WorldWideScience

Sample records for antagonist mk-801 prevents

  1. The N-Methyl-d-Aspartate Receptor Antagonist MK-801 Prevents Thallium-Induced Behavioral and Biochemical Alterations in the Rat Brain.

    Science.gov (United States)

    Osorio-Rico, Laura; Villeda-Hernández, Juana; Santamaría, Abel; Königsberg, Mina; Galván-Arzate, Sonia

    2015-01-01

    Thallium (Tl(+)) is a toxic heavy metal capable of increasing oxidative damage and disrupting antioxidant defense systems. Thallium invades the brain cells through potassium channels, increasing neuronal excitability, although until now the possible role of glutamatergic transmission in this event has not been investigated. Here, we explored the possible involvement of a glutamatergic component in the Tl(+)-induced toxicity through the N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801) in rats. The effects of MK-801 (1 mg/kg, intraperitoneally [ip]) on early (24 hours) motor alterations, lipid peroxidation, reduced glutathione (GSH) levels, and GSH peroxidase activity induced by Tl(+) acetate (32 mg/kg, ip) were evaluated in adult rats. MK-801 attenuated the Tl(+)-induced hyperactivity and lipid peroxidation in the rat striatum, hippocampus and midbrain, and produced mild effects on other end points. Our findings suggest that glutamatergic transmission via NMDA receptors might be involved in the Tl(+)-induced altered regional brain redox activity and motor performance in rats. © The Author(s) 2015.

  2. The Histamine H3 Receptor Antagonist DL77 Ameliorates MK801-Induced Memory Deficits in Rats

    Directory of Open Access Journals (Sweden)

    Nermin Eissa

    2018-02-01

    Full Text Available The role of Histamine H3 receptors (H3Rs in memory, and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer disease (AD is well-accepted. For that reason, the procognitive effects of the H3R antagonist DL77 on cognitive impairments induced with MK801 were tested in an inhibitory passive avoidance paradigm (PAP and novel object recognition (NOR task in adult male rats, using donepezil (DOZ as a standard drug. Acute systemic pretreatment with DL77 (2.5, 5, and 10 mg/kg, i.p. significantly ameliorated memory deficits induced with MK801 in PAP (all P < 0.05, n = 7. The ameliorative effect of most promising dose of DL77 (5 mg/kg, i.p. was reversed when rats were co-injected with the H3R agonist R-(α-methylhistamine (RAMH, 10 mg/kg, i.p. (p = 0.701 for MK801-amnesic group vs. MK801+DL77+RAMH group, n = 6. In the NOR paradigm, DL77 (5 mg/kg, i.p. counteracted long-term memory (LTM deficits induced with MK801 (P < 0.05, n = 6–8, and the DL77-provided effect was similar to that of DOZ (p = 0.788, n = 6–8, and was reversed when rats were co-injected with RAMH (10 mg/kg, i.p. (p = 0.877, n = 6, as compared to the (MK801-amnesic group. However, DL77 (5 mg/kg, i.p. did not alter short-term memory (STM impairment in NOR test (p = 0.772, n = 6–8, as compared to (MK801-amnesic group. Moreover, DL77 (5 mg/kg failed to modify anxiety and locomotor behaviors of animals innate to elevated-plus maze (EPM (p = 0.67 for percentage of time spent exploring the open arms, p = 0.52 for number of entries into the open arms, p = 0.76 for percentage of entries into the open arms, and p = 0.73 number of closed arm entries as compared to saline-treated groups, all n = 6, demonstrating that the procognitive effects observed in PAP or NOR tests were unconnected to alterations in emotions or in natural locomotion of tested animals. These results signify the potential involvement of H3Rs in modulating

  3. Competitive (AP7) and non-competitive (MK-801) NMDA receptor antagonists differentially alter glucose utilization in rat cortex

    International Nuclear Information System (INIS)

    Clow, D.W.; Lee, S.J.; Hammer, R.P. Jr.

    1991-01-01

    The effects of D,L-2-amino-7-phosphonoheptanoic acid (AP7), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and MK-801, a non-competitive NMDA receptor antagonist, on regional brain metabolism were studied in unanesthetized, freely moving rats by using the quantitative 14 C2-deoxyglucose autoradiographic procedure. AP7 (338 or 901 mg/kg) produced a dose-dependent decrease of metabolic activity throughout most of the regions studied including sensory, motor, and limbic cortices. In contrast, MK-801 (0.1 or 1.0 mg/kg) resulted in a dose-dependent decrease of metabolic activity in sensory cortices, and an increase in limbic regions such as the hippocampal stratum lacunosum moleculare and entorhinal cortex. MK-801 also produced a biphasic response in agranular motor cortex, whereby the low dose increased while the high dose decreased labeling. In addition, MK-801 produced heterogeneous effects on regional cerebral metabolism in sensory cortices. Metabolic activity decreased in layer IV relative to layer Va following MK-801 treatment in primary somatosensory (SI) and visual (VI) cortices, suggesting a shift in activity from afferent fibers innervating layer IV to those innervating layer Va. MK-801 administration also decreased metabolic activity in granular SI relative to dysgranular SI, and in VI relative to secondary visual cortex (VII), thus providing a relative sparing of activity in dysgranular SI and VII. Thus, the non-competitive NMDA receptor antagonist suppressed activity from extrinsic neocortical sources, enhancing relative intracortical activity and stimulating limbic regions, while the competitive NMDA antagonist depressed metabolic activity in all cortical regions

  4. Competitive (AP7) and non-competitive (MK-801) NMDA receptor antagonists differentially alter glucose utilization in rat cortex

    Energy Technology Data Exchange (ETDEWEB)

    Clow, D.W.; Lee, S.J.; Hammer, R.P. Jr. (Department of Anatomy and Reproductive Biology, School of Medicine, University of Hawaii, Honolulu (USA))

    1991-04-01

    The effects of D,L-2-amino-7-phosphonoheptanoic acid (AP7), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and MK-801, a non-competitive NMDA receptor antagonist, on regional brain metabolism were studied in unanesthetized, freely moving rats by using the quantitative {sup 14}C2-deoxyglucose autoradiographic procedure. AP7 (338 or 901 mg/kg) produced a dose-dependent decrease of metabolic activity throughout most of the regions studied including sensory, motor, and limbic cortices. In contrast, MK-801 (0.1 or 1.0 mg/kg) resulted in a dose-dependent decrease of metabolic activity in sensory cortices, and an increase in limbic regions such as the hippocampal stratum lacunosum moleculare and entorhinal cortex. MK-801 also produced a biphasic response in agranular motor cortex, whereby the low dose increased while the high dose decreased labeling. In addition, MK-801 produced heterogeneous effects on regional cerebral metabolism in sensory cortices. Metabolic activity decreased in layer IV relative to layer Va following MK-801 treatment in primary somatosensory (SI) and visual (VI) cortices, suggesting a shift in activity from afferent fibers innervating layer IV to those innervating layer Va. MK-801 administration also decreased metabolic activity in granular SI relative to dysgranular SI, and in VI relative to secondary visual cortex (VII), thus providing a relative sparing of activity in dysgranular SI and VII. Thus, the non-competitive NMDA receptor antagonist suppressed activity from extrinsic neocortical sources, enhancing relative intracortical activity and stimulating limbic regions, while the competitive NMDA antagonist depressed metabolic activity in all cortical regions.

  5. The combination of glutamate receptor antagonist MK-801 with tamoxifen and its active metabolites potentiates their antiproliferative activity in mouse melanoma K1735-M2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Mariana P.C. [Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra (Portugal); Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra (Portugal); Nunes-Correia, Isabel [Center for Neuroscience and Cell Biology, Flow Cytometry Unit, University of Coimbra, 3000-354 Coimbra (Portugal); Santos, Armanda E., E-mail: aesantos@ci.uc.pt [Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra (Portugal); Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra (Portugal); Custódio, José B.A. [Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra (Portugal); Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra (Portugal)

    2014-02-15

    Recent reports suggest that N-methyl-D-aspartate receptor (NMDAR) blockade by MK-801 decreases tumor growth. Thus, we investigated whether other ionotropic glutamate receptor (iGluR) antagonists were also able to modulate the proliferation of melanoma cells. On the other hand, the antiestrogen tamoxifen (TAM) decreases the proliferation of melanoma cells, and is included in combined therapies for melanoma. As the efficacy of TAM is limited by its metabolism, we investigated the effects of the NMDAR antagonist MK-801 in combination with TAM and its active metabolites, 4-hydroxytamoxifen (OHTAM) and endoxifen (EDX). The NMDAR blockers MK-801 and memantine decreased mouse melanoma K1735-M2 cell proliferation. In contrast, the NMDAR competitive antagonist APV and the AMPA and kainate receptor antagonist NBQX did not affect cell proliferation, suggesting that among the iGluR antagonists only the NMDAR channel blockers inhibit melanoma cell proliferation. The combination of antiestrogens with MK-801 potentiated their individual effects on cell biomass due to diminished cell proliferation, since it decreased the cell number and DNA synthesis without increasing cell death. Importantly, TAM metabolites combined with MK-801 promoted cell cycle arrest in G1. Therefore, the data obtained suggest that the activity of MK-801 and antiestrogens in K1735-M2 cells is greatly enhanced when used in combination. - Highlights: • MK-801 and memantine decrease melanoma cell proliferation. • The combination of MK-801 with antiestrogens inhibits melanoma cell proliferation. • These combinations greatly enhance the effects of the compounds individually. • MK-801 combined with tamoxifen active metabolites induces cell cycle arrest in G1. • The combination of MK-801 and antiestrogens is an innovative strategy for melanoma.

  6. FOXO/TXNIP pathway is involved in the suppression of hepatocellular carcinoma growth by glutamate antagonist MK-801

    International Nuclear Information System (INIS)

    Yamaguchi, Fuminori; Hirata, Yuko; Akram, Hossain; Kamitori, Kazuyo; Dong, Youyi; Sui, Li; Tokuda, Masaaki

    2013-01-01

    Accumulating evidence has suggested the importance of glutamate signaling in cancer growth, yet the signaling pathway has not been fully elucidated. N-methyl-D-aspartic acid (NMDA) receptor activates intracellular signaling pathways such as the extracellular-signal-regulated kinase (ERK) and forkhead box, class O (FOXO). Suppression of lung carcinoma growth by NMDA receptor antagonists via the ERK pathway has been reported. However, series of evidences suggested the importance of FOXO pathways for the regulation of normal and cancer cell growth. In the liver, FOXO1 play important roles for the cell proliferation such as hepatic stellate cells as well as liver metabolism. Our aim was to investigate the involvement of the FOXO pathway and the target genes in the growth inhibitory effects of NMDA receptor antagonist MK-801 in human hepatocellular carcinoma. Expression of NMDAR1 in cancer cell lines from different tissues was examined by Western blot. NMDA receptor subunits in HepG2, HuH-7, and HLF were examined by reverse transcriptase polymerase chain reaction (RT-PCR), and growth inhibition by MK-801 and NBQX was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of MK-801 on the cell cycle were examined by flow cytometry and Western blot analysis. Expression of thioredoxin-interacting protein (TXNIP) and p27 was determined by real-time PCR and Western blotting. Activation of the FOXO pathway and TXNIP induction were examined by Western blotting, fluorescence microscopy, Chromatin immunoprecipitation (ChIP) assay, and reporter gene assay. The effects of TXNIP on growth inhibition were examined using the gene silencing technique. NMDA receptor subunits were expressed in all cell lines examined, and MK-801, but not NBQX, inhibited cell growth of hepatocellular carcinomas. Cell cycle analysis showed that MK-801 induced G1 cell cycle arrest by down-regulating cyclin D1 and up-regulating p27. MK-801 dephosphorylated

  7. The NMDA-receptor antagonist MK-801 selectively disrupts reversal learning in rats

    NARCIS (Netherlands)

    van der Meulen, Jamilja A. J.; Bilbija, Luka; Joosten, Ruud N. J. M. A.; de Bruin, Jan P. C.; Feenstra, Matthijs G. P.

    2003-01-01

    We tested the hypothesis that inhibition of NMDA-receptors in rats would lead to a selective impairment of reversal learning in a serial reversal task in the Skinner box. Low doses of MK-801 (0.025 and 0.05 mg/kg) did not affect acquisition of the two-lever discrimination, but impaired performance

  8. A NMDA receptor antagonist, MK-801 impairs consolidating extinction of auditory conditioned fear responses in a Pavlovian model.

    Directory of Open Access Journals (Sweden)

    Jun-Li Liu

    Full Text Available BACKGROUND: In auditory fear conditioning, repeated presentation of the tone in the absence of shock leads to extinction of the acquired fear responses. The glutamate N-methyl-D-aspartate receptor (NMDAR is thought to be involved in the extinction of the conditioned fear responses, but its detailed role in initiating and consolidating or maintaining the fear extinction memory is unclear. Here we investigated this issue by using a NMDAR antagonist, MK-801. METHODS/MAIN FINDINGS: The effects of immediate (beginning at 10 min after the conditioning and delayed (beginning at 24 h after conditioning extinctions were first compared with the finding that delayed extinction caused a better and long-lasting (still significant on the 20(th day after extinction depression on the conditioned fear responses. In a second experiment, MK-801 was intraperitoneally (i.p. injected at 40 min before, 4 h or 12 h after the delayed extinction, corresponding to critical time points for initiating, consolidating or maintaining the fear extinction memory. i.p. injection of MK-801 at either 40 min before or 4 h after delayed extinction resulted in an impairment of initiating and consolidating fear extinction memory, which caused a long lasting increased freezing score that was still significant on the 7th day after extinction, compared with extinction group. However, MK-801 administered at 12 h after the delayed extinction, when robust consolidation has been occurred and stabilized, did not affect the established extinction memory. Furthermore, the changed freezing behaviors was not due to an alteration in general anxiety levels, since MK-801 treatment had no effect on the percentage of open-arm time or open-arm entries in an Elevated Plus Maze (EPM task. CONCLUSIONS/SIGNIFICANCE: Our data suggested that the activation of NMDARs plays important role in initiation and consolidation but not maintenance of fear extinction memory. Together with the fact that NMDA receptor is

  9. Kindling-induced potentiation of excitatory and inhibitory inputs to hippocampal dentate granule cells. II. Effects of the NMDA antagonist MK-801.

    LENUS (Irish Health Repository)

    Robinson, G B

    1991-10-18

    The effect of the non-competitive N-methyl-D-aspartate antagonist MK-801 on the early development of kindling-induced potentiation was examined in the rabbit hippocampal dentate gyrus. MK-801 (0.5 mg\\/kg) was administered 2 h before each daily kindling stimulation was applied to the perforant path. This treatment continued for the first 10 days of kindling. MK-801 depressed the growth of the afterdischarge duration and suppressed development of behavioral seizures. MK-801 did not block kindling-induced potentiation of either the perforant path-dentate granule cell population spike or excitatory postsynaptic potential. Random impulse train stimulation and non-linear systems analytic techniques were used to examine kindling-induced potentiation of presumed GABAergic recurrent inhibitory circuits. Both the magnitude and duration of kindling-induced response inhibition, to the second of each pair of impulses within the train, were reduced in rabbits pretreated with MK-801. These results suggest that MK-801 differentially affects kindling-induced potentiation of excitatory and inhibitory circuits within the rabbit hippocampal dentate gyrus.

  10. "Interaction of different doses of Aspartame with Morphine-induced antinociception in the presence of MK-801, a NMDA antagonist "

    Directory of Open Access Journals (Sweden)

    Abdollahi M

    2002-07-01

    Full Text Available This study was designed to investigate the relative role of sweetness and comparative effects of different taste sensation of the non - caloric sweetener , aspartame on pain and its interaction with MK - 80] as a non - selective MMDA antagonist by formalin - test in mice. The formalin - test was chosen because it measures the response to a long - lasting nociceptive stimulus and closely resembles to the clinical pain. Morphine induced a dose dependent antinociception in the early and late phases of formalin test. Twelve days pretreatment of animals by aspartame ( 0.08% , 0.16% , 0.32% significantly potentiated morphine - induced (1.5-9 mg/kg analgesia in the early phase but significantly antagonized its analgesic effect in the late phase, dose dependently. Aspartame (0.16% alone showed a reduction in pain response . Naloxone (0.4 mg/kg significantly antagonized the antinociceptive effect of morphine in the presence of aspartame (0-0.32% in the early phase. Increasing the dose of aspartame decreased effects of naloxone. MK-801 (0.1 mg/kg as an N- Methyl - D - Aspartate (NMDA antagonist significantly potentiated the effect of aspartame on morphine - induced antinociception in the early phase. In the late phase, naloxone (0.4 mg/kg increased pain response but MK- 801 (0.1 mg/kg induced anti-inflammatory effect significantly. Treatment of animals with MK- 801 alone, significantly induced analgesia in both phases of formalin - test. This effect was potentiated with aspartame dose - dependently. Possible interaction of aspartame with NMDA receptors and its role to facilitate endogenous opioid system are proposed mechanisms of aspartame in modulating morphine - induced antinociception. Furthermore, the resulting association between morphine and aspartame chronic consumption may be explained as an interactive action rather than simple dose combination of both drugs.

  11. DEVELOPMENTAL LEAD (PB) EXPOSURE REDUCES THE ABILITY OF THE NNDA ANTAGONIST MK801 TO SUPPRESS LONG-TERM POTENTIATION (LTP) IN THE RAT DENTATE GYRUS, IN VIVO

    Science.gov (United States)

    Chronic developmental lead (Pb) exposure increases the threshold and enhances decay of long-term potentiation (LTP) in the dentate gyrus of the hippocampal formation. MK-801 and other antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor subtype impair induction of LT...

  12. Kynurenic acid prevented social recognition deficits induced by MK-801 in rats

    Czech Academy of Sciences Publication Activity Database

    Hliňák, Zdeněk; Krejčí, I.

    2003-01-01

    Roč. 52, č. 6 (2003), s. 805-808 ISSN 0862-8408 R&D Projects: GA ČR GA309/00/1644 Institutional research plan: CEZ:AV0Z5011922 Keywords : amnesia * kynurenic acid * MK-801 Subject RIV: FH - Neurology Impact factor: 0.939, year: 2003

  13. N-methyl-D-aspartate prevented memory deficits induced by MK-801 in mice

    Czech Academy of Sciences Publication Activity Database

    Hliňák, Zdeněk; Krejčí, I.

    2003-01-01

    Roč. 52, č. 6 (2003), s. 809-812 ISSN 0862-8408 R&D Projects: GA ČR GA309/00/1644 Institutional research plan: CEZ:AV0Z5011922 Keywords : N-methyl-D-aspartate * MK-801 * spatial memory Subject RIV: FH - Neurology Impact factor: 0.939, year: 2003

  14. UCCB01-125, a dimeric inhibitor of PSD-95, reduces inflammatory pain without disrupting cognitive or motor performance: Comparison with the NMDA receptor antagonist MK-801

    DEFF Research Database (Denmark)

    Andreasen, Jesper T.; Bach, Anders; Gynther, Mikko

    2013-01-01

    Excessive N-Methyl-d-aspartate receptor (NMDAR)-dependent production of nitric oxide (NO) is involved in the development and maintenance of chronic pain states, and is mediated by postsynaptic density protein-95 (PSD-95). By binding to both the NMDAR and neuronal NO synthase (nNOS), PSD-95 mediates...... a specific coupling between NMDAR activation and NO production. NMDAR antagonism shows anti-nociceptive action in humans and animal models of chronic pain but is associated with severe disturbances of cognitive and motor functions. An alternative approach to modulate the NMDAR-related activity is to perturb......'s adjuvant (CFA) model of inflammatory pain. To examine side-effect profiles we also compared the effects of UCCB01-125 and MK-801 in tests of attention, long-term memory, and motor performance. When administered concurrently with CFA, both MK-801 and UCCB01-125 prevented the development of CFA...

  15. Effect of MK-801 on the development of nicotine sensitization of nucleus accumbens dopamine release

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soo Kyung; Choung, In Soon; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    We have previously found that MK-801, a noncompetitive NMDA receptor antagonist, prevents behavioral sensitization to nicotine. This study aimed to investigate the effect of MK-801 on a neurochemical component of nicotine sensitization by evaluating the effect of the drug on nicotine sensitization of nucleus accumbens dopamine (DA) release. Sprague-Dawley rats were pretreated with MK-801 (0.3 mg/kg, i.p.) or saline 30 min before injection of nicotine (0.4 mg/kg, s.c., once daily) for 7 consecutive days. Twenty-four hours after the last drug injection, animals were challenged with local perfusion of 5 mM nicotine into the shell of nucleus accumbens and DA release was monitored using in vivo microdialysis. In rats pretreated with chronic nicotine, local nicotine challenge induced a greater increase of accumbal DA release than in saline-treated animals (maximal DA response 969 {+-} 235% (mean {+-} SEM) of basal level vs. 520 {+-} 93%, P < 0.05). Co-administration of MK-801 with nicotine attenuated an increase of DA release elicited by local nicotine challenge, compared with nicotine alone (maximal DA response 427 {+-} 83% of basal level vs. 969 {+-} 235%, P < 0.01). These results suggest that MK-801 blocks the development of nicotine sensitization of nucleus accumbens DA release, further supporting the involvement of NMDA receptors in the development of behavioral sensitization to nicotine.

  16. Effect of MK-801 on the development of nicotine sensitization of nucleus accumbens dopamine release

    International Nuclear Information System (INIS)

    Hong, Soo Kyung; Choung, In Soon; Kim, Sang Eun

    2005-01-01

    We have previously found that MK-801, a noncompetitive NMDA receptor antagonist, prevents behavioral sensitization to nicotine. This study aimed to investigate the effect of MK-801 on a neurochemical component of nicotine sensitization by evaluating the effect of the drug on nicotine sensitization of nucleus accumbens dopamine (DA) release. Sprague-Dawley rats were pretreated with MK-801 (0.3 mg/kg, i.p.) or saline 30 min before injection of nicotine (0.4 mg/kg, s.c., once daily) for 7 consecutive days. Twenty-four hours after the last drug injection, animals were challenged with local perfusion of 5 mM nicotine into the shell of nucleus accumbens and DA release was monitored using in vivo microdialysis. In rats pretreated with chronic nicotine, local nicotine challenge induced a greater increase of accumbal DA release than in saline-treated animals (maximal DA response 969 ± 235% (mean ± SEM) of basal level vs. 520 ± 93%, P < 0.05). Co-administration of MK-801 with nicotine attenuated an increase of DA release elicited by local nicotine challenge, compared with nicotine alone (maximal DA response 427 ± 83% of basal level vs. 969 ± 235%, P < 0.01). These results suggest that MK-801 blocks the development of nicotine sensitization of nucleus accumbens DA release, further supporting the involvement of NMDA receptors in the development of behavioral sensitization to nicotine

  17. Effect of alpha1-adrenergic antagonist prazosin on behavioral alterations induced by MK-801 in a spatial memory task in Long-Evans rats

    Czech Academy of Sciences Publication Activity Database

    Stuchlík, Aleš; Petrásek, Tomáš; Valeš, Karel

    2009-01-01

    Roč. 58, č. 5 (2009), s. 733-740 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA309/09/0286; GA ČR(CZ) GA309/07/0341 Institutional research plan: CEZ:AV0Z50110509 Keywords : prazosin * MK-801 * learning Subject RIV: FH - Neurology Impact factor: 1.430, year: 2009

  18. Quantitative Structure-Activity Relationships of Noncompetitive Antagonists of the NMDA Receptor: A Study of a Series of MK801 Derivative Molecules Using Statistical Methods and Neural Network

    Directory of Open Access Journals (Sweden)

    T. Lakhlifi

    2003-04-01

    Full Text Available Abstract: From a series of 50 MK801 derivative molecules, a selected set of 44 compounds was submitted to a principal components analysis (PCA, a multiple regression analysis (MRA, and a neural network (NN. This study shows that the compounds' activity correlates reasonably well with the selected descriptors encoding the chemical structures. The correlation coefficients calculated by MRA and there after by NN, r = 0.986 and r = 0.974 respectively, are fairly good to evaluate a quantitative model, and to predict activity for MK801 derivatives. To test the performance of this model, the activities of the remained set of 6 compounds are deduced from the proposed quantitative model, by NN. This study proved that the predictive power of this model is relevant.

  19. Reactive Transformation and Increased BDNF Signaling by Hippocampal Astrocytes in Response to MK-801.

    Directory of Open Access Journals (Sweden)

    Wenjuan Yu

    Full Text Available MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP, a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10 ml/kg body weight for 6 days and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h. Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling.

  20. Reactive Transformation and Increased BDNF Signaling by Hippocampal Astrocytes in Response to MK-801.

    Science.gov (United States)

    Yu, Wenjuan; Zhu, Hao; Wang, Yueming; Li, Guanjun; Wang, Lihua; Li, Huafang

    2015-01-01

    MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA) receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP), a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10 ml/kg body weight for 6 days) and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h). Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling.

  1. Blockade of voltage-gated K+ currents in rat mesenteric arterial smooth muscle cells by MK801

    Directory of Open Access Journals (Sweden)

    Jeong Min Kim

    2015-01-01

    Full Text Available MK801 (dizocilpine, a phencyclidine (PCP derivative, is a potent noncompetitive antagonist of the N-Methyl-D-aspartate receptor (NMDAr. Another PCP derivative, ketamine, was reported to block voltage-gated K+ (Kv channels, which was independent of NMDAr function. Kv currents are major regulators of the membrane potential (Em and excitability of muscles and neurons. Here, we investigated the effect of MK801 on the Kv channels and Em in rat mesenteric arterial smooth muscle cells (RMASMCs. We used the whole-cell patch clamp technique to analyze the effect of MK801 enantiomers on Kv channels and Em. (+MK801 inhibited Kv channels in a concentration-dependent manner (IC50 of 89.1 ± 13.1 μM, Hill coefficient of 1.05 ± 0.08. The inhibition was voltage- and state- independent. (+MK801 didn't influence steady-state activation and inactivation of Kv channels. (+MK801 treatment depolarized Em in a concentration-dependent manner and concomitantly decreased membrane conductance. (−MK801 also similarly inhibited the Kv channels (IC50 of 134.0 ± 17.5 μM, Hill coefficient of 0.87 ± 0.09. These results indicate that MK801 directly inhibits the Kv channel in a state-independent manner in RMASMCs. This MK801-mediated inhibition of Kv channels should be considered when assessing the various pharmacological effects produced by MK801, such as schizophrenia, neuroprotection, and hypertension.

  2. Design and synthesis of enantiomerically enriched, radiolabeled MK-801 analogs as potential radiotracers for imaging and autoradiographic studies of the NMDA receptor-ion channel complex

    International Nuclear Information System (INIS)

    Eng, W.S.; Burns, H.D.; Gibson, R.E.; Ransom, R.W.; Thorpe, H.; Fioravanit, C.; Britcher, S.F.; Magill, C.A.; Solomon, H.F.; Dannals, R.F.; Wilson, A.A.; Ravert, H.T.; Wagner, H.N.

    1989-01-01

    MK-801 is a potent, non-competitive antagonist for the N-methyl-D-asspartate (NMDA) receptor-ion channel complex. This complex is though to be involved in nerve cell damage in stroke patients when excess calcium is released through the activated channel. A thorough understanding of drug interactions with the NMDA receptor complex could lead to improved therapy for reducing hypoxic-ischemic neuronal injuries in stroke patients. Based on the results of extensive structure-activity studies, the authors have developed several enantiomerically enriched, radiolabeled analogs of MK-801, including: 3-1231-MK-801 for Single Photon Emission Computed tomography (SPECT); 3-1251-MK-801 for in-vivo and in-vitro autoradiography; 8-11C-MeO-MK-801 for Positron Emission Tomography (PET). Details of the synthesis of these radiotracers and their application to both in-vitro and in-vivo studies are described

  3. Effects of MK-801 upon local cerebral glucose utilization in conscious rats and in rats anaesthetised with halothane

    International Nuclear Information System (INIS)

    Kurumaji, A.; McCulloch, J.

    1989-01-01

    The effects of MK-801 (0.5 mg/kg i.v.), a non-competitive N-methyl-D-aspartate (NMDA) antagonist, upon local cerebral glucose utilization were examined in conscious, lightly restrained rats and in rats anaesthetised with halothane in nitrous oxide by means of the quantitative autoradiographic [14C]-2-deoxyglucose technique. In the conscious rats, MK-801 produced a heterogenous pattern of altered cerebral glucose utilization with significant increases being observed in 12 of the 28 regions of gray matter examined and significant decreases in 6 of the 28 regions. Pronounced increases in glucose use were observed after MK-801 in the olfactory areas and in a number of brain areas in the limbic system (e.g., hippocampus molecular layer, dentate gyrus, subicular complex, posterior cingulate cortex, and mammillary body). In the cerebral cortices, large reductions in glucose use were observed after administration of MK-801, whereas in the extrapyramidal and sensory-motor areas, glucose use remained unchanged after MK-801 administration in conscious rats. In the halothane-anaesthetised rats, the pattern of altered glucose use after MK-801 differed qualitatively and quantitatively from that observed in conscious rats. In anaesthetised rats, significant reductions in glucose use were noted after MK-801 in 10 of the 28 regions examined, with no area displaying significantly increased glucose use after administration of the drug. In halothane-anaesthetised rats, MK-801 failed to change the rates of glucose use in the olfactory areas, the hippocampus molecular layer, and the dentate gyrus

  4. Oxytocin reversed MK-801-induced social interaction and aggression deficits in zebrafish.

    Science.gov (United States)

    Zimmermann, Fernanda Francine; Gaspary, Karina Vidarte; Siebel, Anna Maria; Bonan, Carla Denise

    2016-09-15

    Changes in social behavior occur in several neuropsychiatric disorders such as schizophrenia and autism. The interaction between individuals is an essential aspect and an adaptive response of several species, among them the zebrafish. Oxytocin is a neuroendocrine hormone associated with social behavior. The aim of the present study was to investigate the effects of MK-801, a non-competitive antagonist of glutamate NMDA receptors, on social interaction and aggression in zebrafish. We also examined the modulation of those effects by oxytocin, the oxytocin receptor agonist carbetocin and the oxytocin receptor antagonist L-368,899. Our results showed that MK-801 induced a decrease in the time spent in the segment closest to the conspecific school and in the time spent in the segment nearest to the mirror image, suggesting an effect on social behavior. The treatment with oxytocin after the exposure to MK-801 was able to reestablish the time spent in the segment closest to the conspecific school, as well as the time spent in the segment nearest to the mirror image. In addition, in support of the role of the oxytocin pathway in modulating those responses, we showed that the oxytocin receptor agonist carbetocin reestablished the social and aggressive behavioral deficits induced by MK-801. However, the oxytocin receptor antagonist L-368,899 was not able to reverse the behavioral changes induced by MK-801. This study supports the critical role for NMDA receptors and the oxytocinergic system in the regulation of social behavior and aggression which may be relevant for the mechanisms associated to autism and schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The effect of hippocampal NMDA receptor blockade by MK-801 on cued fear extinction.

    Science.gov (United States)

    Zhang, Bo; Li, Chuan-Yu; Wang, Xiu-Song

    2017-08-14

    Extinction of conditioned fear has been suggested to be a new form of learning instead of erasure of what was originally learned, and the process is NMDA (N-methyl d-aspartate) receptor (NMDAR) dependent. Most of studies have so far revealed the important roles of NMDARs in the amygdala and medial prefrontal cortex (mPFC) in cued fear extinction. Although the ventral hippocampus has intimately reciprocal connections with the amygdala and mPFC, the role of its NMDARs in cued fear extinction remains unclear. The present experiment explored the issue by bilateral pre-extinction microinjection of the noncompetitive NMDAR antagonist MK-801 into the ventral hippocampus. Four groups of rats were given habituation, tone cued fear conditioning, fear extinction training and extinction test. Prior to extinction training, rats received bilateral infusions of either MK-801 (1.5, 3, or 6μg/0.5μl) or saline. Our results showed that MK-801 reduced freezing on the first trial of extinction training with no impact on within-session acquisition of extinction, and that the lower doses of MK-801 resulted in increased freezing on the extinction retrieval test. These findings suggest that ventral hippocampal NMDARs are necessary for the consolidation of tone cued fear extinction. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Hippocampal serotonin depletion unmasks differences in the hyperlocomotor effects of phencyclidine and MK-801: quantitative versus qualitative analyses

    Directory of Open Access Journals (Sweden)

    Wendy K Adams

    2013-08-01

    Full Text Available Antagonism of N-methyl-D-aspartate (NMDA receptors by phencyclidine is thought to underlie its ability to induce a schizophrenia-like syndrome in humans, yet evidence indicates it has a broader pharmacological profile. Our previous lesion studies highlighted a role for serotonergic projections from the median, but not dorsal, raphe nucleus in mediating the hyperlocomotor effects of phencyclidine, without changing the action of the more selective NMDA receptor antagonist, MK-801. Here we compared locomotor responses to phencyclidine and MK 801 in rats that were administered 5,7 dihydroxytryptamine (5,7-DHT into either the dorsal or ventral hippocampus, which are preferentially innervated by median and dorsal raphe, respectively. Dorsal hippocampus lesions potentiated phencyclidine-induced hyperlocomotion (0.5, 2.5 mg/kg, but not the effect of MK-801 (0.1 mg/kg. Ventral hippocampus lesions did not alter the hyperlocomotion elicited by either compound. Given that phencyclidine and MK-801 may induce different spatiotemporal patterns of locomotor behavior, together with the known role of the dorsal hippocampus in spatial processing, we also assessed whether the 5,7-DHT-lesions caused any qualitative differences in locomotor responses. Treatment with phencyclidine or MK-801 increased the smoothness of the path travelled (reduced spatial d and decreased the predictability of locomotor patterns within the chambers (increased entropy. 5,7-DHT-lesions of the dorsal hippocampus did not alter the effects of phencyclidine on spatial d or entropy—despite potentiating total distance moved—but caused a slight reduction in levels of MK-801-induced entropy. Taken together, serotonergic lesions targeting the dorsal hippocampus unmask a functional differentiation of the hyperlocomotor effects of phencyclidine and MK 801. These findings have implications for studies utilising NMDA receptor antagonists in modeling glutamatergic dysfunction in schizophrenia.

  7. MK-801 treatment affects glycolysis in oligodendrocytes more than in astrocytes and neuronal cells: insights for schizophrenia

    Directory of Open Access Journals (Sweden)

    Paul C Guest

    2015-05-01

    Full Text Available As a multifactorial disease, the underlying causes of schizophrenia require analysis by multiplex methods such as proteomics to allow identification of whole protein networks. Previous post-mortem proteomic studies on brain tissues from schizophrenia patients have demonstrated changes in activation of glycolytic and energy metabolism pathways. However, it is not known whether these changes occur in neurons or in glial cells. To address this question, we treated neuronal, astrocyte and oligodendrocyte cell lines with the NMDA receptor antagonist MK-801 and measured the levels of six glycolytic enzymes by Western blot analysis. MK-801 acts on the glutamatergic system and has been proposed as a pharmacological means of modeling schizophrenia. Treatment with MK-801 resulted in significant changes in the levels of glycolytic enzymes in all cell types. Most of the differences were found in oligodendrocytes, which had altered levels of hexokinase 1 (HK1, enolase 2 (ENO2, phosphoglycerate kinase (PGK and phosphoglycerate mutase 1 (PGAM1 after acute MK-801 treatment (8 hours, and HK1, ENO2, PGK and triosphosphate isomerase (TPI following long term treatment (72 hours. Addition of the antipsychotic clozapine to the cultures resulted in counter-regulatory effects to the MK-801 treatment by normalizing the levels of ENO2 and PGK in both the acute and long term cultures. In astrocytes, MK-801 affected only aldolase C (ALDOC under both acute conditions and HK1 and ALDOC following long term treatment, and TPI was the only enzyme affected under long term conditions in the neuronal cells. In conclusion, MK-801 affects glycolysis in oligodendrocytes to a larger extent than neuronal cells and this may be modulated by antipsychotic treatment. Although cell culture studies do not necessarily reflect the in vivo pathophysiology and drug effects within the brain, these results suggest that neurons, astrocytes and oligodendrocytes are affected differently in

  8. Recovery of NMDA receptor currents from MK-801 blockade is accelerated by Mg2+ and memantine under conditions of agonist exposure.

    Science.gov (United States)

    McKay, Sean; Bengtson, C Peter; Bading, Hilmar; Wyllie, David J A; Hardingham, Giles E

    2013-11-01

    MK-801 is a use-dependent NMDA receptor open channel blocker with a very slow off-rate. These properties can be exploited to 'pre-block' a population of NMDARs, such as synaptic ones, enabling the selective activation of a different population, such as extrasynaptic NMDARs. However, the usefulness of this approach is dependent on the stability of MK-801 blockade after washout. We have revisited this issue, and confirm that recovery of NMDAR currents from MK-801 blockade is enhanced by channel opening by NMDA, and find that it is further increased when Mg(2+) is also present. In the presence of Mg(2+), 50% recovery from MK-801 blockade is achieved after 10' of 100 μM NMDA, or 30' of 15 μM NMDA exposure. In Mg(2+)-free medium, NMDA-induced MK-801 dissociation was found to be much slower. Memantine, another PCP-site antagonist, could substitute for Mg(2+) in accelerating the unblock of MK-801 in the presence of NMDA. This suggests a model whereby, upon dissociation from its binding site in the pore, MK-801 is able to re-bind in a process antagonized by Mg(2+) or another PCP-site antagonist. Finally we show that even when all NMDARs are pre-blocked by MK-801, incubation of neurons with 100 μM NMDA in the presence of Mg(2+) for 2.5 h triggers sufficient unblocking to kill >80% of neurons. We conclude that while synaptic MK-801 'pre-block' protocols are useful for pharmacologically assessing synaptic vs. extrasynaptic contributions to NMDAR currents, or studying short-term effects, it is problematic to use this technique to attempt to study the effects of long-term selective extrasynaptic NMDAR activation. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effects of dizocilpine (MK-801) on motor activity and memory.

    Science.gov (United States)

    Carey, R J; Dai, H; Gui, J

    1998-06-01

    The effects of MK-801 upon motor activity and memory were assessed in a novel use of open-field behavior testing. In this study, rats were treated with different doses of MK-801 (0.025, 0.05, 0.1 and 0.2 mg/kg) and given a brief 10-min exposure to an open-field in which locomotor activity and within-session habituation were measured. Doses of MK-801 motor activity and memory and that these two effects can be disassociated.

  10. Systemic dizocilpine (MK-801 facilitates performance in opposition to response bias

    Directory of Open Access Journals (Sweden)

    Lauwereyns Johan

    2007-09-01

    Full Text Available Abstract Previous research has established that dopamine signals are crucial in orienting behavior to reward. Less is known, however, about the psychopharmacology of task performance under small-reward conditions as compared to large-reward conditions. The current study examined the effects of the noncompetitive N-methyl-D-aspartate (NMDA-receptor antagonist dizocilpine (MK-801 on reaction time (RT in a nose-poke task with rats completing an asymmetric reward schedule. In all trials, the rats were required to poke their nose in either the left or the right peripheral hole immediately adjacent to the centre hole when the corresponding light was illuminated. Depending on the stimulus-reward mapping, however, one position was associated with a large reward, while the alternative position was associated with a small reward. Correct performance was required in every trial; if the rat did not make a correct response within 20 s, the trial was aborted, and the same stimulus was presented again on the next trial. In this way, the rat was forced to perform the same visuo-spatial discrimination task under different reward conditions. Reaction times (ms were faster for large-reward trials than for small-reward trials, replicating previous findings. At a dosage of MK-801 (0.04 mg/kg, there was no significant influence of on RT in large-reward trials. In contrast, the same dosage of MK-801 in small-reward trials produced a decrease in RT as compared to the control condition, implying an improvement of performance. Below 0.04 mg/kg of MK-801, a steady decrease of RT in small-trials was seen as a function of dosage. Above 0.04 mg/kg of MK-801, the majority of rats failed to perform the task at all, whereas the rats that did manage to perform the criterion of 80 correct trials in a session showed no difference in RT between large- and small-reward trials. These data indicate that the systemic administration of a relatively small dosage of MK-801 facilitates

  11. In vivo protection against NMDA-induced neurodegeneration by MK-801 and nimodipine : Combined therapy and temporal course of protection

    NARCIS (Netherlands)

    Stuiver, BT; Douma, BRK; Bakker, R; Nyakas, C; Luiten, PGM

    Neuroprotection against excitotoxicity by a combined therapy with the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 and the L-type Ca2+ channel blocker nimodipine was examined using an in vivo rat model of NMDA-induced neurodegeneration. Attention was focused on the neuroprotective

  12. LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment.

    Science.gov (United States)

    Li, Meng-Lin; Yang, Sha-Sha; Xing, Bo; Ferguson, Brielle R; Gulchina, Yelena; Li, Yan-Chun; Li, Feng; Hu, Xi-Quan; Gao, Wen-Jun

    2015-11-01

    Targeting group II metabotropic glutamate receptors (mGluR2/3) has been proposed to correct the dysfunctional glutamatergic system, particularly NMDA receptor (NMDAR) hypofunction, for treatment of schizophrenia. However, how activation of mGluR2/3 affects NMDAR function in adult animals remains elusive. Here we show the effects of LY395756 (LY39), a compound acting as both an mGluR2 agonist and mGluR3 antagonist, on the NMDAR expression and function of normal adult rat prefrontal cortex (PFC) as well as working memory function in the MK801 model of schizophrenia. We found that in vivo administration of LY39 significantly increased the total protein levels of NMDAR subunits and NR2B phosphorylationin the PFC, along with the amplitude of NMDAR-mediated miniature excitatory postsynaptic currents (mEPSC) in the prefrontal cortical neurons. Moreover, LY39 also significantly increased mTOR and pmTOR expression, but not ERK1/2, Akt, and GSK3β, suggesting an activation of mTOR signaling. Indeed, the mTOR inhibitor rapamycin, and actinomycin-D, a transcription inhibitor, blocked the enhanced effects of LY39 on NMDAR-mEPSCs. These results indicate that LY39 regulates NMDAR expression and function through unidentified mTOR-mediated protein synthesis in the normal adult rat PFC. However, this change is insufficient to affect working memory function in normal animals, nor to reverse the MK801-induced working memory deficit. Our data provide the first evidence of an in vivo effect of a novel compound that acts as both an mGluR2 agonist and mGluR3 antagonist on synaptic NMDAR expression and function in the adult rat PFC, although its effect -on PFC-dependent cognitive function remains to be explored. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Different MK-801 administration schedules induce mild to severe learning impairments in an operant conditioning task: role of buspirone and risperidone in ameliorating these cognitive deficits.

    Science.gov (United States)

    Rapanelli, Maximiliano; Frick, Luciana Romina; Bernardez-Vidal, Micaela; Zanutto, Bonifacio Silvano

    2013-11-15

    Blockade of N-methyl-d-aspartate receptor (NMDA) by the noncompetitive NMDA receptor (NMDAR) antagonist MK-801 produces behavioral abnormalities and alterations in prefrontal cortex (PFC) functioning. Due to the critical role of the PFC in operant conditioning task learning, we evaluated the effects of acute, repeated postnatal injections of MK-801 (0.1mg/kg) on learning performance. We injected Long-Evans rats i.p. with MK-801 (0.1mg/kg) using three different administration schedules: injection 40 min before beginning the task (during) (n=12); injection twice daily for six consecutive days prior to beginning the experimental procedures (prior) (n=12); or twice daily subcutaneous injections from postnatal day 7 to 11 (postnatal) (n=12). Next, we orally administered risperidone (serotonin receptor 2A and dopamine receptor 2 antagonist, 1mg/kg) or buspirone (serotonin receptor 1A partial agonist, 10mg/kg) to animals treated with the MK-801 schedule described above. The postnatal and prior administration schedules produced severe learning deficits, whereas injection of MK-801 just before training sessions had only mild effects on acquisition of an operant conditioning. Risperidone was able to reverse the detrimental effect of MK-801 in the animals that were treated with MK-801 during and prior training sessions. In contrast, buspirone was only effective at mitigating the cognitive deficits induced by MK-801 when administered during the training procedures. The data demonstrates that NMDA antagonism disrupts basic mechanisms of learning in a simple PFC-mediated operant conditioning task, and that buspirone and risperidone failed to attenuate the learning deficits when NMDA neurotransmission was blocked in the early stages of the postnatal period. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. ERK activation in the amygdala and hippocampus induced by fear conditioning in ethanol withdrawn rats: modulation by MK-801.

    Science.gov (United States)

    Bertotto, María Eugenia; Maldonado, Noelia Martina; Bignante, Elena Anahi; Gorosito, Silvana Vanesa; Cambiasso, María Julia; Molina, Víctor Alejandro; Martijena, Irene Delia

    2011-12-01

    The extracellular signal-regulated kinase (ERK) pathway, which can be activated by NMDA receptor stimulation, is involved in fear conditioning and drug addiction. We have previously shown that withdrawal from chronic ethanol administration facilitated the formation of contextual fear memory. In order to explore the neural substrates and the potential mechanism involved in this effect, we examined: 1) the ERK1/2 activation in the central (CeA) and basolateral (BLA) nuclei of the amygdala and in the dorsal hippocampus (dHip), 2) the effect of the NMDA receptor antagonist MK-801 on fear conditioning and ERK activation and 3) the effect of the infusion of U0126, a MEK inhibitor, into the BLA on fear memory formation in ethanol withdrawn rats. Rats made dependent via an ethanol-containing liquid diet were subjected to contextual fear conditioning on day 3 of ethanol withdrawal. High basal levels of p-ERK were found in CeA and dHip from ethanol withdrawn rats. ERK activation was significantly increased both in control (60min) and ethanol withdrawn rats (30 and 60min) in BLA after fear conditioning. Pre-training administration of MK-801, at a dose that had no effect on control rats, prevented the increase in ERK phosphorylation in BLA and attenuated the freezing response 24h later in ethanol withdrawn rats. Furthermore, the infusion of U0126 into the BLA, but not the CeA, before fear conditioning disrupted fear memory formation. These results suggest that the increased fear memory can be linked to changes in ERK phosphorylation, probably due to NMDA receptor activation in BLA in ethanol withdrawn rats. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Pharmacological or genetic orexin 1 receptor inhibition attenuates MK-801 induced glutamate release in mouse cortex

    Directory of Open Access Journals (Sweden)

    Leah eAluisio

    2014-05-01

    Full Text Available The orexin/hypocretin neuropeptides are produced by a cluster of neurons within the lateral posterior hypothalamus and participate in neuronal regulation by activating their receptors (OX1 and OX2 receptors. The orexin system projects widely through the brain and functions as an interface between multiple regulatory systems including wakefulness, energy balance, stress, reward and emotion. Recent studies have demonstrated that orexins and glutamate interact at the synaptic level and that orexins facilitate glutamate actions. We tested the hypothesis that orexins modulate glutamate signaling via OX1 receptors by monitoring levels of glutamate in frontal cortex of freely moving mice using enzyme coated biosensors under inhibited OX1 receptor conditions. MK-801, an NMDA receptor antagonist, was administered subcutaneously (0.178 mg/kg to indirectly disinhibit pyramidal neurons and therefore increase cortical glutamate release. In wild-type mice, pretreatment with the OX1 receptor antagonist GSK-1059865 (10 mg/kg S.C. which had no effect by itself, significantly attenuated the cortical glutamate release elicited by MK-801. OX1 receptor knockout mice had a blunted glutamate release response to MK-801 and exhibited about half of the glutamate release observed in wild-type mice in agreement with the data obtained with transient blockade of OX1 receptors. These results indicate that pharmacological (transient or genetic (permanent inhibition of the OX1 receptor similarly interfere with glutamatergic function in the cortex. Selectively targeting the OX1 receptor with an antagonist may normalize hyperglutamatergic states and thus may represent a novel therapeutic strategy for the treatment of various psychiatric disorders associated with hyperactive states.

  16. Differential actions of dizocilpine (MK-801) on the mesolimbic and mesocortical dopamine systems: role of neuronal activity.

    Science.gov (United States)

    Mathé, J M; Nomikos, G G; Blakeman, K H; Svensson, T H

    1999-01-01

    The significance of impulse activity in the dopamine neurons of the ventral tegmental area for the dopamine release evoked by systemic administration of the psychotomimetic drug dizocilpine (MK-801) was investigated. Dual probe microdialysis was utilized in freely moving rats implanted with one probe in the ventral tegmental area and a second ipsilateral probe in either the nucleus accumbens or the medial prefrontal cortex. Dialysates were analyzed with high-performance liquid chromatography with electrochemical detection for dopamine. The ventral tegmental area was perfused with the sodium channel blocker tetrodotoxin (1 microM) or vehicle (perfusion solution). A total of 2 h after the onset of tetrodotoxin perfusion of the ventral tegmental area, MK-801 (0.1 mg/kg) was injected subcutaneously. Tetrodotoxin perfusion of the ventral tegmental area significantly reduced dialysate levels of dopamine both in the nucleus accumbens and the medial prefrontal cortex to approximately 30% of baseline. When given alone, MK-801 caused a significant, i.e. 50%, increase in extracellular dopamine levels in the nucleus accumbens, and an even larger increase in the medial prefrontal cortex, i.e. 150%. Tetrodotoxin perfusion of the ventral tegmental area completely blocked the systemic MK-801 induced increase in extracellular concentrations of dopamine in the nucleus accumbens. However, the MK-801-evoked increase in dopamine levels in the medial prefrontal cortex was not significantly affected. Thus, the present results allow the conclusion that basal dopamine output in mesolimbic and mesocortical dopamine nerve terminal regions is predominantly dependent on nerve impulses generated in the ventral tegmental area. Moreover, also the MK-801 evoked dopamine release in the mesolimbic projection is almost entirely dependent on the impulse activity of the dopamine neurons, in agreement with our previous results. However, the MK-801 evoked dopamine release in the mesocortical projection

  17. MK-801 (Dizocilpine) Regulates Multiple Steps of Adult Hippocampal Neurogenesis and Alters Psychological Symptoms via Wnt/β-Catenin Signaling in Parkinsonian Rats.

    Science.gov (United States)

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Shubha

    2017-03-15

    Adult hippocampal neurogenesis is directly involved in regulation of stress, anxiety, and depression that are commonly observed nonmotor symptoms in Parkinson's disease (PD). These symptoms do not respond to pharmacological dopamine replacement therapy. Excitotoxic damage to neuronal cells by N-methyl-d-aspartate (NMDA) receptor activation is also a major contributing factor in PD development, but whether it regulates hippocampal neurogenesis and nonmotor symptoms in PD is yet unexplored. Herein, for the first time, we studied the effect of MK-801, an NMDA receptor antagonist, on adult hippocampal neurogenesis and behavioral functions in 6-OHDA (6-hydroxydopamine) induced rat model of PD. MK-801 treatment (0.2 mg/kg, ip) increased neural stem cell (NSC) proliferation, self-renewal capacity, long-term survival, and neuronal differentiation in the hippocampus of rat model of PD. MK-801 potentially enhanced long-term survival, improved dendritic arborization of immature neurons, and reduced 6-OHDA induced neurodegeneration via maintaining the NSC pool in hippocampus, leading to decreased anxiety and depression-like phenotypes in the PD model. MK-801 inhibited glycogen synthase kinase-3β (GSK-3β) through up-regulation of Wnt-3a, which resulted in the activation of Wnt/β-catenin signaling leading to enhanced hippocampal neurogenesis in PD model. Additionally, MK-801 treatment protected the dopaminergic (DAergic) neurons in the nigrostriatal pathway and improved motor functions by increasing the expression of Nurr-1 and Pitx-3 in the PD model. Therefore, MK-801 treatment serves as a valuable tool to enhance hippocampal neurogenesis in PD, but further studies are needed to revisit the role of MK-801 in the neurodegenerative disorder before proposing a potential therapeutic candidate.

  18. Effects of chronic prenatal MK-801 treatment on object recognition, cognitive flexibility, and drug-induced locomotor activity in juvenile and adult rat offspring.

    Science.gov (United States)

    Gallant, S; Welch, L; Martone, P; Shalev, U

    2017-06-15

    Patients with schizophrenia display impaired cognitive functioning and increased sensitivity to psychomimetic drugs. The neurodevelopmental hypothesis of schizophrenia posits that disruption of the developing brain predisposes neural networks to lasting structural and functional abnormalities resulting in the emergence of such symptoms in adulthood. Given the critical role of the glutamatergic system in early brain development, we investigated whether chronic prenatal exposure to the glutamate NMDA receptor antagonist, MK-801, induces schizophrenia-like behavioural and neurochemical changes in juvenile and adult rats. Pregnant Long-Evans rats were administered saline or MK-801 (0.1mg/kg; s.c.) at gestation day 7-19. Object recognition memory and cognitive flexibility were assessed in the male offspring using a novel object preference task and a maze-based set-shifting procedure, respectively. Locomotor-activating effects of acute amphetamine and MK-801 were also assessed. Adult, but not juvenile, prenatally MK-801-treated rats failed to show novel object preference after a 90min delay, suggesting that object recognition memory may have been impaired. In addition, the set-shifting task revealed impaired acquisition of a new rule in adult prenatally MK-801-treated rats compared to controls. This deficit appeared to be driven by regression to the previously learned behaviour. There were no significant differences in drug-induced locomotor activity in juvenile offspring or in adult offspring following acute amphetamine challenges. Unexpectedly, MK-801-induced locomotor activity in adult prenatally MK-801-treated rats was lower compared to controls. Glutamate transmission dysfunction during early development may modify behavioural parameters in adulthood, though these parameters do not appear to model deficits observed in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Vitamin A depletion alters sensitivity of motor behavior to MK-801 in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Zhu Hui

    2010-01-01

    Full Text Available Abstract Background Vitamin A and its derivatives (retinoids are crucial for the development, maintenance and morphogenesis of the central nervous system (CNS. Although motor impairment has been reported in postnatal vitamin A depletion rodents, the effect of vitamin A depletion on homeostasis maintaining capability in response to external interference is not clear. Methods In the current study, we measured the effect of vitamin A depletion on motor ability and pain sensitivity under two different conditions: 1. prior to any injection and 2. after the injection of an N-methyl-D-aspartate (NMDA receptor antagonist (MK-801. Results Vitamin A depletion mice showed decreased body weight, enhanced locomotor activity, increased rearing and less tail flick latency. Vitamin A depletion also induced hypersensitivity of stereotypy, ataxia, rearing, and tail flick latency to MK-801, but hyposensitivity of locomotion to MK-801. Conclusions These findings suggest that vitamin A depletion affect broad basal behavior and disrupt homeostasis maintaining capability in response to glutamate perturbation. We provide a useful animal model for assessing the role of vitamin A depletion in regulating animal behavior, and for detecting how neurotransmitter pathways might be involved in vitamin A depletion related behavioral abnormalities.

  20. [123I]Epidepride neuroimaging of dopamine D2/D3 receptor in chronic MK-801-induced rat schizophrenia model

    International Nuclear Information System (INIS)

    Huang, Yuan-Ruei; Shih, Jun-Ming; Chang, Kang-Wei; Huang, Chieh; Wu, Yu-Lung; Chen, Chia-Chieh

    2012-01-01

    Purpose: [ 123 I]Epidepride is a radio-tracer with very high affinity for dopamine D 2 /D 3 receptors in brain. The importance of alteration in dopamine D 2 /D 3 receptor binding condition has been wildly verified in schizophrenia. In the present study we set up a rat schizophrenia model by chronic injection of a non-competitive NMDA receptor antagonist, MK-801, to examine if [ 123 I]epidepride could be used to evaluate the alterations of dopamine D 2 /D 3 receptor binding condition in specific brain regions. Method: Rats were given repeated injection of MK-801 (dissolved in saline, 0.3 mg/kg) or saline for 1 month. Afterwards, total distance traveled (cm) and social interaction changes were recorded. Radiochemical purity of [ 123 I]epidepride was analyzed by Radio-Thin-Layer Chromatography (chloroform: methanol, 9:1, v/v) and [ 123 I]epidepride neuroimages were obtained by ex vivo autoradiography and small animal SPECT/CT. Data obtained were then analyzed to determine the changes of specific binding ratio. Result: Chronic MK-801 treatment for a month caused significantly increased local motor activity and induced an inhibition of social interaction. As shown in [ 123 I]epidepride ex vivo autoradiographs, MK-801 induced a decrease of specific binding ratio in the striatum (24.01%), hypothalamus (35.43%), midbrain (41.73%) and substantia nigra (37.93%). In addition, [ 123 I]epidepride small animal SPECT/CT neuroimaging was performed in the striatum and midbrain. There were statistically significant decreases in specific binding ratio in both the striatum (P 123 I]epidepride is a useful radio-tracer to reveal the alterations of dopamine D 2 /D 3 receptor binding in a rat schizophrenia model and is also helpful to evaluate therapeutic effects of schizophrenia in the future.

  1. Synthesis and receptor binding studies of (+/-)1-iodo-MK-801

    International Nuclear Information System (INIS)

    Yang, D.J.; Ciliax, B.J.; Van Dort, M.E.; Gildersleeve, D.; Pirat, J.L.; Young, A.B.; Wieland, D.M.

    1989-01-01

    The glutamate analogue N-methyl-D-aspartate (NMDA) binds to a subset of glutamate receptors that are coupled to a voltage-sensitive cation channel. This NMDA-linked channel is the likely binding locus of the potent anticonvulsant MK-801. To develop single-photon emission computed tomography (SPECT) probes of this brain channel, we synthesized (+/)1-iodo-MK-801 and (+/-)1-[ 125 I]iodo-MK-801. The effect of (+/-)1-iodo-MK-801 on ligand binding to the NMDA-linked glutamate receptor site was assessed using a rat brain homogenate assay. (+/-)1-Iodo-MK-801 displaced the dissociative anesthetic ligand [ 3 H]N-[1-(2-thienyl)cyclohexyl]piperidine ([ 3 H]TCP) binding with an IC50 of 1 microM, which is a 10-fold lower binding affinity than that of (+/-)MK-801. In in vivo autoradiographic studies, (+/-)MK-801 failed to block selective uptake of (+/-)1-iodo-MK-801 in rat brain. These results suggest that (+/-)1-iodo-MK-801 may not be a suitable ligand for mapping NMDA-linked glutamate receptor channels

  2. MK-801-induced impairments on the trial-unique, delayed nonmatching-to-location task in rats: effects of acute sodium nitroprusside.

    Science.gov (United States)

    Hurtubise, Jessica L; Marks, Wendie N; Davies, Don A; Catton, Jillian K; Baker, Glen B; Howland, John G

    2017-01-01

    The cognitive symptoms observed in schizophrenia are not consistently alleviated by conventional antipsychotics. Following a recent pilot study, sodium nitroprusside (SNP) has been identified as a promising adjunct treatment to reduce the working memory impairments experienced by schizophrenia patients. The present experiments were designed to explore the effects of SNP on the highly translatable trial-unique, delayed nonmatching-to-location (TUNL) task in rats with and without acute MK-801 treatment. SNP (0.5, 1.0, 2.0, 4.0, and 5.0 mg/kg) and MK-801 (0.05, 0.075, and 0.1 mg/kg) were acutely administered to rats trained on the TUNL task. Acute MK-801 treatment impaired TUNL task accuracy. Administration of SNP (2.0 mg/kg) with MK-801 (0.1 mg/kg) failed to rescue performance on TUNL. SNP (5.0 mg/kg) administration nearly 4 h prior to MK-801 (0.05 mg/kg) treatment had no preventative effect on performance impairments. SNP (2.0 mg/kg) improved performance on a subset of trials. These results suggest that SNP may possess intrinsic cognitive-enhancing properties but is unable to block the effects of acute MK-801 treatment on the TUNL task. These results are inconsistent with the effectiveness of SNP as an adjunct therapy for working memory impairments in schizophrenia patients. Future studies in rodents that assess SNP as an adjunct therapy will be valuable in understanding the mechanisms underlying the effectiveness of SNP as a treatment for schizophrenia.

  3. Acute Administration of MK-801 in an Animal Model of Psychosis in Rats Interferes with Cognitively Demanding Forms of Behavioral Flexibility on a Rotating Arena

    Directory of Open Access Journals (Sweden)

    Jan eSvoboda

    2015-04-01

    Full Text Available Patients with schizophrenia often manifest deficits in behavioral flexibility. Non-competitive NMDA receptor antagonists such as MK-801 induce schizophrenia-like symptoms in rodents, including cognitive functions. Despite work exploring flexibility has been done employing behavioral paradigms with simple stimuli, much less is known about what kinds of flexibility are affected in an MK-801 model of schizophrenia-like behavior in the spatial domain. We used a rotating arena-based apparatus (Carousel requiring rats to avoid an unmarked sector defined in either the reference frame of the rotating arena (arena frame task, AF or the stationary room (room frame task, RF. We investigated behavioral flexibility in four conditions involving different cognitive loads. Each condition encompassed an initial (five sessions and a test phase (five sessions in which some aspects of the task were changed to test flexibility in which rats were given saline, 0.05 mg/kg or 0.1 mg/kg MK-801 thirty minutes prior to a session. In the first condition, rats acquired avoidance in RF with clockwise rotation of the arena while in the test phase the arena rotated counterclockwise. In the second condition, rats initially acquired avoidance in RF with the sector on the north and then it was reversed to south (spatial reversal. In the third and fourth conditions, rats initially performed an AF (RF, respectively task, followed by an RF (AF, respectively task, testing the ability of cognitive set-shifting. We found no effect of MK-801 either on simple motor adjustment after reversal of arena rotation or on spatial reversal within the RF. In contrast, administration of MK-801 at a dose of 0.1 mg/kg interfered with set-shifting in both conditions. Furthermore, we observed MK-801 0.1 mg/kg elevated locomotion in all cases. These data suggest that blockade of NMDA receptors by acute system administration of MK-801 preferentially affects set-shifting in the cognitive domain rather

  4. The effect of combined treatment with escitalopram and risperidone on the MK-801-induced changes in the object recognition test in mice.

    Science.gov (United States)

    Rogóż, Zofia; Kamińska, Katarzyna

    2016-02-01

    Atypical antipsychotic drugs have some efficacy in alleviating the negative and some cognitive symptoms of schizophrenia but those effects are small and mechanisms of this action are still unknown. A few clinical reports have suggested that the antidepressant drugs, especially selective serotonin reuptake inhibitors (SSRI) are able to augment the activity of atypical antipsychotic drugs, thus effectively improving treatment of the negative and some cognitive symptoms of schizophrenia. In the present study, we evaluated the effect of escitalopram (SSRI) and risperidone (an atypical antipsychotic drug), given separately or jointly, on the effect of MK-801 (a NMDA receptor antagonist) given before to the first introductory session, in the object recognition memory test. The mice were tested for the ability to discriminate between an old, familiar and a novel object. Escitalopram and risperidone were given 30min before MK-801, and MK-801 was administered 30min before the first introductory session. Memory retention was evaluated 90min after the introductory session. The obtained results showed that MK-801 (0.2mg/kg) decreased memory retention when given before the introductory session. Risperidone at a higher dose (0.1mg/kg) reversed that effect. Co-treatment with an ineffective dose of risperidone (0.01mg/kg) and escitalopram (5 or 10mg/kg) abolished the deficit of object recognition memory induced by MK-801. The obtained results suggest that escitalopram may enhance the antipsychotic-like effect of risperidone in the animal tests used for evaluation of some cognitive symptoms of schizophrenia. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  5. MK-801 and memantine act differently on short-term memory tested with different time-intervals in the Morris water maze test.

    Science.gov (United States)

    Duda, Weronika; Wesierska, Malgorzata; Ostaszewski, Pawel; Vales, Karel; Nekovarova, Tereza; Stuchlik, Ales

    2016-09-15

    N-methyl-d-aspartate receptors (NMDARs) play a crucial role in spatial memory formation. In neuropharmacological studies their functioning strongly depends on testing conditions and the dosage of NMDAR antagonists. The aim of this study was to assess the immediate effects of NMDAR block by (+)MK-801 or memantine on short-term allothetic memory. Memory was tested in a working memory version of the Morris water maze test. In our version of the test, rats underwent one day of training with 8 trials, and then three experimental days when rats were injected intraperitoneally with low- 5 (MeL), high - 20 (MeH) mg/kg memantine, 0.1mg/kg MK-801 or 1ml/kg saline (SAL) 30min before testing, for three consecutive days. On each experimental day there was just one acquisition and one test trial, with an inter-trial interval of 5 or 15min. During training the hidden platform was relocated after each trial and during the experiment after each day. The follow-up effect was assessed on day 9. Intact rats improved their spatial memory across the one training day. With a 5min interval MeH rats had longer latency then all rats during retrieval. With a 15min interval the MeH rats presented worse working memory measured as retrieval minus acquisition trial for path than SAL and MeL and for latency than MeL rats. MK-801 rats had longer latency than SAL during retrieval. Thus, the high dose of memantine, contrary to low dose of MK-801 disrupts short-term memory independent on the time interval between acquisition and retrieval. This shows that short-term memory tested in a working memory version of water maze is sensitive to several parameters: i.e., NMDA receptor antagonist type, dosage and the time interval between learning and testing. Copyright © 2016. Published by Elsevier B.V.

  6. Postnatal BDNF Expression Profiles in Prefrontal Cortex and Hippocampus of a Rat Schizophrenia Model Induced by MK-801 Administration

    Directory of Open Access Journals (Sweden)

    Chunmei Guo

    2010-01-01

    Full Text Available Neonatal blockade of N-methyl-D-aspartic acid (NMDA receptors represents one of experimental animal models for schizophrenia. This study is to investigate the long-term brain-derived neurotrophic factor (BDNF expression profiles in different regions and correlation with “schizophrenia-like” behaviors in the adolescence and adult of this rat model. The NMDA receptor antagonist MK801 was administered to female Sprague-Dawley rats on postnatal days (PND 5 through 14. Open-field test was performed on PND 42, and PND 77 to examine the validity of the current model. BDNF protein levels in hippocampus and prefrontal cortex (PFC were analyzed on PND 15, PND 42, and PND 77. Results showed that neonatal challenge with MK-801 persistently elevated locomotor activity as well as BDNF expression; the alterations in BDNF expression varied at different developing stages and among brain regions. However, these findings provide neurochemical evidence that the blockade of NMDA receptors during brain development results in long-lasting alterations in BDNF expression and might contribute to neurobehavioral pathology of the present animal model for schizophrenia. Further study in the mechanisms and roles of the BDNF may lead to better understanding of the pathophysiology of schizophrenia.

  7. Acute NMDA Receptor Hypofunction induced by MK801 Evokes Sex-Specific Changes in Behaviors Observed in Open Field Testing in Adult Male and Proestrus Female Rats

    Science.gov (United States)

    Feinstein, Igor; Kritzer, Mary F.

    2012-01-01

    Schizophrenia is a complex constellation of positive, negative and cognitive symptoms. Acute administration of the non-competitive antagonist of the N-methyl D-aspartate receptor (NMDAR) dizocilpine (MK801) in rats is one of few preclinical animal models of this disorder that has both face and/or construct validity for these multiple at-risk behavioral domains and predictive power for the efficacy of therapeutic drugs in treating them. This study asked whether and to what extent the rat NMDAR hypofunction model also embodies the sex differences that distinguish the symptoms of schizophrenia and their treatment. Thus, we compared the effects of acute MK801, with and without pretreatment with haloperidol or clozapine, on seven discrete spontaneous open field activities in adult male and female rats. These analyses revealed that MK801 was more effective in stimulating ataxia and locomotion and inhibiting stationary behavior in females while more potently stimulating stereotypy and thigmotaxis and inhibiting rearing and grooming in males. Haloperidol and clozapine pretreatments had markedly different efficacies in terms of behaviors but strong similarities in their effectiveness in male and female subjects. These results bear intriguing relationships with the complex male/female differences that characterize the symptoms of schizophrenia and suggest possible applications for acute NMDAR hypofunction as a preclinical model for investigating the neurobiology that underlies them. PMID:23085219

  8. Effects of hypoxia-ischemia and MK-801 treatment on the binding of a phencyclidine analogue in the developing rat brain

    International Nuclear Information System (INIS)

    Silverstein, F.S.; McDonald, J.W. III; Bommarito, M.; Johnston, M.V.

    1990-01-01

    The phencyclidine analogue [ 3 H](1-[2-thienyl]cyclohexyl)piperidine ( 3 H-TCP) binds to the ion channel associated with the N-methyl-D-aspartate receptor channel complex. In vitro autoradiography indicates that the distribution of 3 H-TCP binding in brain closely parallels that of [ 3 H]glutamate binding to the N-methyl-D-aspartate receptor. In nine 7-day-old rats, an acute focal hypoxic-ischemic insult produced by unilateral carotid artery ligation and subsequent exposure to 8% oxygen acutely reduced 3 H-TCP binding ipsilateral to the ligation by 30% in the CA1, by 27% in the CA3, by 26% in the dentate gyrus, and by 17% in the striatum compared with values from the contralateral hemisphere. In 10 littermates that received 1 mg/kg of the neuroprotective noncompetitive N-methyl-D-aspartate antagonist MK-801 immediately before hypoxic exposure, the regional distribution of 3 H-TCP binding in hypoxic-ischemic brain was relatively preserved and there were no interhemispheric asymmetries in 3 H-TCP binding densities. In addition, in three unoperated rats decapitated 24 hours after MK-801 treatment, 3 H-TCP binding was reduced by 15-35%; similar bilateral suppression of 3 H-TCP binding was detected in MK-801-treated ligates. Our data indicate that 3 H-TCP autoradiography can be used to assay the efficacy of neuroprotective agents in this experimental model of perinatal stroke

  9. NAAG peptidase inhibitors block cognitive deficit induced by MK-801 and motor activation induced by d-amphetamine in animal models of schizophrenia

    Science.gov (United States)

    Olszewski, R T; Janczura, K J; Ball, S R; Madore, J C; Lavin, K M; Lee, J C-M; Lee, M J; Der, E K; Hark, T J; Farago, P R; Profaci, C P; Bzdega, T; Neale, J H

    2012-01-01

    The most widely validated animal models of the positive, negative and cognitive symptoms of schizophrenia involve administration of d-amphetamine or the open channel NMDA receptor blockers, dizocilpine (MK-801), phencyclidine (PCP) and ketamine. The drug ZJ43 potently inhibits glutamate carboxypeptidase II (GCPII), an enzyme that inactivates the peptide transmitter N-acetylaspartylglutamate (NAAG) and reduces positive and negative behaviors induced by PCP in several of these models. NAAG is an agonist at the metabotropic glutamate receptor 3 (mGluR3). Polymorphisms in this receptor have been associated with expression of schizophrenia. This study aimed to determine whether two different NAAG peptidase inhibitors are effective in dopamine models, whether their efficacy was eliminated in GCPII knockout mice and whether the efficacy of these inhibitors extended to MK-801-induced cognitive deficits as assessed using the novel object recognition test. ZJ43 blocked motor activation when given before or after d-amphetamine treatment. (R,S)-2-phosphono-methylpentanedioic acid (2-PMPA), another potent NAAG peptidase inhibitor, also reduced motor activation induced by PCP or d-amphetamine. 2-PMPA was not effective in GCPII knockout mice. ZJ43 and 2-PMPA also blocked MK-801-induced deficits in novel object recognition when given before, but not after, the acquisition trial. The group II mGluR antagonist LY341495 blocked the effects of NAAG peptidase inhibition in these studies. 2-PMPA was more potent than ZJ43 in a test of NAAG peptidase inhibition in vivo. By bridging the dopamine and glutamate theories of schizophrenia with two structurally different NAAG peptidase inhibitors and demonstrating their efficacy in blocking MK-801-induced memory deficits, these data advance the concept that NAAG peptidase inhibition represents a potentially novel antipsychotic therapy. PMID:22850437

  10. Effects of MK-801 treatment across several pre-clinical analyses including a novel assessment of brain metabolic function utilizing PET and CT fused imaging in live rats.

    Science.gov (United States)

    Daya, R P; Bhandari, J K; Hui, P A; Tian, Y; Farncombe, T; Mishra, R K

    2014-02-01

    Functional imaging studies in schizophrenic patients have demonstrated metabolic brain abnormalities during cognitive tasks. This study aimed to 1) introduce a novel analysis of brain metabolic function in live animals to characterize the hypo- and hyperfrontality phenomena observed in schizophrenia and following NMDA antagonist exposure, and 2) identify a robust and representative MK-801 treatment regimen that effectively models brain metabolic abnormalities as well as a range of established behavioural abnormalities representative of schizophrenia. The validity of the MK-801 animal model was examined across several established pre-clinical tests, and a novel assessment of brain metabolic function using PET/CT fused imaging. In the present study, MK-801 was administered acutely at 0.1 mg/kg and 0.5 mg/kg, and sub-chronically at 0.5 mg/kg daily for 7 days. Acute treatment at 0.5 mg/kg-disrupted facets of memory measured through performance in the 8-arm radial maze task and generated abnormalities in sensorimotor gating, social interaction and locomotor activity. Furthermore, this treatment regimen induced hyperfrontality (increased brain metabolic function in the prefrontal area) observed via PET/CT fused imaging in the live rat. While PET and CT fused imaging in the live rat offers a functional representation of metabolic function, more advanced PET/CT integration is required to analyze more discrete brain regions. These findings provide insight on the effectiveness of the MK-801 pre-clinical model of schizophrenia and provide an optimal regimen to model schizophrenia. PET/CT fused imaging offers a highly translatable tool to assess hypo- and hyperfrontality in live animals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Neuropeptide S ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 through activation of cognate receptor-expressing neurons in the subiculum complex.

    Science.gov (United States)

    Shao, Yu-Feng; Wang, Can; Xie, Jun-Fan; Kong, Xiang-Pan; Xin, Le; Dong, Chao-Yu; Li, Jing; Ren, Wen-Ting; Hou, Yi-Ping

    2016-07-01

    Our previous studies have demonstrated that neuropeptide S (NPS), via selective activation of the neurons bearing NPS receptor (NPSR) in the olfactory cortex, facilitates olfactory function. High level expression of NPSR mRNA in the subiculum complex of hippocampal formation suggests that NPS-NPSR system might be involved in the regulation of olfactory spatial memory. The present study was undertaken to investigate effects of NPS on the scopolamine- or MK801-induced impairment of olfactory spatial memory using computer-assisted 4-hole-board spatial memory test, and by monitoring Fos expression in the subiculum complex in mice. In addition, dual-immunofluorescence microscopy was employed to identify NPS-induced Fos-immunereactive (-ir) neurons that also bear NPSR. Intracerebroventricular administration of NPS (0.5 nmol) significantly increased the number of visits to switched odorants in recall trial in mice suffering from odor-discriminating inability induced by scopolamine, a selective muscarinic cholinergic receptor antagonist, or MK801, a N-methyl-D-aspartate receptor antagonist, after training trials. The improvement of olfactory spatial memory by NPS was abolished by the NPSR antagonist [D-Val(5)]NPS (40 nmol). Ex vivo c-Fos and NPSR immunohistochemistry revealed that, as compared with vehicle-treated mice, NPS markedly enhanced Fos expression in the subiculum complex encompassing the subiculum (S), presubiculum (PrS) and parasubiculum (PaS). The percentages of Fos-ir neurons that also express NPSR were 91.3, 86.5 and 90.0 % in the S, PrS and PaS, respectively. The present findings demonstrate that NPS, via selective activation of the neurons bearing NPSR in the subiculum complex, ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 in mice.

  12. Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents.

    Science.gov (United States)

    Bubser, Michael; Bridges, Thomas M; Dencker, Ditte; Gould, Robert W; Grannan, Michael; Noetzel, Meredith J; Lamsal, Atin; Niswender, Colleen M; Daniels, J Scott; Poslusney, Michael S; Melancon, Bruce J; Tarr, James C; Byers, Frank W; Wess, Jürgen; Duggan, Mark E; Dunlop, John; Wood, Michael W; Brandon, Nicholas J; Wood, Michael R; Lindsley, Craig W; Conn, P Jeffrey; Jones, Carrie K

    2014-10-15

    Positive allosteric modulators (PAMs) of the M4 muscarinic acetylcholine receptor (mAChR) represent a novel approach for the treatment of psychotic symptoms associated with schizophrenia and other neuropsychiatric disorders. We recently reported that the selective M4 PAM VU0152100 produced an antipsychotic drug-like profile in rodents after amphetamine challenge. Previous studies suggest that enhanced cholinergic activity may also improve cognitive function and reverse deficits observed with reduced signaling through the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) in the central nervous system. Prior to this study, the M1 mAChR subtype was viewed as the primary candidate for these actions relative to the other mAChR subtypes. Here we describe the discovery of a novel M4 PAM, VU0467154, with enhanced in vitro potency and improved pharmacokinetic properties relative to other M4 PAMs, enabling a more extensive characterization of M4 actions in rodent models. We used VU0467154 to test the hypothesis that selective potentiation of M4 receptor signaling could ameliorate the behavioral, cognitive, and neurochemical impairments induced by the noncompetitive NMDAR antagonist MK-801. VU0467154 produced a robust dose-dependent reversal of MK-801-induced hyperlocomotion and deficits in preclinical models of associative learning and memory functions, including the touchscreen pairwise visual discrimination task in wild-type mice, but failed to reverse these stimulant-induced deficits in M4 KO mice. VU0467154 also enhanced the acquisition of both contextual and cue-mediated fear conditioning when administered alone in wild-type mice. These novel findings suggest that M4 PAMs may provide a strategy for addressing the more complex affective and cognitive disruptions associated with schizophrenia and other neuropsychiatric disorders.

  13. The neuroprotective efficacy of MK-801 in focal cerebral ischemia varies with rat strain and vendor.

    Science.gov (United States)

    Oliff, H S; Marek, P; Miyazaki, B; Weber, E

    1996-08-26

    The present study was designed to evaluate whether the neuroprotective efficacy of MK-801 in focal cerebral ischemia was dependent on strain and/or vendor differences. MK-801 (0.12 mg/kg i.v. bolus followed by 0.108 mg/kg/h infusion or 0.60 mg/kg i.v. bolus followed by 0.540 mg/kg/h infusion) or saline was administered just after intraluminal middle cerebral artery occlusion. Administration of 0.540 mg/kg/h MK-801 provided strain/line-dependent neuroprotection in the following rank order: Simonsen Laboratories Sprague-Dawley rats > Simonsen Laboratories Wistar rats > Taconic Laboratories Sprague-Dawley rats. After 0.108 mg/kg/h MK-801 treatment, Simonsen Laboratories Wistar rats were the only strain/line that were significantly neuroprotected. These results indicate that the neuroprotective effect of an experimental drug may be influenced by rat strain and vendor differences.

  14. MK-801 induced amnesia for the elevated plus-maze in mice

    Czech Academy of Sciences Publication Activity Database

    Hliňák, Zdeněk; Krejčí, I.

    2002-01-01

    Roč. 131, 1-2 (2002), s. 221-225 ISSN 0166-4328 R&D Projects: GA ČR GA309/00/1644 Institutional research plan: CEZ:AV0Z5011922 Keywords : amnesia * elevated plus-maze * MK-801 Subject RIV: FH - Neurology Impact factor: 2.791, year: 2002

  15. Altered 13C glucose metabolism in the cortico-striato-thalamo-cortical loop in the MK-801 rat model of schizophrenia

    DEFF Research Database (Denmark)

    Eyjolfsson, Elvar M; Nilsen, Linn Hege; Kondziella, Daniel

    2011-01-01

    Using a modified MK-801 (dizocilpine) N-methyl-D-aspartic acid (NMDA) receptor hypofunction model for schizophrenia, we analyzed glycolysis, as well as glutamatergic, GABAergic, and monoaminergic neurotransmitter synthesis and degradation. Rats received an injection of MK-801 daily for 6 days...... in all regions. In conclusion, neurotransmitter metabolism in the cortico-striato-thalamo-cortical loop is severely impaired in the MK-801 (dizocilpine) NMDA receptor hypofunction animal model for schizophrenia....

  16. Combined administration of MK-801 and cycloheximide produces a delayed potentiation of fear discrimination memory extinction.

    Science.gov (United States)

    Kochli, Daniel E; Campbell, Tiffany L; Hollingsworth, Ethan W; Lab, Rain S; Postle, Abagail F; Perry, Megan M; Mordzinski, Victoria M; Quinn, Jennifer J

    2018-04-01

    Mixed evidence exists regarding the role of N-methyl-D-aspartate (NMDA) receptors in memory reconsolidation. We provide no evidence that NMDA receptors are involved with memory reconsolidation, but instead demonstrate that prereactivation systemic MK-801 injection, combined with postreactivation intrabasolateral amygdala (BLA) cycloheximide infusion, produces a delayed potentiation of extinction learning. These data suggest that an interaction between NMDA antagonism and protein synthesis inhibition may enhance extinction by exerting effects outside of the intended reconsolidation manipulation window. The present work demonstrates a novel pharmacological enhancement of extinction, and underscores the importance of employing proper control procedures in reconsolidation research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Molecular responses of the Ts65Dn and Ts1Cje mouse models of Down syndrome to MK-801.

    Science.gov (United States)

    Siddiqui, A; Lacroix, T; Stasko, M R; Scott-McKean, J J; Costa, A C S; Gardiner, K J

    2008-10-01

    Down syndrome (DS), caused by trisomy of human chromosome 21 (chr21), is the most common genetic cause of intellectual disability. The Ts65Dn mouse model of DS is trisomic for orthologs of 94 chr21-encoded, confirmed protein-coding genes and displays a number of behavioral deficits. Recently, Ts65Dn mice were shown to be hypersensitive to the locomotor stimulatory effects of the high-affinity N-methyl-d-aspartate (NMDA) receptor (NMDAR) channel blocker, MK-801. This is consistent with the functions of several chr21 proteins that are predicted directly or indirectly to impact NMDAR function or NMDAR-mediated signaling. In this study, we show that a second mouse model of DS, the Ts1Cje, which is trisomic for 70 protein-coding genes, is also hypersensitive to MK-801. To investigate the molecular basis for the responses to MK-801, we have measured levels of a subset of chr21 and phosphorylated non-chr21 proteins, in the cortex and hippocampus of Ts65Dn and Ts1Cje mice and euploid controls, with and without treatment with MK-801. We show that in euploid mice, the chr21-encoded proteins, TIAM1 and DYRK1A, and phosphorylation of AKT, ERK1/2 and the transcription factor ELK are involved in the MK-801 response. However, in both Ts65Dn and Ts1Cje mice, levels of phosphorylation are constitutively elevated in naïve, unstimulated mice, and the MK-801-induced changes in TIAM1 and DYRK1A and in phosphorylation are either absent or abnormal, with both genotype and brain-region-specific patterns. These results emphasize the complexities of the pathway perturbations that arise with segmental trisomy.

  18. Effects of MK-801 on vicarious trial-and-error and reversal of olfactory discrimination learning in weanling rats.

    Science.gov (United States)

    Griesbach, G S; Hu, D; Amsel, A

    1998-12-01

    The effects of dizocilpine maleate (MK-801) on vicarious trial-and-error (VTE), and on simultaneous olfactory discrimination learning and its reversal, were observed in weanling rats. The term VTE was used by Tolman (The determiners of behavior at a choice point. Psychol. Rev. 1938;46:318-336), who described it as conflict-like behavior at a choice-point in simultaneous discrimination learning. It takes the form of head movements from one stimulus to the other, and has recently been proposed by Amsel (Hippocampal function in the rat: cognitive mapping or vicarious trial-and-error? Hippocampus, 1993;3:251-256) as related to hippocampal, nonspatial function during this learning. Weanling male rats received systemic MK-801 either 30 min before the onset of olfactory discrimination training and its reversal, or only before its reversal. The MK-801-treated animals needed significantly more sessions to acquire the discrimination and showed significantly fewer VTEs in the acquisition phase of learning. Impaired reversal learning was shown only when MK-801 was administered during the reversal-learning phase, itself, and not when it was administered throughout both phases.

  19. NMDA antagonists exert distinct effects in experimental organophosphate or carbamate poisoning in mice

    International Nuclear Information System (INIS)

    Dekundy, Andrzej; Kaminski, Rafal M.; Zielinska, Elzbieta; Turski, Waldemar A.

    2007-01-01

    Organophosphate (OP) and carbamate acetylcholinesterase (AChE) inhibitors produce seizures and lethality in mammals. Anticonvulsant and neuroprotective properties of N-methyl-D-aspartate (NMDA) antagonists encourage the investigation of their effects in AChE inhibitor-induced poisonings. In the present study, the effects of dizocilpine (MK-801, 1 mg/kg) or 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10 mg/kg), alone or combined with muscarinic antagonist atropine (1.8 mg/kg), on convulsant and lethal properties of an OP pesticide dichlorvos or a carbamate drug physostigmine, were studied in mice. Both dichlorvos and physostigmine induced dose-dependent seizure activity and lethality. Atropine did not prevent the occurrence of convulsions but decreased the lethal effects of both dichlorvos and physostigmine. MK-801 or CPP blocked or attenuated, respectively, dichlorvos-induced convulsions. Contrariwise, NMDA antagonists had no effect in physostigmine-induced seizures or lethality produced by dichlorvos or physostigmine. Concurrent pretreatment with atropine and either MK-801 or CPP blocked or alleviated seizures produced by dichlorvos, but not by physostigmine. Both MK-801 and CPP co-administered with atropine enhanced its antilethal effects in both dichlorvos and physostigmine poisoning. In both saline- and AChE inhibitor-treated mice, no interaction of the investigated antidotes with brain cholinesterase was found. The data indicate that both muscarinic ACh and NMDA receptor-mediated mechanisms contribute to the acute toxicity of AChE inhibitors, and NMDA receptors seem critical to OP-induced seizures

  20. Blockade of NMDA receptors prevents analgesic tolerance to repeated transcutaneous electrical nerve stimulation (TENS) in rats

    Science.gov (United States)

    Hingne, Priyanka M.; Sluka, Kathleen A.

    2008-01-01

    Repeated daily application transcutaneous electrical nerve stimulation (TENS) results in tolerance, at spinal opioid receptors, to the anti-hyperalgesia produced by TENS. Since N-Methyl-D-Aspartate (NMDA) receptor antagonists prevent analgesic tolerance to opioid agonists we hypothesized that blockade of NMDA receptors will prevent tolerance to TENS. In rats with knee joint inflammation, TENS was applied for 20 minute daily at high frequency (100 Hz), low frequency (4 Hz), or sham TENS. Rats were treated with the NMDA antagonist MK-801 (0.01 mg/kg-0.1 mg/kg) or vehicle daily before TENS. Paw withdrawal thresholds were tested before and after inflammation, and before and after TENS treatment for 4 days. On day 1 TENS reversed the decreased mechanical withdrawal threshold induced by joint inflammation. On day 4 TENS had no effect on the decreased withdrawal threshold in the group treated with vehicle demonstrating development of tolerance. However, in the group treated with 0.1 mg/kg MK-801, TENS significantly reversed the mechanical withdrawal thresholds on day 4 demonstrating that tolerance did not develop. Vehicle treated animals developed cross-tolerance at spinal opioid receptors. Treatment with MK-801 reversed this cross-tolerance at spinal opioid receptors. In summary, blockade of NMDA receptors prevents analgesic tolerance to daily TENS by preventing tolerance at spinal opioid receptors. Perspective Tolerance observed to the clinical treatment of TENS could be prevented by administration of pharmaceutical agents with NMDA receptors activity such as ketamine or dextromethorphan. PMID:18061543

  1. Effect of NMDA Receptor Antagonist on Local Cerebral Glucose Metabolic Rate in Focal Cerebral Ischemia

    International Nuclear Information System (INIS)

    Kim, Sang Eun; Hong, Seung Bong; Yoon, Byung Woo

    1995-01-01

    There has recently been increasing interest in the use of NMDA receptor antagonists as potential neuroprotective agents for the treatment of ischemic stroke. To evaluate the neuroprotective effect of the selective non-competitive NMDA receptor antagonist MK-801 in focal cerebral ischemia, local cerebral glucose utilization (1CGU) was examined in 15 neuroanatomically discrete regions of the conscious rat brain using the 2-deoxy-D[14C]glucose quantitative autoradiographic technique 24 hr after left middle cerebral artery occlusion (MCAO). Animals received MK-801 (5 mg/kg i.v.) or saline vehicle before (20-30 min) or after (30 min) MCAO. Both pretreatment and posttreatment of MK-801 increased occluded/non-occluded 1CGU ratio in 7 and 5 of the 15 regions measured, respectively(most notably in cortical structures). Following MK-801 pretreatment, there was evidence of widespread increases in 1CCPU not only in the non-occluded hemisphere (12 of the 15 areas studied) but also in the occluded hemisphere (13 of the 15 areas studied), while MK-801 posttreatment did not significantly increase 1CGU both in the normal and occluded hemispheres. These data indicate that MK-801 has a neuroprotective effect in focal cerebral ischemia and demonstrate that MK-801 provides widespread alterations of glucose utilization in conscious animals.

  2. Protective effect of MK-801 on the anoxia-aglycemia induced damage in the fluorocitrate-treated hippocampal slice of the rat.

    Science.gov (United States)

    Nakanishi, H; Kawachi, A; Okada, M; Fujiwara, M; Yamamoto, K

    1996-09-02

    We investigated electrophysiological responses induced by ischemia-like insult (anoxia and aglycemia, AA) in the rat hippocampal CA1 pyramidal cells in an in vitro slice preparation devoid of glial metabolism. In the slice treated with fluorocitrate (100 microM), a glia-specific metabolic inhibitor, 10 min AA induced hyperexcitation as evidenced by an appearance of multiple population spikes evoked by stimulation of the Schaffer collateral/commissural pathway in the CA1 region prior to elimination of the response. Readministration of oxygen and glucose failed to restore the population spike amplitude. Intracellular recordings revealed that 10 min AA induced slow EPSPs with relative long duration. The induction of the slow EPSPs was followed by a rapid membrane depolarization with a large amplitude. When the fluorocitrate-treated slice was exposed to MK-801 (10 microM), a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, 10 min AA failed to induce either the hyperexcitation of synaptic responses or the rapid depolarization. Furthermore, synaptic responses were fully restored after readministration of oxygen and glucose. In contrast, neither the synaptic hyperexcitation nor the rapid depolarization was observed during 10 min AA in the hippocampal CA1 pyramidal cells of the control slice. In addition, an irreversible synaptic failure associated with AA was not induced in the control slice. These results strongly suggest that fluorocitrate increases NMDA receptor-dependent AA-induced damage in the hippocampal slice by interfering glial spatial buffering of K+.

  3. Dopamine D2/D3 receptor binding of [123I]epidepride in risperidone-treatment chronic MK-801-induced rat schizophrenia model using nanoSPECT/CT neuroimaging

    International Nuclear Information System (INIS)

    Huang, Y.R.; Pai, C.W.; Cheng, K.H.; Kuo, W.I.; Chen, M.W.; Chang, K.W.

    2014-01-01

    Introduction: Epidepride is a compound with an affinity in picomolar range for D 2 /D 3 receptors. The aim of this work was designed to investigate the diagnostic possibility of [ 123 I]epidepride imaging platform for risperidone-treatment chronic MK-801-induced rat schizophrenia model. Methods: Rats received repeated administration of MK-801 (dissolved in saline, i.p., 0.3 mg/kg/day) or saline for 4 weeks. After 1-week administration of MK-801, rats in MK-801 + risperidone group received risperidone (0.5 mg/kg/day) intraperitoneally 15 min prior to MK-801 administration for the rest of 3-week treatment. We obtained serial [ 123 I]epidepride neuroimages from nanoSPECT/CT and evaluated the alteration of specific binding in striatum and midbrain. Results: Risperidone reversed chronic MK-801-induced decrease in social interaction duration. IHC and ELISA analysis showed consistent results that chronic MK-801 treatment significantly decreased striatal and midbrain D 2 R expression but repeated risperidone administration reversed the effect of MK-801 treatment. In addition, [ 123 I]epidepride nanoSPECT/CT neuroimaging revealed that low specific [ 123 I]epidepride binding ratios caused by MK-801 in striatum and midbrain were statistically alleviated after 1- and 2-week risperidone administration, respectively. Conclusions: We established a rat schizophrenia model by chronic MK-801 administration for 4 weeks. [ 123 I]Epidepride nanoSPECT neuroimaging can trace the progressive alteration of D 2 R expression in striatum and midbrain caused by long-lasting MK-801 treatment. Besides diagnosing illness stage of disease, [ 123 I]epidepride can be a useful tool to evaluate therapeutic effects of antipsychotic drug in chronic MK-801-induced rat schizophrenia model

  4. A neuroligin-1-derived peptide stimulates phosphorylation of the NMDA receptor NR1 subunit and rescues MK-801-induced decrease in long-term potentiation and memory impairment

    DEFF Research Database (Denmark)

    Korshunova, Irina; Gjørlund, Michelle D; Jacobsen, Sylwia Owczarek

    2015-01-01

    , neurolide-2, reduces sociability and increase animal aggression. We hypothesized that interfering with NL1 function at the excitatory synapses might regulate synaptic plasticity and learning, and counteract memory deficits induced by N-methyl-d-aspartate (NMDA) receptor inhibition. First, neuronal NMDA...... receptor phosphorylation after treatment with NL1 or a mimetic peptide, neurolide-1, was quantified by immunoblotting. Subsequently, we investigated effects of neurolide-1 on long-term potentiation (LTP) induction in hippocampal slices compromised by NMDA receptor inhibitor MK-801. Finally, we investigated...... neurolide-1 effects on short- and long-term social and spatial memory in social recognition, Morris water-maze, and Y-maze tests. We found that subcutaneous neurolide-1 administration, restored hippocampal LTP compromised by NMDA receptor inhibitor MK-801. It counteracted MK-801-induced memory deficit...

  5. Neuroprotection by Combined Administration with Maslinic Acid, a Natural Product from Olea europaea, and MK-801 in the Cerebral Ischemia Model

    Directory of Open Access Journals (Sweden)

    Yisong Qian

    2016-08-01

    Full Text Available Glutamate-mediated excitotoxicity is a major cause of ischemic brain damage. MK-801 confers neuroprotection by attenuating the activation of the N-methyl-d-aspartate (NMDA receptor, but it failed in clinical use due to the short therapeutic window. Here we aim to investigate the effects of maslinic acid, a natural product from Olea europaea, on the therapeutic time window and dose range for the neuroprotection of MK-801. Rats were administered with maslinic acid intracerebroventricularly and cerebral ischemia was induced by middle cerebral artery occlusion (MCAO followed by reperfusion. MK-801 was administered at 1 h, 2 h, 3 h and 4 h after ischemia, respectively. The cerebral infarct volume was determined by 2,3,5-Triphenyltetrazolium chloride (TTC staining, neuronal damage was assessed by Haematoxylin Eosin (H&E staining, and the expression of glial glutamate transporters and glial fibrillary acidic protein (GFAP was evaluated by immunohistochemistry and Western blot post-ischemia. Results showed that the presence of maslinic acid extended the therapeutic time window for MK-801 from 1 h to 3 h. Co-treatment of maslinic acid and MK-801 at a subthreshold dosage obviously induced neuroprotection after ischemia. The combination of these two compounds improved the outcome in ischemic rats. Moreover, maslinic acid treatment promoted the expression of GLT-1 and GFAP post-ischemia. These data suggest that the synergistic effect of maslinic acid on neurological protection might be associated with the improvement of glial function, especially with the increased expression of GLT-1. The combination therapy of maslinic acid and MK-801 may prove to be a potential strategy for treating acute ischemic stroke.

  6. Effect of antemortem and postmortem factors on [3H]MK-801 binding in the human brain: Transient elevation during early childhood

    International Nuclear Information System (INIS)

    Kornhuber, J.; Mack-Burkhardt, F.; Konradi, C.; Fritze, J.; Riederer, P.

    1989-01-01

    The effect of a number of antemortem and postmortem factors on [ 3 H]MK-801 binding was investigated under equilibrium conditions in the frontal cortex of human brains of 38 controls. Binding values transiently increased during the early postnatal period reaching a maximum at the age of about 2 years. After age 10 years [ 3 H]MK-801 binding sites disappeared at 5.7% per decade. The storage time of brain tissue had a reducing effect on these binding sites. There was no effect of gender, brain weight or postmortem time interval and the binding sites were bilaterally symmetrically distributed in the frontal cortex

  7. The effect of combined treatment with risperidone and antidepressants on the MK-801-induced deficits in the social interaction test in rats.

    Science.gov (United States)

    Kamińska, Katarzyna; Rogóż, Zofia

    2015-12-01

    Several clinical reports have suggested that augmentation of atypical antipsychotics' activity by antidepressants may efficiently improve the treatment of negative and some cognitive symptoms of schizophrenia. The aim of the present study was to investigate the effect of antidepressant mirtazapine or escitalopram and risperidone (an atypical antipsychotic), given separately or jointly, on the MK-801-induced deficits in the social interaction test in rats. Antidepressants and risperidone were given 60 and 30 min before the test, respectively. The social interaction of male Wistar rats was measured for 10 min, starting 4 h after MK-801 (0.1 mg/kg) administration. In the social interaction test, MK-801-induced deficits in the parameters studied, i.e. the number of episodes and the time of interactions. Risperidone at a higher dose (0.1 mg/kg) reversed that effect. Co-treatment with an ineffective dose of risperidone (0.01 mg/kg) and mirtazapine (2.5 or 5 mg/kg) or escitalopram only at a dose of 5 mg/kg (but not 2.5 and 10 mg/kg) abolished the deficits evoked by MK-801. The obtained results suggest that especially mirtazapine, and to a smaller degree escitalopram may enhance the antipsychotic-like effect of risperidone in the animal test modeling some negative symptoms of schizophrenia. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Higher Doses of (+)MK-801 (Dizocilpine) Induced Mortality and Procedural but Not Cognitive Deficits in Delayed Testing in the Active Place Avoidance With Reversal on the Carousel

    Czech Academy of Sciences Publication Activity Database

    Lobellová, Veronika; Brichtová, Eva; Petrásek, Tomáš; Valeš, Karel; Stuchlík, Aleš

    2015-01-01

    Roč. 64, č. 2 (2015), s. 269-275 ISSN 0862-8408 R&D Projects: GA MZd(CZ) NT13386 Institutional support: RVO:67985823 Keywords : Dizocilpine * (+)MK-801 * active place avoidance * Carousel * Long-Evans rats Subject RIV: FH - Neurology Impact factor: 1.643, year: 2015

  9. Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents

    DEFF Research Database (Denmark)

    Bubser, Michael; Bridges, Thomas M; Dencker, Ditte

    2014-01-01

    Positive allosteric modulators (PAMs) of the M4 muscarinic acetylcholine receptor (mAChR) represent a novel approach for the treatment of psychotic symptoms associated with schizophrenia and other neuropsychiatric disorders. We recently reported that the selective M4 PAM VU0152100 produced an ant....... VU0467154 produced a robust dose-dependent reversal of MK-801-induced hyperlocomotion and deficits in preclinical models of associative learning and memory functions, including the touchscreen pairwise visual discrimination task in wild-type mice, but failed to reverse these stimulant......-induced deficits in M4 KO mice. VU0467154 also enhanced the acquisition of both contextual and cue-mediated fear conditioning when administered alone in wild-type mice. These novel findings suggest that M4 PAMs may provide a strategy for addressing the more complex affective and cognitive disruptions associated...

  10. Antagonista NMDA-receptorů MK-801 narušuje rozeznávání pozice vzdáleného objektu

    Czech Academy of Sciences Publication Activity Database

    Levčík, David; Klement, Daniel; Nekovářová, Tereza; Valeš, Karel; Stuchlík, Aleš

    2010-01-01

    Roč. 14, Suppl.2 (2010), s. 15-18 ISSN 1211-7579 R&D Projects: GA MŠk(CZ) 1M0517; GA ČR(CZ) GA309/09/0286; GA MZd(CZ) NR9178; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : recognition of position * MK-801 * CHPG * mGluR Subject RIV: FH - Neurology

  11. Effect of the MK 801 and (-) nicotine intracerebral administration on Glu and Gaba extracellular concentration in the pedunculopontine nucleus from rats

    International Nuclear Information System (INIS)

    Blanco Lezcano, Lisette; Lorigados Pedre, Lourdes del Carmen; Gonzalez Fraguela, Maria Elena and others

    2011-01-01

    Although the pharmacological manipulation of the glutamatergic and cholinergic systems have been studied in animal models of Parkinson's Disease (PD), only some authors have done work on this topic at the pedunculopontine nucleus (PPN). The present work studied the changes in glutamate (Glu) and δ-aminobutyric acid (GABA) extracellular concentrations (EC) in the PPN from hemiparkinsonian rats by 6hydroxydopamine injection. The rats were locally perfused by MK-801 (10 μ mol/l) or (-) nicotine (10 mm) solutions by cerebral microdialysis. The biochemical studies were carried out through high performance liquid chromatography coupled to fluorescence detection. Mk-801 infusion induced a significant decrease of Glu (p< 0.01) and GABA (p< 0.01) EC in PPN. On the other hand (-) nicotine infusion induced a significant increase of Glu (p< 0.001) and GABA (p< 0.001) EC in PPN from hemiparkinsonian rats. The local blockade of NMDA receptors by MK-801 infusion facilitates the interaction between Glu and their metabotropic receptors that take part in presynaptic inhibition mechanisms and interfere with neurotransmitters release. Meanwhile, the nicotine infusion sums the effects of nicotinic receptor activation with the glutamatergic and gabaergic neurotransmission changes produced in the PPN in the parkinsonian condition. The cholinergic and glutamergic drug infusion in PPN impose a new adjustment to the neurotransmission at this level that is added to the neurochemical changes associated to dopaminergic denervation.

  12. Chronic MK-801 Application in Adolescence and Early Adulthood: A Spatial Working Memory Deficit in Adult Long-Evans Rats But No Changes in the Hippocampal NMDA Receptor Subunits

    Directory of Open Access Journals (Sweden)

    Libor Uttl

    2018-02-01

    Full Text Available The role of NMDA receptors in learning, memory and hippocampal function has long been recognized. Post-mortem studies have indicated that the expression or subunit composition of the NMDA glutamate receptor subtype might be related to the impaired cognitive functions found in schizophrenia patients. NMDA receptor antagonists have been used to develop animal models of this disorder. There is accumulating evidence showing that not only the acute but also the chronic application of NMDA receptor antagonists may induce schizophrenia-like alterations in behavior and brain functions. However, limited evidence is available regarding the consequences of NMDA receptor blockage during periods of adolescence and early adulthood. This study tested the hypothesis that a 2-week treatment of male Long-Evans and Wistar rats with dizocilpine (MK-801; 0.5 mg/kg daily starting at postnatal days (PD 30 and 60 would cause a long-term cognitive deficit and changes in the levels of NMDA receptor subunits. The working memory version of the Morris water maze (MWM and active place avoidance with reversal on a rotating arena (Carousel requiring cognitive coordination and flexibility probed cognitive functions and an elevated-plus maze (EPM was used to measure anxiety-like behavior. The western blot method was used to determine changes in NMDA receptor subunit levels in the hippocampus. Our results showed no significant changes in behaviors in Wistar rats. Slightly elevated anxiety-like behavior was observed in the EPM in Long-Evans rats with the onset of treatment on PD 30. Furthermore, Long-Evans rats treated from PD 60 displayed impaired working memory in the MWM. There were; however, no significant changes in the levels of NMDA receptor subunits because of MK-801 administration. These findings suggest that a 2-week treatment starting on PD 60 in Long-Evans rats leads to long-term changes in working memory, but this deficit is not paralleled by changes in NMDA receptor

  13. Effects of ionotropic glutamate receptor antagonists on rat dural artery diameter in an intravital microscopy model

    DEFF Research Database (Denmark)

    Chan, K Y; Gupta, S; de Vries, R

    2010-01-01

    studies have shown that glutamate receptor antagonists affect the pathophysiology of migraine. This study investigated whether antagonists of NMDA (ketamine and MK801), AMPA (GYKI52466) and kainate (LY466195) glutamate receptors affected dural vasodilatation induced by alpha-CGRP, capsaicin...

  14. EFECTO DE LA ADMINISTRACIÓN INTRACEREBRAL DE MK-801 Y (- NICOTINA EN LAS CONCENTRACIONES EXTRACELULARES DE GLU Y GABA EN EL NÚCLEO PEDUNCULOPONTINO DE RATAS.

    Directory of Open Access Journals (Sweden)

    Lisette Blanco

    2011-01-01

    Full Text Available Aunque la manipulación farmacológica de los sistemas glutamatérgico y colinérgico se ha tratado en modelos experimentales de enfermedad de Parkinson (EP, pocos autores han realizado estudios de esta temática a nivel del núcleo pedunculopontino (NPP. El presente trabajo aborda los cambios en las concentraciones extracelulares (CE de glutamato (Glu y ácido δ-amino butírico (GABA en el NPP de ratas hemiparkinsonizadas por inyección de 6-hidroxidopamina (6-OHDA y sometidas a la infusión local de MK-801 (10 mol/L o (- nicotina (10mM. La infusión se realizó mediante microdiálisis cerebral y la determinación de las CE de los neurotransmisores se realizó a través de cromatografía líquida de alta resolución acoplada a detección de fluorescencia. La infusión de MK-801 en el NPP produjo una disminución significativa de las CE de Glu (p

  15. The investigation of neonatal MK-801 administration and physical environmental enrichment on emotional and cognitive functions in adult Balb/c mice.

    Science.gov (United States)

    Akillioglu, Kubra; Babar Melik, Emine; Melik, Enver; Kocahan, Sayad

    2012-09-01

    N-methyl-D-aspartate (NMDA) receptors play an important role in brain maturation and developmental processes. It is known that growing up in an enriched environment has effects on emotional and cognitive performance. In our study, we evaluated the effects of physically enriched environment on the emotional and cognitive functions of the adult brain in the setting of previous NMDA receptor hypoactivity during the critical developmental period of the nervous system. In this study, NMDA receptor blockade was induced 5-10 days postnatally (PD5-10) using MK-801 in mice Balb/c (twice a day 0.25 mg/kg, for 5 days, intraperitoneal). MK-801 was given to developing mice living in a standard (SE) and an enrichment environment (EE) and once the animals reached adulthood, emotional behaviors were evaluated using an open field test (OF) and an elevated plus maze (EPM) test whereas cognitive processes were evaluated using the Morris water-maze (MWM). The EE group showed decreased locomotor activity (pcritical period of development led to deterioration in the emotional and cognitive processes during adulthood. An enriched environmental did not reverse the deleterious effects of the NMDA receptor blockade on emotional and cognitive functions. Copyright © 2012. Published by Elsevier Inc.

  16. Spatial Discrimination Reversal Learning in Weanling Rats Is Impaired by Striatal Administration of an NMDA-Receptor Antagonist

    Science.gov (United States)

    Watson, Deborah J.; Stanton, Mark E.

    2009-01-01

    The striatum plays a major role in both motor control and learning and memory, including executive function and "behavioral flexibility." Lesion, temporary inactivation, and infusion of an N-methyl-d-aspartate (NMDA)-receptor antagonist into the dorsomedial striatum (dmSTR) impair reversal learning in adult rats. Systemic administration of MK-801

  17. Interrupción del efecto de inhibición latente por la administración de MK-801

    Directory of Open Access Journals (Sweden)

    L.G De la Casa

    2009-01-01

    Full Text Available Los receptores N-metil-D-aspartato (NMDA parecen estar implicados en el retraso en la adquisición de una asociación pavloviana tras la preexposición sin consecuencias al que se va a convertir en estímulo condicionado, efecto al que se suele denominar Inhibición Latente (IL. Concretamente, la administración de compuestos antagonistas en la fase de preexposición o en las fases de preexposición y condicionamiento produce un efecto disruptivo sobre la expresión de la IL cuando se utiliza un procedimiento de aversión condicionada al sabor. En este trabajo describimos tres experimentos que replican el efecto del MK-801 sobre la IL (Experimento 1 y que demuestran la persistencia de la influencia de la droga independientemente del número de ensayos de preexposición (Experimento 2, o de la intensidad del EC empleado (Experimento 3. Los resultados se interpretan en relación a los modelos psicológicos y farmacológicos relacionados con la investigación y el tratamiento clínico de diversos desordenes neurocognitivos.

  18. Analysis of sensitivity to MK-801 treatment in a novel active allothetic place avoidance task and in the working memory version of the Morris water maze reveals differences between Long-Evans and Wistar rats

    Czech Academy of Sciences Publication Activity Database

    Valeš, Karel; Bubeníková-Valešová, V.; Klement, Daniel; Stuchlík, Aleš

    2006-01-01

    Roč. 55, č. 4 (2006), s. 383-388 ISSN 0168-0102 R&D Projects: GA MZd(CZ) NL7684; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554; GA ČR(CZ) GP309/03/P126; GA ČR(CZ) GA309/06/1231 Institutional research plan: CEZ:AV0Z50110509 Keywords : Wistar/Long-Evans rats * MK-801 * cognition Subject RIV: FH - Neurology Impact factor: 1.953, year: 2006

  19. NMDA receptor antagonism by repetitive MK801 administration induces schizophrenia-like structural changes in the rat brain as revealed by voxel-based morphometry and diffusion tensor imaging.

    Science.gov (United States)

    Wu, H; Wang, X; Gao, Y; Lin, F; Song, T; Zou, Y; Xu, L; Lei, H

    2016-05-13

    Animal models of N-methyl-d-aspartate receptor (NMDAR) antagonism have been widely used for schizophrenia research. Less is known whether these models are associated with macroscopic brain structural changes that resemble those in clinical schizophrenia. Magnetic resonance imaging (MRI) was used to measure brain structural changes in rats subjected to repeated administration of MK801 in a regimen (daily dose of 0.2mg/kg for 14 consecutive days) known to be able to induce schizophrenia-like cognitive impairments. Voxel-based morphometry (VBM) revealed significant gray matter (GM) atrophy in the hippocampus, ventral striatum (vStr) and cortex. Diffusion tensor imaging (DTI) demonstrated microstructural impairments in the corpus callosum (cc). Histopathological results corroborated the MRI findings. Treatment-induced behavioral abnormalities were not measured such that correlation between the brain structural changes observed and schizophrenia-like behaviors could not be established. Chronic MK801 administration induces MRI-observable brain structural changes that are comparable to those observed in schizophrenia patients, supporting the notion that NMDAR hypofunction contributes to the pathology of schizophrenia. Imaging-derived brain structural changes in animal models of NMDAR antagonism may be useful measurements for studying the effects of treatments and interventions targeting schizophrenia. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. 3 alpha 5 beta-Pregnanolone glutamate, a use-dependent NMDA antagonist, reversed spatial learning deficit in an animal model of schizophrenia

    Czech Academy of Sciences Publication Activity Database

    Valeš, Karel; Rambousek, Lukáš; Holubová, Kristína; Svoboda, Jan; Bubeníková-Valešová, V.; Chodounská, Hana; Vyklický ml., Ladislav; Stuchlík, Aleš

    2012-01-01

    Roč. 235, č. 1 (2012), s. 82-88 ISSN 0166-4328 R&D Projects: GA MZd(CZ) NS10365 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 ; RVO:61388963 Keywords : schizophrenia -like behavior * MK-801 * use-dependent * NMDA antagonist * anxiety * pregnanolone glutamate * Carousel maze Subject RIV: FH - Neurology Impact factor: 3.327, year: 2012

  1. Acute systemic MK-801 induced functional uncoupling between hippocampal areas CA3 and CA1 with distant effect in the retrosplenial cortex

    Czech Academy of Sciences Publication Activity Database

    Buchtová, Helena; Fajnerová, Iveta; Stuchlík, Aleš; Kubík, Štěpán

    2017-01-01

    Roč. 27, č. 2 (2017), s. 134-144 ISSN 1050-9631 R&D Projects: GA ČR(CZ) GA14-03627S Institutional support: RVO:67985823 Keywords : Arc * Homer1a * ensemble coding * cognitive control * hypersynchrony * hyperassociation * psychosis * NMDA antagonist * schizophrenia * animal model Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 3.945, year: 2016

  2. Secondary prevention with calcium antagonists after acute myocardial infarction

    DEFF Research Database (Denmark)

    Hansen, J F

    1992-01-01

    and preventing reinfarction, nevertheless demonstrated pronounced differences between the 3 drugs. Nifedipine had no effect on reinfarction or death. Diltiazem had no overall effect but prevented first reinfarction or cardiac death (cardiac events) in patients without heart failure, and increased cardiac events......Experimental studies have demonstrated that the 3 calcium antagonists nifedipine, diltiazem, and verapamil have a comparable effect in the prevention of myocardial damage during ischaemia. Secondary prevention trials after acute myocardial infarction, which aimed at improving survival...... in patients with heart failure before randomisation. Verapamil prevented first reinfarction or death (major events); the most pronounced effect was found in patients without heart failure before randomisation. Verapamil did not have detrimental effects in patients treated for heart failure before...

  3. The nicotine metabolite, cotinine, attenuates glutamate (NMDA) antagonist-related effects on the performance of the five choice serial reaction time task (5C-SRTT) in rats.

    Science.gov (United States)

    Terry, Alvin V; Buccafusco, Jerry J; Schade, R Foster; Vandenhuerk, Leah; Callahan, Patrick M; Beck, Wayne D; Hutchings, Elizabeth J; Chapman, James M; Li, Pei; Bartlett, Michael G

    2012-04-01

    Cotinine, the most predominant metabolite of nicotine in mammalian species, has a pharmacological half-life that greatly exceeds its precursor. However, until recently, relatively few studies had been conducted to systematically characterize the behavioral pharmacology of cotinine. Our previous work indicated that cotinine improves prepulse inhibition of the auditory startle response in rats in pharmacological impairment models and that it improves working memory in non-human primates. Here we tested the hypothesis that cotinine improves sustained attention in rats and attenuates behavioral alterations induced by the glutamate (NMDA) antagonist MK-801. The effects of acute subcutaneous (dose range 0.03-10.0 mg/kg) and chronic oral administration (2.0 mg/kg/day in drinking water) of cotinine were evaluated in fixed and variable stimulus duration (VSD) as well as variable intertrial interval (VITI) versions of a five choice serial reaction time task (5C-SRTT). The results indicated only subtle effects of acute cotinine (administered alone) on performance of the 5C-SRTT (e.g., decreases in timeout responses). However, depending on dose, acute treatment with cotinine attenuated MK-801-related impairments in accuracy and elevations in timeout responses, and it increased the number of completed trials. Moreover, chronic cotinine attenuated MK-801-related impairments in accuracy and it reduced premature and timeout responses when the demands of the task were increased (i.e., by presenting VSDs or VITIs in addition to administering MK-801). These data suggest that cotinine may represent a prototype for compounds that have therapeutic potential for neuropsychiatric disorders (i.e., by improving sustained attention and decreasing impulsive and compulsive behaviors), especially those characterized by glutamate receptor alterations. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Alphavirus Encephalomyelitis: Mechanisms and Approaches to Prevention of Neuronal Damage.

    Science.gov (United States)

    Griffin, Diane E

    2016-07-01

    Mosquito-borne viruses are important causes of death and long-term neurologic disability due to encephalomyelitis. Studies of mice infected with the alphavirus Sindbis virus have shown that outcome is dependent on the age and genetic background of the mouse and virulence of the infecting virus. Age-dependent susceptibility reflects the acquisition by neurons of resistance to virus replication and virus-induced cell death with maturation. In mature mice, the populations of neurons most susceptible to infection are in the hippocampus and anterior horn of the spinal cord. Hippocampal infection leads to long-term memory deficits in mice that survive, while motor neuron infection can lead to paralysis and death. Neuronal death is immune-mediated, rather than a direct consequence of virus infection, and associated with entry and differentiation of pathogenic T helper 17 cells in the nervous system. To modulate glutamate excitotoxicity, mice were treated with an N-methyl-D-aspartate receptor antagonist, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonists or a glutamine antagonist. The N-methyl-D-aspartate receptor antagonist MK-801 protected hippocampal neurons but not motor neurons, and mice still became paralyzed and died. α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor antagonists GYKI-52466 and talampanel protected both hippocampal and motor neurons and prevented paralysis and death. Glutamine antagonist 6-diazo-5-l-norleucine protected hippocampal neurons and improved memory generation in mice surviving infection with an avirulent virus. Surprisingly, in all cases protection was associated with inhibition of the antiviral immune response, reduced entry of inflammatory cells into the central nervous system, and delayed virus clearance, emphasizing the importance of treatment approaches that include prevention of immunopathologic damage.

  5. Extended studies on the effect of glutamate antagonists on ischemic CA-1 damage

    DEFF Research Database (Denmark)

    Diemer, Nils Henrik; Balchen, T; Bruhn, T

    1996-01-01

    Glutamate receptors are numerous on the ischemia vulnerable CA-1 pyramidal cells. Postischemic use of the AMPA antagonist NBQX has shown up to 80% protection against cell death. Three aspects of this were studied: In the first study, male Wistar rats were given NBQX (30 mg/kg x 3) either 20 hours...... in the present model, eosinophilic CA-1 cells are seen from day 2 on. Since there could be a late, deleterious calcium influx via NMDA receptors, one group of ischemic rats was given MK-801 (5 mg/kg i.p.) 24 hours after ischemia. However, quantitation 6 days later of remaining CA-1 cells showed no protection...

  6. Efficacy of glutamate receptor antagonists in the management of functional disorders in cytotoxic brain oedema induced by hexachlorophene.

    Science.gov (United States)

    Häntzschel, A; Andreas, K

    1998-02-01

    The hexachlorophene-induced cytotoxic brain oedema is an experimental model of brain damage, suitable for testing cerebroprotective substances (Andreas 1993). In order to examine whether glutamate receptors are involved in mediating functional disorders due to neurotoxic brain damage, we have studied the protective effects of several competitive and non-competitive antagonists using adult male Wistar rats in a simple "ladder-test" for assessing coordinative motor behaviour. Hexachlorophene-induced brain damage was verified by histological examination of the cerebellum with vacuolation of white matter, astrocyte hypertrophy and astrocyte proliferation taken as signs of neurotoxic injury. The non-competitive N-methyl-D-aspartate (NMDA) antagonist dizocilpine maleate (MK-801) decreased the motor disturbance on the first and second day of the "ladder-test" when applied in the doses 0.1 mg/kg and 0.2 mg/kg intraperitoneally for 3 weeks during the hexachlorophene treatment. Acute MK-801 administration (0.1 mg/kg intraperitoneally) after 3 weeks hexachlorophene exposure improved the coordinative motor response only on the first day. When testing the competitive NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP-5) in the dose 1.0 mg/kg intraperitoneally the motor disturbance was lowered significantly earlier than in spontaneous remission. Similar effects were observed with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the dose of 0.8 mg/kg intraperitoneally, an antagonist interacting both with the strychnine-insensitive binding site for glycine within the NMDA receptor complex and with the kainate(+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor complex. Concurrent MK-801 administration decreased the vacuolation of white matter. The results suggest that NMDA receptors and non-NMDA receptors are involved in development of functional disorders induced by hexachlorophene.

  7. Systemic administration of MK-801, a non-competitive NMDA-receptor antagonist, elicits a behavioural deficit of rats in the Active Allothetic Place Avoidance (AAPA) task irrespectively of their intact spatial pretraining

    Czech Academy of Sciences Publication Activity Database

    Stuchlík, Aleš; Valeš, Karel

    2005-01-01

    Roč. 159, č. 1 (2005), s. 163-171 ISSN 0166-4328 R&D Projects: GA ČR(CZ) GP309/03/P126; GA MŠk(CZ) 1M0517 Institutional research plan: CEZ:AV0Z5011922 Keywords : schizophrenia * animal model * rat Subject RIV: FH - Neurology Impact factor: 2.865, year: 2005

  8. Investigation of antidepressant-like and anxiolytic-like actions and cognitive and motor side effects of four N-methyl-D-aspartate receptor antagonists in mice

    DEFF Research Database (Denmark)

    Refsgaard, Louise Konradsen; Pickering, Darryl S; Andreasen T., Jesper

    2017-01-01

    antagonists. MK-801, ketamine, S-ketamine, RO 25-6981 and the positive control, citalopram, were tested for antidepressant-like and anxiolytic-like effects in mice using the forced-swim test, the elevated zero maze and the novelty-induced hypophagia test. Side effects were assessed using a locomotor activity...... test, the modified Y-maze and the rotarod test. All compounds increased swim distance in the forced-swim test. In the elevated zero maze, the GluN2B subtype-selective RO 25-6981 affected none of the measured parameters, whereas all other compounds showed anxiolytic-like effects. In the novelty...

  9. Prenatal exposure of testosterone prevents SDN-POA neurons of postnatal male rats from apoptosis through NMDA receptor.

    Science.gov (United States)

    Hsu, H K; Yang, R C; Shih, H C; Hsieh, Y L; Chen, U Y; Hsu, C

    2001-11-01

    The role of N-methyl-D-aspartate (NMDA) receptor in mediating the effect of testosterone exposure prenatally on neuronal apoptosis in the sexual dimorphic nucleus of the preoptic area (SDN-POA) of rats was studied. The endogenous testosterone was diminished by prenatal stress (PNS) or simulated by testosterone exposure (TE) to understand the effect of testosterone on NR(1) (a functional subunit protein of NMDA receptor) expression and neuronal apoptosis. To further study whether the testosterone, after being converted into estradiol, modulates NR(1) expression, 4-androstein-4-ol-3,17-dione (ATD; an aromatase inhibitor) was used to block the conversion of estradiol from testosterone. The expressions of the NR(1) mRNA and NR(1) subunit protein were quantified by RT-PCR and western blotting analysis, respectively. In addition, a noncompetitive antagonist of NMDA receptor, MK-801, was used to find out whether blockage of NMDA receptor affects the naturally occurring apoptosis in SDN-POA. The results showed the following. 1) Expression of perinatal NR(1) subunit protein in the central part of the medial preoptic area of male rats was significantly higher than that of females, especially on postnatal days 1 and 3. 2) The testosterone level of male fetuses on embryonic day 18 was significantly higher than that of females, while the testosterone level of TE females or PNS males was similar to that of intact males or intact females, respectively. 3) The apoptotic incidence of intact male rats was significantly less than that of females, and the apoptosis was stimulated by PNS in male or inhibited by TE in female. 4) The expression of NR(1) subunit protein could be inhibited by PNS or ATD-treatment in male, while stimulated by TE in female. 5) NR(1) mRNA showed no significant difference among intact male, PNS male, ATD-treated male, TE female and intact female rats. 6) The low apoptotic incidence of male rats was significantly increased when NMDA receptor was blocked by MK

  10. Neuroprotective effects of the AMPA antagonist PNQX in oxygen-glucose deprivation in mouse hippocampal slice cultures and global cerebral ischemia in gerbils

    DEFF Research Database (Denmark)

    Montero, Maria; Nielsen, Marianne; Rønn, Lars Christian B

    2007-01-01

    PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD) and in tr......PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD....... For comparison, other cultures were exposed to the NMDA antagonist MK-801 using the same protocol. Both PNQX and MK-801 displayed significant neuroprotective effects in all hippocampal subfields when present during and after OGD. When added just after OGD, only PNQX retained some neuroprotective effect. When...... stained for the neurodegeneration marker Fluoro-Jade B and immunostained for the astroglial marker glial fibrillary acidic protein revealed a significant PNQX-induced decrease in neuronal cell death and astroglial activation. We conclude that, PNQX provided neuroprotection against both global cerebral...

  11. The Effect of Subchronic Dosing of Ciproxifan and Clobenpropit on Dopamine and Histamine Levels in Rats

    Directory of Open Access Journals (Sweden)

    D. Mahmood

    2015-01-01

    Full Text Available The present study was designed to investigate the effect of once daily for 7-day (subchronic treatment dosing of histamine H 3 receptor antagonists, ciproxifan (CPX (3 mg/kg, i.p., and clobenpropit (CBP (15 mg/kg, i.p, including clozapine (CLZ (3.0 mg/kg, i.p. and chlorpromazine (CPZ (3.0 mg/kg, i.p., the atypical and typical antipsychotic, respectively, on MK-801(0.2 mg/kg, i.p.-induced locomotor activity, and dopamine and histamine levels in rats. Dopamine and histamine levels were measured in striatum and hypothalamus, respectively, of rat brain. Atypical and typical antipsychotics were used to serve as clinically relevant reference agents to compare the effects of the H 3 receptor antagonists. MK-801-induced increase of horizontal activity was reduced with CPX and CBP. The attenuation of MK-801-induced locomotor hyperactivity produced by CPX and CBP was comparable to CLZ and CPZ. MK-801 raised dopamine levels in the striatum, which was reduced in rats pretreated with CPX and CBP. CPZ also lowered striatal dopamine levels, though the decrease was less robust compared to CLZ, CPX and CBP. MK-801 increased histamine content although to a lesser degree. Subchronic treatment with CPX and CBP exhibited further increase in histamine levels in the hypothalamus compared to the MK-801 treatment alone. Histamine H 3 receptor agonist, R-OC methylhistamine (10 mg/kg, i.p. counteracted the effects of CPX and CBP. In conclusion, the subchronic dosing of CPX/CBP suggests some antipsychotic-like activities as CPX/CBP counteracts the modulatory effects of MK-801 on dopamine and histamine levels and prevents MK-801-induced hyperlocomotor behaviors.

  12. NMDA Receptor Antagonists for Treatment of Depression

    Directory of Open Access Journals (Sweden)

    Zeynep Ates-Alagoz

    2013-04-01

    Full Text Available Depression is a psychiatric disorder that affects millions of people worldwide. Individuals battling this disorder commonly experience high rates of relapse, persistent residual symptoms, functional impairment, and diminished well-being. Medications have important utility in stabilizing moods and daily functions of many individuals. However, only one third of patients had considerable improvement with a standard antidepressant after 2 months and all patients had to deal with numerous side effects. The N-methyl-d-aspartate (NMDA receptor family has received special attention because of its critical role in psychiatric disorders. Direct targeting of the NMDA receptor could result in more rapid antidepressant effects. Antidepressant-like effects of NMDA receptor antagonists have been demonstrated in different animal models. MK-801 (a use-dependent channel blocker, and CGP 37849 (an NMDA receptor antagonist have shown antidepressant properties in preclinical studies, either alone or combined with traditional antidepressants. A recent development is use of ketamine clinically for refractory depression. The purpose of this review is to examine and analyze current literature on the role of NMDA receptor antagonists for treatment of depression and whether this is a feasible route in drug discovery.

  13. Molecular mechanisms of 5-HT(3) and NK(1) receptor antagonists in prevention of emesis.

    Science.gov (United States)

    Rojas, Camilo; Raje, Mithun; Tsukamoto, Takashi; Slusher, Barbara S

    2014-01-05

    Nausea and vomiting are major side effects of chemotherapy and one key reason for non-compliance with cancer treatment. The introduction of 5-HT3 receptor antagonists in the 1990s was a major advance in the prevention of acute emesis, and highlighted the critical role of serotonin in the emetic response. The next major advance in the treatment of chemotherapy induced nausea and vomiting (CINV) occurred in 2003 with the introduction of aprepitant, a tachykinin 1 (NK1) receptor antagonist. Aprepitant not only reduced acute emesis but also helped in the reduction of delayed emesis. Also in 2003, palonosetron, a second generation 5-HT3 receptor antagonist became available. Unlike the first generation 5-HT3 receptor antagonists, palonosetron demonstrated efficacy in preventing both acute and delayed emesis. This review focuses on the mechanism of action of 5-HT3 and NK1 receptor antagonists in acute and delayed CINV prevention. We discuss first, the medicinal chemistry that led to the discovery of these antagonists to underline their common structural features. Second, we discuss their performance in the clinic and what it tells us about the emetic response. Finally, we present recent mechanistic studies that help provide a rationale for efficacy differences between palonosetron and other 5-HT3 receptor antagonists in the clinic. In vitro and in vivo experiments have shown that palonosetron can inhibit substance P-mediated responses, presumably through its unique interactions with the 5-HT3 receptor. The crossroads of acute and delayed emesis seem to include interactions among the 5-HT3 and NK1 receptor signaling pathways and inhibitions of these interactions could lead to improved treatment of CINV. © 2013 Elsevier B.V. All rights reserved.

  14. Structure-Based Design of a Periplasmic Binding Protein Antagonist that Prevents Domain Closure

    Energy Technology Data Exchange (ETDEWEB)

    Borrok, M. Jack; Zhu, Yimin; Forest, Katrina T.; Kiessling, Laura L.; (UW)

    2009-07-31

    Many receptors undergo ligand-induced conformational changes to initiate signal transduction. Periplasmic binding proteins (PBPs) are bacterial receptors that exhibit dramatic conformational changes upon ligand binding. These proteins mediate a wide variety of fundamental processes including transport, chemotaxis, and quorum sensing. Despite the importance of these receptors, no PBP antagonists have been identified and characterized. In this study, we identify 3-O-methyl-D-glucose as an antagonist of glucose/galactose-binding protein and demonstrate that it inhibits glucose chemotaxis in E. coli. Using small-angle X-ray scattering and X-ray crystallography, we show that this antagonist acts as a wedge. It prevents the large-scale domain closure that gives rise to the active signaling state. Guided by these results and the structures of open and closed glucose/galactose-binding protein, we designed and synthesized an antagonist composed of two linked glucose residues. These findings provide a blueprint for the design of new bacterial PBP inhibitors. Given the key role of PBPs in microbial physiology, we anticipate that PBP antagonists will have widespread uses as probes and antimicrobial agents.

  15. Non-NMDA receptor antagonist-induced drinking in rat

    Science.gov (United States)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  16. 5-HT3 receptor antagonists for the prevention of postoperative shivering: a meta-analysis.

    Science.gov (United States)

    Zhou, Chengmao; Zhu, Yu; Liu, Zhen; Ruan, Lin

    2016-12-01

    Objective We evaluated the efficacy of 5-HT3 receptor antagonists for the prevention of postoperative shivering. Methods We searched PubMed, the Cochrane Library, EMBASE and Web of Knowledge to find randomized controlled trials (RCT) of 5-HT3 receptor antagonists for the prevention of postoperative shivering. Two researchers independently screened studies, extracted data, and assessed quality in accordance with the inclusion and exclusion criteria, and then conducted a meta-analysis using RevMan 5.2. Results Ultimately, 14 RCTs that included 980 patients were included in the analysis. We found that: 1) the incidence of shivering was significantly lower in 5-HT3 groups than placebo groups (relative risk, [RR] = 0.48, 95% confidence interval [CI] 0.40 - 0.58); 2) there was no significant difference in the incidence of shivering between 5-HT3 groups and meperidine groups (RR = 0.89, 95% CI 0.60 - 1.34). Conclusion 5-HT3 receptor antagonists appear to prevent postoperative shivering, with a broadly comparable efficacy to meperidine.

  17. Synergic induction of human periodontal ligament fibroblast cell death by nitric oxide and N-methyl-D-aspartic acid receptor antagonist.

    Science.gov (United States)

    Seo, Taegun; Cha, Seho; Woo, Kyung Mi; Park, Yun-Soo; Cho, Yun-Mi; Lee, Jeong-Soon; Kim, Tae-Il

    2011-02-01

    Nitric oxide (NO) has been known as an important regulator of osteoblasts and periodontal ligament cell activity. This study was performed to investigate the relationship between NO-mediated cell death of human periodontal ligament fibroblasts (PDLFs) and N-methyl-D-aspartic acid (NMDA) receptor antagonist (+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine hydrogen maleate (MK801). Human PDLFs were treated with various concentrations (0 to 4 mM) of sodium nitroprusside (SNP) with or without 200 µM MK801 in culture media for 16 hours and the cell medium was then removed and replaced by fresh medium containing MTS reagent for cell proliferation assay. Western blot analysis was performed to investigate the effects of SNP on the expression of Bax, cytochrome c, and caspase-3 proteins. The differences for each value among the sample groups were compared using analysis of variance with 95% confidence intervals. In the case of SNP treatment, as a NO donor, cell viability was significantly decreased in a concentration-dependent manner. In addition, a synergistic effect was shown when both SNP and NMDA receptor antagonist was added to the medium. SNP treated PDLFs exhibited a round shape in culture conditions and were dramatically reduced in cell number. SNP treatment also increased levels of apoptotic marker protein, such as Bax and cytochrome c, and reduced caspase-3 in PDLFs. Mitogen-activated protein kinase signaling was activated by treatment of SNP and NMDA receptor antagonist. These results suggest that excessive production of NO may induce apoptosis and that NMDA receptor may modulate NO-induced apoptosis in PDLFs.

  18. 5-HT3Receptor Antagonists for the Prevention of Perioperative Shivering: A Meta-Analysis.

    Science.gov (United States)

    Wang, Wen; Song, Xiaojing; Wang, Tong; Zhang, Chaobin; Sun, Li

    2017-04-01

    The aim of this meta-analysis was to evaluate the preventive efficacy and safety of 5-HT 3 receptor antagonists (5-HT 3 RAs) on perioperative shivering. Relevant databases were searched to identify eligible randomized, controlled trials through January 2016. Primary outcome was the incidence of perioperative shivering, and secondary outcomes were the incidence of safety-related outcomes including postoperative nausea and vomiting (PONV), bradycardia, and hypotension. We calculated risk ratios (RRs) with 95% confidence intervals (CIs) for dichotomous data. Trial sequential analysis was performed to assess the risk of random errors and calculate the required information size. Sixteen studies with a total of 1126 patients were included in the meta-analysis. Compared with the control group, 5-HT 3 RAs administered intravenously could statistically significantly reduce the incidence of perioperative shivering (RR, 0.44; 95%CI, 0.35 to 0.56; P shivering prevention in the future. © 2016, The American College of Clinical Pharmacology.

  19. CRF Receptor Antagonist Astressin-B Reverses and Prevents Alopecia in CRF Over-Expressing Mice

    Science.gov (United States)

    Rivier, Jean; Rivier, Catherine; Craft, Noah; Stenzel-Poore, Mary P.; Taché, Yvette

    2011-01-01

    Corticotropin-releasing factor (CRF) signaling pathways are involved in the stress response, and there is growing evidence supporting hair growth inhibition of murine hair follicle in vivo upon stress exposure. We investigated whether the blockade of CRF receptors influences the development of hair loss in CRF over-expressing (OE)-mice that display phenotypes of Cushing's syndrome and chronic stress, including alopecia. The non-selective CRF receptors antagonist, astressin-B (5 µg/mouse) injected peripherally once a day for 5 days in 4–9 months old CRF-OE alopecic mice induced pigmentation and hair re-growth that was largely retained for over 4 months. In young CRF-OE mice, astressin-B prevented the development of alopecia that occurred in saline-treated mice. Histological examination indicated that alopecic CRF-OE mice had hair follicle atrophy and that astressin-B revived the hair follicle from the telogen to anagen phase. However, astressin-B did not show any effect on the elevated plasma corticosterone levels and the increased weights of adrenal glands and visceral fat in CRF-OE mice. The selective CRF2 receptor antagonist, astressin2-B had moderate effect on pigmentation, but not on hair re-growth. The commercial drug for alopecia, minoxidil only showed partial effect on hair re-growth. These data support the existence of a key molecular switching mechanism triggered by blocking peripheral CRF receptors with an antagonist to reset hair growth in a mouse model of alopecia associated with chronic stress. PMID:21359208

  20. CRF receptor antagonist astressin-B reverses and prevents alopecia in CRF over-expressing mice.

    Directory of Open Access Journals (Sweden)

    Lixin Wang

    2011-02-01

    Full Text Available Corticotropin-releasing factor (CRF signaling pathways are involved in the stress response, and there is growing evidence supporting hair growth inhibition of murine hair follicle in vivo upon stress exposure. We investigated whether the blockade of CRF receptors influences the development of hair loss in CRF over-expressing (OE-mice that display phenotypes of Cushing's syndrome and chronic stress, including alopecia. The non-selective CRF receptors antagonist, astressin-B (5 µg/mouse injected peripherally once a day for 5 days in 4-9 months old CRF-OE alopecic mice induced pigmentation and hair re-growth that was largely retained for over 4 months. In young CRF-OE mice, astressin-B prevented the development of alopecia that occurred in saline-treated mice. Histological examination indicated that alopecic CRF-OE mice had hair follicle atrophy and that astressin-B revived the hair follicle from the telogen to anagen phase. However, astressin-B did not show any effect on the elevated plasma corticosterone levels and the increased weights of adrenal glands and visceral fat in CRF-OE mice. The selective CRF₂ receptor antagonist, astressin₂-B had moderate effect on pigmentation, but not on hair re-growth. The commercial drug for alopecia, minoxidil only showed partial effect on hair re-growth. These data support the existence of a key molecular switching mechanism triggered by blocking peripheral CRF receptors with an antagonist to reset hair growth in a mouse model of alopecia associated with chronic stress.

  1. Synthesis and characterization of a series of diarylguanidines that are noncompetitive N-methyl-D-aspartate receptor antagonists with neuroprotective properties

    International Nuclear Information System (INIS)

    Keana, J.F.W.; McBurney, R.N.; Scherz, M.W.

    1989-01-01

    Four diarylguanidine derivatives were synthesized. These compounds were found to displace, at submicromolar concentrations, 3 H-labeled 1-[1-(2-thienyl)cyclohexyl]piperidine and (+)-[ 3 H]MK-801 from phencyclidine receptors in brain membrane preparations. In electrophysiological experiments the diarylguanidines blocked N-methyl-D-aspartate (NMDA)-activated ion channels. These dairylguanidines also protected rat hippocampal neurons in vitro from glutamate-induced cell death. The results show that some diarylguanidines are noncompetitive antagonists of NMDA receptor-mediated responses and have the neuroprotective property that is commonly associated with blockers of the NMDA receptor-gated cation channel. Diarylguanidines are structurally unrelated to known blockers of NMDA channels and, therefore, represent a new compound series for the development of neuroprotective agents with therapeutic value in patients suffering from stroke, from brain or spinal cord trauma, from hypoglycemia, and possibly from brain ischemia due to heart attack

  2. APPLICATION OF CALCIUM ANTAGONISTS IN PREVENTION OF CARDIOVASCULAR COMPLICATIONS DURING CARDIAC SURGERY

    Directory of Open Access Journals (Sweden)

    S. V. Nedogoda

    2006-01-01

    Full Text Available Results of randomized clinical trials on the usage of calcium antagonists (CA in order to prevent perioperative complications during aortocoronary bypass procedure and operations on heart valves are analyzed. CA reduced the risk of perioperative myocardial infarctions and episodes of reversible myocardial ischemia. After angioplasty of coronary arteries CA (particularly amlodipine show positive effects on restenosis incidence and reduce about 3 times a number of repeated angioplasty and aortocoronary bypass operations. The use of CA was accompanied by more often need in heart electro stimulation without any subclass differences. It is also registered that nimodipine can strengthen intraoperative blood loss. It is concluded, that CA have significant evident base that allows recommending them to patients undertaken by cardiological surgery.

  3. A prostaglandin E2 receptor antagonist prevents pregnancies during a preclinical contraceptive trial with female macaques.

    Science.gov (United States)

    Peluffo, M C; Stanley, J; Braeuer, N; Rotgeri, A; Fritzemeier, K-H; Fuhrmann, U; Buchmann, B; Adevai, T; Murphy, M J; Zelinski, M B; Lindenthal, B; Hennebold, J D; Stouffer, R L

    2014-07-01

    Can administration of a prostaglandin (PG) E2 receptor 2 (PTGER2) antagonist prevent pregnancy in adult female monkeys by blocking periovulatory events in the follicle without altering menstrual cyclicity or general health? This is the first study to demonstrate that a PTGER2 antagonist can serve as an effective non-hormonal contraceptive in primates. The requirement for PGE2 in ovulation and the release of an oocyte surrounded by expanded cumulus cells (cumulus-oocyte expansion; C-OE) was established through the generation of PTGS2 and PTGER2 null-mutant mice. A critical role for PGE2 in primate ovulation is supported by evidence that intrafollicular injection of indomethacin in rhesus monkeys suppressed follicle rupture, whereas co-injection of PGE2 with indomethacin resulted in ovulation. First, controlled ovulation protocols were performed in adult, female rhesus monkeys to analyze the mRNA levels for genes encoding PGE2 synthesis and signaling components in the naturally selected pre-ovulatory follicle at different times after the ovulatory hCG stimulus (0, 12, 24, 36 h pre-ovulation; 36 h post-ovulation, n = 3-4/time point). Second, controlled ovarian stimulation cycles were utilized to obtain multiple cumulus-oocyte complexes (COCs) from rhesus monkeys to evaluate the role of PGE2 in C-OE in vitro (n = 3-4 animals/treatment; ≥3 COCs/animal/treatment). Third, adult cycling female cynomolgus macaques were randomly assigned (n = 10/group) to vehicle (control) or PTGER2 antagonist (BAY06) groups to perform a contraceptive trial. After the first treatment cycle, a male of proven fertility was introduced into each group and they remained housed together for the duration of the 5-month contraceptive trial that was followed by a post-treatment reversibility trial. Quantitative real-time PCR, COC culture and expansion, immunofluorescence/confocal microscopy, enzyme immunoassay, contraceptive trial, ultrasonography, complete blood counts, serum biochemistry tests

  4. Gene regulation by NMDA receptor activation in the SDN-POA neurons of male rats during sexual development.

    Science.gov (United States)

    Hsu, Hseng-Kuang; Shao, Pei-Lin; Tsai, Ke-Li; Shih, Huei-Chuan; Lee, Tzu-Ying; Hsu, Chin

    2005-04-01

    The present study was designed to identify possible signaling pathways, which may play a role in prevention of neuronal apoptosis in the sexually dimorphic nucleus of the preoptic area (SDN-POA) after physiological activation of the N-methyl-D-aspartate (NMDA) receptor. Gene response to the blockage of the NMDA receptor by an antagonist (dizocilpine hydrogen maleate; MK-801) was screened after suppression subtractive hybridization (SSH). The results showed that differential screening after SSH detected the presence of some neurotrophic genes (RNA binding motif protein 3 (RBM3), alpha-tubulin) as well as apoptosis-related genes (Bcl-2, cytochrome oxidase subunit II, cytochrome oxidase subunit III) in the SDN-POA of male rats, which were down-regulated by blocking the NMDA receptor. The RT-PCR products of the aforementioned genes in MK-801-treated males were significantly less than that in untreated males. In particular, the expression of Bcl-2 mRNA, including Bcl-2 protein, in male rats were significantly suppressed by MK-801 treatment. Moreover, the binding activity of nuclear factor kappaB (NFkappaB) was significantly higher in male rats than in females, but significantly diminished by blocking the NMDA receptor with MK-801 in male rats. No significant difference in cAMP response element-binding protein (CREB) binding activity was observed among untreated male, MK-801-treated male, untreated female and MK-801-treated female groups. These results suggest that genes regulated by NMDA receptor activation might participate in neuronal growth and/or anti-apoptosis, and support an important signaling pathway of NFkappaB activation and its target gene, Bcl-2, in preventing neuronal apoptosis in the SDN-POA of male rats during sexual development.

  5. Endothelin receptor antagonist prevents parathyroid cell proliferation of low calcium diet-induced hyperparathyroidism in rats.

    Science.gov (United States)

    Kanesaka, Y; Tokunaga, H; Iwashita, K; Fujimura, S; Naomi, S; Tomita, K

    2001-01-01

    Secondary hyperparathyroidism, one of the most frequently encountered disorders of the calcium homeostasis, is characterized by an increase in parathyroid epithelial (PT) cell number, which is crucial from a functional viewpoint. However, it is still unknown what factors are involved in PT cell proliferation. Endothelin-1 (ET-1), a vasoconstrictive peptide, has been shown to act as a mitogen in a variety of cell types. Rat PT cells are reported to synthesize ET-1 and possess its receptors. To test the hypothesis that ET-1 plays a role in PT cell proliferation, we used rat test subjects fed a low calcium diet for 8 weeks (low Ca rats). The number of the proliferating PT cells, measured by proliferating cell nuclear antigen immunostaining, was significantly increased, with striking immunoreactivity of ET-1 in the low Ca rats. An endothelin receptor antagonist, bosentan (100 mg/kg.day), prevented any increase in the proliferation of PT cells in the low Ca rats (14.3 +/- 2.7/1000 PT cells with no bosentan; 2.1 +/- 1.3 with bosentan; P hyperparathyroidism.

  6. Prevention of chemotherapy-induced nausea: the role of neurokinin-1 (NK1) receptor antagonists.

    Science.gov (United States)

    Bošnjak, Snežana M; Gralla, Richard J; Schwartzberg, Lee

    2017-05-01

    Chemotherapy-induced nausea (CIN) has a significant negative impact on the quality of life of cancer patients. The use of 5-hydroxytryptamine-3 (5-HT 3 ) receptor antagonists (RAs) has reduced the risk of vomiting, but (except for palonosetron) their effect on nausea, especially delayed nausea, is limited. This article reviews the role of NK 1 RAs when combined with 5-HT 3 RA-dexamethasone in CIN prophylaxis. Aprepitant has not shown consistent superiority over a two-drug (ondansetron-dexamethasone) combination in nausea control after cisplatin- or anthracycline-cyclophosphamide (AC)-based highly emetogenic chemotherapy (HEC). Recently, dexamethasone and dexamethasone-metoclopramide were demonstrated to be non-inferior to aprepitant and aprepitant-dexamethasone, respectively, for the control of delayed nausea after HEC (AC/cisplatin), and are now recognized in the guidelines. The potential impact of the new NK 1 RAs rolapitant and netupitant (oral fixed combination with palonosetron, as NEPA) in CIN prophylaxis is discussed. While the clinical significance of the effect on nausea of the rolapitant-granisetron-dexamethasone combination after cisplatin is not conclusive, rolapitant addition showed no improvement in nausea prophylaxis after AC or moderately emetogenic chemotherapy (MEC). NEPA was superior to palonosetron in the control of nausea after HEC (AC/cisplatin). Moreover, the efficacy of NEPA in nausea control was maintained over multiple cycles of HEC/MEC. Recently, NK 1 RAs have been challenged by olanzapine, with olanzapine showing superior efficacy in nausea prevention after HEC. Fixed antiemetic combinations (such as NEPA) or new antiemetics with a long half-life that may be given once per chemotherapy cycle (rolapitant or NEPA) may improve patient compliance with antiemetic treatment.

  7. Risk of tuberculosis in patients treated with tumor necrosis factor antagonists due to incomplete prevention of reactivation of latent infection.

    Science.gov (United States)

    Gómez-Reino, Juan J; Carmona, Loreto; Angel Descalzo, Miguel

    2007-06-15

    To evaluate the causes of new cases of active tuberculosis (ATB) in patients treated with tumor necrosis factor (TNF) antagonists included in the national registry BIOBADASER (Base de Datos de Productos Biológicos de la Sociedad Española de Reumatología) after the dissemination of recommendations to prevent reactivation of latent tuberculosis infection (LTBI). Incidence rate of ATB per 100,000 patient-years and 95% confidence intervals (95% CIs) were calculated in patients entering BIOBADASER after March 2002 and were stratified by compliance with recommendations (complete or incomplete). ATB rates in BIOBADASER were compared with the background rate and the rate in the rheumatoid arthritis cohort EMECAR (Estudio de la Morbilidad y Expresión Clínica de la Artritis Reumatoide) not treated with TNF antagonists. In addition, rates of ATB among patients treated with adalimumab, etanercept, and infliximab were estimated and compared only for treatments started after September 2003, when all 3 drugs became fully available. Following March 2002, a total of 5,198 patients treated with a TNF antagonist were registered in BIOBADASER. Fifteen ATB cases were noted (rate 172 per 100,000 patient-years, 95% CI 103-285). Recommendations were fully followed in 2,655 treatments. The probability of developing ATB was 7 times higher when recommendations were not followed (incidence rate ratio 7.09, 95% CI 1.60-64.69). Two-step tuberculosis skin test for LTBI was the major failure in complying with recommendations. New cases of ATB still occur in patients treated with all available TNF antagonists due to lack of compliance with recommendations to prevent reactivation of LTBI. Continuous evaluation of recommendations is required to improve clinical practice.

  8. Casopitant: a novel NK1-receptor antagonist in the prevention of chemotherapy-induced nausea and vomiting

    Directory of Open Access Journals (Sweden)

    Christina Ruhlmann

    2009-05-01

    Full Text Available Christina Ruhlmann, Jørn HerrstedtOdense University Hospital, Department of Oncology, Odense, DenmarkAbstract: Chemotherapy-induced nausea and vomiting (CINV are among the most feared and distressing symptoms experienced by patients with cancer. The knowledge of the pathogenesis and neuropharmacology of CINV has expanded enormously over the last decades, the most significant discoveries being the role of 5-hydroxytryptamine (5-HT3- and neurokinin (NK1 receptors in the emetic reflex arch. This has led to the development of two new classes of antiemetics acting as highly selective antagonists at one of these receptors. These drugs have had a huge impact in the protection from chemotherapy-induced vomiting, whereas the effect on nausea seems to be limited. The first NK1 receptor antagonist, aprepitant, became clinically available in 2003, and casopitant, the second in this class of antiemetics, has now completed phase III trials. This review delineates the properties and clinical use of casopitant in the prevention of CINV.Keywords: casopitant, GW679769, NK1 receptor antagonist, chemotherapy, emesis

  9. Effects of cannabinoid and glutamate receptor antagonists and their interactions on learning and memory in male rats.

    Science.gov (United States)

    Barzegar, Somayeh; Komaki, Alireza; Shahidi, Siamak; Sarihi, Abdolrahman; Mirazi, Naser; Salehi, Iraj

    2015-04-01

    Despite previous findings on the effects of cannabinoid and glutamatergic systems on learning and memory, the effects of the combined stimulation or the simultaneous inactivation of these two systems on learning and memory have not been studied. In addition, it is not clear whether the effects of the cannabinoid system on learning and memory occur through the modulation of glutamatergic synaptic transmission. Hence, in this study, we examined the effects of the simultaneous inactivation of the cannabinoid and glutamatergic systems on learning and memory using a passive avoidance (PA) test in rats. On the test day, AM251, which is a CB1 cannabinoid receptor antagonist; MK-801, which is a glutamate receptor antagonist; or both substances were injected intraperitoneally into male Wistar rats 30min before placing the animal in a shuttle box. A learning test (acquisition) was then performed, and a retrieval test was performed the following day. Learning and memory in the PA test were significantly different among the groups. The CB1 receptor antagonist improved the scores on the PA acquisition and retention tests. However, the glutamatergic receptor antagonist decreased the acquisition and retrieval scores on the PA task. The CB1 receptor antagonist partly decreased the glutamatergic receptor antagonist effects on PA learning and memory. These results indicated that the acute administration of a CB1 antagonist improved cognitive performance on a PA task in normal rats and that a glutamate-related mechanism may underlie the antagonism of cannabinoid by AM251 in learning and memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Novel Fluorine-Containing NMDA Antagonists for Brain Imaging: In Vitro Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, M.; Biegon, A.

    2001-01-01

    The NMDA receptor has been implicated in neuronal death following stroke, brain injury and neurodegenerative disorders (e.g. Alzheimer's, Parkinson's and Huntington's disease) and in physiological functions (e.g. memory and cognition). Non-competitive antagonists, such as MK- 801 and CNS-1102, that block the action of glutamate at the NMDA receptor have been shown to be neuroprotective by blocking the influx of calcium into the cells. As a result, they are being considered as therapeutic agents for the above mentioned diseases. Several Fluorine-containing novel analogs of NMDA channel blockers have been synthesized and evaluated in search of a compound suitable for 18F labeling and Positron Emission Tomography (PET). Based on in vitro binding assay studies on rat brain membranes, the novel compounds examined displayed a range of affinities. Preliminary analyses indicated that chlorine is the best halogen on the ring, and that ethyl fluoro derivatives are more potent than methyl-fluoro compounds. Further analysis based on autoradiography will be needed to examine the regional binding characteristics of the novel compounds examined in this study. Labeling with 18F will allow the use of these compounds in humans, generating new insights into mechanisms and treatment of diseases involving malfunction of the glutamatergic system in the brain.

  11. A selective, non-peptide CRF receptor 1 antagonist prevents sodium lactate-induced acute panic-like responses.

    Science.gov (United States)

    Shekhar, Anantha; Johnson, Philip L; Fitz, Stephanie D; Nakazato, Atsuro; Chaki, Shigeyuki; Steckler, Thomas; Schmidt, Mark

    2011-04-01

    Corticotropin releasing factor (CRF) is implicated in a variety of stress-related disorders such as depression and anxiety, and blocking CRF receptors is a putative strategy for treating such disorders. Using a well-studied animal model of panic, we tested the efficacy of JNJ19567470/CRA5626, a selective, non-peptidergic CRF type 1 receptor (CRF1) antagonist (3, 10 and 40 mg/kg intraperitoneal injection), in preventing the sodium lactate (NaLac)-induced panic-like behavioural and cardiovascular responses. Adult male rats with chronic reduction of GABA levels (by inhibition of GABA synthesis with l-allyglycine, a glutamic acid decarboxylase inhibitor) in the dorsomedial/perifornical hypothalamus are highly anxious and exhibit physiological and behavioural responses to intravenous NaLac infusions similar to patients with panic disorder. These 'panic-prone' rats pre-treated with vehicle injections displayed NaLac-induced increases in autonomic responses (i.e. tachycardia and hypertensive responses), anxiety-like behaviour in the social interaction test, and flight-like increases in locomotor activity. However, systemically injecting such panic-prone rats with the highest dose of CRF1 receptor antagonist prior to NaLac infusions blocked all NaLac-induced behaviour and cardiovascular responses. These data suggest that selective CRF1 receptor antagonists could be a novel target for developing anti-panic drugs that are as effective as benzodiazepines in acute treatment of a panic attack without the deleterious side-effects (e.g. sedation and cognitive impairment) associated with benzodiazepines.

  12. N-methyl-D-aspartate promotes the survival of cerebellar granule cells: pharmacological characterization

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1989-01-01

    -amino-5-phosphonovalerate, D-2-amino-7-phosphonoheptanoate, dextromethorphan and (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imin emaleate (MK 801). The most potent antagonist tested was MK-801. In contrast, non-selective antagonists, including kynurenate, were much less effective...

  13. Phase III trial of casopitant, a novel neurokinin-1 receptor antagonist, for the prevention of nausea and vomiting in patients receiving moderately emetogenic chemotherapy

    DEFF Research Database (Denmark)

    Herrstedt, Jørn; Apornwirat, Wichit; Shaharyar, Ahmed

    2009-01-01

    PURPOSE: The purpose of this phase III trial was to evaluate the efficacy and safety of regimens containing casopitant, a novel neurokinin-1 receptor antagonist, for the prevention of chemotherapy-induced nausea and vomiting during the first cycle in patients receiving moderately emetogenic chemo...

  14. Clinical evaluation of leukotriene receptor antagonists in preventing common cold-like symptoms in bronchial asthma patients.

    Science.gov (United States)

    Horiguchi, Takahiko; Ohira, Daisuke; Kobayashi, Kashin; Hirose, Masahiro; Miyazaki, Junichi; Kondo, Rieko; Tachikawa, Soichi

    2007-09-01

    We investigated the possibility of preventing common cold-like symptoms as a previously unknown benefit of leukotriene receptor antagonists (LTRAs). A total of 279 adult patients with bronchial asthma referred to our hospital between June and December 2004 were retrospectively analyzed. Patients were divided into LTRA treated and untreated groups. Frequency of acute exacerbations and number of visits to emergency rooms and of hospital admissions were analyzed as indicators of frequency of infections and asthma exacerbation over the previous 12 months. Irrespective of inhaled corticosteroid (ICS) use, frequency of infections was significantly lower in the LTRA treated group (0.3 +/- 0.7 times/year) than in the LTRA untreated group (1.6 +/- 4.2 times/year) (P cold-like symptoms. Frequency of acute exacerbations and number of hospital admissions were significantly lower in the LTRA treated versus LTRA untreated group (0.4 +/- 0.8 versus 2.7 +/- 4.3 times/year and 0.0 +/- 0.2 versus 0.4 +/- 0.7 times/year, respectively; both P cold-like symptoms than those not receiving LTRAs. LTRAs play an important role in reducing the incidence of common cold-like symptoms among asthma patients and in suppressing exacerbation of asthma symptoms possibly associated with these symptoms.

  15. Non-analgesic effects of opioids: management of opioid-induced constipation by peripheral opioid receptor antagonists: prevention or withdrawal?

    Science.gov (United States)

    Holzer, Peter

    2012-01-01

    The therapeutic action of opioid analgesics is compromised by peripheral adverse effects among which opioid-induced constipation (OIC) is the most disabling, with a prevalence reported to vary between 15 and 90 %. Although OIC is usually treated with laxatives, there is insufficient clinical evidence that laxatives are efficacious in this indication. In contrast, there is ample evidence from double- blind, randomized and placebo-controlled trials that peripheral opioid receptor antagonists (PORAs) counteract OIC. This specific treatment modality is currently based on subcutaneous methylnaltrexone for the interruption of OIC in patients with advanced illness, and a fixed combination of oral prolonged-release naloxone with prolonged-release oxycodone for the prevention of OIC in the treatment of non-cancer and cancer pain. Both drugs counteract OIC while the analgesic effect of opioids remains unabated. The clinical studies show that more than 50 % of the patients with constipation under opioid therapy may benefit from the use of PORAs, while PORA-resistant patients are likely to suffer from non-opioid-induced constipation, the prevalence of which increases with age. While the addition of naloxone to oxycodone seems to act by preventing OIC, the intermittent dosing of methylnaltrexone every other day seems to stimulate defaecation by provoking an intestinal withdrawal response. The availability of PORAs provides a novel opportunity to specifically control OIC and other peripheral adverse effects of opioid analgesics (e.g., urinary retention and pruritus). The continuous dosing of a PORA has the advantage of few adverse effects, while intermittent dosing of a PORA can be associated with abdominal cramp-like pain.

  16. Effect of NMDA, a Specific Agonist to NMDA Receptor Complex, on Rat Hippocampus.

    Science.gov (United States)

    Motin, V G; Yasnetsov, V V

    2015-10-01

    Removal of Mg2+ ions from perfusion medium provoked epileptiform activity in CA1 field of surviving rat hippocampal slices manifested in generation of extra population spikes. MK-801 (100 μM), a specific non-competitive antagonist to NMDA-receptor complex, prevented this effect. NMDA (20 μM), the specific agonist to this complex, produced no significant effect on the orthodromic population spikes, but when applied at concentrations of 30 or 40 μM, it inhibited them partially (by 21-28%) or almost completely (by 98-99%), correspondingly. Thus, depending on concentration, NMDA can inhibit the synaptic transmission in Schaffer collaterals-hippocampal CA1 pyramidal neurons axis without triggering the epileptiform activity. D-AP5 (50 μM), a competitive antagonist to NMDA-receptor complex, completely prevented the inhibitory effect of NMDA (40 μM). While MK-801 (100 μM) almost completely prevented the inhibitory effect of NMDA, it did not eliminate it when applied after the agonist. Thus, MK-801 can prevent the inhibitory action of NMDA on synaptic transmission in Schaffer collaterals-hippocampal CA1 pyramidal neurons axis via blocking the channel of NMDA-receptor complex, while NMDA exerts its effect only via activation of NMDA receptors.

  17. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist.

    Science.gov (United States)

    Hoffman, Hal M; Rosengren, Sanna; Boyle, David L; Cho, Jae Y; Nayar, Jyothi; Mueller, James L; Anderson, Justin P; Wanderer, Alan A; Firestein, Gary S

    Familial cold autoinflammatory syndrome (FCAS) is an autosomal dominant disorder characterised by recurrent episodes of rash, arthralgia, and fever after cold exposure. The genetic basis of this disease has been elucidated. Cryopyrin, the protein that is altered in FCAS, is one of the adaptor proteins that activate caspase 1, resulting in release of interleukin 1. An experimental cold challenge protocol was developed to study the acute inflammatory mechanisms occurring after a general cold exposure in FCAS patients and to investigate the effects of pretreatment with an antagonist of interleukin 1 receptor (IL-1Ra). ELISA, real-time PCR, and immunohistochemistry were used to measure cytokine responses. After cold challenge, untreated patients with FCAS developed rash, fever, and arthralgias within 1-4 h. Significant increases in serum concentrations of interleukin 6 and white-blood-cell counts were seen 4-8 h after cold challenge. Serum concentrations of interleukin 1 and cytokine mRNA in peripheral-blood leucocytes were not raised, but amounts of interleukin 1 protein and mRNA were high in affected skin. IL-1Ra administered before cold challenge blocked symptoms and increases in white-blood-cell counts and serum interleukin 6. The ability of IL-1Ra to prevent the clinical features and haematological and biochemical changes in patients with FCAS indicates a central role for interleukin 1beta in this disorder. Involvement of cryopyrin in activation of caspase 1 and NF-kappaB signalling suggests that it might have a role in many chronic inflammatory diseases. These findings support a new therapy for a disorder with no previously known acceptable treatment. They also offer insights into the role of interleukin 1beta in more common inflammatory diseases.

  18. Mice lacking NMDA receptors in parvalbumin neurons display normal depression-related behavior and response to antidepressant action of NMDAR antagonists.

    Directory of Open Access Journals (Sweden)

    Laura Pozzi

    Full Text Available The underlying circuit imbalance in major depression remains unknown and current therapies remain inadequate for a large group of patients. Discovery of the rapid antidepressant effects of ketamine--an NMDA receptor (NMDAR antagonist--has linked the glutamatergic system to depression. Interestingly, dysfunction in the inhibitory GABAergic system has also been proposed to underlie depression and deficits linked to GABAergic neurons have been found with human imaging and in post-mortem material from depressed patients. Parvalbumin-expressing (PV GABAergic interneurons regulate local circuit function through perisomatic inhibition and their activity is NMDAR-dependent, providing a possible link between NMDAR and the inhibitory system in the antidepressant effect of ketamine. We have therefore investigated the role of the NMDAR-dependent activity of PV interneurons for the development of depression-like behavior as well as for the response to rapid antidepressant effects of NMDAR antagonists. We used mutant mice lacking NMDA neurotransmission specifically in PV neurons (PV-Cre+/NR1f/f and analyzed depression-like behavior and anhedonia. To study the acute and sustained effects of a single NMDAR antagonist administration, we established a behavioral paradigm of repeated exposure to forced swimming test (FST. We did not observe altered behavioral responses in the repeated FST or in a sucrose preference test in mutant mice. In addition, the behavioral response to administration of NMDAR antagonists was not significantly altered in mutant PV-Cre+/NR1f/f mice. Our results show that NMDA-dependent neurotransmission in PV neurons is not necessary to regulate depression-like behaviors, and in addition that NMDARs on PV neurons are not a direct target for the NMDAR-induced antidepressant effects of ketamine and MK801.

  19. Interactions of a Dopamine D1 Receptor Agonist with Glutamate NMDA Receptor Antagonists on the Volitional Consumption of Ethanol by the mHEP Rat

    Directory of Open Access Journals (Sweden)

    Helen L. Williams

    2013-03-01

    Full Text Available Stimulation of the dopamine D1 receptor is reported to cause the phosphorylation of DARPP-32 at the thre34 position and activates the protein. If intracellular Ca2+ is increased, such as after activation of the glutamate NMDA receptor, calcineurin activity increases and the phosphates will be removed. This balance of phosphorylation control suggests that a D1 receptor agonist and a NMDA glutamate receptor antagonist should have additive or synergistic actions to increase activated DARPP-32 and consequent behavioral effects. This hypothesis was tested in a volitional consumption of ethanol model: the selectively bred Myers’ high ethanol preferring (mHEP rat. A 3-day baseline period was followed by 3-days of twice daily injections of drug(s or vehicle(s and then a 3-day post-treatment period. Vehicle, the D1 agonist SKF 38393, the non-competitive NMDA receptor antagonist memantine, or their combination were injected 2 h before and after lights out. The combination of 5.0 mg/kg SKF 38393 with either 3.0 or 10 mg/kg memantine did not produce an additive or synergistic effect. For example, 5.0 mg/kg SKF reduced consumption of ethanol by 27.3% and 10 mg/kg memantine by 39.8%. When combined, consumption declined by 48.2% and the proportion of ethanol solution to total fluids consumed declined by 17%. However, the consumption of food also declined by 36.6%. The latter result indicates that this dose combination had a non-specific effect. The combination of SKF 38393 with (+-MK-801, another NMDA receptor antagonist, also failed to show an additive effect. The lack of additivity and specificity suggests that the hypothesis may not be correct for this in vivo model.  The interaction of these different receptor systems with intraneuronal signaling and behaviors needs to be studied further.

  20. Developmental Programming: Prenatal and Postnatal Androgen Antagonist and Insulin Sensitizer Interventions Prevent Advancement of Puberty and Improve LH Surge Dynamics in Prenatal Testosterone-Treated Sheep.

    Science.gov (United States)

    Padmanabhan, Vasantha; Veiga-Lopez, Almudena; Herkimer, Carol; Abi Salloum, Bachir; Moeller, Jacob; Beckett, Evan; Sreedharan, Rohit

    2015-07-01

    Prenatal T excess induces maternal hyperinsulinemia, early puberty, and reproductive/metabolic defects in the female similar to those seen in women with polycystic ovary syndrome. This study addressed the organizational/activational role of androgens and insulin in programming pubertal advancement and periovulatory LH surge defects. Treatment groups included the following: 1) control; 2) prenatal T; 3) prenatal T plus prenatal androgen antagonist, flutamide; 4) prenatal T plus prenatal insulin sensitizer, rosiglitazone; 5) prenatal T and postnatal flutamide; 6) prenatal T and postnatal rosiglitazone; and 7) prenatal T and postnatal metformin. Prenatal treatments spanned 30-90 days of gestation and postnatal treatments began at approximately 8 weeks of age and continued throughout. Blood samples were taken twice weekly, beginning at approximately 12 weeks of age to time puberty. Two-hour samples after the synchronization with prostaglandin F2α were taken for 120 hours to characterize LH surge dynamics at 7 and 19 months of age. Prenatal T females entered puberty earlier than controls, and all interventions prevented this advancement. Prenatal T reduced the percentage of animals having LH surge, and females that presented LH surge exhibited delayed timing and dampened amplitude of the LH surge. Prenatal androgen antagonist, but not other interventions, restored LH surges without normalizing the timing of the surge. Normalization of pubertal timing with prenatal/postnatal androgen antagonist and insulin sensitizer interventions suggests that pubertal advancement is programmed by androgenic actions of T involving insulin as a mediary. Restoration of LH surges by cotreatment with androgen antagonist supports androgenic programming at the organizational level.

  1. Factor Xa inhibitors versus vitamin K antagonists for preventing cerebral or systemic embolism in patients with atrial fibrillation.

    Science.gov (United States)

    Bruins Slot, Karsten Mh; Berge, Eivind

    2018-03-06

    Factor Xa inhibitors and vitamin K antagonists (VKAs) are now recommended in treatment guidelines for preventing stroke and systemic embolic events in people with atrial fibrillation (AF). This is an update of a Cochrane review previously published in 2013. To assess the effectiveness and safety of treatment with factor Xa inhibitors versus VKAs for preventing cerebral or systemic embolic events in people with AF. We searched the trials registers of the Cochrane Stroke Group and the Cochrane Heart Group (September 2016), the Cochrane Central Register of Controlled Trials (CENTRAL) (August 2017), MEDLINE (1950 to April 2017), and Embase (1980 to April 2017). We also contacted pharmaceutical companies, authors and sponsors of relevant published trials. We used outcome data from marketing authorisation applications of apixaban, edoxaban and rivaroxaban that were submitted to regulatory authorities in Europe and the USA. We included randomised controlled trials (RCTs) that directly compared the effects of long-term treatment (lasting more than four weeks) with factor Xa inhibitors versus VKAs for preventing cerebral and systemic embolism in people with AF. The primary efficacy outcome was the composite endpoint of all strokes and systemic embolic events. Two review authors independently extracted data, and assessed the quality of the trials and the risk of bias. We calculated a weighted estimate of the typical treatment effect across trials using the odds ratio (OR) with 95% confidence interval (CI) by means of a fixed-effect model. In case of moderate or high heterogeneity of treatment effects, we used a random-effects model to compare the overall treatment effects. We also performed a pre-specified sensitivity analysis excluding any open-label studies. We included data from 67,688 participants randomised into 13 RCTs. The included trials directly compared dose-adjusted warfarin with either apixaban, betrixaban, darexaban, edoxaban, idraparinux, idrabiotaparinux, or

  2. The Effects of Nicotine on MK-801-induced Attentional Deficits: An Animal Model of Schizophrenia

    Science.gov (United States)

    2002-01-01

    ECA) and the National Comorbidity Study (NCS) (USDHHS, 1999; APA, 2000). Support for a gender bias in schizophrenia is mixed with hospital- based... genders . Schizophrenia tends to have a later onset and a better prognosis in women (Hafner et al., 1998; APA, 2000; Leung & Chue, 2000). The cause...has been proposed that smoking may decrease the anxiety, tension, and dysphoria common in schizophrenia (Batel, 2000) in addition to regulating

  3. Voluntary wheel running ameliorates symptoms of MK-801-induced schizophrenia in mice.

    Science.gov (United States)

    Kim, Tae-Woon; Kang, Hyun-Sik; Park, Joon-Ki; Lee, Sam-Jun; Baek, Sang-Bin; Kim, Chang-Ju

    2014-12-01

    Schizophrenia is a chronic and severe mental disorder characterized by the disintegration of cognitive thought processes and emotional responses. Despite the precise cause of schizophrenia remains unclear, it is hypothesized that a dysregulation of the N‑methyl‑D‑aspartate (NMDA) receptor in the brain is a major contributing factor to its development. Brain‑derived neurotrophic factor (BDNF) is a member of the neurotrophin family and is implicated in learning and memory processes. In the present study, we investigated in vivo the effects of voluntary wheel running on behavioral symptoms associated with NMDA receptor expression, using MK‑801‑induced schizophrenic mice. Abilify (aripiprazole), a drug used to treat human schizophrenia patients, was used as the positive control. For the assessment of behavioral symptoms affecting locomotion, social interaction and spatial working memory, the open‑field, social interaction and Morris water maze tests were conducted. For investigating the biochemical parameters, NMDA receptor expression in the hippocampal CA2‑3 regions and prefrontal cortex was detected by NMDA immunofluorescence and BDNF expression in the hippocampus was measured using western blot analysis. MK‑801 injection for 14 days induced schizophrenia‑like behavioral abnormalities with decreased expression of the NMDA receptor and BDNF in the brains of mice. The results indicated that free access to voluntary wheel running for 2 weeks alleviated schizophrenia‑like behavioral abnormalities and increased the expression of NMDA receptor and BDNF, comparable to the effects of aripiprazole treatment. In the present study, the results suggest that NMDA receptor hypofunctioning induced schizophrenia‑like behaviors, and that voluntary wheel running was effective in reducing these symptoms by increasing NMDA receptor and BDNF expression, resulting in an improvement of disease related behavioral deficits.

  4. Spontaneous alternation behaviour in rats: kynurenic acid attenuated deficits induced by MK-801

    Czech Academy of Sciences Publication Activity Database

    Hliňák, Zdeněk; Krejčí, I.

    2006-01-01

    Roč. 168, č. 1 (2006), s. 144-149 ISSN 0166-4328 Institutional research plan: CEZ:AV0Z50110509 Keywords : kynurenic acid * locomotor activity * spontaneous alternation Subject RIV: ED - Physiology Impact factor: 2.591, year: 2006

  5. Development of a peptidomimetic antagonist of neuropeptide FF receptors for the prevention of opioid-induced hyperalgesia.

    Science.gov (United States)

    Bihel, Frédéric; Humbert, Jean-Paul; Schneider, Séverine; Bertin, Isabelle; Wagner, Patrick; Schmitt, Martine; Laboureyras, Emilie; Petit-Demoulière, Benoît; Schneider, Elodie; Mollereau, Catherine; Simonnet, Guy; Simonin, Frédéric; Bourguignon, Jean-Jacques

    2015-03-18

    Through the development of a new class of unnatural ornithine derivatives as bioisosteres of arginine, we have designed an orally active peptidomimetic antagonist of neuropeptide FF receptors (NPFFR). Systemic low-dose administration of this compound to rats blocked opioid-induced hyperalgesia, without any apparent side-effects. Interestingly, we also observed that this compound potentiated opioid-induced analgesia. This unnatural ornithine derivative provides a novel therapeutic approach for both improving analgesia and reducing hyperalgesia induced by opioids in patients being treated for chronic pain.

  6. Radiation-induced glomerular thrombus formation and nephropathy are not prevented by the ADP receptor antagonist clopidogrel

    International Nuclear Information System (INIS)

    Poele, Johannes A.M. te; Kleef, Ellen M. van; Wal, Anja F. van der; Dewit, Luc G.H.; Stewart, Fiona A.

    2001-01-01

    Purpose: To assess the effects of kidney irradiation on glomerular adenosine diphosphatase (ADPase) activity and intraglomerular microthrombus formation, and their correlation to the development of renal functional impairment. Methods and Materials: C3H/HenAf-nu + mice were given single-dose or fractionated kidney irradiations. Glomerular ADPase activity was measured using a cerium-based histochemical method. Microthrombus formation within the glomeruli was assessed by a semiquantitative immunohistochemical analysis of fibrinogen/fibrin deposits. Renal function was assessed by the [ 51 Cr]EDTA retention assay. Results: The ADPase activity was significantly reduced, to approximately 50% of pretreatment value, 4-40 weeks after 10-16 Gy single-dose irradiation and at 44 weeks after 20x2 Gy. No dose-effect relationship was found. An approximately fourfold increase in glomerular fibrinogen/fibrin staining was observed at 1 year after irradiation. This increase was not influenced by treating the mice with daily, oral clopidogrel, a platelet ADP receptor antagonist, which reduced platelet aggregation by more than 75%. Radiation-induced impairment of glomerular filtration was also not affected by the clopidogrel treatment. Conclusion: These data indicate that irradiation significantly reduced glomerular ADPase activity, which correlated with an increased glomerular fibrinogen/fibrin deposition. We were not able to reduce these prothrombotic changes, nor to protect against radiation nephropathy, by pharmacological intervention with an ADP-receptor antagonist

  7. ADN-1184 a monoaminergic ligand with 5-HT(6/7) receptor antagonist activity: pharmacological profile and potential therapeutic utility.

    Science.gov (United States)

    Kołaczkowski, M; Mierzejewski, P; Bieńkowski, P; Wesołowska, A; Newman-Tancredi, A

    2014-02-01

    Many dementia patients exhibit behavioural and psychological symptoms (BPSD) that include psychosis, aggressivity, depression and anxiety. Antipsychotic drugs are frequently prescribed but fail to significantly attenuate mood deficits, may interfere with cognitive function and are associated with motor and cardiac side effects, which are problematic in elderly patients. A need therefore exists for drugs that are better suited for the treatment of BPSD. We used in vitro cellular and in vivo behavioural tests to characterize ADN-1184, a novel arylsulfonamide ligand with potential utility for treatment of BPSD. ADN-1184 exhibits substantial 5-HT6 /5-HT7 /5-HT2A /D2 receptor affinity and antagonist properties in vitro. In tests of antipsychotic-like activity, it reversed MK-801-induced hyperactivity and stereotypies and inhibited conditioned avoidance response (MED = 3 mg·kg(-1) i.p.). Remarkably, ADN-1184 also reduced immobility time in the forced swim test at low doses (0.3 and 1 mg·kg(-1) i.p.; higher doses were not significantly active). Notably, up to 30 mg·kg(-1) ADN-1184 did not impair memory performance in the passive avoidance test or elicit significant catalepsy and only modestly inhibited spontaneous locomotor activity (MED = 30 mg·kg(-1) i.p.). ADN-1184 combines antipsychotic-like with antidepressant-like properties without interfering with memory function or locomotion. This profile is better than that of commonly used atypical antipsychotics tested under the same conditions and suggests that it is feasible to identify drugs that improve BPSD, without exacerbating cognitive deficit or movement impairment, which are of particular concern in patients with dementia. © 2013 The British Pharmacological Society.

  8. ADN-1184 a monoaminergic ligand with 5-HT6/7 receptor antagonist activity: pharmacological profile and potential therapeutic utility

    Science.gov (United States)

    Kołaczkowski, M; Mierzejewski, P; Bieńkowski, P; Wesołowska, A; Newman-Tancredi, A

    2014-01-01

    Background and Purpose Many dementia patients exhibit behavioural and psychological symptoms (BPSD) that include psychosis, aggressivity, depression and anxiety. Antipsychotic drugs are frequently prescribed but fail to significantly attenuate mood deficits, may interfere with cognitive function and are associated with motor and cardiac side effects, which are problematic in elderly patients. A need therefore exists for drugs that are better suited for the treatment of BPSD. Experimental Approach We used in vitro cellular and in vivo behavioural tests to characterize ADN-1184, a novel arylsulfonamide ligand with potential utility for treatment of BPSD. Key Results ADN-1184 exhibits substantial 5-HT6/5-HT7/5-HT2A/D2 receptor affinity and antagonist properties in vitro. In tests of antipsychotic-like activity, it reversed MK-801-induced hyperactivity and stereotypies and inhibited conditioned avoidance response (MED = 3 mg·kg−1 i.p.). Remarkably, ADN-1184 also reduced immobility time in the forced swim test at low doses (0.3 and 1 mg·kg−1 i.p.; higher doses were not significantly active). Notably, up to 30 mg·kg−1 ADN-1184 did not impair memory performance in the passive avoidance test or elicit significant catalepsy and only modestly inhibited spontaneous locomotor activity (MED = 30 mg·kg−1 i.p.). Conclusions and Implications ADN-1184 combines antipsychotic-like with antidepressant-like properties without interfering with memory function or locomotion. This profile is better than that of commonly used atypical antipsychotics tested under the same conditions and suggests that it is feasible to identify drugs that improve BPSD, without exacerbating cognitive deficit or movement impairment, which are of particular concern in patients with dementia. PMID:24199650

  9. I.c.v. administration of the nonsteroidal glucocorticoid receptor antagonist, CP-472555, prevents exacerbated hypoglycemia during repeated insulin administration.

    Science.gov (United States)

    Kale, A Y; Paranjape, S A; Briski, K P

    2006-06-30

    Hypoglycemia elicits an integrated array of CNS-mediated counterregulatory responses, including activation of the hypothalamic-pituitary-adrenal axis. The role of antecedent adrenocortical hypersecretion in impaired glucose counterregulation remains controversial. The present studies utilized the selective, nonsteroidal glucocorticoid receptor antagonist, CP-472555, as a pharmacological tool to investigate the hypothesis that hypoglycemic hypercorticosteronemia modulates CNS efferent autonomic and neuroendocrine motor responses to recurring insulin-induced hypoglycemia via glucocorticoid receptor-dependent mechanisms. Groups of adult male rats were injected s.c. with either one or four doses of the intermediate-acting insulin, Humulin neutral protamine Hagedorn (NPH), on as many days, while controls were injected with diluent alone. Animals injected with four doses of insulin were pretreated by i.c.v. administration of graded doses of the glucocorticoid receptor antagonist or vehicle alone prior to the first three doses of insulin. Repeated daily injection of NPH exacerbated hypoglycemia, attenuated patterns of glucagon and epinephrine secretion, and diminished neuronal transcriptional activation in discrete CNS metabolic loci, including the lateral hypothalamic area, dorsomedial hypothalamic nucleus, paraventricular hypothalamic nucleus, and nucleus of the solitary tract. While i.c.v. delivery of 25 or 100 ng doses of CP-472555 did not alter any of these parameters, animals treated with 500 ng exhibited circulating glucose, glucagon, and epinephrine levels that were similar to those in rats injected with one dose of insulin, as well as a reversal of recurring insulin-induced hypoglycemia-associated reductions in Fos immunolabeling in the lateral hypothalamic area, dorsomedial hypothalamic nucleus, and paraventricular hypothalamic nucleus. These results provide unique pharmacological evidence that antecedent activation of central glucocorticoid receptor is required

  10. The M1 Muscarinic Receptor Antagonist VU0255035 Delays the Development of Status Epilepticus after Organophosphate Exposure and Prevents Hyperexcitability in the Basolateral Amygdala

    Science.gov (United States)

    Miller, Steven L.; Aroniadou-Anderjaska, Vassiliki; Pidoplichko, Volodymyr I.; Figueiredo, Taiza H.; Apland, James P.; Krishnan, Jishnu K. S.

    2017-01-01

    Exposure to organophosphorus toxins induces seizures that progress to status epilepticus (SE), which can cause brain damage or death. Seizures are generated by hyperstimulation of muscarinic receptors, subsequent to inhibition of acetylcholinesterase; this is followed by glutamatergic hyperactivity, which sustains and reinforces seizure activity. It has been unclear which muscarinic receptor subtypes are involved in seizure initiation and the development of SE in the early phases after exposure. Here, we show that pretreatment of rats with the selective M1 receptor antagonist, VU0255035 [N-(3-oxo-3-(4-(pyridine-4-yl)piperazin-1-yl)propyl)-benzo[c][1,2,5]thiadiazole-4 sulfonamide], significantly suppressed seizure severity and prevented the development of SE for about 40 minutes after exposure to paraoxon or soman, suggesting an important role of the M1 receptor in the early phases of seizure generation. In addition, in in vitro brain slices of the basolateral amygdala (a brain region that plays a key role in seizure initiation after nerve agent exposure), VU0255035 blocked the effects produced by bath application of paraoxon—namely, a brief barrage of spontaneous inhibitory postsynaptic currents, followed by a significant increase in the ratio of the total charge transferred by spontaneous excitatory postsynaptic currents over that of the inhibitory postsynaptic currents. Furthermore, paraoxon enhanced the hyperpolarization-activated cation current Ih in basolateral amygdala principal cells, which could be one of the mechanisms underlying the increased glutamatergic activity, an effect that was also blocked in the presence of VU0255035. Thus, selective M1 antagonists may be an efficacious pretreatment in contexts in which there is risk for exposure to organophosphates, as these antagonists will delay the development of SE long enough for medical assistance to arrive. PMID:27799295

  11. Prevention of Spinal Anesthesia-Induced Hypotension During Cesarean Delivery by 5-Hydroxytryptamine-3 Receptor Antagonists: A Systematic Review and Meta-analysis and Meta-regression.

    Science.gov (United States)

    Heesen, Michael; Klimek, Markus; Hoeks, Sanne E; Rossaint, Rolf

    2016-10-01

    Hypotension remains a frequent complication of spinal anesthesia, increasing the risk of nausea and vomiting, altered mental status, and aspiration. The aim of this systematic review and meta-analysis was to determine whether 5-hydroxytryptamine3 (5-HT3) receptor antagonists, administered before the initiation of spinal anesthesia, mitigate hypotension. After a systematic literature search in various databases, randomized placebo-controlled double-blind trials studying the preventive effect of 5-HT3 receptor antagonists were included. A random-effects model was applied, risk ratio (RR, binary variables) or weighted mean difference (continuous variables) with 95% confidence intervals (CIs) were calculated. The primary outcome was the incidence of hypotension. Seventeen trials (8 obstetric, 9 non-obstetric) reporting on 1604 patients were identified. Ondansetron in doses from 2 to 12 mg was studied in 12 trials. Prophylactic 5-HT3 administration significantly reduced the risk of hypotension in the combined analysis of 17 trials, RR 0.54 (95% CI 0.36-0.81, I = 79%). In obstetric trials, the RR was 0.52, 95% CI 0.30-0.88, I = 87% (number needed to treat 4). In non-obstetric studies, the 95% CIs were wide and included a clinically relevant reduction in the risk of hypotension (RR 0.50, 95% CI 0.22-1.16; I = 66%). Contour-enhanced funnel plots confirmed publication bias. Meta-regression showed a significant ondansetron dose response in non-obstetric patients (β = -0.355, P = .04). In the combined and in the obstetric-only analysis, the risk of bradycardia was significantly reduced as was the use of phenylephrine equivalents. 5-HT3 antagonists are effective in reducing the incidence of hypotension and bradycardia; the effects are moderate and are only significant in the subgroup of patients undergoing cesarean delivery. The effects in the non-obstetric population are not significant.

  12. Histamine-2 Receptor Antagonist Cannot Prevent Recurrent Peptic Ulcers in Patients With Atherosclerotic Diseases Who Receive Platelet ADP Receptor Antagonist Monotherapy: A Randomized-Controlled, Double-Blind, and Double-Dummy Trial.

    Science.gov (United States)

    Hsu, Ping-I; Wu, Deng-Chyang; Tsay, Feng-Woei; Cheng, Jin-Shiung; Liu, Chun-Peng; Lai, Kwok-Hung; Chen, Wen-Chi; Wang, Huay-Min; Tsai, Tzung-Jiun; Tsai, Kuo-Wang; Kao, Sung-Shuo

    2017-02-01

    Proton pump inhibitor can effectively prevent recurrent peptic ulcers among atherosclerotic patients receiving clopidogrel monotherapy. However, the interaction between proton pump inhibitors and clopidogrel has raised concerns over the safety of combined use of the two medicines in clinical practice. The aims of this randomized-controlled, double-blind and double-dummy trial were to investigate the efficacy of histamine-2 receptor antagonist (H2RA) in the prevention of recurrent peptic ulcer in patients undergoing thienopyridine monotherapy. From January 2012 to 2016, long-termed thienopyridine users with a peptic ulcer history who did not have peptic ulcers at initial endoscopy were randomly assigned to receive either famotidine (40 mg, before bedtime) or placebo (before bedtime) for 6 months. Follow-up endoscopy was performed at the end of the 6th month and whenever dyspepsia, hematemesis, or melena occurred. The cumulative incidence of recurrent peptic ulcer during the 6-month period was 7.0% in famotidine group (n=114) and 11.4% in the placebo group (n=114). The two patient groups had comparable cumulative incidence of peptic ulcer (difference, 4.4%; 95% confidence interval (CI), -11.7 to 2.9%; P=0.239). Additionally, there was no difference in the cumulative incidence of ulcer bleeding (2.6% vs. 1.8%; difference, 0.8%; 95% CI, -0.6 to 2.4%, P=1.000) between famotidine and placebo groups. However, the former had a lower incidence of gastroduodenal erosion than the latter (21.1% vs. 36.8%; difference, 15.7%; 95% CI, -27.3 to -4.1%; P=0.013). Famotidine cannot decrease the incidence of peptic ulcer or ulcer bleeding in thienopyridine users with atherosclerotic disease and a history of peptic ulcer.

  13. Selective A2A receptor antagonist prevents microglia-mediated neuroinflammation and protects retinal ganglion cells from high intraocular pressure-induced transient ischemic injury.

    Science.gov (United States)

    Madeira, Maria H; Boia, Raquel; Elvas, Filipe; Martins, Tiago; Cunha, Rodrigo A; Ambrósio, António Francisco; Santiago, Ana Raquel

    2016-03-01

    Glaucoma is a leading cause of vision loss and blindness worldwide, characterized by chronic and progressive neuronal loss. Reactive microglial cells have been recognized as a neuropathologic feature, contributing to local inflammation and retinal neurodegeneration. In a recent in vitro work (organotypic cultures), we demonstrated that blockade of adenosine A2A receptor (A2AR) prevents the neuroinflammatory response and affords protection to retinal ganglion cells (RGCs) against exposure to elevated hydrostatic pressure (EHP), to mimic elevated intraocular pressure (IOP), the main risk factor for glaucoma development. Herein, we investigated whether a selective A2AR antagonist (SCH 58261) could modulate retinal microglia reactivity and their inflammatory response. Furthermore, we took advantage of the high IOP-induced transient ischemia (ischemia-reperfusion, I-R) animal model to evaluate the protective role of A2AR blockade in the control of retinal neuroinflammation and neurodegeneration. Primary microglial cell cultures were challenged either with lipopolysaccharide or with EHP, in the presence or absence of A2AR antagonist SCH 58261 (50 nM). In addition, I-R injury was induced in adult Wistar rats after intravitreal administration of SCH 58261 (100 nM, 5 μL). Our results showed that SCH 58261 attenuated microglia reactivity and the increased expression and release of proinflammatory cytokines. Moreover, intravitreal administration of SCH 58261 prevented I-R-induced cell death and RGC loss, by controlling microglial-mediated neuroinflammatory response. These results prompt the proposal that A2AR blockade may have great potential in the management of retinal neurodegenerative diseases characterized by microglia reactivity and RGC death, such as glaucoma and ischemic diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Prevention of alcohol-heightened aggression by CRF-R1 antagonists in mice: critical role for DRN-PFC serotonin pathway.

    Science.gov (United States)

    Quadros, Isabel M; Hwa, Lara S; Shimamoto, Akiko; Carlson, Julia; DeBold, Joseph F; Miczek, Klaus A

    2014-11-01

    Alcohol can escalate aggressive behavior in a significant subgroup of rodents, humans, and nonhuman primates. The present study investigated whether blockade of corticotropin-releasing factor receptor type 1 (CRF-R1) could prevent the emergence of alcohol-heightened aggression in mice. The serotonin (5-HT) pathway from the dorsal raphe nucleus (DRN) to the medial prefrontal cortex (mPFC) by CRF-R1 was investigated as a possible target for the prevention of alcohol-heightened aggressive behavior. Male CFW mice that reliably exhibited aggressive behaviors after consuming 1 g/kg of alcohol received systemic or intra-DRN administration of CRF-R1 antagonists, CP-154,526 or MTIP, before a confrontation with a male conspecific. Blockade of DRN CRF-R1 receptors with both antagonists significantly reduced only alcohol-heightened aggression, whereas systemic administration reduced both alcohol-heightened and species-typical aggression. Next, a 5-HT1A agonist, 8-OH-DPAT, was coadministered with CP-154,526 into the DRN to temporarily disrupt 5-HT activity. This manipulation abolished the antiaggressive effects of intra-DRN CP-154,526. In the mPFC, in vivo microdialysis revealed that extracellular 5-HT levels were increased in mice that consumed alcohol and were then injected with CP-154,526, both systemically or intra-DRN. Neither alcohol nor CP-154,526 alone affected 5-HT release in the mPFC. The present results suggest the DRN as a critical site for CRF-R1 to modulate alcohol-heightened aggression via action on the serotonergic DRN-PFC pathway.

  15. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors

    DEFF Research Database (Denmark)

    Kolko, Miriam; de Turco, Elena B; Diemer, Nils Henrik

    2002-01-01

    To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H...... neuronal cell death. We conclude that glutamatergic synaptic activity modulates sPLA -induced neuronal cell death....

  16. The CRF₁ receptor antagonist SSR125543 prevents stress-induced long-lasting sleep disturbances in a mouse model of PTSD: comparison with paroxetine and d-cycloserine.

    Science.gov (United States)

    Philbert, Julie; Beeské, Sandra; Belzung, Catherine; Griebel, Guy

    2015-02-15

    The selective CRF₁ (corticotropin releasing factor type 1) receptor antagonist SSR125543 has been previously shown to attenuate the long-term behavioral and electrophysiological effects produced by traumatic stress exposure in mice. Sleep disturbances are one of the most commonly reported symptoms by people with post-traumatic stress disorder (PTSD). The present study aims at investigating whether SSR125543 (10 mg/kg/day/i.p. for 2 weeks) is able to attenuate sleep/wakefulness impairment induced by traumatic stress exposure in a model of PTSD in mice using electroencephalographic (EEG) analysis. Effects of SSR125543 were compared to those of the 5-HT reuptake inhibitor, paroxetine (10 mg/kg/day/i.p.), and the partial N-methyl-d-aspartate (NMDA) receptor agonist, d-cycloserine (10 mg/kg/day/i.p.), two compounds which have demonstrated clinical efficacy against PTSD. Baseline EEG recording was performed in the home cage for 6h prior to the application of two electric foot-shocks of 1.5 mA. Drugs were administered from day 1 post-stress to the day preceding the second EEG recording session, performed 14 days later. Results showed that at day 14 post-stress, shocked mice displayed sleep fragmentation as shown by an increase in the occurrence of both non-rapid eye movement (NREM) sleep and wakefulness bouts. The duration of wakefulness, NREM and REM sleep were not significantly affected. The stress-induced effects were prevented by repeated administration of SSR125543, paroxetine and D-cycloserine. These findings confirm further that the CRF₁ receptor antagonist SSR125543 is able to attenuate the deleterious effects of traumatic stress exposure. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Use of vitamin K antagonists for secondary stroke prevention depends on the treating healthcare provider in Germany - results from the German AFNET registry.

    Science.gov (United States)

    Haeusler, Karl Georg; Gerth, Andrea; Limbourg, Tobias; Tebbe, Ulrich; Oeff, Michael; Wegscheider, Karl; Treszl, András; Ravens, Ursula; Meinertz, Thomas; Kirchhof, Paulus; Breithardt, Günter; Steinbeck, Gerhard; Nabauer, Michael

    2015-08-05

    Anticoagulation using vitamin K antagonists (VKAs) significantly reduces the risk of recurrent stroke in stroke patients with atrial fibrillation (AF) and is recommended by guidelines. The German Competence NETwork on Atrial Fibrillation established a nationwide prospective registry including 9,574 AF patients, providing the opportunity to analyse AF management according to German healthcare providers. On enrolment, 896 (9.4 %) patients reported a prior ischaemic stroke or transient ischaemic attack. Stroke patients were significantly older, more likely to be female, had a higher rate of cardiovascular risk factors, and more frequently received anticoagulation (almost exclusively VKA) than patients without prior stroke history. Following enrolment, 76.4 % of all stroke patients without VKA contraindications received anticoagulation, which inversely associated with age (OR 0.95 per year; 95 % CI 0.92-0.97). General practitioners/internists (OR 0.40; 95 % CI 0.21-0.77) and physicians working in regional hospitals (OR 0.47; 95 % CI 0.29-0.77) prescribed anticoagulation for secondary stroke prevention less frequently than physicians working at university hospitals (reference) and office-based cardiologists (OR 1.40; 95 % CI 0.76-2.60). The impact of the treating healthcare provider was less evident in registry patients without prior stroke. In the AFNET registry, anticoagulation for secondary stroke prevention was prescribed in roughly three-quarters of AF patients, a significantly higher rate than in primary prevention. We identified two factors associated with withholding oral anticoagulation in stroke survivors, namely higher age and-most prominently-treatment by a general practitioner/internist or physicians working at regional hospitals.

  18. The AT1 Receptor Antagonist, L-158,809, Prevents or Ameliorates Fractionated Whole-Brain Irradiation-Induced Cognitive Impairment

    International Nuclear Information System (INIS)

    Robbins, Mike E.; Payne, Valerie B.S.; Tommasi, Ellen B.S.; Diz, Debra I.; Hsu, Fang-Chi; Brown, William R.; Wheeler, Kenneth T.; Olson, John; Zhao Weiling

    2009-01-01

    Purpose: We hypothesized that administration of the angiotensin type 1 (AT1) receptor antagonist, L-158,809, to young adult male rats would prevent or ameliorate fractionated whole-brain irradiation (WBI)-induced cognitive impairment. Materials and Methods: Groups of 80 young adult male Fischer 344 x Brown Norway (F344xBN) rats, 12-14 weeks old, received either: (1) fractionated WBI; 40 Gy of γ rays in 4 weeks, 2 fractions/week, (2) sham-irradiation; (3) WBI plus L-158,809 (20 mg/L drinking water) starting 3 days prior, during, and for 14, 28, or 54 weeks postirradiation; and (4) sham-irradiation plus L-158,809 for 14, 28, or 54 weeks postirradiation. An additional group of rats (n = 20) received L-158,809 before, during, and for 5 weeks postirradiation, after which they received normal drinking water up to 28 weeks postirradiation. Results: Administration of L-158,809 before, during, and for 28 or 54 weeks after fractionated WBI prevented or ameliorated the radiation-induced cognitive impairment observed 26 and 52 weeks postirradiation. Moreover, giving L-158,809 before, during, and for only 5 weeks postirradiation ameliorated the significant cognitive impairment observed 26 weeks postirradiation. These radiation-induced cognitive impairments occurred without any changes in brain metabolites or gross histologic changes assessed at 28 and 54 weeks postirradiation, respectively. Conclusions: Administering L-158,809 before, during, and after fractionated WBI can prevent or ameliorate the chronic, progressive, cognitive impairment observed in rats at 26 and 52 weeks postirradiation. These findings offer the promise of improving the quality of life for brain tumor patients

  19. AVN-322 is a Safe Orally Bio-Available Potent and Highly Selective Antagonist of 5-HT6R with Demonstrated Ability to Improve Impaired Memory in Animal Models.

    Science.gov (United States)

    Ivachtchenko, Alexandre V; Ivanenkov, Yan A; Veselov, Mark S; Okun, I M

    2017-01-01

    In recent years, 5-hydroxytryptamine subtype 6 receptor (5-HT6 receptor, 5- HT6R) has emerged as a promising therapeutic target for the treatment of neuropathological disorders, including Alzheimer's disease (AD) and schizophrenia. 5-HT6 receptors were hypothesized to be implicated in the processes of learning, memory, and cognition with 5-HT6R antagonists being effective in animal models of cognition and memory impairment. Several selective 5-HT6R ligands are currently undergoing clinical trials for treatment of AD. We describe results of preclinical development of a novel and highly selective and potent 5- HT6R antagonist, AVN-322, as a clinical candidate for the treatment of AD to improve concurrent debilitation of memory and cognition in the AD patients, and schizophrenia as a substance with antipsychotic effect. In the manuscript, we present its in vitro and vivo efficacy, ADME, pharmacokinetics in animals and in humans, and toxicity. While having high binding affinity in medium picomolar range, the lead compound demonstrates substantially better selectivity index then the reference drug candidates currently being tested in clinical studies. AVN-322 showed high oral bioavailability and favorable blood-brain barrier (BBB) penetration. In vivo testing revealed its clear cognition enhancing effect. AVN-322 significantly restored both scopolamine- and MK-801-induced cognitive dysfunction and demonstrated antipsychotic potential. Taking into account its good safety profile and favorable pharmacokinetics, AVN-322 can be reasonably considered as a novel drug candidate for the treatment of neurological disorders such as AD and/or schizophrenia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. GABAB antagonists

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Hansen, J J; Krogsgaard-Larsen, P

    1994-01-01

    chromatographic techniques. The absolute stereochemistry of (-)-(R)-phaclofen was established by X-ray crystallographic analysis. (-)-(R)-Phaclofen was shown to inhibit the binding of [3H]-(R)-baclofen to GABAB receptor sites on rat cerebellar membranes (IC50 = 76 +/- 13 microM), whereas (+)-(S......)-baclofen and the antagonist (-)-(R)-phaclofen suggests that these ligands interact with the GABAB receptor sites in a similar manner. Thus, it may be concluded that the different pharmacological effects of these compounds essentially result from the different spatial and proteolytic properties of their acid groups....

  1. Postnatal Administration of Dizocilpine Inhibits Neuronal Excitability in PFC and Induces Social Deficits Detected by MiceProfiler.

    Science.gov (United States)

    Zhu, Dexiao; Wang, Hui; Wu, Jintao; Wang, Qian; Xu, Ling; Zhao, Yue; Pang, Kunkun; Shi, Qingqing; Zhao, Wenbo; Zhang, Jing; Sun, Jinhao

    2017-12-01

    Schizophrenia is a devastating mental disease with social deficit as its core component of negative symptoms, which could be induced in rodents by dizocilpine (MK-801), a noncompetitive NMDA receptor antagonist. NMDA receptors are highly expressed during the postnatal period. However, less attention has been paid to the effects of postnatal MK-801 administration on social interaction. In this study, we evaluated the effects of postnatal administration of MK-801 on social interaction and explored the possible mechanisms. Postnatal day-7 mice were intraperitoneally injected with MK-801 twice daily for 5 days, and their social interaction repertoire was monitored by a computerized video in the 10th week. The contact event, relative position event, stop-state, and dynamic event were analyzed with MiceProfiler automatic idTracker system. The results showed that MK-801 reduced the number of the contact events, relative position events, and stop-states, while increased the number and duration of dynamic events. These changes implied that MK-801-injected mice had indifference and lower motivation in social interaction and could be a useful model for studies on the social deficit of schizophrenia. The prefrontal cortex is the key region for social interaction behaviors. Slice patch clamp was performed to analyze the cellular excitability of prefrontal cortical neurons after postnatal treatment with MK-801 in mice. The results demonstrated that MK-801 injection reduced the frequency and amplitude of action potentials, but increased the frequency of miniature inhibitory postsynaptic currents. These data illustrated that the excitability of neurons in the prefrontal cortex was inhibited. Finally, immunoblotting data demonstrated that MK-801 significantly decreased the levels of sirtuin 1 (SIRT1) and phosphorylated protein kinase B (p-PKB) in the prefrontal cortex (both P social interaction deficits possibly due to inhibiting the neuronal excitability and decreasing the

  2. N-Methyl-d-Aspartate (NMDA) Receptor Blockade Prevents Neuronal Death Induced by Zika Virus Infection.

    Science.gov (United States)

    Costa, Vivian V; Del Sarto, Juliana L; Rocha, Rebeca F; Silva, Flavia R; Doria, Juliana G; Olmo, Isabella G; Marques, Rafael E; Queiroz-Junior, Celso M; Foureaux, Giselle; Araújo, Julia Maria S; Cramer, Allysson; Real, Ana Luíza C V; Ribeiro, Lucas S; Sardi, Silvia I; Ferreira, Anderson J; Machado, Fabiana S; de Oliveira, Antônio C; Teixeira, Antônio L; Nakaya, Helder I; Souza, Danielle G; Ribeiro, Fabiola M; Teixeira, Mauro M

    2017-04-25

    Zika virus (ZIKV) infection is a global health emergency that causes significant neurodegeneration. Neurodegenerative processes may be exacerbated by N -methyl-d-aspartate receptor (NMDAR)-dependent neuronal excitoxicity. Here, we have exploited the hypothesis that ZIKV-induced neurodegeneration can be rescued by blocking NMDA overstimulation with memantine. Our results show that ZIKV actively replicates in primary neurons and that virus replication is directly associated with massive neuronal cell death. Interestingly, treatment with memantine or other NMDAR blockers, including dizocilpine (MK-801), agmatine sulfate, or ifenprodil, prevents neuronal death without interfering with the ability of ZIKV to replicate in these cells. Moreover, in vivo experiments demonstrate that therapeutic memantine treatment prevents the increase of intraocular pressure (IOP) induced by infection and massively reduces neurodegeneration and microgliosis in the brain of infected mice. Our results indicate that the blockade of NMDARs by memantine provides potent neuroprotective effects against ZIKV-induced neuronal damage, suggesting it could be a viable treatment for patients at risk for ZIKV infection-induced neurodegeneration. IMPORTANCE Zika virus (ZIKV) infection is a global health emergency associated with serious neurological complications, including microcephaly and Guillain-Barré syndrome. Infection of experimental animals with ZIKV causes significant neuronal damage and microgliosis. Treatment with drugs that block NMDARs prevented neuronal damage both in vitro and in vivo These results suggest that overactivation of NMDARs contributes significantly to the neuronal damage induced by ZIKV infection, and this is amenable to inhibition by drug treatment. Copyright © 2017 Costa et al.

  3. Investigating racial disparities in use of NK1 receptor antagonists to prevent chemotherapy-induced nausea and vomiting among women with breast cancer.

    Science.gov (United States)

    Check, Devon K; Reeder-Hayes, Katherine E; Basch, Ethan M; Zullig, Leah L; Weinberger, Morris; Dusetzina, Stacie B

    2016-04-01

    Chemotherapy-induced nausea and vomiting (CINV) is a major concern for cancer patients and, if uncontrolled, can seriously compromise quality of life (QOL) and other treatment outcomes. Because of the expense of antiemetic medications used to prevent CINV (particularly oral medications filled through Medicare Part D), disparities in their use may exist. We used 2006-2012 SEER-Medicare data to evaluate the use of neurokinin-1 receptor antagonists (NK1s), a potent class of antiemetics, among black and white women initiating highly emetogenic chemotherapy for the treatment of early-stage breast cancer. We used modified Poisson regression to assess the relationship between race and (1) any NK1 use, (2) oral NK1 (aprepitant) use, and (3) intravenous NK1 (fosaprepitant) use. We report adjusted risk ratios (aRR) and 95 % confidence intervals (CI). The study included 1130 women. We observed racial disparities in use of any NK1 (aRR: 0.68, 95 % CI 0.51-0.91) and in use of oral aprepitant specifically (aRR: 0.54, 95 % CI 0.35-0.83). We did not observe disparities in intravenous fosaprepitant use. After controlling for variables related to socioeconomic status, disparities in NK1 and aprepitant use were reduced but not eliminated. We found racial disparities in women's use of oral NK1s for the prevention of CINV. These disparities may be partly explained by racial differences in socioeconomic status, which may translate into differential ability to afford the medication.

  4. The V2 receptor antagonist tolvaptan raises cytosolic calcium and prevents AQP2 trafficking and function: an in vitro and in vivo assessment.

    Science.gov (United States)

    Tamma, Grazia; Di Mise, Annarita; Ranieri, Marianna; Geller, Ari; Tamma, Roberto; Zallone, Alberta; Valenti, Giovanna

    2017-09-01

    Tolvaptan, a selective vasopressin V2 receptor antagonist, is a new generation diuretic. Its clinical efficacy is in principle due to impaired vasopressin-regulated water reabsorption via aquaporin-2 (AQP2). Nevertheless, no direct in vitro evidence that tolvaptan prevents AQP2-mediated water transport, nor that this pathway is targeted in vivo in patients with syndrome of inappropriate antidiuresis (SIAD) has been provided. The effects of tolvaptan on the vasopressin-cAMP/PKA signalling cascade were investigated in MDCK cells expressing endogenous V2R and in mouse kidney. In MDCK, tolvaptan prevented dDAVP-induced increase in ser256-AQP2 and osmotic water permeability. A similar effect on ser256-AQP2 was found in V1aR -/- mice, thus confirming the V2R selectively. Of note, calcium calibration in MDCK showed that tolvaptan per se caused calcium mobilization from the endoplasmic reticulum resulting in a significant increase in basal intracellular calcium. This effect was only observed in cells expressing the V2R, indicating that it requires the tolvaptan-V2R interaction. Consistent with this finding, tolvaptan partially reduced the increase in ser256-AQP2 and the water permeability in response to forskolin, a direct activator of adenylyl cyclase (AC), suggesting that the increase in intracellular calcium is associated with an inhibition of the calcium-inhibitable AC type VI. Furthermore, tolvaptan treatment reduced AQP2 excretion in two SIAD patients and normalized plasma sodium concentration. These data represent the first detailed demonstration of the central role of AQP2 blockade in the aquaretic effect of tolvaptan and underscore a novel effect in raising intracellular calcium that can be of significant clinical relevance. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  5. PF-03882845, a non-steroidal mineralocorticoid receptor antagonist, prevents renal injury with reduced risk of hyperkalemia in an animal model of nephropathy

    Directory of Open Access Journals (Sweden)

    Stephen eOrena

    2013-10-01

    Full Text Available The mineralocorticoid receptor (MR antagonists PF 03882845 and eplerenone were evaluated for renal protection against aldosterone mediated renal disease in uninephrectomized Sprague Dawley (SD rats maintained on a high salt diet and receiving aldosterone by osmotic mini pump for 27 days. Serum K+ and the urinary albumin to creatinine ratio (UACR were assessed following 14 and 27 days of treatment. Aldosterone induced renal fibrosis as evidenced by increases in UACR, collagen IV staining in kidney cortex, and expression of pro fibrotic genes relative to sham operated controls not receiving aldosterone. While both PF 03882845 and eplerenone elevated serum K+ levels with similar potencies, PF 03882845 was more potent than eplerenone in suppressing the rise in UACR. PF 03882845 prevented the increase in collagen IV staining at 5, 15 and 50 mg/kg BID while eplerenone was effective only at the highest dose tested (450 mg/kg BID. All doses of PF 03882845 suppressed aldosterone induced increases in collagen IV, transforming growth factor 1 (Tgf 1, interleukin 6 (Il-6, intermolecular adhesion molecule 1 (Icam-1 and osteopontin gene expression in kidney while eplerenone was only effective at the highest dose. The therapeutic index (TI, calculated as the ratio of the EC50 for increasing serum K+ to the EC50 for UACR lowering, was 83.8 for PF 03882845 and 1.47 for eplerenone. Thus the TI of PF 03882845 against hyperkalemia was 57 fold superior to that of eplerenone indicating that PF 03882845 may present significantly less risk for hyperkalemia compared to eplerenone.

  6. Dalteparin or vitamin K antagonists to prevent recurrent venous thromboembolism in cancer patients: a patient-level economic analysis for France and Austria.

    Science.gov (United States)

    Dranitsaris, George; Shane, Lesley G; Galanaud, Jean-Philippe; Stemer, Gunar; Debourdeau, Philippe; Woodruff, Seth

    2017-07-01

    International guidelines recommend extended duration secondary prophylaxis in cancer patients who develop primary venous thromboembolism (VTE). Agent selection is guided in part by one large randomized trial (i.e., CLOT; Lee et al., N Engl J Med 349:146-53, 2003) which demonstrated that dalteparin reduced the relative risk of recurrence by 52% compared with oral vitamin K antagonists (VKA; HR = 0.48, 95% CI, 0.30 to 0.77). In a subgroup analysis from that same trial, patients with renal impairment also derived benefit with dalteparin (VTE rates = 3% vs. 17%; p = 0.011). To measure the economic value of secondary VTE prophylaxis with dalteparin, a patient-level pharmacoeconomic analysis was conducted from the Austrian and French healthcare system perspectives. Chapter 1 Healthcare resource use collected during the CLOT trial was extracted and converted into direct cost estimates. Incremental cost differences between the dalteparin and VKA groups were then combined with health state utilities to measure the cost per quality-adjusted life year (QALY) gained. The dalteparin group had significantly higher costs than the VKA group in both countries (Austria: dalteparin = €2687 vs. VKA = €2012; France: dalteparin = €2053 vs. VKA = €1352: p Austria and France, respectively. The analyses in patients with renal impairment suggested an even better economic profile, with the cost per QALY gained being less than €4000 in both countries. Secondary prophylaxis with dalteparin is a cost-effective alternative to VKA for the prevention of recurrent VTE in patients with cancer.

  7. A novel aminotetralin-type serotonin (5-HT) 2C receptor-specific agonist and 5-HT2A competitive antagonist/5-HT2B inverse agonist with preclinical efficacy for psychoses.

    Science.gov (United States)

    Canal, Clinton E; Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E; Robertson, Kimberly L; Sakhuja, Rajeev; Booth, Raymond G

    2014-05-01

    Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (-)-trans-(2S,4R)-4-(3'[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (-)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (-)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (-)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (-)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (-)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (-)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders.

  8. Calcium antagonists for aneurysmal subarachnoid haemorrhage

    NARCIS (Netherlands)

    Dorhout Mees, S. M.; Rinkel, G. J. E.; Feigin, V. L.; Algra, A.; van den Bergh, W. M.; Vermeulen, M.; van Gijn, J.

    2007-01-01

    BACKGROUND: Secondary ischaemia is a frequent cause of poor outcome in patients with subarachnoid haemorrhage (SAH). Its pathogenesis has been incompletely elucidated, but vasospasm probably is a contributing factor. Experimental studies have suggested that calcium antagonists can prevent or reverse

  9. Developmental Programming: Prenatal and Postnatal Androgen Antagonist and Insulin Sensitizer Interventions Prevent Advancement of Puberty and Improve LH Surge Dynamics in Prenatal Testosterone-Treated Sheep

    OpenAIRE

    Padmanabhan, Vasantha; Veiga-Lopez, Almudena; Herkimer, Carol; Abi Salloum, Bachir; Moeller, Jacob; Beckett, Evan; Sreedharan, Rohit

    2015-01-01

    Prenatal T excess induces maternal hyperinsulinemia, early puberty, and reproductive/metabolic defects in the female similar to those seen in women with polycystic ovary syndrome. This study addressed the organizational/activational role of androgens and insulin in programming pubertal advancement and periovulatory LH surge defects. Treatment groups included the following: 1) control; 2) prenatal T; 3) prenatal T plus prenatal androgen antagonist, flutamide; 4) prenatal T plus prenatal insuli...

  10. The angiotensin II AT1 receptor antagonist irbesartan prevents thromboxane A2-induced vasoconstriction in the rat hind-limb vascular bed in vivo.

    Science.gov (United States)

    Fukuhara, M; Neves, L A; Li, P; Diz, D I; Ferrario, C M; Brosnihan, K B

    2001-03-01

    We studied the vasoconstrictor effects of the thromboxane A2 (TxA2) analogue U46619 in the perfused hind limb of rats under constant flow before and after intravenous injection of irbesartan, an angiotensin II AT1 receptor antagonist, to test whether irbesartan interacts in vivo with the thromboxane A2/prostaglandin endoperoxidase H2 (TxA2/PGH2) receptor. Male Sprague-Dawley rats (n = 15, body weight 350-420 g) were anesthetized with thiobutabarbital sodium (Inactin, 100 mg/kg intraperitoneally). Regional vascular responses to U46619 (0.5 and 1.0 microg) were investigated in the rat hind quarter under conditions of controlled flow before and after administration of irbesartan (10 mg/kg, intravenously). In addition, to test the specificity of the effect of irbesartan on U46619, phenylephrine (0.5, 1.0 microg) and another AT1 receptor antagonist, candesartan CV11974 (0.3 mg/kg, intravenously) were used. The dose-dependent increases in hind-limb perfusion pressure produced by U46619 were significantly attenuated by prior injection of irbesartan, at a dose that blocked the angiotensin II (Ang II) pressor responses. The specificity for the response was shown with the demonstrations that the increase in vascular resistance produced by phenylephrine was unchanged by irbesartan and, furthermore, that the increase in vascular resistance produced by U46619 was unchanged by another AT1 receptor antagonist, candesartan. This study demonstrates that irbesartan interacts at the TxA2/PGH2 receptor in the rat's hind limb in vivo, to modify changes in local regional vascular resistance. The dual antagonistic actions of irbesartan, acting at both AT1 and TxA2 receptors in blood vessels, may overall enhance its therapeutic profile in the treatment of hypertension.

  11. Peripherally Administered Y2-Receptor Antagonist BIIE0246 Prevents Diet-Induced Obesity in Mice With Excess Neuropeptide Y, but Enhances Obesity in Control Mice.

    Science.gov (United States)

    Ailanen, Liisa; Vähätalo, Laura H; Salomäki-Myftari, Henriikka; Mäkelä, Satu; Orpana, Wendy; Ruohonen, Suvi T; Savontaus, Eriika

    2018-01-01

    Neuropeptide Y (NPY) plays an important role in the regulation of energy homeostasis in the level of central and sympathetic nervous systems (SNSs). Genetic silencing of peripheral Y 2 -receptors have anti-obesity effects, but it is not known whether pharmacological blocking of peripheral Y 2 -receptors would similarly benefit energy homeostasis. The effects of a peripherally administered Y 2 -receptor antagonist were studied in healthy and energy-rich conditions with or without excess NPY. Genetically obese mice overexpressing NPY in brain noradrenergic nerves and SNS (OE-NPY DβH ) represented the situation of elevated NPY levels, while wildtype (WT) mice represented the normal NPY levels. Specific Y 2 -receptor antagonist, BIIE0246, was administered (1.3 mg/kg/day, i.p.) for 2 or 4.5 weeks to OE-NPY DβH and WT mice feeding on chow or Western diet. Treatment with Y 2 -receptor antagonist increased body weight gain in both genotypes on chow diet and caused metabolic disturbances (e.g., hyperinsulinemia and hypercholesterolemia), especially in WT mice. During energy surplus (i.e., on Western diet), blocking of Y 2 -receptors induced obesity in WT mice, whereas OE-NPY DβH mice showed reduced fat mass gain, hepatic glycogen and serum cholesterol levels relative to body adiposity. Thus, it can be concluded that with normal NPY levels, peripheral Y 2 -receptor antagonist has no potential for treating obesity, but oppositely may even induce metabolic disorders. However, when energy-rich diet is combined with elevated NPY levels, e.g., stress combined with an unhealthy diet, Y 2 -receptor antagonism has beneficial effects on metabolic status.

  12. Efectos del MK-801 sobre la inhibición latente en la aversión condicionada al sabor

    OpenAIRE

    Traverso Arcos, Luis Miguel

    2004-01-01

    El trabajo de investigación que hemos venido realizando durante los últimos años, es un reflejo del creciente interés que existe en la comunidad científica por analizar y comprender el funcionamiento de los procesos cognitivos en animales y humanos. Esta inquietud que surgió en la psicología en los años 60 se ha extendido progresivamente haci ... a otras disciplinas, por lo que durante las últimas décadas se han incrementado los intentos de establecer conexiones teóricas y experimentales entr...

  13. Visuospatial working memory is impaired in an animal model of schizophrenia induced by acute MK-801: An effect of pretraining

    Czech Academy of Sciences Publication Activity Database

    Zemanová, Anna; Staňková, Anna; Lobellová, Veronika; Svoboda, Jan; Valeš, Karel; Vlček, Kamil; Kubík, Štěpán; Fajnerová, Iveta; Stuchlík, Aleš

    2013-01-01

    Roč. 106, May 2013 (2013), s. 117-123 ISSN 0091-3057 R&D Projects: GA MZd(CZ) NT13386 Institutional support: RVO:67985823 Keywords : working memory * place avoidance * rats * behavior Subject RIV: FH - Neurology Impact factor: 2.820, year: 2013

  14. Differential effect of NMDA and AMPA receptor blockade on protein synthesis in the rat infarct borderzone

    DEFF Research Database (Denmark)

    Christensen, Thomas; Bruhn, T; Frank, L

    1996-01-01

    We investigated whether the known neuroprotective effects of two selective glutamate receptor antagonists, the NMDA antagonist MK-801 and the AMPA antagonist NBQX, are reflected in the regional cerebral protein synthesis rates (CPSR) in rats with middle cerebral artery occlusion (MCAO). Rats...

  15. Kynurenic Acid Inhibits the Electrical Stimulation Induced Elevated Pituitary Adenylate Cyclase-Activating Polypeptide Expression in the TNC

    Directory of Open Access Journals (Sweden)

    Tamás Körtési

    2018-01-01

    Full Text Available BackgroundMigraine is a primary headache of imprecisely known mechanism, but activation of the trigeminovascular system (TS appears to be essential during the attack. Intensive research has recently focused on pituitary adenylate cyclase-activating polypeptide (PACAP and the kynurenine systems as potential pathogenic factors.AimWe investigated the link between these important mediators and the effects of kynurenic acid (KYNA and its synthetic analog (KYNA-a on PACAP expression in the rat trigeminal nucleus caudalis (TNC in a TS stimulation model related to migraine mechanisms.MethodsAdult male Sprague-Dawley rats were pretreated with KYNA, KYNA-a, the NMDA receptor antagonist MK-801, or saline (vehicle. Next, the trigeminal ganglion (TRG was electrically stimulated, the animals were transcardially perfused following 180 min, and the TNC was removed. In the TNC samples, 38 amino acid form of PACAP (PACAP1–38-like radioimmunoactivity was measured by radioimmunoassay, the relative optical density of preproPACAP was assessed by Western blot analysis, and PACAP1–38 mRNA was detected by real-time PCR.Results and conclusionElectrical TRG stimulation resulted in significant increases of PACAP1–38-LI, preproPACAP, and PACAP1–38 mRNA in the TNC. These increases were prevented by the pretreatments with KYNA, KYNA-a, and MK-801. This is the first study to provide evidence for a direct link between PACAP and the kynurenine system during TS activation.

  16. Presymptomatically applied AMPA receptor antagonist prevents calcium increase in vulnerable type of motor axon terminals of mice modeling amyotrophic lateral sclerosis.

    Science.gov (United States)

    Patai, Roland; Paizs, Melinda; Tortarolo, Massimo; Bendotti, Caterina; Obál, Izabella; Engelhardt, József I; Siklós, László

    2017-07-01

    Increased intracellular calcium (Ca), which might be the consequence of an excess influx through Ca-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, plays a crucial role in degeneration of motor neurons. Previously we demonstrated that the presymptomatic application of AMPA receptor antagonist, talampanel, could reduce Ca elevation in spinal motor neurons of mice carrying the G93A mutation of superoxide dismutase 1 (SOD1), modeling amyotrophic lateral sclerosis (ALS). It remained to be examined whether the remote, functionally semi-autonomous motor axon terminals could be rescued from the Ca overload, or if the terminals, where the degeneration possibly starts, already experience intractable changes at early time points. Thus using electron microscopic techniques, we measured the Ca level of motor axon terminals in the interosseus muscle of the SOD1 mutant animals, which are prototypes of vulnerable nerve endings in ALS. In line with the results obtained in the perikarya, talampanel treatment could reduce Ca increase evoked by the presence of mutant SOD1 in the axon terminals if the treatment was started presymptomatically but not at an early symptomatic stage. We also tested the Ca level in the cell bodies and axon terminals of the oculomotor neurons, which are resistant to the disease. Neither Ca increase, nor talampanel effect could be demonstrated at either time point. This is consistent with the observations that oculomotor neurons contain increased level of Ca buffer, which could reduce excess Ca load, and they also express glutamate receptor subunit type 2, which renders AMPA receptors impermeable to Ca. Copyright © 2017. Published by Elsevier B.V.

  17. Prevention of drug priming- and cue-induced reinstatement of MDMA-seeking behaviors by the CB1 cannabinoid receptor antagonist AM251.

    Science.gov (United States)

    Nawata, Yoko; Kitaichi, Kiyoyuki; Yamamoto, Tsuneyuki

    2016-03-01

    3,4-Methylenedioxymethamphetamine (MDMA), a methamphetamine (METH) derivative, exhibits METH-like actions at monoamine transporters and positive reinforcing effects in rodents and primates. The purposes of the present study were to determine whether cross-reinstatement would be observed between MDMA and METH and if the cannabinoid receptor, a receptor known to play critical roles in the brain reward system, could modulate MDMA craving. Rats were trained to press a lever for intravenous MDMA (0.3mg/infusion) or METH (0.02mg/infusion) infusions under a fixed ratio 1 schedule paired with drug-associated cues (light and tone). Following drug self-administration acquisition training, rats underwent extinction training (an infusion of saline). Reinstatement tests were performed once the extinction criteria were achieved. In MDMA-trained rats, the MDMA-priming injection (3.2mg/kg, i.p.) or re-exposure to MDMA-associated cues reinstated MDMA-seeking behavior. Additionally, a priming injection of METH (1.0mg/kg, i.p.) also reinstated MDMA-seeking behavior. In contrast, none of the MDMA doses reinstated METH-seeking behavior in the METH-trained rats. The CB1 cannabinoid receptor antagonist AM251 markedly attenuated the MDMA-seeking behaviors induced by MDMA-priming injection or re-exposure to MDMA-associated cues in a dose-dependent manner. These findings show that MDMA has obvious addictive potential for reinstating drug-seeking behavior and that METH can be an effective stimulus for reinstating MDMA-seeking behaviors. Furthermore, based on the attenuating effect of AM251 in the reinstatement of MDMA-seeking behaviors, drugs that suppress CB1 receptors may be used in treatment of MDMA dependence. Copyright © 2016. Published by Elsevier Ireland Ltd.

  18. Low-dose memantine induced working memory improvement in the allothetic place avoidance alternation task (APAAT in young adult male rats.

    Directory of Open Access Journals (Sweden)

    Malgorzata Julita Wesierska

    2013-12-01

    Full Text Available N-methyl-D-aspartate receptors (NMDAR are involved in neuronal plasticity. To assess their role simultaneously in spatial working memory and non-cognitive learning, we used NMDAR antagonists and the Allothetic Place Avoidance Alternation Task (APAAT. In this test rats should avoid entering a place where shocks were presented on a rotating arena which requires cognitive coordination for the segregation of stimuli. The experiment took place 30 min after intraperitoneal injection of memantine (5; 10; 20 mg/kg b.w.: MemL, MemM, MemH respectively and (+MK-801 (0.1; 0.2; 0.3 mg/kg b.w.: MK-801L, MK-801M, MK-801H respectively. Rats from the control group were intact or injected with saline (0.2 ml/kg. Over three consecutive days the rats underwent habituation, two avoidance training intervals with shocks, and a retrieval test. The shock sector was alternated daily. The after-effects of the agents were tested on Day21. Rats treated with low dose memantine presented a longer maximum time avoided and fewer entrances than the MemH, MK-801M, MK-801H and Control rats. The shocks per entrances ratio, used as an index of cognitive skill learning, showed skill improvement after D1, except for rats treated by high doses of the agents. The activity levels, indicated by the distance walked, were higher for the groups treated with high doses of the agents. On D21 the MK801H rats performed the memory task better than the MemH rats, whereas the rats’ activity depended on condition, not on the group factor. These results suggest that in naïve rats mild NMDAR blockade by low-dose memantine improves working memory related to a highly challenging task.

  19. Calcium gluconate infusion is as effective as the vascular endothelial growth factor antagonist cabergoline for the prevention of ovarian hyperstimulation syndrome.

    Science.gov (United States)

    Naredi, Nikita; Karunakaran, Sandeep

    2013-10-01

    Ovarian hyperstimulation syndrome (OHSS) is an iatrogenic and potentially life-threatening disease process, which may occur in healthy young women undergoing controlled ovarian hyperstimulation for assisted reproduction. As the treatment is largely empirical, prevention forms the mainstay of management. The present study was aimed to evaluate the effectiveness of intravenous (IV) calcium gluconate infusion in comparison to the dopamine agonist cabergoline (Cb2) in preventing OHSS in high risk patients undergoing assisted reproductive technique cycles. It was a comparative study wherein the 202 high risk patients undergoing in vitro-fertilization over a period of 18 months after meeting the strict inclusion and the exclusion criteria, were randomly divided into two groups (98 subjects in Group I and 104 in Group II). Women in Group I were administered IV calcium gluconate while the remaining 104 received the dopamine agonist Cb2. The 104 patients belonging to Group II were started Cb2 0.5 mg/day from the day of ovulation trigger and continued until the next 8 days while the 98 high risk patients from Group I were infused with 10 ml of 10% calcium gluconate solution in 200 ml physiologic saline within 30 min of ovum pick up and continued thereafter on day 1, day 2 and day 3. The occurrence of OHSS was seen in only nine patients (in the calcium infusion group, when compared with 16 patients (9.2% vs. 15.4%) who were administered Cb2, but it was not statistically significant. However, only one had severe OHSS in Group I, whereas two women were diagnosed as severe OHSS belonging to the Cb2 arm. Our results document that calcium infusion can effectively prevent severe OHSS and decreases OHSS occurrence rates when used for high-risk patients, but does not suggest its superiority over Cb2. With comparable success rates, either of them can be employed as a preventive strategy for OHSS.

  20. Comparison of proton pump inhibitor and histamine-2 receptor antagonist in the prevention of recurrent peptic ulcers/erosions in long-term low-dose aspirin users: a retrospective cohort study.

    Science.gov (United States)

    Chen, Wen-Chi; Li, Yun-Da; Chiang, Po-Hung; Tsay, Feng-Woei; Chan, Hoi-Hung; Tsai, Wei-Lun; Tsai, Tzung-Jiun; Wang, E-Ming; Cheng, Jin-Shiung; Lai, Kwok-Hung

    2014-01-01

    Proton pump inhibitor and histamine-2 receptor antagonist can prevent aspirin-related ulcers/erosions but few studies compare the efficacy of these two agents. Aims. We evaluated the efficacy of omeprazole and famotidine in preventing recurrent ulcers/erosions in low-dose aspirin users. The 24-week clinical outcomes of the patients using low-dose aspirin for cardiovascular protection with a history of ulcers/erosions and cotherapy of omeprazole or famotidine were retrospectively reviewed. The incidence of gastrointestinal symptoms, recurrent ulcers/erosions, erosive esophagitis, gastrointestinal bleeding, and thromboembolic events was analyzed. A total of 104 patients (famotidine group, 49 patients; omeprazole group, 55 patients) were evaluated. Famotidine group had more gastrointestinal symptoms episodes than omeprazole group (46.9% versus 23.6%, P=0.01). Fifteen famotidine group patients and 5 omeprazole group patients had recurrent ulcers/erosions (30.6% versus 9.1%, P=0.005). Lanza scale was significantly lower in omeprazole group than in famotidine group (1.2±0.7 versus 1.7±1.1, P=0.008). Only 1 famotidine group patient had ulcer bleeding. The incidences of erosive esophagitis and thromboembolic events were comparable between both groups. Omeprazole was superior to famotidine with less gastrointestinal symptoms and recurrent ulcers/erosions in patients using 24-week low-dose aspirin. The risk of erosive esophagitis, gastrointestinal bleeding, and thromboembolic events was similar between both groups.

  1. Jak/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis

    Science.gov (United States)

    2012-07-01

    using the same injury model found that there is an increase in the GABAAR-mediated tonic currents, a loss of diazepam potentiation and an increase in...Neuroscience 170:865-880. Gibson CJ, Meyer RC, Hamm RJ (2010) Traumatic brain injury and the effects of diazepam , diltiazem, and MK-801 on GABA-A receptor...Brooks-Kayal AR, Russek SJ (2006) Brain-derived neurotrophic factor (BDNF)-induced synthesis of early growth response factor 3 (Egr3) controls the

  2. Calcium antagonists for aneurysmal subarachnoid haemorrhage

    NARCIS (Netherlands)

    Rinkel, G. J. E.; Feigin, V. L.; Algra, A.; van den Bergh, W. M.; Vermeulen, M.; van Gijn, J.

    2005-01-01

    BACKGROUND: Secondary ischaemia is a frequent cause of poor outcome in patients with subarachnoid haemorrhage (SAH). Its pathogenesis has not been elucidated yet, but may be related to vasospasm. Experimental studies have indicated that calcium antagonists can prevent or reverse vasospasm and have

  3. A novel 5HT3 antagonist 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide) prevents diabetes-induced depressive phenotypes in mice: Modulation of serotonergic system.

    Science.gov (United States)

    Gupta, Deepali; Thangaraj, Devadoss; Radhakrishnan, Mahesh

    2016-01-15

    Despite the presence of a multitudinous pharmacotherapy, diabetes-induced depressive disorder remains undertreated. Evidence suggests that brain serotonergic deficits are associated with depressive-like behavior in diabetes and that 5HT3 receptor (5HT3R) antagonists have serotonergic facilitatory effects. This study examined the effects of a novel 5HT3R antagonist, 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide), in diabetes-induced depressive phenotypes. Experimentally, (1) to evaluate the effects of 4i, mice with 8-weeks of diabetes (induced by streptozotocin, 200mg/kg, i.p.) were treated with vehicle, 4i (0.5 and 1mg/kg/day, i.p.), fluoxetine (10mg/kg/day, i.p.) for 4-weeks and subjected to neurobehavioral assays, followed by biochemical estimation of serotonin levels in midbrain, prefrontal-cortex and cerebellum. (2) To evaluate the role of 5HT3R in the postulated effect of 4i, diabetic mice were given 4i (1mg/kg/day, i.p.) after 1h of 1-(m-chlorophenyl)-biguanide (mCPBG, a 5HT3R agonist, 10mg/kg/day, i.p.) treatment and subjected to the same protocol. The results showed that diabetic mice exhibited a significant behavioral deficit, including depression-like behavior in forced swim test, anxiety-like in open field test and sociability deficits in social interaction test, along with a significant decrease in serotonin level in these brain regions. 4i (1mg/kg), similar to fluoxetine, prevented these behavioral abnormalities and normalized brain serotonin levels. 4i (0.5mg/kg) ameliorated only diabetes-induced depressive-like behavior and serotonin deficits, but not anxiety-like effects. mCPBG blunted 4i-mediated behavioral response and increase in brain serotonin levels. Altogether, this study suggests that 4i prevents diabetes-induced depressive phenotypes in mice, which may involve antagonism of 5HT3Rs and increase in serotonin levels in discrete brain regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The antipsychotic-like effects in rodents of YQA31 involve dopamine D3 and 5-HT1A receptor.

    Science.gov (United States)

    Gou, Hong-Yan; Sun, Xue; Li, Fei; Wang, Zhi-Yuan; Wu, Ning; Su, Rui-Bin; Cong, Bin; Li, Jin

    2017-12-01

    We previously reported that YQA31 is a dopamine D3 receptor antagonist with modest 5-HT1A receptor affinity and that it exhibits antipsychotic properties in animal models of schizophrenia. However, the contributions of D3 and 5-HT1A receptors in the anti-psychotic effects of YQA31 are not clear. The current study evaluated the role of these two receptors in the effect of YQA31 on the hyperactivity and novel object recognition deficit in mice. We used dopamine D3 receptor knockout mice and 5-HT1A receptor antagonist WAY100635 pretreatment, respectively, to investigate the involvement of these receptors in the effects of YQA31. The anti-psychotic effects were tested by inducing hyperlocomotion with methamphetamine or MK-801 and by inducing novel object recognition deficit with MK-801, which are the animal models to represent a positive symptom and a cognitive disorder. YQA31 significantly inhibited MK-801-induced hyperlocomotion and novel object recognition deficit in WT mice, which was significantly inhibited by dopamine D3 receptor knockout. The 5-HT1A receptor antagonist, WAY100635, also blocked the effect of YQA31 in MK-801-induced novel object recognition deficit but not hyperlocomotion. The effect of YQA31 on methamphetamine-induced hyperlocomotion was not reversed by either dopamine D3 receptor knockout or WAY100635 pretreatment. These results demonstrate the different roles of dopamine D3 and 5-HT1A receptors in the anti-psychotic effects of YQA31. Both dopamine D3 and 5-HT1A receptors contributed to the effects of YQA31 on the inhibition of MK-801-induced novel object recognition deficit, and the dopamine D3 receptor mediated the inhibiting effect of YQA31 on hyperlocomotion induced by MK-801. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  5. Comparison of Proton Pump Inhibitor and Histamine-2 Receptor Antagonist in the Prevention of Recurrent Peptic Ulcers/Erosions in Long-Term Low-Dose Aspirin Users: A Retrospective Cohort Study

    Directory of Open Access Journals (Sweden)

    Wen-Chi Chen

    2014-01-01

    Full Text Available Background. Proton pump inhibitor and histamine-2 receptor antagonist can prevent aspirin-related ulcers/erosions but few studies compare the efficacy of these two agents. Aims. We evaluated the efficacy of omeprazole and famotidine in preventing recurrent ulcers/erosions in low-dose aspirin users. Methods. The 24-week clinical outcomes of the patients using low-dose aspirin for cardiovascular protection with a history of ulcers/erosions and cotherapy of omeprazole or famotidine were retrospectively reviewed. The incidence of gastrointestinal symptoms, recurrent ulcers/erosions, erosive esophagitis, gastrointestinal bleeding, and thromboembolic events was analyzed. Results. A total of 104 patients (famotidine group, 49 patients; omeprazole group, 55 patients were evaluated. Famotidine group had more gastrointestinal symptoms episodes than omeprazole group (46.9% versus 23.6%, P=0.01. Fifteen famotidine group patients and 5 omeprazole group patients had recurrent ulcers/erosions (30.6% versus 9.1%, P=0.005. Lanza scale was significantly lower in omeprazole group than in famotidine group (1.2±0.7 versus 1.7±1.1, P=0.008. Only 1 famotidine group patient had ulcer bleeding. The incidences of erosive esophagitis and thromboembolic events were comparable between both groups. Conclusions. Omeprazole was superior to famotidine with less gastrointestinal symptoms and recurrent ulcers/erosions in patients using 24-week low-dose aspirin. The risk of erosive esophagitis, gastrointestinal bleeding, and thromboembolic events was similar between both groups.

  6. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABAA receptors

    International Nuclear Information System (INIS)

    Shakarjian, Michael P.; Velíšková, Jana; Stanton, Patric K.; Velíšek, Libor

    2012-01-01

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic–clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic–clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic–clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABA A receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists is more likely to be effective in treating TMDT poisoning. -- Highlights: ► TMDT produces convulsions and lethality at low doses in mice. ► Diazepam pre- or post-treatments inhibit TMDT-induced convulsions and death.

  7. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABA{sub A} receptors

    Energy Technology Data Exchange (ETDEWEB)

    Shakarjian, Michael P., E-mail: michael_shakarjian@nymc.edu [Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, NY, 10595 (United States); Department of Medicine, Division of Pulmonary and Critical Care Medicine, UMDNJ–Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Velíšková, Jana, E-mail: jana_veliskova@nymc.edu [Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 (United States); Department of Obstetrics and Gynecology, New York Medical College, Valhalla, NY 10595 (United States); Department of Neurology, New York Medical College, Valhalla, NY 10595 (United States); Stanton, Patric K., E-mail: patric_stanton@nymc.edu [Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 (United States); Department of Neurology, New York Medical College, Valhalla, NY 10595 (United States); Velíšek, Libor, E-mail: libor_velisek@nymc.edu [Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 (United States); Department of Neurology, New York Medical College, Valhalla, NY 10595 (United States); Department of Pediatrics, New York Medical College, Valhalla, NY 10595 (United States)

    2012-11-15

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic–clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic–clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic–clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABA{sub A} receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists is more likely to be effective in treating TMDT poisoning. -- Highlights: ► TMDT produces convulsions and lethality at low doses in mice. ► Diazepam pre- or post-treatments inhibit TMDT-induced convulsions and death

  8. Prevention

    Science.gov (United States)

    ... Error processing SSI file About Heart Disease & Stroke Prevention Heart disease and stroke are an epidemic in ... secondhand smoke. Barriers to Effective Heart Disease & Stroke Prevention Many people with key risk factors for heart ...

  9. Fibroblast Growth Factor-2 Alters the Nature of Extinction

    Science.gov (United States)

    Graham, Bronwyn M.; Richardson, Rick

    2011-01-01

    These experiments examined the effects of the NMDA-receptor (NMDAr) antagonist MK801 on reacquisition and re-extinction of a conditioned fear that had been previously extinguished before injection of fibroblast growth factor-2 (FGF2) or vehicle. Recent findings have shown that relearning and re-extinction, unlike initial learning and extinction,…

  10. Prevention

    Science.gov (United States)

    ... Contact Aging & Health A to Z Find a Geriatrics Healthcare Professional Medications & Older Adults Making Your Wishes ... Prevention Hearing Loss Heart Attack High Blood Pressure Nutrition Osteoporosis Shingles Skin Cancer Related News Quitting Smoking, ...

  11. Evaluation of the effects of gonadotropin-releasing hormone antagonist (GnRH-ant) and agonist (GnRH-a) in the prevention of postoperative adhesion formation in a rat model with immunohistochemical analysis.

    Science.gov (United States)

    Tamay, Asli Goker; Guvenal, Tevfik; Micili, Serap Cilaker; Yildirim, Yasemin; Ozogul, Candan; Koyuncu, Faik Mumtaz; Koltan, Semra Oruc

    2011-11-01

    To investigate the effects of GnRH antagonist (GnRH-ant) and agonist (GnRH-a) in the prevention of postoperative pelvic adhesions by a visual scoring system and immunohistochemical methods in a rat uterine horn model. Controlled experimental animal study. Animal laboratory at an academic research environment. Twenty-one Wistar albino rats. Rats were randomized into three groups. One week before the operation the rats received either GnRH-ant or GnRH-a or saline solution; they then underwent surgical laparotomy, and both uterine horns were traumatized by a scalpel. Three weeks later, all rats were sacrificed and extension and severity of the adhesions in each group were scored by a visual scoring system. Adhesion tissues were evaluated immunohistochemically for vitronectin and u-PAR. Scores of extend and severity of adhesions and staining of vitronectin and u-PAR. The extent of adhesion scores were 1.85 ± 0.86, 0.78 ± 1.05, and 0.42 ± 0.64, and the severity of adhesion scores were 1.71 ± 0.91, 0.57 ± 0.85, 0.50 ± 0.75 for control, GnRH-ant, and GnRH-a groups, respectively. The extent and severity of adhesions were significantly lower in both GnRH-ant and GnRH-a groups when compared with the control group. Adhesion extent scores in the GnRH-a group were lower than in the GnRH-ant group, but this difference was not significant. vitronectin and u-PAR staining were significantly greater in both the GnRH-ant and GnRH-a groups than in the control group. GnRH-ant as well as GnRH-a reduced postoperative adhesion formation in a rat model. This finding was supported immunohistochemically by vitronectin and u-PAR staining. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Prevention

    DEFF Research Database (Denmark)

    Halken, S; Høst, A

    2001-01-01

    , breastfeeding should be encouraged for 4-6 months. In high-risk infants a documented extensively hydrolysed formula is recommended if exclusive breastfeeding is not possible for the first 4 months of life. There is no evidence for preventive dietary intervention neither during pregnancy nor lactation...... populations. These theories remain to be documented in proper, controlled and prospective studies. Breastfeeding and the late introduction of solid foods (>4 months) is associated with a reduced risk of food allergy, atopic dermatitis, and recurrent wheezing and asthma in early childhood. In all infants....... Preventive dietary restrictions after the age of 4-6 months are not scientifically documented....

  13. Role of Ryanodine and NMDA Receptors in Tetrabromobisphenol A-Induced Calcium Imbalance and Cytotoxicity in Primary Cultures of Rat Cerebellar Granule Cells.

    Science.gov (United States)

    Zieminska, Elzbieta; Stafiej, Aleksandra; Toczylowska, Beata; Albrecht, Jan; Lazarewicz, Jerzy W

    2015-10-01

    The study assessed the role of ryanodine receptors (RyRs) and NMDA receptors (NMDARs) in the Ca(2+) transients and cytotoxicity induced in neurons by the brominated flame retardant tetrabromobisphenol A (TBBPA). Primary cultures of rat cerebellar granule cells (CGC) were exposed to 7.5, 10, or 25 µM TBBPA for 30 min, and cell viability was assessed after 24 h. Moreover, (45)Ca uptake was measured, and changes in the intracellular Ca(2+) concentration ([Ca(2+)]i) were studied using the fluo-3 probe. The involvement of NMDARs and RyRs was verified using the pertinent receptor antagonists, 0.5 µM MK-801 and 2.5 µM bastadin 12, which was co-applied with 200 µM ryanodine, respectively. The results show that TBBPA concentration-dependently induces an increase in [Ca(2+)]i. This effect was partly suppressed by the inhibitors of RyRs and NMDARs when administered separately, and completely abrogated by their combined application. A concentration-dependent activation of (45)Ca uptake by TBBPA was prevented by MK-801 but not by RyR inhibitors. Application of ≥ 10 µM TBBPA concentration-dependently reduced neuronal viability, and this effect was only partially and to an equal degree reduced by NMDAR and RyR antagonists given either separately or in combination. Our results directly demonstrate that both the RyR-mediated release of intracellular Ca(2+) and the NMDAR-mediated influx of Ca(2+) into neurons participate in the mechanism of TBBPA-induced Ca(2+) imbalance in CGC and play a significant, albeit not exclusive, role in the mechanisms of TBBPA cytotoxicity.

  14. Effect of chemical stimulation of the medial frontal lobe on the micturition reflex in rats.

    Science.gov (United States)

    Nishijima, Saori; Sugaya, Kimio; Kadekawa, Katsumi; Ashitomi, Katsuhiro; Yamamoto, Hideyuki

    2012-03-01

    We assessed the influence of the medial frontal lobe on micturition after chemical stimulation. We also examined the relation between the medial frontal lobe and the rostral pontine reticular formation, which has a strong inhibitory effect on micturition. A total of 35 female rats underwent continuous cystometry. Bladder activity changes were examined after physiological saline, glutamate, the glutamate receptor antagonist MK-801, noradrenaline or the adrenergic α-1 receptor antagonist naftopidil was injected in the medial frontal lobe. When glutamate was injected in the medial frontal lobe, MK-801 was also injected in the rostral pontine reticular formation. Glutamate injection in the medial frontal lobe prolonged the interval between bladder contractions while injection of the glutamate antagonist MK-801 shortened the interval. Glutamate injection in the medial frontal lobe just after MK-801 injection in the ipsilateral rostral pontine reticular formation also prolonged the interval between bladder contractions. However, after prior injection of MK-801 in the bilateral rostral pontine reticular formation glutamate injection in the medial frontal lobe did not influence cystometric parameters. Noradrenaline injection in the medial frontal lobe shortened the interval between bladder contractions while injection of its antagonist naftopidil prolonged the interval. Medial frontal lobe neurons excited by glutamate inhibited the micturition reflex via activation of the rostral pontine reticular formation by glutamatergic projection while medial frontal lobe neurons excited by noradrenaline facilitated the micturition reflex. Thus, the medial frontal lobe may be an important integration center for the initiation of micturition and urine storage mechanisms. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  15. Coantagonism of glutamate receptors and nicotinic acetylcholinergic receptors disrupts fear conditioning and latent inhibition of fear conditioning

    OpenAIRE

    Gould, Thomas J.; Lewis, Michael C.

    2005-01-01

    The present study investigated the hypothesis that both nicotinic acetylcholinergic receptors (nAChRs) and glutamate receptors (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) and N-methyl-d-aspartate glutamate receptors (NMDARs)) are involved in fear conditioning, and may modulate similar processes. The effects of the nAChR antagonist mecamylamine administered alone, the AMPAR antagonist NBQX administered alone, and the NMDAR antagonist MK-801 administered alone on cued ...

  16. Naloxone : actions of an antagonist

    NARCIS (Netherlands)

    Dorp, Eveline Louise Arianna van

    2009-01-01

    The opioid antagonist naloxone has a special place in pharmacology – it has no intrinsic action of its own, but it is able to save lives in the case of life threatening side-effects caused by other drugs. Naloxone is an antagonist for all opioid receptors, but most specifically for the μ-opioid

  17. The difference in effect of mGlu2/3 and mGlu5 receptor agonists on cognitive impairment induced by MK-801

    Czech Academy of Sciences Publication Activity Database

    Valeš, Karel; Svoboda, Jan; Benkovičová, Kristína; Bubeníková-Valešová, V.; Stuchlík, Aleš

    2010-01-01

    Roč. 639, 1-3 (2010), s. 91-98 ISSN 0014-2999 R&D Projects: GA MZd(CZ) NR9178 Institutional research plan: CEZ:AV0Z50110509 Keywords : animal model of schizophrenia * metabotropic glutamate receptor * cognition Subject RIV: FH - Neurology Impact factor: 2.737, year: 2010

  18. Two learning tasks provide evidence for disrupted behavioural flexibility in an animal model of schizophrenia-like behaviour induced by acute MK-801: A dose–response study

    Czech Academy of Sciences Publication Activity Database

    Lobellová, Veronika; Entlerová, Marie; Svojanovská, Barbora; Hatalová, Hana; Prokopová, Iva; Petrásek, Tomáš; Valeš, Karel; Kubík, Štěpán; Fajnerová, Iveta; Stuchlík, Aleš

    2013-01-01

    Roč. 246, č. 1 (2013), s. 55-62 ISSN 0166-4328 R&D Projects: GA MZd(CZ) NT13386 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200111204 Institutional support: RVO:67985823 Keywords : flexibility * dizocilpine * learning Subject RIV: FH - Neurology Impact factor: 3.391, year: 2013

  19. Acute administration of MK-801 in an animal model of psychosis in rats interferes with cognitively demanding forms of behavioral flexibility on a rotating arena

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jan; Staňková, Anna; Entlerová, Marie; Stuchlík, Aleš

    2015-01-01

    Roč. 9, APR 1 (2015), s. 75 ISSN 1662-5153 R&D Projects: GA ČR(CZ) GA14-03627S Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200111204; GA MŠk(CZ) ED2.1.00/03.0078 Institutional support: RVO:67985823 Keywords : flexibility * memory * reversal learning Subject RIV: FH - Neurology Impact factor: 3.392, year: 2015

  20. MK-801 impairs cognitive coordination on a rotating arena (Carousel) and contextual specificity of hippocampal immediate-early gene expression in a rat model of psychosis

    Czech Academy of Sciences Publication Activity Database

    Kubík, Štěpán; Buchtová, Helena; Valeš, Karel; Stuchlík, Aleš

    2014-01-01

    Roč. 8, Mar 12 (2014), s. 75 ISSN 1662-5153 R&D Projects: GA ČR(CZ) GPP303/10/P191 Grant - others:EC(XE) PIR06-GA/2009-256581 Institutional support: RVO:67985823 Keywords : cognitive coordination * learning * dizocilpine * animal model * psychosis Subject RIV: FH - Neurology Impact factor: 3.270, year: 2014

  1. MK-801 and memantine act differently on short-term memory tested with different time-intervals in the Morris water maze test

    Czech Academy of Sciences Publication Activity Database

    Duda, W.; Wesierska, M.; Ostaszewski, P.; Valeš, Karel; Nekovářová, Tereza; Stuchlík, Aleš

    2016-01-01

    Roč. 311, Sep 15 (2016), s. 15-23 ISSN 0166-4328 R&D Projects: GA MŠk(CZ) LH14053; GA ČR(CZ) GA14-03627S Institutional support: RVO:67985823 Keywords : short-term memory * spatial working memory * memantine * dizocilpine * Morris water maze Subject RIV: FH - Neurology Impact factor: 3.002, year: 2016

  2. In vivo [(123)I]CNS-1261 binding to D-serine-activated and MK801-blocked NMDA receptors: A storage phosphor imaging study in rats

    NARCIS (Netherlands)

    Knol, Remco J. J.; de Bruin, Kora; van Eck-Smit, Berthe L. F.; Pimlott, Sally; Wyper, David J.; Booij, Jan

    2009-01-01

    Disturbances of activity of the glutamatergic neurotransmitter system in the brain are present in many neuropsychiatric disorders. The N-methyl-D-aspartate (NMDA) receptor is the most abundant receptor of the glutamatergic system. In the neurodegenerative events of Alzheimer's disease, excessive

  3. Dizocilpine (MK-801) impairs learning in the active place avoidance task but has no effect on the performance during task/context alternation

    Czech Academy of Sciences Publication Activity Database

    Vojtěchová, Iveta; Petrásek, Tomáš; Hatalová, Hana; Pištíková, Adéla; Valeš, Karel; Stuchlík, Aleš

    2016-01-01

    Roč. 305, May 15 (2016), s. 247-257 ISSN 0166-4328 R&D Projects: GA ČR(CZ) GA14-03627S Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200111204 Institutional support: RVO:67985823 Keywords : task alternation * context alternation * active place avoidance * Morris water maze * Dizocilpine * schizophrenia Subject RIV: FH - Neurology Impact factor: 3.002, year: 2016

  4. Opioid antagonists for alcohol dependence.

    Science.gov (United States)

    Rösner, Susanne; Hackl-Herrwerth, Andrea; Leucht, Stefan; Vecchi, Simona; Srisurapanont, Manit; Soyka, Michael

    2010-12-08

    Alcohol dependence belongs to the globally leading health risk factors. Therapeutic success of psychosocial programs for relapse prevention is moderate and could be increased by an adjuvant treatment with the opioid antagonists naltrexone and nalmefene. To determine the effectiveness and tolerability of opioid antagonists in the treatment of alcohol dependence. We searched the Cochrane Drugs and Alcohol Group (CDAG) Specialized Register, PubMed, EMBASE and CINAHL in January 2010 and inquired manufacturers and researchers for unpublished trials. All double-blind randomised controlled trials (RCTs) which compare the effects of naltrexone or nalmefene with placebo or active control on drinking-related outcomes. Two authors independently extracted outcome data. Trial quality was assessed by one author and cross-checked by a second author. Based on a total of 50 RCTs with 7793 patients, naltrexone reduced the risk of heavy drinking to 83% of the risk in the placebo group RR 0.83 (95% CI 0.76 to 0.90) and decreased drinking days by about 4%, MD -3.89 (95% CI -5.75 to -2.04). Significant effects were also demonstrated for the secondary outcomes of the review including heavy drinking days, MD - 3.25 (95% CI -5.51 to -0.99), consumed amount of alcohol, MD - 10.83 (95% CI -19.69 to -1.97) and gamma-glutamyltransferase, MD - 10.37 (95% CI -18.99 to -1.75), while effects on return to any drinking, RR 0.96 (95 CI 0.92 to 1.00) missed statistical significance. Side effects of naltrexone were mainly gastrointestinal problems (e.g. nausea: RD 0.10; 95% CI 0.07 to 0.13) and sedative effects (e.g. daytime sleepiness: RD 0.09; 95% CI 0.05 to 0.14). Based on a limited study sample, effects of injectable naltrexone and nalmefene missed statistical significance. Effects of industry-sponsored studies, RR 0.90 (95% CI 0.78 to 1.05) did not significantly differ from those of non-profit funded trials, RR 0.84 (95% CI 0.77 to 0.91) and the linear regression test did not indicate publication

  5. Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor.

    Science.gov (United States)

    Olmos, G; DeGregorio-Rocasolano, N; Paz Regalado, M; Gasull, T; Assumpció Boronat, M; Trullas, R; Villarroel, A; Lerma, J; García-Sevilla, J A

    1999-07-01

    This study was designed to assess the potential neuroprotective effect of several imidazol(ine) drugs and agmatine on glutamate-induced necrosis and on apoptosis induced by low extracellular K+ in cultured cerebellar granule cells. Exposure (30 min) of energy deprived cells to L-glutamate (1-100 microM) caused a concentration-dependent neurotoxicity, as determined 24 h later by a decrease in the ability of the cells to metabolize 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) into a reduced formazan product. L-glutamate-induced neurotoxicity (EC50=5 microM) was blocked by the specific NMDA receptor antagonist MK-801 (dizocilpine). Imidazol(ine) drugs and agmatine fully prevented neurotoxicity induced by 20 microM (EC100) L-glutamate with the rank order (EC50 in microM): antazoline (13)>cirazoline (44)>LSL 61122 [2-styryl-2-imidazoline] (54)>LSL 60101 [2-(2-benzofuranyl) imidazole] (75)>idazoxan (90)>LSL 60129 [2-(1,4-benzodioxan-6-yl)-4,5-dihydroimidazole](101)>RX82 1002 (2-methoxy idazoxan) (106)>agmatine (196). No neuroprotective effect of these drugs was observed in a model of apoptotic neuronal cell death (reduction of extracellular K+) which does not involve stimulation of NMDA receptors. Imidazol(ine) drugs and agmatine fully inhibited [3H]-(+)-MK-801 binding to the phencyclidine site of NMDA receptors in rat brain. The profile of drug potency protecting against L-glutamate neurotoxicity correlated well (r=0.90) with the potency of the same compounds competing against [3H]-(+)-MK-801 binding. In HEK-293 cells transfected to express the NR1-1a and NR2C subunits of the NMDA receptor, antazoline and agmatine produced a voltage- and concentration-dependent block of glutamate-induced currents. Analysis of the voltage dependence of the block was consistent with the presence of a binding site for antazoline located within the NMDA channel pore with an IC50 of 10-12 microM at 0 mV. It is concluded that imidazol(ine) drugs and agmatine are

  6. Studies on antagonistic marine streptomycetes

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, D.; Nair, S.

    Sixty nine strains of Streptomyces sp. isolated from the sediments of Andaman and Nicobar islands (Bay of Bengal) were screened for their antagonistic property against a number of test cultures (Vibrio sp., Klebsiella sp., Escherichia coli, Shigella...

  7. Agmatine protects against cell damage induced by NMDA and glutamate in cultured hippocampal neurons.

    Science.gov (United States)

    Wang, Wei-Ping; Iyo, Abiye H; Miguel-Hidalgo, Javier; Regunathan, Soundar; Zhu, Meng-Yang

    2006-04-21

    Agmatine is a polyamine and has been considered as a novel neurotransmitter or neuromodulator in the central nervous system. In the present study, the neuroprotective effect of agmatine against cell damage caused by N-methyl-D-aspartate (NMDA) and glutamate was investigated in cultured rat hippocampal neurons. Lactate dehydrogenase (LDH) activity assay, beta-tubulin III immunocytochemical staining and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end-labeling (TUNEL) assay were conducted to detect cell damage. Exposure of 12-day neuronal cultures of rat hippocampus to NMDA or glutamate for 1 h caused a concentration-dependent neurotoxicity, as indicated by the significant increase in released LDH activities. Addition of 100 microM agmatine into media ablated the neurotoxicity induced by NMDA or glutamate, an effect also produced by the specific NMDA receptor antagonist dizocilpine hydrogen maleate (MK801). Arcaine, an analog of agmatine with similar structure as agmatine, fully prevented the NMDA- or glutamate-induced neuronal damage. Spermine and putrescine, the endogenous polyamine and metabolic products of agmatine without the guanidine moiety of agmatine, failed to show this effect, indicating a structural relevance for this neuroprotection. Immunocytochemical staining and TUNEL assay confirmed the findings in the LDH measurement. That is, agmatine and MK801 markedly attenuated NMDA-induced neuronal death and significantly reduced TUNEL-positive cell numbers induced by exposure of cultured hippocampal neurons to NMDA. Taken together, these results demonstrate that agmatine can protect cultured hippocampal neurons from NMDA- or glutamate-induced excitotoxicity, through a possible blockade of the NMDA receptor channels or a potential anti-apoptotic property.

  8. Endothelin receptor antagonists influence cardiovascular morphology in uremic rats.

    Science.gov (United States)

    Nabokov, A V; Amann, K; Wessels, S; Münter, K; Wagner, J; Ritz, E

    1999-02-01

    In is generally held that renal failure results in blood pressure (BP)-independent structural changes of the myocardium and the vasculature. The contribution, if any, of endothelin (ET) to these changes has been unknown. We morphometrically studied random samples of the left ventricle myocardium and small intramyocardial arteries in subtotally (5/6) nephrectomized (SNx) male Sprague-Dawley rats treated with either the selective ETA receptor antagonist BMS182874 (30 mg/kg/day) or the nonselective ETA/ETB receptor antagonist Ro46-2005 (30 mg/kg/day) in comparison with either sham-operated rats, untreated SNx, or SNx rats treated with the angiotensin-converting enzyme inhibitor trandolapril (0.1 mg/kg/day). Eight weeks later, systolic BP was lower in trandolapril-treated SNx compared with untreated SNx animals. No decrease in BP was seen following either ET receptor antagonist at the dose used. A significantly increased volume density of the myocardial interstitium was found in untreated SNx rats as compared with sham-operated controls. Such interstitial expansion was prevented by trandolapril and either ET receptor antagonist. SNx caused a substantial increase in the wall thickness of small intramyocardial arteries. The increase was prevented by trandolapril or BMS182874 treatment. The arteriolar wall:lumen ratio was significantly lower in all treated groups when compared with untreated SNx. In contrast, only trandolapril, but not the ET receptor antagonists, attenuated thickening of the aortic media in SNx animals. The ETA-selective and ETA/ETB-nonselective receptor antagonists appear to prevent development of myocardial fibrosis and structural changes of small intramyocardial arteries in experimental chronic renal failure. This effect is independent of systemic BP.

  9. One-trial object recognition memory in the domestic rabbit (Oryctolagus cuniculus) is disrupted by NMDA receptor antagonists.

    Science.gov (United States)

    Hoffman, Kurt Leroy; Basurto, Enrique

    2013-08-01

    The spontaneous response to novelty is the basis of one-trial object recognition tests for the study of object recognition memory (ORM) in rodents. We describe an object recognition task for the rabbit, based on its natural tendency to scent-mark ("chin") novel objects. The object recognition task comprised a 15min sample phase in which the rabbit was placed into an open field arena containing two similar objects, then removed for a 5-360min delay, and then returned to the same arena that contained one object similar to the original ones ("Familiar") and one that differed from the original ones ("Novel"), for a 15min test phase. Chin-marks directed at each of the objects were registered. Some animals received injections (sc) of saline, ketamine (1mg/kg), or MK-801 (37μg/kg), 5 or 20min before the sample phase. We found that chinning decreased across the sample phase, and that this response showed stimulus specificity, a defining characteristic of habituation: in the test phase, chinning directed at the Novel, but not Familiar, object was increased. Chinning directed preferentially at the novel object, which we interpret as novelty-induced sensitization and the behavioral correlate of ORM, was promoted by tactile/visual and spatial novelty. ORM deficits were induced by pre-treatment with MK-801 and, to a lesser extent, ketamine. Novel object discrimination was not observed after delays longer than 5min. These results suggest that short-term habituation and sensitization, not long-term memory, underlie novel object discrimination in this test paradigm. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Clinical pharmacology of calcium antagonists as antihypertensive and anti-anginal drugs

    NARCIS (Netherlands)

    van Zwieten, P. A.

    1996-01-01

    USE OF CALCIUM ANTAGONISTS: These drugs are prescribed for antihypertensive activity in patients with essential hypertension, perioperative hypertension associated with thoracic surgery, angina pectoris and for secondary prevention after acute coronary syndromes (myocardial infarction, unstable

  11. First Irish birth following IVF therapy using antagonist protocol.

    LENUS (Irish Health Repository)

    Mocanu, E V

    2012-02-01

    BACKGROUND: During in vitro fertilization (IVF), the prevention of a premature LH surge was traditionally achieved using a gonadotrophin releasing hormone agonist (GnRH-a), and more recently, a GnRH antagonist. AIMS: We report a case of a 37 year old treated using the GnRH antagonist in a second completed cycle of IVF. METHODS: IVF was performed for primary infertility of 5-year duration due to frozen pelvis secondary to endometriosis. RESULTS: Following controlled ovarian hyperstimulation, oocyte recovery and fertilization, cleavage and transfer of two zygotes, a pregnancy established. A twin gestation was diagnosed at 7-weeks scan and pregnancy ended with the delivery of twin girls by emergency caesarean section. CONCLUSION: This is a first report of a delivery following IVF using the antagonist protocol in Ireland. Such therapy is patient friendly and its use should be introduced on a larger scale in clinical practice.

  12. Olanzapine-Based Triple Regimens Versus Neurokinin-1 Receptor Antagonist-Based Triple Regimens in Preventing Chemotherapy-Induced Nausea and Vomiting Associated with Highly Emetogenic Chemotherapy: A Network Meta-Analysis.

    Science.gov (United States)

    Zhang, Zhonghan; Zhang, Yaxiong; Chen, Gang; Hong, Shaodong; Yang, Yunpeng; Fang, Wenfeng; Luo, Fan; Chen, Xi; Ma, Yuxiang; Zhao, Yuanyuan; Zhan, Jianhua; Xue, Cong; Hou, Xue; Zhou, Ting; Ma, Shuxiang; Gao, Fangfang; Huang, Yan; Chen, Likun; Zhou, Ningning; Zhao, Hongyun; Zhang, Li

    2018-01-12

    The current antiemetic prophylaxis for patients treated with highly emetogenic chemotherapy (HEC) included the olanzapine-based triplet and neurokinin-1 receptor antagonists (NK-1RAs)-based triplet. However, which one shows better antiemetic effect remained unclear. We systematically reviewed 43 trials, involving 16,609 patients with HEC, which compared the following antiemetics at therapeutic dose range for the treatment of chemotherapy-induced nausea and vomiting: olanzapine, aprepitant, casopitant, fosaprepitant, netupitant, and rolapitant. The main outcomes were the proportion of patients who achieved no nausea, complete response (CR), and drug-related adverse events. A Bayesian network meta-analysis was performed. Olanzapine-based triple regimens showed significantly better no-nausea rate in overall phase and delayed phase than aprepitant-based triplet (odds ratios 3.18, 3.00, respectively), casopitant-based triplet (3.78, 4.12, respectively), fosaprepitant-based triplet (3.08, 4.10, respectively), rolapitant-based triplet (3.45, 3.20, respectively), and conventional duplex regimens (4.66, 4.38, respectively). CRs of olanzapine-based triplet were roughly equal to different NK-1RAs-based triplet but better than the conventional duplet. Moreover, no significant drug-related adverse events were observed in olanzapine-based triple regimens when compared with NK-1RAs-based triple regimens and duplex regimens. Additionally, the costs of olanzapine-based regimens were obviously much lower than the NK-1RA-based regimens. Olanzapine-based triplet stood out in terms of nausea control and drug price but represented no significant difference of CRs in comparison with NK-1RAs-based triplet. Olanzapine-based triple regimens should be an optional antiemetic choice for patients with HEC, especially those suffering from delayed phase nausea. According to the results of this study, olanzapine-based triple antiemetic regimens were superior in both overall and delayed

  13. Impact of Aldosterone Antagonists on Sudden Cardiac Death Prevention in Heart Failure and Post-Myocardial Infarction Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

    Directory of Open Access Journals (Sweden)

    Hai-Ha Le

    Full Text Available Sudden cardiac death (SCD is a severe burden of modern medicine. Aldosterone antagonist is publicized as effective in reducing mortality in patients with heart failure (HF or post myocardial infarction (MI. Our study aimed to assess the efficacy of AAs on mortality including SCD, hospitalization admission and several common adverse effects.We searched Embase, PubMed, Web of Science, Cochrane library and clinicaltrial.gov for randomized controlled trials (RCTs assigning AAs in patients with HF or post MI through May 2015. The comparator included standard medication or placebo, or both. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA guidelines were followed. Event rates were compared using a random effects model. Prospective RCTs of AAs with durations of at least 8 weeks were selected if they included at least one of the following outcomes: SCD, all-cause/cardiovascular mortality, all-cause/cardiovascular hospitalization and common side effects (hyperkalemia, renal function degradation and gynecomastia.Data from 19,333 patients enrolled in 25 trials were included. In patients with HF, this treatment significantly reduced the risk of SCD by 19% (RR 0.81; 95% CI, 0.67-0.98; p = 0.03; all-cause mortality by 19% (RR 0.81; 95% CI, 0.74-0.88, p<0.00001 and cardiovascular death by 21% (RR 0.79; 95% CI, 0.70-0.89, p<0.00001. In patients with post-MI, the matching reduced risks were 20% (RR 0.80; 95% CI, 0.66-0.98; p = 0.03, 15% (RR 0.85; 95% CI, 0.76-0.95, p = 0.003 and 17% (RR 0.83; 95% CI, 0.74-0.94, p = 0.003, respectively. Concerning both subgroups, the relative risks respectively decreased by 19% (RR 0.81; 95% CI, 0.71-0.92; p = 0.002 for SCD, 18% (RR 0.82; 95% CI, 0.77-0.88, p < 0.0001 for all-cause mortality and 20% (RR 0.80; 95% CI, 0.74-0.87, p < 0.0001 for cardiovascular mortality in patients treated with AAs. As well, hospitalizations were significantly reduced, while common adverse effects were significantly

  14. Role of NMDA receptors in the increase of glucose metabolism in the rat brain induced by fluorocitrate.

    Science.gov (United States)

    Hirose, Shinichiro; Umetani, Yukiko; Amitani, Misato; Hosoi, Rie; Momosaki, Sotaro; Hatazawa, Jun; Gee, Antony; Inoue, Osamu

    2007-03-30

    The effect of inhibition of glial metabolism by infusion of fluorocitrate (FC, 1 nmol/microl, 2 microl) into the right striatum of the rat brain on the glucose metabolism was studied. Significant increases in [(18)F]fluorodeoxyglucose ([(18)F]FDG) uptake (45 min) in the right cerebral cortex and striatum were observed 4h after the infusion of FC, both as determined by the tissue dissection method and autoradiography. No significant increase in the initial uptake of [(18)F]FDG (1 min) was seen in the striatum. Pretreatment with dizocilpine (MK-801), an N-methyl-d-aspartate (NMDA) receptor antagonist, reduced [(18)F]FDG uptake in not only FC infused hemisphere but also in the contralateral hemisphere (saline-infused side). The radioactivity concentrations in plasma at 1, 5 and 45 min after the [(18)F]FDG injection were not altered by MK-801. This effect of MK-801 on glucose metabolism observed in the rat brain infused with FC was different from previous reports which indicated an increase in glucose metabolism in some areas of normal rat brain. In addition, the enhancement of glucose metabolism in the striatum induced by FC was almost completely abolished by pretreatment with MK-801. In the cerebral cortex, the relative ratio of radioactivity concentration in the right hemisphere to that in the left hemisphere still remained 1.37 (tissue dissection method) or 1.55 (autoradiography), which indicated that MK-801 partially blocked the effect of FC of enhancing glucose metabolism in this region. These results indicate an important role of NMDA-mediated signal transmission on the increase of glucose utilization induced by inhibition of glial metabolism.

  15. Use of a single bolus of GnRH agonist triptorelin to trigger ovulation after GnRH antagonist ganirelix treatment in women undergoing ovarian stimulation for assisted reproduction, with special reference to the prevention of ovarian hyperstimulation syndrome: preliminary report: short communication.

    Science.gov (United States)

    Itskovitz-Eldor, J; Kol, S; Mannaerts, B

    2000-09-01

    A new treatment option for patients undergoing ovarian stimulation is the gonadotrophin-releasing hormone (GnRH) antagonist protocol, with the possibility to trigger a mid-cycle LH surge using a single bolus of GnRH agonist, reducing the risk of developing ovarian hyperstimulation syndrome (OHSS) in high responders and the chance of cycle cancellation. This report describes the use of 0.2 mg triptorelin (Decapeptyl) to trigger ovulation in eight patients who underwent controlled ovarian hyperstimulation with recombinant FSH (rFSH, Puregon) and concomitant treatment with the GnRH antagonist ganirelix (Orgalutran) for the prevention of premature LH surges. All patients were considered to have an increased risk for developing OHSS (at least 20 follicles > or =11 mm and/or serum oestradiol at least 3000 pg/ml). On the day of triggering the LH surge, the mean number of follicles > or =11 mm was 25.1 +/- 4.5 and the median serum oestradiol concentration was 3675 (range 2980-7670) pg/ml. After GnRH agonist injection, endogenous serum LH and FSH surges were observed with median peak values of 219 and 19 IU/l respectively, measured 4 h after injection. The mean number of oocytes obtained was 23.4 +/- 15.4, of which 83% were mature (metaphase II). None of the patients developed any signs or symptoms of OHSS. So far, four clinical pregnancies have been achieved from the embryos obtained during these cycles, including the first birth following this approach. It is concluded that GnRH agonist effectively triggers an endogenous LH surge for final oocyte maturation after ganirelix treatment in stimulated cycles. Our preliminary results suggest that this regimen may prove effective in triggering ovulation and could be said to prevent OHSS in high responders. The efficacy and safety of such new treatment regimen needs to be established in comparative randomized studies.

  16. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation...

  17. ANTAGONISTIC POTENTIAL OF FLUORESCENT Pseudomonas ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    This study focused on the antagonistic potential of fluorescent Pseudomonas in vitro, and its inoculation effect on growth performance of Lycopersicon esculentum in Fusarium oxysporum and Rhizoctonia solani infested soil. Biochemical characteristics of fluorescent Pseudomonas showed that all ten isolates were positive ...

  18. Antinociception and prevention of hyperalgesia by intrathecal administration of Ro 25-6981, a highly selective antagonist of the 2B subunit of N-methyl-D-aspartate receptor.

    Science.gov (United States)

    Jiang, Ming; Zhang, Wei; Ma, Zhengliang; Gu, Xiaoping

    2013-11-01

    NR2B subunits (NMDA receptor 2B subunit) play an important role in generation of pain and forming central sensitization of pain. Ro 25-6981, a highly selective NR2B antagonist, gained much attention in recent years. In this study, we used a rat model of incisional pain to investigate effects of postoperative analgesia and changes of postoperative hyperalgesia induced by remifentanil through the pretreatment of intrathecal administration with Ro 25-6981. The behavioral changes of rats have been evaluated by the paw withdrawal mechanical threshold and paw withdrawal thermal latency after intrathecal injection of Ro 25-6981. The expression of NR2B with tyrosine phosphorylation in the spinal dorsal horn was analyzed by Western blotting. Intrathecal injection of Ro 25-6981 significantly enhanced the paw withdrawal mechanical threshold and paw withdrawal thermal latency after the operation. Significant change has been observed after intrathecal injection of 800.0 μg of Ro 25-6981 and at 2h after operation in the oblique pull test degree and BBB rating score. Pretreatment of Ro 25-6981 decreased the high level expression of NR2B with tyrosine phosphorylation in spinal dorsal horn of the rat model after the operation. Intrathecal injection of Ro 25-6981 had significant analgesic effects on incision pain in rats and effectively attenuated postoperative hyperalgesia induced by remifentanil. © 2013.

  19. Clinical Development of Histamine H4Receptor Antagonists.

    Science.gov (United States)

    Thurmond, Robin L; Venable, Jennifer; Savall, Brad; La, David; Snook, Sandra; Dunford, Paul J; Edwards, James P

    2017-01-01

    The discovery of the histamine H 4 receptor (H 4 R) provided a new avenue for the exploration of the physiological role of histamine, as well as providing a new drug target for the development of novel antihistamines. The first step in this process was the identification of selective antagonists to help unravel the pharmacology of the H 4 R relative to other histamine receptors. The discovery of the selective H 4 R antagonist JNJ 7777120 was vital for showing a role for the H 4 R in inflammation and pruritus. While this compound has been very successful as a tool for understanding the function of the receptor, it has drawbacks, including a short in vivo half-life and hypoadrenocorticism toxicity in rats and dogs, that prevented advancing it into clinical studies. Further research let to the discovery of JNJ 39758979, which, similar to JNJ 7777120, was a potent and selective H 4 R antagonist and showed anti-inflammatory and anti-pruritic activity preclinically. JNJ 39758979 advanced into human clinical studies and showed efficacy in reducing experimental pruritus and in patients with atopic dermatitis. However, development of this compound was terminated due to the occurrence of drug-induced agranulocytosis. This was overcome by developing another H 4 R antagonist with a different chemical structure, toreforant, that does not appear to have this side effect. Toreforant has been tested in clinical studies in patients with rheumatoid arthritis, asthma, or psoriasis. In conclusions there have been many H 4 R antagonists reported in the literature, but only a few have been studied in humans underscoring the difficulty in finding ligands with all of the properties necessary for testing in the clinic. Nevertheless, the clinical data to date suggests that H 4 R antagonists can be beneficial in treating atopic dermatitis and pruritus.

  20. Cannabidiol attenuates sensorimotor gating disruption and molecular changes induced by chronic antagonism of NMDA receptors in mice.

    Science.gov (United States)

    Gomes, Felipe V; Issy, Ana Carolina; Ferreira, Frederico R; Viveros, Maria-Paz; Del Bel, Elaine A; Guimarães, Francisco S

    2014-10-31

    Preclinical and clinical data suggest that cannabidiol (CBD), a major non-psychotomimetic compound from Cannabis sativa, induces antipsychotic-like effects. However, the antipsychotic properties of repeated CBD treatment have been poorly investigated. Behavioral changes induced by repeated treatment with glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been proposed as an animal model of schizophrenia-like signs. In the present study, we evaluated if repeated treatment with CBD would attenuate the behavioral and molecular modifications induced by chronic administration of one of these antagonists, MK-801. Male C57BL/6J mice received daily i.p. injections of MK-801 (0.1, 0.5, or 1mg/kg) for 14, 21, or 28 days. Twenty-four hours after the last injection, animals were submitted to the prepulse inhibition (PPI) test. After that, we investigated if repeated treatment with CBD (15, 30, and 60mg/kg) would attenuate the PPI impairment induced by chronic treatment with MK-801 (1mg/kg; 28 days). CBD treatment began on the 6th day after the start of MK-801 administration and continued until the end of the treatment. Immediately after the PPI, the mice brains were removed and processed to evaluate the molecular changes. We measured changes in FosB/ΔFosB and parvalbumin (PV) expression, a marker of neuronal activity and a calcium-binding protein expressed in a subclass of GABAergic interneurons, respectively. Changes in mRNA expression of the NMDAR GluN1 subunit gene (GRN1) were also evaluated. CBD effects were compared to those induced by the atypical antipsychotic clozapine. MK-801 administration at the dose of 1mg/kg for 28 days impaired PPI responses. Chronic treatment with CBD (30 and 60mg/kg) attenuated PPI impairment. MK-801 treatment increased FosB/ΔFosB expression and decreased PV expression in the medial prefrontal cortex. A decreased mRNA level of GRN1 in the hippocampus was also observed. All the molecular changes were attenuated by CBD. CBD by

  1. Cannabidiol Attenuates Sensorimotor Gating Disruption and Molecular Changes Induced by Chronic Antagonism of NMDA receptors in Mice

    Science.gov (United States)

    Issy, Ana Carolina; Ferreira, Frederico R.; Viveros, Maria-Paz; Del Bel, Elaine A.; Guimarães, Francisco S.

    2015-01-01

    Background: Preclinical and clinical data suggest that cannabidiol (CBD), a major non-psychotomimetic compound from Cannabis sativa, induces antipsychotic-like effects. However, the antipsychotic properties of repeated CBD treatment have been poorly investigated. Behavioral changes induced by repeated treatment with glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been proposed as an animal model of schizophrenia-like signs. In the present study, we evaluated if repeated treatment with CBD would attenuate the behavioral and molecular modifications induced by chronic administration of one of these antagonists, MK-801. Methods: Male C57BL/6J mice received daily i.p. injections of MK-801 (0.1, 0.5, or 1mg/kg) for 14, 21, or 28 days. Twenty-four hours after the last injection, animals were submitted to the prepulse inhibition (PPI) test. After that, we investigated if repeated treatment with CBD (15, 30, and 60mg/kg) would attenuate the PPI impairment induced by chronic treatment with MK-801 (1mg/kg; 28 days). CBD treatment began on the 6th day after the start of MK-801 administration and continued until the end of the treatment. Immediately after the PPI, the mice brains were removed and processed to evaluate the molecular changes. We measured changes in FosB/ΔFosB and parvalbumin (PV) expression, a marker of neuronal activity and a calcium-binding protein expressed in a subclass of GABAergic interneurons, respectively. Changes in mRNA expression of the NMDAR GluN1 subunit gene (GRN1) were also evaluated. CBD effects were compared to those induced by the atypical antipsychotic clozapine. Results: MK-801 administration at the dose of 1mg/kg for 28 days impaired PPI responses. Chronic treatment with CBD (30 and 60mg/kg) attenuated PPI impairment. MK-801 treatment increased FosB/ΔFosB expression and decreased PV expression in the medial prefrontal cortex. A decreased mRNA level of GRN1 in the hippocampus was also observed. All the molecular changes were

  2. Risk of major bleeding and stroke associated with the use of vitamin K antagonists, nonvitamin K antagonist oral anticoagulants and aspirin in patients with atrial fibrillation: a cohort study

    NARCIS (Netherlands)

    Gieling, E.M.; Ham, H.A. van den; Onzenoort, H. van; Bos, J.; Kramers, C.; Boer, A. de; Vries, F de; Burden, A.M.

    2017-01-01

    AIMS: Nonvitamin K antagonist oral anticoagulants (NOACs) are now available for the prevention of stroke in patients with atrial fibrillation (AF) as an alternative to vitamin K antagonists (VKA) and aspirin. The comparative effectiveness and safety in daily practice of these different drug classes

  3. Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures

    DEFF Research Database (Denmark)

    Kolko, M; DeCoster, M A; de Turco, E B

    1996-01-01

    glutamate and sPLA2 from bee venom. sPLA2, at concentrations eliciting low neurotoxicity (..., from Taipan snake venom. The NMDA receptor antagonist MK-801 blocked glutamate effects and partially inhibited sPLA2 OS2 but not sPLA2 from bee venom-induced arachidonic acid release. Thus, the synergy with glutamate and very low concentrations of exogenously added sPLA2 suggests a potential role...

  4. Indications for the use of parenteral H2-receptor antagonists.

    Science.gov (United States)

    Thompson, J C; Walker, J P

    1984-11-19

    Development of acute mucosal ulceration is a complex series of catabolic interactions. Hospitalized patients with duodenal or gastric ulcer, pathologic gastric hypersecretory states (such as Zollinger-Ellison syndrome), gastric outlet obstruction, esophagitis, severe gastritis or duodenitis, sepsis, trauma (particularly head injury or burns), and some patients receiving high-dose corticosteroids are at risk of developing acute stress ulcers. Treatment should be initiated as soon as the patient is identified as being at risk, because measures designed to prevent bleeding or perforation are more effective than those designed to stop bleeding once it supervenes and the cascade of multiple organ failure commences. The presence of acid will trigger the onset of this condition; however, ulceration will not occur if the intraluminal pH can be maintained above 5 by periodic antacid treatment or by H2-receptor blockade. The dosing regimen of antacid or of H2-receptor antagonist should not be fixed, but should be sufficient to keep the gastric pH higher than 5. Antagonists administered via a nasogastric tube are the first line of defense, but 30 to 50 percent of the most ill patients will also be treated parenterally with H2-receptor antagonists. Parenteral H2-receptor blockade therapy is indicated in these patients when the risk of acute or continued ulceration of esophageal, gastric, or duodenal mucosa is high and the oral administration of medication is either not possible or the response to such therapy is unreliable. Parenteral H2-receptor antagonists are rarely administered alone.

  5. Smac mimetics as IAP antagonists.

    Science.gov (United States)

    Fulda, Simone

    2015-03-01

    As the Inhibitor of Apoptosis (IAP) proteins are expressed at high levels in human cancers, they represent promising targets for therapeutic intervention. Small-molecule inhibitors of IAP proteins mimicking the endogenous IAP antagonist Smac, called Smac mimetics, neutralize IAP proteins and thereby promote the induction of cell death. Smac mimetics have been shown in preclinical models of human cancer to directly trigger cancer cell death or to sensitize for cancer cell death induced by a variety of cytotoxic stimuli. Smac mimetics are currently undergoing clinical evaluation in phase I/II trials, demonstrating that therapeutic targeting of IAP proteins has reached the clinical stage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Use of Vitamins K antagonists in non-valvular atrial fibrillation ...

    African Journals Online (AJOL)

    Introduction: atrial fibrillation is the commonest cardiac rythm disorder. Thromboembolic accidents are common complications that should be prevented by anticoagulant treatment. The aim of our study is to assess the use of vitamins K antagonists in the prevention of thromboembolic risk in atrial fibrillation. Methods: it was a ...

  7. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    Science.gov (United States)

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Synthetic peptide antagonists of glucagon

    International Nuclear Information System (INIS)

    Unson, C.G.; Andreu, D.; Gurzenda, E.M.; Merrifield, R.B.

    1987-01-01

    Several glucagon analogs were synthesized in an effort to find derivatives that would bind with high affinity to the glucagon receptor of rat liver membranes but would not activate membrane-bound adenylate cyclase and, therefore, would serve as antagonists of the hormone. Measurements on a series of glucagon/secretin hybrids indicated that replacement of Asp 9 in glucagon by Glu 9 , found in secretin, was the important sequence difference in the N terminus of the two hormones. Further deletion of His 1 and introduction of a C-terminal amide resulted in des-His 1 -[Glu 9 ]glucagon amide, which had a 40% binding affinity relative to that of native glucagon but caused no detectable adenylate cyclase activation in the rat liver membrane. This antagonist completely inhibited the effect of a concentration of glucagon that alone gave a full agonist response. It had an inhibition index of 12. The pA 2 was 7.2. An attempt was made to relate conformation with receptor binding. The peptides were synthesized by solid-phase methods and purified to homogeneity by reverse-phase high-performance liquid chromatography on C 18 -silica columns

  9. The Role of α1-Adrenoceptor Antagonists in the Treatment of Prostate and Other Cancers

    Directory of Open Access Journals (Sweden)

    Mallory Batty

    2016-08-01

    Full Text Available This review evaluates the role of α-adrenoceptor antagonists as a potential treatment of prostate cancer (PCa. Cochrane, Google Scholar and Pubmed were accessed to retrieve sixty-two articles for analysis. In vitro studies demonstrate that doxazosin, prazosin and terazosin (quinazoline α-antagonists induce apoptosis, decrease cell growth, and proliferation in PC-3, LNCaP and DU-145 cell lines. Similarly, the piperazine based naftopidil induced cell cycle arrest and death in LNCaP-E9 cell lines. In contrast, sulphonamide based tamsulosin did not exhibit these effects. In vivo data was consistent with in vitro findings as the quinazoline based α-antagonists prevented angiogenesis and decreased tumour mass in mice models of PCa. Mechanistically the cytotoxic and antitumor effects of the α-antagonists appear largely independent of α 1-blockade. The proposed targets include: VEGF, EGFR, HER2/Neu, caspase 8/3, topoisomerase 1 and other mitochondrial apoptotic inducing factors. These cytotoxic effects could not be evaluated in human studies as prospective trial data is lacking. However, retrospective studies show a decreased incidence of PCa in males exposed to α-antagonists. As human data evaluating the use of α-antagonists as treatments are lacking; well designed, prospective clinical trials are needed to conclusively demonstrate the anticancer properties of quinazoline based α-antagonists in PCa and other cancers.

  10. Spermidine decreases Na⁺,K⁺-ATPase activity through NMDA receptor and protein kinase G activation in the hippocampus of rats.

    Science.gov (United States)

    Carvalho, Fabiano B; Mello, Carlos F; Marisco, Patricia C; Tonello, Raquel; Girardi, Bruna A; Ferreira, Juliano; Oliveira, Mauro S; Rubin, Maribel A

    2012-06-05

    Spermidine is an endogenous polyamine with a polycationic structure present in the central nervous system of mammals. Spermidine regulates biological processes, such as Ca(2+) influx by glutamatergic N-methyl-d-aspartate receptor (NMDA receptor), which has been associated with nitric oxide synthase (NOS) and cGMP/PKG pathway activation and a decrease of Na(+),K(+)-ATPase activity in rats' cerebral cortex synaptosomes. Na(+),K(+)-ATPase establishes Na(+) and K(+) gradients across membranes of excitable cells and by this means maintains membrane potential and controls intracellular pH and volume. However, it has not been defined whether spermidine modulates Na(+),K(+)-ATPase activity in the hippocampus. In this study we investigated whether spermidine alters Na(+),K(+)-ATPase activity in slices of hippocampus from rats, and possible underlying mechanisms. Hippocampal slices and homogenates were incubated with spermidine (0.05-10 μM) for 30 min. Spermidine (0.5 and 1 μM) decreased Na(+),K(+)-ATPase activity in slices, but not in homogenates. MK-801 (100 and 10 μM), a non-competitive antagonist of NMDA receptor, arcaine (0.5μM), an antagonist of the polyamine binding site at the NMDA receptor, and L-NAME (100μM), a NOS inhibitor, prevented the inhibitory effect of spermidine (0.5 μM). ODQ (10 μM), a guanylate cyclase inhibitor, and KT5823 (2 μM), a protein kinase G inhibitor, also prevented the inhibitory effect of spermidine on Na(+),K(+)-ATPase activity. Spermidine (0.5 and 1.0 μM) increased NO(2) plus NO(3) (NOx) levels in slices, and MK-801 (100 μM) and arcaine (0.5 μM) prevented the effect of spermidine (0.5 μM) on the NOx content. These results suggest that spermidine-induced decrease of Na(+),K(+)-ATPase activity involves NMDA receptor/NOS/cGMP/PKG pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. New antagonist agents of neuropeptide y receptors

    Directory of Open Access Journals (Sweden)

    Ignacio Aldana

    2000-12-01

    Full Text Available In the CNS, NPY has been implicated in obesity and feeding, endocrine function and metabolism. Potent and selective rNPY antagonists will be able to probe the merits of this approach for the treatment of obesity. We report the synthesis and preliminary evaluation of some hydrazide derivatives as antagonists of rNPY.

  12. S179D prolactin: antagonistic agony!

    Science.gov (United States)

    Walker, Ameae M

    2007-09-30

    The aims of this review are three-fold: first, to collate what is known about the production and activities of phosphorylated prolactin (PRL), the latter largely, but not exclusively, as illustrated through the use of the molecular mimic, S179D PRL; second, to apply this and related knowledge to produce an updated model of prolactin-receptor interactions that may apply to other members of this cytokine super-family; and third, to promote a shift in the current paradigm for the development of clinically important growth antagonists. This third aim explains the title since, based on results with S179D PRL, it is proposed that agents which signal to antagonistic ends may be better therapeutics than pure antagonists-hence antagonistic agony. Since S179D PRL is not a pure antagonist, we have proposed the term selective prolactin receptor modulator (SPeRM) for this and like molecules.

  13. [Extracorporeal life support in calcium antagonist intoxication].

    Science.gov (United States)

    Groot, M W; Grewal, S; Meeder, H J; van Thiel, R J; den Uil, C A

    2017-01-01

    Intoxication with calcium antagonists is associated with poor outcome. Even mild calcium antagonist overdose may be fatal. A 51-year-old woman and a 51-year-old man came to the Accident and Emergency Department in severe shock after they had taken a calcium antagonist overdose. After extensive medicinal therapy had failed, they both needed extracorporeal life support (ECLS) as a bridge to recovery. In severe calcium antagonist overdose, the combination of vasoplegia and cardiac failure leads to refractory shock. ECLS temporarily supports the circulation and maintains organ perfusion. In this way ECLS functions as a bridge to recovery and may possibly save lives. Timely consultation with and referral to an ECLS centre is recommended in patients with calcium antagonist overdose.

  14. Gonadotrophin-releasing hormone antagonists for assisted reproductive technology.

    Science.gov (United States)

    Al-Inany, Hesham G; Youssef, Mohamed A; Ayeleke, Reuben Olugbenga; Brown, Julie; Lam, Wai Sun; Broekmans, Frank J

    2016-04-29

    Gonadotrophin-releasing hormone (GnRH) antagonists can be used to prevent a luteinizing hormone (LH) surge during controlled ovarian hyperstimulation (COH) without the hypo-oestrogenic side-effects, flare-up, or long down-regulation period associated with agonists. The antagonists directly and rapidly inhibit gonadotrophin release within several hours through competitive binding to pituitary GnRH receptors. This property allows their use at any time during the follicular phase. Several different regimens have been described including multiple-dose fixed (0.25 mg daily from day six to seven of stimulation), multiple-dose flexible (0.25 mg daily when leading follicle is 14 to 15 mm), and single-dose (single administration of 3 mg on day 7 to 8 of stimulation) protocols, with or without the addition of an oral contraceptive pill. Further, women receiving antagonists have been shown to have a lower incidence of ovarian hyperstimulation syndrome (OHSS). Assuming comparable clinical outcomes for the antagonist and agonist protocols, these benefits would justify a change from the standard long agonist protocol to antagonist regimens. This is an update of a Cochrane review first published in 2001, and previously updated in 2006 and 2011. To evaluate the effectiveness and safety of gonadotrophin-releasing hormone (GnRH) antagonists compared with the standard long protocol of GnRH agonists for controlled ovarian hyperstimulation in assisted conception cycles. We searched the Cochrane Menstrual Disorders and Subfertility Group Trials Register (searched from inception to May 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, inception to 28 April 2015), Ovid MEDLINE (1966 to 28 April 2015), EMBASE (1980 to 28 April 2015), PsycINFO (1806 to 28 April 2015), CINAHL (to 28 April 2015) and trial registers to 28 April 2015, and handsearched bibliographies of relevant publications and reviews, and abstracts of major scientific meetings, for

  15. Involvement of NMDA receptors in the beneficial effects of pioglitazone on scopolamine-induced memory impairment in mice.

    Science.gov (United States)

    Almasi-Nasrabadi, Mina; Javadi-Paydar, Mehrak; Mahdavian, Shirin; Babaei, Rosa; Sharifian, Maedeh; Norouzi, Abbas; Dehpour, Ahmad Reza

    2012-05-16

    Pioglitazone, a peroxisome proliferator activated receptor γ (PPARγ) agonist, is widely used in clinical medicine as a treatment for type 2 diabetes and is recently proved to have beneficial effects on improving cognition in early stages of Alzheimer's disease (AD). Moreover, it has been shown that pioglitazone reduces N-methyl-D-aspartate (NMDA, a glutamate agonist) mediated calcium currents and transients. Since enhanced calcium transients are present in AD models, we tested the hypothesis whether pioglitazone manifests its acquisition memory enhancement role through glutamatergic pathway. Memory performance was evaluated in a two-trial recognition Y-maze test and passive avoidance in mice. Pioglitazone (20 or 40 mg/kg, p.o.) was administered 2h before each trial, NMDA (75 mg/kg i.p.), 15 min before pioglitazone, and scopolamine, an M1 (muscarinic) receptor antagonist (0.3 or 1.0 mg/kg i.p.) and MK-801 (dizocilpine) (0.01, 0.03 or 0.1 mg/kg, i.p.), the highly selective, non-competitive NMDA antagonist--30 min beforehand. (1) We induced the memory impairment by scopolamine or MK-801 before trials. (2) Pioglitazone did not improve the memory impairment induced by MK-801. (3) Pioglitazone significantly improved the memory impairment induced by scopolamine. (4) Subeffective dose of MK-801 nullified the beneficial effects of pioglitazone in scopolamine induced memory impaired mice. (5) NMDA promoted the effects of subeffective dose of pioglitazone on memory impaired by scopolamine. In conclusion, the present study suggests that glutamatergic pathway is involved in the pioglitazone induced memory performance. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. PXR antagonists and implication in drug metabolism

    Science.gov (United States)

    Mani, Sridhar; Dou, Wei; Redinbo, Matthew R.

    2013-01-01

    Adopted orphan nuclear receptor (NR), pregnane X receptor (PXR), plays a central role in the regulation of xeno- and endobiotic metabolism. Since the discovery of the functional role of PXR in 1998, there is evolving evidence for the role of PXR agonists in abrogating metabolic pathophysiology (e.g., cholestasis, hypercholesterolemia, and inflammation). However, more recently, it is clear that PXR is also an important mediator of adverse xeno- (e.g., enhances acetaminophen toxicity) and endobiotic (e.g., hepatic steatosis) metabolic phenotypes. Moreover, in cancer therapeutics, PXR activation can induce drug resistance, and there is growing evidence for tissue-specific enhancement of the malignant phenotype. Thus, in these instances, there may be a role for PXR antagonists. However, as opposed to the discovery efforts for PXR agonists, there are only a few antagonists described. The mode of action of these antagonists (e.g., sulforaphane) remains less clear. Our laboratory efforts have focused on this question. Since the original discovery of azoles analogs as PXR antagonists, we have preliminarily defined an important PXR antagonist pharmacophore and developed less-toxic PXR antagonists. In this review, we describe our published and unpublished findings on recent structure-function studies involving the azole chemical scaffold. Further work in the future is needed to fully define potent, more-selective PXR antagonists that may be useful in clinical application. PMID:23330542

  17. Prevention of Stimulant Induced Euphoria with an Opioid Receptor Antagonist

    Science.gov (United States)

    2017-02-28

    Aviat Space Environ Med, 2005. 76(1): p. 39- 45. 8. Westcott, K.J., Modafinil, sleep deprivation , and cognitive function in military and medical settings...51. 6. Caldwell, J.A., et al., Modafinil’s effects on simulator performance and mood in pilots during 37 h without sleep . Aviat Space Environ Med, 2004...75(9): p. 777-84. 7. McLellan, T.M., et al., Caffeine maintains vigilance and marksmanship in simulated urban operations with sleep deprivation

  18. Amphetamine and Dopamine-Induced Immediate Early Gene Expression in Striatal Neurons Depends on Postsynaptic NMDA Receptors and Calcium

    Science.gov (United States)

    Konradi, Christine; Leveque, Jean-Christophe; Hyman, Steven E.

    2014-01-01

    Amphetamine and cocaine induce the expression of both immediate early genes (IEGs) and neuropeptide genes in rat striatum. Despite the demonstrated dependence of these effects on D1 dopamine receptors, which activate the cyclic AMP pathway, there are several reports that amphetamine and cocaine-induced IEG expression can be inhibited in striatum in vivo by NMDA receptor antagonists. We find that in vivo, the NMDA receptor antagonist MK-801 inhibits amphetamine induction of c-fos acutely and also prevents downregulation of IEG expression with chronic amphetamine administration. Such observations raise the question of whether dopamine/glutamate interactions occur at the level of corticostriatal and mesostriatal circuitry or within striatal neurons. Therefore, we studied dissociated striatal cultures in which midbrain and cortical presynaptic inputs are removed. In these cultures, we find that dopamine- or forskolin-mediated IEG induction requires Ca2+ entry via NMDA receptors but not via L-type Ca2+ channels. Moreover, blockade of NMDA receptors diminishes the ability of dopamine to induce phosphorylation of the cyclic AMP responsive element binding protein CREB. Although these results do not rule out a role for circuit-level dopamine/glutamate interactions, they demonstrate a requirement at the cellular level for interactions between the cyclic AMP and NMDA receptor pathways in dopamine-regulated gene expression in striatal neurons. PMID:8753884

  19. GABAA receptor partial agonists and antagonists

    DEFF Research Database (Denmark)

    Krall, Jacob; Balle, Thomas; Krogsgaard-Larsen, Niels

    2015-01-01

    to the local temporal pattern of GABA impact, enabling phasic or tonic inhibition. Specific GABAAR antagonists are essential tools for physiological and pharmacological elucidation of the different type of GABAAR inhibition. However, distinct selectivity among the receptor subtypes (populations) has been shown...... antagonists and describes the development of potent antagonists from partial agonists originally derived from the potent GABAAR agonist muscimol. In this process, several heterocyclic aromatic systems have been used in combination with structural models in order to map the orthosteric binding site...... and to reveal structural details to be used for obtaining potency and subtype selectivity. The challenges connected to functional characterization of orthosteric GABAAR partial agonists and antagonists, especially with regard to GABAAR stoichiometry and alternative binding sites are discussed. GABAAR...

  20. Antagonist wear by polished zirconia crowns.

    Science.gov (United States)

    Hartkamp, Oliver; Lohbauer, Ulrich; Reich, Sven

    The aim of this in vivo study was to measure antagonist wear caused by polished monolithic posterior zirconia crowns over a 24-month period using the intraoral digital impression (IDI) technique. Thirteen zirconia crowns were placed in nine patients. The crowns and adjacent teeth were captured using an intraoral scanner (Lava C.O.S.). The corresponding antagonist teeth and the respective neighboring teeth were also scanned. Scanning was performed immediately after the restoration (baseline) as well as 12 and 24 months after crown placement. Geomagic Qualify software was used to superimpose the follow-up data sets onto the corresponding baseline data set, identify wear sites, and measure maximum vertical height loss in each individual wear site. Overall antagonist wear was then determined as the mean of wear rates measured in all of the individual antagonist units. In addition, wear rates in enamel and ceramic antagonists were analyzed as part of the scope of this study. The maximum mean wear with standard deviation (SD) in the overall sample with a total of nine patients, 13 antagonist units, and 98 evaluable wear sites was 86 ± 23 µm at 12 months, and 103 ± 39 µm at 24 months. The maximum mean wear in the enamel antagonist subgroup was 87 ± 41 µm at 12 months, and 115 ± 71 µm at 24 months; and in the ceramic antagonist subgroup 107 ± 22 µm at 12 months, and 120 ± 27 µm at 24 months. The wear rates determined in this study are comparable to those of existing studies. The IDI technique of wear analysis can be carried out in a practical manner and produces useful results.

  1. Clinical impact and course of major bleeding with edoxaban versus vitamin K antagonists

    NARCIS (Netherlands)

    Brekelmans, Marjolein P. A.; Bleker, Suzanne M.; Bauersachs, Rupert; Boda, Zoltan; Büller, Harry R.; Choi, Youngsook; Gallus, Alex; Grosso, Michael A.; Middeldorp, Saskia; Oh, Doyeun; Raskob, Gary; Schwocho, Lee; Cohen, Alexander T.

    2016-01-01

    Edoxaban is a once-daily direct oral anticoagulant (DOAC). The Hokusai-VTE study revealed that, after initial treatment with heparin, edoxaban was non-inferior to and safer than vitamin K antagonists (VKA) in the prevention of recurrent deep-vein thrombosis and pulmonary embolism. This is the first

  2. Pharmacoeconomics of angiotensin II antagonists in type 2 diabetic patients with nephropathy - Implications for decision making

    NARCIS (Netherlands)

    Boersma, C; Atthobari, J; Gansevoort, RT; de Jong-Van den Berg, LTW; de Jong, PE; de Zeeuw, D; Annemans, LJP; Postma, MJ

    2006-01-01

    Angiotensin II receptor antagonists (angiotensin II receptor blockers; ARBs) are a class of antihypertensive drugs that are generally considered comparable to ACE inhibitors in the prevention of heart and kidney failure. However, these two classes of agents do interfere in different stages of the

  3. Antipsychotics promote GABAergic interneuron genesis in the adult rat brain: Role of heat-shock protein production.

    Science.gov (United States)

    Kaneta, Hiroo; Ukai, Wataru; Tsujino, Hanako; Furuse, Kengo; Kigawa, Yoshiyasu; Tayama, Masaya; Ishii, Takao; Hashimoto, Eri; Kawanishi, Chiaki

    2017-09-01

    Current antipsychotics reduce positive symptoms and reverse negative symptoms in conjunction with cognitive behavioral issues with the goal of restoring impaired occupational and social functioning. However, limited information is available on their influence on gliogenesis or their neurogenic properties in adult schizophrenia brains, particularly on GABAergic interneuron production. In the present study, we used young adult subventricular zone (SVZ)-derived progenitor cells expressing proteoglycan NG2 cultures to examine the oligodendrocyte and GABAergic interneuron genesis effects of several kinds of antipsychotics on changes in differentiation function induced by exposure to the NMDA receptor antagonist MK-801. We herein demonstrated that antipsychotics promoted or restored changes in the oligodendrocyte/GABAergic interneuron differentiation functions of NG2(+) cells induced by the exposure to MK-801, which was considered to be one of the drug-induced schizophrenia model. We also demonstrated that antipsychotics restored heat-shock protein (HSP) production in NG2(+) cells with differentiation impairment. The antipsychotics olanzapine, aripiprazole, and blonanserin, but not haloperidol increased HSP90 levels, which were reduced by the exposure to MK-801. Our results showed that antipsychotics, particularly those recently synthesized, exerted similar GABAergic interneuron genesis effects on NG2(+) neuronal/glial progenitor cells in the adult rat brain by increasing cellular HSP production, and also suggest that HSP90 may play a crucial role in the pathophysiology of schizophrenia and is a key target for next drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The effects of inferior olive lesion on strychnine seizure

    International Nuclear Information System (INIS)

    Anderson, M.C.; Chung, E.Y.; Van Woert, M.H.

    1990-01-01

    Bilateral inferior olive lesions, produced by systemic administration of the neurotoxin 3-acetylpyridine (3AP) produce a proconvulsant state specific for strychnine-induced seizures and myoclonus. We have proposed that these phenomena are mediated through increased excitation of cerebellar Purkinje cells, through activation of glutamate receptors, in response to climbing fiber deafferentation. An increase in quisqualic acid (QA)-displaceable [ 3 H]AMPA [(RS)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid] binding in cerebella from inferior olive-lesioned rats was observed, but no difference in [ 3 H]AMPA binding displaced by glutamate, kainic acid (KA) or glutamate diethylester (GDEE) was seen. The excitatory amino acid antagonists GDEE and MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclo-hepten-5,10 imine] were tested as anticonvulsants for strychnine-induced seizures in 3AP inferior olive-lesioned and control rats. Neither drug effected seizures in control rats, however, both GDEE and MK-801 produced a leftward shift in the strychnine-seizure dose-response curve in 3AP inferior olive-lesioned rats. GDEE also inhibited strychnine-induced myoclonus in the lesioned group, while MK-801 had no effect on myoclonus. The decreased threshold for strychnine-induced seizures and myoclonus in the 3AP-inferior olive-lesioned rats may be due to an increase in glutamate receptors as suggested by the [ 3 H]AMPA binding data

  5. Sexually dimorphic development and binding characteristics of NMDA receptors in the brain of the platyfish

    Science.gov (United States)

    Flynn, K. M.; Schreibman, M. P.; Yablonsky-Alter, E.; Banerjee, S. P.

    1999-01-01

    This study investigated age- and gender-specific variations in properties of the glutamate N-methyl-d-aspartate receptor (NMDAR) in a freshwater teleost, the platyfish (Xiphophorus maculatus). Prior localization of the immunoreactive (ir)-R1 subunit of the NMDAR protein (R1) in cells of the nucleus olfactoretinalis (NOR), a primary gonadotropin-releasing hormone (GnRH)-containing brain nucleus in the platyfish, suggests that NMDAR, as in mammals, is involved in modulation of the platyfish brain-pituitary-gonad (BPG) axis. The current study shows that the number of cells in the NOR displaying ir-R1 is significantly increased in pubescent and mature female platyfish when compared to immature and senescent animals. In males, there is no significant change in ir-R1 expression in the NOR at any time in their lifespan. The affinity of the noncompetitive antagonist ((3)H)MK-801 for the NMDAR is significantly increased in pubescent females while maximum binding of ((3)H)MK-801 to the receptor reaches a significant maximum in mature females. In males, both MK-801 affinity and maximum binding remain unchanged throughout development. This is the first report of gender differences in the association of NMDA receptors with neuroendocrine brain areas during development. It is also the first report to suggest NMDA receptor involvement in the development of the BPG axis in a nonmammalian vertebrate. Copyright 1999 Academic Press.

  6. Effects of Electroacupuncture on N-Methyl-D-aspartate Receptor-Related Signaling Pathway in the Spinal Cord of Normal Rats

    Directory of Open Access Journals (Sweden)

    Ha-Neui Kim

    2012-01-01

    rats. Bilateral 2 Hz EA stimulations (1-2-3.0 mA were delivered at acupoints corresponding to Zusanli (ST36 and Sanyinjiao (SP6 in men for 30 min. Thermal sensitization was strongly inhibited by EA, but this analgesia was reduced by preintrathecal injection of the NMDAR antagonist, MK801. Phosphorylation of the NMDAR NR2B subunit, cAMP response element-binding protein (CREB, and especially phosphatidylinositol 3-kinase (PI3K were significantly induced by EA. However, these marked phosphorylations were not observed in MK801-pretreated rats. EA analgesia was reduced by preintrathecal injection with the calcium chelators Quin2 and TMB8, similar to the results evident using MK801. Phosphorylation of PI3K and CREB induced by EA was also inhibited by TMB8. Calcium influx by NMDAR activation may play an important role in EA analgesia of normal rats through the modulation of the phosphorylation of spinal PI3K and CREB.

  7. Bidirectional effects of cannabidiol on contextual fear memory extinction

    Directory of Open Access Journals (Sweden)

    Chenchen Song

    2016-12-01

    Full Text Available Cannabidiol (CBD has been established to have both acute and long-lasting effects to reduce fear memory expression. The long-lasting impact might be mediated by an enhancement of memory extinction or an impairment of memory reconsolidation. Here, we directly compared the effects of i.p. injections of cannabidiol (10 mg/kg with those of the NMDA receptor antagonist MK-801 (0.1 mg/kg and partial agonist D-cycloserine (DCS; 15 mg/kg in order to determine the mnemonic basis of long-term fear reduction. We showed that under conditions of strong fear conditioning, CBD reduced contextual fear memory expression both acutely during the extinction session as well as later at a fear retention test. The latter test reduction was replicated by DCS, but MK-801 instead elevated test freezing. In contrast, when initial conditioning was weaker, CBD and MK-801 had similar effects to increase freezing at the fear retention test relative to vehicle controls, whereas DCS had no observable impact. This pattern of results is consistent with CBD enhancing contextual fear memory extinction when the initial conditioning is strong, but impairing extinction when conditioning is weak. This bidirectional effect of CBD may be related to stress levels induced by conditioning and evoked at retrieval during extinction, rather than the strength of the memory per se.

  8. Role of the NMDA receptor and iron on free radical production and brain damage following transient middle cerebral artery occlusion.

    Science.gov (United States)

    Im, Doo Soon; Jeon, Jeong Wook; Lee, Jin Soo; Won, Seok Joon; Cho, Sung Ig; Lee, Yong Beom; Gwag, Byoung Joo

    2012-05-21

    Excess activation of ionotropic glutamate receptors and iron is believed to contribute to free radical production and neuronal death following hypoxic ischemia. We examined the possibility that both NMDA receptor activation and iron overload determine spatial and temporal patterns of free radical production after transient middle cerebral artery occlusion (tMCAO) in male Sprague-Dawley rats. Mitochondrial free radical (MFR) levels were maximally increased in neurons in the core at 1 h and 24 h after tMCAO. Early MFR production was blocked by administration of MK-801, an NMDA receptor antagonist, but not deferoxamine, an iron chelator. Neither MK-801 nor deferoxamine attenuated late MFR production in the core. Increased MFRs were observed in penumbral neurons within 6 h and gradually increased over 24 h after tMCAO. Slowly-evolving MFRs in the core and penumbra were accompanied by iron overload. Deferoxamine blocked iron overload but reduced MFR production only in the penumbra. Combined MK-801/deferoxamine reduced late MFR production in both core and penumbra in an additive manner. Combination therapy significantly ameliorated infarction compared with monotherapy. These findings suggest that the NMDA receptor activation and iron overload mediate late MFR production and infarction after tMCAO. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Long-term phase reorganization of conditioned food aversion memory in edible snail.

    Science.gov (United States)

    Kozyrev, S A; Solntseva, S V; Nikitin, V P

    2014-08-01

    The specific features of memory reconsolidation in edible snails were studied over 30 days after learning of conditioned food aversion. Injections of a NMDA glutamate receptor antagonist MK-801 or protein synthesis inhibitor cycloheximide in combination with the conditioned food stimulus (reminder) on day 2 after learning were followed by the development of amnesia. Repeated training on day 10 after the induction of amnesia did not result in skill formation. Injections of MK-801 or cycloheximide and reminder by the 10th day after training had no effect on memory retention. Injections of MK-801 or cycloheximide and reminder by the 30th day after training were followed by the development of amnesia. In these experiments, memory was recovered after repeated training. Our results indicate that a complex phase reorganization of memory occurs over 30 days after learning. This process includes memory consolidation over the first days after training, stabilization and resistance to adverse factors after 10 days, and newly acquired ability for reconsolidation by the 30th day after training.

  10. Repeated Blockade of NMDA Receptors during Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Jitao eLi

    2016-03-01

    Full Text Available Adolescence is of particular significance to schizophrenia, since psychosis onset typically occurs in this critical period. Based on the N-methyl-D-aspartate (NMDA receptor hypofunction hypothesis of schizophrenia, in this study, we investigated whether and how repeated NMDA receptor blockade during adolescence would affect GABAergic interneurons in rat medial prefrontal cortex (mPFC and mPFC-mediated cognitive functions. Specifically, adolescent rats were subjected to intraperitoneal administration of MK-801 (0.1, 0.2, 0.4 mg/kg, a non-competitive NMDA receptor antagonist, for 14 days and then tested for reference memory and reversal learning in the water maze. The density of parvabumin (PV-, calbindin (CB- and calretinin (CR-positive neurons in mPFC were analyzed at either 24 hours or 7 days after drug cessation. We found that MK-801 treatment delayed reversal learning in the water maze without affecting initial acquisition. Strikingly, MK-801 treatment also significantly reduced the density of PV+ and CB+ neurons, and this effect persisted for 7 days after drug cessation at the dose of 0.2 mg/kg. We further demonstrated that the reduction in PV+ and CB+ neuron densities was ascribed to a downregulation of the expression levels of PV and CB, but not to neuronal death. These results parallel the behavioral and neuropathological changes of schizophrenia and provide evidence that adolescent NMDA receptors antagonism offers a useful tool for unraveling the etiology of the disease.

  11. Altered neuronal excitability underlies impaired hippocampal function in an animal model of psychosis

    Directory of Open Access Journals (Sweden)

    Thomas eGrüter

    2015-05-01

    Full Text Available Psychosis is accompanied by severe attentional deficits, and impairments in associational-memory processing and sensory information processing that are ascribed to dysfunctions in prefrontal and hippocampal function. Disruptions of glutamatergic signalling may underlie these alterations: Antagonism of the N-methyl-D-aspartate receptor (NMDAR results in similar molecular, cellular, cognitive and behavioural changes in rodents and/or humans as those that occur in psychosis, raising the question as to whether changes in glutamatergic transmission may be intrinsic to the pathophysiology of the disease. In an animal model of psychosis that comprises treatment with the irreversible NMDAR-antagonist, MK801, we explored the cellular mechanisms that may underlie hippocampal dysfunction in psychosis. MK801-treatment resulted in a profound loss of hippocampal LTP that was evident 4 weeks after treatment. Whereas neuronal expression of the immediate early gene, Arc, was enhanced in the hippocampus by spatial learning in controls, MK801-treated animals failed to show activity-dependent increases in Arc expression. By contrast, a significant increase in basal Arc expression in the absence of learning was evident compared to controls. Paired-pulse facilitation was increased at the 40 ms interval indicating that NMDAR and/or fast GABAergic-mediated neurotransmission was disrupted. In line with this, MK801-treatment resulted in a significant decrease in GABA(A, and increase in GABA(B-receptor-expression in PFC, along with a significant increase of GABA(B- and NMDAR-GluN2B expression in the dentate gyrus. NMDAR-GluN1 or GluN2A subunit expression was unchanged. These data suggest that in psychosis, deficits in hippocampus-dependent memory may be caused by a loss of hippocampal LTP that arises through enhanced hippocampal neuronal excitability, altered GluN2B and GABA receptor expression and an uncoupling of the hippocampus-prefrontal cortex circuitry.

  12. Excitotoxicity in the Lung: N-Methyl-D-Aspartate-Induced, Nitric Oxide-Dependent, Pulmonary Edema is Attenuated by Vasoactive Intestinal Peptide and by Inhibitors of Poly(ADP-Ribose) Polymerase

    Science.gov (United States)

    Said, Sami I.; Berisha, Hasan I.; Pakbaz, Hedayatollah

    1996-05-01

    Excitatory amino acid toxicity, resulting from overactivation of N-methyl-D-aspartate (NMDA) glutamate receptors, is a major mechanism of neuronal cell death in acute and chronic neurological diseases. We have investigated whether excitotoxicity may occur in peripheral organs, causing tissue injury, and report that NMDA receptor activation in perfused, ventilated rat lungs triggered acute injury, marked by increased pressures needed to ventilate and perfuse the lung, and by high-permeability edema. The injury was prevented by competitive NMDA receptor antagonists or by channel-blocker MK-801, and was reduced in the presence of Mg2+. As with NMDA toxicity to central neurons, the lung injury was nitric oxide (NO) dependent: it required L-arginine, was associated with increased production of NO, and was attenuated by either of two NO synthase inhibitors. The neuropeptide vasoactive intestinal peptide and inhibitors of poly(ADP-ribose) polymerase also prevented this injury, but without inhibiting NO synthesis, both acting by inhibiting a toxic action of NO that is critical to tissue injury. The findings indicate that: (i) NMDA receptors exist in the lung (and probably elsewhere outside the central nervous system), (ii) excessive activation of these receptors may provoke acute edematous lung injury as seen in the ``adult respiratory distress syndrome,'' and (iii) this injury can be modulated by blockade of one of three critical steps: NMDA receptor binding, inhibition of NO synthesis, or activation of poly(ADP-ribose) polymerase.

  13. Coronary dilation with nitrocompounds and calcium antagonists.

    Science.gov (United States)

    Jost, S; Rafflenbeul, W; Lichtlen, P R

    1990-01-01

    The vasodilatory effects of nitrocompounds and calcium antagonists on epicardial coronary arteries represent substantial antianginal mechanisms in the presence of coronary vasospasm or eccentric coronary stenoses. With high doses of nitrocompounds, angiographically normal coronary segments can be dilated by an average of approx. 30%, some coronary stenoses even by up to 100%, usually without severe reduction of blood pressure. With calcium antagonists, a similar extent of dilation of normal coronary arteries and eccentric stenoses can be obtained. Our own group demonstrated an average dilation of normal coronary arteries of about 20% after intravenous administration of dihydropyridine calcium antagonists; however, the average systolic blood pressure dropped below 100 mmHg after these compounds. Hence, although in isolated human coronary arteries high concentrations of calcium antagonists were shown to induce a considerably greater vasodilation than nitrocompounds, the early drop in blood pressure prohibits a higher dosage of calcium antagonists in vivo. In the presence of coronary artery disease, particularly when associated with coronary vasospasm, a combination of the two groups of compounds might be recommendable, since an addition of the effects of coronary vasomotor tone is likely. Furthermore, the antianginal effects of a reduction of preload and afterload are complementary.

  14. Bitter melon: antagonist to cancer.

    Science.gov (United States)

    Nerurkar, Pratibha; Ray, Ratna B

    2010-06-01

    The incidence of cancer is increasing worldwide, in spite of substantial progress in the development of anti-cancer therapies. One approach to control cancer could be its prevention by diet, which inhibits one or more neoplastic events and reduces cancer risk. Dietary compounds offer great potential in the fight against cancer by inhibiting the carcinogenesis process through the regulation of cell homeostasis and cell-death machineries. For centuries, Ayurveda (Indian traditional medicine) has recommended the use of bitter melon (Momordica charantia) as a functional food to prevent and treat diabetes and associated complications. It is noteworthy to mention that bitter melon extract has no-to-low side effects in animals as well as in humans. The anti-tumor activity of bitter melon has recently begun to emerge. This review focuses on recent advancements in cancer chemopreventive and anti-cancer efficacy of bitter melon and its active constituents. Several groups of investigators have reported that treatment of bitter-melon-related products in a number of cancer cell lines induces cell cycle arrest and apoptosis without affecting normal cell growth. Therefore, the effect of bitter melon should be beneficial for health, and use of the non-modified dietary product is cost effective.

  15. ETA-receptor antagonists or allosteric modulators?

    DEFF Research Database (Denmark)

    De Mey, Jo G R; Compeer, Matthijs G; Lemkens, Pieter

    2011-01-01

    . In resistance arteries, the long-lasting contractile effects can only be partly and reversibly relaxed by low-molecular-weight ET(A) antagonists (ERAs). However, the neuropeptide calcitonin-gene-related peptide selectively terminates binding of ET1 to ET(A). We propose that ET1 binds polyvalently to ET......(A) and that ERAs and the physiological antagonist allosterically reduce ET(A) functions. Combining the two-state model and the two-domain model of GPCR function and considering receptor activation beyond agonist binding might lead to better anti-endothelinergic drugs. Future studies could lead to compounds...

  16. Maintenance therapy with oxytocin antagonists for inhibiting preterm birth after threatened preterm labour.

    Science.gov (United States)

    Papatsonis, Dimitri N M; Flenady, Vicki; Liley, Helen G

    2013-10-13

    In some women, an episode of preterm labour settles and does not result in immediate preterm birth. Subsequent treatment with tocolytic agents such as oxytocin receptor antagonists may then have the potential to prevent the recurrence of preterm labour, prolonging gestation, and preventing the adverse consequences of prematurity for the infant. To assess the effects of maintenance therapy with oxytocin antagonists administered by any route after an episode of preterm labour in order to delay or prevent preterm birth. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (31 July 2013), sought ongoing and unpublished trials by contacting experts in the field and searched the reference lists of relevant articles. Randomised controlled trials comparing oxytocin antagonists with any alternative tocolytic agent, placebo or no treatment, used for maintenance therapy after an episode of preterm labour. We used the standard methods of The Cochrane Collaboration and the Cochrane Pregnancy and Childbirth Group. Two review authors independently undertook evaluation of methodological quality and extracted trial data. This review includes one trial of 513 women. When compared with placebo, atosiban did not reduce preterm birth before 37 weeks (risk ratio (RR) 0.89; 95% confidence intervals (CI) 0.71 to 1.12), 32 weeks (RR 0.85; 95% CI 0.47 to 1.55), or 28 weeks (RR 0.75; 95% CI 0.28 to 2.01). No difference was shown in neonatal morbidity, or perinatal mortality. There is insufficient evidence to support the use of oxytocin receptor antagonists to inhibit preterm birth after a period of threatened or actual preterm labour. Any future trials using oxytocin antagonists or other drugs as maintenance therapy for preventing preterm birth should examine a variety of important infant outcome measures, including reduction of neonatal morbidity and mortality, and long-term infant follow-up. Future research should also focus on the pathophysiological pathways that

  17. The risk of tuberculosis related to tumour necrosis factor antagonist therapies: a TBNET consensus statement

    DEFF Research Database (Denmark)

    Solovic, I.; Sester, M.; Gomez-Reino, J.J.

    2010-01-01

    Anti-tumour necrosis factor (TNF) monoclonal antibodies or soluble TNF receptors have become an invaluable treatment against chronic inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. Individuals who are treated with TNF antagonists are at an increased...... a history of bacille Calmette-Guerin vaccination, tuberculin skin testing is recommended to screen all adult candidates for TNF antagonist treatment for the presence of latent infection with Mycobacterium tuberculosis. Moreover, paediatric practice suggests concomitant use of both the tuberculin skin test...... and an interferon-gamma release assay, as there are insufficient data in children to recommend one test over the other. Consequently, targeted preventive chemotherapy is highly recommended for all individuals with persistent M. tuberculosis-specific immune responses undergoing TNF antagonist therapy...

  18. The risk of tuberculosis related to tumour necrosis factor antagonist therapies: a TBNET consensus statement

    DEFF Research Database (Denmark)

    Solovic, I; Sester, M; Gomez-Reino, J J

    2010-01-01

    Anti-tumour necrosis factor (TNF) monoclonal antibodies or soluble TNF receptors have become an invaluable treatment against chronic inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. Individuals who are treated with TNF antagonists are at an increased...... of bacille Calmette-Guérin vaccination, tuberculin skin testing is recommended to screen all adult candidates for TNF antagonist treatment for the presence of latent infection with Mycobacterium tuberculosis. Moreover, paediatric practice suggests concomitant use of both the tuberculin skin test...... and an interferon-¿ release assay, as there are insufficient data in children to recommend one test over the other. Consequently, targeted preventive chemotherapy is highly recommended for all individuals with persistent M. tuberculosis-specific immune responses undergoing TNF antagonist therapy as it significantly...

  19. Chronic MK-801 Application in Adolescence and Early Adulthood: A Spatial Working Memory Deficit in Adult Long-Evans Rats But No Changes in the Hippocampal NMDA Receptor Subunits

    Czech Academy of Sciences Publication Activity Database

    Uttl, Libor; Petrásek, Tomáš; Sengul, Hilal; Svojanovská, Markéta; Lobellová, Veronika; Valeš, Karel; Radostová, Dominika; Tsenov, Grygoriy; Kubová, Hana; Mikulecká, Anna; Svoboda, Jan; Stuchlík, Aleš

    2018-01-01

    Roč. 9, Feb 12 (2018), č. článku 42. ISSN 1663-9812 R&D Projects: GA MŠk(CZ) LM2015062; GA ČR NV17-30833A Grant - others:AV ČR(CZ) PAN-17-07 Program:Bilaterální spolupráce Institutional support: RVO:67985823 Keywords : schizophrenia * animal model * dizocilpine * rats * chronic treatment * western blot * behavior Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.400, year: 2016

  20. 5-HT2B Receptor Antagonists Inhibit Fibrosis and Protect from RV Heart Failure

    Directory of Open Access Journals (Sweden)

    Wiebke Janssen

    2015-01-01

    Full Text Available Objective. The serotonin (5-HT pathway was shown to play a role in pulmonary hypertension (PH, but its functions in right ventricular failure (RVF remain poorly understood. The aim of the current study was to investigate the effects of Terguride (5-HT2A and 2B receptor antagonist or SB204741 (5-HT2B receptor antagonist on right heart function and structure upon pulmonary artery banding (PAB in mice. Methods. Seven days after PAB, mice were treated for 14 days with Terguride (0.2 mg/kg bid or SB204741 (5 mg/kg day. Right heart function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI, and histomorphometric methods. Total secreted collagen content was determined in mouse cardiac fibroblasts isolated from RV tissues. Results. Chronic treatment with Terguride or SB204741 reduced right ventricular fibrosis and showed improved heart function in mice after PAB. Moreover, 5-HT2B receptor antagonists diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. Conclusion. 5-HT2B receptor antagonists reduce collagen deposition, thereby inhibiting right ventricular fibrosis. Chronic treatment prevented the development and progression of pressure overload-induced RVF in mice. Thus, 5-HT2B receptor antagonists represent a valuable novel therapeutic approach for RVF.

  1. Protection of cortical cells by equine estrogens against glutamate-induced excitotoxicity is mediated through a calcium independent mechanism

    Directory of Open Access Journals (Sweden)

    Perrella Joel

    2005-05-01

    Full Text Available Abstract Background High concentrations of glutamate can accumulate in the brain and may be involved in the pathogenesis of neurodegenerative disorders such as Alzheimer's disease. This form of neurotoxicity involves changes in the regulation of cellular calcium (Ca2+ and generation of free radicals such as peroxynitrite (ONOO-. Estrogen may protect against glutamate-induced cell death by reducing the excitotoxic Ca2+ influx associated with glutamate excitotoxicity. In this study, the inhibition of N-methyl-D-aspartate (NMDA receptor and nitric oxide synthase (NOS along with the effect of 17β-estradiol (17β-E2 and a more potent antioxidant Δ8, 17β-estradiol (Δ8, 17β-E2 on cell viability and intracellular Ca2+ ([Ca2+]i, following treatment of rat cortical cells with glutamate, was investigated. Results Primary rat cortical cells were cultured for 7–12 days in Neurobasal medium containing B27 supplements. Addition of glutamate (200 μM decreased cell viability to 51.3 ± 0.7% compared to control. Treatment with the noncompetitive NMDAR antagonist, MK-801, and the NOS inhibitor, L-NAME, completely prevented cell death. Pretreatment (24 hrs with 17β-E2 and Δ8, 17β-E2 (0.01 to 10 μM significantly reduced cell death. 17β-E2 was more potent than Δ8, 17β-E2. Glutamate caused a rapid 2.5 fold increase in [Ca2+]i. Treatment with 0.001 to 10 μM MK-801 reduced the initial Ca2+ influx by 14–41% and increased cell viability significantly. Pretreatment with 17β-E2 and Δ8, 17β-E2 had no effect on Ca2+ influx but protected the cortical cells against glutamate-induced cell death. Conclusion Glutamate-induced cell death in cortical cultures can occur through NMDAR and NOS-linked mechanisms by increasing nitric oxide and ONOO-. Equine estrogens: 17β-E2 and Δ8, 17β-E2, significantly protected cortical cells against glutamate-induced excitotoxicity by a mechanism that appears to be independent of Ca2+ influx. To our knowledge, this is a first

  2. CRTH2 antagonists in asthma: current perspectives

    Directory of Open Access Journals (Sweden)

    Singh D

    2017-12-01

    Full Text Available Dave Singh, Arjun Ravi, Thomas Southworth Division of Infection, Immunity and Respiratory Medicine, The Medicines Evaluation Unit, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, UK Abstract: Chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2 binds to prostaglandin D2. CRTH2 is expressed on various cell types including eosinophils, mast cells, and basophils. CRTH2 and prostaglandin D2 are involved in allergic inflammation and eosinophil activation. Orally administered CRTH2 antagonists are in clinical development for the treatment of asthma. The biology and clinical trial data indicate that CRTH2 antagonists should be targeted toward eosinophilic asthma. This article reviews the clinical evidence for CRTH2 involvement in asthma pathophysiology and clinical trials of CRTH2 antagonists in asthma. CRTH2 antagonists could provide a practical alternative to biological treatments for patients with severe asthma. Future perspectives for this class of drug are considered, including the selection of the subgroup of patients most likely to show a meaningful treatment response. Keywords: CRTH2, clinical trial, eosinophilic asthma, prostaglandin D2

  3. Carbon adaptation influence the antagonistic ability of ...

    African Journals Online (AJOL)

    Influences of carbon adaptation on antagonistic activities of three Pseudomonas aeruginosa strains V4, V7 and V10 against Fusarium oxysporum f. sp. melonis were determined in this study. Results from this study showed that the P. aeruginosa strains and their adapted strains significantly inhibited the growth of mycelium ...

  4. Antagonistic properties of microogranisms associated with cassava ...

    African Journals Online (AJOL)

    The antagonistic properties of indigenous microflora from cassava starch, flour and grated cassava were investigated using the conventional streak, novel ring and well diffusion methods. Antagonism was measured by zone of inhibition between the fungal plug and bacterial streak/ring. Bacillus species were more effective ...

  5. Brief fear preexposure facilitates subsequent fear conditioning.

    Science.gov (United States)

    Iwasaki, Satoshi; Sakaguchi, Tetsuya; Ikegaya, Yuji

    2015-06-01

    Post-traumatic stress disorder (PTSD) is an anxiety disorder that occurs following an unexpected exposure to a severe psychological event. A history of a brief trauma is reported to affect a risk for future PTSD development; however, little is known about the mechanisms by which a previous trauma exposure drives the sensitivity to a late-coming trauma. Using a mouse PTSD model, we found that a prior foot shock enhances contextual fear conditioning. This shock-induced facilitation of fear conditioning (i.e., priming effect) persisted for 7 days and was prevented by MK801, an N-methyl-D-aspartate receptor antagonist. Other types of trauma, such as forced swimming or tail pinch, did not induce a priming effect on fear conditioning. Thus, a trauma is unlikely generalized to modify the sensitivity to other traumatic experiences. The behavioral procedure employed in this study may be a useful tool to elucidate the etiology of PTSD. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  6. Toxic Synergism Between Quinolinic Acid and Glutaric Acid in Neuronal Cells Is Mediated by Oxidative Stress: Insights to a New Toxic Model.

    Science.gov (United States)

    Pierozan, Paula; Colín-González, Ana Laura; Biasibetti, Helena; da Silva, Janaina Camacho; Wyse, Angela; Wajner, Moacir; Santamaria, Abel

    2017-09-21

    It has been shown that synergistic toxic effects of quinolinic acid (QUIN) and glutaric acid (GA), both in isolated nerve endings and in vivo conditions, suggest the contribution of these metabolites to neurodegeneration. However, this synergism still requires a detailed characterization of the mechanisms involved in cell damage during its occurrence. In this study, the effects of subtoxic concentrations of QUIN and/or GA were tested in neuronal cultures, co-cultures (neuronal cells + astrocytes), and mixed cultures (neuronal cells + astrocytes + microglia) from rat cortex and striatum. The exposure of different cortical and striatal cell cultures to QUIN + GA resulted in cell death and stimulated different markers of oxidative stress, including reactive oxygen species (ROS) formation; changes in the activity of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase; and depletion of endogenous antioxidants such as -SH groups and glutathione. The co-incubation of neuronal cultures with QUIN + GA plus the N-methyl-D-aspartate antagonist MK-801 prevented cell death but not ROS formation, whereas the antioxidant melatonin reduced both parameters. Our results demonstrated that QUIN and GA can create synergistic scenarios, inducing toxic effects on some parameters of cell viability via the stimulation of oxidative damage. Therefore, it is likely that oxidative stress may play a major causative role in the synergistic actions exerted by QUIN + GA in a variety of cell culture conditions involving the interaction of different neural types.

  7. The role of glutamatergic and GABAergic systems on serotonin- induced feeding behavior in chicken.

    Science.gov (United States)

    Mortezaei, Sepideh Seyedali; Zendehdel, Morteza; Babapour, Vahab; Hasani, Keyvan

    2013-12-01

    It has been reported that serotonin can modulate glutamate and GABA release in central nervous system (CNS). The present study was designed to examine the role of glutamatergic and GABAergic systems on serotonin- induced feeding behavior in chickens. In Experiment 1 intracerebroventricular (ICV) injection of MK- 801(NMDA receptor antagonist, 15 nmol) performed followed by serotonin (10 μg). In experiments 2, 3, 4, 5, 6 and 7 prior to serotonin injection, chickens received CNQX (AMPA/kainate receptor antagonist, 390 nmol), AIDA (mGluR1 antagonist, 2 nmol), LY341495 (mGluR2 antagonist, 150 nmol), UBP1112 (mGluR3 antagonist, 2 nmol), picrotoxin (GABA A receptor antagonist, 0.5 μg), CGP54626 (GABAB receptor antagonist, 20 ng) respectively. Cumulative food intake was determined at 3 h post injection. The results of this study showed that the hypophagic effect of serotonin was significantly attenuated by pretreatment with MK- 801 and CNQX (p 0.05). Also, the inhibitory effect of serotonin on food intake was amplified by picrotoxin (p 0.05). These results suggest that serotonin as a modulator probably interacts with glutamatergic (via NMDA and AMPA/Kainate receptors) and GABAergic (via GABAA receptor) systems on feeding behavior in chicken.

  8. Antagonist-Elicited Cannabis Withdrawal in Humans

    Science.gov (United States)

    Gorelick, David A.; Goodwin, Robert S.; Schwilke, Eugene; Schwope, David M.; Darwin, William D.; Kelly, Deanna L.; McMahon, Robert P.; Liu, Fang; Ortemann-Renon, Catherine; Bonnet, Denis; Huestis, Marilyn A.

    2013-01-01

    Cannabinoid CB1 receptor antagonists have potential therapeutic benefits, but antagonist-elicited cannabis withdrawal has not been reported in humans. Ten male daily cannabis smokers received 8 days of increasingly frequent 20-mg oral Δ9-tetrahydrocannabinol (THC) dosages (40–120 mg/d) around-the-clock to standardize cannabis dependence while residing on a closed research unit. On the ninth day, double-blind placebo or 20- (suggested therapeutic dose) or 40-mg oral rimonabant, a CB1-cannabinoid receptor antagonist, was administered. Cannabis withdrawal signs and symptoms were assessed before and for 23.5 hours after rimonabant. Rimonabant, THC, and 11-hydroxy-THC plasma concentrations were quantified by mass spectrometry. The first 6 subjects received 20-mg rimonabant (1 placebo); the remaining 4 subjects received 40-mg rimonabant (1 placebo). Fourteen subjects enrolled; 10 completed before premature termination because of withdrawal of rimonabant from clinical development. Three of 5 subjects in the 20-mg group, 1 of 3 in the 40-mg group, and none of 2 in the placebo group met the prespecified withdrawal criterion of 150% increase or higher in at least 3 visual analog scales for cannabis withdrawal symptoms within 3 hours of rimonabant dosing. There were no significant associations between visual analog scale, heart rate, or blood pressure changes and peak rimonabant plasma concentration, area-under-the-rimonabant-concentration-by-time curve (0–8 hours), or peak rimonabant/THC or rimonabant/(THC + 11-hydroxy-THC) plasma concentration ratios. In summary, prespecified criteria for antagonist-elicited cannabis withdrawal were not observed at the 20- or 40-mg rimonabant doses. These data do not preclude antagonist-elicited withdrawal at higher rimonabant doses. PMID:21869692

  9. Antagonist-elicited cannabis withdrawal in humans.

    Science.gov (United States)

    Gorelick, David A; Goodwin, Robert S; Schwilke, Eugene; Schwope, David M; Darwin, William D; Kelly, Deanna L; McMahon, Robert P; Liu, Fang; Ortemann-Renon, Catherine; Bonnet, Denis; Huestis, Marilyn A

    2011-10-01

    Cannabinoid CB1 receptor antagonists have potential therapeutic benefits, but antagonist-elicited cannabis withdrawal has not been reported in humans. Ten male daily cannabis smokers received 8 days of increasingly frequent 20-mg oral Δ⁹-tetrahydrocannabinol (THC) dosages (40-120 mg/d) around-the-clock to standardize cannabis dependence while residing on a closed research unit. On the ninth day, double-blind placebo or 20- (suggested therapeutic dose) or 40-mg oral rimonabant, a CB1-cannabinoid receptor antagonist, was administered. Cannabis withdrawal signs and symptoms were assessed before and for 23.5 hours after rimonabant. Rimonabant, THC, and 11-hydroxy-THC plasma concentrations were quantified by mass spectrometry. The first 6 subjects received 20-mg rimonabant (1 placebo); the remaining 4 subjects received 40-mg rimonabant (1 placebo). Fourteen subjects enrolled; 10 completed before premature termination because of withdrawal of rimonabant from clinical development. Three of 5 subjects in the 20-mg group, 1 of 3 in the 40-mg group, and none of 2 in the placebo group met the prespecified withdrawal criterion of 150% increase or higher in at least 3 visual analog scales for cannabis withdrawal symptoms within 3 hours of rimonabant dosing. There were no significant associations between visual analog scale, heart rate, or blood pressure changes and peak rimonabant plasma concentration, area-under-the-rimonabant-concentration-by-time curve (0-8 hours), or peak rimonabant/THC or rimonabant/(THC + 11-hydroxy-THC) plasma concentration ratios. In summary, prespecified criteria for antagonist-elicited cannabis withdrawal were not observed at the 20- or 40-mg rimonabant doses. These data do not preclude antagonist-elicited withdrawal at higher rimonabant doses.

  10. Combining elements from two antagonists of formyl peptide receptor 2 generates more potent peptidomimetic antagonists

    DEFF Research Database (Denmark)

    Skovbakke, Sarah Line; Holdfeldt, Andre; Nielsen, Christina

    2017-01-01

    Structural optimization of a peptidomimetic antagonist of formyl peptide receptor 2 (FPR2) was explored by an approach involving combination of elements from the two most potent FPR2 antagonists described: a Rhodamine B-conjugated 10-residue gelsonin-derived peptide (i.e., PBP10, Rh......B-QRLFQVKGRR-OH) and the palmitoylated α-peptide/β-peptoid hybrid Pam-(Lys-βNspe)6-NH2. This generated an array of hybrid compounds from which a new subclass of receptor-selective antagonists was identified. The most potent representatives displayed activity in the low nanomolar range. The resulting stable and potent FPR2-selective...... antagonists (i.e., RhB-(Lys-βNphe)n-NH2; n = 4–6) are expected to become valuable tools in further elucidation of the physiological role of FPR2 in health and disease....

  11. Similarities and differences between calcium antagonists: pharmacological aspects

    NARCIS (Netherlands)

    van Zwieten, P. A.; Pfaffendorf, M.

    1993-01-01

    Characteristics of three different calcium antagonist groups: Most important calcium antagonists used to treat cardiovascular disease belong to one of three main groups, phenylalkylamines, dihydropyridines and benzothiazepines. The best known drug in each group is verapamil, nifedipine and

  12. Protective effects of calcium antagonists in different organs and tissues

    NARCIS (Netherlands)

    van Zwieten, P. A.

    1993-01-01

    The therapeutic efficacy of calcium antagonists in ischemic disorders of various tissues is attributed to vasodilator and antivasoconstrictor activities. A direct, energy-conserving, antiischemic effect of certain calcium antagonists has been claimed repeatedly by basic scientists. The clinical

  13. A novel antagonist of CRTH2 blocks eosinophil release from bone marrow, chemotaxis and respiratory burst

    DEFF Research Database (Denmark)

    Royer, J F; Schratl, P; Lorenz, S

    2007-01-01

    developed small molecule antagonist of CRTH2, Cay10471, on eosinophil function with respect to recruitment, respiratory burst and degranulation. METHODS: Chemotaxis of guinea pig bone marrow eosinophils and human peripheral blood eosinophils were determined using microBoyden chambers. Eosinophil release...... from bone marrow was investigated in the in situ perfused guinea pig hind limb preparation. Respiratory burst and degranulation were measured by flow cytometry. RESULTS: Cay10471 bound with high affinity to recombinant human and guinea pig CRTH2, but not DP, receptors. The antagonist prevented the PGD......(2)-induced release of eosinophils from guinea pig bone marrow, and inhibited the chemotaxis of guinea pig bone marrow eosinophils and human peripheral blood eosinophils. Pretreatment with PGD(2) primed eosinophils for chemotaxis towards eotaxin, and this effect was prevented by Cay10471. In contrast...

  14. Antagonistic parent-offspring co-adaptation.

    Directory of Open Access Journals (Sweden)

    Mathias Kölliker

    2010-01-01

    Full Text Available In species across taxa, offspring have means to influence parental investment (PI. PI thus evolves as an interacting phenotype and indirect genetic effects may strongly affect the co-evolutionary dynamics of offspring and parental behaviors. Evolutionary theory focused on explaining how exaggerated offspring solicitation can be understood as resolution of parent-offspring conflict, but the evolutionary origin and diversification of different forms of family interactions remains unclear.In contrast to previous theory that largely uses a static approach to predict how "offspring individuals" and "parental individuals" should interact given conflict over PI, we present a dynamic theoretical framework of antagonistic selection on the PI individuals obtain/take as offspring and the PI they provide as parents to maximize individual lifetime reproductive success; we analyze a deterministic and a stochastic version of this dynamic framework. We show that a zone for equivalent co-adaptation outcomes exists in which stable levels of PI can evolve and be maintained despite fast strategy transitions and ongoing co-evolutionary dynamics. Under antagonistic co-adaptation, cost-free solicitation can evolve as an adaptation to emerging preferences in parents.We show that antagonistic selection across the offspring and parental life-stage of individuals favors co-adapted offspring and parental behavior within a zone of equivalent outcomes. This antagonistic parent-offspring co-adaptation does not require solicitation to be costly, allows for rapid divergence and evolutionary novelty and potentially explains the origin and diversification of the observed provisioning forms in family life.

  15. Antagonist potential of Trichoderma indigenous isolates for ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Full Length Research Paper. Antagonist potential of Trichoderma indigenous isolates for biological control of Phytophthora palmivora the causative agent of black pod disease on cocoa (Theobroma cacao L.) in Côte d'Ivoire. J. Mpika1,4*, I. B. Kébé1, A. E. Issali2, F.K. N'Guessan1, S. Druzhinina3, ...

  16. Medicinal Chemistry of Competitive Kainate Receptor Antagonists

    Science.gov (United States)

    2010-01-01

    Kainic acid (KA) receptors belong to the group of ionotropic glutamate receptors and are expressed throughout in the central nervous system (CNS). The KA receptors have been shown to be involved in neurophysiological functions such as mossy fiber long-term potentiation (LTP) and synaptic plasticity and are thus potential therapeutic targets in CNS diseases such as schizophrenia, major depression, neuropathic pain and epilepsy. Extensive effort has been made to develop subtype-selective KA receptor antagonists in order to elucidate the physiological function of each of the five subunits known (GluK1−5). However, to date only selective antagonists for the GluK1 subunit have been discovered, which underlines the strong need for continued research in this area. The present review describes the structure−activity relationship and pharmacological profile for 10 chemically distinct classes of KA receptor antagonists comprising, in all, 45 compounds. To the medicinal chemist this information will serve as reference guidance as well as an inspiration for future effort in this field. PMID:22778857

  17. The sexually antagonistic genes of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Paolo Innocenti

    2010-03-01

    Full Text Available When selective pressures differ between males and females, the genes experiencing these conflicting evolutionary forces are said to be sexually antagonistic. Although the phenotypic effect of these genes has been documented in both wild and laboratory populations, their identity, number, and location remains unknown. Here, by combining data on sex-specific fitness and genome-wide transcript abundance in a quantitative genetic framework, we identified a group of candidate genes experiencing sexually antagonistic selection in the adult, which correspond to 8% of Drosophila melanogaster genes. As predicted, the X chromosome is enriched for these genes, but surprisingly they represent only a small proportion of the total number of sex-biased transcripts, indicating that the latter is a poor predictor of sexual antagonism. Furthermore, the majority of genes whose expression profiles showed a significant relationship with either male or female adult fitness are also sexually antagonistic. These results provide a first insight into the genetic basis of intralocus sexual conflict and indicate that genetic variation for fitness is dominated and maintained by sexual antagonism, potentially neutralizing any indirect genetic benefits of sexual selection.

  18. Pharmacological analysis of calcium antagonist receptors

    International Nuclear Information System (INIS)

    Reynolds, I.J.

    1987-01-01

    This work focuses on two aspects of the action of calcium antagonist drugs, namely, the interaction of drugs with receptors for verapamil-like calcium antagonists, and the interactions of drugs with voltage-sensitive calcium fluxes in rat brain synaptosomes. From binding studies I have found that the ligand of choice for labeling the verapamil receptor is (-)[ 3 H]desmethoxy-verapamil. This drug labels potently, reversibly and stereoselectively two receptors in membranes prepared from rat brain and rabbit skeletal muscle tissues. In equilibrium studies dihydropyridine calcium antagonists interact in a non-competitive fashion, while many non-DHPs are apparently competitive. In-depth kinetic studies in skeletal muscle membranes indicate that the two receptors are linked in a negative heterotropic fashion, and that low-affinity binding of (-) [ 3 H]desmethoxy-verapamil may be to the diltiazem receptor. However, these studies were not able to distinguish between the hypothesis that diltiazem binds to spatially separate, allosterically coupled receptors, and the hypothesis that diltiazem binds to a subsite of the verapamil receptor

  19. From the Cover: Glutamate antagonists limit tumor growth

    Science.gov (United States)

    Rzeski, Wojciech; Turski, Lechoslaw; Ikonomidou, Chrysanthy

    2001-05-01

    Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N-methyl-D-aspartate antagonist dizocilpine, whereas breast and lung carcinoma, colon adenocarcinoma, and neuroblastoma cells responded most favorably to the -amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonist GYKI52466. The antiproliferative effect of glutamate antagonists was Ca2+ dependent and resulted from decreased cell division and increased cell death. Morphological alterations induced by glutamate antagonists in tumor cells consisted of reduced membrane ruffling and pseudopodial protrusions. Furthermore, glutamate antagonists decreased motility and invasive growth of tumor cells. These findings suggest anticancer potential of glutamate antagonists.

  20. Investigations of stabilizing additives—III. Antagonistic effect of thioester on hindered amine antioxidants for radiation stability

    Science.gov (United States)

    Williams, J. L.; Williams, E. E.; Dunn, T. S.

    The use of hindered amines as primary antioxidants has been investigated both in a model antioxidant activity system and polypropylene. Also, the effectiveness of hindered amines in the presence of thioester has been evaluated. The antagonistic aspects of thioester on the ability of hindered amine to prevent polymer oxidation is discussed.

  1. Novel neurokinin-1 antagonists as antiemetics for the treatment of chemotherapy-induced emesis.

    Science.gov (United States)

    Reddy, G Kesava; Gralla, Richard J; Hesketh, Paul J

    2006-04-01

    Despite significant advances in supportive care in oncology, many patients with cancer still experience chemotherapy- induced nausea and vomiting (CINV). Historically, there were only 3 neurotransmitter receptors (dopamine D2, cannabinoid- 1, and 5-hydroxytryptamine-3) that were the known targets for antiemetic therapy. Major advances in the management of chemotherapy-induced emesis were seen with the introduction of 5-hydroxytryptamine-3 receptor antagonists, which include palonosetron, ondansetron, tropisetron, dolasetron, and granisetron. However, recently, selective inhibitors of substance P have shown promising activity in the management of CINV in patients with cancer. Substance P mediates a number of biologic effects by binding to a specific neuroreceptor, neurokinin-1 (NK-1). Among the NK-1 receptor antagonists, aprepitant has been approved for the treatment of CINV. Currently, several other NK-1 receptor antagonists, including casopitant, vestipitant, netupitant, and SCH619734, are undergoing clinical evaluation for the prevention of CINV in patients with a variety of malignancies. The clinical potential of these novel NK-1 receptor antagonists and their respective ongoing clinical trials for the management of chemotherapy-induced emesis are discussed briefly herein.

  2. A SOCS1/3 antagonist peptide protects mice against lethal infection with influenza A virus

    Directory of Open Access Journals (Sweden)

    Chulbul M. Ahmed

    2015-11-01

    Full Text Available We have developed an antagonist to suppressor of cytokine signaling 1 (SOCS1, pJAK2(1001-1013, that corresponds to the activation loop of the Janus kinase JAK2, which is the binding site for the kinase inhibitory region (KIR of SOCS1. Internalized pJAK2(1001-1013 inhibits SOCS1 and SOCS3. SOCS1 has been shown to be an influenza virus induced virulence factor that enhances infection of cells. The antagonist was protective in cell culture and in influenza virus PR8 lethally infected C57BL/6 mice. The SOCS antagonist also prevented adverse morbidity as assessed by parameters such as weight loss and drop in body temperature and showed potent induction of both the cellular and humoral immune responses to the influenza virus candidate universal antigen matrix protein 2 (M2e. The SOCS antagonist thus protected mice against lethal influenza virus infection and possessed potent adjuvancy against the M2e candidate influenza virus universal vaccine antigen.

  3. Bleeding and asymptomatic overdose in patients under Vitamin K antagonist therapy: Frequency and risk factors

    Directory of Open Access Journals (Sweden)

    F. Ben Mbarka

    2018-03-01

    Full Text Available Background: Vitamin K antagonists are widely used in the treatment and prevention of thromboembolic disease. However, these drugs can cause serious side effects, especially bleeding. This study aims to evaluate frequency and risk factors of both bleeding and asymptomatic overdose in North African patients undergoing Vitamin K antagonist therapy. Methods: We performed a cross-sectional study in patients undergoing Vitamin K antagonist therapy. A statistical analysis has been conducted to identify overdose and bleeding risk factors by using chi-square test (p < .05. Results: One hundred and eleven patients were included. We recorded 14 cases of bleeding and 26 cases of asymptomatic overdose. Advanced age, poor adherence, concomitant use of paracetamol and history of previous bleeding are significant risk factors of over-anticoagulation. An INR value over 6 at admission, a high therapeutic target range for INR, concomitant use of acetylsalicylic acid, lack of information on overdose signs and measures to be taken in case of bleeding were identified as risk factors for bleeding. Conclusion: Most of the risk factors identified in our study seem to be related to patients lack of information and education. These results highlight the importance of creating a therapeutic patient education program. Keywords: Vitamin K antagonist, Bleeding, Risk factor, Overdose

  4. Combination decongestion therapy in hospitalized heart failure: loop diuretics, mineralocorticoid receptor antagonists and vasopressin antagonists.

    Science.gov (United States)

    Vaduganathan, Muthiah; Mentz, Robert J; Greene, Stephen J; Senni, Michele; Sato, Naoki; Nodari, Savina; Butler, Javed; Gheorghiade, Mihai

    2015-01-01

    Congestion is the most common reason for admissions and readmissions for heart failure (HF). The vast majority of hospitalized HF patients appear to respond readily to loop diuretics, but available data suggest that a significant proportion are being discharged with persistent evidence of congestion. Although novel therapies targeting congestion should continue to be developed, currently available agents may be utilized more optimally to facilitate complete decongestion. The combination of loop diuretics, natriuretic doses of mineralocorticoid receptor antagonists and vasopressin antagonists represents a regimen of currently available therapies that affects early and persistent decongestion, while limiting the associated risks of electrolyte disturbances, hemodynamic fluctuations, renal dysfunction and mortality.

  5. Investigation of orexin-2 selective receptor antagonists: Structural modifications resulting in dual orexin receptor antagonists.

    Science.gov (United States)

    Skudlarek, Jason W; DiMarco, Christina N; Babaoglu, Kerim; Roecker, Anthony J; Bruno, Joseph G; Pausch, Mark A; O'Brien, Julie A; Cabalu, Tamara D; Stevens, Joanne; Brunner, Joseph; Tannenbaum, Pamela L; Wuelfing, W Peter; Garson, Susan L; Fox, Steven V; Savitz, Alan T; Harrell, Charles M; Gotter, Anthony L; Winrow, Christopher J; Renger, John J; Kuduk, Scott D; Coleman, Paul J

    2017-03-15

    In an ongoing effort to explore the use of orexin receptor antagonists for the treatment of insomnia, dual orexin receptor antagonists (DORAs) were structurally modified, resulting in compounds selective for the OX 2 R subtype and culminating in the discovery of 23, a highly potent, OX 2 R-selective molecule that exhibited a promising in vivo profile. Further structural modification led to an unexpected restoration of OX 1 R antagonism. Herein, these changes are discussed and a rationale for selectivity based on computational modeling is proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. [Vascular calcifications, the hidden side effects of vitamin K antagonists].

    Science.gov (United States)

    Bennis, Youssef; Vengadessane, Subashini; Bodeau, Sandra; Gras, Valérie; Bricca, Giampiero; Kamel, Saïd; Liabeuf, Sophie

    2016-09-01

    Despite the availability of new oral anticoagulants, vitamin K antagonists (VKA, such as fluindione, acenocoumarol or warfarin) remain currently the goal standard medicines for oral prevention or treatment of thromboembolic disorders. They inhibit the cycle of the vitamin K and its participation in the enzymatic gamma-carboxylation of many proteins. The VKA prevent the activation of the vitamin K-dependent blood clotting factors limiting thus the initiation of the coagulation cascade. But other proteins are vitamin K-dependent and also remain inactive in the presence of VKA. This is the case of matrix Gla-protein (MGP), a protein that plays a major inhibitory role in the development of vascular calcifications. Several experimental and epidemiological results suggest that the use of the VKA could promote the development of vascular calcifications increasing thus the cardiovascular risk. This risk seems to be higher in patients with chronic kidney disease or mellitus diabetes who are more likely to develop vascular calcifications, and may be due to a decrease of the MGP activity. This review aims at summarizing the data currently available making vascular calcifications the probably underestimated side effects of VKA. Copyright © 2016 Société française de pharmacologie et de thérapeutique. Published by Elsevier Masson SAS. All rights reserved.

  7. Reduction of periodontal pathogens adhesion by antagonistic strains.

    Science.gov (United States)

    Van Hoogmoed, C G; Geertsema-Doornbusch, G I; Teughels, W; Quirynen, M; Busscher, H J; Van der Mei, H C

    2008-02-01

    Periodontitis results from a shift in the subgingival microflora into a more pathogenic direction with Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans considered as periodontopathogens. In many cases, treatment procures only a temporary shift towards a less pathogenic microflora. An alternative treatment could be the deliberate colonization of pockets with antagonistic microorganisms to control the adhesion of periodontopathogens. The aim of this study was to identify bacterial strains that reduce adhesion of periodontopathogens to surfaces. Streptococcus sanguinis, Streptococcus crista, Streptococcus salivarius, Streptococcus mitis, Actinomyces naeslundii, and Haemophilus parainfluenzae were evaluated as potential antagonists against P. gingivalis ATCC 33277, P. intermedia ATCC 49046, and A. actinomycetemcomitans ATCC 43718 as periodontopathogens. Adhesion of periodontopathogens to the bottom plate of a parallel plate flow chamber was studied in the absence (control) and the presence of pre-adhering antagonistic strains up to a surface coverage of 5%. The largest reduction caused by antagonistic strains was observed for P. gingivalis. All antagonistic strains except S. crista ATCC 49999 inhibited the adhesion of P. gingivalis by at least 1.6 cells per adhering antagonist, with the largest significant reduction observed for A. naeslundii ATCC 51655 (3.8 cells per adhering antagonist). Adhering antagonists had a minimal effect on the adhesion of A. actinomycetemcomitans ATCC 43718. Intermediate but significant reductions were perceived for P. intermedia, most notably caused by S. mitis BMS. The adhesion of P. gingivalis was inhibited best by antagonistic strains, while S. mitis BMS appeared to be the most successful antagonist.

  8. Pharmacology of morphine and morphine-3-glucuronide at opioid, excitatory amino acid, GABA and glycine binding sites

    International Nuclear Information System (INIS)

    Bartlett, S.E.; Smith, M.T.; Dood, P.R.

    1994-01-01

    Morphine in high doses and its major metabolite, morphine-3-glucuronide, cause CNS excitation following intrathecal and intracerebroventricular administration by an unknown mechanism. This study investigated whether morphine and morphine-3-glucuronide interact at major excitatory (glutamate), major inhibitory (GABA or glycine), or opioid binding sites. Homogenate binding assays were performed using specific radioligands. At opioid receptors, morphine-3-glucuronide and morphine caused an equipotent sodium shift, consistent with morphine-3-glucuronide behaving as an agonist. This suggests that morphine-3-glucuronide-mediated excitation is not caused by an interaction at opioid receptors. Morphine-3-glucuronide and morphine caused a weak inhibition of the binding of 3 H-MK801 (non-competitive antagonist) and 125 I-ifenprodil (polyamine site antagonist), but at unphysiologically high concentrations. This suggests that CNS excitation would not result from an interaction of morphine-3-glucuronide and high-dose morphine with these sites on the NMDA receptor. Morphine-3-glucuronide and morphine inhibited the binding of 3 H-muscimol (GABA receptor agonist), 3 H-diazepam and 3 H-flunitraxepam (benzodiazepine agonists) binding very weakly, suggesting the excitatory effects of morphine-3-glucuronide and high-dose morphine are not elicited through GABA A receptors. Morphine-3-glucuronide and high-dose morphine did not prevent re-uptake of glutamate into presynaptic nerve terminals. In addition, morphine-3-glucuronide and morphine did not inhibit the binding of 3 H-strychnine (glycine receptor antagonist) to synaptic membranes prepared from bovine spinal cord. It is concluded that excitation caused by high-dose morphine and morphine-3-glucuronide is not mediated by an interaction with postsynaptic amino acid receptors. (au) (30 refs.)

  9. Pharmacology of morphine and morphine-3-glucuronide at opioid, excitatory amino acid, GABA and glycine binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, S.E.; Smith, M.T. (Department of Pharmacy, The University of Queensland (Australia)); Dood, P.R. (Clinical Research Centre, Royal Brisbane Hospital Foundation, Brisbane (Australia))

    1994-07-01

    Morphine in high doses and its major metabolite, morphine-3-glucuronide, cause CNS excitation following intrathecal and intracerebroventricular administration by an unknown mechanism. This study investigated whether morphine and morphine-3-glucuronide interact at major excitatory (glutamate), major inhibitory (GABA or glycine), or opioid binding sites. Homogenate binding assays were performed using specific radioligands. At opioid receptors, morphine-3-glucuronide and morphine caused an equipotent sodium shift, consistent with morphine-3-glucuronide behaving as an agonist. This suggests that morphine-3-glucuronide-mediated excitation is not caused by an interaction at opioid receptors. Morphine-3-glucuronide and morphine caused a weak inhibition of the binding of [sup 3]H-MK801 (non-competitive antagonist) and [sup 125]I-ifenprodil (polyamine site antagonist), but at unphysiologically high concentrations. This suggests that CNS excitation would not result from an interaction of morphine-3-glucuronide and high-dose morphine with these sites on the NMDA receptor. Morphine-3-glucuronide and morphine inhibited the binding of [sup 3]H-muscimol (GABA receptor agonist), [sup 3]H-diazepam and [sup 3]H-flunitraxepam (benzodiazepine agonists) binding very weakly, suggesting the excitatory effects of morphine-3-glucuronide and high-dose morphine are not elicited through GABA[sub A] receptors. Morphine-3-glucuronide and high-dose morphine did not prevent re-uptake of glutamate into presynaptic nerve terminals. In addition, morphine-3-glucuronide and morphine did not inhibit the binding of [sup 3]H-strychnine (glycine receptor antagonist) to synaptic membranes prepared from bovine spinal cord. It is concluded that excitation caused by high-dose morphine and morphine-3-glucuronide is not mediated by an interaction with postsynaptic amino acid receptors. (au) (30 refs.).

  10. Amygdala-prefrontal pathways and the dopamine system affect nociceptive responses in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Onozawa Kitaro

    2011-11-01

    Full Text Available Abstract Background We previously demonstrated nociceptive discharges to be evoked by mechanical noxious stimulation in the prefrontal cortex (PFC. The nociceptive responses recorded in the PFC are conceivably involved in the affective rather than the sensory-discriminative dimension of pain. The PFC receives dense projection from the limbic system. Monosynaptic projections from the basolateral nucleus of the amygdala (BLA to the PFC are known to produce long-lasting synaptic plasticity. We examined effects of high frequency stimulation (HFS delivered to the BLA on nociceptive responses in the rat PFC. Results HFS induced long lasting suppression (LLS of the specific high threshold responses of nociceptive neurons in the PFC. Microinjection of N-methyl-D-aspartic acid (NMDA receptor antagonists (2-amino-5-phosphonovaleric acid (APV, dizocilpine (MK-801 and also metabotropic glutamate receptor (mGluR group antagonists (α-methyl-4-carboxyphenylglycine (MCPG, and 2-[(1S,2S-2-carboxycyclopropyl]-3-(9H-xanthen-9-yl-D-alanine (LY341495, prevented the induction of LLS of nociceptive responses. We also examined modulatory effects of dopamine (DA on the LLS of nociceptive responses. With depletion of DA in response to 6-hydroxydopamine (6-OHDA injection into the ipsilateral forebrain bundle, LLS of nociceptive responses was decreased, while nociceptive responses were normally evoked. Antagonists of DA receptor subtypes D2 (sulpiride and D4 (3-{[4-(4-chlorophenyl piperazin-1-yl] methyl}-1H-pyrrolo [2, 3-b] pyridine (L-745,870, microinjected into the PFC, inhibited LLS of nociceptive responses. Conclusions Our results indicate that BLA-PFC pathways inhibited PFC nociceptive cell activities and that the DA system modifies the BLA-PFC regulatory function.

  11. Effect of Angiotensin-Converting Enzyme Inhibitor/Calcium Antagonist Combination Therapy on Renal Function in Hypertensive Patients With Chronic Kidney Disease: Chikushi Anti-Hypertension Trial - Benidipine and Perindopril.

    Science.gov (United States)

    Okuda, Tetsu; Okamura, Keisuke; Shirai, Kazuyuki; Urata, Hidenori

    2018-02-01

    Appropriate blood pressure control suppresses progression of chronic kidney disease (CKD). If an angiotensin-converting enzyme (ACE) inhibitor is ineffective, adding a calcium antagonist is recommended. We compared the long-term effect of two ACE inhibitor/calcium antagonist combinations on renal function in hypertensive patients with CKD. Patients who failed to achieve the target blood pressure (systolic/diastolic: calcium antagonist amlodipine (group A) or perindopril and the T/L type calcium antagonist benidipine (group B). The primary endpoint was the change of the estimated glomerular filtration rate (eGFR) after 2 years. Eligible patients had a systolic pressure ≥ 130 mm Hg and/or diastolic pressure ≥ 80 mm Hg and CKD (urine protein (+) or higher, eGFR calcium antagonist may prevent deterioration of renal function more effectively than an ACE inhibitor/L type calcium antagonist combination.

  12. Diphenyl Purine Derivatives as Peripherally Selective Cannabinoid Receptor 1 Antagonists

    Science.gov (United States)

    Fulp, Alan; Bortoff, Katherine; Zhang, Yanan; Seltzman, Herbert; Mathews, James; Snyder, Rodney; Fennell, Tim; Maitra, Rangan

    2015-01-01

    Cannabinoid receptor 1 (CB1) antagonists are potentially useful for the treatment of several diseases. However, clinical development of several CB1 antagonists was halted due to central nervous system (CNS)-related side effects including depression and suicidal ideation in some users. Recently, studies have indicated that selective regulation of CB1 receptors in the periphery is a viable strategy for treating several important disorders. Past efforts to develop peripherally selective antagonists of CB1 have largely targeted rimonabant, an inverse agonist of CB1. Reported here are our efforts toward developing a peripherally selective CB1 antagonist based on the otenabant scaffold. Even though otenabant penetrates the CNS, it is unique among CB1 antagonists that have been clinically tested because it has properties that are normally associated with peripherally selective compounds. Our efforts have resulted in an orally absorbed compound that is a potent and selective CB1 antagonist with limited penetration into the CNS. PMID:23098108

  13. Hypocretin antagonists in insomnia treatment and beyond.

    Science.gov (United States)

    Ruoff, Chad; Cao, Michelle; Guilleminault, Christian

    2011-01-01

    Hypocretin neuropeptides have been shown to regulate transitions between wakefulness and sleep through stabilization of sleep promoting GABAergic and wake promoting cholinergic/monoaminergic neural pathways. Hypocretin also influences other physiologic processes such as metabolism, appetite, learning and memory, reward and addiction, and ventilatory drive. The discovery of hypocretin and its effect upon the sleep-wake cycle has led to the development of a new class of pharmacologic agents that antagonize the physiologic effects of hypocretin (i.e. hypocretin antagonists). Further investigation of these agents may lead to novel therapies for insomnia without the side-effect profile of currently available hypnotics (e.g. impaired cognition, confusional arousals, and motor balance difficulties). However, antagonizing a system that regulates the sleep-wake cycle while also influencing non-sleep physiologic processes may create an entirely different but equally concerning side-effect profile such as transient loss of muscle tone (i.e. cataplexy) and a dampened respiratory drive. In this review, we will discuss the discovery of hypocretin and its receptors, hypocretin and the sleep-wake cycle, hypocretin antagonists in the treatment of insomnia, and other implicated functions of the hypocretin system.

  14. Sexually antagonistic selection in human male homosexuality.

    Directory of Open Access Journals (Sweden)

    Andrea Camperio Ciani

    Full Text Available Several lines of evidence indicate the existence of genetic factors influencing male homosexuality and bisexuality. In spite of its relatively low frequency, the stable permanence in all human populations of this apparently detrimental trait constitutes a puzzling 'Darwinian paradox'. Furthermore, several studies have pointed out relevant asymmetries in the distribution of both male homosexuality and of female fecundity in the parental lines of homosexual vs. heterosexual males. A number of hypotheses have attempted to give an evolutionary explanation for the long-standing persistence of this trait, and for its asymmetric distribution in family lines; however a satisfactory understanding of the population genetics of male homosexuality is lacking at present. We perform a systematic mathematical analysis of the propagation and equilibrium of the putative genetic factors for male homosexuality in the population, based on the selection equation for one or two diallelic loci and Bayesian statistics for pedigree investigation. We show that only the two-locus genetic model with at least one locus on the X chromosome, and in which gene expression is sexually antagonistic (increasing female fitness but decreasing male fitness, accounts for all known empirical data. Our results help clarify the basic evolutionary dynamics of male homosexuality, establishing this as a clearly ascertained sexually antagonistic human trait.

  15. Sexually Antagonistic Selection in Human Male Homosexuality

    Science.gov (United States)

    Camperio Ciani, Andrea; Cermelli, Paolo; Zanzotto, Giovanni

    2008-01-01

    Several lines of evidence indicate the existence of genetic factors influencing male homosexuality and bisexuality. In spite of its relatively low frequency, the stable permanence in all human populations of this apparently detrimental trait constitutes a puzzling ‘Darwinian paradox’. Furthermore, several studies have pointed out relevant asymmetries in the distribution of both male homosexuality and of female fecundity in the parental lines of homosexual vs. heterosexual males. A number of hypotheses have attempted to give an evolutionary explanation for the long-standing persistence of this trait, and for its asymmetric distribution in family lines; however a satisfactory understanding of the population genetics of male homosexuality is lacking at present. We perform a systematic mathematical analysis of the propagation and equilibrium of the putative genetic factors for male homosexuality in the population, based on the selection equation for one or two diallelic loci and Bayesian statistics for pedigree investigation. We show that only the two-locus genetic model with at least one locus on the X chromosome, and in which gene expression is sexually antagonistic (increasing female fitness but decreasing male fitness), accounts for all known empirical data. Our results help clarify the basic evolutionary dynamics of male homosexuality, establishing this as a clearly ascertained sexually antagonistic human trait. PMID:18560521

  16. Calmodulin antagonists effect on Ca(2+ level in the mitochondria and cytoplasm of myometrium cells

    Directory of Open Access Journals (Sweden)

    S. G. Shlykov

    2015-10-01

    Full Text Available It is known that Са2+-dependent regulation of this cation exchange in mitochondria is carried out with participation of calmodulin. We had shown in a previous work using two experimental models: isolated mitochondria and intact myometrium cells, that calmodulin antagonists reduce the level of mitochondrial membrane polarization. The aim of this work was to investigate the influence of calmodulin antagonists on the level of ionized Са in mitochondria and cytoplasm of uterine smooth muscle cells using spectrofluorometry and confocal microscopy. It was shown that myometrium mitochondria, in the presence of АТР and MgCl2 in the incubation medium, accumulate Са ions in the matrix. Incubation of mitochondria in the presence of СССР inhibited cation accumulation, but did not cease it. Calmodulin antagonist such as trifluoperazine (100 µМ considerably increased the level of ionized Са in the mitochondrial matrix. Preliminary incubation of mitochondria with 100 µМ Са2+, before adding trifluoperazine to the incubation medium, partly prevented influence of the latter on the cation level in the matrix. Incubation of myometrium cells (primary culture with another calmodulin antagonist calmidazolium (10 µМ was accompanied by depolarization of mitochondrial membrane and an increase in the concentration of ionized Са in cytoplasm. Thus, using two models, namely, isolated mitochondria and intact myometrium cells, it has been shown that calmodulin antagonists cause depolarization of mitochondrial membranes and an increase of the ionized Са concentration in both the mitochondrial matrix and the cell cytoplasm.

  17. A Clinical Study on Administration of Opioid Antagonists in Terminal Cancer Patients: 7 Patients Receiving Opioid Antagonists Following Opioids among 2443 Terminal Cancer Patients Receiving Opioids.

    Science.gov (United States)

    Uekuzu, Yoshihiro; Higashiguchi, Takashi; Futamura, Akihiko; Ito, Akihiro; Mori, Naoharu; Murai, Miyo; Ohara, Hiroshi; Awa, Hiroko; Chihara, Takeshi

    2017-03-01

    There have been few detailed reports on respiratory depression due to overdoses of opioids in terminal cancer patients. We investigated the situation of treatment with opioid antagonists for respiratory depression that occurred after administration of opioid at optimal doses in terminal cancer patients, to clarify pathological changes as well as causative factors. In 2443 terminal cancer patients receiving opioids, 7 patients (0.3%) received opioid antagonists: 6, morphine (hydrochloride, 5; sulfate, 1); 1, oxycodone. The median dosage of opioids was 13.3 mg/d, as converted to morphine injection. Respiratory depression occurred on this daily dose in 4 patients and after changed dose and route in 3 patients. Opioids were given through the vein in 6 patients and by the enteral route in 1 patient. Concomitant drugs included nonsteroidal anti-inflammatory drugs in 3 patients and zoledronic acid in 2 patients. In morphine-receiving patients, renal functions were significantly worsened at the time of administration of an opioid antagonist than the day before the start of opioid administration. These findings indicate that the proper use of opioids was safe and acceptable in almost all terminal cancer patients. In rare cases, however, a risk toward respiratory depression onset is indicated because morphine and morphine-6-glucuronide become relatively excessive owing to systemic debility due to disease progression, especially respiratory and renal dysfunctions. At the onset of respiratory depression, appropriate administration of an opioid antagonist mitigated the symptoms. Thereafter, opioid switching or continuous administration at reduced dosages of the same opioids prevented the occurrence of serious adverse events.

  18. Accumulation of the anandamide precursor and other N-acylethanolamine phospholipids in infant rat models of in vivo necrotic and apoptotic neuronal death

    DEFF Research Database (Denmark)

    Hansen, H.H.; Ikonomidou, C.; Bittigau, P.

    2001-01-01

    infant rat models of in vivo neurodegeneration: (i) necrosis caused by intrastriatal injection of NMDA (25 nmol); (ii) apoptosis induced by systemic administration of the NMDA-receptor antagonist (+)MK-801 (3 × 0.5 mg/kg, i.p.); and (iii) apoptosis following focal necrosis triggered by concussive head......-801 did not alter cortical NAPE levels. Concussion head trauma resulted in a similar but less pronounced upregulation of NAPE levels at both 4 and 24 h as compared to NMDA injections. Increased levels of NAPE 24 h post-trauma possibly reflect that necrosis is still ongoing at this time point...

  19. Persistent deficits in hippocampal synaptic plasticity accompany losses of hippocampus-dependent memory in a rodent model of psychosis

    Directory of Open Access Journals (Sweden)

    Valentina eWiescholleck

    2013-03-01

    Full Text Available Irreversible N-methyl-D-aspartate receptor (NMDAR antagonism is known to provoke symptoms of psychosis and schizophrenia in healthy humans. NMDAR hypofunction is believed to play a central role in the pathophysiology of both disorders and in an animal model of psychosis, that is based on irreversible antagonism of NMDARs, pronounced deficits in hippocampal synaptic plasticity have been reported shortly after antagonist treatment. Here, we examined the long-term consequences for long-term potentiation (LTP of a single acute treatment with an irreversible antagonist and investigated whether deficits are associated with memory impairments.The ability to express long-term potentiation (LTP at the perforant pathway – dentate gyrus synapse, as well as object recognition memory was assessed 1, 2, 3 and 4 weeks after a single -treatment of the antagonist, MK801. Here, LTP in freely behaving rats was significantly impaired at all time-points compared to control LTP before treatment. Object recognition memory was also significantly poorer in MK801-treated compared to vehicle-treated animals for several weeks after treatment. Histological analysis revealed no changes in brain tissue.Taken together, these data support that acute treatment with an irreversible NMDAR antagonist persistently impairs hippocampal functioning on behavioral, as well as synaptic levels. The long-term deficits in synaptic plasticity may underlie the cognitive impairments that are associated with schizophrenia-spectrum disorders.

  20. A Gly/Ala switch contributes to high affinity binding of benzoxazinone-based non-peptide oxytocin receptor antagonists.

    Science.gov (United States)

    Hawtin, Stuart R; Ha, Sookhee N; Pettibone, Douglas J; Wheatley, Mark

    2005-01-17

    Non-peptide antagonists of the oxytocin receptor (OTR) have been developed to prevent pre-term labour. The benzoxazinone-based antagonists L-371,257 and L-372,662 display pronounced species-dependent pharmacology with respect to selectivity for the OTR over the V(1a) vasopressin receptor. Examination of receptor sequences from different species identified Ala(318) in helix 7 of the human OTR as a candidate discriminator required for high affinity binding. The mutant receptor [A318G]OTR was engineered and characterised using ligands representing many different chemical classes. Of all the ligands investigated, only the benzoxazinone-based antagonists had decreased affinity for [A318G]OTR. Molecular modelling revealed that Ala(318) provides a direct hydrophobic contact with a methoxy group of L-371,257 and L-372,662.

  1. The Attractiveness of Opposites: Agonists and Antagonists.

    LENUS (Irish Health Repository)

    O'Brien, Tony

    2015-02-02

    ABSTRACT Opioid-induced bowel dysfunction, of which constipation is the most common aspect, is a major limiting factor in the use of opioids for pain management. The availability of an oral, long-acting formulation of oxycodone and naloxone represents a highly significant development in pain management. The combination of an opioid analgesic with an opioid antagonist offers reliable pain control with a significant reduction in the burden of opioid-induced constipation. This report is adapted from paineurope 2014; Issue 3, ©Haymarket Medical Publications Ltd, and is presented with permission. paineurope is provided as a service to pain management by Mundipharma International, LTD and is distributed free of charge to healthcare professionals in Europe. Archival issues can be accessed via the website: http:\\/\\/www.paineurope.com at which European health professionals can register online to receive copies of the quarterly publication.

  2. Antiallergic effects of H1-receptor antagonists.

    Science.gov (United States)

    Baroody, F M; Naclerio, R M

    2000-01-01

    The primary mechanism of antihistamine action in the treatment of allergic diseases is believed to be competitive antagonism of histamine binding to cellular receptors (specifically, the H1-receptors), which are present on nerve endings, smooth muscles, and glandular cells. This notion is supported by the fact that structurally unrelated drugs antagonize the H1-receptor and provide clinical benefit. However, H1-receptor antagonism may not be their sole mechanism of action in treating allergic rhinitis. On the basis of in vitro and animal experiments, drugs classified as H1-receptor antagonists have long been recognized to have additional pharmacological properties. Most first-generation H1-antihistamines have anticholinergic, sedative, local anaesthetic, and anti-5-HT effects, which might favourably affect the symptoms of the allergic response but also contribute to side-effects. These additional properties are not uniformly distributed among drugs classified as H1-receptor antagonists. Azatadine, for example, inhibits in vitro IgE-mediated histamine and leukotriene (LT) release from mast cells and basophils. In human challenge models, terfenadine, azatadine, and loratadine reduce IgE-mediated histamine release. Cetirizine reduces eosinophilic infiltration at the site of antigen challenge in the skin, but not the nose. In a nasal antigen challenge model, cetirizine pretreatment did not affect the levels of histamine and prostaglandin D2 recovered in postchallenge lavages, whereas the levels of albumin, N-tosyl-L-arginine methyl ester (TAME) esterase activity, and LTs were reduced. Terfenadine, cetirizine, and loratadine blocked allergen-induced hyperresponsiveness to methacholine. In view of the complexity of the pathophysiology of allergy, a number of H1 antagonists with additional properties are currently under development for allergic diseases. Mizolastine, a new H1-receptor antagonist, has been shown to have additional actions that should help reduce the

  3. Calcium antagonists and the diabetic hypertensive patient

    DEFF Research Database (Denmark)

    Parving, H H; Rossing, P

    1993-01-01

    reduces albuminuria, delays the progression of nephropathy, and postpones renal insufficiency in diabetic nephropathy. Calcium antagonists and angiotensin converting enzyme inhibitors induce an acute increase in the glomerular filtration rate, renal plasma flow, and renal sodium excretion......Roughly 40% of all diabetic patients, whether insulin dependent or not, develop persistent albuminuria (over 300 mg/24 hr), a decrease in the glomerular filtration rate, and elevated blood pressure, ie, diabetic nephropathy. Diabetic nephropathy is the single most important cause of end stage renal...... disease in the Western world, and accounts for over a quarter of all end stage renal disease. It also is a major cause of the increased morbidity and mortality seen in diabetic patients; for example, the cost of end stage renal care in the United States currently exceeds +1.8 billion per year for diabetic...

  4. Assay method for organic calcium antagonist drugs and a kit for such an assay

    International Nuclear Information System (INIS)

    Snyder, S. H.; Gould, R. J.

    1985-01-01

    A method for measuring the level of organic calcium antagonist drug in a body fluid comprises preparing a mixture of a radioactive calcium antagonist drug, a body fluid containing a calcium antagonist drug and a calcium antagonist receptor material, measuring the radioactivity of the radioactive calcium antagonist drug bound to said calcium antagonist receptor material and deriving the concentration of the calcium antagonist drug in the body fluid from a standard curve indicating the concentration of calcium antagonist drug versus inhibition of binding of said radioactive calcium antagonist drug to said receptor sites caused by the calcium antagonist drug in said body fluid. A kit for measuring the level of an organic calcium drug comprises a receptacle containing a radioactive calcium antagonist drug, a calcium antagonist receptor material and a standard amount of a nonradioactive calcium antagonist drug

  5. Antagonistic activity of marine sponges associated Actinobacteria

    Directory of Open Access Journals (Sweden)

    Selvakumar Dharmaraj

    2016-06-01

    Full Text Available Objective: To focus on the isolation and preliminary characterization of marine sponges associated Actinobacteria particularly Streptomyces species and also their antagonistic activities against bacterial and fungal pathogens. Methods: The sponges were collected from Kovalam and Vizhinjam port of south-west coast of Kerala, India. Isolation of strains was carried out from sponge extracts using international Streptomyces project media. For preliminary identification of the strains, morphological (mycelial colouration, soluble pigments, melanoid pigmentation, spore morphology, nutritional uptake (carbon utilisation, amonoacids influence, sodium chloride tolerance, physiological (pH, temperature and chemotaxonomical characterization were done. Antimicrobial studies were also carried out for the selected strains. Results: With the help of the spicule structures, the collected marine sponges were identified as Callyspongia diffusa, Mycale mytilorum, Tedania anhelans and Dysidea fragilis. Nearly 94 strains were primarily isolated from these sponges and further they were sub-cultured using international Streptomyces project media. The strains exhibited different mycelial colouration (aerial and substrate, soluble and melanoid pigmentations. The strains possessed three types of sporophore morphology namely rectus flexibilis, spiral and retinaculiaperti. Among the 94 isolates, seven exhibited antibacterial and antifungal activities with maximal zone of inhibition of 30 mm. The nutritional, physiological and chemotaxonomical characteristic study helped in the conventional identification of the seven strains and they all suggest that the strains to be grouped under the genus Streptomyces. Conclusions: The present study clearly helps in the preliminary identification of the isolates associated with marine sponges. Antagonistic activities prove the production of antimicrobial metabolites against the pathogens. Marine sponges associated Streptomyces are

  6. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    Science.gov (United States)

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-04-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1-3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents.

  7. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    Science.gov (United States)

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-01-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1–3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents. PMID:27094554

  8. Blood flow distribution with adrenergic and histaminergic antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C.H.; Davis, D.L.; Sutton, E.T.

    1989-03-01

    Superficial fibular nerve stimulation (SFNS) causes increased pre- and post-capillary resistances as well as increased capillary permeability in the dog hind paw. These responses indicate possible adrenergic and histaminergic interactions. The distribution of blood flow between capillaries and arteriovenous anastomoses (AVA) may depend on the relative effects of these neural inputs. Right hind paws of anesthetized heparinized dogs were vascularly and neurally isolated and perfused with controlled pressure. Blood flow distribution was calculated from the venous recovery of 85Sr-labeled microspheres (15 microns). The mean transit times of 131I-albumin and 85Sr-labeled microspheres were calculated. The effects of adrenergic and histaminergic antagonists with and without SFNS were determined. Phentolamine blocked the entire response to SFNS. Prazosin attenuated increases in total and AVA resistance. Yohimbine prevented increased total resistance, attenuated the AVA resistance increase, and revealed a decrease in capillary circuit resistance. Pyrilamine attenuated total resistance increase while SFNS increased capillary and AVA resistances. Metiamide had no effect on blood flow distribution with SFNS. The increase in AVA resistance with SFNS apparently resulted from a combination of alpha 1 and alpha 2 receptor stimulation but not histaminergic effects.

  9. Blood flow distribution with adrenergic and histaminergic antagonists

    International Nuclear Information System (INIS)

    Baker, C.H.; Davis, D.L.; Sutton, E.T.

    1989-01-01

    Superficial fibular nerve stimulation (SFNS) causes increased pre- and post-capillary resistances as well as increased capillary permeability in the dog hind paw. These responses indicate possible adrenergic and histaminergic interactions. The distribution of blood flow between capillaries and arteriovenous anastomoses (AVA) may depend on the relative effects of these neural inputs. Right hind paws of anesthetized heparinized dogs were vascularly and neurally isolated and perfused with controlled pressure. Blood flow distribution was calculated from the venous recovery of 85Sr-labeled microspheres (15 microns). The mean transit times of 131I-albumin and 85Sr-labeled microspheres were calculated. The effects of adrenergic and histaminergic antagonists with and without SFNS were determined. Phentolamine blocked the entire response to SFNS. Prazosin attenuated increases in total and AVA resistance. Yohimbine prevented increased total resistance, attenuated the AVA resistance increase, and revealed a decrease in capillary circuit resistance. Pyrilamine attenuated total resistance increase while SFNS increased capillary and AVA resistances. Metiamide had no effect on blood flow distribution with SFNS. The increase in AVA resistance with SFNS apparently resulted from a combination of alpha 1 and alpha 2 receptor stimulation but not histaminergic effects

  10. IL-1 Receptor Antagonist Inhibits Early Granulation Formation.

    Science.gov (United States)

    Nicolli, Elizabeth A; Ghosh, Ankona; Haft, Sunny; Frank, Renee; Saunders, Cecil James; Cohen, Noam; Mirza, Natasha

    2016-04-01

    Using a functional model of airway granulation tissue in laryngotracheal stenosis, we investigated changes in histopathology and inflammatory markers within granulation tissue in response to an interleukin-1 receptor antagonist (IL-1Ra). This study allows us to further delineate the immune response to wound healing and potentially identify treatment markers. Laryngotracheal complexes (LTCs) of donor mice underwent direct airway injury. The LTCs were transplanted into subcutaneous tissue of recipient mice in 2 groups: IL-1Ra treated and untreated. The IL-1Ra-treated arm received daily intraperitoneal injections of IL-1Ra for 3 weeks. The LTCs were then harvested. Granulation formation was measured. The mRNA expression of transforming growth factor (TGF) beta and IL-1 was quantified using real-time reverse transcript polymerase chain reaction. There were statistically significant differences in lamina propria thickness. There were no statistically significant changes in mRNA expression of TGF-β and IL-1β between the treated and untreated specimens. Using a previously described murine model, we delineate inflammatory markers that can be targeted for potential therapy. While the levels of inflammatory markers do not change significantly, the lamina propria thickness shows that the effects of IL-1 have been inhibited. The early use of the IL-1Ra will inhibit the efficacy of IL-1 in the inflammatory cascade and can prevent early granulation formation. © The Author(s) 2015.

  11. Variations in the stimulus salience of cocaine reward influences drug-associated contextual memory.

    Science.gov (United States)

    Liddie, Shervin; Itzhak, Yossef

    2016-03-01

    Drugs of abuse act as reinforcers because they influence learning and memory processes resulting in long-term memory of drug reward. We have previously shown that mice conditioned by fixed daily dose of cocaine (Fix-C) or daily escalating doses of cocaine (Esc-C) resulted in short- and long-term persistence of drug memory, respectively, suggesting different mechanisms in acquisition of cocaine memory. The present study was undertaken to investigate the differential contribution of N-methyl-D-aspartate receptor (NMDAR) subunits in the formation of Fix-C and Esc-C memory in C57BL/6J mice. Training by Esc-C resulted in marked elevation in hippocampal expression of Grin2b mRNA and NR2B protein levels compared with training by Fix-C. The NR2B-containing NMDAR antagonist ifenprodil had similar attenuating effects on acquisition and reconsolidation of Fix-C and Esc-C memory. However, the NMDAR antagonist MK-801 had differential effects: (1) higher doses of MK-801 were required for post-retrieval disruption of reconsolidation of Esc-C memory than Fix-C memory; and (2) pre-retrieval MK-801 inhibited extinction of Fix-C memory but it had no effect on Esc-C memory. In addition, blockade of NMDAR downstream signaling pathways also showed differential regulation of Fix-C and Esc-C memory. Inhibition of neuronal nitric oxide synthase attenuated acquisition and disrupted reconsolidation of Fix-C but not Esc-C memory. In contrast, the mitogen-activating extracellular kinase inhibitor SL327 attenuated reconsolidation of Esc-C but not Fix-C memory. These results suggest that NMDAR downstream signaling molecules associated with consolidation and reconsolidation of cocaine-associated memory may vary upon changes in the salience of cocaine reward during conditioning. © 2014 Society for the Study of Addiction.

  12. Environmental Enrichment Ameliorates Behavioral Impairments Modeling Schizophrenia in Mice Lacking Metabotropic Glutamate Receptor 5.

    Science.gov (United States)

    Burrows, Emma L; McOmish, Caitlin E; Buret, Laetitia S; Van den Buuse, Maarten; Hannan, Anthony J

    2015-07-01

    Schizophrenia arises from a complex interplay between genetic and environmental factors. Abnormalities in glutamatergic signaling have been proposed to underlie the emergence of symptoms, in light of various lines of evidence, including the psychotomimetic effects of NMDA receptor antagonists. Metabotropic glutamate receptor 5 (mGlu5) has also been implicated in the disorder, and has been shown to physically interact with NMDA receptors. To clarify the role of mGlu5-dependent behavioral expression by environmental factors, we assessed mGlu5 knockout (KO) mice after exposure to environmental enrichment (EE) or reared under standard conditions. The mGlu5 KO mice showed reduced prepulse inhibition (PPI), long-term memory deficits, and spontaneous locomotor hyperactivity, which were all attenuated by EE. Examining the cellular impact of genetic and environmental manipulation, we show that EE significantly increased pyramidal cell dendritic branching and BDNF protein levels in the hippocampus of wild-type mice; however, mGlu5 KO mice were resistant to these alterations, suggesting that mGlu5 is critical to these responses. A selective effect of EE on the behavioral response to the NMDA receptor antagonist MK-801 in mGlu5 KO mice was seen. MK-801-induced hyperlocomotion was further potentiated in enriched mGlu5 KO mice and treatment with MK-801 reinstated PPI disruption in EE mGlu5 KO mice only, a response that is absent under standard housing conditions. Together, these results demonstrate an important role for mGlu5 in environmental modulation of schizophrenia-related behavioral impairments. Furthermore, this role of the mGlu5 receptor is mediated by interaction with NMDA receptor function, which may inform development of novel therapeutics.

  13. Different components of conditioned food aversion memory.

    Science.gov (United States)

    Nikitin, Vladimir P; Solntseva, Svetlana V; Kozyrev, Sergey A; Nikitin, Pavel V; Shevelkin, Alexey V

    2016-07-01

    Memory reconsolidation processes and protein kinase Mzeta (PKMzeta) activity in memory maintenance and reorganization are poorly understood. Therefore, we examined memory reconsolidation and PKMzeta activity during the maintenance and reorganization of a conditioned food aversion memory among snails. These processes were specifically evaluated after administration of a serotonin receptor antagonist (methiothepin), NMDA glutamate receptor antagonist (MK-801), protein synthesis inhibitor (cycloheximide; CYH), or PKMzeta inhibitor (zeta inhibitory peptide; ZIP) either 2 or 10 days after aversion training. Two days post-training, injections of MK-801 or CYH, combined with a conditioned stimulus reminder, caused amnesia development, and a second training 11 days after this induction did not lead to long-term memory formation. Interestingly, MK-801 or CYH injections and the reminder 10 days after training did not affect memory retrieval. Methiothepin and the reminder, or ZIP without the reminder, at 2 and 10 days after training led to memory impairment, while a second training 11 days after amnesia induction resulted in memory formation. These results suggest that the maintenance of a conditioned food aversion involves two different components with variable dynamics. One component could be characterized by memory strengthening over time and involve N-methyl-D-aspartate receptors and protein synthesis reconsolidation at early, but not late, training stages. The other memory component could involve serotonin-dependent reconsolidation and Mzeta-like kinase activity at both early and late stages after learning. Deficiencies within these two components led to various forms of memory impairment, which differed in terms of the formation of a conditioned food aversion during the second training. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Monosodium glutamate intake affect the function of the kidney through NMDA receptor.

    Science.gov (United States)

    Mahieu, Stella; Klug, Maximiliano; Millen, Néstor; Fabro, Ana; Benmelej, Adriana; Contini, Maria Del Carmen

    2016-03-15

    We investigated whether the chronic intake of monosodium glutamate (MSG) with food affects kidney function, and renal response to glycine. We also established if the NMDA receptors are involved in the changes observed. Male Wistar rats (5weeks old) were fed a diet supplemented with MSG (3g/kg b.w./day), five days a week, and spontaneous ingestion of a 1% MSG solution during 16weeks. NaCl rats were fed a diet with NaCl (1g/kg b.w./day) and 0.35% NaCl solution at the same frequency and time. Control group was fed with normal chow and tap water. We utilized clearance techniques to examine glomerular filtration rate (GFR) and cortical renal plasma flow (CRPF) response to glycine and glycine+MK-801 (antagonist NMDA-R), and we determined NMDA-R1 in kidney by immunohistochemistry. The addition of MSG in the diet of rats increased both GFR and CRPF with an increase of absolute sodium reabsorption. However, hyperfiltration was accompanied with a normal response to glycine infusion. Immunostain of kidney demonstrate that the NMDA receptor is upregulated in rats fed with MSG diet. NMDA-R antagonist MK-801 significantly reduced both the GFR and CRPF; however the percentage of reduction was significantly higher in the group MSG. MK-801 also reduces fractional excretion of water, sodium and potassium in the three groups. Renal NMDAR may be conditioned by the addition of MSG in the diet, favoring the hyperfiltration and simultaneously Na retention in the body. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Effect of a Hypocretin/Orexin Antagonist on Neurocognitive Performance

    Science.gov (United States)

    2013-12-18

    Effectiveness Directorate, Biosciences and Protection Division, Warfighter Fatigue Countermeasures Branch. 35. Golden, C.J. (1978). Stroop Color and Word Test: A...0080 TITLE: Effect of a Hypocretin/Orexin Antagonist on Neurocognitive Performance PRINCIPAL INVESTIGATOR: Dr. Thomas Neylan...31August2013 4. TITLE AND SUBTITLE Effect of a Hypocretin/Orexin Antagonist on Neurocognitive Performance 5a. CONTRACT NUMBER W81XWH

  16. Using waste of Tofu production improved antagonistic activities of a ...

    African Journals Online (AJOL)

    Mrs. Hoa

    2012-10-04

    Oct 4, 2012 ... screened for their antagonistic activity against 10 races of Xoo causing rice bacterial blight disease. Three actinomycete strains ... antagonistic activity of VN10-A-44 against the Xoo pathogen and to make use of tofu waste for large- ..... vitamins and some essential amino acids which are very important for ...

  17. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes

    DEFF Research Database (Denmark)

    Tricoci, Pierluigi; Huang, Zhen; Held, Claes

    2012-01-01

    Vorapaxar is a new oral protease-activated-receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation.......Vorapaxar is a new oral protease-activated-receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation....

  18. Evaluation of antagonistic fungi against charcoal rot of sunflower ...

    African Journals Online (AJOL)

    In vitro, sensitivity of Macrophomina phaseolina (Tassi) Goid determined through inhibition zone technique to various antagonistic fungi viz., Aspergillus niger, Aspergillus flavus, Trichoderma viride, Trichoderma harzianum and Penicillium capsulatum amended into PDA medium. All the antagonists reduced the colony ...

  19. Calcium antagonists for ischemic stroke: a systematic review

    NARCIS (Netherlands)

    Horn, J.; Limburg, M.

    2001-01-01

    BACKGROUND AND PURPOSE: Stroke is a common disease, and many trials with calcium antagonists as possible neuroprotective agents have been conducted. The aim of this review is to determine whether calcium antagonists reduce the risk of death or dependency after acute ischemic stroke. METHODS: Acute

  20. Antagonistic and Bargaining Games in Optimal Marketing Decisions

    Science.gov (United States)

    Lipovetsky, S.

    2007-01-01

    Game theory approaches to find optimal marketing decisions are considered. Antagonistic games with and without complete information, and non-antagonistic games techniques are applied to paired comparison, ranking, or rating data for a firm and its competitors in the market. Mix strategy, equilibrium in bi-matrix games, bargaining models with…

  1. Interaction between Antagonist of Cannabinoid Receptor and Antagonist of Adrenergic Receptor on Anxiety in Male Rat

    Directory of Open Access Journals (Sweden)

    Alireza Komaki

    2014-07-01

    Full Text Available Introduction: Anxiety is among the most common and treatable mental disorders. Adrenergic and cannabinoid systems have an important role in the neurobiology of anxiety. The elevated plus-maze (EPM has broadly been used to investigate anxiolytic and anxiogenic compounds. The present study investigated the effects of intraperitoneal (IP injection of cannabinoid CB1 receptor antagonist (AM251 in the presence of alpha-1 adrenergic antagonist (Prazosin on rat behavior in the EPM. Methods: In this study, the data were obtained from male Wistar rat, which weighing 200- 250 g. Animal behavior in EPM were videotaped and saved in computer for 10 min after IP injection of saline, AM251 (0.3 mg/kg, Prazosin (0.3 mg/kg and AM251 + Prazosin, subsequently scored for conventional indices of anxiety. During the test period, the number of open and closed arms entries, the percentage of entries into the open arms of the EPM, and the spent time in open and closed arms were recorded. Diazepam was considered as a positive control drug with anxiolytic effect (0.3, 0.6, 1.2 mg/kg. Results: Diazepam increased the number of open arm entries and the percentage of spent time on the open arms. IP injection of AM251 before EPM trial decreased open arms exploration and open arm entry. Whereas, Prazosin increased open arms exploration and open arm entry. This study showed that both substances in simultaneous injection have conflicting effects on the responses of each of these two compounds in a single injection. Discussion: Injection of CB1 receptor antagonist may have an anxiogenic profile in rat, whereas adrenergic antagonist has an anxiolytic effect. Further investigations are essential for better understanding of anxiolytic and anxiogenic properties and neurobiological mechanisms of action and probable interactions of the two systems.

  2. The NK1 Receptor Antagonist L822429 Reduces Heroin Reinforcement

    Science.gov (United States)

    Barbier, Estelle; Vendruscolo, Leandro F; Schlosburg, Joel E; Edwards, Scott; Juergens, Nathan; Park, Paula E; Misra, Kaushik K; Cheng, Kejun; Rice, Kenner C; Schank, Jesse; Schulteis, Gery; Koob, George F; Heilig, Markus

    2013-01-01

    Genetic deletion of the neurokinin 1 receptor (NK1R) has been shown to decrease the reinforcing properties of opioids, but it is unknown whether pharmacological NK1R blockade has the same effect. Here, we examined the effect of L822429, a rat-specific NK1R antagonist, on the reinforcing properties of heroin in rats on short (1 h: ShA) or long (12 h: LgA) access to intravenous heroin self-administration. ShA produces heroin self-administration rates that are stable over time, whereas LgA leads to an escalation of heroin intake thought to model important dependence-related aspects of addiction. L822429 reduced heroin self-administration and the motivation to consume heroin, measured using a progressive-ratio schedule, in both ShA and LgA rats. L822429 also decreased anxiety-like behavior in both groups, measured on the elevated plus maze, but did not affect mechanical hypersensitivity observed in LgA rats. Expression of TacR1 (the gene encoding NK1R) was decreased in reward- and stress-related brain areas both in ShA and LgA rats compared with heroin-naïve rats, but did not differ between the two heroin-experienced groups. In contrast, passive exposure to heroin produced increases in TacR1 expression in the prefrontal cortex and nucleus accumbens. Taken together, these results show that pharmacological NK1R blockade attenuates heroin reinforcement. The observation that animals with ShA and LgA to heroin were similarly affected by L822429 indicates that the SP/NK1R system is not specifically involved in neuroadaptations that underlie escalation resulting from LgA self-administration. Instead, the NK1R antagonist appears to attenuate acute, positively reinforcing properties of heroin and may be useful as an adjunct to relapse prevention in detoxified opioid-dependent subjects. PMID:23303056

  3. Current position of 5HT3 antagonists and the additional value of NK1 antagonists; a new class of antiemetics

    NARCIS (Netherlands)

    R. de Wit (Ronald)

    2003-01-01

    textabstractThe advent of the 5HT3 receptor antagonists (5HT3 antagonists) in the 1990s and the combination with dexamethasone has resulted in acute emesis protection in 70% of patients receiving highly emetogenic chemotherapy. Despite complete protection in the acute phase, however, 40% of patients

  4. κ-Opioid Receptor Inhibition of Calcium Oscillations in Spinal Cord Neurons

    Science.gov (United States)

    Kelamangalath, Lakshmi; Dravid, Shashank M.; George, Joju; Aldrich, Jane V.

    2011-01-01

    Mouse embryonic spinal cord neurons in culture exhibit spontaneous calcium oscillations from day in vitro (DIV) 6 through DIV 10. Such spontaneous activity in developing spinal cord contributes to maturation of synapses and development of pattern-generating circuits. Here we demonstrate that these calcium oscillations are regulated by κ opioid receptors (KORs). The κ opioid agonist dynorphin (Dyn)-A (1–13) suppressed calcium oscillations in a concentration-dependent manner, and both the nonselective opioid antagonist naloxone and the κ-selective blocker norbinaltorphimine eliminated this effect. The KOR-selective agonist (+)-(5α,7α,8β)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide (U69593) mimicked the effect of Dyn-A (1–13) on calcium oscillations. A κ-specific peptide antagonist, zyklophin, was also able to prevent the suppression of calcium oscillations caused by Dyn-A (1–13). These spontaneous calcium oscillations were blocked by 1 μM tetrodotoxin, indicating that they are action potential-dependent. Although the L-type voltage-gated calcium channel blocker nifedipine did not suppress calcium oscillations, the N-type calcium channel blocker ω-conotoxin inhibited this spontaneous response. Blockers of ionotropic glutamate receptors, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline and dizocilpine maleate (MK-801), also suppressed calcium oscillations, revealing a dependence on glutamate-mediated signaling. Finally, we have demonstrated expression of KORs in glutamatergic spinal neurons and localization in a presynaptic compartment, consistent with previous reports of KOR-mediated inhibition of glutamate release. The KOR-mediated inhibition of spontaneous calcium oscillations may therefore be a consequence of presynaptic inhibition of glutamate release. PMID:21422300

  5. CXCR4 and NMDA Receptors Are Functionally Coupled in Rat Hippocampal Noradrenergic and Glutamatergic Nerve Endings.

    Science.gov (United States)

    Di Prisco, Silvia; Olivero, Guendalina; Merega, Elisa; Bonfiglio, Tommaso; Marchi, Mario; Pittaluga, Anna

    2016-12-01

    Previous studies had shown that the HIV-1 capsidic glycoprotein gp120 (strain IIIB) modulates presynaptic release-regulating NMDA receptors on noradrenergic and glutamatergic terminals. This study aims to assess whether the chemokine CXC4 receptors (CXCR4s) has a role in the gp120-mediated effects. The effect of CXCL12, the endogenous ligand at CXCR4, on the NMDA-mediated releasing activity was therefore investigated. Rat hippocampal synaptosomes were preloaded with [ 3 H]noradrenaline ([ 3 H]NA) or [ 3 H]D-aspartate ([ 3 H]D-Asp) and acutely exposed to CXCL12, to NMDA or to both agonists. CXCL12, inactive on its own, facilitated the NMDA-evoked tritium release. The NMDA antagonist MK-801 abolished the NMDA/CXCL12-evoked tritium release of both radiolabelled tracers, while the CXCR4 antagonist AMD 3100 halved it, suggesting that rat hippocampal nerve endings possess presynaptic release-regulating CXCR4 receptors colocalized with NMDA receptors. Accordingly, Western blot analysis confirmed the presence of CXCR4 proteins in synaptosomal plasmamembranes. In both synaptosomal preparations, CXCL12-induced facilitation of NMDA-mediated release was dependent upon PLC-mediated src-induced events leading to mobilization of Ca 2+ from intraterminal IP 3 -sensitive stores Finally, the gp120-induced facilitation of NMDA-mediated release of [ 3 H]NA and [ 3 H]D-Asp was prevented by AMD 3100. We propose that CXCR4s are functionally coupled to NMDA receptors in rat hippocampal noradrenergic and glutamatergic terminals and account for the gp120-induced modulation of the NMDA-mediated central effects. The NMDA/CXCR4 cross-talk could have a role in the neuropsychiatric symptoms often observed in HIV-1 positive patients.

  6. Identification of a New Morpholine Scaffold as a P2Y12 Receptor Antagonist

    Directory of Open Access Journals (Sweden)

    Young Ha Ahn

    2016-08-01

    Full Text Available The P2Y12 receptor is critical for platelet activation and is an attractive drug target for the prevention of atherothrombotic events. Despite the proven antithrombotic efficacy of P2Y12 inhibitors, these thienopyridine scaffolds are prodrugs that lack important features of the ideal antithrombotic agent. For this reason, ticagrelor—a new chemical class of P2Y12 receptor antagonist—was developed, but it can cause shortness of breath and various types of bleeding. Moreover, ticagrelor is a cytochrome P450 3A4 substrate/inhibitor and, therefore, caution should be exercised when it is used concomitantly with strong CYP3A4 inducers/inhibitors. There is a need for novel P2Y12 receptor antagonist scaffolds that are reversible and have high efficacy without associated side effects. Here, we describe a novel antagonist containing a morpholine moiety that was identified by screening libraries of commercially available compounds. The molecule, Compound E, acted on P2Y12, but not P2Y1 and P2Y13, and exhibited pharmacological characteristics that were distinct from those of ticagrelor, acting instead on P2Y12 via an allosteric mechanism. These results provide a basis for the development/optimization of a new class of P2Y12 antagonists.

  7. An α4β1 integrin antagonist decreases airway inflammation in ovalbumin-exposed mice

    Science.gov (United States)

    Kenyon, Nicholas J.; Liu, Ruiwu; O’Roark, Erin M.; Huang, Wenzhe; Peng, Li; Lam, Kit S.

    2008-01-01

    Inhibition of the α4 subunit of both the α4β1 and α4β7 integrins has shown promise in decreasing airway inflammation and airway hyperresponsiveness in various animal models. We hypothesized that a novel, high-affinity α4β1 antagonist (LLP2A) would decrease the migration of eosinophils to the lung and ameliorate the airway hyperresponsiveness in a mouse model of ovalbumin-induced airway inflammation. To test this hypothesis, we administered LLP2A, or scrambled LLP2A (a negative control), prior to exposure of sensitized BALB/c mice to ovalbumin aerosol. We can partially prevent, or reverse, the airway inflammatory response, but not airways hyperresponsiveness, by treatment of mice with LLP2A, a synthetic peptidomimetic α4β1 antagonist LLP2A. Specifically engineered, PEGylated (PEG) formulations of this antagonist further reduce the airway inflammatory response to ovalbumin lbumin, presumably by improving the circulating half-life of the drug. PMID:19103195

  8. Antagonistic neural networks underlying differentiated leadership roles

    Science.gov (United States)

    Boyatzis, Richard E.; Rochford, Kylie; Jack, Anthony I.

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks – the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success. PMID:24624074

  9. Antagonistic Neural Networks Underlying Differentiated Leadership Roles

    Directory of Open Access Journals (Sweden)

    Richard Eleftherios Boyatzis

    2014-03-01

    Full Text Available The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950’s. Recent research in neuroscience suggests that the division between task oriented and socio-emotional oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks -- the Task Positive Network (TPN and the Default Mode Network (DMN. Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  10. Antagonistic neural networks underlying differentiated leadership roles.

    Science.gov (United States)

    Boyatzis, Richard E; Rochford, Kylie; Jack, Anthony I

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks - the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  11. Cannabinoid receptor antagonists: pharmacological opportunities, clinical experience, and translational prognosis.

    Science.gov (United States)

    Janero, David R; Makriyannis, Alexandros

    2009-03-01

    The endogenous cannabinoid (CB) (endocannabinoid) signaling system is involved in a variety of (patho)physiological processes, primarily by virtue of natural, arachidonic acid-derived lipids (endocannabinoids) that activate G protein-coupled CB1 and CB2 receptors. A hyperactive endocannabinoid system appears to contribute to the etiology of several disease states that constitute significant global threats to human health. Consequently, mounting interest surrounds the design and profiling of receptor-targeted CB antagonists as pharmacotherapeutics that attenuate endocannabinoid transmission for salutary gain. Experimental and clinical evidence supports the therapeutic potential of CB1 receptor antagonists to treat overweight/obesity, obesity-related cardiometabolic disorders, and substance abuse. Laboratory data suggest that CB2 receptor antagonists might be effective immunomodulatory and, perhaps, anti-inflammatory drugs. One CB1 receptor antagonist/inverse agonist, rimonabant, has emerged as the first-in-class drug approved outside the United States for weight control. Select follow-on agents (taranabant, otenabant, surinabant, rosonabant, SLV-319, AVE1625, V24343) have also been studied in the clinic. However, rimonabant's market withdrawal in the European Union and suspension of rimonabant's, taranabant's, and otenabant's ongoing development programs have highlighted some adverse clinical side effects (especially nausea and psychiatric disturbances) of CB1 receptor antagonists/inverse agonists. Novel CB1 receptor ligands that are peripherally directed and/or exhibit neutral antagonism (the latter not affecting constitutive CB1 receptor signaling) may optimize the benefits of CB1 receptor antagonists while minimizing any risk. Indeed, CB1 receptor-neutral antagonists appear from preclinical data to offer efficacy comparable to or better than that of prototype CB1 receptor antagonists/inverse agonists, with less propensity to induce nausea. Continued

  12. Effect of NMDA NR2B antagonist on neuropathic pain in two spinal cord injury models.

    Science.gov (United States)

    Kim, Youngkyung; Cho, Hwi-young; Ahn, Young Ju; Kim, Junesun; Yoon, Young Wook

    2012-05-01

    N-Methyl-d-aspartate (NMDA) receptors are thought to play an important role in the processes of central sensitization and pathogenesis of neuropathic pain, particularly after spinal cord injury (SCI). NMDA antagonists effectively reduce neuropathic pain, but serious side effects prevent their use as therapeutic drugs. NMDA NR2B antagonists have been reported to effectively reduce inflammatory and neuropathic pain. In this study, we investigated the effects of NR2B antagonists on neuropathic pain and the expression of NR2B in the spinal cord in 2 SCI models. SCI was induced at T12 by a New York University impactor (contusion) or by sectioning of the lateral half of the spinal cord (hemisection). Ifenprodil (100, 200, 500, 1000nmol) and Ro25-6981 (20, 50, 100, 200nmol) were intrathecally injected and behavioral tests were conducted. Ifenprodil increased the paw withdrawal threshold in both models but also produced mild motor depression at higher doses. Ro25-6981 increased the mechanical nociceptive threshold in a dose-dependent manner without motor depression. NR2B expression was significantly increased on both sides at the spinal segments of L1-2 and L4-5 in the hemisection model but did not change in the contusion model. Increased expression of NR2B in the hemisection model was reduced by intrathecal ifenprodil. These results suggest that intrathecal NMDA NR2B antagonist increased the mechanical nociceptive threshold after SCI without motor depression. A selective subtype of NMDA receptor, such as NR2B, may be a more selective target for pain control because NMDA receptors play a crucial role in the development and maintenance of chronic pain. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  13. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Mohammad eKhanfar

    2016-05-01

    Full Text Available With the very recent market approval of pitolisant (Wakix®, the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures.

  14. Possible site of action of CGRP antagonists in migraine

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer; Olesen, Jes

    2011-01-01

    The calcitonin gene-related peptide (CGRP) receptor antagonists olcegepant and telcagepant are very potent drugs. Both are effective in migraine but in doses much higher than would be predicted from receptor binding and other in vitro results. This could perhaps suggest an effect of CGRP antagoni......The calcitonin gene-related peptide (CGRP) receptor antagonists olcegepant and telcagepant are very potent drugs. Both are effective in migraine but in doses much higher than would be predicted from receptor binding and other in vitro results. This could perhaps suggest an effect of CGRP...... antagonists behind the blood-brain barrier (BBB), i.e. in the central nervous system (CNS)....

  15. De-coupling of blood flow and metabolism in the rat brain induced by glutamate

    International Nuclear Information System (INIS)

    Hirose, Shinichiro; Momosaki, Sotaro; Sasaki, Kazunari; Hosoi, Rie; Abe, Kohji; Inoue, Osamu; Gee, A.

    2009-01-01

    Glutamate plays an essential role in neuronal cell death in many neurological disorders. In this study, we examined both glucose metabolism and cerebral blood flow in the same rat following infusion of glutamate or ibotenic acid using the dual-tracer technique. The effects of MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, and 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptor antagonist, on the changes in the glucose metabolism and cerebral blood flow induced by glutamate were also examined. The rats were microinjected with glutamate (1 μmol/μl, 2 μl) or ibotenic acid (10 μg/μl, 1 μl) into the right striatum, and dual-tracer autoradiograms of [ 18 F]fluorodeoxyglucose (FDG) and [ 14 C]iofetamine (IMP) were obtained. MK-801 and NBQX were injected intravenously about 45 and 30 min, respectively, after the infusion of glutamate. De-coupling of blood flow and metabolism was noted in the glutamate-infused hemisphere (as assessed by no alteration of [ 18 F]FDG uptake and significant decrease of [ 14 C]IMP uptake). Pretreatments with MK-801, NBQX, or combined use of MK-801 and NBQX did not affect the de-coupling of the blood flow and metabolism induced by glutamate. A histochemical study revealed that about 20% neuronal cell death had occurred in the striatum at 105 min after the infusion of glutamate. In addition, a significant increase of the [ 18 F]FDG uptake and decrease of [ 14 C]IMP uptake were also seen in the rat brain infused with ibotenic acid. These results indicate that glutamate and ibotenic acid caused a significant de-coupling of blood flow and glucose metabolism in the intact rat brain during the early phase of neurodegeneration. It is necessary to evaluate the relation between metabotropic glutamate receptors and de-coupling of blood flow and metabolism. (author)

  16. Comparison of Cannabidiol, Antioxidants, and Diuretics in Reversing Binge Ethanol-Induced Neurotoxicity

    Science.gov (United States)

    Hamelink, Carol; Hampson, Aidan; Wink, David A.; Eiden, Lee E.; Eskay, Robert L.

    2014-01-01

    Binge alcohol consumption in the rat induces substantial neurodegeneration in the hippocampus and entorhinal cortex. Oxidative stress and cytotoxic edema have both been shown to be involved in such neurotoxicity, whereas N-methyl-D-aspartate (NMDA) receptor activity has been implicated in alcohol withdrawal and excitoxic injury. Because the nonpsychoactive cannabinoid cannabidiol (CBD) was previously shown in vitro to prevent glutamate toxicity through its ability to reduce oxidative stress, we evaluated CBD as a neuroprotectant in a rat binge ethanol model. When administered concurrently with binge ethanol exposure, CBD protected against hippocampal and entorhinal cortical neurodegeneration in a dose-dependent manner. Similarly, the common antioxidants butylated hydroxytoluene and α-tocopherol also afforded significant protection. In contrast, the NMDA receptor antagonists dizocilpine (MK-801) and memantine did not prevent cell death. Of the diuretics tested, furosemide was protective, whereas the other two anion exchanger inhibitors, L-644,711 [(R)-(+)-(5,6-dichloro2,3,9,9a-tetrahydro 3-oxo-9a-propyl-1H-fluoren-7-yl)oxy acetic acid] and bumetanide, were ineffective. In vitro comparison of these diuretics indicated that furosemide is also a potent antioxidant, whereas the nonprotective diuretics are not. The lack of efficacy of L-644,711 and bumetanide suggests that the antioxidant rather than the diuretic properties of furosemide contribute most critically to its efficacy in reversing ethanol-induced neurotoxicity in vitro, in our model. This study provides the first demonstration of CBD as an in vivo neuroprotectant and shows the efficacy of lipophilic antioxidants in preventing binge ethanol-induced brain injury. PMID:15878999

  17. Choking Prevention

    Science.gov (United States)

    ... Healthy Living Healthy Living Healthy Living Nutrition Fitness Sports Oral Health Emotional Wellness Growing Healthy Sleep Safety & Prevention Safety & Prevention Safety and Prevention Immunizations At Home ...

  18. Inhibition by Isoptin (a calcium antagonist) of the mitogenic stimulation of lymphocytes prior to the S-phase

    International Nuclear Information System (INIS)

    Blitstein-Willinger, E.; Diamantstein, T.

    1978-01-01

    Isoptin (α-isopropyl-α-(N-methyl-N-homoveratryl) -γ-amino-propyl-3,4-dimethoxyphenylacetonitril-hydrochloride) - a calcium antagonist - inhibited mitogenic stimulation of lymphocytes. Isoptin acted prior to the S-phase of the cell cycle but did not prevent the early events involved in triggering of cell mitosis. The drug seems to be a good tool for studying the relevance of the 'early events' assumed to be involved in lymphocyte stimulation. (author)

  19. Practical recommendations for calcium channel antagonist poisoning.

    Science.gov (United States)

    Rietjens, S J; de Lange, D W; Donker, D W; Meulenbelt, J

    2016-02-01

    Calcium channel antagonists (CCAs) are widely used for different cardiovascular disorders. At therapeutic doses, CCAs have a favourable side effect profile. However, in overdose, CCAs can cause serious complications, such as severe hypotension and bradycardia. Patients in whom a moderate to severe intoxication is anticipated should be observed in a monitored setting for at least 12 hours if an immediate-release formulation is ingested, and at least 24 hours when a sustained-release formulation (or amlodipine) is involved, even if the patient is asymptomatic. Initial treatment is aimed at gastrointestinal decontamination and general supportive care, i.e., fluid resuscitation and correction of metabolic acidosis and electrolyte disturbances. In moderate to severe CCA poisoning, a combined medical strategy might be indispensable, such as administration of vasopressors, intravenous calcium and hyperinsulinaemia/euglycaemia therapy. Especially hyperinsulinaemia/euglycaemia therapy is an important first-line treatment in CCA-overdosed patients in whom a large ingestion is suspected. High-dose insulin, in combination with glucose, seems to be most effective when used early in the intoxication phase, even when the patient shows hardly any haemodynamic instability. Intravenous lipid emulsion therapy should only be considered in patients with life-threatening cardiovascular toxicity, such as refractory shock, which is unresponsive to conventional therapies. When supportive and specific pharmacological measures fail to adequately reverse refractory conditions in CCA overdose, the use of extracorporeal life support should be considered. The efficacy of these pharmacological and non-pharmacological interventions generally advocated in CCA poisoning needs further in-depth mechanistic foundation, in order to improve individualised treatment of CCA-overdosed patients.

  20. Characterization and design of antagonistic shape memory alloy actuators

    International Nuclear Information System (INIS)

    Georges, T; Brailovski, V; Terriault, P

    2012-01-01

    Antagonistic shape memory actuators use opposing shape memory alloy (SMA) elements to create devices capable of producing differential motion paths and two-way mechanical work in a very efficient manner. There is no requirement for additional bias elements to ‘re-arm’ the actuators and allow repetitive actuation. The work generation potential of antagonistic shape memory actuators is determined by specific SMA element characteristics and their assembly conditions. In this study, the selected SMA wires are assembled in antagonistic configuration and characterized using a dedicated test bench to evaluate their stress–strain characteristics as a function of the number of cycles. Using these functional characteristics, a so-called ‘working envelope’ is built to assist in the design of such an actuator. Finally, the test bench is used to simulate a real application of an antagonistic actuator (case study). (paper)

  1. A SELECTIVE ANTAGONIST OF MINERALOCORTICOID RECEPTOR EPLERENONE IN CARDIOLOGY PRACTICE

    Directory of Open Access Journals (Sweden)

    B. B. Gegenava

    2015-01-01

    Full Text Available The role of aldosterone in pathophysiological processes is considered. The effects of the selective antagonist of mineralocorticoid receptor eplerenone are analyzed. The advantages of eplerenone compared with spironolactone are discussed.

  2. Development of KGF Antagonist as a Breast Cancer Therapeutic

    National Research Council Canada - National Science Library

    Sugimoto, Yasuro

    2003-01-01

    .... We were able to show some potential intracellular KGFR target small molecules whereas extracellular target synthetic peptide antagonist was not able to do during this period We also added a new...

  3. Recent Development of Non-Peptide GnRH Antagonists

    Directory of Open Access Journals (Sweden)

    Feng-Ling Tukun

    2017-12-01

    Full Text Available The decapeptide gonadotropin-releasing hormone, also referred to as luteinizing hormone-releasing hormone with the sequence (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2 plays an important role in regulating the reproductive system. It stimulates differential release of the gonadotropins FSH and LH from pituitary tissue. To date, treatment of hormone-dependent diseases targeting the GnRH receptor, including peptide GnRH agonist and antagonists are now available on the market. The inherited issues associate with peptide agonists and antagonists have however, led to significant interest in developing orally active, small molecule, non-peptide antagonists. In this review, we will summarize all developed small molecule GnRH antagonists along with the most recent clinical data and therapeutic applications.

  4. Complications of TNF-α antagonists and iron homeostasis

    Science.gov (United States)

    TNF-α is a central regulator of inflammation and its blockade downregulates other proinflammatory cytokines, chemokines, and growth factors. Subsequently, TNF-α antagonists are currently used in treatment regimens directed toward several inflammatory diseases. Despite a beneficia...

  5. Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists

    Science.gov (United States)

    2016-08-01

    AWARD NUMBER: W81XWH-15 1-0252 TITLE: Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists PRINCIPAL INVESTIGATOR...14 Jul 2016 4. TITLE AND SUBTITLE Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists 5a. CONTRACT NUMBER 5b. GRANT...Center for Substance Abuse Research Lewis Katz School of Medicine at Temple University 3500 N, Broad Street Philadelphia, PA 19140 AND ADDRESS(ES) 8

  6. Interleukin-2 receptor antagonists as induction therapy after heart transplantation

    DEFF Research Database (Denmark)

    Møller, Christian H; Gustafsson, Finn; Gluud, Christian

    2008-01-01

    About half of the transplantation centers use induction therapy after heart transplantation. Interleukin-2 receptor antagonists (IL-2Ras) are used increasingly for induction therapy. We conducted a systematic review of randomized trials assessing IL-2Ras.......About half of the transplantation centers use induction therapy after heart transplantation. Interleukin-2 receptor antagonists (IL-2Ras) are used increasingly for induction therapy. We conducted a systematic review of randomized trials assessing IL-2Ras....

  7. Expression of N-methyl D-aspartate receptor subunits in amoeboid microglia mediates production of nitric oxide via NF-κB signaling pathway and oligodendrocyte cell death in hypoxic postnatal rats.

    Science.gov (United States)

    Murugan, Madhuvika; Sivakumar, Viswanathan; Lu, Jia; Ling, Eng-Ang; Kaur, Charanjit

    2011-04-01

    The present study was focused on identifying the expression of N-methyl D-aspartate receptor (NMDAR) subunits on activated microglia and to determine their role in the pathogenesis of periventricular white matter damage (PWMD) in neonatal rats following hypoxia. One day old wistar rats were subjected to hypoxia (5% O(2) ; 95% N(2) ) and the mRNA and protein expression of NMDAR subunits (NR1, NR2A-D, and NR3A) in the periventricular white matter (PWM) was determined at different time points (3,24 h, 3, 7, and 14 days) following hypoxic exposure. Immunoexpression of NR1 and NR2A-D was localized in amoeboid microglial cells (AMC) suggesting the presence of functional NMDARs in them. The expression of NMDAR in primary microglial cultures was ascertained by RT-PCR analysis and double immunofluorescence studies. The functionality of the microglial NMDAR in cultured microglial cells was examined by monitoring calcium movements in cells with fura-2. In primary microglial cultures, hypoxia induced the nuclear translocation of NF-κB which was suppressed by administration of MK801, an NMDAR antagonist. MK801 also down regulated the hypoxia-induced expression of tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase (iNOS), and nitric oxide (NO) production by microglia which may be mediated by the NF-κB signaling pathway. NO produced by microglia is known to cause death of oligodendrocytes in the developing PWM. In this connection, pharmacological agents such as MK801, BAY (NF-κB inhibitor), and 1400w (iNOS inhibitor) proved to be beneficial since they reduced the hypoxia-induced iNOS expression, NO production, and a corresponding reduction in the death of oligodendrocytes following hypoxia. Copyright © 2011 Wiley-Liss, Inc.

  8. Sexually dimorphic effects of NMDA receptor antagonism on brain-pituitary-gonad axis development in the platyfish

    Science.gov (United States)

    Flynn, Katherine M.; Miller, Shelly A.; Sower, Stacia A.; Schreibman, Martin P.

    2002-01-01

    The N-methyl-D-aspartate glutamate receptor (NMDAR) is found in hypothalamic nuclei involved in the regulation of reproduction in several species of mammals and fishes. NMDAR is believed to affect reproductive development and function by regulating gonadotropin releasing hormone (GnRH)-producing cells. These pathways are likely to be sexually dimorphic, as are several other neurotransmitter systems involved in reproductive function. In this report, male and female platyfish received intraperitoneal injections of 0, 5, 10, 20, 40 or 60 microg/g body wt. of the non-competitive NMDAR antagonist MK-801. Injections began at 6 weeks of age and continued thrice weekly until control animals reached puberty, as evidenced by anal fin maturation. The percent of pubescent animals was significantly affected by sex and treatment, with fewer MK-801-injected females in puberty than control females at each dose (Pmales at 10, 20 and 40 microg/g (Pmales. Histological analyses revealed typical immature gonads and pituitary glands in treated females, and typical mature morphology in control females and all males. Immunocytochemical distribution of the R1 subunit of the NMDAR within the brain-pituitary-gonad (BPG) axis was limited to GnRH-containing brain cells in all animals; however, NMDAR1 distribution was in an immature pattern in treated females and a mature pattern in all others. Neural concentrations of GnRH were unaffected by MK-801 treatment in both sexes. These data suggest that in the platyfish, NMDAR influence on reproductive development is sexually dimorphic and occurs at, or above, the level of GnRH-containing cells of the BPG axis.

  9. Modulation of glycine sites enhances social memory in rats using PQQ combined with d-serine.

    Science.gov (United States)

    Zhou, Xingqin; Liu, Dong; Zhang, Rongjun; Peng, Ying; Qin, Xiaofeng; Mao, Shishi

    2016-07-15

    The aim of study was to investigate the effects of pyrroloquinoline quinone (PQQ) combined with d-serine on the modulation of glycine sites in the brain of rats using social recognition test. Rats were divided into seven groups (n=10) and given repeated intraperitoneal (ip) injections of saline, MK-801 (0.5mg/kg), clozapine (1mg/kg), haloperidol (0.1mg/kg), d-serine (0.8g/kg), PQQ (2.0μg/kg), or d-serine (0.4g/kg) combined with PQQ (1.0μg/kg) for seven days. A social recognition test, including assessment of time-dependent memory impairment, was performed. A non-competitive NMDA receptor antagonist, MK-801, significantly impaired social memory, and this impairment was significantly repaired with an atypical antipsychotic (clozapine) but not with a typical antipsychotic (haloperidol). Likewise, d-serine combined with PQQ significantly improved MK-801-disrupted cognition in naïve rats, whereas haloperidol was ineffective. The present results show that the co-agonist NMDA receptor treated with PQQ and d-serine enhances social memory and may be an effective approach for treating the cognitive dysfunction observed in schizophrenic patients. PQQ stimulates glycine modulatory sites by which it may antagonize indirectly by removing glycine from the synaptic cleft or by binding the unsaturated site with d-serine in the brain, providing the insights into future research of central nervous system and drug discovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Platelet-activating factor (PAF)-antagonists of natural origin.

    Science.gov (United States)

    Singh, Preeti; Singh, Ishwari Narayan; Mondal, Sambhu Charan; Singh, Lubhan; Garg, Vipin Kumar

    2013-01-01

    Presently herbal medicines are being used by about 80% of the world population for primary health care as they stood the test of time for their safety, efficacy, cultural acceptability and lesser side effects. The discovery of platelet activating factor antagonists (PAF antagonists) during these decades are going on with different framework, but the researchers led their efficiency in studying in vitro test models. Since it is assumed that PAF play a central role in etiology of many diseases in humans such as asthma, neuronal damage, migraine, cardiac diseases, inflammatory, headache etc. Present days instinctively occurring PAF antagonist exists as a specific grade of therapeutic agents for the humans against these and different diseases either laid hold of immunological or non-immunological types. Ginkgolide, cedrol and many other natural PAF antagonists such as andrographolide, α-bulnesene, cinchonine, piperine, kadsurenone, different Piper species' natural products and marine origin plants extracts or even crude drugs having PAF antagonist properties are being used currently against different inflammatory pathologies. This review is an attempt to summarize the data on PAF and action of natural PAF antagonists on it, which were evaluated by in vivo and in vitro assays. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Effects of the calcium channel antagonist mibefradil on haemodynamic and morphological parameters in myocardial infarction-induced cardiac failure in rats

    NARCIS (Netherlands)

    Sandmann, S.; Spitznagel, H.; Chung, O.; Xia, Q. G.; Illner, S.; Jänichen, G.; Rossius, B.; Daemen, M. J.; Unger, T.

    1998-01-01

    Calcium channel antagonists (CCA) have been proposed for the prevention of cardiac events after myocardial infarction (MI). Mibefradil is a CCA featuring a selective blockade of T-type Ca2(+)-channels. The aim of the study was to characterize the effects of mibefradil on haemodynamic and

  12. The pharmacological effect of BGC20-1531, a novel prostanoid EP4 receptor antagonist, in the prostaglandin E2 human model of headache

    DEFF Research Database (Denmark)

    Antonova, Maria; Wienecke, Troels; Maubach, Karen

    2011-01-01

    Using a human Prostaglandin E(2) (PGE(2)) model of headache, we examined whether a novel potent and selective EP(4) receptor antagonist, BGC20-1531, may prevent headache and dilatation of the middle cerebral (MCA) and superficial temporal artery (STA). In a three-way cross-over trial, eight healt...

  13. alpha2-Adrenoceptor antagonists reverse the 5-HT2 receptor antagonist suppression of head-twitch behavior in mice.

    Science.gov (United States)

    Matsumoto, K; Mizowaki, M; Thongpraditchote, S; Murakami, Y; Watanabe, H

    1997-03-01

    The alpha2-adrenoceptor agonist clonidine, as well as 5-HT2 receptor antagonists, reportedly suppress 5-HT2 receptor-mediated head-twitch behavior. We investigated the effect of alpha2-adrenoceptor antagonists on the suppressive action of 5-HT2 receptor antagonists in mice pretreated with the noradrenaline toxin 6-hydroxydopamine (6-OHDA) or the 5-HT synthesis inhibitor p-chlorophenylalanine (p-CPA). In normal mice, idazoxan (0.08-0.2 mg/kg, IP) or yohimbine (0.2-2.0 mg/kg, IP), both alpha2-adrenoceptor antagonists, had no effect on the head-twitch response caused by 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT; 16 mg/kg, IP), but idazoxan significantly enhanced the response at 0.5 mg/kg. On the other hand, these alpha2-adrenoceptor antagonists, at doses that had no effect on the basal number of head-twitches (idazoxan 0.2 mg/kg and yohimbine 0.5 mg/kg), significantly attenuated not only the suppressive effect of clonidine (0.01 mg/kg, IP) on head-twitch response but also that of the 5-HT2 receptor antagonist ritanserin (0.03 mg/kg, IP). Moreover, idazoxan (0.2 mg/kg) also significantly reversed the inhibition by 0.01 mg/kg (IP) ketanserin, a selective 5-HT2 receptor antagonist. Pretreatment with 6-OHDA plus nomifensine but not with p-CPA significantly attenuated the effect of idazoxan (0.2-0.5 mg/kg) on the ritanserin inhibition of the head-twitch response. Prazosin, an alpha1-adrenoceptor antagonist, dose-dependently suppressed the response, and the effect of prazosin (1.25 mg/kg) was significantly attenuated by 0.5 mg/kg idazoxan. These results indicate that endogenous noradrenaline is involved in the apparent antagonistic interaction between selective alpha2-adrenoceptor antagonists and 5-HT2 receptor antagonists in the head-twitch response, and suggest that noradrenaline stimulation of alpha1-adrenoceptors may be involved in this apparent antagonism.

  14. Dual trigger of triptorelin and HCG optimizes clinical outcome for high ovarian responder in GnRH-antagonist protocols.

    Science.gov (United States)

    Li, Saijiao; Zhou, Danni; Yin, Tailang; Xu, Wangming; Xie, Qingzhen; Cheng, Dan; Yang, Jing

    2018-01-12

    In this paper, a retrospective cohort study was conducted to the high ovarian responders in GnRH-antagonist protocols of IVF/ICSI cycles. The purpose of the study is to investigate whether dual triggering of final oocyte maturation with a combination of gonadotropin-releasing hormone (GnRH) agonist and human chorionic gonadotropin (HCG) can improve the clinical outcome compared with traditional dose (10000IU) HCG trigger and low-dose (8000IU) HCG trigger for high ovarian responders in GnRH-antagonist in vitro fertilization/intracytoplasmic sperm injection (IVF-ICSI) cycles. Our study included 226 couples with high ovarian responders in GnRH-antagonist protocols of IVF/ICSI cycles. Standard dosage of HCG trigger (10000 IU of recombinant HCG) versus dual trigger (0.2 mg of triptorelin and 2000 IU of recombinant HCG) and low-dose HCG trigger (8000IU of recombinant HCG) were used for final oocyte maturation. Our main outcome measures were high quality embryo rate, the number of usable embryos, the risk of OHSS, duration of hospitalization and incidence rate of complications. Our evidence demonstrated that dual trigger is capable of preventing severe OHSS while still maintaining excellent high quality embryo rate in in high ovarian responders of GnRH-antagonist protocols.

  15. [Neurochemical mechanisms of food aversion conditioning consolidation in snail Helix lucorum].

    Science.gov (United States)

    Solntseva, S V; Nikitin, v P

    2008-11-01

    Effects of cycloheximide, protein synthesis inhibitors, as well as serotonin receptor antagonist and NMDA receptor antagonist on food aversion conditioning consolidation were studied in snail Helix lucorum. Food aversion conditioning was absent in snails after application of cycloheximide. Repeated produced no food aversion conditioning for the same type of food in these snails without cycloheximide application. Food aversion conditioning was absent in snails after applications of metiotepin, nonselective serotonin receptors antagonist, or after MK-801, NMDA glutamate receptors antagonist. At the same time, repeated training produced facilitated food aversion conditioning for the same type of food in these snails. Our experiments were the first which showed that effect on different molecular mechanisms evoked reversible or irreversible disruption of long-term memory consolidation during the same learning. It was suggested that suppression of retrieval produced reversible effect, whereas disruption of memory storage initiated irreversible effect on long-term memory consolidation.

  16. Phencyclidine administration during neurodevelopment alters network activity in prefrontal cortex and hippocampus in adult rats

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Hovelsø, Nanna; Dalby, Nils Ole

    2017-01-01

    Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim...... a suppression of evoked theta power in ventral hippocampus, while evoked gamma power in mPFC was enhanced in rats administered with PCP neonatally. In addition, increased gamma synchrony elicited by acute administration of the NMDAR antagonist MK-801 was exaggerated in neonatal PCP animals. These data suggest...... that NMDAR antagonist exposure during brain development alters functional networks within hippocampus and mPFC possibly contributing to the reported behavioral symptoms of this animal model of schizophrenia.NEW & NOTEWORTHY We show that insults with a NMDA receptor antagonist during neurodevelopment lead...

  17. GnRH antagonist, cetrorelix, for pituitary suppression in modern, patient-friendly assisted reproductive technology.

    Science.gov (United States)

    Tur-Kaspa, Ilan; Ezcurra, Diego

    2009-10-01

    Gonadotropin-releasing hormone (GnRH) analogues are used routinely to prevent a premature luteinizing hormone (LH) surge in women undergoing assisted reproductive technology (ART) treatments. In contrast to GnRH agonists, antagonists produce rapid and reversible suppression of LH with no initial flare effect. To review the role of cetrorelix, the first GnRH antagonist approved for the prevention of premature LH surges during controlled ovarian stimulation in modern ART. A review of published literature on cetrorelix. Both multiple- and single-dose cetrorelix protocols were shown to be at least as effective as long GnRH agonist regimens for pituitary suppression in Phase II/III clinical trials. Furthermore, cetrorelix co-treatment resulted in similar live birth rates but a shorter duration of gonadotropin stimulation, a lower total gonadotropin dose requirement and lower incidence of ovarian hyperstimulation syndrome compared with long agonist regimens. A single-dose cetrorelix protocol further decreased the number of injections required. Preliminary studies have also produced promising data on the use of cetrorelix in modified ART protocols, such as frozen embryo transfer and donor oocyte recipient cycles. Cetrorelix offers a potential therapeutic alternative to GnRH agonists during controlled ovarian stimulation and has become an integral part of modern, patient-friendly reproductive medicine.

  18. Nonvitamin K antagonist oral anticoagulants (NOACs: the tide continues to come in

    Directory of Open Access Journals (Sweden)

    Blann A

    2015-08-01

    Full Text Available Andrew Blann University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham, UKThrombosis is the major common endpoint in most human diseases. In the coronary circulation, occlusive thrombi and/or the rupture of atherosclerotic plaque causes myocardial infarction, and in the cerebral circulation thrombosis, causes ischemic stroke. In the venous circulation, venous thromboembolism (VTE, manifesting clinically as pulmonary embolus and deep vein thrombosis (DVT, is a frequent complication among inpatients, and contributes to longer hospital stays with increased morbidity and mortality. Until perhaps 5 years ago, heparinoids (unfractionated heparin, low molecular weight heparin [LMWH], and fondaparinux and vitamin K antagonists (VKAs: warfarin, acenocoumarol, phenocoumarol were the only options for the prevention of thrombotic stroke in atrial fibrillation, and of VTE in general. Although effective, these traditional drugs have several practical, management, and clinical disadvantages, a fact that our colleagues in industry have not been slow to recognize and address by developing improved drugs, now collectively known as nonvitamin K antagonist oral anti coagulants (NOACs. These agents are steadily replacing the heparinoids and VKAs in both inpatient and outpatient prevention and treatment of thrombosis.

  19. The Puller-Follower Control of Compliant and Noncompliant Antagonistic Tendon Drives in Robotic Systems

    Directory of Open Access Journals (Sweden)

    Veljko Potkonjak

    2011-11-01

    Full Text Available This paper proposes a new control strategy for noncompliant and compliant antagonistic tendon drives. It is applied to a succession of increasingly complex single‐joint systems, starting with a linear and noncompliant system and ending with a revolute, nonlinearly tendon coupled and compliant system. The last configuration mimics the typical human joint structure, used as a model for certain joints of the anthropomimetic robot ECCEROBOT. The control strategy is based on a biologically inspired puller‐ follower concept, which distinguishes the roles of the agonist and antagonist motors. One actuator, the puller, is considered as being primarily responsible for the motion, while the follower prevents its tendon from becoming slack by maintaining its tendon force at some non‐zero level. Certain movements require switching actuator roles; adaptive co‐contraction is used to prevent tendons slackening, while maintaining energetic efficiency. The single‐joint control strategy is then evaluated in a multi‐ joint system. Dealing with the gravitational and dynamic effects arising from the coupling in a multi‐joint system, a robust control design has to be applied with on‐line gravity compensation. Finally, an experiment corresponding to object grasping is presented to show the controller

  20. The Puller-Follower Control of Compliant and Noncompliant Antagonistic Tendon Drives in Robotic Systems

    Directory of Open Access Journals (Sweden)

    Veljko Potkonjak

    2011-11-01

    Full Text Available This paper proposes a new control strategy for noncompliant and compliant antagonistic tendon drives. It is applied to a succession of increasingly complex single-joint systems, starting with a linear and noncompliant system and ending with a revolute, nonlinearly tendon coupled and compliant system. The last configuration mimics the typical human joint structure, used as a model for certain joints of the anthropomimetic robot ECCEROBOT. The control strategy is based on a biologically inspired puller-follower concept, which distinguishes the roles of the agonist and antagonist motors. One actuator, the puller, is considered as being primarily responsible for the motion, while the follower prevents its tendon from becoming slack by maintaining its tendon force at some non-zero level. Certain movements require switching actuator roles; adaptive co-contraction is used to prevent tendons slackening, while maintaining energetic efficiency. The single-joint control strategy is then evaluated in a multi-joint system. Dealing with the gravitational and dynamic effects arising from the coupling in a multi-joint system, a robust control design has to be applied with on-line gravity compensation. Finally, an experiment corresponding to object grasping is presented to show the controller's robustness to external disturbances.

  1. Evaluation of the Interaction between NMDA Receptors of Nucleus Accumbens and Muscarinic Receptors in Memory

    Directory of Open Access Journals (Sweden)

    Saba Taheri

    2013-02-01

    Full Text Available Background and Objectives: Whereas studies have indicated the interaction between NMDA and cholinergic systems, this study was performed with the aim of determining the role of NMDA receptors in the nucleus accumbens (NAc in scopolamine-induced amnesia.Methods: In this study, at first rats were anesthetized with intra-peritoneal injection of ketamine hydrochloride plus xylazine, and then placed in a stereotaxic apparatus. Two stainless-steel cannulas were placed 2mm above nucleus accumbens shell. All animals were allowed to recover for one week, before beginning the behavioral testing. Then, animals were trained in a step-through type inhibitory avoidance task. The drugs were injected after successful training and before testing. The animals were tested 24h after training, and the step-through latency time was measured as the memory criterion in male Wistar rats. One-way analysis of variance and Tukey’s test were used for analysis of the data. p<0.05 was considered statistically significant.Results: Intra-nucleus accumbens (intra-NAc injection of scopolamine or NMDA caused impairment in memory in rats. Although, co-administration of an ineffective dose of NMDA with an ineffective dose of scopolamine had no significant effect on memory performance, effective doses of NMDA prevented the amnesic effect of scopolamine on inhibitory avoidance memory. On the other hand, intra-NAc injection of NMDA receptor antagonist, i.e., MK-801 caused no change in memory performance by itself, and its co-administration with an effective dose of scopolamine could not prevent the impairing effect of the latter drug. Conclusion: The finding of this study indicated that NMDA receptors in the nucleus accumbens are involved in the modulation of scopolamine-induced amnesia.

  2. Vitamin K antagonist use and mortality in dialysis patients.

    Science.gov (United States)

    Voskamp, Pauline W M; Rookmaaker, Maarten B; Verhaar, Marianne C; Dekker, Friedo W; Ocak, Gurbey

    2018-01-01

    The risk-benefit ratio of vitamin K antagonists for different CHA2DS2-VASc scores in patients with end-stage renal disease treated with dialysis is unknown. The aim of this study was to investigate the association between vitamin K antagonist use and mortality for different CHA2DS2-VASc scores in a cohort of end-stage renal disease patients receiving dialysis treatment. We prospectively followed 1718 incident dialysis patients. Hazard ratios were calculated for all-cause and cause-specific (stroke, bleeding, cardiovascular and other) mortality associated with vitamin K antagonist use. Vitamin K antagonist use as compared with no vitamin K antagonist use was associated with a 1.2-fold [95% confidence interval (95% CI) 1.0-1.5] increased all-cause mortality risk, a 1.5-fold (95% CI 0.6-4.0) increased stroke mortality risk, a 1.3-fold (95% CI 0.4-4.2) increased bleeding mortality risk, a 1.2-fold (95% CI 0.9-1.8) increased cardiovascular mortality risk and a 1.2-fold (95% CI 0.8-1.6) increased other mortality risk after adjustment. Within patients with a CHA2DS2-VASc score ≤1, vitamin K antagonist use was associated with a 2.8-fold (95% CI 1.0-7.8) increased all-cause mortality risk as compared with no vitamin K antagonist use, while vitamin K antagonist use within patients with a CHA2DS2-VASc score ≥2 was not associated with an increased mortality risk after adjustment. Vitamin K antagonist use was not associated with a protective effect on mortality in the different CHA2DS2-VASc scores in dialysis patients. The lack of knowledge on the indication for vitamin K antagonist use could lead to confounding by indication. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  3. Glutamate receptors and the airways hyperreactivity.

    Science.gov (United States)

    Strapkova, Anna; Antosova, Martina

    2012-03-01

    It is proposed the link between the hyperactivity of NMDA receptors and airway hyperresponsiveness. We investigated the effect of agents modulating the activity of NMDA receptors in the ovalbumin-induced airway hyperreactivity in guinea pigs. The airways hyperreactivity was influenced by the agonist (NMDA) and selective antagonist - competitive (AP-5) and non-competitive (MK-801) of NMDA receptors. Airway responsiveness to histamine or acetylcholine was evaluated in in vitro conditions. NMDA administration caused the increase of tracheal smooth muscle response in ovalbumin-induced hyperreactivity to acetylcholine. MK 801 as well as AP-5 provoked the decrease of reactivity mainly to acetylcholine in tracheal smooth muscle, while the former, non-competitive antagonist was more effective. We recorded more pronounced response in tracheal than in lung tissue smooth muscle with more considerable response to acetylcholine than to histamine. The results of experiments show the modification of airway smooth muscles responses by agents modulating the activity of NMDA receptors. They confirm the possibility of NMDA receptors participation in experimental airway hyperreactivity. The results enlarge information regarding the link of the inflammatory diseases and glutamatergic system.

  4. Top-down proteomics with mass spectrometry imaging: a pilot study towards discovery of biomarkers for neurodevelopmental disorders.

    Directory of Open Access Journals (Sweden)

    Hui Ye

    Full Text Available In the developing mammalian brain, inhibition of NMDA receptor can induce widespread neuroapoptosis, inhibit neurogenesis and cause impairment of learning and memory. Although some mechanistic insights into adverse neurological actions of these NMDA receptor antagonists exist, our understanding of the full spectrum of developmental events affected by early exposure to these chemical agents in the brain is still limited. Here we attempt to gain insights into the impact of pharmacologically induced excitatory/inhibitory imbalance in infancy on the brain proteome using mass spectrometric imaging (MSI. Our goal was to study changes in protein expression in postnatal day 10 (P10 rat brains following neonatal exposure to the NMDA receptor antagonist dizocilpine (MK801. Analysis of rat brains exposed to vehicle or MK801 and comparison of their MALDI MS images revealed differential relative abundances of several proteins. We then identified these markers such as ubiquitin, purkinje cell protein 4 (PEP-19, cytochrome c oxidase subunits and calmodulin, by a combination of reversed-phase (RP HPLC fractionation and top-down tandem MS platform. More in-depth large scale study along with validation experiments will be carried out in the future. Overall, our findings indicate that a brief neonatal exposure to a compound that alters excitatory/inhibitory balance in the brain has a long term effect on protein expression patterns during subsequent development, highlighting the utility of MALDI-MSI as a discovery tool for potential biomarkers.

  5. The Role of N-Methyl D-Aspartate Receptors on Pain Transmission

    Directory of Open Access Journals (Sweden)

    Yasemin Gunes

    2012-02-01

    Full Text Available Aim : In the experimental studies, NMDA (N-methyl-D-aspartate receptors play important role in the mechanism of action among the drugs used for the treatment of pain. The NMDA receptors in the dorsal horn of spinal cord is essential for central sensitization and the central facilitation of pain transmission produced by peripheral injury. The aim of this study was to evaluate the contributions of peripheral NMDA receptor agonist and antagonists in peripheral pain transmission. Material-Method : In the present study, N methyl aspartic acid (NMDA and antagonist ( MK-801 were administered intraplantarily to investigate withdrawal effects, the dose and time dependent latency using thermal plantar test method in rats. Results : MK-801 caused dose-dependent thermal anti-nociceptive effects, whereas NMDA led to reduction in the thermal nociceptive latency and hyperalgesia. Conclusion : Peripheral NMDA receptors may play a dominant role in the transmission of pain information. [Cukurova Med J 2012; 37(1.000: 9-16

  6. Clinical study to evaluate the wear of natural enamel antagonist to zirconia and metal ceramic crowns.

    Science.gov (United States)

    Mundhe, Kailas; Jain, Veena; Pruthi, Gunjan; Shah, Naseem

    2015-09-01

    Tooth wear is a complex process, which, if not prevented, may adversely affect the integrity of the stomatognathic system. Different restorative dental materials may affect the amount of wear on natural enamel antagonists. The purpose of this in vivo study was to evaluate and compare the wear of enamel opposing natural enamel, zirconia, and metal ceramic crowns after 1 year. Ten participants between 18 and 35 years of age requiring 2 complete crowns, 1 on either side of maxillary or mandibular molar region, and having healthy natural teeth in the opposing arch were selected. For each participant, 1 monolithic polished zirconia crown and 1 glazed metal ceramic crown were fabricated and cemented. To evaluate the wear of the antagonistic natural enamel (premolar and molar), polyvinyl siloxane impressions were made immediately (baseline) and at 1 year after cementation. The wear of natural enamel against natural enamel was evaluated as the control. The resulting casts were scanned (using a 3D white light scanner), and 3D software was used to calculate the maximum amount of linear wear. One-way repeated measures ANOVA was conducted to analyze data. Mean ±SD occlusal wear of the antagonistic enamel 1 year after the cementation of metal ceramic crowns was 69.20 ±4.10 μm for premolar teeth and 179.70 ±8.09 μm for molar teeth, whereas for zirconia crowns, it was 42.10 ±4.30 μm for premolar teeth and 127.00 ±5.03 μm for molar teeth. Occlusal wear of natural enamel opposing natural enamel was 17.30 ±1.88 μm in the premolar region and 35.10 ±2.60 μm in the molar region. The Bonferroni post hoc test revealed that the occlusal wear of antagonistic enamel 1 year after the cementation of a metal ceramic crown was significantly higher (Pzirconia crown or natural enamel. Zirconia crowns led to less wear of antagonist enamel than metal ceramic crowns, but more than natural enamel. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by

  7. P2X1 Receptor Antagonists Inhibit HIV-1 Fusion by Blocking Virus-Coreceptor Interactions

    Science.gov (United States)

    Giroud, Charline; Marin, Mariana; Hammonds, Jason; Spearman, Paul

    2015-01-01

    ABSTRACT HIV-1 Env glycoprotein-mediated fusion is initiated upon sequential binding of Env to CD4 and the coreceptor CXCR4 or CCR5. Whereas these interactions are thought to be necessary and sufficient to promote HIV-1 fusion, other host factors can modulate this process. Previous studies reported potent inhibition of HIV-1 fusion by selective P2X1 receptor antagonists, including NF279, and suggested that these receptors play a role in HIV-1 entry. Here we investigated the mechanism of antiviral activity of NF279 and found that this compound does not inhibit HIV-1 fusion by preventing the activation of P2X1 channels but effectively blocks the binding of the virus to CXCR4 or CCR5. The notion of an off-target effect of NF279 on HIV-1 fusion is supported by the lack of detectable expression of P2X1 receptors in cells used in fusion experiments and by the fact that the addition of ATP or the enzymatic depletion of ATP in culture medium does not modulate viral fusion. Importantly, NF279 fails to inhibit HIV-1 fusion with cell lines and primary macrophages when added at an intermediate stage downstream of Env-CD4-coreceptor engagement. Conversely, in the presence of NF279, HIV-1 fusion is arrested downstream of CD4 binding but prior to coreceptor engagement. NF279 also antagonizes the signaling function of CCR5, CXCR4, and another chemokine receptor, as evidenced by the suppression of calcium responses elicited by specific ligands and by recombinant gp120. Collectively, our results demonstrate that NF279 is a dual HIV-1 coreceptor inhibitor that interferes with the functional engagement of CCR5 and CXCR4 by Env. IMPORTANCE Inhibition of P2X receptor activity suppresses HIV-1 fusion and replication, suggesting that P2X signaling is involved in HIV-1 entry. However, mechanistic experiments conducted in this study imply that P2X1 receptor is not expressed in target cells or involved in viral fusion. Instead, we found that inhibition of HIV-1 fusion by a specific P2X1

  8. Cannabinoid type 1 receptor antagonists for smoking cessation.

    Science.gov (United States)

    Cahill, Kate; Ussher, Michael H

    2011-03-16

    Selective type 1 cannabinoid (CB1) receptor antagonists may assist with smoking cessation by restoring the balance of the endocannabinoid system, which can be disrupted by prolonged use of nicotine. They also seeks to address many smokers' reluctance to persist with a quit attempt because of concerns about weight gain. To determine whether selective CB1 receptor antagonists (currently rimonabant and taranabant) increase the numbers of people stopping smoking To assess their effects on weight change in successful quitters and in those who try to quit but fail. We searched the Cochrane Tobacco Addiction Review Group specialized register for trials, using the terms ('rimonabant' or 'taranabant') and 'smoking' in the title or abstract, or as keywords. We also searched MEDLINE, EMBASE, CINAHL and PsycINFO, using major MESH terms. We acquired electronic or paper copies of posters of preliminary trial results presented at the American Thoracic Society Meeting in 2005, and at the Society for Research on Nicotine and Tobacco European Meeting 2006. We also attempted to contact the authors of ongoing studies of rimonabant, and Sanofi Aventis (manufacturers of rimonabant). The most recent search was in January 2011. Types of studies Randomized controlled trialsTypes of participants Adult smokersTypes of interventions Selective CB1 receptor antagonists, such as rimonabant and taranabant. Types of outcome measures The primary outcome is smoking status at a minimum of six months after the start of treatment. We preferred sustained cessation rates to point prevalence, and biochemically verified cessation to self-reported quitting. We regarded smokers who drop out or are lost to follow up as continuing smokers. We have noted any adverse effects of treatment.A secondary outcome is weight change associated with the cessation attempt. Two authors checked the abstracts for relevance, and attempted to acquire full trial reports. One author extracted the data, and a second author checked

  9. Early Illustrations of Geste Antagoniste in Cervical and Generalized Dystonia

    Directory of Open Access Journals (Sweden)

    Emmanuel Broussolle

    2015-09-01

    Full Text Available Background: Geste antagoniste, or sensory trick, is a voluntary maneuver that temporarily reduces the severity of dystonic postures or movements. We present a historical review of early reports and illustrations of geste antagoniste.Results: In 1894, Brissaud described this phenomenon in Paris in patients with torticollis. He noted that a violent muscular contraction could be reversed by a minor voluntary action. He considered the improvement obtained by what he called “simple mannerisms, childish behaviour or fake pathological movements” was proof of the psychogenic origin of what he named mental torticollis. This concept was supported by photographical illustrations of the patients. The term geste antagoniste was used by Brissaud’s pupils, Meige and Feindel, in their 1902 monograph on movement disorders. Other reports and illustrations of this sign were published in Europe between 1894 and 1906. Although not mentioned explicitly, geste antagoniste was also illustrated in a case report of generalized dystonia in Oppenheim’s 1911 seminal description of dystonia musculorum deformans in Berlin.Discussion: Brissaud-Meige’s misinterpretation of the geste antagoniste unfortunately anchored the psychogenic origin of dystonia for decades. In New York, Herz brought dystonia back into the realm of organic neurology in 1944. Thereafter, it was given prominence by other authors, notably Fahn and Marsden in the 1970–1980s. Nowadays, neurologists routinely investigate for geste antagoniste when a dystonic syndrome is suspected, because it provides a further argument in favor of dystonia. The term alleviating maneuver was proposed in 2014 to replace sensory trick or geste antagoniste. This major sign is now part of the motor phenomenology of the 2013 Movement Disorder Society’s classification of dystonia.

  10. Small molecule inhibitors of PSD95-nNOS protein-protein interactions as novel analgesics

    Science.gov (United States)

    Lee, Wan-Hung; Xu, Zhili; Ashpole, Nicole M.; Hudmon, Andy; Kulkarni, Pushkar M.; Thakur, Ganesh A.; Lai, Yvonne Y.; Hohmann, Andrea G.

    2015-01-01

    Aberrant increases in NMDA receptor (NMDAR) signaling contributes to central nervous system sensitization and chronic pain by activating neuronal nitric oxide synthase (nNOS) and generating nitric oxide (NO). Because the scaffolding protein postsynaptic density 95kDA (PSD95) tethers nNOS to NMDARs, the PSD95-nNOS complex represents a therapeutic target. Small molecule inhibitors IC87201 (EC5O: 23.94 µM) and ZL006 (EC50: 12.88 µM) directly inhibited binding of purified PSD95 and nNOS proteins in AlphaScreen without altering binding of PSD95 to ErbB4. Both PSD95-nNOS inhibitors suppressed glutamate-induced cell death with efficacy comparable to MK-801. IC87201 and ZL006 preferentially suppressed phase 2A pain behavior in the formalin test and suppressed allodynia induced by intraplantar complete Freund’s adjuvant administration. IC87201 and ZL006 suppressed mechanical and cold allodynia induced by the chemotherapeutic agent paclitaxel (ED50s: 2.47 and 0.93 mg/kg i.p. for IC87201 and ZL006, respectively). Efficacy of PSD95-nNOS disruptors was similar to MK-801. Motor ataxic effects were induced by MK-801 but not by ZL006 or IC87201. Finally, MK-801 produced hyperalgesia in the tail-flick test whereas IC87201 and ZL006 did not alter basal nociceptive thresholds. Our studies establish the utility of using AlphaScreen and purified protein pairs to establish and quantify disruption of protein-protein interactions. Our results demonstrate previously unrecognized antinociceptive efficacy of ZL006 and establish, using two small molecules, a broad application for PSD95-nNOS inhibitors in treating neuropathic and inflammatory pain. Collectively, our results demonstrate that disrupting PSD95-nNOS protein-protein interactions is effective in attenuating pathological pain without producing unwanted side effects (i.e. motor ataxia) associated with NMDAR antagonists. PMID:26071110

  11. Cognitive enhancement and antipsychotic-like activity following repeated dosing with the selective M4 PAM VU0467154.

    Science.gov (United States)

    Gould, Robert W; Grannan, Michael D; Gunter, Barak W; Ball, Jacob; Bubser, Michael; Bridges, Thomas M; Wess, Jurgen; Wood, Michael W; Brandon, Nicholas J; Duggan, Mark E; Niswender, Colleen M; Lindsley, Craig W; Conn, P Jeffrey; Jones, Carrie K

    2018-01-01

    Although selective activation of the M 1 muscarinic acetylcholine receptor (mAChR) subtype has been shown to improve cognitive function in animal models of neuropsychiatric disorders, recent evidence suggests that enhancing M 4 mAChR function can also improve memory performance. Positive allosteric modulators (PAMs) targeting the M 4 mAChR subtype have shown therapeutic potential for the treatment of multiple symptoms observed in schizophrenia, including positive and cognitive symptoms when assessed in acute preclinical dosing paradigms. Since the cholinergic system has been implicated in multiple stages of learning and memory, we evaluated the effects of repeated dosing with the highly selective M 4 PAM VU0467154 on either acquisition and/or consolidation of learning and memory when dosed alone or after pharmacologic challenge with the N-methyl-d-aspartate subtype of glutamate receptors (NMDAR) antagonist MK-801. MK-801 challenge represents a well-documented preclinical model of NMDAR hypofunction that is thought to underlie some of the positive and cognitive symptoms observed in schizophrenia. In wildtype mice, 10-day, once-daily dosing of VU0467154 either prior to, or immediately after daily testing enhanced the rate of learning in a touchscreen visual pairwise discrimination task; these effects were absent in M 4 mAChR knockout mice. Following a similar 10-day, once-daily dosing regimen of VU0467154, we also observed 1) improved acquisition of memory in a cue-mediated conditioned freezing paradigm, 2) attenuation of MK-801-induced disruptions in the acquisition of memory in a context-mediated conditioned freezing paradigm and 3) reversal of MK-801-induced hyperlocomotion. Comparable efficacy and plasma and brain concentrations of VU0467154 were observed after repeated dosing as those previously reported with an acute, single dose administration of this M 4 PAM. Together, these studies are the first to demonstrate that cognitive enhancing and antipsychotic

  12. Rape prevention

    Science.gov (United States)

    Date rape - prevention; Sexual assault - prevention ... Centers for Disease Control and Prevention website. Sexual assault and abuse and STDs. In: 2015 sexually transmitted diseases treatment guidelines 2015. www.cdc.gov/std/tg2015/sexual- ...

  13. Dengue Prevention

    Science.gov (United States)

    ... Address What's this? Submit What's this? Submit Button Prevention Recommend on Facebook Tweet Share Compartir This photograph ... medications to treat a dengue infection. This makes prevention the most important step, and prevention means avoiding ...

  14. Histamine-2 receptor antagonists as immunomodulators: new therapeutic views?

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen

    1996-01-01

    of proliferation and angiogenesis. Specific histamine receptors have been identified on the surface of bone marrow cells, immune competent cells, endothelial cells, fibroblasts, and also on malignant cells. This has prompted research in regulation by specific histamine receptor agonists and antagonists. Results...... from such studies are currently accumulating and suggest that the histamine-2 receptor antagonists have potential beneficial effects in the treatment of certain malignant, autoimmune and skin diseases, either alone or in combination with other drugs. The beneficial effect of histamine-2 receptor...... antagonists as adjuvant single drugs to reduce trauma-, blood transfusion- and sepsis-induced immunosuppression has led to research in combined treatment regimens in major surgery, particularly, of patients operated on for malignant diseases....

  15. GnRH antagonist versus long agonist protocols in IVF

    DEFF Research Database (Denmark)

    Lambalk, C B; Banga, F R; Huirne, J A

    2017-01-01

    was not the only variable between the compared study arms. OBJECTIVE AND RATIONALE: The aim of the current study was to compare GnRH antagonist protocols versus standard long agonist protocols in couples undergoing IVF or ICSI, while accounting for various patient populations and treatment schedules. SEARCH......BACKGROUND: Most reviews of IVF ovarian stimulation protocols have insufficiently accounted for various patient populations, such as ovulatory women, women with polycystic ovary syndrome (PCOS) or women with poor ovarian response, and have included studies in which the agonist or antagonist...... METHODS: The Cochrane Menstrual Disorders and Subfertility Review Group specialized register of controlled trials and Pubmed and Embase databases were searched from inception until June 2016. Eligible trials were those that compared GnRH antagonist protocols and standard long GnRH agonist protocols...

  16. ANTAGONISTIC BACTERIA AGAINST SCHIZOPHYLLUM COMMUNE FR. IN PENINSULAR MALAYSIA

    Directory of Open Access Journals (Sweden)

    ANTARJO DIKIN

    2006-01-01

    Full Text Available Schizophyllum commune Fr., is one of the important fungi, causes brown germ and seed rot of oil palm. Biodiversity of antagonistic bacteria from oil palm plantations in Peninsular Malaysia is expected to support in development of biopesticide. Isolation with liquid assay and screening antagonistic bacteria using dual culture assay were carried out in the bioexploration. A total of 265 bacterial isolates from plant parts of oil palm screened 52 antagonistic bacterial isolates against 5. commune. Bacterial isolates were identified by using Biolog* Identification System i.e. Bacillus macroccanus, B. thermoglucosidasius, Burkholderia cepacia, B. gladioli, B. multivorans, B pyrrocinia, B. spinosa, Corynebacterium agropyri, C. misitidis, Enterobacter aerogenes, Microbacterium testaceum, Pseudomonas aeruginosa, P. citronellolis, Rhodococcus rhodochrous, Serratia ficaria, Serratia sp., S. marcescens, Staphylococcus sciuri, Sternotrophomonas maltophilia.

  17. Histamine H4 receptor antagonists: the new antihistamines?

    Science.gov (United States)

    Fung-Leung, Wai-Ping; Thurmond, Robin L; Ling, Ping; Karlsson, Lars

    2004-11-01

    Antihistamines (histamine H1 receptor antagonists) are a mainstay treatment for atopic allergy, yet they are only partially effective in relieving the symptoms of the disease. They also have very limited value for the treatment of asthma, despite the well-characterized bronchoconstrictory effects of histamine. The recent discovery of a fourth histamine receptor (H4), and the realization that it is exclusively expressed on hematopoietic cell types that are most implicated in the development and symptomatology of allergy and asthma, suggests that pharmacological targeting of the H4 receptor, either alone or in combination with H1 receptor antagonists, may prove useful for treating both allergy and asthma. Here we review the known biology associated with the H4 receptor, as well the effects of a highly selective H1 receptor antagonist.

  18. CCL-1 in the spinal cord contributes to neuropathic pain induced by nerve injury.

    Science.gov (United States)

    Akimoto, N; Honda, K; Uta, D; Beppu, K; Ushijima, Y; Matsuzaki, Y; Nakashima, S; Kido, M A; Imoto, K; Takano, Y; Noda, M

    2013-06-20

    Cytokines such as interleukins are known to be involved in the development of neuropathic pain through activation of neuroglia. However, the role of chemokine (C-C motif) ligand 1 (CCL-1), a well-characterized chemokine secreted by activated T cells, in the nociceptive transmission remains unclear. We found that CCL-1 was upregulated in the spinal dorsal horn after partial sciatic nerve ligation. Therefore, we examined actions of recombinant CCL-1 on behavioural pain score, synaptic transmission, glial cell function and cytokine production in the spinal dorsal horn. Here we show that CCL-1 is one of the key mediators involved in the development of neuropathic pain. Expression of CCL-1 mRNA was mainly detected in the ipsilateral dorsal root ganglion, and the expression of specific CCL-1 receptor CCR-8 was upregulated in the superficial dorsal horn. Increased expression of CCR-8 was observed not only in neurons but also in microglia and astrocytes in the ipsilateral side. Recombinant CCL-1 injected intrathecally (i.t.) to naive mice induced allodynia, which was prevented by the supplemental addition of N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801. Patch-clamp recordings from spinal cord slices revealed that application of CCL-1 transiently enhanced excitatory synaptic transmission in the substantia gelatinosa (lamina II). In the long term, i.t. injection of CCL-1 induced phosphorylation of NMDA receptor subunit, NR1 and NR2B, in the spinal cord. Injection of CCL-1 also upregulated mRNA level of glial cell markers and proinflammatory cytokines (IL-1β, TNF-α and IL-6). The tactile allodynia induced by nerve ligation was attenuated by prophylactic and chronic administration of neutralizing antibody against CCL-1 and by knocking down of CCR-8. Our results indicate that CCL-1 is one of the key molecules in pathogenesis, and CCL-1/CCR-8 signaling system can be a potential target for drug development in the treatment for neuropathic pain.

  19. Nicotine-Induced Modulation of the Cholinergic Twitch Response in the Ileum of Guinea Pig.

    Science.gov (United States)

    Donnerer, Josef; Liebmann, Ingrid

    2015-01-01

    In the present study, the direct drug effects of nicotine and its effects on the cholinergic twitch responses of the electrically stimulated longitudinal muscle-myenteric plexus strip from the ileum of guinea pig were investigated. Nicotine dose-dependently (0.3-10 µmol/l) evoked the well-known contractile responses on its own. Whereas the interposed twitch responses remained present without a change in height at 1 µmol/l nicotine, a nicotine concentration of 3 µmol/l slightly and a concentration of 10 µmol/l markedly diminished the twitch during their presence. After the washout of 1-10 µmol/l nicotine, the height of the twitch response was also temporarily and significantly reduced by 30-77%. The P2X purinoceptor agonist αβ-methylene ATP (1-10 µmol/l) dose-dependently induced contractions on its own and reduced the twitch response during its presence in the organ bath; however, it did not diminish the twitch responses after washout of the drug as nicotine did. The P2X antagonist pyridoxalphosphate-6-azophenyl-2'-4'-disulphonic acid, the NMDA channel blocker MK-801 and the inhibitor of small conductance Ca(2+)-activated K(+) (SK) channels apamin reduced the contractile effect of 1 µmol/l nicotine. Apamin also significantly prevented the 'post-nicotine inhibition of the twitch' following the washout of 1-3 µmol/l nicotine. As a conclusion, we provide evidence for a functional interaction between nicotinic receptors and the P2X receptors in the ileum of the guinea pig. The 'post-nicotine inhibition of the twitch' is not due to nicotinic acetylcholine receptor desensitization or transmitter depletion, but most probably the secondary effects of nicotine on SK channels determine the reduced cholinergic motor neuron excitability. © 2015 S. Karger AG, Basel.

  20. Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate

    Directory of Open Access Journals (Sweden)

    Sofia Baptista

    2014-09-01

    Full Text Available Methamphetamine (METH is a highly addictive psychostimulant drug of abuse that negatively interferes with neurogenesis. In fact, we have previously shown that METH triggers stem/progenitor cell death and decreases neuronal differentiation in the dentate gyrus (DG. Still, little is known regarding its effect on DG stem cell properties. Herein, we investigate the impact of METH on mice DG stem/progenitor cell self-renewal functions. METH (10 nM decreased DG stem cell self-renewal, while 1 nM delayed cell cycle in the G0/G1-to-S phase transition and increased the number of quiescent cells (G0 phase, which correlated with a decrease in cyclin E, pEGFR and pERK1/2 protein levels. Importantly, both drug concentrations (1 or 10 nM did not induce cell death. In accordance with the impairment of self-renewal capacity, METH (10 nM decreased Sox2+/Sox2+ while increased Sox2−/Sox2− pairs of daughter cells. This effect relied on N-methyl-d-aspartate (NMDA signaling, which was prevented by the NMDA receptor antagonist, MK-801 (10 μM. Moreover, METH (10 nM increased doublecortin (DCX protein levels consistent with neuronal differentiation. In conclusion, METH alters DG stem cell properties by delaying cell cycle and decreasing self-renewal capacities, mechanisms that may contribute to DG neurogenesis impairment followed by cognitive deficits verified in METH consumers.

  1. MDMA Decreases Gluatamic Acid Decarboxylase (GAD) 67-Immunoreactive Neurons in the Hippocampus and Increases Seizure Susceptibility: Role for Glutamate

    Science.gov (United States)

    Huff, Courtney L.; Morano, Rachel L.; Herman, James P.; Yamamoto, Bryan K.; Gudelsky, Gary A.

    2016-01-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37–58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30 days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. PMID:27773601

  2. MDMA decreases glutamic acid decarboxylase (GAD) 67-immunoreactive neurons in the hippocampus and increases seizure susceptibility: Role for glutamate.

    Science.gov (United States)

    Huff, Courtney L; Morano, Rachel L; Herman, James P; Yamamoto, Bryan K; Gudelsky, Gary A

    2016-12-01

    3,4-Methylenedioxy-methamphetamine (MDMA) is a unique psychostimulant that continues to be a popular drug of abuse. It has been well documented that MDMA reduces markers of 5-HT axon terminals in rodents, as well as humans. A loss of parvalbumin-immunoreactive (IR) interneurons in the hippocampus following MDMA treatment has only been documented recently. In the present study, we tested the hypothesis that MDMA reduces glutamic acid decarboxylase (GAD) 67-IR, another biochemical marker of GABA neurons, in the hippocampus and that this reduction in GAD67-IR neurons and an accompanying increase in seizure susceptibility involve glutamate receptor activation. Repeated exposure to MDMA (3×10mg/kg, ip) resulted in a reduction of 37-58% of GAD67-IR cells in the dentate gyrus (DG), CA1, and CA3 regions, as well as an increased susceptibility to kainic acid-induced seizures, both of which persisted for at least 30days following MDMA treatment. Administration of the NMDA antagonist MK-801 or the glutamate transporter type 1 (GLT-1) inducer ceftriaxone prevented both the MDMA-induced loss of GAD67-IR neurons and the increased vulnerability to kainic acid-induced seizures. The MDMA-induced increase in the extracellular concentration of glutamate in the hippocampus was significantly diminished in rats treated with ceftriaxone, thereby implicating a glutamatergic mechanism in the neuroprotective effects of ceftriaxone. In summary, the present findings support a role for increased extracellular glutamate and NMDA receptor activation in the MDMA-induced loss of hippocampal GAD67-IR neurons and the subsequent increased susceptibility to evoked seizures. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling.

    Science.gov (United States)

    Singhal, Hari; Greene, Marianne E; Zarnke, Allison L; Laine, Muriel; Al Abosy, Rose; Chang, Ya-Fang; Dembo, Anna G; Schoenfelt, Kelly; Vadhi, Raga; Qiu, Xintao; Rao, Prakash; Santhamma, Bindu; Nair, Hareesh B; Nickisch, Klaus J; Long, Henry W; Becker, Lev; Brown, Myles; Greene, Geoffrey L

    2018-01-12

    Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR

  4. Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling

    Science.gov (United States)

    Singhal, Hari; Greene, Marianne E.; Zarnke, Allison L.; Laine, Muriel; Al Abosy, Rose; Chang, Ya-Fang; Dembo, Anna G.; Schoenfelt, Kelly; Vadhi, Raga; Qiu, Xintao; Rao, Prakash; Santhamma, Bindu; Nair, Hareesh B.; Nickisch, Klaus J.; Long, Henry W.; Becker, Lev; Brown, Myles; Greene, Geoffrey L.

    2018-01-01

    Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR

  5. Plague Prevention

    Science.gov (United States)

    ... Healthcare Professionals Clinicians Public Health Officials Veterinarians Prevention History of Plague Resources FAQ Prevention Recommend on Facebook Tweet Share Compartir Reduce rodent habitat around your ...

  6. Regulation of Carotenoid Biosynthesis by Shade Relies on Specific Subsets of Antagonistic Transcription Factors and Cofactors.

    Science.gov (United States)

    Bou-Torrent, Jordi; Toledo-Ortiz, Gabriela; Ortiz-Alcaide, Miriam; Cifuentes-Esquivel, Nicolas; Halliday, Karen J; Martinez-García, Jaime F; Rodriguez-Concepcion, Manuel

    2015-11-01

    Carotenoids are photosynthetic pigments essential for the protection against excess light. During deetiolation, their production is regulated by a dynamic repression-activation module formed by PHYTOCHROME-INTERACTING FACTOR1 (PIF1) and LONG HYPOCOTYL5 (HY5). These transcription factors directly and oppositely control the expression of the gene encoding PHYTOENE SYNTHASE (PSY), the first and main rate-determining enzyme of the carotenoid pathway. Antagonistic modules also regulate the responses of deetiolated plants to vegetation proximity and shade (i.e. to the perception of far-red light-enriched light filtered through or reflected from neighboring plants). These responses, aimed to adapt to eventual shading from plant competitors, include a reduced accumulation of carotenoids. Here, we show that PIF1 and related photolabile PIFs (but not photostable PIF7) promote the shade-triggered decrease in carotenoid accumulation. While HY5 does not appear to be required for this process, other known PIF antagonists were found to modulate the expression of the Arabidopsis (Arabidopsis thaliana) PSY gene and the biosynthesis of carotenoids early after exposure to shade. In particular, PHYTOCHROME-RAPIDLY REGULATED1, a transcriptional cofactor that prevents the binding of true transcription factors to their target promoters, was found to interact with PIF1 and hence directly induce PSY expression. By contrast, a change in the levels of the transcriptional cofactor LONG HYPOCOTYL IN FAR RED1, which also binds to PIF1 and other PIFs to regulate shade-related elongation responses, did not impact PSY expression or carotenoid accumulation. Our data suggest that the fine-regulation of carotenoid biosynthesis in response to shade relies on specific modules of antagonistic transcriptional factors and cofactors. © 2015 American Society of Plant Biologists. All Rights Reserved.

  7. Displacement of cortisol from human heart by acute administration of a mineralocorticoid receptor antagonist.

    Science.gov (United States)

    Iqbal, Javaid; Andrew, Ruth; Cruden, Nicholas L; Kenyon, Christopher J; Hughes, Katherine A; Newby, David E; Hadoke, Patrick W F; Walker, Brian R

    2014-03-01

    Mineralocorticoid receptor (MR) antagonists have beneficial effects in patients with heart failure and myocardial infarction, often attributed to blocking aldosterone action in the myocardium. However, binding of aldosterone to MR requires local activity of the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which inactivates cortisol to cortisone and thereby prevents receptor occupancy by cortisol. In vivo activity of 11β-HSD2 and potential occupancy of MR by cortisol in human heart have not been quantified. This study aimed to measure in vivo activity of 11β-HSD2 and to establish whether cortisol binds MR in human heart. Nine patients without heart failure undergoing diagnostic coronary angiography were infused to steady state with the stable isotope tracers 9,11,12,12-[(2)H]4-cortisol and 1,2-[(2)H]2-cortisone to quantify cortisol and cortisone production. Samples were obtained from the femoral artery and coronary sinus before and for 40 minutes after bolus iv administration of an MR antagonist, potassium canrenoate. Coronary sinus blood flow was measured by venography and Doppler flow wire. There was no detectable production of cortisol or cortisone across the myocardium. After potassium canrenoate administration, plasma aldosterone concentrations increased substantially but aldosterone was not detectably released from the myocardium. In contrast, plasma cortisol concentrations did not change in the systemic circulation but tissue-bound cortisol was released transiently from the myocardium after potassium canrenoate administration. Human cardiac 11β-HSD2 activity appears too low to inactivate cortisol to cortisone. Cortisol is displaced acutely from the myocardium by MR antagonists and may contribute to adverse MR activation in human heart.

  8. Antagonistic Donor Density Effect Conserved in Multiple Enterococcal Conjugative Plasmids

    Science.gov (United States)

    Bandyopadhyay, Arpan; O'Brien, Sofie; Frank, Kristi L.; Dunny, Gary M.

    2016-01-01

    ABSTRACT Enterococcus faecalis, a common causative agent of hospital-acquired infections, is resistant to many known antibiotics. Its ability to acquire and transfer resistance genes and virulence determinants through conjugative plasmids poses a serious concern for public health. In some cases, induction of transfer of E. faecalis plasmids results from peptide pheromones produced by plasmid-free recipient cells, which are sensed by the plasmid-bearing donor cells. These plasmids generally encode an inhibitory peptide that competes with the pheromone and suppresses self-induction of donors. We recently demonstrated that the inhibitor peptide encoded on plasmid pCF10 is part of a unique quorum-sensing system in which it functions as a “self-sensing signal,” reducing the response to the pheromone in a density-dependent fashion. Based on the similarities between regulatory features controlling conjugation in pAD1 and pAM373 and those controlling conjugation in pCF10, we hypothesized that these plasmids are likely to exhibit similar quorum-sensing behaviors. Experimental findings indicate that for both pAD1 and pAM373, high donor densities indeed resulted in decreased induction of the conjugation operon and reduced conjugation frequencies. This effect was restored by the addition of exogenous inhibitor, confirming that the inhibitor serves as an indicator for donor density. Donor density also affects cross-species conjugative plasmid transfer. Based on our experimental results, we propose models for induction and shutdown of the conjugation operon in pAD1 and pAM373. IMPORTANCE Enterococcus faecalis is a leading cause of hospital-acquired infections. Its ability to transfer antibiotic resistance and virulence determinants by sharing its genetic material with other bacteria through direct cell-cell contact via conjugation poses a serious threat. Two antagonistic signaling peptides control the transfer of plasmids pAD1 and pAM373: a peptide pheromone produced by

  9. Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Zuercher, William J.; Buckholz†, Richard G.; Campobasso, Nino; Collins, Jon L.; Galardi, Cristin M.; Gampe, Robert T.; Hyatt, Stephen M.; Merrihew, Susan L.; Moore, John T.; Oplinger, Jeffrey A.; Reid, Paul R.; Spearing, Paul K.; Stanley, Thomas B.; Stewart, Eugene L.; Willson, Timothy M. (GSKNC)

    2010-08-12

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  10. Interleukin-1-receptor antagonist in type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Larsen, Claus M; Faulenbach, Mirjam; Vaag, Allan

    2007-01-01

    BACKGROUND: The expression of interleukin-1-receptor antagonist is reduced in pancreatic islets of patients with type 2 diabetes mellitus, and high glucose concentrations induce the production of interleukin-1beta in human pancreatic beta cells, leading to impaired insulin secretion, decreased cell...... proliferation, and apoptosis. METHODS: In this double-blind, parallel-group trial involving 70 patients with type 2 diabetes, we randomly assigned 34 patients to receive 100 mg of anakinra (a recombinant human interleukin-1-receptor antagonist) subcutaneously once daily for 13 weeks and 36 patients to receive...

  11. Effective management of venous thromboembolism in the community: non-vitamin K antagonist oral anticoagulants

    Directory of Open Access Journals (Sweden)

    Patel R

    2016-05-01

    Full Text Available Raj Patel Department of Haematological Medicine, King's Thrombosis Centre, King's College Hospital, London, UK Abstract: Anticoagulation therapy is essential for the effective treatment and secondary prevention of venous thromboembolism (VTE. For many years, anticoagulation for acute VTE was limited to the use of initial parenteral heparin, overlapping with and followed by a vitamin K antagonist. Although highly effective, this regimen has several limitations and is particularly challenging when given in an ambulatory setting. Current treatment pathways for most patients with deep-vein thrombosis typically involve initial hospital or community-based ambulatory care with subsequent follow-up in a secondary care setting. With the introduction of non-vitamin K antagonist oral anticoagulants (NOACs into routine clinical practice, it is now possible for the initial acute management of patients with deep-vein thrombosis to be undertaken by primary care. As hospital admissions associated with VTE become shorter, primary care will play an increasingly important role in the long-term management of these patients. Although the NOACs can potentially simplify patient management and improve clinical outcomes, primary care physicians may be less familiar with these new treatments compared with traditional therapy. To assist primary care physicians in further understanding the role of the NOACs, this article outlines the main differences between NOACs and traditional anticoagulation therapy and discusses the benefit–risk profile of the different NOACs in the treatment and secondary prevention of recurrent VTE. Key considerations for the use of NOACs in the primary care setting are highlighted, including dose transition, risk assessment and follow-up, duration of anticoagulant therapy, how to minimize bleeding risks, and the importance of patient education and counseling. Keywords: venous thromboembolism, oral anticoagulant, prevention, treatment, primary

  12. Changes in haematological indices following local application of interleukin-1 receptor antagonist protein after tenotomy in rabbits

    Directory of Open Access Journals (Sweden)

    Marko Pecin

    2017-01-01

    Full Text Available Interleukin-1 (IL-1 is the most important cytokine in the inflammation cascade activation in all tissues and is present in acute and chronic phases of inflammation. By blocking IL-1 binding to target cells, numerous inflammation processes are prevented. The use of autologous conditioned serum rich with IL-1 receptor antagonist protein (IL-1Ra is a novel treatment method of tendon inflammation in domestic animals and humans. Injections of autologous conditioned serum (ACS have demonstrated clinical efficacy and safety in animal models and humans in the treatment of osteoarthritis, disc prolapse and muscles and tendons injuries with low side effect. Neutropaenia, reduced white blood cell count, and infections or local irritations are described as side effects of IL-1 antagonist use in humans. Therefore, a study of blood changes in rabbits after local administration of IL-1Ra in the Achilles tendon tissue after iatrogenic inflammation was conducted. Interleukin-1 receptor antagonist protein was used to prevent and reduce tendon inflammation after longitudinal tenotomy. The study was done on 26 white Californian rabbits, divided into two equal groups consisting of 13 animals each; the experimental interleukin-1 receptor antagonist protein (irap group, and the control group. In the irap group, autologous serum rich with IL-1Ra was used (Orthokine®vet irap, Alfa-Arthro, Croatia. Differences between two groups were considered significant as changes in the blood for certain blood elements at P < 0.01. The P value was P = 0.0153 for the white blood cells, P = 0.00153 for neutrophils, P = 0.00017 and for platelets. In the control group, an increased platelet count was noticed in 70% of blood samples and a decreased neutrophil count was found in all of the irap group samples at the end of the study in comparison to the initial blood count prior to application.

  13. Preclinical anticonvulsant and neuroprotective profile of 8319, a non-competitive NMDA antagonist

    International Nuclear Information System (INIS)

    Fielding, S.; Wilker, J.C.; Chernack, J.; Ramirez, V.; Wilmot, C.A.; Martin, L.L.; Payack, J.F.; Cornfeldt, M.L.; Rudolphi, K.A.; Rush, D.K.

    1990-01-01

    8319, ((+-)-2-Amino-N-ethyl-alpha-(3-methyl-2-thienyl)benzeneethanamine 2HCl), is a novel compound with the profile of a non-competitive NMDA antagonist. The compound displaced [3H] TCP with high affinity (IC50 = 43 nM), but was inactive at the NMDA, benzodiazepine and GABA sites; in vivo, 8319 showed good efficacy as an anticonvulsant and potential neuroprotective agent. It blocked seizures induced by NMDLA, supramaximal electroshock, pentylenetetrazol (PTZ), picrotoxin, and thiosemicarbazide with ED50's of 1-20 mg/kg ip. As a neuroprotective agent, 8319 (30-100 mg/kg sc) prevented the death of dorsal hippocampal pyramidal cells induced by direct injection of 20 nmol NMDA. At 15 mg/kg ip, the compound was also effective against hippocampal neuronal necrosis induced via bilateral occlusion of the carotid arteries in gerbils. In summary, 8319 is a noncompetitive NMDA antagonist with good anticonvulsant activity and may possess neuroprotective properties useful in the treatment of brain ischemia

  14. G2 checkpoint abrogator abates the antagonistic interaction between antimicrotubule drugs and radiation therapy

    International Nuclear Information System (INIS)

    Sui Meihua; Zhang Hongfang; Di Xiaoyun; Chang Jinjia; Shen Youqing; Fan Weimin

    2012-01-01

    Background and purpose: We previously demonstrated that radiation may arrest tumor cells at G2 phase, which in turn prevents the cytotoxicity of antimicrotubule drugs and results in antagonistic interaction between these two modalities. Herein we tested whether G2 abrogators would attenuate the above antagonistic interaction and improve the therapeutic efficacy of combination therapy between radiation and antimicrotubule drugs. Materials and methods: Breast cancer BCap37 and epidermoid carcinoma KB cell lines were administered with radiation, UCN-01 (a model drug of G2 abrogator), paclitaxel or vincristine, alone or in combinations. The antitumor activities of single and combined treatments were analyzed by a series of cytotoxic, apoptotic, cell cycle, morphological and biochemical assays. Results: UCN-01 significantly enhanced the cytotoxicity of radiation, antimitotic drugs, and their combined treatments in vitro. Further investigations demonstrated that UCN-01 attenuated radiation-induced G2 arrest, and subsequently repressed the inhibitory effect of radiation on drug-induced mitotic arrest and apoptosis. Conclusions: This is the first report demonstrating that G2 checkpoint abrogation represses the inhibitory effect of radiation on antimicrotubule drugs, which may be implicated in cancer combination therapy. Considering that G2 abrogators are under extensive evaluation for cancer treatment, our findings provide valuable information for this class of promising compounds.

  15. Selective Glucocorticoid Receptor (GR-II Antagonist Reduces Body Weight Gain in Mice

    Directory of Open Access Journals (Sweden)

    Tomoko Asagami

    2011-01-01

    Full Text Available Previous research has shown that mifepristone can prevent and reverse weight gain in animals and human subjects taking antipsychotic medications. This proof-of-concept study tested whether a more potent and selective glucocorticoid receptor antagonist could block dietary-induced weight gain and increase insulin sensitivity in mice. Ten-week-old, male, C57BL/6J mice were fed a diet containing 60% fat calories and water supplemented with 11% sucrose for 4 weeks. Groups (=8 received one of the following: CORT 108297 (80 mg/kg QD, CORT 108297 (40 mg/kg BID, mifepristone (30 mg/kg BID, rosiglitazone (10 mg/kg QD, or vehicle. Compared to mice receiving a high-fat, high-sugar diet plus vehicle, mice receiving a high-fat, high-sugar diet plus either mifepristone or CORT 108297 gained significantly less weight. At the end of the four week treatment period, mice receiving CORT 108297 40 mg/kg BID or CORT 108297 80 mg/kg QD also had significantly lower steady plasma glucose than mice receiving vehicle. However, steady state plasma glucose after treatment was not highly correlated with reduced weight gain, suggesting that the effect of the glucocorticoid receptor antagonist on insulin sensitivity may be independent of its mitigating effect on weight gain.

  16. Genetically engineered bacteriophage delivers a tumor necrosis factor alpha antagonist coating on neural electrodes

    International Nuclear Information System (INIS)

    Kim, Young Jun; Nam, Chang-Hoon; Jin, Young-Hyun; Stieglitz, Thomas; Salieb-Beugelaar, Georgette B

    2014-01-01

    This paper reports a novel approach for the formation of anti-inflammatory surface coating on a neural electrode. The surface coating is realized using a recombinant f88 filamentous bacteriophage, which displays a short platinum binding motif and a tumor necrosis factor alpha antagonist (TNF-α antagonist) on p3 and p8 proteins, respectively. The recombinant bacteriophages are immobilized on the platinum surface by a simple dip coating process. The selective and stable immobilization of bacteriophages on a platinum electrode is confirmed by quartz crystal microbalance with dissipation monitoring, atomic force microscope and fluorescence microscope. From the in vitro cell viability test, the inflammatory cytokine (TNF-α) induced cell death was prevented by presenting recombinant bacteriophage coating, albeit with no significant cytotoxic effect. It is also observed that the bacteriophage coating does not have critical effects on the electrochemical properties such as impedance and charge storage capacities. Thus, this approach demonstrates a promising anti-apoptotic as well as anti-inflammatory surface coating for neural implant applications. (paper)

  17. Bronchoprotection with a leukotriene receptor antagonist in asthmatic preschool children

    DEFF Research Database (Denmark)

    Bisgaard, H; Nielsen, K G

    2000-01-01

    We hypothesized that a leukotriene receptor antagonist (LTRA) could provide bronchoprotection against the cold, dry air-induced response in asthmatic preschool children. In a randomized, double-blind, placebo-controlled crossover study, we examined the effect of the specific LTRA montelukast at 5...

  18. Manumycin from a new Streptomyces strain shows antagonistic ...

    African Journals Online (AJOL)

    Manumycin from a new Streptomyces strain shows antagonistic effect against methicillin-resistant Staphylococcus aureus (MRSA)/vancomycin-resistant enterococci (VRE) strains from Korean Hospitals. Yun Hee Choi, Seung Sik Cho, Jaya Ram Simkhada, Chi Nam Seong, Hyo Jeong Lee, Hong Seop Moon, Jin Cheol Yoo ...

  19. Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng

    Directory of Open Access Journals (Sweden)

    Ze-Yan Fan

    2016-04-01

    Conclusion: The results suggest that diverse bacteria exist in the P. notoginseng rhizosphere soil, with differences in community in the same field, and antagonistic isolates may be good potential biological control agent for the notoginseng root-rot diseases caused by F. oxysporum, Fusarium solani, and Panax herbarum.

  20. Antagonistic effect of brevicin on Gram positive and Gram negative ...

    African Journals Online (AJOL)

    B. Senthil Kumar

    phylogenetic tree was constructed, based on evolutionary distances that were calculated by following the distance matrix method, using the Phylip package. Preparation and analysis of crude extract of protein (CEP) for their antagonistic activity against food borne pathogens. 24 h old MRS broth culture was prepared and ...

  1. Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies.

    Science.gov (United States)

    Palmer, G C

    2001-09-01

    Because of adverse reactions, early efforts to introduce high affinity competitive or use-dependent NMDA receptor antagonists into patients suffering from stroke, head trauma or epilepsy met with failure. Later it was discovered that both low affinity use-dependent NMDA receptor antagonists and compounds with selective affinity for the NR2B receptor subunit met the criteria for safe administration into patients. Furthermore, these low affinity antagonists exhibit significant mechanistic differences from their higher affinity counterparts. Success of the latter is attested to the ability of the following low affinity compounds to be marketed: 1) Cough suppressant-dextromethorphan (available for decades); 2) Parkinson's disease--amantadine, memantine and budipine; 3) Dementia--memantine; and 4) Epilepsy--felbamate. Moreover, Phase III clinical trials are ongoing with remacemide for epilepsy and Huntington's disease and head trauma for HU-211. A host of compounds are or were under evaluation for the possible treatment of stroke, head trauma, hyperalgesia and various neurodegenerative disorders. Despite the fact that other drugs with associated NMDA receptor mechanisms have reached clinical status, this review focuses only on those competitive and use-dependent NMDA receptor antagonists that reached clinical trails. The ensuing discussions link the in vivo pharmacological investigations that led to the success/mistakes/ failures for eventual testing of promising compounds in the clinic.

  2. Epiminocyclohepta[b]indole analogs as 5-HT6 antagonists

    DEFF Research Database (Denmark)

    Henderson, Alan J; Guzzo, Peter R; Ghosh, Animesh

    2012-01-01

    A new series of epiminocyclohepta[b]indoles with potent 5-HT(6) antagonist activity were discovered and optimized using in vitro protocols. One compound from this series was progressed to advanced pharmacokinetic (PK) studies followed by 5-HT(6) receptor occupancy studies. The compound was found ...

  3. Sympatho-inhibitory properties of various AT1 receptor antagonists

    NARCIS (Netherlands)

    Balt, Jippe C.; Mathy, Marie-Jeanne; Pfaffendorf, Martin; van Zwieten, Peter A.

    2002-01-01

    It is well known that angiotensin II (Ang II) can facilitate the effects of sympathetic neurotransmission. In the present study, using various experimental models, we investigated the inhibitory effects of several Ang II subtype 1 receptor (AT1) antagonists on this Ang II-induced facilitation. We

  4. Management of hyperkalaemia consequent to mineralocorticoid-receptor antagonist therapy

    NARCIS (Netherlands)

    Roscioni, Sara S.; de Zeeuw, Dick; Bakker, Stephan J. L.; Lambers Heerspink, Hiddo J.

    2012-01-01

    Mineralocorticoid-receptor antagonists (MRAs) reduce blood pressure and albuminuria in patients treated with angiotensin-converting-enzyme inhibitors or angiotensin-II-receptor blockers. The use of MRAs, however, is limited by the occurrence of hyperkalaemia, which frequently occurs in patients

  5. Calcium antagonists: a ready prescription for treating infectious diseases?

    Science.gov (United States)

    Clark, Kevin B; Eisenstein, Edward M; Krahl, Scott E

    2013-01-01

    Emergence of new and medically resistant pathogenic microbes continues to escalate toward worldwide public health, wild habitat, and commercial crop and livestock catastrophes. Attempts at solving this problem with sophisticated modern biotechnologies, such as smart vaccines and microbicidal and microbistatic drugs that precisely target parasitic bacteria, fungi, and protozoa, remain promising without major clinical and industrial successes. However, discovery of a more immediate, broad spectrum prophylaxis beyond conventional epidemiological approaches might take no longer than the time required to fill a prescription at your neighborhood pharmacy. Findings from a growing body of research suggest calcium antagonists, long approved and marketed for various human cardiovascular and neurological indications, may produce safe, efficacious antimicrobial effects. As a general category of drugs, calcium antagonists include compounds that disrupt passage of Ca(2+) molecules across cell membranes and walls, sequestration and mobilization of free intracellular Ca(2+), and downstream binding proteins and sensors of Ca(2+)-dependent regulatory pathways important for proper cell function. Administration of calcium antagonists alone at current therapeutically relevant doses and schedules, or with synergistic compounds and additional antimicrobial medications, figures to enhance host immunoprotection by directly altering pathogen infection sequences, life cycles, homeostasis, antibiotic tolerances, and numerous other infective, survival, and reproductive processes. Short of being miracle drugs, calcium antagonists are welcome old drugs with new tricks capable of controlling some of the most virulent and pervasive global infectious diseases of plants, animals, and humans, including Chagas' disease, malaria, and tuberculosis.

  6. Role of muscarinic receptor antagonists in urgency and nocturia

    NARCIS (Netherlands)

    Michel, Martin C.; de La Rosette, Jean J. M. C. H.

    2005-01-01

    The overactive bladder (OAB) syndrome is defined as urgency, with or without urgency incontinence, usually accompanied by frequency and nocturia. Muscarinic receptor antagonists are the most established form of treatment for OAB, but until recently their effectiveness was only confirmed for symptoms

  7. How Hybrid Organizations Turn Antagonistic Assets into Complementarities

    DEFF Research Database (Denmark)

    Hockerts, Kai

    2015-01-01

    This article focuses on people excluded from traditional markets as employees, producers, or consumers on the grounds that they lack the appropriate skills. It describes the processes through which these perceived liabilities can be overcome by so-called hybrid organizations. Hybrids pursue expli...... for complementarities, and by creating demands for antagonistic assets, or by using partnerships....

  8. Effects of calcium antagonists on hypertension and diastolic function ...

    African Journals Online (AJOL)

    Calcium antagonists are known to decrease blood pressure acutely and chronically in hypertensive patients with hypertensive heart disease, and also to improve their systolic function. However, disorders of diastolic function may occur early in hypertensive heart disease. The improvement of diastolic function by nifedipine ...

  9. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    International Nuclear Information System (INIS)

    Li, Qun-Yi; Zhang, Meng; Hallis, Tina M.; DeRosier, Therese A.; Yue, Jian-Min; Ye, Yang; Mais, Dale E.; Wang, Ming-Wei

    2010-01-01

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K i = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  10. Contrasting effects of intralocus sexual conflict on sexually antagonistic coevolution

    NARCIS (Netherlands)

    Pennell, Tanya M; de Haas, Freek J H; Morrow, Edward H; van Doorn, G Sander

    2016-01-01

    Evolutionary conflict between the sexes can induce arms races in which males evolve traits that are detrimental to the fitness of their female partners, and vice versa. This interlocus sexual conflict (IRSC) has been proposed as a cause of perpetual intersexual antagonistic coevolution with

  11. Effect of Three Calmodulin Antagonists on Subpopulations of CD44 ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus,. International Pharmaceutical ... cancer stem cells. It is not known, however, whether targeting CD44 can alter the fate of cancer stem cells themselves. In this study, the effect of the calmodulin antagonists (N-(10-.

  12. Effects of alpha(1)-adrenoceptor antagonists on male sexual function

    NARCIS (Netherlands)

    van Dijk, Marleen M.; de La Rosette, Jean J. M. C. H.; Michel, Martin C.

    2006-01-01

    alpha(1)-Adrenoceptor antagonists such as alfuzosin, doxazosin, tamsulosin and terazosin are first-line agents for the treatment of lower urinary tract symptoms suggestive of benign prostatic hyperplasia (BPH), but are only second-line agents (doxazosin and terazosin only) for the treatment of

  13. The Effect of Sympathetic Antagonists on the Antidepressant Action ...

    African Journals Online (AJOL)

    Alprazolam is an anti-anxiety drug shown to be effective in the treatment of depression. In this study, the effect of sympathetic receptor antagonists on alprazolam–induced antidepressant action was studied using a mouse model of forced swimming behavioral despair. The interaction of three sympathetic receptor ...

  14. Evaluation of antagonistic fungi against charcoal rot of sunflower ...

    African Journals Online (AJOL)

    user

    Results showed reduction in disease incidence of charcoal rot on sunflower cultivar G-66 with antagonist, A. flavus (100%) followed by A. niger (64.86%) P. capsulatum (63.79%) and T. viride (31.89%) over control. Decrease in disease incidence over control was 100% where seed was treated with combination of A. niger ...

  15. NK-1 receptor antagonists as anti-cancer drugs

    Indian Academy of Sciences (India)

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, ...

  16. About the use of antagonistic bacteria and fungi

    OpenAIRE

    Tilcher, R.; Schmidt, C.; Lorenz, D.; Wolf, G. A.

    2002-01-01

    Microorganisms isolated from the phylloplane of vine and cereal plants inhibiting different phytopathogenic fungi were tested as biological control agents against Plasmopara viticola (downy mildew of grapevine). Based on screening in vitro against Phytophthora infestans, P. parasitica, Pythium ultimum, Botrytis cinerea 62 bacterial isolates were selected for tests with Plasmopara viticola.. Antifungal bacterial strains were assayed for antagonistic activity towards the grapevine dieback fungu...

  17. Antagonistic bioactivity of endophytic strains isolated from Salvia ...

    African Journals Online (AJOL)

    The antibiotic-producing potential of endophytic populations from medical plant of Salvia miltiorrhiza was examined. A total of 63 isolates was screened against five fungal and three bacterial species for the production of antimicrobial compounds. It showed that more isolates was antagonistic to fungi than to bacteria.

  18. Voltage-Gated Calcium Channel Antagonists and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Bruce Lyeth

    2013-06-01

    Full Text Available Traumatic brain injury (TBI is a leading cause of death and disability in the United States. Despite more than 30 years of research, no pharmacological agents have been identified that improve neurological function following TBI. However, several lines of research described in this review provide support for further development of voltage gated calcium channel (VGCC antagonists as potential therapeutic agents. Following TBI, neurons and astrocytes experience a rapid and sometimes enduring increase in intracellular calcium ([Ca2+]i. These fluxes in [Ca2+]i drive not only apoptotic and necrotic cell death, but also can lead to long-term cell dysfunction in surviving cells. In a limited number of in vitro experiments, both L-type and N-type VGCC antagonists successfully reduced calcium loads as well as neuronal and astrocytic cell death following mechanical injury. In rodent models of TBI, administration of VGCC antagonists reduced cell death and improved cognitive function. It is clear that there is a critical need to find effective therapeutics and rational drug delivery strategies for the management and treatment of TBI, and we believe that further investigation of VGCC antagonists should be pursued before ruling out the possibility of successful translation to the clinic.

  19. Antagonistic potential of fluorescent Pseudomonas and its impact on ...

    African Journals Online (AJOL)

    This study focused on the antagonistic potential of fluorescent Pseudomonas in vitro, and its inoculation effect on growth performance of Lycopersicon esculentum in Fusarium oxysporum and Rhizoctonia solani infested soil. Biochemical characteristics of fluorescent Pseudomonas showed that all ten isolates were positive ...

  20. Vasopressin receptor antagonists: pharmacological tools and potential therapeutic agents

    NARCIS (Netherlands)

    Streefkerk, J. O.; van Zwieten, P. A.

    2006-01-01

    The present survey deals with the development and applications of non-peptidergic vasopressin receptor antagonists. The existence of at least three vasopressin receptors (V(1), V(2) and V(3) respectively) is firmly established. V(1)-receptors play a relevant role in the regulation of vascular tone,

  1. Screening and Mechanism of Trapping Ligand Antagonist Peptide ...

    African Journals Online (AJOL)

    Purpose: The aim of the present study was to develop peptide H9 as an efficient antagonist of human cytomegalovirus (HCMV) chemokine receptor US28. Methods: US28 gene was amplified from HCMV, and a stable expression system was constructed using NIH/3T3 cells. Interaction between peptide H9 and receptor ...

  2. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qun-Yi; Zhang, Meng [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Hallis, Tina M.; DeRosier, Therese A. [Cell Systems Division, Invitrogen, Madison, WI (United States); Yue, Jian-Min; Ye, Yang [State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Mais, Dale E. [The National Center for Drug Screening, Shanghai (China); MPI Research, Mattawan, MI (United States); Wang, Ming-Wei, E-mail: wangmw@mail.shcnc.ac.cn [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China)

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  3. Antagonistic activity of selected strains of Bacillus thuringiensis ...

    African Journals Online (AJOL)

    The aim of this work was to determine, in vitro, the antagonistic effectiveness of 60 strains of Bacillus thuringiensis against damping-off and root and stem rot caused by Rhizoctonia solani. The strains were obtained from the International Collection of Entomopathogenic Bacillus at the FCB-UANL. During the in vitro dual ...

  4. The Effect of Antagonist Muscle Sensory Input on Force Regulation.

    Directory of Open Access Journals (Sweden)

    Tanya Onushko

    Full Text Available The purpose of this study was to understand how stretch-related sensory feedback from an antagonist muscle affects agonist muscle output at different contraction levels in healthy adults. Ten young (25.3 ± 2.4 years, healthy subjects performed constant isometric knee flexion contractions (agonist at 6 torque levels: 5%, 10%, 15%, 20%, 30%, and 40% of their maximal voluntary contraction. For half of the trials, subjects received patellar tendon taps (antagonist sensory feedback during the contraction. We compared error in targeted knee flexion torque and hamstring muscle activity, with and without patellar tendon tapping, across the 6 torque levels. At lower torque levels (5%, 10%, and 15%, subjects produced greater knee torque error following tendon tapping compared with the same torque levels without tendon tapping. In contrast, we did not find any difference in torque output at higher target levels (20%, 30%, and 40% between trials with and without tendon tapping. We also observed a load-dependent increase in the magnitude of agonist muscle activity after tendon taps, with no associated load-dependent increase in agonist and antagonist co-activation, or reflex inhibition from the antagonist tapping. The findings suggest that at relatively low muscle activity there is a deficiency in the ability to correct motor output after sensory disturbances, and cortical centers (versus sub-cortical are likely involved.

  5. Isolation of Fusarium fujikuroi antagonistic bacteria and cloning of its ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... effects of volatile metabolites produced by antagonistic P. fluorescens found in the isolates inhibited growth of F. fujikuroi in vitro. ... secondary metabolites play critical roles in many aspects of bacterium-host interactions. ... Nocardia, Sorangium, Brevibacterium, and Burkholderia. (Mavrodi et al., 2006; ...

  6. Elucidating the mechanisms of fear extinction in developing animals: a special case of NMDA receptor-independent extinction in adolescent rats.

    Science.gov (United States)

    Bisby, Madelyne A; Baker, Kathryn D; Richardson, Rick

    2018-04-01

    NMDA receptors (NMDARs) are considered critical for the consolidation of extinction but recent work challenges this assumption. Namely, NMDARs are not required for extinction retention in infant rats as well as when extinction training occurs for a second time (i.e., reextinction) in adult rats. In this study, a possible third instance of NMDAR-independent extinction was tested. Although adolescents typically exhibit impaired extinction retention, rats that are conditioned as juveniles and then given extinction training as adolescents (JuvCond-AdolesExt) have good extinction retention. Unexpectedly, this good extinction retention is not associated with an up-regulation of a synaptic plasticity marker in the medial prefrontal cortex, a region implicated in extinction consolidation. In the current study, rats received either the noncompetitive NMDAR antagonist MK801 (0.1 mg/kg, s.c.) or saline before extinction training. In several experiments, rats conditioned and extinguished as juveniles, adolescents, or adults exhibited impaired extinction retention after MK801 compared to saline, but this effect was not observed in JuvCond-AdolesExt rats. Further experiments ruled out several alternative explanations for why NMDAR antagonism did not affect extinction retention in adolescents extinguishing fear learned as a juvenile. These results illustrate yet another circumstance in which NMDARs are not required for successful extinction retention and highlight the complexity of fear inhibition across development. © 2018 Bisby et al.; Published by Cold Spring Harbor Laboratory Press.

  7. Phencyclidine-induced abnormal behaviors in rats as measured by the hole board apparatus.

    Science.gov (United States)

    Morita, T; Sonoda, R; Nakato, K; Koshiya, K; Wanibuchi, F; Yamaguchi, T

    2000-02-01

    Phencyclidine (PCP) and methamphetamine (MAP) are known as psychotomimetic agents. Both agents produce behavioral alterations in animals. The present study investigated the difference in behavioral alterations in rats induced by these two psychotomimetic agents using the hole board apparatus (HBA). In addition, mechanisms underlying PCP-induced behavioral changes were also investigated. After the administration of PCP (1-4 mg/kg SC) or MAP (1-4 mg/kg SC), locomotor activity and dipping behavior were assessed using HBA. Effect of selective NMDA antagonists, (+)MK801 and 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), on rat behaviors were also assessed. The effects of D-alanine (D-Ala), a coagonist of NMDA receptors, or neuroleptics, haloperidol, clozapine and risperidone, on PCP-induced behavioral changes were investigated. PCP increased locomotor activity and decreased exploratory behaviors of rats in HBA. On the other hand, MAP increased locomotor activity but did not decrease exploratory behaviors. (+)MK-801 produced hyperactivity as well as decreased exploratory behaviors, eliciting behavioral changes very similar to those of PCP. CPP decreased the exploratory behavior but failed to produce hyperactivity. D-Ala attenuated both behavioral changes induced by PCP. Three neuroleptics tested here inhibited hyperactivity but did not attenuate decreases in exploratory behavior. These results suggest that PCP-induced decrease in exploratory behavior are attributable to antagonism of NMDA receptors and may not involve dopaminergic transmission via D2 receptors.

  8. N-Methyl-D-aspartate Receptor Excessive Activation Inhibited Fetal Rat Lung Development In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Zhengchang Liao

    2016-01-01

    Full Text Available Background. Intrauterine hypoxia is a common cause of fetal growth and lung development restriction. Although N-methyl-D-aspartate receptors (NMDARs are distributed in the postnatal lung and play a role in lung injury, little is known about NMDAR’s expression and role in fetal lung development. Methods. Real-time PCR and western blotting analysis were performed to detect NMDARs between embryonic days (E 15.5 and E21.5 in fetal rat lungs. NMDAR antagonist MK-801’s influence on intrauterine hypoxia-induced retardation of fetal lung development was tested in vivo, and NMDA’s direct effect on fetal lung development was observed using fetal lung organ culture in vitro. Results. All seven NMDARs are expressed in fetal rat lungs. Intrauterine hypoxia upregulated NMDARs expression in fetal lungs and decreased fetal body weight, lung weight, lung-weight-to-body-weight ratio, and radial alveolar count, whereas MK-801 alleviated this damage in vivo. In vitro experiments showed that NMDA decreased saccular circumference and area per unit and downregulated thyroid transcription factor-1 and surfactant protein-C mRNA expression. Conclusions. The excessive activation of NMDARs contributed to hypoxia-induced fetal lung development retardation and appropriate blockade of NMDAR might be a novel therapeutic strategy for minimizing the negative outcomes of prenatal hypoxia on lung development.

  9. Tandospirone, a 5-HT1A partial agonist, ameliorates aberrant lactate production in the prefrontal cortex of rats exposed to blockade of N-methy-D-aspartate receptors; Towards the therapeutics of cognitive impairment of schizophrenia

    Directory of Open Access Journals (Sweden)

    Takashi eUehara

    2014-09-01

    Full Text Available Rationale Augmentation therapy with serotonin-1A (5-HT1A receptor partial agonists has been suggested to improve cognitive deficits in patients with schizophrenia. Decreased activity of prefrontal cortex may provide a basis for cognitive deficits of the disease. Lactate plays a significant role in the supply of energy to the brain, and glutamatergic neurotransmission contributes to lactate production.Objectives and methods The purposes of this study were to examine the effect of repeated administration (once a daily for 4 days of tandospirone (0.05 and 5 mg/kg on brain energy metabolism, as represented by extracellular lactate concentration (eLAC in the medial prefrontal cortex (mPFC of young adult rats..Results Four-day treatment with MK-801, an NMDA-R antagonist, prolonged eLAC elevation induced by foot shock stress (FS. Co-administration with the high-dose tandospirone suppressed prolonged FS-induced eLAC elevation in rats receiving MK-801, whereas tandospirone by itself did not affected eLAC increment.Conclusions These results suggest that stimulation of 5-HT1A receptors ameliorates abnormalities of energy metabolism in the mPFC due to blockade of NMDA receptors. These findings provide a possible mechanism based on brain energy metabolism by which 5-HT1A agonism improve cognitive impairment in schizophrenia and related disorders.

  10. Isolation and Characterization of Activators of ERK/MAPK from Citrus Plants

    Directory of Open Access Journals (Sweden)

    Takashi Yoshida

    2012-02-01

    Full Text Available Extracellular signal-regulated kinases 1/2 (ERK1/2, components of the mitogen-activated protein kinase (MAPK signaling cascade, have been recently shown to be involved in synaptic plasticity and in the development of long-term memory in the central nervous system (CNS. We therefore examined the ability of Citrus compounds to activate ERK1/2 in cultured rat cortical neurons, whose activation might have a protective effect against neurodegenerative neurological disorders. Among the samples tested, extracts prepared from the peels of Citrus grandis (Kawachi bankan were found to have the greatest ability to activate ERK1/2. The active substances were isolated by chromatographic separation, and one of them was identified to be 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF. HMF significantly induced the phosphorylation of cAMP response element-binding protein (CREB, a downstream target of activated ERK1/2, which appears to be a critical step in the signaling cascade for the structural changes underlying the development of long-term potentiation (LTP. In addition, the administration of HMF into mice treated with NMDA receptor antagonist MK-801 restored the MK-801-induced deterioration of spatial learning performance in the Morris mater-maze task. Taken together, these results suggest that HMF is a neurotrophic agent for treating patients with memory disorders.

  11. THC Prevents MDMA Neurotoxicity in Mice.

    Directory of Open Access Journals (Sweden)

    Clara Touriño

    2010-02-01

    Full Text Available The majority of MDMA (ecstasy recreational users also consume cannabis. Despite the rewarding effects that both drugs have, they induce several opposite pharmacological responses. MDMA causes hyperthermia, oxidative stress and neuronal damage, especially at warm ambient temperature. However, THC, the main psychoactive compound of cannabis, produces hypothermic, anti-inflammatory and antioxidant effects. Therefore, THC may have a neuroprotective effect against MDMA-induced neurotoxicity. Mice receiving a neurotoxic regimen of MDMA (20 mg/kg x 4 were pretreated with THC (3 mg/kg x 4 at room (21 degrees C and at warm (26 degrees C temperature, and body temperature, striatal glial activation and DA terminal loss were assessed. To find out the mechanisms by which THC may prevent MDMA hyperthermia and neurotoxicity, the same procedure was carried out in animals pretreated with the CB(1 receptor antagonist AM251 and the CB(2 receptor antagonist AM630, as well as in CB(1, CB(2 and CB(1/CB(2 deficient mice. THC prevented MDMA-induced-hyperthermia and glial activation in animals housed at both room and warm temperature. Surprisingly, MDMA-induced DA terminal loss was only observed in animals housed at warm but not at room temperature, and this neurotoxic effect was reversed by THC administration. However, THC did not prevent MDMA-induced hyperthermia, glial activation, and DA terminal loss in animals treated with the CB(1 receptor antagonist AM251, neither in CB(1 and CB(1/CB(2 knockout mice. On the other hand, THC prevented MDMA-induced hyperthermia and DA terminal loss, but only partially suppressed glial activation in animals treated with the CB(2 cannabinoid antagonist and in CB(2 knockout animals. Our results indicate that THC protects against MDMA neurotoxicity, and suggest that these neuroprotective actions are primarily mediated by the reduction of hyperthermia through the activation of CB(1 receptor, although CB(2 receptors may also contribute to

  12. Metabotropic glutamate receptor antagonists but not NMDA antagonists affect conditioned taste aversion acquisition in the parabrachial nucleus of rats

    Czech Academy of Sciences Publication Activity Database

    Valeš, Karel; Zach, P.; Bielavská, Edita

    2006-01-01

    Roč. 169, č. 1 (2006), s. 50-57 ISSN 0014-4819 R&D Projects: GA MŠk(CZ) 1M0517 Institutional research plan: CEZ:AV0Z5011922 Keywords : learning * microdialysis * glutamate antagonists Subject RIV: FH - Neurology Impact factor: 1.959, year: 2006

  13. Endothelin Receptor Antagonists for the Treatment of Raynaud's Phenomenon and Digital Ulcers in Systemic Sclerosis

    Science.gov (United States)

    Arefiev, Kait; Fiorentino, David F.; Chung, Lorinda

    2011-01-01

    Systemic sclerosis is a connective tissue disease characterized by fibrosis of the skin, internal organs, and widespread vasculopathy. Raynaud's phenomenon and digital ulcers are vascular manifestations of this disease and cause significant morbidity. Current treatments are only moderately effective in reducing the severity of Raynaud's in a portion of patients and typically do not lead to substantial benefit in terms of the healing or prevention of digital ulcers. Several studies have evaluated the efficacy of targeting the vasoconstrictor endothelin-1 for the treatment of systemic sclerosis-associated vascular disease. The purpose of this paper is to summarize the published studies and case reports evaluating the efficacy of endothelin receptor antagonists in the treatment of Raynaud's phenomenon and digital ulcers associated with systemic sclerosis. PMID:22121371

  14. Endothelin Receptor Antagonists for the Treatment of Raynaud's Phenomenon and Digital Ulcers in Systemic Sclerosis

    Directory of Open Access Journals (Sweden)

    Kait Arefiev

    2011-01-01

    Full Text Available Systemic sclerosis is a connective tissue disease characterized by fibrosis of the skin, internal organs, and widespread vasculopathy. Raynaud's phenomenon and digital ulcers are vascular manifestations of this disease and cause significant morbidity. Current treatments are only moderately effective in reducing the severity of Raynaud's in a portion of patients and typically do not lead to substantial benefit in terms of the healing or prevention of digital ulcers. Several studies have evaluated the efficacy of targeting the vasoconstrictor endothelin-1 for the treatment of systemic sclerosis-associated vascular disease. The purpose of this paper is to summarize the published studies and case reports evaluating the efficacy of endothelin receptor antagonists in the treatment of Raynaud's phenomenon and digital ulcers associated with systemic sclerosis.

  15. Modification of Anxious Behavior after Psychogenic Trauma and Treatment with Galanin Receptor Antagonist.

    Science.gov (United States)

    Lyudyno, V I; Tsikunov, S G; Abdurasulova, I N; Kusov, A G; Klimenko, V M

    2015-07-01

    Effects of blockage of central galanin receptors on anxiety manifestations were studied in rats with psychogenic trauma. Psychogenic trauma was modeled by exposure of a group of rats to the situation when the partner was killed by a predator. Antagonist of galanin receptors was intranasally administered before stress exposure. Animal behavior was evaluated using the elevated-plus maze test, free exploratory paradigm, and open-field test. Psychogenic trauma was followed by an increase in anxiety level and appearance of agitated behavior. Blockage of galanin receptors aggravated behavioral impairment, which manifested in the pathological anxious reactions - manifestations of hypervigilance and hyperawareness. The results suggest that endogenous pool of galanin is involved into prevention of excessive CNS response to stressful stimuli typical of posttraumatic stress disorder.

  16. DIHYDROPYRIDINE CALCIUM ANTAGONISTS: DATA OF EVIDENCE BASED MEDICINE AND RECOM-MENDATIONS ON PRACTICAL USE

    Directory of Open Access Journals (Sweden)

    S. Y. Martsevich

    2007-01-01

    Full Text Available The classification of calcium antagonists is presented. There were considered the results of large randomized trials, which were devoted to study of influence of dihydropyridine calcium antagonists on the risk of cardiovascular complications. The place of dihydropyridine calcium antagonists in modern recommendations on treatment of arterial hypertension and ischemic heart disease is defined. The clinical importance of differences between various presentations of dihy-dropyridine calcium antagonists is stressed.

  17. DIHYDROPYRIDINE CALCIUM ANTAGONISTS: DATA OF EVIDENCE BASED MEDICINE AND RECOM-MENDATIONS ON PRACTICAL USE

    Directory of Open Access Journals (Sweden)

    S. Y. Martsevich

    2015-12-01

    Full Text Available The classification of calcium antagonists is presented. There were considered the results of large randomized trials, which were devoted to study of influence of dihydropyridine calcium antagonists on the risk of cardiovascular complications. The place of dihydropyridine calcium antagonists in modern recommendations on treatment of arterial hypertension and ischemic heart disease is defined. The clinical importance of differences between various presentations of dihy-dropyridine calcium antagonists is stressed.

  18. Serotonin 5-HT(2A) receptor antagonists in the treatment of insomnia: present status and future prospects.

    Science.gov (United States)

    Monti, J M

    2010-03-01

    Benzodiazepine (BZD) and non-BZD hypnotics improve sleep induction and sleep maintenance. BZD induces a further reduction of slow wave sleep (SWS) and rapid eye movement (REM) sleep, whereas SWS and REM values remain decreased during non-BZD administration. There is evidence indicating that the nonselective serotonin 5-HT(2A/2C) receptor antagonists, ritanserin, ketanserin, seganserin and ICI-169369, the selective 5-HT(2A) receptor antagonist eplivanserin and the 5-HT(2A) receptor inverse agonist pimavanserin, increase SWS in subjects with normal sleep. In addition, it has been shown that prior administration of ritanserin prevents the nitrazepam-induced suppression of SWS in normal subjects. Of note, ritanserin also induced an increase of SWS in poor sleepers, patients with chronic primary insomnia and psychiatric patients with a generalized anxiety disorder or a mood disorder. The 5-HT(2A) receptor inverse agonist APD-125 gave rise to a similar effect in patients with chronic primary insomnia. Thus, presently available evidence tends to indicate that the association of a 5-HT(2A) receptor antagonist or a 5-HT(2A) receptor inverse agonist with a BZD or a non-BZD hypnotic could be a valid alternative to normalize SWS in patients with primary or comorbid insomnia. Copyright 2010 Prous Science, S.A.U. or its licensors. All rights reserved.

  19. Preventing Addiction.

    Science.gov (United States)

    Moore, Susan Fordney

    The purpose of this paper is to provide the beginning counselor with an overview of prevention concepts. Prevention is a relatively new emphasis in community efforts to stem the rising costs of substance abuse and other high-risk behaviors. The paper discusses agent, host, and environmental prevention models and how they relate to causal theories…

  20. GnRH antagonist versus long agonist protocols in IVF: a systematic review and meta-analysis accounting for patient type.

    Science.gov (United States)

    Lambalk, C B; Banga, F R; Huirne, J A; Toftager, M; Pinborg, A; Homburg, R; van der Veen, F; van Wely, M

    2017-09-01

    pregnancy rate when the oral hormonal programming pill (OHP) pretreatment was combined with a flexible protocol (RR 0.74, 95% CI 0.59-0.91) while without OHP, the RR was 0.84, 95% CI 0.71-1.0. Subgroup analysis for the fixed antagonist schedule demonstrated no evidence of a significant difference with or without OHP (RR 0.94, 95% CI 0.79-1.12 and RR 0.94, 95% CI 0.83-1.05, respectively). Antagonists resulted in significantly lower OHSS rates both in the general IVF patients and in women with PCOS (RR 0.63, 95% CI 0.50-0.81 and RR 0.53, 95% CI 0.30-0.95, respectively). No data on OHSS was available from trials in poor responders. In a general IVF population, GnRH antagonists are associated with lower ongoing pregnancy rates when compared to long protocol agonists, but also with lower OHSS rates. Within this population, antagonist treatment prevents one case of OHSS in 40 patients but results in one less ongoing pregnancy out of every 28 women treated. Thus standard use of the long GnRH agonist treatment is perhaps still the approach of choice for prevention of premature luteinization. In couples with PCOS and poor responders, GnRH antagonists do not seem to compromise ongoing pregnancy rates and are associated with less OHSS and therefore could be considered as standard treatment. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. Glutamate receptor antagonists and growth factors modulate dentate granule cell neurogenesis in organotypic, rat hippocampal slice cultures

    DEFF Research Database (Denmark)

    Poulsen, Frantz Rom; Blaabjerg, Morten; Montero, Maria

    2005-01-01

    Generation of dentate granule cells and its modulation by glutamate receptor antagonists, growth factors and pilocarpine-induced seizure-like activity was investigated in rat hippocampal slice cultures derived from 1-week-old rats and grown for 2 weeks. Focussing on the dentate granule cell layer...... the number of TUC-4-positive cells, just as combining pilocarpine with the neurogenesis-stimulating compounds, prevented or reduced the increase of TUC-4-positive cells. None of the treatments were found to induce dentate granule cell death within the observed period. Labeling of dividing cells by adding 5...

  2. Time-dependent impact of glutamatergic modulators on the promnesiant effect of 5-HT6R blockade on mice recognition memory.

    Science.gov (United States)

    Asselot, Rachel; Simon-O'Brien, Emmanuelle; Lebourgeois, Sophie; Nee, Gérald; Delaunay, Virgile; Duchatelle, Pascal; Bouet, Valentine; Dauphin, François

    2017-04-01

    Selective antagonists at serotonin 5-HT 6 receptors (5-HT 6 R) improve memory performance in rodents and are currently under clinical investigations. If blockade of 5-HT 6 R is known to increase glutamate release, only two studies have so far demonstrated an interaction between 5-HT 6 R and glutamate transmission, but both, using the non-competitive NMDA antagonist MK-801, insensitive to variations of glutamate concentrations. In a place recognition task, we investigated here in mice the role of glutamate transmission in the beneficial effects of 5-HT 6 R blockade (SB-271046). Through the use of increasing intervals (2, 4 and 6h) between acquisition and retrieval, we investigated the time-dependent impact of two different glutamatergic modulators. NMDAR-dependant glutamate transmission (NMDA Receptors) was either blocked by the competitive antagonist at NMDAR, CGS 19755, or potentiated by the glycine transporter type 1 (GlyT1) inhibitor, NFPS. Results showed that neither SB-271046, nor CGS 19755, nor NFPS, alter behavioural performances after short intervals, i.e. when control mice displayed significant memory performances (2h and 4h) (respectively 10, 3, and 0.625mg.kg -1 ). Conversely, with the 6h-interval, a situation in which spontaneous forgetting is observed in control mice, SB-271046 improved recognition memory performances. This beneficial effect was prevented when co-administered with either CGS 19755 or NFPS, which themselves had no effect. Interestingly, a dose-dependent effect was observed with NFPS, with promnesic effect observed at lower dose (0.156mg.kg -1 ) when administrated alone, whereas it did no modify promnesic effect of SB-271046. These results demonstrate that promnesiant effect induced by 5-HT 6 R blockade is sensitive to the competitive blockade of NMDAR and underline the need of a fine adjustment of the inhibition of GlyT1. Overall, our findings support the idea of a complex crosstalk between serotonergic and glutamatergic systems in the

  3. Opioid antagonists with minimal sedation for opioid withdrawal.

    Science.gov (United States)

    Gowing, Linda; Ali, Robert; White, Jason M

    2017-05-29

    Managed withdrawal is a necessary step prior to drug-free treatment or as the endpoint of long-term substitution treatment. To assess the effects of opioid antagonists plus minimal sedation for opioid withdrawal. Comparators were placebo as well as more established approaches to detoxification, such as tapered doses of methadone, adrenergic agonists, buprenorphine and symptomatic medications. We updated our searches of the following databases to December 2016: CENTRAL, MEDLINE, Embase, PsycINFO and Web of Science. We also searched two trials registers and checked the reference lists of included studies for further references to relevant studies. We included randomised and quasi-randomised controlled clinical trials along with prospective controlled cohort studies comparing opioid antagonists plus minimal sedation versus other approaches or different opioid antagonist regimens for withdrawal in opioid-dependent participants. We used standard methodological procedures expected by Cochrane. Ten studies (6 randomised controlled trials and 4 prospective cohort studies, involving 955 participants) met the inclusion criteria for the review. We considered 7 of the 10 studies to be at high risk of bias in at least one of the domains we assessed.Nine studies compared an opioid antagonist-adrenergic agonist combination versus a treatment regimen based primarily on an alpha 2 -adrenergic agonist (clonidine or lofexidine). Other comparisons (placebo, tapered doses of methadone, buprenorphine) made by included studies were too diverse for any meaningful analysis. This review therefore focuses on the nine studies comparing an opioid antagonist (naltrexone or naloxone) plus clonidine or lofexidine versus treatment primarily based on clonidine or lofexidine.Five studies took place in an inpatient setting, two studies were in outpatients with day care, two used day care only for the first day of opioid antagonist administration, and one study described the setting as outpatient

  4. Crystal structure of the adenosine A2Areceptor bound to an antagonist reveals a potential allosteric pocket.

    Science.gov (United States)

    Sun, Bingfa; Bachhawat, Priti; Chu, Matthew Ling-Hon; Wood, Martyn; Ceska, Tom; Sands, Zara A; Mercier, Joel; Lebon, Florence; Kobilka, Tong Sun; Kobilka, Brian K

    2017-02-21

    The adenosine A 2A receptor (A 2A R) has long been implicated in cardiovascular disorders. As more selective A 2A R ligands are being identified, its roles in other disorders, such as Parkinson's disease, are starting to emerge, and A 2A R antagonists are important drug candidates for nondopaminergic anti-Parkinson treatment. Here we report the crystal structure of A 2A receptor bound to compound 1 (Cmpd-1), a novel A 2A R/ N -methyl d-aspartate receptor subtype 2B (NR2B) dual antagonist and potential anti-Parkinson candidate compound, at 3.5 Å resolution. The A 2A receptor with a cytochrome b562-RIL (BRIL) fusion (A 2A R-BRIL) in the intracellular loop 3 (ICL3) was crystallized in detergent micelles using vapor-phase diffusion. Whereas A 2A R-BRIL bound to the antagonist ZM241385 has previously been crystallized in lipidic cubic phase (LCP), structural differences in the Cmpd-1-bound A 2A R-BRIL prevented formation of the lattice observed with the ZM241385-bound receptor. The crystals grew with a type II crystal lattice in contrast to the typical type I packing seen from membrane protein structures crystallized in LCP. Cmpd-1 binds in a position that overlaps with the native ligand adenosine, but its methoxyphenyl group extends to an exosite not previously observed in other A 2A R structures. Structural analysis revealed that Cmpd-1 binding results in the unique conformations of two tyrosine residues, Tyr9 1.35 and Tyr271 7.36 , which are critical for the formation of the exosite. The structure reveals insights into antagonist binding that are not observed in other A 2A R structures, highlighting flexibility in the binding pocket that may facilitate the development of A 2A R-selective compounds for the treatment of Parkinson's disease.

  5. Randomized controlled trial of the CGRP receptor antagonist telcagepant for migraine prevention

    DEFF Research Database (Denmark)

    Ho, Tony W; Connor, Kathryn M; Zhang, Ying

    2014-01-01

    elevations do not support the use of telcagepant for daily administration. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that in patients with migraine, telcagepant taken daily reduces headache days by 1.4 days per month compared to placebo and causes 2.5% of patients to have elevations......-14 migraine days during a 4-week baseline were randomized to telcagepant 140 mg, telcagepant 280 mg, or placebo twice daily for 12 weeks. Efficacy was assessed by mean monthly headache days and migraine/probable migraine days (headache plus ≥ 1 associated symptom). RESULTS: The trial was terminated following...... initiation and resolved after treatment discontinuation. The originally planned efficacy analysis over 12 weeks was not performed due to limited data at later time points, but there was evidence that telcagepant resulted in a larger reduction from baseline than placebo for mean monthly headache days (month 1...

  6. Prevention of Stimulant-Induced Euphoria with an Opioid Receptor Antagonist

    Science.gov (United States)

    2014-10-01

    unrelated to study medication. The third subject experienced a reoccurrence of her peptic stress ulcers , and was thus terminated from the study and...Events Log Subject ID Date of AE Description Severity Expected? Related? Changes/ Corrective Action Date Reported to IRB 1770701 7/16/13 Stomache ... Stomach Cramp/Upset stomache Mild Expected Possible None N/A 1772201 1/25/14 anxious/worried in AM Moderate Expected Probable None N/A 1772201 1/25

  7. Tactical Approaches to Interconverting GPCR Agonists and Antagonists.

    Science.gov (United States)

    Dosa, Peter I; Amin, Elizabeth Ambrose

    2016-02-11

    There are many reported examples of small structural modifications to GPCR-targeted ligands leading to major changes in their functional activity, converting agonists into antagonists or vice versa. These shifts in functional activity are often accompanied by negligible changes in binding affinity. The current perspective focuses on outlining and analyzing various approaches that have been used to interconvert GPCR agonists, partial agonists, and antagonists in order to achieve the intended functional activity at a GPCR of therapeutic interest. An improved understanding of specific structural modifications that are likely to alter the functional activity of a GPCR ligand may be of use to researchers designing GPCR-targeted drugs and/or probe compounds, specifically in cases where a particular ligand exhibits good potency but not the preferred functional activity at the GPCR of choice.

  8. Are peripheral opioid antagonists the solution to opioid side effects?

    LENUS (Irish Health Repository)

    Bates, John J

    2012-02-03

    Opioid medication is the mainstay of therapy for severe acute and chronic pain. Unfortunately, the side effects of these medications can affect patient comfort and safety, thus limiting their proven therapeutic potential. Whereas the main analgesic effects of opioids are centrally mediated, many of the common side effects are mediated via peripheral receptors. Novel peripheral opioid antagonists have been recently introduced that can block the peripheral actions of opioids without affecting centrally mediated analgesia. We review the clinical and experimental evidence of their efficacy in ameliorating opioid side effects and consider what further information might be useful in defining their role. IMPLICATIONS: The major analgesic effects of opioid medication are mediated within the brain and spinal cord. Many of the side effects of opioids are caused by activation of receptors outside these areas. Recently developed peripherally restricted opioid antagonists have the ability to block many opioid side effects without affecting analgesia.

  9. In-silico guided discovery of novel CCR9 antagonists

    Science.gov (United States)

    Zhang, Xin; Cross, Jason B.; Romero, Jan; Heifetz, Alexander; Humphries, Eric; Hall, Katie; Wu, Yuchuan; Stucka, Sabrina; Zhang, Jing; Chandonnet, Haoqun; Lippa, Blaise; Ryan, M. Dominic; Baber, J. Christian

    2018-03-01

    Antagonism of CCR9 is a promising mechanism for treatment of inflammatory bowel disease, including ulcerative colitis and Crohn's disease. There is limited experimental data on CCR9 and its ligands, complicating efforts to identify new small molecule antagonists. We present here results of a successful virtual screening and rational hit-to-lead campaign that led to the discovery and initial optimization of novel CCR9 antagonists. This work uses a novel data fusion strategy to integrate the output of multiple computational tools, such as 2D similarity search, shape similarity, pharmacophore searching, and molecular docking, as well as the identification and incorporation of privileged chemokine fragments. The application of various ranking strategies, which combined consensus and parallel selection methods to achieve a balance of enrichment and novelty, resulted in 198 virtual screening hits in total, with an overall hit rate of 18%. Several hits were developed into early leads through targeted synthesis and purchase of analogs.

  10. Interleukin-1-receptor antagonist in type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Larsen, Claus M; Faulenbach, Mirjam; Vaag, Allan

    2007-01-01

    BACKGROUND: The expression of interleukin-1-receptor antagonist is reduced in pancreatic islets of patients with type 2 diabetes mellitus, and high glucose concentrations induce the production of interleukin-1beta in human pancreatic beta cells, leading to impaired insulin secretion, decreased cell...... proliferation, and apoptosis. METHODS: In this double-blind, parallel-group trial involving 70 patients with type 2 diabetes, we randomly assigned 34 patients to receive 100 mg of anakinra (a recombinant human interleukin-1-receptor antagonist) subcutaneously once daily for 13 weeks and 36 patients to receive......, and the body-mass index were similar in the two study groups. Symptomatic hypoglycemia was not observed, and there were no apparent drug-related serious adverse events. CONCLUSIONS: The blockade of interleukin-1 with anakinra improved glycemia and beta-cell secretory function and reduced markers of systemic...

  11. Non-imidazole histamine NO-donor H3-antagonists.

    Science.gov (United States)

    Tosco, Paolo; Bertinaria, Massimo; Di Stilo, Antonella; Cena, Clara; Fruttero, Roberta; Gasco, Alberto

    2005-01-01

    Recently a series of H3-antagonists related to Imoproxifan was realised (I); in these products the oxime substructure of the lead was constrained in NO-donor furoxan systems and in the corresponding furazan derivatives. In this paper, a new series of compounds derived from I by substituting the imidazole ring with the ethoxycarbonylpiperazino moiety present in the non-imidazole H3-ligand A-923 is described. For all the products synthesis and preliminary pharmacological characterisation, as well as their hydrophilic-lipophilic balance, are reported. The imidazole ring replacement generally results in a decreased H3-antagonist activity with respect to the analogues of series I and, in some cases, induces relaxing effects on the electrically contracted guinea-pig ileum, probably due to increased affinity for other receptor systems.

  12. Potential Clinical Implications of the Urotensin II Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Emilie Kane

    2011-07-01

    Full Text Available Urotensin-II (UII, which binds to its receptor UT, plays an important role in the heart, kidneys, pancreas, adrenal gland and CNS. In the vasculature, it acts as a potent endothelium-independent vasoconstrictor and endothelium-dependent vasodilator. In disease states, this constriction-dilation equilibrium is disrupted. There is an upregulation of the UII system in heart disease, metabolic syndrome and kidney failure. The increase in UII release and UT expression suggest that UII system may be implicated in the pathology and pathogenesis of these diseases by causing an increase in ACAT-1 activity leading to SMC proliferation and foam cell infiltration, insulin resistance (DMII, as well as inflammation, high blood pressure and plaque formation. Recently, UT antagonists such as SB-611812, palosuran, and most recently a piperazino-isoindolinone based antagonist have been developed in the hope of better understanding the UII system and treating its associated diseases.

  13. Construction, purification, and characterization of a chimeric TH1 antagonist

    Directory of Open Access Journals (Sweden)

    Javier-González Luís

    2006-05-01

    Full Text Available Abstract Background TH1 immune response antagonism is a desirable approach to mitigate some autoimmune and inflammatory reactions during the course of several diseases where IL-2 and IFN-γ are two central players. Therefore, the neutralization of both cytokines could provide beneficial effects in patients suffering from autoimmune or inflammatory illnesses. Results A chimeric antagonist that can antagonize the action of TH1 immunity mediators, IFN-γ and IL-2, was designed, engineered, expressed in E. coli, purified and evaluated for its in vitro biological activities. The TH1 antagonist molecule consists of the extracellular region for the human IFNγ receptor chain 1 fused by a four-aminoacid linker peptide to human 60 N-terminal aminoacid residues of IL-2. The corresponding gene fragments were isolated by RT-PCR and cloned in the pTPV-1 vector. E. coli (W3110 strain was transformed with this vector. The chimeric protein was expressed at high level as inclusion bodies. The protein was partially purified by pelleting and washing. It was then solubilized with strong denaturant and finally refolded by gel filtration. In vitro biological activity of chimera was demonstrated by inhibition of IFN-γ-dependent HLA-DR expression in Colo 205 cells, inhibition of IFN-γ antiproliferative effect on HEp-2 cells, and by a bidirectional effect in assays for IL-2 T-cell dependent proliferation: agonism in the absence versus inhibition in the presence of IL-2. Conclusion TH1 antagonist is a chimeric protein that inhibits the in vitro biological activities of human IFN-γ, and is a partial agonist/antagonist of human IL-2. With these attributes, the chimera has the potential to offer a new opportunity for the treatment of autoimmune and inflammatory diseases.

  14. State Estimation For An Agonistic-Antagonistic Muscle System

    OpenAIRE

    Nguyen, Thang; Warner, Holly; La, Hung; Mohammadi, Hanieh; Simon, Dan; Richter, Hanz

    2017-01-01

    Research on assistive technology, rehabilitation, and prosthesis requires the understanding of human machine interaction, in which human muscular properties play a pivotal role. This paper studies a nonlinear agonistic-antagonistic muscle system based on the Hill muscle model. To investigate the characteristics of the muscle model, the problem of estimating the state variables and activation signals of the dual muscle system is considered. In this work, parameter uncertainty and unknown input...

  15. Histamine-2 receptor antagonists as immunomodulators: new therapeutic views?

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen

    1996-01-01

    Considerable evidence has emerged to suggest that histamine participates in the regulation of the inflammatory response, immune reaction, coagulation cascade, and cardiovascular function. Furthermore, histamine may play a major role in the growth of normal and malignant tissue as a regulator...... antagonists as adjuvant single drugs to reduce trauma-, blood transfusion- and sepsis-induced immunosuppression has led to research in combined treatment regimens in major surgery, particularly, of patients operated on for malignant diseases....

  16. Chitinolytic Enterobacter agglomerans Antagonistic to Fungal Plant Pathogens

    OpenAIRE

    Chernin, L.; Ismailov, Z.; Haran, S.; Chet, I.

    1995-01-01

    Three Enterobacter agglomerans strains which produce and excrete proteins with chitinolytic activity were found while screening soil-borne bacteria antagonistic to fungal plant pathogens. The chitinolytic activity was induced when the strains were grown in the presence of colloidal chitin as the sole carbon source. It was quantitated by using assays with chromogenic p-nitrophenyl analogs of disaccharide, trisaccharide, and tetrasaccharide derivatives of N-acetylglucosamine. A set of three flu...

  17. ANTIHYPERTENSIVE TREATMENT IN ELDERLY PATIENTS WITH DIHYDROPYRIDINE CALCIUM ANTAGONISTS

    OpenAIRE

    Y. A. Karpov; V. V. Buza

    2006-01-01

    The proofs of necessity of active arterial hypertension (AH) treatment in elderly patients are given. Peculiarities of pathogenesis of AH in elderly patients, connected predominantly with loss of big arteries elasticity and reasoning widely spread of isolated systolic AH in these patients, are discussed. Advantages of dihydropyridine calcium antagonists (DPCA) for AH treatment in elderly patients are proved, safety of treatment with DPCA is discussed. Data of clinical studies is analyzed. Ana...

  18. Renoprotective effects of calcium antagonists on kidney disease

    OpenAIRE

    Mochammad Sja'bani, Mochammad Sja'bani

    2015-01-01

    There has been a growing number of evidence that calcium antagonists provide a salutary effects in preserving kidneys against acute renal ischemia in patients at increasing risk. Their beneficial effects on cellular and mitochondrial calcium may explain the effects on renal hemodynamics and metabolics. It seems, that they do not directly vasodilate kidney vessels but alter the response towards vasoconstrictor agents. This effect may mediate diuretic and natriuretic effect of calcium antagonis...

  19. Prevention of atrial fibrillation in patients with aortic valve stenosis with candesartan treatment after aortic valve replacement

    DEFF Research Database (Denmark)

    Dahl, J. S.; Videbaek, L.; Poulsen, M. K.

    2013-01-01

    Background: Accumulating data has suggested that treatment with Angiotensin-II receptor antagonists can prevent the new onset of atrial fibrillation (AF). The aim of this study was to evaluate whether treatment with candesartan on top of conventional treatment could prevent new onset AF in patien...... with candesartan may prevent the new onset of atrial fibrillation. (C) 2011 Elsevier Ireland Ltd. All rights reserved....

  20. Deoxycholic acid conjugates are muscarinic cholinergic receptor antagonists.

    Science.gov (United States)

    Raufman, Jean-Pierre; Chen, Ying; Zimniak, Piotr; Cheng, Kunrong

    2002-08-01

    In the course of examining the actions of major human bile acids on cholinergic receptors, we discovered that conjugates of lithocholic acid are partial muscarinic agonists. In the present communication, we report that conjugates of deoxycholic acid (DC) act as cholinergic muscarinic receptor antagonists. Chinese hamster ovary (CHO) cells expressing rat M3-muscarinic receptors were used to test bile acids for inhibition of radioligand [N- (3)H-methylscopolamine ((3)H-NMS)] binding; alteration of inositol phosphate (IP) formation; mitogen-activated protein (MAP) kinase phosphorylation and cell toxicity. We observed approximately 18.8, 30.3 and 37.1% inhibition of (3)H-NMS binding with DC and its glycine (DCG) and taurine (DCT) conjugates, respectively (all 100 micromol/l, p exclusion or lactate dehydrogenase release from CHO-M3 cells. We observed the following rank order of potency (IC(50) micromol/l) for inhibition of (3)H-NMS by muscarinic antagonists and bile acids: NMS (0.0004) > 4-DAMP (0.009) > atropine (0.012) > DCT (170) > DCG (250). None of the bile acids tested were hydrolyzed by recombinant cholinesterase. At concentrations achieved in human bile, DC derivatives are natural muscarinic antagonists. Copyright 2002 S. Karger AG, Basel

  1. Glutamate receptor antagonists with the potential for migraine treatment.

    Science.gov (United States)

    Ferrari, Anna; Rustichelli, Cecilia; Baraldi, Carlo

    2017-12-01

    Preclinical, clinical, and other (e.g., genetic) evidence support the concept that migraine susceptibility may at least partially result from a glutamatergic system disorder. Therefore, the receptors of the glutamatergic system are considered relatively new targets for investigational drugs to treat migraine. Investigational and established glutamate receptor antagonists (GluRAs) have been shown to possess antinociceptive properties in preclinical models of trigeminovascular nociception and have been evaluated in clinical trials. This review focuses on preclinical and clinical studies of GluRAs for the treatment of migraine. Areas covered: A PubMed database search (from 1987 to December 2016) and a review of published studies on GluRAs in migraine were conducted. Expert opinion: All published clinical trials of investigational GluRAs have been unsuccessful in establishing benefit for acute migraine treatment. Clinical trial results contrast with the preclinical data, suggesting that glutamate (Glu) does not play a decisive role after the attack has already been triggered. These antagonists may instead be useful for migraine prophylaxis. Improving patient care requires further investigating and critically analyzing the role of Glu in migraine, designing experimental models to study more receptors and their corresponding antagonists, and identifying biomarkers to facilitate trials designed to target specific subgroups of migraine patients.

  2. Non-genetic inheritance and the patterns of antagonistic coevolution

    Directory of Open Access Journals (Sweden)

    Mostowy Rafal

    2012-06-01

    Full Text Available Abstract Background Antagonistic species interactions can lead to coevolutionary genotype or phenotype frequency oscillations, with important implications for ecological and evolutionary processes. However, direct empirical evidence of such oscillations is rare. The rarity of observations is generally attributed to inherent difficulties of ecological and evolutionary long-term studies, to weak or absent interaction between species, or to the absence of negative frequency-dependence. Results Here, we show that another factor – non-genetic inheritance, mediated for example by epigenetic mechanisms – can completely eliminate oscillations in the presence of such negative frequency dependence, even if only a small fraction of offspring are affected. We analytically derive the threshold value of this fraction at which the dynamics change from oscillatory to stable, and investigate how selection, mutation and generation times differences between the two species affect the threshold value. These results strongly suggest that the lack of phenotype frequency oscillations should not be attributed to the lack of strong interactions between antagonistic species. Conclusions Given increasing evidence of non-genetic effects on the outcomes of antagonistic species interactions, we suggest that these effects should be incorporated into ecological and evolutionary models of interacting species.

  3. Histamine H1 antagonists and clinical characteristics of febrile seizures

    Directory of Open Access Journals (Sweden)

    Zolaly MA

    2012-03-01

    Full Text Available Mohammed A ZolalyDepartment of Pediatrics, College of Medicine, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi ArabiaBackground: The purpose of this study was to determine whether seizure susceptibility due to antihistamines is provoked in patients with febrile seizures.Methods: The current descriptive study was carried out from April 2009 to February 2011 in 250 infants and children who visited the Madinah Maternity and Children's Hospital as a result of febrile convulsions. They were divided into two groups according to administration of antihistamines at the onset of fever.Results: Detailed clinical manifestations were compared between patients with and without administration of antihistamines. The time from fever detection to seizure onset was significantly shorter in the antihistamine group than that in the nonantihistamine group, and the duration of seizures was significantly longer in the antihistamine group than in the nonantihistamine group. No significant difference was found in time from fever detection to seizure onset or seizure duration between patients who received a first-generation antihistamine and those who received a second-generation antihistamine.Conclusion: Due to their central nervous system effects, H1 antagonists should not be administered to patients with febrile seizures and epilepsy. Caution should be exercised regarding the use of histamine H1 antagonists in young infants, because these drugs could potentially disturb the anticonvulsive central histaminergic system.Keywords: antihistamine, nonantihistamine, histamine H1 antagonist, febrile seizures

  4. Twisted gastrulation, a BMP antagonist, exacerbates podocyte injury.

    Directory of Open Access Journals (Sweden)

    Sachiko Yamada

    Full Text Available Podocyte injury is the first step in the progression of glomerulosclerosis. Previous studies have demonstrated the beneficial effect of bone morphogenetic protein 7 (Bmp7 in podocyte injury and the existence of native Bmp signaling in podocytes. Local activity of Bmp7 is controlled by cell-type specific Bmp antagonists, which inhibit the binding of Bmp7 to its receptors. Here we show that the product of Twisted gastrulation (Twsg1, a Bmp antagonist, is the central negative regulator of Bmp function in podocytes and that Twsg1 null mice are resistant to podocyte injury. Twsg1 was the most abundant Bmp antagonist in murine cultured podocytes. The administration of Bmp induced podocyte differentiation through Smad signaling, whereas the simultaneous administration of Twsg1 antagonized the effect. The administration of Bmp also inhibited podocyte proliferation, whereas simultaneous administration of Twsg1 antagonized the effect. Twsg1 was expressed in the glomerular parietal cells (PECs and distal nephron of the healthy kidney, and additionally in damaged glomerular cells in a murine model of podocyte injury. Twsg1 null mice exhibited milder hypoalbuminemia and hyperlipidemia, and milder histological changes while maintaining the expression of podocyte markers during podocyte injury model. Taken together, our results show that Twsg1 plays a critical role in the modulation of protective action of Bmp7 on podocytes, and that inhibition of Twsg1 is a promising means of development of novel treatment for podocyte injury.

  5. Tachykinin NK2 receptor antagonists. A patent review (2006 - 2010).

    Science.gov (United States)

    Altamura, Maria

    2012-01-01

    Tachykinins are endogenous peptide neurotransmitters, acting through the NK1, NK2 and NK3 receptors, at central and peripheral level. At peripheral level, they are involved in contraction of smooth muscle, secretion of water and ion from epithelia, as well as modulation of visceral pain sensitivity. Tachykinin NK2 receptor antagonists have the potential to be useful in the treatment of various gastrointestinal, genitourinary and CNS diseases. In this review, an overview of the patenting activity in the last 5 years is provided. Patents from different companies and research groups are discussed for their novelty and evaluated in relation to proposed indications and clinical studies. Relevant biological data are also presented. Patents claiming new therapeutic indications are included in a dedicated section. Although there is still no tachykinin NK2 receptor antagonist approved for use in human therapy, research in the field is still proposing new compounds and possible uses. A number of candidates are being evaluated in Phase II clinical studies, in indications ranging from gastrointestinal disorders to inflammatory diseases. The results of these studies will indicate the role of tachykinin NK2 receptor antagonists in human therapy.

  6. [Necrotic leg ulcer revealing vasculitis induced by vitamin K antagonists].

    Science.gov (United States)

    Chabli, H; Hocar, O; Akhdari, N; Amal, S; Hakkou, M; Hamdaoui, A

    2015-12-01

    Vitamin K antagonists are widely used in thromboembolic diseases. Hemorrhagic complications related to drug overdose represent their main side effect. We report a rare side effect, a severe and unexpected type of skin vasculitis - necrotic leg ulcer - induced by vitamin K antagonist. A 63-year-old female with a history of diabetes developed hyperalgesic necrotic ulcerations on the lower limbs one month after starting an acenocoumarol-based treatment for ischemic heart disease. Histological examination revealed lymphocytic vasculitis with fibrinoid necrosis. Etiological explorations searching for vasculitis were negative. In the absence of a precise etiology, drug-induced ulcer was suspected. Low molecular weight heparin was prescribed to replace acenocoumarol. The lesions slowly resolved with topical treatment. The chronological criteria and the negativity of etiological explorations allowed the diagnosis of vitamin K antagonist-induced necrotic skin ulcer. Clinicians should be aware of this rare complication induced by oral anticoagulants because of its practical therapeutic implications. This is the first case of necrotic leg ulcer induced by acenocoumarol corresponding histologically to necrotising lymphocytic vasculitis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Correlated EMG Oscillations between Antagonists during Cocontraction in Men.

    Science.gov (United States)

    Yoshitake, Yasuhide; Kanehisa, Hiroaki; Shinohara, Minoru

    2017-03-01

    The purpose of this study was to determine the modulation of common low-frequency oscillations in pools of motor units across antagonistic muscles because of the difference in the activation level of pools of spinal motor neurons and the presence of neuromuscular fatigue during intended cocontraction. Ten healthy young men (21.8 ± 1.5 yr) performed intended steady cocontractions of elbow flexors and extensors at maximal and a submaximal (10% of maximal EMG) effort. The submaximal cocontraction was repeated after sustained maximal contraction of elbow flexors. Surface EMG was recorded from the biceps brachii and triceps brachii muscles. Correlated EMG oscillations between the antagonistic muscles were quantified by the cross-correlation function (CCF) using rectified EMG for the EMG for the 3- to 15-Hz bands. The positive CCF peak in rectified EMG EMG, a negative CCF peak (i.e., out-of-phase oscillations) during submaximal cocontraction was smaller compared with maximal cocontraction but increased after the sustained contraction. Across subjects, the degree of reduction in maximal EMG amplitude after the sustained contraction was correlated with the amount of change in the CCF peak in EMG oscillations between antagonistic muscles occur during intended cocontraction, and 2) the magnitude of these correlated oscillations increases with the activation level of pools of spinal motor neurons and neuromuscular fatigue.

  8. Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer

    Science.gov (United States)

    Suzuki, H; Toyota, M; Caraway, H; Gabrielson, E; Ohmura, T; Fujikane, T; Nishikawa, N; Sogabe, Y; Nojima, M; Sonoda, T; Mori, M; Hirata, K; Imai, K; Shinomura, Y; Baylin, S B; Tokino, T

    2008-01-01

    Although mutation of APC or CTNNB1 (β-catenin) is rare in breast cancer, activation of Wnt signalling is nonetheless thought to play an important role in breast tumorigenesis, and epigenetic silencing of Wnt antagonist genes, including the secreted frizzled-related protein (SFRP) and Dickkopf (DKK) families, has been observed in various tumours. In breast cancer, frequent methylation and silencing of SFRP1 was recently documented; however, altered expression of other Wnt antagonist genes is largely unknown. In the present study, we found frequent methylation of SFRP family genes in breast cancer cell lines (SFRP1, 7 out of 11, 64%; SFRP2, 11 out of 11, 100%; SFRP5, 10 out of 11, 91%) and primary breast tumours (SFRP1, 31 out of 78, 40%; SFRP2, 60 out of 78, 77%; SFRP5, 55 out of 78, 71%). We also observed methylation of DKK1, although less frequently, in cell lines (3 out of 11, 27%) and primary tumours (15 out of 78, 19%). Breast cancer cell lines express various Wnt ligands, and overexpression of SFRPs inhibited cancer cell growth. In addition, overexpression of a β-catenin mutant and depletion of SFRP1 using small interfering RNA synergistically upregulated transcriptional activity of T-cell factor/lymphocyte enhancer factor. Our results confirm the frequent methylation and silencing of Wnt antagonist genes in breast cancer, and suggest that their loss of function contributes to activation of Wnt signalling in breast carcinogenesis. PMID:18283316

  9. The effect of the NMDA receptor-dependent signaling pathway on cell morphology and melanosome transfer in melanocytes.

    Science.gov (United States)

    Ni, Jing; Wang, Nan; Gao, Lili; Li, Lili; Zheng, Siwen; Liu, Yuejian; Ozukum, Molu; Nikiforova, Anna; Zhao, Guangming; Song, Zhiqi

    2016-12-01

    The pigmentation of skin and hair in mammals is driven by the intercellular transfer of melanosome from the melanocyte to surrounding keratinocytes However, the detailed molecular mechanism is still a subject of investigation. To investigate the effects of N-methyl-d-aspartate (NMDA) receptor-dependent signaling pathway on melanocyte morphologic change and melanosome transfer between melanocytes and keratinocytes. The expression and the intracellular distribution of NMDA receptor in human melanocyte were analyzed by Western blot and immunofluorescence staining. Melanocytes were treated with 100μM NMDA receptor antagonist MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate] and 100μM NMDA receptor agonist NMDA, after which the morphological change of melanocyte dendrites and filopodias were observed by scanning electron microscope. The β-tubulin distribution and intracellular calcium concentration ([Ca 2+ ] i ) were observed by immunofluorescence staining and flow cytometry under the same treatment respectively. In addition, melanocytes and keratinocytes were co-cultured with or without treatment of MK-801, and the melanosome transfer efficacy were analyzed by flow cytometry. We show that human epidermal melanocytes expresses NMDA receptor 1, one subtype of the ionotropic glutamate receptors (iGluRs). Stimulation with agonist of NMDA receptor increased the number of melanocyte filopodia. In contrast, blockage of NMDA receptor with antagonist decreased the number of melanocyte filopodia and this morphological change was accompanied by the disorganization of β-tubulin microfilaments in the intracellular cytoskeleton. In melanocyte-keratinocyte co-cultures, numerous melanocyte filopodia connect to keratinocyte plasma membranes; agonist of NMDA receptor exhibited an increased number of melanocyte filopodia attachments to keratinocyte, while antagonist of NMDA receptor led to a decreased. Moreover, antagonist of NMDA receptor decreased

  10. Abiotic conditions affect floral antagonists and mutualists of Impatiens capensis (Balsaminaceae).

    Science.gov (United States)

    Soper Gorden, Nicole L; Adler, Lynn S

    2013-04-01

    While the effect of abiotic factors on leaf herbivory is well known, the relative importance of abiotic conditions influencing both mutualists and antagonists is less well understood. Species interactions could enhance or reduce the direct effects of abiotic factors, depending on how mutualists and antagonists respond to abiotic conditions. We manipulated soil nutrients and shade in a factorial design and measured soil moisture in the annual Impatiens capensis. We then measured interactions with mutualists (two pollinating species) and antagonists (herbivores, florivores, nectar thieves, and flower bud gallers), as well as plant growth, floral rewards, and plant reproduction. Fertilizer increased plant growth, floral attractiveness, mutualist and antagonist interactions, and plant reproduction. Shade had no effects, and soil moisture was negatively associated with plant growth and reproduction. All effects were additive. Mutualist and antagonist floral interactions both increased on fertilized plants, but antagonists increased at a greater rate, leading to a larger ratio of antagonist to mutualist interactions on fertilized plants. Despite having more antagonists, fertilized plants still had significantly higher reproduction, suggesting higher tolerance to antagonists. Abiotic effects can have consistent effects on antagonists and mutualists, and on both floral and leaf antagonists. However, tolerance to antagonisms increased in favorable conditions. Thus, the direct positive effects of favorable abiotic conditions on plants outweighed negative indirect effects via increased antagonisms, which may lead to selection to grow in high-nutrient microsites in spite of increased herbivory.

  11. Fosaprepitant for the prevention of chemotherapy-induced nausea and vomiting

    DEFF Research Database (Denmark)

    Ruhlmann, Christina H. B.; Herrstedt, Jørn

    2012-01-01

    For patients receiving cancer chemotherapy, the ongoing development of antiemetic treatment is of significant importance. Patients consider nausea and vomiting among the most distressing symptoms of chemotherapy, and as new antiemetics have been very successful in prevention of vomiting, agents...... effective against nausea have become one of the major unmet needs. The neurokinin (NK)(1) receptor antagonist aprepitant potentiates the antiemetic efficacy of the combination of a serotonin receptor antagonist and a corticosteroid. Fosaprepitant (intravenous prodrug of aprepitant) given as a single...

  12. Involvement of NMDA receptors in soman-induced neuropathology

    Energy Technology Data Exchange (ETDEWEB)

    De Groot, D.M.; Bierman, E.P.; Van Huygevoort, A.H.; Bruijnzeel, P.L.

    1993-05-13

    Our current working hypothesis with regard to soman-induced neuropathology is that accumulated ACh, resulting from soman-inhibited ACHE potentiates glutamate-induced neuronal degeneration, most likely by lowering the threshold for glutamate excitation at the NMDA-receptor sites. The activation of the NMDA-ionic channels may lead to massive Ca2+ fluxes into the postsynaptic cell, causing cell degeneration. In this concept the NMDA receptor plays a crucial role. In the present study, the involvement of NMDA receptors in soman-induced convulsions is tested by injecting NMDA receptor antagonists MK801, AP5 and TCP, whether or not in combination with atropine and/or diazepam, either directly into the hippocampal CA1 area or in the lateral ventricle very near to CA1. This area is predominantly affected by soman and contains high concentrations of NMDA receptors. Also the effect of injection with a non-NMDA receptor antagonist is tested.

  13. Prevention: Exercise

    Medline Plus

    Full Text Available ... Steroid Injections Lumbar Zygapophysical (Facet) Joint Injections PREVENTION Lifestyle Choices 10 Tips for a Healthy Back Smoking Weight Patient Safety Exercise Strengthening Strengthen ...

  14. Prevention: Exercise

    Medline Plus

    Full Text Available ... Injections PREVENTION Lifestyle Choices 10 Tips for a Healthy Back Smoking Weight Patient Safety Exercise Strengthening Strengthen Your Core! Stretching/Flexibility Aerobic Exercise ...

  15. Prevention: Exercise

    Medline Plus

    Full Text Available ... Watchful Waiting and Education Injection Treatments for Spinal Pain Epidural Steroid Injections Lumbar Zygapophysical (Facet) Joint Injections PREVENTION Lifestyle Choices 10 ...

  16. A selective and potent CXCR3 antagonist SCH 546738 attenuates the development of autoimmune diseases and delays graft rejection

    Directory of Open Access Journals (Sweden)

    Jenh Chung-Her

    2012-01-01

    Full Text Available Abstract Background The CXCR3 receptor and its three interferon-inducible ligands (CXCL9, CXCL10 and CXCL11 have been implicated as playing a central role in directing a Th1 inflammatory response. Recent studies strongly support that the CXCR3 receptor is a very attractive therapeutic target for treating autoimmune diseases, such as rheumatoid arthritis, multiple sclerosis and psoriasis, and to prevent transplant rejection. We describe here the in vitro and in vivo pharmacological characterizations of a novel and potent small molecule CXCR3 antagonist, SCH 546738. Results In this study, we evaluated in vitro pharmacological properties of SCH 546738 by radioligand receptor binding and human activated T cell chemotaxis assays. In vivo efficacy of SCH 546738 was determined by mouse collagen-induced arthritis, rat and mouse experimental autoimmune encephalomyelitis, and rat cardiac transplantation models. We show that SCH 546738 binds to human CXCR3 with a high affinity of 0.4 nM. In addition, SCH 546738 displaces radiolabeled CXCL10 and CXCL11 from human CXCR3 with IC50 ranging from 0.8 to 2.2 nM in a non-competitive manner. SCH 546738 potently and specifically inhibits CXCR3-mediated chemotaxis in human activated T cells with IC90 about 10 nM. SCH 546738 attenuates the disease development in mouse collagen-induced arthritis model. SCH 546738 also significantly reduces disease severity in rat and mouse experimental autoimmune encephalomyelitis models. Furthermore, SCH 546738 alone achieves dose-dependent prolongation of rat cardiac allograft survival. Most significantly, SCH 546738 in combination with CsA supports permanent engraftment. Conclusions SCH 546738 is a novel, potent and non-competitive small molecule CXCR3 antagonist. It is efficacious in multiple preclinical disease models. These results demonstrate that therapy with CXCR3 antagonists may serve as a new strategy for treatment of autoimmune diseases, including rheumatoid arthritis and

  17. Protection from fatal viral encephalomyelitis: AMPA receptor antagonists have a direct effect on the inflammatory response to infection

    Science.gov (United States)

    Greene, Ivorlyne P.; Lee, Eun-Young; Prow, Natalie; Ngwang, Brownhilda; Griffin, Diane E.

    2008-01-01

    Neuronal cell death during fatal acute viral encephalomyelitis can result from damage caused by virus replication, glutamate excitotoxicity, and the immune response. A neurovirulent strain of the alphavirus Sindbis virus (NSV) causes fatal encephalomyelitis associated with motor neuron death in adult C57BL/6 mice that can be prevented by treatment with the prototypic noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor antagonist GYKI 52466 [Nargi-Aizenman J, et al. (2004) Ann Neurol 55:541–549]. To determine the mechanism of protection, NSV-infected mice were treated with 7-acetyl-5-(4-aminophenyl)-8(R)-methyl-8,9-dihydro-7H-1,3-dioxolo-(4,5-h)-benzodiazepine (talampanel), a potent, orally available member of the 2,3 benzodiazepine class of noncompetitive AMPA glutamate receptor antagonists. Talampanel-treated mice were protected from NSV-induced paralysis and death. Examination of the brain during infection showed significantly less mononuclear cell infiltration and no increase in astrocyte expression of glial fibrillary acidic protein in treated mice compared with untreated mice. Lack of CNS inflammation was attributable to failure of treated mice to induce activation and proliferation of lymphocytes in secondary lymphoid tissue in response to infection. Antibody responses to NSV were also suppressed by talampanel treatment, and virus clearance was delayed. These studies reveal a previously unrecognized effect of AMPA receptor antagonists on the immune response and suggest that prevention of immune-mediated damage, in addition to inhibition of excitotoxicity, is a mechanism by which these drugs protect from death of motor neurons caused by viral infection. PMID:18296635

  18. Role of angiotensin II type 1 receptor antagonists in the treatment of hypertension in patients aged >or=65 years.

    Science.gov (United States)

    Gradman, Alan H

    2009-01-01

    Systolic blood pressure (SBP) increases with age, and hypertension affects approximately two-thirds of adults in the US aged >60 years. Blood pressure (BP) increases as a consequence of age-related structural changes in large arteries, which lead to loss of elasticity and reduced vascular compliance. Increased pulse wave velocity augments SBP, resulting in a high prevalence of isolated systolic hypertension. Because age itself elevates cardiovascular risk, effective treatment of hypertension in an older (aged >or=65 years) patient population prevents many more events per 1000 patients treated than treatment of younger hypertensive patients. Recommendations for treating hypertension are similar in older patients compared with the general population. The Seventh Report of the Joint National Committee on Detection, Prevention, Evaluation, and Treatment of High Blood Pressure recommends target BP goals of hypertension, and treatment goals to include patients with coronary artery disease, other types of vascular disease and heart failure. Randomized clinical trials have demonstrated the efficacy of calcium channel antagonists (calcium channel blockers [CCBs]), low-dose diuretics, ACE inhibitors and angiotensin II type 1 receptor antagonists (angiotensin receptor blockers [ARBs]) in reducing the risk of stroke and other adverse cardiovascular outcomes in older patients; beta-adrenoceptor antagonists are less effective in terms of endpoint reduction. The majority of older patients require two or more drugs to achieve BP goals. Despite active treatment, half of these patients do not achieve target BP, in part because of the reluctance of physicians to intensify treatment, a phenomenon referred to as 'clinical inertia'. ARBs are effective antihypertensive agents in older patients and have been shown to reduce cardiovascular endpoints in patients with hypertension, diabetic nephropathy, cerebrovascular disease and heart failure. ARBs produce additive BP reduction when

  19. Predictions of in vivo prolactin levels from in vitro k I values of d 2 receptor antagonists using an agonist-antagonist interaction model

    NARCIS (Netherlands)

    Petersson, K.J.; Vermeulen, A.M.J.; Friberg, L.E.

    2013-01-01

    Prolactin elevation is a side effect of all currently available D2 receptor antagonists used in the treatment of schizophrenia. Prolactin elevation is the result of a direct antagonistic D2 effect blocking the tonic inhibition of prolactin release by dopamine. The aims of this work were to assess

  20. Serotonin-1A receptor stimulation mediates effects of a metabotropic glutamate 2/3 receptor antagonist, 2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid (LY341495), and an N-methyl-D-aspartate receptor antagonist, ketamine, in the novelty-suppressed feeding test.

    Science.gov (United States)

    Fukumoto, Kenichi; Iijima, Michihiko; Chaki, Shigeyuki

    2014-06-01

    α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor stimulation has been proposed to be a common neural mechanism of metabotropic glutamate 2/3 (mGlu2/3) receptor antagonists and an N-methyl-D-aspartate receptor antagonist, ketamine, exerting antidepressant effects in animal models. AMPA receptor stimulation has also been shown to mediate an increase in the extracellular level of serotonin (5-HT) in the medial prefrontal cortex by an mGlu2/3 receptor antagonist in rats. However, involvement of the serotonergic system in the actions of mGlu2/3 receptor antagonists and ketamine is not well understood. We investigated involvement of the serotonergic system in the effects of an mGlu2/3 receptor antagonist, 2S-2-amino-2-(1S,2S-2-carboxycycloprop-1-yl)-3-(xanth-9-yl)propanoic acid (LY341495), and ketamine in a novelty-suppressed feeding (NSF) test in mice. The intraperitoneal administration of LY341495 or ketamine at 30 min prior to the test significantly shortened latency to feed, which was attenuated by an AMPA receptor antagonist, 2,3-dioxo-6-nitro-1,2,3,4-tetrahydr-obenzo[f]quinoxaline-7-sulfonamide (NBQX). The effects of LY341495 and ketamine were no longer observed in mice pretreated with a tryptophan hydroxylase inhibitor, para-chlorophenylalanine (PCPA). Moreover, the effects of LY341495 and ketamine were blocked by a 5-HT1A receptor antagonist, N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridynyl) cyclohexane-carboxamide (WAY100635), but not by a 5-HT2A/2C receptor antagonist, ritanserin. Likewise, an AMPA receptor potentiator, 2,3-dihydro-1,4-benzodioxin-7-yl-(1-piperidyl)methanone (CX546), shortened latency to feed in the NSF test, which was prevented by depletion of 5-HT and blockade of 5-HT1A receptor. These results suggest that AMPA receptor-dependent 5-HT release and subsequent 5-HT1A receptor stimulation may be involved in the actions of an mGlu2/3 receptor antagonist and ketamine in the NSF test.

  1. Antagonistic activity of dairy lactobacilli against gram-foodborne pathogens - doi: 10.4025/actascitechnol.v36i1.18776

    Directory of Open Access Journals (Sweden)

    Marco Geria

    2014-01-01

    Full Text Available Thirty-five strains of lactic acid bacteria were isolated from artisanal raw milk cheese, presumptively identified and tested against one dairy Escherichia coli strain. Six lactobacilli, exhibiting antagonistic activity, were identified at the species level and their action was evaluated against four strains of Gram-foodborne pathogens (Escherichia coli O26, Escherichia coli O157:H7, Salmonella spp. 1023, and Salmonella Typhimurium and the control strain Escherichia coli ATCC 45922. The antagonistic activity was determined by spot method and the inhibition zones were measured by Autodesk AutoCAD 2007. Three strains, all Lactobacillus paracasei, were active against all the pathogens; the other strains, all Lactobacillus plantarum, showed antagonistic activity against some pathogens. This study highlights the intense and different antagonistic activity induced by lactobacilli against various foodborne pathogens thus demonstrating that using selected lactic acid bacteria strains as adjunct cultures could be an effective strategy to prevent the development of foodborne pathogens in artisanal raw milk cheeses, and thus improving their safety.

  2. The HIPOGAIA study: Monitoring of oral anticoagulation with vitamin K antagonists in the municipality of Gaia.

    Science.gov (United States)

    Guedes, Marta; Rego, Catarina

    2016-09-01

    Anticoagulant therapy is an effective measure in preventing thromboembolic adverse events. Of the diseases in which this treatment is indicated, atrial fibrillation (AF) has the highest incidence worldwide, with a prevalence of 1.5-2%. To assess the quality of monitoring of patients with non-valvular AF under oral anticoagulation with vitamin K antagonists in Vila Nova de Gaia healthcare units. This was a retrospective observational analytical study of the population registered at the 37 healthcare units of the Vila Nova de Gaia and Espinho health center area under oral anticoagulation with vitamin K antagonists during 2014. The data were collected using TAONet(®) software. The variables studied were health units, age, gender, INR value, time in therapeutic range (TTR) and medication. TTR was calculated for each patient using the Rosendaal linear interpolation method. It was stipulated that each patient should have undergone at least six INR measurements. Data were analyzed using Microsoft Excel(®) 2010 and SPSS(®) version 21, using descriptive and inferential statistical techniques. A total of 479 patients with non-valvular AF were studied, corresponding to 5883 INR tests. Mean TTR was 67.4±6.5%, and 35.3% of patients exhibited poor control (TTR <60%). Our study showed moderate control of coagulation parameters, but better than in many international clinical trials and in another Portuguese observational study. Nevertheless, there is still room for improvement in anticoagulation monitoring in primary health care. Copyright © 2016 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Antagonistic activity of Bacillus probiotics against bacteria isolates of oral cavity of patients with periodontitis

    Directory of Open Access Journals (Sweden)

    O. Rivis

    2013-03-01

    Full Text Available It is admitted that the normal human microflora plays an important role in supporting homeostasis, forming immune mechanisms and metabolism. Nowadays, there is a constant growth of different diseases due to microbiological imbalance in a human organism. Preparations containing “good bacteria” have been used for therapeutic purposes since ancient times. The mechanism of probiotics influence comprises their ability to compete for adhesion sites with the pathogens, to exhibit antagonistic activity and stimulate the immune system of a host. Most of probiotics commonly used are the spores of Bacillus. Initially the main focus of their use was the prevention of gastrointestinal disorders. So, the use of probiotics in dental practice is a poorly studied area. In recent years, probiotics have been investigated to provide the oral health. Therefore the study of using probiotics for correction of the oral microflora in people with inflammatory diseases of the periodontal tissues is promising. Our previous studies have shown changes in microbial community of an oral cavity in patients with periodontitis. In particular, the reducing number of obligate microorganisms and increasing number of pathogens was demonstrated. The paper describes the current data on the potential benefits and basic properties of the Bacillus spore probiotics, which demonstrate the viability and relevance in dental practice. The study tested antagonistic activity of commercial Bacillus probiotics "Biosporin" ("Biopharma", Ukraine, "Subalinum" ("Biopharma", Ukraine, "Normaflore" ("Sanofi-Aventis Zrt.", Hungary and "Enterogermina" ("Sanofi-Synthelabo SpA", Italy against clinical strains of microorganisms isolated from the oral cavity of patients with periodontitis. Thus, further studies on the role of spore probiotics in correction of the oral cavity microflora as a part of complex treatment of periodontitis should be carried out.

  4. The effect of the leukotriene antagonist pranlukast on pediatric acute otitis media.

    Science.gov (United States)

    Nakamura, Yoshihisa; Hamajima, Yuki; Suzuki, Motohiko; Esaki, Shinichi; Yokota, Makoto; Oshika, Masanori; Takagi, Ippei; Yasui, Keiko; Miyamoto, Naoya; Sugiyama, Kazuko; Nakayama, Meiho; Murakami, Shingo

    2016-08-01

    Conventional treatment for acute otitis media mainly targets bacteria with antibiotics, neglecting to control for mediators of inflammation. Mediators of inflammation, such as leukotrienes, have been identified in patients with acute otitis media (AOM) or subsequent secretory otitis media (SOM). They can cause functional eustachian tube dysfunction or increase mucous in the middle ear, causing persistent SOM following AOM. The objective of the present study was to evaluate whether or not administration of pranlukast, a widely used leukotriene C4, D4, and E4 antagonist, together with antibiotics could inhibit the progression to SOM. Children with AOM, who were from two to 12 years old, were randomly divided into two groups as follows: a control group in which 50 patients received antibiotic-based conventional treatment according to guidelines for treating AOM proposed by the Japan Otological Society (version 2006); and a pranlukast group, in which 52 patients were administered pranlukast for up to 28 days as well as given conventional treatment. Cases were regarded as persistent SOM when a tympanogram was type B or C2 four weeks after treatment was initiated. Two patients in the pranlukast group and 3 patients in the control group were excluded because they relapsed AOM within 28 days after initial treatment. Therefore, the analysis included 50 and 47 subjects in the pranlukast and control groups, respectively. The percentage of patients diagnosed with persistent SOM (22.0%) was significantly smaller in the pranlukast group compared with the control group (44.7%) (p = 0.018, chi-squared test). The results indicate that combined treatment of AOM with antibiotics and a leukotriene antagonist to control inflammation is useful for preventing progression to persistent SOM. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Histamine-2 receptor antagonist famotidine modulates cardiac stem cell characteristics in hypertensive heart disease

    Directory of Open Access Journals (Sweden)

    Sherin Saheera

    2017-10-01

    Full Text Available Background Cardiac stem cells (CSCs play a vital role in cardiac homeostasis. A decrease in the efficiency of cardiac stem cells is speculated in various cardiac abnormalities. The maintenance of a healthy stem cell population is essential for the prevention of adverse cardiac remodeling leading to cardiac failure. Famotidine, a histamine-2 receptor antagonist, is currently used to treat ulcers of the stomach and intestines. In repurposing the use of the drug, reduction of cardiac hypertrophy and improvement in cardiac function of spontaneously hypertensive rats (SHR was reported by our group. Given that stem cells are affected in cardiac pathologies, the effect of histamine-2 receptor antagonism on CSC characteristics was investigated. Methods To examine whether famotidine has a positive effect on CSCs, spontaneously hypertensive rats (SHR treated with the drug were sacrificed; and CSCs isolated from atrial appendages was evaluated. Six-month-old male SHRs were treated with famotidine (30 mg/kg/day for two months. The effect of famotidine treatment on migration, proliferation and survival of CSCs was compared with untreated SHRs and normotensive Wistar rats. Results Functional efficiency of CSCs from SHR was compromised relative to that in Wistar rat. Famotidine increased the migration and proliferation potential, along with retention of stemness of CSCs in treated SHRs. Cellular senescence and oxidative stress were also reduced. The expression of H2R was unaffected by the treatment. Discussion As anticipated, CSCs from SHRs were functionally impaired. Stem cell attributes of famotidine-treated SHRs was comparable to that of Wistar rats. Therefore, in addition to being cardioprotective, the histamine 2 receptor antagonist modulated cardiac stem cells characteristics. Restoration of stem cell efficiency by famotidine is possibly mediated by reduction of oxidative stress as the expression of H2R was unaffected by the treatment. Maintenance of

  6. Administration of an oxytocin receptor antagonist attenuates sexual motivation in male rats.

    Science.gov (United States)

    Blitzer, D S; Wells, T E; Hawley, W R

    2017-08-01

    In male rats, oxytocin impacts both sexual arousal and certain types of consummatory sexual behaviors. However, the role of oxytocin in the motivational aspects of sexual behavior has received limited attention. Given the role that oxytocin signaling plays in consummatory sexual behaviors, it was hypothesized that pharmacological attenuation of oxytocin signaling would reduce sexual motivation in male rats. Sexually experienced Long-Evans male rats were administered either an oxytocin receptor antagonist (L368,899 hydrochloride; 1mg/kg) or vehicle control into the intraperitoneal cavity 40min prior to placement into the center chamber of a three-chambered arena designed to assess sexual motivation. During the 20-minute test, a sexually experienced stimulus male rat and a sexually receptive stimulus female rat were separately confined to smaller chambers that were attached to the larger end chambers of the arena. However, physical contact between test and stimulus rats was prevented by perforated dividers. Immediately following the sexual motivation test, test male rats were placed with a sexually receptive female to examine consummatory sexual behaviors. Although both drug and vehicle treated rats exhibited a preference for the female, treatment with an oxytocin receptor antagonist decreased the amount of time spent with the female. There were no differences between drug and vehicle treated rats in either general activity, exploratory behaviors, the amount of time spent near the stimulus male rat, or consummatory sexual behaviors. Extending previous findings, these results indicate that oxytocin receptors are involved in sexual motivation in male rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Formulation development for the orexin receptor antagonist almorexant: assessment in two clinical studies

    Directory of Open Access Journals (Sweden)

    Dingemanse J

    2014-04-01

    Full Text Available Jasper Dingemanse, Martine Gehin, Hans Gabriel Cruz, Petra HoeverDepartment of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Allschwil, SwitzerlandAbstract: Almorexant, a dual orexin receptor antagonist, was investigated for the treatment of insomnia. The following observations initiated further formulation development: the active pharmaceutical ingredient (API was sticking to the apparatus used during tablet compression; almorexant has an absolute bioavailability of 11.2%; and almorexant modestly decreased the latency to persistent sleep by 10.4 minutes in patients. Two randomized crossover studies were performed to investigate the pharmacokinetics of several new formulations in healthy subjects. In study I, the old “sticky” tablet was compared to two new formulations developed to prevent sticking: a qualitatively similar tablet but with a larger API crystal size and a tablet with 30% more excipients as well as a larger API crystal size. This latter formulation was available in two strengths. The geometric mean ratios and 90% confidence interval of the area under the curve (AUC were within the bioequivalence range of 0.80–1.25 for the different comparisons between formulations. In study II, 100 mg of the reference tablet was compared to 25 and 50 mg of a liquid-filled hard gelatin capsule developed to increase the bioavailability of almorexant. The geometric mean ratios of the maximum concentration and AUC comparing the new 25 and 50 mg capsule formulations to the reference tablet did not exceed 0.25 and 0.50, respectively, indicating that the new capsule formulation did not increase the maximum concentration of or the total exposure to almorexant. In conclusion, a new tablet was developed but formulation development aimed at increasing the bioavailability of almorexant failed.Keywords: almorexant, orexin receptor antagonist, pharmacokinetics, formulation development, healthy subjects

  8. Ectopic pregnancy risk factors for ART patients undergoing the GnRH antagonist protocol: a retrospective study.

    Science.gov (United States)

    Weiss, A; Beck-Fruchter, R; Golan, J; Lavee, M; Geslevich, Y; Shalev, E

    2016-03-23

    In-vitro fertilization is a known risk factor for ectopic pregnancies. We sought to establish the risk factors for ectopic pregnancy in GnRH antagonist cycles examining patient and stimulation parameters with an emphasis on ovulation trigger. We conducted a retrospective, cohort study of 343 patients undergoing 380 assisted reproductive technology (ART) cycles with the GnRH antagonist protocol and achieving a clinical pregnancy from November 2010 through December 2015. Significant risk factors for ectopic pregnancy in the univariate analysis included prior Cesarean section (CS), endometriosis, mechanical factor infertility, longer stimulation, elevated estradiol and progesterone levels, GnRH agonist trigger, higher number of oocytes aspirated, and insemination technique. Independent risk factors for ectopic pregnancy in the multivariate analysis included GnRH agonist trigger, higher number of oocytes aspirated, insemination technique, and prior Cesarean section. Excessive ovarian response, IVF (as opposed to ICSI), prior Cesarean section and GnRH agonist trigger were found to be independent risk factors for ectopic pregnancy. Caution should be exercised before incorporating the GnRH agonist trigger for indications other than preventing OHSS. When excessive ovarian response leads to utilization of GnRH agonist trigger, strategies for preventing ectopic pregnancy, such as a freeze all policy or blastocyst transfer, should be considered. Further studies should elucidate whether adjusting the luteal support can reduce the ectopic pregnancy risk.

  9. Isolation, identification and selection of antagonistic yeast against Alternaria alternata infection and tenuazonic acid production in wine grapes from Argentina.

    Science.gov (United States)

    Prendes, Luciana P; Merín, María G; Fontana, Ariel R; Bottini, Rubén A; Ramirez, María L; Morata de Ambrosini, Vilma I

    2018-02-02

    Epiphytic isolates with yeast characteristics from grapes of the Malbec cultivar were obtained in order to find antagonists against Alternaria alternata. From a total of 111 isolates, 82% corresponded to the yeast-like organism Aureobasidium pullulans and the rest to the non-Saccharomyces yeasts Hanseniaspora uvarum (6.3%), Metschnikowia pulcherrima or spp. (5.4%), Cryptoccocus laurentti II (2.7%), Starmerella bacilaris or Candida zemplinina (2.7%) and Rhodotorula spp. (0.9%). The 22.4% (15 out of 67) of epiphytic yeasts and yeast-like organisms evaluated were able to reduce A. alternata infection from 0.0 to 4.4% when applied 2h previous to pathogen inoculation on wounds of grape berries. From these selected strains, 14 out of 15 strains completely prevented A. alternata infection (0.0%), which implies potential for field application. All Metschnikowia (pulcherrima or spp.), S. bacillaris and almost all H. uvarum evaluated strains showed antagonist capability against A. alternata. Meanwhile, none of the lesser nutritional requirement strains belonging to A. pullulans, Cr. laurenti II and Rhodotorula spp. did. All the yeasts with capacity to prevent A. alternata infection also reduced tenuazonic acid (TA) production by 81.2 to 99.8%, finding TA levels similar to negative controls. Therefore, the epiphytic yeasts selected are promising as biological control agents against Alternaria infection and toxin production in grapes for winemaking. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Role of ionotropic GABA, glutamate and glycine receptors in the tonic and reflex control of cardiac vagal outflow in the rat

    Directory of Open Access Journals (Sweden)

    Goodchild Ann K

    2010-10-01

    Full Text Available Abstract Background Cardiac vagal preganglionic neurons (CVPN are responsible for the tonic, reflex and respiratory modulation of heart rate (HR. Although CVPN receive GABAergic and glutamatergic inputs, likely involved in respiratory and reflex modulation of HR respectively, little else is known regarding the functions controlled by ionotropic inputs. Activation of g-protein coupled receptors (GPCR alters these inputs, but the functional consequence is largely unknown. The present study aimed to delineate how ionotropic GABAergic, glycinergic and glutamatergic inputs contribute to the tonic and reflex control of HR and in particular determine which receptor subtypes were involved. Furthermore, we wished to establish how activation of the 5-HT1A GPCR affects tonic and reflex control of HR and what ionotropic interactions this might involve. Results Microinjection of the GABAA antagonist picrotoxin into CVPN decreased HR but did not affect baroreflex bradycardia. The glycine antagonist strychnine did not alter HR or baroreflex bradycardia. Combined microinjection of the NMDA antagonist, MK801, and AMPA antagonist, CNQX, into CVPN evoked a small bradycardia and abolished baroreflex bradycardia. MK801 attenuated whereas CNQX abolished baroreceptor bradycardia. Control intravenous injections of the 5-HT1A agonist 8-OH-DPAT evoked a small bradycardia and potentiated baroreflex bradycardia. These effects were still observed following microinjection of picrotoxin but not strychnine into CVPN. Conclusions We conclude that activation of GABAA receptors set the level of HR whereas AMPA to a greater extent than NMDA receptors elicit baroreflex changes in HR. Furthermore, activation of 5-HT1A receptors evokes bradycardia and enhances baroreflex changes in HR due to interactions with glycinergic neurons involving strychnine receptors. This study provides reference for future studies investigating how diseases alter neurochemical inputs to CVPN.

  11. Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma.

    Science.gov (United States)

    Yarova, Polina L; Stewart, Alecia L; Sathish, Venkatachalem; Britt, Rodney D; Thompson, Michael A; P Lowe, Alexander P; Freeman, Michelle; Aravamudan, Bharathi; Kita, Hirohito; Brennan, Sarah C; Schepelmann, Martin; Davies, Thomas; Yung, Sun; Cholisoh, Zakky; Kidd, Emma J; Ford, William R; Broadley, Kenneth J; Rietdorf, Katja; Chang, Wenhan; Bin Khayat, Mohd E; Ward, Donald T; Corrigan, Christopher J; T Ward, Jeremy P; Kemp, Paul J; Pabelick, Christina M; Prakash, Y S; Riccardi, Daniela

    2015-04-22

    Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyperreactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics. Copyright © 2015, American Association for the Advancement of Science.

  12. Poison Prevention

    Science.gov (United States)

    ... Prevention Listen Español Text Size Email Print Share Poison Prevention Page Content Article Body Post the Poison Help number 1-800-222-1222 on the ... or empty container of a toxic substance, call Poison Help immediately. More than a million American children ...

  13. Influence of specific and non-specific endothelin receptor antagonists on renal morphology in rats with surgical renal ablation.

    Science.gov (United States)

    Nabokov, A; Amann, K; Wagner, J; Gehlen, F; Münter, K; Ritz, E

    1996-03-01

    Studies in experimental models of chronic renal failure suggest an important role for the endothelin system in the development of renal scarring. Endothelin receptor (ETR) anatagonists interfere with progression, but it has not been resolved (i) whether this is true for all models of renal damage, (ii) to what extent the effect is modulated by systemic blood pressure and (iii) whether the effect is similar for ETAR and ETA/ETBR antagonists. 5/6 subtotal nephrectomy (SNX) by surgical ablation in male Sprague-Dawley rats. Comparison of ACE inhibitor Trandolapril (0.1 mg/kg/day), ETAR antagonist BMS 182874 (30 mg/kg/day) and ETAR/ETBR antagonist Ro 46-2005 (30 mg/kg/day) by gavage. Duration of the experiment eight weeks. Systolic blood pressure by tail plethysmography. Perfusion fixation of kidneys and morphometric analysis ET-1 and ETA/ETBR by quantitative PCR. SNX caused a significant (P < 0.01) increase of systolic blood pressure (170 +/- 8.6 mmHg) compared to sham operated controls (131 +/- 5.3 mmHg). Blood pressure was significantly (P < 0.001) lower with Trandolapril (128 +/- 5.3 mmHg), but not with BMS 182874 (153 +/- 5.9 mmHg) or Ro 46-2005 (167 +/- 7.6 mmHg). Compared to sham operated rats (0.03 +/- 0.01) glomerulosclerosis index (GSI) was significantly (P < 0.01) higher in the untreated SNX group (0.9 +/- 0.15). Significantly lower GSI was found in Trandolapril treated (0.29 +/- 0.04), BMS 182874 treated (0.36 +/- 0.05), and Ro 46-2005 treated animals (0.45 +/- 0.11). The effect of BMS 182874 was accompanied by lower tubulointerstitial damage index. Mean glomerular volume was dramatically increased (P < 0.001) in SNX rats as compared to sham operated animals. This glomerular enlargement was partially prevented by Trandolapril (P < 0.05), but not by either ETR antagonist. ET-1 mRNA tended to be higher in SNX irrespective of treatment, while ETAR and ETBR mRNA were significantly lower. Both specific (ETAR) and non-specific (ETA/ETBR) endothelin antagonists

  14. Does protein binding modulate the effect of angiotensin II receptor antagonists?

    Directory of Open Access Journals (Sweden)

    Marc P Maillard

    2001-03-01

    Full Text Available IntroductionAngiotensin II AT 1-receptor antagonists are highly bound to plasma proteins (≥ 99%. With some antagonists, such as DuP-532, the protein binding was such that no efficacy of the drug could be demonstrated clinically. Whether protein binding interferes with the efficacy of other antagonists is not known. We have therefore investigated in vitro how plasma proteins may affect the antagonistic effect of different AT1-receptor antagonists.MethodsA radio-receptor binding assay was used to analyse the interaction between proteins and the ability of various angiotensin II (Ang II antagonists to block AT1-receptors. In addition, the Biacore technology, a new technique which enables the real-time monitoring of binding events between two molecules, was used to evaluate the dissociation rate constants of five AT1-receptor antagonists from human serum albumin.ResultsThe in vitro AT 1-antagonistic effects of different Ang II receptor antagonists were differentially affected by the presence of human plasma, with rightward shifts of the IC50 ranging from one to several orders of magnitude. The importance of the shift correlates with the dissociation rate constants of these drugs from albumin. Our experiments also show that the way that AT1-receptor antagonists bind to proteins differs from one compound to another. These results suggest that the interaction with plasma proteins appears to modulate the efficacy of some Ang II antagonists.ConclusionAlthough the high binding level of Ang II receptor antagonist to plasma proteins appears to be a feature common to this class of compounds, the kinetics and characteristics of this binding is of great importance. With some antagonists, protein binding interferes markedly with their efficacy to block AT1-receptors.

  15. Sexually antagonistic "zygotic drive" of the sex chromosomes.

    Directory of Open Access Journals (Sweden)

    William R Rice

    2008-12-01

    Full Text Available Genomic conflict is perplexing because it causes the fitness of a species to decline rather than improve. Many diverse forms of genomic conflict have been identified, but this extant tally may be incomplete. Here, we show that the unusual characteristics of the sex chromosomes can, in principle, lead to a previously unappreciated form of sexual genomic conflict. The phenomenon occurs because there is selection in the heterogametic sex for sex-linked mutations that harm the sex of offspring that does not carry them, whenever there is competition among siblings. This harmful phenotype can be expressed as an antagonistic green-beard effect that is mediated by epigenetic parental effects, parental investment, and/or interactions among siblings. We call this form of genomic conflict sexually antagonistic "zygotic drive", because it is functionally equivalent to meiotic drive, except that it operates during the zygotic and postzygotic stages of the life cycle rather than the meiotic and gametic stages. A combination of mathematical modeling and a survey of empirical studies is used to show that sexually antagonistic zygotic drive is feasible, likely to be widespread in nature, and that it can promote a genetic "arms race" between the homo- and heteromorphic sex chromosomes. This new category of genomic conflict has the potential to strongly influence other fundamental evolutionary processes, such as speciation and the degeneration of the Y and W sex chromosomes. It also fosters a new genetic hypothesis for the evolution of enigmatic fitness-reducing traits like the high frequency of spontaneous abortion, sterility, and homosexuality observed in humans.

  16. Central actions of a novel and selective dopamine antagonist

    International Nuclear Information System (INIS)

    Schulz, D.W.

    1985-01-01

    Receptors for the neurotransmitter dopamine traditionally have been divided into two subgroups: the D 1 class, which is linked to the stimulation of adenylate cyclase-activity, and the D 2 class which is not. There is much evidence suggesting that it is the D 2 class which is not. There is much evidence suggesting that it is the D 2 dopamine receptor that mediates the physiological and behavioral actions of dopamine in the intact animal. However, the benzazepine SCH23390 is a dopamine antagonist which has potent behavioral actions while displaying apparent neurochemical selectivity for the D 1 class of dopamine receptors. The purpose of this dissertation was to (1) confirm and characterize this selectivity, and (2) test certain hypothesis related to possible modes of action of SCH233390. The inhibition of adenylate cyclase by SCH23390 occurred via an action at the dopamine receptor only. A radiolabeled analog of SCH23390 displayed the receptor binding properties of a specific high-affinity ligand, and regional receptor densities were highly correlated with dopamine levels. The subcellular distribution of [ 3 H]-SCH23390 binding did not correspond completely with that of dopamine-stimulated adenylate cyclase. The neurochemical potency of SCH23390 as a D 1 receptor antagonist was preserved following parental administration. A variety of dopamine agonists and antagonists displayed a high correlation between their abilities to compete for [ 3 H]-SCH23390 binding in vitro and to act at an adenylate cyclase-linked receptor. Finally, the relative affinities of dopamine and SCH23390 for both D 1 receptors and [ 3 H]-SCH23390 binding sites were comparable. It is concluded that the behavioral effects of SCH23390 are mediated by actions at D 1 dopamine receptors only, and that the physiological importance of this class of receptors should be reevaluated

  17. Classification and virtual screening of androgen receptor antagonists.

    Science.gov (United States)

    Li, Jiazhong; Gramatica, Paola

    2010-05-24

    Computational tools, such as quantitative structure-activity relationship (QSAR), are highly useful as screening support for prioritization of substances of very high concern (SVHC). From the practical point of view, QSAR models should be effective to pick out more active rather than inactive compounds, expressed as sensitivity in classification works. This research investigates the classification of a big data set of endocrine-disrupting chemicals (EDCs)-androgen receptor (AR) antagonists, mainly aiming to improve the external sensitivity and to screen for potential AR binders. The kNN, lazy IB1, and ADTree methods and the consensus approach were used to build different models, which improve the sensitivity on external chemicals from 57.1% (literature) to 76.4%. Additionally, the models' predictive abilities were further validated on a blind collected data set (sensitivity: 85.7%). Then the proposed classifiers were used: (i) to distinguish a set of AR binders into antagonists and agonists; (ii) to screen a combined estrogen receptor binder database to find out possible chemicals that can bind to both AR and ER; and (iii) to virtually screen our in-house environmental chemical database. The in silico screening results suggest: (i) that some compounds can affect the normal endocrine system through a complex mechanism binding both to ER and AR; (ii) new EDCs, which are nonER binders, but can in silico bind to AR, are recognized; and (iii) about 20% of compounds in a big data set of environmental chemicals are predicted as new AR antagonists. The priority should be given to them to experimentally test the binding activities with AR.

  18. Proton pump inhibitors versus histamine 2 receptor antagonists for stress ulcer prophylaxis in critically ill patients: a systematic review and meta-analysis.

    Science.gov (United States)

    Alhazzani, Waleed; Alenezi, Farhan; Jaeschke, Roman Z; Moayyedi, Paul; Cook, Deborah J

    2013-03-01

    Critically ill patients may develop bleeding caused by stress ulceration. Acid suppression is commonly prescribed for patients at risk of stress ulcer bleeding. Whether proton pump inhibitors are more effective than histamine 2 receptor antagonists is unclear. To determine the efficacy and safety of proton pump inhibitors vs. histamine 2 receptor antagonists for the prevention of upper gastrointestinal bleeding in the ICU. We searched Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, ACPJC, CINHAL, online trials registries (clinicaltrials.gov, ISRCTN Register, WHO ICTRP), conference proceedings databases, and reference lists of relevant articles. Randomized controlled parallel group trials comparing proton pump inhibitors to histamine 2 receptor antagonists for the prevention of upper gastrointestinal bleeding in critically ill patients, published before March 2012. Two reviewers independently applied eligibility criteria, assessed quality, and extracted data. The primary outcomes were clinically important upper gastrointestinal bleeding and overt upper gastrointestinal bleeding; secondary outcomes were nosocomial pneumonia, ICU mortality, ICU length of stay, and Clostridium difficile infection. Trial authors were contacted for additional or clarifying information. Fourteen trials enrolling a total of 1,720 patients were included. Proton pump inhibitors were more effective than histamine 2 receptor antagonists at reducing clinically important upper gastrointestinal bleeding (relative risk 0.36; 95% confidence interval 0.19-0.68; p = 0.002; I = 0%) and overt upper gastrointestinal bleeding (relative risk 0.35; 95% confidence interval 0.21-0.59; p inhibitors and histamine 2 receptor antagonists in the risk of nosocomial pneumonia (relative risk 1.06; 95% confidence interval 0.73-1.52; p = 0.76; I = 0%), ICU mortality (relative risk 1.01; 95% confidence interval 0.83-1.24; p = 0.91; I = 0%), or ICU length of stay (mean difference -0.54 days; 95

  19. Membrane Formation in Liquids by Adding an Antagonistic Salt

    Directory of Open Access Journals (Sweden)

    Koichiro Sadakane

    2018-03-01

    Full Text Available Antagonistic salts are composed of hydrophilic and hydrophobic ions. In a binary mixture, such as water and organic solvent, these ion pairs preferentially dissolve to those phases, respectively, and there is a coupling between the charge density and the composition. The heterogeneous distribution of ions forms a large electric double layer at the interface between these solvents. This reduces the interfacial tension between water and organic solvent, and stabilizes an ordered structure, such as a membrane. These phenomena have been extensively studied from both theoretical and experimental point of view. In addition, the numerical simulations can reproduce such ordered structures.

  20. Synthesis of carbon-11 labelled calcium channel antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Holschbach, M.; Roden, W.; Hamkens, W. (Kernforschungsanlage Juelich GmbH (Germany). Inst. fuer Medizin)

    1991-04-01

    A useful synthetic approach to carbon-11 labelled 1,4-dihydropyridines is described. Carbon-11 labelled calcium channel antagonists {sup 11}C-Nifedipine, {sup 11}C-Nisoldipine, {sup 11}C-nitrendipine and {sup 11}C-CF{sub 3}-Nifedipine were synthesized by a modified Hantzsch method using protected carboxy functions. Deprotection of the carboxylic acids by alkaline hydrolysis followed by conversion into the corresponding potassium salts and subsequent methylation with {sup 11}CH{sub 3}I produced the labelled compounds in very good chemical and radiochemical yields (94%). (author).

  1. The opiate antagonist, naltrexone, in the treatment of trichotillomania

    DEFF Research Database (Denmark)

    Grant, Jon E; Odlaug, Brian Lawrence; Schreiber, Liana R N

    2014-01-01

    Trichotillomania (TTM) is characterized by repetitive hair pulling resulting in hair loss. Data on the pharmacological treatment of TTM are limited. This study examined the opioid antagonist, naltrexone, in adults with TTM who had urges to pull their hair. Fifty-one individuals with TTM were...... randomized to naltrexone or placebo in an 8-week, double-blind trial. Subjects were assessed with measures of TTM severity and selected cognitive tasks. Naltrexone failed to demonstrate significantly greater reductions in hair pulling compared to placebo. Cognitive flexibility, however, significantly...

  2. Pharmacoepidemiological assessment of drug interactions with vitamin K antagonists

    DEFF Research Database (Denmark)

    Pottegård, Anton; Christensen, R. D.; Wang, S. V.

    2014-01-01

    PurposeWe present a database of prescription drugs and international normalized ratio (INR) data and the applied methodology for its use to assess drug-drug interactions with vitamin K antagonists (VKAs). We use the putative interaction between VKAs and tramadol as a case study. MethodsWe used...... definitions, and other drugs. ResultsWe identified 513 VKA users with at least 1 INR measurement 4.0 and concomitant tramadol and VKA exposure during the observation period. The overall IRR was 1.80 (95% confidence interval [CI], 1.53-2.10), with a stronger association among users of phenprocoumon compared...

  3. ANTIHYPERTENSIVE TREATMENT IN ELDERLY PATIENTS WITH DIHYDROPYRIDINE CALCIUM ANTAGONISTS

    Directory of Open Access Journals (Sweden)

    Y. A. Karpov

    2006-01-01

    Full Text Available The proofs of necessity of active arterial hypertension (AH treatment in elderly patients are given. Peculiarities of pathogenesis of AH in elderly patients, connected predominantly with loss of big arteries elasticity and reasoning widely spread of isolated systolic AH in these patients, are discussed. Advantages of dihydropyridine calcium antagonists (DPCA for AH treatment in elderly patients are proved, safety of treatment with DPCA is discussed. Data of clinical studies is analyzed. Analysis of target levels of blood pressure for antihypertensive treatment in elderly hypertensive patients is made. As a conclusion DPCA are the medicines of choice for AH treatment in elderly patients.

  4. Membrane formation in liquids by adding an antagonistic salt

    Science.gov (United States)

    Sadakane, Koichiro; Seto, Hideki

    2018-03-01

    Antagonistic salts are composed of hydrophilic and hydrophobic ions. In a binary mixture, such as water and organic solvent, these ion pairs preferentially dissolve to those phases, respectively, and there is a coupling between the charge density and the composition. The heterogeneous distribution of ions forms a large electric double layer at the interface between these solvents. This reduces the interfacial tension between water and organic solvent, and stabilizes an ordered structure, such as a membrane. These phenomena have been extensively studied from both theoretical and experimental point of view. In addition, the numerical simulations can reproduce such ordered structures.

  5. Preventive analgesia

    DEFF Research Database (Denmark)

    Dahl, Jørgen B; Kehlet, Henrik

    2011-01-01

    This paper will discuss the concepts of pre-emptive and preventive analgesia in acute and persistent postsurgical pain, based on the most recent experimental and clinical literature, with a special focus on injury-induced central sensitization and the development from acute to chronic pain. Recent...... of preventive analgesia for persistent postoperative pain are promising. However, clinicians must be aware of the demands for improved design of their clinical studies in order to get more conclusive answers regarding the different avenues for intervention. Summary: The concept of preventive analgesia is still...

  6. Evodiamine as a novel antagonist of aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Yu, Hui; Tu, Yongjiu; Zhang, Chun; Fan, Xia; Wang, Xi; Wang, Zhanli; Liang, Huaping

    2010-01-01

    Research highlights: → Evodiamine interacted with the AhR. → Evodiamine inhibited the specific binding of [ 3 H]-TCDD to the AhR. → Evodiamine acts as an antagonist of the AhR. -- Abstract: Evodiamine, the major bioactive alkaloid isolated from Wu-Chu-Yu, has been shown to interact with a wide variety of proteins and modify their expression and activities. In this study, we investigated the interaction between evodiamine and the aryl hydrocarbon receptor (AhR). Molecular modeling results revealed that evodiamine directly interacted with the AhR. Cytosolic receptor binding assay also provided the evidence that evodiamine could interact with the AhR with the K i value of 28.4 ± 4.9 nM. In addition, we observed that evodiamine suppressed the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nuclear translocation of the AhR and the expression of CYP1A1 dose-dependently. These results suggested that evodiamine was able to bind to the AhR as ligand and exhibit antagonistic effects.

  7. Histamine H1 antagonists and clinical characteristics of febrile seizures.

    Science.gov (United States)

    Zolaly, Mohammed A

    2012-01-01

    The purpose of this study was to determine whether seizure susceptibility due to antihistamines is provoked in patients with febrile seizures. The current descriptive study was carried out from April 2009 to February 2011 in 250 infants and children who visited the Madinah Maternity and Children's Hospital as a result of febrile convulsions. They were divided into two groups according to administration of antihistamines at the onset of fever. Detailed clinical manifestations were compared between patients with and without administration of antihistamines. The time from fever detection to seizure onset was significantly shorter in the antihistamine group than that in the nonantihistamine group, and the duration of seizures was significantly longer in the antihistamine group than in the nonantihistamine group. No significant difference was found in time from fever detection to seizure onset or seizure duration between patients who received a first-generation antihistamine and those who received a second-generation antihistamine. Due to their central nervous system effects, H1 antagonists should not be administered to patients with febrile seizures and epilepsy. Caution should be exercised regarding the use of histamine H1 antagonists in young infants, because these drugs could potentially disturb the anticonvulsive central histaminergic system.

  8. Rogue sperm indicate sexually antagonistic coevolution in nematodes.

    Directory of Open Access Journals (Sweden)

    Ronald E Ellis

    2014-07-01

    Full Text Available Intense reproductive competition often continues long after animals finish mating. In many species, sperm from one male compete with those from others to find and fertilize oocytes. Since this competition occurs inside the female reproductive tract, she often influences the outcome through physical or chemical factors, leading to cryptic female choice. Finally, traits that help males compete with each other are sometimes harmful to females, and female countermeasures may thwart the interests of males, which can lead to an arms race between the sexes known as sexually antagonistic coevolution. New studies from Caenorhabditis nematodes suggest that males compete with each other by producing sperm that migrate aggressively and that these sperm may be more likely to win access to oocytes. However, one byproduct of this competition appears to be an increased probability that these sperm will go astray, invading the ovary, prematurely activating oocytes, and sometimes crossing basement membranes and leaving the gonad altogether. These harmful effects are sometimes observed in crosses between animals of the same species but are most easily detected in interspecies crosses, leading to dramatically lowered fitness, presumably because the competitiveness of the sperm and the associated female countermeasures are not precisely matched. This mismatch is most obvious in crosses involving individuals from androdioecious species (which have both hermaphrodites and males, as predicted by the lower levels of sperm competition these species experience. These results suggest a striking example of sexually antagonistic coevolution and dramatically expand the value of nematodes as a laboratory system for studying postcopulatory interactions.

  9. Human Homosexuality: A Paradigmatic Arena for Sexually Antagonistic Selection?

    Science.gov (United States)

    Ciani, Andrea Camperio; Battaglia, Umberto; Zanzotto, Giovanni

    2015-01-01

    Sexual conflict likely plays a crucial role in the origin and maintenance of homosexuality in our species. Although environmental factors are known to affect human homosexual (HS) preference, sibling concordances and population patterns related to HS indicate that genetic components are also influencing this trait in humans. We argue that multilocus, partially X-linked genetic factors undergoing sexually antagonistic selection that promote maternal female fecundity at the cost of occasional male offspring homosexuality are the best candidates capable of explaining the frequency, familial clustering, and pedigree asymmetries observed in HS male proband families. This establishes male HS as a paradigmatic example of sexual conflict in human biology. HS in females, on the other hand, is currently a more elusive phenomenon from both the empirical and theoretical standpoints because of its fluidity and marked environmental influence. Genetic and epigenetic mechanisms, the latter involving sexually antagonistic components, have been hypothesized for the propagation and maintenance of female HS in the population. However, further data are needed to truly clarify the evolutionary dynamics of this trait. PMID:25635045