermore, an additional autophosphorylation of ERK2 at Thr188 (Erk1 at Thr208) allows ERK to phosphorylate nuclear targets involved in hypertrophy, stressing this additional phosphorylation as a promising pharmacological target. An in silico model was assembled and setup to reproduce different phosphorylation states of ERK 1/2 and various types of stimuli (hypertrophic versus non-hypertrophic). Synergistic and antagonistic receptor stimuli can be predicted in a semi-quantitative model, simulated time courses were experimentally validated. Furthermore, we detected new targets of ERK 1/2, which possibly contribute to the development of pathological hypertrophy. In addition we modeled further interaction partners involved in the protective and maladaptive cascade. Experimental validation included different gene expression data sets supporting key components and novel interaction partners as well as time courses in chronic heart failure.

  8. Role of the Wnt pathway in thyroid cancer

    Directory of Open Access Journals (Sweden)

    Ana eSastre-Perona

    2012-02-01

    Full Text Available Aberrant activation of Wnt signaling is involved in the development of several epithelial tumors. Wnt signaling includes two major pathways (i the canonical or Wnt/βcatenin pathway and (ii the non-canonicals pathways, which do not involve βcatenin stabilization. Among these pathways, the Wnt/βcatenin pathway has received most attention during the past years for its critical role in cancer. A number of publications emphasize its role in thyroid cancer. Wnt signaling plays a crucial role in development and epithelial renewal, and components such as βcatenin and Axin are often mutated in thyroid cancer. Although it is accepted that alteration of Wnt signaling is a late event in thyroid cell transformation that affects anaplastic thyroid tumors, recent data also suggest its alteration in papillary thyroid carcinoma with RET/PTC mutations. Therefore, the purpose of this review is to summarize the main relevant data of Wnt/βcatenin signaling in thyroid cancer.

  9. Wnt signaling induces epithelial differentiation during cutaneous wound healing

    Directory of Open Access Journals (Sweden)

    Hocking Anne

    2006-01-01

    Full Text Available Abstract Background Cutaneous wound repair in adult mammals does not regenerate the original epithelial architecture and results in altered skin function. We propose that lack of regeneration may be due to the absence of appropriate molecular signals to promote regeneration. In this study, we investigated the regulation of Wnt signaling during cutaneous wound healing and the consequence of activating either the beta-catenin-dependent or beta-catenin-independent Wnt signaling on epidermal architecture during wound repair. Results We determined that the expression of Wnt ligands that typically signal via the beta-catenin-independent pathway is up-regulated in the wound while the beta-catenin-dependent Wnt signaling is activated in the hair follicles adjacent to the wound edge. Ectopic activation of beta-catenin-dependent Wnt signaling with lithium chloride in the wound resulted in epithelial cysts and occasional rudimentary hair follicle structures within the epidermis. In contrast, forced expression of Wnt-5a in the deeper wound induced changes in the interfollicular epithelium mimicking regeneration, including formation of epithelia-lined cysts in the wound dermis, rudimentary hair follicles and sebaceous glands, without formation of tumors. Conclusion These findings suggest that adult interfollicular epithelium is capable of responding to Wnt morphogenic signals necessary for restoring epithelial tissue patterning in the skin during wound repair.

  10. Canonical Wnt Signaling Regulates Atrioventricular Junction Programming and Electrophysiological Properties

    Science.gov (United States)

    Gillers, Benjamin S; Chiplunkar, Aditi; Aly, Haytham; Valenta, Tomas; Basler, Konrad; Christoffels, Vincent M.; Efimov, Igor R; Boukens, Bastiaan J; Rentschler, Stacey

    2014-01-01

    Rationale Proper patterning of the atrioventricular canal (AVC) is essential for delay of electrical impulses between atria and ventricles, and defects in AVC maturation can result in congenital heart disease. Objective To determine the role of canonical Wnt signaling in the myocardium during AVC development. Methods and Results We utilized a novel allele of β-catenin that preserves β-catenin’s cell adhesive functions but disrupts canonical Wnt signaling, allowing us to probe the effects of Wnt loss of function independently. We show that loss of canonical Wnt signaling in the myocardium results in tricuspid atresia with hypoplastic right ventricle associated with loss of AVC myocardium. In contrast, ectopic activation of Wnt signaling was sufficient to induce formation of ectopic AV junction-like tissue as assessed by morphology, gene expression, and electrophysiologic criteria. Aberrant AVC development can lead to ventricular preexcitation, a characteristic feature of Wolff-Parkinson-White syndrome. We demonstrate that postnatal activation of Notch signaling downregulates canonical Wnt targets within the AV junction. Stabilization of β-catenin protein levels can rescue Notch-mediated ventricular preexcitation and dysregulated ion channel gene expression. Conclusions Our data demonstrate that myocardial canonical Wnt signaling is an important regulator of AVC maturation and electrical programming upstream of Tbx3. Our data further suggests that ventricular preexcitation may require both morphologic patterning defects, as well as myocardial lineage reprogramming, to allow robust conduction across accessory pathway tissue. PMID:25599332

  11. SOX9 drives WNT pathway activation in prostate cancer.

    Science.gov (United States)

    Ma, Fen; Ye, Huihui; He, Housheng Hansen; Gerrin, Sean J; Chen, Sen; Tanenbaum, Benjamin A; Cai, Changmeng; Sowalsky, Adam G; He, Lingfeng; Wang, Hongyun; Balk, Steven P; Yuan, Xin

    2016-05-02

    The transcription factor SOX9 is critical for prostate development, and dysregulation of SOX9 is implicated in prostate cancer (PCa). However, the SOX9-dependent genes and pathways involved in both normal and neoplastic prostate epithelium are largely unknown. Here, we performed SOX9 ChIP sequencing analysis and transcriptome profiling of PCa cells and determined that SOX9 positively regulates multiple WNT pathway genes, including those encoding WNT receptors (frizzled [FZD] and lipoprotein receptor-related protein [LRP] family members) and the downstream β-catenin effector TCF4. Analyses of PCa xenografts and clinical samples both revealed an association between the expression of SOX9 and WNT pathway components in PCa. Finally, treatment of SOX9-expressing PCa cells with a WNT synthesis inhibitor (LGK974) reduced WNT pathway signaling in vitro and tumor growth in murine xenograft models. Together, our data indicate that SOX9 expression drives PCa by reactivating the WNT/β-catenin signaling that mediates ductal morphogenesis in fetal prostate and define a subgroup of patients who would benefit from WNT-targeted therapy.

  12. Extracellular matrix stiffness dictates Wnt expression through integrin pathway.

    Science.gov (United States)

    Du, Jing; Zu, Yan; Li, Jing; Du, Shuyuan; Xu, Yipu; Zhang, Lang; Jiang, Li; Wang, Zhao; Chien, Shu; Yang, Chun

    2016-02-08

    It is well established that extracellular matrix (ECM) stiffness plays a significant role in regulating the phenotypes and behaviors of many cell types. However, the mechanism underlying the sensing of mechanical cues and subsequent elasticity-triggered pathways remains largely unknown. We observed that stiff ECM significantly enhanced the expression level of several members of the Wnt/β-catenin pathway in both bone marrow mesenchymal stem cells and primary chondrocytes. The activation of β-catenin by stiff ECM is not dependent on Wnt signals but is elevated by the activation of integrin/ focal adhesion kinase (FAK) pathway. The accumulated β-catenin then bound to the wnt1 promoter region to up-regulate the gene transcription, thus constituting a positive feedback of the Wnt/β-catenin pathway. With the amplifying effect of positive feedback, this integrin-activated β-catenin/Wnt pathway plays significant roles in mediating the enhancement of Wnt signal on stiff ECM and contributes to the regulation of mesenchymal stem cell differentiation and primary chondrocyte phenotype maintenance. The present integrin-regulated Wnt1 expression and signaling contributes to the understanding of the molecular mechanisms underlying the regulation of cell behaviors by ECM elasticity.

  13. [Microbial antagonism in the therapy of infectious diseases].

    Science.gov (United States)

    Ledermann, Walter

    2013-08-01

    The history of antibiotics begins with the first observations of Pasteur and Joubert about microbial antagonism at the end of the XIX century. Three types of antagonism were studied: bacterial killing by other bacteria, virus against bacteria and blockade of cellular receptors by bacterial filtrates. In the first type, the piocianase from Pseudomonas aeruginosa and the activity of Bacillus subtilis over Mycobacterium tuberculosis were the better examples; in the second, the French D'Herelle was a pioneer using bacteriophages against Shigella dysenteriae;and another French, Besredka, headed the third line with his "antivirus thérapie" on Staphylococcus aureus.

  14. Experimental inhibition of porcupine-mediated Wnt O-acylation attenuates kidney fibrosis.

    Science.gov (United States)

    Madan, Babita; Patel, Mehul B; Zhang, Jiandong; Bunte, Ralph M; Rudemiller, Nathan P; Griffiths, Robert; Virshup, David M; Crowley, Steven D

    2016-05-01

    Activated Wnt signaling is critical in the pathogenesis of renal fibrosis, a final common pathway for most forms of chronic kidney disease. Therapeutic intervention by inhibition of individual Wnts or downstream Wnt/β-catenin signaling has been proposed, but these approaches do not interrupt the functions of all Wnts nor block non-canonical Wnt signaling pathways. Alternatively, an orally bioavailable small molecule, Wnt-C59, blocks the catalytic activity of the Wnt-acyl transferase porcupine, and thereby prevents secretion of all Wnt isoforms. We found that inhibiting porcupine dramatically attenuates kidney fibrosis in the murine unilateral ureteral obstruction model. Wnt-C59 treatment similarly blunts collagen mRNA expression in the obstructed kidney. Consistent with its actions to broadly arrest Wnt signaling, porcupine inhibition reduces expression of Wnt target genes and bolsters nuclear exclusion of β-catenin in the kidney following ureteral obstruction. Importantly, prevention of Wnt secretion by Wnt-C59 blunts expression of inflammatory cytokines in the obstructed kidney that otherwise provoke a positive feedback loop of Wnt expression in collagen-producing fibroblasts and epithelial cells. Thus, therapeutic targeting of porcupine abrogates kidney fibrosis not only by overcoming the redundancy of individual Wnt isoforms but also by preventing upstream cytokine-induced Wnt generation. These findings reveal a novel therapeutic maneuver to protect the kidney from fibrosis by interrupting a pathogenic crosstalk loop between locally generated inflammatory cytokines and the Wnt/β-catenin signaling pathway.

  15. Deferoxamine alleviates chronic hydrocephalus after intraventricular hemorrhage through iron chelation and Wnt1/Wnt3a inhibition.

    Science.gov (United States)

    Meng, Hui; Li, Fei; Hu, Rong; Yuan, Yikai; Gong, Guoqi; Hu, Shengli; Feng, Hua

    2015-03-30

    Post-hemorrhagic chronic hydrocephalus (PHCH) is a common complication after intraventricular hemorrhage (IVH). The mechanism of PHCH is not fully understood, and its treatment is relatively difficult. In the present study, a rat model of PHCH was used to elucidate the role of iron in the pathogenesis of PHCH. The action of deferoxamine (DFX) in IVH-induced PHCH, the expression of brain ferritin, the concentration of iron in cerebrospinal fluid (CSF), and changes in Wnt1/Wnt3a gene expression were determined. Results indicate that iron plays an important role in the occurrence of hydrocephalus after IVH. The iron chelator, DFX, can decrease the concentrations of iron and ferritin after cerebral hemorrhage and can thereby decrease the incidence of hydrocephalus. In addition, after IVH, the gene expression of Wnt1 and Wnt3a was enhanced, with protein expression also upregulated; DFX was able to suppress both gene and protein expression of Wnt1 and Wnt3a in brain tissue. This indicates that iron may be the key stimulus that activates the Wnt signaling pathway and regulates subarachnoid fibrosis after cerebral hemorrhage, and that DFX may be a candidate for preventing PHCH in patients with IVH.

  16. Wnt3a Promotes the Vasculogenic Mimicry Formation of Colon Cancer via Wnt/β-Catenin Signaling.

    Science.gov (United States)

    Qi, Lisha; Song, Wangzhao; Liu, Zhiyong; Zhao, Xiulan; Cao, Wenfeng; Sun, Baocun

    2015-08-10

    Our previous study provided evidence that non-canonical Wnt signaling is involved in regulating vasculogenic mimicry (VM) formation. However, the functions of canonical Wnt signaling in VM formation have not yet been explored. In this study, we found the presence of VM was related to colon cancer histological differentiation (p colon cancer samples showed increased Wnt3a expression (p colon cancer cells promoted the capacity to form tube-like structures in the three-dimensional (3-D) culture together with increased expression of endothelial phenotype-associated proteins such as VEGFR2 and VE-cadherin. The mouse xenograft model showed that Wnt3a-overexpressing cells grew into larger tumor masses and formed more VM than the control cells. In addition, the Wnt/β-catenin signaling antagonist Dickkopf-1(Dkk1) can reverse the capacity to form tube-like structures and can decrease the expressions of VEGFR2 and VE-cadherin in Wnt3a-overexpressing cells. Taken together, our results suggest that Wnt/β-catenin signaling is involved in VM formation in colon cancer and might contribute to the development of more accurate treatment modalities aimed at VM.

  17. THE MAPK ERK5, BUT NOT ERK1/2, INHIBITS THE PROGRESSION OF MONOCYTIC PHENOTYPE TO THE FUNCTIONING MACROPHAGE

    Science.gov (United States)

    Wang, Xuening; Pesakhov, Stella; Harrison, Jonathan S; Kafka, Michael; Danilenko, Michael; Studzinski, George P

    2014-01-01

    Intracellular signaling pathways present targets for pharmacological agents with potential for treatment of neoplastic diseases, with some disease remissions already recorded. However, cellular compensatory mechanisms usually negate the initial success. For instance, attempts to interrupt aberrant signaling downstream of the frequently mutated ras by inhibiting ERK1/2 has shown only limited usefulness for cancer therapy. Here, we examined how ERK5, that overlaps the functions of ERK1/2 in cell proliferation and survival, functions in a manner distinct from ERK1/2 in human AML cells induced to differentiate by 1,25D-dihydroxyvitamin D3 (1,25D). Using inhibitors of ERK1/2 and of MEK5/ERK5 at concentrations specific for each kinase in HL60 and U937 cells, we observed that selective inhibition of the kinase activity of ERK5, but not of ERK1/2, in the presence of 1,25D resulted in macrophage-like cell morphology and enhancement of phagocytic activity. Importantly, this was associated with increased expression of the macrophage colony stimulating factor receptor (M-CSFR), but was not seen when M-CSFR expression was knocked down. Interestingly, inhibition of ERK1/2 led to activation of ERK5 in these cells. Our results support the hypothesis that ERK5 negatively regulates the expression of M-CSFR, and thus has a restraining function on macrophage differentiation. The addition of pharmacological inhibitors of ERK5 may influence trials of differentiation therapy of AML. PMID:25447310

  18. Mapping the dynamic expression of Wnt11 and the lineage contribution of Wnt11-expressing cells during early mouse development.

    Science.gov (United States)

    Sinha, Tanvi; Lin, Lizhu; Li, Ding; Davis, Jennifer; Evans, Sylvia; Wynshaw-Boris, Anthony; Wang, Jianbo

    2015-02-15

    Planar cell polarity (PCP) signaling is an evolutionarily conserved mechanism that coordinates polarized cell behavior to regulate tissue morphogenesis during vertebrate gastrulation, neurulation and organogenesis. In Xenopus and zebrafish, PCP signaling is activated by non-canonical Wnts such as Wnt11, and detailed understanding of Wnt11 expression has provided important clues on when, where and how PCP may be activated to regulate tissue morphogenesis. To explore the role of Wnt11 in mammalian development, we established a Wnt11 expression and lineage map with high spatial and temporal resolution by creating and analyzing a tamoxifen-inducible Wnt11-CreER BAC (bacterial artificial chromosome) transgenic mouse line. Our short- and long-term lineage tracing experiments indicated that Wnt11-CreER could faithfully recapitulate endogenous Wnt11 expression, and revealed for the first time that cells transiently expressing Wnt11 at early gastrulation were fated to become specifically the progenitors of the entire endoderm. During mid-gastrulation, Wnt11-CreER expressing cells also contribute extensively to the endothelium in both embryonic and extraembryonic compartments, and the endocardium in all chambers of the developing heart. In contrast, Wnt11-CreER expression in the myocardium starts from late-gastrulation, and occurs in three transient, sequential waves: first in the precursors of the left ventricular (LV) myocardium from E7.0 to 8.0; subsequently in the right ventricular (RV) myocardium from E8.0 to 9.0; and finally in the superior wall of the outflow tract (OFT) myocardium from E8.5 to 10.5. These results provide formal genetic proof that the majority of the endocardium and myocardium diverge by mid-gastrulation in the mouse, and suggest a tight spatial and temporal control of Wnt11 expression in the myocardial lineage to coordinate with myocardial differentiation in the first and second heart field progenitors to form the LV, RV and OFT. The insights gained

  19. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability

    Directory of Open Access Journals (Sweden)

    Yun-Liang Cui

    2016-01-01

    Conclusions: The rhubarb mixture of emodin, 3,8-dihydroxy-1-methyl-anthraquinone-2-carboxylic acid, 1-O-caffeoyl-2-(4-hydroxyl-O-cinnamoyl-β-D-glucose, daucosterol linoleate, and rhein, at a low concentration, antagonized the MMP9-induced HUVEC monolayer permeability by promoting HUVEC proliferation and reducing extracellular VE-cadherin concentrations.

  20. AOP description: ER antagonism leading to reproductive dysfunction (in fish)

    Science.gov (United States)

    This adverse outcome pathway details the linkage between antagonism of estrogen receptor in females and the adverse effect of reduced cumulative fecundity in repeat-spawning fish species. Cumulative fecundity is the most apical endpoint considered in the OECD 229 Fish Short Term ...

  1. Analysis of Determinants in Filovirus Glycoproteins Required for Tetherin Antagonism

    Directory of Open Access Journals (Sweden)

    Kerstin Gnirß

    2014-04-01

    Full Text Available The host cell protein tetherin can restrict the release of enveloped viruses from infected cells. The HIV-1 protein Vpu counteracts tetherin by removing it from the site of viral budding, the plasma membrane, and this process depends on specific interactions between the transmembrane domains of Vpu and tetherin. In contrast, the glycoproteins (GPs of two filoviruses, Ebola and Marburg virus, antagonize tetherin without reducing surface expression, and the domains in GP required for tetherin counteraction are unknown. Here, we show that filovirus GPs depend on the presence of their authentic transmembrane domains for virus-cell fusion and tetherin antagonism. However, conserved residues within the transmembrane domain were dispensable for membrane fusion and tetherin counteraction. Moreover, the insertion of the transmembrane domain into a heterologous viral GP, Lassa virus GPC, was not sufficient to confer tetherin antagonism to the recipient. Finally, mutation of conserved residues within the fusion peptide of Ebola virus GP inhibited virus-cell fusion but did not ablate tetherin counteraction, indicating that the fusion peptide and the ability of GP to drive host cell entry are not required for tetherin counteraction. These results suggest that the transmembrane domains of filoviral GPs contribute to tetherin antagonism but are not the sole determinants.

  2. The ankyrin repeat protein Diversin recruits Casein kinase Iepsilon to the beta-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling.

    NARCIS (Netherlands)

    Schwarz-Romond, T.; Asbrand, C.; Bakkers, J.; Kuhl, M.; Schaeffer, H.J.; Huelsken, J.; Behrens, J.; Hammerschmidt, M.; Birchmeier, W.

    2002-01-01

    Wnt signals control decisive steps in development and can induce the formation of tumors. Canonical Wnt signals control the formation of the embryonic axis, and are mediated by stabilization and interaction of beta-catenin with Lef/Tcf transcription factors. An alternative branch of the Wnt pathway

  3. Exploitative and hierarchical antagonism in a cooperative bacterium.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available Social organisms that cooperate with some members of their own species, such as close relatives, may fail to cooperate with other genotypes of the same species. Such noncooperation may take the form of outright antagonism or social exploitation. Myxococcus xanthus is a highly social prokaryote that cooperatively develops into spore-bearing, multicellular fruiting bodies in response to starvation. Here we have characterized the nature of social interactions among nine developmentally proficient strains of M. xanthus isolated from spatially distant locations. Strains were competed against one another in all possible pairwise combinations during starvation-induced development. In most pairings, at least one competitor exhibited strong antagonism toward its partner and a majority of mixes showed bidirectional antagonism that decreased total spore production, even to the point of driving whole populations to extinction. Differential response to mixing was the primary determinant of competitive superiority rather than the sporulation efficiencies of unmixed populations. In some competitive pairings, the dominant partner sporulated more efficiently in mixed populations than in clonal isolation. This finding represents a novel form of exploitation in bacteria carried out by socially competent genotypes and is the first documentation of social exploitation among natural bacterial isolates. Patterns of antagonistic superiority among these strains form a highly linear dominance hierarchy. At least some competition pairs construct chimeric, rather than segregated, fruiting bodies. The cooperative prokaryote M. xanthus has diverged into a large number of distinct social types that cooperate with clone-mates but exhibit intense antagonism toward distinct social types of the same species. Most lengthy migration events in nature may thus result in strong antagonism between migratory and resident populations, and this antagonism may have large effects on local

  4. Deranged Wnt signaling is frequent in hereditary nonpolyposis colorectal cancer

    DEFF Research Database (Denmark)

    Isinger-Ekstrand, Anna; Therkildsen, Christina; Bernstein, Inge;

    2011-01-01

    The Wnt signaling pathway is frequently deranged in colorectal cancer and is a key target for future preventive and therapeutic approaches. Colorectal cancers associated with the hereditary nonpolyposis colorectal cancer (HNPCC) syndrome are characterized by wide-spread microsatellite instability...

  5. Understanding Wnt/b-catenin signaling in development and cancer

    Institute of Scientific and Technical Information of China (English)

    Xi He

    2008-01-01

    @@ The Wnt/beta-catenin signaling pathway plays key roles in development and diseases. This pathway requires two distinct receptors-a Frizzled serpentine receptor and LDL receptor related protein 5 or 6(LRP5 or LRP6).

  6. Wnt-Dependent Control of Cell Polarity in Cultured Cells.

    Science.gov (United States)

    Runkle, Kristin B; Witze, Eric S

    2016-01-01

    The secreted ligand Wnt5a regulates cell polarity and polarized cell movement during development by signaling through the poorly defined noncanonical Wnt pathway. Cell polarity regulates most aspects of cell behavior including the organization of apical/basolateral membrane domains of epithelial cells, polarized cell divisions along a directional plane, and front rear polarity during cell migration. These characteristics of cell polarity allow coordinated cell movements required for tissue formation and organogenesis during embryonic development. Genetic model organisms have been used to identify multiple signaling pathways including Wnt5a that are required to establish cell polarity and regulate polarized cell behavior. However, the downstream signaling events that regulate these complex cellular processes are still poorly understood. The methods below describe assays to study Wnt5a-induced cell polarity in cultured cells, which may facilitate our understanding of these complex signaling pathways.

  7. Effect of Wnt3a on Keratinocytes Utilizing in Vitro and Bioinformatics Analysis

    Directory of Open Access Journals (Sweden)

    Ju-Suk Nam

    2014-03-01

    Full Text Available Wingless-type (Wnt signaling proteins participate in various cell developmental processes. A suppressive role of Wnt5a on keratinocyte growth has already been observed. However, the role of other Wnt proteins in proliferation and differentiation of keratinocytes remains unknown. Here, we investigated the effects of the Wnt ligand, Wnt3a, on proliferation and differentiation of keratinocytes. Keratinocytes from normal human skin were cultured and treated with recombinant Wnt3a alone or in combination with the inflammatory cytokine, tumor necrosis factor α (TNFα. Furthermore, using bioinformatics, we analyzed the biochemical parameters, molecular evolution, and protein–protein interaction network for the Wnt family. Application of recombinant Wnt3a showed an anti-proliferative effect on keratinocytes in a dose-dependent manner. After treatment with TNFα, Wnt3a still demonstrated an anti-proliferative effect on human keratinocytes. Exogenous treatment of Wnt3a was unable to alter mRNA expression of differentiation markers of keratinocytes, whereas an altered expression was observed in TNFα-stimulated keratinocytes. In silico phylogenetic, biochemical, and protein–protein interaction analysis showed several close relationships among the family members of the Wnt family. Moreover, a close phylogenetic and biochemical similarity was observed between Wnt3a and Wnt5a. Finally, we proposed a hypothetical mechanism to illustrate how the Wnt3a protein may inhibit the process of proliferation in keratinocytes, which would be useful for future researchers.

  8. Wnt4 in protogynous hermaphroditic orange-spotted grouper (Epinephelus coioides): identification and expression.

    Science.gov (United States)

    Chen, Huapu; Li, Shuisheng; Xiao, Ling; Zhang, Yong; Li, Guangli; Liu, Xiaochun; Lin, Haoran

    2015-05-01

    Wnt4 (Wingless-type MMTV integration site family member 4) has been demonstrated to play critical roles in ovarian development in mammals, but its function in fish reproduction is still unclear. In the present study, two full-length wnt4 cDNA sequences (named wnt4a and wnt4b) were cloned from the orange-spotted grouper (Epinephelus coioides). Amino acid alignment analysis showed that both orange-spotted grouper Wnt4s proteins had the typical characteristics of the Wnt family. RT-PCR revealed that both wnt4a and wnt4b were highly expressed in the ovaries of the orange-spotted grouper. Temporal expression profiles of both wnt4 genes during embryonic and ovarian development were examined. The expressions of wnt4a and wnt4b genes were first detected at the embryonic morula stage, but the gens showed different expression patterns. During ovarian development, high expression of wnt4a was observed in the ovarian lumen formation and gonium proliferation stage, while wnt4b exhibited strong expression in the early developmental stage of oocytes. Taken together, the present study indicates that the two wnt4 genes are involved in the regulation of ovarian development in the orange-spotted grouper.

  9. T11TS inhibits Angiopoietin-1/Tie-2 signaling, EGFR activation and Raf/MEK/ERK pathway in brain endothelial cells restraining angiogenesis in glioma model.

    Science.gov (United States)

    Bhattacharya, Debanjan; Chaudhuri, Suhnrita; Singh, Manoj Kumar; Chaudhuri, Swapna

    2015-06-01

    Malignant gliomas represent one of the most aggressive and hypervascular primary brain tumors. Angiopoietin-1, the peptide growth factor activates endothelial Tie-2 receptor promoting vessel maturation and vascular stabilization steps of angiogenesis in glioma. Epidermal growth factor receptor (EGFR) and Tie-2 receptor on endothelial cells once activated transmits signals through downstream Raf/MEK/ERK pathway promoting endothelial cell proliferation and migration which are essential for angiogenesis induction. The in vivo effect of sheep erythrocyte membrane glycopeptide T11-target structure (T11TS) on angiopoietin-1/Tie-2 axis, EGFR signaling and Raf/MEK/ERK pathway in glioma associated endothelial cells has not been investigated previously. The present study performed with rodent glioma model aims to investigate the effect of T11TS treatment on angiopoietin-1/Tie-2 signaling, EGFR activity and Raf/MEK/ERK pathway in glioma associated endothelial cells within glioma milieu. T11TS administration in rodent glioma model inhibited angiopoietin-1 expression and attenuated Tie-2 expression and activation in glioma associated brain endothelial cells. T11TS treatment also downregulated total and phosphorylated EGFR expression in glioma associated endothelial cells. Additionally T11TS treatment inhibited Raf-1 expression, MEK-1 and ERK-1/2 expression and phosphorylation in glioma associated brain endothelial cells. Thus T11TS therapy remarkably inhibits endothelial angiopoietin-1/Tie-2 signaling associated with vessel maturation and simultaneously antagonizes endothelial cell proliferation signaling by blocking EGFR activation and components of Raf/MEK/ERK pathway. Collectively, the findings demonstrate a multi-targeted anti-angiogenic activity of T11TS which augments the potential for clinical translation of T11TS as an effective angiogenesis inhibitor for glioma treatment.

  10. Wnt Pathway Activation in Long Term Remnant Rat Model

    Directory of Open Access Journals (Sweden)

    E. Banon-Maneus

    2014-01-01

    Full Text Available Progression of chronic kidney disease (CKD is characterized by deposition of extracellular matrix. This is an irreversible process that leads to tubulointerstitial fibrosis and finally loss of kidney function. Wnt/β-catenin pathway was reported to be aberrantly activated in the progressive damage associated with chronic organ failure. Extensive renal ablation is an experimental model widely used to gain insight into the mechanisms responsible for the development of CKD, but it was not evaluated for Wnt/β-catenin pathway. This study aimed to elucidate if the rat 5/6 renal mass reduction model (RMR is a good model for the Wnt/β-catenin activation and possible next modulation. RMR model was evaluated at 12 and 18 weeks after the surgery, when CKD is close to end-stage kidney disease demonstrated by molecular and histological studies. Wnt pathway components were analyzed at mRNA and protein level. Our results demonstrate that Wnt pathway is active by increase of β-catenin at mRNA level and nuclear translocation in tubular epithelium as well as some target genes. These results validate the RMR model for future modulation of Wnt pathway, starting at shorter time after the surgery.

  11. ERK5 and cell proliferation: nuclear localization is what matters

    Directory of Open Access Journals (Sweden)

    Nestor Gomez

    2016-09-01

    Full Text Available ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumour growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote

  12. Inhibition of tumorigenesis driven by different Wnt proteins requires blockade of distinct ligand-binding regions by LRP6 antibodies

    Science.gov (United States)

    Ettenberg, Seth A.; Charlat, Olga; Daley, Michael P.; Liu, Shanming; Vincent, Karen J.; Stuart, Darrin D.; Schuller, Alwin G.; Yuan, Jing; Ospina, Beatriz; Green, John; Yu, Qunyan; Walsh, Renee; Schmitz, Rita; Heine, Holger; Bilic, Sanela; Ostrom, Lance; Mosher, Rebecca; Hartlepp, K. Felix; Zhu, Zhenping; Fawell, Stephen; Yao, Yung-Mae; Stover, David; Finan, Peter M.; Porter, Jeffery A.; Sellers, William R.; Klagge, Ingo M.; Cong, Feng

    2010-01-01

    Disregulated Wnt/β-catenin signaling has been linked to various human diseases, including cancers. Inhibitors of oncogenic Wnt signaling are likely to have a therapeutic effect in cancers. LRP5 and LRP6 are closely related membrane coreceptors for Wnt proteins. Using a phage-display library, we identified anti-LRP6 antibodies that either inhibit or enhance Wnt signaling. Two classes of LRP6 antagonistic antibodies were discovered: one class specifically inhibits Wnt proteins represented by Wnt1, whereas the second class specifically inhibits Wnt proteins represented by Wnt3a. Epitope-mapping experiments indicated that Wnt1 class-specific antibodies bind to the first propeller and Wnt3a class-specific antibodies bind to the third propeller of LRP6, suggesting that Wnt1- and Wnt3a-class proteins interact with distinct LRP6 propeller domains. This conclusion is further supported by the structural functional analysis of LRP5/6 and the finding that the Wnt antagonist Sclerostin interacts with the first propeller of LRP5/6 and preferentially inhibits the Wnt1-class proteins. We also show that Wnt1 or Wnt3a class-specific anti-LRP6 antibodies specifically block growth of MMTV-Wnt1 or MMTV-Wnt3 xenografts in vivo. Therapeutic application of these antibodies could be limited without knowing the type of Wnt proteins expressed in cancers. This is further complicated by our finding that bivalent LRP6 antibodies sensitize cells to the nonblocked class of Wnt proteins. The generation of a biparatopic LRP6 antibody blocks both Wnt1- and Wnt3a-mediated signaling without showing agonistic activity. Our studies provide insights into Wnt-induced LRP5/6 activation and show the potential utility of LRP6 antibodies in Wnt-driven cancer. PMID:20713706

  13. Brg1 loss attenuates aberrant wnt-signalling and prevents wnt-dependent tumourigenesis in the murine small intestine.

    Directory of Open Access Journals (Sweden)

    Aliaksei Z Holik

    2014-07-01

    Full Text Available Tumourigenesis within the intestine is potently driven by deregulation of the Wnt pathway, a process epigenetically regulated by the chromatin remodelling factor Brg1. We aimed to investigate this interdependency in an in vivo setting and assess the viability of Brg1 as a potential therapeutic target. Using a range of transgenic approaches, we deleted Brg1 in the context of Wnt-activated murine small intestinal epithelium. Pan-epithelial loss of Brg1 using VillinCreERT2 and AhCreERT transgenes attenuated expression of Wnt target genes, including a subset of stem cell-specific genes and suppressed Wnt-driven tumourigenesis improving animal survival. A similar increase in survival was observed when Wnt activation and Brg1 loss were restricted to the Lgr5 expressing intestinal stem cell population. We propose a mechanism whereby Brg1 function is required for aberrant Wnt signalling and ultimately for the maintenance of the tumour initiating cell compartment, such that loss of Brg1 in an Apc-deficient context suppresses adenoma formation. Our results highlight potential therapeutic value of targeting Brg1 and serve as a proof of concept that targeting the cells of origin of cancer may be of therapeutic relevance.

  14. Expression of WNT5A in Idiopathic Pulmonary Fibrosis and Its Control by TGF-β and WNT7B in Human Lung Fibroblasts.

    Science.gov (United States)

    Newman, Donna R; Sills, W Shane; Hanrahan, Katherine; Ziegler, Amanda; Tidd, Kathleen McGinnis; Cook, Elizabeth; Sannes, Philip L

    2016-02-01

    The wingless (Wnt) family of signaling ligands contributes significantly to lung development and is highly expressed in patients with usual interstitial pneumonia (UIP). We sought to define the cellular distribution of Wnt5A in the lung tissue of patients with idiopathic pulmonary fibrosis (IPF) and the signaling ligands that control its expression in human lung fibroblasts and IPF myofibroblasts. Tissue sections from 40 patients diagnosed with IPF or UIP were probed for the immunolocalization of Wnt5A. Further, isolated lung fibroblasts from normal or IPF human lungs, adenovirally transduced for the overexpression or silencing of Wnt7B or treated with TGF-β1 or its inhibitor, were analyzed for Wnt5A protein expression. Wnt5A was expressed in IPF lungs by airway and alveolar epithelium, smooth muscle cells, endothelium, and myofibroblasts of fibroblastic foci and throughout the interstitium. Forced overexpression of Wnt7B with or without TGF-β1 treatment significantly increased Wnt5A protein expression in normal human smooth muscle cells and fibroblasts but not in IPF myofibroblasts where Wnt5A was already highly expressed. The results demonstrate a wide distribution of Wnt5A expression in cells of the IPF lung and reveal that it is significantly increased by Wnt7B and TGF-β1, which, in combination, could represent key signaling pathways that modulate the pathogenesis of IPF.

  15. Thymic Epithelial Cells Are a Nonredundant Source of Wnt Ligands for Thymus Development.

    Science.gov (United States)

    Brunk, Fabian; Augustin, Iris; Meister, Michael; Boutros, Michael; Kyewski, Bruno

    2015-12-01

    Wnt signaling has been implicated in T cell development. However, it remained unclear which cell type is the major source of Wnt ligands and to what extent thymic epithelial cell (TEC) development is dependent on Wnt signaling. In this study, we analyzed the role of Wnt ligands provided by TECs for the development of T cells and TECs without manipulating the intracellular Wnt signaling machinery in either cell type. To this end, we used conditional knockout mice (FoxN1-Gpr177) in which TECs are unable to secrete Wnt ligands. Gpr177 (Evi/Wls) is a Wnt-specific cargo receptor that is required for the secretion of Wnt ligands. We found that TECs are the main source of Wnt ligands in the thymus, which serves a nonredundant role, and lack of TEC-provided Wnt ligands led to thymic hypotrophy, as well as a reduced peripheral T cell pool. Despite being reduced in numbers, T cells that developed in the absence of TEC-secreted Wnt ligands were functionally competent, and the subset composition of the peripheral T cell pool was not affected. Thus, our data suggest that T cell development is not directly dependent on TEC-provided Wnt ligands. Rather, TEC-secreted Wnt ligands are essential for normal thymus development and normal peripheral T cell frequencies but are dispensable for T cell function in the periphery.

  16. Effects of Wnt-10b on proliferation and differentiation of murine melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Misu, Masayasu [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Ouji, Yukiteru, E-mail: oujix@naramed-u.ac.jp [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Kawai, Norikazu [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Nishimura, Fumihiko [Department of Neurosurgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Nakamura-Uchiyama, Fukumi [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan); Yoshikawa, Masahide, E-mail: myoshika@naramed-u.ac.jp [Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521 (Japan)

    2015-08-07

    In spite of the strong expression of Wnt-10b in melanomas, its role in melanoma cells has not been elucidated. In the present study, the biological effects of Wnt-10b on murine B16F10 (B16) melanoma cells were investigated using conditioned medium from Wnt-10b-producing COS cells (Wnt-CM). After 2 days of culture in the presence of Wnt-CM, proliferation of B16 melanoma cells was inhibited, whereas tyrosinase activity was increased. An in vitro wound healing assay demonstrated that migration of melanoma cells to the wound area was inhibited with the addition of Wnt-CM. Furthermore, evaluation of cellular senescence revealed prominent induction of SA-β-gal-positive senescent cells in cultures with Wnt-CM. Finally, the growth of B16 melanoma cell aggregates in collagen 3D-gel cultures was markedly suppressed in the presence of Wnt-CM. These results suggest that Wnt-10b represses tumor cell properties, such as proliferation and migration of B16 melanoma cells, driving them toward a more differentiated state along a melanocyte lineage. - Highlights: • Wnt-10b inhibited proliferation and migration of melanoma cells. • Wnt-10b induced tyrosinase activity and senescence of melanoma cells. • Wnt-10b suppressed growth of cell aggregates in collagen 3D-gel cultures. • Wnt-10b represses tumor cell properties, driving them toward a more differentiated state along a melanocyte lineage.

  17. Tumor cells with KRAS or BRAF mutations or ERK5/MAPK7 amplification are not addicted to ERK5 activity for cell proliferation.

    Science.gov (United States)

    Lochhead, Pamela A; Clark, Jonathan; Wang, Lan-Zhen; Gilmour, Lesley; Squires, Matthew; Gilley, Rebecca; Foxton, Caroline; Newell, David R; Wedge, Stephen R; Cook, Simon J

    2016-01-01

    ERK5, encoded by MAPK7, has been proposed to play a role in cell proliferation, thus attracting interest as a cancer therapeutic target. While oncogenic RAS or BRAF cause sustained activation of the MEK1/2-ERK1/2 pathway, ERK5 is directly activated by MEK5. It has been proposed that RAS and RAF proteins can also promote ERK5 activation. Here we investigated the interplay between RAS-RAF-MEK-ERK and ERK5 signaling and studied the role of ERK5 in tumor cell proliferation in 2 disease-relevant cell models. We demonstrate that although an inducible form of CRAF (CRAF:ER*) can activate ERK5 in fibroblasts, the response is delayed and reflects feed-forward signaling. Additionally, oncogenic KRAS and BRAF do not activate ERK5 in epithelial cells. Although KRAS and BRAF do not couple directly to MEK5-ERK5, ERK5 signaling might still be permissive for proliferation. However, neither the selective MEK5 inhibitor BIX02189 or ERK5 siRNA inhibited proliferation of colorectal cancer cells harbouring KRAS(G12C/G13D) or BRAF(V600E). Furthermore, there was no additive or synergistic effect observed when BIX02189 was combined with the MEK1/2 inhibitor Selumetinib (AZD6244), suggesting that ERK5 was neither required for proliferation nor a driver of innate resistance to MEK1/2 inhibitors. Finally, even cancer cells with MAPK7 amplification were resistant to BIX02189 and ERK5 siRNA, showing that ERK5 amplification does not confer addiction to ERK5 for cell proliferation. Thus ERK5 signaling is unlikely to play a role in tumor cell proliferation downstream of KRAS or BRAF or in tumor cells with ERK5 amplification. These results have important implications for the role of ERK5 as an anti-cancer drug target.

  18. Tumor cells with KRAS or BRAF mutations or ERK5/MAPK7 amplification are not addicted to ERK5 activity for cell proliferation

    Science.gov (United States)

    Lochhead, Pamela A.; Clark, Jonathan; Wang, Lan-Zhen; Gilmour, Lesley; Squires, Matthew; Gilley, Rebecca; Foxton, Caroline; Newell, David R.; Wedge, Stephen R.; Cook, Simon J.

    2016-01-01

    Abstract ERK5, encoded by MAPK7, has been proposed to play a role in cell proliferation, thus attracting interest as a cancer therapeutic target. While oncogenic RAS or BRAF cause sustained activation of the MEK1/2-ERK1/2 pathway, ERK5 is directly activated by MEK5. It has been proposed that RAS and RAF proteins can also promote ERK5 activation. Here we investigated the interplay between RAS-RAF-MEK-ERK and ERK5 signaling and studied the role of ERK5 in tumor cell proliferation in 2 disease-relevant cell models. We demonstrate that although an inducible form of CRAF (CRAF:ER*) can activate ERK5 in fibroblasts, the response is delayed and reflects feed-forward signaling. Additionally, oncogenic KRAS and BRAF do not activate ERK5 in epithelial cells. Although KRAS and BRAF do not couple directly to MEK5-ERK5, ERK5 signaling might still be permissive for proliferation. However, neither the selective MEK5 inhibitor BIX02189 or ERK5 siRNA inhibited proliferation of colorectal cancer cells harbouring KRASG12C/G13D or BRAFV600E. Furthermore, there was no additive or synergistic effect observed when BIX02189 was combined with the MEK1/2 inhibitor Selumetinib (AZD6244), suggesting that ERK5 was neither required for proliferation nor a driver of innate resistance to MEK1/2 inhibitors. Finally, even cancer cells with MAPK7 amplification were resistant to BIX02189 and ERK5 siRNA, showing that ERK5 amplification does not confer addiction to ERK5 for cell proliferation. Thus ERK5 signaling is unlikely to play a role in tumor cell proliferation downstream of KRAS or BRAF or in tumor cells with ERK5 amplification. These results have important implications for the role of ERK5 as an anti-cancer drug target. PMID:26959608

  19. The evolution of reduced antagonism--A role for host-parasite coevolution.

    Science.gov (United States)

    Gibson, A K; Stoy, K S; Gelarden, I A; Penley, M J; Lively, C M; Morran, L T

    2015-11-01

    Why do some host-parasite interactions become less antagonistic over evolutionary time? Vertical transmission can select for reduced antagonism. Vertical transmission also promotes coevolution between hosts and parasites. Therefore, we hypothesized that coevolution itself may underlie transitions to reduced antagonism. To test the coevolution hypothesis, we selected for reduced antagonism between the host Caenorhabditis elegans and its parasite Serratia marcescens. This parasite is horizontally transmitted, which allowed us to study coevolution independently of vertical transmission. After 20 generations, we observed a response to selection when coevolution was possible: reduced antagonism evolved in the copassaged treatment. Reduced antagonism, however, did not evolve when hosts or parasites were independently selected without coevolution. In addition, we found strong local adaptation for reduced antagonism between replicate host/parasite lines in the copassaged treatment. Taken together, these results strongly suggest that coevolution was critical to the rapid evolution of reduced antagonism.

  20. Structural basis for simvastatin competitive antagonism of complement receptor 3

    DEFF Research Database (Denmark)

    Jensen, Maria Risager; Bajic, Goran; Zhang, Xianwei;

    2016-01-01

    The complement system is an important part of the innate immune response to infection, but may also cause severe complications during inflammation. Small molecule antagonists to complement receptor (CR)3 have been widely sought, but a structural basis for their mode of action is not available. We...... report here on the structure of the human CR3 ligand-binding I domain in complex with simvastatin. Simvastatin targets the metal ion-dependent adhesion site of the open, ligand-binding conformation of the CR3 I domain by direct contact with the chelated Mg2+ ion. Simvastatin antagonizes I domain binding...... to the complement fragments iC3b and C3d, but not to intercellular adhesion molecule-1. By virtue of the I domain's wide distribution in binding kinetics to ligands, it was possible to identify ligand binding kinetics as discriminator for simvastatin antagonism. In static cellular experiments, 15-25 μM simvastatin...

  1. C3 toxin activates the stress signaling pathways, JNK and p38, but antagonizes the activation of AP-1 in rat-1 cells.

    Science.gov (United States)

    Beltman, J; Erickson, J R; Martin, G A; Lyons, J F; Cook, S J

    1999-02-05

    Lysophosphatidic acid (LPA) stimulates the c-Fos serum response element (SRE) by activating two distinct signal pathways regulated by the small GTPases, Ras and RhoA. Ras activates the ERK cascade leading to phosphorylation of the transcription factors Elk-1 and Sap1a at the Ets/TCF site. RhoA regulates an undefined pathway required for the activation of the SRF/CArG site. Here we have examined the role of the Ras and RhoA pathways in activation of the SRE and c-Fos expression in Rat-1 cells. Pertussis toxin and PD98059 strongly inhibited LPA-stimulated c-Fos expression and activation of a SRE:Luc reporter. C3 toxin completely inhibited RhoA function, partially inhibited SRE:Luc activity, but had no effect on LPA-stimulated c-Fos expression. Thus, in a physiological context the Ras-Raf-MEK-ERK pathway, but not RhoA, is required for LPA-stimulated c-Fos expression in Rat-1 cells. C3 toxin stimulated the stress-activated protein kinases JNK and p38 and potentiated c-Jun expression and phosphorylation; these properties were shared by another cellular stress agonist the protein kinase C inhibitor Ro-31-8220. However, C3 toxin alone or in combination with growth factors did not stimulate AP-1:Luc activity and actually antagonized the synergistic activation of AP-1:Luc observed in response to co-stimulation with growth factors and Ro-31-8220. These data indicate that C3 toxin is a cellular stress which antagonizes activation of AP-1 at a point downstream of stress-activated kinase activation or immediate-early gene induction.

  2. Interaction, synergy and antagonism in prospective epidemiological studies

    OpenAIRE

    Orellana, Juan J.; Departamento de Salud Pública, Facultad de Medicina, Universidad de La Frontera. Temuco, Chile. Centro de Capacitación Investigación y Gestión en Salud para la Medicina Basada en Evidencias (CIGES), Facultad de Medicina, Universidad de La Frontera. Temuco, Chile. Magister en Salud Pública.; Kaufman, Jay S.; Department of Epidemiology, Biostatistics and Occupational Health, McGill University. Quebec, Canada. PhD en Epidemiología.; Pino, Paulina; Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile. Santiago de Chile, Chile. doctor en Salud Pública.

    2014-01-01

    In public health there is a growing appreciation for the advantage of the additive scale to better understand the impacts of factors involved in a health event. It is necessary to always remember that the concept of statistical interaction is scale dependent. In the causal relationship between a response and the presence of two or more factors, the concepts interaction, synergy and antagonism are the key ideas. The aim of this note is to show an application of the concepts interaction, sy...

  3. Antagonism of Bacillus spp. against Xanthomonas campestris pv. campestris

    OpenAIRE

    Leila Monteiro; Rosa de Lima Ramos Mariano; Ana Maria Souto-Maior

    2005-01-01

    The antagonism of eight Bacillus isolates was investigated against nine strains of Xanthomonas campestris pv. campestris (causal agent of crucifers black rot) to assess the role of lipopeptides in this process. Antimicrobial and hemolytic (surfactant) activity tests were performed in vitro using agar diffusion methods. Antibiosis and hemolysis were positive for four Bacillus isolates against all X. campestris pv. campestris strains. The correlation observed between antimicrobial and hemolytic...

  4. Evaluating the Role of Wnt Signal Transduction in Promoting the Development of the Heart

    Directory of Open Access Journals (Sweden)

    Leonard M. Eisenberg

    2007-01-01

    Full Text Available Wnts are a family of secreted signaling proteins that are encoded by 19 distinct genes in the vertebrate genome. These molecules initiate several signal transduction pathways: the canonical Wnt, Wnt/Ca2+, and Wnt/planar cell polarity pathways. Wnt proteins have major impact on embryonic development, tumor progression, and stem cell differentiation. Wnt signal transduction also influences the formation of the heart, yet many issues concerning the involvement of Wnt regulation in initiating cardiac development remain unresolved. In this review, we will examine the published record to discern (a what has been shown by experimental studies on the participation of Wnt signaling in cardiogenesis, and (b what are the important questions that need to be addressed to understand the importance and function of Wnt signal transduction in facilitating the development of the heart.

  5. Immunohistochemical study of hair follicle stem cells in regenerated hair follicles induced by Wnt10b

    Science.gov (United States)

    Zhang, Yiming; Xing, Yizhan; Guo, Haiying; Ma, Xiaogen; Li, Yuhong

    2016-01-01

    The regulation of the periodic regeneration of hair follicles is complicated. Although Wnt10b has been reported to induce hair follicle regeneration, the characteristics of induced hair follicles, especially the target cells of Wnt10b, have not yet been clearly elucidated. Thus, we systematically evaluated the expression and proliferation patterns of Wnt10b-induced hair follicles. We found that Wnt10b promoted the proliferation of hair follicle stem cells from 24 hours after AdWnt10b injection. Seventy-two hours after AdWnt10b injection, cells outside of bulge area began to proliferate. When the induced hair follicle entered full anagen, although the hair follicle stem cells were normal, canonical Wnt signaling was maintained in the hair precortex cells. Our results reveal that the target cells that overexpressed Wnt10b included hair follicle stem cells, hair precortex cells, and matrix cells.

  6. Ethanol-induced hypothermia in rats is antagonized by dexamethasone

    Directory of Open Access Journals (Sweden)

    Carreño C.F.T.

    1997-01-01

    Full Text Available The effect of dexamethasone on ethanol-induced hypothermia was investigated in 3.5-month old male Wistar rats (N = 10 animals per group. The animals were pretreated with dexamethasone (2.0 mg/kg, ip; volume of injection = 1 ml/kg 15 min before ethanol administration (2.0, 3.0 and 4.0 g/kg, ip; 20% w/v and the colon temperature was monitored with a digital thermometer 30, 60 and 90 min after ethanol administration. Ethanol treatment produced dose-dependent hypothermia throughout the experiment (-1.84 ± 0.10, -2.79 ± 0.09 and -3.79 ± 0.15oC for 2.0, 3.0 and 4.0 g/kg ethanol, respectively, 30 min after ethanol but only the effects of 2.0 and 3.0 g/kg ethanol were significantly antagonized (-0.57 ± 0.09 and -1.25 ± 0.10, respectively, 30 min after ethanol by pretreatment with dexamethasone (ANOVA, P<0.05. These results are in agreement with data from the literature on the rapid antagonism by glucocorticoids of other effects of ethanol. The antagonism was obtained after a short period of time, suggesting that the effect of dexamethasone is different from the classical actions of corticosteroids

  7. Does murine spermatogenesis require WNT signalling? A lesson from Gpr177 conditional knockout mouse models

    OpenAIRE

    Chen, Su-Ren; Tang, J-X; Cheng, J-M; Hao, X-X; Wang, Y-Q; Wang, X-X; Liu, Y-X

    2016-01-01

    Wingless-related MMTV integration site (WNT) proteins and several other components of the WNT signalling pathway are expressed in the murine testes. However, mice mutant for WNT signalling effector β-catenin using different Cre drivers have phenotypes that are inconsistent with each other. The complexity and overlapping expression of WNT signalling cascades have prevented researchers from dissecting their function in spermatogenesis. Depletion of the Gpr177 gene (the mouse orthologue of Droso...

  8. Expression of Gpr177, a Wnt trafficking regulator, in mouse embryogenesis

    OpenAIRE

    Yu, Hsiao-Man Ivy; Jin, Ying; Fu, Jiang; Hsu, Wei

    2010-01-01

    Wls/Evi/Srt encoding a multipass transmembrane protein has been identified as a regulator for proper sorting and secretion of Wnt in flies. We have previously demonstrated that Gpr177 is the mouse orthologue required for axis determination. Gpr177 is a transcriptional target of Wnt which is activated to assist its subcellular distribution in a feedback regulatory loop. We therefore proposed that reciprocal regulation of Wnt and Gpr177 is essential for the Wnt-dependent developmental and patho...

  9. WNT5A modulates cell cycle progression and contributes to the chemoresistance in pancreatic cancer cells

    Institute of Scientific and Technical Information of China (English)

    Wei Wei; Hui-Hui Sun; Na Li; Hong-Yue Li; Xin Li; Qiang Li; Xiao-Hong Shen

    2014-01-01

    BACKGROUND: Although there are many studies on the mechanism of chemoresistance in cancers, studies on the relations between WNT5A and chemoresistance in pancreatic cancer are rare. The present study was to examine the role of WNT5A in the regulation of cell cycle progression and in chemoresistance in pancreatic cancer tissues and cell lines. METHODS: Fresh pancreatic cancer and paracarcinoma tissues were obtained from 32 patients. The expressions of WNT5A, AKT/p-AKT and Cyclin D1 were detected by immunohistochemistry, and the correlation between WNT5A expression and clinicopathological characteristics was analyzed. The relationship between WNT5A expression and gemcitabine resistance was studied in PANC-1 and MIAPaCa2 cell lines. The effect of WNT5A on the regulation of cell cycle and gemcitabine cytotoxicity were investigated. The associations among the expressions of p-AKT, Cyclin D1 and WNT5A were also analyzed in cell lines and the effect of WNT5A on restriction-point (R-point) progression was evaluated. RESULTS: WNT5A, p-AKT and Cyclin D1 were highly expressed in pancreatic cancer tissues, and the WNT5A expression was correlated with the TNM stages. In vitro, WNT5A expression was associated with gemcitabine chemoresistance. The percentage of cells was increased in G0/G1 phase and decreased in S phase after knockdown of WNT5A in PANC-1. WNT5A promoted Cyclin D1 expression through phosphorylation of AKT which consequently enhanced G1-S transition and gemcitabine resistance. Furthermore, WNT5A enhanced the cell cycle progression toward R-point through regulation of retinoblastoma protein (pRb) and pRb-E2F complex formation. CONCLUSIONS: WNT5A induced chemoresistance by regulation of G1-S transition in pancreatic cancer cells. WNT5A might serve as a predictor of gemcitabine response and as a potential target for tumor chemotherapy.

  10. Wnt and planar cell polarity signaling in cystic renal disease.

    Science.gov (United States)

    Goggolidou, Paraskevi

    2014-01-01

    Cystic kidney diseases can cause end stage renal disease, affecting millions of individuals worldwide. They may arise early or later in life, are characterized by a spectrum of symptoms and can be caused by diverse genetic defects. The primary cilium, a microtubule-based organelle that can serve as a signaling antenna, has been demonstrated to have a significant role in ensuring correct kidney development and function. In the kidney, one of the signaling pathways that requires the cilium for normal development is Wnt signaling. In this review, the roles of primary cilia in relation to canonical and non-canonical Wnt/PCP signaling in cystic renal disease are described. The evidence of the associations between cilia, Wnt signaling and cystic renal disease is discussed and the significance of planar cell polarity-related mechanisms in cystic kidney disease is presented. Although defective Wnt signaling is not the only cause of renal disease, research is increasingly highlighting its importance, encouraging the development of Wnt-associated diagnostic and prognostic tools for cystic renal disease.

  11. Activation of the Wnt Pathway by Mycobacterium tuberculosis: A Wnt–Wnt Situation

    Science.gov (United States)

    Villaseñor, Tomás; Madrid-Paulino, Edgardo; Maldonado-Bravo, Rafael; Urbán-Aragón, Antonio; Pérez-Martínez, Leonor; Pedraza-Alva, Gustavo

    2017-01-01

    Mycobacterium tuberculosis (M. tuberculosis), an intracellular pathogenic Gram-positive bacterium, is the cause of tuberculosis (TB), a major worldwide human infectious disease. The innate immune system is the first host defense against M. tuberculosis. The recognition of this pathogen is mediated by several classes of pattern recognition receptors expressed on the host innate immune cells, including Toll-like receptors, Nod-like receptors, and C-type lectin receptors like Dectin-1, the Mannose receptor, and DC-SIGN. M. tuberculosis interaction with any of these receptors activates multiple signaling pathways among which the protein kinase C, the MAPK, and the NFκB pathways have been widely studied. These pathways have been implicated in macrophage invasion, M. tuberculosis survival, and impaired immune response, thus promoting a successful infection and disease. Interestingly, the Wnt signaling pathway, classically regarded as a pathway involved in the control of cell proliferation, migration, and differentiation in embryonic development, has recently been involved in immunoregulatory mechanisms in infectious and inflammatory diseases, such as TB, sepsis, psoriasis, rheumatoid arthritis, and atherosclerosis. In this review, we present the current knowledge supporting a role for the Wnt signaling pathway during macrophage infection by M. tuberculosis and the regulation of the immune response against M. tuberculosis. Understanding the cross talk between different signaling pathways activated by M. tuberculosis will impact on the search for new therapeutic targets to fuel the rational design of drugs aimed to restore the immunological response against M. tuberculosis. PMID:28203237

  12. ERK inhibition sensitizes cancer cells to oleanolic acid-induced apoptosis through ERK/Nrf2/ROS pathway.

    Science.gov (United States)

    Liu, Jia; Ma, Leina; Chen, Xiao; Wang, Jianxun; Yu, Tao; Gong, Ying; Ma, Aiguo; Zheng, Lanhong; Liang, Hui

    2016-06-01

    Oleanolic acid (OA) is a natural triterpenoid that is widely distributed in edible and medicinal plants. OA exerts anti-tumor activity on a wide range of cancer cells primarily through inducing apoptosis. Dysregulated ERK signaling is closely complicated in the biology of cancer, such as metastasis, proliferation, and survival, and it can be activated by various stimuli. In this study, we found that OA induced the activation of ERK in cancer cells. ERK activation compromised the apoptosis induced by OA. Blocking ERK activation by U0126 or siRNAs was able to potentiate the pro-apoptotic activity of OA on cancer cells. OA was shown to promote ERK-dependent Nrf2 expression in cancer cells, and in turn, Nrf2 expression was able to suppress OA-induced ROS generation. Blockade of Nrf2 expression was able to increase ROS levels and apoptotic death in cancer cells. In conclusion, we provided evidences that ERK activation is a mechanism underlying the resistance of cancer cells to OA-induced apoptosis and targeting ERK is a promising strategy to enhance the anti-tumor efficacy of OA.

  13. ERK2, but not ERK1, mediates acquired and "de novo" resistance to imatinib mesylate: implication for CML therapy.

    Directory of Open Access Journals (Sweden)

    Clara I Aceves-Luquero

    Full Text Available Resistance to Imatinib Mesylate (IM is a major problem in Chronic Myelogenous Leukaemia management. Most of the studies about resistance have focused on point mutations on BCR/ABL. However, other types of resistance that do not imply mutations in BCR/ABL have been also described. In the present report we aim to study the role of several MAPK in IM resistance not associate to BCR/ABL mutations. Therefore we used an experimental system of resistant cell lines generated by co-culturing with IM (K562, Lama 84 as well as primary material from resistant and responder patient without BCR/ABL mutations. Here we demonstrate that Erk5 and p38MAPK signaling pathways are not implicated in the acquired resistance phenotype. However, Erk2, but not Erk1, is critical for the acquired resistance to IM. In fact, Bcr/Abl activates preferentially Erk2 in transient transfection in a dose dependent fashion through the c-Abl part of the chimeric protein. Finally, we present evidences demonstrating how constitutive activation of Erk2 is a de novo mechanism of resistance to IM. In summary our data support the use of therapeutic approaches based on Erk2 inhibition, which could be added to the therapeutic armamentarium to fight CML, especially when IM resistance develops secondary to Erk2 activation.

  14. Microarray analysis reveals expression regulation of Wnt antagonists in differentiating osteoblasts

    NARCIS (Netherlands)

    Vaes, B.L.T.; Dechering, K.J.; Someren, E.P. van; Hendriks, J.M.; Ven, C.J. van de; Feijen, A.; Mummery, C.L.; Reinders, M.J.; Olijve, W.; Zoelen, E.J.J. van; Steegenga, W.T.

    2005-01-01

    Wnt signaling has been implicated in regulating bone formation by controlling osteoblast proliferation and function. Although stabilization of beta-catenin by Wnt has been shown to increase alkaline phosphatase expression and osteoblast differentiation, the precise role of Wnt signaling during the p

  15. Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling

    NARCIS (Netherlands)

    de Lau, Wim; Barker, Nick; Low, Teck Y.; Koo, Bon-Kyoung; Li, Vivian S. W.; Teunissen, Hans; Kujala, Pekka; Haegebarth, Andrea; Peters, Peter J.; van de Wetering, Marc; Stange, Daniel E.; van Es, Johan E.; Guardavaccaro, Daniele; Schasfoort, Richard B. M.; Mohri, Yasuaki; Nishimori, Katsuhiko; Mohammed, Shabaz; Heck, Albert J. R.; Clevers, Hans

    2011-01-01

    The adult stem cell marker Lgr5 and its relative Lgr4 are often co-expressed in Wnt-driven proliferative compartments. We find that conditional deletion of both genes in the mouse gut impairs Wnt target gene expression and results in the rapid demise of intestinal crypts, thus phenocopying Wnt pathw

  16. Wnt3a nanodisks promote ex vivo expansion of hematopoietic stem and progenitor cells

    DEFF Research Database (Denmark)

    Lalefar, Nahal R.; Witkowski, Andrzej; Simonsen, Jens Bæk;

    2016-01-01

    -elutes with ND. In signaling assays, Wnt3a ND induced β-catenin stabilization in mouse fibroblasts as well as hematopoietic stem and progenitor cells (HSPC). Prolonged exposure of HSPC to Wnt3a ND stimulated proliferation and expansion of Lin- Sca-1+ c-Kit+ cells. Surprisingly, ND lacking Wnt3a contributed...

  17. Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation.

    Science.gov (United States)

    Fu, Jiang; Jiang, Ming; Mirando, Anthony J; Yu, Hsiao-Man Ivy; Hsu, Wei

    2009-11-03

    Members of the Wnt family are secreted glycoproteins that trigger cellular signals essential for proper development of organisms. Cellular signaling induced by Wnt proteins is involved in diverse developmental processes and human diseases. Previous studies have generated an enormous wealth of knowledge on the events in signal-receiving cells. However, relatively little is known about the making of Wnt in signal-producing cells. Here, we describe that Gpr177, the mouse orthologue of Drosophila Wls, is expressed during formation of embryonic axes. Embryos with deficient Gpr177 exhibit defects in establishment of the body axis, a phenotype highly reminiscent to the loss of Wnt3. Although many different mammalian Wnt proteins are required for a wide range of developmental processes, the Wnt3 ablation exhibits the earliest developmental abnormality. This suggests that the Gpr177-mediated Wnt production cannot be substituted. As a direct target of Wnt, Gpr177 is activated by beta-catenin and LEF/TCF-dependent transcription. This activation alters the cellular distributions of Gpr177 which binds to Wnt proteins and assists their sorting and secretion in a feedback regulatory mechanism. Our findings demonstrate that the loss of Gpr177 affects Wnt production in the signal-producing cells, leading to alterations of Wnt signaling in the signal-receiving cells. A reciprocal regulation of Wnt and Gpr177 is essential for the patterning of the anterior-posterior axis during mammalian development.

  18. Gpr177/mouse Wntless is essential for Wnt-mediated craniofacial and brain development.

    Science.gov (United States)

    Fu, Jiang; Ivy Yu, Hsiao-Man; Maruyama, Takamitsu; Mirando, Anthony J; Hsu, Wei

    2011-02-01

    We have previously demonstrated that Gpr177, the mouse orthologue of Drosophila Wls/Evi/Srt, is required for establishment of the anterior-posterior axis. The Gpr177 null phenotype is highly reminiscent to the loss of Wnt3, the earliest abnormality among all Wnt knockouts in mice. The expression of Gpr177 in various cell types and tissues lead us to hypothesize that reciprocal regulation of Wnt and Gpr177 is essential for the Wnt-dependent developmental and pathogenic processes. Here, we create a new mouse strain permitting conditional inactivation of Gpr177. The loss of Gpr177 in the Wnt1-expressing cells causes mid/hindbrain and craniofacial defects which are far more severe than the Wnt1 knockout, but resemble the double knockout of Wnt1 and Wnt3a as well as β-catenin deletion in the Wnt1-expressing cells. Our findings demonstrate the importance of Gpr177 in Wnt1-mediated development of the mouse embryo, suggesting an overlapping function of Wnt family members in the Wnt1-expressing cells.

  19. Genome-wide analysis of a Wnt1-regulated transcriptional network implicates neurodegenerative pathways.

    Science.gov (United States)

    Wexler, Eric M; Rosen, Ezra; Lu, Daning; Osborn, Gregory E; Martin, Elizabeth; Raybould, Helen; Geschwind, Daniel H

    2011-10-04

    Wnt proteins are critical to mammalian brain development and function. The canonical Wnt signaling pathway involves the stabilization and nuclear translocation of β-catenin; however, Wnt also signals through alternative, noncanonical pathways. To gain a systems-level, genome-wide view of Wnt signaling, we analyzed Wnt1-stimulated changes in gene expression by transcriptional microarray analysis in cultured human neural progenitor (hNP) cells at multiple time points over a 72-hour time course. We observed a widespread oscillatory-like pattern of changes in gene expression, involving components of both the canonical and the noncanonical Wnt signaling pathways. A higher-order, systems-level analysis that combined independent component analysis, waveform analysis, and mutual information-based network construction revealed effects on pathways related to cell death and neurodegenerative disease. Wnt effectors were tightly clustered with presenilin1 (PSEN1) and granulin (GRN), which cause dominantly inherited forms of Alzheimer's disease and frontotemporal dementia (FTD), respectively. We further explored a potential link between Wnt1 and GRN and found that Wnt1 decreased GRN expression by hNPs. Conversely, GRN knockdown increased WNT1 expression, demonstrating that Wnt and GRN reciprocally regulate each other. Finally, we provided in vivo validation of the in vitro findings by analyzing gene expression data from individuals with FTD. These unbiased and genome-wide analyses provide evidence for a connection between Wnt signaling and the transcriptional regulation of neurodegenerative disease genes.

  20. Regulation of lubricin/superficial zone protein by Wnt signalling in bovine synoviocytes.

    Science.gov (United States)

    Inui, Atsuyuki; Iwakura, Takashi; Hari Reddi, A

    2016-02-01

    Lubricin, homologous to superficial zone protein (SZP), functions as a boundary lubricant in articular cartilage and plays an essential role in the maintenance of joint function and homeostasis. Wnt signalling plays a key role in joint development, including synovial joint formation, and several Wnt proteins are expressed in the synovium and articular cartilage in arthritis. The aim of this study was to determine the role of Wnt signalling on SZP accumulation in synoviocytes. Isolated synoviocytes from bovine knee joints were cultured with Wnt proteins (Wnt-3a and Wnt-5a) and antagonists or agonists of the Wnt-β-catenin pathway or Wnt-Ca(2+) pathway in serum-free chemically defined medium. SZP accumulation in the culture medium was determined by enzyme-linked immunosorbent assay. Wnt-3a suppressed SZP accumulation via a Wnt-β-catenin-dependent pathway. In contrast, Wnt-5a stimulated SZP accumulation via a β-catenin independent pathway. The present investigation provides novel insights into the role of the Wnt signalling pathways in SZP accumulation in synoviocytes and their roles in the homeostasis of normal joints.

  1. Immunoexpression of Wnt/β-catenin signaling pathway proteins in ameloblastoma and calcifying cystic odontogenic tumor

    Science.gov (United States)

    Dutra, Sabrina-Nogueira; Pires, Fábio-Ramôa; Armada, Luciana

    2017-01-01

    Background Wnt/β-catenin signaling pathway is essential for the beginning of odontogenesis and may be involved in the development and progression of some odontogenic tumors. Thus, the aim of this study was to comparatively evaluate the immunohistochemical expression of Wnt/β-catenin signaling pathway proteins in a series of AME and CCOT. Material and Methods Immunohistochemical reactions were performed using antibodies against Wnt1, Wnt5a and β-catenin in 17 cases of solid AME and 6 cases of CCOT. Results In the AME group, Wnt1 and Wnt5a were identified in the epithelium in most of the cases, and β-catenin was mainly identified in the cytoplasm of the tumoral cells. In the CCOT group, Wnt1 and Wnt5a were identified in the epithelium and in the ghost cells in almost all the cases, and β-catenin was mainly identified in the cytoplasm and in the nuclei of the tumoral cells. Conclusions These results contribute to support the importance of Wnt/β-catenin signaling pathway proteins in AME and CCOT tumorigenesis. The abnormal expression of cytoplasmic and/or nuclear β-catenin appears to contribute to the development of both AME and CCOT. In addition, it is possible that Wnt1 and Wnt5a expression in ghost cells can contribute to its histogenesis in CCOT. Key words:Ameloblastoma, β-catenin, calcifying cystic odontogenic tumor, immunohistochemistry, Wnt. PMID:28149478

  2. Microarray analysis reveals expression regulation of Wnt antagonists in differentiating osteoblasts

    NARCIS (Netherlands)

    Vaes, B.L.T.; Dechering, K.J.; Someren, van P.; Hendriks, J.M.A.; Ven, van de C.J.J.M.; Feijen, A.; Mummery, C.L.; Reinders, M.J.T.; Olijve, W.; Zoelen, van E.J.J.; Steegenga, W.T.

    2005-01-01

    Wnt signaling has been implicated in regulating bone formation by controlling osteoblast proliferation and function. Although stabilization of ß-catenin by Wnt has been shown to increase alkaline phosphatase expression and osteoblast differentiation, the precise role of Wnt signaling during the proc

  3. PR72, a novel regulator of Wnt signaling required for Naked cuticle function

    NARCIS (Netherlands)

    Creyghton, M.P.; Roël, G.; Eichhorn, P.J.A.; Hijmans, E.M.; Maurer, I.; Destrée, O.; Bernards, R.A.

    2005-01-01

    The Wnt signaling cascade is a central regulator of cell fate determination during embryonic development, whose deregulation contributes to oncogenesis. Naked cuticle is the first Wnt-induced antagonist found in this pathway, establishing a negative-feedback loop that limits the Wnt signal required

  4. ERK1 and ERK2 are involved in recruitment and maturation of human mesenchymal stem cells induced to adipogenic differentiation

    Institute of Scientific and Technical Information of China (English)

    Elisabetta Donzelli; Caterina Lucchini; Elisa Ballarini; Arianna Scuteri; Fabrizio Carini; Giovanni Tredici; Mariarosaria Miloso

    2011-01-01

    Adipocytes' biology and the mechanisms that control adipogenesis have gained importance because of the need to develop therapeutic strategies to control obesity and the related pathologies. Human mesenchymal stem cells (hMSCs), undifferentiated stem cells present in the bone marrow that are physiological precursors of adipocytes, were induced to adipogenic differentiation. The molecular mechanisms on the basis of the adipogenesis were evaluated, focusing on the MAPKinases ERK1 and ERK2, which are involved in many biological and cellular processes. ERK1 and ERK2 phosphorylation was reduced with different timing and intensity for the two isoforms in treated hMSCs in comparison with control cells until day 10 and then at 14-28 days, it reached the level of untreated cultures. The total amount of ERK1 was also decreased up to day 10 and then was induced to the level of untreated cultures, whereas the expression of ERK2 was not changed following adipogenic induction. Treatment with the specific ERK1/2 inhibitor U0126 during the whole differentiation period hampered hMSCs' adipogenic differentiation, as lipid droplets appeared in very few cells and were reduced in number and size. When U0126 was administered only during the initial phase of differentiation, the number of hMSCs recruited to adipogenesis was reduced while, when it was administered later, hMSCs did not acquire a mature adipocytic phenotype. ERK1 and ERK2 are important for hMSC adipogenic differentiation since any alteration to the correct timing of their phosphorylation affects either the recruitment into the differentiation program and the extent of their maturation.

  5. Wnt signaling through T-cell factor phosphorylation

    Institute of Scientific and Technical Information of China (English)

    Sergei Y Sokol

    2011-01-01

    Embryonic signaling pathways often lead to a switch from default repression to transcriptional activation of target genes. A major consequence of Wnt signaling is stabilization of p-catenin, which associates with T-cell factors (TCFs) and 'converts' them from repressors into transcriptional activators. The molecular mechanisms responsible for this conversion remain poorly understood. Several studies have reported on the regulation of TCF by phosphorylation,yet its physiological significance has been unclear: in some cases it appears to promote target gene activation, in oth-ers Wnt-dependent transcription is inhibited. This review focuses on recent progress in the understanding of context-dependent post-translational regulation of TCF function by Wnt signaling.

  6. Crossroads of Wnt and Hippo in epithelial tissues.

    Science.gov (United States)

    Bernascone, Ilenia; Martin-Belmonte, Fernando

    2013-08-01

    Epithelial tissues undergo constant growth and differentiation during embryonic development and to replace damaged tissue in adult organs. These processes are governed by different signaling pathways that ultimately control the expression of genes associated with cell proliferation, patterning, and death. One essential pathway is Wnt, which controls tubulogenesis in several epithelial organs. Recently, Wnt has been closely linked to other signaling pathways, such as Hippo, that orchestrate proliferation and apoptosis to control organ size. There is evidence that epithelial cell junctions may sequester the transcription factors that act downstream of these signaling pathways, which would represent an important aspect of their functional regulation and their influence on cell behavior. Here, we review the transcriptional control exerted by the Wnt and Hippo signaling pathways during epithelial growth, patterning, and differentiation and recent advances in understanding of the regulation and crosstalk of these pathways in epithelial tissues.

  7. The Canonical Wnt Pathway Regulates the Metastasis-Promoting Mucin MUC4 in Pancreatic Ductal Adenocarcinoma

    Science.gov (United States)

    Pai, Priya; Rachagani, Satyanarayana; Lakshmanan, Imayavaramban; Macha, Muzafar A; Sheinin, Yuri; Smith, Lynette M.; Ponnusamy, Moorthy P.; Batra, Surinder K.

    2015-01-01

    Aberrant Wnt signaling frequently occurs in pancreatic cancer (PC) and contributes to disease progression/metastases. Likewise, the transmembrane-mucin MUC4 is expressed de novo in early pancreatic intraepithelial neoplasia (PanINs) and incrementally increases with PC progression, contributing to metastasis. To determine the mechanism of MUC4 upregulation in PC, we examined factors deregulated in early PC progression, such as Wnt/β-catenin signaling. MUC4 promoter analysis revealed the presence of three putative TCF/LEF-binding sites, leading us to hypothesize that MUC4 can be regulated by β-catenin. Immunohistochemical (IHC) analysis of rapid autopsy PC tissues showed a correlation between MUC4 and cytosolic/nuclear β-catenin expression. Knock down (KD) of β-catenin in CD18/HPAF and T3M4 cell lines resulted in decreased MUC4 transcript and protein. Three MUC4 promoter luciferase constructs, p3778, p3000, and p2700, were generated. The construct p3778, encompassing the entire MUC4 promoter, elicited increased luciferase activity in the presence of stabilized β-catenin. Mutation of the TCF/LEF site closest to the transcription start site (i.e., −2629/−2612) and furthest from the start site (i.e., −3425/−3408) reduced MUC4 promoter luciferase activity. Transfection with dominant negative TCF4 decreased MUC4 transcript and protein levels. Chromatin immunoprecipitation confirmed enrichment of β-catenin on −2629/−2612 and −3425/−3408 of the MUC4 promoter in CD18/HPAF. Functionally, CD18/HPAF and T3M4 β-catenin KD cells showed decreased migration and decreased Vimentin, N-cadherin, and pERK1/2 expression. Tumorigenicity studies in athymic nude mice showed CD18/HPAF β-catenin KD cells significantly reduced primary tumor sizes and metastases compared to scrambled control cells. We show for the first time that β-catenin directly governs MUC4 in PC. PMID:26526617

  8. Antagonism of serotonin receptor 1B decreases viability and promotes apoptosis in the COS canine osteosarcoma cell line.

    Science.gov (United States)

    Viall, A K; Goodall, C P; Stang, B; Marley, K; Chappell, P E; Bracha, S

    2016-06-01

    Serotonin receptor 1B (5HTR1B) traditionally exhibits anti-proliferative activity in osteoblasts. We examined the expression and function of 5HTR1B in the COS canine osteosarcoma cell line and normal canine osteoblasts. Equal levels of 5HTR1B gene and protein expression were found between normal and malignant osteoblasts. Treatment with serotonin enhanced viability of osteosarcoma cells but not normal osteoblasts. Challenge with the 5HTR1B agonist anpirtoline caused no change in cell viability. Rather incubation with the specific receptor antagonist SB224289 caused reduction in osteoblast viability, with this effect more substantial in osteosarcoma cells. Investigation of this inhibitory activity showed 5HTR1B antagonism induces apoptosis in malignant cells. Evaluation of phosphorylated levels of CREB and ERK, transcriptional regulators associated with serotonin receptor signalling in osteoblasts, revealed aberrant 5HTR1B signalling in COS. Our results confirm the presence of 5HTR1B in a canine osteosarcoma cell line and highlight this receptor as a possible novel therapeutic target.

  9. Identifying Epigenetic Modulators of Resistance to ERK Signaling Inhibitors

    Science.gov (United States)

    2015-08-01

    AWARD NUMBER: WSlXWH-14-1-0230 TITLE: Identifying Epigenetic Modulators of Resistance to ERK Signaling Inhibitors PRINCIPAL INVESTIGATOR: Emily...5a. CONTRACT NUMBER Identifying Epigenetic Modulators of Resistance to ERK Signaling Inhibitors 5b. GRANT NUMBER W8 1XWH- 1 4 - 1 - 0230 5c...response to targeted therapies in cancer. However, a global and unbiased approach to decipher the epigenetic mechanisms underlying melanoma drug

  10. Wnt blockers inhibit the proliferation of lung cancer stem cells

    Directory of Open Access Journals (Sweden)

    Zhang X

    2015-04-01

    Full Text Available Xueyan Zhang,1* Yuqing Lou,1* Xiaoxuan Zheng,1 Huimin Wang,1 Jiayuan Sun,1 Qianggang Dong,2 Baohui Han1 1Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, People’s Republic of China; 2Section of Cancer Stem Cells, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Background: Previous study has confirmed that the occurrence of Wnt pathway activation is associated with risk of non-small-cell lung cancer recurrence. However, whether the pharmacologic blocking of the Wnt signaling pathway could provide therapeutic possibility remains unknown. The aim of the present study was to evaluate the therapeutic functions of the Wnt signaling pathway inhibitor pyrvinium pamoate (PP on lung cancer stem cells (LCSCs in vitro. Methods: Colony formation and sphere culture were performed to enrich LCSCs from three lung cancer cell lines: PC9, SPC-A1, and A549. After confirming stemness by immunofluorescence, PP was employed for cell viability assay by comparison with three other kinds of Wnt signaling inhibitor: salinomycin, ICG-001, and silibinin. The effect of PP on LCSCs was further verified by colony formation assay and gene expression analysis. Results: LCSCs were successfully generated by sphere culture from SPC-A1 and PC9 cells, but not A549 cells. Immunofluorescence assay showed that LCSCs could express pluripotent stem cell markers, including NANOG, Oct4, KLF5, and SOX2, and Wnt signaling pathway molecules ß-catenin and MYC. Half-maximal inhibitory concentrations of PP on SPC-A1, PC9, and A549 were 10 nM, 0.44 nM, and 0.21 nM, respectively, which are much lower than those of salinomycin, ICG-001, and silibinin. Moreover, significantly decreased colony formation and downregulation of pluripotent stem cell signaling pathway were observed in lung cancer cells after treatment with PP. Conclusion: Wnt signaling

  11. Revisiting the role of Wnt/β-catenin signaling in prostate cancer.

    Science.gov (United States)

    Schneider, Jeffrey A; Logan, Susan K

    2017-02-09

    The androgen receptor (AR) is a widely accepted therapeutic target in prostate cancer and multiple studies indicate that the AR and Wnt/β-catenin pathways intersect. Recent genome-wide analysis of prostate cancer metastases illustrate the importance of the Wnt/β-catenin pathway in prostate cancer and compel us to reexamine the interaction of the AR and Wnt/β-catenin signaling pathways. This review includes newer areas of interest such as non-canonical Wnt signaling and the role of Wnts in prostate cancer stem cells. The effort to develop Wnt modulating therapeutics, both biologics and small molecules, is also discussed.

  12. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance.

    Science.gov (United States)

    Wickström, Malin; Dyberg, Cecilia; Milosevic, Jelena; Einvik, Christer; Calero, Raul; Sveinbjörnsson, Baldur; Sandén, Emma; Darabi, Anna; Siesjö, Peter; Kool, Marcel; Kogner, Per; Baryawno, Ninib; Johnsen, John Inge

    2015-11-25

    The DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) is commonly overexpressed in cancers and is implicated in the development of chemoresistance. The use of drugs inhibiting MGMT has been hindered by their haematologic toxicity and inefficiency. As a different strategy to inhibit MGMT we investigated cellular regulators of MGMT expression in multiple cancers. Here we show a significant correlation between Wnt signalling and MGMT expression in cancers with different origin and confirm the findings by bioinformatic analysis and immunofluorescence. We demonstrate Wnt-dependent MGMT gene expression and cellular co-localization between active β-catenin and MGMT. Pharmacological or genetic inhibition of Wnt activity downregulates MGMT expression and restores chemosensitivity of DNA-alkylating drugs in mouse models. These findings have potential therapeutic implications for chemoresistant cancers, especially of brain tumours where the use of temozolomide is frequently used in treatment.

  13. Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis.

    Science.gov (United States)

    Fu, Jiang; Hsu, Wei

    2013-04-01

    A signal first arising in the dermis to initiate the development of hair follicles has been described for many decades. Wnt is the earliest signal known to be intimately involved in hair follicle induction. However, it is not clear whether the inductive signal of Wnt arises intradermally or intraepidermally. Whether Wnt acts as the first dermal signal to initiate hair follicle development also remains unclear. Here we report that Wnt production mediated by Gpr177, the mouse Wls ortholog, is essential for hair follicle induction. Gpr177, encoding a multipass transmembrane protein, regulates Wnt sorting and secretion. Cell type-specific abrogation of the signal reveals that only epidermal, but not dermal, production of Wnt is required. An intraepidermal Wnt signal is necessary and sufficient for hair follicle initiation. However, the subsequent development depends on reciprocal signaling crosstalk of epidermal and dermal cells. Wnt signals within the epidermis and dermis and crossing between the epidermis and dermis have distinct roles and specific functions in skin development. This study not only defines the cell type responsible for Wnt production, but also reveals a highly dynamic regulation of Wnt signaling at different steps of hair follicle morphogenesis. Our findings uncover a mechanism underlying hair follicle development orchestrated by the Wnt pathway.

  14. Structural dynamics and inhibitor searching for Wnt-4 protein using comparative computational studies

    Science.gov (United States)

    Hammad, Mirza A; Azam, Syed Sikander

    2015-01-01

    Wnt-4 (wingless mouse mammary tumor virus integration site-4) protein is involved in many crucial embryonic pathways regulating essential processes. Aberrant Wnt-4 activity causes various anomalies leading to gastric, colon, or breast cancer. Wnt-4 is a conserved protein in structure and sequence. All Wnt proteins contain an unusual fold comprising of a thumb (or N-terminal domain) and index finger (or C-terminal domain) bifurcated by a palm domain. The aim of this study was to identify the best inhibitors of Wnt-4 that not only interact with Wnt-4 protein but also with the covalently bound acyl group to inhibit aberrant Wnt-4 activity. A systematic computational approach was used to analyze inhibition of Wnt-4. Palmitoleic acid was docked into Wnt-4 protein, followed by ligand-based virtual screening of nearly 209,847 compounds; conformer generation of 271 compounds resulted from extensive virtual screening and comparative docking of 10,531 conformers of 271 unique compounds through GOLD (Genetic Optimization for Ligand Docking), AutoDock-Vina, and FRED (Fast Rigid Exhaustive Docking) was subsequently performed. Linux scripts was used to handle the libraries of compounds. The best compounds were selected on the basis of having maximum interactions to protein with bound palmitoleic acid. These represented lead inhibitors in further experiments. Palmitoleic acid is important for efficient Wnt activity, but aberrant Wnt-4 expression can be inhibited by designing inhibitors interacting with both protein and palmitoleic acid. PMID:25995617

  15. Post-transcriptional regulation of wnt8a is essential to zebrafish axis development.

    Science.gov (United States)

    Wylie, Annika D; Fleming, Jo-Ann G W; Whitener, Amy E; Lekven, Arne C

    2014-02-01

    wnt8a Is essential for normal patterning during vertebrate embryonic development, and either gain or loss-of-function gene dysregulation results in severe axis malformations. The zebrafish wnt8a locus is structured such that transcripts may possess two regulatory 3' untranslated regions (UTRs), raising the possibility of post-transcriptional regulation as an important mode of wnt8a signaling control. To determine whether both UTRs contribute to post-transcriptional wnt8a gene regulation, each UTR (UTR1 and UTR2) was tested in transient and transgenic reporter assays. Both UTRs suppress EGFP reporter expression in cis, with UTR2 exhibiting a more pronounced effect. UTR2 contains a 6 base sequence necessary for UTR2 regulatory function that is complementary to the seed of the microRNA, miR-430. A target protector morpholino that overlaps the seed complement stabilizes both reporter mRNAs and wnt8a mRNAs, and produces phenotypic abnormalities consistent with wnt8a gain-of-function. In rescue assays, specific functions can be attributed to each of the two wnt8a proteins encoded by the locus. An interplay of wnt8a.1 and wnt8a.2 regulates neural and mesodermal patterning and morphogenesis as well as patterning between brain subdivisions. Thus, post-transcriptional control of wnt8a is essential to fine tune the balance of the signaling outputs of the complex wnt8a locus.

  16. Wnt-Frizzled/planar cell polarity signaling: cellular orientation by facing the wind (Wnt).

    Science.gov (United States)

    Yang, Yingzi; Mlodzik, Marek

    2015-01-01

    The establishment of planar cell polarity (PCP) in epithelial and mesenchymal cells is a critical, evolutionarily conserved process during development and organogenesis. Analyses in Drosophila and several vertebrate model organisms have contributed a wealth of information on the regulation of PCP. A key conserved pathway regulating PCP, the so-called core Wnt-Frizzled PCP (Fz/PCP) signaling pathway, was initially identified through genetic studies of Drosophila. PCP studies in vertebrates, most notably mouse and zebrafish, have identified novel factors in PCP signaling and have also defined cellular features requiring PCP signaling input. These studies have shifted focus to the role of Van Gogh (Vang)/Vangl genes in this molecular system. This review focuses on new insights into the core Fz/Vangl/PCP pathway and recent advances in Drosophila and vertebrate PCP studies. We attempt to integrate these within the existing core Fz/Vangl/PCP signaling framework.

  17. Effects of fulvestrant on biological activity and Wnt expression in rat GH3 cells

    Institute of Scientific and Technical Information of China (English)

    Jiwei Bai; Yan Wang; Chuzhong Li; Yazhuo Zhang

    2012-01-01

    The present study investigated the influence of anti-estrogen treatment (fulvestrant) on pituitary adenoma cell line GH3 biological activity, the estrogen receptor α pathway, the WnT pathway, and mechanisms of decreased Wnt inhibitory factor-1 expression in GH3 cells. Results showed that fulvestrant suppressed GH3 cell proliferation and reduced hormone secretion in a dose-dependent manner. Estrogen receptor α and Wnt4 expression decreased, but Wnt inhibitory factor-1 expression increased in a dose-dependent manner following fulvestrant treatment, and β-catenin expression remained unchanged. Inhibitors of DNA methylation and histone modification upregulated Wnt inhibitory factor-1 expression. Results suggested that fulvestrant suppressed biological activity of GH3 cells via the estrogen receptor α and Wnt pathways. These results suggested that decreased Wnt inhibitory factor-1 expression in GH3 cells played a role in epigenetic mechanisms. Anti-estrogen therapies could provide novel treatments for growth hormone adenomas.

  18. Wnt7b stimulates embryonic lung growth by coordinately increasing the replication of epithelium and mesenchyme.

    Science.gov (United States)

    Rajagopal, Jayaraj; Carroll, Thomas J; Guseh, J Sawalla; Bores, Sam A; Blank, Leah J; Anderson, William J; Yu, Jing; Zhou, Qiao; McMahon, Andrew P; Melton, Douglas A

    2008-05-01

    The effects of Wnt7b on lung development were examined using a conditional Wnt7b-null mouse. Wnt7b-null lungs are markedly hypoplastic, yet display largely normal patterning and cell differentiation. In contrast to findings in prior hypomorphic Wnt7b models, we find decreased replication of both developing epithelium and mesenchyme, without abnormalities of vascular smooth muscle development. We further demonstrate that Wnt7b signals to neighboring cells to activate both autocrine and paracrine canonical Wnt signaling cascades. In contrast to results from hypomorphic models, we show that Wnt7b modulates several important signaling pathways in the lung. Together, these cascades result in the coordinated proliferation of adjacent epithelial and mesenchymal cells to stimulate organ growth with few alterations in differentiation and patterning.

  19. Effects of Wnt signaling on brown adipocyte differentiation and metabolism mediated by PGC-1alpha

    DEFF Research Database (Denmark)

    Kang, Sona; Bajnok, Laszlo; Longo, Kenneth A;

    2005-01-01

    expression of PGC-1alpha is required for activation of uncoupling protein 1 (UCP1). Wnt10b blocks brown adipose tissue development and expression of UCP1 when expressed from the fatty acid binding protein 4 promoter, even when mice are administered a beta3-agonist. In differentiated brown adipocytes......Activation of canonical Wnt signaling inhibits brown adipogenesis of cultured cells by impeding induction of PPARgamma and C/EBPalpha. Although enforced expression of these adipogenic transcription factors restores lipid accumulation and expression of FABP4 in Wnt-expressing cells, additional......, activation of Wnt signaling suppresses expression of UCP1 through repression of PGC-1alpha. Consistent with these in vitro observations, UCP1-Wnt10b transgenic mice, which express Wnt10b in interscapular tissue, lack functional brown adipose tissue. While interscapular tissue of UCP1-Wnt10b mice lacks...

  20. Canonical Wnt signaling protects hippocampal neurons from Aβ oligomers: role of non-canonical Wnt-5a/Ca2+ in mitochondrial dynamics

    Science.gov (United States)

    Silva-Alvarez, Carmen; Arrázola, Macarena S.; Godoy, Juan A.; Ordenes, Daniela; Inestrosa, Nibaldo C.

    2013-01-01

    Alzheimer's disease (AD) is the most common type of age-related dementia. The disease is characterized by a progressive loss of cognitive abilities, severe neurodegeneration, synaptic loss and mitochondrial dysfunction. The Wnt signaling pathway participates in the development of the central nervous system and growing evidence indicates that Wnts also regulate the function of the adult nervous system. We report here, that indirect activation of canonical Wnt/β-catenin signaling using Bromoindirubin-30-Oxime (6-BIO), an inhibitor of glycogen synthase kinase-3β, protects hippocampal neurons from amyloid-β (Aβ) oligomers with the concomitant blockade of neuronal apoptosis. More importantly, activation with Wnt-5a, a non-canonical Wnt ligand, results in the modulation of mitochondrial dynamics, preventing the changes induced by Aβ oligomers (Aβo) in mitochondrial fission-fusion dynamics and modulates Bcl-2 increases induced by oligomers. The canonical Wnt-3a ligand neither the secreted Frizzled-Related Protein (sFRP), a Wnt scavenger, did not prevent these effects. In contrast, some of the Aβ oligomer effects were blocked by Ryanodine. We conclude that canonical Wnt/β-catenin signaling controls neuronal survival, and that non-canonical Wnt/Ca2+signaling modulates mitochondrial dysfunction. Since mitochondrial dysfunction is present in neurodegenerative diseases, the therapeutic possibilities of the activation of Wnt signaling are evident. PMID:23805073

  1. Gpr177-mediated Wnt Signaling Is Required for Secondary Palate Development.

    Science.gov (United States)

    Liu, Y; Wang, M; Zhao, W; Yuan, X; Yang, X; Li, Y; Qiu, M; Zhu, X-J; Zhang, Z

    2015-07-01

    Cleft palate represents one of the major congenital birth defects in humans. Despite the essential roles of ectodermal canonical Wnt and mesenchymal Wnt signaling in the secondary palate development, the function of mesenchymal canonical Wnt activity in secondary palate development remains elusive. Here we show that Gpr177, a highly conserved transmembrane protein essential for Wnt trafficking, is required for secondary palate development. Gpr177 is expressed in both epithelium and mesenchyme of palatal shelves during mouse development. Wnt1(Cre)-mediated deletion of Gpr177 in craniofacial neural crest cells leads to a complete cleft secondary palate, which is formed mainly due to aberrant cell proliferation and increased cell death in palatal shelves. By BATGAL staining, we reveal an intense canonical Wnt activity in the anterior palate mesenchyme of E12.5 wild-type embryos but not in Gpr177(Wnt1-Cre) embryos, suggesting that mesenchymal canonical Wnt signaling activated by Gpr177-mediated mesenchymal Wnts is critical for secondary palate development. Moreover, phosphorylation of JNK and c-Jun is impaired in the Gpr177(Wnt1-Cre) palate and is restored by implantation of Wnt5a-soaked beads in the in vitro palate explants, suggesting that Gpr177 probably regulates palate development via the Wnt5a-mediated noncanonical Wnt pathway in which c-Jun and JNK are involved. Importantly, certain cellular processes and the altered gene expression in palates lacking Gpr177 are distinct from that of the Wnt5a mutant, further demonstrating involvement of other mesenchymal Wnts in the process of palate development. Together, these results suggest that mesenchymal Gpr177 is required for secondary palate development by regulating and integrating mesenchymal canonical and noncanonical Wnt signals.

  2. Plant stanols induce intestinal tumor formation by up-regulating Wnt and EGFR signaling in Apc Min mice.

    Science.gov (United States)

    Marttinen, Maija; Päivärinta, Essi; Storvik, Markus; Huikko, Laura; Luoma-Halkola, Heli; Piironen, Vieno; Pajari, Anne-Maria; Mutanen, Marja

    2013-01-01

    The rate of APC mutations in the intestine increases in middle-age. At the same period of life, plant sterol and stanol enriched functional foods are introduced to diet to lower blood cholesterol. This study examined the effect of plant stanol enriched diet on intestinal adenoma formation in the Apc(Min) mouse. Apc(Min) mice were fed 0.8% plant stanol diet or control diet for nine weeks. Cholesterol, plant sterols and plant stanols were analyzed from the caecum content and the intestinal mucosa. Levels of β-catenin, cyclin D1, epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase 1/2 (ERK1/2) were measured from the intestinal mucosa by Western blotting. Gene expression was determined from the intestinal mucosa using Affymetrix and the data were analyzed for enriched categories and pathways. Plant stanols induced adenoma formation in the small intestine, however, the adenoma size was not affected. We saw increased levels of nuclear β-catenin, phosphorylated β-catenin (Ser675 and Ser552), nuclear cyclin D1, total and phosphorylated EGFR and phosphorylated ERK1/2 in the intestinal mucosa after plant stanol feeding. The Affymetrix data demonstrate that several enzymes of cholesterol synthesis pathway were up-regulated, although the cholesterol level in the intestinal mucosa was not altered. We show that plant stanols induce adenoma formation by activating Wnt and EGFR signaling. EGFR signaling seems to have promoted β-catenin phosphorylation and its translocation into the nucleus, where the expression of cyclin D1 was increased. Up-regulated cholesterol synthesis may partly explain the increased EGFR signaling in the plant stanol-fed mice.

  3. Wnt signaling in the regulation of adult hippocampal neurogenesis

    Directory of Open Access Journals (Sweden)

    Lorena eVarela-Nallar

    2013-06-01

    Full Text Available In the adult brain new neurons are continuously generated mainly in two regions, the subventricular zone of the lateral ventricles and the subgranular zone (SGZ in the hippocampal dentate gyrus. In the SGZ, radial neural stem cells give rise to granule cells that integrate into the hippocampal circuitry and are relevant for the plasticity of the hippocampus. Loss of neurogenesis impairs learning and memory, suggesting that this process is important for adult hippocampal function. Adult neurogenesis is tightly regulated by multiple signaling pathways, including the canonical Wnt/beta-catenin pathway. This pathway plays important roles during the development of neuronal circuits and in the adult brain it modulates synaptic transmission and plasticity. Here, we review current knowledge on the regulation of adult hippocampal neurogenesis by the Wnt/beta-catenin signaling cascade and the potential mechanisms involved in this regulation. Also we discuss the evidence supporting that the canonical Wnt pathway is part of the signaling mechanisms involved in the regulation of neurogenesis in different physiological conditions. Finally, some unsolved questions regarding the Wnt-mediated regulation of neurogenesis are discussed.

  4. Wnt signaling in the regulation of adult hippocampal neurogenesis

    Science.gov (United States)

    Varela-Nallar, Lorena; Inestrosa, Nibaldo C.

    2013-01-01

    In the adult brain new neurons are continuously generated mainly in two regions, the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) in the hippocampal dentate gyrus. In the SGZ, radial neural stem cells (NSCs) give rise to granule cells that integrate into the hippocampal circuitry and are relevant for the plasticity of the hippocampus. Loss of neurogenesis impairs learning and memory, suggesting that this process is important for adult hippocampal function. Adult neurogenesis is tightly regulated by multiple signaling pathways, including the canonical Wnt/β-catenin pathway. This pathway plays important roles during the development of neuronal circuits and in the adult brain it modulates synaptic transmission and plasticity. Here, we review current knowledge on the regulation of adult hippocampal neurogenesis by the Wnt/β-catenin signaling cascade and the potential mechanisms involved in this regulation. Also we discuss the evidence supporting that the canonical Wnt pathway is part of the signaling mechanisms involved in the regulation of neurogenesis in different physiological conditions. Finally, some unsolved questions regarding the Wnt-mediated regulation of neurogenesis are discussed. PMID:23805076

  5. Wnt and Extraocular Muscle Sparing in Amyotrophic Lateral Sclerosis

    OpenAIRE

    2014-01-01

    The potential role of Wnt signaling factors in extraocular muscle (EOM) sparing in amyotrophic lateral sclerosis (ALS) was examined. Three of the Wnts were preferentially upregulated in EOM, suggesting that they may be involved in maintenance of neuromuscular junctions in the EOM of ALS patients.

  6. WNT signaling in the normal intestine and colorectal cancer.

    NARCIS (Netherlands)

    Lau, W. de; Barker, N.; Clevers, J.C.

    2007-01-01

    The intestinal epithelium is a self-renewing tissue that represents a unique model for studying interconnected cellular processes such as proliferation, differentiation, cell migration and carcinogenesis. This review covers work from the past decade and highlights the importance of the canonical Wnt

  7. Dickkopf1--a new player in modelling the Wnt pathway.

    Directory of Open Access Journals (Sweden)

    Lykke Pedersen

    Full Text Available The Wnt signaling pathway transducing the stabilization of β-catenin is essential for metazoan embryo development and is misregulated in many diseases such as cancers. In recent years models have been proposed for the Wnt signaling pathway during the segmentation process in developing embryos. Many of these include negative feedback loops where Axin2 plays a key role. However, Axin2 null mice show no segmentation phenotype. We therefore propose a new model where the negative feedback involves Dkk1 rather than Axin2. We show that this model can exhibit the same type of oscillations as the previous models with Axin2 and as observed in experiments. We show that a spatial Wnt gradient can consistently convert this temporal periodicity into the spatial periodicity of somites, provided the oscillations in new cells arising in the presomitic mesoderm are synchronized with the oscillations of older cells. We further investigate the hypothesis that a change in the Wnt level in the tail bud during the later stages of somitogenesis can lengthen the time period of the oscillations and hence the size and separation of the later somites.

  8. Mammary Development and Breast Cancer: A Wnt Perspective

    OpenAIRE

    Qing Cissy Yu; Verheyen, Esther M.; Yi Arial Zeng

    2016-01-01

    The Wnt pathway has emerged as a key signaling cascade participating in mammary organogenesis and breast oncogenesis. In this review, we will summarize the current knowledge of how the pathway regulates stem cells and normal development of the mammary gland, and discuss how its various components contribute to breast carcinoma pathology.

  9. How Notch and Wnt make T-cells tick

    NARCIS (Netherlands)

    Helbig, C.

    2013-01-01

    This dissertation shows that the ancient Wnt and Notch signaling modules have been coopted by the immune system to direct T-cell responses. Notch has turned out to be particularly dedicated to induction of effector cell differentiation and function. Lack of Notch activation may predispose cells to l

  10. TDAG51 is an ERK signaling target that opposes ERK-mediated HME16C mammary epithelial cell transformation

    Directory of Open Access Journals (Sweden)

    Ward Yvona

    2008-07-01

    Full Text Available Abstract Introduction Signaling downstream of Ras is mediated by three major pathways, Raf/ERK, phosphatidylinositol 3 kinase (PI3K, and Ral guanine nucleotide exchange factor (RalGEF. Ras signal transduction pathways play an important role in breast cancer progression, as evidenced by the frequent over-expression of the Ras-activating epidermal growth factor receptors EGFR and ErbB2. Here we investigated which signal transduction pathways downstream of Ras contribute to EGFR-dependent transformation of telomerase-immortalized mammary epithelial cells HME16C. Furthermore, we examined whether a highly transcriptionally regulated ERK pathway target, PHLDA1 (TDAG51, suggested to be a tumor suppressor in breast cancer and melanoma, might modulate the transformation process. Methods Cellular transformation of human mammary epithelial cells by downstream Ras signal transduction pathways was examined using anchorage-independent growth assays in the presence and absence of EGFR inhibition. TDAG51 protein expression was down-regulated by interfering small hairpin RNA (shRNA, and the effects on cell proliferation and death were examined in Ras pathway-transformed breast epithelial cells. Results Activation of both the ERK and PI3K signaling pathways was sufficient to induce cellular transformation, which was accompanied by up-regulation of EGFR ligands, suggesting autocrine EGFR stimulation during the transformation process. Only activation of the ERK pathway was sufficient to transform cells in the presence of EGFR inhibition and was sufficient for tumorigenesis in xenografts. Up-regulation of the PHLDA1 gene product, TDAG51, was found to correlate with persistent ERK activation and anchorage-independent growth in the absence or presence of EGFR inhibition. Knockdown of this putative breast cancer tumor-suppressor gene resulted in increased ERK pathway activation and enhanced matrix-detached cellular proliferation of Ras/Raf transformed cells. Conclusion

  11. Limited PCB antagonism of TCDD-induced malformations in mice

    Energy Technology Data Exchange (ETDEWEB)

    Morrissey, R.E.; Harris, M.W.; Diliberto, J.J.; Birnbaum, L.S.

    1992-01-01

    Mice used to model induction of cleft palate and kidney malformations in offspring following maternal treatment with TCDD, were dosed on gestation day with hexachlorobiphenyl (HCB) and/or with tetrachlorodibenzo-p-dioxin (TCDD) to investigate the potential protective effects of HCB against TCDD-induced teratogenicity. At the doses used in the study, there was no effect of either compound on number of live or dead offspring. Fetal body weight was slightly decreased in all groups dosed with = or > 250 mg HCB/kg. HCB did not induce cleft palate at a dose of 1000 mg/kg, but did induce increases in hydronephrosis and hydroureter at 500 and 1000 mg/kg. Combinations of HCB and TCDD decreased the incidence of cleft palate induced by TCDD alone, but only at doses of 15 microgram TCDD/kg combined with 125-500 mg HCB/kg. The window for antagonism of hydronephrosis (incidence and severity) appeared narrower (15 microgram TCDD/kg + 500 mg HCB/kg). HCB induced increases (3 fold) in EROD activity at doses of 500 and 1000 mg/kg, suggesting that the limited antagonism of TCDD teratogenicity by HCB would be consistent with control by Ah receptor. (Copyright (c) 1992 Elsevier Science Publishers B.V.)

  12. Fstl1 antagonizes BMP signaling and regulates ureter development.

    Directory of Open Access Journals (Sweden)

    Jingyue Xu

    Full Text Available Bone morphogenetic protein (BMP signaling pathway plays important roles in urinary tract development although the detailed regulation of its activity in this process remains unclear. Here we report that follistatin-like 1 (Fstl1, encoding a secreted extracellular glycoprotein, is expressed in developing ureter and antagonizes BMP signaling activity. Mouse embryos carrying disrupted Fstl1 gene displayed prominent hydroureter arising from proximal segment and ureterovesical junction defects. These defects were associated with significant reduction in ureteric epithelial cell proliferation at E15.5 and E16.5 as well as absence of subepithelial ureteral mesenchymal cells in the urinary tract at E16.5 and E18.5. At the molecular level, increased BMP signaling was found in Fstl1 deficient ureters, indicated by elevated pSmad1/5/8 activity. In vitro study also indicated that Fstl1 can directly bind to ALK6 which is specifically expressed in ureteric epithelial cells in developing ureter. Furthermore, Sonic hedgehog (SHH signaling, which is crucial for differentiation of ureteral subepithelial cell proliferation, was also impaired in Fstl1(-/- ureter. Altogether, our data suggest that Fstl1 is essential in maintaining normal ureter development by antagonizing BMP signaling.

  13. Novel anti-HER2 monoclonal antibodies: synergy and antagonism with tumor necrosis factor-α

    Directory of Open Access Journals (Sweden)

    Ceran Ceyhan

    2012-10-01

    , but antagonistically on BT-474 cells. A representative anti-HER2 antibody inhibited Akt and ERK1/2 phosphorylation leading to cyclin D1 accumulation and growth arrest in SK-BR-3 cells, independently from TNF-α. Conclusions Novel antibodies against extracellular domain of HER2 may serve as potent anti-cancer bioactive molecules. Cell-dependent synergy and antagonism between anti-HER2 antibodies and TNF-α provide evidence for a complex interplay between HER2 and TNF-α signaling pathways. Such complexity may drastically affect the outcome of HER2-directed therapeutic interventions.

  14. Wnt-11 promotes neuroendocrine-like differentiation, survival and migration of prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Diez Soraya

    2010-03-01

    Full Text Available Abstract Background Wnt-11 is a secreted protein that modulates cell growth, differentiation and morphogenesis during development. We previously reported that Wnt-11 expression is elevated in hormone-independent prostate cancer and that the progression of prostate cancer from androgen-dependent to androgen-independent proliferation correlates with a loss of mutual inhibition between Wnt-11- and androgen receptor-dependent signals. However, the prevalence of increased expression of Wnt-11 in patient tumours and the functions of Wnt-11 in prostate cancer cells were not known. Results Wnt-11 protein levels in prostate tumours were determined by immunohistochemical analysis of prostate tumour tissue arrays. Wnt-11 protein was elevated in 77/117 of tumours when compared with 27 benign prostatic hypertrophy specimens and was present in 4/4 bone metastases. In addition, there was a positive correlation between Wnt-11 expression and PSA levels above 10 ng/ml. Androgen-depleted LNCaP prostate cancer cells form neurites and express genes associated with neuroendocrine-like differentiation (NED, a feature of prostate tumours that have a poor prognosis. Since androgen-depletion increases expression of Wnt-11, we examined the role of Wnt-11 in NED. Ectopic expression of Wnt-11 induced expression of NSE and ASCL1, which are markers of NED, and this was prevented by inhibitors of cyclic AMP-dependent protein kinase, consistent with the known role of this kinase in NED. In contrast, Wnt-11 did not induce NSE expression in RWPE-1 cells, which are derived from benign prostate, suggesting that the role of Wnt-11 in NED is specific to prostate cancer. In addition, silencing of Wnt-11 expression in androgen-depleted LNCaP cells prevented NED and resulted in apoptosis. Silencing of Wnt-11 gene expression in androgen-independent PC3 cells also reduced expression of NSE and increased apoptosis. Finally, silencing of Wnt-11 reduced PC3 cell migration and ectopic

  15. Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction.

    Science.gov (United States)

    Vomastek, Tomás; Iwanicki, Marcin P; Burack, W Richard; Tiwari, Divya; Kumar, Devanand; Parsons, J Thomas; Weber, Michael J; Nandicoori, Vinay Kumar

    2008-11-01

    Identifying direct substrates of mitogen-activated protein kinases (MAPKs) and understanding how those substrates are selected is central to understanding how these ubiquitously activated enzymes generate diverse biological responses. In previous work, we identified several new candidate substrates for the MAPK ERK2 (extracellular signal-regulated kinase 2), including the nuclear pore complex protein Tpr (translocated promoter region). In this report, we identify sites on Tpr for ERK2 phosphorylation and binding and demonstrate their functional interaction. ERK2 phosphorylation and dimerization are necessary for ERK2-Tpr binding, and this occurs through a DEF (docking site for ERK2, FXF) domain on Tpr. Surprisingly, the DEF domain and the phosphorylation sites displayed positive cooperativity to promote ERK2 binding to Tpr, in contrast to substrates where phosphorylation reduces binding. Ectopic expression or depletion of Tpr resulted in decreased movement of activated ERK2 from the cytoplasm to the nucleus, implying a role for Tpr in ERK2 translocation. Collectively, the data provide direct evidence that a component of the nuclear pore complex is a bona fide substrate of ERK2 in vivo and that activated ERK2 stably associates with this substrate after phosphorylation, where it could play a continuing role in nuclear pore function. We propose that Tpr is both a substrate and a scaffold for activated ERKs.

  16. Involvement of wnt signaling pathways in the metamorphosis of the bryozoan bugula neritina

    KAUST Repository

    Wong, Yue Him

    2012-03-20

    In this study, we analyzed the metamorphosis of the marine bryozoan Bugula neritina. We observed the morphogenesis of the ancestrula. We defined three distinct pre-ancestrula stages based on the anatomy of the developing polypide and the overall morphology of pre-ancestrula. We then used an annotation based enrichment analysis tool to analyze the B. neritina transcriptome and identified over-representation of genes related to Wnt signaling pathways, suggesting its involvement in metamorphosis. Finally, we studied the temporal-spatial gene expression studies of several Wnt pathway genes. We found that one of the Wnt ligand, BnWnt10, was expressed spatially opposite to the Wnt antagonist BnsFRP within the blastemas, which is the presumptive polypide. Down-stream components of the canonical Wnt signaling pathway were exclusively expressed in the blastemas. Bn?catenin and BnFz5/8 were exclusively expressed in the blastemas throughout the metamorphosis. Based on the genes expression patterns, we propose that BnWnt10 and BnsFRP may relate to the patterning of the polypide, in which the two genes served as positional signals and contributed to the polarization of the blastemas. Another Wnt ligand, BnWnt6, was expressed in the apical part of the pre-ancestrula epidermis. Overall, our findings suggest that the Wnt signaling pathway may be important to the pattern formation of polypide and the development of epidermis. © 2012 Wong et al.

  17. PORCN moonlights in a Wnt-independent pathway that regulates cancer cell proliferation.

    Directory of Open Access Journals (Sweden)

    Tracy M Covey

    Full Text Available Porcupine (PORCN is a membrane-bound O-acyl transferase that is required for the palmitoylation of Wnt proteins, and that is essential in diverse Wnt pathways for Wnt-Wntless (WLS binding, Wnt secretion, and Wnt signaling activity. We tested if PORCN was required for the proliferation of transformed cells. Knockdown of PORCN by multiple independent siRNAs results in a cell growth defect in a subset of epithelial cancer cell lines. The growth defect is transformation-dependent in human mammary epithelial (HMEC cells. Additionally, inducible PORCN knockdown by two independent shRNAs markedly reduces the growth of established MDA-MB-231 cancers in orthotopic xenografts in immunodeficient mice. Unexpectedly, the proliferation defect resulting from loss of PORCN occurs in a Wnt-independent manner, as it is rescued by re-expression of catalytically inactive PORCN, and is not seen after RNAi-mediated knockdown of the Wnt carrier protein WLS, nor after treatment with the PORCN inhibitor IWP. Consistent with a role in a Wnt-independent pathway, knockdown of PORCN regulates a distinct set of genes that are not altered by other inhibitors of Wnt signaling. PORCN protein thus appears to moonlight in a novel signaling pathway that is rate-limiting for cancer cell growth and tumorigenesis independent of its enzymatic function in Wnt biosynthesis and secretion.

  18. WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Wen Jiang

    Full Text Available Wnt5a is a non-canonical signaling Wnt. Low expression of WNT5A is correlated with poor prognosis in breast cancer patients. The highly invasive breast cancer cell lines, MDA-MB-231 and 4T1, express very low levels of WNT5A. To determine if enhanced expression of WNT5A would affect metastatic behavior, we generated WNT5A expressing cells from the 4T1 and MDA-MB-231 parental cell lines. WNT5A expressing cells demonstrated cobblestone morphology and reduced in vitro migration relative to controls. Cell growth was not altered. Metastasis to the lung via tail vein injection was reduced in the 4T1-WNT5A expressing cells relative to 4T1-vector controls. To determine the mechanism of WNT5A action on metastasis, we performed microarray and whole-transcriptome sequence analysis (RNA-seq to compare gene expression in 4T1-WNT5A and 4T1-vector cells. Analysis indicated highly significant alterations in expression of genes associated with cellular movement. Down-regulation of a subset of these genes, Mmp13, Nos2, Il1a, Cxcl2, and Lamb3, in WNT5A expressing cells was verified by semi-quantitative RT-PCR. Significant differences in transcript splicing were also detected in cell movement associated genes including Cd44. Cd44 is an adhesion molecule with a complex genome structure. Variable exon usage is associated with metastatic phenotype. Alternative spicing of Cd44 in WNT5A expressing cells was confirmed using RT-PCR. We conclude that WNT5A inhibits metastasis through down-regulation of multiple cell movement pathways by regulating transcript levels and splicing of key genes like Cd44.

  19. A wound-induced Wnt expression program controls planarian regeneration polarity.

    Science.gov (United States)

    Petersen, Christian P; Reddien, Peter W

    2009-10-06

    Regeneration requires specification of the identity of new tissues to be made. Whether this process relies only on intrinsic regulative properties of regenerating tissues or whether wound signaling provides input into tissue repatterning is not known. The head-versus-tail regeneration polarity decision in planarians, which requires Wnt signaling, provides a paradigm to study the process of tissue identity specification during regeneration. The Smed-wntP-1 gene is required for regeneration polarity and is expressed at the posterior pole of intact animals. Surprisingly, wntP-1 was expressed at both anterior- and posterior-facing wounds rapidly after wounding. wntP-1 expression was induced by all types of wounds examined, regardless of whether wounding prompted tail regeneration. Regeneration polarity was found to require new expression of wntP-1. Inhibition of the wntP-2 gene enhanced the polarity phenotype due to wntP-1 inhibition, with new expression of wntP-2 in regeneration occurring subsequent to expression of wntP-1 and localized only to posterior-facing wounds. New expression of wntP-2 required wound-induced wntP-1. Finally, wntP-1 and wntP-2 expression changes occurred even in the absence of neoblast stem cells, which are required for regeneration, suggesting that the role of these genes in polarity is independent of and instructive for tail formation. These data indicate that wound-induced input is involved in resetting the normal polarized features of the body axis during regeneration.

  20. DA-Raf-Mediated Suppression of the Ras--ERK Pathway Is Essential for TGF-β1-Induced Epithelial-Mesenchymal Transition in Alveolar Epithelial Type 2 Cells.

    Science.gov (United States)

    Watanabe-Takano, Haruko; Takano, Kazunori; Hatano, Masahiko; Tokuhisa, Takeshi; Endo, Takeshi

    2015-01-01

    Myofibroblasts play critical roles in the development of idiopathic pulmonary fibrosis by depositing components of extracellular matrix. One source of lung myofibroblasts is thought to be alveolar epithelial type 2 cells that undergo epithelial-mesenchymal transition (EMT). Rat RLE-6TN alveolar epithelial type 2 cells treated with transforming growth factor-β1 (TGF-β1) are converted into myofibroblasts through EMT. TGF-β induces both canonical Smad signaling and non-canonical signaling, including the Ras-induced ERK pathway (Raf-MEK-ERK). However, the signaling mechanisms regulating TGF-β1-induced EMT are not fully understood. Here, we show that the Ras-ERK pathway negatively regulates TGF-β1-induced EMT in RLE-6TN cells and that DA-Raf1 (DA-Raf), a splicing isoform of A-Raf and a dominant-negative antagonist of the Ras-ERK pathway, plays an essential role in EMT. Stimulation of the cells with fibroblast growth factor 2 (FGF2), which activated the ERK pathway, prominently suppressed TGF-β1-induced EMT. An inhibitor of MEK, but not an inhibitor of phosphatidylinositol 3-kinase, rescued the TGF-β1-treated cells from the suppression of EMT by FGF2. Overexpression of a constitutively active mutant of a component of the Ras-ERK pathway, i.e., H-Ras, B-Raf, or MEK1, interfered with EMT. Knockdown of DA-Raf expression with siRNAs facilitated the activity of MEK and ERK, which were only weakly and transiently activated by TGF-β1. Although DA-Raf knockdown abrogated TGF-β1-induced EMT, the abrogation of EMT was reversed by the addition of the MEK inhibitor. Furthermore, DA-Raf knockdown impaired the TGF-β1-induced nuclear translocation of Smad2, which mediates the transcription required for EMT. These results imply that intrinsic DA-Raf exerts essential functions for EMT by antagonizing the TGF-β1-induced Ras-ERK pathway in RLE-6TN cells.

  1. Inhibition of Wnt signalling and breast tumour growth by the multi-purpose drug suramin through suppression of heterotrimeric G proteins and Wnt endocytosis.

    Science.gov (United States)

    Koval, Alexey; Ahmed, Kamal; Katanaev, Vladimir L

    2016-02-15

    Overactivation of the Wnt signalling pathway underlies oncogenic transformation and proliferation in many cancers, including the triple-negative breast cancer (TNBC), the deadliest form of tumour in the breast, taking about a quarter of a million lives annually worldwide. No clinically approved targeted therapies attacking Wnt signalling currently exist. Repositioning of approved drugs is a promising approach in drug discovery. In the present study we show that a multi-purpose drug suramin inhibits Wnt signalling and proliferation of TNBC cells in vitro and in mouse models, inhibiting a component in the upper levels of the pathway. Through a set of investigations we identify heterotrimeric G proteins and regulation of Wnt endocytosis as the likely target of suramin in this pathway. G protein-dependent endocytosis of plasma membrane-located components of the Wnt pathway was previously shown to be important for amplification of the signal in this cascade. Our data identify endocytic regulation within Wnt signalling as a promising target for anti-Wnt and anti-cancer drug discovery. Suramin, as the first example of such drug or its analogues might pave the way for the appearance of first-in-class targeted therapies against TNBC and other Wnt-dependent cancers.

  2. Genomic response to Wnt signalling is highly context-dependent - Evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets

    Energy Technology Data Exchange (ETDEWEB)

    Railo, Antti [Oulu Centre for Cell Matrix Research, Biocenter Oulu, Laboratory of Developmental Biology and Department of Medical Biochemistry and Molecular Biology, FIN-90014, University of Oulu, P. O. Box 5000 (Finland); Pajunen, Antti [Department of Biochemistry, University of Oulu (Finland); Itaeranta, Petri; Naillat, Florence; Vuoristo, Jussi; Kilpelaeinen, Pekka [Oulu Centre for Cell Matrix Research, Biocenter Oulu, Laboratory of Developmental Biology and Department of Medical Biochemistry and Molecular Biology, FIN-90014, University of Oulu, P. O. Box 5000 (Finland); Vainio, Seppo, E-mail: Seppo.Vainio@oulu.fi [Oulu Centre for Cell Matrix Research, Biocenter Oulu, Laboratory of Developmental Biology and Department of Medical Biochemistry and Molecular Biology, FIN-90014, University of Oulu, P. O. Box 5000 (Finland)

    2009-10-01

    Wnt proteins are important regulators of embryonic development, and dysregulated Wnt signalling is involved in the oncogenesis of several human cancers. Our knowledge of the downstream target genes is limited, however. We used a chromatin immunoprecipitation-based assay to isolate and characterize the actual gene segments through which Wnt-activatable transcription factors, TCFs, regulate transcription and an Affymetrix microarray analysis to study the global transcriptional response to the Wnt3a ligand. The anti-{beta}-catenin immunoprecipitation of DNA-protein complexes from mouse NIH3T3 fibroblasts expressing a fusion protein of {beta}-catenin and TCF7 resulted in the identification of 92 genes as putative TCF targets. GeneChip assays of gene expression performed on NIH3T3 cells and the rat pheochromocytoma cell line PC12 revealed 355 genes in NIH3T3 and 129 genes in the PC12 cells with marked changes in expression after Wnt3a stimulus. Only 2 Wnt-regulated genes were shared by both cell lines. Surprisingly, Disabled-2 was the only gene identified by the chromatin immunoprecipitation approach that displayed a marked change in expression in the GeneChip assay. Taken together, our approaches give an insight into the complex context-dependent nature of Wnt pathway transcriptional responses and identify Disabled-2 as a potential new direct target for Wnt signalling.

  3. Therapeutic potential of endothelin receptor antagonism in kidney disease.

    Science.gov (United States)

    Czopek, Alicja; Moorhouse, Rebecca; Webb, David J; Dhaun, Neeraj

    2016-03-01

    Our growing understanding of the role of the endothelin (ET) system in renal physiology and pathophysiology is from emerging studies of renal disease in animal models and humans. ET receptor antagonists reduce blood pressure and proteinuria in chronic kidney disease and cause regression of renal injury in animals. However, the therapeutic potential of ET receptor antagonism has not been fully explored and clinical studies have been largely limited to patients with diabetic nephropathy. There remains a need for more work in nondiabetic chronic kidney disease, end-stage renal disease (patients requiring maintenance dialysis and those with a functioning kidney transplant), ischemia reperfusion injury, and sickle cell disease. The current review summarizes the most recent advances in both preclinical and clinical studies of ET receptor antagonists in the field of kidney disease.

  4. Interferon Induction by RNA Viruses and Antagonism by Viral Pathogens

    Directory of Open Access Journals (Sweden)

    Yuchen Nan

    2014-12-01

    Full Text Available Interferons are a group of small proteins that play key roles in host antiviral innate immunity. Their induction mainly relies on host pattern recognition receptors (PRR. Host PRR for RNA viruses include Toll-like receptors (TLR and retinoic acid-inducible gene I (RIG-I like receptors (RLR. Activation of both TLR and RLR pathways can eventually lead to the secretion of type I IFNs, which can modulate both innate and adaptive immune responses against viral pathogens. Because of the important roles of interferons, viruses have evolved multiple strategies to evade host TLR and RLR mediated signaling. This review focuses on the mechanisms of interferon induction and antagonism of the antiviral strategy by RNA viruses.

  5. Wnt and lithium: a common destiny in the therapy of nervous system pathologies?

    Science.gov (United States)

    Meffre, Delphine; Grenier, Julien; Bernard, Sophie; Courtin, Françoise; Dudev, Todor; Shackleford, Ghjuvan'Ghjacumu; Jafarian-Tehrani, Mehrnaz; Massaad, Charbel

    2014-04-01

    Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.

  6. A Glimpse of the Pathogenetic Mechanisms of Wnt/β-Catenin Signaling in Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Li Xiao

    2013-01-01

    Full Text Available The Wnt family of proteins belongs to a group of secreted lipid-modified glycoproteins with highly conserved cysteine residues. Prior results indicate that Wnt/β-catenin signaling plays a prominent role in cell differentiation, adhesion, survival, and apoptosis and is involved in organ development, tumorigenesis, and tissue fibrosis, among other functions. Accumulating evidence has suggested that Wnt/β-catenin exhibits a pivotal function in the progression of diabetic nephropathy (DN. In this review, we focused on discussing the dual role of Wnt/β-catenin in apoptosis and epithelial mesenchymal transition (EMT formation of mesangial cells. Moreover, we also elucidated the effect of Wnt/β-catenin in podocyte dysfunction, tubular EMT formation, and renal fibrosis under DN conditions. In addition, the molecular mechanisms involved in this process are introduced. This information provides a novel molecular target of Wnt/β-catenin for the protection of kidney damage and in delay of the progression of DN.

  7. Wnt signaling regulates multipolar-to-bipolar transition of migrating neurons in the cerebral cortex.

    Science.gov (United States)

    Boitard, Michael; Bocchi, Riccardo; Egervari, Kristof; Petrenko, Volodymyr; Viale, Beatrice; Gremaud, Stéphane; Zgraggen, Eloisa; Salmon, Patrick; Kiss, Jozsef Z

    2015-03-03

    The precise timing of pyramidal cell migration from the ventricular germinal zone to the cortical plate is essential for establishing cortical layers, and migration errors can lead to neurodevelopmental disorders underlying psychiatric and neurological diseases. Here, we report that Wnt canonical as well as non-canonical signaling is active in pyramidal precursors during radial migration. We demonstrate using constitutive and conditional genetic strategies that transient downregulation of canonical Wnt/β-catenin signaling during the multipolar stage plays a critical role in polarizing and orienting cells for radial migration. In addition, we show that reduced canonical Wnt signaling is triggered cell autonomously by time-dependent expression of Wnt5A and activation of non-canonical signaling. We identify ephrin-B1 as a canonical Wnt-signaling-regulated target in control of the multipolar-to-bipolar switch. These findings highlight the critical role of Wnt signaling activity in neuronal positioning during cortical development.

  8. Genetic association study of WNT10B polymorphisms with BMD and adiposity parameters in Danish and Belgian males

    DEFF Research Database (Denmark)

    Van Camp, Jasmijn K; Beckers, Sigri; Zegers, Doreen;

    2013-01-01

    Because of the importance of the Wnt pathway in the development and maintenance of both adipose and bone tissue, we wanted to evaluate the involvement of WNT10B, a Wnt pathway activator, in adipogenesis and osteoblastogenesis in humans. Genetic association between WNT10B polymorphisms and adiposity...... a previously shown negative effect on BMD. No significant associations were observed in the SIBLOS population. In the present study, no association between WNT10B polymorphisms and adiposity parameters was found. However, our results clearly illustrate a role for WNT10B variants in determining human BMD...

  9. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments.

    Science.gov (United States)

    Schevzov, Galina; Kee, Anthony J; Wang, Bin; Sequeira, Vanessa B; Hook, Jeff; Coombes, Jason D; Lucas, Christine A; Stehn, Justine R; Musgrove, Elizabeth A; Cretu, Alexandra; Assoian, Richard; Fath, Thomas; Hanoch, Tamar; Seger, Rony; Pleines, Irina; Kile, Benjamin T; Hardeman, Edna C; Gunning, Peter W

    2015-07-01

    ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor-stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.

  10. Molecular cloning and sexually dimorphic expression of wnt4 in olive flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Weng, Shenda; You, Feng; Fan, Zhaofei; Wang, Lijuan; Wu, Zhihao; Zou, Yuxia

    2016-08-01

    WNT4 (wingless-type MMTV integration site family, member 4) is regarded as a key regulator of gonad differentiation in mammalians. However, the potential role of wnt4 in teleosts during gonad differentiation and development is still unclear. The full-length cDNA sequence of wnt4 in olive flounder (Paralichthys olivaceus) was obtained using RACE (rapid amplification of cDNA ends) technique. The wnt4 ORF contains 1059 nucleotides, encoding a protein with a signal peptide domain and a wnt family domain. Expression in tissues of adult flounders was analyzed by real-time RT-PCR. The results showed that wnt4 was widely expressed in multiple tissues of flounders, and the expression level was significantly higher in ovary than in testis. Then wnt4 expression pattern was investigated during gonadal differentiation period and at gonadal development stages (I-V). The results showed the expression levels were significantly higher in testis than in ovary during gonadal differentiation. Notably, wnt4 expression had a very significant increase before testis differentiation. At gonad different developmental stages, there was no expression signal at stage I or stage II, and the expression of wnt4 was much stronger in ovary than in testis at stage III and stage IV, followed by a faint expression in stage V in both sexes. Our results imply that cloned wnt4 could be wnt4a. It is a sex-related gene and its expression pattern in gonadal differentiation period of flounder is different from that in mammalians or other teleosts. Flounder wnt4 might play more important role in testis than in ovary during gonadal differentiation.

  11. Reciprocal regulation of Wnt and Gpr177/mouse Wntless is required for embryonic axis formation

    OpenAIRE

    Fu, Jiang; Jiang, Ming; Mirando, Anthony J.; Yu, Hsiao-Man Ivy; Hsu, Wei

    2009-01-01

    Members of the Wnt family are secreted glycoproteins that trigger cellular signals essential for proper development of organisms. Cellular signaling induced by Wnt proteins is involved in diverse developmental processes and human diseases. Previous studies have generated an enormous wealth of knowledge on the events in signal-receiving cells. However, relatively little is known about the making of Wnt in signal-producing cells. Here, we describe that Gpr177, the mouse orthologue of Drosophila...

  12. Expression of brain-derived neurotrophic factor (BDNF) is regulated by the Wnt signaling pathway

    OpenAIRE

    Yi, Hyun; Hu, Jianfei; Qian, Jiang; Hackam, Abigail S.

    2012-01-01

    BDNF is a well-characterized neurotrophin that mediates a wide variety of activities in the central nervous system (CNS), including neuronal differentiation, neuroprotection and synaptic plasticity. The canonical Wnt signaling pathway is a critical regulator of embryonic development and homeostasis in adult tissues. Our group and others recently demonstrated that Wnt signaling induces BDNF expression in neurons and glia. However, the precise relationship between BDNF and Wnt signaling pathway...

  13. Canonical Wnt Signaling as a Specific Marker of Normal and Tumorigenic Mammary Stem Cells

    Science.gov (United States)

    2013-02-01

    mammary epithelium impacts glandular development . We found ductal abnormali ties; however, the phenotype was not as severe as expected. Approximately...In previous reports we have clearly showed that cells w ith activated canonical Wnt signaling are present within the mammary epithelium starting at...Wnt1 transgenic cells. We generated a mouse line in which ~-catenin is conditionally deleted in the mammary epithelium of MMTV-Wnt1 transgenic

  14. Concurrent Transient Activation of Wnt/{beta}-Catenin Pathway Prevents Radiation Damage to Salivary Glands

    Energy Technology Data Exchange (ETDEWEB)

    Hai Bo; Yang Zhenhua; Shangguan Lei; Zhao Yanqiu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States); Boyer, Arthur [Department of Radiology, Scott and White Hospital, Temple, Texas (United States); Liu, Fei, E-mail: fliu@medicine.tamhsc.edu [Institute for Regenerative Medicine, Scott and White Hospital, Molecular and Cellular Medicine Department, Texas A and M Health Science Center, Temple, Texas (United States)

    2012-05-01

    Purpose: Many head and neck cancer survivors treated with radiotherapy suffer from permanent impairment of their salivary gland function, for which few effective prevention or treatment options are available. This study explored the potential of transient activation of Wnt/{beta}-catenin signaling in preventing radiation damage to salivary glands in a preclinical model. Methods and Materials: Wnt reporter transgenic mice were exposed to 15 Gy single-dose radiation in the head and neck area to evaluate the effects of radiation on Wnt activity in salivary glands. Transient Wnt1 overexpression in basal epithelia was induced in inducible Wnt1 transgenic mice before together with, after, or without local radiation, and then saliva flow rate, histology, apoptosis, proliferation, stem cell activity, and mRNA expression were evaluated. Results: Radiation damage did not significantly affect activity of Wnt/{beta}-catenin pathway as physical damage did. Transient expression of Wnt1 in basal epithelia significantly activated the Wnt/{beta}-catenin pathway in submandibular glands of male mice but not in those of females. Concurrent transient activation of the Wnt pathway prevented chronic salivary gland dysfunction following radiation by suppressing apoptosis and preserving functional salivary stem/progenitor cells. In contrast, Wnt activation 3 days before or after irradiation did not show significant beneficial effects, mainly due to failure to inhibit acute apoptosis after radiation. Excessive Wnt activation before radiation failed to inhibit apoptosis, likely due to extensive induction of mitosis and up-regulation of proapoptosis gene PUMA while that after radiation might miss the critical treatment window. Conclusion: These results suggest that concurrent transient activation of the Wnt/{beta}-catenin pathway could prevent radiation-induced salivary gland dysfunction.

  15. Wnt/ß-Catenin: A New Therapeutic Approach to Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Y. Kim

    2011-01-01

    Full Text Available Recent studies have shown genetic and epigenetic aberrations resulting in aberrant activation of the Wingless-Int (Wnt pathway, thus influencing the initiation and progression of acute myeloid leukemia (AML. Of major importance, these findings may lead to novel treatment strategies exploiting targeted modulation of Wnt signaling. This paper comprises the latest status of knowledge concerning the role of Wnt pathway alteration in AML and outlines future lines of research and their clinical perspectives.

  16. ERK/pERK expression and B-raf mutations in colon adenocarcinomas: correlation with clinicopathological characteristics

    Directory of Open Access Journals (Sweden)

    Levidou Georgia

    2012-02-01

    Full Text Available Abstract Background Colorectal (CRC carcinogenesis through various morphological stages has been linked to several genetic and epigenetic changes. The Raf/MEK/ERK (MAPK signal transduction cascade is an important mediator of a number of cellular fates. Methods In this study, we investigated the presence of B-raf and K-ras mutations in 94 consecutive cases of primary colon adenocarcinoma in correlation with the immunohistochemical expression of total and activated ERK and the expression of mismatch repair proteins (MMR hMLH1 and hMSH2 as well as their correlations with standard clinicopathological parameters. Results The immunostaining pattern for total and activated ERK was nuclear and cytoplasmic. hMLH1 and hMSH2 proteins were preserved in 45/63 (71.43% cases and 35/53 (66.04% cases respectively. Total ERK nuclear expression, was positively correlated with tumor stage (p = 0.049, whereas nuclear pERK expression was positively correlated with histological grade (p = 0.0113 and tumor stage (p = 0.0952, although the latter relationship was of marginal significance. DNA sequencing showed that 12 samples (12.7% had a mutation in B-RAF Exon 15 and none in Exon 11, whereas 22 (23.4% had a K-ras mutation. Disruption of the MAP kinase pathway-either through K-ras or B-raf mutation-was detected in 37% of all the examined cases, although the overexpression of total and activated ERK1/2 was not correlated with the mutational status of K-ras or B-raf genes. Finally, the preservation of hMLH1 or hMSH2 immunoexpression was not correlated with the presence of B-raf and/or K-ras mutations. Conclusions In this study, we present evidence that ERK activation occurs in a K-ras or B-raf -independent manner in the majority of primary colon cancer cases. Moreover, B-raf mutations are not associated with mismatch-repair deficiency through loss of hMLH1 or hMSH2 expression. Activated ERK could possibly be implicated in tumor invasiveness as well as in the acquisition of

  17. Nesfatin-1 protects dopaminergic neurons against MPP+/MPTP-induced neurotoxicity through the C-Raf–ERK1/2-dependent anti-apoptotic pathway

    Science.gov (United States)

    Shen, Xiao-Li; Song, Ning; Du, Xi-Xun; Li, Yong; Xie, Jun-Xia; Jiang, Hong

    2017-01-01

    Several brain-gut peptides have been reported to have a close relationship with the central dopaminergic system; one such brain-gut peptide is nesfatin-1. Nesfatin-1 is a satiety peptide that is predominantly secreted by X/A-like endocrine cells in the gastric glands, where ghrelin is also secreted. We previously reported that ghrelin exerted neuroprotective effects on nigral dopaminergic neurons, which implied a role for ghrelin in Parkinson’s disease (PD). In the present study, we aim to clarify whether nesfatin-1 has similar effects on dopaminergic neurons both in vivo and in vitro. We show that nesfatin-1 attenuates the loss of nigral dopaminergic neurons in the 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD. In addition, nesfatin-1 antagonized 1-methyl-4-phenylpyridillium ion (MPP+)-induced toxicity by restoring mitochondrial function, inhibiting cytochrome C release and preventing caspase-3 activation in MPP+-treated MES23.5 dopaminergic cells. These neuroprotective effects could be abolished by selective inhibition of C-Raf and the extracellular signal-regulated protein kinase 1/2 (ERK1/2). Our data suggest that C-Raf-ERK1/2, which is involved in an anti-apoptotic pathway, is responsible for the neuroprotective effects of nesfatin-1 in the context of MPTP-induced toxicity. These results imply that nesfatin-1 might have therapeutic potential for PD. PMID:28106099

  18. Skeletal metastasis: treatments, mouse models,and the Wnt signaling

    Institute of Scientific and Technical Information of China (English)

    Kenneth C.Valkenburg; Matthew R.Steensma; Bart O.Williams; Zhendong Zhong

    2013-01-01

    Skeletal metastases result in significant morbidity and mortality.This is particularly true of cancers with a strong predilection for the bone,such as breast,prostate,and lung cancers.There is currently no reliable cure for skeletal metastasis,and palliative therapy options are limited.The Wnt signaling pathway has been found to play an integral role in the process of skeletal metastasis and may be an important clinical target.Several experimental models of skeletal metastasis have been used to find new biomarkers and test new treatments.In this review,we discuss pathologic process of bone metastasis,the roles of the Wnt signaling,and the available experimental models and treatments.

  19. Wnt signaling and colon tumorigenesis - A view from the periphery

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, Antony W., E-mail: burgess@ludwig.edu.au [Parkville Branch, Ludwig Institute for Cancer Research, Melbourne, 3050 (Australia); Faux, Maree C. [Parkville Branch, Ludwig Institute for Cancer Research, Melbourne, 3050 (Australia); Layton, Meredith J. [Department of Biochemistry and Molecular Biology, Monash University, Melbourne, 3800 (Australia); Ramsay, Robert G. [Peter MacCallum Cancer Centre, Melbourne, 3002 (Australia); Pathology Department, the University of Melbourne, Parkville, 3050 (Australia)

    2011-11-15

    In this brief overview we discuss the association between Wnt signaling and colon cell biology and tumorigenesis. Our current understanding of the role of Apc in the {beta}-catenin destruction complex is compared with potential roles for Apc in cell adhesion and migration. The requirement for phosphorylation in the proteasomal-mediated degradation of {beta}-catenin is contrasted with roles for phospho-{beta}-catenin in the activation of transcription, cell adhesion and migration. The synergy between Myb and {beta}-catenin regulation of transcription in crypt stem cells during Wnt signaling is discussed. Finally, potential effects of growth factor regulatory systems, Apc or truncated-Apc on crypt morphogenesis, stem cell localization and crypt fission are considered.

  20. WLS retrograde transport to the endoplasmic reticulum during Wnt secretion.

    Science.gov (United States)

    Yu, Jia; Chia, Joanne; Canning, Claire Ann; Jones, C Michael; Bard, Frédéric A; Virshup, David M

    2014-05-12

    Wnts are transported to the cell surface by the integral membrane protein WLS (also known as Wntless, Evi, and GPR177). Previous studies of WLS trafficking have emphasized WLS movement from the Golgi to the plasma membrane (PM) and then back to the Golgi via retromer-mediated endocytic recycling. We find that endogenous WLS binds Wnts in the endoplasmic reticulum (ER), cycles to the PM, and then returns to the ER through the Golgi. We identify an ER-targeting sequence at the carboxyl terminus of native WLS that is critical for ER retrograde recycling and contributes to Wnt secretory function. Golgi-to-ER recycling of WLS requires the COPI regulator ARF as well as ERGIC2, an ER-Golgi intermediate compartment protein that is also required for the retrograde trafficking of the KDEL receptor and certain toxins. ERGIC2 is required for efficient Wnt secretion. ER retrieval is an integral part of the WLS transport cycle.

  1. Selective modulation of Wnt ligands and their receptors in adipose tissue by chronic hyperadiponectinemia.

    Directory of Open Access Journals (Sweden)

    Nobuhiko Wada

    Full Text Available BACKGROUND: Adiponectin-transgenic mice had many small adipocytes in both subcutaneous and visceral adipose tissues, and showed higher sensitivity to insulin, longer life span, and reduced chronic inflammation. We hypothesized that adiponectin regulates Wnt signaling in adipocytes and thereby modulates adipocyte proliferation and chronic inflammation in adipose tissue. MATERIALS AND METHODS: We examined the expression of all Wnt ligands and their receptors and the activity of Wnt signaling pathways in visceral adipose tissue from wild-type mice and two lines of adiponectin-transgenic mice. The effects of adiponectin were also investigated in cultured 3T3-L1 cells. RESULTS: The Wnt5b, Wnt6, Frizzled 6 (Fzd6, and Fzd9 genes were up-regulated in both lines of transgenic mice, whereas Wnt1, Wnt2, Wnt5a, Wnt9b, Wnt10b, Wnt11, Fzd1, Fzd2, Fzd4, Fzd7, and the Fzd coreceptor low-density-lipoprotein receptor-related protein 6 (Lrp6 were reduced. There was no difference in total β-catenin levels in whole-cell extracts, non-phospho-β-catenin levels in nuclear extracts, or mRNA levels of β-catenin target genes, indicating that hyperadiponectinemia did not affect canonical Wnt signaling. In contrast, phosphorylated calcium/calmodulin-dependent kinase II (p-CaMKII and phosphorylated Jun N-terminal kinase (p-JNK were markedly reduced in adipose tissue from the transgenic mice. The adipose tissue of the transgenic mice consisted of many small cells and had increased expression of adiponectin, whereas cyclooxygenase-2 expression was reduced. Wnt5b expression was elevated in preadipocytes of the transgenic mice and decreased in diet-induced obese mice, suggesting a role in adipocyte differentiation. Some Wnt genes, Fzd genes, and p-CaMKII protein were down-regulated in 3T3-L1 cells cultured with a high concentration of adiponectin. CONCLUSION: Chronic hyperadiponectinemia selectively modulated the expression of Wnt ligands, Fzd receptors and LRP coreceptors

  2. Wnt11 controls cell contact persistence by local accumulation of Frizzled 7 at the plasma membrane.

    Science.gov (United States)

    Witzel, Sabine; Zimyanin, Vitaly; Carreira-Barbosa, Filipa; Tada, Masazumi; Heisenberg, Carl-Philipp

    2006-12-04

    Wnt11 is a key signal, determining cell polarization and migration during vertebrate gastrulation. It is known that Wnt11 functionally interacts with several signaling components, the homologues of which control planar cell polarity in Drosophila melanogaster. Although in D. melanogaster these components are thought to polarize cells by asymmetrically localizing at the plasma membrane, it is not yet clear whether their subcellular localization plays a similarly important role in vertebrates. We show that in zebrafish embryonic cells, Wnt11 locally functions at the plasma membrane by accumulating its receptor, Frizzled 7, on adjacent sites of cell contacts. Wnt11-induced Frizzled 7 accumulations recruit the intracellular Wnt signaling mediator Dishevelled, as well as Wnt11 itself, and locally increase cell contact persistence. This increase in cell contact persistence is mediated by the local interaction of Wnt11, Frizzled 7, and the atypical cadherin Flamingo at the plasma membrane, and it does not require the activity of further downstream effectors of Wnt11 signaling, such as RhoA and Rok2. We propose that Wnt11, by interacting with Frizzled 7 and Flamingo, modulates local cell contact persistence to coordinate cell movements during gastrulation.

  3. Different populations of Wnt-containing vesicles are individually released from polarized epithelial cells

    Science.gov (United States)

    Chen, Qiuhong; Takada, Ritsuko; Noda, Chiyo; Kobayashi, Satoru; Takada, Shinji

    2016-01-01

    Accumulating evidence suggests that exosomes are heterogeneous in molecular composition and physical properties. Here we examined whether epithelial cells secrete a heterogeneous population of exosomes, and if that is the case, whether epithelial cell polarity affects release of different populations of exosomes, especially that of those carrying Wnt. Sucrose-density ultracentrifugation and molecular marker analysis revealed that different populations of exosomes or exosome-like vesicles were released from MDCK cells depending on the cell polarity. Wnt3a associated with these vesicles were detectable in culture media collected from both apical and basolateral sides of the cells. Basolaterally secreted Wnt3a were co-fractionated with a typical exosomal protein TSG101 in fractions having typical exosome densities. In contrast, most of apically secreted Wnt3a, as well as Wnt11, were co-fractionated with CD63 and Hsp70, which are also common to the most exosomes, but recovered in higher density fractions. Wnt3a exhibiting similar floatation behavior to the apically secreted ones were also detectable in the culture media of Wnt3a-expressing L and HEK293 cells. The lipidation of Wnt3a was required for its basolateral secretion in exosomes but was dispensable for the apical one. Thus, epithelial cells release Wnt via distinct populations of vesicles differing in secretion polarity and lipidation dependency. PMID:27765945

  4. A transcriptional response to Wnt protein in human embryonic carcinoma cells

    Directory of Open Access Journals (Sweden)

    Pollack Jonathan R

    2002-07-01

    Full Text Available Abstract Background Wnt signaling is implicated in many developmental decisions, including stem cell control, as well as in cancer. There are relatively few target genes known of the Wnt pathway. Results We have identified target genes of Wnt signaling using microarray technology and human embryonic carcinoma cells stimulated with active Wnt protein. The ~50 genes upregulated early after Wnt addition include the previously known Wnt targets Cyclin D1, MYC, ID2 and βTRCP. The newly identified targets, which include MSX1, MSX2, Nucleophosmin, Follistatin, TLE/Groucho, Ubc4/5E2, CBP/P300, Frizzled and REST/NRSF, have important implications for understanding the roles of Wnts in development and cancer. The protein synthesis inhibitor cycloheximide blocks induction by Wnt, consistent with a requirement for newly synthesized β-catenin protein prior to target gene activation. The promoters of nearly all the target genes we identified have putative TCF binding sites, and we show that the TCF binding site is required for induction of Follistatin. Several of the target genes have a cooperative response to a combination of Wnt and BMP. Conclusions Wnt signaling activates genes that promote stem cell fate and inhibit cellular differentiation and regulates a remarkable number of genes involved in its own signaling system.

  5. Gpr177/mouse Wntless is essential for Wnt-mediated craniofacial and brain development

    OpenAIRE

    Fu, Jiang; Yu, Hsiao-Man Ivy; Maruyama, Takamitsu; Mirando, Anthony J.; Hsu, Wei

    2011-01-01

    We have previously demonstrated that Gpr177, the mouse orthologue of Drosophila Wls/Evi/Srt, is required for establishment of the anterior-posterior axis. The Gpr177 null phenotype is highly reminiscent to the loss of Wnt3, the earliest abnormality among all Wnt knockouts in mice. The expression of Gpr177 in various cell types and tissues lead us to hypothesize that reciprocal regulation of Wnt and Gpr177 is essential for the Wnt-dependent developmental and pathogenic processes. Here we creat...

  6. Spatial regulation of cell cohesion by Wnt5a during second heart field progenitor deployment.

    Science.gov (United States)

    Li, Ding; Sinha, Tanvi; Ajima, Rieko; Seo, Hwa-Seon; Yamaguchi, Terry P; Wang, Jianbo

    2016-04-01

    Wnt5a, a non-canonical Wnt ligand critical for outflow tract (OFT) morphogenesis, is expressed specifically in second heart field (SHF) progenitors in the caudal splanchnic mesoderm (SpM) near the inflow tract (IFT). Using a conditional Wnt5a gain of function (GOF) allele and Islet1-Cre, we broadly over-expressed Wnt5a throughout the SHF lineage, including the entire SpM between the IFT and OFT. Wnt5a over-expression in Wnt5a null mutants can rescue the cell polarity and actin polymerization defects as well as severe SpM shortening, but fails to rescue OFT shortening. Moreover, Wnt5a over-expression in wild-type background is able to cause OFT shortening. We find that Wnt5a over-expression does not perturb SHF cell proliferation, apoptosis or differentiation, but affects the deployment of SHF cells by causing them to accumulate into a large bulge at the rostral SpM and fail to enter the OFT. Our immunostaining analyses suggest an inverse correlation between cell cohesion and Wnt5a level in the wild-type SpM. Ectopic Wnt5a expression in the rostral SpM of Wn5a-GOF mutants diminishes the upregulation of adherens junction; whereas loss of Wnt5a in Wnt5a null mutants causes premature increase in adherens junction level in the caudal SpM. Over-expression of mouse Wnt5a in Xenopus animal cap cells also reduces C-cadherin distribution on the plasma membrane without affecting its overall protein level, suggesting that Wnt5a may play an evolutionarily conserved role in controlling the cell surface level of cadherin to modulate cell cohesion during tissue morphogenesis. Collectively, our data indicate that restricted expression of Wnt5a in the caudal SpM is essential for normal OFT morphogenesis, and uncover a novel function of spatially regulated cell cohesion by Wnt5a in driving the deployment of SHF cells from the SpM into the OFT.

  7. Controlled levels of canonical Wnt signaling are required for neural crest migration.

    Science.gov (United States)

    Maj, Ewa; Künneke, Lutz; Loresch, Elisabeth; Grund, Anita; Melchert, Juliane; Pieler, Tomas; Aspelmeier, Timo; Borchers, Annette

    2016-09-01

    Canonical Wnt signaling plays a dominant role in the development of the neural crest (NC), a highly migratory cell population that generates a vast array of cell types. Canonical Wnt signaling is required for NC induction as well as differentiation, however its role in NC migration remains largely unknown. Analyzing nuclear localization of β-catenin as readout for canonical Wnt activity, we detect nuclear β-catenin in premigratory but not migratory Xenopus NC cells suggesting that canonical Wnt activity has to decrease to basal levels to enable NC migration. To define a possible function of canonical Wnt signaling in Xenopus NC migration, canonical Wnt signaling was modulated at different time points after NC induction. This was accomplished using either chemical modulators affecting β-catenin stability or inducible glucocorticoid fusion constructs of Lef/Tcf transcription factors. In vivo analysis of NC migration by whole mount in situ hybridization demonstrates that ectopic activation of canonical Wnt signaling inhibits cranial NC migration. Further, NC transplantation experiments confirm that this effect is tissue-autonomous. In addition, live-cell imaging in combination with biophysical data analysis of explanted NC cells confirms the in vivo findings and demonstrates that modulation of canonical Wnt signaling affects the ability of NC cells to perform single cell migration. Thus, our data support the hypothesis that canonical Wnt signaling needs to be tightly controlled to enable migration of NC cells.

  8. Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone.

    Directory of Open Access Journals (Sweden)

    Henry Todd

    Full Text Available Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an

  9. Wnt5a uses CD146 as a receptor to regulate cell motility and convergent extension

    Science.gov (United States)

    Ye, Zhongde; Zhang, Chunxia; Tu, Tao; Sun, Min; Liu, Dan; Lu, Di; Feng, Jing; Yang, Dongling; Liu, Feng; Yan, Xiyun

    2013-12-01

    Dysregulation of Wnt signalling leads to developmental defects and diseases. Non-canonical Wnt signalling via planar cell polarity proteins regulates cell migration and convergent extension; however, the underlying mechanisms are poorly understood. Here we report that Wnt5a uses CD146 as a receptor to regulate cell migration and zebrafish embryonic convergent extension. CD146 binds to Wnt5a with the high affinity required for Wnt5a-induced activation of Dishevelled (Dvl) and c-jun amino-terminal kinase (JNK). The interaction between CD146 and Dvl2 is enhanced on Wnt5a treatment. Mutation of the Dvl2-binding region impairs its ability to activate JNK, promote cell migration and facilitate the formation of cell protrusions. Knockdown of Dvls impairs CD146-induced cell migration. Interestingly, CD146 inhibits canonical Wnt signalling by promoting β-catenin degradation. Our results suggest a model in which CD146 acts as a functional Wnt5a receptor in regulating cell migration and convergent extension, turning off the canonical Wnt signalling branch.

  10. Wnt5a Regulates the Assembly of Human Adipose Derived Stromal Vascular Fraction-Derived Microvasculatures.

    Directory of Open Access Journals (Sweden)

    Venkat M Ramakrishnan

    Full Text Available Human adipose-derived stromal vascular fraction (hSVF cells are an easily accessible, heterogeneous cell system that can spontaneously self-assemble into functional microvasculatures in vivo. However, the mechanisms underlying vascular self-assembly and maturation are poorly understood, therefore we utilized an in vitro model to identify potential in vivo regulatory mechanisms. We utilized passage one (P1 hSVF because of the rapid UEA1+ endothelium (EC loss at even P2 culture. We exposed hSVF cells to a battery of angiogenesis inhibitors and found that the pan-Wnt inhibitor IWP2 produced the most significant hSVF-EC networking decrease (~25%. To determine which Wnt isoform(s and receptor(s may be involved, hSVF was screened by PCR for isoforms associated with angiogenesis, with only WNT5A and its receptor, FZD4, being expressed for all time points observed. Immunocytochemistry confirmed Wnt5a protein expression by hSVF. To see if Wnt5a alone could restore IWP2-induced EC network inhibition, recombinant human Wnt5a (0-150 ng/ml was added to IWP2-treated cultures. The addition of rhWnt5a significantly increased EC network area and significantly decreased the ratio of total EC network length to EC network area compared to untreated controls. To determine if Wnt5a mediates in vivo microvascular self-assembly, 3D hSVF constructs containing an IgG isotype control, anti-Wnt5a neutralizing antibody or rhWnt5a were implanted subcutaneously for 2w in immune compromised mice. Compared to IgG controls, anti-Wnt5a treatment significantly reduced vessel length density by ~41%, while rhWnt5a significantly increased vessel length density by ~62%. However, anti-Wnt5a or rhWnt5a did not significantly affect the density of segments and nodes, both of which measure vascular complexity. Taken together, this data demonstrates that endogenous Wnt5a produced by hSVF plays a regulatory role in microvascular self-assembly in vivo. These findings also suggest that

  11. Endocardial to myocardial notch-wnt-bmp axis regulates early heart valve development.

    Directory of Open Access Journals (Sweden)

    Yidong Wang

    Full Text Available Endocardial to mesenchymal transformation (EMT is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1 show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT.

  12. Neurofibromin Regulation of ERK Signaling Modulates GABA Release and Learning

    NARCIS (Netherlands)

    Y. Cui (Yijun); R.M. Costa (Rui); G.G. Murphy (Geoffrey); Y. Elgersma (Ype); Y. Zhu (Yuan); D.H. Gutmann (David); L.F. Parada (Luis); I. Mody (Istvan); A.J. Silva (Alcino)

    2008-01-01

    textabstractWe uncovered a role for ERK signaling in GABA release, long-term potentiation (LTP), and learning, and show that disruption of this mechanism accounts for the learning deficits in a mouse model for learning disabilities in neurofibromatosis type I (NF1). Our results demonstrate that neur

  13. WNT signaling suppression in the senescent human thymus.

    Science.gov (United States)

    Ferrando-Martínez, Sara; Ruiz-Mateos, Ezequiel; Dudakov, Jarrod A; Velardi, Enrico; Grillari, Johannes; Kreil, David P; Muñoz-Fernandez, M Ángeles; van den Brink, Marcel R M; Leal, Manuel

    2015-03-01

    Human thymus is completely developed in late fetal stages and its function peaks in newborns. After the first year of life, the thymus undergoes a progressive atrophy that dramatically decreases de novo T-lymphocyte maturation. Hormonal signaling and changes in the microRNA expression network are identified as underlying causes of human thymus involution. However, specific pathways involved in the age-related loss of thymic function remain unknown. In this study, we analyzed differential gene-expression profile and microRNA expression in elderly (70 years old) and young (less than 10 months old and 11 years old) human thymic samples. Our data have shown that WNT pathway deregulation through the overexpression of different inhibitors by the nonadipocytic component of the human thymus stimulates the age-related involution. These results are of particular interest because interference of WNT signaling has been demonstrated in both animal models and in vitro studies, with the three major hallmarks of thymic involution: (i) epithelial structure disruption, (ii) adipogenic process, and (iii) thymocyte development arrest. Thus, our results suggest that secreted inhibitors of the WNT pathway could be explored as a novel therapeutical target in the reversal of the age-related thymic involution.

  14. RHOA inactivation enhances Wnt signaling and promotes colorectal cancer

    Science.gov (United States)

    Rodrigues, Paulo; Macaya, Irati; Bazzocco, Sarah; Mazzolini, Rocco; Andretta, Elena; Dopeso, Higinio; Mateo-Lozano, Silvia; Bilić, Josipa; Cartón-García, Fernando; Nieto, Rocio; Suárez-López, Lucia; Afonso, Elsa; Landolfi, Stefania; Hernandez-Losa, Javier; Kobayashi, Kazuto; Cajal, Santiago Ramón y; Tabernero, Josep; Tebbutt, Niall C.; Mariadason, John M.; Schwartz, Simo; Arango, Diego

    2014-01-01

    Activation of the small GTPase RHOA has strong oncogenic effects in many tumor types, although its role in colorectal cancer remains unclear. Here we show that RHOA inactivation contributes to colorectal cancer progression/metastasis, largely through the activation of Wnt/β-catenin signaling. RhoA inactivation in the murine intestine accelerates the tumorigenic process and in human colon cancer cells leads to the redistribution of β-catenin from the membrane to the nucleus and enhanced Wnt/β-catenin signaling, resulting in increased proliferation, invasion and de-differentiation. In mice, RHOA inactivation contributes to colon cancer metastasis and reduced RHOA levels were observed at metastatic sites compared to primary human colon tumors. Therefore, we have identified a new mechanism of activation of Wnt/β-catenin signaling and characterized the role of RHOA as a novel tumor suppressor in colorectal cancer. These results constitute a shift from the current paradigm and demonstrate that RHO GTPases can suppress tumor progression and metastasis. PMID:25413277

  15. Effect of activation of canonical Wnt signaling by the Wnt-3a protein on the susceptibility of PC12 cells to oxidative and apoptotic insults

    Energy Technology Data Exchange (ETDEWEB)

    Kawamoto, E.M. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD (United States); Gleichmann, M. [Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD (United States); Yshii, L.M.; Sá Lima, L. de [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Mattson, M.P. [Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD (United States); Scavone, C. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2011-11-25

    Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid β-peptide (Aβ{sub 25-35}; 50 µM). Cells (1 × 10{sup 6} cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer's and Huntington's diseases.

  16. Zebrafish colgate/hdac1 functions in the non-canonical Wnt pathway during axial extension and in Wnt-independent branchiomotor neuron migration.

    Science.gov (United States)

    Nambiar, Roopa M; Ignatius, Myron S; Henion, Paul D

    2007-01-01

    Vertebrate gastrulation involves the coordinated movements of populations of cells. These movements include cellular rearrangements in which cells polarize along their medio-lateral axes leading to cell intercalations that result in elongation of the body axis. Molecular analysis of this process has implicated the non-canonical Wnt/Frizzled signaling pathway that is similar to the planar cell polarity pathway (PCP) in Drosophila. Here we describe a zebrafish mutant, colgate (col), which displays defects in the extension of the body axis and the migration of branchiomotor neurons. Activation of the non-canonical Wnt/PCP pathway in these mutant embryos by overexpressing DeltaNdishevelled, rho kinase2 and van gogh-like protein 2 (vangl2) rescues the extension defects suggesting that col acts as a positive regulator of the non-canonical Wnt/PCP pathway. Further, we show that col normally regulates the caudal migration of nVII facial hindbrain branchiomotor neurons and that the mutant phenotype can be rescued by misexpression of vangl2 independent of the Wnt/PCP pathway. We cloned the col locus and found that it encodes histone deacetylase1 (hdac1). Our previous results and studies by others have implicated hdac1 in repressing the canonical Wnt pathway. Here, we demonstrate novel roles for zebrafish hdac1 in activating non-canonical Wnt/PCP signaling underlying axial extension and in promoting Wnt-independent caudal migration of a subset of hindbrain branchiomotor neurons.

  17. Effect of activation of canonical Wnt signaling by the Wnt-3a protein on the susceptibility of PC12 cells to oxidative and apoptotic insults

    Directory of Open Access Journals (Sweden)

    E.M. Kawamoto

    2012-01-01

    Full Text Available Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells to the cytotoxic compounds ferrous sulfate (10 mM, staurosporine (100 and 500 nM, 3-nitropropionic acid (5 mM, and amyloid β-peptide (Aβ25-35; 50 µM. Cells (1 x 10(6 cells/mL were treated with the Wnt-3a recombinant peptide (200 ng/mL for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer’s and Huntington’s diseases.

  18. Angiotensin-(1–7) abrogates angiotensin II-induced proliferation, migration and inflammation in VSMCs through inactivation of ROS-mediated PI3K/Akt and MAPK/ERK signaling pathways

    Science.gov (United States)

    Zhang, Feng; Ren, Xingsheng; Zhao, Mingxia; Zhou, Bing; Han, Ying

    2016-01-01

    The proliferation, migration and inflammation of vascular smooth muscle cells (VSMCs) contribute to the pathogenesis and progression of several cardiovascular diseases such as atherosclerosis and hypertension. Angiotensin (Ang)-(1–7) and Ang II are identified to be involved in regulating cardiovascular activity. The present study is designed to determine the interaction between Ang-(1–7) and Ang II on VSMCs proliferation, migration and inflammation as well as their underlying mechanisms. We found that Ang-(1–7) significantly suppressed the positive effects of Ang II on VSMCs proliferation, migration and inflammation, as well as on induction of the phosphorylation of Akt and ERK1/2 and increase of superoxide anion level and NAD(P)H oxidase activity in VSMCs, whereas Ang-(1–7) alone had no significant effects. This inhibitory effects of Ang-(1–7) were abolished by Mas receptor antagonist A-779. In addition, Ang II type 1 (AT1) receptor antagonist losartan, but not A-779, abolished Ang II induced VSMCs proliferation, migration and inflammation responses. Furthermore, superoxide anion scavenger N-acetyl-L-cysteine (NAC) or NAD(P)H oxidase inhibitor apocynin inhibited Ang II-induced activation of Akt and ERK1/2 signaling. These results indicate that Ang-(1–7) antagonizes the Ang II-induced VSMC proliferation, migration and inflammation through activation of Mas receptor and then suppression of ROS-dependent PI3K/Akt and MAPK/ERK signaling pathways. PMID:27687768

  19. Metabotropic glutamate receptor I (mGluR1) antagonism impairs cocaine-induced conditioned place preference via inhibition of protein synthesis.

    Science.gov (United States)

    Yu, Fei; Zhong, Peng; Liu, Xiaojie; Sun, Dalong; Gao, Hai-Qing; Liu, Qing-Song

    2013-06-01

    Antagonism of group I metabotropic glutamate receptors (mGluR1 and mGluR5) reduces behavioral effects of drugs of abuse, including cocaine. However, the underlying mechanisms remain poorly understood. Activation of mGluR5 increases protein synthesis at synapses. Although mGluR5-induced excessive protein synthesis has been implicated in the pathology of fragile X syndrome, it remains unknown whether group I mGluR-mediated protein synthesis is involved in any behavioral effects of drugs of abuse. We report that group I mGluR agonist DHPG induced more pronounced initial depression of inhibitory postsynaptic currents (IPSCs) followed by modest long-term depression (I-LTD) in dopamine neurons of rat ventral tegmental area (VTA) through the activation of mGluR1. The early component of DHPG-induced depression of IPSCs was mediated by the cannabinoid CB1 receptors, while DHPG-induced I-LTD was dependent on protein synthesis. Western blotting analysis indicates that mGluR1 was coupled to extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) signaling pathways to increase translation. We also show that cocaine conditioning activated translation machinery in the VTA via an mGluR1-dependent mechanism. Furthermore, intra-VTA microinjections of mGluR1 antagonist JNJ16259685 and protein synthesis inhibitor cycloheximide significantly attenuated or blocked the acquisition of cocaine-induced conditioned place preference (CPP) and activation of translation elongation factors. Taken together, these results suggest that mGluR1 antagonism inhibits de novo protein synthesis; this effect may block the formation of cocaine-cue associations and thus provide a mechanism for the reduction in CPP to cocaine.

  20. The Wnt coreceptor Ryk regulates Wnt/planar cell polarity by modulating the degradation of the core planar cell polarity component Vangl2.

    Science.gov (United States)

    Andre, Philipp; Wang, Qianyi; Wang, Na; Gao, Bo; Schilit, Arielle; Halford, Michael M; Stacker, Steven A; Zhang, Xuemin; Yang, Yingzi

    2012-12-28

    The Wnt signaling pathways control many critical developmental and adult physiological processes. In vertebrates, one fundamentally important function of Wnts is to provide directional information by regulating the evolutionarily conserved planar cell polarity (PCP) pathway during embryonic morphogenesis. However, despite the critical roles of Wnts and PCP in vertebrate development and disease, little is known about the molecular mechanisms underlying Wnt regulation of PCP. Here, we have found that the receptor-like tyrosine kinase (Ryk), a Wnt5a-binding protein required in axon guidance, regulates PCP signaling. We show that Ryk interacts with Vangl2 genetically and biochemically, and such interaction is potentiated by Wnt5a. Loss of Ryk in a Vangl2(+/-) background results in classic PCP defects, including open neural tube, misalignment of sensory hair cells in the inner ear, and shortened long bones in the limbs. Complete loss of both Ryk and Vangl2 results in more severe phenotypes that resemble the Wnt5a(-/-) mutant in many aspects such as shortened anterior-posterior body axis, limb, and frontonasal process. Our data identify the Wnt5a-binding protein Ryk as a general regulator of the mammalian Wnt/PCP signaling pathway. We show that Ryk transduces Wnt5a signaling by forming a complex with Vangl2 and that Ryk regulates PCP by at least in part promoting Vangl2 stability. As human mutations in WNT5A and VANGL2 are found to cause Robinow syndrome and neural tube defects, respectively, our results further suggest that human mutations in RYK may also be involved in these diseases.

  1. The D Domain of LRRC4 anchors ERK1/2 in the cytoplasm and competitively inhibits MEK/ERK activation in glioma cells

    Directory of Open Access Journals (Sweden)

    Zeyou Wang

    2016-11-01

    Full Text Available Abstract Background As a well-characterized key player in various signal transduction networks, extracellular-signal-regulated kinase (ERK1/2 has been widely implicated in the development of many malignancies. We previously found that Leucine-rich repeat containing 4 (LRRC4 was a tumor suppressor and a negative regulator of the ERK/MAPK pathway in glioma tumorigenesis. However, the precise molecular role of LRRC4 in ERK signal transmission is unclear. Methods The interaction between LRRC4 and ERK1/2 was assessed by co-immunoprecipitation and GST pull-down assays in vivo and in vitro. We also investigated the interaction of LRRC4 and ERK1/2 and the role of the D domain in ERK activation in glioma cells. Results Here, we showed that LRRC4 and ERK1/2 interact via the D domain and CD domain, respectively. Following EGF stimuli, the D domain of LRRC4 anchors ERK1/2 in the cytoplasm and abrogates ERK1/2 activation and nuclear translocation. In glioblastoma cells, ectopic LRRC4 expression competitively inhibited the interaction of endogenous mitogen-activated protein kinase (MEK and ERK1/2. Mutation of the D domain decreased the LRRC4-mediated inhibition of MAPK signaling and its anti-proliferation and anti-invasion roles. Conclusions Our results demonstrated that the D domain of LRRC4 anchors ERK1/2 in the cytoplasm and competitively inhibits MEK/ERK activation in glioma cells. These findings identify a new mechanism underlying glioblastoma progression and suggest a novel therapeutic strategy by restoring the activity of LRRC4 to decrease MAPK cascade activation.

  2. Docosahexaenoic acid inhibits cancer cell growth via p27Kip1, CDK2, ERK1/ERK2, and retinoblastoma phosphorylation.

    Science.gov (United States)

    Khan, Naim A; Nishimura, Kazuhiro; Aires, Virginie; Yamashita, Tomoko; Oaxaca-Castillo, David; Kashiwagi, Keiko; Igarashi, Kazuei

    2006-10-01

    Docosahexaenoic acid (DHA), a PUFA of the n-3 family, inhibited the growth of FM3A mouse mammary cancer cells by arresting their progression from the late-G(1) to the S phase of the cell cycle. DHA upregulated p27(Kip1) levels by inhibiting phosphorylation of mitogen-activated protein (MAP) kinases, i.e., ERK1/ERK2. Indeed, inhibition of ERK1/ERK2 phosphorylation by DHA, U0126 [chemical MAPK extracellularly signal-regulated kinase kinase (MEK) inhibitor], and MEK(SA) (cells expressing dominant negative constructs of MEK) resulted in the accumulation of p27(Kip1). MAP kinase (MAPK) inhibition by DHA did not increase p27(Kip1) mRNA levels. Rather, this fatty acid stabilized p27(Kip1) contents and inhibited MAPK-dependent proteasomal degradation of this protein. DHA also diminished cyclin E phosphorylation, cyclin-dependent kinase-2 (CDK2) activity, and phosphorylation of retinoblastoma protein in these cells. Our study shows that DHA arrests cell growth by modulating the phosphorylation of cell cycle-related proteins.

  3. Cooperation, Trust, and Antagonism: How Public Goods Are Promoted.

    Science.gov (United States)

    Parks, Craig D; Joireman, Jeff; Van Lange, Paul A M

    2013-12-01

    One of the most continually vexing problems in society is the variability with which citizens support endeavors that are designed to help a great number of people. In this article, we examine the twin roles of cooperative and antagonistic behavior in this variability. We find that each plays an important role, though their contributions are, understandably, at odds. It is this opposition that produces seeming unpredictability in citizen response to collective need. In fact, we suggest that careful consideration of the research allows one to often predict when efforts to provide a collectively beneficial good will succeed and when they will fail. To understand the dynamics of participation in response to collective need, it is necessary to distinguish between the primary types of need situations. A public good is an entity that relies in whole or in part on contributions to be provided. Examples of public goods are charities and public broadcasting. Public goods require that citizens experience a short-term loss (of their contribution) in order to realize a long-term gain (of the good). However, because everyone can use the good once it is provided, there is also an incentive to not contribute, let others give, and then take advantage of their efforts. This state of affairs introduces a conflict between doing what is best for oneself and what is best for the group. In a public goods situation, cooperation and antagonism impact how one resolves this conflict. The other major type of need situation is a common-pool resource problem. Here, a good is fully provided at the outset, and citizens may sample from it. The resource is usually, but not necessarily, partially replenished. Examples of replenished resources are drinking water and trees; examples of resources that are functionally not replenished are oil and minerals. Common-pool resources allow citizens to experience a short-term gain (by getting what they want in the early life of the resource) but also present

  4. Wnt target genes identified by DNA microarrays in immature CD34+ thymocytes regulate proliferation and cell adhesion

    NARCIS (Netherlands)

    F.J.T. Staal (Frank); F. Weerkamp (Floor); M.R.M. Baert (Miranda); C.M. van den Burg (Caroline); M. van Noort (Mascha); E.F. de Haas (Edwin); J.J.M. van Dongen (Jacques)

    2004-01-01

    textabstractThe thymus is seeded by very small numbers of progenitor cells that undergo massive proliferation before differentiation and rearrangement of TCR genes occurs. Various signals mediate proliferation and differentiation of these cells, including Wnt signals. Wnt signals i

  5. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo.

    Science.gov (United States)

    Fleming, Heather E; Janzen, Viktor; Lo Celso, Cristina; Guo, Jun; Leahy, Kathleen M; Kronenberg, Henry M; Scadden, David T

    2008-03-06

    Wingless (Wnt) is a potent morphogen demonstrated in multiple cell lineages to promote the expansion and maintenance of stem and progenitor cell populations. Wnt effects are highly context dependent, and varying effects of Wnt signaling on hematopoietic stem cells (HSCs) have been reported. We explored the impact of Wnt signaling in vivo, specifically in the context of the HSC niche by using an osteoblast-specific promoter driving expression of the paninhibitor of canonical Wnt signaling, Dickkopf1 (Dkk1). Here we report that Wnt signaling was markedly inhibited in HSCs and, unexpectedly given prior reports, reduction in HSC Wnt signaling resulted in reduced p21Cip1 expression, increased cell cycling, and a progressive decline in regenerative function after transplantation. This effect was microenvironment determined, but irreversible if the cells were transferred to a normal host. Wnt pathway activation in the niche is required to limit HSC proliferation and preserve the reconstituting function of endogenous hematopoietic stem cells.

  6. Variation in the Kozak sequence of WNT16 results in an increased translation and is associated with osteoporosis related parameters

    DEFF Research Database (Denmark)

    Hendrickx, Gretl; Boudin, Eveline; Fijałkowski, Igor

    2014-01-01

    population. The observed effect of these three associated SNPs on the respective phenotypes is comparable and we can conclude that the presence of the minor allele results in an increase in BMD. Additionally, we performed re-sequencing of WNT16 on two cohorts selected from the young OAS cohort, based...... on their extreme BMD values. On this basis, rs55710688 was selected for an in vitro translation experiment since it is located in the Kozak sequence of WNT16a. We observed an increased translation efficiency and thus a higher amount of WNT16a for the Kozak sequence that was significantly more prevalent in the high...... WNT pathway. Increased translation of WNT16 can thus lead to an increased inhibitory action of WNT16 on canonical WNT signaling. This statement is in contrast with the known activating effect of canonical WNT signaling on bone formation and suggests a stimulatory effect on bone metabolism via...

  7. Transcriptome analysis of Wnt3a-treated triple-negative breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Sylvie Maubant

    Full Text Available The canonical Wnt/β-catenin pathway is activated in triple-negative breast cancer (TNBC. The activation of this pathway leads to the expression of specific target genes depending on the cell/tissue context. Here, we analyzed the transcriptome of two different TNBC cell lines to define a comprehensive list of Wnt target genes. The treatment of cells with Wnt3a for 6h up-regulated the expression (fold change > 1.3 of 59 genes in MDA-MB-468 cells and 241 genes in HCC38 cells. Thirty genes were common to both cell lines. Beta-catenin may also be a transcriptional repressor and we found that 18 and 166 genes were down-regulated in response to Wnt3a treatment for 6h in MDA-MB-468 and HCC38 cells, respectively, of which six were common to both cell lines. Only half of the activated and the repressed transcripts have been previously described as Wnt target genes. Therefore, our study reveals 137 novel genes that may be positively regulated by Wnt3a and 104 novel genes that may be negatively regulated by Wnt3a. These genes are involved in the Wnt pathway itself, and also in TGFβ, p53 and Hedgehog pathways. Thorough characterization of these novel potential Wnt target genes may reveal new regulators of the canonical Wnt pathway. The comparison of our list of Wnt target genes with those published in other cellular contexts confirms the notion that Wnt target genes are tissue-, cell line- and treatment-specific. Genes up-regulated in Wnt3a-stimulated cell lines were more strongly expressed in TNBC than in luminal A breast cancer samples. These genes were also overexpressed, but to a much lesser extent, in HER2+ and luminal B tumors. We identified 72 Wnt target genes higher expressed in TNBCs (17 with a fold change >1.3 which may reflect the chronic activation of the canonical Wnt pathway that occurs in TNBC tumors.

  8. Inhibitory mechanisms of two Uncaria tomentosa extracts affecting the Wnt-signaling pathway.

    Science.gov (United States)

    Gurrola-Díaz, Carmen Magdalena; García-López, Pedro Macedonio; Gulewicz, Krzysztof; Pilarski, Radoslaw; Dihlmann, Susanne

    2011-06-15

    Uncaria tomentosa ("uña de gato"; "cat's claw"), a woody vine native to the Amazon rainforest, is commonly used in South American traditional medicine to treat a broad spectrum of diseases. Although recent studies have reported anti-inflammatory and anti-proliferative properties of different alkaloids extracted from this plant, the underlying molecular mechanisms of these effects have not been elucidated yet. Our study investigates the inhibitory mechanisms of Uncaria tomentosa extracts on the Wnt-signaling pathway, a central regulator of development and tissue homoeostasis. A modified cell-based luciferase assay for screening inhibitors of the Wnt-pathway was used for analysis. Three cancer cell lines displaying different levels of aberrant Wnt-signaling activity were transfected with Wnt-signaling responsive Tcf-reporter plasmids and treated with increasing concentrations of two Uncaria tomentosa bark extracts. Wnt-signaling activity was assessed by luciferase activity and by expression of Wnt-responsive target genes. We show that both, an aqueous and an alkaloid-enriched extract specifically inhibit Wnt-signaling activity in HeLa, HCT116 and SW480 cancer cells resulting in reduced expression of the Wnt-target gene: c-Myc. The alkaloid-enriched extract (B/S(rt)) was found to be more effective than the aqueous extract (B/W(37)). The strongest effect was observed in SW480 cells, displaying the highest endogenous Wnt-signaling activity. Downregulation of Wnt-signaling by a dominant negative-TCF-4 variant in non-cancer cells rendered the cells insensitive towards treatment with B/S(rt). B/Srt was less toxic in non-cancer cells than in cancer cells. Our data suggest that the broad spectrum of pharmacological action of Uncaria tomentosa involves inhibition of the Wnt-signaling pathway, downstream of beta-Catenin activity.

  9. Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Simon A., E-mail: s.fox@curtin.edu.au [Molecular Pharmacology Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA (Australia); Richards, Alex K.; Kusumah, Ivonne; Perumal, Vanathi [Molecular Pharmacology Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA (Australia); Bolitho, Erin M. [Western Australian Institute for Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA (Australia); Mutsaers, Steven E. [Lung Institute of Western Australia, Centre for Asthma Allergy and Respiratory Research, University of Western Australia, Nedlands (Australia); Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Western Australian Institute for Medical Research, Nedlands (Australia); Dharmarajan, Arun M. [School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA (Australia)

    2013-10-11

    Highlights: •Expression profile of Wnt pathway related genes in mesothelioma cells. •Differential expression of key Wnt pathway molecules and regulators. •Wnt3a stimulated mesothelioma growth whereas sFRP4 was inhibitory. •Targeting β-Catenin can sensitise mesothelioma cells to cytotoxic drugs. -- Abstract: Malignant mesothelioma (MM) is an uncommon and particularly aggressive cancer associated with asbestos exposure, which currently presents an intractable clinical challenge. Wnt signaling has been reported to play a role in the neoplastic properties of mesothelioma cells but has not been investigated in detail in this cancer. We surveyed expression of Wnts, their receptors, and other key molecules in this pathway in well established in vitro mesothelioma models in comparison with primary mesothelial cultures. We also tested the biological response of MM cell lines to exogenous Wnt and secreted regulators, as well as targeting β-catenin. We detected frequent expression of Wnt3 and Wnt5a, as well as Fzd 2, 4 and 6. The mRNA of Wnt4, Fzd3, sFRP4, APC and axin2 were downregulated in MM relative to mesothelial cells while LEF1 was overexpressed in MM. Functionally, we observed that Wnt3a stimulated MM proliferation while sFRP4 was inhibitory. Furthermore, directly targeting β-catenin expression could sensitise MM cells to cytotoxic drugs. These results provide evidence for altered expression of a number of Wnt/Fzd signaling molecules in MM. Modulation of Wnt signaling in MM may prove a means of targeting proliferation and drug resistance in this cancer.

  10. Structural dynamics and inhibitor searching for Wnt-4 protein using comparative computational studies

    Directory of Open Access Journals (Sweden)

    Hammad MA

    2015-04-01

    Full Text Available Mirza A Hammad, Syed Sikander Azam National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan Abstract: Wnt-4 (wingless mouse mammary tumor virus integration site-4 protein is involved in many crucial embryonic pathways regulating essential processes. Aberrant Wnt-4 activity causes various anomalies leading to gastric, colon, or breast cancer. Wnt-4 is a conserved protein in structure and sequence. All Wnt proteins contain an unusual fold comprising of a thumb (or N-terminal domain and index finger (or C-terminal domain bifurcated by a palm domain. The aim of this study was to identify the best inhibitors of Wnt-4 that not only interact with Wnt-4 protein but also with the covalently bound acyl group to inhibit aberrant Wnt-4 activity. A systematic computational approach was used to analyze inhibition of Wnt-4. Palmitoleic acid was docked into Wnt-4 protein, followed by ligand-based virtual screening of nearly 209,847 compounds; conformer generation of 271 compounds resulted from extensive virtual screening and comparative docking of 10,531 conformers of 271 unique compounds through GOLD (Genetic Optimization for Ligand Docking, AutoDock-Vina, and FRED (Fast Rigid Exhaustive Docking was subsequently performed. Linux scripts was used to handle the libraries of compounds. The best compounds were selected on the basis of having maximum interactions to protein with bound palmitoleic acid. These represented lead inhibitors in further experiments. Palmitoleic acid is important for efficient Wnt activity, but aberrant Wnt-4 expression can be inhibited by designing inhibitors interacting with both protein and palmitoleic acid. Keywords: thumb-index fold, comparative study, natural products, inhibitor searching, cancer, molecular docking, virtual screening

  11. Enhanced expression of Wnt9a in the flexor tenosynovium in idiopathic carpal tunnel syndrome.

    Science.gov (United States)

    Yamanaka, Yoshiaki; Menuki, Kunitaka; Zenke, Yukichi; Hirasawa, Hideyuki; Sakai, Akinori

    2015-10-01

    This study aimed to clarify the association between abnormal Wnt signaling and the cause of idiopathic carpal tunnel syndrome (ICTS) and whether an association exists between Wnt signaling and cell proliferation in the flexor tenosynovium. The subjects included nine patients with ICTS; the controls were nine patients with distal radius fractures without any symptoms of carpal tunnel syndrome. We extracted mRNA from the flexor tenosynovium and compared the expression levels of genes encoding 17 types of Wnt in both subjects and controls via quantitative real-time polymerase chain reaction (PCR). Expression levels of factors involved in cell proliferation, such as estrogen-responsive finger protein, epidermal growth factor receptor, heparin binding-epidermal growth factor-like growth factor, insulin-like growth factor-1, and vascular endothelial growth factor (VEGF) were also measured using quantitative real-time PCR. In addition, we compared the Wnt and MIB-1 protein expression levels to clarify the effect of Wnt on cell proliferation. Quantitative real-time PCR revealed significantly greater expression of the gene encoding Wnt9a in subjects with ICTS than in controls and also revealed a positive correlation between the expression of genes encoding Wnt9a and VEGF in subjects with ICTS. Quantitative evaluation using immunohistochemical staining also indicated more marked Wnt9a expression in subjects than in controls. However, there was no relationship between the expression of Wnt9a and the cell proliferation index MIB-1. These results indicate that Wnt9a expression is enhanced in ICTS and that Wnt9a may be involved in VEGF expression in ICTS.

  12. Primary cilia are not required for normal canonical Wnt signaling in the mouse embryo.

    Directory of Open Access Journals (Sweden)

    Polloneal Jymmiel R Ocbina

    Full Text Available Sonic hedgehog (Shh signaling in the mouse requires the microtubule-based organelle, the primary cilium. The primary cilium is assembled and maintained through the process of intraflagellar transport (IFT and the response to Shh is blocked in mouse mutants that lack proteins required for IFT. Although the phenotypes of mouse IFT mutants do not overlap with phenotypes of known Wnt pathway mutants, recent studies report data suggesting that the primary cilium modulates responses to Wnt signals.We therefore carried out a systematic analysis of canonical Wnt signaling in mutant embryos and cells that lack primary cilia because of loss of the anterograde IFT kinesin-II motor (Kif3a or IFT complex B proteins (Ift172 or Ift88. We also analyzed mutant embryos with abnormal primary cilia due to defects in retrograde IFT (Dync2h1. The mouse IFT mutants express the canonical Wnt target Axin2 and activate a transgenic canonical Wnt reporter, BAT-gal, in the normal spatial pattern and to the same quantitative level as wild type littermates. Similarly, mouse embryonic fibroblasts (MEFs derived from IFT mutants respond normally to added Wnt3a. The switch from canonical to non-canonical Wnt also appears normal in IFT mutant MEFs, as both wild-type and mutant cells do not activate the canonical Wnt reporter in the presence of both Wnt3a and Wnt5a.We conclude that loss of primary cilia or defects in retrograde IFT do not affect the response of the midgestation embryo or embryo-derived fibroblasts to Wnt ligands.

  13. Conditional expression of Wnt4 during chondrogenesis leads to dwarfism in mice.

    Directory of Open Access Journals (Sweden)

    Hu-Hui Lee

    Full Text Available Wnts are expressed in the forming long bones, suggesting roles in skeletogenesis. To examine the action of Wnts in skeleton formation, we developed a genetic system to conditionally express Wnt4 in chondrogenic tissues of the mouse. A mouse Wnt4 cDNA was introduced into the ubiquitously expressed Rosa26 (R26 locus by gene targeting in embryonic stem (ES cells. The expression of Wnt4 from the R26 locus was blocked by a neomycin selection cassette flanked by loxP sites (floxneo that was positioned between the Rosa26 promoter and the Wnt4 cDNA, creating the allele designated R26(floxneoWnt4. Wnt4 expression was activated during chondrogenesis using Col2a1-Cre transgenic mice that express Cre recombinase in differentiating chondrocytes. R26(floxneoWnt4; Col2a1-Cre double heterozygous mice exhibited a growth deficiency, beginning approximately 7 to 10 days after birth, that resulted in dwarfism. In addition, they also had craniofacial abnormalities, and delayed ossification of the lumbar vertebrae and pelvic bones. Histological analysis revealed a disruption in the organization of the growth plates and a delay in the onset of the primary and secondary ossification centers. Molecular studies showed that Wnt4 overexpression caused decreased proliferation and altered maturation of chondrocytes. In addition, R26(floxneoWnt4; Col2a1-Cre mice had decreased expression of vascular endothelial growth factor (VEGF. These studies demonstrate that Wnt4 overexpression leads to dwarfism in mice. The data indicate that Wnt4 levels must be regulated in chondrocytes for normal growth plate development and skeletogenesis. Decreased VEGF expression suggests that defects in vascularization may contribute to the dwarf phenotype.

  14. Induction of CXC chemokines in human mesenchymal stemcells by stimulation with secreted frizzled-related proteinsthrough non-canonical Wnt signaling

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    -induced phosphorylationof extracellular signal-regulated kinase(ERK) (p44/42) maximally at 5 min after sFRP1 addition,earlier than that found in OGM alone. Addition of aphospholipase C (PLC) inhibitor also prevented sFRPstimulatedincreases in CXCL8 mRNA. siRNA technologytargeting the Fzd-2 and 5 and the non-canonical Fzdco-receptor RoR2 also significantly decreased sFRP1/2-stimulated CXCL8 mRNA levels.CONCLUSION: CXC chemokine expression in hMSCsis controlled in part by sFRPs signaling through noncanonicalWnt involving Fzd2/5 and the ERK and PLCpathways.

  15. The Wnt/planar cell polarity signaling pathway contributes to the integrity of tight junctions in brain endothelial cells

    OpenAIRE

    2013-01-01

    Wnt morphogens released by neural precursor cells were recently reported to control blood–brain barrier (BBB) formation during development. Indeed, in mouse brain endothelial cells, activation of the Wnt/β-catenin signaling pathway, also known as the canonical Wnt pathway, was shown to stabilize endothelial tight junctions (TJs) through transcriptional regulation of the expression of TJ proteins. Because Wnt proteins activate several distinct β-catenin-dependent and independent signaling path...

  16. Interaction with Shc prevents aberrant Erk activation in the absence of extracellular stimuli

    KAUST Repository

    Suen, KinMan

    2013-05-01

    Control mechanisms that prevent aberrant signaling are necessary to maintain cellular homeostasis. We describe a new mechanism by which the adaptor protein Shc directly binds the MAP kinase Erk, thus preventing its activation in the absence of extracellular stimuli. The Shc-Erk complex restricts Erk nuclear translocation, restraining Erk-dependent transcription of genes, including those responsible for oncogenic growth. The complex forms through unique binding sites on both the Shc PTB domain and the N-terminal lobe of Erk. Upon receptor tyrosine kinase stimulation, a conformational change within Shc - induced through interaction with the phosphorylated receptor - releases Erk, allowing it to fulfill its role in signaling. Thus, in addition to its established role in promoting MAP kinase signaling in stimulated cells, Shc negatively regulates Erk activation in the absence of growth factors and thus could be considered a tumor suppressor in human cells. © 2013 Nature America, Inc. All rights reserved.

  17. Zinc antagonizes homocysteine-induced fetal heart defects in rats.

    Science.gov (United States)

    He, Xiaoyu; Hong, Xinru; Zeng, Fang; Kang, Fenhong; Li, Li; Sun, Qinghua

    2009-09-01

    It has been suggested that zinc may have a protective role against heart defects during fetal development. We investigated the effects of zinc on the development of fetal cardiac malformations induced by homocysteine. Pregnant Sprague-Dawley rats were randomized into one of five groups: control (C), homocysteine (H), homocysteine + zinc (Z), homocysteine + folic acid (F), or homocysteine + zinc + folic acid (ZF) (each n = 8). Homocysteine (8 nmol/day) was administered intraperitoneally in the H, Z, F, and ZF groups on gestation days (GD) 8, 9, and 10. Zinc (30 mg/kg day), folic acid (30 mg/kg day), or both (30 mg/kg day each) were administered intragastrically daily in the Z, F, and ZF groups, respectively, throughout the pregnancy. In each group, two fetuses were removed on GD 13, 15, 17, and 19 and examined for cardiac malformations; maternal copper/zinc-containing-superoxide dismutase (Cu/Zn-SOD) activity and metallothionein type I (MT-1) mRNA expression were measured simultaneously. The prevalence of cardiac malformations was significantly higher in group H than in group C, and significantly lower in group Z than in group H at the studied time points. Cu/Zn-SOD activity and MT-1 mRNA levels were significantly lower in group H than in group C, and significantly higher in group Z than in group H. Our data suggest that zinc antagonizes homocysteine-induced teratogenic effects on the fetal heart, possibly via the inhibition of excessive peroxidation.

  18. Structure-based rationale for interleukin 5 receptor antagonism.

    Science.gov (United States)

    Ishino, Tetsuya; Harrington, Adrian E; Gopi, Hosahudya; Chaiken, Irwin

    2008-01-01

    Human interleukin 5 (IL5) is the major hematopoietin that stimulates the proliferation, migration and activation of eosinophils and is implicated in the pathogenesis of inflammatory and other myeloproliferative diseases. IL5 functions through the signaling of a common receptor subunit beta (beta c), in a receptor activation process that requires initial recruitment of an IL5 specific receptor subunit alpha (IL5Ralpha), for cytokine presentation to beta c. Important advances have been made to understand molecular mechanisms of cytokine recognition and receptor antagonism. Mutational studies indicate that a pair of charge complementary regions play an essential role in specific interaction between IL5Ralpha and IL5. Moreover, peptide studies with the IL5 system have identified a cyclic peptide inhibitor, AF17121, which binds specifically to IL5Ralpha by mimicking the cytokine. A key receptor-recognition pharmacophore has been identified in this peptide inhibitor, and sites of inhibitor recognition can be proposed in the homology-deduced structural model of IL5Ralpha. These results provide an experimental platform to derive enhanced-potency peptidomimetic inhibitors. Such inhibitors have potential use as tools to evaluate the role of eosinophilia in disease and as potential leads to antagonists to treat hyper-eosinophilic diseases such as eosinophilic esophagitis, asthma and chronic myeloproliferative leukemias.

  19. Differential vascular α1-adrenoceptor antagonism by tamsulosin and terazosin

    Science.gov (United States)

    Schäfers, Rafael F; Fokuhl, Bernd; Wasmuth, Andrea; Schumacher, Helmut; Taguchi, Katsunari; de Mey, Christian; Philipp, Thomas; Michel, Martin C

    1999-01-01

    Aims In patients with lower urinary tract symptoms suggestive of benign prostatic obstruction the α1-adrenoceptor antagonist terazosin lowers blood pressure whereas only very small if any alterations were reported with the α1-adrenoceptor antagonist tamsulosin. Therefore, we have compared the vascular α1-adrenoceptor antagonism of tamsulosin and terazosin directly. Methods Ten healthy subjects were investigated in a randomized, single-blind, three-way cross-over design and received a single dose of 0.4 mg tamsulosin, 5 mg terazosin or placebo on 3 study days at least 1 week apart. Before and 1, 3, 5, 7, 10 and 23.5 h after drug intake, alterations of diastolic blood pressure and other haemodynamic parameters in response to a graded infusion of the α1-adrenoceptor agonist phenylephrine were determined non-invasively. Results At most time points tamsulosin inhibited phenylephrine-induced diastolic blood pressure elevations significantly less than terazosin (5 h time point: median difference in inhibition 35%, 95% CI: 18.7–50.3%). On the other hand, phenylephrine-induced changes of cardiac output, heart rate and stroke volume were similar during both active treatments. Conclusions In doses equi-effective for treatment of lower urinary tract symptoms tamsulosin causes less inhibition of vasoconstriction than terazosin. PMID:10073742

  20. Antagonism of non-depolarising neuromuscular block: current practice.

    Science.gov (United States)

    Kopman, A F; Eikermann, M

    2009-03-01

    There is now mounting evidence that even small degrees of postoperative residual neuromuscular block increases the incidence of adverse respiratory events in the Post Anaesthesia Care Unit and may increase longer-term morbidity as well. In the absence of quantitative neuromuscular monitoring, residual block is easily missed. A very strong case can be made for the routine administration of a non-depolarising antagonist unless it can be objectively demonstrated that complete recovery has occurred spontaneously. However, the use of acetylcholinesterase inhibitors is associated with the potential for cardiovascular and respiratory side-effects, so there are cogent reasons for using low doses when the level of neuromuscular block is not intense. As little as 0.015-0.025 mg.kg(-1) of neostigmine is required at a train-of-four count of four with minimal fade, whereas 0.04-0.05 mg.kg(-1) is needed at a train-of-four count of two or three. If only a single twitch or none at all can be evoked, neostigmine should not be expected to promptly reverse neuromuscular block, and antagonism is best delayed till a train-of-four-count of two is achieved.

  1. Tachykinin receptors antagonism for asthma: a systematic review

    Directory of Open Access Journals (Sweden)

    Couto Nuno

    2011-08-01

    Full Text Available Abstract Background Tachykinins substance P, neurokinin A and neurokinin B seem to account for asthma pathophysiology by mediating neurogenic inflammation and several aspects of lung mechanics. These neuropeptides act mainly by their receptors NK1, NK2 and NK3, respectively which may be targets for new asthma therapy. Methods This review systematically examines randomized controlled trials evaluating the effect of tachykinins receptors antagonism on asthma. Symptoms, airway inflammation, lung function and airway inflammation were considered as outcomes. We searched the Cochrane Airways Group Specialized Register of Asthma Trials, Cochrane Database of Systematic Reviews, MEDLINE/PubMed and EMBASE. The search is as current as June 2010. Quality rating of included studies followed the Cochrane Collaboration and GRADE Profiler approaches. However, data were not pooled together due to different measures among the studies. Results Our systematic review showed the potential of NK receptor antagonist to decrease airway responsiveness and to improve lung function. However, effects on airway inflammation and asthma symptoms were poorly or not described. Conclusion The limited available evidence suggests that tachykinin receptors antagonists may decrease airway responsiveness and improve lung function in patients with asthma. Further large randomized trials are still required.

  2. Antagonism between retinoic acid and fibroblast growth factor signaling during limb development.

    Science.gov (United States)

    Cunningham, Thomas J; Zhao, Xianling; Sandell, Lisa L; Evans, Sylvia M; Trainor, Paul A; Duester, Gregg

    2013-05-30

    The vitamin A metabolite retinoic acid (RA) provides patterning information during vertebrate embryogenesis, but the mechanism through which RA influences limb development is unclear. During patterning of the limb proximodistal axis (upper limb to digits), avian studies suggest that a proximal RA signal generated in the trunk antagonizes a distal fibroblast growth factor (FGF) signal. However, mouse and zebrafish genetic studies suggest that loss of RA suppresses forelimb initiation. Here, using genetic and pharmacological approaches, we demonstrate that limb proximodistal patterning is not RA dependent, thus indicating that RA-FGF antagonism does not occur along the proximodistal axis of the limb. Instead, our studies show that RA-FGF antagonism acts prior to limb budding along the anteroposterior axis of the trunk lateral plate mesoderm to provide a patterning cue that guides formation of the forelimb field. These findings reconcile disparate ideas regarding RA-FGF antagonism and provide insight into how endogenous RA programs the early embryo.

  3. Antagonism between Retinoic Acid and Fibroblast Growth Factor Signaling during Limb Development

    Directory of Open Access Journals (Sweden)

    Thomas J. Cunningham

    2013-05-01

    Full Text Available The vitamin A metabolite retinoic acid (RA provides patterning information during vertebrate embryogenesis, but the mechanism through which RA influences limb development is unclear. During patterning of the limb proximodistal axis (upper limb to digits, avian studies suggest that a proximal RA signal generated in the trunk antagonizes a distal fibroblast growth factor (FGF signal. However, mouse and zebrafish genetic studies suggest that loss of RA suppresses forelimb initiation. Here, using genetic and pharmacological approaches, we demonstrate that limb proximodistal patterning is not RA dependent, thus indicating that RA-FGF antagonism does not occur along the proximodistal axis of the limb. Instead, our studies show that RA-FGF antagonism acts prior to limb budding along the anteroposterior axis of the trunk lateral plate mesoderm to provide a patterning cue that guides formation of the forelimb field. These findings reconcile disparate ideas regarding RA-FGF antagonism and provide insight into how endogenous RA programs the early embryo.

  4. Estrogen-related receptor α regulates osteoblast differentiation via Wnt/β-catenin signaling.

    Science.gov (United States)

    Auld, Kathryn L; Berasi, Stephen P; Liu, Yan; Cain, Michael; Zhang, Ying; Huard, Christine; Fukayama, Shoichi; Zhang, Jing; Choe, Sung; Zhong, Wenyan; Bhat, Bheem M; Bhat, Ramesh A; Brown, Eugene L; Martinez, Robert V

    2012-04-01

    Based on its homology to the estrogen receptor and its roles in osteoblast and chondrocyte differentiation, the orphan nuclear receptor estrogen-related receptor α (ERRα (ESRRA)) is an intriguing therapeutic target for osteoporosis and other bone diseases. The objective of this study was to better characterize the molecular mechanisms by which ERRα modulates osteoblastogenesis. Experiments from multiple systems demonstrated that ERRα modulates Wnt signaling, a crucial pathway for proper regulation of bone development. This was validated using a Wnt-luciferase reporter, where ERRα showed co-activator-dependent (peroxisome proliferator-activated receptor gamma co-activator 1α, PGC-1α) stimulatory effects. Interestingly, knockdown of ERRα expression also enhanced WNT signaling. In combination, these data indicated that ERRα could serve to either activate or repress Wnt signaling depending on the presence or absence of its co-activator PGC-1α. The observed Wnt pathway modulation was cell intrinsic and did not alter β-catenin nuclear translocation but was dependent on DNA binding of ERRα. We also found that expression of active ERRα correlated with Wnt pathway effects on osteoblastic differentiation in two cell types, consistent with a role for ERRα in modulating the Wnt pathway. In conclusion, this work identifies ERRα, in conjunction with co-activators such as PGC-1α, as a new regulator of the Wnt-signaling pathway during osteoblast differentiation, through a cell-intrinsic mechanism not affecting β-catenin nuclear translocation.

  5. A review of the evidence for the canonical Wnt pathway in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Kalkman Hans

    2012-10-01

    Full Text Available Abstract Microdeletion and microduplication copy number variations are found in patients with autism spectrum disorder and in a number of cases they include genes that are involved in the canonical Wnt signaling pathway (for example, FZD9, BCL9 or CDH8. Association studies investigating WNT2, DISC1, MET, DOCK4 or AHI1 also provide evidence that the canonical Wnt pathway might be affected in autism. Prenatal medication with sodium-valproate or antidepressant drugs increases autism risk. In animal studies, it has been found that these medications promote Wnt signaling, including among others an increase in Wnt2 gene expression. Notably, the available genetic information indicates that not only canonical Wnt pathway activation, but also inhibition seems to increase autism risk. The canonical Wnt pathway plays a role in dendrite growth and suboptimal activity negatively affects the dendritic arbor. In principle, this provides a logical explanation as to why both hypo- and hyperactivity may generate a similar set of behavioral and cognitive symptoms. However, without a validated biomarker to stratify for deviant canonical Wnt pathway activity, it is probably too dangerous to treat patients with compounds that modify pathway activity.

  6. Salinomycin inhibits Wnt signaling and selectively induces apoptosis in chronic lymphocytic leukemia cells.

    Science.gov (United States)

    Lu, Desheng; Choi, Michael Y; Yu, Jian; Castro, Januario E; Kipps, Thomas J; Carson, Dennis A

    2011-08-09

    Salinomycin, an antibiotic potassium ionophore, has been reported recently to act as a selective breast cancer stem cell inhibitor, but the biochemical basis for its anticancer effects is not clear. The Wnt/β-catenin signal transduction pathway plays a central role in stem cell development, and its aberrant activation can cause cancer. In this study, we identified salinomycin as a potent inhibitor of the Wnt signaling cascade. In Wnt-transfected HEK293 cells, salinomycin blocked the phosphorylation of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and induced its degradation. Nigericin, another potassium ionophore with activity against cancer stem cells, exerted similar effects. In otherwise unmanipulated chronic lymphocytic leukemia cells with constitutive Wnt activation nanomolar concentrations of salinomycin down-regulated the expression of Wnt target genes such as LEF1, cyclin D1, and fibronectin, depressed LRP6 levels, and limited cell survival. Normal human peripheral blood lymphocytes resisted salinomycin toxicity. These results indicate that ionic changes induced by salinomycin and related drugs inhibit proximal Wnt signaling by interfering with LPR6 phosphorylation, and thus impair the survival of cells that depend on Wnt signaling at the plasma membrane.

  7. Wnt-β-Catenin Signaling Promotes the Maturation of Mast Cells

    Directory of Open Access Journals (Sweden)

    Tomoko Yamaguchi

    2016-01-01

    Full Text Available Mast cells play an important role in the pathogenesis of allergic diseases. Immature mast cells migrate into peripheral tissues from the bone marrow and undergo complete maturation. Interestingly, mast cells have characteristics similar to hematopoietic stem cells (HSCs, such as self-renewal and c-kit expression. In HSCs, Wnt signaling is involved in their maintenance and differentiation. On the other hand, the relation between Wnt signaling and mast cell differentiation is poorly understood. To study whether Wnt signals play a role in the maturation of mast cells, we studied the effect of Wnt proteins on mast cell maturation of bone marrow-derived mast cells (BMMCs. The expression levels of CD81 protein and histidine decarboxylase mRNA and activity of mast cell-specific protease were all elevated in BMMCs treated with Wnt5a. In addition, Wnt5a induced the expression of Axin2 and TCF mRNA in BMMCs. These results showed that Wnt5a could promote the maturation of mast cells via the canonical Wnt signaling pathway and provide important insights into the molecular mechanisms underlying the differentiation of mast cells.

  8. Making sense of Wnt signaling – linking hair cell regeneration to development

    Directory of Open Access Journals (Sweden)

    Lina eJansson

    2015-03-01

    Full Text Available Wnt signaling is a highly conserved pathway crucial for development and homeostasis of multicellular organisms. Secreted Wnt ligands bind Frizzled receptors to regulate diverse processes such as axis patterning, cell division, and cell fate specification. They also serve to govern self-renewal of somatic stem cells in several adult tissues. The complexity of the pathway can be attributed to the myriad of Wnt and Frizzled combinations as well as its diverse context-dependent functions. In the developing mouse inner ear, Wnt signaling plays diverse roles, including specification of the otic placode and patterning of the otic vesicle. At later stages, its activity governs sensory hair cell specification, cell cycle regulation, and hair cell orientation. In regenerating sensory organs from non-mammalian species, Wnt signaling can also regulate the extent of proliferative hair cell regeneration. This review describes the current knowledge of the roles of Wnt signaling and Wnt-responsive cells in hair cell development and regeneration. We also discuss possible future directions and the potential application and limitation of Wnt signaling in augmenting hair cell regeneration.

  9. Huwe1-mediated ubiquitylation of dishevelled defines a negative feedback loop in the Wnt signaling pathway

    NARCIS (Netherlands)

    de Groot, Reinoud E A; Ganji, Ranjani S; Bernatik, Ondrej; Lloyd-Lewis, Bethan; Seipel, Katja; Šedová, Kateřina; Zdráhal, Zbyněk; Dhople, Vishnu M; Dale, Trevor C; Korswagen, Hendrik C; Bryja, Vitezslav

    2014-01-01

    Wnt signaling plays a central role in development, adult tissue homeostasis, and cancer. Several steps in the canonical Wnt/β-catenin signaling cascade are regulated by ubiquitylation, a protein modification that influences the stability, subcellular localization, or interactions of target proteins.

  10. Sequence analysis and molecular characterization of Wnt4 gene in metacestodes of Taenia solium.

    Science.gov (United States)

    Hou, Junling; Luo, Xuenong; Wang, Shuai; Yin, Cai; Zhang, Shaohua; Zhu, Xueliang; Dou, Yongxi; Cai, Xuepeng

    2014-04-01

    Wnt proteins are a family of secreted glycoproteins that are evolutionarily conserved and considered to be involved in extensive developmental processes in metazoan organisms. The characterization of wnt genes may improve understanding the parasite's development. In the present study, a wnt4 gene encoding 491amino acids was amplified from cDNA of metacestodes of Taenia solium using reverse transcription PCR (RT-PCR). Bioinformatics tools were used for sequence analysis. The conserved domain of the wnt gene family was predicted. The expression profile of Wnt4 was investigated using real-time PCR. Wnt4 expression was found to be dramatically increased in scolex evaginated cysticerci when compared to invaginated cysticerci. In situ hybridization showed that wnt4 gene was distributed in the posterior end of the worm along the primary body axis in evaginated cysticerci. These findings indicated that wnt4 may take part in the process of cysticerci evagination and play a role in scolex/bladder development of cysticerci of T. solium.

  11. Wnt signaling: its transcriptional output in the intestinal crypt and in colon cancer

    NARCIS (Netherlands)

    Oving, I.M.

    2007-01-01

    The transition of an intestinal epithelial cell into a fully transformed, metastatic cancer cell requires mutations in multiple proto-oncogenes and key tumor suppressor genes, including those of the Wnt pathway. We describe a large scale analysis of the downstream genetic program activated by wnt si

  12. Expression of secreted Wnt pathway components reveals unexpected complexity of the planarian amputation response.

    Science.gov (United States)

    Gurley, Kyle A; Elliott, Sarah A; Simakov, Oleg; Schmidt, Heiko A; Holstein, Thomas W; Sánchez Alvarado, Alejandro

    2010-11-01

    Regeneration is widespread throughout the animal kingdom, but our molecular understanding of this process in adult animals remains poorly understood. Wnt/β-catenin signaling plays crucial roles throughout animal life from early development to adulthood. In intact and regenerating planarians, the regulation of Wnt/β-catenin signaling functions to maintain and specify anterior/posterior (A/P) identity. Here, we explore the expression kinetics and RNAi phenotypes for secreted members of the Wnt signaling pathway in the planarian Schmidtea mediterranea. Smed-wnt and sFRP expression during regeneration is surprisingly dynamic and reveals fundamental aspects of planarian biology that have been previously unappreciated. We show that after amputation, a wounding response precedes rapid re-organization of the A/P axis. Furthermore, cells throughout the body plan can mount this response and reassess their new A/P location in the complete absence of stem cells. While initial stages of the amputation response are stem cell independent, tissue remodeling and the integration of a new A/P address with anatomy are stem cell dependent. We also show that WNT5 functions in a reciprocal manner with SLIT to pattern the planarian mediolateral axis, while WNT11-2 patterns the posterior midline. Moreover, we perform an extensive phylogenetic analysis on the Smed-wnt genes using a method that combines and integrates both sequence and structural alignments, enabling us to place all nine genes into Wnt subfamilies for the first time.

  13. WNT5A enhances resistance of melanoma cells to targeted BRAF inhibitors.

    Science.gov (United States)

    Anastas, Jamie N; Kulikauskas, Rima M; Tamir, Tigist; Rizos, Helen; Long, Georgina V; von Euw, Erika M; Yang, Pei-Tzu; Chen, Hsiao-Wang; Haydu, Lauren; Toroni, Rachel A; Lucero, Olivia M; Chien, Andy J; Moon, Randall T

    2014-07-01

    About half of all melanomas harbor a mutation that results in a constitutively active BRAF kinase mutant (BRAF(V600E/K)) that can be selectively inhibited by targeted BRAF inhibitors (BRAFis). While patients treated with BRAFis initially exhibit measurable clinical improvement, the majority of patients eventually develop drug resistance and relapse. Here, we observed marked elevation of WNT5A in a subset of tumors from patients exhibiting disease progression on BRAFi therapy. WNT5A transcript and protein were also elevated in BRAFi-resistant melanoma cell lines generated by long-term in vitro treatment with BRAFi. RNAi-mediated reduction of endogenous WNT5A in melanoma decreased cell growth, increased apoptosis in response to BRAFi challenge, and decreased the activity of prosurvival AKT signaling. Conversely, overexpression of WNT5A promoted melanoma growth, tumorigenesis, and activation of AKT signaling. Similarly to WNT5A knockdown, knockdown of the WNT receptors FZD7 and RYK inhibited growth, sensitized melanoma cells to BRAFi, and reduced AKT activation. Together, these findings suggest that chronic BRAF inhibition elevates WNT5A expression, which promotes AKT signaling through FZD7 and RYK, leading to increased growth and therapeutic resistance. Furthermore, increased WNT5A expression in BRAFi-resistant melanomas correlates with a specific transcriptional signature, which identifies potential therapeutic targets to reduce clinical BRAFi resistance.

  14. Curcumin Rescues Diabetic Renal Fibrosis by Targeting Superoxide-Mediated Wnt Signaling Pathways.

    Science.gov (United States)

    Ho, Cheng; Hsu, Yung-Chien; Lei, Chen-Chou; Mau, Shu-Ching; Shih, Ya-Hsueh; Lin, Chun-Liang

    2016-03-01

    The purposes of this study were to investigate whether curcumin can weaken diabetic nephropathy by modulating both oxidative stress and renal injury from Wnt signaling mediation. Wnt5a/β-catenin depression and induction of superoxide synthesis are associated with high glucose (HG) induced transforming growth factor (TGF)-β1 and fibronectin expression in mesangial cells. Curcumin resumes HG depression of Wnt/β-catenin signaling and alleviates HG induction of superoxide, TGF-β1 and fibronectin expression in renal mesangial cell. Exogenous curcumin alleviated urinary total proteinuria and serum superoxide level in diabetic rats. Based on laser-captured microdissection for quantitative real-time polymerase chain reaction, it was found that diabetes significantly increased TGF-β1 and fibronectin expression in line with depressed Wnt5a expression. Curcumin treatment reduced the TGF-β1 and fibronectin activation and the inhibiting effect of diabetes on Wnt5a/β-catenin expression in renal glomeruli. Immunohistochemistry showed that curcumin treatment significantly reduced 8-hydroxy-2'-deoxyguanosine, TGF-β1 and fibronectin, and was in line with the restoration of the suppressed Wnt5a expression immunoreactivities in glomeruli of diabetic rats. Curcumin alleviated extracellular matrix accumulation in diabetic nephropathy by not only preventing the diabetes-mediated superoxide synthesis but also resuming downregulation of Wnt/β-catenin signaling. These findings suggest that regulation of Wnt activity by curcumin is a feasible alternative strategy to rescue diabetic renal injury.

  15. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless.

    Science.gov (United States)

    Korkut, Ceren; Ataman, Bulent; Ramachandran, Preethi; Ashley, James; Barria, Romina; Gherbesi, Norberto; Budnik, Vivian

    2009-10-16

    Wnts play pivotal roles during development and in the mature nervous system. However, the mechanism by which Wnts traffic between cells has remained elusive. Here we demonstrate a mechanism of Wnt transmission through release of exosome-like vesicles containing the Wnt-binding protein Evenness Interrupted/Wntless/Sprinter (Evi/Wls/Srt). We show that at the Drosophila larval neuromuscular junction (NMJ), presynaptic vesicular release of Evi is required for the secretion of the Wnt, Wingless (Wg). We also show that Evi acts cell-autonomously in the postsynaptic Wnt-receiving cell to target dGRIP, a Wg-receptor-interacting protein, to postsynaptic sites. Upon Evi loss of function, dGRIP is not properly targeted to synaptic sites, interfering with postsynaptic Wnt signal transduction. These findings uncover a previously unknown cellular mechanism by which a secreted Wnt is transported across synapses by Evi-containing vesicles and reveal trafficking functions of Evi in both the Wnt-producing and the Wnt-receiving cells. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.

  16. The Wnt pathway: a key network in cell signalling dysregulated by viruses.

    Science.gov (United States)

    van Zuylen, Wendy J; Rawlinson, William D; Ford, Caroline E

    2016-09-01

    Viruses are obligate parasites dependent on host cells for survival. Viral infection of a cell activates a panel of pattern recognition receptors that mediate antiviral host responses to inhibit viral replication and dissemination. Viruses have evolved mechanisms to evade and subvert this antiviral host response, including encoding proteins that hijack, mimic and/or manipulate cellular processes such as the cell cycle, DNA damage repair, cellular metabolism and the host immune response. Currently, there is an increasing interest whether viral modulation of these cellular processes, including the cell cycle, contributes to cancer development. One cellular pathway related to cell cycle signalling is the Wnt pathway. This review focuses on the modulation of this pathway by human viruses, known to cause (or associated with) cancer development. The main mechanisms where viruses interact with the Wnt pathway appear to be through (i) epigenetic modification of Wnt genes; (ii) cellular or viral miRNAs targeting Wnt genes; (iii) altering specific Wnt pathway members, often leading to (iv) nuclear translocation of β-catenin and activation of Wnt signalling. Given that diverse viruses affect this signalling pathway, modulating Wnt signalling could be a generalised critical process for the initiation or maintenance of viral pathogenesis, with resultant dysregulation contributing to virus-induced cancers. Further study of this virus-host interaction may identify options for targeted therapy against Wnt signalling molecules as a means to reduce virus-induced pathogenesis and the downstream consequences of infection. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Frat oncoproteins act at the crossroad of canonical and noncanonical Wnt-signaling pathways

    NARCIS (Netherlands)

    van Amerongen, R.; Nawijn, M. C.; Lambooij, J-P; Proost, N.; Jonkers, J.; Berns, A.

    2010-01-01

    Wnt-signal transduction is critical for development and tissue homeostasis in a wide range of animal species and is frequently deregulated in human cancers. Members of the Frat/GBP family of glycogen synthase kinase 3 beta (Gsk3b)binding oncoproteins are recognized as potent activators of the Wnt/be

  18. Efficient Purification and Optimization of Wnt3a, a Novel Therapeutic for Tissue Regeneration

    Science.gov (United States)

    Madhav, D.; Helms, J.; Dhamdhere, G.

    2012-12-01

    Wnt is a secreted protein that is present naturally in the body. When an organism is injured the amount of Wnt in the affected area increases. This protein acts as an activator of adult stem cells and signals them to begin differentiating and proliferating. This stem cell response augments the ongoing efforts of injured cells to heal faster by becoming the cells that were damaged by the injury. Adult stem cells play a great role in the healing of wounds, but as organisms age the amount of stem cells in their body decreases. This decrease, in effect, slows the healing of injuries because no stem cells are present to help the regenerative efforts of the body. The Wnt protein induces these stem cells not only to differentiate and proliferate, but also to self-replicate. The ability of Wnt to induce adult stem cells to self -replicate gives us an option to use the protein as a potential tissue regenerative drug. Post-translational Wnt has a lipid modification that makes the protein insoluble in water. To overcome this we fuse the protein with a liposome. A liposome is a lipid sphere with an aqueous center and a phospholipid membrane. The Wnt protein does not lose its function when joined with a liposome. Using this knowledge we can develop a viable means to inject the Wnt protein directly into organisms. The big problem now is to make enough purified Wnt to manufacture on a large scale.

  19. Progress in Researches on the Effect of Acupuncture in Antagonizing Oxygen Stress

    Institute of Scientific and Technical Information of China (English)

    LI Zhong-ren; SHEN Mei-hong; PENG Yong-jun

    2005-01-01

    Oxidation and free radicals participate in the pathological process of multiple diseases in organisms, and acupuncture shows good effect in antagonizing oxygen stress (OS). This article reviews the effect of acupuncture in antagonizing oxygen stress and the mechanism of its antifree radical effect in various diseases. The authors hold that acupuncture not only has a chain-blocking effect, but also has preventive and repairing effects of anti-oxidation. And anti-OS action is one of the important mechanisms of acupuncture.

  20. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Ebe, Yukari; Kanaya, Sousuke [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Aging and Geriatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. Black-Right-Pointing-Pointer Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. Black-Right-Pointing-Pointer Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. Black-Right-Pointing-Pointer Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through {beta}-catenin-dependent canonical and {beta}-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent

  1. WNT5A and Its Receptors in the Bone-Cancer Dialogue.

    Science.gov (United States)

    Thiele, Stefanie; Rachner, Tilman D; Rauner, Martina; Hofbauer, Lorenz C

    2016-08-01

    Wnt signaling is critical for tumorigenesis and skeletal remodeling. However, its contribution to the formation of metastatic bone lesions remains poorly defined. One major challenge of unraveling its role in cancer progression is the high complexity of Wnt signaling, which includes numerous ligands, receptors, and inhibitors, with intricate biological effects and specific signaling pathways depending on the cellular context. In this perspective, we summarize the role of the noncanonical Wnt ligand WNT5A in the development and metastatic process of osteotropic cancer entities. We focus on its tumor-suppressive function in breast cancer, tumor promoting effects in melanoma, and ambiguous role in prostate cancer, and discuss potential challenges and opportunities that may be associated with targeting Wnt signaling for cancer therapy and treatment of bone metastases. © 2016 American Society for Bone and Mineral Research.

  2. The role of Wnt signaling in neuronal dysfunction in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Toledo Enrique M

    2008-07-01

    Full Text Available Abstract Recent evidence supports a neuroprotective role for Wnt signaling in neurodegenerative disorders such as Alzheimer's Disease (AD. In fact, a relationship between amyloid-β-peptide (Aβ-induced neurotoxicity and a decrease in the cytoplasmic levels of β-catenin has been observed. Apparently Aβ binds to the extracellular cysteine-rich domain of the Frizzled receptor (Fz inhibiting Wnt/β-catenin signaling. Cross-talk with other signaling cascades that regulate Wnt/β-catenin signaling, including the activation of M1 muscarinic receptor and PKC, the use of Ibuprofen-ChE bi-functional compounds, PPAR α, γ agonists, nicotine and some antioxidants, results in neuroprotection against Aβ. These studies indicate that a sustained loss of Wnt signaling function may be involved in the Aβ-dependent neurodegeneration observed in Alzheimer's brain. In conclusion the activation of the Wnt signaling pathway could be proposed as a therapeutic target for the treatment of AD.

  3. WIKI4, a novel inhibitor of tankyrase and Wnt/ß-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Richard G James

    Full Text Available The Wnt/ß-catenin signaling pathway controls important cellular events during development and often contributes to disease when dysregulated. Using high throughput screening we have identified a new small molecule inhibitor of Wnt/ß-catenin signaling, WIKI4. WIKI4 inhibits expression of ß-catenin target genes and cellular responses to Wnt/ß-catenin signaling in cancer cell lines as well as in human embryonic stem cells. Furthermore, we demonstrate that WIKI4 mediates its effects on Wnt/ß-catenin signaling by inhibiting the enzymatic activity of TNKS2, a regulator of AXIN ubiquitylation and degradation. While TNKS has previously been shown to be the target of small molecule inhibitors of Wnt/ß-catenin signaling, WIKI4 is structurally distinct from previously identified TNKS inhibitors.

  4. Expression of Gpr177, a Wnt trafficking regulator, in mouse embryogenesis.

    Science.gov (United States)

    Yu, Hsiao-Man Ivy; Jin, Ying; Fu, Jiang; Hsu, Wei

    2010-07-01

    Wls/Evi/Srt encoding a multipass transmembrane protein has been identified as a regulator for proper sorting and secretion of Wnt in flies. We have previously demonstrated that Gpr177 is the mouse ortholog required for axis determination. Gpr177 is a transcriptional target of Wnt that is activated to assist its subcellular distribution in a feedback regulatory loop. We, therefore, proposed that reciprocal regulation of Wnt and Gpr177 is essential for the Wnt-dependent developmental and pathogenic processes. Here, we examine the expression pattern of Gpr177 in mouse development. Gpr177 is expressed in a variety of tissues and cell types during organogenesis. Furthermore, Gpr177 is a glycoprotein primarily accumulating in the Golgi apparatus in signal-producing cells. The glycosylation of Gpr177 is necessary for proper transportation in the secretory pathway. Our findings suggest that the Gpr177-mediated regulation of Wnt is crucial for organogenesis in health and disease.

  5. Protective effect of Wnt-5a against amyloid beta-induced memory impairment in rats

    Institute of Scientific and Technical Information of China (English)

    Guili Zhang; Lu Lu; Yaping Ge; Fang Deng; Ying Zhang; Jiachun Feng

    2011-01-01

    Recent studies suggest that the activation of the Wnt signaling pathway improves memory function in rats. This study investigated the effects of Wnt-5a on amyloid β (Aβ)-induced cognitive impairment. Aβ25-35 was injected into the rat right lateral ventricle to induce Alzheimer's disease-associated pathology, and Wnt-5a was injected as a potential therapeutic treatment. Immunofluorescence staining showed that compared with normal rats, Aβ25-35 significantly decreased postsynaptic density-95 protein expression in the rat hippocampal CA1 region, but Wnt-5a pretreatment blocked this decrease. This study shows that Wnt-5a can reduce Aβ-induced cognitive impairment, and that it has the potential to be a new therapeutic strategy for the treatment of Alzheimer's disease.

  6. Wnt signaling pathway: implications for therapy in lung cancer and bone metastasis.

    Science.gov (United States)

    Xi, Yongming; Chen, Yan

    2014-10-10

    Lung cancer remains a major worldwide health problem and patients have high rate of metastasis including bone. Although pathologic characteristics of this disease are clear and well established, much remains to be understood about this tumor, particularly at the molecular signaling level. Secreted signaling molecules of the Wnt family have been widely investigated and found to play a prominent role to induce human malignant diseases, such as breast and prostate cancer. A variety of studies have also demonstrated that the Wnt signaling pathway is closely associated with bone malignancies including osteosarcoma, multiple myeloma, and breast or prostate cancer induced bone metastasis. The aim of this review is to provide a summary regarding the role of the Wnt signaling pathway in lung cancer and bone metastasis, highlighting the aberrant activation of Wnt in this malignancy. We also discuss the potential therapeutic applications for the treatment of lung cancer and cancer induced bone metastasis targeting the Wnt pathway.

  7. KLF4 transcriptionally activates non-canonical WNT5A to control epithelial stratification.

    Science.gov (United States)

    Tetreault, Marie-Pier; Weinblatt, Daniel; Shaverdashvili, Khvaramze; Yang, Yizeng; Katz, Jonathan P

    2016-05-17

    Epithelial differentiation and stratification are essential for normal homeostasis, and disruption of these processes leads to both injury and cancer. The zinc-finger transciption factor KLF4 is a key driver of epithelial differentiation, yet the mechanisms and targets by which KLF4 controls differentiation are not well understood. Here, we define WNT5A, a non-canonical Wnt ligand implicated in epithelial differentiation, repair, and cancer, as a direct transcriptional target that is activated by KLF4 in squamous epithelial cells. Further, we demonstrate functionally that WNT5A mediates KLF4 control of epithelial differentiation and stratification, as treatment of keratinocytes with WNT5A rescues defective epithelial stratification resulting from KLF4 loss. Finally, we show that the small GTPase CDC42 is regulated by KLF4 in a WNT5A dependent manner. As such, we delineate a novel pathway for epithelial differentiation and stratification and define potential therapeutic targets for epithelial diseases.

  8. Spatial and temporal aspects of Wnt signaling and planar cell polarity during vertebrate embryonic development.

    Science.gov (United States)

    Sokol, Sergei Y

    2015-06-01

    Wnt signaling pathways act at multiple locations and developmental stages to specify cell fate and polarity in vertebrate embryos. A long-standing question is how the same molecular machinery can be reused to produce different outcomes. The canonical Wnt/β-catenin branch modulates target gene transcription to specify cell fates along the dorsoventral and anteroposterior embryonic axes. By contrast, the Wnt/planar cell polarity (PCP) branch is responsible for cell polarization along main body axes, which coordinates morphogenetic cell behaviors during gastrulation and neurulation. Whereas both cell fate and cell polarity are modulated by spatially- and temporally-restricted Wnt activity, the downstream signaling mechanisms are very diverse. This review highlights recent progress in the understanding of Wnt-dependent molecular events leading to the establishment of PCP and linking it to early morphogenetic processes.

  9. Effect of Synergism and Antagonism between Metals on Toxicity in Soils

    Institute of Scientific and Technical Information of China (English)

    ZHOUDE-ZHI; GUZONG-LIAN; 等

    1991-01-01

    Synergism and antagonism of cadmium(Cd),copper (Cu) and selenium (Se) to biological toxicities in red soil,yellow brown soil and black soil were evaluated by MICROTOX method.The relation between forms of the tested metals in soil and the synergism or antagonism between them was also studied.Results showed that owing to the difference of soil chemical properties,toxicity of these metals in soils was different.In red soil with acid reaction and low in cation exchange capacity,antagonism occurred significantly between metals when they coexisted at high concentrations,while synergism occurred only under low concentrations.It is indicated that in red soil,toxicity of metals affected by synergism or antagonism depends on concentration of the metals present.For yellow brown soil and black soil with larger cation exchange capacity and lower exchangeable aluminium(Al),no toxicity of metals was observed even if metals were added to soil in high concentrations.Synergism and antagonism between Cd,Cu and Se were controlled by the forms of metals present.The amount of water-soluble metals was the most important factor in determining synergism and antagonism. In this paper,comparisons of synergism and antagkonism between metals in soils and in water solutions were made.There occurred the synergism of metal toxicity in water solutions when the concentration of coexisting metals was high.This is just opposite to the case in soils.

  10. Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: the key role of antagonism in soil

    Science.gov (United States)

    Wang, Yongjie; Dang, Fei; Evans, R. Douglas; Zhong, Huan; Zhao, Jiating; Zhou, Dongmei

    2016-01-01

    Methylmercury (MeHg) accumulation in rice has great implications for human health. Here, effects of selenium (Se) on MeHg availability to rice are explored by growing rice under soil or foliar fertilization with Se. Results indicate that soil amendment with Se could reduce MeHg levels in soil and grain (maximally 73%). In contrast, foliar fertilization with Se enhanced plant Se levels (3-12 folds) without affecting grain MeHg concentrations. This evidence, along with the distinct distribution of MeHg and Se within the plant, demonstrate for the first time that Se-induced reduction in soil MeHg levels (i.e., MeHg-Se antagonism in soil) rather than MeHg-Se interactions within the plant might be the key process triggering the decreased grain MeHg levels under Se amendment. The reduction in soil MeHg concentrations could be mainly attributed to the formation of Hg-Se complexes (detected by TEM-EDX and XANES) and thus reduced microbial MeHg production. Moreover, selenite and selenate were equally effective in reducing soil MeHg concentrations, possibly because of rapid changes in Se speciation. The dominant role of Se-induced reduction in soil MeHg levels, which has been largely underestimated previously, together with the possible mechanisms advance our mechanistic understanding about MeHg dynamics in soil-rice systems.

  11. Wnt-3A/beta-catenin signaling induces transcription from the LEF-1 promoter.

    Science.gov (United States)

    Filali, Mohammed; Cheng, Ningli; Abbott, Duane; Leontiev, Vladimir; Engelhardt, John F

    2002-09-06

    Members of the Wnt family of secreted molecules have been established as key factors in determining cell fate and morphogenic signaling. It has long been recognized that Wnt induces morphogenic signaling through the Tcf/LEF-1 cascade by regulating free intracellular levels of beta-catenin, a co-factor for Tcf/LEF-1 transcription factors. In the present study, we have demonstrated that Wnt-3A can also directly induce transcription from the LEF-1 promoter. This induction was dependent on glycogen synthase kinase 3beta inactivation, a rise in free intracellular beta-catenin, and a short 110-bp Wnt-responsive element (WRE) in the LEF-1 promoter. Linear and internal deletion of this WRE led to a dramatic increase in constitutive LEF-1 promoter activity and loss of Wnt-3A responsiveness. In isolation, the 110-bp WRE conferred context-independent Wnt-3A or beta-catenin(S37A) responsiveness to a heterologous SV40 promoter. Studies expressing dominant active and negative forms of LEF-1, beta-catenin, GSK-3beta, and beta-catenin/LEF-1 fusions suggest that Wnt-3A activates the LEF-1 promoter through a beta-catenin-dependent and LEF-1-independent process. Wnt-3A expression also induced multiple changes in the binding of factors to the WRE and suggests that regulatory mechanisms may involve modulation of a multiprotein complex. In summary, these results provide evidence for transcriptional regulation of the LEF-1 promoter by Wnt and enhance the mechanistic understanding of Wnt/beta-catenin signaling in the regulation of LEF-1-dependent developmental processes.

  12. Wnt Drug Discovery: Weaving Through the Screens, Patents and Clinical Trials.

    Science.gov (United States)

    Lu, Benjamin; Green, Brooke A; Farr, Jacqueline M; Lopes, Flávia C M; Van Raay, Terence J

    2016-09-01

    The Wnt signaling pathway is intricately involved in many aspects of development and is the root cause of an increasing number of diseases. For example, colorectal cancer is the second leading cause of death in the industrialized world and aberration of Wnt signaling within the colonic stem cell is the cause of more than 90% of these cancers. Despite our advances in successfully targeting other pathways, such as Human Epidermal Growth Factor Receptor 2 (HER2), there are no clinically relevant therapies available for Wnt-related diseases. Here, we investigated where research activities are focused with respect to Wnt signaling modulators by searching the United States Patent and Trade Office (USPTO) for patents and patent applications related to Wnt modulators and compared this to clinical trials focusing on Wnt modulation. We found that while the transition of intellectual property surrounding the Wnt ligand-receptor interface to clinical trials is robust, this is not true for specific inhibitors of β-catenin, which is constitutively active in many cancers. Considering the ubiquitous use of the synthetic T-cell Factor/Lymphoid Enhancer Factor (TCF/Lef) reporter system and its success in identifying novel modulators in vitro, we speculate that this model of drug discovery does not capture the complexity of in vivo Wnt signaling that may be required if we are to successfully target the Wnt pathway in the clinic. Notwithstanding, increasingly more complex models are being developed, which may not be high throughput, but more pragmatic in our pursuit to control Wnt signaling.

  13. Wnt Drug Discovery: Weaving Through the Screens, Patents and Clinical Trials

    Directory of Open Access Journals (Sweden)

    Benjamin Lu

    2016-09-01

    Full Text Available The Wnt signaling pathway is intricately involved in many aspects of development and is the root cause of an increasing number of diseases. For example, colorectal cancer is the second leading cause of death in the industrialized world and aberration of Wnt signaling within the colonic stem cell is the cause of more than 90% of these cancers. Despite our advances in successfully targeting other pathways, such as Human Epidermal Growth Factor Receptor 2 (HER2, there are no clinically relevant therapies available for Wnt-related diseases. Here, we investigated where research activities are focused with respect to Wnt signaling modulators by searching the United States Patent and Trade Office (USPTO for patents and patent applications related to Wnt modulators and compared this to clinical trials focusing on Wnt modulation. We found that while the transition of intellectual property surrounding the Wnt ligand-receptor interface to clinical trials is robust, this is not true for specific inhibitors of β-catenin, which is constitutively active in many cancers. Considering the ubiquitous use of the synthetic T-cell Factor/Lymphoid Enhancer Factor (TCF/Lef reporter system and its success in identifying novel modulators in vitro, we speculate that this model of drug discovery does not capture the complexity of in vivo Wnt signaling that may be required if we are to successfully target the Wnt pathway in the clinic. Notwithstanding, increasingly more complex models are being developed, which may not be high throughput, but more pragmatic in our pursuit to control Wnt signaling.

  14. Genomic insights into Wnt signaling in an early diverging metazoan, the ctenophore Mnemiopsis leidyi

    Directory of Open Access Journals (Sweden)

    Pang Kevin

    2010-10-01

    Full Text Available Abstract Background Intercellular signaling pathways are a fundamental component of the integrating cellular behavior required for the evolution of multicellularity. The genomes of three of the four early branching animal phyla (Cnidaria, Placozoa and Porifera have been surveyed for key components, but not the fourth (Ctenophora. Genomic data from ctenophores could be particularly relevant, as ctenophores have been proposed to be one of the earliest branching metazoan phyla. Results A preliminary assembly of the lobate ctenophore Mnemiopsis leidyi genome generated using next-generation sequencing technologies were searched for components of a developmentally important signaling pathway, the Wnt/β-catenin pathway. Molecular phylogenetic analysis shows four distinct Wnt ligands (MlWnt6, MlWnt9, MlWntA and MlWntX, and most, but not all components of the receptor and intracellular signaling pathway were detected. In situ hybridization of the four Wnt ligands showed that they are expressed in discrete regions associated with the aboral pole, tentacle apparati and apical organ. Conclusions Ctenophores show a minimal (but not obviously simple complement of Wnt signaling components. Furthermore, it is difficult to compare the Mnemiopsis Wnt expression patterns with those of other metazoans. mRNA expression of Wnt pathway components appears later in development than expected, and zygotic gene expression does not appear to play a role in early axis specification. Notably absent in the Mnemiopsis genome are most major secreted antagonists, which suggests that complex regulation of this secreted signaling pathway probably evolved later in animal evolution.

  15. Construction and Experimental Validation of a Petri Net Model of Wnt/β-Catenin Signaling.

    Directory of Open Access Journals (Sweden)

    Annika Jacobsen

    Full Text Available The Wnt/β-catenin signaling pathway is important for multiple developmental processes and tissue maintenance in adults. Consequently, deregulated signaling is involved in a range of human diseases including cancer and developmental defects. A better understanding of the intricate regulatory mechanism and effect of physiological (active and pathophysiological (hyperactive WNT signaling is important for predicting treatment response and developing novel therapies. The constitutively expressed CTNNB1 (commonly and hereafter referred to as β-catenin is degraded by a destruction complex, composed of amongst others AXIN1 and GSK3. The destruction complex is inhibited during active WNT signaling, leading to β-catenin stabilization and induction of β-catenin/TCF target genes. In this study we investigated the mechanism and effect of β-catenin stabilization during active and hyperactive WNT signaling in a combined in silico and in vitro approach. We constructed a Petri net model of Wnt/β-catenin signaling including main players from the plasma membrane (WNT ligands and receptors, cytoplasmic effectors and the downstream negative feedback target gene AXIN2. We validated that our model can be used to simulate both active (WNT stimulation and hyperactive (GSK3 inhibition signaling by comparing our simulation and experimental data. We used this experimentally validated model to get further insights into the effect of the negative feedback regulator AXIN2 upon WNT stimulation and observed an attenuated β-catenin stabilization. We furthermore simulated the effect of APC inactivating mutations, yielding a stabilization of β-catenin levels comparable to the Wnt-pathway activities observed in colorectal and breast cancer. Our model can be used for further investigation and viable predictions of the role of Wnt/β-catenin signaling in oncogenesis and development.

  16. HPV16 E6 and E6AP differentially cooperate to stimulate or augment Wnt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Sominsky, Sophia, E-mail: sophia.tab@gmail.com [Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978 (Israel); Kuslansky, Yael, E-mail: ykuslansky@gmail.com [Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978 (Israel); Shapiro, Beny, E-mail: benyshap@gmail.com [Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978 (Israel); Jackman, Anna, E-mail: jackman@post.tau.ac.il [Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978 (Israel); Haupt, Ygal, E-mail: ygal.haupt@petermac.org [Research Division, The Peter MacCallum Cancer Centre, East Melbourne (Australia); Rosin-Arbesfeld, Rina, E-mail: arina@post.tau.ac.il [Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978 (Israel); Sherman, Levana, E-mail: lsherman@post.tau.ac.il [Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978 (Israel)

    2014-11-15

    The present study investigated the roles of E6 and E6AP in the Wnt pathway. We showed that E6 levels are markedly reduced in cells in which Wnt signaling is activated. Coexpression of wild-type or mutant E6AP (C820A) in Wnt-activated cells stabilized E6 and enhanced Wnt/β-catenin/TCF transcription. Expression of E6AP alone in nonstimulated cells elevated β-catenin level, promoted its nuclear accumulation, and activated β-catenin/TCF transcription. A knockdown of E6AP lowered β-catenin levels. Coexpression with E6 intensified the activities of E6AP. Further experiments proved that E6AP/E6 stabilize β-catenin by protecting it from proteasomal degradation. This function was dependent on the catalytic activity of E6AP, the kinase activity of GSK3β and the susceptibility of β-catenin to GSK3β phosphorylation. Thus, this study identified E6AP as a novel regulator of the Wnt signaling pathway, capable of cooperating with E6 in stimulating or augmenting Wnt/β-catenin signaling, thereby possibly contributing to HPV carcinogenesis. - Highlights: • The roles of E6 and E6AP in the Wnt pathway were investigated. • E6AP stabilizes E6 and enhances E6 activity in augmentation of Wnt signaling. • E6AP cooperates with E6 to stabilize β-catenin and stimulate Wnt/β-catenin signaling. • E6AP and E6 act through different mechanisms to augment or stimulate Wnt signaling.

  17. Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells.

    Science.gov (United States)

    Etheridge, S Leah; Spencer, Gary J; Heath, Deborah J; Genever, Paul G

    2004-01-01

    Through their broad differentiation potential, mesenchymal stem cells (MSCs) are candidates for a range of therapeutic applications, but the precise signaling pathways that determine their differentiated fate are not fully understood. Evidence is emerging that developmental signaling cues may be important in regulating stem cell self-renewal and differentiation programs. Here we have identified a consistent expression profile of Wnt signaling molecules in MSCs and provide evidence that an endogenous canonical Wnt pathway functions in these cells. Wnts bind to Frizzled (Fz) receptors and subsequent canonical signaling inhibits glycogen synthase kinase-3beta (GSK-3beta), causing beta-catenin translocation into the nucleus to induce target gene expression. In human MSCs isolated from bone marrow of different donors, we appear to have identified a common Wnt/Fz expression profile using reverse transcriptase polymerase chain reaction (RT-PCR). Associated Wnt signaling components, including low-density lipoprotein receptor-related protein-5 (LRP-5), kremen-1, dickkopf-1 (Dkk-1), secreted Frizzled-related peptide (sFRP)-2, sFRP3, sFRP4, Disheveled (Dvl), GSK-3beta, adenomatous polyposis coli (APC), beta-catenin,T-cell factor (TCF)-1, and TCF-4, were also identified. Nuclear beta-catenin was observed in 30%-40% of MSCs, indicative of endogenous Wnt signaling. Exposure to both Wnt3a and Li+ ions, which promotes canonical Wnt signaling by inhibiting GSK-3beta, reduced phosphorylation of beta-catenin in MSCs and increased beta-catenin nuclear translocation approximately threefold over that of the controls. Our findings indicate that autocrine Wnt signaling operates in primitive MSC populations and supports previous evidence that Wnt signaling regulates mesenchymal lineage specification. The identification of a putative common Wnt/Fz molecular signature in MSCs will contribute to our understanding of the molecular mechanisms that regulate self-renewal and lineage

  18. Remote activation of the Wnt/β-catenin signalling pathway using functionalised magnetic particles.

    Science.gov (United States)

    Rotherham, Michael; El Haj, Alicia J

    2015-01-01

    Wnt signalling pathways play crucial roles in developmental biology, stem cell fate and tissue patterning and have become an attractive therapeutic target in the fields of tissue engineering and regenerative medicine. Wnt signalling has also been shown to play a role in human Mesenchymal Stem Cell (hMSC) fate, which have shown potential as a cell therapy in bone and cartilage tissue engineering. Previous work has shown that biocompatible magnetic nanoparticles (MNP) can be used to stimulate specific mechanosensitive membrane receptors and ion channels in vitro and in vivo. Using this strategy, we determined the effects of mechano-stimulation of the Wnt Frizzled receptor on Wnt pathway activation in hMSC. Frizzled receptors were tagged using anti-Frizzled functionalised MNP (Fz-MNP). A commercially available oscillating magnetic bioreactor (MICA Biosystems) was used to mechanically stimulate Frizzled receptors remotely. Our results demonstrate that Fz-MNP can activate Wnt/β-catenin signalling at key checkpoints in the signalling pathway. Immunocytochemistry indicated nuclear localisation of the Wnt intracellular messenger β-catenin after treatment with Fz-MNP. A Wnt signalling TCF/LEF responsive luciferase reporter transfected into hMSC was used to assess terminal signal activation at the nucleus. We observed an increase in reporter activity after treatment with Fz-MNP and this effect was enhanced after mechano-stimulation using the magnetic array. Western blot analysis was used to probe the mechanism of signalling activation and indicated that Fz-MNP signal through an LRP independent mechanism. Finally, the gene expression profiles of stress response genes were found to be similar when cells were treated with recombinant Wnt-3A or Fz-MNP. This study provides proof of principle that Wnt signalling and Frizzled receptors are mechanosensitive and can be remotely activated in vitro. Using magnetic nanoparticle technology it may be possible to modulate Wnt signalling

  19. Remote activation of the Wnt/β-catenin signalling pathway using functionalised magnetic particles.

    Directory of Open Access Journals (Sweden)

    Michael Rotherham

    Full Text Available Wnt signalling pathways play crucial roles in developmental biology, stem cell fate and tissue patterning and have become an attractive therapeutic target in the fields of tissue engineering and regenerative medicine. Wnt signalling has also been shown to play a role in human Mesenchymal Stem Cell (hMSC fate, which have shown potential as a cell therapy in bone and cartilage tissue engineering. Previous work has shown that biocompatible magnetic nanoparticles (MNP can be used to stimulate specific mechanosensitive membrane receptors and ion channels in vitro and in vivo. Using this strategy, we determined the effects of mechano-stimulation of the Wnt Frizzled receptor on Wnt pathway activation in hMSC. Frizzled receptors were tagged using anti-Frizzled functionalised MNP (Fz-MNP. A commercially available oscillating magnetic bioreactor (MICA Biosystems was used to mechanically stimulate Frizzled receptors remotely. Our results demonstrate that Fz-MNP can activate Wnt/β-catenin signalling at key checkpoints in the signalling pathway. Immunocytochemistry indicated nuclear localisation of the Wnt intracellular messenger β-catenin after treatment with Fz-MNP. A Wnt signalling TCF/LEF responsive luciferase reporter transfected into hMSC was used to assess terminal signal activation at the nucleus. We observed an increase in reporter activity after treatment with Fz-MNP and this effect was enhanced after mechano-stimulation using the magnetic array. Western blot analysis was used to probe the mechanism of signalling activation and indicated that Fz-MNP signal through an LRP independent mechanism. Finally, the gene expression profiles of stress response genes were found to be similar when cells were treated with recombinant Wnt-3A or Fz-MNP. This study provides proof of principle that Wnt signalling and Frizzled receptors are mechanosensitive and can be remotely activated in vitro. Using magnetic nanoparticle technology it may be possible to modulate

  20. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis.

    Science.gov (United States)

    Nemoto, Eiji; Ebe, Yukari; Kanaya, Sousuke; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi

    2012-06-15

    Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.

  1. WNT5A inhibits hepatocyte proliferation and concludes β-catenin signaling in liver regeneration.

    Science.gov (United States)

    Yang, Jing; Cusimano, Antonella; Monga, Jappmann K; Preziosi, Morgan E; Pullara, Filippo; Calero, Guillermo; Lang, Richard; Yamaguchi, Terry P; Nejak-Bowen, Kari N; Monga, Satdarshan P

    2015-08-01

    Activation of Wnt/β-catenin signaling during liver regeneration (LR) after partial hepatectomy (PH) is observed in several species. However, how this pathway is turned off when hepatocyte proliferation is no longer required is unknown. We assessed LR in liver-specific knockouts of Wntless (Wls-LKO), a protein required for Wnt secretion from a cell. When subjected to PH, Wls-LKO showed prolongation of hepatocyte proliferation for up to 4 days compared with littermate controls. This coincided with increased β-catenin-T-cell factor 4 interaction and cyclin-D1 expression. Wls-LKO showed decreased expression and secretion of inhibitory Wnt5a during LR. Wnt5a expression increased between 24 and 48 hours, and Frizzled-2 between 24 and 72 hours, after PH in normal mice. Treatment of primary mouse hepatocytes and liver tumor cells with Wnt5a led to a notable decrease in β-catenin-T-cell factor activity, cyclin-D1 expression, and cell proliferation. Intriguingly, Wnt5a-LKO did not display any prolongation of LR because of compensation by other cells. In addition, Wnt5a-LKO hepatocytes failed to respond to exogenous Wnt5a treatment in culture because of a compensatory decrease in Frizzled-2 expression. In conclusion, we demonstrate Wnt5a to be, by default, a negative regulator of β-catenin signaling and hepatocyte proliferation, both in vitro and in vivo. We also provide evidence that the Wnt5a/Frizzled-2 axis suppresses β-catenin signaling in hepatocytes in an autocrine manner, thereby contributing to timely conclusion of the LR process.

  2. Puerarin Suppress Apoptosis of Human Osteoblasts via ERK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ling-juan Liu

    2013-01-01

    Full Text Available Puerarin, the main isoflavone glycoside extracted from Radix Puerariae, is an isoflavone traditional Chinese herb. Previous studies have demonstrated that puerarin could regulate osteoblast proliferation and differentiation to promote bone formation. However, the effect of puerarin on the process of human osteoblasts (hOBs apoptosis is still unclear. In this study, we detected the function of puerarin on serum-free-induced cell apoptosis using ELISA and TUNEL arrays and then found that the mortality of hOBs was significantly decreased after exposure to 10−10–10−6 M puerarin and reached the maximal antiapoptotic effect at the concentration of 10−8 M. In addition, compared with the control group, puerarin notably increased the Bcl-2 protein levels while it decreased the Bax protein levels in the hOBs in a dose-dependent way. 10−7 M puerarin decreased the Bax/Bcl-2 ratio with a maximal decrease to 0.08. Moreover, puerarin activated ERK signaling pathways in hOBs, and the antiapoptotic effect induced by puerarin was abolished by incubation of ERK inhibitor PD98059. Similarly, the estrogen receptor antagonist ICI182780 also suppressed the inhibitory effect of puerarin on hOBs apoptosis. In conclusion, puerarin could prevent hOBs apoptosis via ERK signaling pathway, which might be effective in providing protection against bone loss and bone remolding associated with osteoporosis.

  3. Molecular Mechanism: ERK Signaling, Drug Addiction, and Behavioral Effects.

    Science.gov (United States)

    Sun, Wei-Lun; Quizon, Pamela M; Zhu, Jun

    2016-01-01

    Addiction to psychostimulants has been considered as a chronic psychiatric disorder characterized by craving and compulsive drug seeking and use. Over the past two decades, accumulating evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and cellular changes that result in enduring neuroadaptation in brain circuitry and underlie compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of learning and memory associated with addiction. Here, we review the role of the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. We also discuss the neurobiological and behavioral effects of pharmacological and genetic interferences with ERK-associated molecular cascades in response to abused substances. Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel molecular targets for therapeutic strategies to drug addiction.

  4. Molecular mechanism: ERK signaling, drug addiction and behavioral effects

    Science.gov (United States)

    Sun, Wei-Lun; Quizon, Pamela M.; Zhu, Jun

    2017-01-01

    Addiction to psychostimulants has been considered as a chronic psychiatric disorder, characterized by craving and compulsive drug seeking and use. Over the past two decades, accumulating evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and cellular changes that results in enduring neuroadaptation in brain circuitry and underlie compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of learning and memory associated with addiction. Here, we review the role of the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. We also discuss the neurobiological and behavioral effects of pharmacological and genetic interferences with ERK-associated molecular cascades in response to abused substances. Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel molecular targets for therapeutic strategies to drug addiction. PMID:26809997

  5. Combination effects of AHR agonists and Wnt/β-catenin modulators in zebrafish embryos: Implications for physiological and toxicological AHR functions

    Energy Technology Data Exchange (ETDEWEB)

    Wincent, Emma [Department of Environmental Toxicology, Uppsala University, 75236 Uppsala (Sweden); Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm (Sweden); Stegeman, John J. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543-1050 (United States); Jönsson, Maria E., E-mail: maria.jonsson@ebc.uu.se [Department of Environmental Toxicology, Uppsala University, 75236 Uppsala (Sweden)

    2015-04-15

    Wnt/β-catenin signaling regulates essential biological functions and acts in developmental toxicity of some chemicals. The aryl hydrocarbon receptor (AHR) is well-known to mediate developmental toxicity of persistent dioxin-like compounds (DLCs). Recent studies indicate a crosstalk between β-catenin and the AHR in some tissues. However the nature of this crosstalk in embryos is poorly known. We observed that zebrafish embryos exposed to the β-catenin inhibitor XAV939 display effects phenocopying those of the dioxin-like 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). This led us to investigate the AHR interaction with β-catenin during development and ask whether developmental toxicity of DLCs involves antagonism of β-catenin signaling. We examined phenotypes and transcriptional responses in zebrafish embryos exposed to XAV939 or to a β-catenin activator, 1-azakenpaullone, alone or with AHR agonists, either PCB126 or 6-formylindolo[3,2-b]carbazole (FICZ). Alone 1-azakenpaullone and XAV939 both were embryo-toxic, and we found that in the presence of FICZ, the toxicity of 1-azakenpaullone decreased while the toxicity of XAV939 increased. This rescue of 1-azakenpaullone effects occurred in the time window of Ahr2-mediated toxicity and was reversed by morpholino-oligonucleotide knockdown of Ahr2. Regarding PCB126, addition of either 1-azakenpaullone or XAV939 led to lower mortality than with PCB126 alone but surviving embryos showed severe edemas. 1-Azakenpaullone induced transcription of β-catenin-associated genes, while PCB126 and FICZ blocked this induction. The data indicate a stage-dependent antagonism of β-catenin by Ahr2 in zebrafish embryos. We propose that the AHR has a physiological role in regulating β-catenin during development, and that this is one point of intersection linking toxicological and physiological AHR-governed processes.

  6. Analysis of the expression and function of Wnt-5a and Wnt-5b in developing and regenerating axolotl (Ambystoma mexicanum) limbs.

    Science.gov (United States)

    Ghosh, Sukla; Roy, Stéphane; Séguin, Carl; Bryant, Susan V; Gardiner, David M

    2008-05-01

    Urodele amphibians are unique adult vertebrates because they are able to regenerate body parts after amputation. Studies of urodele limb regeneration, the key model system for vertebrate regeneration, have led to an understanding of the origin of blastema cells and the importance of positional interactions between blastema cells in the control of growth and pattern formation. Progress is now being made in the identification of the signaling pathways that regulate dedifferentiation, blastema morphogenesis, growth and pattern formation. Members of the Wnt family of secreted proteins are expressed in developing and regenerating limbs, and have the potential to control growth, pattern formation and differentiation. We have studied the expression of two non-canonical Wnt genes, Wnt-5a and Wnt-5b. We report that they are expressed in equivalent patterns during limb development and limb regeneration in the axolotl (Ambystoma mexicanum), and during limb development in other tetrapods, implying conservation of function. Our analysis of the effects of ectopic Wnt-5a expression is consistent with the hypothesis that canonical Wnt signaling functions during the early stages of regeneration to control the dedifferentiation of stump cells giving rise to the regeneration-competent cells of the blastema.

  7. Chronic chemotherapeutic stress promotes evolution of stemness and WNT/beta-catenin signaling in colorectal cancer cells: implications for clinical use of WNT-signaling inhibitors

    Science.gov (United States)

    Ayadi, Meriam; Bouygues, Anaïs; Ouaret, Djamila; Ferrand, Nathalie; Chouaib, Salem; Thiery, Jean-Paul; Muchardt, Christian; Sabbah, Michèle; Larsen, Annette K

    2015-01-01

    Most solid tumors contain a subfraction of cells with stem/progenitor cell features. Stem cells are naturally chemoresistant suggesting that chronic chemotherapeutic stress may select for cells with increased “stemness”. We carried out a comprehensive molecular and functional analysis of six independently selected colorectal cancer (CRC) cell lines with acquired resistance to three different chemotherapeutic agents derived from two distinct parental cell lines. Chronic drug exposure resulted in complex alterations of stem cell markers that could be classified into three categories: 1) one cell line, HT-29/5-FU, showed increased “stemness” and WNT-signaling, 2) three cell lines showed decreased expression of stem cell markers, decreased aldehyde dehydrogenase activity, attenuated WNT-signaling and lost the capacity to form colonospheres and 3) two cell lines displayed prominent expression of ABC transporters with a heterogeneous response for stem cell markers. While WNT-signaling could be attenuated in the HT-29/5-FU cells by the WNT-signaling inhibitors ICG-001 and PKF-118, this was not accompanied by any selective growth inhibitory effect suggesting that the cytotoxic activity of these compounds is not directly linked to WNT-signaling inhibition. We conclude that classical WNT-signaling inhibitors have toxic off-target activities that need to be addressed for clinical development. PMID:26041882

  8. Zebrafish Wnt9a,9b paralog comparisons suggest ancestral roles for Wnt9 in neural, oral-pharyngeal ectoderm and mesendoderm.

    Science.gov (United States)

    Cox, A A; Jezewski, P A; Fang, P-K; Payne-Ferreira, T L

    2010-09-01

    The Wnts are a highly conserved family of secreted glycoproteins involved in cell-cell signaling and pattern formation during early embryonic development. Teasing out the role of individual Wnt molecules through development is challenging. Gene duplications are one of the most important mechanisms for generating evolutionary variations. The current consensus suggests that most anatomical variation is generated by divergence of regulatory control regions rather than by coding sequence divergence. Thus phylogenetic comparisons of divergent gene expression patterns are essential to understanding ancestral morphogenetic patterns from which subsequent anatomy diversified in modern lineages. We previously demonstrated strongest expression of zebrafish wnt9b within its heart tube, limb bud and ventral/anterior ectoderm during oral and pharyngeal arch patterning. Our goal is to compare and contrast zwnt9b to its closest paralog, zwnt9a. Sequenced, fulllength zebrafish wnt9a and wnt9b cDNA clones were used for phylogenetic analysis, which suggests their derivation from a common pre-vertebrate archeolog by gene duplication and divergence. Here we demonstrate that zwnt9a expression is found within unique (CNS, pronephric ducts, sensory organs) and overlapping (pectoral fin buds) expression domains relative to zwnt9b. Apparently, Wnt9 paralogs differentially parsed common ancestral expression domains during their subsequent rounds of gene duplication, divergence and loss in different vertebrate lineages. This expression data suggests ancestral roles for Wnt9s in early patterning of neural/oral-pharyngeal ectoderm and mesendoderm derivatives.

  9. The ankyrin repeat protein Diversin recruits Casein kinase Iepsilon to the beta-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling.

    Science.gov (United States)

    Schwarz-Romond, Thomas; Asbrand, Christian; Bakkers, Jeroen; Kühl, Michael; Schaeffer, Hans-Joerg; Huelsken, Jörg; Behrens, Jürgen; Hammerschmidt, Matthias; Birchmeier, Walter

    2002-08-15

    Wnt signals control decisive steps in development and can induce the formation of tumors. Canonical Wnt signals control the formation of the embryonic axis, and are mediated by stabilization and interaction of beta-catenin with Lef/Tcf transcription factors. An alternative branch of the Wnt pathway uses JNK to establish planar cell polarity in Drosophila and gastrulation movements in vertebrates. We describe here the vertebrate protein Diversin that interacts with two components of the canonical Wnt pathway, Casein kinase Iepsilon (CKIepsilon) and Axin/Conductin. Diversin recruits CKIepsilon to the beta-catenin degradation complex that consists of Axin/Conductin and GSK3beta and allows efficient phosphorylation of beta-catenin, thereby inhibiting beta-catenin/Tcf signals. Morpholino-based gene ablation in zebrafish shows that Diversin is crucial for axis formation, which depends on beta-catenin signaling. Diversin is also involved in JNK activation and gastrulation movements in zebrafish. Diversin is distantly related to Diego of Drosophila, which functions only in the pathway that controls planar cell polarity. Our data show that Diversin is an essential component of the Wnt-signaling pathway and acts as a molecular switch, which suppresses Wnt signals mediated by the canonical beta-catenin pathway and stimulates signaling via JNK.

  10. P2X7 receptor activates extracellular signal-regulated kinases ERK1 and ERK2 independently of Ca2+ influx

    DEFF Research Database (Denmark)

    Amstrup, Jan; Novak, Ivana

    2003-01-01

    mutants we show that the N-terminus is important in activation of ERKs, whereas deletion of the last 230 amino acids in the C-terminus did not effect ERK activation. On the other hand, Ca2+ entry was impaired in C-terminal but not in N-terminal mutants. In cell suspensions prepared from rat pancreas we...

  11. Algebraic Systems Biology: A Case Study for the Wnt Pathway.

    Science.gov (United States)

    Gross, Elizabeth; Harrington, Heather A; Rosen, Zvi; Sturmfels, Bernd

    2016-01-01

    Steady-state analysis of dynamical systems for biological networks gives rise to algebraic varieties in high-dimensional spaces whose study is of interest in their own right. We demonstrate this for the shuttle model of the Wnt signaling pathway. Here, the variety is described by a polynomial system in 19 unknowns and 36 parameters. It has degree 9 over the parameter space. This case study explores multistationarity, model comparison, dynamics within regions of the state space, identifiability, and parameter estimation, from a geometric point of view. We employ current methods from computational algebraic geometry, polyhedral geometry, and combinatorics.

  12. Noncanonical Wnt/PCP signaling during vertebrate gastrulation.

    Science.gov (United States)

    Tada, Masazumi; Kai, Masatake

    2009-03-01

    The branch of the Wnt pathway, related to planar cell polarity signaling in Drosophila, is fundamental not only to the establishment of tissue polarity but also to a variety of morphogenetic processes in vertebrates. The genetic pathway has been noted for its similarity as well as divergence of between vertebrates and Drosophila. This review focuses on issues related to the complexity of the output of the planar cell polarity pathway during gastrulation in zebrafish and Xenopus and, to a lesser extent, during gastrulation/neurulation in mice.

  13. Wnt/Myc interactions in intestinal cancer: partners in crime.

    Science.gov (United States)

    Myant, Kevin; Sansom, Owen J

    2011-11-15

    Loss of the APC (adenomatous polyposis coli) gene in colorectal cancer leads to a rapid deregulation of TCF/LEF target genes. Of all these target genes, the transcription factor c-MYC appears the most critical. In this review we will discuss the interplay of Wnt and c-MYC signaling during intestinal homeostasis and transformation. Furthermore, we will discuss recent data showing that further deregulation of c-MYC levels during colorectal carcinogenesis may drive tumor progression. Moreover, understanding these additional control mechanisms may allow targeting of c-MYC during colorectal carcinogenesis.

  14. ERK3 is required for metaphase-anaphase transition in mouse oocyte meiosis.

    Directory of Open Access Journals (Sweden)

    Sen Li

    Full Text Available ERK3 (extracellular signal-regulated kinase 3 is an atypical member of the mitogen-activated protein (MAP kinase family of serine/threonine kinases. Little is known about its function in mitosis, and even less about its roles in mammalian oocyte meiosis. In the present study, we examined the localization, expression and functions of ERK3 during mouse oocyte meiotic maturation. Immunofluorescent analysis showed that ERK3 localized to the spindles from the pre-MI stage to the MII stage. ERK3 co-localized with α-tubulin on the spindle fibers and asters in oocytes after taxol treatment. Deletion of ERK3 by microinjection of ERK3 morpholino (ERK3 MO resulted in oocyte arrest at the MI stage with severely impaired spindles and misaligned chromosomes. Most importantly, the spindle assembly checkpoint protein BubR1 could be detected on kinetochores even in oocytes cultured for 10 h. Low temperature treatment experiments indicated that ERK3 deletion disrupted kinetochore-microtubule (K-MT attachments. Chromosome spreading experiments showed that knock-down of ERK3 prevented the segregation of homologous chromosomes. Our data suggest that ERK3 is crucial for spindle stability and required for the metaphase-anaphase transition in mouse oocyte maturation.

  15. Development of ERK Activity Sensor, an in vitro, FRET-based sensor of Extracellular Regulated Kinase activity

    Directory of Open Access Journals (Sweden)

    Alberola-Ila José

    2005-07-01

    Full Text Available Abstract Background Study of ERK activation has thus far relied on biochemical assays that are limited to the use of phospho-specific antibodies and radioactivity in vitro, and analysis of whole cell populations in vivo. As with many systems, fluorescence resonance energy transfer (FRET can be utilized to make highly sensitive detectors of molecular activity. Here we introduce FRET-based ERK Activity Sensors, which utilize variants of Enhanced Green Fluorescent Protein fused by an ERK-specific peptide linker to detect ERK2 activity. Results ERK Activity Sensors display varying changes in FRET upon phosphorylation by active ERK2 in vitro depending on the composition of ERK-specific peptide linker sequences derived from known in vivo ERK targets, Ets1 and Elk1. Analysis of point mutations reveals specific residues involved in ERK binding and phosphorylation of ERK Activity Sensor 3. ERK2 also shows high in vitro specificity for these sensors over two other major MAP Kinases, p38 and pSAPK/JNK. Conclusion EAS's are a convenient, non-radioactive alternative to study ERK dynamics in vitro. They can be utilized to study ERK activity in real-time. This new technology can be applied to studying ERK kinetics in vitro, analysis of ERK activity in whole cell extracts, and high-throughput screening technologies.

  16. Wnt10b 诱导再生毛囊的表达特性研究%Expression characteristics in regenerating hair follicles induced by Wnt10b

    Institute of Scientific and Technical Information of China (English)

    星懿展; 郭海英; 马小艮; 李玉红

    2016-01-01

    目的:研究 Wnt10b 诱导再生毛囊的表达特性及诱导作用机制。方法 HEK-293细胞内扩增并用氯化铯梯度离心纯化 Wnt10b 过表达腺病毒及对照腺病毒,皮内注射至 C57BL/6J 小鼠背部皮肤,在处理后2.5、5、7、9、14、28 d 时取材,HE 染色及免疫组化染色观察毛囊结构特征、信号通路表达特征及增殖特性。结果HE 染色发现,AdWnt10b 处理组从第5天开始出现新生毛囊结构,正常生长,第28天左右进入退化期。免疫组化染色发现,AdWnt10b 处理组从处理后5 d 开始新生毛囊具有 AE15表达,随着毛囊生长而增加,至处理后28 d开始减少。在 AdWnt10b 处理后5 d,观察到β连环素的核表达,Lef1特异性表达于毛芽和毛母质部位,且全为核表达。在 AdWnt10b 处理后28 d,Lef1表达减弱。AdWnt10b 处理后2.5 d 即可见 Ki67表达于表皮和毛囊外根鞘。处理后2.5、7、9、14 d 均在隆突区见到 Ki67的表达;从处理后7 d 开始,Ki67表达于毛母质细胞。结论Wnt10b 诱导的再生毛囊具有正常的毛囊结构,Wnt10b 激活了经典 Wnt 信号通路,其作用的靶细胞是毛囊干细胞及其子代细胞。%Objective To investigate expression characteristics in regenerating hair follicles induced by Wnt10b, and to explore mechanisms underlying Wnt10b-induced regeneration of hair follicles. Methods Both adenovirus containing the Wnt10b gene(AdWnt10b)and that containing the green fluorescent protein-encoding gene(AdGFP)were amplified in HEK-293 cells and purified by caesium chloride density gradient centrifugation. A total of 36 C57BL/6J mice were randomly and equally divided into the AdWnt10b group and AdGFP group to be intracutaneously injected with AdWnt10b and AdGFP on the back respectively. Three mice were sacrificed on day 2.5, 5, 7, 9, 14 and 28 after the injection separately, and skin samples were resected from the injected sites subsequently. Hematoxylin and

  17. High levels of WNT-5A in human glioma correlate with increased presence of tumor-associated microglia/monocytes.

    Science.gov (United States)

    Dijksterhuis, Jacomijn P; Arthofer, Elisa; Marinescu, Voichita D; Nelander, Sven; Uhlén, Mathias; Pontén, Frederik; Mulder, Jan; Schulte, Gunnar

    2015-12-10

    Malignant gliomas are among the most severe types of cancer, and the most common primary brain tumors. Treatment options are limited and the prognosis is poor. WNT-5A, a member of the WNT family of lipoglycoproteins, plays a role in oncogenesis and tumor progression in various cancers, whereas the role of WNT-5A in glioma remains obscure. Based on the role of WNT-5A as an oncogene, its potential to regulate microglia cells and the glioma-promoting capacities of microglia cells, we hypothesize that WNT-5A has a role in regulation of immune functions in glioma. We investigated WNT-5A expression by in silico analysis of the cancer genome atlas (TCGA) transcript profiling of human glioblastoma samples and immunohistochemistry experiments of human glioma tissue microarrays (TMA). Our results reveal higher WNT-5A protein levels and mRNA expression in a subgroup of gliomas (WNT-5A(high)) compared to non-malignant control brain tissue. Furthermore, we show a significant correlation between WNT-5A in the tumor and presence of major histocompatibility complex Class II-positive microglia/monocytes. Our data pinpoint a positive correlation between WNT-5A and a proinflammatory signature in glioma. We identify increased presence of microglia/monocytes as an important aspect in the inflammatory transformation suggesting a novel role for WNT-5A in human glioma.

  18. The Mutant KRAS Gene Up-regulates BCL-XL Protein via STAT3 to Confer Apoptosis Resistance That Is Reversed by BIM Protein Induction and BCL-XL Antagonism.

    Science.gov (United States)

    Zaanan, Aziz; Okamoto, Koichi; Kawakami, Hisato; Khazaie, Khashayarsha; Huang, Shengbing; Sinicrope, Frank A

    2015-09-25

    In colorectal cancers with oncogenic GTPase Kras (KRAS) mutations, inhibition of downstream MEK/ERK signaling has shown limited efficacy, in part because of failure to induce a robust apoptotic response. We studied the mechanism of apoptosis resistance in mutant KRAS cells and sought to enhance the efficacy of a KRAS-specific MEK/ERK inhibitor, GDC-0623. GDC-0623 was shown to potently up-regulate BIM expression to a greater extent versus other MEK inhibitors in isogenic KRAS HCT116 and mutant KRAS SW620 colon cancer cells. ERK silencing enhanced BIM up-regulation by GDC-0623 that was due to its loss of phosphorylation at Ser(69), confirmed by a BIM-EL phosphorylation-defective mutant (S69G) that increased protein stability and blocked BIM induction. Despite BIM and BIK induction, the isogenic KRAS mutant versus wild-type cells remained resistant to GDC-0623-induced apoptosis, in part because of up-regulation of BCL-XL. KRAS knockdown by a doxycycline-inducible shRNA attenuated BCL-XL expression. BCL-XL knockdown sensitized KRAS mutant cells to GDC-0623-mediated apoptosis, as did the BH3 mimetic ABT-263. GDC-0623 plus ABT-263 induced a synergistic apoptosis by a mechanism that includes release of BIM from its sequestration by BCL-XL. Furthermore, mutant KRAS activated p-STAT3 (Tyr(705)) in the absence of IL-6 secretion, and STAT3 knockdown reduced BCL-XL mRNA and protein expression. These data suggest that BCL-XL up-regulation by STAT3 contributes to mutant KRAS-mediated apoptosis resistance. Such resistance can be overcome by potent BIM induction and concurrent BCL-XL antagonism to enable a synergistic apoptotic response.

  19. An Lmx1b-miR135a2 regulatory circuit modulates Wnt1/Wnt signaling and determines the size of the midbrain dopaminergic progenitor pool.

    Directory of Open Access Journals (Sweden)

    Angela Anderegg

    Full Text Available MicroRNAs regulate gene expression in diverse physiological scenarios. Their role in the control of morphogen related signaling pathways has been less studied, particularly in the context of embryonic Central Nervous System (CNS development. Here, we uncover a role for microRNAs in limiting the spatiotemporal range of morphogen expression and function. Wnt1 is a key morphogen in the embryonic midbrain, and directs proliferation, survival, patterning and neurogenesis. We reveal an autoregulatory negative feedback loop between the transcription factor Lmx1b and a newly characterized microRNA, miR135a2, which modulates the extent of Wnt1/Wnt signaling and the size of the dopamine progenitor domain. Conditional gain of function studies reveal that Lmx1b promotes Wnt1/Wnt signaling, and thereby increases midbrain size and dopamine progenitor allocation. Conditional removal of Lmx1b has the opposite effect, in that expansion of the dopamine progenitor domain is severely compromised. Next, we provide evidence that microRNAs are involved in restricting dopamine progenitor allocation. Conditional loss of Dicer1 in embryonic stem cells (ESCs results in expanded Lmx1a/b+ progenitors. In contrast, forced elevation of miR135a2 during an early window in vivo phenocopies the Lmx1b conditional knockout. When En1::Cre, but not Shh::Cre or Nes::Cre, is used for recombination, the expansion of Lmx1a/b+ progenitors is selectively reduced. Bioinformatics and luciferase assay data suggests that miR135a2 targets Lmx1b and many genes in the Wnt signaling pathway, including Ccnd1, Gsk3b, and Tcf7l2. Consistent with this, we demonstrate that this mutant displays reductions in the size of the Lmx1b/Wnt1 domain and range of canonical Wnt signaling. We posit that microRNA modulation of the Lmx1b/Wnt axis in the early midbrain/isthmus could determine midbrain size and allocation of dopamine progenitors. Since canonical Wnt activity has recently been recognized as a key

  20. Aberrant WNT/β-catenin signaling in parathyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Åkerström Göran

    2010-11-01

    Full Text Available Abstract Background Parathyroid carcinoma (PC is a very rare malignancy with a high tendency to recur locally, and recurrent disease is difficult to eradicate. In most western European countries and United States, these malignant neoplasms cause less than 1% of the cases with primary hyperparathyroidism, whereas incidence as high as 5% have been reported from Italy, Japan, and India. The molecular etiology of PC is poorly understood. Results The APC (adenomatous polyposis coli tumor suppressor gene was inactivated by DNA methylation in five analyzed PCs, as determined by RT-PCR, Western blotting, and quantitative bisulfite pyrosequencing analyses. This was accompanied by accumulation of stabilized active nonphosphorylated β-catenin, strongly suggesting aberrant activation of the WNT/β-catenin signaling pathway in these tumors. Treatment of a primary PC cell culture with the DNA hypomethylating agent 5-aza-2'-deoxycytidine (decitabine, Dacogen(r induced APC expression, reduced active nonphosphorylated β-catenin, inhibited cell growth, and caused apoptosis. Conclusion Aberrant WNT/β-catenin signaling by lost expression and DNA methylation of APC, and accumulation of active nonphosphorylated β-catenin was observed in the analyzed PCs. We suggest that adjuvant epigenetic therapy should be considered as an additional option in the treatment of patients with recurrent or metastatic parathyroid carcinoma.

  1. NADPH oxidase mediates β-amyloid peptide-induced activation of ERK in hippocampal organotypic cultures

    Science.gov (United States)

    Serrano, Faridis; Chang, Angela; Hernandez, Caterina; Pautler, Robia G; Sweatt, J David; Klann, Eric

    2009-01-01

    Background Previous studies have shown that beta amyloid (Aβ) peptide triggers the activation of several signal transduction cascades in the hippocampus, including the extracellular signal-regulated kinase (ERK) cascade. In this study we sought to characterize the cellular localization of phosphorylated, active ERK in organotypic hippocampal cultures after acute exposure to either Aβ (1-42) or nicotine. Results We observed that Aβ and nicotine increased the levels of active ERK in distinct cellular localizations. We also examined whether phospho-ERK was regulated by redox signaling mechanisms and found that increases in active ERK induced by Aβ and nicotine were blocked by inhibitors of NADPH oxidase. Conclusion Our findings indicate that NADPH oxidase-dependent redox signaling is required for Aβ-induced activation of ERK, and suggest a similar mechanism may occur during early stages of Alzheimer's disease. PMID:19804648

  2. Heat Shock Protein 90 Indirectly Regulates ERK Activity by Affecting Raf Protein Metabolism

    Institute of Scientific and Technical Information of China (English)

    Fei DOU; Liu-Di YUAN; Jing-Jing ZHU

    2005-01-01

    Extracellular signal-regulated protein kinase (ERK) has been implicated in the pathogenesis of several nerve system diseases. As more and more kinases have been discovered to be the client proteins of the molecular chaperone Hsp90, the use of Hsp90 inhibitors to reduce abnormal kinase activity is a new treatment strategy for nerve system diseases. This study investigated the regulation of the ERK pathway by Hsp90. We showed that Hsp90 inhibitors reduce ERK phosphorylation without affecting the total ERK protein level. Further investigation showed that Raf, the upstream kinase in the Ras-Raf-MEK-ERK pathway,forms a complex with Hsp90 and Hsp70. Treating cells with Hsp90 inhibitors facilitates Raf degradation,thereby down-regulating the activity of ERK.

  3. miR-577 inhibits glioblastoma tumor growth via the Wnt signaling pathway.

    Science.gov (United States)

    Zhang, Weiguang; Shen, Chen; Li, Chenguang; Yang, Guang; Liu, Huailei; Chen, Xin; Zhu, Dan; Zou, Huichao; Zhen, Yunbo; Zhang, Daming; Zhao, Shiguang

    2016-05-01

    microRNAs (miRNAs) are commonly altered in glioblastoma. Publicly available algorithms suggest the Wnt pathway is a potential target of miR-577 and the Wnt pathway is commonly altered in glioblastoma. Glioblastoma has not been previously evaluated for miR-577 expression. Glioblastoma tumors and cell lines were evaluated for their expression of miR-577. Cell lines were transfected with miR-577, miR-577-mutant, or control mimics to evaluate the effect of miR-577 expression on cell proliferation in vitro and in an animal model. Wnt pathway markers were also evaluated for their association with miR-577 expression. miR-577 expression was decreased in 33 of 40 (82.5%) glioblastoma tumors and 5 of 6 glioblastoma cell lines. miR-577 expression correlated negatively with cell growth and cell viability. miR-577 down-regulation was associated with increased expression of the Wnt signaling pathway genes lipoprotein receptor-related protein (LRP) 6 (LRP6) and β-catenin. Western blot analysis confirmed decreased expression of the Wnt signaling pathway genes Axin2, c-myc, and cyclin D1 in miR-577 transfected cells. miR-577 expression is down-regulated in glioblastoma. miR-577 directly targets Wnt signaling pathway components LRP6 and β-catenin. miR-577 suppresses glioblastoma multiforme (GBM) growth by regulating the Wnt signaling pathway.

  4. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease

    Directory of Open Access Journals (Sweden)

    Kenneth Maiese

    2015-01-01

    Full Text Available Diabetes mellitus affects almost 350 million individuals throughout the globe resulting in significant morbidity and mortality. Of further concern is the growing population of individuals that remain undiagnosed but are susceptible to the detrimental outcomes of this disorder. Diabetes mellitus leads to multiple complications in the central and peripheral nervous systems that include cognitive impairment, retinal disease, neuropsychiatric disease, cerebral ischemia, and peripheral nerve degeneration. Although multiple strategies are being considered, novel targeting of trophic factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1, and stem cell tissue regeneration are considered to be exciting prospects to overcome the cellular mechanisms that lead to neuronal injury in diabetes mellitus involving oxidative stress, apoptosis, and autophagy. Pathways that involve insulin-like growth factor-1, fibroblast growth factor, epidermal growth factor, and erythropoietin can govern glucose homeostasis and are intimately tied to Wnt signaling that involves Wnt1 and Wnt1 inducible signaling pathway protein 1 (CCN4 to foster control over stem cell proliferation, wound repair, cognitive decline,β-cell proliferation, vascular regeneration, and programmed cell death. Ultimately, cellular metabolism through Wnt signaling is driven by primary metabolic pathways of the mechanistic target of rapamycin and AMP activated protein kinase. These pathways offer precise biological control of cellular metabolism, but are exquisitely sensitive to the different components of Wnt signaling. As a result, unexpected clinical outcomes can ensue and therefore demand careful translation of the mechanisms that govern neural repair and regeneration in diabetes mellitus.

  5. Intra-epithelial requirement of canonical Wnt signaling for tooth morphogenesis.

    Science.gov (United States)

    Zhu, XiaoJing; Zhao, Pan; Liu, YuDong; Zhang, XiaoYun; Fu, Jiang; Ivy Yu, H-M; Qiu, Mengsheng; Chen, YiPing; Hsu, Wei; Zhang, Zunyi

    2013-04-26

    Multiple Wnt ligands are expressed in the developing tooth and play important and redundant functions during odontogenesis. However, the source of Wnt ligands and their targeting cells and action mechanism in tooth organogenesis remain largely elusive. Here we show that epithelial inactivation of Gpr177, the mouse Wntless (Wls) whose product regulates Wnt sorting and secretion, leads to arrest of tooth development at the early cap stage and abrogates tooth-forming capability of the dental epithelium. Gpr177 in the epithelium is necessary for the activation of canonical Wnt signaling in the dental epithelium and formation of a functional enamel knot. Epithelial deletion of Gpr177 results in defective gene expression and cellular behavior in the dental epithelium but does not alter odontogenic program in the mesenchyme. Furthermore, deletion of Axin2, a negative intracellular regulator of canonical Wnt signaling, rescues the tooth defects in mice carrying Gpr177 mutation in the dental epithelium. Together with the fact that active Wnt canonical signaling is present predominantly in the dental epithelium during tooth development, our results demonstrate that Gpr177-mediated Wnt ligands in the dental epithelium act primarily in an intra-epithelial context to regulate enamel knot formation and subsequent tooth development.

  6. Porcupine homolog is required for canonical Wnt signaling and gastrulation in mouse embryos.

    Science.gov (United States)

    Biechele, Steffen; Cox, Brian J; Rossant, Janet

    2011-07-15

    Wnt signaling plays important roles in development and disease. The X-chromosomal Porcupine homolog gene (Porcn) encodes an evolutionary conserved member of the membrane bound O-acyl transferase (MBOAT) superfamily that has been shown to be required for the palmitoylation and secretion of Wnt3a, a mechanism that has been suggested to be conserved for all mammalian Wnt ligands. PORCN mutations in humans cause Focal Dermal Hypoplasia (FDH), a disorder causing developmental defects in heterozygous females and embryonic lethality in hemizygous males. In this study, Porcn mutant mouse embryonic stem (ES) cells were used to analyze the role of Porcn in mammalian embryonic development. In vitro, we show an exclusive requirement for Porcn in Wnt secreting cells and further, that any of the four Porcn isoforms is sufficient to allow for the secretion of functional Wnt3a. Embryos generated by aggregation of Porcn mutant ES cells with wildtype embryos fail to complete gastrulation in vivo, but remain in an epiblast-like state, similar to Wnt3 and Gpr177/Wls mutants. Consistent with this phenotype, in vitro differentiated mutant ES cells fail to generate endoderm and mesoderm derivatives. Taken together, these data confirm the importance of Porcn for Wnt secretion and gastrulation and suggest that disruption of early development underlies the male lethality of human PORCN mutants.

  7. Diverse roles for Wnt7a in ventral midbrain neurogenesis and dopaminergic axon morphogenesis.

    Science.gov (United States)

    Fernando, Chathurini V; Kele, Julianna; Bye, Christopher R; Niclis, Jonathan C; Alsanie, Walaa; Blakely, Brette D; Stenman, Jan; Turner, Brad J; Parish, Clare L

    2014-09-01

    During development of the central nervous system, trophic, together with genetic, cues dictate the balance between cellular proliferation and differentiation. Subsequent to the birth of new neurons, additional intrinsic and extrinsic signals regulate the connectivity of these cells. While a number of regulators of ventral midbrain (VM) neurogenesis and dopaminergic (DA) axon guidance are known, we identify a number of novel roles for the secreted glycoprotein, Wnt7a, in this context. We demonstrate a temporal and spatial expression of Wnt7a in the VM, indicative of roles in neurogenesis, differentiation, and axonal growth and guidance. In primary VM cultures, and validated in Wnt7a-deficient mice, we show that the early expression within the VM is important for regulating VM progenitor proliferation, cell cycle progression, and cell survival, thereby dictating the number of midbrain Nurr1 precursors and DA neurons. During early development of the midbrain DA pathways, Wnt7a promotes axonal elongation and repels DA neurites out of the midbrain. Later, Wnt7a expression in the VM midline suggests a role in preventing axonal crossing while expression in regions flanking the medial forebrain bundle (thalamus and hypothalamus) ensured appropriate trajectory of DA axons en route to their forebrain targets. We show that the effects of Wnt7a in VM development are mediated, at least in part, by the β-catenin/canonical pathways. Together, these findings identify Wnt7a as a new regulator of VM neurogenesis and DA axon growth and guidance.

  8. Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders.

    Science.gov (United States)

    Al-Harthi, Lena

    2012-12-01

    Wnt signaling is a fundamental pathway in embryogenesis which is evolutionary conserved from metazoans to humans. Much of our understanding of Wnt signaling events emerged from key developmental studies in drosophila, zebra fish, xenopus, and mice. Considerable data now exists on the role of Wnt signaling beyond these developmental processes and in particular its role in health and disease. The focus of this special issue is on Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. This special issue is composed of six reviews and two original articles selected to highlight recent advances in the role of Wnt signaling in CNS embryonic development, in adult brain function, in neurodegenerative conditions such as Alzheimer's disease, schizophrenia, NeuroAIDS, and in gliomas. The finding that β-catenin can translocate to the nucleus where it binds to TCF/LEF transcription factors to regulate target gene expression was a seminal observation that linked β-catenin/LEF to T cell development and differentiation. We also provide a nostalgic look on recent advances in role of Wnts in T cell development and maturation. These reviews highlight the extensive body of work in these thematic areas as well as identify knowledge gaps, where appropriate. Understanding Wnt function under healthy and diseased conditions may provide a therapeutic resource, albeit it a challenging one, in diseases where dysfunctional and/or diminished Wnt signaling is a prominent player in the disease process.

  9. Lack of evidence of WNT3A as a candidate gene for congenital vertebral malformations

    Directory of Open Access Journals (Sweden)

    Jacobsen F Stig

    2007-09-01

    Full Text Available Abstract Background Prior investigations have not identified a major locus for vertebral malformations, providing evidence that there is genetic heterogeneity for this condition. WNT3A has recently been identified as a negative regulator of Notch signaling and somitogenesis. Mice with mutations in Wnt3a develop caudal vertebral malformations. Because congenital vertebral malformations represent a sporadic occurrence, linkage approaches to identify genes associated with human vertebral development are not feasible. We hypothesized that WNT3A mutations might account for a subset of congenital vertebral malformations. Methods A pilot study was performed using a cohort of patients with congenital vertebral malformations spanning the entire vertebral column was characterized. DNA sequence analysis of the WNT3A gene in these 50 patients with congenital vertebral malformations was performed. Results A female patient of African ancestry with congenital scoliosis and a T12-L1 hemivertebrae was found to be heterozygous for a missense variant resulting in the substitution of alanine by threonine at codon 134 in highly conserved exon 3 of the WNT3A gene. This variant was found at a very low prevalence (0.35% in a control population of 443 anonymized subjects and 1.1% in an African population. Conclusion These data suggest that WNT3A does not contribute towards the development of congenital vertebral malformations. Factors such as phenotypic and genetic heterogeneity may underlie our inability to detect mutations in WNT3A in our patient sample.

  10. Wnt5a is a crucial regulator of neurogenesis during cerebellum development.

    Science.gov (United States)

    Subashini, Chandramohan; Dhanesh, Sivadasan Bindu; Chen, Chih-Ming; Riya, Paul Ann; Meera, Vadakkath; Divya, Thulasi Sheela; Kuruvilla, Rejji; Buttler, Kerstin; James, Jackson

    2017-02-16

    The role of Wnt5a has been extensively explored in various aspects of development but its role in cerebellar development remains elusive. Here, for the first time we unravel the expression pattern and functional significance of Wnt5a in cerebellar development using Wnt5a(-/-) and Nestin-Cre mediated conditional knockout mouse models. We demonstrate that loss of Wnt5a results in cerebellar hypoplasia and depletion of GABAergic and glutamatergic neurons. Besides, Purkinje cells of the mutants displayed stunted, poorly branched dendritic arbors. Furthermore, we show that the overall reduction is due to decreased radial glial and granule neuron progenitor cell proliferation. At molecular level we provide evidence for non-canonical mode of action of Wnt5a and its regulation over genes associated with progenitor proliferation. Altogether our findings imply that Wnt5a signaling is a crucial regulator of cerebellar development and would aid in better understanding of cerebellar disease pathogenesis caused due to deregulation of Wnt signaling.

  11. Wnt3a upregulates transforming growth factor-β-stimulated VEGF synthesis in osteoblasts.

    Science.gov (United States)

    Natsume, Hideo; Tokuda, Haruhiko; Matsushima-Nishiwaki, Rie; Kato, Kenji; Yamakawa, Kengo; Otsuka, Takanobu; Kozawa, Osamu

    2011-07-01

    It is recognized that Wnt3a affects bone metabolism via the canonical Wnt/β-catenin signalling pathway. We have previously shown that transforming growth factor-β (TGF-β) stimulates the synthesis of vascular endothelial growth factor (VEGF) via p44/p42 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of Wnt3a on TGF-β-stimulated VEGF synthesis in these cells. Wnt3a, which alone had little effect on the VEGF levels, significantly enhanced the TGF-β-stimulated VEGF release. Lithium chloride and SB216763, inhibitors of glycogen synthase kinase 3β, markedly amplified the TGF-β-stimulated VEGF release. Wnt3a failed to affect the TGF-β-induced phosphorylation of Smad2, p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. Wnt3a and lithium chloride strengthened the VEGF mRNA expression induced by TGF-β. These results strongly suggest that Wnt3a upregulates VEGF synthesis stimulated by TGF-β via activation of the canonical pathway in osteoblasts.

  12. Constitutive scaffolding of multiple Wnt enhanceosome components by Legless/BCL9

    Science.gov (United States)

    van Tienen, Laurens M; Mieszczanek, Juliusz; Fiedler, Marc; Rutherford, Trevor J; Bienz, Mariann

    2017-01-01

    Wnt/β-catenin signaling elicits context-dependent transcription switches that determine normal development and oncogenesis. These are mediated by the Wnt enhanceosome, a multiprotein complex binding to the Pygo chromatin reader and acting through TCF/LEF-responsive enhancers. Pygo renders this complex Wnt-responsive, by capturing β-catenin via the Legless/BCL9 adaptor. We used CRISPR/Cas9 genome engineering of Drosophila legless (lgs) and human BCL9 and B9L to show that the C-terminus downstream of their adaptor elements is crucial for Wnt responses. BioID proximity labeling revealed that BCL9 and B9L, like PYGO2, are constitutive components of the Wnt enhanceosome. Wnt-dependent docking of β-catenin to the enhanceosome apparently causes a rearrangement that apposes the BCL9/B9L C-terminus to TCF. This C-terminus binds to the Groucho/TLE co-repressor, and also to the Chip/LDB1-SSDP enhanceosome core complex via an evolutionary conserved element. An unexpected link between BCL9/B9L, PYGO2 and nuclear co-receptor complexes suggests that these β-catenin co-factors may coordinate Wnt and nuclear hormone responses. DOI: http://dx.doi.org/10.7554/eLife.20882.001 PMID:28296634

  13. A truncated Wnt7a retains full biological activity in skeletal muscle

    Science.gov (United States)

    von Maltzahn, Julia; Zinoviev, Radoslav; Chang, Natasha C.; Bentzinger, C. Florian; Rudnicki, Michael A.

    2013-11-01

    Wnt signaling has essential roles during embryonic development and tissue homoeostasis. Wnt proteins are post-translationally modified and the attachment of a palmitate moiety at two conserved residues is believed to be a prerequisite for the secretion and function of Wnt proteins. Here we demonstrate that a mammalian Wnt protein can be fully functional without palmitoylation. We generate a truncated Wnt7a variant, consisting of the C-terminal 137 amino acids lacking the conserved palmitoylation sites and show that it retains full biological activity in skeletal muscle. This includes binding to and signaling through its receptor Fzd7 to stimulate symmetric expansion of satellite stem cells by activating the planar-cell polarity pathway and inducing myofibre hypertrophy by signaling through the AKT/mTOR pathway. Furthermore, this truncated Wnt7a shows enhanced secretion and dispersion compared with the full-length protein. Together, these findings open important new avenues for the development of Wnt7a as a treatment for muscle-wasting diseases and have broad implications for the therapeutic use of Wnts as biologics.

  14. Wnt signaling in neuropsychiatric disorders: ties with adult hippocampal neurogenesis and behavior

    Science.gov (United States)

    Hussaini, Syed Mohammed Qasim; Choi, Chan-Il; Cho, Chang Hoon; Kim, Hyo Jin; Jun, Heechul; Jang, Mi-Hyeon

    2014-01-01

    In an effort to better understand and treat mental disorders, the Wnt pathway and adult hippocampal neurogenesis have received increased attention in recent years. One is a signaling pathway regulating key aspects of embryonic patterning, cell specification, and adult tissue homeostasis. The other is the generation of newborn neurons in adulthood that integrate into the neural circuit and function in learning and memory, and mood behavior. In this review, we discuss the growing relationship between Wnt signaling-mediated regulation of adult hippocampal neurogenesis as it applies to neuropsychiatric disorders. Evidence suggests dysfunctional Wnt signaling may aberrantly regulate new neuron development and cognitive function. Indeed, altered expression of key Wnt pathway components are observed in the hippocampus of patients suffering from neuropsychiatric disorders. Clinically-utilized mood stabilizers also proceed through modulation of Wnt signaling in the hippocampus, while Wnt pathway antagonists can regulate the antidepressant response. Here, we review the role of Wnt signaling in disease etiology and pathogenesis, regulation of adult neurogenesis and behavior, and the therapeutic targeting of disease symptoms. PMID:25263701

  15. Paracrine WNT5A Signaling Inhibits Expansion of Tumor-Initiating Cells.

    Science.gov (United States)

    Borcherding, Nicholas; Kusner, David; Kolb, Ryan; Xie, Qing; Li, Wei; Yuan, Fang; Velez, Gabriel; Askeland, Ryan; Weigel, Ronald J; Zhang, Weizhou

    2015-05-15

    It is not well understood how paracrine communication between basal and luminal cell populations in the mammary gland affects tumorigenesis. During ErbB2-induced mammary tumorigenesis, enriched mammary stem cells that represent a subpopulation of basal cells exhibit enhanced tumorigenic capacity compared with the corresponding luminal progenitors. Transcript profiling of tumors derived from basal and luminal tumor-initiating cells (TIC) revealed preferential loss of the noncanonical Wnt ligand WNT5A in basal TIC-derived tumors. Heterozygous loss of WNT5A was correlated with shorter survival of breast cancer patients. In a mouse model of ErbB2-induced breast cancer, Wnt5a heterozygosity promoted tumor multiplicity and pulmonary metastasis. As a TGFβ substrate, luminal cell-produced WNT5A induced a feed-forward loop to activate SMAD2 in a RYK and TGFβR1-dependent manner to limit the expansion of basal TIC in a paracrine fashion, a potential explanation for the suppressive effect of WNT5A in mammary tumorigenesis. Our results identify the WNT5A/RYK module as a spatial regulator of the TGFβ-SMAD signaling pathway in the context of mammary gland development and carcinogenesis, offering a new perspective on tumor suppression provided by basal-luminal cross-talk in normal mammary tissue.

  16. Increased glutamine catabolism mediates bone anabolism in response to WNT signaling.

    Science.gov (United States)

    Karner, Courtney M; Esen, Emel; Okunade, Adewole L; Patterson, Bruce W; Long, Fanxin

    2015-02-01

    WNT signaling stimulates bone formation by increasing both the number of osteoblasts and their protein-synthesis activity. It is not clear how WNT augments the capacity of osteoblast progenitors to meet the increased energetic and synthetic needs associated with mature osteoblasts. Here, in cultured osteoblast progenitors, we determined that WNT stimulates glutamine catabolism through the tricarboxylic acid (TCA) cycle and consequently lowers intracellular glutamine levels. The WNT-induced reduction of glutamine concentration triggered a general control nonderepressible 2-mediated (GCN2-mediated) integrated stress response (ISR) that stimulated expression of genes responsible for amino acid supply, transfer RNA (tRNA) aminoacylation, and protein folding. WNT-induced glutamine catabolism and ISR were β-catenin independent, but required mammalian target of rapamycin complex 1 (mTORC1) activation. In a hyperactive WNT signaling mouse model of human osteosclerosis, inhibition of glutamine catabolism or Gcn2 deletion suppressed excessive bone formation. Together, our data indicate that glutamine is both an energy source and a protein-translation rheostat that is responsive to WNT and suggest that manipulation of the glutamine/GCN2 signaling axis may provide a valuable approach for normalizing deranged protein anabolism associated with human diseases.

  17. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease

    Institute of Scientific and Technical Information of China (English)

    Kenneth Maiese

    2015-01-01

    Diabetes mellitus affects almost 350 million individuals throughout the globe resulting in sig-niifcant morbidity and mortality. Of further concern is the growing population of individuals that remain undiagnosed but are susceptible to the detrimental outcomes of this disorder. Dia-betes mellitus leads to multiple complications in the central and peripheral nervous systems that include cognitive impairment, retinal disease, neuropsychiatric disease, cerebral ischemia, and peripheral nerve degeneration. Although multiple strategies are being considered, novel target-ing of trophic factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1, and stem cell tissue regeneration are considered to be exciting prospects to overcome the cellular mechanisms that lead to neuronal injury in diabetes mellitus involving oxidative stress, apoptosis, and au-tophagy. Pathways that involve insulin-like growth factor-1, ifbroblast growth factor, epidermal growth factor, and erythropoietin can govern glucose homeostasis and are intimately tied to Wnt signaling that involves Wnt1 and Wnt1 inducible signaling pathway protein 1 (CCN4) to foster control over stem cell proliferation, wound repair, cognitive decline,β-cell proliferation, vascular regeneration, and programmed cell death. Ultimately, cellular metabolism through Wnt signal-ing is driven by primary metabolic pathways of the mechanistic target of rapamycin and AMP activated protein kinase. These pathways offer precise biological control of cellular metabolism, but are exquisitely sensitive to the different components of Wnt signaling. As a result, unexpected clinical outcomes can ensue and therefore demand careful translation of the mechanisms that govern neural repair and regeneration in diabetes mellitus.

  18. Isolation and characterization of Wnt pathway-related genes from Porifera.

    Science.gov (United States)

    Adell, Teresa; Thakur, Archana N; Müller, Werner E G

    2007-09-01

    The Wnt signal acts by binding to Frizzled receptors, with the subsequent activation of two different signal transduction cascades, the canonical and the non-canonical Wnt pathways, involved in cell growth, differentiation, migration and fate. The canonical pathway functions through the translocation of beta-catenin to the nucleus and the activation of TCF/LEF transcription factors; it plays an important role in developmental patterning and cell fate decisions during embryogenesis. The non-canonical Wnt pathway is responsible for the planar cell polarity process in invertebrates, and for the convergent-extension movements during vertebrate gastrulation. The final effect of the non-canonical Wnt pathway is the rearrangement of the cell cytoskeleton, through the activation of the subfamily of Ras-like small GTPases. In a recent report we described for the first time the isolation of a Wnt-related gene, Sd-Frizzled, from the most basal animal phylum, the Porifera. In the present study we report the isolation and phylogenetic characterization of several Wnt pathway-related genes from the sponge Suberites domuncula: Sd-TCF/LEF, Sd-GSK3, a recently discovered molecule with a putative function as a Wnt regulator (Sd-LZIC), the small Rho GTPases Sd-RhoA, Sd-Cdc42, and their effector Sd-mrlc. Also the isolation of a secreted frizzled related protein sFRP from another sponge species (Lubomirskia baicalensis) is reported.

  19. Antagonism of Bacillus spp. against Xanthomonas campestris pv. campestris

    Directory of Open Access Journals (Sweden)

    Leila Monteiro

    2005-01-01

    Full Text Available The antagonism of eight Bacillus isolates was investigated against nine strains of Xanthomonas campestris pv. campestris (causal agent of crucifers black rot to assess the role of lipopeptides in this process. Antimicrobial and hemolytic (surfactant activity tests were performed in vitro using agar diffusion methods. Antibiosis and hemolysis were positive for four Bacillus isolates against all X. campestris pv. campestris strains. The correlation observed between antimicrobial and hemolytic activities indicated that lipopeptides were involved in the antibiosis mechanism of the studied antagonists. Fermentation studies were carried out with the isolates that showed highest antimicrobial and hemolytic activities, to follow up growth and production of bioactive and surfactant compounds. Production of bioactive and surfactant compounds was observed during the late growth phase of the Bacillus isolates.Investigação sobre o antagonismo de oito isolados de Bacillus: B. subtilis R14, B. megaterium pv. cerealis RAB7, B. megaterium pv. cerealis C211, B. megaterium C116, Bacillus sp. RAB9, B. cereus C240, Bacillus sp. C11 e B. cereus C210, contra nove linhagens de X. campestris pv. campestris (bactéria responsável pela podridão negra das crucíferas foi realizada para se verificar a participação de lipopeptídeos neste mecanismo. Testes de atividades antimicrobiana e hemolítica (surfactante foram realizados, utilizando-se o método de difusão em ágar. Antibiose e hemólise foram positivas para quatro isolados de Bacillus: R14, RAB7, C116 e C210. A correlação observada entre as atividades antimicrobiana e a hemolítica indica que lipopeptídeos estão envolvidos no mecanismo de antibiose dos isolados investigados. As fermentações foram realizadas com os isolados que demonstraram melhores resultados nos testes de atividades antimicrobiana e hemolítica: R14, RAB7 e C116, para acompanhar o crescimento e a produção de compostos bioativos e

  20. Rhubarb Antagonizes Matrix Metalloproteinase-9-induced Vascular Endothelial Permeability

    Institute of Scientific and Technical Information of China (English)

    Yun-Liang Cui; Sheng Zhang; Zhao-Tao Tian; Zhao-Fen Lin; De-Chang Chen

    2016-01-01

    -O -cinnamoyl)-β-D-glucose,daucosterol linoleate,and rhein,at a low concentration,antagonized the MMP9-induced HUVEC monolayer permeability by promoting HUVEC proliferation and reducing extracellular VE-cadherin concentrations.

  1. Wnt expression is not correlated with β-catenin dysregulation in Dupuytren's Disease

    Directory of Open Access Journals (Sweden)

    Zhu Rebecca D

    2006-08-01

    Full Text Available Abstract Background Dupuytren's contracture or disease (DD is a fibro-proliferative disease of the hand that results in finger flexion contractures. Increased cellular β-catenin levels have been identified as characteristic of this disease. As Wnts are the most widely recognized upstream regulators of cellular β-catenin accumulation, we have examined Wnt gene expression in surgical specimens and in DD-derived primary cell cultures grown in two-dimensional monolayer culture or in three-dimensional FPCL collagen lattice cultures. Results The Wnt expression profile of patient-matched DD and unaffected control palmar fascia tissue was determined by a variety of complimentary methods; Affymetrix Microarray analysis, specific Wnt and degenerative primer-based Reverse Transcriptase (RT-PCR, and Real Time PCR. Microarray analysis identified 13 Wnts associated with DD and control tissues. Degenerate Wnt RT-PCR analysis identified Wnts 10b and 11, and to a lesser extent 5a and 9a, as the major Wnt family members expressed in our patient samples. Competitive RT-PCR analysis identified significant differences between the levels of expression of Wnts 9a, 10b and 11 in tissue samples and in primary cell cultures grown as monolayer or in FPCL, where the mRNA levels in tissue > FPCL cultures > monolayer cultures. Real Time PCR data confirmed the down-regulation of Wnt 11 mRNA in DD while Wnt 10b, the most frequently isolated Wnt in DD and control palmar fascia, displayed widely variable expression between the methods of analysis. Conclusion These data indicate that changes in Wnt expression per se are unlikely to be the cause of the observed dysregulation of β-catenin expression in DD.

  2. Wnt5a attenuates hypoxia-induced pulmonary arteriolar remodeling and right ventricular hypertrophy in mice.

    Science.gov (United States)

    Jin, Yuling; Wang, Wang; Chai, Sanbao; Liu, Jie; Yang, Ting; Wang, Jun

    2015-12-01

    Hypoxic pulmonary hypertension (HPH), which is characterized by pulmonary arteriolar remodeling and right ventricular hypertrophy, is still a life-threatening disease with the current treatment strategies. The underlying molecular mechanisms of HPH remain unclear. Our previously published study showed that Wnt5a, one of the ligands in the Wnt family, was critically involved in the inhibition of hypoxia-induced pulmonary arterial smooth muscle cell proliferation by downregulation of β-catenin/cyclin D1 in vitro. In this study, we investigated the possible functions and mechanisms of Wnt5a in HPH in vivo. Recombinant mouse Wnt5a (rmWnt5a) or phosphate buffered saline (PBS) was administered to male C57/BL6 mice weekly from the first day to the end of the two or four weeks after exposed to hypoxia (10% O2). Hypoxia-induced pulmonary hypertension was associated with a marked increase in β-catenin/cyclin D1 expression in lungs. Right ventricular systolic pressure and right ventricular hypertrophy index were reduced in animals treated with rmWnt5a compared with PBS. Histology showed less pulmonary vascular remodeling and right ventricular hypertrophy in the group treated with rmWnt5a than with PBS. Treatment with rmWnt5a resulted in a concomitant reduction in β-catenin/cyclin D1 levels in lungs. These data demonstrate that Wnt5a exerts its beneficial effects on HPH by regulating pulmonary vascular remodeling and right ventricular hypertrophy in a manner that is associated with reduction in β-catenin/cyclin D1 signaling. A therapy targeting the β-catenin/cyclin D1 signaling pathway might be a potential strategy for HPH treatment.

  3. The roles of APC and Axin derived from experimental and theoretical analysis of the Wnt pathway.

    Directory of Open Access Journals (Sweden)

    Ethan Lee

    2003-10-01

    Full Text Available Wnt signaling plays an important role in both oncogenesis and development. Activation of the Wnt pathway results in stabilization of the transcriptional coactivator beta-catenin. Recent studies have demonstrated that axin, which coordinates beta-catenin degradation, is itself degraded. Although the key molecules required for transducing a Wnt signal have been identified, a quantitative understanding of this pathway has been lacking. We have developed a mathematical model for the canonical Wnt pathway that describes the interactions among the core components: Wnt, Frizzled, Dishevelled, GSK3beta, APC, axin, beta-catenin, and TCF. Using a system of differential equations, the model incorporates the kinetics of protein-protein interactions, protein synthesis/degradation, and phosphorylation/dephosphorylation. We initially defined a reference state of kinetic, thermodynamic, and flux data from experiments using Xenopus extracts. Predictions based on the analysis of the reference state were used iteratively to develop a more refined model from which we analyzed the effects of prolonged and transient Wnt stimulation on beta-catenin and axin turnover. We predict several unusual features of the Wnt pathway, some of which we tested experimentally. An insight from our model, which we confirmed experimentally, is that the two scaffold proteins axin and APC promote the formation of degradation complexes in very different ways. We can also explain the importance of axin degradation in amplifying and sharpening the Wnt signal, and we show that the dependence of axin degradation on APC is an essential part of an unappreciated regulatory loop that prevents the accumulation of beta-catenin at decreased APC concentrations. By applying control analysis to our mathematical model, we demonstrate the modular design, sensitivity, and robustness of the Wnt pathway and derive an explicit expression for tumor suppression and oncogenicity.

  4. Wnt3a regulates tumor necrosis factor-α-stimulated interleukin-6 release in osteoblasts.

    Science.gov (United States)

    Natsume, Hideo; Tokuda, Haruhiko; Adachi, Seiji; Matsushima-Nishiwaki, Rie; Kato, Kenji; Minamitani, Chiho; Otsuka, Takanobu; Kozawa, Osamu

    2011-01-01

    It is recognized that Wnt pathways regulate bone metabolism. We have previously shown that tumor necrosis factor-α (TNF-α) stimulates synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, via p44/p42 mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase (PI3-kinase)/Akt in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of Wnt3a on TNF-α-stimulated IL-6 synthesis in these cells. Wnt3a, which alone did not affect the IL-6 levels, significantly suppressed the TNF-α-stimulated IL-6 release. Lithium Chloride (LiCl), which is an inhibitor of GSK3β, markedly reduced the TNF-α-stimulated IL-6 release, similar to the results with Wnt3a. The suppression by Wnt3a or LiCl was also observed in the intracellular protein levels of IL-6 elicited by TNF-α. Wnt3a failed to affect the TNF-α-induced phosphorylation of p44/p42 MAP kinase, Akt, IκB or NFκB. Either Wnt3a or LiCl failed to reduce, rather increased the IL-6 mRNA expression stimulated by TNF-α. Lactacystin, a proteasome inhibitor, and bafilomycin A1, a lysosomal protease inhibitor, significantly restored the suppressive effect of Wnt3a on TNF-α-stimulated IL-6 release. Taken together, our results strongly suggest that Wnt3a regulates IL-6 release stimulated by TNF-α at post-transcriptional level in osteoblasts.

  5. MITF drives endolysosomal biogenesis and potentiates Wnt signaling in melanoma cells

    Science.gov (United States)

    Ploper, Diego; Taelman, Vincent F.; Robert, Lidia; Perez, Brian S.; Titz, Björn; Chen, Hsiao-Wang; Graeber, Thomas G.; von Euw, Erika; Ribas, Antoni; De Robertis, Edward M.

    2015-01-01

    Canonical Wnt signaling plays an important role in development and disease, regulating transcription of target genes and stabilizing many proteins phosphorylated by glycogen synthase kinase 3 (GSK3). We observed that the MiT family of transcription factors, which includes the melanoma oncogene MITF (micropthalmia-associated transcription factor) and the lysosomal master regulator TFEB, had the highest phylogenetic conservation of three consecutive putative GSK3 phosphorylation sites in animal proteomes. This finding prompted us to examine the relationship between MITF, endolysosomal biogenesis, and Wnt signaling. Here we report that MITF expression levels correlated with the expression of a large subset of lysosomal genes in melanoma cell lines. MITF expression in the tetracycline-inducible C32 melanoma model caused a marked increase in vesicular structures, and increased expression of late endosomal proteins, such as Rab7, LAMP1, and CD63. These late endosomes were not functional lysosomes as they were less active in proteolysis, yet were able to concentrate Axin1, phospho-LRP6, phospho-β-catenin, and GSK3 in the presence of Wnt ligands. This relocalization significantly enhanced Wnt signaling by increasing the number of multivesicular bodies into which the Wnt signalosome/destruction complex becomes localized upon Wnt signaling. We also show that the MITF protein was stabilized by Wnt signaling, through the novel C-terminal GSK3 phosphorylations identified here. MITF stabilization caused an increase in multivesicular body biosynthesis, which in turn increased Wnt signaling, generating a positive-feedback loop that may function during the proliferative stages of melanoma. The results underscore the importance of misregulated endolysosomal biogenesis in Wnt signaling and cancer. PMID:25605940

  6. Expression of canonical WNT/β-CATENIN signaling components in the developing human lung

    Directory of Open Access Journals (Sweden)

    Zhang Mingfeng

    2012-07-01

    Full Text Available Abstract Background The WNT/β-CATENIN signaling cascade is crucial for the patterning of the early lung morphogenesis in mice, but its role in the developing human lung remains to be determined. In this study, expression patterns of canonical WNT/β-CATENIN signaling components, including WNT ligands (WNT2, WNT7B, receptors ( FZD4, FZD7, LRP5, LRP6, transducers ( DVL2, DVL3, GSK-3β, β-CATENIN, APC, AXIN2, transcription factors ( TCF4, LEF1 and antagonists ( SOSTDC1 were examined in human embryonic lung at 7, 12, 17 and 21 weeks of gestation (W by real-time qRT-PCR and in situ hybridization. Results qRT-PCR analysis showed that some of these components were gradually upregulated, while some were significantly downregulated from the 7 W to the 12 W. However, most components reached a high level at 17 W, with a subsequent decrease at 21 W. In situ hybridization showed that the canonical WNT ligands and receptors were predominantly located in the peripheral epithelium, whereas the canonical WNT signal transducers and transcription factors were not only detected in the respiratory epithelium, but some were also scattered at low levels in the surrounding mesenchyme in the developing human lung. Furthermore, Western blot, qRT-PCR and histological analysis demonstrated that the β-CATENIN-dependent WNT signaling in embryonic human lung was activated in vitro by CHIR 99021 stimulation. Conclusions This study of the expression patterns and in vitro activity of the canonical WNT/β-CATENIN pathways suggests that these components play an essential role in regulation of human lung development.

  7. Canonical Wnt pathway inhibitor ICG-001 induces cytotoxicity of multiple myeloma cells in Wnt-independent manner.

    Directory of Open Access Journals (Sweden)

    Eileen R Grigson

    Full Text Available Canonical Wnt signaling has been implicated in the regulation of multiple myeloma (MM growth. Here, we investigated whether the targeting of this pathway with a novel pharmacological inhibitor ICG-001 would result in an anti-tumor effect and improvement of chemosensitivity in MM. As expected, ICG-001 specifically down-regulated β-catenin/TCF-mediated transcription in MM cells. Treatment with ICG-001 resulted in growth arrest and apoptosis in MM cell lines and primary MM cells. Moreover, ICG-001 enhanced the cytotoxic effects of doxorubicin and melphalan and abrogated chemoresistance of MM cells to these chemotherapeutics induced by bone marrow stroma. The cytotoxic effect of ICG-001 was caspase-dependent and mediated through transcriptional up-regulation of BH3-only pro-apoptotic members of the Bcl-2 family Noxa and Puma but not through inhibition of canonical Wnt signaling. ICG-001 selectively induced apoptosis in primary MM cells but did not affect non-MM cells of the bone marrow microenvironment. Experiments using a xenograft model of MM showed substantial anti-tumor effects of this compound in vivo. Thus, our study demonstrated that the small molecule inhibitor ICG-001 has strong anti-MM effects and could be developed further for therapeutic intervention in this disease.

  8. Monitoring Wnt Protein Acylation Using an In Vitro Cyclo-Addition Reaction

    Science.gov (United States)

    Tuladhar, Rubina; Yarravarapu, Nageswari; Lum, Lawrence

    2016-01-01

    We describe here a technique for visualizing the lipidation status of Wnt proteins using azide-alkyne cycloaddition chemistry (click chemistry) and SDS-PAGE. This protocol incorporates in vivo labeling of a Wnt-IgG Fc fusion protein using an alkynylated palmitate probe but departs from a traditional approach by incorporating a secondary cycloaddition reaction performed on single-step purified Wnt protein immobilized on protein A resin. This approach mitigates experimental noise by decreasing the contribution of labeling from other palmitoylated proteins and by providing a robust method for normalizing labeling efficiency based on protein abundance. PMID:27590147

  9. Understanding and Targeting the Wnt/β-Catenin Signaling Pathway in Chronic Leukemia

    Directory of Open Access Journals (Sweden)

    S. Thanendrarajan

    2011-01-01

    Full Text Available It has been revealed that the Wnt/β-catenin signaling pathway plays an important role in the development of solid tumors and hematological malignancies, particularly in B-cell neoplasia and leukemia. In the last decade there have been made experimental approaches targeting the Wnt pathway in chronic leukemia. In this paper we provide an overview about the current state of knowledge regarding the Wnt/β-catenin signaling pathway in chronic leukemia with special focus on therapeutic options and strategies.

  10. Wnt/β-catenin Signaling in Normal and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Kenneth C. Valkenburg

    2011-04-01

    Full Text Available The ability of Wnt ligands to initiate a signaling cascade that results in cytoplasmic stabilization of, and nuclear localization of, β-catenin underlies their ability to regulate progenitor cell differentiation. In this review, we will summarize the current knowledge of the mechanisms underlying Wnt/β-catenin signaling and how the pathway regulates normal differentiation of stem cells in the intestine, mammary gland, and prostate. We will also discuss how dysregulation of the pathway is associated with putative cancer stem cells and the potential therapeutic implications of regulating Wnt signaling.

  11. A role for Wnt/planar cell polarity signaling during lens fiber cell differentiation?

    Science.gov (United States)

    Chen, Y; Stump, R J W; Lovicu, F J; McAvoy, J W

    2006-12-01

    Wnt signaling through frizzled (Fz) receptors plays key roles in just about every developmental system that has been studied. Several Wnt-Fz signaling pathways have been identified including the Wnt/planar cell polarity (PCP) pathway. PCP signaling is crucial for many developmental processes that require major cytoskeletal rearrangements. Downstream of Fz, PCP signaling is thought to involve the GTPases, Rho, Rac and Cdc42 and regulation of the JNK cascade. Here we report on the localization of these GTPases and JNK in the lens and assess their involvement in the cytoskeletal reorganisation that is a key element of FGF-induced lens fiber cell differentiation.

  12. WNT7A Regulation by miR-15b in Ovarian Cancer.

    Directory of Open Access Journals (Sweden)

    James A MacLean

    Full Text Available WNT signaling is well known to play an important role in the regulation of development, cell proliferation and cell differentiation in a wide variety of normal and cancerous tissues. Despite the wealth of knowledge concerning when and where various WNT genes are expressed and downstream events under their control, there is surprisingly little published evidence of how they are regulated. We have recently reported that aberrant WNT7A is observed in serous ovarian carcinomas, and WNT7A is the sole ligand accelerating ovarian tumor progression through CTNNB1 (β-catenin/TCF signaling in the absence of CTNNB1 mutations. In the present study, we report that WNT7A is a direct target of miR-15b in ovarian cancer. We showed that a luciferase reporter containing the putative binding site of miR-15b in the WNT7A 3'-UTR was significantly repressed by miR-15b. Mutation of the putative binding site of miR-15b in the WNT7A 3'-UTR restored luciferase activity. Furthermore, miR-15b was able to repress increased levels of TOPFLASH activity by WNT7A, but not those induced by S33Y. Additionally, miR-15b dose-dependently decreased WNT7A expression. When we evaluated the prognostic impact of WNT7A and miR-15b expression using TCGA datasets, a significant inverse correlation in which high-expression of WNT7A and low-expression of miR-15b was associated with reduced survival rates of ovarian cancer patients. Treatment with decitabine dose-dependently increased miR-15b expression, and silencing of DNMT1 significantly increased miR-15b expression. These results suggest that WNT7A is post-transcriptionally regulated by miR-15b, which could be down-regulated by promoter hypermethylation, potentially via DNMT1, in ovarian cancer.

  13. FGFR-ERK signaling is an essential component of tissue separation.

    Science.gov (United States)

    Hasse, Christian; Holz, Oliver; Lange, Ellen; Pisowodzki, Lisa; Rebscher, Nicole; Christin Eder, Marie; Hobmayer, Bert; Hassel, Monika

    2014-11-01

    Formation of a constriction and tissue separation between parent and young polyp is a hallmark of the Hydra budding process and controlled by fibroblast growth factor receptor (FGFR) signaling. Appearance of a cluster of cells positive for double phosphorylated ERK (dpERK) at the late separation site indicated that the RAS/MEK/ERK pathway might be a downstream target of the Hydra Kringelchen FGFR. In fact, inhibition of ERK phosphorylation by the MEK inhibitor U0126 reversibly delayed bud detachment and prevented formation of the dpERK-positive cell cluster indicating de novo-phosphorylation of ERK at the late bud base. In functional studies, a dominant-negative Kringelchen FGFR prevented bud detachment as well as appearance of the dpERK-positive cell cluster. Ectopic expression of full length Kringelchen, on the other hand, induced a localized rearrangement of the actin cytoskeleton at sites of constriction, localized ERK-phosphorylation and autotomy of the body column. Our data suggest a model in which (i) the Hydra FGFR targets, via an unknown pathway, the actin cytoskeleton to induce a constriction and (ii) FGFR activates MEK/ERK signaling at the late separation site to allow tissue separation.

  14. Polycomb group genes Psc and Su(z)2 restrict follicle stem cell self-renewal and extrusion by controlling canonical and noncanonical Wnt signaling.

    Science.gov (United States)

    Li, Xinghua; Han, Yue; Xi, Rongwen

    2010-05-01

    Stem cells are critical for maintaining tissue homeostasis and are commonly governed by their niche microenvironment, although the intrinsic mechanisms controlling their multipotency are poorly understood. Polycomb group (PcG) genes are epigenetic silencers, and have emerged recently as important players in maintaining stem cell multipotency by preventing the initiation of differentiation programs. Here we describe an unexpected role of specific PcG genes in allowing adult stem cell differentiation and preventing stem cell-derived tumor development. We show that Posterior sex combs (Psc), which encodes a core Polycomb-repressive complex 1 (PRC1) component, functions redundantly with a similar gene, Suppressor of zeste two [Su(z)2], to restrict follicle stem cell (FSC) self-renewal in the Drosophila ovary. FSCs carrying deletion mutations of both genes extrude basally from the epithelium and continue to self-propagate at ectopic sites, leading to the development of FSC-like tumors. Furthermore, we show that the propagation of the mutant cells is driven by sustained activation of the canonical Wnt signaling pathway, which is essential for FSC self-renewal, whereas the epithelial extrusion is mediated through the planar cell polarity pathway. This study reveals a novel mechanism of epithelial extrusion, and indicates a novel role of polycomb function in allowing adult stem cell differentiation by antagonizing self-renewal programs. Given evolutionary conservation of PcG genes from Drosophila to mammals, they could have similar functions in mammalian stem cells and cancer.

  15. The expression of Wnt1 and Snail in colon cancer%Wnt1与Snail在结肠癌中的表达

    Institute of Scientific and Technical Information of China (English)

    张延新; 宋文刚

    2014-01-01

    目的 观察Wnt1与Snail在结肠癌组织中的阳性表达,分析两者与结肠癌患者临床病理特征之间的关系.方法 采用免疫组化法分析62例原发性结肠癌患者组织中Wnt1与Snail的阳性表达情况.结果 Wnt1与Snail在结肠癌组织中阳性表达率分别为61.9%和76.2%,表达阳性率均在组织分型、分期、有无淋巴转移等临床特征中表达差异有统计学意义(P<0.05).Wnt1与Snail的阳性表达具有明显的正相关性.结论 Wnt1及Snail与结肠癌的分型、分期、是否转移关系密切,两者在调节肿瘤发生、转移中可能相互关联.

  16. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae, E-mail: chidkim@pusan.ac.kr

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  17. Canonical Wnt signalling regulates epithelial patterning by modulating levels of laminins in zebrafish appendages.

    Science.gov (United States)

    Nagendran, Monica; Arora, Prateek; Gori, Payal; Mulay, Aditya; Ray, Shinjini; Jacob, Tressa; Sonawane, Mahendra

    2015-01-15

    The patterning and morphogenesis of body appendages - such as limbs and fins - is orchestrated by the activities of several developmental pathways. Wnt signalling is essential for the induction of limbs. However, it is unclear whether a canonical Wnt signalling gradient exists and regulates the patterning of epithelium in vertebrate appendages. Using an evolutionarily old appendage - the median fin in zebrafish - as a model, we show that the fin epithelium exhibits graded changes in cellular morphology along the proximo-distal axis. This epithelial pattern is strictly correlated with the gradient of canonical Wnt signalling activity. By combining genetic analyses with cellular imaging, we show that canonical Wnt signalling regulates epithelial cell morphology by modulating the levels of laminins, which are extracellular matrix components. We have unravelled a hitherto unknown mechanism involved in epithelial patterning, which is also conserved in the pectoral fins - evolutionarily recent appendages that are homologous to tetrapod limbs.

  18. Wls promotes the proliferation of breast cancer cells via Wnt signaling.

    Science.gov (United States)

    Lu, Dong; Li, Ying; Liu, Qing-Ru; Wu, Qi; Zhang, Hao; Xie, Peng; Wang, Qingling

    2015-05-01

    The Wnt secretion protein Wntless (Wls)/GPR177 has been reported to be involved in the development of several human cancers. However, the biological significance of Wls in breast cancer progression has not been clarified. In this study, we show for the first time that Wls is an important molecule related to breast cancer. We find that Wls expression is markedly increased in clinical breast tumors compared with adjacent noncancerous tissues. Downregulation of Wls by short-hairpin RNA severely suppressed the proliferation of breast cancer cells. Wls is a core Wnt signaling component, and we show that knockdown of Wls is sufficient to inhibit Wnt secretion and its downstream signaling. Taken together, these results indicate that Wls contributes to the proliferation of breast cancer cells by regulating Wnt signaling. Therefore, Wls could be a novel therapeutic target for inhibiting cell growth in breast cancer.

  19. Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling.

    Science.gov (United States)

    Lim, Xinhong; Tan, Si Hui; Koh, Winston Lian Chye; Chau, Rosanna Man Wah; Yan, Kelley S; Kuo, Calvin J; van Amerongen, Renée; Klein, Allon Moshe; Nusse, Roel

    2013-12-06

    The skin is a classical example of a tissue maintained by stem cells. However, the identity of the stem cells that maintain the interfollicular epidermis and the source of the signals that control their activity remain unclear. Using mouse lineage tracing and quantitative clonal analyses, we showed that the Wnt target gene Axin2 marks interfollicular epidermal stem cells. These Axin2-expressing cells constitute the majority of the basal epidermal layer, compete neutrally, and require Wnt/β-catenin signaling to proliferate. The same cells contribute robustly to wound healing, with no requirement for a quiescent stem cell subpopulation. By means of double-labeling RNA in situ hybridization in mice, we showed that the Axin2-expressing cells themselves produce Wnt signals as well as long-range secreted Wnt inhibitors, suggesting an autocrine mechanism of stem cell self-renewal.

  20. RANK Signaling Amplifies WNT-Responsive Mammary Progenitors through R-SPONDIN1

    Directory of Open Access Journals (Sweden)

    Purna A. Joshi

    2015-07-01

    Full Text Available Systemic and local signals must be integrated by mammary stem and progenitor cells to regulate their cyclic growth and turnover in the adult gland. Here, we show RANK-positive luminal progenitors exhibiting WNT pathway activation are selectively expanded in the human breast during the progesterone-high menstrual phase. To investigate underlying mechanisms, we examined mouse models and found that loss of RANK prevents the proliferation of hormone receptor-negative luminal mammary progenitors and basal cells, an accompanying loss of WNT activation, and, hence, a suppression of lobuloalveologenesis. We also show that R-spondin1 is depleted in RANK-null progenitors, and that its exogenous administration rescues key aspects of RANK deficiency by reinstating a WNT response and mammary cell expansion. Our findings point to a novel role of RANK in dictating WNT responsiveness to mediate hormone-induced changes in the growth dynamics of adult mammary cells.

  1. The emerging role of Wnt/PCP signaling in organ formation.

    Science.gov (United States)

    Dale, Rodney M; Sisson, Barbara E; Topczewski, Jacek

    2009-03-01

    Over the last two decades zebrafish has been an excellent model organism to study vertebrate development. Mutant analysis combined with gene knockdown and other manipulations revealed an essential role of Wnt signaling, independent of beta-catenin, during development. Especially well characterized is the function of Wnt/planar cell polarity (PCP) signaling in the regulation of gastrulation movements and neurulation, described in other reviews within this special issue. Here, we set out to highlight some of the new and exciting research that is being carried out in zebrafish to elucidate the role that Wnt/PCP signaling plays in the formation of specific organs, including the lateral line, craniofacial development, and regeneration. We also summarized the emerging connection of the Wnt/PCP pathway with primary cilia function, an essential organelle in several organ activities.

  2. Molecular Genetics of Intracranial Meningiomas with Emphasis on Canonical Wnt Signalling.

    Science.gov (United States)

    Pećina-Šlaus, Nives; Kafka, Anja; Lechpammer, Mirna

    2016-07-15

    Research over the last decade recognized the importance of novel molecular pathways in pathogenesis of intracranial meningiomas. In this review, we focus on human brain tumours meningiomas and the involvement of Wnt signalling pathway genes and proteins in this common brain tumour, describing their known functional effects. Meningiomas originate from the meningeal layers of the brain and the spinal cord. Most meningiomas have benign clinical behaviour and are classified as grade I by World Health Organization (WHO). However, up to 20% histologically classified as atypical (grade II) or anaplastic (grade III) are associated with higher recurrent rate and have overall less favourable clinical outcome. Recently, there is emerging evidence that multiple signalling pathways including Wnt pathway contribute to the formation and growth of meningiomas. In the review we present the synopsis on meningioma histopathology and genetics and discuss our research regarding Wnt in meningioma. Epithelial-to-mesenchymal transition, a process in which Wnt signalling plays an important role, is shortly discussed.

  3. Kaempferol inhibits cancer cell growth by antagonizing estrogen-related receptor α and γ activities.

    Science.gov (United States)

    Wang, Haibin; Gao, Minghui; Wang, Junjian

    2013-11-01

    Kaempferol is a dietary flavonoid that can function as a selective estrogen receptor modulator (SERM). Estrogen-related receptors alpha and gamma (ERRα and ERRγ) are orphan nuclear receptors that play important roles in mitochondrial biogenesis and cancer development. We have shown that kaempferol can functionally antagonize the activities of ERRs based on both response element reporter systems and target gene analysis. Kaempferol modulation of mitochondrial function and suppression cancer cell growth has been confirmed. These findings suggest that kaempferol may exert their anti-cancer activities through antagonizing ERRs activities.

  4. Pea3 transcription factors and wnt1-induced mouse mammary neoplasia.

    Directory of Open Access Journals (Sweden)

    Rebecca Baker

    Full Text Available The role of the PEA3 subfamily of Ets transcription factors in breast neoplasia is controversial. Although overexpression of PEA3 (E1AF/ETV4, and of the related factors ERM (ETV5 and ER81 (ETV1, have been observed in human and mouse breast tumors, PEA3 factors have also been ascribed a tumor suppressor function. Here, we utilized the MMTV/Wnt1 mouse strain to further interrogate the role of PEA3 transcription factors in mammary tumorigenesis based on our previous observation that Pea3 is highly expressed in MMTV/Wnt1 mammary tumors. Pea3 expression in mouse mammary tissues was visualized using a Pea3(NLSlacZ reporter strain. In normal mammary glands, Pea3 expression is predominantly confined to myoepithelial cells. Wnt1 transgene expression induced marked amplification of this cell compartment in nontumorous mammary glands, accompanied by an apparent increase in Pea3 expression. The pattern of Pea3 expression in MMTV/Wnt1 mammary glands recapitulated the cellular profile of activated beta-catenin/TCF signaling, which was visualized using both beta-catenin immunohistochemistry and the beta-catenin/TCF-responsive reporter Axin2(NLSlacZ. To test the requirement for PEA3 factors in Wnt1-induced tumorigenesis, we employed a mammary-targeted dominant negative PEA3 transgene, DeltaNPEA3En. Expression of DeltaNPEA3En delayed early-onset tumor formation in MMTV/Wnt1 virgin females (P = 0.03, suggesting a requirement for PEA3 factor function for Wnt1-driven tumor formation. Consistent with this observation, expression of the DeltaNPEA3En transgene was profoundly reduced in mammary tumors compared to nontumorous mammary glands from bigenic MMTV/Wnt1, MMTV/DeltaNPEA3En mice (P = 0.01. Our data provide the first description of Wnt1-mediated expansion of the Pea3-expressing myoepithelial compartment in nontumorous mammary glands. Consistent with this observation, mammary myoepithelium was selectively responsive to Wnt1. Together these data suggest the MMTV/Wnt

  5. Gpr177 Deficiency Impairs Mammary Development and Prohibits Wnt-Induced Tumorigenesis

    OpenAIRE

    Eri Ohfuchi Maruyama; H-M Ivy Yu; Ming Jiang; Jiang Fu; Wei Hsu

    2013-01-01

    Aberrant regulation of the Wnt pathway, essential for various developmental processes, is tightly linked to human breast cancers. By hijacking this evolutionary conserved signaling pathway, cancer cells acquire sustaining proliferation ability, leading to modification of physiologic properties necessary for tumor initiation and progression. An enormous wealth of knowledge on the importance of Wnt signaling in breast development and cancer has been obtained, but the cell types responsible for ...

  6. Epigenetic alterations of the Wnt signaling pathway in cancer: a mini review

    Directory of Open Access Journals (Sweden)

    Ljiljana Serman

    2014-11-01

    Full Text Available Epigenetic mechanisms play a crucial role in cellular proliferation, migration and differentiation in both normal and neoplastic development. One of the key signaling pathways whose components are altered through the epigenetic mechanisms is the Wnt signaling pathway. In this review, we briefly discuss the key concepts of epigenetics and focus on the recent advances in the Wnt signaling pathway research and its potential diagnostic and therapeutic implications.

  7. Wnt Signaling Regulates Airway Epithelial Stem Cells in Adult Murine Submucosal Glands.

    Science.gov (United States)

    Lynch, Thomas J; Anderson, Preston J; Xie, Weiliang; Crooke, Adrianne K; Liu, Xiaoming; Tyler, Scott R; Luo, Meihui; Kusner, David M; Zhang, Yulong; Neff, Traci; Burnette, Daniel C; Walters, Katherine S; Goodheart, Michael J; Parekh, Kalpaj R; Engelhardt, John F

    2016-06-24

    Wnt signaling is required for lineage commitment of glandular stem cells (SCs) during tracheal submucosal gland (SMG) morphogenesis from the surface airway epithelium (SAE). Whether similar Wnt-dependent processes coordinate SC expansion in adult SMGs following airway injury remains unknown. We found that two Wnt-reporters in mice (BAT-gal and TCF/Lef:H2B-GFP) are coexpressed in actively cycling SCs of primordial glandular placodes and in a small subset of adult SMG progenitor cells that enter the cell cycle 24 hours following airway injury. At homeostasis, these Wnt reporters showed nonoverlapping cellular patterns of expression in the SAE and SMGs. Following tracheal injury, proliferation was accompanied by dynamic changes in Wnt-reporter activity and the analysis of 56 Wnt-related signaling genes revealed unique temporal changes in expression within proximal (gland-containing) and distal (gland-free) portions of the trachea. Wnt stimulation in vivo and in vitro promoted epithelial proliferation in both SMGs and the SAE. Interestingly, slowly cycling nucleotide label-retaining cells (LRCs) of SMGs were spatially positioned near clusters of BAT-gal positive serous tubules. Isolation and culture of tet-inducible H2B-GFP LRCs demonstrated that SMG LRCs were more proliferative than SAE LRCs and culture expanded SMG-derived progenitor cells outcompeted SAE-derived progenitors in regeneration of tracheal xenograft epithelium using a clonal analysis competition assay. SMG-derived progenitors were also multipotent for cell types in the SAE and formed gland-like structures in xenografts. These studies demonstrate the importance of Wnt signals in modulating SC phenotypes within tracheal niches and provide new insight into phenotypic differences of SMG and SAE SCs. Stem Cells 2016.

  8. Wnt/Fz signaling and the cytoskeleton: potential roles in tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Shih-Lei Lai; Andy J Chien; Randall T Moon

    2009-01-01

    Wnt/β-catenin regulates cellular functions related to tumor initiation and progression, cell proliferation, differ-entiation, survival, and adhesion. β-Catenin-independent Wnt pathways have been proposed to regulate cell polarity and migration, including metastasis, In this review, we discuss the possible roles of both β-catenin-dependent and -independent signaling pathways in tumor progression, with an emphasis on their regulation of Rho-family GTPases, cytoskeletal remodeling, and relationships with cell-cell adhesion and cilia/ciliogenesis.

  9. Avian WNT4 in the female reproductive tracts: potential role of oviduct development and ovarian carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Chul-Hong Lim

    Full Text Available The wingless-type MMTV integration site family of proteins (WNTs is highly conserved secreted lipid-modified signaling molecules that play a variety of pivotal roles in developmental events such as embryogenesis, tissue homeostasis and cell polarity. Although, of these proteins, WNT4 is known to be involved in genital development in fetuses of mammalian species, its role is unknown in avian species. Therefore, in this study, we investigated expression profiles, as well as hormonal and post-transcriptional regulation of WNT4 expression in the reproductive tract of female chickens. Results of this study demonstrated that WNT4 is most abundant in the stromal and luminal epithelial cells of the isthmus and shell gland of the oviduct, respectively. WNT4 is also most abundant in the glandular epithelium of the shell gland of the oviduct of laying hens at 3 h post-ovulation during the laying cycle. In addition, treatment of young chicks with diethylstilbestrol (DES, a synthetic estrogen agonist stimulated WNT4 only in the glandular epithelial cells of the isthmus and shell gland of the oviduct. Moreover, results of our study demonstrated that miR-1786 influences WNT4 expression via specific binding sites in its 3'-UTR. On the other hand, our results also indicate that WNT4 is expressed predominantly in the glandular epithelium of cancerous ovaries, but not in normal ovaries of hens. Collectively, these results indicate cell-specific expression of WNT4 in the reproductive tract of chickens and that it likely has crucial roles in development and function of oviduct as well as initiation of ovarian carcinogenesis in laying hens.

  10. Nanoparticle-Mediated Expression of a Wnt Pathway Inhibitor Ameliorates Ocular Neovascularization

    Science.gov (United States)

    Wang, Zhongxiao; Cheng, Rui; Lee, Kyungwon; Puneet, Tyagi; Ding, Lexi; Kompella, Uday B.; Chen, Jing; Xu, Xun; Ma, Jian-xing

    2015-01-01

    Objective The deficiency of very low-density lipoprotein receptor (VLDLR) resulted in Wnt signaling activation and neovascularization (NV) in the retina. The present study sought to determine if the VLDLR extracellular domain (VLN) is responsible for the inhibition of Wnt signaling in ocular tissues. Approach and Results A plasmid expressing the soluble VLN was encapsulated with poly (lactide-co-glycolide acid) (PLGA) to form VLN nanoparticles (VLN-NP). Nanoparticles containing a plasmid expressing the low-density lipoprotein receptor extracellular domain (LN-NP) were used as negative control. MTT, modified Boyden chamber and Matrigel (™) assays were used to evaluate the inhibitory effect of VLN-NP on Wnt3a-stimulated endothelial cell (EC) proliferation, migration and tube formation. Vldlr−/− mice, oxygen-induced retinopathy (OIR) and alkali burn-induced corneal NV models were used to evaluate the effect of VLN-NP on ocular NV. Wnt reporter mice (BAT-gal), Western blotting and luciferase assay were used to evaluate Wnt pathway activity. Our results showed that VLN-NP specifically inhibited Wnt3a-induced EC proliferation, migration and tube formation. Intravitreal injection of VLN-NP inhibited abnormal NV in Vldlr−/−, OIR and alkali burn-induced corneal NV models, compared with LN-NP. VLN-NP significantly inhibited the phosphorylation of LRP6, the accumulation of β-catenin and the expression of VEGF in vivo and in vitro. Conclusions Taken together, these results suggest that the soluble VLN is a negative regulator of the Wnt pathway and has anti-angiogenic activities. Nanoparticle-mediated expression of VLN may thus represent a novel therapeutic approach to treat pathologic ocular angiogenesis and potentially other vascular diseases impacted by Wnt signaling. PMID:25657312

  11. Astaxanthin Inhibits Proliferation and Induces Apoptosis of Human Hepatocellular Carcinoma Cells via Inhibition of Nf-Κb P65 and Wnt/Β-Catenin in Vitro

    Directory of Open Access Journals (Sweden)

    Jingjing Li

    2015-09-01

    Full Text Available Hepatocellular carcinoma (HCC is a malignant tumor that can cause systemic invasion; however, the exact etiology and molecular mechanism are unknown. Astaxanthin (ASX, a powerful antioxidant, has efficient anti-oxidant, anti-inflammatory, and other activities, and has great research prospects in cancer therapy. We selected the human hepatoma cell lines, LM3 and SMMC-7721, to study the anti-tumor effect and related mechanisms of ASX. The cell lines were treated with different concentrations of ASX, and its solvent DMSO as a control, for different time periods and the results were determined using CCK8, qRT-PCR, WB, apoptotic staining, and flow cytometry. ASX induced significant apoptosis of HCC cells, and its effect may have been caused by NF-κB p65 and Wnt/β-catenin down-regulation via negative activation of PI3K/Akt and ERK. Antitumor research on ASX has provided us with a potential therapy for patients with hepatomas.

  12. Functional analysis of Bombyx Wnt1 during embryogenesis using the CRISPR/Cas9 system.

    Science.gov (United States)

    Zhang, Zhongjie; Aslam, Abu F M; Liu, Xiaojing; Li, Muwang; Huang, Yongping; Tan, Anjiang

    2015-08-01

    Recently established, custom-designed nuclease technologies such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated system provide attractive genome editing tools. Targeted gene mutagenesis using the CRISPR/Cas9 system has been achieved in several orders of insects. However, outside of studies on Drosophila melanogaster and the lepidopteron model insect Bombyx mori, little success has been reported, which is largely due to a lack of effective genetic manipulation tools that can be used in other insect orders. To create a simple and effective method of gene knockout analysis, especially for dissecting gene functioning during insect embryogenesis, we performed a functional analysis of the Bombyx Wnt1 (BmWnt1) gene using Cas9/sgRNA-mediated gene mutagenesis. The Wnt1 gene is required for embryonic patterning in various organisms, and its crucial roles during embryogenesis have been demonstrated in several insect orders. Direct injection of Cas9 mRNA and BmWnt1-specific sgRNA into Bombyx embryos induced a typical Wnt-deficient phenotype: injected embryos could not hatch and exhibited severe defects in body segmentation and pigmentation in a dose-dependent manner. Quantitative real-time PCR (qRT-PCR) analysis revealed that Hox genes were down-regulated after BmWnt1 depletion. Furthermore, large deletion, up to 18Kb, ware generated. The current study demonstrates that using the CRISPR/Cas9 system is a promising approach to achieve targeted gene mutagenesis during insect embryogenesis.

  13. Wnt-mediated repression via bipartite DNA recognition by TCF in the Drosophila hematopoietic system.

    Science.gov (United States)

    Zhang, Chen U; Blauwkamp, Timothy A; Burby, Peter E; Cadigan, Ken M

    2014-08-01

    The Wnt/β-catenin signaling pathway plays many important roles in animal development, tissue homeostasis and human disease. Transcription factors of the TCF family mediate many Wnt transcriptional responses, promoting signal-dependent activation or repression of target gene expression. The mechanism of this specificity is poorly understood. Previously, we demonstrated that for activated targets in Drosophila, TCF/Pangolin (the fly TCF) recognizes regulatory DNA through two DNA binding domains, with the High Mobility Group (HMG) domain binding HMG sites and the adjacent C-clamp domain binding Helper sites. Here, we report that TCF/Pangolin utilizes a similar bipartite mechanism to recognize and regulate several Wnt-repressed targets, but through HMG and Helper sites whose sequences are distinct from those found in activated targets. The type of HMG and Helper sites is sufficient to direct activation or repression of Wnt regulated cis-regulatory modules, and protease digestion studies suggest that TCF/Pangolin adopts distinct conformations when bound to either HMG-Helper site pair. This repressive mechanism occurs in the fly lymph gland, the larval hematopoietic organ, where Wnt/β-catenin signaling controls prohemocytic differentiation. Our study provides a paradigm for direct repression of target gene expression by Wnt/β-catenin signaling and allosteric regulation of a transcription factor by DNA.

  14. A diterpenoid derivative 15-oxospiramilactone inhibits Wnt/β-catenin signaling and colon cancer cell tumorigenesis

    Institute of Scientific and Technical Information of China (English)

    Wei Wang; Haiyang Liu; Sheng Wang; Xiaojiang Hao; Lin Li

    2011-01-01

    The Wnt/β-catenin signaling pathway is a highly conserved pathway in organism evolution and regulates many biological processes. Aberrant activation of the Wnt/β-catenin signaling pathway is closely related to tumorigenesis.In order to identify potent small molecules to treat the over-activated Wnt signaling-mediated cancer, such as colon cancer, we established a mammalian cell line-based reporter gene screening system. The screen revealed a diterpenoid derivative, 15-oxospiramilactone(NC043)that inhibits Wnt3a or LiCl-stimulated Top-flash reporter activity in HEK293T cells and growth of colon cancer cells, SW480 and Caco-2. Treatment of SW480 cells with NC043 led to decreases in the mRNA and/or protein expression of Wnt target genes Axin2, Cyclin Dl and Survivin, as well as decreases in the protein levels of Cdc25c and Cdc2.NC043 did not affect the cytosol-nuclear distribution and protein level of soluble β-catenin, but decreased β-catenin/TCF4 association in SW480 cells. Moreover, NC043 inhibited anchorage-independent growth and xenograft tumorigenesis of SW480 cells. Collectively these results demonstrate that NC043 is a novel small molecule that inhibits canonical Wnt signaling downstream of P-catenin stability and may be a potential compound for treating colorectal cancer.

  15. Bili inhibits Wnt/beta-catenin signaling by regulating the recruitment of axin to LRP6.

    Directory of Open Access Journals (Sweden)

    Lorna S Kategaya

    Full Text Available BACKGROUND: Insights into how the Frizzled/LRP6 receptor complex receives, transduces and terminates Wnt signals will enhance our understanding of the control of the Wnt/ss-catenin pathway. METHODOLOGY/PRINCIPAL FINDINGS: In pursuit of such insights, we performed a genome-wide RNAi screen in Drosophila cells expressing an activated form of LRP6 and a beta-catenin-responsive reporter. This screen resulted in the identification of Bili, a Band4.1-domain containing protein, as a negative regulator of Wnt/beta-catenin signaling. We found that the expression of Bili in Drosophila embryos and larval imaginal discs significantly overlaps with the expression of Wingless (Wg, the Drosophila Wnt ortholog, which is consistent with a potential function for Bili in the Wg pathway. We then tested the functions of Bili in both invertebrate and vertebrate animal model systems. Loss-of-function studies in Drosophila and zebrafish embryos, as well as human cultured cells, demonstrate that Bili is an evolutionarily conserved antagonist of Wnt/beta-catenin signaling. Mechanistically, we found that Bili exerts its antagonistic effects by inhibiting the recruitment of AXIN to LRP6 required during pathway activation. CONCLUSIONS: These studies identify Bili as an evolutionarily conserved negative regulator of the Wnt/beta-catenin pathway.

  16. Gpr177 deficiency impairs mammary development and prohibits Wnt-induced tumorigenesis.

    Science.gov (United States)

    Maruyama, Eri Ohfuchi; Yu, H-M Ivy; Jiang, Ming; Fu, Jiang; Hsu, Wei

    2013-01-01

    Aberrant regulation of the Wnt pathway, essential for various developmental processes, is tightly linked to human breast cancers. By hijacking this evolutionary conserved signaling pathway, cancer cells acquire sustaining proliferation ability, leading to modification of physiologic properties necessary for tumor initiation and progression. An enormous wealth of knowledge on the importance of Wnt signaling in breast development and cancer has been obtained, but the cell types responsible for production of this proliferative signal operating within normal and malignant tissues remains poorly understood. Here we report that Wnt production mediated by Gpr177 is essential for mammary morphogenesis. The loss of Gpr177 interferes with mammary stem cells, leading to deficiencies in cell proliferation and differentiation. Genetic analysis further demonstrates an indispensable role of Gpr177 in Wnt-induced tumorigenesis. The Gpr177-deficiency mice are resistant to malignant transformation. This study not only demonstrates the necessity of Wnt in mammary organogenesis but also provides a proof-of-principle for targeting of Gpr177 as a potential new treatment for human diseases with aberrant Wnt stimulation.

  17. Gpr177 deficiency impairs mammary development and prohibits Wnt-induced tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Eri Ohfuchi Maruyama

    Full Text Available Aberrant regulation of the Wnt pathway, essential for various developmental processes, is tightly linked to human breast cancers. By hijacking this evolutionary conserved signaling pathway, cancer cells acquire sustaining proliferation ability, leading to modification of physiologic properties necessary for tumor initiation and progression. An enormous wealth of knowledge on the importance of Wnt signaling in breast development and cancer has been obtained, but the cell types responsible for production of this proliferative signal operating within normal and malignant tissues remains poorly understood. Here we report that Wnt production mediated by Gpr177 is essential for mammary morphogenesis. The loss of Gpr177 interferes with mammary stem cells, leading to deficiencies in cell proliferation and differentiation. Genetic analysis further demonstrates an indispensable role of Gpr177 in Wnt-induced tumorigenesis. The Gpr177-deficiency mice are resistant to malignant transformation. This study not only demonstrates the necessity of Wnt in mammary organogenesis but also provides a proof-of-principle for targeting of Gpr177 as a potential new treatment for human diseases with aberrant Wnt stimulation.

  18. Reciprocal interaction of Wnt and RXR-α pathways in hepatocyte development and hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Jinyu Li

    Full Text Available Genomic analysis of human hepatocellular carcinoma (HCC is potentially confounded by the differentiation state of the hepatic cell-of-origin. Here we integrated genomic analysis of mouse HCC (with defined cell-of-origin along with normal development. We found a major shift in expression of Wnt and RXR-α pathway genes (up and down, respectively coincident with the transition from hepatoblasts to hepatocytes. A combined Wnt and RXR-α gene signature categorized HCCs into two subtypes (high Wnt, low RXR-α and low Wnt, high RXR-α, which matched cell-of-origin in mouse models and the differentiation state of human HCC. Suppression of RXR-α levels in hepatocytes increased Wnt signaling and enhanced tumorigenicity, whereas ligand activation of RXR-α achieved the opposite. These results corroborate that there are two main HCC subtypes that correspond to the degree of hepatocyte differentation and that RXR-α, in part via Wnt signaling, plays a key functional role in the hepatocyte-like subtype and potentially could serve as a selective therapeutic target.

  19. Complex and dynamic patterns of Wnt pathway gene expression in the developing chick forebrain

    Directory of Open Access Journals (Sweden)

    Lumsden Andrew

    2009-09-01

    Full Text Available Abstract Background Wnt signalling regulates multiple aspects of brain development in vertebrate embryos. A large number of Wnts are expressed in the embryonic forebrain; however, it is poorly understood which specific Wnt performs which function and how they interact. Wnts are able to activate different intracellular pathways, but which of these pathways become activated in different brain subdivisions also remains enigmatic. Results We have compiled the first comprehensive spatiotemporal atlas of Wnt pathway gene expression at critical stages of forebrain regionalisation in the chick embryo and found that most of these genes are expressed in strikingly dynamic and complex patterns. Several expression domains do not respect proposed compartment boundaries in the developing forebrain, suggesting that areal identities are more dynamic than previously thought. Using an in ovo electroporation approach, we show that Wnt4 expression in the thalamus is negatively regulated by Sonic hedgehog (Shh signalling from the zona limitans intrathalamica (ZLI, a known organising centre of forebrain development. Conclusion The forebrain is exposed to a multitude of Wnts and Wnt inhibitors that are expressed in a highly dynamic and complex fashion, precluding simple correlative conclusions about their respective functions or signalling mechanisms. In various biological systems, Wnts are antagonised by Shh signalling. By demonstrating that Wnt4 expression in the thalamus is repressed by Shh from the ZLI we reveal an additional level of interaction between these two pathways and provide an example for the cross-regulation between patterning centres during forebrain regionalisation.

  20. IQGAP1 functions as a modulator of dishevelled nuclear localization in Wnt signaling.

    Directory of Open Access Journals (Sweden)

    Toshiyasu Goto

    Full Text Available Dishevelled (DVL is a central factor in the Wnt signaling pathway, which is highly conserved among various organisms. DVL plays important roles in transcriptional activation in the nucleus, but the molecular mechanisms underlying their nuclear localization remain unclear. In the present study, we identified IQGAP1 as a regulator of DVL function. In Xenopus embryos, depletion of IQGAP1 reduced Wnt-induced nuclear accumulation of DVL, and expression of Wnt target genes during early embryogenesis. The domains in DVL and IQGAP1 that mediated their interaction are also required for their nuclear localization. Endogenous expression of Wnt target genes was reduced by depletion of IQGAP1 during early embryogenesis, but notably not by depletion of other IQGAP family genes. Moreover, expression of Wnt target genes caused by depletion of endogenous IQGAP1 could be rescued by expression of wild-type IQGAP1, but not IQGAP1 deleting DVL binding region. These results provide the first evidence that IQGAP1 functions as a modulator in the canonical Wnt signaling pathway.

  1. Toward a quantitative understanding of the Wnt/ β -catenin pathway through simulation and experiment

    KAUST Repository

    Lloyd-Lewis, Bethan

    2013-03-29

    Wnt signaling regulates cell survival, proliferation, and differentiation throughout development and is aberrantly regulated in cancer. The pathway is activated when Wnt ligands bind to specific receptors on the cell surface, resulting in the stabilization and nuclear accumulation of the transcriptional co-activator β-catenin. Mathematical and computational models have been used to study the spatial and temporal regulation of the Wnt/β-catenin pathway and to investigate the functional impact of mutations in key components. Such models range in complexity, from time-dependent, ordinary differential equations that describe the biochemical interactions between key pathway components within a single cell, to complex, multiscale models that incorporate the role of the Wnt/β-catenin pathway target genes in tissue homeostasis and carcinogenesis. This review aims to summarize recent progress in mathematical modeling of the Wnt pathway and to highlight new biological results that could form the basis for future theoretical investigations designed to increase the utility of theoretical models of Wnt signaling in the biomedical arena. © 2013 Wiley Periodicals, Inc.

  2. CAFET algorithm reveals Wnt/PCP signature in lung squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Yue Hu

    Full Text Available We analyzed the gene expression patterns of 138 Non-Small Cell Lung Cancer (NSCLC samples and developed a new algorithm called Coverage Analysis with Fisher's Exact Test (CAFET to identify molecular pathways that are differentially activated in squamous cell carcinoma (SCC and adenocarcinoma (AC subtypes. Analysis of the lung cancer samples demonstrated hierarchical clustering according to the histological subtype and revealed a strong enrichment for the Wnt signaling pathway components in the cluster consisting predominantly of SCC samples. The specific gene expression pattern observed correlated with enhanced activation of the Wnt Planar Cell Polarity (PCP pathway and inhibition of the canonical Wnt signaling branch. Further real time RT-PCR follow-up with additional primary tumor samples and lung cancer cell lines confirmed enrichment of Wnt/PCP pathway associated genes in the SCC subtype. Dysregulation of the canonical Wnt pathway, characterized by increased levels of β-catenin and epigenetic silencing of negative regulators, has been reported in adenocarcinoma of the lung. Our results suggest that SCC and AC utilize different branches of the Wnt pathway during oncogenesis.

  3. Wnt Signaling Regulates Multipolar-to-Bipolar Transition of Migrating Neurons in the Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Michael Boitard

    2015-03-01

    Full Text Available The precise timing of pyramidal cell migration from the ventricular germinal zone to the cortical plate is essential for establishing cortical layers, and migration errors can lead to neurodevelopmental disorders underlying psychiatric and neurological diseases. Here, we report that Wnt canonical as well as non-canonical signaling is active in pyramidal precursors during radial migration. We demonstrate using constitutive and conditional genetic strategies that transient downregulation of canonical Wnt/β-catenin signaling during the multipolar stage plays a critical role in polarizing and orienting cells for radial migration. In addition, we show that reduced canonical Wnt signaling is triggered cell autonomously by time-dependent expression of Wnt5A and activation of non-canonical signaling. We identify ephrin-B1 as a canonical Wnt-signaling-regulated target in control of the multipolar-to-bipolar switch. These findings highlight the critical role of Wnt signaling activity in neuronal positioning during cortical development.

  4. Promising Druggable Target in Head and Neck Squamous Cell Carcinoma: Wnt Signaling

    Directory of Open Access Journals (Sweden)

    Amnani Aminuddin

    2016-08-01

    Full Text Available Canonical Wnt signaling pathway, also known as Wnt/β-catenin signaling pathway, is a crucial mechanism for cellular maintenance and development. It regulates cell cycle progression, apoptosis, proliferation, migration and differentiation. Dysregulation of this pathway correlates with oncogenesis in various tissues including breast, colon, pancreatic as well as head and neck cancers. Furthermore, the canonical Wnt signaling pathway has also been described as one of the critical signaling pathways for regulation of normal stem cells as well as cancer cells with stem cell-like features, termed cancer stem cells. In this review, we will briefly describe the basic mechanisms of Wnt signaling pathway and its crucial roles in normal regulation of cellular processes as well as in the development of cancer. Next, we will highlight the roles of canonical Wnt signaling pathway in the regulation of cancer stem cell properties namely self-renewal, differentiation, metastasis and drug resistance abilities, particularly in head and neck squamous cell carcinoma. Finally, we will examine the findings of several recent studies which explore druggable targets in the canonical Wnt signaling pathway which could be valuable to improve the treatment outcome for head and neck cancer.

  5. Negative feedback regulation of Wnt signaling via N-linked fucosylation in zebrafish.

    Science.gov (United States)

    Feng, Lei; Jiang, Hao; Wu, Peng; Marlow, Florence L

    2014-11-15

    L-fucose, a monosaccharide widely distributed in eukaryotes and certain bacteria, is a determinant of many functional glycans that play central roles in numerous biological processes. The molecular mechanism, however, by which fucosylation mediates these processes remains largely elusive. To study how changes in fucosylation impact embryonic development, we up-regulated N-linked fucosylation via over-expression of a key GDP-Fucose transporter, Slc35c1, in zebrafish. We show that Slc35c1 overexpression causes elevated N-linked fucosylation and disrupts embryonic patterning in a transporter activity dependent manner. We demonstrate that patterning defects associated with enhanced N-linked fucosylation are due to diminished canonical Wnt signaling. Chimeric analyses demonstrate that elevated Slc35c1 expression in receiving cells decreases the signaling range of Wnt8a during zebrafish embryogenesis. Moreover, we provide biochemical evidence that this decrease is associated with reduced Wnt8 ligand and elevated Lrp6 coreceptor, which we show are both substrates for N-linked fucosylation in zebrafish embryos. Strikingly, slc35c1 expression is regulated by canonical Wnt signaling. These results suggest that Wnt limits its own signaling activity in part via up-regulation of a transporter, slc35c1 that promotes terminal fucosylation and thereby limits Wnt activity.

  6. An HMG1-like protein facilitates Wnt signaling in Caenorhabditis elegans

    Science.gov (United States)

    Jiang, Lily I.; Sternberg, Paul W.

    1999-01-01

    We show that during Caenorhabditis elegans male spicule development, the specification of a glial versus neuronal cell fate in a canonical neurogenic sublineage is dependent on Wnt signaling. Inactivation of a Wnt signaling pathway mediated by the Wnt receptor LIN-17 transforms the SPD sheath cell into its sister, the SPD neuron. We discovered a new mutant, son-1, that displays this same cell fate transformation. The son-1 mutation enhances the phenotypes of reduction-of-function lin-17 mutants in several developmental processes, including vulva development, somatic gonad development, and male tail patterning. son-1 encodes an HMG1/2-like DNA-binding protein and is localized in all cell nuclei through development as revealed by a GFP reporter construct. Disruption of son-1 function by RNA-mediated interference results in the same spicule defect as caused by overexpression of POP-1, a TCF/LEF class HMG protein known to act downstream of the Wnt signaling pathway. Our results provide in vivo evidence for the functional involvement of an HMG1/2-like protein, SON-1, in Wnt signaling. The sequence nonspecific HMG protein SON-1 and the sequence specific HMG protein POP-1 might both act in the Wnt responding cells to regulate gene transcription in opposite directions. PMID:10197987

  7. Activation of Wnt/β-catenin signaling increases apoptosis in melanoma cells treated with trail.

    Directory of Open Access Journals (Sweden)

    Zachary F Zimmerman

    Full Text Available While the TRAIL pathway represents a promising therapeutic target in melanoma, resistance to TRAIL-mediated apoptosis remains a barrier to its successful adoption. Since the Wnt/β-catenin pathway has been implicated in facilitating melanoma cell apoptosis, we investigated the effect of Wnt/β-catenin signaling on regulating the responses of melanoma cells to TRAIL. Co-treatment of melanoma cell lines with WNT3A-conditioned media and recombinant TRAIL significantly enhanced apoptosis compared to treatment with TRAIL alone. This apoptosis correlates with increased abundance of the pro-apoptotic proteins BCL2L11 and BBC3, and with decreased abundance of the anti-apoptotic regulator Mcl1. We then confirmed the involvement of the Wnt/β-catenin signaling pathway by demonstrating that siRNA-mediated knockdown of an intracellular β-catenin antagonist, AXIN1, or treating cells with an inhibitor of GSK-3 also enhanced melanoma cell sensitivity to TRAIL. These studies describe a novel regulation of TRAIL sensitivity in melanoma by Wnt/β-catenin signaling, and suggest that strategies to enhance Wnt/β-catenin signaling in combination with TRAIL agonists warrant further investigation.

  8. ERK5 knock down aggravates detrimental effects of hypothermal stimulation on cardiomyocytes via Bim upregulation.

    Science.gov (United States)

    Wang, Yao-Sheng; Zhou, Jing; Liang, Chun; Hong, Kui; Cheng, Xiao-Shu; Wu, Zong-Gui

    2013-09-01

    Mechanism of cold induced myocardial injury remained unclear. Our study investigated the role of ERK5/Bim pathway in hypothermal stimulation-induced apoptosis or damage of cardiomyocytes (CMs). Results showed that in CMs which under hypothermal stimulation, ERK5 siRNA promoted expression of Bim protein. Bim siRNA did not influence ERK5 expression but attenuated production of p-ERK5. ERK5 siRNA induced higher apoptosis rate; intracellular Ca(2+) overload; ROS activity; ΔΨm damage in hypothermia stimulated CMs, when compared with hypothermal stimulation solely treated group, while Bim siRNA effected oppositely and canceled pro-apoptotic effect of ERK5 siRNA. In conclusion, ERK5 knock down releases inhibition to Bim expression, induces aggravated apoptosis in CMs under hypothermal stimulation, which related to higher intracellular Ca(2+) overload, ROS activity, and more severe ΔΨm damage. Results revealed regulative role of ERK5/Bim pathway in hypothermal stimulation-induced injure or apoptosis of cardiomyocytes.

  9. Erk signaling suppresses embryonic stem cell self-renewal to specify endoderm

    DEFF Research Database (Denmark)

    Hamilton, William B; Brickman, Joshua M

    2014-01-01

    Fgf signaling via Erk activation has been associated with both neural induction and the generation of a primed state for the differentiation of embryonic stem cells (ESCs) to all somatic lineages. To dissect the role of Erk in both ESC self-renewal and lineage specification, we explored...

  10. GLP-1 signals via ERK in peripheral nerve and prevents nerve dysfunction in diabetic mice

    DEFF Research Database (Denmark)

    Jolivalt, CG; Fineman, M; Deacon, Carolyn F.

    2011-01-01

    not affected by streptozotocin-induced diabetes. GLP-1R agonists did not signal via ERK1/2 in sciatic nerve of normal rats. However, GLP-1R agonists significantly increased pERK1/2 levels in sciatic nerves from diabetic rats, indicating that GLP-1Rs are functional in this tissue. Exenatide treatment did...

  11. ERK kinases modulate the activation of PI3 kinase related kinases (PIKKs) in DNA damage response.

    Science.gov (United States)

    Lin, Xiaozeng; Yan, Judy; Tang, Damu

    2013-12-01

    DNA damage response (DDR) is the critical surveillance mechanism in maintaining genome integrity. The mechanism activates checkpoints to prevent cell cycle progression in the presence of DNA lesions, and mediates lesion repair. DDR is coordinated by three apical PI3 kinase related kinases (PIKKs), including ataxia-telangiectasia mutated (ATM), ATM- and Rad3-related (ATR), and DNA-PKcs (the catalytic subunit of the DNA dependent protein kinase). These kinases are activated in response to specific DNA damage or lesions, resulting in checkpoint activation and DNA lesion repair. While it is clear that the pathways of ATM, ATR, and DNA-PK are the core components of DDR, there is accumulating evidence revealing the involvement of other cellular pathways in regulating DDR; this is in line with the concept that in addition to being a nuclear event DDR is also a cellular process. One of these pathways is the extracellular signal-regulated kinase (ERK) MAPK (mitogen-activated protein kinase) pathway. ERK is a converging point of multiple signal transduction pathways involved in cell proliferation, differentiation, and apoptosis. Adding to this list of pathways is the recent development of ERK in DDR. The ERK kinases (ERK1 and ERK2) contribute to the proper execution of DDR in terms of checkpoint activation and the repair of DNA lesions. This review summarizes the contributions of ERK to DDR with emphasis on the relationship of ERK kinases with the activation of ATM, ATR, and DNA-PKcs.

  12. Active Erk Regulates Microtubule Stability in H-ras-Transformed Cells

    Directory of Open Access Journals (Sweden)

    Rene E. Harrison

    2001-01-01

    Full Text Available Increasing evidence suggests that activated erk regulates cell functions, at least in part, by mechanisms that do not require gene transcription. Here we show that the map kinase, erk, decorates microtubules (MTs and mitotic spindles in both parental and mutant active rastransfected 10T1 /2 fibroblasts and MCF10A breast epithelial cells. Approximately 20% of total cellular erk decorated MTs in both cell lines. A greater proportion of activated erk was associated with MTs in the presence of mutant active H-ras than in parental cells. Activation of erk by the ras pathway coincided with a decrease in the stability of MT, as detected by a stability marker. The MKK1 inhibitor, PD98059 and transfection of a dominant negative MKK1 blocked ras-induced instability of MTs but did not modify the association of erk with MTs or affect MT stability of the parental cells. These results indicate that the subset of active erk kinase that associates with MTs contributes to their instability in the presence of a mutant active ras. The MT-associated subset of active erk likely contributes to the enhanced invasive and proliferative abilities of cells containing mutant active H-ras.

  13. ERK Oscillation-Dependent Gene Expression Patterns and Deregulation by Stress-Response

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Cummings, Brian S.; Shankaran, Harish; Scholpa, Natalie E.; Weber, Thomas J.

    2014-09-15

    Studies were undertaken to determine whether ERK oscillations regulate a unique subset of genes in human keratinocytes and subsequently, whether the p38 stress response inhibits ERK oscillations. A DNA microarray identified many genes that were unique to ERK oscillations, and network reconstruction predicted an important role for the mediator complex subunit 1 (MED1) node in mediating ERK oscillation-dependent gene expression. Increased ERK-dependent phosphorylation of MED1 was observed in oscillating cells compared to non-oscillating counterparts as validation. Treatment of keratinocytes with a p38 inhibitor (SB203580) increased ERK oscillation amplitudes and MED1 and phospho-MED1 protein levels. Bromate is a probable human carcinogen that activates p38. Bromate inhibited ERK oscillations in human keratinocytes and JB6 cells and induced an increase in phospho-p38 and decrease in phospho-MED1 protein levels. Treatment of normal rat kidney cells and primary salivary gland epithelial cells with bromate decreased phospho-MED1 levels in a reversible fashion upon treatment with p38 inhibitors (SB202190; SB203580). Our results indicate that oscillatory behavior in the ERK pathway alters homeostatic gene regulation patterns and that the cellular response to perturbation may manifest differently in oscillating vs non-oscillating cells.

  14. Pseudorabies Virus Triggers Glycoprotein gE-Mediated ERK1/2 Activation and ERK1/2-Dependent Migratory Behavior in T Cells

    Science.gov (United States)

    Setas Pontes, Maria; Devriendt, Bert

    2014-01-01

    ABSTRACT The interaction between viruses and immune cells of the host may lead to modulation of intracellular signaling pathways and to subsequent changes in cellular behavior that are of benefit for either virus or host. ERK1/2 (extracellular signal regulated kinase 1/2) signaling represents one of the key cellular signaling axes. Here, using wild-type and gE null virus, recombinant gE, and gE-transfected cells, we show that the gE glycoprotein of the porcine Varicellovirus pseudorabies virus (PRV) triggers ERK1/2 phosphorylation in Jurkat T cells and primary porcine T lymphocytes. PRV-induced ERK1/2 signaling resulted in homotypic T cell aggregation and increased motility of T lymphocytes. Our study reveals a new function of the gE glycoprotein of PRV and suggests that PRV, through activation of ERK1/2 signaling, has a substantial impact on T cell behavior. IMPORTANCE Herpesviruses are known to be highly successful in evading the immune system of their hosts, subverting signaling pathways of the host to their own advantage. The ERK1/2 signaling pathway, being involved in many cellular processes, represents a particularly attractive target for viral manipulation. Glycoprotein E (gE) is an important virulence factor of alphaherpesviruses, involved in viral spread. In this study, we show that gE has the previously uncharacterized ability to trigger ERK1/2 phosphorylation in T lymphocytes. We also show that virus-induced ERK1/2 signaling leads to increased migratory behavior of T cells and that migratory T cells can spread the infection to susceptible cells. In conclusion, our results point to a novel function for gE and suggest that virus-induced ERK1/2 activation may trigger PRV-carrying T lymphocytes to migrate and infect other cells susceptible to PRV replication. PMID:25473050

  15. Wnt7b is an important intrinsic regulator of hair follicle stem cell homeostasis and hair follicle cycling

    OpenAIRE

    Kandyba, Eve; Kobielak, Krzysztof

    2014-01-01

    The hair follicle (HF) is an exceptional mini-organ to study the mechanisms which regulate HF morphogenesis, cycling, hair follicle stem cell (hfSCs) homeostasis and progeny differentiation. During morphogenesis, Wnt signaling is well characterized in the initiation of HF patterning but less is known about which particular Wnt ligands are required and whether individual Wnt ligands act in an indispensable or redundant manner during postnatal hfSCs anagen onset and HF cycle progression. Previo...

  16. Wnt7b is an important intrinsic regulator of hair follicle stem cell homeostasis and hair follicle cycling.

    Science.gov (United States)

    Kandyba, Eve; Kobielak, Krzysztof

    2014-04-01

    The hair follicle (HF) is an exceptional mini-organ to study the mechanisms which regulate HF morphogenesis, cycling, hair follicle stem cell (hfSCs) homeostasis, and progeny differentiation. During morphogenesis, Wnt signaling is well-characterized in the initiation of HF patterning but less is known about which particular Wnt ligands are required and whether individual Wnt ligands act in an indispensable or redundant manner during postnatal hfSCs anagen onset and HF cycle progression. Previously, we described the function of the bone morphogenetic protein (BMP) signaling target gene WNT7a in intrinsic regulation of hfSCs homeostasis in vivo. Here, we investigated the role of Wnt7b, which was also intrinsically upregulated in hfSCs during physiological and precocious anagen after BMP inhibition in vivo. We demonstrated Wnt7b to be a direct target of canonical BMP signaling in hfSCs and using Wnt7b conditional gene targeting during HF morphogenesis revealed disrupted HF cycling including a shorter anagen, premature catagen onset with overall shorter hair production, and diminished HF differentiation marker expression. Additionally, we observed that postnatal ablation of Wnt7b resulted in delayed HF activation, affecting both the hair germ and bulge hfSCs but still maintaining a two-step sequence of HF stimulation. Interestingly, Wnt7b cKO hfSCs participated in reformation of the new HF bulge, but with slower self-renewal. These findings demonstrate the importance of intrinsic Wnt7b expression in hfSCs regulation and normal HF cycling and surprisingly reveal a nonredundant role for Wnt7b in the control of HF anagen length and catagen entry which was not compensated by other Wnt ligands.

  17. ARF6-Regulated Endocytosis of Growth Factor Receptors Links Cadherin-Based Adhesion to Canonical Wnt Signaling in Epithelia

    OpenAIRE

    Pellon-Cardenas, Oscar; Clancy, James; Uwimpuhwe, Henriette; D'Souza-Schorey, Crislyn

    2013-01-01

    Wnt signaling has an essential role in embryonic development as well as stem/progenitor cell renewal, and its aberrant activation is implicated in many diseases, including several cancers. β-Catenin is a critical component of Wnt-mediated transcriptional activation. Here we show that ARF6 activation during canonical Wnt signaling promotes the intracellular accumulation of β-catenin via a mechanism that involves the endocytosis of growth factor receptors and robust activation of extracellular ...

  18. Cadmium induces Wnt signaling to upregulate proliferation and survival genes in sub-confluent kidney proximal tubule cells

    Directory of Open Access Journals (Sweden)

    Wolff Natascha A

    2010-05-01

    Full Text Available Abstract Background The class 1 carcinogen cadmium (Cd2+ disrupts the E-cadherin/β-catenin complex of epithelial adherens junctions (AJs and causes renal cancer. Deregulation of E-cadherin adhesion and changes in Wnt/β-catenin signaling are known to contribute to carcinogenesis. Results We investigated Wnt signaling after Cd2+-induced E-cadherin disruption in sub-confluent cultured kidney proximal tubule cells (PTC. Cd2+ (25 μM, 3-9 h caused nuclear translocation of β-catenin and triggered a Wnt response measured by TOPflash reporter assays. Cd2+ reduced the interaction of β-catenin with AJ components (E-cadherin, α-catenin and increased binding to the transcription factor TCF4 of the Wnt pathway, which was upregulated and translocated to the nucleus. While Wnt target genes (c-Myc, cyclin D1 and ABCB1 were up-regulated by Cd2+, electromobility shift assays showed increased TCF4 binding to cyclin D1 and ABCB1 promoter sequences with Cd2+. Overexpression of wild-type and mutant TCF4 confirmed Cd2+-induced Wnt signaling. Wnt signaling elicited by Cd2+ was not observed in confluent non-proliferating cells, which showed increased E-cadherin expression. Overexpression of E-cadherin reduced Wnt signaling, PTC proliferation and Cd2+ toxicity. Cd2+ also induced reactive oxygen species dependent expression of the pro-apoptotic ER stress marker and Wnt suppressor CHOP/GADD153 which, however, did not abolish Wnt response and cell viability. Conclusions Cd2+ induces Wnt signaling in PTC. Hence, Cd2+ may facilitate carcinogenesis of PTC by promoting Wnt pathway-mediated proliferation and survival of pre-neoplastic cells.

  19. Intra-amygdala inhibition of ERK(1/2) potentiates the discriminative stimulus effects of alcohol.

    Science.gov (United States)

    Besheer, Joyce; Fisher, Kristen R; Cannady, Reginald; Grondin, Julie J M; Hodge, Clyde W

    2012-03-17

    Extracellular signal-regulated kinase (ERK(1/2)) has been implicated in modulating drug seeking behavior and is a target of alcohol and other drugs of abuse. Given that the discriminative stimulus (subjective/interoceptive) effects of drugs are determinants of abuse liability and can influence drug seeking behavior, we examined the role of ERK(1/2) in modulating the discriminative stimulus effects of alcohol. Using drug discrimination procedures, rats were trained to discriminate a moderate intragastric (IG) alcohol dose (1g/kg) versus water (IG). Following an alcohol (1g/kg) discrimination session phosphorylated ERK(1/2) (pERK(1/2)) immunoreactivity (IR) was significantly elevated in the amygdala, but not the nucleus accumbens. Therefore, we hypothesized that intra-amygdala inhibition of ERK(1/2) would disrupt expression of the discriminative stimulus effects of alcohol. However, intra-amygdala or accumbens administration of the MEK/ERK(1/2) inhibitor U0126 (1 and 3μg) had no effect on the discriminative stimulus effects of the training dose of alcohol (1g/kg). Contrary to our hypothesis, intra-amygdala infusion of U0126 (3μg) potentiated the discriminative stimulus effects of a low alcohol dose (0.5g/kg) and had no effect following nucleus accumbens infusion. Importantly, site-specific inhibition of pERK(1/2) in each brain region was confirmed. Therefore, the increase in pERK(1/2) IR in the amygdala following systemic alcohol administration may be reflective of the widespread effects of alcohol on the brain (activation/inhibition of brain circuits), whereas the site specific microinjection studies confirmed functional involvement of intra-amygdala ERK(1/2). These findings show that activity of the ERK signaling pathway in the amygdala can influence the discriminative stimulus effects of alcohol.

  20. TG-interacting factor transcriptionally induced by AKT/FOXO3A is a negative regulator that antagonizes arsenic trioxide-induced cancer cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zi-Miao; Tseng, Hong-Yu; Cheng, Ya-Ling [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Yeh, Bi-Wen [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Wu, Wen-Jeng [Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Huang, Huei-Sheng, E-mail: huanghs@mail.ncku.edu.tw [Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan (China)

    2015-05-15

    Arsenic trioxide (ATO) is a multi-target drug approved by the Food and Drug Administration as the first-line chemotherapeutic agent for the treatment of acute promyelocytic leukemia. In addition, several clinical trials are being conducted with arsenic-based drugs for the treatment of other hematological malignancies and solid tumors. However, ATO's modest clinical efficacy on some cancers, and potential toxic effects on humans have been reported. Determining how best to reduce these adverse effects while increasing its therapeutic efficacy is obviously a critical issue. Previously, we demonstrated that the JNK-induced complex formation of phosphorylated c-Jun and TG-interacting factor (TGIF) antagonizes ERK-induced cyclin-dependent kinase inhibitor CDKN1A (p21{sup WAF1/CIP1}) expression and resultant apoptosis in response to ATO in A431 cells. Surprisingly, at low-concentrations (0.1–0.2 μM), ATO increased cellular proliferation, migration and invasion, involving TGIF expression, however, at high-concentrations (5–20 μM), ATO induced cell apoptosis. Using a promoter analysis, TGIF was transcriptionally regulated by ATO at the FOXO3A binding site (− 1486 to − 1479 bp) via the c-Src/EGFR/AKT pathway. Stable overexpression of TGIF promoted advancing the cell cycle into the S phase, and attenuated 20 μM ATO-induced apoptosis. Furthermore, blockage of the AKT pathway enhanced ATO-induced CDKN1A expression and resultant apoptosis in cancer cells, but overexpression of AKT1 inhibited CDKN1A expression. Therefore, we suggest that TGIF is transcriptionally regulated by the c-Src/EGFR/AKT pathway, which plays a role as a negative regulator in antagonizing ATO-induced CDKN1A expression and resultant apoptosis. Suppression of these antagonistic effects might be a promising therapeutic strategy toward improving clinical efficacy of ATO. - Highlights: • ATO-induced biphasic survival responses of cancer cells depend on low- or high-concentrations. • TGIF

  1. A `Clicked' Tetrameric Hydroxamic Acid Glycopeptidomimetic Antagonizes Sugar-Lectin Interactions On The Cellular Level

    Science.gov (United States)

    Zhang, Hai-Lin; Zang, Yi; Xie, Juan; Li, Jia; Chen, Guo-Rong; He, Xiao-Peng; Tian, He

    2014-07-01

    A tetrameric N-acetyl galactosaminyl (GalNAc) peptidomimetic was constructed by N-acetylation of repeating proline-based hydroxamic acid units, followed by a convergent `click chemistry' coupling. This novel glycopeptidomimetic was determined to effectively antagonize the interaction between a transmembrane hepatic lectin and GalNAc on the cellular level.

  2. THE FUNGICIDE PROCHLORAZ: IN VITRO ANDROGEN ANTAGONISM, PARTURITION DELAYS, AND MALE REPRODUCTIVE MALFORMATIONS IN RATS

    Science.gov (United States)

    The Fungicide Prochloraz: In vitro Androgen Antagonism, Parturition Delays, and Male Reproductive Malformations in Rats.Nigel C. Noriega, Joseph Ostby, Christy Lambright, Vickie S. Wilson, and L. Earl Gray Jr., noriega.nigel@epa.govUS EPAProchloraz (PZ) is an imid...

  3. Non-Canonical Wnt Predominates in Activated Rat Hepatic Stellate Cells, Influencing HSC Survival and Paracrine Stimulation of Kupffer Cells.

    Directory of Open Access Journals (Sweden)

    Laura Corbett

    Full Text Available The Wnt system is highly complex and is comprised of canonical and non-canonical pathways leading to the activation of gene expression. Our aim was to examine changes in the expression of Wnt ligands and regulators during hepatic stellate cell (HSC transdifferentiation and assess the relative contributions of the canonical and non-canonical Wnt pathways in fibrogenic activated HSC. The expression profile of Wnt ligands and regulators in HSC was not supportive for a major role for β-catenin-dependent canonical Wnt signalling, this verified by inability to induce Topflash reporter activity in HSC even when expressing a constitutive active β-catenin. We detected expression of Wnt5a in activated HSC which can signal via non-canonical mechanisms and showed evidence for non-canonical signalling in these cells involving phosphorylation of Dvl2 and pJNK. Stimulation of HSC or Kupffer cells with Wnt5a regulated HSC apoptosis and expression of TGF-β1 and MCP1 respectively. We were unable to confirm a role for β-catenin-dependent canonical Wnt in HSC and instead propose autocrine and paracrine functions for Wnts expressed by activated HSC via non-canonical pathways. The data warrant detailed investigation of Wnt5a in liver fibrosis.

  4. Wnt11b is involved in cilia-mediated symmetry breakage during Xenopus left-right development.

    Directory of Open Access Journals (Sweden)

    Peter Walentek

    Full Text Available Breakage of bilateral symmetry in amphibian embryos depends on the development of a ciliated epithelium at the gastrocoel roof during early neurulation. Motile cilia at the gastrocoel roof plate (GRP give rise to leftward flow of extracellular fluids. Flow is required for asymmetric gene expression and organ morphogenesis. Wnt signaling has previously been involved in two steps, Wnt/ß-catenin mediated induction of Foxj1, a regulator of motile cilia, and Wnt/planar cell polarity (PCP dependent cilia polarization to the posterior pole of cells. We have studied Wnt11b in the context of laterality determination, as this ligand was reported to activate canonical and non-canonical Wnt signaling. Wnt11b was found to be expressed in the so-called superficial mesoderm (SM, from which the GRP derives. Surprisingly, Foxj1 was only marginally affected in loss-of-function experiments, indicating that another ligand acts in this early step of laterality specification. Wnt11b was required, however, for polarization of GRP cilia and GRP morphogenesis, in line with the known function of Wnt/PCP in cilia-driven leftward flow. In addition Xnr1 and Coco expression in the lateral-most GRP cells, which sense flow and generate the first asymmetric signal, was attenuated in morphants, involving Wnt signaling in yet another process related to symmetry breakage in Xenopus.

  5. ERK2 suppresses self-renewal capacity of embryonic stem cells, but is not required for multi-lineage commitment.

    Directory of Open Access Journals (Sweden)

    William B Hamilton

    Full Text Available Activation of the FGF-ERK pathway is necessary for naïve mouse embryonic stem (ES cells to exit self-renewal and commit to early differentiated lineages. Here we show that genetic ablation of Erk2, the predominant ERK isozyme expressed in ES cells, results in hyper-phosphorylation of ERK1, but an overall decrease in total ERK activity as judged by substrate phosphorylation and immediate-early gene (IEG induction. Normal induction of this subset of canonical ERK targets, as well as p90RSK phosphorylation, was rescued by transgenic expression of either ERK1 or ERK2 indicating a degree of functional redundancy. In contrast to previously published work, Erk2-null ES cells exhibited no detectable defect in lineage specification to any of the three germ layers when induced to differentiate in either embryoid bodies or in defined neural induction conditions. However, under self-renewing conditions Erk2-null ES cells express increased levels of the pluripotency-associated transcripts, Nanog and Tbx3, a decrease in Nanog-GFP heterogeneity, and exhibit enhanced self-renewal in colony forming assays. Transgenic add-back of ERK2 is capable of restoring normal pluripotent gene expression and self-renewal capacity. We show that ERK2 contributes to the destabilization of ES cell self-renewal by reducing expression of pluripotency genes, such as Nanog, but is not specifically required for the early stages of germ layer specification.

  6. Basic fibroblast growth factor induces matrix metalloproteinase-13 via ERK MAP kinase-altered phosphorylation and sumoylation of Elk-1 in human adult articular chondrocytes

    Directory of Open Access Journals (Sweden)

    Hee-Jeong Im

    2009-10-01

    Full Text Available Hee-Jeong Im,1–4 Andrew D Sharrocks,5 Xia Lin,6 Dongyao Yan,1 Jaesung Kim,1 Andre J van Wijnen,7 Robert A Hipskind81Departments of Biochemistry, 2Internal Medicine, 3Section of Rheumatology, Orthopedic Surgery, 4Rush University Medical Center, and Department of Bioengineering; University of Illinois at Chicago, IL USA; 5Faculty of Life Sciences, University of Manchester, Oxford Rd, Manchester, UK; 6Michael D DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA; 7Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA, USA; 8Institute De Genetique Moleculaire de Montpellier, FranceAbstract: Degradation of the extracellular matrix (ECM by matrix metalloproteinases (MMPs and release of basic fibroblast growth factor (bFGF are principal aspects of the pathology of osteoarthritis (OA. ECM disruption leads to bFGF release, which activates the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK pathway and its downstream target the Ets-like transcription factor Elk-1. Previously we demonstrated that the bFGF-ERK-Elk-1 signaling axis is responsible for the potent induction of MMP-13 in human primary articular chondrocytes. Here we report that, in addition to phosphorylation of Elk-1, dynamic posttranslational modification of Elk-1 by small ubiquitin-related modifier (SUMO serves as an important mechanism through which MMP-13 gene expression is regulated. We show that bFGF activates Elk-1 mainly through the ERK pathway and that increased phosphorylation of Elk-1 is accompanied by decreased conjugation of SUMO to Elk-1. Reporter gene assays reveal that phosphorylation renders Elk-1 competent for induction of MMP-13 gene transcription, while sumoylation has the opposite effect. Furthermore, we demonstrate that the SUMO-conjugase Ubc9 acts as a key mediator for Elk-1 sumoylation. Taken together, our results suggest that sumoylation antagonizes the phosphorylation

  7. Wnt1 Neuroprotection Translates into Improved Neurological Function during Oxidant Stress and Cerebral Ischemia Through AKT1 and Mitochondrial Apoptotic Pathways

    Directory of Open Access Journals (Sweden)

    Zhao Zhong Chong

    2010-01-01

    Full Text Available Although essential for the development of the nervous system, Wnt1 also has been associated with neurodegenerative disease and cognitive loss during periods of oxidative stress. Here we show that endogenous expression of Wnt1 is suppressed during oxidative stress in both in vitro and in vivo experimental models. Loss of endogenous Wnt1 signaling directly correlates with neuronal demise and increased functional deficit, illustrating that endogenous neuronal Wnt1 offers a vital level of intrinsic cellular protection against oxidative stress. Furthermore, transient overexpression of Wnt1 or application of exogenous Wnt1 recombinant protein is necessary to preserve neurological function and rescue neurons from apoptotic membrane phosphatidylserine externalization and genomic DNA degradation, since blockade of Wnt1 signaling with a Wnt1 antibody or dickkopf related protein 1 abrogates neuronal protection by Wnt1. Wnt1 ultimately relies upon the activation of Akt1, the modulation of mitochondrial membrane permeability, and the release of cytochrome c to control the apoptotic cascade, since inhibition of Wnt1 signaling, the phosphatidylinositol 3-kinase pathway, or Akt1 activity abrogates the ability of Wnt1 to block these apoptotic components. Our work identifies Wnt1 and its downstream signaling as cellular targets with high clinical potential for novel treatment strategies for multiple disorders precipitated by oxidative stress.

  8. Wnt1 neuroprotection translates into improved neurological function during oxidant stress and cerebral ischemia through AKT1 and mitochondrial apoptotic pathways.

    Science.gov (United States)

    Chong, Zhao Zhong; Shang, Yan Chen; Hou, Jinling; Maiese, Kenneth

    2010-01-01

    Although essential for the development of the nervous system, Wnt1 also has been associated with neurodegenerative disease and cognitive loss during periods of oxidative stress. Here we show that endogenous expression of Wnt1 is suppressed during oxidative stress in both in vitro and in vivo experimental models. Loss of endogenous Wnt1 signaling directly correlates with neuronal demise and increased functional deficit, illustrating that endogenous neuronal Wnt1 offers a vital level of intrinsic cellular protection against oxidative stress. Furthermore, transient overexpression of Wnt1 or application of exogenous Wnt1 recombinant protein is necessary to preserve neurological function and rescue neurons from apoptotic membrane phosphatidylserine externalization and genomic DNA degradation, since blockade of Wnt1 signaling with a Wnt1 antibody or dickkopf related protein 1 abrogates neuronal protection by Wnt1. Wnt1 ultimately relies upon the activation of Akt1, the modulation of mitochondrial membrane permeability, and the release of cytochrome c to control the apoptotic cascade, since inhibition of Wnt1 signaling, the phosphatidylinositol 3-kinase pathway, or Akt1 activity abrogates the ability of Wnt1 to block these apoptotic components. Our work identifies Wnt1 and its downstream signaling as cellular targets with high clinical potential for novel treatment strategies for multiple disorders precipitated by oxidative stress.

  9. Region- or state-related differences in expression and activation of extracellular signal-regulated kinases (ERKs in naïve and pain-experiencing rats

    Directory of Open Access Journals (Sweden)

    Cui Xiu-Yu

    2007-07-01

    Full Text Available Abstract Background Extracellular signal-regulated kinase (ERK, one member of the mitogen-activated protein kinase (MAPK family, has been suggested to regulate a diverse array of cellular functions, including cell growth, differentiation, survival, as well as neuronal plasticity. Recent evidence indicates a role for ERKs in nociceptive processing in both dorsal root ganglion and spinal cord. However, little literature has been reported to examine the differential distribution and activation of ERK isoforms, ERK1 and ERK2, at different levels of pain-related pathways under both normal and pain states. In the present study, quantitative blot immunolabeling technique was used to determine the spatial and temporal expression of ERK1 and ERK2, as well as their activated forms, in the spinal cord, primary somatosensory cortex (SI area of cortex, and hippocampus under normal, transient pain and persistent pain states. Results In naïve rats, we detected regional differences in total expression of ERK1 and ERK2 across different areas. In the spinal cord, ERK1 was expressed more abundantly than ERK2, while in the SI area of cortex and hippocampus, there was a larger amount of ERK2 than ERK1. Moreover, phosphorylated ERK2 (pERK2, not phosphorylated ERK1 (pERK1, was normally expressed with a high level in the SI area and hippocampus, but both pERK1 and pERK2 were barely detectable in normal spinal cord. Intraplantar saline or bee venom injection, mimicking transient or persistent pain respectively, can equally initiate an intense and long-lasting activation of ERKs in all three areas examined. However, isoform-dependent differences existed among these areas, that is, pERK2 exhibited stronger response than pERK1 in the spinal cord, whereas ERK1 was more remarkably activated than ERK2 in the S1 area and hippocampus. Conclusion Taken these results together, we conclude that: (1 under normal state, while ERK immunoreactivity is broadly distributed in the rat

  10. Tgfbi/Bigh3 silencing activates ERK in mouse retina.

    Science.gov (United States)

    Allaman-Pillet, Nathalie; Oberson, Anne; Bustamante, Mauro; Tasinato, Andrea; Hummler, Edith; Schorderet, Daniel F

    2015-11-01

    BIGH3 is a secreted protein, part of the extracellular matrix where it interacts with collagen and integrins on the cell surface. BIGH3 can play opposing roles in cancer, acting as either tumor suppressor or promoter, and its mutations lead to different forms of corneal dystrophy. Although many studies have been carried out, little is known about the physiological role of BIGH3. Using the cre-loxP system, we generated a mouse model with disruption of the Bigh3 genomic locus. Bigh3 silencing did not result in any apparent phenotype modifications, the mice remained viable and fertile. We were able to determine the presence of BIGH3 in the retinal pigment epithelium (RPE). In the absence of BIGH3, a transient decrease in the apoptotic process involved in retina maturation was observed, leading to a transient increase in the INL thickness at P15. This phenomenon was accompanied by an increased activity of the pro-survival ERK pathway.

  11. FHL2 silencing reduces Wnt signaling and osteosarcoma tumorigenesis in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Julia Brun

    Full Text Available BACKGROUND: The molecular mechanisms that are involved in the growth and invasiveness of osteosarcoma, an aggressive and invasive primary bone tumor, are not fully understood. The transcriptional co-factor FHL2 (four and a half LIM domains protein 2 acts as an oncoprotein or as a tumor suppressor depending on the tissue context. In this study, we investigated the role of FHL2 in tumorigenesis in osteosarcoma model. METHODOLOGY/PRINCIPAL FINDINGS: Western blot analyses showed that FHL2 is expressed above normal in most human and murine osteosarcoma cells. Tissue microarray analysis revealed that FHL2 protein expression is high in human osteosarcoma and correlates with osteosarcoma aggressiveness. In murine osteosarcoma cells, FHL2 silencing using shRNA decreased canonical Wnt/β-catenin signaling and reduced the expression of Wnt responsive genes as well as of the key Wnt molecules Wnt5a and Wnt10b. This effect resulted in inhibition of osteosarcoma cell proliferation, invasion and migration in vitro. Using xenograft experiments, we showed that FHL2 silencing markedly reduced tumor growth and lung metastasis occurence in mice. The anti-oncogenic effect of FHL2 silencing in vivo was associated with reduced cell proliferation and decreased Wnt signaling in the tumors. CONCLUSION/SIGNIFICANCE: Our findings demonstrate that FHL2 acts as an oncogene in osteosarcoma cells and contributes to tumorigenesis through Wnt signaling. More importantly, FHL2 depletion greatly reduces tumor cell growth and metastasis, which raises the potential therapeutic interest of targeting FHL2 to efficiently impact primary bone tumors.

  12. The function of BCL9 in Wnt/β-catenin signaling and colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Worm Jesper

    2008-07-01

    Full Text Available Abstract Background Most cases of colorectal cancer are initiated by hyperactivation of the Wnt/β-catenin pathway due to mutations in the APC tumour suppressor, or in β-catenin itself. A recently discovered component of this pathway is Legless, which is essential for Wnt-induced transcription during Drosophila development. Limited functional information is available for its two mammalian relatives, BCL9 and B9L/BCL9-2: like Legless, these proteins bind to β-catenin, and RNAi-mediated depletion of B9L/BCL9-2 has revealed that this protein is required for efficient β-catenin-mediated transcription in mammalian cell lines. No loss-of-function data are available for BCL9. Methods We have used overexpression of dominant-negative forms of BCL9, and RNAi-mediated depletion, to study its function in human cell lines with elevated Wnt pathway activity, including colorectal cancer cells. Results We found that BCL9 is required for efficient β-catenin-mediated transcription in Wnt-stimulated HEK 293 cells, and in the SW480 colorectal cancer cell line whose Wnt pathway is active due to APC mutation. Dominant-negative mutants of BCL9 indicated that its function depends not only on its β-catenin ligand, but also on an unknown ligand of its C-terminus. Finally, we show that BCL9 and B9L are both Wnt-inducible genes, hyperexpressed in colorectal cancer cell lines, indicating that they are part of a positive feedback loop. Conclusion BCL9 is required for efficient β-catenin-mediated transcription in human cell lines whose Wnt pathway is active, including colorectal cancer cells, indicating its potential as a drug target in colorectal cancer.

  13. Involvement of WNT/β-catenin signaling in the treatment of osteoporosis.

    Science.gov (United States)

    Rossini, Maurizio; Gatti, Davide; Adami, Silvano

    2013-08-01

    Osteoblast differentiation is predominantly regulated by the WNT/β-catenin signaling (canonical WNT pathway), which, together with bone morphogenetic proteins, acts as the master regulator of osteogenesis. The recent characterization of the canonical WNT pathway in the regulation of bone modeling and remodeling provided important insights for our understanding of the pathophysiology of a number of conditions and of the mechanism of action of hormones or drugs with important effect on bone metabolism. This review is mainly focused on the growing therapeutic implications of these new findings. WNT/β-catenin signaling plays a key role in bone tissue by determining the differentiation of stem cells into mature osteoblasts rather than into chondrocytes and adipocytes. Its regulation is predominantly driven by the production of two WNT signaling antagonists: sclerostin (SOST) and Dickkopf-related protein 1 (DKK1). The most proximate regulator of SOST expression by osteocytes and its serum levels is bone mechanical load. SOST expression is increased with advancing age, by glucocorticoid treatment and during treatment with antiresorptive agents such as bisphosphonates and denosumab, while it is decreased by parathyroid hormone excess or administration of estrogens. Correlation between DKK1 serum levels and bone formation in various pathological conditions or during osteoporosis treatment has been reported. Inhibitors of the negative regulators of WNT/β-catenin signaling ("inhibiting the endogenous inhibitors") are potential candidates for the prevention and treatment of bone loss. Inactivating monoclonal antibodies against SOST appears to be the most attractive strategy because SOST is the only component of the WNT pathway expressed almost exclusively by osteocytes.

  14. How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario

    Science.gov (United States)

    Arrázola, Macarena S.; Silva-Alvarez, Carmen; Inestrosa, Nibaldo C.

    2015-01-01

    Alzheimer’s disease (AD) is the most common neurodegenerative disorder and is characterized by progressive memory loss and cognitive decline. One of the hallmarks of AD is the overproduction of amyloid-beta aggregates that range from the toxic soluble oligomer (Aβo) form to extracellular accumulations in the brain. Growing evidence indicates that mitochondrial dysfunction is a common feature of neurodegenerative diseases and is observed at an early stage in the pathogenesis of AD. Reports indicate that mitochondrial structure and function are affected by Aβo and can trigger neuronal cell death. Mitochondria are highly dynamic organelles, and the balance between their fusion and fission processes is essential for neuronal function. Interestingly, in AD, the process known as “mitochondrial dynamics” is also impaired by Aβo. On the other hand, the activation of the Wnt signaling pathway has an essential role in synaptic maintenance and neuronal functions, and its deregulation has also been implicated in AD. We have demonstrated that canonical Wnt signaling, through the Wnt3a ligand, prevents the permeabilization of mitochondrial membranes through the inhibition of the mitochondrial permeability transition pore (mPTP), induced by Aβo. In addition, we showed that non-canonical Wnt signaling, through the Wnt5a ligand, protects mitochondria from fission-fusion alterations in AD. These results suggest new approaches by which different Wnt signaling pathways protect neurons in AD, and support the idea that mitochondria have become potential therapeutic targets for the treatment of neurodegenerative disorders. Here we discuss the neuroprotective role of the canonical and non-canonical Wnt signaling pathways in AD and their differential modulation of mitochondrial processes, associated with mitochondrial dysfunction and neurodegeneration. PMID:25999816

  15. The Wnt receptor Ryk plays a role in mammalian planar cell polarity signaling.

    Science.gov (United States)

    Macheda, Maria L; Sun, Willy W; Kugathasan, Kumudhini; Hogan, Benjamin M; Bower, Neil I; Halford, Michael M; Zhang, You Fang; Jacques, Bonnie E; Lieschke, Graham J; Dabdoub, Alain; Stacker, Steven A

    2012-08-24

    Wnts are essential for a wide range of developmental processes, including cell growth, division, and differentiation. Some of these processes signal via the planar cell polarity (PCP) pathway, which is a β-catenin-independent Wnt signaling pathway. Previous studies have shown that Ryk, a member of the receptor tyrosine kinase family, can bind to Wnts. Ryk is required for normal axon guidance and neuronal differentiation during development. Here, we demonstrate that mammalian Ryk interacts with the Wnt/PCP pathway. In vitro analysis showed that the Wnt inhibitory factor domain of Ryk was necessary for Wnt binding. Detailed analysis of two vertebrate model organisms showed Ryk phenotypes consistent with PCP signaling. In zebrafish, gene knockdown using morpholinos revealed a genetic interaction between Ryk and Wnt11 during the PCP pathway-regulated process of embryo convergent extension. Ryk-deficient mouse embryos displayed disrupted polarity of stereociliary hair cells in the cochlea, a characteristic of disturbed PCP signaling. This PCP defect was also observed in mouse embryos that were double heterozygotes for Ryk and Looptail (containing a mutation in the core Wnt/PCP pathway gene Vangl2) but not in either of the single heterozygotes, suggesting a genetic interaction between Ryk and Vangl2. Co-immunoprecipitation studies demonstrated that RYK and VANGL2 proteins form a complex, whereas RYK also activated RhoA, a downstream effector of PCP signaling. Overall, our data suggest an important role for Ryk in Wnt/planar cell polarity signaling during vertebrate development via the Vangl2 signaling pathway, as demonstrated in the mouse cochlea.

  16. Activation of non-canonical Wnt/JNK pathway by Wnt3a is associated with differentiation fate determination of human bone marrow stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Qiu, Weimin; Chen, Li; Kassem, Moustapha

    2011-01-01

    The canonical Wnt signaling pathway can determine human bone marrow stromal (mesenchymal) stem cell (hMSC) differentiation fate into osteoblast or adipocyte lineages. However, its downstream targets in MSC are not well characterized. Thus, using DNA microarrays, we compared global gene expression...

  17. ERK signaling couples nutrient status to antiviral defense in the insect gut.

    Science.gov (United States)

    Xu, Jie; Hopkins, Kaycie; Sabin, Leah; Yasunaga, Ari; Subramanian, Harry; Lamborn, Ian; Gordesky-Gold, Beth; Cherry, Sara

    2013-09-10

    A unique facet of arthropod-borne virus (arbovirus) infection is that the pathogens are orally acquired by an insect vector during the taking of a blood meal, which directly links nutrient acquisition and pathogen challenge. We show that the nutrient responsive ERK pathway is both induced by and restricts disparate arboviruses in Drosophila intestines, providing insight into the molecular determinants of the antiviral "midgut barrier." Wild-type flies are refractory to oral infection by arboviruses, including Sindbis virus and vesicular stomatitis virus, but this innate restriction can be overcome chemically by oral administration of an ERK pathway inhibitor or genetically via the specific loss of ERK in Drosophila intestinal epithelial cells. In addition, we found that vertebrate insulin, which activates ERK in the mosquito gut during a blood meal, restricts viral infection in Drosophila cells and against viral invasion of the insect gut epithelium. We find that ERK's antiviral signaling activity is likely conserved in Aedes mosquitoes, because genetic or pharmacologic manipulation of the ERK pathway affects viral infection of mosquito cells. These studies demonstrate that ERK signaling has a broadly antiviral role in insects and suggest that insects take advantage of cross-species signals in the meal to trigger antiviral immunity.

  18. Phosphorylated ERK5/BMK1 transiently accumulates within division spindles in mouse oocytes and preimplantation embryos

    Directory of Open Access Journals (Sweden)

    Maria A. Ciemerych

    2011-10-01

    Full Text Available MAP kinases of the ERK family play important roles in oocyte maturation, fertilization, and early embryo development. The role of the signaling pathway involving ERK5 MAP kinase during meiotic and mitotic M-phase of the cell cycle is not well known. Here, we studied the localization of the phosphorylated, and thus potentially activated, form of ERK5 in mouse maturing oocytes and mitotically dividing early embryos. We show that phosphorylation/dephosphorylation, i.e. likely activation/inactivation of ERK5, correlates with M-phase progression. Phosphorylated form of ERK5 accumulates in division spindle of both meiotic and mitotic cells, and precisely co-localizes with spindle microtubules at metaphase. This localization changes drastically in the anaphase, when phospho-ERK5 completely disappears from microtubules and transits to the cytoplasmic granular, vesicle-like structures. In telophase oocytes it becomes incorporated into the midbody. Dynamic changes in the localization of phospho-ERK5 suggests that it may play an important role both in meiotic and mitotic division. (Folia Histochemica et Cytobiologica 2011, Vol. 49, No. 3, 528–534

  19. Selumetinib, an Oral Anti-Neoplastic Drug, May Attenuate Cardiac Hypertrophy via Targeting the ERK Pathway.

    Directory of Open Access Journals (Sweden)

    Chen Li

    Full Text Available Although extracellular-regulated kinases (ERK are a well-known central mediator in cardiac hypertrophy, no clinically available ERK antagonist has been tested for preventing cardiac hypertrophy. Selumetinib is a novel oral MEK inhibitor that is currently under Phase II and Phase III clinical investigation for advanced solid tumors. In this study, we investigated whether Selumetinib could inhibit the aberrant ERK activation of the heart in response to stress as well as prevent cardiac hypertrophy.In an in vitro model of PE-induced cardiac hypertrophy, Selumetinib significantly inhibited the ERK activation and prevented enlargement of cardiomyocytes or reactivation of certain fetal genes. In the pathologic cardiac hypertrophy model of ascending aortic constriction, Selumetinib provided significant ERK inhibition in the stressed heart but not in the other organs. This selective ERK inhibition prevented left ventricular (LV wall thickening, LV mass increase, fetal gene reactivation and cardiac fibrosis. In another distinct physiologic cardiac hypertrophy model of a swimming rat, Selumetinib provided a similar anti-hypertrophy effect, except that no significant fetal gene reactivation or cardiac fibrosis was observed.Selumetinib, a novel oral anti-cancer drug with good safety records in a number of Phase II clinical trials, can inhibit ERK activity in the heart and prevent cardiac hypertrophy. These promising results indicate that Selumetinib could potentially be used to treat cardiac hypertrophy. However, this hypothesis needs to be validated in human clinical trials.

  20. Selumetinib, an Oral Anti-Neoplastic Drug, May Attenuate Cardiac Hypertrophy via Targeting the ERK Pathway

    Science.gov (United States)

    Yang, Hao; Luo, Fangbo; Chen, Lihong; Cai, Huawei; Li, Yajiao; You, Guiying; Long, Dan; Li, Shengfu; Zhang, Qiuping; Rao, Li

    2016-01-01

    Aims Although extracellular-regulated kinases (ERK) are a well-known central mediator in cardiac hypertrophy, no clinically available ERK antagonist has been tested for preventing cardiac hypertrophy. Selumetinib is a novel oral MEK inhibitor that is currently under Phase II and Phase III clinical investigation for advanced solid tumors. In this study, we investigated whether Selumetinib could inhibit the aberrant ERK activation of the heart in response to stress as well as prevent cardiac hypertrophy. Methods and Results In an in vitro model of PE-induced cardiac hypertrophy, Selumetinib significantly inhibited the ERK activation and prevented enlargement of cardiomyocytes or reactivation of certain fetal genes. In the pathologic cardiac hypertrophy model of ascending aortic constriction, Selumetinib provided significant ERK inhibition in the stressed heart but not in the other organs. This selective ERK inhibition prevented left ventricular (LV) wall thickening, LV mass increase, fetal gene reactivation and cardiac fibrosis. In another distinct physiologic cardiac hypertrophy model of a swimming rat, Selumetinib provided a similar anti-hypertrophy effect, except that no significant fetal gene reactivation or cardiac fibrosis was observed. Conclusions Selumetinib, a novel oral anti-cancer drug with good safety records in a number of Phase II clinical trials, can inhibit ERK activity in the heart and prevent cardiac hypertrophy. These promising results indicate that Selumetinib could potentially be used to treat cardiac hypertrophy. However, this hypothesis needs to be validated in human clinical trials. PMID:27438013

  1. Selective enhancement of wnt4 expression by cyclic AMP-associated cooperation between rat central astrocytes and microglia.

    Science.gov (United States)

    Ohnishi, Masatoshi; Urasaki, Tomoka; Ochiai, Hiroyuki; Matsuoka, Kohei; Takeo, Shin; Harada, Tomoki; Ohsugi, Yoshihito; Inoue, Atsuko

    2015-11-13

    The wnt protein family has important members involved in cell differentiation, proliferation and plasticity expression; however, little is known about its biosynthesis processes. On the other hand, an increase in the intracerebral cyclic adenosine 3', 5'-monophosphate (cAMP) level leads to synaptic plasticity via the de novo synthesis of any protein. Here, the effect of dibutyryl cAMP (dbcAMP), a membrane permeability cAMP analog, on the wnt family was investigated in rat primary-cultured glial cells containing astrocytes and microglia. Among wnt3a, 4, 5a, 7a and 11 mRNA, only wnt4 expression was increased by longer treatment (24 h), compared with short treatment (2 h), with dbcAMP in a concentration-dependent manner, and its effect reached statistical significance at 1 mM. In cultures of isolated astrocytes or microglia, wnt4 expression was not affected by 1 mM dbcAMP for 24 h, and microglial wnt4 protein was undetectable even when cells were treated with the drug. Mixed glial cells treated for 24 h with 1 mM dbcAMP showed significantly increased wnt4 protein, as well as mRNA. Immunofluorescence manifested that cells that expressed wnt4 protein were astrocytes, but not microglia. Intraperitoneal injection of 1.25 mg/kg rolipram, a phosphodiesterase (PDE) IV inhibitor that can pass through the blood brain barrier and inhibits cAMP degradation specifically, showed a tendency to increase wnt</