WorldWideScience

Sample records for antagonist mk-801 impairs

  1. A NMDA receptor antagonist, MK-801 impairs consolidating extinction of auditory conditioned fear responses in a Pavlovian model.

    Directory of Open Access Journals (Sweden)

    Jun-Li Liu

    Full Text Available BACKGROUND: In auditory fear conditioning, repeated presentation of the tone in the absence of shock leads to extinction of the acquired fear responses. The glutamate N-methyl-D-aspartate receptor (NMDAR is thought to be involved in the extinction of the conditioned fear responses, but its detailed role in initiating and consolidating or maintaining the fear extinction memory is unclear. Here we investigated this issue by using a NMDAR antagonist, MK-801. METHODS/MAIN FINDINGS: The effects of immediate (beginning at 10 min after the conditioning and delayed (beginning at 24 h after conditioning extinctions were first compared with the finding that delayed extinction caused a better and long-lasting (still significant on the 20(th day after extinction depression on the conditioned fear responses. In a second experiment, MK-801 was intraperitoneally (i.p. injected at 40 min before, 4 h or 12 h after the delayed extinction, corresponding to critical time points for initiating, consolidating or maintaining the fear extinction memory. i.p. injection of MK-801 at either 40 min before or 4 h after delayed extinction resulted in an impairment of initiating and consolidating fear extinction memory, which caused a long lasting increased freezing score that was still significant on the 7th day after extinction, compared with extinction group. However, MK-801 administered at 12 h after the delayed extinction, when robust consolidation has been occurred and stabilized, did not affect the established extinction memory. Furthermore, the changed freezing behaviors was not due to an alteration in general anxiety levels, since MK-801 treatment had no effect on the percentage of open-arm time or open-arm entries in an Elevated Plus Maze (EPM task. CONCLUSIONS/SIGNIFICANCE: Our data suggested that the activation of NMDARs plays important role in initiation and consolidation but not maintenance of fear extinction memory. Together with the fact that NMDA receptor is

  2. The Histamine H3 Receptor Antagonist DL77 Ameliorates MK801-Induced Memory Deficits in Rats

    Directory of Open Access Journals (Sweden)

    Nermin Eissa

    2018-02-01

    Full Text Available The role of Histamine H3 receptors (H3Rs in memory, and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer disease (AD is well-accepted. For that reason, the procognitive effects of the H3R antagonist DL77 on cognitive impairments induced with MK801 were tested in an inhibitory passive avoidance paradigm (PAP and novel object recognition (NOR task in adult male rats, using donepezil (DOZ as a standard drug. Acute systemic pretreatment with DL77 (2.5, 5, and 10 mg/kg, i.p. significantly ameliorated memory deficits induced with MK801 in PAP (all P < 0.05, n = 7. The ameliorative effect of most promising dose of DL77 (5 mg/kg, i.p. was reversed when rats were co-injected with the H3R agonist R-(α-methylhistamine (RAMH, 10 mg/kg, i.p. (p = 0.701 for MK801-amnesic group vs. MK801+DL77+RAMH group, n = 6. In the NOR paradigm, DL77 (5 mg/kg, i.p. counteracted long-term memory (LTM deficits induced with MK801 (P < 0.05, n = 6–8, and the DL77-provided effect was similar to that of DOZ (p = 0.788, n = 6–8, and was reversed when rats were co-injected with RAMH (10 mg/kg, i.p. (p = 0.877, n = 6, as compared to the (MK801-amnesic group. However, DL77 (5 mg/kg, i.p. did not alter short-term memory (STM impairment in NOR test (p = 0.772, n = 6–8, as compared to (MK801-amnesic group. Moreover, DL77 (5 mg/kg failed to modify anxiety and locomotor behaviors of animals innate to elevated-plus maze (EPM (p = 0.67 for percentage of time spent exploring the open arms, p = 0.52 for number of entries into the open arms, p = 0.76 for percentage of entries into the open arms, and p = 0.73 number of closed arm entries as compared to saline-treated groups, all n = 6, demonstrating that the procognitive effects observed in PAP or NOR tests were unconnected to alterations in emotions or in natural locomotion of tested animals. These results signify the potential involvement of H3Rs in modulating

  3. The NMDA-receptor antagonist MK-801 selectively disrupts reversal learning in rats

    NARCIS (Netherlands)

    van der Meulen, Jamilja A. J.; Bilbija, Luka; Joosten, Ruud N. J. M. A.; de Bruin, Jan P. C.; Feenstra, Matthijs G. P.

    2003-01-01

    We tested the hypothesis that inhibition of NMDA-receptors in rats would lead to a selective impairment of reversal learning in a serial reversal task in the Skinner box. Low doses of MK-801 (0.025 and 0.05 mg/kg) did not affect acquisition of the two-lever discrimination, but impaired performance

  4. DEVELOPMENTAL LEAD (PB) EXPOSURE REDUCES THE ABILITY OF THE NNDA ANTAGONIST MK801 TO SUPPRESS LONG-TERM POTENTIATION (LTP) IN THE RAT DENTATE GYRUS, IN VIVO

    Science.gov (United States)

    Chronic developmental lead (Pb) exposure increases the threshold and enhances decay of long-term potentiation (LTP) in the dentate gyrus of the hippocampal formation. MK-801 and other antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor subtype impair induction of LT...

  5. Competitive (AP7) and non-competitive (MK-801) NMDA receptor antagonists differentially alter glucose utilization in rat cortex

    International Nuclear Information System (INIS)

    Clow, D.W.; Lee, S.J.; Hammer, R.P. Jr.

    1991-01-01

    The effects of D,L-2-amino-7-phosphonoheptanoic acid (AP7), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and MK-801, a non-competitive NMDA receptor antagonist, on regional brain metabolism were studied in unanesthetized, freely moving rats by using the quantitative 14 C2-deoxyglucose autoradiographic procedure. AP7 (338 or 901 mg/kg) produced a dose-dependent decrease of metabolic activity throughout most of the regions studied including sensory, motor, and limbic cortices. In contrast, MK-801 (0.1 or 1.0 mg/kg) resulted in a dose-dependent decrease of metabolic activity in sensory cortices, and an increase in limbic regions such as the hippocampal stratum lacunosum moleculare and entorhinal cortex. MK-801 also produced a biphasic response in agranular motor cortex, whereby the low dose increased while the high dose decreased labeling. In addition, MK-801 produced heterogeneous effects on regional cerebral metabolism in sensory cortices. Metabolic activity decreased in layer IV relative to layer Va following MK-801 treatment in primary somatosensory (SI) and visual (VI) cortices, suggesting a shift in activity from afferent fibers innervating layer IV to those innervating layer Va. MK-801 administration also decreased metabolic activity in granular SI relative to dysgranular SI, and in VI relative to secondary visual cortex (VII), thus providing a relative sparing of activity in dysgranular SI and VII. Thus, the non-competitive NMDA receptor antagonist suppressed activity from extrinsic neocortical sources, enhancing relative intracortical activity and stimulating limbic regions, while the competitive NMDA antagonist depressed metabolic activity in all cortical regions

  6. Competitive (AP7) and non-competitive (MK-801) NMDA receptor antagonists differentially alter glucose utilization in rat cortex

    Energy Technology Data Exchange (ETDEWEB)

    Clow, D.W.; Lee, S.J.; Hammer, R.P. Jr. (Department of Anatomy and Reproductive Biology, School of Medicine, University of Hawaii, Honolulu (USA))

    1991-04-01

    The effects of D,L-2-amino-7-phosphonoheptanoic acid (AP7), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, and MK-801, a non-competitive NMDA receptor antagonist, on regional brain metabolism were studied in unanesthetized, freely moving rats by using the quantitative {sup 14}C2-deoxyglucose autoradiographic procedure. AP7 (338 or 901 mg/kg) produced a dose-dependent decrease of metabolic activity throughout most of the regions studied including sensory, motor, and limbic cortices. In contrast, MK-801 (0.1 or 1.0 mg/kg) resulted in a dose-dependent decrease of metabolic activity in sensory cortices, and an increase in limbic regions such as the hippocampal stratum lacunosum moleculare and entorhinal cortex. MK-801 also produced a biphasic response in agranular motor cortex, whereby the low dose increased while the high dose decreased labeling. In addition, MK-801 produced heterogeneous effects on regional cerebral metabolism in sensory cortices. Metabolic activity decreased in layer IV relative to layer Va following MK-801 treatment in primary somatosensory (SI) and visual (VI) cortices, suggesting a shift in activity from afferent fibers innervating layer IV to those innervating layer Va. MK-801 administration also decreased metabolic activity in granular SI relative to dysgranular SI, and in VI relative to secondary visual cortex (VII), thus providing a relative sparing of activity in dysgranular SI and VII. Thus, the non-competitive NMDA receptor antagonist suppressed activity from extrinsic neocortical sources, enhancing relative intracortical activity and stimulating limbic regions, while the competitive NMDA antagonist depressed metabolic activity in all cortical regions.

  7. The combination of glutamate receptor antagonist MK-801 with tamoxifen and its active metabolites potentiates their antiproliferative activity in mouse melanoma K1735-M2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Mariana P.C. [Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra (Portugal); Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra (Portugal); Nunes-Correia, Isabel [Center for Neuroscience and Cell Biology, Flow Cytometry Unit, University of Coimbra, 3000-354 Coimbra (Portugal); Santos, Armanda E., E-mail: aesantos@ci.uc.pt [Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra (Portugal); Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra (Portugal); Custódio, José B.A. [Center for Neuroscience and Cell Biology, University of Coimbra, 3000-354 Coimbra (Portugal); Laboratory of Biochemistry, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra (Portugal)

    2014-02-15

    Recent reports suggest that N-methyl-D-aspartate receptor (NMDAR) blockade by MK-801 decreases tumor growth. Thus, we investigated whether other ionotropic glutamate receptor (iGluR) antagonists were also able to modulate the proliferation of melanoma cells. On the other hand, the antiestrogen tamoxifen (TAM) decreases the proliferation of melanoma cells, and is included in combined therapies for melanoma. As the efficacy of TAM is limited by its metabolism, we investigated the effects of the NMDAR antagonist MK-801 in combination with TAM and its active metabolites, 4-hydroxytamoxifen (OHTAM) and endoxifen (EDX). The NMDAR blockers MK-801 and memantine decreased mouse melanoma K1735-M2 cell proliferation. In contrast, the NMDAR competitive antagonist APV and the AMPA and kainate receptor antagonist NBQX did not affect cell proliferation, suggesting that among the iGluR antagonists only the NMDAR channel blockers inhibit melanoma cell proliferation. The combination of antiestrogens with MK-801 potentiated their individual effects on cell biomass due to diminished cell proliferation, since it decreased the cell number and DNA synthesis without increasing cell death. Importantly, TAM metabolites combined with MK-801 promoted cell cycle arrest in G1. Therefore, the data obtained suggest that the activity of MK-801 and antiestrogens in K1735-M2 cells is greatly enhanced when used in combination. - Highlights: • MK-801 and memantine decrease melanoma cell proliferation. • The combination of MK-801 with antiestrogens inhibits melanoma cell proliferation. • These combinations greatly enhance the effects of the compounds individually. • MK-801 combined with tamoxifen active metabolites induces cell cycle arrest in G1. • The combination of MK-801 and antiestrogens is an innovative strategy for melanoma.

  8. FOXO/TXNIP pathway is involved in the suppression of hepatocellular carcinoma growth by glutamate antagonist MK-801

    International Nuclear Information System (INIS)

    Yamaguchi, Fuminori; Hirata, Yuko; Akram, Hossain; Kamitori, Kazuyo; Dong, Youyi; Sui, Li; Tokuda, Masaaki

    2013-01-01

    Accumulating evidence has suggested the importance of glutamate signaling in cancer growth, yet the signaling pathway has not been fully elucidated. N-methyl-D-aspartic acid (NMDA) receptor activates intracellular signaling pathways such as the extracellular-signal-regulated kinase (ERK) and forkhead box, class O (FOXO). Suppression of lung carcinoma growth by NMDA receptor antagonists via the ERK pathway has been reported. However, series of evidences suggested the importance of FOXO pathways for the regulation of normal and cancer cell growth. In the liver, FOXO1 play important roles for the cell proliferation such as hepatic stellate cells as well as liver metabolism. Our aim was to investigate the involvement of the FOXO pathway and the target genes in the growth inhibitory effects of NMDA receptor antagonist MK-801 in human hepatocellular carcinoma. Expression of NMDAR1 in cancer cell lines from different tissues was examined by Western blot. NMDA receptor subunits in HepG2, HuH-7, and HLF were examined by reverse transcriptase polymerase chain reaction (RT-PCR), and growth inhibition by MK-801 and NBQX was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effects of MK-801 on the cell cycle were examined by flow cytometry and Western blot analysis. Expression of thioredoxin-interacting protein (TXNIP) and p27 was determined by real-time PCR and Western blotting. Activation of the FOXO pathway and TXNIP induction were examined by Western blotting, fluorescence microscopy, Chromatin immunoprecipitation (ChIP) assay, and reporter gene assay. The effects of TXNIP on growth inhibition were examined using the gene silencing technique. NMDA receptor subunits were expressed in all cell lines examined, and MK-801, but not NBQX, inhibited cell growth of hepatocellular carcinomas. Cell cycle analysis showed that MK-801 induced G1 cell cycle arrest by down-regulating cyclin D1 and up-regulating p27. MK-801 dephosphorylated

  9. Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents.

    Science.gov (United States)

    Bubser, Michael; Bridges, Thomas M; Dencker, Ditte; Gould, Robert W; Grannan, Michael; Noetzel, Meredith J; Lamsal, Atin; Niswender, Colleen M; Daniels, J Scott; Poslusney, Michael S; Melancon, Bruce J; Tarr, James C; Byers, Frank W; Wess, Jürgen; Duggan, Mark E; Dunlop, John; Wood, Michael W; Brandon, Nicholas J; Wood, Michael R; Lindsley, Craig W; Conn, P Jeffrey; Jones, Carrie K

    2014-10-15

    Positive allosteric modulators (PAMs) of the M4 muscarinic acetylcholine receptor (mAChR) represent a novel approach for the treatment of psychotic symptoms associated with schizophrenia and other neuropsychiatric disorders. We recently reported that the selective M4 PAM VU0152100 produced an antipsychotic drug-like profile in rodents after amphetamine challenge. Previous studies suggest that enhanced cholinergic activity may also improve cognitive function and reverse deficits observed with reduced signaling through the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) in the central nervous system. Prior to this study, the M1 mAChR subtype was viewed as the primary candidate for these actions relative to the other mAChR subtypes. Here we describe the discovery of a novel M4 PAM, VU0467154, with enhanced in vitro potency and improved pharmacokinetic properties relative to other M4 PAMs, enabling a more extensive characterization of M4 actions in rodent models. We used VU0467154 to test the hypothesis that selective potentiation of M4 receptor signaling could ameliorate the behavioral, cognitive, and neurochemical impairments induced by the noncompetitive NMDAR antagonist MK-801. VU0467154 produced a robust dose-dependent reversal of MK-801-induced hyperlocomotion and deficits in preclinical models of associative learning and memory functions, including the touchscreen pairwise visual discrimination task in wild-type mice, but failed to reverse these stimulant-induced deficits in M4 KO mice. VU0467154 also enhanced the acquisition of both contextual and cue-mediated fear conditioning when administered alone in wild-type mice. These novel findings suggest that M4 PAMs may provide a strategy for addressing the more complex affective and cognitive disruptions associated with schizophrenia and other neuropsychiatric disorders.

  10. Kindling-induced potentiation of excitatory and inhibitory inputs to hippocampal dentate granule cells. II. Effects of the NMDA antagonist MK-801.

    LENUS (Irish Health Repository)

    Robinson, G B

    1991-10-18

    The effect of the non-competitive N-methyl-D-aspartate antagonist MK-801 on the early development of kindling-induced potentiation was examined in the rabbit hippocampal dentate gyrus. MK-801 (0.5 mg\\/kg) was administered 2 h before each daily kindling stimulation was applied to the perforant path. This treatment continued for the first 10 days of kindling. MK-801 depressed the growth of the afterdischarge duration and suppressed development of behavioral seizures. MK-801 did not block kindling-induced potentiation of either the perforant path-dentate granule cell population spike or excitatory postsynaptic potential. Random impulse train stimulation and non-linear systems analytic techniques were used to examine kindling-induced potentiation of presumed GABAergic recurrent inhibitory circuits. Both the magnitude and duration of kindling-induced response inhibition, to the second of each pair of impulses within the train, were reduced in rabbits pretreated with MK-801. These results suggest that MK-801 differentially affects kindling-induced potentiation of excitatory and inhibitory circuits within the rabbit hippocampal dentate gyrus.

  11. "Interaction of different doses of Aspartame with Morphine-induced antinociception in the presence of MK-801, a NMDA antagonist "

    Directory of Open Access Journals (Sweden)

    Abdollahi M

    2002-07-01

    Full Text Available This study was designed to investigate the relative role of sweetness and comparative effects of different taste sensation of the non - caloric sweetener , aspartame on pain and its interaction with MK - 80] as a non - selective MMDA antagonist by formalin - test in mice. The formalin - test was chosen because it measures the response to a long - lasting nociceptive stimulus and closely resembles to the clinical pain. Morphine induced a dose dependent antinociception in the early and late phases of formalin test. Twelve days pretreatment of animals by aspartame ( 0.08% , 0.16% , 0.32% significantly potentiated morphine - induced (1.5-9 mg/kg analgesia in the early phase but significantly antagonized its analgesic effect in the late phase, dose dependently. Aspartame (0.16% alone showed a reduction in pain response . Naloxone (0.4 mg/kg significantly antagonized the antinociceptive effect of morphine in the presence of aspartame (0-0.32% in the early phase. Increasing the dose of aspartame decreased effects of naloxone. MK-801 (0.1 mg/kg as an N- Methyl - D - Aspartate (NMDA antagonist significantly potentiated the effect of aspartame on morphine - induced antinociception in the early phase. In the late phase, naloxone (0.4 mg/kg increased pain response but MK- 801 (0.1 mg/kg induced anti-inflammatory effect significantly. Treatment of animals with MK- 801 alone, significantly induced analgesia in both phases of formalin - test. This effect was potentiated with aspartame dose - dependently. Possible interaction of aspartame with NMDA receptors and its role to facilitate endogenous opioid system are proposed mechanisms of aspartame in modulating morphine - induced antinociception. Furthermore, the resulting association between morphine and aspartame chronic consumption may be explained as an interactive action rather than simple dose combination of both drugs.

  12. Neuropeptide S ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 through activation of cognate receptor-expressing neurons in the subiculum complex.

    Science.gov (United States)

    Shao, Yu-Feng; Wang, Can; Xie, Jun-Fan; Kong, Xiang-Pan; Xin, Le; Dong, Chao-Yu; Li, Jing; Ren, Wen-Ting; Hou, Yi-Ping

    2016-07-01

    Our previous studies have demonstrated that neuropeptide S (NPS), via selective activation of the neurons bearing NPS receptor (NPSR) in the olfactory cortex, facilitates olfactory function. High level expression of NPSR mRNA in the subiculum complex of hippocampal formation suggests that NPS-NPSR system might be involved in the regulation of olfactory spatial memory. The present study was undertaken to investigate effects of NPS on the scopolamine- or MK801-induced impairment of olfactory spatial memory using computer-assisted 4-hole-board spatial memory test, and by monitoring Fos expression in the subiculum complex in mice. In addition, dual-immunofluorescence microscopy was employed to identify NPS-induced Fos-immunereactive (-ir) neurons that also bear NPSR. Intracerebroventricular administration of NPS (0.5 nmol) significantly increased the number of visits to switched odorants in recall trial in mice suffering from odor-discriminating inability induced by scopolamine, a selective muscarinic cholinergic receptor antagonist, or MK801, a N-methyl-D-aspartate receptor antagonist, after training trials. The improvement of olfactory spatial memory by NPS was abolished by the NPSR antagonist [D-Val(5)]NPS (40 nmol). Ex vivo c-Fos and NPSR immunohistochemistry revealed that, as compared with vehicle-treated mice, NPS markedly enhanced Fos expression in the subiculum complex encompassing the subiculum (S), presubiculum (PrS) and parasubiculum (PaS). The percentages of Fos-ir neurons that also express NPSR were 91.3, 86.5 and 90.0 % in the S, PrS and PaS, respectively. The present findings demonstrate that NPS, via selective activation of the neurons bearing NPSR in the subiculum complex, ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 in mice.

  13. Different MK-801 administration schedules induce mild to severe learning impairments in an operant conditioning task: role of buspirone and risperidone in ameliorating these cognitive deficits.

    Science.gov (United States)

    Rapanelli, Maximiliano; Frick, Luciana Romina; Bernardez-Vidal, Micaela; Zanutto, Bonifacio Silvano

    2013-11-15

    Blockade of N-methyl-d-aspartate receptor (NMDA) by the noncompetitive NMDA receptor (NMDAR) antagonist MK-801 produces behavioral abnormalities and alterations in prefrontal cortex (PFC) functioning. Due to the critical role of the PFC in operant conditioning task learning, we evaluated the effects of acute, repeated postnatal injections of MK-801 (0.1mg/kg) on learning performance. We injected Long-Evans rats i.p. with MK-801 (0.1mg/kg) using three different administration schedules: injection 40 min before beginning the task (during) (n=12); injection twice daily for six consecutive days prior to beginning the experimental procedures (prior) (n=12); or twice daily subcutaneous injections from postnatal day 7 to 11 (postnatal) (n=12). Next, we orally administered risperidone (serotonin receptor 2A and dopamine receptor 2 antagonist, 1mg/kg) or buspirone (serotonin receptor 1A partial agonist, 10mg/kg) to animals treated with the MK-801 schedule described above. The postnatal and prior administration schedules produced severe learning deficits, whereas injection of MK-801 just before training sessions had only mild effects on acquisition of an operant conditioning. Risperidone was able to reverse the detrimental effect of MK-801 in the animals that were treated with MK-801 during and prior training sessions. In contrast, buspirone was only effective at mitigating the cognitive deficits induced by MK-801 when administered during the training procedures. The data demonstrates that NMDA antagonism disrupts basic mechanisms of learning in a simple PFC-mediated operant conditioning task, and that buspirone and risperidone failed to attenuate the learning deficits when NMDA neurotransmission was blocked in the early stages of the postnatal period. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. MK-801-induced impairments on the trial-unique, delayed nonmatching-to-location task in rats: effects of acute sodium nitroprusside.

    Science.gov (United States)

    Hurtubise, Jessica L; Marks, Wendie N; Davies, Don A; Catton, Jillian K; Baker, Glen B; Howland, John G

    2017-01-01

    The cognitive symptoms observed in schizophrenia are not consistently alleviated by conventional antipsychotics. Following a recent pilot study, sodium nitroprusside (SNP) has been identified as a promising adjunct treatment to reduce the working memory impairments experienced by schizophrenia patients. The present experiments were designed to explore the effects of SNP on the highly translatable trial-unique, delayed nonmatching-to-location (TUNL) task in rats with and without acute MK-801 treatment. SNP (0.5, 1.0, 2.0, 4.0, and 5.0 mg/kg) and MK-801 (0.05, 0.075, and 0.1 mg/kg) were acutely administered to rats trained on the TUNL task. Acute MK-801 treatment impaired TUNL task accuracy. Administration of SNP (2.0 mg/kg) with MK-801 (0.1 mg/kg) failed to rescue performance on TUNL. SNP (5.0 mg/kg) administration nearly 4 h prior to MK-801 (0.05 mg/kg) treatment had no preventative effect on performance impairments. SNP (2.0 mg/kg) improved performance on a subset of trials. These results suggest that SNP may possess intrinsic cognitive-enhancing properties but is unable to block the effects of acute MK-801 treatment on the TUNL task. These results are inconsistent with the effectiveness of SNP as an adjunct therapy for working memory impairments in schizophrenia patients. Future studies in rodents that assess SNP as an adjunct therapy will be valuable in understanding the mechanisms underlying the effectiveness of SNP as a treatment for schizophrenia.

  15. LY395756, an mGluR2 agonist and mGluR3 antagonist, enhances NMDA receptor expression and function in the normal adult rat prefrontal cortex, but fails to improve working memory and reverse MK801-induced working memory impairment.

    Science.gov (United States)

    Li, Meng-Lin; Yang, Sha-Sha; Xing, Bo; Ferguson, Brielle R; Gulchina, Yelena; Li, Yan-Chun; Li, Feng; Hu, Xi-Quan; Gao, Wen-Jun

    2015-11-01

    Targeting group II metabotropic glutamate receptors (mGluR2/3) has been proposed to correct the dysfunctional glutamatergic system, particularly NMDA receptor (NMDAR) hypofunction, for treatment of schizophrenia. However, how activation of mGluR2/3 affects NMDAR function in adult animals remains elusive. Here we show the effects of LY395756 (LY39), a compound acting as both an mGluR2 agonist and mGluR3 antagonist, on the NMDAR expression and function of normal adult rat prefrontal cortex (PFC) as well as working memory function in the MK801 model of schizophrenia. We found that in vivo administration of LY39 significantly increased the total protein levels of NMDAR subunits and NR2B phosphorylationin the PFC, along with the amplitude of NMDAR-mediated miniature excitatory postsynaptic currents (mEPSC) in the prefrontal cortical neurons. Moreover, LY39 also significantly increased mTOR and pmTOR expression, but not ERK1/2, Akt, and GSK3β, suggesting an activation of mTOR signaling. Indeed, the mTOR inhibitor rapamycin, and actinomycin-D, a transcription inhibitor, blocked the enhanced effects of LY39 on NMDAR-mEPSCs. These results indicate that LY39 regulates NMDAR expression and function through unidentified mTOR-mediated protein synthesis in the normal adult rat PFC. However, this change is insufficient to affect working memory function in normal animals, nor to reverse the MK801-induced working memory deficit. Our data provide the first evidence of an in vivo effect of a novel compound that acts as both an mGluR2 agonist and mGluR3 antagonist on synaptic NMDAR expression and function in the adult rat PFC, although its effect -on PFC-dependent cognitive function remains to be explored. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The N-Methyl-d-Aspartate Receptor Antagonist MK-801 Prevents Thallium-Induced Behavioral and Biochemical Alterations in the Rat Brain.

    Science.gov (United States)

    Osorio-Rico, Laura; Villeda-Hernández, Juana; Santamaría, Abel; Königsberg, Mina; Galván-Arzate, Sonia

    2015-01-01

    Thallium (Tl(+)) is a toxic heavy metal capable of increasing oxidative damage and disrupting antioxidant defense systems. Thallium invades the brain cells through potassium channels, increasing neuronal excitability, although until now the possible role of glutamatergic transmission in this event has not been investigated. Here, we explored the possible involvement of a glutamatergic component in the Tl(+)-induced toxicity through the N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801) in rats. The effects of MK-801 (1 mg/kg, intraperitoneally [ip]) on early (24 hours) motor alterations, lipid peroxidation, reduced glutathione (GSH) levels, and GSH peroxidase activity induced by Tl(+) acetate (32 mg/kg, ip) were evaluated in adult rats. MK-801 attenuated the Tl(+)-induced hyperactivity and lipid peroxidation in the rat striatum, hippocampus and midbrain, and produced mild effects on other end points. Our findings suggest that glutamatergic transmission via NMDA receptors might be involved in the Tl(+)-induced altered regional brain redox activity and motor performance in rats. © The Author(s) 2015.

  17. Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents

    DEFF Research Database (Denmark)

    Bubser, Michael; Bridges, Thomas M; Dencker, Ditte

    2014-01-01

    Positive allosteric modulators (PAMs) of the M4 muscarinic acetylcholine receptor (mAChR) represent a novel approach for the treatment of psychotic symptoms associated with schizophrenia and other neuropsychiatric disorders. We recently reported that the selective M4 PAM VU0152100 produced an ant....... VU0467154 produced a robust dose-dependent reversal of MK-801-induced hyperlocomotion and deficits in preclinical models of associative learning and memory functions, including the touchscreen pairwise visual discrimination task in wild-type mice, but failed to reverse these stimulant......-induced deficits in M4 KO mice. VU0467154 also enhanced the acquisition of both contextual and cue-mediated fear conditioning when administered alone in wild-type mice. These novel findings suggest that M4 PAMs may provide a strategy for addressing the more complex affective and cognitive disruptions associated...

  18. Effect of alpha1-adrenergic antagonist prazosin on behavioral alterations induced by MK-801 in a spatial memory task in Long-Evans rats

    Czech Academy of Sciences Publication Activity Database

    Stuchlík, Aleš; Petrásek, Tomáš; Valeš, Karel

    2009-01-01

    Roč. 58, č. 5 (2009), s. 733-740 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA309/09/0286; GA ČR(CZ) GA309/07/0341 Institutional research plan: CEZ:AV0Z50110509 Keywords : prazosin * MK-801 * learning Subject RIV: FH - Neurology Impact factor: 1.430, year: 2009

  19. Effects of chronic prenatal MK-801 treatment on object recognition, cognitive flexibility, and drug-induced locomotor activity in juvenile and adult rat offspring.

    Science.gov (United States)

    Gallant, S; Welch, L; Martone, P; Shalev, U

    2017-06-15

    Patients with schizophrenia display impaired cognitive functioning and increased sensitivity to psychomimetic drugs. The neurodevelopmental hypothesis of schizophrenia posits that disruption of the developing brain predisposes neural networks to lasting structural and functional abnormalities resulting in the emergence of such symptoms in adulthood. Given the critical role of the glutamatergic system in early brain development, we investigated whether chronic prenatal exposure to the glutamate NMDA receptor antagonist, MK-801, induces schizophrenia-like behavioural and neurochemical changes in juvenile and adult rats. Pregnant Long-Evans rats were administered saline or MK-801 (0.1mg/kg; s.c.) at gestation day 7-19. Object recognition memory and cognitive flexibility were assessed in the male offspring using a novel object preference task and a maze-based set-shifting procedure, respectively. Locomotor-activating effects of acute amphetamine and MK-801 were also assessed. Adult, but not juvenile, prenatally MK-801-treated rats failed to show novel object preference after a 90min delay, suggesting that object recognition memory may have been impaired. In addition, the set-shifting task revealed impaired acquisition of a new rule in adult prenatally MK-801-treated rats compared to controls. This deficit appeared to be driven by regression to the previously learned behaviour. There were no significant differences in drug-induced locomotor activity in juvenile offspring or in adult offspring following acute amphetamine challenges. Unexpectedly, MK-801-induced locomotor activity in adult prenatally MK-801-treated rats was lower compared to controls. Glutamate transmission dysfunction during early development may modify behavioural parameters in adulthood, though these parameters do not appear to model deficits observed in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Quantitative Structure-Activity Relationships of Noncompetitive Antagonists of the NMDA Receptor: A Study of a Series of MK801 Derivative Molecules Using Statistical Methods and Neural Network

    Directory of Open Access Journals (Sweden)

    T. Lakhlifi

    2003-04-01

    Full Text Available Abstract: From a series of 50 MK801 derivative molecules, a selected set of 44 compounds was submitted to a principal components analysis (PCA, a multiple regression analysis (MRA, and a neural network (NN. This study shows that the compounds' activity correlates reasonably well with the selected descriptors encoding the chemical structures. The correlation coefficients calculated by MRA and there after by NN, r = 0.986 and r = 0.974 respectively, are fairly good to evaluate a quantitative model, and to predict activity for MK801 derivatives. To test the performance of this model, the activities of the remained set of 6 compounds are deduced from the proposed quantitative model, by NN. This study proved that the predictive power of this model is relevant.

  1. UCCB01-125, a dimeric inhibitor of PSD-95, reduces inflammatory pain without disrupting cognitive or motor performance: Comparison with the NMDA receptor antagonist MK-801

    DEFF Research Database (Denmark)

    Andreasen, Jesper T.; Bach, Anders; Gynther, Mikko

    2013-01-01

    Excessive N-Methyl-d-aspartate receptor (NMDAR)-dependent production of nitric oxide (NO) is involved in the development and maintenance of chronic pain states, and is mediated by postsynaptic density protein-95 (PSD-95). By binding to both the NMDAR and neuronal NO synthase (nNOS), PSD-95 mediates...... a specific coupling between NMDAR activation and NO production. NMDAR antagonism shows anti-nociceptive action in humans and animal models of chronic pain but is associated with severe disturbances of cognitive and motor functions. An alternative approach to modulate the NMDAR-related activity is to perturb......'s adjuvant (CFA) model of inflammatory pain. To examine side-effect profiles we also compared the effects of UCCB01-125 and MK-801 in tests of attention, long-term memory, and motor performance. When administered concurrently with CFA, both MK-801 and UCCB01-125 prevented the development of CFA...

  2. A neuroligin-1-derived peptide stimulates phosphorylation of the NMDA receptor NR1 subunit and rescues MK-801-induced decrease in long-term potentiation and memory impairment

    DEFF Research Database (Denmark)

    Korshunova, Irina; Gjørlund, Michelle D; Jacobsen, Sylwia Owczarek

    2015-01-01

    , neurolide-2, reduces sociability and increase animal aggression. We hypothesized that interfering with NL1 function at the excitatory synapses might regulate synaptic plasticity and learning, and counteract memory deficits induced by N-methyl-d-aspartate (NMDA) receptor inhibition. First, neuronal NMDA...... receptor phosphorylation after treatment with NL1 or a mimetic peptide, neurolide-1, was quantified by immunoblotting. Subsequently, we investigated effects of neurolide-1 on long-term potentiation (LTP) induction in hippocampal slices compromised by NMDA receptor inhibitor MK-801. Finally, we investigated...... neurolide-1 effects on short- and long-term social and spatial memory in social recognition, Morris water-maze, and Y-maze tests. We found that subcutaneous neurolide-1 administration, restored hippocampal LTP compromised by NMDA receptor inhibitor MK-801. It counteracted MK-801-induced memory deficit...

  3. Differential actions of dizocilpine (MK-801) on the mesolimbic and mesocortical dopamine systems: role of neuronal activity.

    Science.gov (United States)

    Mathé, J M; Nomikos, G G; Blakeman, K H; Svensson, T H

    1999-01-01

    The significance of impulse activity in the dopamine neurons of the ventral tegmental area for the dopamine release evoked by systemic administration of the psychotomimetic drug dizocilpine (MK-801) was investigated. Dual probe microdialysis was utilized in freely moving rats implanted with one probe in the ventral tegmental area and a second ipsilateral probe in either the nucleus accumbens or the medial prefrontal cortex. Dialysates were analyzed with high-performance liquid chromatography with electrochemical detection for dopamine. The ventral tegmental area was perfused with the sodium channel blocker tetrodotoxin (1 microM) or vehicle (perfusion solution). A total of 2 h after the onset of tetrodotoxin perfusion of the ventral tegmental area, MK-801 (0.1 mg/kg) was injected subcutaneously. Tetrodotoxin perfusion of the ventral tegmental area significantly reduced dialysate levels of dopamine both in the nucleus accumbens and the medial prefrontal cortex to approximately 30% of baseline. When given alone, MK-801 caused a significant, i.e. 50%, increase in extracellular dopamine levels in the nucleus accumbens, and an even larger increase in the medial prefrontal cortex, i.e. 150%. Tetrodotoxin perfusion of the ventral tegmental area completely blocked the systemic MK-801 induced increase in extracellular concentrations of dopamine in the nucleus accumbens. However, the MK-801-evoked increase in dopamine levels in the medial prefrontal cortex was not significantly affected. Thus, the present results allow the conclusion that basal dopamine output in mesolimbic and mesocortical dopamine nerve terminal regions is predominantly dependent on nerve impulses generated in the ventral tegmental area. Moreover, also the MK-801 evoked dopamine release in the mesolimbic projection is almost entirely dependent on the impulse activity of the dopamine neurons, in agreement with our previous results. However, the MK-801 evoked dopamine release in the mesocortical projection

  4. Reactive Transformation and Increased BDNF Signaling by Hippocampal Astrocytes in Response to MK-801.

    Directory of Open Access Journals (Sweden)

    Wenjuan Yu

    Full Text Available MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP, a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10 ml/kg body weight for 6 days and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h. Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling.

  5. Reactive Transformation and Increased BDNF Signaling by Hippocampal Astrocytes in Response to MK-801.

    Science.gov (United States)

    Yu, Wenjuan; Zhu, Hao; Wang, Yueming; Li, Guanjun; Wang, Lihua; Li, Huafang

    2015-01-01

    MK-801, also known as dizocilpine, is a noncompetitive N-methyl-D-aspartic acid (NMDA) receptor antagonist that induces schizophrenia-like symptoms. While astrocytes have been implicated in the pathophysiology of psychiatric disorders, including schizophrenia, astrocytic responses to MK-801 and their significance to schizotypic symptoms are unclear. Changes in the expression levels of glial fibrillary acid protein (GFAP), a marker of astrocyte activation in response to a variety of pathogenic stimuli, were examined in the hippocampus of rats treated with the repeated MK-801 injection (0.5 mg/10 ml/kg body weight for 6 days) and in primary cultured hippocampal astrocytes incubated with MK-801 (5 or 20 μM for 24 h). Moreover, the expression levels of BDNF and its receptors TrkB and p75 were examined in MK-801-treated astrocyte cultures. MK-801 treatment enhanced GFAP expression in the rat hippocampus and also increased the levels of GFAP protein and mRNA in hippocampal astrocytes in vitro. Treatment of cultured hippocampal astrocytes with MK-801 enhanced protein and mRNA levels of BDNF, TrkB, and p75. Collectively, our results suggest that hippocampal astrocytes may contribute to the pathophysiology of schizophrenia symptoms associated with NMDA receptor hypofunction by reactive transformation and altered BDNF signaling.

  6. Vitamin A depletion alters sensitivity of motor behavior to MK-801 in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Zhu Hui

    2010-01-01

    Full Text Available Abstract Background Vitamin A and its derivatives (retinoids are crucial for the development, maintenance and morphogenesis of the central nervous system (CNS. Although motor impairment has been reported in postnatal vitamin A depletion rodents, the effect of vitamin A depletion on homeostasis maintaining capability in response to external interference is not clear. Methods In the current study, we measured the effect of vitamin A depletion on motor ability and pain sensitivity under two different conditions: 1. prior to any injection and 2. after the injection of an N-methyl-D-aspartate (NMDA receptor antagonist (MK-801. Results Vitamin A depletion mice showed decreased body weight, enhanced locomotor activity, increased rearing and less tail flick latency. Vitamin A depletion also induced hypersensitivity of stereotypy, ataxia, rearing, and tail flick latency to MK-801, but hyposensitivity of locomotion to MK-801. Conclusions These findings suggest that vitamin A depletion affect broad basal behavior and disrupt homeostasis maintaining capability in response to glutamate perturbation. We provide a useful animal model for assessing the role of vitamin A depletion in regulating animal behavior, and for detecting how neurotransmitter pathways might be involved in vitamin A depletion related behavioral abnormalities.

  7. Blockade of voltage-gated K+ currents in rat mesenteric arterial smooth muscle cells by MK801

    Directory of Open Access Journals (Sweden)

    Jeong Min Kim

    2015-01-01

    Full Text Available MK801 (dizocilpine, a phencyclidine (PCP derivative, is a potent noncompetitive antagonist of the N-Methyl-D-aspartate receptor (NMDAr. Another PCP derivative, ketamine, was reported to block voltage-gated K+ (Kv channels, which was independent of NMDAr function. Kv currents are major regulators of the membrane potential (Em and excitability of muscles and neurons. Here, we investigated the effect of MK801 on the Kv channels and Em in rat mesenteric arterial smooth muscle cells (RMASMCs. We used the whole-cell patch clamp technique to analyze the effect of MK801 enantiomers on Kv channels and Em. (+MK801 inhibited Kv channels in a concentration-dependent manner (IC50 of 89.1 ± 13.1 μM, Hill coefficient of 1.05 ± 0.08. The inhibition was voltage- and state- independent. (+MK801 didn't influence steady-state activation and inactivation of Kv channels. (+MK801 treatment depolarized Em in a concentration-dependent manner and concomitantly decreased membrane conductance. (−MK801 also similarly inhibited the Kv channels (IC50 of 134.0 ± 17.5 μM, Hill coefficient of 0.87 ± 0.09. These results indicate that MK801 directly inhibits the Kv channel in a state-independent manner in RMASMCs. This MK801-mediated inhibition of Kv channels should be considered when assessing the various pharmacological effects produced by MK801, such as schizophrenia, neuroprotection, and hypertension.

  8. Altered 13C glucose metabolism in the cortico-striato-thalamo-cortical loop in the MK-801 rat model of schizophrenia

    DEFF Research Database (Denmark)

    Eyjolfsson, Elvar M; Nilsen, Linn Hege; Kondziella, Daniel

    2011-01-01

    Using a modified MK-801 (dizocilpine) N-methyl-D-aspartic acid (NMDA) receptor hypofunction model for schizophrenia, we analyzed glycolysis, as well as glutamatergic, GABAergic, and monoaminergic neurotransmitter synthesis and degradation. Rats received an injection of MK-801 daily for 6 days...... in all regions. In conclusion, neurotransmitter metabolism in the cortico-striato-thalamo-cortical loop is severely impaired in the MK-801 (dizocilpine) NMDA receptor hypofunction animal model for schizophrenia....

  9. Effect of MK-801 on the development of nicotine sensitization of nucleus accumbens dopamine release

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soo Kyung; Choung, In Soon; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    We have previously found that MK-801, a noncompetitive NMDA receptor antagonist, prevents behavioral sensitization to nicotine. This study aimed to investigate the effect of MK-801 on a neurochemical component of nicotine sensitization by evaluating the effect of the drug on nicotine sensitization of nucleus accumbens dopamine (DA) release. Sprague-Dawley rats were pretreated with MK-801 (0.3 mg/kg, i.p.) or saline 30 min before injection of nicotine (0.4 mg/kg, s.c., once daily) for 7 consecutive days. Twenty-four hours after the last drug injection, animals were challenged with local perfusion of 5 mM nicotine into the shell of nucleus accumbens and DA release was monitored using in vivo microdialysis. In rats pretreated with chronic nicotine, local nicotine challenge induced a greater increase of accumbal DA release than in saline-treated animals (maximal DA response 969 {+-} 235% (mean {+-} SEM) of basal level vs. 520 {+-} 93%, P < 0.05). Co-administration of MK-801 with nicotine attenuated an increase of DA release elicited by local nicotine challenge, compared with nicotine alone (maximal DA response 427 {+-} 83% of basal level vs. 969 {+-} 235%, P < 0.01). These results suggest that MK-801 blocks the development of nicotine sensitization of nucleus accumbens DA release, further supporting the involvement of NMDA receptors in the development of behavioral sensitization to nicotine.

  10. Effect of MK-801 on the development of nicotine sensitization of nucleus accumbens dopamine release

    International Nuclear Information System (INIS)

    Hong, Soo Kyung; Choung, In Soon; Kim, Sang Eun

    2005-01-01

    We have previously found that MK-801, a noncompetitive NMDA receptor antagonist, prevents behavioral sensitization to nicotine. This study aimed to investigate the effect of MK-801 on a neurochemical component of nicotine sensitization by evaluating the effect of the drug on nicotine sensitization of nucleus accumbens dopamine (DA) release. Sprague-Dawley rats were pretreated with MK-801 (0.3 mg/kg, i.p.) or saline 30 min before injection of nicotine (0.4 mg/kg, s.c., once daily) for 7 consecutive days. Twenty-four hours after the last drug injection, animals were challenged with local perfusion of 5 mM nicotine into the shell of nucleus accumbens and DA release was monitored using in vivo microdialysis. In rats pretreated with chronic nicotine, local nicotine challenge induced a greater increase of accumbal DA release than in saline-treated animals (maximal DA response 969 ± 235% (mean ± SEM) of basal level vs. 520 ± 93%, P < 0.05). Co-administration of MK-801 with nicotine attenuated an increase of DA release elicited by local nicotine challenge, compared with nicotine alone (maximal DA response 427 ± 83% of basal level vs. 969 ± 235%, P < 0.01). These results suggest that MK-801 blocks the development of nicotine sensitization of nucleus accumbens DA release, further supporting the involvement of NMDA receptors in the development of behavioral sensitization to nicotine

  11. Spatial Discrimination Reversal Learning in Weanling Rats Is Impaired by Striatal Administration of an NMDA-Receptor Antagonist

    Science.gov (United States)

    Watson, Deborah J.; Stanton, Mark E.

    2009-01-01

    The striatum plays a major role in both motor control and learning and memory, including executive function and "behavioral flexibility." Lesion, temporary inactivation, and infusion of an N-methyl-d-aspartate (NMDA)-receptor antagonist into the dorsomedial striatum (dmSTR) impair reversal learning in adult rats. Systemic administration of MK-801

  12. Design and synthesis of enantiomerically enriched, radiolabeled MK-801 analogs as potential radiotracers for imaging and autoradiographic studies of the NMDA receptor-ion channel complex

    International Nuclear Information System (INIS)

    Eng, W.S.; Burns, H.D.; Gibson, R.E.; Ransom, R.W.; Thorpe, H.; Fioravanit, C.; Britcher, S.F.; Magill, C.A.; Solomon, H.F.; Dannals, R.F.; Wilson, A.A.; Ravert, H.T.; Wagner, H.N.

    1989-01-01

    MK-801 is a potent, non-competitive antagonist for the N-methyl-D-asspartate (NMDA) receptor-ion channel complex. This complex is though to be involved in nerve cell damage in stroke patients when excess calcium is released through the activated channel. A thorough understanding of drug interactions with the NMDA receptor complex could lead to improved therapy for reducing hypoxic-ischemic neuronal injuries in stroke patients. Based on the results of extensive structure-activity studies, the authors have developed several enantiomerically enriched, radiolabeled analogs of MK-801, including: 3-1231-MK-801 for Single Photon Emission Computed tomography (SPECT); 3-1251-MK-801 for in-vivo and in-vitro autoradiography; 8-11C-MeO-MK-801 for Positron Emission Tomography (PET). Details of the synthesis of these radiotracers and their application to both in-vitro and in-vivo studies are described

  13. Effects of MK-801 upon local cerebral glucose utilization in conscious rats and in rats anaesthetised with halothane

    International Nuclear Information System (INIS)

    Kurumaji, A.; McCulloch, J.

    1989-01-01

    The effects of MK-801 (0.5 mg/kg i.v.), a non-competitive N-methyl-D-aspartate (NMDA) antagonist, upon local cerebral glucose utilization were examined in conscious, lightly restrained rats and in rats anaesthetised with halothane in nitrous oxide by means of the quantitative autoradiographic [14C]-2-deoxyglucose technique. In the conscious rats, MK-801 produced a heterogenous pattern of altered cerebral glucose utilization with significant increases being observed in 12 of the 28 regions of gray matter examined and significant decreases in 6 of the 28 regions. Pronounced increases in glucose use were observed after MK-801 in the olfactory areas and in a number of brain areas in the limbic system (e.g., hippocampus molecular layer, dentate gyrus, subicular complex, posterior cingulate cortex, and mammillary body). In the cerebral cortices, large reductions in glucose use were observed after administration of MK-801, whereas in the extrapyramidal and sensory-motor areas, glucose use remained unchanged after MK-801 administration in conscious rats. In the halothane-anaesthetised rats, the pattern of altered glucose use after MK-801 differed qualitatively and quantitatively from that observed in conscious rats. In anaesthetised rats, significant reductions in glucose use were noted after MK-801 in 10 of the 28 regions examined, with no area displaying significantly increased glucose use after administration of the drug. In halothane-anaesthetised rats, MK-801 failed to change the rates of glucose use in the olfactory areas, the hippocampus molecular layer, and the dentate gyrus

  14. Oxytocin reversed MK-801-induced social interaction and aggression deficits in zebrafish.

    Science.gov (United States)

    Zimmermann, Fernanda Francine; Gaspary, Karina Vidarte; Siebel, Anna Maria; Bonan, Carla Denise

    2016-09-15

    Changes in social behavior occur in several neuropsychiatric disorders such as schizophrenia and autism. The interaction between individuals is an essential aspect and an adaptive response of several species, among them the zebrafish. Oxytocin is a neuroendocrine hormone associated with social behavior. The aim of the present study was to investigate the effects of MK-801, a non-competitive antagonist of glutamate NMDA receptors, on social interaction and aggression in zebrafish. We also examined the modulation of those effects by oxytocin, the oxytocin receptor agonist carbetocin and the oxytocin receptor antagonist L-368,899. Our results showed that MK-801 induced a decrease in the time spent in the segment closest to the conspecific school and in the time spent in the segment nearest to the mirror image, suggesting an effect on social behavior. The treatment with oxytocin after the exposure to MK-801 was able to reestablish the time spent in the segment closest to the conspecific school, as well as the time spent in the segment nearest to the mirror image. In addition, in support of the role of the oxytocin pathway in modulating those responses, we showed that the oxytocin receptor agonist carbetocin reestablished the social and aggressive behavioral deficits induced by MK-801. However, the oxytocin receptor antagonist L-368,899 was not able to reverse the behavioral changes induced by MK-801. This study supports the critical role for NMDA receptors and the oxytocinergic system in the regulation of social behavior and aggression which may be relevant for the mechanisms associated to autism and schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. The effect of hippocampal NMDA receptor blockade by MK-801 on cued fear extinction.

    Science.gov (United States)

    Zhang, Bo; Li, Chuan-Yu; Wang, Xiu-Song

    2017-08-14

    Extinction of conditioned fear has been suggested to be a new form of learning instead of erasure of what was originally learned, and the process is NMDA (N-methyl d-aspartate) receptor (NMDAR) dependent. Most of studies have so far revealed the important roles of NMDARs in the amygdala and medial prefrontal cortex (mPFC) in cued fear extinction. Although the ventral hippocampus has intimately reciprocal connections with the amygdala and mPFC, the role of its NMDARs in cued fear extinction remains unclear. The present experiment explored the issue by bilateral pre-extinction microinjection of the noncompetitive NMDAR antagonist MK-801 into the ventral hippocampus. Four groups of rats were given habituation, tone cued fear conditioning, fear extinction training and extinction test. Prior to extinction training, rats received bilateral infusions of either MK-801 (1.5, 3, or 6μg/0.5μl) or saline. Our results showed that MK-801 reduced freezing on the first trial of extinction training with no impact on within-session acquisition of extinction, and that the lower doses of MK-801 resulted in increased freezing on the extinction retrieval test. These findings suggest that ventral hippocampal NMDARs are necessary for the consolidation of tone cued fear extinction. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hippocampal serotonin depletion unmasks differences in the hyperlocomotor effects of phencyclidine and MK-801: quantitative versus qualitative analyses

    Directory of Open Access Journals (Sweden)

    Wendy K Adams

    2013-08-01

    Full Text Available Antagonism of N-methyl-D-aspartate (NMDA receptors by phencyclidine is thought to underlie its ability to induce a schizophrenia-like syndrome in humans, yet evidence indicates it has a broader pharmacological profile. Our previous lesion studies highlighted a role for serotonergic projections from the median, but not dorsal, raphe nucleus in mediating the hyperlocomotor effects of phencyclidine, without changing the action of the more selective NMDA receptor antagonist, MK-801. Here we compared locomotor responses to phencyclidine and MK 801 in rats that were administered 5,7 dihydroxytryptamine (5,7-DHT into either the dorsal or ventral hippocampus, which are preferentially innervated by median and dorsal raphe, respectively. Dorsal hippocampus lesions potentiated phencyclidine-induced hyperlocomotion (0.5, 2.5 mg/kg, but not the effect of MK-801 (0.1 mg/kg. Ventral hippocampus lesions did not alter the hyperlocomotion elicited by either compound. Given that phencyclidine and MK-801 may induce different spatiotemporal patterns of locomotor behavior, together with the known role of the dorsal hippocampus in spatial processing, we also assessed whether the 5,7-DHT-lesions caused any qualitative differences in locomotor responses. Treatment with phencyclidine or MK-801 increased the smoothness of the path travelled (reduced spatial d and decreased the predictability of locomotor patterns within the chambers (increased entropy. 5,7-DHT-lesions of the dorsal hippocampus did not alter the effects of phencyclidine on spatial d or entropy—despite potentiating total distance moved—but caused a slight reduction in levels of MK-801-induced entropy. Taken together, serotonergic lesions targeting the dorsal hippocampus unmask a functional differentiation of the hyperlocomotor effects of phencyclidine and MK 801. These findings have implications for studies utilising NMDA receptor antagonists in modeling glutamatergic dysfunction in schizophrenia.

  17. MK-801 treatment affects glycolysis in oligodendrocytes more than in astrocytes and neuronal cells: insights for schizophrenia

    Directory of Open Access Journals (Sweden)

    Paul C Guest

    2015-05-01

    Full Text Available As a multifactorial disease, the underlying causes of schizophrenia require analysis by multiplex methods such as proteomics to allow identification of whole protein networks. Previous post-mortem proteomic studies on brain tissues from schizophrenia patients have demonstrated changes in activation of glycolytic and energy metabolism pathways. However, it is not known whether these changes occur in neurons or in glial cells. To address this question, we treated neuronal, astrocyte and oligodendrocyte cell lines with the NMDA receptor antagonist MK-801 and measured the levels of six glycolytic enzymes by Western blot analysis. MK-801 acts on the glutamatergic system and has been proposed as a pharmacological means of modeling schizophrenia. Treatment with MK-801 resulted in significant changes in the levels of glycolytic enzymes in all cell types. Most of the differences were found in oligodendrocytes, which had altered levels of hexokinase 1 (HK1, enolase 2 (ENO2, phosphoglycerate kinase (PGK and phosphoglycerate mutase 1 (PGAM1 after acute MK-801 treatment (8 hours, and HK1, ENO2, PGK and triosphosphate isomerase (TPI following long term treatment (72 hours. Addition of the antipsychotic clozapine to the cultures resulted in counter-regulatory effects to the MK-801 treatment by normalizing the levels of ENO2 and PGK in both the acute and long term cultures. In astrocytes, MK-801 affected only aldolase C (ALDOC under both acute conditions and HK1 and ALDOC following long term treatment, and TPI was the only enzyme affected under long term conditions in the neuronal cells. In conclusion, MK-801 affects glycolysis in oligodendrocytes to a larger extent than neuronal cells and this may be modulated by antipsychotic treatment. Although cell culture studies do not necessarily reflect the in vivo pathophysiology and drug effects within the brain, these results suggest that neurons, astrocytes and oligodendrocytes are affected differently in

  18. Recovery of NMDA receptor currents from MK-801 blockade is accelerated by Mg2+ and memantine under conditions of agonist exposure.

    Science.gov (United States)

    McKay, Sean; Bengtson, C Peter; Bading, Hilmar; Wyllie, David J A; Hardingham, Giles E

    2013-11-01

    MK-801 is a use-dependent NMDA receptor open channel blocker with a very slow off-rate. These properties can be exploited to 'pre-block' a population of NMDARs, such as synaptic ones, enabling the selective activation of a different population, such as extrasynaptic NMDARs. However, the usefulness of this approach is dependent on the stability of MK-801 blockade after washout. We have revisited this issue, and confirm that recovery of NMDAR currents from MK-801 blockade is enhanced by channel opening by NMDA, and find that it is further increased when Mg(2+) is also present. In the presence of Mg(2+), 50% recovery from MK-801 blockade is achieved after 10' of 100 μM NMDA, or 30' of 15 μM NMDA exposure. In Mg(2+)-free medium, NMDA-induced MK-801 dissociation was found to be much slower. Memantine, another PCP-site antagonist, could substitute for Mg(2+) in accelerating the unblock of MK-801 in the presence of NMDA. This suggests a model whereby, upon dissociation from its binding site in the pore, MK-801 is able to re-bind in a process antagonized by Mg(2+) or another PCP-site antagonist. Finally we show that even when all NMDARs are pre-blocked by MK-801, incubation of neurons with 100 μM NMDA in the presence of Mg(2+) for 2.5 h triggers sufficient unblocking to kill >80% of neurons. We conclude that while synaptic MK-801 'pre-block' protocols are useful for pharmacologically assessing synaptic vs. extrasynaptic contributions to NMDAR currents, or studying short-term effects, it is problematic to use this technique to attempt to study the effects of long-term selective extrasynaptic NMDAR activation. This article is part of the Special Issue entitled 'Glutamate Receptor-Dependent Synaptic Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Effects of dizocilpine (MK-801) on motor activity and memory.

    Science.gov (United States)

    Carey, R J; Dai, H; Gui, J

    1998-06-01

    The effects of MK-801 upon motor activity and memory were assessed in a novel use of open-field behavior testing. In this study, rats were treated with different doses of MK-801 (0.025, 0.05, 0.1 and 0.2 mg/kg) and given a brief 10-min exposure to an open-field in which locomotor activity and within-session habituation were measured. Doses of MK-801 motor activity and memory and that these two effects can be disassociated.

  20. Systemic dizocilpine (MK-801 facilitates performance in opposition to response bias

    Directory of Open Access Journals (Sweden)

    Lauwereyns Johan

    2007-09-01

    Full Text Available Abstract Previous research has established that dopamine signals are crucial in orienting behavior to reward. Less is known, however, about the psychopharmacology of task performance under small-reward conditions as compared to large-reward conditions. The current study examined the effects of the noncompetitive N-methyl-D-aspartate (NMDA-receptor antagonist dizocilpine (MK-801 on reaction time (RT in a nose-poke task with rats completing an asymmetric reward schedule. In all trials, the rats were required to poke their nose in either the left or the right peripheral hole immediately adjacent to the centre hole when the corresponding light was illuminated. Depending on the stimulus-reward mapping, however, one position was associated with a large reward, while the alternative position was associated with a small reward. Correct performance was required in every trial; if the rat did not make a correct response within 20 s, the trial was aborted, and the same stimulus was presented again on the next trial. In this way, the rat was forced to perform the same visuo-spatial discrimination task under different reward conditions. Reaction times (ms were faster for large-reward trials than for small-reward trials, replicating previous findings. At a dosage of MK-801 (0.04 mg/kg, there was no significant influence of on RT in large-reward trials. In contrast, the same dosage of MK-801 in small-reward trials produced a decrease in RT as compared to the control condition, implying an improvement of performance. Below 0.04 mg/kg of MK-801, a steady decrease of RT in small-trials was seen as a function of dosage. Above 0.04 mg/kg of MK-801, the majority of rats failed to perform the task at all, whereas the rats that did manage to perform the criterion of 80 correct trials in a session showed no difference in RT between large- and small-reward trials. These data indicate that the systemic administration of a relatively small dosage of MK-801 facilitates

  1. In vivo protection against NMDA-induced neurodegeneration by MK-801 and nimodipine : Combined therapy and temporal course of protection

    NARCIS (Netherlands)

    Stuiver, BT; Douma, BRK; Bakker, R; Nyakas, C; Luiten, PGM

    Neuroprotection against excitotoxicity by a combined therapy with the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 and the L-type Ca2+ channel blocker nimodipine was examined using an in vivo rat model of NMDA-induced neurodegeneration. Attention was focused on the neuroprotective

  2. Pharmacological or genetic orexin 1 receptor inhibition attenuates MK-801 induced glutamate release in mouse cortex

    Directory of Open Access Journals (Sweden)

    Leah eAluisio

    2014-05-01

    Full Text Available The orexin/hypocretin neuropeptides are produced by a cluster of neurons within the lateral posterior hypothalamus and participate in neuronal regulation by activating their receptors (OX1 and OX2 receptors. The orexin system projects widely through the brain and functions as an interface between multiple regulatory systems including wakefulness, energy balance, stress, reward and emotion. Recent studies have demonstrated that orexins and glutamate interact at the synaptic level and that orexins facilitate glutamate actions. We tested the hypothesis that orexins modulate glutamate signaling via OX1 receptors by monitoring levels of glutamate in frontal cortex of freely moving mice using enzyme coated biosensors under inhibited OX1 receptor conditions. MK-801, an NMDA receptor antagonist, was administered subcutaneously (0.178 mg/kg to indirectly disinhibit pyramidal neurons and therefore increase cortical glutamate release. In wild-type mice, pretreatment with the OX1 receptor antagonist GSK-1059865 (10 mg/kg S.C. which had no effect by itself, significantly attenuated the cortical glutamate release elicited by MK-801. OX1 receptor knockout mice had a blunted glutamate release response to MK-801 and exhibited about half of the glutamate release observed in wild-type mice in agreement with the data obtained with transient blockade of OX1 receptors. These results indicate that pharmacological (transient or genetic (permanent inhibition of the OX1 receptor similarly interfere with glutamatergic function in the cortex. Selectively targeting the OX1 receptor with an antagonist may normalize hyperglutamatergic states and thus may represent a novel therapeutic strategy for the treatment of various psychiatric disorders associated with hyperactive states.

  3. Effects of MK-801 on vicarious trial-and-error and reversal of olfactory discrimination learning in weanling rats.

    Science.gov (United States)

    Griesbach, G S; Hu, D; Amsel, A

    1998-12-01

    The effects of dizocilpine maleate (MK-801) on vicarious trial-and-error (VTE), and on simultaneous olfactory discrimination learning and its reversal, were observed in weanling rats. The term VTE was used by Tolman (The determiners of behavior at a choice point. Psychol. Rev. 1938;46:318-336), who described it as conflict-like behavior at a choice-point in simultaneous discrimination learning. It takes the form of head movements from one stimulus to the other, and has recently been proposed by Amsel (Hippocampal function in the rat: cognitive mapping or vicarious trial-and-error? Hippocampus, 1993;3:251-256) as related to hippocampal, nonspatial function during this learning. Weanling male rats received systemic MK-801 either 30 min before the onset of olfactory discrimination training and its reversal, or only before its reversal. The MK-801-treated animals needed significantly more sessions to acquire the discrimination and showed significantly fewer VTEs in the acquisition phase of learning. Impaired reversal learning was shown only when MK-801 was administered during the reversal-learning phase, itself, and not when it was administered throughout both phases.

  4. MK-801 (Dizocilpine) Regulates Multiple Steps of Adult Hippocampal Neurogenesis and Alters Psychological Symptoms via Wnt/β-Catenin Signaling in Parkinsonian Rats.

    Science.gov (United States)

    Singh, Sonu; Mishra, Akanksha; Srivastava, Neha; Shukla, Shubha

    2017-03-15

    Adult hippocampal neurogenesis is directly involved in regulation of stress, anxiety, and depression that are commonly observed nonmotor symptoms in Parkinson's disease (PD). These symptoms do not respond to pharmacological dopamine replacement therapy. Excitotoxic damage to neuronal cells by N-methyl-d-aspartate (NMDA) receptor activation is also a major contributing factor in PD development, but whether it regulates hippocampal neurogenesis and nonmotor symptoms in PD is yet unexplored. Herein, for the first time, we studied the effect of MK-801, an NMDA receptor antagonist, on adult hippocampal neurogenesis and behavioral functions in 6-OHDA (6-hydroxydopamine) induced rat model of PD. MK-801 treatment (0.2 mg/kg, ip) increased neural stem cell (NSC) proliferation, self-renewal capacity, long-term survival, and neuronal differentiation in the hippocampus of rat model of PD. MK-801 potentially enhanced long-term survival, improved dendritic arborization of immature neurons, and reduced 6-OHDA induced neurodegeneration via maintaining the NSC pool in hippocampus, leading to decreased anxiety and depression-like phenotypes in the PD model. MK-801 inhibited glycogen synthase kinase-3β (GSK-3β) through up-regulation of Wnt-3a, which resulted in the activation of Wnt/β-catenin signaling leading to enhanced hippocampal neurogenesis in PD model. Additionally, MK-801 treatment protected the dopaminergic (DAergic) neurons in the nigrostriatal pathway and improved motor functions by increasing the expression of Nurr-1 and Pitx-3 in the PD model. Therefore, MK-801 treatment serves as a valuable tool to enhance hippocampal neurogenesis in PD, but further studies are needed to revisit the role of MK-801 in the neurodegenerative disorder before proposing a potential therapeutic candidate.

  5. [123I]Epidepride neuroimaging of dopamine D2/D3 receptor in chronic MK-801-induced rat schizophrenia model

    International Nuclear Information System (INIS)

    Huang, Yuan-Ruei; Shih, Jun-Ming; Chang, Kang-Wei; Huang, Chieh; Wu, Yu-Lung; Chen, Chia-Chieh

    2012-01-01

    Purpose: [ 123 I]Epidepride is a radio-tracer with very high affinity for dopamine D 2 /D 3 receptors in brain. The importance of alteration in dopamine D 2 /D 3 receptor binding condition has been wildly verified in schizophrenia. In the present study we set up a rat schizophrenia model by chronic injection of a non-competitive NMDA receptor antagonist, MK-801, to examine if [ 123 I]epidepride could be used to evaluate the alterations of dopamine D 2 /D 3 receptor binding condition in specific brain regions. Method: Rats were given repeated injection of MK-801 (dissolved in saline, 0.3 mg/kg) or saline for 1 month. Afterwards, total distance traveled (cm) and social interaction changes were recorded. Radiochemical purity of [ 123 I]epidepride was analyzed by Radio-Thin-Layer Chromatography (chloroform: methanol, 9:1, v/v) and [ 123 I]epidepride neuroimages were obtained by ex vivo autoradiography and small animal SPECT/CT. Data obtained were then analyzed to determine the changes of specific binding ratio. Result: Chronic MK-801 treatment for a month caused significantly increased local motor activity and induced an inhibition of social interaction. As shown in [ 123 I]epidepride ex vivo autoradiographs, MK-801 induced a decrease of specific binding ratio in the striatum (24.01%), hypothalamus (35.43%), midbrain (41.73%) and substantia nigra (37.93%). In addition, [ 123 I]epidepride small animal SPECT/CT neuroimaging was performed in the striatum and midbrain. There were statistically significant decreases in specific binding ratio in both the striatum (P 123 I]epidepride is a useful radio-tracer to reveal the alterations of dopamine D 2 /D 3 receptor binding in a rat schizophrenia model and is also helpful to evaluate therapeutic effects of schizophrenia in the future.

  6. Synthesis and receptor binding studies of (+/-)1-iodo-MK-801

    International Nuclear Information System (INIS)

    Yang, D.J.; Ciliax, B.J.; Van Dort, M.E.; Gildersleeve, D.; Pirat, J.L.; Young, A.B.; Wieland, D.M.

    1989-01-01

    The glutamate analogue N-methyl-D-aspartate (NMDA) binds to a subset of glutamate receptors that are coupled to a voltage-sensitive cation channel. This NMDA-linked channel is the likely binding locus of the potent anticonvulsant MK-801. To develop single-photon emission computed tomography (SPECT) probes of this brain channel, we synthesized (+/)1-iodo-MK-801 and (+/-)1-[ 125 I]iodo-MK-801. The effect of (+/-)1-iodo-MK-801 on ligand binding to the NMDA-linked glutamate receptor site was assessed using a rat brain homogenate assay. (+/-)1-Iodo-MK-801 displaced the dissociative anesthetic ligand [ 3 H]N-[1-(2-thienyl)cyclohexyl]piperidine ([ 3 H]TCP) binding with an IC50 of 1 microM, which is a 10-fold lower binding affinity than that of (+/-)MK-801. In in vivo autoradiographic studies, (+/-)MK-801 failed to block selective uptake of (+/-)1-iodo-MK-801 in rat brain. These results suggest that (+/-)1-iodo-MK-801 may not be a suitable ligand for mapping NMDA-linked glutamate receptor channels

  7. Acute Administration of MK-801 in an Animal Model of Psychosis in Rats Interferes with Cognitively Demanding Forms of Behavioral Flexibility on a Rotating Arena

    Directory of Open Access Journals (Sweden)

    Jan eSvoboda

    2015-04-01

    Full Text Available Patients with schizophrenia often manifest deficits in behavioral flexibility. Non-competitive NMDA receptor antagonists such as MK-801 induce schizophrenia-like symptoms in rodents, including cognitive functions. Despite work exploring flexibility has been done employing behavioral paradigms with simple stimuli, much less is known about what kinds of flexibility are affected in an MK-801 model of schizophrenia-like behavior in the spatial domain. We used a rotating arena-based apparatus (Carousel requiring rats to avoid an unmarked sector defined in either the reference frame of the rotating arena (arena frame task, AF or the stationary room (room frame task, RF. We investigated behavioral flexibility in four conditions involving different cognitive loads. Each condition encompassed an initial (five sessions and a test phase (five sessions in which some aspects of the task were changed to test flexibility in which rats were given saline, 0.05 mg/kg or 0.1 mg/kg MK-801 thirty minutes prior to a session. In the first condition, rats acquired avoidance in RF with clockwise rotation of the arena while in the test phase the arena rotated counterclockwise. In the second condition, rats initially acquired avoidance in RF with the sector on the north and then it was reversed to south (spatial reversal. In the third and fourth conditions, rats initially performed an AF (RF, respectively task, followed by an RF (AF, respectively task, testing the ability of cognitive set-shifting. We found no effect of MK-801 either on simple motor adjustment after reversal of arena rotation or on spatial reversal within the RF. In contrast, administration of MK-801 at a dose of 0.1 mg/kg interfered with set-shifting in both conditions. Furthermore, we observed MK-801 0.1 mg/kg elevated locomotion in all cases. These data suggest that blockade of NMDA receptors by acute system administration of MK-801 preferentially affects set-shifting in the cognitive domain rather

  8. The effect of combined treatment with escitalopram and risperidone on the MK-801-induced changes in the object recognition test in mice.

    Science.gov (United States)

    Rogóż, Zofia; Kamińska, Katarzyna

    2016-02-01

    Atypical antipsychotic drugs have some efficacy in alleviating the negative and some cognitive symptoms of schizophrenia but those effects are small and mechanisms of this action are still unknown. A few clinical reports have suggested that the antidepressant drugs, especially selective serotonin reuptake inhibitors (SSRI) are able to augment the activity of atypical antipsychotic drugs, thus effectively improving treatment of the negative and some cognitive symptoms of schizophrenia. In the present study, we evaluated the effect of escitalopram (SSRI) and risperidone (an atypical antipsychotic drug), given separately or jointly, on the effect of MK-801 (a NMDA receptor antagonist) given before to the first introductory session, in the object recognition memory test. The mice were tested for the ability to discriminate between an old, familiar and a novel object. Escitalopram and risperidone were given 30min before MK-801, and MK-801 was administered 30min before the first introductory session. Memory retention was evaluated 90min after the introductory session. The obtained results showed that MK-801 (0.2mg/kg) decreased memory retention when given before the introductory session. Risperidone at a higher dose (0.1mg/kg) reversed that effect. Co-treatment with an ineffective dose of risperidone (0.01mg/kg) and escitalopram (5 or 10mg/kg) abolished the deficit of object recognition memory induced by MK-801. The obtained results suggest that escitalopram may enhance the antipsychotic-like effect of risperidone in the animal tests used for evaluation of some cognitive symptoms of schizophrenia. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  9. MK-801 and memantine act differently on short-term memory tested with different time-intervals in the Morris water maze test.

    Science.gov (United States)

    Duda, Weronika; Wesierska, Malgorzata; Ostaszewski, Pawel; Vales, Karel; Nekovarova, Tereza; Stuchlik, Ales

    2016-09-15

    N-methyl-d-aspartate receptors (NMDARs) play a crucial role in spatial memory formation. In neuropharmacological studies their functioning strongly depends on testing conditions and the dosage of NMDAR antagonists. The aim of this study was to assess the immediate effects of NMDAR block by (+)MK-801 or memantine on short-term allothetic memory. Memory was tested in a working memory version of the Morris water maze test. In our version of the test, rats underwent one day of training with 8 trials, and then three experimental days when rats were injected intraperitoneally with low- 5 (MeL), high - 20 (MeH) mg/kg memantine, 0.1mg/kg MK-801 or 1ml/kg saline (SAL) 30min before testing, for three consecutive days. On each experimental day there was just one acquisition and one test trial, with an inter-trial interval of 5 or 15min. During training the hidden platform was relocated after each trial and during the experiment after each day. The follow-up effect was assessed on day 9. Intact rats improved their spatial memory across the one training day. With a 5min interval MeH rats had longer latency then all rats during retrieval. With a 15min interval the MeH rats presented worse working memory measured as retrieval minus acquisition trial for path than SAL and MeL and for latency than MeL rats. MK-801 rats had longer latency than SAL during retrieval. Thus, the high dose of memantine, contrary to low dose of MK-801 disrupts short-term memory independent on the time interval between acquisition and retrieval. This shows that short-term memory tested in a working memory version of water maze is sensitive to several parameters: i.e., NMDA receptor antagonist type, dosage and the time interval between learning and testing. Copyright © 2016. Published by Elsevier B.V.

  10. Postnatal BDNF Expression Profiles in Prefrontal Cortex and Hippocampus of a Rat Schizophrenia Model Induced by MK-801 Administration

    Directory of Open Access Journals (Sweden)

    Chunmei Guo

    2010-01-01

    Full Text Available Neonatal blockade of N-methyl-D-aspartic acid (NMDA receptors represents one of experimental animal models for schizophrenia. This study is to investigate the long-term brain-derived neurotrophic factor (BDNF expression profiles in different regions and correlation with “schizophrenia-like” behaviors in the adolescence and adult of this rat model. The NMDA receptor antagonist MK801 was administered to female Sprague-Dawley rats on postnatal days (PND 5 through 14. Open-field test was performed on PND 42, and PND 77 to examine the validity of the current model. BDNF protein levels in hippocampus and prefrontal cortex (PFC were analyzed on PND 15, PND 42, and PND 77. Results showed that neonatal challenge with MK-801 persistently elevated locomotor activity as well as BDNF expression; the alterations in BDNF expression varied at different developing stages and among brain regions. However, these findings provide neurochemical evidence that the blockade of NMDA receptors during brain development results in long-lasting alterations in BDNF expression and might contribute to neurobehavioral pathology of the present animal model for schizophrenia. Further study in the mechanisms and roles of the BDNF may lead to better understanding of the pathophysiology of schizophrenia.

  11. Acute NMDA Receptor Hypofunction induced by MK801 Evokes Sex-Specific Changes in Behaviors Observed in Open Field Testing in Adult Male and Proestrus Female Rats

    Science.gov (United States)

    Feinstein, Igor; Kritzer, Mary F.

    2012-01-01

    Schizophrenia is a complex constellation of positive, negative and cognitive symptoms. Acute administration of the non-competitive antagonist of the N-methyl D-aspartate receptor (NMDAR) dizocilpine (MK801) in rats is one of few preclinical animal models of this disorder that has both face and/or construct validity for these multiple at-risk behavioral domains and predictive power for the efficacy of therapeutic drugs in treating them. This study asked whether and to what extent the rat NMDAR hypofunction model also embodies the sex differences that distinguish the symptoms of schizophrenia and their treatment. Thus, we compared the effects of acute MK801, with and without pretreatment with haloperidol or clozapine, on seven discrete spontaneous open field activities in adult male and female rats. These analyses revealed that MK801 was more effective in stimulating ataxia and locomotion and inhibiting stationary behavior in females while more potently stimulating stereotypy and thigmotaxis and inhibiting rearing and grooming in males. Haloperidol and clozapine pretreatments had markedly different efficacies in terms of behaviors but strong similarities in their effectiveness in male and female subjects. These results bear intriguing relationships with the complex male/female differences that characterize the symptoms of schizophrenia and suggest possible applications for acute NMDAR hypofunction as a preclinical model for investigating the neurobiology that underlies them. PMID:23085219

  12. Effects of hypoxia-ischemia and MK-801 treatment on the binding of a phencyclidine analogue in the developing rat brain

    International Nuclear Information System (INIS)

    Silverstein, F.S.; McDonald, J.W. III; Bommarito, M.; Johnston, M.V.

    1990-01-01

    The phencyclidine analogue [ 3 H](1-[2-thienyl]cyclohexyl)piperidine ( 3 H-TCP) binds to the ion channel associated with the N-methyl-D-aspartate receptor channel complex. In vitro autoradiography indicates that the distribution of 3 H-TCP binding in brain closely parallels that of [ 3 H]glutamate binding to the N-methyl-D-aspartate receptor. In nine 7-day-old rats, an acute focal hypoxic-ischemic insult produced by unilateral carotid artery ligation and subsequent exposure to 8% oxygen acutely reduced 3 H-TCP binding ipsilateral to the ligation by 30% in the CA1, by 27% in the CA3, by 26% in the dentate gyrus, and by 17% in the striatum compared with values from the contralateral hemisphere. In 10 littermates that received 1 mg/kg of the neuroprotective noncompetitive N-methyl-D-aspartate antagonist MK-801 immediately before hypoxic exposure, the regional distribution of 3 H-TCP binding in hypoxic-ischemic brain was relatively preserved and there were no interhemispheric asymmetries in 3 H-TCP binding densities. In addition, in three unoperated rats decapitated 24 hours after MK-801 treatment, 3 H-TCP binding was reduced by 15-35%; similar bilateral suppression of 3 H-TCP binding was detected in MK-801-treated ligates. Our data indicate that 3 H-TCP autoradiography can be used to assay the efficacy of neuroprotective agents in this experimental model of perinatal stroke

  13. NAAG peptidase inhibitors block cognitive deficit induced by MK-801 and motor activation induced by d-amphetamine in animal models of schizophrenia

    Science.gov (United States)

    Olszewski, R T; Janczura, K J; Ball, S R; Madore, J C; Lavin, K M; Lee, J C-M; Lee, M J; Der, E K; Hark, T J; Farago, P R; Profaci, C P; Bzdega, T; Neale, J H

    2012-01-01

    The most widely validated animal models of the positive, negative and cognitive symptoms of schizophrenia involve administration of d-amphetamine or the open channel NMDA receptor blockers, dizocilpine (MK-801), phencyclidine (PCP) and ketamine. The drug ZJ43 potently inhibits glutamate carboxypeptidase II (GCPII), an enzyme that inactivates the peptide transmitter N-acetylaspartylglutamate (NAAG) and reduces positive and negative behaviors induced by PCP in several of these models. NAAG is an agonist at the metabotropic glutamate receptor 3 (mGluR3). Polymorphisms in this receptor have been associated with expression of schizophrenia. This study aimed to determine whether two different NAAG peptidase inhibitors are effective in dopamine models, whether their efficacy was eliminated in GCPII knockout mice and whether the efficacy of these inhibitors extended to MK-801-induced cognitive deficits as assessed using the novel object recognition test. ZJ43 blocked motor activation when given before or after d-amphetamine treatment. (R,S)-2-phosphono-methylpentanedioic acid (2-PMPA), another potent NAAG peptidase inhibitor, also reduced motor activation induced by PCP or d-amphetamine. 2-PMPA was not effective in GCPII knockout mice. ZJ43 and 2-PMPA also blocked MK-801-induced deficits in novel object recognition when given before, but not after, the acquisition trial. The group II mGluR antagonist LY341495 blocked the effects of NAAG peptidase inhibition in these studies. 2-PMPA was more potent than ZJ43 in a test of NAAG peptidase inhibition in vivo. By bridging the dopamine and glutamate theories of schizophrenia with two structurally different NAAG peptidase inhibitors and demonstrating their efficacy in blocking MK-801-induced memory deficits, these data advance the concept that NAAG peptidase inhibition represents a potentially novel antipsychotic therapy. PMID:22850437

  14. Effects of MK-801 treatment across several pre-clinical analyses including a novel assessment of brain metabolic function utilizing PET and CT fused imaging in live rats.

    Science.gov (United States)

    Daya, R P; Bhandari, J K; Hui, P A; Tian, Y; Farncombe, T; Mishra, R K

    2014-02-01

    Functional imaging studies in schizophrenic patients have demonstrated metabolic brain abnormalities during cognitive tasks. This study aimed to 1) introduce a novel analysis of brain metabolic function in live animals to characterize the hypo- and hyperfrontality phenomena observed in schizophrenia and following NMDA antagonist exposure, and 2) identify a robust and representative MK-801 treatment regimen that effectively models brain metabolic abnormalities as well as a range of established behavioural abnormalities representative of schizophrenia. The validity of the MK-801 animal model was examined across several established pre-clinical tests, and a novel assessment of brain metabolic function using PET/CT fused imaging. In the present study, MK-801 was administered acutely at 0.1 mg/kg and 0.5 mg/kg, and sub-chronically at 0.5 mg/kg daily for 7 days. Acute treatment at 0.5 mg/kg-disrupted facets of memory measured through performance in the 8-arm radial maze task and generated abnormalities in sensorimotor gating, social interaction and locomotor activity. Furthermore, this treatment regimen induced hyperfrontality (increased brain metabolic function in the prefrontal area) observed via PET/CT fused imaging in the live rat. While PET and CT fused imaging in the live rat offers a functional representation of metabolic function, more advanced PET/CT integration is required to analyze more discrete brain regions. These findings provide insight on the effectiveness of the MK-801 pre-clinical model of schizophrenia and provide an optimal regimen to model schizophrenia. PET/CT fused imaging offers a highly translatable tool to assess hypo- and hyperfrontality in live animals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. ERK activation in the amygdala and hippocampus induced by fear conditioning in ethanol withdrawn rats: modulation by MK-801.

    Science.gov (United States)

    Bertotto, María Eugenia; Maldonado, Noelia Martina; Bignante, Elena Anahi; Gorosito, Silvana Vanesa; Cambiasso, María Julia; Molina, Víctor Alejandro; Martijena, Irene Delia

    2011-12-01

    The extracellular signal-regulated kinase (ERK) pathway, which can be activated by NMDA receptor stimulation, is involved in fear conditioning and drug addiction. We have previously shown that withdrawal from chronic ethanol administration facilitated the formation of contextual fear memory. In order to explore the neural substrates and the potential mechanism involved in this effect, we examined: 1) the ERK1/2 activation in the central (CeA) and basolateral (BLA) nuclei of the amygdala and in the dorsal hippocampus (dHip), 2) the effect of the NMDA receptor antagonist MK-801 on fear conditioning and ERK activation and 3) the effect of the infusion of U0126, a MEK inhibitor, into the BLA on fear memory formation in ethanol withdrawn rats. Rats made dependent via an ethanol-containing liquid diet were subjected to contextual fear conditioning on day 3 of ethanol withdrawal. High basal levels of p-ERK were found in CeA and dHip from ethanol withdrawn rats. ERK activation was significantly increased both in control (60min) and ethanol withdrawn rats (30 and 60min) in BLA after fear conditioning. Pre-training administration of MK-801, at a dose that had no effect on control rats, prevented the increase in ERK phosphorylation in BLA and attenuated the freezing response 24h later in ethanol withdrawn rats. Furthermore, the infusion of U0126 into the BLA, but not the CeA, before fear conditioning disrupted fear memory formation. These results suggest that the increased fear memory can be linked to changes in ERK phosphorylation, probably due to NMDA receptor activation in BLA in ethanol withdrawn rats. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. The neuroprotective efficacy of MK-801 in focal cerebral ischemia varies with rat strain and vendor.

    Science.gov (United States)

    Oliff, H S; Marek, P; Miyazaki, B; Weber, E

    1996-08-26

    The present study was designed to evaluate whether the neuroprotective efficacy of MK-801 in focal cerebral ischemia was dependent on strain and/or vendor differences. MK-801 (0.12 mg/kg i.v. bolus followed by 0.108 mg/kg/h infusion or 0.60 mg/kg i.v. bolus followed by 0.540 mg/kg/h infusion) or saline was administered just after intraluminal middle cerebral artery occlusion. Administration of 0.540 mg/kg/h MK-801 provided strain/line-dependent neuroprotection in the following rank order: Simonsen Laboratories Sprague-Dawley rats > Simonsen Laboratories Wistar rats > Taconic Laboratories Sprague-Dawley rats. After 0.108 mg/kg/h MK-801 treatment, Simonsen Laboratories Wistar rats were the only strain/line that were significantly neuroprotected. These results indicate that the neuroprotective effect of an experimental drug may be influenced by rat strain and vendor differences.

  17. MK-801 induced amnesia for the elevated plus-maze in mice

    Czech Academy of Sciences Publication Activity Database

    Hliňák, Zdeněk; Krejčí, I.

    2002-01-01

    Roč. 131, 1-2 (2002), s. 221-225 ISSN 0166-4328 R&D Projects: GA ČR GA309/00/1644 Institutional research plan: CEZ:AV0Z5011922 Keywords : amnesia * elevated plus-maze * MK-801 Subject RIV: FH - Neurology Impact factor: 2.791, year: 2002

  18. Kynurenic acid prevented social recognition deficits induced by MK-801 in rats

    Czech Academy of Sciences Publication Activity Database

    Hliňák, Zdeněk; Krejčí, I.

    2003-01-01

    Roč. 52, č. 6 (2003), s. 805-808 ISSN 0862-8408 R&D Projects: GA ČR GA309/00/1644 Institutional research plan: CEZ:AV0Z5011922 Keywords : amnesia * kynurenic acid * MK-801 Subject RIV: FH - Neurology Impact factor: 0.939, year: 2003

  19. N-methyl-D-aspartate prevented memory deficits induced by MK-801 in mice

    Czech Academy of Sciences Publication Activity Database

    Hliňák, Zdeněk; Krejčí, I.

    2003-01-01

    Roč. 52, č. 6 (2003), s. 809-812 ISSN 0862-8408 R&D Projects: GA ČR GA309/00/1644 Institutional research plan: CEZ:AV0Z5011922 Keywords : N-methyl-D-aspartate * MK-801 * spatial memory Subject RIV: FH - Neurology Impact factor: 0.939, year: 2003

  20. Chronic MK-801 Application in Adolescence and Early Adulthood: A Spatial Working Memory Deficit in Adult Long-Evans Rats But No Changes in the Hippocampal NMDA Receptor Subunits

    Directory of Open Access Journals (Sweden)

    Libor Uttl

    2018-02-01

    Full Text Available The role of NMDA receptors in learning, memory and hippocampal function has long been recognized. Post-mortem studies have indicated that the expression or subunit composition of the NMDA glutamate receptor subtype might be related to the impaired cognitive functions found in schizophrenia patients. NMDA receptor antagonists have been used to develop animal models of this disorder. There is accumulating evidence showing that not only the acute but also the chronic application of NMDA receptor antagonists may induce schizophrenia-like alterations in behavior and brain functions. However, limited evidence is available regarding the consequences of NMDA receptor blockage during periods of adolescence and early adulthood. This study tested the hypothesis that a 2-week treatment of male Long-Evans and Wistar rats with dizocilpine (MK-801; 0.5 mg/kg daily starting at postnatal days (PD 30 and 60 would cause a long-term cognitive deficit and changes in the levels of NMDA receptor subunits. The working memory version of the Morris water maze (MWM and active place avoidance with reversal on a rotating arena (Carousel requiring cognitive coordination and flexibility probed cognitive functions and an elevated-plus maze (EPM was used to measure anxiety-like behavior. The western blot method was used to determine changes in NMDA receptor subunit levels in the hippocampus. Our results showed no significant changes in behaviors in Wistar rats. Slightly elevated anxiety-like behavior was observed in the EPM in Long-Evans rats with the onset of treatment on PD 30. Furthermore, Long-Evans rats treated from PD 60 displayed impaired working memory in the MWM. There were; however, no significant changes in the levels of NMDA receptor subunits because of MK-801 administration. These findings suggest that a 2-week treatment starting on PD 60 in Long-Evans rats leads to long-term changes in working memory, but this deficit is not paralleled by changes in NMDA receptor

  1. Combined administration of MK-801 and cycloheximide produces a delayed potentiation of fear discrimination memory extinction.

    Science.gov (United States)

    Kochli, Daniel E; Campbell, Tiffany L; Hollingsworth, Ethan W; Lab, Rain S; Postle, Abagail F; Perry, Megan M; Mordzinski, Victoria M; Quinn, Jennifer J

    2018-04-01

    Mixed evidence exists regarding the role of N-methyl-D-aspartate (NMDA) receptors in memory reconsolidation. We provide no evidence that NMDA receptors are involved with memory reconsolidation, but instead demonstrate that prereactivation systemic MK-801 injection, combined with postreactivation intrabasolateral amygdala (BLA) cycloheximide infusion, produces a delayed potentiation of extinction learning. These data suggest that an interaction between NMDA antagonism and protein synthesis inhibition may enhance extinction by exerting effects outside of the intended reconsolidation manipulation window. The present work demonstrates a novel pharmacological enhancement of extinction, and underscores the importance of employing proper control procedures in reconsolidation research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Molecular responses of the Ts65Dn and Ts1Cje mouse models of Down syndrome to MK-801.

    Science.gov (United States)

    Siddiqui, A; Lacroix, T; Stasko, M R; Scott-McKean, J J; Costa, A C S; Gardiner, K J

    2008-10-01

    Down syndrome (DS), caused by trisomy of human chromosome 21 (chr21), is the most common genetic cause of intellectual disability. The Ts65Dn mouse model of DS is trisomic for orthologs of 94 chr21-encoded, confirmed protein-coding genes and displays a number of behavioral deficits. Recently, Ts65Dn mice were shown to be hypersensitive to the locomotor stimulatory effects of the high-affinity N-methyl-d-aspartate (NMDA) receptor (NMDAR) channel blocker, MK-801. This is consistent with the functions of several chr21 proteins that are predicted directly or indirectly to impact NMDAR function or NMDAR-mediated signaling. In this study, we show that a second mouse model of DS, the Ts1Cje, which is trisomic for 70 protein-coding genes, is also hypersensitive to MK-801. To investigate the molecular basis for the responses to MK-801, we have measured levels of a subset of chr21 and phosphorylated non-chr21 proteins, in the cortex and hippocampus of Ts65Dn and Ts1Cje mice and euploid controls, with and without treatment with MK-801. We show that in euploid mice, the chr21-encoded proteins, TIAM1 and DYRK1A, and phosphorylation of AKT, ERK1/2 and the transcription factor ELK are involved in the MK-801 response. However, in both Ts65Dn and Ts1Cje mice, levels of phosphorylation are constitutively elevated in naïve, unstimulated mice, and the MK-801-induced changes in TIAM1 and DYRK1A and in phosphorylation are either absent or abnormal, with both genotype and brain-region-specific patterns. These results emphasize the complexities of the pathway perturbations that arise with segmental trisomy.

  3. Involvement of NMDA receptors in the beneficial effects of pioglitazone on scopolamine-induced memory impairment in mice.

    Science.gov (United States)

    Almasi-Nasrabadi, Mina; Javadi-Paydar, Mehrak; Mahdavian, Shirin; Babaei, Rosa; Sharifian, Maedeh; Norouzi, Abbas; Dehpour, Ahmad Reza

    2012-05-16

    Pioglitazone, a peroxisome proliferator activated receptor γ (PPARγ) agonist, is widely used in clinical medicine as a treatment for type 2 diabetes and is recently proved to have beneficial effects on improving cognition in early stages of Alzheimer's disease (AD). Moreover, it has been shown that pioglitazone reduces N-methyl-D-aspartate (NMDA, a glutamate agonist) mediated calcium currents and transients. Since enhanced calcium transients are present in AD models, we tested the hypothesis whether pioglitazone manifests its acquisition memory enhancement role through glutamatergic pathway. Memory performance was evaluated in a two-trial recognition Y-maze test and passive avoidance in mice. Pioglitazone (20 or 40 mg/kg, p.o.) was administered 2h before each trial, NMDA (75 mg/kg i.p.), 15 min before pioglitazone, and scopolamine, an M1 (muscarinic) receptor antagonist (0.3 or 1.0 mg/kg i.p.) and MK-801 (dizocilpine) (0.01, 0.03 or 0.1 mg/kg, i.p.), the highly selective, non-competitive NMDA antagonist--30 min beforehand. (1) We induced the memory impairment by scopolamine or MK-801 before trials. (2) Pioglitazone did not improve the memory impairment induced by MK-801. (3) Pioglitazone significantly improved the memory impairment induced by scopolamine. (4) Subeffective dose of MK-801 nullified the beneficial effects of pioglitazone in scopolamine induced memory impaired mice. (5) NMDA promoted the effects of subeffective dose of pioglitazone on memory impaired by scopolamine. In conclusion, the present study suggests that glutamatergic pathway is involved in the pioglitazone induced memory performance. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. The nicotine metabolite, cotinine, attenuates glutamate (NMDA) antagonist-related effects on the performance of the five choice serial reaction time task (5C-SRTT) in rats.

    Science.gov (United States)

    Terry, Alvin V; Buccafusco, Jerry J; Schade, R Foster; Vandenhuerk, Leah; Callahan, Patrick M; Beck, Wayne D; Hutchings, Elizabeth J; Chapman, James M; Li, Pei; Bartlett, Michael G

    2012-04-01

    Cotinine, the most predominant metabolite of nicotine in mammalian species, has a pharmacological half-life that greatly exceeds its precursor. However, until recently, relatively few studies had been conducted to systematically characterize the behavioral pharmacology of cotinine. Our previous work indicated that cotinine improves prepulse inhibition of the auditory startle response in rats in pharmacological impairment models and that it improves working memory in non-human primates. Here we tested the hypothesis that cotinine improves sustained attention in rats and attenuates behavioral alterations induced by the glutamate (NMDA) antagonist MK-801. The effects of acute subcutaneous (dose range 0.03-10.0 mg/kg) and chronic oral administration (2.0 mg/kg/day in drinking water) of cotinine were evaluated in fixed and variable stimulus duration (VSD) as well as variable intertrial interval (VITI) versions of a five choice serial reaction time task (5C-SRTT). The results indicated only subtle effects of acute cotinine (administered alone) on performance of the 5C-SRTT (e.g., decreases in timeout responses). However, depending on dose, acute treatment with cotinine attenuated MK-801-related impairments in accuracy and elevations in timeout responses, and it increased the number of completed trials. Moreover, chronic cotinine attenuated MK-801-related impairments in accuracy and it reduced premature and timeout responses when the demands of the task were increased (i.e., by presenting VSDs or VITIs in addition to administering MK-801). These data suggest that cotinine may represent a prototype for compounds that have therapeutic potential for neuropsychiatric disorders (i.e., by improving sustained attention and decreasing impulsive and compulsive behaviors), especially those characterized by glutamate receptor alterations. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. NMDA receptor antagonism by repetitive MK801 administration induces schizophrenia-like structural changes in the rat brain as revealed by voxel-based morphometry and diffusion tensor imaging.

    Science.gov (United States)

    Wu, H; Wang, X; Gao, Y; Lin, F; Song, T; Zou, Y; Xu, L; Lei, H

    2016-05-13

    Animal models of N-methyl-d-aspartate receptor (NMDAR) antagonism have been widely used for schizophrenia research. Less is known whether these models are associated with macroscopic brain structural changes that resemble those in clinical schizophrenia. Magnetic resonance imaging (MRI) was used to measure brain structural changes in rats subjected to repeated administration of MK801 in a regimen (daily dose of 0.2mg/kg for 14 consecutive days) known to be able to induce schizophrenia-like cognitive impairments. Voxel-based morphometry (VBM) revealed significant gray matter (GM) atrophy in the hippocampus, ventral striatum (vStr) and cortex. Diffusion tensor imaging (DTI) demonstrated microstructural impairments in the corpus callosum (cc). Histopathological results corroborated the MRI findings. Treatment-induced behavioral abnormalities were not measured such that correlation between the brain structural changes observed and schizophrenia-like behaviors could not be established. Chronic MK801 administration induces MRI-observable brain structural changes that are comparable to those observed in schizophrenia patients, supporting the notion that NMDAR hypofunction contributes to the pathology of schizophrenia. Imaging-derived brain structural changes in animal models of NMDAR antagonism may be useful measurements for studying the effects of treatments and interventions targeting schizophrenia. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Effect of NMDA Receptor Antagonist on Local Cerebral Glucose Metabolic Rate in Focal Cerebral Ischemia

    International Nuclear Information System (INIS)

    Kim, Sang Eun; Hong, Seung Bong; Yoon, Byung Woo

    1995-01-01

    There has recently been increasing interest in the use of NMDA receptor antagonists as potential neuroprotective agents for the treatment of ischemic stroke. To evaluate the neuroprotective effect of the selective non-competitive NMDA receptor antagonist MK-801 in focal cerebral ischemia, local cerebral glucose utilization (1CGU) was examined in 15 neuroanatomically discrete regions of the conscious rat brain using the 2-deoxy-D[14C]glucose quantitative autoradiographic technique 24 hr after left middle cerebral artery occlusion (MCAO). Animals received MK-801 (5 mg/kg i.v.) or saline vehicle before (20-30 min) or after (30 min) MCAO. Both pretreatment and posttreatment of MK-801 increased occluded/non-occluded 1CGU ratio in 7 and 5 of the 15 regions measured, respectively(most notably in cortical structures). Following MK-801 pretreatment, there was evidence of widespread increases in 1CCPU not only in the non-occluded hemisphere (12 of the 15 areas studied) but also in the occluded hemisphere (13 of the 15 areas studied), while MK-801 posttreatment did not significantly increase 1CGU both in the normal and occluded hemispheres. These data indicate that MK-801 has a neuroprotective effect in focal cerebral ischemia and demonstrate that MK-801 provides widespread alterations of glucose utilization in conscious animals.

  7. Protective effect of MK-801 on the anoxia-aglycemia induced damage in the fluorocitrate-treated hippocampal slice of the rat.

    Science.gov (United States)

    Nakanishi, H; Kawachi, A; Okada, M; Fujiwara, M; Yamamoto, K

    1996-09-02

    We investigated electrophysiological responses induced by ischemia-like insult (anoxia and aglycemia, AA) in the rat hippocampal CA1 pyramidal cells in an in vitro slice preparation devoid of glial metabolism. In the slice treated with fluorocitrate (100 microM), a glia-specific metabolic inhibitor, 10 min AA induced hyperexcitation as evidenced by an appearance of multiple population spikes evoked by stimulation of the Schaffer collateral/commissural pathway in the CA1 region prior to elimination of the response. Readministration of oxygen and glucose failed to restore the population spike amplitude. Intracellular recordings revealed that 10 min AA induced slow EPSPs with relative long duration. The induction of the slow EPSPs was followed by a rapid membrane depolarization with a large amplitude. When the fluorocitrate-treated slice was exposed to MK-801 (10 microM), a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, 10 min AA failed to induce either the hyperexcitation of synaptic responses or the rapid depolarization. Furthermore, synaptic responses were fully restored after readministration of oxygen and glucose. In contrast, neither the synaptic hyperexcitation nor the rapid depolarization was observed during 10 min AA in the hippocampal CA1 pyramidal cells of the control slice. In addition, an irreversible synaptic failure associated with AA was not induced in the control slice. These results strongly suggest that fluorocitrate increases NMDA receptor-dependent AA-induced damage in the hippocampal slice by interfering glial spatial buffering of K+.

  8. Dopamine D2/D3 receptor binding of [123I]epidepride in risperidone-treatment chronic MK-801-induced rat schizophrenia model using nanoSPECT/CT neuroimaging

    International Nuclear Information System (INIS)

    Huang, Y.R.; Pai, C.W.; Cheng, K.H.; Kuo, W.I.; Chen, M.W.; Chang, K.W.

    2014-01-01

    Introduction: Epidepride is a compound with an affinity in picomolar range for D 2 /D 3 receptors. The aim of this work was designed to investigate the diagnostic possibility of [ 123 I]epidepride imaging platform for risperidone-treatment chronic MK-801-induced rat schizophrenia model. Methods: Rats received repeated administration of MK-801 (dissolved in saline, i.p., 0.3 mg/kg/day) or saline for 4 weeks. After 1-week administration of MK-801, rats in MK-801 + risperidone group received risperidone (0.5 mg/kg/day) intraperitoneally 15 min prior to MK-801 administration for the rest of 3-week treatment. We obtained serial [ 123 I]epidepride neuroimages from nanoSPECT/CT and evaluated the alteration of specific binding in striatum and midbrain. Results: Risperidone reversed chronic MK-801-induced decrease in social interaction duration. IHC and ELISA analysis showed consistent results that chronic MK-801 treatment significantly decreased striatal and midbrain D 2 R expression but repeated risperidone administration reversed the effect of MK-801 treatment. In addition, [ 123 I]epidepride nanoSPECT/CT neuroimaging revealed that low specific [ 123 I]epidepride binding ratios caused by MK-801 in striatum and midbrain were statistically alleviated after 1- and 2-week risperidone administration, respectively. Conclusions: We established a rat schizophrenia model by chronic MK-801 administration for 4 weeks. [ 123 I]Epidepride nanoSPECT neuroimaging can trace the progressive alteration of D 2 R expression in striatum and midbrain caused by long-lasting MK-801 treatment. Besides diagnosing illness stage of disease, [ 123 I]epidepride can be a useful tool to evaluate therapeutic effects of antipsychotic drug in chronic MK-801-induced rat schizophrenia model

  9. Altered neuronal excitability underlies impaired hippocampal function in an animal model of psychosis

    Directory of Open Access Journals (Sweden)

    Thomas eGrüter

    2015-05-01

    Full Text Available Psychosis is accompanied by severe attentional deficits, and impairments in associational-memory processing and sensory information processing that are ascribed to dysfunctions in prefrontal and hippocampal function. Disruptions of glutamatergic signalling may underlie these alterations: Antagonism of the N-methyl-D-aspartate receptor (NMDAR results in similar molecular, cellular, cognitive and behavioural changes in rodents and/or humans as those that occur in psychosis, raising the question as to whether changes in glutamatergic transmission may be intrinsic to the pathophysiology of the disease. In an animal model of psychosis that comprises treatment with the irreversible NMDAR-antagonist, MK801, we explored the cellular mechanisms that may underlie hippocampal dysfunction in psychosis. MK801-treatment resulted in a profound loss of hippocampal LTP that was evident 4 weeks after treatment. Whereas neuronal expression of the immediate early gene, Arc, was enhanced in the hippocampus by spatial learning in controls, MK801-treated animals failed to show activity-dependent increases in Arc expression. By contrast, a significant increase in basal Arc expression in the absence of learning was evident compared to controls. Paired-pulse facilitation was increased at the 40 ms interval indicating that NMDAR and/or fast GABAergic-mediated neurotransmission was disrupted. In line with this, MK801-treatment resulted in a significant decrease in GABA(A, and increase in GABA(B-receptor-expression in PFC, along with a significant increase of GABA(B- and NMDAR-GluN2B expression in the dentate gyrus. NMDAR-GluN1 or GluN2A subunit expression was unchanged. These data suggest that in psychosis, deficits in hippocampus-dependent memory may be caused by a loss of hippocampal LTP that arises through enhanced hippocampal neuronal excitability, altered GluN2B and GABA receptor expression and an uncoupling of the hippocampus-prefrontal cortex circuitry.

  10. Neuroprotection by Combined Administration with Maslinic Acid, a Natural Product from Olea europaea, and MK-801 in the Cerebral Ischemia Model

    Directory of Open Access Journals (Sweden)

    Yisong Qian

    2016-08-01

    Full Text Available Glutamate-mediated excitotoxicity is a major cause of ischemic brain damage. MK-801 confers neuroprotection by attenuating the activation of the N-methyl-d-aspartate (NMDA receptor, but it failed in clinical use due to the short therapeutic window. Here we aim to investigate the effects of maslinic acid, a natural product from Olea europaea, on the therapeutic time window and dose range for the neuroprotection of MK-801. Rats were administered with maslinic acid intracerebroventricularly and cerebral ischemia was induced by middle cerebral artery occlusion (MCAO followed by reperfusion. MK-801 was administered at 1 h, 2 h, 3 h and 4 h after ischemia, respectively. The cerebral infarct volume was determined by 2,3,5-Triphenyltetrazolium chloride (TTC staining, neuronal damage was assessed by Haematoxylin Eosin (H&E staining, and the expression of glial glutamate transporters and glial fibrillary acidic protein (GFAP was evaluated by immunohistochemistry and Western blot post-ischemia. Results showed that the presence of maslinic acid extended the therapeutic time window for MK-801 from 1 h to 3 h. Co-treatment of maslinic acid and MK-801 at a subthreshold dosage obviously induced neuroprotection after ischemia. The combination of these two compounds improved the outcome in ischemic rats. Moreover, maslinic acid treatment promoted the expression of GLT-1 and GFAP post-ischemia. These data suggest that the synergistic effect of maslinic acid on neurological protection might be associated with the improvement of glial function, especially with the increased expression of GLT-1. The combination therapy of maslinic acid and MK-801 may prove to be a potential strategy for treating acute ischemic stroke.

  11. Effect of antemortem and postmortem factors on [3H]MK-801 binding in the human brain: Transient elevation during early childhood

    International Nuclear Information System (INIS)

    Kornhuber, J.; Mack-Burkhardt, F.; Konradi, C.; Fritze, J.; Riederer, P.

    1989-01-01

    The effect of a number of antemortem and postmortem factors on [ 3 H]MK-801 binding was investigated under equilibrium conditions in the frontal cortex of human brains of 38 controls. Binding values transiently increased during the early postnatal period reaching a maximum at the age of about 2 years. After age 10 years [ 3 H]MK-801 binding sites disappeared at 5.7% per decade. The storage time of brain tissue had a reducing effect on these binding sites. There was no effect of gender, brain weight or postmortem time interval and the binding sites were bilaterally symmetrically distributed in the frontal cortex

  12. The effect of combined treatment with risperidone and antidepressants on the MK-801-induced deficits in the social interaction test in rats.

    Science.gov (United States)

    Kamińska, Katarzyna; Rogóż, Zofia

    2015-12-01

    Several clinical reports have suggested that augmentation of atypical antipsychotics' activity by antidepressants may efficiently improve the treatment of negative and some cognitive symptoms of schizophrenia. The aim of the present study was to investigate the effect of antidepressant mirtazapine or escitalopram and risperidone (an atypical antipsychotic), given separately or jointly, on the MK-801-induced deficits in the social interaction test in rats. Antidepressants and risperidone were given 60 and 30 min before the test, respectively. The social interaction of male Wistar rats was measured for 10 min, starting 4 h after MK-801 (0.1 mg/kg) administration. In the social interaction test, MK-801-induced deficits in the parameters studied, i.e. the number of episodes and the time of interactions. Risperidone at a higher dose (0.1 mg/kg) reversed that effect. Co-treatment with an ineffective dose of risperidone (0.01 mg/kg) and mirtazapine (2.5 or 5 mg/kg) or escitalopram only at a dose of 5 mg/kg (but not 2.5 and 10 mg/kg) abolished the deficits evoked by MK-801. The obtained results suggest that especially mirtazapine, and to a smaller degree escitalopram may enhance the antipsychotic-like effect of risperidone in the animal test modeling some negative symptoms of schizophrenia. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Higher Doses of (+)MK-801 (Dizocilpine) Induced Mortality and Procedural but Not Cognitive Deficits in Delayed Testing in the Active Place Avoidance With Reversal on the Carousel

    Czech Academy of Sciences Publication Activity Database

    Lobellová, Veronika; Brichtová, Eva; Petrásek, Tomáš; Valeš, Karel; Stuchlík, Aleš

    2015-01-01

    Roč. 64, č. 2 (2015), s. 269-275 ISSN 0862-8408 R&D Projects: GA MZd(CZ) NT13386 Institutional support: RVO:67985823 Keywords : Dizocilpine * (+)MK-801 * active place avoidance * Carousel * Long-Evans rats Subject RIV: FH - Neurology Impact factor: 1.643, year: 2015

  14. Antagonista NMDA-receptorů MK-801 narušuje rozeznávání pozice vzdáleného objektu

    Czech Academy of Sciences Publication Activity Database

    Levčík, David; Klement, Daniel; Nekovářová, Tereza; Valeš, Karel; Stuchlík, Aleš

    2010-01-01

    Roč. 14, Suppl.2 (2010), s. 15-18 ISSN 1211-7579 R&D Projects: GA MŠk(CZ) 1M0517; GA ČR(CZ) GA309/09/0286; GA MZd(CZ) NR9178; GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : recognition of position * MK-801 * CHPG * mGluR Subject RIV: FH - Neurology

  15. Effect of the MK 801 and (-) nicotine intracerebral administration on Glu and Gaba extracellular concentration in the pedunculopontine nucleus from rats

    International Nuclear Information System (INIS)

    Blanco Lezcano, Lisette; Lorigados Pedre, Lourdes del Carmen; Gonzalez Fraguela, Maria Elena and others

    2011-01-01

    Although the pharmacological manipulation of the glutamatergic and cholinergic systems have been studied in animal models of Parkinson's Disease (PD), only some authors have done work on this topic at the pedunculopontine nucleus (PPN). The present work studied the changes in glutamate (Glu) and δ-aminobutyric acid (GABA) extracellular concentrations (EC) in the PPN from hemiparkinsonian rats by 6hydroxydopamine injection. The rats were locally perfused by MK-801 (10 μ mol/l) or (-) nicotine (10 mm) solutions by cerebral microdialysis. The biochemical studies were carried out through high performance liquid chromatography coupled to fluorescence detection. Mk-801 infusion induced a significant decrease of Glu (p< 0.01) and GABA (p< 0.01) EC in PPN. On the other hand (-) nicotine infusion induced a significant increase of Glu (p< 0.001) and GABA (p< 0.001) EC in PPN from hemiparkinsonian rats. The local blockade of NMDA receptors by MK-801 infusion facilitates the interaction between Glu and their metabotropic receptors that take part in presynaptic inhibition mechanisms and interfere with neurotransmitters release. Meanwhile, the nicotine infusion sums the effects of nicotinic receptor activation with the glutamatergic and gabaergic neurotransmission changes produced in the PPN in the parkinsonian condition. The cholinergic and glutamergic drug infusion in PPN impose a new adjustment to the neurotransmission at this level that is added to the neurochemical changes associated to dopaminergic denervation.

  16. Environmental Enrichment Ameliorates Behavioral Impairments Modeling Schizophrenia in Mice Lacking Metabotropic Glutamate Receptor 5.

    Science.gov (United States)

    Burrows, Emma L; McOmish, Caitlin E; Buret, Laetitia S; Van den Buuse, Maarten; Hannan, Anthony J

    2015-07-01

    Schizophrenia arises from a complex interplay between genetic and environmental factors. Abnormalities in glutamatergic signaling have been proposed to underlie the emergence of symptoms, in light of various lines of evidence, including the psychotomimetic effects of NMDA receptor antagonists. Metabotropic glutamate receptor 5 (mGlu5) has also been implicated in the disorder, and has been shown to physically interact with NMDA receptors. To clarify the role of mGlu5-dependent behavioral expression by environmental factors, we assessed mGlu5 knockout (KO) mice after exposure to environmental enrichment (EE) or reared under standard conditions. The mGlu5 KO mice showed reduced prepulse inhibition (PPI), long-term memory deficits, and spontaneous locomotor hyperactivity, which were all attenuated by EE. Examining the cellular impact of genetic and environmental manipulation, we show that EE significantly increased pyramidal cell dendritic branching and BDNF protein levels in the hippocampus of wild-type mice; however, mGlu5 KO mice were resistant to these alterations, suggesting that mGlu5 is critical to these responses. A selective effect of EE on the behavioral response to the NMDA receptor antagonist MK-801 in mGlu5 KO mice was seen. MK-801-induced hyperlocomotion was further potentiated in enriched mGlu5 KO mice and treatment with MK-801 reinstated PPI disruption in EE mGlu5 KO mice only, a response that is absent under standard housing conditions. Together, these results demonstrate an important role for mGlu5 in environmental modulation of schizophrenia-related behavioral impairments. Furthermore, this role of the mGlu5 receptor is mediated by interaction with NMDA receptor function, which may inform development of novel therapeutics.

  17. Effects of ionotropic glutamate receptor antagonists on rat dural artery diameter in an intravital microscopy model

    DEFF Research Database (Denmark)

    Chan, K Y; Gupta, S; de Vries, R

    2010-01-01

    studies have shown that glutamate receptor antagonists affect the pathophysiology of migraine. This study investigated whether antagonists of NMDA (ketamine and MK801), AMPA (GYKI52466) and kainate (LY466195) glutamate receptors affected dural vasodilatation induced by alpha-CGRP, capsaicin...

  18. EFECTO DE LA ADMINISTRACIÓN INTRACEREBRAL DE MK-801 Y (- NICOTINA EN LAS CONCENTRACIONES EXTRACELULARES DE GLU Y GABA EN EL NÚCLEO PEDUNCULOPONTINO DE RATAS.

    Directory of Open Access Journals (Sweden)

    Lisette Blanco

    2011-01-01

    Full Text Available Aunque la manipulación farmacológica de los sistemas glutamatérgico y colinérgico se ha tratado en modelos experimentales de enfermedad de Parkinson (EP, pocos autores han realizado estudios de esta temática a nivel del núcleo pedunculopontino (NPP. El presente trabajo aborda los cambios en las concentraciones extracelulares (CE de glutamato (Glu y ácido δ-amino butírico (GABA en el NPP de ratas hemiparkinsonizadas por inyección de 6-hidroxidopamina (6-OHDA y sometidas a la infusión local de MK-801 (10 mol/L o (- nicotina (10mM. La infusión se realizó mediante microdiálisis cerebral y la determinación de las CE de los neurotransmisores se realizó a través de cromatografía líquida de alta resolución acoplada a detección de fluorescencia. La infusión de MK-801 en el NPP produjo una disminución significativa de las CE de Glu (p

  19. The investigation of neonatal MK-801 administration and physical environmental enrichment on emotional and cognitive functions in adult Balb/c mice.

    Science.gov (United States)

    Akillioglu, Kubra; Babar Melik, Emine; Melik, Enver; Kocahan, Sayad

    2012-09-01

    N-methyl-D-aspartate (NMDA) receptors play an important role in brain maturation and developmental processes. It is known that growing up in an enriched environment has effects on emotional and cognitive performance. In our study, we evaluated the effects of physically enriched environment on the emotional and cognitive functions of the adult brain in the setting of previous NMDA receptor hypoactivity during the critical developmental period of the nervous system. In this study, NMDA receptor blockade was induced 5-10 days postnatally (PD5-10) using MK-801 in mice Balb/c (twice a day 0.25 mg/kg, for 5 days, intraperitoneal). MK-801 was given to developing mice living in a standard (SE) and an enrichment environment (EE) and once the animals reached adulthood, emotional behaviors were evaluated using an open field test (OF) and an elevated plus maze (EPM) test whereas cognitive processes were evaluated using the Morris water-maze (MWM). The EE group showed decreased locomotor activity (pcritical period of development led to deterioration in the emotional and cognitive processes during adulthood. An enriched environmental did not reverse the deleterious effects of the NMDA receptor blockade on emotional and cognitive functions. Copyright © 2012. Published by Elsevier Inc.

  20. Visuospatial working memory is impaired in an animal model of schizophrenia induced by acute MK-801: An effect of pretraining

    Czech Academy of Sciences Publication Activity Database

    Zemanová, Anna; Staňková, Anna; Lobellová, Veronika; Svoboda, Jan; Valeš, Karel; Vlček, Kamil; Kubík, Štěpán; Fajnerová, Iveta; Stuchlík, Aleš

    2013-01-01

    Roč. 106, May 2013 (2013), s. 117-123 ISSN 0091-3057 R&D Projects: GA MZd(CZ) NT13386 Institutional support: RVO:67985823 Keywords : working memory * place avoidance * rats * behavior Subject RIV: FH - Neurology Impact factor: 2.820, year: 2013

  1. NMDA Receptor Antagonists for Treatment of Depression

    Directory of Open Access Journals (Sweden)

    Zeynep Ates-Alagoz

    2013-04-01

    Full Text Available Depression is a psychiatric disorder that affects millions of people worldwide. Individuals battling this disorder commonly experience high rates of relapse, persistent residual symptoms, functional impairment, and diminished well-being. Medications have important utility in stabilizing moods and daily functions of many individuals. However, only one third of patients had considerable improvement with a standard antidepressant after 2 months and all patients had to deal with numerous side effects. The N-methyl-d-aspartate (NMDA receptor family has received special attention because of its critical role in psychiatric disorders. Direct targeting of the NMDA receptor could result in more rapid antidepressant effects. Antidepressant-like effects of NMDA receptor antagonists have been demonstrated in different animal models. MK-801 (a use-dependent channel blocker, and CGP 37849 (an NMDA receptor antagonist have shown antidepressant properties in preclinical studies, either alone or combined with traditional antidepressants. A recent development is use of ketamine clinically for refractory depression. The purpose of this review is to examine and analyze current literature on the role of NMDA receptor antagonists for treatment of depression and whether this is a feasible route in drug discovery.

  2. AVN-322 is a Safe Orally Bio-Available Potent and Highly Selective Antagonist of 5-HT6R with Demonstrated Ability to Improve Impaired Memory in Animal Models.

    Science.gov (United States)

    Ivachtchenko, Alexandre V; Ivanenkov, Yan A; Veselov, Mark S; Okun, I M

    2017-01-01

    In recent years, 5-hydroxytryptamine subtype 6 receptor (5-HT6 receptor, 5- HT6R) has emerged as a promising therapeutic target for the treatment of neuropathological disorders, including Alzheimer's disease (AD) and schizophrenia. 5-HT6 receptors were hypothesized to be implicated in the processes of learning, memory, and cognition with 5-HT6R antagonists being effective in animal models of cognition and memory impairment. Several selective 5-HT6R ligands are currently undergoing clinical trials for treatment of AD. We describe results of preclinical development of a novel and highly selective and potent 5- HT6R antagonist, AVN-322, as a clinical candidate for the treatment of AD to improve concurrent debilitation of memory and cognition in the AD patients, and schizophrenia as a substance with antipsychotic effect. In the manuscript, we present its in vitro and vivo efficacy, ADME, pharmacokinetics in animals and in humans, and toxicity. While having high binding affinity in medium picomolar range, the lead compound demonstrates substantially better selectivity index then the reference drug candidates currently being tested in clinical studies. AVN-322 showed high oral bioavailability and favorable blood-brain barrier (BBB) penetration. In vivo testing revealed its clear cognition enhancing effect. AVN-322 significantly restored both scopolamine- and MK-801-induced cognitive dysfunction and demonstrated antipsychotic potential. Taking into account its good safety profile and favorable pharmacokinetics, AVN-322 can be reasonably considered as a novel drug candidate for the treatment of neurological disorders such as AD and/or schizophrenia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Interrupción del efecto de inhibición latente por la administración de MK-801

    Directory of Open Access Journals (Sweden)

    L.G De la Casa

    2009-01-01

    Full Text Available Los receptores N-metil-D-aspartato (NMDA parecen estar implicados en el retraso en la adquisición de una asociación pavloviana tras la preexposición sin consecuencias al que se va a convertir en estímulo condicionado, efecto al que se suele denominar Inhibición Latente (IL. Concretamente, la administración de compuestos antagonistas en la fase de preexposición o en las fases de preexposición y condicionamiento produce un efecto disruptivo sobre la expresión de la IL cuando se utiliza un procedimiento de aversión condicionada al sabor. En este trabajo describimos tres experimentos que replican el efecto del MK-801 sobre la IL (Experimento 1 y que demuestran la persistencia de la influencia de la droga independientemente del número de ensayos de preexposición (Experimento 2, o de la intensidad del EC empleado (Experimento 3. Los resultados se interpretan en relación a los modelos psicológicos y farmacológicos relacionados con la investigación y el tratamiento clínico de diversos desordenes neurocognitivos.

  4. Tandospirone, a 5-HT1A partial agonist, ameliorates aberrant lactate production in the prefrontal cortex of rats exposed to blockade of N-methy-D-aspartate receptors; Towards the therapeutics of cognitive impairment of schizophrenia

    Directory of Open Access Journals (Sweden)

    Takashi eUehara

    2014-09-01

    Full Text Available Rationale Augmentation therapy with serotonin-1A (5-HT1A receptor partial agonists has been suggested to improve cognitive deficits in patients with schizophrenia. Decreased activity of prefrontal cortex may provide a basis for cognitive deficits of the disease. Lactate plays a significant role in the supply of energy to the brain, and glutamatergic neurotransmission contributes to lactate production.Objectives and methods The purposes of this study were to examine the effect of repeated administration (once a daily for 4 days of tandospirone (0.05 and 5 mg/kg on brain energy metabolism, as represented by extracellular lactate concentration (eLAC in the medial prefrontal cortex (mPFC of young adult rats..Results Four-day treatment with MK-801, an NMDA-R antagonist, prolonged eLAC elevation induced by foot shock stress (FS. Co-administration with the high-dose tandospirone suppressed prolonged FS-induced eLAC elevation in rats receiving MK-801, whereas tandospirone by itself did not affected eLAC increment.Conclusions These results suggest that stimulation of 5-HT1A receptors ameliorates abnormalities of energy metabolism in the mPFC due to blockade of NMDA receptors. These findings provide a possible mechanism based on brain energy metabolism by which 5-HT1A agonism improve cognitive impairment in schizophrenia and related disorders.

  5. Analysis of sensitivity to MK-801 treatment in a novel active allothetic place avoidance task and in the working memory version of the Morris water maze reveals differences between Long-Evans and Wistar rats

    Czech Academy of Sciences Publication Activity Database

    Valeš, Karel; Bubeníková-Valešová, V.; Klement, Daniel; Stuchlík, Aleš

    2006-01-01

    Roč. 55, č. 4 (2006), s. 383-388 ISSN 0168-0102 R&D Projects: GA MZd(CZ) NL7684; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554; GA ČR(CZ) GP309/03/P126; GA ČR(CZ) GA309/06/1231 Institutional research plan: CEZ:AV0Z50110509 Keywords : Wistar/Long-Evans rats * MK-801 * cognition Subject RIV: FH - Neurology Impact factor: 1.953, year: 2006

  6. NMDA antagonists exert distinct effects in experimental organophosphate or carbamate poisoning in mice

    International Nuclear Information System (INIS)

    Dekundy, Andrzej; Kaminski, Rafal M.; Zielinska, Elzbieta; Turski, Waldemar A.

    2007-01-01

    Organophosphate (OP) and carbamate acetylcholinesterase (AChE) inhibitors produce seizures and lethality in mammals. Anticonvulsant and neuroprotective properties of N-methyl-D-aspartate (NMDA) antagonists encourage the investigation of their effects in AChE inhibitor-induced poisonings. In the present study, the effects of dizocilpine (MK-801, 1 mg/kg) or 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10 mg/kg), alone or combined with muscarinic antagonist atropine (1.8 mg/kg), on convulsant and lethal properties of an OP pesticide dichlorvos or a carbamate drug physostigmine, were studied in mice. Both dichlorvos and physostigmine induced dose-dependent seizure activity and lethality. Atropine did not prevent the occurrence of convulsions but decreased the lethal effects of both dichlorvos and physostigmine. MK-801 or CPP blocked or attenuated, respectively, dichlorvos-induced convulsions. Contrariwise, NMDA antagonists had no effect in physostigmine-induced seizures or lethality produced by dichlorvos or physostigmine. Concurrent pretreatment with atropine and either MK-801 or CPP blocked or alleviated seizures produced by dichlorvos, but not by physostigmine. Both MK-801 and CPP co-administered with atropine enhanced its antilethal effects in both dichlorvos and physostigmine poisoning. In both saline- and AChE inhibitor-treated mice, no interaction of the investigated antidotes with brain cholinesterase was found. The data indicate that both muscarinic ACh and NMDA receptor-mediated mechanisms contribute to the acute toxicity of AChE inhibitors, and NMDA receptors seem critical to OP-induced seizures

  7. The difference in effect of mGlu2/3 and mGlu5 receptor agonists on cognitive impairment induced by MK-801

    Czech Academy of Sciences Publication Activity Database

    Valeš, Karel; Svoboda, Jan; Benkovičová, Kristína; Bubeníková-Valešová, V.; Stuchlík, Aleš

    2010-01-01

    Roč. 639, 1-3 (2010), s. 91-98 ISSN 0014-2999 R&D Projects: GA MZd(CZ) NR9178 Institutional research plan: CEZ:AV0Z50110509 Keywords : animal model of schizophrenia * metabotropic glutamate receptor * cognition Subject RIV: FH - Neurology Impact factor: 2.737, year: 2010

  8. MK-801 impairs cognitive coordination on a rotating arena (Carousel) and contextual specificity of hippocampal immediate-early gene expression in a rat model of psychosis

    Czech Academy of Sciences Publication Activity Database

    Kubík, Štěpán; Buchtová, Helena; Valeš, Karel; Stuchlík, Aleš

    2014-01-01

    Roč. 8, Mar 12 (2014), s. 75 ISSN 1662-5153 R&D Projects: GA ČR(CZ) GPP303/10/P191 Grant - others:EC(XE) PIR06-GA/2009-256581 Institutional support: RVO:67985823 Keywords : cognitive coordination * learning * dizocilpine * animal model * psychosis Subject RIV: FH - Neurology Impact factor: 3.270, year: 2014

  9. Dizocilpine (MK-801) impairs learning in the active place avoidance task but has no effect on the performance during task/context alternation

    Czech Academy of Sciences Publication Activity Database

    Vojtěchová, Iveta; Petrásek, Tomáš; Hatalová, Hana; Pištíková, Adéla; Valeš, Karel; Stuchlík, Aleš

    2016-01-01

    Roč. 305, May 15 (2016), s. 247-257 ISSN 0166-4328 R&D Projects: GA ČR(CZ) GA14-03627S Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200111204 Institutional support: RVO:67985823 Keywords : task alternation * context alternation * active place avoidance * Morris water maze * Dizocilpine * schizophrenia Subject RIV: FH - Neurology Impact factor: 3.002, year: 2016

  10. Neurobehavioral phenotyping of Gaq knockout mice reveals impairments in motor functions and spatial working memory without changes in anxiety or behavioral despair

    Directory of Open Access Journals (Sweden)

    Aliya L Frederick

    2012-06-01

    Full Text Available Many neurotransmitters, hormones and sensory stimuli elicit their cellular responses through the targeted activation of receptors coupled to Gq family heterotrimeric G proteins. Nevertheless, we still understand little about the consequences of loss of this signaling activity on brain function. We therefore examined the effects of genetic inactivation of Gnaq on responsiveness in a battery of behavioral tests in order to assess the contribution of Gaq signaling capacity in the brain circuits mediating expression of affective behaviors (anxiety and behavioral despair, spatial working memory and locomotor output (coordination, strength, spontaneous activity and drug-induced responses. First, we replicated and extended findings showing clear motor deficits in Gaq knockout mice as assessed on an accelerating rotarod and the inverted screen test. We then assessed the contribution of the basal ganglia motor loops to these impairments, using open field testing and analysis of drug-induced locomotor responses to the psychostimulant cocaine, the benzazepine D1 receptor agonists SKF83822 and SKF83959, and the NMDA receptor antagonist MK-801. We observed significant increases in drug-induced locomotor activity in Gaq knockout mice from the dopaminergic agonists but not MK-801, indicating that basal ganglia locomotor circuitry is largely intact in the absence of Gaq. Additionally, we observed normal phenotypes in both the elevated zero maze and the forced swim test indicating that anxiety and depression-related circuitry appears to be largely intact after loss of Gnaq expression. Lastly, use of the Y-maze revealed spatial memory deficits in Gaq knockout mice, indicating that receptors signaling through Gaq are necessary in these circuits for proficiency in this task.

  11. Neurobehavioral phenotyping of Gαq knockout mice reveals impairments in motor functions and spatial working memory without changes in anxiety or behavioral despair

    Science.gov (United States)

    Frederick, Aliya L.; Saborido, Tommy P.; Stanwood, Gregg D.

    2012-01-01

    Many neurotransmitters, hormones, and sensory stimuli elicit their cellular responses through the targeted activation of receptors coupled to the Gαq family of heterotrimeric G proteins. Nevertheless, we still understand little about the consequences of loss of this signaling activity on brain function. We therefore examined the effects of genetic inactivation of Gnaq, the gene that encode for Gαq, on responsiveness in a battery of behavioral tests in order to assess the contribution of Gαq signaling capacity in the brain circuits mediating expression of affective behaviors (anxiety and behavioral despair), spatial working memory, and locomotor output (coordination, strength, spontaneous activity, and drug-induced responses). First, we replicated and extended findings showing clear motor deficits in Gαq knockout mice as assessed on an accelerating rotarod and the inverted screen test. We then assessed the contribution of the basal ganglia motor loops to these impairments, using open field testing and analysis of drug-induced locomotor responses to the psychostimulant cocaine, the benzazepine D1 receptor agonists SKF83822 and SKF83959, and the NMDA receptor antagonist MK-801. We observed significant increases in drug-induced locomotor activity in Gαq knockout mice from the dopaminergic agonists but not MK-801, indicating that basal ganglia locomotor circuitry is largely intact in the absence of Gαq. Additionally, we observed normal phenotypes in both the elevated zero maze and the forced swim test indicating that anxiety and depression-related circuitry appears to be largely intact after loss of Gnaq expression. Lastly, use of the Y-maze revealed spatial memory deficits in Gαq knockout mice, indicating that receptors signaling through Gαq are necessary in these circuits for proficiency in this task. PMID:22723772

  12. 3 alpha 5 beta-Pregnanolone glutamate, a use-dependent NMDA antagonist, reversed spatial learning deficit in an animal model of schizophrenia

    Czech Academy of Sciences Publication Activity Database

    Valeš, Karel; Rambousek, Lukáš; Holubová, Kristína; Svoboda, Jan; Bubeníková-Valešová, V.; Chodounská, Hana; Vyklický ml., Ladislav; Stuchlík, Aleš

    2012-01-01

    Roč. 235, č. 1 (2012), s. 82-88 ISSN 0166-4328 R&D Projects: GA MZd(CZ) NS10365 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 ; RVO:61388963 Keywords : schizophrenia -like behavior * MK-801 * use-dependent * NMDA antagonist * anxiety * pregnanolone glutamate * Carousel maze Subject RIV: FH - Neurology Impact factor: 3.327, year: 2012

  13. Acute systemic MK-801 induced functional uncoupling between hippocampal areas CA3 and CA1 with distant effect in the retrosplenial cortex

    Czech Academy of Sciences Publication Activity Database

    Buchtová, Helena; Fajnerová, Iveta; Stuchlík, Aleš; Kubík, Štěpán

    2017-01-01

    Roč. 27, č. 2 (2017), s. 134-144 ISSN 1050-9631 R&D Projects: GA ČR(CZ) GA14-03627S Institutional support: RVO:67985823 Keywords : Arc * Homer1a * ensemble coding * cognitive control * hypersynchrony * hyperassociation * psychosis * NMDA antagonist * schizophrenia * animal model Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 3.945, year: 2016

  14. Biflorin Ameliorates Memory Impairments Induced by Cholinergic Blockade in Mice

    Science.gov (United States)

    Jeon, Se Jin; Kim, Boseong; Ryu, Byeol; Kim, Eunji; Lee, Sunhee; Jang, Dae Sik; Ryu, Jong Hoon

    2017-01-01

    To examine the effect of biflorin, a component of Syzygium aromaticum, on memory deficit, we introduced a scopolamine-induced cognitive deficit mouse model. A single administration of biflorin increased latency time in the passive avoidance task, ameliorated alternation behavior in the Y-maze, and increased exploration time in the Morris water maze task, indicating the improvement of cognitive behaviors against cholinergic dysfunction. The biflorin-induced reverse of latency in the scopolamine-treated group was attenuated by MK-801, an NMDA receptor antagonist. Biflorin also enhanced cognitive function in a naïve mouse model. To understand the mechanism of biflorin for memory amelioration, we performed Western blot. Biflorin increased the activation of protein kinase C-ζ and its downstream signaling molecules in the hippocampus. These results suggest that biflorin ameliorates drug-induced memory impairment by modulation of protein kinase C-ζ signaling in mice, implying that biflorin could function as a possible therapeutic agent for the treatment of cognitive problems. PMID:27829270

  15. Extended studies on the effect of glutamate antagonists on ischemic CA-1 damage

    DEFF Research Database (Denmark)

    Diemer, Nils Henrik; Balchen, T; Bruhn, T

    1996-01-01

    Glutamate receptors are numerous on the ischemia vulnerable CA-1 pyramidal cells. Postischemic use of the AMPA antagonist NBQX has shown up to 80% protection against cell death. Three aspects of this were studied: In the first study, male Wistar rats were given NBQX (30 mg/kg x 3) either 20 hours...... in the present model, eosinophilic CA-1 cells are seen from day 2 on. Since there could be a late, deleterious calcium influx via NMDA receptors, one group of ischemic rats was given MK-801 (5 mg/kg i.p.) 24 hours after ischemia. However, quantitation 6 days later of remaining CA-1 cells showed no protection...

  16. Efficacy of glutamate receptor antagonists in the management of functional disorders in cytotoxic brain oedema induced by hexachlorophene.

    Science.gov (United States)

    Häntzschel, A; Andreas, K

    1998-02-01

    The hexachlorophene-induced cytotoxic brain oedema is an experimental model of brain damage, suitable for testing cerebroprotective substances (Andreas 1993). In order to examine whether glutamate receptors are involved in mediating functional disorders due to neurotoxic brain damage, we have studied the protective effects of several competitive and non-competitive antagonists using adult male Wistar rats in a simple "ladder-test" for assessing coordinative motor behaviour. Hexachlorophene-induced brain damage was verified by histological examination of the cerebellum with vacuolation of white matter, astrocyte hypertrophy and astrocyte proliferation taken as signs of neurotoxic injury. The non-competitive N-methyl-D-aspartate (NMDA) antagonist dizocilpine maleate (MK-801) decreased the motor disturbance on the first and second day of the "ladder-test" when applied in the doses 0.1 mg/kg and 0.2 mg/kg intraperitoneally for 3 weeks during the hexachlorophene treatment. Acute MK-801 administration (0.1 mg/kg intraperitoneally) after 3 weeks hexachlorophene exposure improved the coordinative motor response only on the first day. When testing the competitive NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP-5) in the dose 1.0 mg/kg intraperitoneally the motor disturbance was lowered significantly earlier than in spontaneous remission. Similar effects were observed with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the dose of 0.8 mg/kg intraperitoneally, an antagonist interacting both with the strychnine-insensitive binding site for glycine within the NMDA receptor complex and with the kainate(+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor complex. Concurrent MK-801 administration decreased the vacuolation of white matter. The results suggest that NMDA receptors and non-NMDA receptors are involved in development of functional disorders induced by hexachlorophene.

  17. Antipsychotic, antidepressant, and cognitive-impairment properties of antipsychotics: rat profile and implications for behavioral and psychological symptoms of dementia.

    Science.gov (United States)

    Kołaczkowski, Marcin; Mierzejewski, Paweł; Bienkowski, Przemyslaw; Wesołowska, Anna; Newman-Tancredi, Adrian

    2014-06-01

    Many dementia patients exhibit behavioral and psychological symptoms (BPSD), including psychosis and depression. Although antipsychotics are frequently prescribed off-label, they can have marked side effects. In addition, comparative preclinical studies of their effects are surprisingly scarce, and strategies for discovery of novel pharmacotherapeutics are lacking. We therefore compared eight antipsychotics in rat behavioral tests of psychosis, antidepressant-like activity, and cognitive impairment as a basis for preclinical evaluation of new drug candidates. The methods used in this study include inhibition of MK-801-induced hyperactivity, forced swim test (FST), passive avoidance (PA), spontaneous locomotor activity, and catalepsy. The drugs exhibited antipsychotic-like activity in the MK-801 test but with diverse profiles in the other models. Risperidone impaired PA performance, but with some dose separation versus its actions in the MK-801 test. In contrast, clozapine, olanzapine, lurasidone, and asenapine showed little or no dose separation in these tests. Aripiprazole did not impair PA performance but was poorly active in the MK-801 test. Diverse effects were also observed in the FST: chlorpromazine was inactive and most other drugs reduced immobility over narrow dose ranges, whereas clozapine reduced immobility over a wider dose range, overlapping with antipsychotic activity. Although the propensity of second-generation antipsychotics to produce catalepsy was lower, they all elicited pronounced sedation. Consistent with clinical data, most currently available second-generation antipsychotics induced cognitive and motor side effects with little separation from therapeutic-like doses. This study provides a uniform in vivo comparative basis on which to evaluate future early-stage drug candidates intended for potential pharmacotherapy of BPSD.

  18. Repeated Blockade of NMDA Receptors during Adolescence Impairs Reversal Learning and Disrupts GABAergic Interneurons in Rat Medial Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Jitao eLi

    2016-03-01

    Full Text Available Adolescence is of particular significance to schizophrenia, since psychosis onset typically occurs in this critical period. Based on the N-methyl-D-aspartate (NMDA receptor hypofunction hypothesis of schizophrenia, in this study, we investigated whether and how repeated NMDA receptor blockade during adolescence would affect GABAergic interneurons in rat medial prefrontal cortex (mPFC and mPFC-mediated cognitive functions. Specifically, adolescent rats were subjected to intraperitoneal administration of MK-801 (0.1, 0.2, 0.4 mg/kg, a non-competitive NMDA receptor antagonist, for 14 days and then tested for reference memory and reversal learning in the water maze. The density of parvabumin (PV-, calbindin (CB- and calretinin (CR-positive neurons in mPFC were analyzed at either 24 hours or 7 days after drug cessation. We found that MK-801 treatment delayed reversal learning in the water maze without affecting initial acquisition. Strikingly, MK-801 treatment also significantly reduced the density of PV+ and CB+ neurons, and this effect persisted for 7 days after drug cessation at the dose of 0.2 mg/kg. We further demonstrated that the reduction in PV+ and CB+ neuron densities was ascribed to a downregulation of the expression levels of PV and CB, but not to neuronal death. These results parallel the behavioral and neuropathological changes of schizophrenia and provide evidence that adolescent NMDA receptors antagonism offers a useful tool for unraveling the etiology of the disease.

  19. Impaired cognitive function and altered hippocampal synapse morphology in mice lacking Lrrtm1, a gene associated with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Noriko Takashima

    Full Text Available Recent genetic linkage analysis has shown that LRRTM1 (Leucine rich repeat transmembrane neuronal 1 is associated with schizophrenia. Here, we characterized Lrrtm1 knockout mice behaviorally and morphologically. Systematic behavioral analysis revealed reduced locomotor activity in the early dark phase, altered behavioral responses to novel environments (open-field box, light-dark box, elevated plus maze, and hole board, avoidance of approach to large inanimate objects, social discrimination deficit, and spatial memory deficit. Upon administration of the NMDA receptor antagonist MK-801, Lrrtm1 knockout mice showed both locomotive activities in the open-field box and responses to the inanimate object that were distinct from those of wild-type mice, suggesting that altered glutamatergic transmission underlay the behavioral abnormalities. Furthermore, administration of a selective serotonin reuptake inhibitor (fluoxetine rescued the abnormality in the elevated plus maze. Morphologically, the brains of Lrrtm1 knockout mice showed reduction in total hippocampus size and reduced synaptic density. The hippocampal synapses were characterized by elongated spines and diffusely distributed synaptic vesicles, indicating the role of Lrrtm1 in maintaining synaptic integrity. Although the pharmacobehavioral phenotype was not entirely characteristic of those of schizophrenia model animals, the impaired cognitive function may warrant the further study of LRRTM1 in relevance to schizophrenia.

  20. Systemic administration of MK-801, a non-competitive NMDA-receptor antagonist, elicits a behavioural deficit of rats in the Active Allothetic Place Avoidance (AAPA) task irrespectively of their intact spatial pretraining

    Czech Academy of Sciences Publication Activity Database

    Stuchlík, Aleš; Valeš, Karel

    2005-01-01

    Roč. 159, č. 1 (2005), s. 163-171 ISSN 0166-4328 R&D Projects: GA ČR(CZ) GP309/03/P126; GA MŠk(CZ) 1M0517 Institutional research plan: CEZ:AV0Z5011922 Keywords : schizophrenia * animal model * rat Subject RIV: FH - Neurology Impact factor: 2.865, year: 2005

  1. ADN-1184 a monoaminergic ligand with 5-HT(6/7) receptor antagonist activity: pharmacological profile and potential therapeutic utility.

    Science.gov (United States)

    Kołaczkowski, M; Mierzejewski, P; Bieńkowski, P; Wesołowska, A; Newman-Tancredi, A

    2014-02-01

    Many dementia patients exhibit behavioural and psychological symptoms (BPSD) that include psychosis, aggressivity, depression and anxiety. Antipsychotic drugs are frequently prescribed but fail to significantly attenuate mood deficits, may interfere with cognitive function and are associated with motor and cardiac side effects, which are problematic in elderly patients. A need therefore exists for drugs that are better suited for the treatment of BPSD. We used in vitro cellular and in vivo behavioural tests to characterize ADN-1184, a novel arylsulfonamide ligand with potential utility for treatment of BPSD. ADN-1184 exhibits substantial 5-HT6 /5-HT7 /5-HT2A /D2 receptor affinity and antagonist properties in vitro. In tests of antipsychotic-like activity, it reversed MK-801-induced hyperactivity and stereotypies and inhibited conditioned avoidance response (MED = 3 mg·kg(-1) i.p.). Remarkably, ADN-1184 also reduced immobility time in the forced swim test at low doses (0.3 and 1 mg·kg(-1) i.p.; higher doses were not significantly active). Notably, up to 30 mg·kg(-1) ADN-1184 did not impair memory performance in the passive avoidance test or elicit significant catalepsy and only modestly inhibited spontaneous locomotor activity (MED = 30 mg·kg(-1) i.p.). ADN-1184 combines antipsychotic-like with antidepressant-like properties without interfering with memory function or locomotion. This profile is better than that of commonly used atypical antipsychotics tested under the same conditions and suggests that it is feasible to identify drugs that improve BPSD, without exacerbating cognitive deficit or movement impairment, which are of particular concern in patients with dementia. © 2013 The British Pharmacological Society.

  2. ADN-1184 a monoaminergic ligand with 5-HT6/7 receptor antagonist activity: pharmacological profile and potential therapeutic utility

    Science.gov (United States)

    Kołaczkowski, M; Mierzejewski, P; Bieńkowski, P; Wesołowska, A; Newman-Tancredi, A

    2014-01-01

    Background and Purpose Many dementia patients exhibit behavioural and psychological symptoms (BPSD) that include psychosis, aggressivity, depression and anxiety. Antipsychotic drugs are frequently prescribed but fail to significantly attenuate mood deficits, may interfere with cognitive function and are associated with motor and cardiac side effects, which are problematic in elderly patients. A need therefore exists for drugs that are better suited for the treatment of BPSD. Experimental Approach We used in vitro cellular and in vivo behavioural tests to characterize ADN-1184, a novel arylsulfonamide ligand with potential utility for treatment of BPSD. Key Results ADN-1184 exhibits substantial 5-HT6/5-HT7/5-HT2A/D2 receptor affinity and antagonist properties in vitro. In tests of antipsychotic-like activity, it reversed MK-801-induced hyperactivity and stereotypies and inhibited conditioned avoidance response (MED = 3 mg·kg−1 i.p.). Remarkably, ADN-1184 also reduced immobility time in the forced swim test at low doses (0.3 and 1 mg·kg−1 i.p.; higher doses were not significantly active). Notably, up to 30 mg·kg−1 ADN-1184 did not impair memory performance in the passive avoidance test or elicit significant catalepsy and only modestly inhibited spontaneous locomotor activity (MED = 30 mg·kg−1 i.p.). Conclusions and Implications ADN-1184 combines antipsychotic-like with antidepressant-like properties without interfering with memory function or locomotion. This profile is better than that of commonly used atypical antipsychotics tested under the same conditions and suggests that it is feasible to identify drugs that improve BPSD, without exacerbating cognitive deficit or movement impairment, which are of particular concern in patients with dementia. PMID:24199650

  3. The Hypocretin/Orexin Antagonist Almorexant Promotes Sleep Without Impairment of Performance in Rats

    Directory of Open Access Journals (Sweden)

    Stephen R Morairty

    2014-01-01

    Full Text Available The hypocretin receptor (HcrtR antagonist almorexant (ALM has potent hypnotic actions but little is known about neurocognitive performance in the presence of ALM. HcrtR antagonists are hypothesized to induce sleep by disfacilitation of wake-promoting systems whereas GABAA receptor modulators such as zolpidem (ZOL induce sleep through general inhibition of neural activity. To test the hypothesis that less functional impairment results from HcrtR antagonist-induced sleep, we evaluated the performance of rats in the Morris Water Maze in the presence of ALM vs. ZOL. Performance in spatial reference memory (SRM and spatial working memory (SWM tasks were assessed during the dark period after equipotent sleep-promoting doses (100 mg/kg, po following undisturbed and sleep deprivation (SD conditions. ALM-treated rats were indistinguishable from vehicle (VEH-treated rats for all SRM performance measures (distance travelled, latency to enter, time within, and number of entries into, the target quadrant after both the undisturbed and 6 h SD conditions. In contrast, rats administered ZOL showed impairments in all parameters measured compared to VEH or ALM in the undisturbed conditions. Following SD, ZOL-treated rats also showed impairments in all measures. ALM-treated rats were similar to VEH-treated rats for all SWM measures (velocity, time to locate the platform and success rate at finding the platform within 60 s after both the undisturbed and SD conditions. In contrast, ZOL-treated rats showed impairments in velocity and in the time to locate the platform. Importantly, ZOL rats only completed the task 23-50% of the time while ALM and VEH rats completed the task 79-100% of the time. Thus, following equipotent sleep-promoting doses, ZOL impaired rats in both memory tasks while ALM rats performed at levels comparable to VEH rats. These results are consistent with the hypothesis that less impairment results from HcrtR antagonism than from GABAA

  4. Investigation of antidepressant-like and anxiolytic-like actions and cognitive and motor side effects of four N-methyl-D-aspartate receptor antagonists in mice

    DEFF Research Database (Denmark)

    Refsgaard, Louise Konradsen; Pickering, Darryl S; Andreasen T., Jesper

    2017-01-01

    antagonists. MK-801, ketamine, S-ketamine, RO 25-6981 and the positive control, citalopram, were tested for antidepressant-like and anxiolytic-like effects in mice using the forced-swim test, the elevated zero maze and the novelty-induced hypophagia test. Side effects were assessed using a locomotor activity...... test, the modified Y-maze and the rotarod test. All compounds increased swim distance in the forced-swim test. In the elevated zero maze, the GluN2B subtype-selective RO 25-6981 affected none of the measured parameters, whereas all other compounds showed anxiolytic-like effects. In the novelty...

  5. Neuroprotective effects of the AMPA antagonist PNQX in oxygen-glucose deprivation in mouse hippocampal slice cultures and global cerebral ischemia in gerbils

    DEFF Research Database (Denmark)

    Montero, Maria; Nielsen, Marianne; Rønn, Lars Christian B

    2007-01-01

    PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD) and in tr......PNQX (9-methyl-amino-6-nitro-hexahydro-benzo(F)quinoxalinedione) is a selective AMPA antagonist with demonstrated neuroprotective effects in focal ischemia in rats. Here we report corresponding effects in mouse hippocampal slice cultures subjected to oxygen and glucose deprivation (OGD....... For comparison, other cultures were exposed to the NMDA antagonist MK-801 using the same protocol. Both PNQX and MK-801 displayed significant neuroprotective effects in all hippocampal subfields when present during and after OGD. When added just after OGD, only PNQX retained some neuroprotective effect. When...... stained for the neurodegeneration marker Fluoro-Jade B and immunostained for the astroglial marker glial fibrillary acidic protein revealed a significant PNQX-induced decrease in neuronal cell death and astroglial activation. We conclude that, PNQX provided neuroprotection against both global cerebral...

  6. Administration of memantine during withdrawal mitigates overactivity and spatial learning impairments associated with neonatal alcohol exposure in rats.

    Science.gov (United States)

    Idrus, Nirelia M; McGough, Nancy N H; Riley, Edward P; Thomas, Jennifer D

    2014-02-01

    Prenatal alcohol exposure can disrupt central nervous system development, manifesting as behavioral deficits that include motor, emotional, and cognitive dysfunction. Both clinical and animal studies have reported binge drinking during development to be highly correlated with an increased risk of fetal alcohol spectrum disorders (FASD). We hypothesized that binge drinking may be especially damaging because it is associated with episodes of alcohol withdrawal. Specifically, we have been investigating the possibility that NMDA receptor-mediated excitotoxicity occurs during alcohol withdrawal and contributes to developmental alcohol-related neuropathology. Consistent with this hypothesis, administration of the NMDA receptor antagonists MK-801 or eliprodil during withdrawal attenuates behavioral alterations associated with early alcohol exposure. In this study, we investigated the effects of memantine, a clinically used NMDA receptor antagonist, on minimizing ethanol-induced overactivity and spatial learning deficits. Sprague-Dawley pups were exposed to 6.0 g/kg ethanol via intubation on postnatal day (PD) 6, a period of brain development that models late gestation in humans. Controls were intubated with a calorically matched maltose solution. During withdrawal, 24 and 36 hours after ethanol exposure, subjects were injected with a total of either 0, 20, or 30 mg/kg memantine. The subjects' locomotor levels were recorded in open field activity monitors on PDs 18 to 21 and on a serial spatial discrimination reversal learning task on PDs 40 to 43. Alcohol exposure induced overactivity and impaired performance in spatial learning. Memantine administration significantly attenuated the ethanol-associated behavioral alterations in a dose-dependent manner. Thus, memantine may be neuroprotective when administered during ethanol withdrawal. These data have important implications for the treatment of EtOH's neurotoxic effects and provide further support that ethanol withdrawal

  7. Non-NMDA receptor antagonist-induced drinking in rat

    Science.gov (United States)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  8. Synergic induction of human periodontal ligament fibroblast cell death by nitric oxide and N-methyl-D-aspartic acid receptor antagonist.

    Science.gov (United States)

    Seo, Taegun; Cha, Seho; Woo, Kyung Mi; Park, Yun-Soo; Cho, Yun-Mi; Lee, Jeong-Soon; Kim, Tae-Il

    2011-02-01

    Nitric oxide (NO) has been known as an important regulator of osteoblasts and periodontal ligament cell activity. This study was performed to investigate the relationship between NO-mediated cell death of human periodontal ligament fibroblasts (PDLFs) and N-methyl-D-aspartic acid (NMDA) receptor antagonist (+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine hydrogen maleate (MK801). Human PDLFs were treated with various concentrations (0 to 4 mM) of sodium nitroprusside (SNP) with or without 200 µM MK801 in culture media for 16 hours and the cell medium was then removed and replaced by fresh medium containing MTS reagent for cell proliferation assay. Western blot analysis was performed to investigate the effects of SNP on the expression of Bax, cytochrome c, and caspase-3 proteins. The differences for each value among the sample groups were compared using analysis of variance with 95% confidence intervals. In the case of SNP treatment, as a NO donor, cell viability was significantly decreased in a concentration-dependent manner. In addition, a synergistic effect was shown when both SNP and NMDA receptor antagonist was added to the medium. SNP treated PDLFs exhibited a round shape in culture conditions and were dramatically reduced in cell number. SNP treatment also increased levels of apoptotic marker protein, such as Bax and cytochrome c, and reduced caspase-3 in PDLFs. Mitogen-activated protein kinase signaling was activated by treatment of SNP and NMDA receptor antagonist. These results suggest that excessive production of NO may induce apoptosis and that NMDA receptor may modulate NO-induced apoptosis in PDLFs.

  9. Attenuation of antagonist-induced impairment of dopamine receptors by L-prolyl-L-leucyl-glycinamide

    International Nuclear Information System (INIS)

    Saleh, M.I.M.

    1988-01-01

    The present study was undertaken in order to determine whether chronic,long-term postnatal challenge of rat pups per se, with specific dopamine D1 and D2 receptor antagonists, would modify the ontogeny of the respective receptor types. Since the neuropeptide L-prolyl-L-leucyl-glycinamide (PLG) attenuates the effect of haloperidol on dopamine D2 receptors in adult rats it was of interest to determine whether PLG would modulate antagonists-induced alterations in the ontogeny of striatal dopamine D1 and D2 receptors. Half of the rats were treated daily for 32 days from birth with SCH-23390, a selective dopamine D1 antagonist; or spiroperidol, a selective dopamine D2 antagonists; or both SCH-23390 and spiroperidol; or saline. The other half of the litters were treated with PLG, in combination with the other treatments. Animals were decapitated at 5, 8, and 12 weeks from birth for neurochemical analysis of the striatum. Chronic SCH-23390 treatment produced a 70-80% decrease in the binding of [ 3 H] SCH-23390 to striatal homogenates. The alteration at 5 weeks was associated with a 78% decrease in the Bmax for [ 3 H] SCH-23390 binding, and no change in the K D . Similarly, at 5, 8, and 12 weeks, chronic spiroperidol treatment reduced the binding of [ 3 H] spiroperidol to striatal homogenates by 70-80%

  10. Medial prefrontal cortex lesions impair decision-making on a rodent gambling task: reversal by D1 receptor antagonist administration.

    Science.gov (United States)

    Paine, Tracie A; Asinof, Samuel K; Diehl, Geoffrey W; Frackman, Anna; Leffler, Joseph

    2013-04-15

    Decision-making is a complex cognitive process that is impaired in a number of psychiatric disorders. In the laboratory, decision-making is frequently assessed using "gambling" tasks that are designed to simulate real-life decisions in terms of uncertainty, reward and punishment. Here, we investigate whether lesions of the medial prefrontal cortex (PFC) cause impairments in decision-making using a rodent gambling task (rGT). In this task, rats have to decide between 1 of 4 possible options: 2 options are considered "advantageous" and lead to greater net rewards (food pellets) than the other 2 "disadvantageous" options. Once rats attained stable levels of performance on the rGT they underwent sham or excitoxic lesions of the medial PFC and were allowed to recover for 1 week. Following recovery, rats were retrained for 5 days and then the effects of a dopamine D1-like receptor antagonist (SCH23390) or a D2-like receptor antagonist (haloperidol) on performance were assessed. Lesioned rats exhibited impaired decision-making: they made fewer advantageous choices and chose the most optimal choice less frequently than did sham-operated rats. Administration of SCH23390 (0.03 mg/kg), but not haloperidol (0.015-0.03 mg/kg) attenuated the lesion-induced decision-making deficit. These results indicate that the medial PFC is important for decision-making and that excessive signaling at D1 receptors may contribute to decision-making impairments. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Synthesis and characterization of a series of diarylguanidines that are noncompetitive N-methyl-D-aspartate receptor antagonists with neuroprotective properties

    International Nuclear Information System (INIS)

    Keana, J.F.W.; McBurney, R.N.; Scherz, M.W.

    1989-01-01

    Four diarylguanidine derivatives were synthesized. These compounds were found to displace, at submicromolar concentrations, 3 H-labeled 1-[1-(2-thienyl)cyclohexyl]piperidine and (+)-[ 3 H]MK-801 from phencyclidine receptors in brain membrane preparations. In electrophysiological experiments the diarylguanidines blocked N-methyl-D-aspartate (NMDA)-activated ion channels. These dairylguanidines also protected rat hippocampal neurons in vitro from glutamate-induced cell death. The results show that some diarylguanidines are noncompetitive antagonists of NMDA receptor-mediated responses and have the neuroprotective property that is commonly associated with blockers of the NMDA receptor-gated cation channel. Diarylguanidines are structurally unrelated to known blockers of NMDA channels and, therefore, represent a new compound series for the development of neuroprotective agents with therapeutic value in patients suffering from stroke, from brain or spinal cord trauma, from hypoglycemia, and possibly from brain ischemia due to heart attack

  12. Preclinical development of a novel class of CXCR4 antagonist impairing solid tumors growth and metastases.

    Directory of Open Access Journals (Sweden)

    Luigi Portella

    Full Text Available The CXCR4/CXCL12 axis plays a role in cancer metastases, stem cell mobilization and chemosensitization. Proof of concept for efficient CXCR4 inhibition has been demonstrated in stem cell mobilization prior to autologous transplantation in hematological malignancies. Nevertheless CXCR4 inhibitors suitable for prolonged use as required for anticancer therapy are not available. To develop new CXCR4 antagonists a rational, ligand-based approach was taken, distinct from the more commonly used development strategy. A three amino acid motif (Ar-Ar-X in CXCL12, also found in the reverse orientation (X-Ar-Ar in the vMIP-II inhibitory chemokine formed the core of nineteen cyclic peptides evaluated for inhibition of CXCR4-dependent migration, binding, P-ERK1/2-induction and calcium efflux. Peptides R, S and I were chosen for evaluation in in vivo models of lung metastases (B16-CXCR4 and KTM2 murine osteosarcoma cells and growth of a renal cells xenograft. Peptides R, S, and T significantly reduced the association of the 12G5-CXCR4 antibody to the receptor and inhibited CXCL12-induced calcium efflux. The four peptides efficiently inhibited CXCL12-dependent migration at concentrations as low as 10 nM and delayed CXCL12-mediated wound healing in PES43 human melanoma cells. Intraperitoneal treatment with peptides R, I or S drastically reduced the number of B16-CXCR4-derived lung metastases in C57/BL mice. KTM2 osteosarcoma lung metastases were also reduced in Balb/C mice following CXCR4 inhibition. All three peptides significantly inhibited subcutaneous growth of SN12C-EGFP renal cancer cells. A novel class of CXCR4 inhibitory peptides was discovered. Three peptides, R, I and S inhibited lung metastases and primary tumor growth and will be evaluated as anticancer agents.

  13. Effects of cannabinoid and glutamate receptor antagonists and their interactions on learning and memory in male rats.

    Science.gov (United States)

    Barzegar, Somayeh; Komaki, Alireza; Shahidi, Siamak; Sarihi, Abdolrahman; Mirazi, Naser; Salehi, Iraj

    2015-04-01

    Despite previous findings on the effects of cannabinoid and glutamatergic systems on learning and memory, the effects of the combined stimulation or the simultaneous inactivation of these two systems on learning and memory have not been studied. In addition, it is not clear whether the effects of the cannabinoid system on learning and memory occur through the modulation of glutamatergic synaptic transmission. Hence, in this study, we examined the effects of the simultaneous inactivation of the cannabinoid and glutamatergic systems on learning and memory using a passive avoidance (PA) test in rats. On the test day, AM251, which is a CB1 cannabinoid receptor antagonist; MK-801, which is a glutamate receptor antagonist; or both substances were injected intraperitoneally into male Wistar rats 30min before placing the animal in a shuttle box. A learning test (acquisition) was then performed, and a retrieval test was performed the following day. Learning and memory in the PA test were significantly different among the groups. The CB1 receptor antagonist improved the scores on the PA acquisition and retention tests. However, the glutamatergic receptor antagonist decreased the acquisition and retrieval scores on the PA task. The CB1 receptor antagonist partly decreased the glutamatergic receptor antagonist effects on PA learning and memory. These results indicated that the acute administration of a CB1 antagonist improved cognitive performance on a PA task in normal rats and that a glutamate-related mechanism may underlie the antagonism of cannabinoid by AM251 in learning and memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Novel Fluorine-Containing NMDA Antagonists for Brain Imaging: In Vitro Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado, M.; Biegon, A.

    2001-01-01

    The NMDA receptor has been implicated in neuronal death following stroke, brain injury and neurodegenerative disorders (e.g. Alzheimer's, Parkinson's and Huntington's disease) and in physiological functions (e.g. memory and cognition). Non-competitive antagonists, such as MK- 801 and CNS-1102, that block the action of glutamate at the NMDA receptor have been shown to be neuroprotective by blocking the influx of calcium into the cells. As a result, they are being considered as therapeutic agents for the above mentioned diseases. Several Fluorine-containing novel analogs of NMDA channel blockers have been synthesized and evaluated in search of a compound suitable for 18F labeling and Positron Emission Tomography (PET). Based on in vitro binding assay studies on rat brain membranes, the novel compounds examined displayed a range of affinities. Preliminary analyses indicated that chlorine is the best halogen on the ring, and that ethyl fluoro derivatives are more potent than methyl-fluoro compounds. Further analysis based on autoradiography will be needed to examine the regional binding characteristics of the novel compounds examined in this study. Labeling with 18F will allow the use of these compounds in humans, generating new insights into mechanisms and treatment of diseases involving malfunction of the glutamatergic system in the brain.

  15. Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats

    Directory of Open Access Journals (Sweden)

    Mayako Yamazaki

    2015-03-01

    Full Text Available Despite the human 5-HT5A receptor being cloned in 1994, the biological function of this receptor has not been extensively characterized due to a lack of specific ligands. We recently reported that the selective 5-HT5A receptor antagonist ASP5736 ameliorated cognitive impairment in several animal models of schizophrenia. Given that areas of the brain with high levels of 5-HT5A receptor expression, such as the hippocampus and cerebral cortex, have important functions in cognition and memory, we evaluated the chemically diverse, potent and brain-penetrating 5-HT5A receptor antagonists ASP5736, AS2030680, and AS2674723 in rodent models of cognitive dysfunction associated with dementia. Each of these compounds exhibited a high affinity for recombinant 5-HT5A receptors that was comparable to that of the non-selective ligand of this receptor, lysergic acid diethylamide (LSD. Although each compound had a low affinity for other receptors, 5-HT5A was the only receptor for which all three compounds had a high affinity. Each of the three compounds ameliorated scopolamine-induced working memory deficit in mice and improved reference memory impairment in aged rats at similar doses. Further, ASP5736 decreased the binding of LSD to 5-HT5A receptors in the olfactory bulb of rats in a dose-dependent manner and occupied 15%–50% of brain 5-HT5A receptors at behaviorally effective doses. These results indicate that the 5-HT5A receptor is involved in learning and memory and that treatment with 5-HT5A receptor antagonists might be broadly effective for cognitive impairment associated with not only schizophrenia but also dementia.

  16. Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats.

    Science.gov (United States)

    Yamazaki, Mayako; Okabe, Mayuko; Yamamoto, Noriyuki; Yarimizu, Junko; Harada, Katsuya

    2015-03-01

    Despite the human 5-HT5A receptor being cloned in 1994, the biological function of this receptor has not been extensively characterized due to a lack of specific ligands. We recently reported that the selective 5-HT5A receptor antagonist ASP5736 ameliorated cognitive impairment in several animal models of schizophrenia. Given that areas of the brain with high levels of 5-HT5A receptor expression, such as the hippocampus and cerebral cortex, have important functions in cognition and memory, we evaluated the chemically diverse, potent and brain-penetrating 5-HT5A receptor antagonists ASP5736, AS2030680, and AS2674723 in rodent models of cognitive dysfunction associated with dementia. Each of these compounds exhibited a high affinity for recombinant 5-HT5A receptors that was comparable to that of the non-selective ligand of this receptor, lysergic acid diethylamide (LSD). Although each compound had a low affinity for other receptors, 5-HT5A was the only receptor for which all three compounds had a high affinity. Each of the three compounds ameliorated scopolamine-induced working memory deficit in mice and improved reference memory impairment in aged rats at similar doses. Further, ASP5736 decreased the binding of LSD to 5-HT5A receptors in the olfactory bulb of rats in a dose-dependent manner and occupied 15%-50% of brain 5-HT5A receptors at behaviorally effective doses. These results indicate that the 5-HT5A receptor is involved in learning and memory and that treatment with 5-HT5A receptor antagonists might be broadly effective for cognitive impairment associated with not only schizophrenia but also dementia. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  17. N-methyl-D-aspartate promotes the survival of cerebellar granule cells: pharmacological characterization

    DEFF Research Database (Denmark)

    Balázs, R; Hack, N; Jørgensen, Ole Steen

    1989-01-01

    -amino-5-phosphonovalerate, D-2-amino-7-phosphonoheptanoate, dextromethorphan and (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)cyclohepten-5,10-imin emaleate (MK 801). The most potent antagonist tested was MK-801. In contrast, non-selective antagonists, including kynurenate, were much less effective...

  18. Cannabidiol attenuates sensorimotor gating disruption and molecular changes induced by chronic antagonism of NMDA receptors in mice.

    Science.gov (United States)

    Gomes, Felipe V; Issy, Ana Carolina; Ferreira, Frederico R; Viveros, Maria-Paz; Del Bel, Elaine A; Guimarães, Francisco S

    2014-10-31

    Preclinical and clinical data suggest that cannabidiol (CBD), a major non-psychotomimetic compound from Cannabis sativa, induces antipsychotic-like effects. However, the antipsychotic properties of repeated CBD treatment have been poorly investigated. Behavioral changes induced by repeated treatment with glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been proposed as an animal model of schizophrenia-like signs. In the present study, we evaluated if repeated treatment with CBD would attenuate the behavioral and molecular modifications induced by chronic administration of one of these antagonists, MK-801. Male C57BL/6J mice received daily i.p. injections of MK-801 (0.1, 0.5, or 1mg/kg) for 14, 21, or 28 days. Twenty-four hours after the last injection, animals were submitted to the prepulse inhibition (PPI) test. After that, we investigated if repeated treatment with CBD (15, 30, and 60mg/kg) would attenuate the PPI impairment induced by chronic treatment with MK-801 (1mg/kg; 28 days). CBD treatment began on the 6th day after the start of MK-801 administration and continued until the end of the treatment. Immediately after the PPI, the mice brains were removed and processed to evaluate the molecular changes. We measured changes in FosB/ΔFosB and parvalbumin (PV) expression, a marker of neuronal activity and a calcium-binding protein expressed in a subclass of GABAergic interneurons, respectively. Changes in mRNA expression of the NMDAR GluN1 subunit gene (GRN1) were also evaluated. CBD effects were compared to those induced by the atypical antipsychotic clozapine. MK-801 administration at the dose of 1mg/kg for 28 days impaired PPI responses. Chronic treatment with CBD (30 and 60mg/kg) attenuated PPI impairment. MK-801 treatment increased FosB/ΔFosB expression and decreased PV expression in the medial prefrontal cortex. A decreased mRNA level of GRN1 in the hippocampus was also observed. All the molecular changes were attenuated by CBD. CBD by

  19. Cannabidiol Attenuates Sensorimotor Gating Disruption and Molecular Changes Induced by Chronic Antagonism of NMDA receptors in Mice

    Science.gov (United States)

    Issy, Ana Carolina; Ferreira, Frederico R.; Viveros, Maria-Paz; Del Bel, Elaine A.; Guimarães, Francisco S.

    2015-01-01

    Background: Preclinical and clinical data suggest that cannabidiol (CBD), a major non-psychotomimetic compound from Cannabis sativa, induces antipsychotic-like effects. However, the antipsychotic properties of repeated CBD treatment have been poorly investigated. Behavioral changes induced by repeated treatment with glutamate N-methyl-D-aspartate receptor (NMDAR) antagonists have been proposed as an animal model of schizophrenia-like signs. In the present study, we evaluated if repeated treatment with CBD would attenuate the behavioral and molecular modifications induced by chronic administration of one of these antagonists, MK-801. Methods: Male C57BL/6J mice received daily i.p. injections of MK-801 (0.1, 0.5, or 1mg/kg) for 14, 21, or 28 days. Twenty-four hours after the last injection, animals were submitted to the prepulse inhibition (PPI) test. After that, we investigated if repeated treatment with CBD (15, 30, and 60mg/kg) would attenuate the PPI impairment induced by chronic treatment with MK-801 (1mg/kg; 28 days). CBD treatment began on the 6th day after the start of MK-801 administration and continued until the end of the treatment. Immediately after the PPI, the mice brains were removed and processed to evaluate the molecular changes. We measured changes in FosB/ΔFosB and parvalbumin (PV) expression, a marker of neuronal activity and a calcium-binding protein expressed in a subclass of GABAergic interneurons, respectively. Changes in mRNA expression of the NMDAR GluN1 subunit gene (GRN1) were also evaluated. CBD effects were compared to those induced by the atypical antipsychotic clozapine. Results: MK-801 administration at the dose of 1mg/kg for 28 days impaired PPI responses. Chronic treatment with CBD (30 and 60mg/kg) attenuated PPI impairment. MK-801 treatment increased FosB/ΔFosB expression and decreased PV expression in the medial prefrontal cortex. A decreased mRNA level of GRN1 in the hippocampus was also observed. All the molecular changes were

  20. Combined receptor antagonist stimulation of the hypothalamic-pituitary-adrenal axis test identifies impaired negative feedback sensitivity to cortisol in obese men.

    Science.gov (United States)

    Mattsson, Cecilia; Reynolds, Rebecca M; Simonyte, Kotryna; Olsson, Tommy; Walker, Brian R

    2009-04-01

    Hypothalamic-pituitary-adrenal (HPA) axis dysregulation may underlie disorders including obesity, depression, cognitive decline, and the metabolic syndrome. Conventional tests of HPA axis negative feedback rely on glucocorticoid receptor (GR) agonists such as dexamethasone but do not test feedback by endogenous cortisol, potentially mediated by both GR and mineralocorticoid receptors (MR). The objective of the study was to use a combination of GR (RU38486, mifepristone) and MR (spironolactone) antagonists to explore the poorly understood activation of the HPA axis that occurs in obesity. This was a double-blind, placebo-controlled, randomized, crossover study. The study was conducted at a clinical research facility. Participants included 15 lean (body mass index 22.0 +/- 1.6 kg/m(2)) and 16 overweight/obese (body mass index 30.1 +/- 3.5 kg/m(2)) men. Subjects attended on four occasions for blood and saliva sampling every 30 min between 1800 and 2200 h. At 1100 and 1600 h before visits, subjects took 200 mg spironolactone, 400 mg RU38486, 200 mg spironolactone + 400 mg RU38486, or placebo orally. Serum cortisol levels after drug or placebo were measured. Cortisol levels did not differ between lean and obese after placebo. Spironolactone and RU38486 alone had modest effects, increasing cortisol by less than 50% in both groups. However, combined spironolactone plus RU38486 elevated cortisol concentrations substantially, more so in lean than obese men [2.9- (0.3) vs. 2.2 (0.3)-fold elevation, P = 0.002]. Combined receptor antagonist stimulation of the HPA axis reveals redundancy of MR and GR in negative feedback in humans. Obese men have impaired responses to combined receptor antagonist stimulation, suggesting impaired negative feedback by endogenous cortisol. Such an approach may be useful to dissect abnormal HPA axis control in neuropsychiatric and other disorders.

  1. The CB1 receptor antagonist AM251 impairs reconsolidation of pavlovian fear memory in the rat basolateral amygdala.

    Science.gov (United States)

    Ratano, Patrizia; Everitt, Barry J; Milton, Amy L

    2014-10-01

    We have investigated the requirement for signaling at CB1 receptors in the reconsolidation of a previously consolidated auditory fear memory, by infusing the CB1 receptor antagonist AM251, or the FAAH inhibitor URB597, directly into the basolateral amygdala (BLA) in conjunction with memory reactivation. AM251 disrupted memory restabilization, but only when administered after reactivation. URB597 produced a small, transient enhancement of memory restabilization when administered after reactivation. The amnestic effect of AM251 was rescued by coadministration of the GABAA receptor antagonist bicuculline at reactivation, indicating that the disruption of reconsolidation was mediated by altered GABAergic transmission in the BLA. These data show that the endocannabinoid system in the BLA is an important modulator of fear memory reconsolidation and that its effects on memory are mediated by an interaction with the GABAergic system. Thus, targeting the endocannabinoid system may have therapeutic potential to reduce the impact of maladaptive memories in neuropsychiatric disorders such as posttraumatic stress disorder.

  2. The AT1 Receptor Antagonist, L-158,809, Prevents or Ameliorates Fractionated Whole-Brain Irradiation-Induced Cognitive Impairment

    International Nuclear Information System (INIS)

    Robbins, Mike E.; Payne, Valerie B.S.; Tommasi, Ellen B.S.; Diz, Debra I.; Hsu, Fang-Chi; Brown, William R.; Wheeler, Kenneth T.; Olson, John; Zhao Weiling

    2009-01-01

    Purpose: We hypothesized that administration of the angiotensin type 1 (AT1) receptor antagonist, L-158,809, to young adult male rats would prevent or ameliorate fractionated whole-brain irradiation (WBI)-induced cognitive impairment. Materials and Methods: Groups of 80 young adult male Fischer 344 x Brown Norway (F344xBN) rats, 12-14 weeks old, received either: (1) fractionated WBI; 40 Gy of γ rays in 4 weeks, 2 fractions/week, (2) sham-irradiation; (3) WBI plus L-158,809 (20 mg/L drinking water) starting 3 days prior, during, and for 14, 28, or 54 weeks postirradiation; and (4) sham-irradiation plus L-158,809 for 14, 28, or 54 weeks postirradiation. An additional group of rats (n = 20) received L-158,809 before, during, and for 5 weeks postirradiation, after which they received normal drinking water up to 28 weeks postirradiation. Results: Administration of L-158,809 before, during, and for 28 or 54 weeks after fractionated WBI prevented or ameliorated the radiation-induced cognitive impairment observed 26 and 52 weeks postirradiation. Moreover, giving L-158,809 before, during, and for only 5 weeks postirradiation ameliorated the significant cognitive impairment observed 26 weeks postirradiation. These radiation-induced cognitive impairments occurred without any changes in brain metabolites or gross histologic changes assessed at 28 and 54 weeks postirradiation, respectively. Conclusions: Administering L-158,809 before, during, and after fractionated WBI can prevent or ameliorate the chronic, progressive, cognitive impairment observed in rats at 26 and 52 weeks postirradiation. These findings offer the promise of improving the quality of life for brain tumor patients

  3. Effect of the selective NMDA NR2B antagonist, ifenprodil, on acute tolerance to ethanol-induced motor impairment in adolescent and adult rats.

    Science.gov (United States)

    Ramirez, Ruby Liane; Varlinskaya, Elena I; Spear, Linda P

    2011-06-01

    Adolescent rats have been observed to be less sensitive than adults to a number of acute ethanol effects, including ethanol-induced motor impairment. These adolescent insensitivities may be related in part to the more rapid emergence of within session (acute) tolerance in adolescents than adults. Adolescent-related alterations in neural systems that serve as ethanol target sites, including changes in NMDA receptor subunit expression, may influence the responsiveness of adolescents to acute ethanol effects. This study explored the role of NMDA NR2B receptors in the development of acute tolerance to ethanol-induced motor impairment in male adolescent [postnatal day (P)28-30] and adult (P68-70) Sprague-Dawley rats. Motor-impairing effects of ethanol on the stationary inclined plane and blood ethanol concentrations (BECs) were examined following challenge at each age with a functionally equivalent ethanol dose (adolescents: 2.25 g/kg; adults: 1.5 g/kg). Data were collected at two postinjection intervals (10 or 60 minutes) to compare rate of recovery from ethanol intoxication with BEC declines using the Radlow approach (Radlow, 1994) and changes in motor impairment/BEC ratios over time for assessing acute tolerance. Both vehicle-treated adolescent and adult animals showed similar acute tolerance development to the motor-impairing effects of ethanol at these functionally equivalent doses on the stationary inclined plane, as indexed by an increasing time-dependent dissociation between BECs and ethanol-induced motor impairment, with motor impairment declining faster than BECs, as well as by significant declines in motor impairment/BEC ratios over time. Acute tolerance development was reliably blocked by administration of the NR2B antagonist, ifenprodil, (5.0 mg/kg), in adult rats, whereas adolescents were affected by a higher dose (10.0 mg/kg). These data support the suggestion that alterations in NMDA receptor systems occurring during adolescence may contribute to

  4. Swertisin, a C-glucosylflavone, ameliorates scopolamine-induced memory impairment in mice with its adenosine A1 receptor antagonistic property.

    Science.gov (United States)

    Lee, Hyung Eun; Jeon, Se Jin; Ryu, Byeol; Park, Se Jin; Ko, Sang Yoon; Lee, Younghwan; Kim, Eunji; Lee, Sunhee; Kim, Haneul; Jang, Dae Sik; Ryu, Jong Hoon

    2016-06-01

    Swertisin, a C-glucosylflavone isolated from Swertia japonica, has been known to have anti-inflammatory or antidiabetic activities. Until yet, however, its cognitive function is not investigated. In the present study, we endeavored to elucidate the effects of swertisin on cholinergic blockade-induced memory impairment. Swertisin (5 or 10mg/kg, p.o.) significantly ameliorated scopolamine-induced cognitive impairment in the several behavioral tasks. Also, single administration of swertisin (10mg/kg, p.o.) in normal naïve mice enhanced the latency time in the passive avoidance task. In addition, the ameliorating effect of swertisin on scopolamine-induced memory impairment was significantly antagonized by a sub-effective dose of N6-cyclopentyladenosine (CPA, 0.1mg/kg, i.p). The adenosine A1 receptor antagonistic property of swertisin was confirmed by receptor binding assay. Furthermore, the administration of swertisin significantly increased the phosphorylation levels of hippocampal or cortical protein kinase A (PKA, 5 or 10mg/kg) and CREB (10mg/kg), and co-administration of CPA (0.1mg/kg, i.p) blocked the increased phosphorylated levels of PKA and CREB in the both cortex and hippocampus. Taken together, these results indicate that the memory-ameliorating effects of swertisin may be, in part, mediated through the adenosinergic neurotransmitter system, and that swertisin may be useful for the treatment of cognitive dysfunction observed in several diseases such as Alzheimer's disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Mice lacking NMDA receptors in parvalbumin neurons display normal depression-related behavior and response to antidepressant action of NMDAR antagonists.

    Directory of Open Access Journals (Sweden)

    Laura Pozzi

    Full Text Available The underlying circuit imbalance in major depression remains unknown and current therapies remain inadequate for a large group of patients. Discovery of the rapid antidepressant effects of ketamine--an NMDA receptor (NMDAR antagonist--has linked the glutamatergic system to depression. Interestingly, dysfunction in the inhibitory GABAergic system has also been proposed to underlie depression and deficits linked to GABAergic neurons have been found with human imaging and in post-mortem material from depressed patients. Parvalbumin-expressing (PV GABAergic interneurons regulate local circuit function through perisomatic inhibition and their activity is NMDAR-dependent, providing a possible link between NMDAR and the inhibitory system in the antidepressant effect of ketamine. We have therefore investigated the role of the NMDAR-dependent activity of PV interneurons for the development of depression-like behavior as well as for the response to rapid antidepressant effects of NMDAR antagonists. We used mutant mice lacking NMDA neurotransmission specifically in PV neurons (PV-Cre+/NR1f/f and analyzed depression-like behavior and anhedonia. To study the acute and sustained effects of a single NMDAR antagonist administration, we established a behavioral paradigm of repeated exposure to forced swimming test (FST. We did not observe altered behavioral responses in the repeated FST or in a sucrose preference test in mutant mice. In addition, the behavioral response to administration of NMDAR antagonists was not significantly altered in mutant PV-Cre+/NR1f/f mice. Our results show that NMDA-dependent neurotransmission in PV neurons is not necessary to regulate depression-like behaviors, and in addition that NMDARs on PV neurons are not a direct target for the NMDAR-induced antidepressant effects of ketamine and MK801.

  6. Sociability impairments in Genetic Absence Epilepsy Rats from Strasbourg: Reversal by the T-type calcium channel antagonist Z944.

    Science.gov (United States)

    Henbid, Mark T; Marks, Wendie N; Collins, Madeline J; Cain, Stuart M; Snutch, Terrance P; Howland, John G

    2017-10-01

    Childhood absence epilepsy (CAE) is associated with interictal co-morbid symptoms including abnormalities in social behaviour. Genetic Absence Epilepsy Rats from Strasbourg (GAERS) is a model of CAE that exhibits physiological and behavioural alterations characteristic of the human disorder. However, it is unknown if GAERS display the social deficits often observed in CAE. Sociability in rodents is thought to be mediated by neural circuits densely populated with T-type calcium channels and GAERS contain a missense mutation in the Cav3.2 T-type calcium channel gene. Thus, the objective of this study was to examine the effects of the clinical stage pan-T-type calcium channel blocker, Z944, on sociability behaviour in male and female GAERS and non-epileptic control (NEC) animals. Female GAERS showed reduced sociability in a three-chamber sociability task whereas male GAERS, male NECs, and female NECs all showed a preference for the chamber containing a stranger rat. In drug trials, pre-treatment with 5mg/kg of Z944 normalized sociability in female GAERS. In contrast, female NECs showed impaired sociability following Z944 treatment. Dose-dependent decreases in locomotor activity were noted following Z944 treatment in both strains. Treatment with 10mg/kg of Z944 altered exploration such that only 8 of the 16 rats tested explored both sides of the testing chamber. In those that explored the chamber, significant preference for the stranger rat was observed in GAERS but not NECs. Overall, the data suggest that T-type calcium channels are critical in regulating sociability in both GAERS and NEC animals. Future research should focus on T-type calcium channels in the treatment of sociability deficits observed in disorders such as CAE. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Antipsychotics promote GABAergic interneuron genesis in the adult rat brain: Role of heat-shock protein production.

    Science.gov (United States)

    Kaneta, Hiroo; Ukai, Wataru; Tsujino, Hanako; Furuse, Kengo; Kigawa, Yoshiyasu; Tayama, Masaya; Ishii, Takao; Hashimoto, Eri; Kawanishi, Chiaki

    2017-09-01

    Current antipsychotics reduce positive symptoms and reverse negative symptoms in conjunction with cognitive behavioral issues with the goal of restoring impaired occupational and social functioning. However, limited information is available on their influence on gliogenesis or their neurogenic properties in adult schizophrenia brains, particularly on GABAergic interneuron production. In the present study, we used young adult subventricular zone (SVZ)-derived progenitor cells expressing proteoglycan NG2 cultures to examine the oligodendrocyte and GABAergic interneuron genesis effects of several kinds of antipsychotics on changes in differentiation function induced by exposure to the NMDA receptor antagonist MK-801. We herein demonstrated that antipsychotics promoted or restored changes in the oligodendrocyte/GABAergic interneuron differentiation functions of NG2(+) cells induced by the exposure to MK-801, which was considered to be one of the drug-induced schizophrenia model. We also demonstrated that antipsychotics restored heat-shock protein (HSP) production in NG2(+) cells with differentiation impairment. The antipsychotics olanzapine, aripiprazole, and blonanserin, but not haloperidol increased HSP90 levels, which were reduced by the exposure to MK-801. Our results showed that antipsychotics, particularly those recently synthesized, exerted similar GABAergic interneuron genesis effects on NG2(+) neuronal/glial progenitor cells in the adult rat brain by increasing cellular HSP production, and also suggest that HSP90 may play a crucial role in the pathophysiology of schizophrenia and is a key target for next drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bidirectional effects of cannabidiol on contextual fear memory extinction

    Directory of Open Access Journals (Sweden)

    Chenchen Song

    2016-12-01

    Full Text Available Cannabidiol (CBD has been established to have both acute and long-lasting effects to reduce fear memory expression. The long-lasting impact might be mediated by an enhancement of memory extinction or an impairment of memory reconsolidation. Here, we directly compared the effects of i.p. injections of cannabidiol (10 mg/kg with those of the NMDA receptor antagonist MK-801 (0.1 mg/kg and partial agonist D-cycloserine (DCS; 15 mg/kg in order to determine the mnemonic basis of long-term fear reduction. We showed that under conditions of strong fear conditioning, CBD reduced contextual fear memory expression both acutely during the extinction session as well as later at a fear retention test. The latter test reduction was replicated by DCS, but MK-801 instead elevated test freezing. In contrast, when initial conditioning was weaker, CBD and MK-801 had similar effects to increase freezing at the fear retention test relative to vehicle controls, whereas DCS had no observable impact. This pattern of results is consistent with CBD enhancing contextual fear memory extinction when the initial conditioning is strong, but impairing extinction when conditioning is weak. This bidirectional effect of CBD may be related to stress levels induced by conditioning and evoked at retrieval during extinction, rather than the strength of the memory per se.

  9. Interactions of a Dopamine D1 Receptor Agonist with Glutamate NMDA Receptor Antagonists on the Volitional Consumption of Ethanol by the mHEP Rat

    Directory of Open Access Journals (Sweden)

    Helen L. Williams

    2013-03-01

    Full Text Available Stimulation of the dopamine D1 receptor is reported to cause the phosphorylation of DARPP-32 at the thre34 position and activates the protein. If intracellular Ca2+ is increased, such as after activation of the glutamate NMDA receptor, calcineurin activity increases and the phosphates will be removed. This balance of phosphorylation control suggests that a D1 receptor agonist and a NMDA glutamate receptor antagonist should have additive or synergistic actions to increase activated DARPP-32 and consequent behavioral effects. This hypothesis was tested in a volitional consumption of ethanol model: the selectively bred Myers’ high ethanol preferring (mHEP rat. A 3-day baseline period was followed by 3-days of twice daily injections of drug(s or vehicle(s and then a 3-day post-treatment period. Vehicle, the D1 agonist SKF 38393, the non-competitive NMDA receptor antagonist memantine, or their combination were injected 2 h before and after lights out. The combination of 5.0 mg/kg SKF 38393 with either 3.0 or 10 mg/kg memantine did not produce an additive or synergistic effect. For example, 5.0 mg/kg SKF reduced consumption of ethanol by 27.3% and 10 mg/kg memantine by 39.8%. When combined, consumption declined by 48.2% and the proportion of ethanol solution to total fluids consumed declined by 17%. However, the consumption of food also declined by 36.6%. The latter result indicates that this dose combination had a non-specific effect. The combination of SKF 38393 with (+-MK-801, another NMDA receptor antagonist, also failed to show an additive effect. The lack of additivity and specificity suggests that the hypothesis may not be correct for this in vivo model.  The interaction of these different receptor systems with intraneuronal signaling and behaviors needs to be studied further.

  10. The Effects of Nicotine on MK-801-induced Attentional Deficits: An Animal Model of Schizophrenia

    Science.gov (United States)

    2002-01-01

    ECA) and the National Comorbidity Study (NCS) (USDHHS, 1999; APA, 2000). Support for a gender bias in schizophrenia is mixed with hospital- based... genders . Schizophrenia tends to have a later onset and a better prognosis in women (Hafner et al., 1998; APA, 2000; Leung & Chue, 2000). The cause...has been proposed that smoking may decrease the anxiety, tension, and dysphoria common in schizophrenia (Batel, 2000) in addition to regulating

  11. Voluntary wheel running ameliorates symptoms of MK-801-induced schizophrenia in mice.

    Science.gov (United States)

    Kim, Tae-Woon; Kang, Hyun-Sik; Park, Joon-Ki; Lee, Sam-Jun; Baek, Sang-Bin; Kim, Chang-Ju

    2014-12-01

    Schizophrenia is a chronic and severe mental disorder characterized by the disintegration of cognitive thought processes and emotional responses. Despite the precise cause of schizophrenia remains unclear, it is hypothesized that a dysregulation of the N‑methyl‑D‑aspartate (NMDA) receptor in the brain is a major contributing factor to its development. Brain‑derived neurotrophic factor (BDNF) is a member of the neurotrophin family and is implicated in learning and memory processes. In the present study, we investigated in vivo the effects of voluntary wheel running on behavioral symptoms associated with NMDA receptor expression, using MK‑801‑induced schizophrenic mice. Abilify (aripiprazole), a drug used to treat human schizophrenia patients, was used as the positive control. For the assessment of behavioral symptoms affecting locomotion, social interaction and spatial working memory, the open‑field, social interaction and Morris water maze tests were conducted. For investigating the biochemical parameters, NMDA receptor expression in the hippocampal CA2‑3 regions and prefrontal cortex was detected by NMDA immunofluorescence and BDNF expression in the hippocampus was measured using western blot analysis. MK‑801 injection for 14 days induced schizophrenia‑like behavioral abnormalities with decreased expression of the NMDA receptor and BDNF in the brains of mice. The results indicated that free access to voluntary wheel running for 2 weeks alleviated schizophrenia‑like behavioral abnormalities and increased the expression of NMDA receptor and BDNF, comparable to the effects of aripiprazole treatment. In the present study, the results suggest that NMDA receptor hypofunctioning induced schizophrenia‑like behaviors, and that voluntary wheel running was effective in reducing these symptoms by increasing NMDA receptor and BDNF expression, resulting in an improvement of disease related behavioral deficits.

  12. Spontaneous alternation behaviour in rats: kynurenic acid attenuated deficits induced by MK-801

    Czech Academy of Sciences Publication Activity Database

    Hliňák, Zdeněk; Krejčí, I.

    2006-01-01

    Roč. 168, č. 1 (2006), s. 144-149 ISSN 0166-4328 Institutional research plan: CEZ:AV0Z50110509 Keywords : kynurenic acid * locomotor activity * spontaneous alternation Subject RIV: ED - Physiology Impact factor: 2.591, year: 2006

  13. Persistent deficits in hippocampal synaptic plasticity accompany losses of hippocampus-dependent memory in a rodent model of psychosis

    Directory of Open Access Journals (Sweden)

    Valentina eWiescholleck

    2013-03-01

    Full Text Available Irreversible N-methyl-D-aspartate receptor (NMDAR antagonism is known to provoke symptoms of psychosis and schizophrenia in healthy humans. NMDAR hypofunction is believed to play a central role in the pathophysiology of both disorders and in an animal model of psychosis, that is based on irreversible antagonism of NMDARs, pronounced deficits in hippocampal synaptic plasticity have been reported shortly after antagonist treatment. Here, we examined the long-term consequences for long-term potentiation (LTP of a single acute treatment with an irreversible antagonist and investigated whether deficits are associated with memory impairments.The ability to express long-term potentiation (LTP at the perforant pathway – dentate gyrus synapse, as well as object recognition memory was assessed 1, 2, 3 and 4 weeks after a single -treatment of the antagonist, MK801. Here, LTP in freely behaving rats was significantly impaired at all time-points compared to control LTP before treatment. Object recognition memory was also significantly poorer in MK801-treated compared to vehicle-treated animals for several weeks after treatment. Histological analysis revealed no changes in brain tissue.Taken together, these data support that acute treatment with an irreversible NMDAR antagonist persistently impairs hippocampal functioning on behavioral, as well as synaptic levels. The long-term deficits in synaptic plasticity may underlie the cognitive impairments that are associated with schizophrenia-spectrum disorders.

  14. Secretory phospholipase A2-mediated neuronal cell death involves glutamate ionotropic receptors

    DEFF Research Database (Denmark)

    Kolko, Miriam; de Turco, Elena B; Diemer, Nils Henrik

    2002-01-01

    To define the significance of glutamate ionotropic receptors in sPLA -mediated neuronal cell death we used the NMDA receptor antagonist MK-801 and the AMPA receptor antagonist PNQX. In primary neuronal cell cultures both MK-801 and PNQX inhibited sPLA - and glutamate-induced neuronal death. [ H...... neuronal cell death. We conclude that glutamatergic synaptic activity modulates sPLA -induced neuronal cell death....

  15. GABAB antagonists

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Hansen, J J; Krogsgaard-Larsen, P

    1994-01-01

    chromatographic techniques. The absolute stereochemistry of (-)-(R)-phaclofen was established by X-ray crystallographic analysis. (-)-(R)-Phaclofen was shown to inhibit the binding of [3H]-(R)-baclofen to GABAB receptor sites on rat cerebellar membranes (IC50 = 76 +/- 13 microM), whereas (+)-(S......)-baclofen and the antagonist (-)-(R)-phaclofen suggests that these ligands interact with the GABAB receptor sites in a similar manner. Thus, it may be concluded that the different pharmacological effects of these compounds essentially result from the different spatial and proteolytic properties of their acid groups....

  16. Postnatal Administration of Dizocilpine Inhibits Neuronal Excitability in PFC and Induces Social Deficits Detected by MiceProfiler.

    Science.gov (United States)

    Zhu, Dexiao; Wang, Hui; Wu, Jintao; Wang, Qian; Xu, Ling; Zhao, Yue; Pang, Kunkun; Shi, Qingqing; Zhao, Wenbo; Zhang, Jing; Sun, Jinhao

    2017-12-01

    Schizophrenia is a devastating mental disease with social deficit as its core component of negative symptoms, which could be induced in rodents by dizocilpine (MK-801), a noncompetitive NMDA receptor antagonist. NMDA receptors are highly expressed during the postnatal period. However, less attention has been paid to the effects of postnatal MK-801 administration on social interaction. In this study, we evaluated the effects of postnatal administration of MK-801 on social interaction and explored the possible mechanisms. Postnatal day-7 mice were intraperitoneally injected with MK-801 twice daily for 5 days, and their social interaction repertoire was monitored by a computerized video in the 10th week. The contact event, relative position event, stop-state, and dynamic event were analyzed with MiceProfiler automatic idTracker system. The results showed that MK-801 reduced the number of the contact events, relative position events, and stop-states, while increased the number and duration of dynamic events. These changes implied that MK-801-injected mice had indifference and lower motivation in social interaction and could be a useful model for studies on the social deficit of schizophrenia. The prefrontal cortex is the key region for social interaction behaviors. Slice patch clamp was performed to analyze the cellular excitability of prefrontal cortical neurons after postnatal treatment with MK-801 in mice. The results demonstrated that MK-801 injection reduced the frequency and amplitude of action potentials, but increased the frequency of miniature inhibitory postsynaptic currents. These data illustrated that the excitability of neurons in the prefrontal cortex was inhibited. Finally, immunoblotting data demonstrated that MK-801 significantly decreased the levels of sirtuin 1 (SIRT1) and phosphorylated protein kinase B (p-PKB) in the prefrontal cortex (both P social interaction deficits possibly due to inhibiting the neuronal excitability and decreasing the

  17. Different components of conditioned food aversion memory.

    Science.gov (United States)

    Nikitin, Vladimir P; Solntseva, Svetlana V; Kozyrev, Sergey A; Nikitin, Pavel V; Shevelkin, Alexey V

    2016-07-01

    Memory reconsolidation processes and protein kinase Mzeta (PKMzeta) activity in memory maintenance and reorganization are poorly understood. Therefore, we examined memory reconsolidation and PKMzeta activity during the maintenance and reorganization of a conditioned food aversion memory among snails. These processes were specifically evaluated after administration of a serotonin receptor antagonist (methiothepin), NMDA glutamate receptor antagonist (MK-801), protein synthesis inhibitor (cycloheximide; CYH), or PKMzeta inhibitor (zeta inhibitory peptide; ZIP) either 2 or 10 days after aversion training. Two days post-training, injections of MK-801 or CYH, combined with a conditioned stimulus reminder, caused amnesia development, and a second training 11 days after this induction did not lead to long-term memory formation. Interestingly, MK-801 or CYH injections and the reminder 10 days after training did not affect memory retrieval. Methiothepin and the reminder, or ZIP without the reminder, at 2 and 10 days after training led to memory impairment, while a second training 11 days after amnesia induction resulted in memory formation. These results suggest that the maintenance of a conditioned food aversion involves two different components with variable dynamics. One component could be characterized by memory strengthening over time and involve N-methyl-D-aspartate receptors and protein synthesis reconsolidation at early, but not late, training stages. The other memory component could involve serotonin-dependent reconsolidation and Mzeta-like kinase activity at both early and late stages after learning. Deficiencies within these two components led to various forms of memory impairment, which differed in terms of the formation of a conditioned food aversion during the second training. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Juvenile Treatment with a Novel mGluR2 Agonist/mGluR3 Antagonist Compound, LY395756, Reverses Learning Deficits and Cognitive Flexibility Impairments in Adults in A Neurodevelopmental Model of Schizophrenia

    Science.gov (United States)

    Li, Meng-Lin; Gulchina, Yelena; Monaco, Sarah A.; Xing, Bo; Ferguson, Brielle R.; Li, Yan-Chun; Li, Feng; Hu, Xi-Quan; Gao, Wen-Jun

    2018-01-01

    Schizophrenia (SCZ) is a neurodevelopmental psychiatric disorder, in which cognitive function becomes disrupted at early stages of the disease. Although the mechanisms underlying cognitive impairments remain unclear, N-methyl-D-aspartate receptors (NMDAR) hypofunctioning in the prefrontal cortex (PFC) has been implicated. Moreover, cognitive symptoms in SCZ are usually unresponsive to treatment with current antipsychotics and by onset, disruption of the dopamine system, not NMDAR hypofunctioning, dominates the symptoms. Therefore, treating cognitive deficits at an early stage is a realistic approach. In this study, we tested whether an early treatment targeting mGluR2 would be effective in ameliorating cognitive impairments in the methylazoxymethanol acetate (MAM) model of SCZ. We investigated the effects of an mGluR2 agonist/mGluR3 antagonist, LY395756 (LY39), on the NMDAR expression and function in juveniles, as well as cognitive deficits in adult rats after juvenile treatment. We found that gestational MAM exposure induced a significant decrease in total protein levels of the NMDAR subunit, NR2B, and a significant increase of pNR2BTyr1472 in the juvenile rat PFC. Treatment with LY39 in juvenile MAM-exposed rats effectively recovered the disrupted NMDAR expression. Furthermore, a subchronic LY39 treatment in juvenile MAM-exposed rats also alleviated the learning deficits and cognitive flexibility impairments when tested with a cross-maze based set-shifting task in adults. Therefore, our study demonstrates that targeting dysfunctional NMDARs with an mGluR2 agonist during the early stage of SCZ could be an effective strategy in preventing the development and progression in addition to ameliorating cognitive impairments of SCZ. PMID:28213064

  19. Recovery of stress-impaired social behavior by an antagonist of the CRF binding protein, CRF6-33,in the bed nucleus of the stria terminalis of male rats.

    Science.gov (United States)

    Vasconcelos, Mailton; Stein, Dirson J; Albrechet-Souza, Lucas; Miczek, Klaus A; de Almeida, Rosa Maria M

    2018-01-09

    Social stress is recognized to promote the development of neuropsychiatric and mood disorders. Corticotropin releasing factor (CRF) is an important neuropeptide activated by social stress, and it contributes to neural and behavioral adaptations, as indicated by impaired social interactions and anhedonic effects. Few studies have focused on the role of the CRF binding protein (CRFBP), a component of the CRF system, and its activity in the bed nucleus of stria terminalis (BNST), a limbic structure connecting amygdala and hypothalamus. In this study, animals' preference for sweet solutions was examined as an index of stress-induced anhedonic responses in Wistar rats subjected to four brief intermittent episodes of social defeat. Next, social approach was assessed after local infusions of the CRFBP antagonist, CRF fragment 6-33 (CRF 6-33 ) into the BNST. The experience of brief episodes of social defeat impaired social approach behaviors in male rats. However, intra-BNST CRF 6-33 infusions restored social approach in stressed animals to the levels of non-stressed rats. CRF 6-33 acted selectively on social interaction and did not alter general exploration in nether stressed nor non-stressed rats. These findings suggest that BNST CRFBP is involved in the modulation of anxiety-like responses induced by social stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Modulation of glycine sites enhances social memory in rats using PQQ combined with d-serine.

    Science.gov (United States)

    Zhou, Xingqin; Liu, Dong; Zhang, Rongjun; Peng, Ying; Qin, Xiaofeng; Mao, Shishi

    2016-07-15

    The aim of study was to investigate the effects of pyrroloquinoline quinone (PQQ) combined with d-serine on the modulation of glycine sites in the brain of rats using social recognition test. Rats were divided into seven groups (n=10) and given repeated intraperitoneal (ip) injections of saline, MK-801 (0.5mg/kg), clozapine (1mg/kg), haloperidol (0.1mg/kg), d-serine (0.8g/kg), PQQ (2.0μg/kg), or d-serine (0.4g/kg) combined with PQQ (1.0μg/kg) for seven days. A social recognition test, including assessment of time-dependent memory impairment, was performed. A non-competitive NMDA receptor antagonist, MK-801, significantly impaired social memory, and this impairment was significantly repaired with an atypical antipsychotic (clozapine) but not with a typical antipsychotic (haloperidol). Likewise, d-serine combined with PQQ significantly improved MK-801-disrupted cognition in naïve rats, whereas haloperidol was ineffective. The present results show that the co-agonist NMDA receptor treated with PQQ and d-serine enhances social memory and may be an effective approach for treating the cognitive dysfunction observed in schizophrenic patients. PQQ stimulates glycine modulatory sites by which it may antagonize indirectly by removing glycine from the synaptic cleft or by binding the unsaturated site with d-serine in the brain, providing the insights into future research of central nervous system and drug discovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Impairment of neural coordination in hippocampal neuronal ensembles after a psychotomimetic dose of dizocilpine.

    Czech Academy of Sciences Publication Activity Database

    Szczurowska, E.; Ahuja, Nikhil; Jiruška, Přemysl; Kelemen, E.; Stuchlík, Aleš

    2018-01-01

    Roč. 81, Feb 2 (2018), s. 275-283 ISSN 0278-5846 R&D Projects: GA ČR(CZ) GA17-04047S Institutional support: RVO:67985823 Keywords : psychosis * MK-801 * neuronal discoordination * hippocampus * Theta rhythm Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.187, year: 2016

  2. Orexin receptor antagonist-induced sleep does not impair the ability to wake in response to emotionally salient acoustic stimuli in dogs

    Directory of Open Access Journals (Sweden)

    Pamela L. Tannenbaum

    2014-05-01

    Full Text Available The ability to awaken from sleep in response to important stimuli is a critical feature of normal sleep, as is maintaining sleep continuity in the presence of irrelevant background noise. Dual orexin receptor antagonists (DORAs effectively promote sleep across species by targeting the evolutionarily conserved wake-promoting orexin signaling pathway. This study in dogs investigated whether DORA-induced sleep preserved the ability to awaken appropriately to salient acoustic stimuli but remain asleep when exposed to irrelevant stimuli. Sleep and wake in response to DORAs, vehicle, GABA-A receptor modulators (diazepam, eszopiclone and zolpidem and antihistamine (diphenhydramine administration were evaluated in telemetry-implanted adult dogs with continuous electrocorticogram, electromyogram, electrooculogram, and activity recordings. DORAs induced sleep, but GABA-A modulators and antihistamine induced paradoxical hyperarousal. Thus, salience gating studies were conducted during DORA-22 (0.3, 1, and 5 mg/kg; day and night and vehicle nighttime sleep. The acoustic stimuli were either classically conditioned using food reward and positive attention (salient stimulus or presented randomly (neutral stimulus. Once conditioned, the tones were presented at sleep times corresponding to maximal DORA-22 exposure. In response to the salient stimuli, dogs woke completely from vehicle and orexin-antagonized sleep across all sleep stages but rarely awoke to neutral stimuli. Notably, acute pharmacological antagonism of orexin receptors paired with emotionally salient anticipation produced wake, not cataplexy, in a species where genetic (chronic loss of orexin receptor signaling leads to narcolepsy/cataplexy. DORA-induced sleep in this species thereby retains the desired capacity to awaken to emotionally salient acoustic stimuli while preserving uninterrupted sleep in response to irrelevant stimuli.

  3. The Effect of Subchronic Dosing of Ciproxifan and Clobenpropit on Dopamine and Histamine Levels in Rats

    Directory of Open Access Journals (Sweden)

    D. Mahmood

    2015-01-01

    Full Text Available The present study was designed to investigate the effect of once daily for 7-day (subchronic treatment dosing of histamine H 3 receptor antagonists, ciproxifan (CPX (3 mg/kg, i.p., and clobenpropit (CBP (15 mg/kg, i.p, including clozapine (CLZ (3.0 mg/kg, i.p. and chlorpromazine (CPZ (3.0 mg/kg, i.p., the atypical and typical antipsychotic, respectively, on MK-801(0.2 mg/kg, i.p.-induced locomotor activity, and dopamine and histamine levels in rats. Dopamine and histamine levels were measured in striatum and hypothalamus, respectively, of rat brain. Atypical and typical antipsychotics were used to serve as clinically relevant reference agents to compare the effects of the H 3 receptor antagonists. MK-801-induced increase of horizontal activity was reduced with CPX and CBP. The attenuation of MK-801-induced locomotor hyperactivity produced by CPX and CBP was comparable to CLZ and CPZ. MK-801 raised dopamine levels in the striatum, which was reduced in rats pretreated with CPX and CBP. CPZ also lowered striatal dopamine levels, though the decrease was less robust compared to CLZ, CPX and CBP. MK-801 increased histamine content although to a lesser degree. Subchronic treatment with CPX and CBP exhibited further increase in histamine levels in the hypothalamus compared to the MK-801 treatment alone. Histamine H 3 receptor agonist, R-OC methylhistamine (10 mg/kg, i.p. counteracted the effects of CPX and CBP. In conclusion, the subchronic dosing of CPX/CBP suggests some antipsychotic-like activities as CPX/CBP counteracts the modulatory effects of MK-801 on dopamine and histamine levels and prevents MK-801-induced hyperlocomotor behaviors.

  4. A novel aminotetralin-type serotonin (5-HT) 2C receptor-specific agonist and 5-HT2A competitive antagonist/5-HT2B inverse agonist with preclinical efficacy for psychoses.

    Science.gov (United States)

    Canal, Clinton E; Morgan, Drake; Felsing, Daniel; Kondabolu, Krishnakanth; Rowland, Neil E; Robertson, Kimberly L; Sakhuja, Rajeev; Booth, Raymond G

    2014-05-01

    Development of 5-HT2C agonists for treatment of neuropsychiatric disorders, including psychoses, substance abuse, and obesity, has been fraught with difficulties, because the vast majority of reported 5-HT2C selective agonists also activate 5-HT2A and/or 5-HT2B receptors, potentially causing hallucinations and/or cardiac valvulopathy. Herein is described a novel, potent, and efficacious human 5-HT2C receptor agonist, (-)-trans-(2S,4R)-4-(3'[meta]-bromophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (-)-MBP), that is a competitive antagonist and inverse agonist at human 5-HT2A and 5-HT2B receptors, respectively. (-)-MBP has efficacy comparable to the prototypical second-generation antipsychotic drug clozapine in three C57Bl/6 mouse models of drug-induced psychoses: the head-twitch response elicited by [2,5]-dimethoxy-4-iodoamphetamine; hyperlocomotion induced by MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (dizocilpine maleate)]; and hyperlocomotion induced by amphetamine. (-)-MBP, however, does not alter locomotion when administered alone, distinguishing it from clozapine, which suppresses locomotion. Finally, consumption of highly palatable food by mice was not increased by (-)-MBP at a dose that produced at least 50% maximal efficacy in the psychoses models. Compared with (-)-MBP, the enantiomer (+)-MBP was much less active across in vitro affinity and functional assays using mouse and human receptors and also translated in vivo with comparably lower potency and efficacy. Results indicate a 5-HT2C receptor-specific agonist, such as (-)-MBP, may be pharmacotherapeutic for psychoses, without liability for obesity, hallucinations, heart disease, sedation, or motoric disorders.

  5. The T-type calcium channel antagonist Z944 rescues impairments in crossmodal and visual recognition memory in Genetic Absence Epilepsy Rats from Strasbourg.

    Science.gov (United States)

    Marks, Wendie N; Cain, Stuart M; Snutch, Terrance P; Howland, John G

    2016-10-01

    Childhood absence epilepsy (CAE) is often comorbid with behavioral and cognitive symptoms, including impaired visual memory. Genetic Absence Epilepsy Rats from Strasbourg (GAERS) is an animal model closely resembling CAE; however, cognition in GAERS is poorly understood. Crossmodal object recognition (CMOR) is a recently developed memory task that examines not only purely visual and tactile memory, but also requires rodents to integrate sensory information about objects gained from tactile exploration to enable visual recognition. Both the visual and crossmodal variations of the CMOR task rely on the perirhinal cortex, an area with dense expression of T-type calcium channels. GAERS express a gain-in-function missense mutation in the Cav3.2 T-type calcium channel gene. Therefore, we tested whether the T-type calcium channel blocker Z944 dose dependently (1, 3, 10mg/kg; i.p.) altered CMOR memory in GAERS compared to the non-epileptic control (NEC) strain. GAERS demonstrated recognition memory deficits in the visual and crossmodal variations of the CMOR task that were reversed by the highest dose of Z944. Electroencephalogram recordings determined that deficits in CMOR memory in GAERS were not the result of seizures during task performance. In contrast, NEC showed a decrease in CMOR memory following Z944 treatment. These findings suggest that T-type calcium channels mediate CMOR in both the GAERS and NEC strains. Future research into the therapeutic potential of T-type calcium channel regulation may be particularly fruitful for the treatment of CAE and other disorders characterized by visual memory deficits. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Top-down proteomics with mass spectrometry imaging: a pilot study towards discovery of biomarkers for neurodevelopmental disorders.

    Directory of Open Access Journals (Sweden)

    Hui Ye

    Full Text Available In the developing mammalian brain, inhibition of NMDA receptor can induce widespread neuroapoptosis, inhibit neurogenesis and cause impairment of learning and memory. Although some mechanistic insights into adverse neurological actions of these NMDA receptor antagonists exist, our understanding of the full spectrum of developmental events affected by early exposure to these chemical agents in the brain is still limited. Here we attempt to gain insights into the impact of pharmacologically induced excitatory/inhibitory imbalance in infancy on the brain proteome using mass spectrometric imaging (MSI. Our goal was to study changes in protein expression in postnatal day 10 (P10 rat brains following neonatal exposure to the NMDA receptor antagonist dizocilpine (MK801. Analysis of rat brains exposed to vehicle or MK801 and comparison of their MALDI MS images revealed differential relative abundances of several proteins. We then identified these markers such as ubiquitin, purkinje cell protein 4 (PEP-19, cytochrome c oxidase subunits and calmodulin, by a combination of reversed-phase (RP HPLC fractionation and top-down tandem MS platform. More in-depth large scale study along with validation experiments will be carried out in the future. Overall, our findings indicate that a brief neonatal exposure to a compound that alters excitatory/inhibitory balance in the brain has a long term effect on protein expression patterns during subsequent development, highlighting the utility of MALDI-MSI as a discovery tool for potential biomarkers.

  7. Efectos del MK-801 sobre la inhibición latente en la aversión condicionada al sabor

    OpenAIRE

    Traverso Arcos, Luis Miguel

    2004-01-01

    El trabajo de investigación que hemos venido realizando durante los últimos años, es un reflejo del creciente interés que existe en la comunidad científica por analizar y comprender el funcionamiento de los procesos cognitivos en animales y humanos. Esta inquietud que surgió en la psicología en los años 60 se ha extendido progresivamente haci ... a otras disciplinas, por lo que durante las últimas décadas se han incrementado los intentos de establecer conexiones teóricas y experimentales entr...

  8. Elucidating the mechanisms of fear extinction in developing animals: a special case of NMDA receptor-independent extinction in adolescent rats.

    Science.gov (United States)

    Bisby, Madelyne A; Baker, Kathryn D; Richardson, Rick

    2018-04-01

    NMDA receptors (NMDARs) are considered critical for the consolidation of extinction but recent work challenges this assumption. Namely, NMDARs are not required for extinction retention in infant rats as well as when extinction training occurs for a second time (i.e., reextinction) in adult rats. In this study, a possible third instance of NMDAR-independent extinction was tested. Although adolescents typically exhibit impaired extinction retention, rats that are conditioned as juveniles and then given extinction training as adolescents (JuvCond-AdolesExt) have good extinction retention. Unexpectedly, this good extinction retention is not associated with an up-regulation of a synaptic plasticity marker in the medial prefrontal cortex, a region implicated in extinction consolidation. In the current study, rats received either the noncompetitive NMDAR antagonist MK801 (0.1 mg/kg, s.c.) or saline before extinction training. In several experiments, rats conditioned and extinguished as juveniles, adolescents, or adults exhibited impaired extinction retention after MK801 compared to saline, but this effect was not observed in JuvCond-AdolesExt rats. Further experiments ruled out several alternative explanations for why NMDAR antagonism did not affect extinction retention in adolescents extinguishing fear learned as a juvenile. These results illustrate yet another circumstance in which NMDARs are not required for successful extinction retention and highlight the complexity of fear inhibition across development. © 2018 Bisby et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Differential effect of NMDA and AMPA receptor blockade on protein synthesis in the rat infarct borderzone

    DEFF Research Database (Denmark)

    Christensen, Thomas; Bruhn, T; Frank, L

    1996-01-01

    We investigated whether the known neuroprotective effects of two selective glutamate receptor antagonists, the NMDA antagonist MK-801 and the AMPA antagonist NBQX, are reflected in the regional cerebral protein synthesis rates (CPSR) in rats with middle cerebral artery occlusion (MCAO). Rats...

  10. Low-dose memantine induced working memory improvement in the allothetic place avoidance alternation task (APAAT in young adult male rats.

    Directory of Open Access Journals (Sweden)

    Malgorzata Julita Wesierska

    2013-12-01

    Full Text Available N-methyl-D-aspartate receptors (NMDAR are involved in neuronal plasticity. To assess their role simultaneously in spatial working memory and non-cognitive learning, we used NMDAR antagonists and the Allothetic Place Avoidance Alternation Task (APAAT. In this test rats should avoid entering a place where shocks were presented on a rotating arena which requires cognitive coordination for the segregation of stimuli. The experiment took place 30 min after intraperitoneal injection of memantine (5; 10; 20 mg/kg b.w.: MemL, MemM, MemH respectively and (+MK-801 (0.1; 0.2; 0.3 mg/kg b.w.: MK-801L, MK-801M, MK-801H respectively. Rats from the control group were intact or injected with saline (0.2 ml/kg. Over three consecutive days the rats underwent habituation, two avoidance training intervals with shocks, and a retrieval test. The shock sector was alternated daily. The after-effects of the agents were tested on Day21. Rats treated with low dose memantine presented a longer maximum time avoided and fewer entrances than the MemH, MK-801M, MK-801H and Control rats. The shocks per entrances ratio, used as an index of cognitive skill learning, showed skill improvement after D1, except for rats treated by high doses of the agents. The activity levels, indicated by the distance walked, were higher for the groups treated with high doses of the agents. On D21 the MK801H rats performed the memory task better than the MemH rats, whereas the rats’ activity depended on condition, not on the group factor. These results suggest that in naïve rats mild NMDAR blockade by low-dose memantine improves working memory related to a highly challenging task.

  11. Mutation of Asp(171) and Asp(262) of the chemokine receptor CXCR4 impairs its coreceptor function for human immunodeficiency virus-1 entry and abrogates the antagonistic activity of AMD3100

    DEFF Research Database (Denmark)

    Hatse, S; Princen, K; Gerlach, L O

    2001-01-01

    that the antagonistic action of AMD3100 against CXCR4--as assessed by the inhibitory effects of the compound on stromal cell-derived factor (SDF-1) binding to its receptor and on SDF-1-induced intracellular calcium signaling, and by displacement of the CXCR4-specific antibody, clone 12G5--was greatly reduced...

  12. Mutation of Asp(171) and Asp(262) of the chemokine receptor CXCR4 impairs its coreceptor function for human immunodeficiency virus-1 entry and abrogates the antagonistic activity of AMD3100

    DEFF Research Database (Denmark)

    Hatse, S; Princen, K; Gerlach, L O

    2001-01-01

    that the antagonistic action of AMD3100 against CXCR4--as assessed by the inhibitory effects of the compound on stromal cell-derived factor (SDF-1) binding to its receptor and on SDF-1-induced intracellular calcium signaling, and by displacement of the CXCR4-specific antibody, clone 12G5--was greatly reduced......The bicyclam AMD3100 is a highly potent and selective CXCR4 antagonist with strong antiviral activity against human immunodeficiency virus (HIV)-1 and HIV-2, which use CXCR4 as coreceptor for host cell entry. Here, we investigated the interaction of AMD3100 with CXCR4 at the molecular level...... the antagonistic and antiviral effects of the compound in the different assay systems. Importantly, compared with the wild-type receptor, CXCR4[D262N] was much less effective, whereas CXCR4[D171N,D262N] completely failed as a coreceptor for infection by HIV-1 NL4.3. Thus, the negatively charged aspartate residues...

  13. The antipsychotic-like effects in rodents of YQA31 involve dopamine D3 and 5-HT1A receptor.

    Science.gov (United States)

    Gou, Hong-Yan; Sun, Xue; Li, Fei; Wang, Zhi-Yuan; Wu, Ning; Su, Rui-Bin; Cong, Bin; Li, Jin

    2017-12-01

    We previously reported that YQA31 is a dopamine D3 receptor antagonist with modest 5-HT1A receptor affinity and that it exhibits antipsychotic properties in animal models of schizophrenia. However, the contributions of D3 and 5-HT1A receptors in the anti-psychotic effects of YQA31 are not clear. The current study evaluated the role of these two receptors in the effect of YQA31 on the hyperactivity and novel object recognition deficit in mice. We used dopamine D3 receptor knockout mice and 5-HT1A receptor antagonist WAY100635 pretreatment, respectively, to investigate the involvement of these receptors in the effects of YQA31. The anti-psychotic effects were tested by inducing hyperlocomotion with methamphetamine or MK-801 and by inducing novel object recognition deficit with MK-801, which are the animal models to represent a positive symptom and a cognitive disorder. YQA31 significantly inhibited MK-801-induced hyperlocomotion and novel object recognition deficit in WT mice, which was significantly inhibited by dopamine D3 receptor knockout. The 5-HT1A receptor antagonist, WAY100635, also blocked the effect of YQA31 in MK-801-induced novel object recognition deficit but not hyperlocomotion. The effect of YQA31 on methamphetamine-induced hyperlocomotion was not reversed by either dopamine D3 receptor knockout or WAY100635 pretreatment. These results demonstrate the different roles of dopamine D3 and 5-HT1A receptors in the anti-psychotic effects of YQA31. Both dopamine D3 and 5-HT1A receptors contributed to the effects of YQA31 on the inhibition of MK-801-induced novel object recognition deficit, and the dopamine D3 receptor mediated the inhibiting effect of YQA31 on hyperlocomotion induced by MK-801. Copyright © 2017. Published by Elsevier Urban & Partner Sp. z o.o.

  14. Fibroblast Growth Factor-2 Alters the Nature of Extinction

    Science.gov (United States)

    Graham, Bronwyn M.; Richardson, Rick

    2011-01-01

    These experiments examined the effects of the NMDA-receptor (NMDAr) antagonist MK801 on reacquisition and re-extinction of a conditioned fear that had been previously extinguished before injection of fibroblast growth factor-2 (FGF2) or vehicle. Recent findings have shown that relearning and re-extinction, unlike initial learning and extinction,…

  15. Gene regulation by NMDA receptor activation in the SDN-POA neurons of male rats during sexual development.

    Science.gov (United States)

    Hsu, Hseng-Kuang; Shao, Pei-Lin; Tsai, Ke-Li; Shih, Huei-Chuan; Lee, Tzu-Ying; Hsu, Chin

    2005-04-01

    The present study was designed to identify possible signaling pathways, which may play a role in prevention of neuronal apoptosis in the sexually dimorphic nucleus of the preoptic area (SDN-POA) after physiological activation of the N-methyl-D-aspartate (NMDA) receptor. Gene response to the blockage of the NMDA receptor by an antagonist (dizocilpine hydrogen maleate; MK-801) was screened after suppression subtractive hybridization (SSH). The results showed that differential screening after SSH detected the presence of some neurotrophic genes (RNA binding motif protein 3 (RBM3), alpha-tubulin) as well as apoptosis-related genes (Bcl-2, cytochrome oxidase subunit II, cytochrome oxidase subunit III) in the SDN-POA of male rats, which were down-regulated by blocking the NMDA receptor. The RT-PCR products of the aforementioned genes in MK-801-treated males were significantly less than that in untreated males. In particular, the expression of Bcl-2 mRNA, including Bcl-2 protein, in male rats were significantly suppressed by MK-801 treatment. Moreover, the binding activity of nuclear factor kappaB (NFkappaB) was significantly higher in male rats than in females, but significantly diminished by blocking the NMDA receptor with MK-801 in male rats. No significant difference in cAMP response element-binding protein (CREB) binding activity was observed among untreated male, MK-801-treated male, untreated female and MK-801-treated female groups. These results suggest that genes regulated by NMDA receptor activation might participate in neuronal growth and/or anti-apoptosis, and support an important signaling pathway of NFkappaB activation and its target gene, Bcl-2, in preventing neuronal apoptosis in the SDN-POA of male rats during sexual development.

  16. Gastric myoelectric activity during cisplatin-induced acute and delayed emesis reveals a temporal impairment of slow waves in ferrets: effects not reversed by the GLP-1 receptor antagonist, exendin (9-39).

    Science.gov (United States)

    Lu, Zengbing; Ngan, Man P; Lin, Ge; Yew, David T W; Fan, Xiaodan; Andrews, Paul L R; Rudd, John A

    2017-11-17

    Preclinical studies show that the glucagon-like peptide-1 (GLP-1) receptor antagonist, exendin (9-39), can reduce acute emesis induced by cisplatin. In the present study, we investigate the effect of exendin (9-39) (100 nmol/24 h, i.c.v), on cisplatin (5 mg/kg, i.p.)-induced acute and delayed emesis and changes indicative of 'nausea' in ferrets. Cisplatin induced 37.2 ± 2.3 and 59.0 ± 7.7 retches + vomits during the 0-24 (acute) and 24-72 h (delayed) periods, respectively. Cisplatin also increased ( P Advanced multifractal detrended fluctuation analysis revealed that the slow wave signal shape became more simplistic during delayed emesis. Cisplatin did not affect blood pressure (BP), but transiently increased heart rate, and decreased heart rate variability (HRV) during acute emesis; HRV spectral analysis indicated a shift to 'sympathetic dominance'. A hyperthermic response was seen during acute emesis, but hypothermia occurred during delayed emesis and there was also a decrease in HR. Exendin (9-39) did not improve feeding and drinking but reduced cisplatin-induced acute emesis by ~59 % ( P waves may represent a novel approach to treat the side effects of chemotherapy.

  17. Development of the Adverse Outcome Pathway (AOP): Chronic binding of antagonist to N-methyl-d-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities of children.

    Science.gov (United States)

    Sachana, Magdalini; Rolaki, Alexandra; Bal-Price, Anna

    2018-03-07

    The Adverse Outcome Pathways (AOPs) are designed to provide mechanistic understanding of complex biological systems and pathways of toxicity that result in adverse outcomes (AOs) relevant to regulatory endpoints. AOP concept captures in a structured way the causal relationships resulting from initial chemical interaction with biological target(s) (molecular initiating event) to an AO manifested in individual organisms and/or populations through a sequential series of key events (KEs), which are cellular, anatomical and/or functional changes in biological processes. An AOP provides the mechanistic detail required to support chemical safety assessment, the development of alternative methods and the implementation of an integrated testing strategy. An example of the AOP relevant to developmental neurotoxicity (DNT) is described here following the requirements of information defined by the OECD Users' Handbook Supplement to the Guidance Document for developing and assessing AOPs. In this AOP, the binding of an antagonist to glutamate receptor N-methyl-d-aspartate (NMDAR) receptor is defined as MIE. This MIE triggers a cascade of cellular KEs including reduction of intracellular calcium levels, reduction of brain derived neurotrophic factor release, neuronal cell death, decreased glutamate presynaptic release and aberrant dendritic morphology. At organ level, the above mentioned KEs lead to decreased synaptogenesis and decreased neuronal network formation and function causing learning and memory deficit at organism level, which is defined as the AO. There are in vitro, in vivo and epidemiological data that support the described KEs and their causative relationships rendering this AOP relevant to DNT evaluation in the context of regulatory purposes. Copyright © 2018. Published by Elsevier Inc.

  18. Decreased glial reactivity could be involved in the antipsychotic-like effect of cannabidiol.

    Science.gov (United States)

    Gomes, Felipe V; Llorente, Ricardo; Del Bel, Elaine A; Viveros, Maria-Paz; López-Gallardo, Meritxell; Guimarães, Francisco S

    2015-05-01

    NMDA receptor hypofunction could be involved, in addition to the positive, also to the negative symptoms and cognitive deficits found in schizophrenia patients. An increasing number of data has linked schizophrenia with neuroinflammatory conditions and glial cells, such as microglia and astrocytes, have been related to the pathogenesis of schizophrenia. Cannabidiol (CBD), a major non-psychotomimetic constituent of Cannabis sativa with anti-inflammatory and neuroprotective properties induces antipsychotic-like effects. The present study evaluated if repeated treatment with CBD (30 and 60 mg/kg) would attenuate the behavioral and glial changes observed in an animal model of schizophrenia based on the NMDA receptor hypofunction (chronic administration of MK-801, an NMDA receptor antagonist, for 28 days). The behavioral alterations were evaluated in the social interaction and novel object recognition (NOR) tests. These tests have been widely used to study changes related to negative symptoms and cognitive deficits of schizophrenia, respectively. We also evaluated changes in NeuN (a neuronal marker), Iba-1 (a microglia marker) and GFAP (an astrocyte marker) expression in the medial prefrontal cortex (mPFC), dorsal striatum, nucleus accumbens core and shell, and dorsal hippocampus by immunohistochemistry. CBD effects were compared to those induced by the atypical antipsychotic clozapine. Repeated MK-801 administration impaired performance in the social interaction and NOR tests. It also increased the number of GFAP-positive astrocytes in the mPFC and the percentage of Iba-1-positive microglia cells with a reactive phenotype in the mPFC and dorsal hippocampus without changing the number of Iba-1-positive cells. No change in the number of NeuN-positive cells was observed. Both the behavioral disruptions and the changes in expression of glial markers induced by MK-801 treatment were attenuated by repeated treatment with CBD or clozapine. These data reinforces the proposal

  19. Effect of chemical stimulation of the medial frontal lobe on the micturition reflex in rats.

    Science.gov (United States)

    Nishijima, Saori; Sugaya, Kimio; Kadekawa, Katsumi; Ashitomi, Katsuhiro; Yamamoto, Hideyuki

    2012-03-01

    We assessed the influence of the medial frontal lobe on micturition after chemical stimulation. We also examined the relation between the medial frontal lobe and the rostral pontine reticular formation, which has a strong inhibitory effect on micturition. A total of 35 female rats underwent continuous cystometry. Bladder activity changes were examined after physiological saline, glutamate, the glutamate receptor antagonist MK-801, noradrenaline or the adrenergic α-1 receptor antagonist naftopidil was injected in the medial frontal lobe. When glutamate was injected in the medial frontal lobe, MK-801 was also injected in the rostral pontine reticular formation. Glutamate injection in the medial frontal lobe prolonged the interval between bladder contractions while injection of the glutamate antagonist MK-801 shortened the interval. Glutamate injection in the medial frontal lobe just after MK-801 injection in the ipsilateral rostral pontine reticular formation also prolonged the interval between bladder contractions. However, after prior injection of MK-801 in the bilateral rostral pontine reticular formation glutamate injection in the medial frontal lobe did not influence cystometric parameters. Noradrenaline injection in the medial frontal lobe shortened the interval between bladder contractions while injection of its antagonist naftopidil prolonged the interval. Medial frontal lobe neurons excited by glutamate inhibited the micturition reflex via activation of the rostral pontine reticular formation by glutamatergic projection while medial frontal lobe neurons excited by noradrenaline facilitated the micturition reflex. Thus, the medial frontal lobe may be an important integration center for the initiation of micturition and urine storage mechanisms. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Coantagonism of glutamate receptors and nicotinic acetylcholinergic receptors disrupts fear conditioning and latent inhibition of fear conditioning

    OpenAIRE

    Gould, Thomas J.; Lewis, Michael C.

    2005-01-01

    The present study investigated the hypothesis that both nicotinic acetylcholinergic receptors (nAChRs) and glutamate receptors (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs) and N-methyl-d-aspartate glutamate receptors (NMDARs)) are involved in fear conditioning, and may modulate similar processes. The effects of the nAChR antagonist mecamylamine administered alone, the AMPAR antagonist NBQX administered alone, and the NMDAR antagonist MK-801 administered alone on cued ...

  1. Interleukin-1-receptor antagonist in type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Larsen, Claus M; Faulenbach, Mirjam; Vaag, Allan

    2007-01-01

    BACKGROUND: The expression of interleukin-1-receptor antagonist is reduced in pancreatic islets of patients with type 2 diabetes mellitus, and high glucose concentrations induce the production of interleukin-1beta in human pancreatic beta cells, leading to impaired insulin secretion, decreased cell...... proliferation, and apoptosis. METHODS: In this double-blind, parallel-group trial involving 70 patients with type 2 diabetes, we randomly assigned 34 patients to receive 100 mg of anakinra (a recombinant human interleukin-1-receptor antagonist) subcutaneously once daily for 13 weeks and 36 patients to receive...

  2. Naloxone : actions of an antagonist

    NARCIS (Netherlands)

    Dorp, Eveline Louise Arianna van

    2009-01-01

    The opioid antagonist naloxone has a special place in pharmacology – it has no intrinsic action of its own, but it is able to save lives in the case of life threatening side-effects caused by other drugs. Naloxone is an antagonist for all opioid receptors, but most specifically for the μ-opioid

  3. Two learning tasks provide evidence for disrupted behavioural flexibility in an animal model of schizophrenia-like behaviour induced by acute MK-801: A dose–response study

    Czech Academy of Sciences Publication Activity Database

    Lobellová, Veronika; Entlerová, Marie; Svojanovská, Barbora; Hatalová, Hana; Prokopová, Iva; Petrásek, Tomáš; Valeš, Karel; Kubík, Štěpán; Fajnerová, Iveta; Stuchlík, Aleš

    2013-01-01

    Roč. 246, č. 1 (2013), s. 55-62 ISSN 0166-4328 R&D Projects: GA MZd(CZ) NT13386 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200111204 Institutional support: RVO:67985823 Keywords : flexibility * dizocilpine * learning Subject RIV: FH - Neurology Impact factor: 3.391, year: 2013

  4. Acute administration of MK-801 in an animal model of psychosis in rats interferes with cognitively demanding forms of behavioral flexibility on a rotating arena

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jan; Staňková, Anna; Entlerová, Marie; Stuchlík, Aleš

    2015-01-01

    Roč. 9, APR 1 (2015), s. 75 ISSN 1662-5153 R&D Projects: GA ČR(CZ) GA14-03627S Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M200111204; GA MŠk(CZ) ED2.1.00/03.0078 Institutional support: RVO:67985823 Keywords : flexibility * memory * reversal learning Subject RIV: FH - Neurology Impact factor: 3.392, year: 2015

  5. MK-801 and memantine act differently on short-term memory tested with different time-intervals in the Morris water maze test

    Czech Academy of Sciences Publication Activity Database

    Duda, W.; Wesierska, M.; Ostaszewski, P.; Valeš, Karel; Nekovářová, Tereza; Stuchlík, Aleš

    2016-01-01

    Roč. 311, Sep 15 (2016), s. 15-23 ISSN 0166-4328 R&D Projects: GA MŠk(CZ) LH14053; GA ČR(CZ) GA14-03627S Institutional support: RVO:67985823 Keywords : short-term memory * spatial working memory * memantine * dizocilpine * Morris water maze Subject RIV: FH - Neurology Impact factor: 3.002, year: 2016

  6. In vivo [(123)I]CNS-1261 binding to D-serine-activated and MK801-blocked NMDA receptors: A storage phosphor imaging study in rats

    NARCIS (Netherlands)

    Knol, Remco J. J.; de Bruin, Kora; van Eck-Smit, Berthe L. F.; Pimlott, Sally; Wyper, David J.; Booij, Jan

    2009-01-01

    Disturbances of activity of the glutamatergic neurotransmitter system in the brain are present in many neuropsychiatric disorders. The N-methyl-D-aspartate (NMDA) receptor is the most abundant receptor of the glutamatergic system. In the neurodegenerative events of Alzheimer's disease, excessive

  7. Blockade of the N-Methyl-D-Aspartate Glutamate Receptor Ameliorates Lipopolysaccharide-Induced Renal Insufficiency.

    Science.gov (United States)

    Lin, Chian-Shiung; Hung, Shun-Fa; Huang, Ho-Shiang; Ma, Ming-Chieh

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor activation in rat kidney reduces renal perfusion and ultrafiltration. Hypoperfusion-induced ischemia is the most frequent cause of functional insufficiency in the endotoxemic kidney. Here, we used non-hypotensive rat model of lipopolysaccharide-induced endotoxemia to examine whether NMDA receptor hyperfunction contributes to acute kidney injury. Lipopolysaccharide-induced renal damage via increased enzymuria and hemodynamic impairments were ameliorated by co-treatment with the NMDA receptor blocker, MK-801. The NMDA receptor NR1 subunit in the rat kidney mainly co-localized with serine racemase, an enzyme responsible for synthesizing the NMDA receptor co-agonist, D-serine. The NMDA receptor hyperfunction in lipopolysaccharide-treated kidneys was demonstrated by NR1 and serine racemase upregulation, particularly in renal tubules, and by increased D-serine levels. Lipopolysaccharide also induced cell damage in cultured tubular cell lines and primary rat proximal tubular cells. This damage was mitigated by MK-801 and by small interfering RNA targeting NR1. Lipopolysaccharide increased cytokine release in tubular cell lines via toll-like receptor 4. The release of interleukin-1β from these cells are the most abundant. An interleukin-1 receptor antagonist not only attenuated cell death but also abolished lipopolysaccharide-induced NR1 and serine racemase upregulation and increases in D-serine secretion, suggesting that interleukin-1β-mediated NMDA receptor hyperfunction participates in lipopolysaccharide-induced tubular damage. The results of this study indicate NMDA receptor hyperfunction via cytokine effect participates in lipopolysaccharide-induced renal insufficiency. Blockade of NMDA receptors may represent a promising therapeutic strategy for the treatment of sepsis-associated renal failure.

  8. Studies on antagonistic marine streptomycetes

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, D.; Nair, S.

    Sixty nine strains of Streptomyces sp. isolated from the sediments of Andaman and Nicobar islands (Bay of Bengal) were screened for their antagonistic property against a number of test cultures (Vibrio sp., Klebsiella sp., Escherichia coli, Shigella...

  9. Hypocretin antagonists in insomnia treatment and beyond.

    Science.gov (United States)

    Ruoff, Chad; Cao, Michelle; Guilleminault, Christian

    2011-01-01

    Hypocretin neuropeptides have been shown to regulate transitions between wakefulness and sleep through stabilization of sleep promoting GABAergic and wake promoting cholinergic/monoaminergic neural pathways. Hypocretin also influences other physiologic processes such as metabolism, appetite, learning and memory, reward and addiction, and ventilatory drive. The discovery of hypocretin and its effect upon the sleep-wake cycle has led to the development of a new class of pharmacologic agents that antagonize the physiologic effects of hypocretin (i.e. hypocretin antagonists). Further investigation of these agents may lead to novel therapies for insomnia without the side-effect profile of currently available hypnotics (e.g. impaired cognition, confusional arousals, and motor balance difficulties). However, antagonizing a system that regulates the sleep-wake cycle while also influencing non-sleep physiologic processes may create an entirely different but equally concerning side-effect profile such as transient loss of muscle tone (i.e. cataplexy) and a dampened respiratory drive. In this review, we will discuss the discovery of hypocretin and its receptors, hypocretin and the sleep-wake cycle, hypocretin antagonists in the treatment of insomnia, and other implicated functions of the hypocretin system.

  10. One-trial object recognition memory in the domestic rabbit (Oryctolagus cuniculus) is disrupted by NMDA receptor antagonists.

    Science.gov (United States)

    Hoffman, Kurt Leroy; Basurto, Enrique

    2013-08-01

    The spontaneous response to novelty is the basis of one-trial object recognition tests for the study of object recognition memory (ORM) in rodents. We describe an object recognition task for the rabbit, based on its natural tendency to scent-mark ("chin") novel objects. The object recognition task comprised a 15min sample phase in which the rabbit was placed into an open field arena containing two similar objects, then removed for a 5-360min delay, and then returned to the same arena that contained one object similar to the original ones ("Familiar") and one that differed from the original ones ("Novel"), for a 15min test phase. Chin-marks directed at each of the objects were registered. Some animals received injections (sc) of saline, ketamine (1mg/kg), or MK-801 (37μg/kg), 5 or 20min before the sample phase. We found that chinning decreased across the sample phase, and that this response showed stimulus specificity, a defining characteristic of habituation: in the test phase, chinning directed at the Novel, but not Familiar, object was increased. Chinning directed preferentially at the novel object, which we interpret as novelty-induced sensitization and the behavioral correlate of ORM, was promoted by tactile/visual and spatial novelty. ORM deficits were induced by pre-treatment with MK-801 and, to a lesser extent, ketamine. Novel object discrimination was not observed after delays longer than 5min. These results suggest that short-term habituation and sensitization, not long-term memory, underlie novel object discrimination in this test paradigm. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. NMDA receptor antagonist ketamine impairs feature integration in visual perception

    NARCIS (Netherlands)

    Meuwese, Julia D. I.; van Loon, Anouk M.; Scholte, H. Steven; Lirk, Philipp B.; Vulink, Nienke C. C.; Hollmann, Markus W.; Lamme, Victor A. F.

    2013-01-01

    Recurrent interactions between neurons in the visual cortex are crucial for the integration of image elements into coherent objects, such as in figure-ground segregation of textured images. Blocking N-methyl-D-aspartate (NMDA) receptors in monkeys can abolish neural signals related to figure-ground

  12. Visual Impairment

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Visual Impairment KidsHealth / For Teens / Visual Impairment What's in ... with the brain, making vision impossible. What Is Visual Impairment? Many people have some type of visual ...

  13. Role of NMDA receptors in the increase of glucose metabolism in the rat brain induced by fluorocitrate.

    Science.gov (United States)

    Hirose, Shinichiro; Umetani, Yukiko; Amitani, Misato; Hosoi, Rie; Momosaki, Sotaro; Hatazawa, Jun; Gee, Antony; Inoue, Osamu

    2007-03-30

    The effect of inhibition of glial metabolism by infusion of fluorocitrate (FC, 1 nmol/microl, 2 microl) into the right striatum of the rat brain on the glucose metabolism was studied. Significant increases in [(18)F]fluorodeoxyglucose ([(18)F]FDG) uptake (45 min) in the right cerebral cortex and striatum were observed 4h after the infusion of FC, both as determined by the tissue dissection method and autoradiography. No significant increase in the initial uptake of [(18)F]FDG (1 min) was seen in the striatum. Pretreatment with dizocilpine (MK-801), an N-methyl-d-aspartate (NMDA) receptor antagonist, reduced [(18)F]FDG uptake in not only FC infused hemisphere but also in the contralateral hemisphere (saline-infused side). The radioactivity concentrations in plasma at 1, 5 and 45 min after the [(18)F]FDG injection were not altered by MK-801. This effect of MK-801 on glucose metabolism observed in the rat brain infused with FC was different from previous reports which indicated an increase in glucose metabolism in some areas of normal rat brain. In addition, the enhancement of glucose metabolism in the striatum induced by FC was almost completely abolished by pretreatment with MK-801. In the cerebral cortex, the relative ratio of radioactivity concentration in the right hemisphere to that in the left hemisphere still remained 1.37 (tissue dissection method) or 1.55 (autoradiography), which indicated that MK-801 partially blocked the effect of FC of enhancing glucose metabolism in this region. These results indicate an important role of NMDA-mediated signal transmission on the increase of glucose utilization induced by inhibition of glial metabolism.

  14. Excitatory amino acid receptor antagonists

    DEFF Research Database (Denmark)

    Johansen, T N; Frydenvang, Karla Andrea; Ebert, B

    1997-01-01

    We have previously shown that (RS)-2-amino-2-(5-tert-butyl-3-hydroxyisoxazol-4-yl)acetic acid (ATAA) is an antagonist at N-methyl-D-aspartic acid (NMDA) and (RS)-2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors. We have now resolved ATAA via diastereomeric salt formation...

  15. ANTAGONISTIC POTENTIAL OF FLUORESCENT Pseudomonas ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    This study focused on the antagonistic potential of fluorescent Pseudomonas in vitro, and its inoculation effect on growth performance of Lycopersicon esculentum in Fusarium oxysporum and Rhizoctonia solani infested soil. Biochemical characteristics of fluorescent Pseudomonas showed that all ten isolates were positive ...

  16. Pretreatment with 5-hydroxymethyl-2-furaldehyde blocks scopolamine-induced learning deficit in contextual and spatial memory in male mice.

    Science.gov (United States)

    Lee, Younghwan; Gao, Qingtao; Kim, Eunji; Lee, Younghwa; Park, Se Jin; Lee, Hyung Eun; Jang, Dae Sik; Ryu, Jong Hoon

    2015-07-01

    5-Hydroxymethyl-2-furaldehyde (5-HMF) is a compound derived from the dehydration of certain sugars. The aim of the present study was to evaluate the effect of 5-HMF on the cognitive impairment induced by scopolamine, a muscarinic receptor antagonist. To measure various cognitive functions, we conducted the step-through passive avoidance task, the Y-maze task and the Morris water maze task. A single administration of 5-HMF (5 or 10mg/kg, p.o.) significantly attenuates scopolamine-induced cognitive impairment in these behavioral tasks without changes in locomotor activity, and the effect of 5-HMF on scopolamine-induced cognitive impairment was significantly reversed by a sub-effective dose of MK-801, an NMDA receptor antagonist. In addition, a single administration of 5-HMF (10mg/kg, p.o.) enhanced the cognitive performance of normal naïve mice in the passive avoidance task. Furthermore, Western blot analysis revealed that the levels of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II-α (CaMKII) and extracellular signal-regulated kinases (ERK) were significantly enhanced by the single administration of 5-HMF in the hippocampal tissues. Taken together, the present study suggests that 5-HMF may block scopolamine-induced learning deficit and enhance cognitive function via the activation of NMDA receptor signaling, including CaMKII and ERK, and would be an effective candidate against cognitive disorders, such as Alzheimer's disease. Copyright © 2015. Published by Elsevier Inc.

  17. Interleukin-1-receptor antagonist in type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Larsen, Claus M; Faulenbach, Mirjam; Vaag, Allan

    2007-01-01

    BACKGROUND: The expression of interleukin-1-receptor antagonist is reduced in pancreatic islets of patients with type 2 diabetes mellitus, and high glucose concentrations induce the production of interleukin-1beta in human pancreatic beta cells, leading to impaired insulin secretion, decreased cell...... proliferation, and apoptosis. METHODS: In this double-blind, parallel-group trial involving 70 patients with type 2 diabetes, we randomly assigned 34 patients to receive 100 mg of anakinra (a recombinant human interleukin-1-receptor antagonist) subcutaneously once daily for 13 weeks and 36 patients to receive......, and the body-mass index were similar in the two study groups. Symptomatic hypoglycemia was not observed, and there were no apparent drug-related serious adverse events. CONCLUSIONS: The blockade of interleukin-1 with anakinra improved glycemia and beta-cell secretory function and reduced markers of systemic...

  18. Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures

    DEFF Research Database (Denmark)

    Kolko, M; DeCoster, M A; de Turco, E B

    1996-01-01

    glutamate and sPLA2 from bee venom. sPLA2, at concentrations eliciting low neurotoxicity (..., from Taipan snake venom. The NMDA receptor antagonist MK-801 blocked glutamate effects and partially inhibited sPLA2 OS2 but not sPLA2 from bee venom-induced arachidonic acid release. Thus, the synergy with glutamate and very low concentrations of exogenously added sPLA2 suggests a potential role...

  19. I. Effects of a Dopamine Receptor Antagonist on Fathead Minnow, Pimephales promelas ,Reproduction

    Science.gov (United States)

    This study used a 21 d fathead minnow (Pimephales promelas) reproduction assay to test the hypothesis that exposure to the dopamine 2 receptor (D2R) antagonist, haloperidol, would impair fish reproduction. Additionally, a 96 h experiment with fathead minnows and zebrafish (Danio ...

  20. Smac mimetics as IAP antagonists.

    Science.gov (United States)

    Fulda, Simone

    2015-03-01

    As the Inhibitor of Apoptosis (IAP) proteins are expressed at high levels in human cancers, they represent promising targets for therapeutic intervention. Small-molecule inhibitors of IAP proteins mimicking the endogenous IAP antagonist Smac, called Smac mimetics, neutralize IAP proteins and thereby promote the induction of cell death. Smac mimetics have been shown in preclinical models of human cancer to directly trigger cancer cell death or to sensitize for cancer cell death induced by a variety of cytotoxic stimuli. Smac mimetics are currently undergoing clinical evaluation in phase I/II trials, demonstrating that therapeutic targeting of IAP proteins has reached the clinical stage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Synthetic peptide antagonists of glucagon

    International Nuclear Information System (INIS)

    Unson, C.G.; Andreu, D.; Gurzenda, E.M.; Merrifield, R.B.

    1987-01-01

    Several glucagon analogs were synthesized in an effort to find derivatives that would bind with high affinity to the glucagon receptor of rat liver membranes but would not activate membrane-bound adenylate cyclase and, therefore, would serve as antagonists of the hormone. Measurements on a series of glucagon/secretin hybrids indicated that replacement of Asp 9 in glucagon by Glu 9 , found in secretin, was the important sequence difference in the N terminus of the two hormones. Further deletion of His 1 and introduction of a C-terminal amide resulted in des-His 1 -[Glu 9 ]glucagon amide, which had a 40% binding affinity relative to that of native glucagon but caused no detectable adenylate cyclase activation in the rat liver membrane. This antagonist completely inhibited the effect of a concentration of glucagon that alone gave a full agonist response. It had an inhibition index of 12. The pA 2 was 7.2. An attempt was made to relate conformation with receptor binding. The peptides were synthesized by solid-phase methods and purified to homogeneity by reverse-phase high-performance liquid chromatography on C 18 -silica columns

  2. Chronic exposure of mutant DISC1 mice to lead produces sex-dependent abnormalities consistent with schizophrenia and related mental disorders: a gene-environment interaction study.

    Science.gov (United States)

    Abazyan, Bagrat; Dziedzic, Jenifer; Hua, Kegang; Abazyan, Sofya; Yang, Chunxia; Mori, Susumu; Pletnikov, Mikhail V; Guilarte, Tomas R

    2014-05-01

    The glutamatergic hypothesis of schizophrenia suggests that hypoactivity of the N-methyl-D-aspartate receptor (NMDAR) is an important factor in the pathophysiology of schizophrenia and related mental disorders. The environmental neurotoxicant, lead (Pb(2+)), is a potent and selective antagonist of the NMDAR. Recent human studies have suggested an association between prenatal Pb(2+) exposure and the increased likelihood of schizophrenia later in life, possibly via interacting with genetic risk factors. In order to test this hypothesis, we examined the neurobehavioral consequences of interaction between Pb(2+) exposure and mutant disrupted in schizophrenia 1 (mDISC1), a risk factor for major psychiatric disorders. Mutant DISC1 and control mice born by the same dams were raised and maintained on a regular diet or a diet containing moderate levels of Pb(2+). Chronic, lifelong exposure of mDISC1 mice to Pb(2+) was not associated with gross developmental abnormalities but produced sex-dependent hyperactivity, exaggerated responses to the NMDAR antagonist, MK-801, mildly impaired prepulse inhibition of the acoustic startle, and enlarged lateral ventricles. Together, these findings support the hypothesis that environmental toxins could contribute to the pathogenesis of mental disease in susceptible individuals.

  3. New antagonist agents of neuropeptide y receptors

    Directory of Open Access Journals (Sweden)

    Ignacio Aldana

    2000-12-01

    Full Text Available In the CNS, NPY has been implicated in obesity and feeding, endocrine function and metabolism. Potent and selective rNPY antagonists will be able to probe the merits of this approach for the treatment of obesity. We report the synthesis and preliminary evaluation of some hydrazide derivatives as antagonists of rNPY.

  4. S179D prolactin: antagonistic agony!

    Science.gov (United States)

    Walker, Ameae M

    2007-09-30

    The aims of this review are three-fold: first, to collate what is known about the production and activities of phosphorylated prolactin (PRL), the latter largely, but not exclusively, as illustrated through the use of the molecular mimic, S179D PRL; second, to apply this and related knowledge to produce an updated model of prolactin-receptor interactions that may apply to other members of this cytokine super-family; and third, to promote a shift in the current paradigm for the development of clinically important growth antagonists. This third aim explains the title since, based on results with S179D PRL, it is proposed that agents which signal to antagonistic ends may be better therapeutics than pure antagonists-hence antagonistic agony. Since S179D PRL is not a pure antagonist, we have proposed the term selective prolactin receptor modulator (SPeRM) for this and like molecules.

  5. [Extracorporeal life support in calcium antagonist intoxication].

    Science.gov (United States)

    Groot, M W; Grewal, S; Meeder, H J; van Thiel, R J; den Uil, C A

    2017-01-01

    Intoxication with calcium antagonists is associated with poor outcome. Even mild calcium antagonist overdose may be fatal. A 51-year-old woman and a 51-year-old man came to the Accident and Emergency Department in severe shock after they had taken a calcium antagonist overdose. After extensive medicinal therapy had failed, they both needed extracorporeal life support (ECLS) as a bridge to recovery. In severe calcium antagonist overdose, the combination of vasoplegia and cardiac failure leads to refractory shock. ECLS temporarily supports the circulation and maintains organ perfusion. In this way ECLS functions as a bridge to recovery and may possibly save lives. Timely consultation with and referral to an ECLS centre is recommended in patients with calcium antagonist overdose.

  6. Blockade of NMDA receptors prevents analgesic tolerance to repeated transcutaneous electrical nerve stimulation (TENS) in rats

    Science.gov (United States)

    Hingne, Priyanka M.; Sluka, Kathleen A.

    2008-01-01

    Repeated daily application transcutaneous electrical nerve stimulation (TENS) results in tolerance, at spinal opioid receptors, to the anti-hyperalgesia produced by TENS. Since N-Methyl-D-Aspartate (NMDA) receptor antagonists prevent analgesic tolerance to opioid agonists we hypothesized that blockade of NMDA receptors will prevent tolerance to TENS. In rats with knee joint inflammation, TENS was applied for 20 minute daily at high frequency (100 Hz), low frequency (4 Hz), or sham TENS. Rats were treated with the NMDA antagonist MK-801 (0.01 mg/kg-0.1 mg/kg) or vehicle daily before TENS. Paw withdrawal thresholds were tested before and after inflammation, and before and after TENS treatment for 4 days. On day 1 TENS reversed the decreased mechanical withdrawal threshold induced by joint inflammation. On day 4 TENS had no effect on the decreased withdrawal threshold in the group treated with vehicle demonstrating development of tolerance. However, in the group treated with 0.1 mg/kg MK-801, TENS significantly reversed the mechanical withdrawal thresholds on day 4 demonstrating that tolerance did not develop. Vehicle treated animals developed cross-tolerance at spinal opioid receptors. Treatment with MK-801 reversed this cross-tolerance at spinal opioid receptors. In summary, blockade of NMDA receptors prevents analgesic tolerance to daily TENS by preventing tolerance at spinal opioid receptors. Perspective Tolerance observed to the clinical treatment of TENS could be prevented by administration of pharmaceutical agents with NMDA receptors activity such as ketamine or dextromethorphan. PMID:18061543

  7. Effect of NMDA, a Specific Agonist to NMDA Receptor Complex, on Rat Hippocampus.

    Science.gov (United States)

    Motin, V G; Yasnetsov, V V

    2015-10-01

    Removal of Mg2+ ions from perfusion medium provoked epileptiform activity in CA1 field of surviving rat hippocampal slices manifested in generation of extra population spikes. MK-801 (100 μM), a specific non-competitive antagonist to NMDA-receptor complex, prevented this effect. NMDA (20 μM), the specific agonist to this complex, produced no significant effect on the orthodromic population spikes, but when applied at concentrations of 30 or 40 μM, it inhibited them partially (by 21-28%) or almost completely (by 98-99%), correspondingly. Thus, depending on concentration, NMDA can inhibit the synaptic transmission in Schaffer collaterals-hippocampal CA1 pyramidal neurons axis without triggering the epileptiform activity. D-AP5 (50 μM), a competitive antagonist to NMDA-receptor complex, completely prevented the inhibitory effect of NMDA (40 μM). While MK-801 (100 μM) almost completely prevented the inhibitory effect of NMDA, it did not eliminate it when applied after the agonist. Thus, MK-801 can prevent the inhibitory action of NMDA on synaptic transmission in Schaffer collaterals-hippocampal CA1 pyramidal neurons axis via blocking the channel of NMDA-receptor complex, while NMDA exerts its effect only via activation of NMDA receptors.

  8. Opioid antagonists for alcohol dependence.

    Science.gov (United States)

    Rösner, Susanne; Hackl-Herrwerth, Andrea; Leucht, Stefan; Vecchi, Simona; Srisurapanont, Manit; Soyka, Michael

    2010-12-08

    Alcohol dependence belongs to the globally leading health risk factors. Therapeutic success of psychosocial programs for relapse prevention is moderate and could be increased by an adjuvant treatment with the opioid antagonists naltrexone and nalmefene. To determine the effectiveness and tolerability of opioid antagonists in the treatment of alcohol dependence. We searched the Cochrane Drugs and Alcohol Group (CDAG) Specialized Register, PubMed, EMBASE and CINAHL in January 2010 and inquired manufacturers and researchers for unpublished trials. All double-blind randomised controlled trials (RCTs) which compare the effects of naltrexone or nalmefene with placebo or active control on drinking-related outcomes. Two authors independently extracted outcome data. Trial quality was assessed by one author and cross-checked by a second author. Based on a total of 50 RCTs with 7793 patients, naltrexone reduced the risk of heavy drinking to 83% of the risk in the placebo group RR 0.83 (95% CI 0.76 to 0.90) and decreased drinking days by about 4%, MD -3.89 (95% CI -5.75 to -2.04). Significant effects were also demonstrated for the secondary outcomes of the review including heavy drinking days, MD - 3.25 (95% CI -5.51 to -0.99), consumed amount of alcohol, MD - 10.83 (95% CI -19.69 to -1.97) and gamma-glutamyltransferase, MD - 10.37 (95% CI -18.99 to -1.75), while effects on return to any drinking, RR 0.96 (95 CI 0.92 to 1.00) missed statistical significance. Side effects of naltrexone were mainly gastrointestinal problems (e.g. nausea: RD 0.10; 95% CI 0.07 to 0.13) and sedative effects (e.g. daytime sleepiness: RD 0.09; 95% CI 0.05 to 0.14). Based on a limited study sample, effects of injectable naltrexone and nalmefene missed statistical significance. Effects of industry-sponsored studies, RR 0.90 (95% CI 0.78 to 1.05) did not significantly differ from those of non-profit funded trials, RR 0.84 (95% CI 0.77 to 0.91) and the linear regression test did not indicate publication

  9. Impaired voluntary neuromuscular activation limits muscle power in mobility-limited older adults

    Science.gov (United States)

    Background. Age-related alterations of neuromuscular activation may contribute to deficits in muscle power and mobility function. This study assesses whether impaired activation of the agonist quadriceps and antagonist hamstrings, including amplitude- and velocity-dependent characteristics of activa...

  10. PXR antagonists and implication in drug metabolism

    Science.gov (United States)

    Mani, Sridhar; Dou, Wei; Redinbo, Matthew R.

    2013-01-01

    Adopted orphan nuclear receptor (NR), pregnane X receptor (PXR), plays a central role in the regulation of xeno- and endobiotic metabolism. Since the discovery of the functional role of PXR in 1998, there is evolving evidence for the role of PXR agonists in abrogating metabolic pathophysiology (e.g., cholestasis, hypercholesterolemia, and inflammation). However, more recently, it is clear that PXR is also an important mediator of adverse xeno- (e.g., enhances acetaminophen toxicity) and endobiotic (e.g., hepatic steatosis) metabolic phenotypes. Moreover, in cancer therapeutics, PXR activation can induce drug resistance, and there is growing evidence for tissue-specific enhancement of the malignant phenotype. Thus, in these instances, there may be a role for PXR antagonists. However, as opposed to the discovery efforts for PXR agonists, there are only a few antagonists described. The mode of action of these antagonists (e.g., sulforaphane) remains less clear. Our laboratory efforts have focused on this question. Since the original discovery of azoles analogs as PXR antagonists, we have preliminarily defined an important PXR antagonist pharmacophore and developed less-toxic PXR antagonists. In this review, we describe our published and unpublished findings on recent structure-function studies involving the azole chemical scaffold. Further work in the future is needed to fully define potent, more-selective PXR antagonists that may be useful in clinical application. PMID:23330542

  11. GABAA receptor partial agonists and antagonists

    DEFF Research Database (Denmark)

    Krall, Jacob; Balle, Thomas; Krogsgaard-Larsen, Niels

    2015-01-01

    to the local temporal pattern of GABA impact, enabling phasic or tonic inhibition. Specific GABAAR antagonists are essential tools for physiological and pharmacological elucidation of the different type of GABAAR inhibition. However, distinct selectivity among the receptor subtypes (populations) has been shown...... antagonists and describes the development of potent antagonists from partial agonists originally derived from the potent GABAAR agonist muscimol. In this process, several heterocyclic aromatic systems have been used in combination with structural models in order to map the orthosteric binding site...... and to reveal structural details to be used for obtaining potency and subtype selectivity. The challenges connected to functional characterization of orthosteric GABAAR partial agonists and antagonists, especially with regard to GABAAR stoichiometry and alternative binding sites are discussed. GABAAR...

  12. Calcium antagonists for aneurysmal subarachnoid haemorrhage

    NARCIS (Netherlands)

    Dorhout Mees, S. M.; Rinkel, G. J. E.; Feigin, V. L.; Algra, A.; van den Bergh, W. M.; Vermeulen, M.; van Gijn, J.

    2007-01-01

    BACKGROUND: Secondary ischaemia is a frequent cause of poor outcome in patients with subarachnoid haemorrhage (SAH). Its pathogenesis has been incompletely elucidated, but vasospasm probably is a contributing factor. Experimental studies have suggested that calcium antagonists can prevent or reverse

  13. Evaluation of muscarinic and nicotinic receptor antagonists on attention and working memory.

    Science.gov (United States)

    McQuail, Joseph A; Burk, Joshua A

    2006-12-01

    Cholinergic receptor antagonists are commonly used to model attentional and mnemonic impairments associated with neuropsychiatric disorders such as Alzheimer's disease. However, few studies have systematically assessed the effects of these drugs following manipulations that affect attention or working memory within the same task. In the present experiment, rats were trained to discriminate visual signals from "blank" trials when no signal was presented. This task was modified to include retention intervals on some trials to tax working memory. During standard task performance, rats received systemic injections of the muscarinic receptor antagonist, scopolamine, or of the nicotinic receptor antagonist, mecamylamine. A second experiment tested the effects on this task of co-administering doses of scopolamine and mecamylamine that, when administered alone, did not significantly affect task performance. Scopolamine (0.3 and 1.0 mg/kg) decreased detection of 500 ms signals but did not affect accurate identification of non-signals. Scopolamine did not differentially affect performance across the retention interval. Elevated omission rates were associated with high doses of scopolamine or mecamylamine. Combination drug treatment was associated with decreased signal detection and elevated omission rates. Collectively, the data suggest that muscarinic and nicotinic receptor antagonists do not exclusively impair working memory.

  14. Antagonist wear by polished zirconia crowns.

    Science.gov (United States)

    Hartkamp, Oliver; Lohbauer, Ulrich; Reich, Sven

    The aim of this in vivo study was to measure antagonist wear caused by polished monolithic posterior zirconia crowns over a 24-month period using the intraoral digital impression (IDI) technique. Thirteen zirconia crowns were placed in nine patients. The crowns and adjacent teeth were captured using an intraoral scanner (Lava C.O.S.). The corresponding antagonist teeth and the respective neighboring teeth were also scanned. Scanning was performed immediately after the restoration (baseline) as well as 12 and 24 months after crown placement. Geomagic Qualify software was used to superimpose the follow-up data sets onto the corresponding baseline data set, identify wear sites, and measure maximum vertical height loss in each individual wear site. Overall antagonist wear was then determined as the mean of wear rates measured in all of the individual antagonist units. In addition, wear rates in enamel and ceramic antagonists were analyzed as part of the scope of this study. The maximum mean wear with standard deviation (SD) in the overall sample with a total of nine patients, 13 antagonist units, and 98 evaluable wear sites was 86 ± 23 µm at 12 months, and 103 ± 39 µm at 24 months. The maximum mean wear in the enamel antagonist subgroup was 87 ± 41 µm at 12 months, and 115 ± 71 µm at 24 months; and in the ceramic antagonist subgroup 107 ± 22 µm at 12 months, and 120 ± 27 µm at 24 months. The wear rates determined in this study are comparable to those of existing studies. The IDI technique of wear analysis can be carried out in a practical manner and produces useful results.

  15. The effects of inferior olive lesion on strychnine seizure

    International Nuclear Information System (INIS)

    Anderson, M.C.; Chung, E.Y.; Van Woert, M.H.

    1990-01-01

    Bilateral inferior olive lesions, produced by systemic administration of the neurotoxin 3-acetylpyridine (3AP) produce a proconvulsant state specific for strychnine-induced seizures and myoclonus. We have proposed that these phenomena are mediated through increased excitation of cerebellar Purkinje cells, through activation of glutamate receptors, in response to climbing fiber deafferentation. An increase in quisqualic acid (QA)-displaceable [ 3 H]AMPA [(RS)-alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid] binding in cerebella from inferior olive-lesioned rats was observed, but no difference in [ 3 H]AMPA binding displaced by glutamate, kainic acid (KA) or glutamate diethylester (GDEE) was seen. The excitatory amino acid antagonists GDEE and MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclo-hepten-5,10 imine] were tested as anticonvulsants for strychnine-induced seizures in 3AP inferior olive-lesioned and control rats. Neither drug effected seizures in control rats, however, both GDEE and MK-801 produced a leftward shift in the strychnine-seizure dose-response curve in 3AP inferior olive-lesioned rats. GDEE also inhibited strychnine-induced myoclonus in the lesioned group, while MK-801 had no effect on myoclonus. The decreased threshold for strychnine-induced seizures and myoclonus in the 3AP-inferior olive-lesioned rats may be due to an increase in glutamate receptors as suggested by the [ 3 H]AMPA binding data

  16. Sexually dimorphic development and binding characteristics of NMDA receptors in the brain of the platyfish

    Science.gov (United States)

    Flynn, K. M.; Schreibman, M. P.; Yablonsky-Alter, E.; Banerjee, S. P.

    1999-01-01

    This study investigated age- and gender-specific variations in properties of the glutamate N-methyl-d-aspartate receptor (NMDAR) in a freshwater teleost, the platyfish (Xiphophorus maculatus). Prior localization of the immunoreactive (ir)-R1 subunit of the NMDAR protein (R1) in cells of the nucleus olfactoretinalis (NOR), a primary gonadotropin-releasing hormone (GnRH)-containing brain nucleus in the platyfish, suggests that NMDAR, as in mammals, is involved in modulation of the platyfish brain-pituitary-gonad (BPG) axis. The current study shows that the number of cells in the NOR displaying ir-R1 is significantly increased in pubescent and mature female platyfish when compared to immature and senescent animals. In males, there is no significant change in ir-R1 expression in the NOR at any time in their lifespan. The affinity of the noncompetitive antagonist ((3)H)MK-801 for the NMDAR is significantly increased in pubescent females while maximum binding of ((3)H)MK-801 to the receptor reaches a significant maximum in mature females. In males, both MK-801 affinity and maximum binding remain unchanged throughout development. This is the first report of gender differences in the association of NMDA receptors with neuroendocrine brain areas during development. It is also the first report to suggest NMDA receptor involvement in the development of the BPG axis in a nonmammalian vertebrate. Copyright 1999 Academic Press.

  17. Effects of Electroacupuncture on N-Methyl-D-aspartate Receptor-Related Signaling Pathway in the Spinal Cord of Normal Rats

    Directory of Open Access Journals (Sweden)

    Ha-Neui Kim

    2012-01-01

    rats. Bilateral 2 Hz EA stimulations (1-2-3.0 mA were delivered at acupoints corresponding to Zusanli (ST36 and Sanyinjiao (SP6 in men for 30 min. Thermal sensitization was strongly inhibited by EA, but this analgesia was reduced by preintrathecal injection of the NMDAR antagonist, MK801. Phosphorylation of the NMDAR NR2B subunit, cAMP response element-binding protein (CREB, and especially phosphatidylinositol 3-kinase (PI3K were significantly induced by EA. However, these marked phosphorylations were not observed in MK801-pretreated rats. EA analgesia was reduced by preintrathecal injection with the calcium chelators Quin2 and TMB8, similar to the results evident using MK801. Phosphorylation of PI3K and CREB induced by EA was also inhibited by TMB8. Calcium influx by NMDAR activation may play an important role in EA analgesia of normal rats through the modulation of the phosphorylation of spinal PI3K and CREB.

  18. Role of the NMDA receptor and iron on free radical production and brain damage following transient middle cerebral artery occlusion.

    Science.gov (United States)

    Im, Doo Soon; Jeon, Jeong Wook; Lee, Jin Soo; Won, Seok Joon; Cho, Sung Ig; Lee, Yong Beom; Gwag, Byoung Joo

    2012-05-21

    Excess activation of ionotropic glutamate receptors and iron is believed to contribute to free radical production and neuronal death following hypoxic ischemia. We examined the possibility that both NMDA receptor activation and iron overload determine spatial and temporal patterns of free radical production after transient middle cerebral artery occlusion (tMCAO) in male Sprague-Dawley rats. Mitochondrial free radical (MFR) levels were maximally increased in neurons in the core at 1 h and 24 h after tMCAO. Early MFR production was blocked by administration of MK-801, an NMDA receptor antagonist, but not deferoxamine, an iron chelator. Neither MK-801 nor deferoxamine attenuated late MFR production in the core. Increased MFRs were observed in penumbral neurons within 6 h and gradually increased over 24 h after tMCAO. Slowly-evolving MFRs in the core and penumbra were accompanied by iron overload. Deferoxamine blocked iron overload but reduced MFR production only in the penumbra. Combined MK-801/deferoxamine reduced late MFR production in both core and penumbra in an additive manner. Combination therapy significantly ameliorated infarction compared with monotherapy. These findings suggest that the NMDA receptor activation and iron overload mediate late MFR production and infarction after tMCAO. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Long-term phase reorganization of conditioned food aversion memory in edible snail.

    Science.gov (United States)

    Kozyrev, S A; Solntseva, S V; Nikitin, V P

    2014-08-01

    The specific features of memory reconsolidation in edible snails were studied over 30 days after learning of conditioned food aversion. Injections of a NMDA glutamate receptor antagonist MK-801 or protein synthesis inhibitor cycloheximide in combination with the conditioned food stimulus (reminder) on day 2 after learning were followed by the development of amnesia. Repeated training on day 10 after the induction of amnesia did not result in skill formation. Injections of MK-801 or cycloheximide and reminder by the 10th day after training had no effect on memory retention. Injections of MK-801 or cycloheximide and reminder by the 30th day after training were followed by the development of amnesia. In these experiments, memory was recovered after repeated training. Our results indicate that a complex phase reorganization of memory occurs over 30 days after learning. This process includes memory consolidation over the first days after training, stabilization and resistance to adverse factors after 10 days, and newly acquired ability for reconsolidation by the 30th day after training.

  20. Neonatal NMDA receptor blockade disrupts spike timing and glutamatergic synapses in fast spiking interneurons in a NMDA receptor hypofunction model of schizophrenia.

    Directory of Open Access Journals (Sweden)

    Kevin S Jones

    Full Text Available The dysfunction of parvalbumin-positive, fast-spiking interneurons (FSI is considered a primary contributor to the pathophysiology of schizophrenia (SZ, but deficits in FSI physiology have not been explicitly characterized. We show for the first time, that a widely-employed model of schizophrenia minimizes first spike latency and increases GluN2B-mediated current in neocortical FSIs. The reduction in FSI first-spike latency coincides with reduced expression of the Kv1.1 potassium channel subunit which provides a biophysical explanation for the abnormal spiking behavior. Similarly, the increase in NMDA current coincides with enhanced expression of the GluN2B NMDA receptor subunit, specifically in FSIs. In this study mice were treated with the NMDA receptor antagonist, MK-801, during the first week of life. During adolescence, we detected reduced spike latency and increased GluN2B-mediated NMDA current in FSIs, which suggests transient disruption of NMDA signaling during neonatal development exerts lasting changes in the cellular and synaptic physiology of neocortical FSIs. Overall, we propose these physiological disturbances represent a general impairment to the physiological maturation of FSIs which may contribute to schizophrenia-like behaviors produced by this model.

  1. Nociceptive plasticity inhibits adaptive learning in the spinal cord.

    Science.gov (United States)

    Ferguson, A R; Crown, E D; Grau, J W

    2006-08-11

    Spinal plasticity is known to play a role in central neurogenic pain. Over the last 100 years researchers have found that the spinal cord is also capable of supporting other forms of plasticity including several forms of learning. To study instrumental (response-outcome) learning in the spinal cord, we use a preparation in which spinally transected rats are given shock to the hind leg when the leg is extended. The spinal cord rapidly learns to hold the leg in a flexed position when given this controllable shock. However, if shock is independent of leg position (uncontrollable shock), subjects fail to learn. Uncontrollable shock also impairs future learning. As little as 6 min of uncontrollable shock to either the leg or the tail generates a learning deficit that lasts up to 48 h. Recent data suggest links between the learning deficit and the sensitization of pain circuits associated with inflammation or injury (central sensitization). Here, we explored whether central sensitization and the spinal learning deficit share pharmacological and behavioral features. Central sensitization enhances reactivity to mechanical stimulation (allodynia) and depends on the N-methyl-d-aspartate receptor (NMDAR). The uncontrollable shock stimulus that generates a learning deficit produced a tactile allodynia (Exp. 1) and administration of the NMDAR antagonist MK-801 blocked induction of the learning deficit (Exp. 2). Finally, a treatment known to induce central sensitization, intradermal carrageenan, produced a spinal learning deficit (Exp. 3). The findings suggest that the induction of central sensitization inhibits selective response modifications.

  2. The Phosphodiesterase 10A Selective Inhibitor TAK-063 Improves Cognitive Functions Associated with Schizophrenia in Rodent Models.

    Science.gov (United States)

    Shiraishi, Eri; Suzuki, Kazunori; Harada, Akina; Suzuki, Noriko; Kimura, Haruhide

    2016-03-01

    Cognitive deficits in various domains, including recognition memory, attention, impulsivity, working memory, and executive function, substantially affect functional outcomes in patients with schizophrenia. TAK-063 [1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one] is a potent and selective phosphodiesterase 10A inhibitor that produces antipsychotic-like effects in rodent models of schizophrenia. We evaluated the effects of TAK-063 on multiple cognitive functions associated with schizophrenia using naïve and drug-perturbed rodents. TAK-063 at 0.1 and 0.3 mg/kg p.o. improved time-dependent memory decay in object recognition in naïve rats. TAK-063 at 0.1 and 0.3 mg/kg p.o. increased accuracy rate, and TAK-063 at 0.3 mg/kg p.o. reduced impulsivity in a five-choice serial reaction time task in naïve rats. N-methyl-d-aspartate receptor antagonists, such as phencyclidine and MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine], were used to induce working memory deficits relevant to schizophrenia in animals. TAK-063 at 0.3 mg/kg p.o. attenuated both phencyclidine-induced working memory deficits in a Y-maze test in mice and MK-801-induced working memory deficits in an eight-arm radial maze task in rats. An attentional set-shifting task using subchronic phencyclidine-treated rats was used to assess the executive function. TAK-063 at 0.3 mg/kg p.o. reversed cognitive deficits in extradimensional shifts. These findings suggest that TAK-063 has a potential to ameliorate deficits in multiple cognitive domains impaired in schizophrenia. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. Coronary dilation with nitrocompounds and calcium antagonists.

    Science.gov (United States)

    Jost, S; Rafflenbeul, W; Lichtlen, P R

    1990-01-01

    The vasodilatory effects of nitrocompounds and calcium antagonists on epicardial coronary arteries represent substantial antianginal mechanisms in the presence of coronary vasospasm or eccentric coronary stenoses. With high doses of nitrocompounds, angiographically normal coronary segments can be dilated by an average of approx. 30%, some coronary stenoses even by up to 100%, usually without severe reduction of blood pressure. With calcium antagonists, a similar extent of dilation of normal coronary arteries and eccentric stenoses can be obtained. Our own group demonstrated an average dilation of normal coronary arteries of about 20% after intravenous administration of dihydropyridine calcium antagonists; however, the average systolic blood pressure dropped below 100 mmHg after these compounds. Hence, although in isolated human coronary arteries high concentrations of calcium antagonists were shown to induce a considerably greater vasodilation than nitrocompounds, the early drop in blood pressure prohibits a higher dosage of calcium antagonists in vivo. In the presence of coronary artery disease, particularly when associated with coronary vasospasm, a combination of the two groups of compounds might be recommendable, since an addition of the effects of coronary vasomotor tone is likely. Furthermore, the antianginal effects of a reduction of preload and afterload are complementary.

  4. ETA-receptor antagonists or allosteric modulators?

    DEFF Research Database (Denmark)

    De Mey, Jo G R; Compeer, Matthijs G; Lemkens, Pieter

    2011-01-01

    . In resistance arteries, the long-lasting contractile effects can only be partly and reversibly relaxed by low-molecular-weight ET(A) antagonists (ERAs). However, the neuropeptide calcitonin-gene-related peptide selectively terminates binding of ET1 to ET(A). We propose that ET1 binds polyvalently to ET......(A) and that ERAs and the physiological antagonist allosterically reduce ET(A) functions. Combining the two-state model and the two-domain model of GPCR function and considering receptor activation beyond agonist binding might lead to better anti-endothelinergic drugs. Future studies could lead to compounds...

  5. Orexin receptor antagonists as therapeutic agents for insomnia

    Directory of Open Access Journals (Sweden)

    Ana Clementina Equihua

    2013-12-01

    Full Text Available Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning.Currently, treatment for insomnia involves a combination of cognitive behavioral therapy and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine receptor agonist drugs (GABAA receptor, although concerns persist regarding their safety and their limited efficacy. The use of these hypnotic medications must be carefully monitored for adverse effects.Orexin (hypocretin neuropeptides have been shown to regulate transitions between wakefulness and sleep by promoting cholinergic/monoaminergic neural pathways. This has led to the development of a new class of pharmacological agents that antagonize the physiological effects of orexin. The development of these agents may lead to novel therapies for insomnia without the side effect profile of hypnotics (e.g. impaired cognition, disturbed arousal, and motor balance difficulties. However, antagonizing a system that regulates the sleep-wake cycle may create an entirely different side effect profile. In this review, we discuss the role of orexin and its receptors on the sleep-wake cycle and that of orexin antagonists in the treatment of insomnia.

  6. Chronic MK-801 Application in Adolescence and Early Adulthood: A Spatial Working Memory Deficit in Adult Long-Evans Rats But No Changes in the Hippocampal NMDA Receptor Subunits

    Czech Academy of Sciences Publication Activity Database

    Uttl, Libor; Petrásek, Tomáš; Sengul, Hilal; Svojanovská, Markéta; Lobellová, Veronika; Valeš, Karel; Radostová, Dominika; Tsenov, Grygoriy; Kubová, Hana; Mikulecká, Anna; Svoboda, Jan; Stuchlík, Aleš

    2018-01-01

    Roč. 9, Feb 12 (2018), č. článku 42. ISSN 1663-9812 R&D Projects: GA MŠk(CZ) LM2015062; GA ČR NV17-30833A Grant - others:AV ČR(CZ) PAN-17-07 Program:Bilaterální spolupráce Institutional support: RVO:67985823 Keywords : schizophrenia * animal model * dizocilpine * rats * chronic treatment * western blot * behavior Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.400, year: 2016

  7. CRTH2 antagonists in asthma: current perspectives

    Directory of Open Access Journals (Sweden)

    Singh D

    2017-12-01

    Full Text Available Dave Singh, Arjun Ravi, Thomas Southworth Division of Infection, Immunity and Respiratory Medicine, The Medicines Evaluation Unit, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, The University of Manchester, Manchester, UK Abstract: Chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2 binds to prostaglandin D2. CRTH2 is expressed on various cell types including eosinophils, mast cells, and basophils. CRTH2 and prostaglandin D2 are involved in allergic inflammation and eosinophil activation. Orally administered CRTH2 antagonists are in clinical development for the treatment of asthma. The biology and clinical trial data indicate that CRTH2 antagonists should be targeted toward eosinophilic asthma. This article reviews the clinical evidence for CRTH2 involvement in asthma pathophysiology and clinical trials of CRTH2 antagonists in asthma. CRTH2 antagonists could provide a practical alternative to biological treatments for patients with severe asthma. Future perspectives for this class of drug are considered, including the selection of the subgroup of patients most likely to show a meaningful treatment response. Keywords: CRTH2, clinical trial, eosinophilic asthma, prostaglandin D2

  8. Carbon adaptation influence the antagonistic ability of ...

    African Journals Online (AJOL)

    Influences of carbon adaptation on antagonistic activities of three Pseudomonas aeruginosa strains V4, V7 and V10 against Fusarium oxysporum f. sp. melonis were determined in this study. Results from this study showed that the P. aeruginosa strains and their adapted strains significantly inhibited the growth of mycelium ...

  9. Calcium antagonists for aneurysmal subarachnoid haemorrhage

    NARCIS (Netherlands)

    Rinkel, G. J. E.; Feigin, V. L.; Algra, A.; van den Bergh, W. M.; Vermeulen, M.; van Gijn, J.

    2005-01-01

    BACKGROUND: Secondary ischaemia is a frequent cause of poor outcome in patients with subarachnoid haemorrhage (SAH). Its pathogenesis has not been elucidated yet, but may be related to vasospasm. Experimental studies have indicated that calcium antagonists can prevent or reverse vasospasm and have

  10. Antagonistic properties of microogranisms associated with cassava ...

    African Journals Online (AJOL)

    The antagonistic properties of indigenous microflora from cassava starch, flour and grated cassava were investigated using the conventional streak, novel ring and well diffusion methods. Antagonism was measured by zone of inhibition between the fungal plug and bacterial streak/ring. Bacillus species were more effective ...

  11. Effects of the metabotropic glutamate receptor 5 positive allosteric modulator CDPPB on rats tested with the paired associates learning task in touchscreen-equipped operant conditioning chambers.

    Science.gov (United States)

    Lins, Brittney R; Howland, John G

    2016-03-15

    Effective treatments for the cognitive symptoms of schizophrenia are critically needed. Positive allosteric modulation (PAM) of metabotropic glutamate receptor subtype 5 (mGluR5) is one strategy currently under investigation to improve these symptoms. Examining cognition using touchscreen-equipped operant chambers may increase translation between preclinical and clinical research through analogous behavioral testing paradigms in rodents and humans. We used acute CDPPB (1-30mg/kg) treatment to examine the effects of mGluR5 PAM in the touchscreen paired associates learning (PAL) task using well-trained rats with and without co-administration of acute MK-801 (0.15mg/kg). CDPPB had no consistent effects on task performance when administered alone and failed to reverse the MK-801 induced impairments at any of the examined doses. Overall, the disruptive effects of MK-801 on PAL were consistent with previous research but increasing mGluR5 signaling is not beneficial in the PAL task. Future research should test whether administration of CDPPB during PAL acquisition increases performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The role of glutamatergic and GABAergic systems on serotonin- induced feeding behavior in chicken.

    Science.gov (United States)

    Mortezaei, Sepideh Seyedali; Zendehdel, Morteza; Babapour, Vahab; Hasani, Keyvan

    2013-12-01

    It has been reported that serotonin can modulate glutamate and GABA release in central nervous system (CNS). The present study was designed to examine the role of glutamatergic and GABAergic systems on serotonin- induced feeding behavior in chickens. In Experiment 1 intracerebroventricular (ICV) injection of MK- 801(NMDA receptor antagonist, 15 nmol) performed followed by serotonin (10 μg). In experiments 2, 3, 4, 5, 6 and 7 prior to serotonin injection, chickens received CNQX (AMPA/kainate receptor antagonist, 390 nmol), AIDA (mGluR1 antagonist, 2 nmol), LY341495 (mGluR2 antagonist, 150 nmol), UBP1112 (mGluR3 antagonist, 2 nmol), picrotoxin (GABA A receptor antagonist, 0.5 μg), CGP54626 (GABAB receptor antagonist, 20 ng) respectively. Cumulative food intake was determined at 3 h post injection. The results of this study showed that the hypophagic effect of serotonin was significantly attenuated by pretreatment with MK- 801 and CNQX (p 0.05). Also, the inhibitory effect of serotonin on food intake was amplified by picrotoxin (p 0.05). These results suggest that serotonin as a modulator probably interacts with glutamatergic (via NMDA and AMPA/Kainate receptors) and GABAergic (via GABAA receptor) systems on feeding behavior in chicken.

  13. Antagonist-Elicited Cannabis Withdrawal in Humans

    Science.gov (United States)

    Gorelick, David A.; Goodwin, Robert S.; Schwilke, Eugene; Schwope, David M.; Darwin, William D.; Kelly, Deanna L.; McMahon, Robert P.; Liu, Fang; Ortemann-Renon, Catherine; Bonnet, Denis; Huestis, Marilyn A.

    2013-01-01

    Cannabinoid CB1 receptor antagonists have potential therapeutic benefits, but antagonist-elicited cannabis withdrawal has not been reported in humans. Ten male daily cannabis smokers received 8 days of increasingly frequent 20-mg oral Δ9-tetrahydrocannabinol (THC) dosages (40–120 mg/d) around-the-clock to standardize cannabis dependence while residing on a closed research unit. On the ninth day, double-blind placebo or 20- (suggested therapeutic dose) or 40-mg oral rimonabant, a CB1-cannabinoid receptor antagonist, was administered. Cannabis withdrawal signs and symptoms were assessed before and for 23.5 hours after rimonabant. Rimonabant, THC, and 11-hydroxy-THC plasma concentrations were quantified by mass spectrometry. The first 6 subjects received 20-mg rimonabant (1 placebo); the remaining 4 subjects received 40-mg rimonabant (1 placebo). Fourteen subjects enrolled; 10 completed before premature termination because of withdrawal of rimonabant from clinical development. Three of 5 subjects in the 20-mg group, 1 of 3 in the 40-mg group, and none of 2 in the placebo group met the prespecified withdrawal criterion of 150% increase or higher in at least 3 visual analog scales for cannabis withdrawal symptoms within 3 hours of rimonabant dosing. There were no significant associations between visual analog scale, heart rate, or blood pressure changes and peak rimonabant plasma concentration, area-under-the-rimonabant-concentration-by-time curve (0–8 hours), or peak rimonabant/THC or rimonabant/(THC + 11-hydroxy-THC) plasma concentration ratios. In summary, prespecified criteria for antagonist-elicited cannabis withdrawal were not observed at the 20- or 40-mg rimonabant doses. These data do not preclude antagonist-elicited withdrawal at higher rimonabant doses. PMID:21869692

  14. Antagonist-elicited cannabis withdrawal in humans.

    Science.gov (United States)

    Gorelick, David A; Goodwin, Robert S; Schwilke, Eugene; Schwope, David M; Darwin, William D; Kelly, Deanna L; McMahon, Robert P; Liu, Fang; Ortemann-Renon, Catherine; Bonnet, Denis; Huestis, Marilyn A

    2011-10-01

    Cannabinoid CB1 receptor antagonists have potential therapeutic benefits, but antagonist-elicited cannabis withdrawal has not been reported in humans. Ten male daily cannabis smokers received 8 days of increasingly frequent 20-mg oral Δ⁹-tetrahydrocannabinol (THC) dosages (40-120 mg/d) around-the-clock to standardize cannabis dependence while residing on a closed research unit. On the ninth day, double-blind placebo or 20- (suggested therapeutic dose) or 40-mg oral rimonabant, a CB1-cannabinoid receptor antagonist, was administered. Cannabis withdrawal signs and symptoms were assessed before and for 23.5 hours after rimonabant. Rimonabant, THC, and 11-hydroxy-THC plasma concentrations were quantified by mass spectrometry. The first 6 subjects received 20-mg rimonabant (1 placebo); the remaining 4 subjects received 40-mg rimonabant (1 placebo). Fourteen subjects enrolled; 10 completed before premature termination because of withdrawal of rimonabant from clinical development. Three of 5 subjects in the 20-mg group, 1 of 3 in the 40-mg group, and none of 2 in the placebo group met the prespecified withdrawal criterion of 150% increase or higher in at least 3 visual analog scales for cannabis withdrawal symptoms within 3 hours of rimonabant dosing. There were no significant associations between visual analog scale, heart rate, or blood pressure changes and peak rimonabant plasma concentration, area-under-the-rimonabant-concentration-by-time curve (0-8 hours), or peak rimonabant/THC or rimonabant/(THC + 11-hydroxy-THC) plasma concentration ratios. In summary, prespecified criteria for antagonist-elicited cannabis withdrawal were not observed at the 20- or 40-mg rimonabant doses. These data do not preclude antagonist-elicited withdrawal at higher rimonabant doses.

  15. Combining elements from two antagonists of formyl peptide receptor 2 generates more potent peptidomimetic antagonists

    DEFF Research Database (Denmark)

    Skovbakke, Sarah Line; Holdfeldt, Andre; Nielsen, Christina

    2017-01-01

    Structural optimization of a peptidomimetic antagonist of formyl peptide receptor 2 (FPR2) was explored by an approach involving combination of elements from the two most potent FPR2 antagonists described: a Rhodamine B-conjugated 10-residue gelsonin-derived peptide (i.e., PBP10, Rh......B-QRLFQVKGRR-OH) and the palmitoylated α-peptide/β-peptoid hybrid Pam-(Lys-βNspe)6-NH2. This generated an array of hybrid compounds from which a new subclass of receptor-selective antagonists was identified. The most potent representatives displayed activity in the low nanomolar range. The resulting stable and potent FPR2-selective...... antagonists (i.e., RhB-(Lys-βNphe)n-NH2; n = 4–6) are expected to become valuable tools in further elucidation of the physiological role of FPR2 in health and disease....

  16. Similarities and differences between calcium antagonists: pharmacological aspects

    NARCIS (Netherlands)

    van Zwieten, P. A.; Pfaffendorf, M.

    1993-01-01

    Characteristics of three different calcium antagonist groups: Most important calcium antagonists used to treat cardiovascular disease belong to one of three main groups, phenylalkylamines, dihydropyridines and benzothiazepines. The best known drug in each group is verapamil, nifedipine and

  17. Protective effects of calcium antagonists in different organs and tissues

    NARCIS (Netherlands)

    van Zwieten, P. A.

    1993-01-01

    The therapeutic efficacy of calcium antagonists in ischemic disorders of various tissues is attributed to vasodilator and antivasoconstrictor activities. A direct, energy-conserving, antiischemic effect of certain calcium antagonists has been claimed repeatedly by basic scientists. The clinical

  18. Visual impairment in the hearing impaired students

    OpenAIRE

    Gogate Parikshit; Rishikeshi Nikhil; Mehata Reshma; Ranade Satish; Kharat Jitesh; Deshpande Madan

    2009-01-01

    Background : Ocular problems are more common in children with hearing problems than in normal children. Neglected visual impairment could aggravate educational and social disability. Aim : To detect and treat visual impairment, if any, in hearing-impaired children. Setting and Design : Observational, clinical case series of hearing-impaired children in schools providing special education. Materials and Methods : Hearing-impaired children in selected schools underwent detailed vis...

  19. Mineralocorticoid Receptor Antagonists-A New Sprinkle of Salt and Youth.

    Science.gov (United States)

    Stojadinovic, Olivera; Lindley, Linsey E; Jozic, Ivan; Tomic-Canic, Marjana

    2016-10-01

    Skin atrophy and impaired cutaneous wound healing are the recognized side effects of topical glucocorticoid (GC) therapy. Although GCs have high affinity for the glucocorticoid receptor, they also bind and activate the mineralocorticoid receptor. In light of this, one can speculate that some of the GC-mediated side effects can be remedied by blocking activation of the mineralocorticoid receptor. Indeed, according to Nguyen et al., local inhibition of the mineralocorticoid receptor via antagonists (spironolactone, canrenoate, and eplerenone) rescues GC-induced delayed epithelialization and accelerates wound closure in diabetic animals by targeting epithelial sodium channels and stimulating keratinocyte proliferation. These findings suggest that the use of mineralocorticoid receptor antagonists coupled with GC therapy may be beneficial in overcoming at least some of the GC-mediated side effects. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The effects of a single memantine treatment on behavioral alterations associated with binge alcohol exposure in neonatal rats.

    Science.gov (United States)

    Idrus, Nirelia M; McGough, Nancy N H; Spinetta, Michael J; Thomas, Jennifer D; Riley, Edward P

    2011-01-01

    The third trimester in human fetal development represents a critical time of brain maturation referred to as the "brain growth spurt". This period occurs in rats postnatally, and exposure to ethanol during this time can increase the risk of impairments on a variety of cognitive and motor tasks. It has been proposed that one potential mechanism for the teratogenic effects of ethanol is NMDA receptor-mediated excitotoxicity during periods of ethanol withdrawal. In neonatal rats, antagonism of NMDA receptors during ethanol withdrawal, with drugs such as MK-801 and eliprodil, has been shown to mitigate some of the behavioral deficits induced by developmental ethanol exposure. The current study examined whether memantine, an NMDA receptor antagonist and a drug used clinically in Alzheimer's patients, would attenuate impairments associated with binge ethanol exposure in neonatal rats. On postnatal day 6, rats were exposed to 6 g/kg ethanol via intubation with controls receiving an isocaloric maltose dextrin solution. Twenty-one hours following the ethanol binge, rats received intraperitoneal injections of memantine at 0, 10, 15, or 20 mg/kg. Ethanol's teratogenic effects were assessed using multiple behavioral tasks: open field activity, parallel bars and spatial discrimination reversal learning. Ethanol-treated rats were overactive in the open field and were impaired on both reversal learning and motor performance. Administration of 15 or 20 mg/kg memantine during withdrawal significantly attenuated ethanol's adverse effects on motor coordination, but did not significantly alter activity levels or improve the spatial learning deficits associated with neonatal alcohol exposure. These results indicate that a single memantine administration during ethanol withdrawal can mitigate motor impairments but not spatial learning impairments or overactivity observed following a binge ethanol exposure during development in the rat. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Antagonistic parent-offspring co-adaptation.

    Directory of Open Access Journals (Sweden)

    Mathias Kölliker

    2010-01-01

    Full Text Available In species across taxa, offspring have means to influence parental investment (PI. PI thus evolves as an interacting phenotype and indirect genetic effects may strongly affect the co-evolutionary dynamics of offspring and parental behaviors. Evolutionary theory focused on explaining how exaggerated offspring solicitation can be understood as resolution of parent-offspring conflict, but the evolutionary origin and diversification of different forms of family interactions remains unclear.In contrast to previous theory that largely uses a static approach to predict how "offspring individuals" and "parental individuals" should interact given conflict over PI, we present a dynamic theoretical framework of antagonistic selection on the PI individuals obtain/take as offspring and the PI they provide as parents to maximize individual lifetime reproductive success; we analyze a deterministic and a stochastic version of this dynamic framework. We show that a zone for equivalent co-adaptation outcomes exists in which stable levels of PI can evolve and be maintained despite fast strategy transitions and ongoing co-evolutionary dynamics. Under antagonistic co-adaptation, cost-free solicitation can evolve as an adaptation to emerging preferences in parents.We show that antagonistic selection across the offspring and parental life-stage of individuals favors co-adapted offspring and parental behavior within a zone of equivalent outcomes. This antagonistic parent-offspring co-adaptation does not require solicitation to be costly, allows for rapid divergence and evolutionary novelty and potentially explains the origin and diversification of the observed provisioning forms in family life.

  2. Antagonist potential of Trichoderma indigenous isolates for ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Full Length Research Paper. Antagonist potential of Trichoderma indigenous isolates for biological control of Phytophthora palmivora the causative agent of black pod disease on cocoa (Theobroma cacao L.) in Côte d'Ivoire. J. Mpika1,4*, I. B. Kébé1, A. E. Issali2, F.K. N'Guessan1, S. Druzhinina3, ...

  3. A novel "delayed start" protocol with gonadotropin-releasing hormone antagonist improves outcomes in poor responders.

    Science.gov (United States)

    Cakmak, Hakan; Tran, Nam D; Zamah, A Musa; Cedars, Marcelle I; Rosen, Mitchell P

    2014-05-01

    To investigate whether delaying the start of ovarian stimulation with GnRH antagonist improves ovarian response in poor responders. Retrospective study. Academic medical center. Thirty patients, who responded poorly and did not get pregnant with conventional estrogen priming antagonist IVF protocol. Delayed-start antagonist protocol (estrogen priming followed by early follicular-phase GnRH antagonist treatment for 7 days before ovarian stimulation). Number of dominant follicles and mature oocytes retrieved, mature oocyte yield, and fertilization rate. The number of patients who met the criteria to proceed to oocyte retrieval was significantly higher in the delayed-start protocol [21/30 (70%)] compared with the previous conventional estrogen priming antagonist cycle [11/30 (36.7%)]. The number of dominant follicles was significantly higher in the delayed-start (4.2 ± 2.7) compared with conventional (2.4 ± 1.3) protocol. In patients who had oocyte retrieval after both protocols (n = 9), the delayed start resulted in shorter ovarian stimulation (9.4 ± 1.4 days vs. 11.1 ± 2.0 days), higher number of mature oocytes retrieved (4.9 ± 2.0 vs. 2.2 ± 1.1), and a trend toward increased fertilization rates with intracytoplasmic sperm injection (ICSI; 86 ± 17% vs. 69 ± 21%) compared with conventional protocol. After delayed start, the average number of embryos transferred was 2.8 ± 1.4 with implantation rate of 9.8% and clinical pregnancy rate of 23.8%. The delayed-start protocol improves ovarian response in poor responders by promoting and synchronizing follicle development without impairing oocyte developmental competence. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Medicinal Chemistry of Competitive Kainate Receptor Antagonists

    Science.gov (United States)

    2010-01-01

    Kainic acid (KA) receptors belong to the group of ionotropic glutamate receptors and are expressed throughout in the central nervous system (CNS). The KA receptors have been shown to be involved in neurophysiological functions such as mossy fiber long-term potentiation (LTP) and synaptic plasticity and are thus potential therapeutic targets in CNS diseases such as schizophrenia, major depression, neuropathic pain and epilepsy. Extensive effort has been made to develop subtype-selective KA receptor antagonists in order to elucidate the physiological function of each of the five subunits known (GluK1−5). However, to date only selective antagonists for the GluK1 subunit have been discovered, which underlines the strong need for continued research in this area. The present review describes the structure−activity relationship and pharmacological profile for 10 chemically distinct classes of KA receptor antagonists comprising, in all, 45 compounds. To the medicinal chemist this information will serve as reference guidance as well as an inspiration for future effort in this field. PMID:22778857

  5. The sexually antagonistic genes of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Paolo Innocenti

    2010-03-01

    Full Text Available When selective pressures differ between males and females, the genes experiencing these conflicting evolutionary forces are said to be sexually antagonistic. Although the phenotypic effect of these genes has been documented in both wild and laboratory populations, their identity, number, and location remains unknown. Here, by combining data on sex-specific fitness and genome-wide transcript abundance in a quantitative genetic framework, we identified a group of candidate genes experiencing sexually antagonistic selection in the adult, which correspond to 8% of Drosophila melanogaster genes. As predicted, the X chromosome is enriched for these genes, but surprisingly they represent only a small proportion of the total number of sex-biased transcripts, indicating that the latter is a poor predictor of sexual antagonism. Furthermore, the majority of genes whose expression profiles showed a significant relationship with either male or female adult fitness are also sexually antagonistic. These results provide a first insight into the genetic basis of intralocus sexual conflict and indicate that genetic variation for fitness is dominated and maintained by sexual antagonism, potentially neutralizing any indirect genetic benefits of sexual selection.

  6. Pharmacological analysis of calcium antagonist receptors

    International Nuclear Information System (INIS)

    Reynolds, I.J.

    1987-01-01

    This work focuses on two aspects of the action of calcium antagonist drugs, namely, the interaction of drugs with receptors for verapamil-like calcium antagonists, and the interactions of drugs with voltage-sensitive calcium fluxes in rat brain synaptosomes. From binding studies I have found that the ligand of choice for labeling the verapamil receptor is (-)[ 3 H]desmethoxy-verapamil. This drug labels potently, reversibly and stereoselectively two receptors in membranes prepared from rat brain and rabbit skeletal muscle tissues. In equilibrium studies dihydropyridine calcium antagonists interact in a non-competitive fashion, while many non-DHPs are apparently competitive. In-depth kinetic studies in skeletal muscle membranes indicate that the two receptors are linked in a negative heterotropic fashion, and that low-affinity binding of (-) [ 3 H]desmethoxy-verapamil may be to the diltiazem receptor. However, these studies were not able to distinguish between the hypothesis that diltiazem binds to spatially separate, allosterically coupled receptors, and the hypothesis that diltiazem binds to a subsite of the verapamil receptor

  7. From the Cover: Glutamate antagonists limit tumor growth

    Science.gov (United States)

    Rzeski, Wojciech; Turski, Lechoslaw; Ikonomidou, Chrysanthy

    2001-05-01

    Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N-methyl-D-aspartate antagonist dizocilpine, whereas breast and lung carcinoma, colon adenocarcinoma, and neuroblastoma cells responded most favorably to the -amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonist GYKI52466. The antiproliferative effect of glutamate antagonists was Ca2+ dependent and resulted from decreased cell division and increased cell death. Morphological alterations induced by glutamate antagonists in tumor cells consisted of reduced membrane ruffling and pseudopodial protrusions. Furthermore, glutamate antagonists decreased motility and invasive growth of tumor cells. These findings suggest anticancer potential of glutamate antagonists.

  8. Specific Language Impairment

    Science.gov (United States)

    ... Home » Health Info » Voice, Speech, and Language Specific Language Impairment On this page: What is specific language ... percent of children in kindergarten. What is specific language impairment? Specific language impairment (SLI) is a language ...

  9. Cortical Visual Impairment

    Science.gov (United States)

    ... Frequently Asked Questions Español Condiciones Chinese Conditions Cortical Visual Impairment En Español Read in Chinese What is cortical visual impairment? Cortical visual impairment (CVI) is a decreased ...

  10. All Vision Impairment

    Science.gov (United States)

    ... Prevalence Rates for Vision Impairment by Age and Race/Ethnicity Table for 2010 U.S. Age-Specific Prevalence ... Ethnicity 2010 Prevalence Rates of Vision Impairment by Race Table for 2010 Prevalence Rates of Vision Impairment ...

  11. A beta-adrenergic antagonist reduces traumatic memories and PTSD symptoms in female but not in male patients after cardiac surgery

    NARCIS (Netherlands)

    Krauseneck, T.; Padberg, F.; Roozendaal, B.; Grathwohl, M.; Weis, F.; Hauer, D.; Kaufmann, I.; Schmoeckel, M.; Schelling, G.

    Background. Epinephrine enhances emotional memory whereas P-adrenoceptor antagonists (beta-blockers, BBs) impair it. However, the effects of BB administration on memory are sex dependent. Therefore, we predicted differential effects of epinephrine and the BB metoprolol given to male and female

  12. Differential anti-ischaemic effects of muscarinic receptor blockade in patients with obstructive coronary artery disease; impaired vs normal left ventricular function.

    NARCIS (Netherlands)

    A.F. van den Heuvel; D.J. van Veldhuisen (Dirk); G.L. Bartels; M. van der Ent (Martin); W.J. Remme (Willem)

    1999-01-01

    textabstractAIMS: In patients with coronary artery disease acetylcholine (a muscarinic agonist) causes vasoconstriction. The effect of atropine (a muscarinic antagonist) on coronary vasotone in patients with normal or impaired left ventricular function is unknown.

  13. Combination decongestion therapy in hospitalized heart failure: loop diuretics, mineralocorticoid receptor antagonists and vasopressin antagonists.

    Science.gov (United States)

    Vaduganathan, Muthiah; Mentz, Robert J; Greene, Stephen J; Senni, Michele; Sato, Naoki; Nodari, Savina; Butler, Javed; Gheorghiade, Mihai

    2015-01-01

    Congestion is the most common reason for admissions and readmissions for heart failure (HF). The vast majority of hospitalized HF patients appear to respond readily to loop diuretics, but available data suggest that a significant proportion are being discharged with persistent evidence of congestion. Although novel therapies targeting congestion should continue to be developed, currently available agents may be utilized more optimally to facilitate complete decongestion. The combination of loop diuretics, natriuretic doses of mineralocorticoid receptor antagonists and vasopressin antagonists represents a regimen of currently available therapies that affects early and persistent decongestion, while limiting the associated risks of electrolyte disturbances, hemodynamic fluctuations, renal dysfunction and mortality.

  14. Investigation of orexin-2 selective receptor antagonists: Structural modifications resulting in dual orexin receptor antagonists.

    Science.gov (United States)

    Skudlarek, Jason W; DiMarco, Christina N; Babaoglu, Kerim; Roecker, Anthony J; Bruno, Joseph G; Pausch, Mark A; O'Brien, Julie A; Cabalu, Tamara D; Stevens, Joanne; Brunner, Joseph; Tannenbaum, Pamela L; Wuelfing, W Peter; Garson, Susan L; Fox, Steven V; Savitz, Alan T; Harrell, Charles M; Gotter, Anthony L; Winrow, Christopher J; Renger, John J; Kuduk, Scott D; Coleman, Paul J

    2017-03-15

    In an ongoing effort to explore the use of orexin receptor antagonists for the treatment of insomnia, dual orexin receptor antagonists (DORAs) were structurally modified, resulting in compounds selective for the OX 2 R subtype and culminating in the discovery of 23, a highly potent, OX 2 R-selective molecule that exhibited a promising in vivo profile. Further structural modification led to an unexpected restoration of OX 1 R antagonism. Herein, these changes are discussed and a rationale for selectivity based on computational modeling is proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Reduction of periodontal pathogens adhesion by antagonistic strains.

    Science.gov (United States)

    Van Hoogmoed, C G; Geertsema-Doornbusch, G I; Teughels, W; Quirynen, M; Busscher, H J; Van der Mei, H C

    2008-02-01

    Periodontitis results from a shift in the subgingival microflora into a more pathogenic direction with Porphyromonas gingivalis, Prevotella intermedia, and Actinobacillus actinomycetemcomitans considered as periodontopathogens. In many cases, treatment procures only a temporary shift towards a less pathogenic microflora. An alternative treatment could be the deliberate colonization of pockets with antagonistic microorganisms to control the adhesion of periodontopathogens. The aim of this study was to identify bacterial strains that reduce adhesion of periodontopathogens to surfaces. Streptococcus sanguinis, Streptococcus crista, Streptococcus salivarius, Streptococcus mitis, Actinomyces naeslundii, and Haemophilus parainfluenzae were evaluated as potential antagonists against P. gingivalis ATCC 33277, P. intermedia ATCC 49046, and A. actinomycetemcomitans ATCC 43718 as periodontopathogens. Adhesion of periodontopathogens to the bottom plate of a parallel plate flow chamber was studied in the absence (control) and the presence of pre-adhering antagonistic strains up to a surface coverage of 5%. The largest reduction caused by antagonistic strains was observed for P. gingivalis. All antagonistic strains except S. crista ATCC 49999 inhibited the adhesion of P. gingivalis by at least 1.6 cells per adhering antagonist, with the largest significant reduction observed for A. naeslundii ATCC 51655 (3.8 cells per adhering antagonist). Adhering antagonists had a minimal effect on the adhesion of A. actinomycetemcomitans ATCC 43718. Intermediate but significant reductions were perceived for P. intermedia, most notably caused by S. mitis BMS. The adhesion of P. gingivalis was inhibited best by antagonistic strains, while S. mitis BMS appeared to be the most successful antagonist.

  16. Diphenyl Purine Derivatives as Peripherally Selective Cannabinoid Receptor 1 Antagonists

    Science.gov (United States)

    Fulp, Alan; Bortoff, Katherine; Zhang, Yanan; Seltzman, Herbert; Mathews, James; Snyder, Rodney; Fennell, Tim; Maitra, Rangan

    2015-01-01

    Cannabinoid receptor 1 (CB1) antagonists are potentially useful for the treatment of several diseases. However, clinical development of several CB1 antagonists was halted due to central nervous system (CNS)-related side effects including depression and suicidal ideation in some users. Recently, studies have indicated that selective regulation of CB1 receptors in the periphery is a viable strategy for treating several important disorders. Past efforts to develop peripherally selective antagonists of CB1 have largely targeted rimonabant, an inverse agonist of CB1. Reported here are our efforts toward developing a peripherally selective CB1 antagonist based on the otenabant scaffold. Even though otenabant penetrates the CNS, it is unique among CB1 antagonists that have been clinically tested because it has properties that are normally associated with peripherally selective compounds. Our efforts have resulted in an orally absorbed compound that is a potent and selective CB1 antagonist with limited penetration into the CNS. PMID:23098108

  17. Sexually antagonistic selection in human male homosexuality.

    Directory of Open Access Journals (Sweden)

    Andrea Camperio Ciani

    Full Text Available Several lines of evidence indicate the existence of genetic factors influencing male homosexuality and bisexuality. In spite of its relatively low frequency, the stable permanence in all human populations of this apparently detrimental trait constitutes a puzzling 'Darwinian paradox'. Furthermore, several studies have pointed out relevant asymmetries in the distribution of both male homosexuality and of female fecundity in the parental lines of homosexual vs. heterosexual males. A number of hypotheses have attempted to give an evolutionary explanation for the long-standing persistence of this trait, and for its asymmetric distribution in family lines; however a satisfactory understanding of the population genetics of male homosexuality is lacking at present. We perform a systematic mathematical analysis of the propagation and equilibrium of the putative genetic factors for male homosexuality in the population, based on the selection equation for one or two diallelic loci and Bayesian statistics for pedigree investigation. We show that only the two-locus genetic model with at least one locus on the X chromosome, and in which gene expression is sexually antagonistic (increasing female fitness but decreasing male fitness, accounts for all known empirical data. Our results help clarify the basic evolutionary dynamics of male homosexuality, establishing this as a clearly ascertained sexually antagonistic human trait.

  18. Sexually Antagonistic Selection in Human Male Homosexuality

    Science.gov (United States)

    Camperio Ciani, Andrea; Cermelli, Paolo; Zanzotto, Giovanni

    2008-01-01

    Several lines of evidence indicate the existence of genetic factors influencing male homosexuality and bisexuality. In spite of its relatively low frequency, the stable permanence in all human populations of this apparently detrimental trait constitutes a puzzling ‘Darwinian paradox’. Furthermore, several studies have pointed out relevant asymmetries in the distribution of both male homosexuality and of female fecundity in the parental lines of homosexual vs. heterosexual males. A number of hypotheses have attempted to give an evolutionary explanation for the long-standing persistence of this trait, and for its asymmetric distribution in family lines; however a satisfactory understanding of the population genetics of male homosexuality is lacking at present. We perform a systematic mathematical analysis of the propagation and equilibrium of the putative genetic factors for male homosexuality in the population, based on the selection equation for one or two diallelic loci and Bayesian statistics for pedigree investigation. We show that only the two-locus genetic model with at least one locus on the X chromosome, and in which gene expression is sexually antagonistic (increasing female fitness but decreasing male fitness), accounts for all known empirical data. Our results help clarify the basic evolutionary dynamics of male homosexuality, establishing this as a clearly ascertained sexually antagonistic human trait. PMID:18560521

  19. Accumulation of the anandamide precursor and other N-acylethanolamine phospholipids in infant rat models of in vivo necrotic and apoptotic neuronal death

    DEFF Research Database (Denmark)

    Hansen, H.H.; Ikonomidou, C.; Bittigau, P.

    2001-01-01

    infant rat models of in vivo neurodegeneration: (i) necrosis caused by intrastriatal injection of NMDA (25 nmol); (ii) apoptosis induced by systemic administration of the NMDA-receptor antagonist (+)MK-801 (3 × 0.5 mg/kg, i.p.); and (iii) apoptosis following focal necrosis triggered by concussive head......-801 did not alter cortical NAPE levels. Concussion head trauma resulted in a similar but less pronounced upregulation of NAPE levels at both 4 and 24 h as compared to NMDA injections. Increased levels of NAPE 24 h post-trauma possibly reflect that necrosis is still ongoing at this time point...

  20. Cortical visual impairment

    OpenAIRE

    Koželj, Urša

    2013-01-01

    In this thesis we discuss cortical visual impairment, diagnosis that is in the developed world in first place, since 20 percent of children with blindness or low vision are diagnosed with it. The objectives of the thesis are to define cortical visual impairment and the definition of characters suggestive of the cortical visual impairment as well as to search for causes that affect the growing diagnosis of cortical visual impairment. There are a lot of signs of cortical visual impairment. ...

  1. Local Administration of Interleukin-1 Receptor Antagonist Improves Diabetic Wound Healing.

    Science.gov (United States)

    Perrault, David P; Bramos, Athanasios; Xu, Xingtian; Shi, Songtao; Wong, Alex K

    2018-03-16

    Impaired healing of the skin is a notable cause of patient morbidity and mortality. In diabetic individuals, dysregulated inflammation contributes to delayed wound healing. Specific immunomodulatory agents may have a role in the treatment of diabetic wounds. One of these molecules is interleukin-1 receptor antagonist (Anakinra; Amgen Corp.). Although interleukin-1 receptor antagonist (Anakinra; Amgen Corp.) is approved by the Food and Drug Administration (FDA) for the treatment of rheumatoid arthritis and neonatal-onset multisystem inflammatory disease, little is known about the local use this drug in cutaneous wound healing. Therefore, the aim of this study is to determine the effect of locally administered interleukin-1 receptor antagonist on delayed wound healing, specifically, in a diabetic mouse model. Two 6-mm full-thickness wounds were created on the dorsa of diabetic (db/db) mice and stented. One-hour postwounding, wound margins were subcutaneously injected with either (1) low-dose interleukin-1 receptor antagonist in a gelatin-transglutaminase gel vehicle or (2) the gel vehicle only. Wounds were imaged on days 0, 7, 14, and 21 postwounding, and wound area was determined. Wound biopsies were collected on day 21 and immunohistochemically stained for neutrophil and macrophage infiltration. Wounds treated with interleukin-1 receptor antagonist had significantly smaller wound area than nontreated wounds on day 7 and day 14 postwounding. Treated wounds also showed significantly less neutrophil and macrophage infiltration. These findings support the hypothesis that interleukin-1 receptor antagonist may have an important role in cutaneous wound healing, possibly by promoting successful resolution of acute inflammation and hence accelerating wound closure. Thereby, administration of IL-1Ra may be useful in the treatment of nonhealing wounds.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives

  2. 5HT(6) receptor antagonists: a patent update. Part 1. Sulfonyl derivatives.

    Science.gov (United States)

    Ivachtchenko, Alexandre V; Ivanenkov, Yan A

    2012-08-01

    Among a variety of proteins included in a relatively wide GPCR family, serotonin 5HT receptors (5HT(6)Rs) are highly attractive as important biological targets with enormous clinical importance. Among this subclass, 5HT(6)R is the most recently discovered group. Available biological data clearly indicate that 5HT(6)R antagonists can be used as effective regulators in a variety of contexts, including memory formation, age-related cognitive impairments and memory deficits associated with conditions such as schizophrenia, Parkinson's disease and Alzheimer's disease. Therefore, this receptor has already attracted a considerable attention within the scientific community, due to its versatile therapeutic potential. The current paper is an update to the comprehensive review article published previously in Expert Opinion on Therapeutic Patents (see issue 20(7), 2010). Here, the main focus is on small-molecule compounds - 5HT(6) antagonists - which have been described in recent patent literature, since the end of 2009. To obtain a clear understanding of the situation and dynamic within the field of 5HT(6) ligands, having an obvious pharmaceutical potential in terms of related patents, a comprehensive search through several key patent collections have been provided. The authors describe the reported chemical classes and scaffolds in sufficient detail to provide a valuable insight in the 5HT(6)R chemistry and pharmacology. The review consists of two core parts with separate sections arranged in accordance with the main structural features of 5HT(6)R ligands. Recent progress in the understanding of the 5HT(6) receptor function and structure includes a suggested constitutive activity for the receptor, development of a number of multimodal small molecule ligands and re-classification of many selective antagonists as pseudo-selective agents. Heterocycles with sulfonyl group and without any basic center provide sufficient supramolecular interactions and show high antagonistic

  3. The Attractiveness of Opposites: Agonists and Antagonists.

    LENUS (Irish Health Repository)

    O'Brien, Tony

    2015-02-02

    ABSTRACT Opioid-induced bowel dysfunction, of which constipation is the most common aspect, is a major limiting factor in the use of opioids for pain management. The availability of an oral, long-acting formulation of oxycodone and naloxone represents a highly significant development in pain management. The combination of an opioid analgesic with an opioid antagonist offers reliable pain control with a significant reduction in the burden of opioid-induced constipation. This report is adapted from paineurope 2014; Issue 3, ©Haymarket Medical Publications Ltd, and is presented with permission. paineurope is provided as a service to pain management by Mundipharma International, LTD and is distributed free of charge to healthcare professionals in Europe. Archival issues can be accessed via the website: http:\\/\\/www.paineurope.com at which European health professionals can register online to receive copies of the quarterly publication.

  4. Antiallergic effects of H1-receptor antagonists.

    Science.gov (United States)

    Baroody, F M; Naclerio, R M

    2000-01-01

    The primary mechanism of antihistamine action in the treatment of allergic diseases is believed to be competitive antagonism of histamine binding to cellular receptors (specifically, the H1-receptors), which are present on nerve endings, smooth muscles, and glandular cells. This notion is supported by the fact that structurally unrelated drugs antagonize the H1-receptor and provide clinical benefit. However, H1-receptor antagonism may not be their sole mechanism of action in treating allergic rhinitis. On the basis of in vitro and animal experiments, drugs classified as H1-receptor antagonists have long been recognized to have additional pharmacological properties. Most first-generation H1-antihistamines have anticholinergic, sedative, local anaesthetic, and anti-5-HT effects, which might favourably affect the symptoms of the allergic response but also contribute to side-effects. These additional properties are not uniformly distributed among drugs classified as H1-receptor antagonists. Azatadine, for example, inhibits in vitro IgE-mediated histamine and leukotriene (LT) release from mast cells and basophils. In human challenge models, terfenadine, azatadine, and loratadine reduce IgE-mediated histamine release. Cetirizine reduces eosinophilic infiltration at the site of antigen challenge in the skin, but not the nose. In a nasal antigen challenge model, cetirizine pretreatment did not affect the levels of histamine and prostaglandin D2 recovered in postchallenge lavages, whereas the levels of albumin, N-tosyl-L-arginine methyl ester (TAME) esterase activity, and LTs were reduced. Terfenadine, cetirizine, and loratadine blocked allergen-induced hyperresponsiveness to methacholine. In view of the complexity of the pathophysiology of allergy, a number of H1 antagonists with additional properties are currently under development for allergic diseases. Mizolastine, a new H1-receptor antagonist, has been shown to have additional actions that should help reduce the

  5. Calcium antagonists and the diabetic hypertensive patient

    DEFF Research Database (Denmark)

    Parving, H H; Rossing, P

    1993-01-01

    reduces albuminuria, delays the progression of nephropathy, and postpones renal insufficiency in diabetic nephropathy. Calcium antagonists and angiotensin converting enzyme inhibitors induce an acute increase in the glomerular filtration rate, renal plasma flow, and renal sodium excretion......Roughly 40% of all diabetic patients, whether insulin dependent or not, develop persistent albuminuria (over 300 mg/24 hr), a decrease in the glomerular filtration rate, and elevated blood pressure, ie, diabetic nephropathy. Diabetic nephropathy is the single most important cause of end stage renal...... disease in the Western world, and accounts for over a quarter of all end stage renal disease. It also is a major cause of the increased morbidity and mortality seen in diabetic patients; for example, the cost of end stage renal care in the United States currently exceeds +1.8 billion per year for diabetic...

  6. Assay method for organic calcium antagonist drugs and a kit for such an assay

    International Nuclear Information System (INIS)

    Snyder, S. H.; Gould, R. J.

    1985-01-01

    A method for measuring the level of organic calcium antagonist drug in a body fluid comprises preparing a mixture of a radioactive calcium antagonist drug, a body fluid containing a calcium antagonist drug and a calcium antagonist receptor material, measuring the radioactivity of the radioactive calcium antagonist drug bound to said calcium antagonist receptor material and deriving the concentration of the calcium antagonist drug in the body fluid from a standard curve indicating the concentration of calcium antagonist drug versus inhibition of binding of said radioactive calcium antagonist drug to said receptor sites caused by the calcium antagonist drug in said body fluid. A kit for measuring the level of an organic calcium drug comprises a receptacle containing a radioactive calcium antagonist drug, a calcium antagonist receptor material and a standard amount of a nonradioactive calcium antagonist drug

  7. Antagonistic activity of marine sponges associated Actinobacteria

    Directory of Open Access Journals (Sweden)

    Selvakumar Dharmaraj

    2016-06-01

    Full Text Available Objective: To focus on the isolation and preliminary characterization of marine sponges associated Actinobacteria particularly Streptomyces species and also their antagonistic activities against bacterial and fungal pathogens. Methods: The sponges were collected from Kovalam and Vizhinjam port of south-west coast of Kerala, India. Isolation of strains was carried out from sponge extracts using international Streptomyces project media. For preliminary identification of the strains, morphological (mycelial colouration, soluble pigments, melanoid pigmentation, spore morphology, nutritional uptake (carbon utilisation, amonoacids influence, sodium chloride tolerance, physiological (pH, temperature and chemotaxonomical characterization were done. Antimicrobial studies were also carried out for the selected strains. Results: With the help of the spicule structures, the collected marine sponges were identified as Callyspongia diffusa, Mycale mytilorum, Tedania anhelans and Dysidea fragilis. Nearly 94 strains were primarily isolated from these sponges and further they were sub-cultured using international Streptomyces project media. The strains exhibited different mycelial colouration (aerial and substrate, soluble and melanoid pigmentations. The strains possessed three types of sporophore morphology namely rectus flexibilis, spiral and retinaculiaperti. Among the 94 isolates, seven exhibited antibacterial and antifungal activities with maximal zone of inhibition of 30 mm. The nutritional, physiological and chemotaxonomical characteristic study helped in the conventional identification of the seven strains and they all suggest that the strains to be grouped under the genus Streptomyces. Conclusions: The present study clearly helps in the preliminary identification of the isolates associated with marine sponges. Antagonistic activities prove the production of antimicrobial metabolites against the pathogens. Marine sponges associated Streptomyces are

  8. Variations in the stimulus salience of cocaine reward influences drug-associated contextual memory.

    Science.gov (United States)

    Liddie, Shervin; Itzhak, Yossef

    2016-03-01

    Drugs of abuse act as reinforcers because they influence learning and memory processes resulting in long-term memory of drug reward. We have previously shown that mice conditioned by fixed daily dose of cocaine (Fix-C) or daily escalating doses of cocaine (Esc-C) resulted in short- and long-term persistence of drug memory, respectively, suggesting different mechanisms in acquisition of cocaine memory. The present study was undertaken to investigate the differential contribution of N-methyl-D-aspartate receptor (NMDAR) subunits in the formation of Fix-C and Esc-C memory in C57BL/6J mice. Training by Esc-C resulted in marked elevation in hippocampal expression of Grin2b mRNA and NR2B protein levels compared with training by Fix-C. The NR2B-containing NMDAR antagonist ifenprodil had similar attenuating effects on acquisition and reconsolidation of Fix-C and Esc-C memory. However, the NMDAR antagonist MK-801 had differential effects: (1) higher doses of MK-801 were required for post-retrieval disruption of reconsolidation of Esc-C memory than Fix-C memory; and (2) pre-retrieval MK-801 inhibited extinction of Fix-C memory but it had no effect on Esc-C memory. In addition, blockade of NMDAR downstream signaling pathways also showed differential regulation of Fix-C and Esc-C memory. Inhibition of neuronal nitric oxide synthase attenuated acquisition and disrupted reconsolidation of Fix-C but not Esc-C memory. In contrast, the mitogen-activating extracellular kinase inhibitor SL327 attenuated reconsolidation of Esc-C but not Fix-C memory. These results suggest that NMDAR downstream signaling molecules associated with consolidation and reconsolidation of cocaine-associated memory may vary upon changes in the salience of cocaine reward during conditioning. © 2014 Society for the Study of Addiction.

  9. Monosodium glutamate intake affect the function of the kidney through NMDA receptor.

    Science.gov (United States)

    Mahieu, Stella; Klug, Maximiliano; Millen, Néstor; Fabro, Ana; Benmelej, Adriana; Contini, Maria Del Carmen

    2016-03-15

    We investigated whether the chronic intake of monosodium glutamate (MSG) with food affects kidney function, and renal response to glycine. We also established if the NMDA receptors are involved in the changes observed. Male Wistar rats (5weeks old) were fed a diet supplemented with MSG (3g/kg b.w./day), five days a week, and spontaneous ingestion of a 1% MSG solution during 16weeks. NaCl rats were fed a diet with NaCl (1g/kg b.w./day) and 0.35% NaCl solution at the same frequency and time. Control group was fed with normal chow and tap water. We utilized clearance techniques to examine glomerular filtration rate (GFR) and cortical renal plasma flow (CRPF) response to glycine and glycine+MK-801 (antagonist NMDA-R), and we determined NMDA-R1 in kidney by immunohistochemistry. The addition of MSG in the diet of rats increased both GFR and CRPF with an increase of absolute sodium reabsorption. However, hyperfiltration was accompanied with a normal response to glycine infusion. Immunostain of kidney demonstrate that the NMDA receptor is upregulated in rats fed with MSG diet. NMDA-R antagonist MK-801 significantly reduced both the GFR and CRPF; however the percentage of reduction was significantly higher in the group MSG. MK-801 also reduces fractional excretion of water, sodium and potassium in the three groups. Renal NMDAR may be conditioned by the addition of MSG in the diet, favoring the hyperfiltration and simultaneously Na retention in the body. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Visual impairment in the hearing impaired students.

    Science.gov (United States)

    Gogate, Parikshit; Rishikeshi, Nikhil; Mehata, Reshma; Ranade, Satish; Kharat, Jitesh; Deshpande, Madan

    2009-01-01

    Ocular problems are more common in children with hearing problems than in normal children. Neglected visual impairment could aggravate educational and social disability. To detect and treat visual impairment, if any, in hearing-impaired children. Observational, clinical case series of hearing-impaired children in schools providing special education. Hearing-impaired children in selected schools underwent detailed visual acuity testing, refraction, external ocular examination and fundoscopy. Ocular motility testing was also performed. Teachers were sensitized and trained to help in the assessment of visual acuity using Snellen's E charts. Refractive errors and squint were treated as per standard practice. Excel software was used for data entry and SSPS for analysis. The study involved 901 hearing-impaired students between four and 21 years of age, from 14 special education schools. A quarter of them (216/901, 24%) had ocular problems. Refractive errors were the most common morbidity 167(18.5%), but only 10 children were using appropriate spectacle correction at presentation. Fifty children had visual acuity less than 20/80 at presentation; after providing refractive correction, this number reduced to three children, all of whom were provided low-vision aids. Other common conditions included strabismus in 12 (1.3%) children, and retinal pigmentary dystrophy in five (0.6%) children. Ocular problems are common in hearing-impaired children. Screening for ocular problems should be made mandatory in hearing-impaired children, as they use their visual sense to compensate for the poor auditory sense.

  11. Effect of a Hypocretin/Orexin Antagonist on Neurocognitive Performance

    Science.gov (United States)

    2013-12-18

    Effectiveness Directorate, Biosciences and Protection Division, Warfighter Fatigue Countermeasures Branch. 35. Golden, C.J. (1978). Stroop Color and Word Test: A...0080 TITLE: Effect of a Hypocretin/Orexin Antagonist on Neurocognitive Performance PRINCIPAL INVESTIGATOR: Dr. Thomas Neylan...31August2013 4. TITLE AND SUBTITLE Effect of a Hypocretin/Orexin Antagonist on Neurocognitive Performance 5a. CONTRACT NUMBER W81XWH

  12. Using waste of Tofu production improved antagonistic activities of a ...

    African Journals Online (AJOL)

    Mrs. Hoa

    2012-10-04

    Oct 4, 2012 ... screened for their antagonistic activity against 10 races of Xoo causing rice bacterial blight disease. Three actinomycete strains ... antagonistic activity of VN10-A-44 against the Xoo pathogen and to make use of tofu waste for large- ..... vitamins and some essential amino acids which are very important for ...

  13. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes

    DEFF Research Database (Denmark)

    Tricoci, Pierluigi; Huang, Zhen; Held, Claes

    2012-01-01

    Vorapaxar is a new oral protease-activated-receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation.......Vorapaxar is a new oral protease-activated-receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation....

  14. Evaluation of antagonistic fungi against charcoal rot of sunflower ...

    African Journals Online (AJOL)

    In vitro, sensitivity of Macrophomina phaseolina (Tassi) Goid determined through inhibition zone technique to various antagonistic fungi viz., Aspergillus niger, Aspergillus flavus, Trichoderma viride, Trichoderma harzianum and Penicillium capsulatum amended into PDA medium. All the antagonists reduced the colony ...

  15. Calcium antagonists for ischemic stroke: a systematic review

    NARCIS (Netherlands)

    Horn, J.; Limburg, M.

    2001-01-01

    BACKGROUND AND PURPOSE: Stroke is a common disease, and many trials with calcium antagonists as possible neuroprotective agents have been conducted. The aim of this review is to determine whether calcium antagonists reduce the risk of death or dependency after acute ischemic stroke. METHODS: Acute

  16. Antagonistic and Bargaining Games in Optimal Marketing Decisions

    Science.gov (United States)

    Lipovetsky, S.

    2007-01-01

    Game theory approaches to find optimal marketing decisions are considered. Antagonistic games with and without complete information, and non-antagonistic games techniques are applied to paired comparison, ranking, or rating data for a firm and its competitors in the market. Mix strategy, equilibrium in bi-matrix games, bargaining models with…

  17. Interaction between Antagonist of Cannabinoid Receptor and Antagonist of Adrenergic Receptor on Anxiety in Male Rat

    Directory of Open Access Journals (Sweden)

    Alireza Komaki

    2014-07-01

    Full Text Available Introduction: Anxiety is among the most common and treatable mental disorders. Adrenergic and cannabinoid systems have an important role in the neurobiology of anxiety. The elevated plus-maze (EPM has broadly been used to investigate anxiolytic and anxiogenic compounds. The present study investigated the effects of intraperitoneal (IP injection of cannabinoid CB1 receptor antagonist (AM251 in the presence of alpha-1 adrenergic antagonist (Prazosin on rat behavior in the EPM. Methods: In this study, the data were obtained from male Wistar rat, which weighing 200- 250 g. Animal behavior in EPM were videotaped and saved in computer for 10 min after IP injection of saline, AM251 (0.3 mg/kg, Prazosin (0.3 mg/kg and AM251 + Prazosin, subsequently scored for conventional indices of anxiety. During the test period, the number of open and closed arms entries, the percentage of entries into the open arms of the EPM, and the spent time in open and closed arms were recorded. Diazepam was considered as a positive control drug with anxiolytic effect (0.3, 0.6, 1.2 mg/kg. Results: Diazepam increased the number of open arm entries and the percentage of spent time on the open arms. IP injection of AM251 before EPM trial decreased open arms exploration and open arm entry. Whereas, Prazosin increased open arms exploration and open arm entry. This study showed that both substances in simultaneous injection have conflicting effects on the responses of each of these two compounds in a single injection. Discussion: Injection of CB1 receptor antagonist may have an anxiogenic profile in rat, whereas adrenergic antagonist has an anxiolytic effect. Further investigations are essential for better understanding of anxiolytic and anxiogenic properties and neurobiological mechanisms of action and probable interactions of the two systems.

  18. Evaluation of the Interaction between NMDA Receptors of Nucleus Accumbens and Muscarinic Receptors in Memory

    Directory of Open Access Journals (Sweden)

    Saba Taheri

    2013-02-01

    Full Text Available Background and Objectives: Whereas studies have indicated the interaction between NMDA and cholinergic systems, this study was performed with the aim of determining the role of NMDA receptors in the nucleus accumbens (NAc in scopolamine-induced amnesia.Methods: In this study, at first rats were anesthetized with intra-peritoneal injection of ketamine hydrochloride plus xylazine, and then placed in a stereotaxic apparatus. Two stainless-steel cannulas were placed 2mm above nucleus accumbens shell. All animals were allowed to recover for one week, before beginning the behavioral testing. Then, animals were trained in a step-through type inhibitory avoidance task. The drugs were injected after successful training and before testing. The animals were tested 24h after training, and the step-through latency time was measured as the memory criterion in male Wistar rats. One-way analysis of variance and Tukey’s test were used for analysis of the data. p<0.05 was considered statistically significant.Results: Intra-nucleus accumbens (intra-NAc injection of scopolamine or NMDA caused impairment in memory in rats. Although, co-administration of an ineffective dose of NMDA with an ineffective dose of scopolamine had no significant effect on memory performance, effective doses of NMDA prevented the amnesic effect of scopolamine on inhibitory avoidance memory. On the other hand, intra-NAc injection of NMDA receptor antagonist, i.e., MK-801 caused no change in memory performance by itself, and its co-administration with an effective dose of scopolamine could not prevent the impairing effect of the latter drug. Conclusion: The finding of this study indicated that NMDA receptors in the nucleus accumbens are involved in the modulation of scopolamine-induced amnesia.

  19. Methamphetamine decreases dentate gyrus stem cell self-renewal and shifts the differentiation towards neuronal fate

    Directory of Open Access Journals (Sweden)

    Sofia Baptista

    2014-09-01

    Full Text Available Methamphetamine (METH is a highly addictive psychostimulant drug of abuse that negatively interferes with neurogenesis. In fact, we have previously shown that METH triggers stem/progenitor cell death and decreases neuronal differentiation in the dentate gyrus (DG. Still, little is known regarding its effect on DG stem cell properties. Herein, we investigate the impact of METH on mice DG stem/progenitor cell self-renewal functions. METH (10 nM decreased DG stem cell self-renewal, while 1 nM delayed cell cycle in the G0/G1-to-S phase transition and increased the number of quiescent cells (G0 phase, which correlated with a decrease in cyclin E, pEGFR and pERK1/2 protein levels. Importantly, both drug concentrations (1 or 10 nM did not induce cell death. In accordance with the impairment of self-renewal capacity, METH (10 nM decreased Sox2+/Sox2+ while increased Sox2−/Sox2− pairs of daughter cells. This effect relied on N-methyl-d-aspartate (NMDA signaling, which was prevented by the NMDA receptor antagonist, MK-801 (10 μM. Moreover, METH (10 nM increased doublecortin (DCX protein levels consistent with neuronal differentiation. In conclusion, METH alters DG stem cell properties by delaying cell cycle and decreasing self-renewal capacities, mechanisms that may contribute to DG neurogenesis impairment followed by cognitive deficits verified in METH consumers.

  20. Current position of 5HT3 antagonists and the additional value of NK1 antagonists; a new class of antiemetics

    NARCIS (Netherlands)

    R. de Wit (Ronald)

    2003-01-01

    textabstractThe advent of the 5HT3 receptor antagonists (5HT3 antagonists) in the 1990s and the combination with dexamethasone has resulted in acute emesis protection in 70% of patients receiving highly emetogenic chemotherapy. Despite complete protection in the acute phase, however, 40% of patients

  1. Mild Cognitive Impairment (MCI)

    Science.gov (United States)

    Mild cognitive impairment (MCI) Overview Mild cognitive impairment (MCI) is an intermediate stage between the expected cognitive decline of normal aging and the more-serious decline of dementia. It can involve ...

  2. Mild Cognitive Impairment (MCI)

    Science.gov (United States)

    Mild cognitive impairment (MCI) Overview Mild cognitive impairment (MCI) is an intermediate stage between the expected cognitive decline of normal aging and the more-serious decline of dementia. It ...

  3. Learning and memory in the forced swimming test: effects of antidepressants having varying degrees of anticholinergic activity.

    Science.gov (United States)

    Enginar, Nurhan; Yamantürk-Çelik, Pınar; Nurten, Asiye; Güney, Dilvin Berrak

    2016-07-01

    The antidepressant-induced reduction in immobility time in the forced swimming test may depend on memory impairment due to the drug's anticholinergic efficacy. Therefore, the present study evaluated learning and memory of the immobility response in rats after the pretest and test administrations of antidepressants having potent, comparatively lower, and no anticholinergic activities. Immobility was measured in the test session performed 24 h after the pretest session. Scopolamine and MK-801, which are agents that have memory impairing effects, were used as reference drugs for a better evaluation of the memory processes in the test. The pretest administrations of imipramine (15 and 30 mg/kg), amitriptyline (7.5 and 15 mg/kg), trazodone (10 mg/kg), fluoxetine (10 and 20 mg/kg), and moclobemide (10 and 20 mg/kg) were ineffective, whereas the pretest administrations of scopolamine (0.5 mg/kg) and MK-801 (0.1 mg/kg) decreased immobility time suggesting impaired "learning to be immobile" in the animals. The test administrations of imipramine (30 mg/kg), amitriptyline (15 mg/kg), moclobemide (10 mg/kg), scopolamine (0.5 and 1 mg/kg), and MK-801 (0.1 mg/kg) decreased immobility time, which suggested that the drugs exerted antidepressant activity or the animals did not recall that attempting to escape was futile. The test administrations of trazodone (10 mg/kg) and fluoxetine (10 and 20 mg/kg) produced no effect on immobility time. Even though the false-negative and positive responses made it somewhat difficult to interpret the findings, this study demonstrated that when given before the pretest antidepressants with or without anticholinergic activity seemed to be devoid of impairing the learning process in the test.

  4. Antagonistic neural networks underlying differentiated leadership roles

    Science.gov (United States)

    Boyatzis, Richard E.; Rochford, Kylie; Jack, Anthony I.

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks – the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success. PMID:24624074

  5. Antagonistic Neural Networks Underlying Differentiated Leadership Roles

    Directory of Open Access Journals (Sweden)

    Richard Eleftherios Boyatzis

    2014-03-01

    Full Text Available The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950’s. Recent research in neuroscience suggests that the division between task oriented and socio-emotional oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks -- the Task Positive Network (TPN and the Default Mode Network (DMN. Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  6. Antagonistic neural networks underlying differentiated leadership roles.

    Science.gov (United States)

    Boyatzis, Richard E; Rochford, Kylie; Jack, Anthony I

    2014-01-01

    The emergence of two distinct leadership roles, the task leader and the socio-emotional leader, has been documented in the leadership literature since the 1950s. Recent research in neuroscience suggests that the division between task-oriented and socio-emotional-oriented roles derives from a fundamental feature of our neurobiology: an antagonistic relationship between two large-scale cortical networks - the task-positive network (TPN) and the default mode network (DMN). Neural activity in TPN tends to inhibit activity in the DMN, and vice versa. The TPN is important for problem solving, focusing of attention, making decisions, and control of action. The DMN plays a central role in emotional self-awareness, social cognition, and ethical decision making. It is also strongly linked to creativity and openness to new ideas. Because activation of the TPN tends to suppress activity in the DMN, an over-emphasis on task-oriented leadership may prove deleterious to social and emotional aspects of leadership. Similarly, an overemphasis on the DMN would result in difficulty focusing attention, making decisions, and solving known problems. In this paper, we will review major streams of theory and research on leadership roles in the context of recent findings from neuroscience and psychology. We conclude by suggesting that emerging research challenges the assumption that role differentiation is both natural and necessary, in particular when openness to new ideas, people, emotions, and ethical concerns are important to success.

  7. Cannabinoid receptor antagonists: pharmacological opportunities, clinical experience, and translational prognosis.

    Science.gov (United States)

    Janero, David R; Makriyannis, Alexandros

    2009-03-01

    The endogenous cannabinoid (CB) (endocannabinoid) signaling system is involved in a variety of (patho)physiological processes, primarily by virtue of natural, arachidonic acid-derived lipids (endocannabinoids) that activate G protein-coupled CB1 and CB2 receptors. A hyperactive endocannabinoid system appears to contribute to the etiology of several disease states that constitute significant global threats to human health. Consequently, mounting interest surrounds the design and profiling of receptor-targeted CB antagonists as pharmacotherapeutics that attenuate endocannabinoid transmission for salutary gain. Experimental and clinical evidence supports the therapeutic potential of CB1 receptor antagonists to treat overweight/obesity, obesity-related cardiometabolic disorders, and substance abuse. Laboratory data suggest that CB2 receptor antagonists might be effective immunomodulatory and, perhaps, anti-inflammatory drugs. One CB1 receptor antagonist/inverse agonist, rimonabant, has emerged as the first-in-class drug approved outside the United States for weight control. Select follow-on agents (taranabant, otenabant, surinabant, rosonabant, SLV-319, AVE1625, V24343) have also been studied in the clinic. However, rimonabant's market withdrawal in the European Union and suspension of rimonabant's, taranabant's, and otenabant's ongoing development programs have highlighted some adverse clinical side effects (especially nausea and psychiatric disturbances) of CB1 receptor antagonists/inverse agonists. Novel CB1 receptor ligands that are peripherally directed and/or exhibit neutral antagonism (the latter not affecting constitutive CB1 receptor signaling) may optimize the benefits of CB1 receptor antagonists while minimizing any risk. Indeed, CB1 receptor-neutral antagonists appear from preclinical data to offer efficacy comparable to or better than that of prototype CB1 receptor antagonists/inverse agonists, with less propensity to induce nausea. Continued

  8. Memory Impairment in Children with Language Impairment

    Science.gov (United States)

    Baird, Gillian; Dworzynski, Katharina; Slonims, Vicky; Simonoff, Emily

    2010-01-01

    Aim: The aim of this study was to assess whether any memory impairment co-occurring with language impairment is global, affecting both verbal and visual domains, or domain specific. Method: Visual and verbal memory, learning, and processing speed were assessed in children aged 6 years to 16 years 11 months (mean 9y 9m, SD 2y 6mo) with current,…

  9. Visual impairment in the hearing impaired students

    Directory of Open Access Journals (Sweden)

    Gogate Parikshit

    2009-01-01

    Full Text Available Background : Ocular problems are more common in children with hearing problems than in normal children. Neglected visual impairment could aggravate educational and social disability. Aim : To detect and treat visual impairment, if any, in hearing-impaired children. Setting and Design : Observational, clinical case series of hearing-impaired children in schools providing special education. Materials and Methods : Hearing-impaired children in selected schools underwent detailed visual acuity testing, refraction, external ocular examination and fundoscopy. Ocular motility testing was also performed. Teachers were sensitized and trained to help in the assessment of visual acuity using Snellen′s E charts. Refractive errors and squint were treated as per standard practice. Statistical Analysis : Excel software was used for data entry and SSPS for analysis. Results : The study involved 901 hearing-impaired students between four and 21 years of age, from 14 special education schools. A quarter of them (216/901, 24% had ocular problems. Refractive errors were the most common morbidity 167(18.5%, but only 10 children were using appropriate spectacle correction at presentation. Fifty children had visual acuity less than 20/80 at presentation; after providing refractive correction, this number reduced to three children, all of whom were provided low-vision aids. Other common conditions included strabismus in 12 (1.3% children, and retinal pigmentary dystrophy in five (0.6% children. Conclusion : Ocular problems are common in hearing-impaired children. Screening for ocular problems should be made mandatory in hearing-impaired children, as they use their visual sense to compensate for the poor auditory sense.

  10. Multiple Targeting Approaches on Histamine H3 Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Mohammad eKhanfar

    2016-05-01

    Full Text Available With the very recent market approval of pitolisant (Wakix®, the interest in clinical applications of novel multifunctional histamine H3 receptor antagonists has clearly increased. Since histamine H3 receptor antagonists in clinical development have been tested for a variety of different indications, the combination of pharmacological properties in one molecule for improved pharmacological effects and reduced unwanted side-effects is rationally based on the increasing knowledge on the complex neurotransmitter regulations. The polypharmacological approaches on histamine H3 receptor antagonists on different G-protein coupled receptors, transporters, enzymes as well as on NO-signaling mechanism are described, supported with some lead structures.

  11. Possible site of action of CGRP antagonists in migraine

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer; Olesen, Jes

    2011-01-01

    The calcitonin gene-related peptide (CGRP) receptor antagonists olcegepant and telcagepant are very potent drugs. Both are effective in migraine but in doses much higher than would be predicted from receptor binding and other in vitro results. This could perhaps suggest an effect of CGRP antagoni......The calcitonin gene-related peptide (CGRP) receptor antagonists olcegepant and telcagepant are very potent drugs. Both are effective in migraine but in doses much higher than would be predicted from receptor binding and other in vitro results. This could perhaps suggest an effect of CGRP...... antagonists behind the blood-brain barrier (BBB), i.e. in the central nervous system (CNS)....

  12. Serotonin-dependent maintenance of spatial performance and electroencephalography activation after cholinergic blockade: effects of serotonergic receptor antagonists.

    Science.gov (United States)

    Dringenberg, H C; Zalan, R M

    1999-08-07

    The interaction between acetylcholine (ACh) and serotonin (5-hydroxytryptamine, 5-HT) in the control of behavior such as spatial navigation has received considerable attention over the last years. Previous research indicates that while a selective reduction in cholinergic transmission often produces only mild impairments in spatial and other behavioral tests, additional serotonergic blockade results in the appearance of severe behavioral deficits. Consequently, it has been argued that 5-HT plays a role in the maintenance of behavioral capacities in the face of reduced cholinergic transmission. Here, we examined the effects of 5-HT depletion and receptor blockade, alone and in combination with cholinergic-muscarinic antagonism, on spatial navigation of rats in the Morris water maze. Further, electroencephalographic (EEG) recordings were taken to test the hypothesis that a loss of neocortical activation is related to the behavioral deficits apparent after cholinergic-serotonergic blockade. The muscarinic antagonist, scopolamine (1 mg/kg) produced a moderate impairment in navigational performance. The 5-HT depletor, p-chlorophenylalanine (PCPA; 500 mg kg(-1) day(-1)x2) did not impair performance when given alone but strongly potentiated the scopolamine-induced deficit and completely blocked the acquisition of an escape response in the water maze. This effect was mimicked by the non-selective serotonin(1-2) receptor antagonist, methiothepin (0.3 mg/kg), but not by the selective serotonin(1A) antagonist, WAY 100635 (0.1-0.5 mg/kg) or the serotonin(2) antagonist, ketanserin (2-4 mg/kg). None of the 5-HT antagonists impaired performance when given alone. Electrocorticographic recordings in rats treated with scopolamine and serotonergic receptor antagonists showed that during behavioral immobility, scopolamine (1 mg/kg) increased spectral power in all frequency bands between 0.5 and 20 Hz without significantly affecting cortical activity during movement. None of the 5-HT

  13. De-coupling of blood flow and metabolism in the rat brain induced by glutamate

    International Nuclear Information System (INIS)

    Hirose, Shinichiro; Momosaki, Sotaro; Sasaki, Kazunari; Hosoi, Rie; Abe, Kohji; Inoue, Osamu; Gee, A.

    2009-01-01

    Glutamate plays an essential role in neuronal cell death in many neurological disorders. In this study, we examined both glucose metabolism and cerebral blood flow in the same rat following infusion of glutamate or ibotenic acid using the dual-tracer technique. The effects of MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, and 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate receptor antagonist, on the changes in the glucose metabolism and cerebral blood flow induced by glutamate were also examined. The rats were microinjected with glutamate (1 μmol/μl, 2 μl) or ibotenic acid (10 μg/μl, 1 μl) into the right striatum, and dual-tracer autoradiograms of [ 18 F]fluorodeoxyglucose (FDG) and [ 14 C]iofetamine (IMP) were obtained. MK-801 and NBQX were injected intravenously about 45 and 30 min, respectively, after the infusion of glutamate. De-coupling of blood flow and metabolism was noted in the glutamate-infused hemisphere (as assessed by no alteration of [ 18 F]FDG uptake and significant decrease of [ 14 C]IMP uptake). Pretreatments with MK-801, NBQX, or combined use of MK-801 and NBQX did not affect the de-coupling of the blood flow and metabolism induced by glutamate. A histochemical study revealed that about 20% neuronal cell death had occurred in the striatum at 105 min after the infusion of glutamate. In addition, a significant increase of the [ 18 F]FDG uptake and decrease of [ 14 C]IMP uptake were also seen in the rat brain infused with ibotenic acid. These results indicate that glutamate and ibotenic acid caused a significant de-coupling of blood flow and glucose metabolism in the intact rat brain during the early phase of neurodegeneration. It is necessary to evaluate the relation between metabotropic glutamate receptors and de-coupling of blood flow and metabolism. (author)

  14. Sedation and memory: studies with a histamine H-1 receptor antagonist.

    Science.gov (United States)

    Turner, Claire; Handford, Alison D F; Nicholson, Anthony N

    2006-07-01

    The influence of sedation on the effect of an H-1 receptor antagonist on various cognitive functions, including memory, were evaluated. Diphenhydramine (50, 75 and 100 mg) and lorazepam (0.5 and 1.5 mg) were given on single occasions to 12 healthy volunteers (six males, six females) aged 20-33 (mean 23.4) years. Subjective assessments of sedation, sleep latencies, digit symbol substitution, choice reaction time, sustained attention and memory recall were studied 1.0 h before and 0.5, 2.0 and 3.5 h after drug ingestion. The study was double blind, placebo controlled and with a crossover design. With all doses of diphenhydramine there was subjective sedation, reduced sleep latencies and impairments in performance on the digit symbol substitution, choice reaction time and sustained attention tasks. No effects were observed with 0.5 mg lorazepam. With 1.5 mg lorazepam there was subjective sedation, fewer digit symbol substitutions, slowed choice reaction time, impaired attention and memory, but no effect on sleep latencies. Contrast analysis of data measured at all time points showed that although there was no difference in the effect of diphenhydramine (100 mg) and lorazepam (1.5 mg) on those tasks without a memory component, response times were slower with lorazepam on those tasks with a memory component. However, both 100 mg diphenhydramine and 1.5 mg lorazepam impaired prompted recall measured at 2 h post-ingestion only. It is considered that impaired memory is not necessarily associated with sedation, and that impairment of memory with drugs that lead to sedation may be effected through neuronal systems independent of those that affect arousal.

  15. 5-HT3 antagonist for cognition improvement in schizophrenia: a double blind, placebo-controlled trial

    Directory of Open Access Journals (Sweden)

    Neyousha Mohammadi

    2010-01-01

    Full Text Available Introduction: Patients with schizophrenia characteristically exhibit cognitive deficits. The level of cognitive impairment is found to predict the functional outcome of the illness more strongly than the severity of positive or negative symptoms. The purpose of this study was to assess the efficacy of ondansetron, a 5-HT3 receptor antagonist as an adjuvant agent in the treatment of chronic schizophrenia in particular for cognitive impairments. Methods: This investigation was a 12-week, double blind study of parallel groups of patients with stable chronic schizophrenia. Thirty patients were recruited from inpatient and outpatient departments. All participants met Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision (DSM-IV-TR criteria for schizophrenia. To be eligible, patients were required to have been treated with a stable dose of risperidone as their primary antipsychotic treatment for a minimum period of 8 weeks. The subjects were randomized to receive ondansetron (8 mg/day or the placebo in addition to risperidone. Cognition was measured by a cognitive battery. Patients were assessed at baseline and after 8, and 12 weeks after the medication started. Results: Administration of ondansetron significantly improved visual memory based on improvement on visual reproduction, visual paired associate and figural memory sub tests of Wechsler Memory Scale Revised. Discussion: The present study indicates ondansetron as potential adjunctive treatment strategy for chronic schizophrenia particularly for cognitive impairments.

  16. 5-HT3 antagonist for cognition improvement in schizophrenia: a double blind, placebo-controlled trial

    Directory of Open Access Journals (Sweden)

    Neyousha Mohammadi

    2010-01-01

    Full Text Available   Abstract   Introduction: Patients with schizophrenia characteristically exhibit cognitive deficits. The level of cognitive impairment is found to predict the functional outcome of the illness more strongly than the severity of positive or negative symptoms. The purpose of this study was to assess the efficacy of ondansetron, a 5-HT3 receptor antagonist as an adjuvant agent in the treatment of chronic schizophrenia in particular for cognitive impairments.   Methods: This investigation was a 12-week, double blind study of parallel groups of patients with stable chronic schizophrenia. Thirty patients were recruited from inpatient and outpatient departments. All participants met Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision (DSM-IV-TR criteria for schizophrenia. To be eligible, patients were required to have been treated with a stable dose of risperidone as their primary antipsychotic treatment for a minimum period of 8 weeks. The subjects were randomized to receive ondansetron (8 mg/day or the placebo in addition to risperidone. Cognition was measured by a cognitive battery. Patients were assessed at baseline and after 8, and 12 weeks after the medication started.   Results: Administration of ondansetron significantly improved visual memory based on improvement on visual reproduction, visual paired associate and figural memory sub tests of Wechsler Memory Scale Revised.  Discussion: The present study indicates ondansetron as potential adjunctive treatment strategy for chronic schizophrenia particularly for cognitive impairments.

  17. Practical recommendations for calcium channel antagonist poisoning.

    Science.gov (United States)

    Rietjens, S J; de Lange, D W; Donker, D W; Meulenbelt, J

    2016-02-01

    Calcium channel antagonists (CCAs) are widely used for different cardiovascular disorders. At therapeutic doses, CCAs have a favourable side effect profile. However, in overdose, CCAs can cause serious complications, such as severe hypotension and bradycardia. Patients in whom a moderate to severe intoxication is anticipated should be observed in a monitored setting for at least 12 hours if an immediate-release formulation is ingested, and at least 24 hours when a sustained-release formulation (or amlodipine) is involved, even if the patient is asymptomatic. Initial treatment is aimed at gastrointestinal decontamination and general supportive care, i.e., fluid resuscitation and correction of metabolic acidosis and electrolyte disturbances. In moderate to severe CCA poisoning, a combined medical strategy might be indispensable, such as administration of vasopressors, intravenous calcium and hyperinsulinaemia/euglycaemia therapy. Especially hyperinsulinaemia/euglycaemia therapy is an important first-line treatment in CCA-overdosed patients in whom a large ingestion is suspected. High-dose insulin, in combination with glucose, seems to be most effective when used early in the intoxication phase, even when the patient shows hardly any haemodynamic instability. Intravenous lipid emulsion therapy should only be considered in patients with life-threatening cardiovascular toxicity, such as refractory shock, which is unresponsive to conventional therapies. When supportive and specific pharmacological measures fail to adequately reverse refractory conditions in CCA overdose, the use of extracorporeal life support should be considered. The efficacy of these pharmacological and non-pharmacological interventions generally advocated in CCA poisoning needs further in-depth mechanistic foundation, in order to improve individualised treatment of CCA-overdosed patients.

  18. Characterization and design of antagonistic shape memory alloy actuators

    International Nuclear Information System (INIS)

    Georges, T; Brailovski, V; Terriault, P

    2012-01-01

    Antagonistic shape memory actuators use opposing shape memory alloy (SMA) elements to create devices capable of producing differential motion paths and two-way mechanical work in a very efficient manner. There is no requirement for additional bias elements to ‘re-arm’ the actuators and allow repetitive actuation. The work generation potential of antagonistic shape memory actuators is determined by specific SMA element characteristics and their assembly conditions. In this study, the selected SMA wires are assembled in antagonistic configuration and characterized using a dedicated test bench to evaluate their stress–strain characteristics as a function of the number of cycles. Using these functional characteristics, a so-called ‘working envelope’ is built to assist in the design of such an actuator. Finally, the test bench is used to simulate a real application of an antagonistic actuator (case study). (paper)

  19. A SELECTIVE ANTAGONIST OF MINERALOCORTICOID RECEPTOR EPLERENONE IN CARDIOLOGY PRACTICE

    Directory of Open Access Journals (Sweden)

    B. B. Gegenava

    2015-01-01

    Full Text Available The role of aldosterone in pathophysiological processes is considered. The effects of the selective antagonist of mineralocorticoid receptor eplerenone are analyzed. The advantages of eplerenone compared with spironolactone are discussed.

  20. Development of KGF Antagonist as a Breast Cancer Therapeutic

    National Research Council Canada - National Science Library

    Sugimoto, Yasuro

    2003-01-01

    .... We were able to show some potential intracellular KGFR target small molecules whereas extracellular target synthetic peptide antagonist was not able to do during this period We also added a new...

  1. Recent Development of Non-Peptide GnRH Antagonists

    Directory of Open Access Journals (Sweden)

    Feng-Ling Tukun

    2017-12-01

    Full Text Available The decapeptide gonadotropin-releasing hormone, also referred to as luteinizing hormone-releasing hormone with the sequence (pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2 plays an important role in regulating the reproductive system. It stimulates differential release of the gonadotropins FSH and LH from pituitary tissue. To date, treatment of hormone-dependent diseases targeting the GnRH receptor, including peptide GnRH agonist and antagonists are now available on the market. The inherited issues associate with peptide agonists and antagonists have however, led to significant interest in developing orally active, small molecule, non-peptide antagonists. In this review, we will summarize all developed small molecule GnRH antagonists along with the most recent clinical data and therapeutic applications.

  2. Complications of TNF-α antagonists and iron homeostasis

    Science.gov (United States)

    TNF-α is a central regulator of inflammation and its blockade downregulates other proinflammatory cytokines, chemokines, and growth factors. Subsequently, TNF-α antagonists are currently used in treatment regimens directed toward several inflammatory diseases. Despite a beneficia...

  3. Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists

    Science.gov (United States)

    2016-08-01

    AWARD NUMBER: W81XWH-15 1-0252 TITLE: Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists PRINCIPAL INVESTIGATOR...14 Jul 2016 4. TITLE AND SUBTITLE Enhanced Chronic Pain Management Utilizing Chemokine Receptor Antagonists 5a. CONTRACT NUMBER 5b. GRANT...Center for Substance Abuse Research Lewis Katz School of Medicine at Temple University 3500 N, Broad Street Philadelphia, PA 19140 AND ADDRESS(ES) 8

  4. Interleukin-2 receptor antagonists as induction therapy after heart transplantation

    DEFF Research Database (Denmark)

    Møller, Christian H; Gustafsson, Finn; Gluud, Christian

    2008-01-01

    About half of the transplantation centers use induction therapy after heart transplantation. Interleukin-2 receptor antagonists (IL-2Ras) are used increasingly for induction therapy. We conducted a systematic review of randomized trials assessing IL-2Ras.......About half of the transplantation centers use induction therapy after heart transplantation. Interleukin-2 receptor antagonists (IL-2Ras) are used increasingly for induction therapy. We conducted a systematic review of randomized trials assessing IL-2Ras....

  5. Expression of N-methyl D-aspartate receptor subunits in amoeboid microglia mediates production of nitric oxide via NF-κB signaling pathway and oligodendrocyte cell death in hypoxic postnatal rats.

    Science.gov (United States)

    Murugan, Madhuvika; Sivakumar, Viswanathan; Lu, Jia; Ling, Eng-Ang; Kaur, Charanjit

    2011-04-01

    The present study was focused on identifying the expression of N-methyl D-aspartate receptor (NMDAR) subunits on activated microglia and to determine their role in the pathogenesis of periventricular white matter damage (PWMD) in neonatal rats following hypoxia. One day old wistar rats were subjected to hypoxia (5% O(2) ; 95% N(2) ) and the mRNA and protein expression of NMDAR subunits (NR1, NR2A-D, and NR3A) in the periventricular white matter (PWM) was determined at different time points (3,24 h, 3, 7, and 14 days) following hypoxic exposure. Immunoexpression of NR1 and NR2A-D was localized in amoeboid microglial cells (AMC) suggesting the presence of functional NMDARs in them. The expression of NMDAR in primary microglial cultures was ascertained by RT-PCR analysis and double immunofluorescence studies. The functionality of the microglial NMDAR in cultured microglial cells was examined by monitoring calcium movements in cells with fura-2. In primary microglial cultures, hypoxia induced the nuclear translocation of NF-κB which was suppressed by administration of MK801, an NMDAR antagonist. MK801 also down regulated the hypoxia-induced expression of tumor necrosis factor-α, interleukin-1β, inducible nitric oxide synthase (iNOS), and nitric oxide (NO) production by microglia which may be mediated by the NF-κB signaling pathway. NO produced by microglia is known to cause death of oligodendrocytes in the developing PWM. In this connection, pharmacological agents such as MK801, BAY (NF-κB inhibitor), and 1400w (iNOS inhibitor) proved to be beneficial since they reduced the hypoxia-induced iNOS expression, NO production, and a corresponding reduction in the death of oligodendrocytes following hypoxia. Copyright © 2011 Wiley-Liss, Inc.

  6. Sexually dimorphic effects of NMDA receptor antagonism on brain-pituitary-gonad axis development in the platyfish

    Science.gov (United States)

    Flynn, Katherine M.; Miller, Shelly A.; Sower, Stacia A.; Schreibman, Martin P.

    2002-01-01

    The N-methyl-D-aspartate glutamate receptor (NMDAR) is found in hypothalamic nuclei involved in the regulation of reproduction in several species of mammals and fishes. NMDAR is believed to affect reproductive development and function by regulating gonadotropin releasing hormone (GnRH)-producing cells. These pathways are likely to be sexually dimorphic, as are several other neurotransmitter systems involved in reproductive function. In this report, male and female platyfish received intraperitoneal injections of 0, 5, 10, 20, 40 or 60 microg/g body wt. of the non-competitive NMDAR antagonist MK-801. Injections began at 6 weeks of age and continued thrice weekly until control animals reached puberty, as evidenced by anal fin maturation. The percent of pubescent animals was significantly affected by sex and treatment, with fewer MK-801-injected females in puberty than control females at each dose (Pmales at 10, 20 and 40 microg/g (Pmales. Histological analyses revealed typical immature gonads and pituitary glands in treated females, and typical mature morphology in control females and all males. Immunocytochemical distribution of the R1 subunit of the NMDAR within the brain-pituitary-gonad (BPG) axis was limited to GnRH-containing brain cells in all animals; however, NMDAR1 distribution was in an immature pattern in treated females and a mature pattern in all others. Neural concentrations of GnRH were unaffected by MK-801 treatment in both sexes. These data suggest that in the platyfish, NMDAR influence on reproductive development is sexually dimorphic and occurs at, or above, the level of GnRH-containing cells of the BPG axis.

  7. Interactions of CB1 and mGlu5 receptor antagonists in food intake, anxiety and memory models in rats.

    Science.gov (United States)

    Varga, Balázs; Kassai, Ferenc; Gyertyán, István

    2012-12-01

    CB(1) receptor antagonists proved to be effective anti-obesity drugs, however, their depressive and anxiogenic effects became also evident. Finding solution to overcome these psychiatric side effects is still in focus of research. Based on the available clinical and preclinical results we hypothesized that the combination of CB(1) and mGlu(5) receptor antagonisms may result in a pharmacological intervention, where the anxiolytic mGlu(5) receptor inhibition may counteract the anxiogenic psychiatric side effects of CB(1) antagonism, while CB(1) antagonism may ameliorate the memory impairing effect of mGlu(5) receptor antagonism. Further, the two components will synergistically interact in blocking food-intake and reducing obesity. For testing the interaction of mGlu(5) and CB(1) receptor antagonism MTEP [3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pridine; SIB-1757, 6-methyl-2-(phenylazo)-3-pyridinol)] (mGlu(5) antagonist) and rimonabant [(5-(4-Chlorophenyl)-1-(2,4-dichloro-phenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide)hydrochloride] (CB(1) antagonist) were used. All experiments were carried out in rats. Effects of the compounds on anxiety were tested in two foot shock induced ultrasonic vocalization paradigms, appetite suppression was assessed in the food intake test, while memory effects were tested in a context conditioned ultrasonic vocalization setup. MTEP abolished the anxiogenic effect of rimonabant, while there was an additive cooperation in suppressing appetite. However, rimonabant did not ameliorate the memory impairing effect of MTEP. By combination of CB(1) and mGluR5 antagonism, anxiety related side effects might be attenuated, appetite suppression maintained, nevertheless, the possible emergence of unwanted memory impairments can overshadow its therapeutic success. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Effect of dopamine D3 antagonists on PPI in DBA/2J mice or PPI deficit induced by neonatal ventral hippocampal lesions in rats.

    Science.gov (United States)

    Zhang, Min; Ballard, Michael E; Kohlhaas, Kathy L; Browman, Kaitlin E; Jongen-Rêlo, Ana-Lucia; Unger, Liliane V; Fox, Gerard B; Gross, Gerhard; Decker, Michael W; Drescher, Karla U; Rueter, Lynne E

    2006-07-01

    Schizophrenic patients typically exhibit impairment of sensorimotor gating, which can be modeled in animal models such as the test of prepulse inhibition of startle response (PPI) in rodents. It has been found that antipsychotics enhanced PPI in DBA mice and reversed the PPI deficit induced by neonatal ventral hippocampal (NVH) lesions in rats. However, the relative involvement of D(3) and D(2) receptors in these effects is unknown since all antipsychotics are D(2)/D(3) antagonists with limited binding preference at D(2) receptors. Therefore, in the current study, we investigated the influence of several dopamine antagonists with higher selectivity at D(3) vs D(2) receptors on PPI in DBA/2J mice and in NVH-lesioned rats. The PPI in DBA/2J mice was enhanced by the nonselective D(2)/D(3) antagonists, haloperidol at 0.3-3 mg/kg, or risperidone at 0.3-1 mg/kg, while PPI-enhancing effects were observed after the administration of higher doses of the preferential D(3)/D(2) antagonist, BP 897 at 8 mg/kg, and the selective D(3) antagonists, SB 277011 at 30 mg/kg and A-437203 at 30 mg/kg. No effect was observed following the treatment with the selective D(3) antagonist, AVE 5997 up to 30 mg/kg. The PPI deficits induced by NVH lesions were reversed by haloperidol but not by the more selective D(3) antagonists, A-437203 and AVE 5997. BP 897 enhanced PPI nonselectivity, that is, in both lesioned and nonlesioned rats. In summary, the present study indicates that PPI-enhancing effects induced by antipsychotics in DBA/2J mice and in NVH-lesioned rats are unlikely to be mediated by D(3) receptors.

  9. Platelet-activating factor (PAF)-antagonists of natural origin.

    Science.gov (United States)

    Singh, Preeti; Singh, Ishwari Narayan; Mondal, Sambhu Charan; Singh, Lubhan; Garg, Vipin Kumar

    2013-01-01

    Presently herbal medicines are being used by about 80% of the world population for primary health care as they stood the test of time for their safety, efficacy, cultural acceptability and lesser side effects. The discovery of platelet activating factor antagonists (PAF antagonists) during these decades are going on with different framework, but the researchers led their efficiency in studying in vitro test models. Since it is assumed that PAF play a central role in etiology of many diseases in humans such as asthma, neuronal damage, migraine, cardiac diseases, inflammatory, headache etc. Present days instinctively occurring PAF antagonist exists as a specific grade of therapeutic agents for the humans against these and different diseases either laid hold of immunological or non-immunological types. Ginkgolide, cedrol and many other natural PAF antagonists such as andrographolide, α-bulnesene, cinchonine, piperine, kadsurenone, different Piper species' natural products and marine origin plants extracts or even crude drugs having PAF antagonist properties are being used currently against different inflammatory pathologies. This review is an attempt to summarize the data on PAF and action of natural PAF antagonists on it, which were evaluated by in vivo and in vitro assays. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Hypertension and cognitive impairment

    Directory of Open Access Journals (Sweden)

    Su-hang SHANG

    2015-08-01

    Full Text Available As a leading risk factor for stroke, hypertension is also an important risk factor for cognitive impairment. Midlife hypertension doubles the risk of dementia later in life and accelerates the progression of dementia, but the correlation between late-life blood pressure and cognitive impairment is still unclear. Beside blood pressure, the effect of pulse pressure, blood pressure variability and circadian rhythm of blood pressure on cognition is currently attracting more and more attention. Hypertension induces alterations in cerebrovascular structure and functions, which lead to brain lesions including cerebral atrophy, stroke, lacunar infarcts, diffuse white matter damage, microinfarct and microhemorrhage, resuling in cognitive impairment. Hypertension also impairs the metabolism and transfer of amyloid-β protein (Aβ, thus accelerates cognitive impairment. Individualized therapy, focusing on characteristics of hypertensive patients, may be a good choice for prevention and treatment of cognitive impairment. DOI: 10.3969/j.issn.1672-6731.2015.08.004

  11. Targeting Dopamine D3 and Serotonin 5-HT1A and 5-HT2A Receptors for Developing Effective Antipsychotics

    DEFF Research Database (Denmark)

    Brindisi, Margherita; Butini, Stefania; Franceschini, Silvia

    2014-01-01

    of extrapyramidal symptoms liability, sedation, and catalepsy. The potential atypical antipsychotic 5bb was selected for further pharmacological investigation. The distribution of c-fos positive cells in the ventral striatum confirmed the atypical antipsychotic profile of 5bb in agreement with behavioral rodent...... studies. 5bb administered orally demonstrated a biphasic effect on the MK801-induced hyperactivity at dose levels not able to induce sedation, catalepsy, or learning impairment in passive avoidance. In microdialysis studies, 5bb increased the dopamine efflux in the medial prefrontal cortex. Thus, 5bb...

  12. Modification of Anxious Behavior after Psychogenic Trauma and Treatment with Galanin Receptor Antagonist.

    Science.gov (United States)

    Lyudyno, V I; Tsikunov, S G; Abdurasulova, I N; Kusov, A G; Klimenko, V M

    2015-07-01

    Effects of blockage of central galanin receptors on anxiety manifestations were studied in rats with psychogenic trauma. Psychogenic trauma was modeled by exposure of a group of rats to the situation when the partner was killed by a predator. Antagonist of galanin receptors was intranasally administered before stress exposure. Animal behavior was evaluated using the elevated-plus maze test, free exploratory paradigm, and open-field test. Psychogenic trauma was followed by an increase in anxiety level and appearance of agitated behavior. Blockage of galanin receptors aggravated behavioral impairment, which manifested in the pathological anxious reactions - manifestations of hypervigilance and hyperawareness. The results suggest that endogenous pool of galanin is involved into prevention of excessive CNS response to stressful stimuli typical of posttraumatic stress disorder.

  13. Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes

    DEFF Research Database (Denmark)

    Larsen, Claus M; Faulenbach, Mirjam; Vaag, Allan

    2009-01-01

    OBJECTIVE: Interleukin (IL)-1 impairs insulin secretion and induces beta-cell apoptosis. Pancreatic beta-cell IL-1 expression is increased and interleukin-1 receptor antagonist (IL-1Ra) expression reduced in patients with type 2 diabetes. Treatment with recombinant IL-1Ra improves glycemia and beta......-cell function and reduces inflammatory markers in patients with type 2 diabetes. Here we investigated the durability of these responses. RESEARCH DESIGN AND METHODS: Among 70 ambulatory patients who had type 2 diabetes, A1C >7.5%, and BMI >27 kg/m(2) and were randomly assigned to receive 13 weeks of anakinra......, a recombinant human IL-1Ra, or placebo, 67 completed treatment and were included in this double-blind 39-week follow-up study. Primary outcome was change in beta-cell function after anakinra withdrawal. Analysis was done by intention to treat. RESULTS: Thirty-nine weeks after anakinra withdrawal, the proinsulin...

  14. Defects in chicken neuroretina misexpressing the BMP antagonist Drm/Gremlin.

    Science.gov (United States)

    Huillard, Emmanuelle; Laugier, Danielle; Marx, Maria

    2005-07-15

    During eye development, bone morphogenetic proteins (BMPs) exert multiple actions on both early and late patterning and differentiation processes. However, the roles of BMP signaling in retinal differentiation are not well understood. To gain insight into a novel role of BMPs during retinal development, we proceeded to retrovirally directed misexpression of the BMP antagonist Drm/Gremlin in the chicken optic vesicle. This resulted in severe eye defects, characterized by microphthalmia, coloboma and the presence of dark streaks. The latter phenotype corresponds to localized perturbations of the stratified structure of the neuroretina. We show that these retinal disorganizations are characterized by a destruction of neuronal layers associated with axonal pathfinding defects, increased apoptosis and lost of N-cadherin expression. Moreover, whereas neuronal differentiation seems to proceed normally, Müller glial differentiation is impaired in Drm-induced disorganizations. These data suggest a possible role of BMP signaling in the laminar organization of the developing neuroretina.

  15. Antipsychotic profiles of TASP0443294, a novel and orally active positive allosteric modulator of metabotropic glutamate 2 receptor

    Directory of Open Access Journals (Sweden)

    Hirohiko Hikichi

    2015-03-01

    Full Text Available Glutamatergic dysfunction has been implicated in psychiatric disorders such as schizophrenia. The stimulation of metabotropic glutamate (mGlu 2 receptor has been shown to be effective in a number of animal models of schizophrenia. In this study, we investigated the antipsychotic profiles of (2S-5-methyl-2-{[4-(1,1,1-trifluoro-2-methylpropan-2-ylphenoxy]methyl}-2,3-dihydroimidazo[2,1-b][1,3]oxazole-6-carboxamide (TASP0443294, a newly synthesized positive allosteric modulator of the mGlu2 receptor. TASP0443294 potentiated the response of human mGlu2 and rat mGlu2 receptors to glutamate with EC50 values of 277 and 149 nM, respectively, without affecting the glutamate response of human mGlu3 receptor. TASP0443294 was distributed in the brain and cerebrospinal fluid after peroral administration in rats. The peroral administration of TASP0443294 inhibited methamphetamine-induced hyperlocomotion in rats, which was attenuated by an mGlu2/3 receptor antagonist, and improved social memory impairment induced by 5R,10S-(+-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine hydrogen maleate (MK-801 in rats. Furthermore, TASP0443294 reduced the ketamine-induced basal gamma hyperactivity in the prefrontal cortex and suppressed rapid eye movement (REM sleep in rats. These findings indicate that TASP0443294 is an mGlu2 receptor positive allosteric modulator with antipsychotic activity, and that the suppression of aberrant gamma oscillations and REM sleep could be considered as neurophysiological biomarkers for TASP0443294.

  16. alpha2-Adrenoceptor antagonists reverse the 5-HT2 receptor antagonist suppression of head-twitch behavior in mice.

    Science.gov (United States)

    Matsumoto, K; Mizowaki, M; Thongpraditchote, S; Murakami, Y; Watanabe, H

    1997-03-01

    The alpha2-adrenoceptor agonist clonidine, as well as 5-HT2 receptor antagonists, reportedly suppress 5-HT2 receptor-mediated head-twitch behavior. We investigated the effect of alpha2-adrenoceptor antagonists on the suppressive action of 5-HT2 receptor antagonists in mice pretreated with the noradrenaline toxin 6-hydroxydopamine (6-OHDA) or the 5-HT synthesis inhibitor p-chlorophenylalanine (p-CPA). In normal mice, idazoxan (0.08-0.2 mg/kg, IP) or yohimbine (0.2-2.0 mg/kg, IP), both alpha2-adrenoceptor antagonists, had no effect on the head-twitch response caused by 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT; 16 mg/kg, IP), but idazoxan significantly enhanced the response at 0.5 mg/kg. On the other hand, these alpha2-adrenoceptor antagonists, at doses that had no effect on the basal number of head-twitches (idazoxan 0.2 mg/kg and yohimbine 0.5 mg/kg), significantly attenuated not only the suppressive effect of clonidine (0.01 mg/kg, IP) on head-twitch response but also that of the 5-HT2 receptor antagonist ritanserin (0.03 mg/kg, IP). Moreover, idazoxan (0.2 mg/kg) also significantly reversed the inhibition by 0.01 mg/kg (IP) ketanserin, a selective 5-HT2 receptor antagonist. Pretreatment with 6-OHDA plus nomifensine but not with p-CPA significantly attenuated the effect of idazoxan (0.2-0.5 mg/kg) on the ritanserin inhibition of the head-twitch response. Prazosin, an alpha1-adrenoceptor antagonist, dose-dependently suppressed the response, and the effect of prazosin (1.25 mg/kg) was significantly attenuated by 0.5 mg/kg idazoxan. These results indicate that endogenous noradrenaline is involved in the apparent antagonistic interaction between selective alpha2-adrenoceptor antagonists and 5-HT2 receptor antagonists in the head-twitch response, and suggest that noradrenaline stimulation of alpha1-adrenoceptors may be involved in this apparent antagonism.

  17. [Neurochemical mechanisms of food aversion conditioning consolidation in snail Helix lucorum].

    Science.gov (United States)

    Solntseva, S V; Nikitin, v P

    2008-11-01

    Effects of cycloheximide, protein synthesis inhibitors, as well as serotonin receptor antagonist and NMDA receptor antagonist on food aversion conditioning consolidation were studied in snail Helix lucorum. Food aversion conditioning was absent in snails after application of cycloheximide. Repeated produced no food aversion conditioning for the same type of food in these snails without cycloheximide application. Food aversion conditioning was absent in snails after applications of metiotepin, nonselective serotonin receptors antagonist, or after MK-801, NMDA glutamate receptors antagonist. At the same time, repeated training produced facilitated food aversion conditioning for the same type of food in these snails. Our experiments were the first which showed that effect on different molecular mechanisms evoked reversible or irreversible disruption of long-term memory consolidation during the same learning. It was suggested that suppression of retrieval produced reversible effect, whereas disruption of memory storage initiated irreversible effect on long-term memory consolidation.

  18. Phencyclidine administration during neurodevelopment alters network activity in prefrontal cortex and hippocampus in adult rats

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Hovelsø, Nanna; Dalby, Nils Ole

    2017-01-01

    Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim...... a suppression of evoked theta power in ventral hippocampus, while evoked gamma power in mPFC was enhanced in rats administered with PCP neonatally. In addition, increased gamma synchrony elicited by acute administration of the NMDAR antagonist MK-801 was exaggerated in neonatal PCP animals. These data suggest...... that NMDAR antagonist exposure during brain development alters functional networks within hippocampus and mPFC possibly contributing to the reported behavioral symptoms of this animal model of schizophrenia.NEW & NOTEWORTHY We show that insults with a NMDA receptor antagonist during neurodevelopment lead...

  19. Vitamin K antagonist use and mortality in dialysis patients.

    Science.gov (United States)

    Voskamp, Pauline W M; Rookmaaker, Maarten B; Verhaar, Marianne C; Dekker, Friedo W; Ocak, Gurbey

    2018-01-01

    The risk-benefit ratio of vitamin K antagonists for different CHA2DS2-VASc scores in patients with end-stage renal disease treated with dialysis is unknown. The aim of this study was to investigate the association between vitamin K antagonist use and mortality for different CHA2DS2-VASc scores in a cohort of end-stage renal disease patients receiving dialysis treatment. We prospectively followed 1718 incident dialysis patients. Hazard ratios were calculated for all-cause and cause-specific (stroke, bleeding, cardiovascular and other) mortality associated with vitamin K antagonist use. Vitamin K antagonist use as compared with no vitamin K antagonist use was associated with a 1.2-fold [95% confidence interval (95% CI) 1.0-1.5] increased all-cause mortality risk, a 1.5-fold (95% CI 0.6-4.0) increased stroke mortality risk, a 1.3-fold (95% CI 0.4-4.2) increased bleeding mortality risk, a 1.2-fold (95% CI 0.9-1.8) increased cardiovascular mortality risk and a 1.2-fold (95% CI 0.8-1.6) increased other mortality risk after adjustment. Within patients with a CHA2DS2-VASc score ≤1, vitamin K antagonist use was associated with a 2.8-fold (95% CI 1.0-7.8) increased all-cause mortality risk as compared with no vitamin K antagonist use, while vitamin K antagonist use within patients with a CHA2DS2-VASc score ≥2 was not associated with an increased mortality risk after adjustment. Vitamin K antagonist use was not associated with a protective effect on mortality in the different CHA2DS2-VASc scores in dialysis patients. The lack of knowledge on the indication for vitamin K antagonist use could lead to confounding by indication. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  20. Glutamate receptors and the airways hyperreactivity.

    Science.gov (United States)

    Strapkova, Anna; Antosova, Martina

    2012-03-01

    It is proposed the link between the hyperactivity of NMDA receptors and airway hyperresponsiveness. We investigated the effect of agents modulating the activity of NMDA receptors in the ovalbumin-induced airway hyperreactivity in guinea pigs. The airways hyperreactivity was influenced by the agonist (NMDA) and selective antagonist - competitive (AP-5) and non-competitive (MK-801) of NMDA receptors. Airway responsiveness to histamine or acetylcholine was evaluated in in vitro conditions. NMDA administration caused the increase of tracheal smooth muscle response in ovalbumin-induced hyperreactivity to acetylcholine. MK 801 as well as AP-5 provoked the decrease of reactivity mainly to acetylcholine in tracheal smooth muscle, while the former, non-competitive antagonist was more effective. We recorded more pronounced response in tracheal than in lung tissue smooth muscle with more considerable response to acetylcholine than to histamine. The results of experiments show the modification of airway smooth muscles responses by agents modulating the activity of NMDA receptors. They confirm the possibility of NMDA receptors participation in experimental airway hyperreactivity. The results enlarge information regarding the link of the inflammatory diseases and glutamatergic system.

  1. The Role of N-Methyl D-Aspartate Receptors on Pain Transmission

    Directory of Open Access Journals (Sweden)

    Yasemin Gunes

    2012-02-01

    Full Text Available Aim : In the experimental studies, NMDA (N-methyl-D-aspartate receptors play important role in the mechanism of action among the drugs used for the treatment of pain. The NMDA receptors in the dorsal horn of spinal cord is essential for central sensitization and the central facilitation of pain transmission produced by peripheral injury. The aim of this study was to evaluate the contributions of peripheral NMDA receptor agonist and antagonists in peripheral pain transmission. Material-Method : In the present study, N methyl aspartic acid (NMDA and antagonist ( MK-801 were administered intraplantarily to investigate withdrawal effects, the dose and time dependent latency using thermal plantar test method in rats. Results : MK-801 caused dose-dependent thermal anti-nociceptive effects, whereas NMDA led to reduction in the thermal nociceptive latency and hyperalgesia. Conclusion : Peripheral NMDA receptors may play a dominant role in the transmission of pain information. [Cukurova Med J 2012; 37(1.000: 9-16

  2. The effects of varenicline on sensory gating and exploratory behavior with pretreatment with nicotinic or 5-HT3A receptor antagonists.

    Science.gov (United States)

    Kucinski, Aaron; Wersinger, Scott; Stachowiak, Ewa K; Becker, Chani; Lippiello, Pat; Bencherif, Merouane; Stachowiak, Michal K

    2015-02-01

    Individuals with schizophrenia smoke at high frequency relative to the general population. Despite the harmful effects of cigarette smoking, smoking among schizophrenic patients improves cognitive impairments not addressed or worsened by common neuroleptics. Varenicline, a nonselective neuronal nicotinic receptor (NNR) agonist and full agonist of 5-HT3A receptors, helps reduce smoking among schizophrenic patients. To determine whether varenicline also improves a cognitive symptom of schizophrenia, namely, impaired sensory gating, a transgenic mouse with schizophrenia, th-fgfr1(tk-), was used. Varenicline dose-dependently increased prepulse inhibition (PPI) of the startle response, a measure of sensory gating, in th-fgfr1(tk-) mice and normalized PPI deficits relative to nontransgenic controls. With the highest dose (10 mg/kg), however, there was a robust elevation of PPI and startle response, as well as reduced exploratory behavior in the open field and elevated plus maze. Pretreatment with the nonspecific NNR antagonist mecamylamine attenuated the exaggerated PPI response and, similar to the 5-HT3A receptor antagonist ondansetron, it prevented the reduction in exploratory behavior. Collectively, these results indicate that varenicline at low-to-moderate doses may be beneficial against impaired sensory gating in schizophrenia; however, higher doses may induce anxiogenic effects, which can be prevented with antagonists of NNRs or 5-HT3A receptors.

  3. Adenosine A(2A) receptors are necessary and sufficient to trigger memory impairment in adult mice.

    Science.gov (United States)

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-08-01

    Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer's disease, an effect mimicked by adenosine A2 A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. We determined whether A2 A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2 A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Scopolamine (1.0 mg·kg(-1) , i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2 A receptor antagonist (SCH 58261, 0.1-1.0 mg·kg(-1) , i.p.) and by the A1 receptor antagonist (DPCPX, 0.2-5.0 mg·kg(-1) , i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2 A receptors with CGS 21680 (0.1-0.5 mg·kg(-1) , i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg(-1) , i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. These results show that A2 A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. © 2015 The British Pharmacological Society.

  4. Adenosine A2A receptors are necessary and sufficient to trigger memory impairment in adult mice

    Science.gov (United States)

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-01-01

    Background and Purpose Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer’s disease, an effect mimicked by adenosine A2A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. Experimental Approach We determined whether A2A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Key Results Scopolamine (1.0 mg·kg−1, i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2A receptor antagonist (SCH 58261, 0.1–1.0 mg·kg−1, i.p.) and by the A1 receptor antagonist (DPCPX, 0.2–5.0 mg·kg−1, i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2A receptors with CGS 21680 (0.1–0.5 mg·kg−1, i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg−1, i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. Conclusions and Implications These results show that A2A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. PMID:25939452

  5. Early Illustrations of Geste Antagoniste in Cervical and Generalized Dystonia

    Directory of Open Access Journals (Sweden)

    Emmanuel Broussolle

    2015-09-01

    Full Text Available Background: Geste antagoniste, or sensory trick, is a voluntary maneuver that temporarily reduces the severity of dystonic postures or movements. We present a historical review of early reports and illustrations of geste antagoniste.Results: In 1894, Brissaud described this phenomenon in Paris in patients with torticollis. He noted that a violent muscular contraction could be reversed by a minor voluntary action. He considered the improvement obtained by what he called “simple mannerisms, childish behaviour or fake pathological movements” was proof of the psychogenic origin of what he named mental torticollis. This concept was supported by photographical illustrations of the patients. The term geste antagoniste was used by Brissaud’s pupils, Meige and Feindel, in their 1902 monograph on movement disorders. Other reports and illustrations of this sign were published in Europe between 1894 and 1906. Although not mentioned explicitly, geste antagoniste was also illustrated in a case report of generalized dystonia in Oppenheim’s 1911 seminal description of dystonia musculorum deformans in Berlin.Discussion: Brissaud-Meige’s misinterpretation of the geste antagoniste unfortunately anchored the psychogenic origin of dystonia for decades. In New York, Herz brought dystonia back into the realm of organic neurology in 1944. Thereafter, it was given prominence by other authors, notably Fahn and Marsden in the 1970–1980s. Nowadays, neurologists routinely investigate for geste antagoniste when a dystonic syndrome is suspected, because it provides a further argument in favor of dystonia. The term alleviating maneuver was proposed in 2014 to replace sensory trick or geste antagoniste. This major sign is now part of the motor phenomenology of the 2013 Movement Disorder Society’s classification of dystonia.

  6. Criteria for driver impairment

    NARCIS (Netherlands)

    Brookhuis, K.A.; De Waard, D.; Fairclough, S.H

    2003-01-01

    Most traffic accidents can be attributed to driver impairment, e.g. inattention, fatigue, intoxication, etc. It is now technically feasible to monitor and diagnose driver behaviour with respect to impairment with the aid of a limited number of in-vehicle sensors. However, a valid framework for the

  7. Molecular sampling of the allosteric binding pocket of the TSH receptor provides discriminative pharmacophores for antagonist and agonists.

    Science.gov (United States)

    Hoyer, Inna; Haas, Ann-Karin; Kreuchwig, Annika; Schülein, Ralf; Krause, Gerd

    2013-02-01

    The TSHR (thyrotropin receptor) is activated endogenously by the large hormone thyrotropin and activated pathologically by auto-antibodies. Both activate and bind at the extracellular domain. Recently, SMLs (small-molecule ligands) have been identified, which bind in an allosteric binding pocket within the transmembrane domain. Modelling driven site-directed mutagenesis of amino acids lining this pocket led to the delineation of activation and inactivation sensitive residues. Modified residues showing CAMs (constitutively activating mutations) indicate signalling-sensitive positions and mark potential trigger points for agonists. Silencing mutations lead to an impairment of basal activity and mark contact points for antagonists. Mapping these residues on to a structural model of TSHR indicates locations where an SML may switch the receptor to an inactive or active conformation. In the present article, we report the effects of SMLs on these signalling-sensitive amino acids at the TSHR. Surprisingly, the antagonistic effect of SML compound 52 was reversed to an agonistic effect, when tested at the CAM Y667A. Switching agonism to antagonism and the reverse by changing either SMLs or residues covering the binding pocket provides detailed knowledge about discriminative pharmacophores. It prepares the basis for rational optimization of new high-affinity antagonists to interfere with the pathogenic activation of the TSHR.

  8. Small molecule inhibitors of PSD95-nNOS protein-protein interactions as novel analgesics

    Science.gov (United States)

    Lee, Wan-Hung; Xu, Zhili; Ashpole, Nicole M.; Hudmon, Andy; Kulkarni, Pushkar M.; Thakur, Ganesh A.; Lai, Yvonne Y.; Hohmann, Andrea G.

    2015-01-01

    Aberrant increases in NMDA receptor (NMDAR) signaling contributes to central nervous system sensitization and chronic pain by activating neuronal nitric oxide synthase (nNOS) and generating nitric oxide (NO). Because the scaffolding protein postsynaptic density 95kDA (PSD95) tethers nNOS to NMDARs, the PSD95-nNOS complex represents a therapeutic target. Small molecule inhibitors IC87201 (EC5O: 23.94 µM) and ZL006 (EC50: 12.88 µM) directly inhibited binding of purified PSD95 and nNOS proteins in AlphaScreen without altering binding of PSD95 to ErbB4. Both PSD95-nNOS inhibitors suppressed glutamate-induced cell death with efficacy comparable to MK-801. IC87201 and ZL006 preferentially suppressed phase 2A pain behavior in the formalin test and suppressed allodynia induced by intraplantar complete Freund’s adjuvant administration. IC87201 and ZL006 suppressed mechanical and cold allodynia induced by the chemotherapeutic agent paclitaxel (ED50s: 2.47 and 0.93 mg/kg i.p. for IC87201 and ZL006, respectively). Efficacy of PSD95-nNOS disruptors was similar to MK-801. Motor ataxic effects were induced by MK-801 but not by ZL006 or IC87201. Finally, MK-801 produced hyperalgesia in the tail-flick test whereas IC87201 and ZL006 did not alter basal nociceptive thresholds. Our studies establish the utility of using AlphaScreen and purified protein pairs to establish and quantify disruption of protein-protein interactions. Our results demonstrate previously unrecognized antinociceptive efficacy of ZL006 and establish, using two small molecules, a broad application for PSD95-nNOS inhibitors in treating neuropathic and inflammatory pain. Collectively, our results demonstrate that disrupting PSD95-nNOS protein-protein interactions is effective in attenuating pathological pain without producing unwanted side effects (i.e. motor ataxia) associated with NMDAR antagonists. PMID:26071110

  9. Cognitive enhancement and antipsychotic-like activity following repeated dosing with the selective M4 PAM VU0467154.

    Science.gov (United States)

    Gould, Robert W; Grannan, Michael D; Gunter, Barak W; Ball, Jacob; Bubser, Michael; Bridges, Thomas M; Wess, Jurgen; Wood, Michael W; Brandon, Nicholas J; Duggan, Mark E; Niswender, Colleen M; Lindsley, Craig W; Conn, P Jeffrey; Jones, Carrie K

    2018-01-01

    Although selective activation of the M 1 muscarinic acetylcholine receptor (mAChR) subtype has been shown to improve cognitive function in animal models of neuropsychiatric disorders, recent evidence suggests that enhancing M 4 mAChR function can also improve memory performance. Positive allosteric modulators (PAMs) targeting the M 4 mAChR subtype have shown therapeutic potential for the treatment of multiple symptoms observed in schizophrenia, including positive and cognitive symptoms when assessed in acute preclinical dosing paradigms. Since the cholinergic system has been implicated in multiple stages of learning and memory, we evaluated the effects of repeated dosing with the highly selective M 4 PAM VU0467154 on either acquisition and/or consolidation of learning and memory when dosed alone or after pharmacologic challenge with the N-methyl-d-aspartate subtype of glutamate receptors (NMDAR) antagonist MK-801. MK-801 challenge represents a well-documented preclinical model of NMDAR hypofunction that is thought to underlie some of the positive and cognitive symptoms observed in schizophrenia. In wildtype mice, 10-day, once-daily dosing of VU0467154 either prior to, or immediately after daily testing enhanced the rate of learning in a touchscreen visual pairwise discrimination task; these effects were absent in M 4 mAChR knockout mice. Following a similar 10-day, once-daily dosing regimen of VU0467154, we also observed 1) improved acquisition of memory in a cue-mediated conditioned freezing paradigm, 2) attenuation of MK-801-induced disruptions in the acquisition of memory in a context-mediated conditioned freezing paradigm and 3) reversal of MK-801-induced hyperlocomotion. Comparable efficacy and plasma and brain concentrations of VU0467154 were observed after repeated dosing as those previously reported with an acute, single dose administration of this M 4 PAM. Together, these studies are the first to demonstrate that cognitive enhancing and antipsychotic

  10. The effect of ondansetron, a 5-HT3 receptor antagonist, in chronic fatigue syndrome: a randomized controlled trial.

    Science.gov (United States)

    The, Gerard K H; Bleijenberg, Gijs; Buitelaar, Jan K; van der Meer, Jos W M

    2010-05-01

    Accumulating data support the involvement of the serotonin (5-hydroxytryptamine [5-HT]) system in the pathophysiology of chronic fatigue syndrome. Neuropharmacologic studies point to a hyperactive 5-HT system, and open-label treatment studies with 5-HT(3) receptor antagonists have shown promising results. In this randomized controlled clinical trial, the effect of ondansetron, a 5-HT(3) receptor antagonist, was assessed on fatigue severity and functional impairment in adult patients with chronic fatigue syndrome. A randomized, placebo-controlled, double-blind clinical trial was conducted at Radboud University Nijmegen Medical Centre, The Netherlands. Sixty-seven adult patients who fulfilled the US Centers for Disease Control and Prevention (CDC) criteria for chronic fatigue syndrome and who were free from current psychiatric comorbidity participated in the clinical trial. Participants received either ondansetron 16 mg per day or placebo for 10 weeks. The primary outcome variables were fatigue severity (Checklist Individual Strength fatigue severity subscale [CIS-fatigue]) and functional impairment (Sickness Impact Profile-8 [SIP-8]). The effect of ondansetron was assessed by analysis of covariance. Data were analyzed on an intention-to-treat basis. All patients were recruited between June 2003 and March 2006. Thirty-three patients were allocated to the ondansetron condition, 34 to the placebo condition. The 2 groups were well matched in terms of age, sex, fatigue severity, functional impairment, and CDC symptoms. Analysis of covariance showed no significant differences between the ondansetron- and placebo-treated groups during the 10-week treatment period in fatigue severity and functional impairment. This clinical trial demonstrates no benefit of ondansetron compared to placebo in the treatment of chronic fatigue syndrome. www.trialregister.nl: ISRCTN02536681. ©Copyright 2010 Physicians Postgraduate Press, Inc.

  11. First Irish birth following IVF therapy using antagonist protocol.

    LENUS (Irish Health Repository)

    Mocanu, E V

    2012-02-01

    BACKGROUND: During in vitro fertilization (IVF), the prevention of a premature LH surge was traditionally achieved using a gonadotrophin releasing hormone agonist (GnRH-a), and more recently, a GnRH antagonist. AIMS: We report a case of a 37 year old treated using the GnRH antagonist in a second completed cycle of IVF. METHODS: IVF was performed for primary infertility of 5-year duration due to frozen pelvis secondary to endometriosis. RESULTS: Following controlled ovarian hyperstimulation, oocyte recovery and fertilization, cleavage and transfer of two zygotes, a pregnancy established. A twin gestation was diagnosed at 7-weeks scan and pregnancy ended with the delivery of twin girls by emergency caesarean section. CONCLUSION: This is a first report of a delivery following IVF using the antagonist protocol in Ireland. Such therapy is patient friendly and its use should be introduced on a larger scale in clinical practice.

  12. Histamine-2 receptor antagonists as immunomodulators: new therapeutic views?

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen

    1996-01-01

    of proliferation and angiogenesis. Specific histamine receptors have been identified on the surface of bone marrow cells, immune competent cells, endothelial cells, fibroblasts, and also on malignant cells. This has prompted research in regulation by specific histamine receptor agonists and antagonists. Results...... from such studies are currently accumulating and suggest that the histamine-2 receptor antagonists have potential beneficial effects in the treatment of certain malignant, autoimmune and skin diseases, either alone or in combination with other drugs. The beneficial effect of histamine-2 receptor...... antagonists as adjuvant single drugs to reduce trauma-, blood transfusion- and sepsis-induced immunosuppression has led to research in combined treatment regimens in major surgery, particularly, of patients operated on for malignant diseases....

  13. GnRH antagonist versus long agonist protocols in IVF

    DEFF Research Database (Denmark)

    Lambalk, C B; Banga, F R; Huirne, J A

    2017-01-01

    was not the only variable between the compared study arms. OBJECTIVE AND RATIONALE: The aim of the current study was to compare GnRH antagonist protocols versus standard long agonist protocols in couples undergoing IVF or ICSI, while accounting for various patient populations and treatment schedules. SEARCH......BACKGROUND: Most reviews of IVF ovarian stimulation protocols have insufficiently accounted for various patient populations, such as ovulatory women, women with polycystic ovary syndrome (PCOS) or women with poor ovarian response, and have included studies in which the agonist or antagonist...... METHODS: The Cochrane Menstrual Disorders and Subfertility Review Group specialized register of controlled trials and Pubmed and Embase databases were searched from inception until June 2016. Eligible trials were those that compared GnRH antagonist protocols and standard long GnRH agonist protocols...

  14. ANTAGONISTIC BACTERIA AGAINST SCHIZOPHYLLUM COMMUNE FR. IN PENINSULAR MALAYSIA

    Directory of Open Access Journals (Sweden)

    ANTARJO DIKIN

    2006-01-01

    Full Text Available Schizophyllum commune Fr., is one of the important fungi, causes brown germ and seed rot of oil palm. Biodiversity of antagonistic bacteria from oil palm plantations in Peninsular Malaysia is expected to support in development of biopesticide. Isolation with liquid assay and screening antagonistic bacteria using dual culture assay were carried out in the bioexploration. A total of 265 bacterial isolates from plant parts of oil palm screened 52 antagonistic bacterial isolates against 5. commune. Bacterial isolates were identified by using Biolog* Identification System i.e. Bacillus macroccanus, B. thermoglucosidasius, Burkholderia cepacia, B. gladioli, B. multivorans, B pyrrocinia, B. spinosa, Corynebacterium agropyri, C. misitidis, Enterobacter aerogenes, Microbacterium testaceum, Pseudomonas aeruginosa, P. citronellolis, Rhodococcus rhodochrous, Serratia ficaria, Serratia sp., S. marcescens, Staphylococcus sciuri, Sternotrophomonas maltophilia.

  15. Histamine H4 receptor antagonists: the new antihistamines?

    Science.gov (United States)

    Fung-Leung, Wai-Ping; Thurmond, Robin L; Ling, Ping; Karlsson, Lars

    2004-11-01

    Antihistamines (histamine H1 receptor antagonists) are a mainstay treatment for atopic allergy, yet they are only partially effective in relieving the symptoms of the disease. They also have very limited value for the treatment of asthma, despite the well-characterized bronchoconstrictory effects of histamine. The recent discovery of a fourth histamine receptor (H4), and the realization that it is exclusively expressed on hematopoietic cell types that are most implicated in the development and symptomatology of allergy and asthma, suggests that pharmacological targeting of the H4 receptor, either alone or in combination with H1 receptor antagonists, may prove useful for treating both allergy and asthma. Here we review the known biology associated with the H4 receptor, as well the effects of a highly selective H1 receptor antagonist.

  16. Congenital hearing impairment

    International Nuclear Information System (INIS)

    Robson, Caroline D.

    2006-01-01

    Establishing the etiology of congenital hearing impairment can significantly improve treatment for certain causes of hearing loss and facilitates genetic counseling. High-resolution CT and MRI have contributed to the evaluation and management of hearing impairment. In addition, with the identification of innumerable genetic loci and genetic defects involved in hearing loss, genetic testing has emerged as an invaluable tool in the assessment of hearing impairment. Some of the common forms of congenital hearing loss are reviewed and their imaging features illustrated. (orig.)

  17. Impairment in Non-Word Repetition: A Marker for Language Impairment or Reading Impairment?

    Science.gov (United States)

    Baird, Gillian; Slonims, Vicky; Simonoff, Emily; Dworzynski, Katharina

    2011-01-01

    Aim: A deficit in non-word repetition (NWR), a measure of short-term phonological memory proposed as a marker for language impairment, is found not only in language impairment but also in reading impairment. We evaluated the strength of association between language impairment and reading impairment in children with current, past, and no language…

  18. Clinical Development of Histamine H4Receptor Antagonists.

    Science.gov (United States)

    Thurmond, Robin L; Venable, Jennifer; Savall, Brad; La, David; Snook, Sandra; Dunford, Paul J; Edwards, James P

    2017-01-01

    The discovery of the histamine H 4 receptor (H 4 R) provided a new avenue for the exploration of the physiological role of histamine, as well as providing a new drug target for the development of novel antihistamines. The first step in this process was the identification of selective antagonists to help unravel the pharmacology of the H 4 R relative to other histamine receptors. The discovery of the selective H 4 R antagonist JNJ 7777120 was vital for showing a role for the H 4 R in inflammation and pruritus. While this compound has been very successful as a tool for understanding the function of the receptor, it has drawbacks, including a short in vivo half-life and hypoadrenocorticism toxicity in rats and dogs, that prevented advancing it into clinical studies. Further research let to the discovery of JNJ 39758979, which, similar to JNJ 7777120, was a potent and selective H 4 R antagonist and showed anti-inflammatory and anti-pruritic activity preclinically. JNJ 39758979 advanced into human clinical studies and showed efficacy in reducing experimental pruritus and in patients with atopic dermatitis. However, development of this compound was terminated due to the occurrence of drug-induced agranulocytosis. This was overcome by developing another H 4 R antagonist with a different chemical structure, toreforant, that does not appear to have this side effect. Toreforant has been tested in clinical studies in patients with rheumatoid arthritis, asthma, or psoriasis. In conclusions there have been many H 4 R antagonists reported in the literature, but only a few have been studied in humans underscoring the difficulty in finding ligands with all of the properties necessary for testing in the clinic. Nevertheless, the clinical data to date suggests that H 4 R antagonists can be beneficial in treating atopic dermatitis and pruritus.

  19. Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling.

    Science.gov (United States)

    Singhal, Hari; Greene, Marianne E; Zarnke, Allison L; Laine, Muriel; Al Abosy, Rose; Chang, Ya-Fang; Dembo, Anna G; Schoenfelt, Kelly; Vadhi, Raga; Qiu, Xintao; Rao, Prakash; Santhamma, Bindu; Nair, Hareesh B; Nickisch, Klaus J; Long, Henry W; Becker, Lev; Brown, Myles; Greene, Geoffrey L

    2018-01-12

    Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR

  20. Progesterone receptor isoforms, agonists and antagonists differentially reprogram estrogen signaling

    Science.gov (United States)

    Singhal, Hari; Greene, Marianne E.; Zarnke, Allison L.; Laine, Muriel; Al Abosy, Rose; Chang, Ya-Fang; Dembo, Anna G.; Schoenfelt, Kelly; Vadhi, Raga; Qiu, Xintao; Rao, Prakash; Santhamma, Bindu; Nair, Hareesh B.; Nickisch, Klaus J.; Long, Henry W.; Becker, Lev; Brown, Myles; Greene, Geoffrey L.

    2018-01-01

    Major roadblocks to developing effective progesterone receptor (PR)-targeted therapies in breast cancer include the lack of highly-specific PR modulators, a poor understanding of the pro- or anti-tumorigenic networks for PR isoforms and ligands, and an incomplete understanding of the cross talk between PR and estrogen receptor (ER) signaling. Through genomic analyses of xenografts treated with various clinically-relevant ER and PR-targeting drugs, we describe how the activation or inhibition of PR differentially reprograms estrogen signaling, resulting in the segregation of transcriptomes into separate PR agonist and antagonist-mediated groups. These findings address an ongoing controversy regarding the clinical utility of PR agonists and antagonists, alone or in combination with tamoxifen, for breast cancer management. Additionally, the two PR isoforms PRA and PRB, bind distinct but overlapping genomic sites and interact with different sets of co-regulators to differentially modulate estrogen signaling to be either pro- or anti-tumorigenic. Of the two isoforms, PRA inhibited gene expression and ER chromatin binding significantly more than PRB. Differential gene expression was observed in PRA and PRB-rich patient tumors and PRA-rich gene signatures had poorer survival outcomes. In support of antiprogestin responsiveness of PRA-rich tumors, gene signatures associated with PR antagonists, but not PR agonists, predicted better survival outcomes. The better patient survival associated with PR antagonists versus PR agonists treatments was further reflected in the higher in vivo anti-tumor activity of therapies that combine tamoxifen with PR antagonists and modulators. This study suggests that distinguishing common effects observed due to concomitant interaction of another receptor with its ligand (agonist or antagonist), from unique isoform and ligand-specific effects will inform the development of biomarkers for patient selection and translation of PR

  1. Endothelin receptor antagonists influence cardiovascular morphology in uremic rats.

    Science.gov (United States)

    Nabokov, A V; Amann, K; Wessels, S; Münter, K; Wagner, J; Ritz, E

    1999-02-01

    In is generally held that renal failure results in blood pressure (BP)-independent structural changes of the myocardium and the vasculature. The contribution, if any, of endothelin (ET) to these changes has been unknown. We morphometrically studied random samples of the left ventricle myocardium and small intramyocardial arteries in subtotally (5/6) nephrectomized (SNx) male Sprague-Dawley rats treated with either the selective ETA receptor antagonist BMS182874 (30 mg/kg/day) or the nonselective ETA/ETB receptor antagonist Ro46-2005 (30 mg/kg/day) in comparison with either sham-operated rats, untreated SNx, or SNx rats treated with the angiotensin-converting enzyme inhibitor trandolapril (0.1 mg/kg/day). Eight weeks later, systolic BP was lower in trandolapril-treated SNx compared with untreated SNx animals. No decrease in BP was seen following either ET receptor antagonist at the dose used. A significantly increased volume density of the myocardial interstitium was found in untreated SNx rats as compared with sham-operated controls. Such interstitial expansion was prevented by trandolapril and either ET receptor antagonist. SNx caused a substantial increase in the wall thickness of small intramyocardial arteries. The increase was prevented by trandolapril or BMS182874 treatment. The arteriolar wall:lumen ratio was significantly lower in all treated groups when compared with untreated SNx. In contrast, only trandolapril, but not the ET receptor antagonists, attenuated thickening of the aortic media in SNx animals. The ETA-selective and ETA/ETB-nonselective receptor antagonists appear to prevent development of myocardial fibrosis and structural changes of small intramyocardial arteries in experimental chronic renal failure. This effect is independent of systemic BP.

  2. Increased NMDA and AMPA receptor densities in the anterior cingulate cortex in schizophrenia

    International Nuclear Information System (INIS)

    Zavitsanou, K.; Huang, X.-F.

    2002-01-01

    Full text: The anterior cingulate cortex (ACC) is a brain area of potential importance to our understanding of the pathophysiology of schizophrenia. Since a disturbed balance between excitatory and inhibitory activity is suggested to occur in the ACC in schizophrenia, the present study has focused on the analysis of binding of [ 3 H]MK801, [ 3 H]AMPA and [ 3 H]kainate, radioligands which respectively label the NMDA, AMPA and kainate receptors of the ionotropic glutamate receptor family in the ACC of 10 schizophrenia patients and 10 matched controls, using quantitative autoradiography. AMPA receptor densities were higher in cortical layer II whereas NMDA receptor densities were higher in cortical layers II-III in the ACC of both control and schizophrenia group. In contrast, kainate receptors displayed the highest density in cortical layer V. [ 3 H]AMPA binding was significantly increased by 25% in layer II in the schizophrenia group as compared to the control group. Similarly, a significant 17% increase of [ 3 H]MK801 binding was observed in layers II-III in the schizophrenia group. No statistically significant differences were observed for [ 3 H] kainate binding between the two groups. These results suggest that ionotropic glutamate receptors are differentially altered in the ACC of schizophrenia. The increase in [ 3 H]AMPA and [ 3 H]MK801 binding points to a postsynaptic compensation for impaired glutamatergic neurotransmission in the ACC in schizophrenia. Such abnormality could lead to an imbalance between the excitatory and inhibitory neurotransmission in this brain area that may contribute to the emergence of some schizophrenia symptoms. Copyright (2002) Australian Neuroscience Society

  3. N-methyl-D-aspartate receptor activation mediates lung fibroblast proliferation and differentiation in hyperoxia-induced chronic lung disease in newborn rats.

    Science.gov (United States)

    Wang, YanRui; Yue, ShaoJie; Luo, ZiQiang; Cao, ChuanDing; Yu, XiaoHe; Liao, ZhengChang; Wang, MingJie

    2016-10-21

    Previous studies have suggested that endogenous glutamate and its N-methyl-D-aspartate receptors (NMDARs) play important roles in hyperoxia-induced acute lung injury in newborn rats. We hypothesized that NMDAR activation also participates in the development of chronic lung injury after withdrawal of hyperoxic conditions. In order to rule out the anti-inflammatory effects of NMDAR inhibitor on acute lung injury, the efficacy of MK-801 was evaluated in vivo using newborn Sprague-Dawley rats treated starting 4 days after cessation of hyperoxia exposure (on postnatal day 8). The role of NMDAR activation in hyperoxia-induced lung fibroblast proliferation and differentiation was examined in vitro using primary cells derived from the lungs of 8-day-old Sprague-Dawley rats exposed to hyperoxic conditions. Hyperoxia for 3 days induced acute lung injury in newborn rats. The acute injury almost completely disappeared 4 days after cessation of hyperoxia exposure. However, pulmonary fibrosis, impaired alveolarization, and decreased pulmonary compliance were observed on postnatal days 15 and 22. MK-801 treatment during the recovery period was found to alleviate the chronic damage induced by hyperoxia. Four NMDAR 2 s were found to be upregulated in the lung fibroblasts of newborn rats exposed to hyperoxia. In addition, the proliferation and upregulation of alpha-smooth muscle actin and (pro) collagen I in lung fibroblasts were detected in hyperoxia-exposed rats. MK-801 inhibited these changes. NMDAR activation mediated lung fibroblast proliferation and differentiation and played a role in the development of hyperoxia-induced chronic lung damage in newborn rats.

  4. Radiation-induced glomerular thrombus formation and nephropathy are not prevented by the ADP receptor antagonist clopidogrel

    International Nuclear Information System (INIS)

    Poele, Johannes A.M. te; Kleef, Ellen M. van; Wal, Anja F. van der; Dewit, Luc G.H.; Stewart, Fiona A.

    2001-01-01

    Purpose: To assess the effects of kidney irradiation on glomerular adenosine diphosphatase (ADPase) activity and intraglomerular microthrombus formation, and their correlation to the development of renal functional impairment. Methods and Materials: C3H/HenAf-nu + mice were given single-dose or fractionated kidney irradiations. Glomerular ADPase activity was measured using a cerium-based histochemical method. Microthrombus formation within the glomeruli was assessed by a semiquantitative immunohistochemical analysis of fibrinogen/fibrin deposits. Renal function was assessed by the [ 51 Cr]EDTA retention assay. Results: The ADPase activity was significantly reduced, to approximately 50% of pretreatment value, 4-40 weeks after 10-16 Gy single-dose irradiation and at 44 weeks after 20x2 Gy. No dose-effect relationship was found. An approximately fourfold increase in glomerular fibrinogen/fibrin staining was observed at 1 year after irradiation. This increase was not influenced by treating the mice with daily, oral clopidogrel, a platelet ADP receptor antagonist, which reduced platelet aggregation by more than 75%. Radiation-induced impairment of glomerular filtration was also not affected by the clopidogrel treatment. Conclusion: These data indicate that irradiation significantly reduced glomerular ADPase activity, which correlated with an increased glomerular fibrinogen/fibrin deposition. We were not able to reduce these prothrombotic changes, nor to protect against radiation nephropathy, by pharmacological intervention with an ADP-receptor antagonist

  5. Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Zuercher, William J.; Buckholz†, Richard G.; Campobasso, Nino; Collins, Jon L.; Galardi, Cristin M.; Gampe, Robert T.; Hyatt, Stephen M.; Merrihew, Susan L.; Moore, John T.; Oplinger, Jeffrey A.; Reid, Paul R.; Spearing, Paul K.; Stanley, Thomas B.; Stewart, Eugene L.; Willson, Timothy M. (GSKNC)

    2010-08-12

    Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.

  6. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    Energy Technology Data Exchange (ETDEWEB)

    Vikram, Ajit [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India); Jena, Gopabandhu, E-mail: gbjena@gmail.com [Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), SAS Nagar, Mohali, Punjab 160 062 (India)

    2010-07-23

    Research highlights: {yields}Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. {yields}Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. {yields}Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. {yields}Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia ({approx}18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPAR{gamma}) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 {+-} 16.32 vs. 126.37 {+-} 27.07 mg/dl) and glucose intolerance ({approx}78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  7. Adenosine A1 receptor antagonist mitigates deleterious effects of sleep deprivation on adult neurogenesis and spatial reference memory in rats.

    Science.gov (United States)

    Chauhan, G; Ray, K; Sahu, S; Roy, K; Jain, V; Wadhwa, M; Panjwani, U; Kishore, K; Singh, S B

    2016-11-19

    Sleep deprivation (SD) upsurges intracellular levels of adenosine, impairs adult neuronal cell proliferation (NCP) and cognition while caffeine, a non-selective adenosine A1 receptor (A1R) antagonist improves cognition and adult NCP during SD. We examined the selective antagonistic effects of adenosine A1R using 8-cyclopentyl-1,3-dimethylxanthine (8-CPT) on impairment of spatial reference memory and adult NCP during 48h SD. Adult male Sprague Dawley rats were sleep deprived for 48h, using an automatic cage vibrating stimulus based on animal activity. Spatial reference memory was tested as a measure of cognitive performance employing Morris Water Maze. Rats were given 8-CPT dissolved in 50% dimethyl sulfoxide (DMSO), twice daily (10mg/kg, i.p.) along with 5-bromo-2-deoxyuridine (BrdU) (50mg/kg/day, i.p.). The rats treated with 8-CPT showed significantly short mean latency and path-length to reach the platform compared to the SD rats. Consistent with these findings, 8-CPT-treated group was found to have significantly increased the number of BrdU, Ki-67 and doublecortin (DCX) positive cells. However, no significant difference was seen in NeuN expression in the Dentate Gyrus (DG). Brain-derived neurotropic factor (BDNF) expression in the DG and CA1 region was observed to decrease significantly after SD and be rescued by 8-CPT treatment. Furthermore, latency to reach platform showed a negative correlation with number of BrdU, DCX type-1 cells and BDNF expression in DG. Thus, it may be concluded that treatment with 8-CPT, an adenosine A1R antagonist during SD mitigates SD induced decline in spatial reference memory and adult NCP possibly via up regulation of BDNF levels in DG and CA1 regions. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Effects of the Histamine 1 Receptor Antagonist Cetirizine on the Osteoporotic Phenotype in H(+) /K(+) ATPase Beta Subunit KO Mice.

    Science.gov (United States)

    Aasarød, Kristin M; Stunes, Astrid K; Mosti, Mats P; Ramezanzadehkoldeh, Masoud; Viggaklev, Bjørn I; Reseland, Janne E; Skallerud, Bjørn H; Fossmark, Reidar; Syversen, Unni

    2016-09-01

    Epidemiological studies suggest increased fracture risk in patients using proton pump inhibitors (PPIs). We have previously shown that the H(+) /K(+) ATPase beta subunit knockout (KO) mouse, which is a model of PPI-use, have lower bone mineral density (BMD) and impaired bone quality compared to wild type (WT) mice. Like PPI users, these KO mice display elevated gastric pH and hypergastrinemia, which in turn stimulates gastric histamine release. Previous studies have suggested a negative effect of histamine on bone, thus, we wanted to study whether a histamine 1 receptor (H1R) antagonist could improve bone quality in KO mice. Female KO and WT mice aged 8 weeks received either an H1R antagonist (cetirizine) or polyethylene glycol (PEG) for 6 months. At the end of the study, KO mice displayed elevated plasma histamine levels compared to WT. As demonstrated previously, the KO mice also exhibited lower whole body BMD, reduced mechanical bone strength, and impaired bone quality assessed by μCT. No significant differences, however, were found between the KO groups receiving cetirizine or PEG for any of the measured bone parameters. In vitro gene expression analyses of histamine receptors revealed the presence of H1R and H2R both in osteoblasts and osteoclasts, and H3R in late stage osteoblasts. In conclusion, administration of the H1R antagonist cetirizine in a concentration of 3 mg/kg did not rescue the osteoporotic phenotype in H(+) /K(+) ATPase beta subunit KO mice. It can, however, not be ruled out that histamine may influence bone via other receptors. J. Cell. Biochem. 117: 2089-2096, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. S961, an insulin receptor antagonist causes hyperinsulinemia, insulin-resistance and depletion of energy stores in rats

    International Nuclear Information System (INIS)

    Vikram, Ajit; Jena, Gopabandhu

    2010-01-01

    Research highlights: →Insulin receptor antagonist S961 causes hyperglycemia, hyperinsulinemia and insulin resistance in rats. →Peroxysome-proliferator-activated-receptor-gamma agonist pioglitazone improves S961 induced hyperglycemia and glucose intolerance. →Long term treatment with insulin receptor antagonist S961 results in the decreased adiposity and hepatic glycogen content. →Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. -- Abstract: Impairment in the insulin receptor signaling and insulin mediated effects are the key features of type 2 diabetes. Here we report that S961, a peptide insulin receptor antagonist induces hyperglycemia, hyperinsulinemia (∼18-fold), glucose intolerance and impairment in the insulin mediated glucose disposal in the Sprague-Dawley rats. Further, long-term S961 treatment (15 day, 10 nM/kg/day) depletes energy storage as evident from decrease in the adiposity and hepatic glycogen content. However, peroxysome-proliferator-activated-receptor-gamma (PPARγ) agonist pioglitazone significantly (P < 0.001) restored S961 induced hyperglycemia (196.73 ± 16.32 vs. 126.37 ± 27.07 mg/dl) and glucose intolerance (∼78%). Improvement in the hyperglycemia and glucose intolerance by pioglitazone clearly demonstrates that S961 treated rats can be successfully used to screen the novel therapeutic interventions having potential to improve glucose disposal through receptor independent mechanisms. Further, results of the present study reconfirms and provide direct evidence to the crucial role of insulin receptor signaling in the glucose homeostasis and fuel metabolism.

  10. Selective Serotonin Reuptake Inhibitor and Substance P Antagonist Enhancement of Natural Killer Cell Innate Immunity in Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome

    Science.gov (United States)

    Evans, Dwight L.; Lynch, Kevin G.; Benton, Tami; Dubé, Benoit; Gettes, David R.; Tustin, Nancy B.; Lai, Jian Ping; Metzger, David; Douglas, Steven D.

    2010-01-01

    Background Natural killer (NK) cells play an important role in innate immunity and are involved in the host defense against human immunodeficiency virus (HIV) infection. This study examines the potential role of three underlying regulatory systems that have been under investigation in central nervous system research as well as immune and viral research: serotonin, neurokinin, and glucocorticoid systems. Methods Fifty-one HIV-seropositive subjects were recruited to achieve a representative sample of depressed and nondepressed women. The effects of a selective serotonin reuptake inhibitor (SSRI), a substance P (SP) antagonist, and a glucocorticoid antagonist on NK cell function were assessed in a series of ex vivo experiments of peripheral blood mononuclear cells from each HIV-seropositive subject. Results Natural killer cell cytolytic activity was significantly increased by the SSRI citalopram and by the substance P antagonist CP-96345 relative to control conditions; the glucocorticoid antagonist, RU486, showed no effect on NK cytotoxicity. Our results suggest that the effects of the three agents did not differ as a function of depression. Conclusions Our findings provide evidence that NK cell function in HIV infection may be enhanced by serotonin reuptake inhibition and by substance P antagonism. It remains to be determined if HIV-related impairment in not only NK cytolytic activity but also NK noncytolytic activity can be improved by an SSRI or an SP antagonist. Clinical studies are warranted to address these questions and the potential roles of serotonergic agents and SP antagonists in improving NK cell immunity, delaying HIV disease progression, and extending survival with HIV infection. PMID:17945197

  11. β-Adrenergic receptor antagonists inhibit vasculogenesis of embryonic stem cells by downregulation of nitric oxide generation and interference with VEGF signalling.

    Science.gov (United States)

    Sharifpanah, Fatemeh; Saliu, Fatjon; Bekhite, Mohamed M; Wartenberg, Maria; Sauer, Heinrich

    2014-11-01

    The β-adrenoceptor antagonist Propranolol has been successfully used to treat infantile hemangioma. However, its mechanism of action is so far unknown. The hypothesis of this research was that β-adrenoceptor antagonists may interfere with endothelial cell differentiation of stem cells. Specifically, the effects of the non-specific β-adrenergic receptor (β-adrenoceptor) antagonist Propranolol, the β1-adrenoceptor-specific antagonist Atenolol and the β2-adrenoceptor-specific antagonist ICI118,551 on vasculogenesis of mouse embryonic stem (ES) cells were investigated. All three β-blockers dose-dependently downregulated formation of capillary structures in ES cell-derived embryoid bodies and decreased the expression of the vascular cell markers CD31 and VE-cadherin. Furthermore, β-blockers downregulated the expression of fibroblast growth factor-2 (FGF-2), hypoxia inducible factor-1α (HIF-1α), vascular endothelial growth factor 165 (VEGF165), VEGF receptor 2 (VEGF-R2) and phospho VEGF-R2, as well as neuropilin 1 (NRP1) and plexin-B1 which are essential modulators of embryonic angiogenesis with additional roles in vessel remodelling and arteriogenesis. Under conditions of β-adrenoceptor inhibition, the endogenous generation of nitric oxide (NO) as well as the phosphorylation of endothelial nitric oxide synthase (eNOS) was decreased in embryoid bodies, whereas an increase in NO generation was observed with the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP). Consequently, vasculogenesis of ES cells was restored upon treatment of differentiating ES cells with β-adrenoceptor antagonists in the presence of NO donor. In summary, our data suggest that β-blockers impair vasculogenesis of ES cells by interfering with NO generation which could be the explanation for their anti-angiogenic effects in infantile hemangioma.

  12. Impairments to Vision

    Science.gov (United States)

    ... an external Non-Government web site. Impairments to Vision Normal Vision Diabetic Retinopathy Age-related Macular Degeneration In this ... pictures, fixate on the nose to simulate the vision loss. In diabetic retinopathy, the blood vessels in ...

  13. Stormwater Impaired Watersheds

    Data.gov (United States)

    Vermont Center for Geographic Information — Stormwater impaired watersheds occuring on both the Priority Waters (Part D - Completed TMDL) and 303(d) list of waters (Part A - need TMDL) The Vermont State...

  14. Diphenyl diselenide improves scopolamine-induced memory impairment in mice.

    Science.gov (United States)

    Souza, Ana Cristina G; Brüning, César Augusto; Leite, Marlon Régis; Zeni, Gilson; Nogueira, Cristina Wayne

    2010-09-01

    This study was conducted to evaluate the effects of exposure to diphenyl diselenide (PhSe)2 on cognitive impairment induced by scopolamine, a muscarinic antagonist, using the Y-maze and Morris water maze tests in mice. One hour before the tests, mice were treated with (PhSe)2 (50 mg/kg, oral) and 30 min later memory impairment was induced by administration of scopolamine (1 mg/kg, intraperitoneal). (PhSe)2 (50 mg/kg, oral) significantly improved scopolamine-induced memory impairment in the Y-maze test. At the probe trial session in Morris water maze, (PhSe)2 (50 mg/kg, oral) significantly decreased the escape latency, increased the number of crossings in the platform local, and increased the time spent in the platform quadrant when compared with the scopolamine-treated group. General locomotor activity was similar in all groups. This study showed that (PhSe)2 ameliorated the impairments of spatial long-term memory and short-term memory, showed by the performance of mice in the Morris water maze and Y-maze tasks, respectively. These results suggest that (PhSe)2 may be useful for the treatment of cognitive impairment that may hold significant therapeutic value in alleviating certain memory deficits observed in Alzheimer's disease.

  15. Indications for the use of parenteral H2-receptor antagonists.

    Science.gov (United States)

    Thompson, J C; Walker, J P

    1984-11-19

    Development of acute mucosal ulceration is a complex series of catabolic interactions. Hospitalized patients with duodenal or gastric ulcer, pathologic gastric hypersecretory states (such as Zollinger-Ellison syndrome), gastric outlet obstruction, esophagitis, severe gastritis or duodenitis, sepsis, trauma (particularly head injury or burns), and some patients receiving high-dose corticosteroids are at risk of developing acute stress ulcers. Treatment should be initiated as soon as the patient is identified as being at risk, because measures designed to prevent bleeding or perforation are more effective than those designed to stop bleeding once it supervenes and the cascade of multiple organ failure commences. The presence of acid will trigger the onset of this condition; however, ulceration will not occur if the intraluminal pH can be maintained above 5 by periodic antacid treatment or by H2-receptor blockade. The dosing regimen of antacid or of H2-receptor antagonist should not be fixed, but should be sufficient to keep the gastric pH higher than 5. Antagonists administered via a nasogastric tube are the first line of defense, but 30 to 50 percent of the most ill patients will also be treated parenterally with H2-receptor antagonists. Parenteral H2-receptor blockade therapy is indicated in these patients when the risk of acute or continued ulceration of esophageal, gastric, or duodenal mucosa is high and the oral administration of medication is either not possible or the response to such therapy is unreliable. Parenteral H2-receptor antagonists are rarely administered alone.

  16. Bronchoprotection with a leukotriene receptor antagonist in asthmatic preschool children

    DEFF Research Database (Denmark)

    Bisgaard, H; Nielsen, K G

    2000-01-01

    We hypothesized that a leukotriene receptor antagonist (LTRA) could provide bronchoprotection against the cold, dry air-induced response in asthmatic preschool children. In a randomized, double-blind, placebo-controlled crossover study, we examined the effect of the specific LTRA montelukast at 5...

  17. Manumycin from a new Streptomyces strain shows antagonistic ...

    African Journals Online (AJOL)

    Manumycin from a new Streptomyces strain shows antagonistic effect against methicillin-resistant Staphylococcus aureus (MRSA)/vancomycin-resistant enterococci (VRE) strains from Korean Hospitals. Yun Hee Choi, Seung Sik Cho, Jaya Ram Simkhada, Chi Nam Seong, Hyo Jeong Lee, Hong Seop Moon, Jin Cheol Yoo ...

  18. Gonadotrophin-releasing hormone antagonists for assisted reproductive technology.

    Science.gov (United States)

    Al-Inany, Hesham G; Youssef, Mohamed A; Ayeleke, Reuben Olugbenga; Brown, Julie; Lam, Wai Sun; Broekmans, Frank J

    2016-04-29

    Gonadotrophin-releasing hormone (GnRH) antagonists can be used to prevent a luteinizing hormone (LH) surge during controlled ovarian hyperstimulation (COH) without the hypo-oestrogenic side-effects, flare-up, or long down-regulation period associated with agonists. The antagonists directly and rapidly inhibit gonadotrophin release within several hours through competitive binding to pituitary GnRH receptors. This property allows their use at any time during the follicular phase. Several different regimens have been described including multiple-dose fixed (0.25 mg daily from day six to seven of stimulation), multiple-dose flexible (0.25 mg daily when leading follicle is 14 to 15 mm), and single-dose (single administration of 3 mg on day 7 to 8 of stimulation) protocols, with or without the addition of an oral contraceptive pill. Further, women receiving antagonists have been shown to have a lower incidence of ovarian hyperstimulation syndrome (OHSS). Assuming comparable clinical outcomes for the antagonist and agonist protocols, these benefits would justify a change from the standard long agonist protocol to antagonist regimens. This is an update of a Cochrane review first published in 2001, and previously updated in 2006 and 2011. To evaluate the effectiveness and safety of gonadotrophin-releasing hormone (GnRH) antagonists compared with the standard long protocol of GnRH agonists for controlled ovarian hyperstimulation in assisted conception cycles. We searched the Cochrane Menstrual Disorders and Subfertility Group Trials Register (searched from inception to May 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, inception to 28 April 2015), Ovid MEDLINE (1966 to 28 April 2015), EMBASE (1980 to 28 April 2015), PsycINFO (1806 to 28 April 2015), CINAHL (to 28 April 2015) and trial registers to 28 April 2015, and handsearched bibliographies of relevant publications and reviews, and abstracts of major scientific meetings, for

  19. Diversity, distribution, and antagonistic activities of rhizobacteria of Panax notoginseng

    Directory of Open Access Journals (Sweden)

    Ze-Yan Fan

    2016-04-01

    Conclusion: The results suggest that diverse bacteria exist in the P. notoginseng rhizosphere soil, with differences in community in the same field, and antagonistic isolates may be good potential biological control agent for the notoginseng root-rot diseases caused by F. oxysporum, Fusarium solani, and Panax herbarum.

  20. Antagonistic effect of brevicin on Gram positive and Gram negative ...

    African Journals Online (AJOL)

    B. Senthil Kumar

    phylogenetic tree was constructed, based on evolutionary distances that were calculated by following the distance matrix method, using the Phylip package. Preparation and analysis of crude extract of protein (CEP) for their antagonistic activity against food borne pathogens. 24 h old MRS broth culture was prepared and ...

  1. Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies.

    Science.gov (United States)

    Palmer, G C

    2001-09-01

    Because of adverse reactions, early efforts to introduce high affinity competitive or use-dependent NMDA receptor antagonists into patients suffering from stroke, head trauma or epilepsy met with failure. Later it was discovered that both low affinity use-dependent NMDA receptor antagonists and compounds with selective affinity for the NR2B receptor subunit met the criteria for safe administration into patients. Furthermore, these low affinity antagonists exhibit significant mechanistic differences from their higher affinity counterparts. Success of the latter is attested to the ability of the following low affinity compounds to be marketed: 1) Cough suppressant-dextromethorphan (available for decades); 2) Parkinson's disease--amantadine, memantine and budipine; 3) Dementia--memantine; and 4) Epilepsy--felbamate. Moreover, Phase III clinical trials are ongoing with remacemide for epilepsy and Huntington's disease and head trauma for HU-211. A host of compounds are or were under evaluation for the possible treatment of stroke, head trauma, hyperalgesia and various neurodegenerative disorders. Despite the fact that other drugs with associated NMDA receptor mechanisms have reached clinical status, this review focuses only on those competitive and use-dependent NMDA receptor antagonists that reached clinical trails. The ensuing discussions link the in vivo pharmacological investigations that led to the success/mistakes/ failures for eventual testing of promising compounds in the clinic.

  2. Epiminocyclohepta[b]indole analogs as 5-HT6 antagonists

    DEFF Research Database (Denmark)

    Henderson, Alan J; Guzzo, Peter R; Ghosh, Animesh

    2012-01-01

    A new series of epiminocyclohepta[b]indoles with potent 5-HT(6) antagonist activity were discovered and optimized using in vitro protocols. One compound from this series was progressed to advanced pharmacokinetic (PK) studies followed by 5-HT(6) receptor occupancy studies. The compound was found ...

  3. Sympatho-inhibitory properties of various AT1 receptor antagonists

    NARCIS (Netherlands)

    Balt, Jippe C.; Mathy, Marie-Jeanne; Pfaffendorf, Martin; van Zwieten, Peter A.

    2002-01-01

    It is well known that angiotensin II (Ang II) can facilitate the effects of sympathetic neurotransmission. In the present study, using various experimental models, we investigated the inhibitory effects of several Ang II subtype 1 receptor (AT1) antagonists on this Ang II-induced facilitation. We

  4. Management of hyperkalaemia consequent to mineralocorticoid-receptor antagonist therapy

    NARCIS (Netherlands)

    Roscioni, Sara S.; de Zeeuw, Dick; Bakker, Stephan J. L.; Lambers Heerspink, Hiddo J.

    2012-01-01

    Mineralocorticoid-receptor antagonists (MRAs) reduce blood pressure and albuminuria in patients treated with angiotensin-converting-enzyme inhibitors or angiotensin-II-receptor blockers. The use of MRAs, however, is limited by the occurrence of hyperkalaemia, which frequently occurs in patients

  5. Calcium antagonists: a ready prescription for treating infectious diseases?

    Science.gov (United States)

    Clark, Kevin B; Eisenstein, Edward M; Krahl, Scott E

    2013-01-01

    Emergence of new and medically resistant pathogenic microbes continues to escalate toward worldwide public health, wild habitat, and commercial crop and livestock catastrophes. Attempts at solving this problem with sophisticated modern biotechnologies, such as smart vaccines and microbicidal and microbistatic drugs that precisely target parasitic bacteria, fungi, and protozoa, remain promising without major clinical and industrial successes. However, discovery of a more immediate, broad spectrum prophylaxis beyond conventional epidemiological approaches might take no longer than the time required to fill a prescription at your neighborhood pharmacy. Findings from a growing body of research suggest calcium antagonists, long approved and marketed for various human cardiovascular and neurological indications, may produce safe, efficacious antimicrobial effects. As a general category of drugs, calcium antagonists include compounds that disrupt passage of Ca(2+) molecules across cell membranes and walls, sequestration and mobilization of free intracellular Ca(2+), and downstream binding proteins and sensors of Ca(2+)-dependent regulatory pathways important for proper cell function. Administration of calcium antagonists alone at current therapeutically relevant doses and schedules, or with synergistic compounds and additional antimicrobial medications, figures to enhance host immunoprotection by directly altering pathogen infection sequences, life cycles, homeostasis, antibiotic tolerances, and numerous other infective, survival, and reproductive processes. Short of being miracle drugs, calcium antagonists are welcome old drugs with new tricks capable of controlling some of the most virulent and pervasive global infectious diseases of plants, animals, and humans, including Chagas' disease, malaria, and tuberculosis.

  6. Role of muscarinic receptor antagonists in urgency and nocturia

    NARCIS (Netherlands)

    Michel, Martin C.; de La Rosette, Jean J. M. C. H.

    2005-01-01

    The overactive bladder (OAB) syndrome is defined as urgency, with or without urgency incontinence, usually accompanied by frequency and nocturia. Muscarinic receptor antagonists are the most established form of treatment for OAB, but until recently their effectiveness was only confirmed for symptoms

  7. How Hybrid Organizations Turn Antagonistic Assets into Complementarities

    DEFF Research Database (Denmark)

    Hockerts, Kai

    2015-01-01

    This article focuses on people excluded from traditional markets as employees, producers, or consumers on the grounds that they lack the appropriate skills. It describes the processes through which these perceived liabilities can be overcome by so-called hybrid organizations. Hybrids pursue expli...... for complementarities, and by creating demands for antagonistic assets, or by using partnerships....

  8. Effects of calcium antagonists on hypertension and diastolic function ...

    African Journals Online (AJOL)

    Calcium antagonists are known to decrease blood pressure acutely and chronically in hypertensive patients with hypertensive heart disease, and also to improve their systolic function. However, disorders of diastolic function may occur early in hypertensive heart disease. The improvement of diastolic function by nifedipine ...

  9. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    International Nuclear Information System (INIS)

    Li, Qun-Yi; Zhang, Meng; Hallis, Tina M.; DeRosier, Therese A.; Yue, Jian-Min; Ye, Yang; Mais, Dale E.; Wang, Ming-Wei

    2010-01-01

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K i = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  10. Contrasting effects of intralocus sexual conflict on sexually antagonistic coevolution

    NARCIS (Netherlands)

    Pennell, Tanya M; de Haas, Freek J H; Morrow, Edward H; van Doorn, G Sander

    2016-01-01

    Evolutionary conflict between the sexes can induce arms races in which males evolve traits that are detrimental to the fitness of their female partners, and vice versa. This interlocus sexual conflict (IRSC) has been proposed as a cause of perpetual intersexual antagonistic coevolution with

  11. Effect of Three Calmodulin Antagonists on Subpopulations of CD44 ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), Scopus,. International Pharmaceutical ... cancer stem cells. It is not known, however, whether targeting CD44 can alter the fate of cancer stem cells themselves. In this study, the effect of the calmodulin antagonists (N-(10-.

  12. Effects of alpha(1)-adrenoceptor antagonists on male sexual function

    NARCIS (Netherlands)

    van Dijk, Marleen M.; de La Rosette, Jean J. M. C. H.; Michel, Martin C.

    2006-01-01

    alpha(1)-Adrenoceptor antagonists such as alfuzosin, doxazosin, tamsulosin and terazosin are first-line agents for the treatment of lower urinary tract symptoms suggestive of benign prostatic hyperplasia (BPH), but are only second-line agents (doxazosin and terazosin only) for the treatment of

  13. The Effect of Sympathetic Antagonists on the Antidepressant Action ...

    African Journals Online (AJOL)

    Alprazolam is an anti-anxiety drug shown to be effective in the treatment of depression. In this study, the effect of sympathetic receptor antagonists on alprazolam–induced antidepressant action was studied using a mouse model of forced swimming behavioral despair. The interaction of three sympathetic receptor ...

  14. Evaluation of antagonistic fungi against charcoal rot of sunflower ...

    African Journals Online (AJOL)

    user

    Results showed reduction in disease incidence of charcoal rot on sunflower cultivar G-66 with antagonist, A. flavus (100%) followed by A. niger (64.86%) P. capsulatum (63.79%) and T. viride (31.89%) over control. Decrease in disease incidence over control was 100% where seed was treated with combination of A. niger ...

  15. NK-1 receptor antagonists as anti-cancer drugs

    Indian Academy of Sciences (India)

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, ...

  16. About the use of antagonistic bacteria and fungi

    OpenAIRE

    Tilcher, R.; Schmidt, C.; Lorenz, D.; Wolf, G. A.

    2002-01-01

    Microorganisms isolated from the phylloplane of vine and cereal plants inhibiting different phytopathogenic fungi were tested as biological control agents against Plasmopara viticola (downy mildew of grapevine). Based on screening in vitro against Phytophthora infestans, P. parasitica, Pythium ultimum, Botrytis cinerea 62 bacterial isolates were selected for tests with Plasmopara viticola.. Antifungal bacterial strains were assayed for antagonistic activity towards the grapevine dieback fungu...

  17. Antagonistic bioactivity of endophytic strains isolated from Salvia ...

    African Journals Online (AJOL)

    The antibiotic-producing potential of endophytic populations from medical plant of Salvia miltiorrhiza was examined. A total of 63 isolates was screened against five fungal and three bacterial species for the production of antimicrobial compounds. It showed that more isolates was antagonistic to fungi than to bacteria.

  18. Voltage-Gated Calcium Channel Antagonists and Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Bruce Lyeth

    2013-06-01

    Full Text Available Traumatic brain injury (TBI is a leading cause of death and disability in the United States. Despite more than 30 years of research, no pharmacological agents have been identified that improve neurological function following TBI. However, several lines of research described in this review provide support for further development of voltage gated calcium channel (VGCC antagonists as potential therapeutic agents. Following TBI, neurons and astrocytes experience a rapid and sometimes enduring increase in intracellular calcium ([Ca2+]i. These fluxes in [Ca2+]i drive not only apoptotic and necrotic cell death, but also can lead to long-term cell dysfunction in surviving cells. In a limited number of in vitro experiments, both L-type and N-type VGCC antagonists successfully reduced calcium loads as well as neuronal and astrocytic cell death following mechanical injury. In rodent models of TBI, administration of VGCC antagonists reduced cell death and improved cognitive function. It is clear that there is a critical need to find effective therapeutics and rational drug delivery strategies for the management and treatment of TBI, and we believe that further investigation of VGCC antagonists should be pursued before ruling out the possibility of successful translation to the clinic.

  19. Antagonistic potential of fluorescent Pseudomonas and its impact on ...

    African Journals Online (AJOL)

    This study focused on the antagonistic potential of fluorescent Pseudomonas in vitro, and its inoculation effect on growth performance of Lycopersicon esculentum in Fusarium oxysporum and Rhizoctonia solani infested soil. Biochemical characteristics of fluorescent Pseudomonas showed that all ten isolates were positive ...

  20. Vasopressin receptor antagonists: pharmacological tools and potential therapeutic agents

    NARCIS (Netherlands)

    Streefkerk, J. O.; van Zwieten, P. A.

    2006-01-01

    The present survey deals with the development and applications of non-peptidergic vasopressin receptor antagonists. The existence of at least three vasopressin receptors (V(1), V(2) and V(3) respectively) is firmly established. V(1)-receptors play a relevant role in the regulation of vascular tone,

  1. Screening and Mechanism of Trapping Ligand Antagonist Peptide ...

    African Journals Online (AJOL)

    Purpose: The aim of the present study was to develop peptide H9 as an efficient antagonist of human cytomegalovirus (HCMV) chemokine receptor US28. Methods: US28 gene was amplified from HCMV, and a stable expression system was constructed using NIH/3T3 cells. Interaction between peptide H9 and receptor ...

  2. Characterization of a novel non-steroidal glucocorticoid receptor antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qun-Yi; Zhang, Meng [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Hallis, Tina M.; DeRosier, Therese A. [Cell Systems Division, Invitrogen, Madison, WI (United States); Yue, Jian-Min; Ye, Yang [State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China); Mais, Dale E. [The National Center for Drug Screening, Shanghai (China); MPI Research, Mattawan, MI (United States); Wang, Ming-Wei, E-mail: wangmw@mail.shcnc.ac.cn [The National Center for Drug Screening, Shanghai (China); State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai (China)

    2010-01-15

    Selective antagonists of the glucocorticoid receptor (GR) are desirable for the treatment of hypercortisolemia associated with Cushing's syndrome, psychic depression, obesity, diabetes, neurodegenerative diseases, and glaucoma. NC3327, a non-steroidal small molecule with potent binding affinity to GR (K{sub i} = 13.2 nM), was identified in a high-throughput screening effort. As a full GR antagonist, NC3327 greatly inhibits the dexamethasone (Dex) induction of marker genes involved in hepatic gluconeogenesis, but has a minimal effect on matrix metalloproteinase 9 (MMP-9), a GR responsive pro-inflammatory gene. Interestingly, the compound recruits neither coactivators nor corepressors to the GR complex but competes with glucocorticoids for the interaction between GR and a coactivator peptide. Moreover, NC3327 does not trigger GR nuclear translocation, but significantly blocks Dex-induced GR transportation to the nucleus, and thus appears to be a 'competitive' GR antagonist. Therefore, the non-steroidal compound, NC3327, may represent a new class of GR antagonists as potential therapeutics for a variety of cortisol-related endocrine disorders.

  3. Antagonistic activity of selected strains of Bacillus thuringiensis ...

    African Journals Online (AJOL)

    The aim of this work was to determine, in vitro, the antagonistic effectiveness of 60 strains of Bacillus thuringiensis against damping-off and root and stem rot caused by Rhizoctonia solani. The strains were obtained from the International Collection of Entomopathogenic Bacillus at the FCB-UANL. During the in vitro dual ...

  4. The Effect of Antagonist Muscle Sensory Input on Force Regulation.

    Directory of Open Access Journals (Sweden)

    Tanya Onushko

    Full Text Available The purpose of this study was to understand how stretch-related sensory feedback from an antagonist muscle affects agonist muscle output at different contraction levels in healthy adults. Ten young (25.3 ± 2.4 years, healthy subjects performed constant isometric knee flexion contractions (agonist at 6 torque levels: 5%, 10%, 15%, 20%, 30%, and 40% of their maximal voluntary contraction. For half of the trials, subjects received patellar tendon taps (antagonist sensory feedback during the contraction. We compared error in targeted knee flexion torque and hamstring muscle activity, with and without patellar tendon tapping, across the 6 torque levels. At lower torque levels (5%, 10%, and 15%, subjects produced greater knee torque error following tendon tapping compared with the same torque levels without tendon tapping. In contrast, we did not find any difference in torque output at higher target levels (20%, 30%, and 40% between trials with and without tendon tapping. We also observed a load-dependent increase in the magnitude of agonist muscle activity after tendon taps, with no associated load-dependent increase in agonist and antagonist co-activation, or reflex inhibition from the antagonist tapping. The findings suggest that at relatively low muscle activity there is a deficiency in the ability to correct motor output after sensory disturbances, and cortical centers (versus sub-cortical are likely involved.

  5. Isolation of Fusarium fujikuroi antagonistic bacteria and cloning of its ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-12-01

    Dec 1, 2009 ... effects of volatile metabolites produced by antagonistic P. fluorescens found in the isolates inhibited growth of F. fujikuroi in vitro. ... secondary metabolites play critical roles in many aspects of bacterium-host interactions. ... Nocardia, Sorangium, Brevibacterium, and Burkholderia. (Mavrodi et al., 2006; ...

  6. Kynurenic Acid Inhibits the Electrical Stimulation Induced Elevated Pituitary Adenylate Cyclase-Activating Polypeptide Expression in the TNC

    Directory of Open Access Journals (Sweden)

    Tamás Körtési

    2018-01-01

    Full Text Available BackgroundMigraine is a primary headache of imprecisely known mechanism, but activation of the trigeminovascular system (TS appears to be essential during the attack. Intensive research has recently focused on pituitary adenylate cyclase-activating polypeptide (PACAP and the kynurenine systems as potential pathogenic factors.AimWe investigated the link between these important mediators and the effects of kynurenic acid (KYNA and its synthetic analog (KYNA-a on PACAP expression in the rat trigeminal nucleus caudalis (TNC in a TS stimulation model related to migraine mechanisms.MethodsAdult male Sprague-Dawley rats were pretreated with KYNA, KYNA-a, the NMDA receptor antagonist MK-801, or saline (vehicle. Next, the trigeminal ganglion (TRG was electrically stimulated, the animals were transcardially perfused following 180 min, and the TNC was removed. In the TNC samples, 38 amino acid form of PACAP (PACAP1–38-like radioimmunoactivity was measured by radioimmunoassay, the relative optical density of preproPACAP was assessed by Western blot analysis, and PACAP1–38 mRNA was detected by real-time PCR.Results and conclusionElectrical TRG stimulation resulted in significant increases of PACAP1–38-LI, preproPACAP, and PACAP1–38 mRNA in the TNC. These increases were prevented by the pretreatments with KYNA, KYNA-a, and MK-801. This is the first study to provide evidence for a direct link between PACAP and the kynurenine system during TS activation.

  7. Phencyclidine-induced abnormal behaviors in rats as measured by the hole board apparatus.

    Science.gov (United States)

    Morita, T; Sonoda, R; Nakato, K; Koshiya, K; Wanibuchi, F; Yamaguchi, T

    2000-02-01

    Phencyclidine (PCP) and methamphetamine (MAP) are known as psychotomimetic agents. Both agents produce behavioral alterations in animals. The present study investigated the difference in behavioral alterations in rats induced by these two psychotomimetic agents using the hole board apparatus (HBA). In addition, mechanisms underlying PCP-induced behavioral changes were also investigated. After the administration of PCP (1-4 mg/kg SC) or MAP (1-4 mg/kg SC), locomotor activity and dipping behavior were assessed using HBA. Effect of selective NMDA antagonists, (+)MK801 and 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), on rat behaviors were also assessed. The effects of D-alanine (D-Ala), a coagonist of NMDA receptors, or neuroleptics, haloperidol, clozapine and risperidone, on PCP-induced behavioral changes were investigated. PCP increased locomotor activity and decreased exploratory behaviors of rats in HBA. On the other hand, MAP increased locomotor activity but did not decrease exploratory behaviors. (+)MK-801 produced hyperactivity as well as decreased exploratory behaviors, eliciting behavioral changes very similar to those of PCP. CPP decreased the exploratory behavior but failed to produce hyperactivity. D-Ala attenuated both behavioral changes induced by PCP. Three neuroleptics tested here inhibited hyperactivity but did not attenuate decreases in exploratory behavior. These results suggest that PCP-induced decrease in exploratory behavior are attributable to antagonism of NMDA receptors and may not involve dopaminergic transmission via D2 receptors.

  8. N-Methyl-D-aspartate Receptor Excessive Activation Inhibited Fetal Rat Lung Development In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Zhengchang Liao

    2016-01-01

    Full Text Available Background. Intrauterine hypoxia is a common cause of fetal growth and lung development restriction. Although N-methyl-D-aspartate receptors (NMDARs are distributed in the postnatal lung and play a role in lung injury, little is known about NMDAR’s expression and role in fetal lung development. Methods. Real-time PCR and western blotting analysis were performed to detect NMDARs between embryonic days (E 15.5 and E21.5 in fetal rat lungs. NMDAR antagonist MK-801’s influence on intrauterine hypoxia-induced retardation of fetal lung development was tested in vivo, and NMDA’s direct effect on fetal lung development was observed using fetal lung organ culture in vitro. Results. All seven NMDARs are expressed in fetal rat lungs. Intrauterine hypoxia upregulated NMDARs expression in fetal lungs and decreased fetal body weight, lung weight, lung-weight-to-body-weight ratio, and radial alveolar count, whereas MK-801 alleviated this damage in vivo. In vitro experiments showed that NMDA decreased saccular circumference and area per unit and downregulated thyroid transcription factor-1 and surfactant protein-C mRNA expression. Conclusions. The excessive activation of NMDARs contributed to hypoxia-induced fetal lung development retardation and appropriate blockade of NMDAR might be a novel therapeutic strategy for minimizing the negative outcomes of prenatal hypoxia on lung development.

  9. Isolation and Characterization of Activators of ERK/MAPK from Citrus Plants

    Directory of Open Access Journals (Sweden)

    Takashi Yoshida

    2012-02-01

    Full Text Available Extracellular signal-regulated kinases 1/2 (ERK1/2, components of the mitogen-activated protein kinase (MAPK signaling cascade, have been recently shown to be involved in synaptic plasticity and in the development of long-term memory in the central nervous system (CNS. We therefore examined the ability of Citrus compounds to activate ERK1/2 in cultured rat cortical neurons, whose activation might have a protective effect against neurodegenerative neurological disorders. Among the samples tested, extracts prepared from the peels of Citrus grandis (Kawachi bankan were found to have the greatest ability to activate ERK1/2. The active substances were isolated by chromatographic separation, and one of them was identified to be 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF. HMF significantly induced the phosphorylation of cAMP response element-binding protein (CREB, a downstream target of activated ERK1/2, which appears to be a critical step in the signaling cascade for the structural changes underlying the development of long-term potentiation (LTP. In addition, the administration of HMF into mice treated with NMDA receptor antagonist MK-801 restored the MK-801-induced deterioration of spatial learning performance in the Morris mater-maze task. Taken together, these results suggest that HMF is a neurotrophic agent for treating patients with memory disorders.

  10. Trainable Mentally Impaired/Severely Multiply Impaired/Autistic Impaired/Severely Mentally Impaired. Product Evaluation Report 1989-1990.

    Science.gov (United States)

    Claus, Richard N.; And Others

    The evaluation report describes special education services provided to trainable mentally impaired (TMI), autistic impaired (AI), severely multiply impaired (SXI), and severely mentally impaired (SMI) students at and through the Melvin G. Millet Learning Center (Bridgeport, Michigan). The eight program components are described individually and…

  11. Histamine-2 receptor antagonist famotidine modulates cardiac stem cell characteristics in hypertensive heart disease

    Directory of Open Access Journals (Sweden)

    Sherin Saheera

    2017-10-01

    Full Text Available Background Cardiac stem cells (CSCs play a vital role in cardiac homeostasis. A decrease in the efficiency of cardiac stem cells is speculated in various cardiac abnormalities. The maintenance of a healthy stem cell population is essential for the prevention of adverse cardiac remodeling leading to cardiac failure. Famotidine, a histamine-2 receptor antagonist, is currently used to treat ulcers of the stomach and intestines. In repurposing the use of the drug, reduction of cardiac hypertrophy and improvement in cardiac function of spontaneously hypertensive rats (SHR was reported by our group. Given that stem cells are affected in cardiac pathologies, the effect of histamine-2 receptor antagonism on CSC characteristics was investigated. Methods To examine whether famotidine has a positive effect on CSCs, spontaneously hypertensive rats (SHR treated with the drug were sacrificed; and CSCs isolated from atrial appendages was evaluated. Six-month-old male SHRs were treated with famotidine (30 mg/kg/day for two months. The effect of famotidine treatment on migration, proliferation and survival of CSCs was compared with untreated SHRs and normotensive Wistar rats. Results Functional efficiency of CSCs from SHR was compromised relative to that in Wistar rat. Famotidine increased the migration and proliferation potential, along with retention of stemness of CSCs in treated SHRs. Cellular senescence and oxidative stress were also reduced. The expression of H2R was unaffected by the treatment. Discussion As anticipated, CSCs from SHRs were functionally impaired. Stem cell attributes of famotidine-treated SHRs was comparable to that of Wistar rats. Therefore, in addition to being cardioprotective, the histamine 2 receptor antagonist modulated cardiac stem cells characteristics. Restoration of stem cell efficiency by famotidine is possibly mediated by reduction of oxidative stress as the expression of H2R was unaffected by the treatment. Maintenance of

  12. Characterization of Pseudomonas chlororaphis from Theobroma cacao L. rhizosphere with antagonistic activity against Phytophthora palmivora (Butler).

    Science.gov (United States)

    Acebo-Guerrero, Y; Hernández-Rodríguez, A; Vandeputte, O; Miguélez-Sierra, Y; Heydrich-Pérez, M; Ye, L; Cornelis, P; Bertin, P; El Jaziri, M

    2015-10-01

    To isolate and characterize rhizobacteria from Theobroma cacao with antagonistic activity against Phytophthora palmivora, the causal agent of the black pod rot, which is one of the most important diseases of T. cacao. Among 127 rhizobacteria isolated from cacao rhizosphere, three isolates (CP07, CP24 and CP30) identified as Pseudomonas chlororaphis, showed in vitro antagonistic activity against P. palmivora. Direct antagonism tested in cacao detached leaves revealed that the isolated rhizobacteria were able to reduce symptom severity upon infection with P. palmivora Mab1, with Ps. chlororaphis CP07 standing out as a potential biocontrol agent. Besides, reduced symptom severity on leaves was also observed in planta where cacao root system was pretreated with the isolated rhizobacteria followed by leaf infection with P. palmivora Mab1. The production of lytic enzymes, siderophores, biosurfactants and HCN, as well as the detection of genes encoding antibiotics, the formation of biofilm, and bacterial motility were also assessed for all three rhizobacterial strains. By using a mutant impaired in viscosin production, derived from CP07, it was found that this particular biosurfactant turned out to be crucial for both motility and biofilm formation, but not for the in vitro antagonism against Phytophthora, although it may contribute to the bioprotection of T. cacao. In the rhizosphere of T. cacao, there are rhizobacteria, such as Ps. chlororaphis, able to protect plants against P. palmivora. This study provides a theoretical basis for the potential use of Ps. chlororaphis CP07 as a biocontrol agent for the protection of cacao plants from P. palmivora infection. © 2015 The Society for Applied Microbiology.

  13. Metabotropic glutamate receptor antagonists but not NMDA antagonists affect conditioned taste aversion acquisition in the parabrachial nucleus of rats

    Czech Academy of Sciences Publication Activity Database

    Valeš, Karel; Zach, P.; Bielavská, Edita

    2006-01-01

    Roč. 169, č. 1 (2006), s. 50-57 ISSN 0014-4819 R&D Projects: GA MŠk(CZ) 1M0517 Institutional research plan: CEZ:AV0Z5011922 Keywords : learning * microdialysis * glutamate antagonists Subject RIV: FH - Neurology Impact factor: 1.959, year: 2006

  14. Vascular cognitive impairment

    Directory of Open Access Journals (Sweden)

    N.V. Vakhnina

    2014-01-01

    Full Text Available Vascular pathology of the brain is the second most common cause of cognitive impairment after Alzheimer's disease. The article describes the modern concepts of etiology, pathogenetic mechanisms, clinical features and approaches to diagnosis and therapy of vascular cognitive impairment (VCI. Cerebrovascular accident, chronic cerebral circulatory insufficiency and their combination, sometimes in combination with a concomitant neurodegenerative process, are shown to be the major types of brain lesions leading to VCI. The clinical presentation of VCI is characterized by the neuropsychological status dominated by impairment of the executive frontal functions (planning, control, attention in combination with focal neurological symptoms. The diagnosis is based on comparing of the revealed neuropsychological and neurological features with neuroimaging data. Neurometabolic, acetylcholinergic, glutamatergic, and other vasoactive drugs and non-pharmacological methods are widely used to treat VCI. 

  15. DIHYDROPYRIDINE CALCIUM ANTAGONISTS: DATA OF EVIDENCE BASED MEDICINE AND RECOM-MENDATIONS ON PRACTICAL USE

    Directory of Open Access Journals (Sweden)

    S. Y. Martsevich

    2007-01-01

    Full Text Available The classification of calcium antagonists is presented. There were considered the results of large randomized trials, which were devoted to study of influence of dihydropyridine calcium antagonists on the risk of cardiovascular complications. The place of dihydropyridine calcium antagonists in modern recommendations on treatment of arterial hypertension and ischemic heart disease is defined. The clinical importance of differences between various presentations of dihy-dropyridine calcium antagonists is stressed.

  16. DIHYDROPYRIDINE CALCIUM ANTAGONISTS: DATA OF EVIDENCE BASED MEDICINE AND RECOM-MENDATIONS ON PRACTICAL USE

    Directory of Open Access Journals (Sweden)

    S. Y. Martsevich

    2015-12-01

    Full Text Available The classification of calcium antagonists is presented. There were considered the results of large randomized trials, which were devoted to study of influence of dihydropyridine calcium antagonists on the risk of cardiovascular complications. The place of dihydropyridine calcium antagonists in modern recommendations on treatment of arterial hypertension and ischemic heart disease is defined. The clinical importance of differences between various presentations of dihy-dropyridine calcium antagonists is stressed.

  17. Social communication impairments: pragmatics.

    Science.gov (United States)

    Russell, Robert L

    2007-06-01

    Social communication or pragmatic impairments are characterized and illustrated as involving inappropriate or ineffective use of language and gesture in social contexts. Three clinical vignettes illustrate different pragmatic impairments and the wealth of diagnostic information that can be garnered from observation of a child's social communication behavior. Definitions of, and developmental milestones in, domains of pragmatic competence are provided. Several screening instruments are suggested for use in assessing pragmatic competence within the time-frame of a pediatric examination. Frequent comorbid psychiatric conditions are described and a sample of current neurobiologic research is briefly summarized.

  18. Opioid antagonists with minimal sedation for opioid withdrawal.

    Science.gov (United States)

    Gowing, Linda; Ali, Robert; White, Jason M

    2017-05-29

    Managed withdrawal is a necessary step prior to drug-free treatment or as the endpoint of long-term substitution treatment. To assess the effects of opioid antagonists plus minimal sedation for opioid withdrawal. Comparators were placebo as well as more established approaches to detoxification, such as tapered doses of methadone, adrenergic agonists, buprenorphine and symptomatic medications. We updated our searches of the following databases to December 2016: CENTRAL, MEDLINE, Embase, PsycINFO and Web of Science. We also searched two trials registers and checked the reference lists of included studies for further references to relevant studies. We included randomised and quasi-randomised controlled clinical trials along with prospective controlled cohort studies comparing opioid antagonists plus minimal sedation versus other approaches or different opioid antagonist regimens for withdrawal in opioid-dependent participants. We used standard methodological procedures expected by Cochrane. Ten studies (6 randomised controlled trials and 4 prospective cohort studies, involving 955 participants) met the inclusion criteria for the review. We considered 7 of the 10 studies to be at high risk of bias in at least one of the domains we assessed.Nine studies compared an opioid antagonist-adrenergic agonist combination versus a treatment regimen based primarily on an alpha 2 -adrenergic agonist (clonidine or lofexidine). Other comparisons (placebo, tapered doses of methadone, buprenorphine) made by included studies were too diverse for any meaningful analysis. This review therefore focuses on the nine studies comparing an opioid antagonist (naltrexone or naloxone) plus clonidine or lofexidine versus treatment primarily based on clonidine or lofexidine.Five studies took place in an inpatient setting, two studies were in outpatients with day care, two used day care only for the first day of opioid antagonist administration, and one study described the setting as outpatient

  19. Medications and impaired driving.

    Science.gov (United States)

    Hetland, Amanda; Carr, David B

    2014-04-01

    To describe the association of specific medication classes with driving outcomes and provide clinical recommendations. The MEDLINE and EMBASE databases were searched for articles published from January 1973 to June 2013 on classes of medications associated with driving impairment. The search included outcome terms such as automobile driving, motor vehicle crash, driving simulator, and road tests. Only English-language articles that contained findings from observational or interventional designs with ≥ 10 participants were included in this review. Cross-sectional studies, case series, and case reports were excluded. Driving is an important task and activity for the majority of adults. Some commonly prescribed medications have been associated with driving impairment measured by road performance, driving simulation, and/or motor vehicle crashes. This review of 30 studies identified findings with barbiturates, benzodiazepines, hypnotics, antidepressants, opioid and nonsteroidal analgesics, anticonvulsants, antipsychotics, antiparkinsonian agents, skeletal muscle relaxants, antihistamines, anticholinergic medications, and hypoglycemic agents. Additional studies of medication impact on sedation, sleep latency, and psychomotor function, as well as the role of alcohol, are also discussed. Psychotropic agents and those with central nervous system side effects were associated with measures of impaired driving performance. It is difficult to determine if such associations are actually a result of medication use or the medical diagnosis itself. Regardless, clinicians should be aware of the increased risk of impaired driving with specific classes of medications, educate their patients, and/or consider safer alternatives.

  20. Tactical Approaches to Interconverting GPCR Agonists and Antagonists.

    Science.gov (United States)

    Dosa, Peter I; Amin, Elizabeth Ambrose

    2016-02-11

    There are many reported examples of small structural modifications to GPCR-targeted ligands leading to major changes in their functional activity, converting agonists into antagonists or vice versa. These shifts in functional activity are often accompanied by negligible changes in binding affinity. The current perspective focuses on outlining and analyzing various approaches that have been used to interconvert GPCR agonists, partial agonists, and antagonists in order to achieve the intended functional activity at a GPCR of therapeutic interest. An improved understanding of specific structural modifications that are likely to alter the functional activity of a GPCR ligand may be of use to researchers designing GPCR-targeted drugs and/or probe compounds, specifically in cases where a particular ligand exhibits good potency but not the preferred functional activity at the GPCR of choice.

  1. Are peripheral opioid antagonists the solution to opioid side effects?

    LENUS (Irish Health Repository)

    Bates, John J

    2012-02-03

    Opioid medication is the mainstay of therapy for severe acute and chronic pain. Unfortunately, the side effects of these medications can affect patient comfort and safety, thus limiting their proven therapeutic potential. Whereas the main analgesic effects of opioids are centrally mediated, many of the common side effects are mediated via peripheral receptors. Novel peripheral opioid antagonists have been recently introduced that can block the peripheral actions of opioids without affecting centrally mediated analgesia. We review the clinical and experimental evidence of their efficacy in ameliorating opioid side effects and consider what further information might be useful in defining their role. IMPLICATIONS: The major analgesic effects of opioid medication are mediated within the brain and spinal cord. Many of the side effects of opioids are caused by activation of receptors outside these areas. Recently developed peripherally restricted opioid antagonists have the ability to block many opioid side effects without affecting analgesia.

  2. In-silico guided discovery of novel CCR9 antagonists

    Science.gov (United States)

    Zhang, Xin; Cross, Jason B.; Romero, Jan; Heifetz, Alexander; Humphries, Eric; Hall, Katie; Wu, Yuchuan; Stucka, Sabrina; Zhang, Jing; Chandonnet, Haoqun; Lippa, Blaise; Ryan, M. Dominic; Baber, J. Christian

    2018-03-01

    Antagonism of CCR9 is a promising mechanism for treatment of inflammatory bowel disease, including ulcerative colitis and Crohn's disease. There is limited experimental data on CCR9 and its ligands, complicating efforts to identify new small molecule antagonists. We present here results of a successful virtual screening and rational hit-to-lead campaign that led to the discovery and initial optimization of novel CCR9 antagonists. This work uses a novel data fusion strategy to integrate the output of multiple computational tools, such as 2D similarity search, shape similarity, pharmacophore searching, and molecular docking, as well as the identification and incorporation of privileged chemokine fragments. The application of various ranking strategies, which combined consensus and parallel selection methods to achieve a balance of enrichment and novelty, resulted in 198 virtual screening hits in total, with an overall hit rate of 18%. Several hits were developed into early leads through targeted synthesis and purchase of analogs.

  3. Non-imidazole histamine NO-donor H3-antagonists.

    Science.gov (United States)

    Tosco, Paolo; Bertinaria, Massimo; Di Stilo, Antonella; Cena, Clara; Fruttero, Roberta; Gasco, Alberto

    2005-01-01

    Recently a series of H3-antagonists related to Imoproxifan was realised (I); in these products the oxime substructure of the lead was constrained in NO-donor furoxan systems and in the corresponding furazan derivatives. In this paper, a new series of compounds derived from I by substituting the imidazole ring with the ethoxycarbonylpiperazino moiety present in the non-imidazole H3-ligand A-923 is described. For all the products synthesis and preliminary pharmacological characterisation, as well as their hydrophilic-lipophilic balance, are reported. The imidazole ring replacement generally results in a decreased H3-antagonist activity with respect to the analogues of series I and, in some cases, induces relaxing effects on the electrically contracted guinea-pig ileum, probably due to increased affinity for other receptor systems.

  4. Potential Clinical Implications of the Urotensin II Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Emilie Kane

    2011-07-01

    Full Text Available Urotensin-II (UII, which binds to its receptor UT, plays an important role in the heart, kidneys, pancreas, adrenal gland and CNS. In the vasculature, it acts as a potent endothelium-independent vasoconstrictor and endothelium-dependent vasodilator. In disease states, this constriction-dilation equilibrium is disrupted. There is an upregulation of the UII system in heart disease, metabolic syndrome and kidney failure. The increase in UII release and UT expression suggest that UII system may be implicated in the pathology and pathogenesis of these diseases by causing an increase in ACAT-1 activity leading to SMC proliferation and foam cell infiltration, insulin resistance (DMII, as well as inflammation, high blood pressure and plaque formation. Recently, UT antagonists such as SB-611812, palosuran, and most recently a piperazino-isoindolinone based antagonist have been developed in the hope of better understanding the UII system and treating its associated diseases.

  5. Angelica keiskei ameliorates scopolamine-induced memory impairments in mice.

    Science.gov (United States)

    Oh, Sa Rang; Kim, Su-Jin; Kim, Dong Hyun; Ryu, Jong Hoon; Ahn, Eun-Mi; Jung, Ji Wook

    2013-01-01

    Memory impairment is the most common symptom in patients with Alzheimer's disease (AD). Angelica keiskei (AK) has traditionally been used as a diuretic, laxative, analeptic and galactagogue. However, the anti-amnesic effects of AK and its molecular mechanisms have yet to be clearly elucidated. The aim of the present study is to evaluate the effects of AK on scopolamine-induced memory impairments in mice. The regulatory effect of AK on memory impairment was investigated using passive avoidance, Y-maze and the Morris water maze tasks. Acetylcholinesterase (AChE) activity assay was performed to investigate the cholinergic antagonistic effect of AK in the hippocampus. The effect of AK on phosphorylation of cAMP response element-binding protein (CREB) and expression of brain-derived neurotrophic factor (BDNF) were evaluated by Western blot assays and immunohistochemistry. The findings showed that AK significantly attenuated scopolamine-induced cognitive impairment in mice. Increase of AChE activity caused by scopolamine was significantly attenuated by AK. Additionally, AK significantly recovered the phosphorylation of CREB and expression of BDNF reduced by scopolamine in the hippocampus. Taken together, these results provide experimental evidence that AK might be a useful agent in preventing deficit of learning and memory caused by AD and aging.

  6. Amyrin attenuates scopolamine-induced cognitive impairment in mice.

    Science.gov (United States)

    Park, Se Jin; Ahn, Young Je; Oh, Sa Rang; Lee, Younghwan; Kwon, Guyoung; Woo, Hyun; Lee, Hyung Eun; Jang, Dae Sik; Jung, Ji Wook; Ryu, Jong Hoon

    2014-01-01

    Alzheimer's disease, a neurodegenerative disorder, is characterized by progressive cognitive impairment associated with the disruption of cholinergic neurotransmission. The aim of the present study was to evaluate the effect of α- or β-amyrin, a type of pentacyclic triterpene, on the cognitive impairment induced by scopolamine, a muscarinic acetylcholine receptor antagonist. To measure the abilities of various types of learning and memory, we conducted step-through passive avoidance task. Scopolamine induced deficits in learning and memory processes in mice, which were antagonized by a single administration of α-amyrin (2 or 4 mg/kg) or β-amyrin (4 mg/kg), respectively. Additionally, in vitro analysis revealed that acetylcholinesterase activity was inhibited by β-amyrin, but not by α-amyrin. Furthermore, Western blot analysis revealed that the expression levels of phosphorylated extracellular signal-regulated kinase 1/2 (pERK) and phosphorylated glycogen synthase kinase-3β (pGSK-3β) were significantly enhanced by a single administration of α- and β-amyrin in the hippocampus. Finally, the memory ameliorating effects of α- or β-amyrin on the scopolamine-induced cognitive impairments were significantly blocked by ERK inhibitor U0126. The present study suggests that α- and β-amyrin may ameliorate the cognitive impairment induced by hypocholinergic neurotransmission via the activation of ERK as well as GSK-3β signaling.

  7. Construction, purification, and characterization of a chimeric TH1 antagonist

    Directory of Open Access Journals (Sweden)

    Javier-González Luís

    2006-05-01

    Full Text Available Abstract Background TH1 immune response antagonism is a desirable approach to mitigate some autoimmune and inflammatory reactions during the course of several diseases where IL-2 and IFN-γ are two central players. Therefore, the neutralization of both cytokines could provide beneficial effects in patients suffering from autoimmune or inflammatory illnesses. Results A chimeric antagonist that can antagonize the action of TH1 immunity mediators, IFN-γ and IL-2, was designed, engineered, expressed in E. coli, purified and evaluated for its in vitro biological activities. The TH1 antagonist molecule consists of the extracellular region for the human IFNγ receptor chain 1 fused by a four-aminoacid linker peptide to human 60 N-terminal aminoacid residues of IL-2. The corresponding gene fragments were isolated by RT-PCR and cloned in the pTPV-1 vector. E. coli (W3110 strain was transformed with this vector. The chimeric protein was expressed at high level as inclusion bodies. The protein was partially purified by pelleting and washing. It was then solubilized with strong denaturant and finally refolded by gel filtration. In vitro biological activity of chimera was demonstrated by inhibition of IFN-γ-dependent HLA-DR expression in Colo 205 cells, inhibition of IFN-γ antiproliferative effect on HEp-2 cells, and by a bidirectional effect in assays for IL-2 T-cell dependent proliferation: agonism in the absence versus inhibition in the presence of IL-2. Conclusion TH1 antagonist is a chimeric protein that inhibits the in vitro biological activities of human IFN-γ, and is a partial agonist/antagonist of human IL-2. With these attributes, the chimera has the potential to offer a new opportunity for the treatment of autoimmune and inflammatory diseases.

  8. State Estimation For An Agonistic-Antagonistic Muscle System

    OpenAIRE

    Nguyen, Thang; Warner, Holly; La, Hung; Mohammadi, Hanieh; Simon, Dan; Richter, Hanz

    2017-01-01

    Research on assistive technology, rehabilitation, and prosthesis requires the understanding of human machine interaction, in which human muscular properties play a pivotal role. This paper studies a nonlinear agonistic-antagonistic muscle system based on the Hill muscle model. To investigate the characteristics of the muscle model, the problem of estimating the state variables and activation signals of the dual muscle system is considered. In this work, parameter uncertainty and unknown input...

  9. Histamine-2 receptor antagonists as immunomodulators: new therapeutic views?

    DEFF Research Database (Denmark)

    Nielsen, Hans Jørgen

    1996-01-01

    Considerable evidence has emerged to suggest that histamine participates in the regulation of the inflammatory response, immune reaction, coagulation cascade, and cardiovascular function. Furthermore, histamine may play a major role in the growth of normal and malignant tissue as a regulator...... antagonists as adjuvant single drugs to reduce trauma-, blood transfusion- and sepsis-induced immunosuppression has led to research in combined treatment regimens in major surgery, particularly, of patients operated on for malignant diseases....

  10. Chitinolytic Enterobacter agglomerans Antagonistic to Fungal Plant Pathogens

    OpenAIRE

    Chernin, L.; Ismailov, Z.; Haran, S.; Chet, I.

    1995-01-01

    Three Enterobacter agglomerans strains which produce and excrete proteins with chitinolytic activity were found while screening soil-borne bacteria antagonistic to fungal plant pathogens. The chitinolytic activity was induced when the strains were grown in the presence of colloidal chitin as the sole carbon source. It was quantitated by using assays with chromogenic p-nitrophenyl analogs of disaccharide, trisaccharide, and tetrasaccharide derivatives of N-acetylglucosamine. A set of three flu...

  11. ANTIHYPERTENSIVE TREATMENT IN ELDERLY PATIENTS WITH DIHYDROPYRIDINE CALCIUM ANTAGONISTS

    OpenAIRE

    Y. A. Karpov; V. V. Buza

    2006-01-01

    The proofs of necessity of active arterial hypertension (AH) treatment in elderly patients are given. Peculiarities of pathogenesis of AH in elderly patients, connected predominantly with loss of big arteries elasticity and reasoning widely spread of isolated systolic AH in these patients, are discussed. Advantages of dihydropyridine calcium antagonists (DPCA) for AH treatment in elderly patients are proved, safety of treatment with DPCA is discussed. Data of clinical studies is analyzed. Ana...

  12. Renoprotective effects of calcium antagonists on kidney disease

    OpenAIRE

    Mochammad Sja'bani, Mochammad Sja'bani

    2015-01-01

    There has been a growing number of evidence that calcium antagonists provide a salutary effects in preserving kidneys against acute renal ischemia in patients at increasing risk. Their beneficial effects on cellular and mitochondrial calcium may explain the effects on renal hemodynamics and metabolics. It seems, that they do not directly vasodilate kidney vessels but alter the response towards vasoconstrictor agents. This effect may mediate diuretic and natriuretic effect of calcium antagonis...

  13. Deoxycholic acid conjugates are muscarinic cholinergic receptor antagonists.

    Science.gov (United States)

    Raufman, Jean-Pierre; Chen, Ying; Zimniak, Piotr; Cheng, Kunrong

    2002-08-01

    In the course of examining the actions of major human bile acids on cholinergic receptors, we discovered that conjugates of lithocholic acid are partial muscarinic agonists. In the present communication, we report that conjugates of deoxycholic acid (DC) act as cholinergic muscarinic receptor antagonists. Chinese hamster ovary (CHO) cells expressing rat M3-muscarinic receptors were used to test bile acids for inhibition of radioligand [N- (3)H-methylscopolamine ((3)H-NMS)] binding; alteration of inositol phosphate (IP) formation; mitogen-activated protein (MAP) kinase phosphorylation and cell toxicity. We observed approximately 18.8, 30.3 and 37.1% inhibition of (3)H-NMS binding with DC and its glycine (DCG) and taurine (DCT) conjugates, respectively (all 100 micromol/l, p exclusion or lactate dehydrogenase release from CHO-M3 cells. We observed the following rank order of potency (IC(50) micromol/l) for inhibition of (3)H-NMS by muscarinic antagonists and bile acids: NMS (0.0004) > 4-DAMP (0.009) > atropine (0.012) > DCT (170) > DCG (250). None of the bile acids tested were hydrolyzed by recombinant cholinesterase. At concentrations achieved in human bile, DC derivatives are natural muscarinic antagonists. Copyright 2002 S. Karger AG, Basel

  14. Glutamate receptor antagonists with the potential for migraine treatment.

    Science.gov (United States)

    Ferrari, Anna; Rustichelli, Cecilia; Baraldi, Carlo

    2017-12-01

    Preclinical, clinical, and other (e.g., genetic) evidence support the concept that migraine susceptibility may at least partially result from a glutamatergic system disorder. Therefore, the receptors of the glutamatergic system are considered relatively new targets for investigational drugs to treat migraine. Investigational and established glutamate receptor antagonists (GluRAs) have been shown to possess antinociceptive properties in preclinical models of trigeminovascular nociception and have been evaluated in clinical trials. This review focuses on preclinical and clinical studies of GluRAs for the treatment of migraine. Areas covered: A PubMed database search (from 1987 to December 2016) and a review of published studies on GluRAs in migraine were conducted. Expert opinion: All published clinical trials of investigational GluRAs have been unsuccessful in establishing benefit for acute migraine treatment. Clinical trial results contrast with the preclinical data, suggesting that glutamate (Glu) does not play a decisive role after the attack has already been triggered. These antagonists may instead be useful for migraine prophylaxis. Improving patient care requires further investigating and critically analyzing the role of Glu in migraine, designing experimental models to study more receptors and their corresponding antagonists, and identifying biomarkers to facilitate trials designed to target specific subgroups of migraine patients.

  15. Non-genetic inheritance and the patterns of antagonistic coevolution

    Directory of Open Access Journals (Sweden)

    Mostowy Rafal

    2012-06-01

    Full Text Available Abstract Background Antagonistic species interactions can lead to coevolutionary genotype or phenotype frequency oscillations, with important implications for ecological and evolutionary processes. However, direct empirical evidence of such oscillations is rare. The rarity of observations is generally attributed to inherent difficulties of ecological and evolutionary long-term studies, to weak or absent interaction between species, or to the absence of negative frequency-dependence. Results Here, we show that another factor – non-genetic inheritance, mediated for example by epigenetic mechanisms – can completely eliminate oscillations in the presence of such negative frequency dependence, even if only a small fraction of offspring are affected. We analytically derive the threshold value of this fraction at which the dynamics change from oscillatory to stable, and investigate how selection, mutation and generation times differences between the two species affect the threshold value. These results strongly suggest that the lack of phenotype frequency oscillations should not be attributed to the lack of strong interactions between antagonistic species. Conclusions Given increasing evidence of non-genetic effects on the outcomes of antagonistic species interactions, we suggest that these effects should be incorporated into ecological and evolutionary models of interacting species.

  16. Histamine H1 antagonists and clinical characteristics of febrile seizures

    Directory of Open Access Journals (Sweden)

    Zolaly MA

    2012-03-01

    Full Text Available Mohammed A ZolalyDepartment of Pediatrics, College of Medicine, Taibah University, Al-Madinah Al-Munawarah, Kingdom of Saudi ArabiaBackground: The purpose of this study was to determine whether seizure susceptibility due to antihistamines is provoked in patients with febrile seizures.Methods: The current descriptive study was carried out from April 2009 to February 2011 in 250 infants and children who visited the Madinah Maternity and Children's Hospital as a result of febrile convulsions. They were divided into two groups according to administration of antihistamines at the onset of fever.Results: Detailed clinical manifestations were compared between patients with and without administration of antihistamines. The time from fever detection to seizure onset was significantly shorter in the antihistamine group than that in the nonantihistamine group, and the duration of seizures was significantly longer in the antihistamine group than in the nonantihistamine group. No significant difference was found in time from fever detection to seizure onset or seizure duration between patients who received a first-generation antihistamine and those who received a second-generation antihistamine.Conclusion: Due to their central nervous system effects, H1 antagonists should not be administered to patients with febrile seizures and epilepsy. Caution should be exercised regarding the use of histamine H1 antagonists in young infants, because these drugs could potentially disturb the anticonvulsive central histaminergic system.Keywords: antihistamine, nonantihistamine, histamine H1 antagonist, febrile seizures

  17. Twisted gastrulation, a BMP antagonist, exacerbates podocyte injury.

    Directory of Open Access Journals (Sweden)

    Sachiko Yamada

    Full Text Available Podocyte injury is the first step in the progression of glomerulosclerosis. Previous studies have demonstrated the beneficial effect of bone morphogenetic protein 7 (Bmp7 in podocyte injury and the existence of native Bmp signaling in podocytes. Local activity of Bmp7 is controlled by cell-type specific Bmp antagonists, which inhibit the binding of Bmp7 to its receptors. Here we show that the product of Twisted gastrulation (Twsg1, a Bmp antagonist, is the central negative regulator of Bmp function in podocytes and that Twsg1 null mice are resistant to podocyte injury. Twsg1 was the most abundant Bmp antagonist in murine cultured podocytes. The administration of Bmp induced podocyte differentiation through Smad signaling, whereas the simultaneous administration of Twsg1 antagonized the effect. The administration of Bmp also inhibited podocyte proliferation, whereas simultaneous administration of Twsg1 antagonized the effect. Twsg1 was expressed in the glomerular parietal cells (PECs and distal nephron of the healthy kidney, and additionally in damaged glomerular cells in a murine model of podocyte injury. Twsg1 null mice exhibited milder hypoalbuminemia and hyperlipidemia, and milder histological changes while maintaining the expression of podocyte markers during podocyte injury model. Taken together, our results show that Twsg1 plays a critical role in the modulation of protective action of Bmp7 on podocytes, and that inhibition of Twsg1 is a promising means of development of novel treatment for podocyte injury.

  18. Tachykinin NK2 receptor antagonists. A patent review (2006 - 2010).

    Science.gov (United States)

    Altamura, Maria

    2012-01-01

    Tachykinins are endogenous peptide neurotransmitters, acting through the NK1, NK2 and NK3 receptors, at central and peripheral level. At peripheral level, they are involved in contraction of smooth muscle, secretion of water and ion from epithelia, as well as modulation of visceral pain sensitivity. Tachykinin NK2 receptor antagonists have the potential to be useful in the treatment of various gastrointestinal, genitourinary and CNS diseases. In this review, an overview of the patenting activity in the last 5 years is provided. Patents from different companies and research groups are discussed for their novelty and evaluated in relation to proposed indications and clinical studies. Relevant biological data are also presented. Patents claiming new therapeutic indications are included in a dedicated section. Although there is still no tachykinin NK2 receptor antagonist approved for use in human therapy, research in the field is still proposing new compounds and possible uses. A number of candidates are being evaluated in Phase II clinical studies, in indications ranging from gastrointestinal disorders to inflammatory diseases. The results of these studies will indicate the role of tachykinin NK2 receptor antagonists in human therapy.

  19. [Necrotic leg ulcer revealing vasculitis induced by vitamin K antagonists].

    Science.gov (United States)

    Chabli, H; Hocar, O; Akhdari, N; Amal, S; Hakkou, M; Hamdaoui, A

    2015-12-01

    Vitamin K antagonists are widely used in thromboembolic diseases. Hemorrhagic complications related to drug overdose represent their main side effect. We report a rare side effect, a severe and unexpected type of skin vasculitis - necrotic leg ulcer - induced by vitamin K antagonist. A 63-year-old female with a history of diabetes developed hyperalgesic necrotic ulcerations on the lower limbs one month after starting an acenocoumarol-based treatment for ischemic heart disease. Histological examination revealed lymphocytic vasculitis with fibrinoid necrosis. Etiological explorations searching for vasculitis were negative. In the absence of a precise etiology, drug-induced ulcer was suspected. Low molecular weight heparin was prescribed to replace acenocoumarol. The lesions slowly resolved with topical treatment. The chronological criteria and the negativity of etiological explorations allowed the diagnosis of vitamin K antagonist-induced necrotic skin ulcer. Clinicians should be aware of this rare complication induced by oral anticoagulants because of its practical therapeutic implications. This is the first case of necrotic leg ulcer induced by acenocoumarol corresponding histologically to necrotising lymphocytic vasculitis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Correlated EMG Oscillations between Antagonists during Cocontraction in Men.

    Science.gov (United States)

    Yoshitake, Yasuhide; Kanehisa, Hiroaki; Shinohara, Minoru

    2017-03-01

    The purpose of this study was to determine the modulation of common low-frequency oscillations in pools of motor units across antagonistic muscles because of the difference in the activation level of pools of spinal motor neurons and the presence of neuromuscular fatigue during intended cocontraction. Ten healthy young men (21.8 ± 1.5 yr) performed intended steady cocontractions of elbow flexors and extensors at maximal and a submaximal (10% of maximal EMG) effort. The submaximal cocontraction was repeated after sustained maximal contraction of elbow flexors. Surface EMG was recorded from the biceps brachii and triceps brachii muscles. Correlated EMG oscillations between the antagonistic muscles were quantified by the cross-correlation function (CCF) using rectified EMG for the EMG for the 3- to 15-Hz bands. The positive CCF peak in rectified EMG EMG, a negative CCF peak (i.e., out-of-phase oscillations) during submaximal cocontraction was smaller compared with maximal cocontraction but increased after the sustained contraction. Across subjects, the degree of reduction in maximal EMG amplitude after the sustained contraction was correlated with the amount of change in the CCF peak in EMG oscillations between antagonistic muscles occur during intended cocontraction, and 2) the magnitude of these correlated oscillations increases with the activation level of pools of spinal motor neurons and neuromuscular fatigue.

  1. Frequent epigenetic inactivation of Wnt antagonist genes in breast cancer

    Science.gov (United States)

    Suzuki, H; Toyota, M; Caraway, H; Gabrielson, E; Ohmura, T; Fujikane, T; Nishikawa, N; Sogabe, Y; Nojima, M; Sonoda, T; Mori, M; Hirata, K; Imai, K; Shinomura, Y; Baylin, S B; Tokino, T

    2008-01-01

    Although mutation of APC or CTNNB1 (β-catenin) is rare in breast cancer, activation of Wnt signalling is nonetheless thought to play an important role in breast tumorigenesis, and epigenetic silencing of Wnt antagonist genes, including the secreted frizzled-related protein (SFRP) and Dickkopf (DKK) families, has been observed in various tumours. In breast cancer, frequent methylation and silencing of SFRP1 was recently documented; however, altered expression of other Wnt antagonist genes is largely unknown. In the present study, we found frequent methylation of SFRP family genes in breast cancer cell lines (SFRP1, 7 out of 11, 64%; SFRP2, 11 out of 11, 100%; SFRP5, 10 out of 11, 91%) and primary breast tumours (SFRP1, 31 out of 78, 40%; SFRP2, 60 out of 78, 77%; SFRP5, 55 out of 78, 71%). We also observed methylation of DKK1, although less frequently, in cell lines (3 out of 11, 27%) and primary tumours (15 out of 78, 19%). Breast cancer cell lines express various Wnt ligands, and overexpression of SFRPs inhibited cancer cell growth. In addition, overexpression of a β-catenin mutant and depletion of SFRP1 using small interfering RNA synergistically upregulated transcriptional activity of T-cell factor/lymphocyte enhancer factor. Our results confirm the frequent methylation and silencing of Wnt antagonist genes in breast cancer, and suggest that their loss of function contributes to activation of Wnt signalling in breast carcinogenesis. PMID:18283316

  2. The effect of the NMDA receptor-dependent signaling pathway on cell morphology and melanosome transfer in melanocytes.

    Science.gov (United States)

    Ni, Jing; Wang, Nan; Gao, Lili; Li, Lili; Zheng, Siwen; Liu, Yuejian; Ozukum, Molu; Nikiforova, Anna; Zhao, Guangming; Song, Zhiqi

    2016-12-01

    The pigmentation of skin and hair in mammals is driven by the intercellular transfer of melanosome from the melanocyte to surrounding keratinocytes However, the detailed molecular mechanism is still a subject of investigation. To investigate the effects of N-methyl-d-aspartate (NMDA) receptor-dependent signaling pathway on melanocyte morphologic change and melanosome transfer between melanocytes and keratinocytes. The expression and the intracellular distribution of NMDA receptor in human melanocyte were analyzed by Western blot and immunofluorescence staining. Melanocytes were treated with 100μM NMDA receptor antagonist MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate] and 100μM NMDA receptor agonist NMDA, after which the morphological change of melanocyte dendrites and filopodias were observed by scanning electron microscope. The β-tubulin distribution and intracellular calcium concentration ([Ca 2+ ] i ) were observed by immunofluorescence staining and flow cytometry under the same treatment respectively. In addition, melanocytes and keratinocytes were co-cultured with or without treatment of MK-801, and the melanosome transfer efficacy were analyzed by flow cytometry. We show that human epidermal melanocytes expresses NMDA receptor 1, one subtype of the ionotropic glutamate receptors (iGluRs). Stimulation with agonist of NMDA receptor increased the number of melanocyte filopodia. In contrast, blockage of NMDA receptor with antagonist decreased the number of melanocyte filopodia and this morphological change was accompanied by the disorganization of β-tubulin microfilaments in the intracellular cytoskeleton. In melanocyte-keratinocyte co-cultures, numerous melanocyte filopodia connect to keratinocyte plasma membranes; agonist of NMDA receptor exhibited an increased number of melanocyte filopodia attachments to keratinocyte, while antagonist of NMDA receptor led to a decreased. Moreover, antagonist of NMDA receptor decreased

  3. Abiotic conditions affect floral antagonists and mutualists of Impatiens capensis (Balsaminaceae).

    Science.gov (United States)

    Soper Gorden, Nicole L; Adler, Lynn S

    2013-04-01

    While the effect of abiotic factors on leaf herbivory is well known, the relative importance of abiotic conditions influencing both mutualists and antagonists is less well understood. Species interactions could enhance or reduce the direct effects of abiotic factors, depending on how mutualists and antagonists respond to abiotic conditions. We manipulated soil nutrients and shade in a factorial design and measured soil moisture in the annual Impatiens capensis. We then measured interactions with mutualists (two pollinating species) and antagonists (herbivores, florivores, nectar thieves, and flower bud gallers), as well as plant growth, floral rewards, and plant reproduction. Fertilizer increased plant growth, floral attractiveness, mutualist and antagonist interactions, and plant reproduction. Shade had no effects, and soil moisture was negatively associated with plant growth and reproduction. All effects were additive. Mutualist and antagonist floral interactions both increased on fertilized plants, but antagonists increased at a greater rate, leading to a larger ratio of antagonist to mutualist interactions on fertilized plants. Despite having more antagonists, fertilized plants still had significantly higher reproduction, suggesting higher tolerance to antagonists. Abiotic effects can have consistent effects on antagonists and mutualists, and on both floral and leaf antagonists. However, tolerance to antagonisms increased in favorable conditions. Thus, the direct positive effects of favorable abiotic conditions on plants outweighed negative indirect effects via increased antagonisms, which may lead to selection to grow in high-nutrient microsites in spite of increased herbivory.

  4. The Roles of the Wnt-Antagonists Axin and Lrp4 during Embryogenesis of the Red Flour Beetle Tribolium castaneum.

    Science.gov (United States)

    Prühs, Romy; Beermann, Anke; Schröder, Reinhard

    2017-10-15

    In both vertebrates and invertebrates, the Wnt-signaling pathway is essential for numerous processes in embryogenesis and during adult life. Wnt activity is fine-tuned at various levels by the interplay of a number of Wnt-agonists (Wnt ligands, Frizzled-receptors, Lrp5/6 coreceptors) and Wnt-antagonists (among them Axin, Secreted frizzled and Lrp4) to define anterior-posterior polarity of the early embryo and specify cell fate in organogenesis. So far, the functional analysis of Wnt-pathway components in insects has concentrated on the roles of Wnt-agonists and on the Wnt-antagonist Axin. We depict here additional features of the Wnt-antagonist Axin in the flour beetle Tribolium castaneum . We show that Tc-axin is dynamically expressed throughout embryogenesis and confirm its essential role in head development. In addition, we describe an as yet undetected, more extreme Tc-axin RNAi-phenotype, the ectopic formation of posterior abdominal segments in reverse polarity and a second hindgut at the anterior. For the first time, we describe here that an lrp4 ortholog is involved in axis formation in an insect. The Tribolium Lrp4 ortholog is ubiquitously expressed throughout embryogenesis. Its downregulation via maternal RNAi results in the reduction of head structures but not in axis polarity reversal. Furthermore, segmentation is impaired and larvae develop with a severe gap-phenotype. We conclude that, as in vertebrates, Tc-lrp4 functions as a Wnt-inhibitor in Tribolium during various stages of embryogenesis. We discuss the role of both components as negative modulators of Wnt signaling in respect to axis formation and segmentation in Tribolium .

  5. A selective, non-peptide CRF receptor 1 antagonist prevents sodium lactate-induced acute panic-like responses.

    Science.gov (United States)

    Shekhar, Anantha; Johnson, Philip L; Fitz, Stephanie D; Nakazato, Atsuro; Chaki, Shigeyuki; Steckler, Thomas; Schmidt, Mark

    2011-04-01

    Corticotropin releasing factor (CRF) is implicated in a variety of stress-related disorders such as depression and anxiety, and blocking CRF receptors is a putative strategy for treating such disorders. Using a well-studied animal model of panic, we tested the efficacy of JNJ19567470/CRA5626, a selective, non-peptidergic CRF type 1 receptor (CRF1) antagonist (3, 10 and 40 mg/kg intraperitoneal injection), in preventing the sodium lactate (NaLac)-induced panic-like behavioural and cardiovascular responses. Adult male rats with chronic reduction of GABA levels (by inhibition of GABA synthesis with l-allyglycine, a glutamic acid decarboxylase inhibitor) in the dorsomedial/perifornical hypothalamus are highly anxious and exhibit physiological and behavioural responses to intravenous NaLac infusions similar to patients with panic disorder. These 'panic-prone' rats pre-treated with vehicle injections displayed NaLac-induced increases in autonomic responses (i.e. tachycardia and hypertensive responses), anxiety-like behaviour in the social interaction test, and flight-like increases in locomotor activity. However, systemically injecting such panic-prone rats with the highest dose of CRF1 receptor antagonist prior to NaLac infusions blocked all NaLac-induced behaviour and cardiovascular responses. These data suggest that selective CRF1 receptor antagonists could be a novel target for developing anti-panic drugs that are as effective as benzodiazepines in acute treatment of a panic attack without the deleterious side-effects (e.g. sedation and cognitive impairment) associated with benzodiazepines.

  6. Effect of histamine H1 and H2 receptor antagonists, microinjected into cerebellar vermis, on emotional memory consolidation in mice

    Directory of Open Access Journals (Sweden)

    A.C.L. Gianlorenco

    2014-02-01

    Full Text Available This study investigated the effects of histamine H1 or H2 receptor antagonists on emotional memory consolidation in mice submitted to the elevated plus maze (EPM. The cerebellar vermis of male mice (Swiss albino was implanted using a cannula guide. Three days after recovery, behavioral tests were performed in the EPM on 2 consecutive days (T1 and T2. Immediately after exposure to the EPM (T1, animals received a microinjection of saline (SAL or the H1 antagonist chlorpheniramine (CPA; 0.016, 0.052, or 0.16 nmol/0.1 µL in Experiment 1, and SAL or the H2 antagonist ranitidine (RA; 0.57, 2.85, or 5.7 nmol/0.1 µL in Experiment 2. Twenty-four hours later, mice were reexposed to the EPM (T2 under the same experimental conditions but they did not receive any injection. Data were analyzed using one-way ANOVA and the Duncan test. In Experiment 1, mice microinjected with SAL and with CPA entered the open arms less often (%OAE and spent less time in the open arms (%OAT in T2, and there was no difference among groups. The results of Experiment 2 demonstrated that the values of %OAE and %OAT in T2 were lower compared to T1 for the groups that were microinjected with SAL and 2.85 nmol/0.1 µL RA. However, when animals were microinjected with 5.7 nmol/0.1 µL RA, they did not show a reduction in %OAE and %OAT. These results demonstrate that CPA did not affect behavior at the doses used in this study, while 5.7 nmol/0.1 µL RA induced impairment of memory consolidation in the EPM.

  7. Effect of histamine H1 and H2 receptor antagonists, microinjected into cerebellar vermis, on emotional memory consolidation in mice

    International Nuclear Information System (INIS)

    Gianlorenço, A.C.L.; Serafim, K.R.; Canto-de-Souza, A.; Mattioli, R.

    2014-01-01

    This study investigated the effects of histamine H1 or H2 receptor antagonists on emotional memory consolidation in mice submitted to the elevated plus maze (EPM). The cerebellar vermis of male mice (Swiss albino) was implanted using a cannula guide. Three days after recovery, behavioral tests were performed in the EPM on 2 consecutive days (T1 and T2). Immediately after exposure to the EPM (T1), animals received a microinjection of saline (SAL) or the H1 antagonist chlorpheniramine (CPA; 0.016, 0.052, or 0.16 nmol/0.1 µL) in Experiment 1, and SAL or the H2 antagonist ranitidine (RA; 0.57, 2.85, or 5.7 nmol/0.1 µL) in Experiment 2. Twenty-four hours later, mice were reexposed to the EPM (T2) under the same experimental conditions but they did not receive any injection. Data were analyzed using one-way ANOVA and the Duncan test. In Experiment 1, mice microinjected with SAL and with CPA entered the open arms less often (%OAE) and spent less time in the open arms (%OAT) in T2, and there was no difference among groups. The results of Experiment 2 demonstrated that the values of %OAE and %OAT in T2 were lower compared to T1 for the groups that were microinjected with SAL and 2.85 nmol/0.1 µL RA. However, when animals were microinjected with 5.7 nmol/0.1 µL RA, they did not show a reduction in %OAE and %OAT. These results demonstrate that CPA did not affect behavior at the doses used in this study, while 5.7 nmol/0.1 µL RA induced impairment of memory consolidation in the EPM

  8. Effect of histamine H1 and H2 receptor antagonists, microinjected into cerebellar vermis, on emotional memory consolidation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Gianlorenço, A.C.L.; Serafim, K.R. [Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brasil, Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Canto-de-Souza, A. [Laboratório de Psicologia da Aprendizagem, Departamento de Psicologia, Centro de Educação e Ciências Humanas, Universidade Federal de São Carlos, São Carlos, SP, Brasil, Laboratório de Psicologia da Aprendizagem, Departamento de Psicologia, Centro de Educação e Ciências Humanas, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos, São Carlos, SP, Brasil, Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal de São Carlos, São Carlos, SP (Brazil); Instituto de Neurociências e Comportamento, Universidade de São Paulo, Ribeirão Preto, SP, Brasil, Instituto de Neurociências e Comportamento, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Mattioli, R. [Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brasil, Laboratório de Neurociências, Departamento de Fisioterapia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP (Brazil)

    2014-02-17

    This study investigated the effects of histamine H1 or H2 receptor antagonists on emotional memory consolidation in mice submitted to the elevated plus maze (EPM). The cerebellar vermis of male mice (Swiss albino) was implanted using a cannula guide. Three days after recovery, behavioral tests were performed in the EPM on 2 consecutive days (T1 and T2). Immediately after exposure to the EPM (T1), animals received a microinjection of saline (SAL) or the H1 antagonist chlorpheniramine (CPA; 0.016, 0.052, or 0.16 nmol/0.1 µL) in Experiment 1, and SAL or the H2 antagonist ranitidine (RA; 0.57, 2.85, or 5.7 nmol/0.1 µL) in Experiment 2. Twenty-four hours later, mice were reexposed to the EPM (T2) under the same experimental conditions but they did not receive any injection. Data were analyzed using one-way ANOVA and the Duncan test. In Experiment 1, mice microinjected with SAL and with CPA entered the open arms less often (%OAE) and spent less time in the open arms (%OAT) in T2, and there was no difference among groups. The results of Experiment 2 demonstrated that the values of %OAE and %OAT in T2 were lower compared to T1 for the groups that were microinjected with SAL and 2.85 nmol/0.1 µL RA. However, when animals were microinjected with 5.7 nmol/0.1 µL RA, they did not show a reduction in %OAE and %OAT. These results demonstrate that CPA did not affect behavior at the doses used in this study, while 5.7 nmol/0.1 µL RA induced impairment of memory consolidation in the EPM.

  9. Involvement of NMDA receptors in soman-induced neuropathology

    Energy Technology Data Exchange (ETDEWEB)

    De Groot, D.M.; Bierman, E.P.; Van Huygevoort, A.H.; Bruijnzeel, P.L.

    1993-05-13

    Our current working hypothesis with regard to soman-induced neuropathology is that accumulated ACh, resulting from soman-inhibited ACHE potentiates glutamate-induced neuronal degeneration, most likely by lowering the threshold for glutamate excitation at the NMDA-receptor sites. The activation of the NMDA-ionic channels may lead to massive Ca2+ fluxes into the postsynaptic cell, causing cell degeneration. In this concept the NMDA receptor plays a crucial role. In the present study, the involvement of NMDA receptors in soman-induced convulsions is tested by injecting NMDA receptor antagonists MK801, AP5 and TCP, whether or not in combination with atropine and/or diazepam, either directly into the hippocampal CA1 area or in the lateral ventricle very near to CA1. This area is predominantly affected by soman and contains high concentrations of NMDA receptors. Also the effect of injection with a non-NMDA receptor antagonist is tested.

  10. Interleukin-1 receptor antagonist protects against lipopolysaccharide induced diaphragm weakness in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Kanakeswary Karisnan

    Full Text Available Chorioamnionitis (inflammation of the fetal membranes is strongly associated with preterm birth and in utero exposure to inflammation significantly impairs contractile function in the preterm lamb diaphragm. The fetal inflammatory response to intra-amniotic (IA lipopolysaccharide (LPS is orchestrated via interleukin 1 (IL-1. We aimed to determine if LPS induced contractile dysfunction in the preterm diaphragm is mediated via the IL-1 pathway. Pregnant ewes received IA injections of recombinant human IL-1 receptor antagonist (rhIL-1ra (Anakinra; 100 mg or saline (Sal 3 h prior to second IA injections of LPS (4 mg or Sal at 119d gestational age (GA. Preterm lambs were killed after delivery at 121d GA (term = 150 d. Muscle fibres dissected from the right hemi-diaphragm were mounted in an in vitro muscle test system for assessment of contractile function. The left hemi-diaphragm was snap frozen for molecular and biochemical analyses. Maximum specific force in lambs exposed to IA LPS (Sal/LPS group was 25% lower than in control lambs (Sal/Sal group; p=0.025. LPS-induced diaphragm weakness was associated with higher plasma IL-6 protein, diaphragm IL-1β mRNA and oxidised glutathione levels. Pre-treatment with rhIL-1ra (rhIL-1ra/LPS ameliorated the LPS-induced diaphragm weakness and blocked systemic and local inflammatory responses, but did not prevent the rise in oxidised glutathione. These findings indicate that LPS induced diaphragm dysfunction is mediated via IL-1 and occurs independently of oxidative stress. Therefore, the IL-1 pathway represents a potential therapeutic target in the management of impaired diaphragm function in preterm infants.

  11. Impaired Consciousness in Epilepsy

    Science.gov (United States)

    Blumenfeld, Hal

    2013-01-01

    Consciousness is essential to normal human life. In epileptic seizures consciousness is often transiently lost making it impossible for the individual to experience or respond. This has huge consequences for safety, productivity, emotional health and quality of life. To prevent impaired consciousness in epilepsy it is necessary to understand the mechanisms leading to brain dysfunction during seizures. Normally the “consciousness system”—a specialized set of cortical-subcortical structures—maintains alertness, attention and awareness. Recent advances in neuroimaging, electrophysiology and prospective behavioral testing have shed new light on how epileptic seizures disrupt the consciousness system. Diverse seizure types including absence, generalized tonic-clonic and complex partial seizures converge on the same set of anatomical structures through different mechanisms to disrupt consciousness. Understanding these mechanisms may lead to improved treatment strategies to prevent impaired consciousness and improve quality of life in people with epilepsy. PMID:22898735

  12. Age-Related Sensory Impairments and Risk of Cognitive Impairment

    Science.gov (United States)

    Fischer, Mary E; Cruickshanks, Karen J.; Schubert, Carla R; Pinto, Alex A; Carlsson, Cynthia M; Klein, Barbara EK; Klein, Ronald; Tweed, Ted S.

    2016-01-01

    Background/Objectives To evaluate the associations of sensory impairments with the 10-year risk of cognitive impairment. Previous work has primarily focused on the relationship between a single sensory system and cognition. Design The Epidemiology of Hearing Loss Study (EHLS) is a longitudinal, population-based study of aging in the Beaver Dam, WI community. Baseline examinations were conducted in 1993 and follow-up exams have been conducted every 5 years. Setting General community Participants EHLS members without cognitive impairment at EHLS-2 (1998–2000). There were 1,884 participants (mean age = 66.7 years) with complete EHLS-2 sensory data and follow-up information. Measurements Cognitive impairment was a Mini-Mental State Examination score of impairment was a pure-tone average of hearing thresholds (0.5, 1, 2 and 4 kHz) of > 25 decibel Hearing Level in either ear. Visual impairment was Pelli-Robson contrast sensitivity of impairment was a San Diego Odor Identification Test score of impairment were independently associated with cognitive impairment risk [Hearing: Hazard Ratio (HR) = 1.90, 95% Confidence Interval (C.I.) = 1.11, 3.26; Vision: HR = 2.05, 95% C.I. = 1.24, 3.38; Olfaction: HR = 3.92, 95% C.I. = 2.45, 6.26]. However, 85% with hearing impairment, 81% with visual impairment, and 76% with olfactory impairment did not develop cognitive impairment during follow-up. Conclusion The relationship between sensory impairment and cognitive impairment was not unique to one sensory system suggesting sensorineural health may be a marker of brain aging. The development of a combined sensorineurocognitive measure may be useful in uncovering mechanisms of healthy brain aging. PMID:27611845

  13. Age-Related Sensory Impairments and Risk of Cognitive Impairment.

    Science.gov (United States)

    Fischer, Mary E; Cruickshanks, Karen J; Schubert, Carla R; Pinto, Alex A; Carlsson, Cynthia M; Klein, Barbara E K; Klein, Ronald; Tweed, Ted S

    2016-10-01

    To evaluate the associations between sensory impairments and 10-year risk of cognitive impairment. The Epidemiology of Hearing Loss Study (EHLS), a longitudinal, population-based study of aging in the Beaver Dam, Wisconsin community. Baseline examinations were conducted in 1993 and follow-up examinations have been conducted every 5 years. General community. EHLS members without cognitive impairment at EHLS-2 (1998-2000). There were 1,884 participants (mean age 66.7) with complete EHLS-2 sensory data and follow-up information. Cognitive impairment was defined as a Mini-Mental State Examination score of dementia or Alzheimer's disease. Hearing impairment was a pure-tone average of hearing thresholds (0.5, 1, 2, 4 kHz) of >25 dB hearing level in either ear, visual impairment was a Pelli-Robson contrast sensitivity of impairment was a San Diego Odor Identification Test score of impairment were independently associated with cognitive impairment risk (hearing: hazard ratio (HR) = 1.90, 95% confidence interval (CI) = 1.11-3.26; vision: HR = 2.05, 95% CI = 1.24-3.38; olfaction: HR = 3.92, 95% CI = 2.45-6.26)). Nevertheless, 85% of participants with hearing impairment, 81% with visual impairment, and 76% with olfactory impairment did not develop cognitive impairment during follow-up. The relationship between sensory impairment and cognitive impairment was not unique to one sensory system, suggesting that sensorineural health may be a marker of brain aging. The development of a combined sensorineurocognitive measure may be useful in uncovering mechanisms of healthy brain aging. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  14. Voice impairment and menopause.

    Science.gov (United States)

    Schneider, Berit; van Trotsenburg, Michael; Hanke, Gunda; Bigenzahn, Wolfgang; Huber, Johannes

    2004-01-01

    Menopause rating scales still do not regard voice impairment as a genuine climacteric symptom, although voice changes are frequently reported. The purpose of this study was both to register and differentiate voice alterations and disorders in menopausal women. A total of 107 women between 37 and 71 years of age who were rated as postmenopausal according to their hormonal status answered a questionnaire on voice changes and vocal discomfort. Of this group, 49 women mentioned voices changes, and 35 of those women associated these changes with subjective discomfort, whereas 58 women mentioned neither voice changes nor discomfort. Sixteen of the women who mentioned voice changes and eight who did not participated in a comprehensive investigation, which included completion of the Klimax questionnaire, a head and neck examination, videostroboscopy, perceptual evaluation of voice sound, voice range profile measurements, and voice dysfunction index determination. Voice changes during menopause might be a common problem seen in clinical practice. Therefore, an additional systematic registration of voice impairment in future menopause rating scales should be considered if further studies confirm our findings of a high prevalence of voice complaints associated with menopause. Severe menopausal voice impairments, even without other climacteric symptoms, should be regarded as an indication for phoniatric examination.

  15. Orexin receptor antagonists differ from standard sleep drugs by promoting sleep at doses that do not disrupt cognition.

    Science.gov (United States)

    Uslaner, Jason M; Tye, Spencer J; Eddins, Donnie M; Wang, Xiaohai; Fox, Steven V; Savitz, Alan T; Binns, Jacquelyn; Cannon, Christopher E; Garson, Susan L; Yao, Lihang; Hodgson, Robert; Stevens, Joanne; Bowlby, Mark R; Tannenbaum, Pamela L; Brunner, Joseph; Mcdonald, Terrence P; Gotter, Anthony L; Kuduk, Scott D; Coleman, Paul J; Winrow, Christopher J; Renger, John J

    2013-04-03

    Current treatments for insomnia, such as zolpidem (Ambien) and eszopiclone (Lunesta), are γ-aminobutyric acid type A (GABAA)-positive allosteric modulators that carry a number of side effects including the potential to disrupt cognition. In an effort to develop better tolerated medicines, we have identified dual orexin 1 and 2 receptor antagonists (DORAs), which promote sleep in preclinical animal models and humans. We compare the effects of orally administered eszopiclone, zolpidem, and diazepam to the dual orexin receptor antagonist DORA-22 on sleep and the novel object recognition test in rat, and on sleep and two cognition tests (delayed match to sample and serial choice reaction time) in the rhesus monkey. Each compound's minimal dose that promoted sleep versus the minimal dose that exerted deficits in these cognitive tests was determined, and a therapeutic margin was established. We found that DORA-22 has a wider therapeutic margin for sleep versus cognitive impairment in rat and rhesus monkey compared to the other compounds tested. These data were further supported with the demonstration of a wider therapeutic margin for DORA-22 compared to the other compounds on sleep versus the expression of hippocampal activity-regulated cytoskeletal-associated protein (Arc), an immediate-early gene product involved in synaptic plasticity. These findings suggest that DORAs might provide an effective treatment for insomnia with a greater therapeutic margin for sleep versus cognitive disturbances compared to the GABAA-positive allosteric modulators currently in use.

  16. Amniotic-fluid-derived mesenchymal stem cells overexpressing interleukin-1 receptor antagonist improve fulminant hepatic failure.

    Directory of Open Access Journals (Sweden)

    Yu-Bao Zheng

    Full Text Available Uncontrolled hepatic immunoactivation is regarded as the primary pathological mechanism of fulminant hepatic failure (FHF. The major acute-phase mediators associated with FHF, including IL-1β, IL-6, and TNF-α, impair the regeneration of liver cells and stem cell grafts. Amniotic-fluid-derived mesenchymal stem cells (AF-MSCs have the capacity, under specific conditions, to differentiate into hepatocytes. Interleukin-1-receptor antagonist (IL-1Ra plays an anti-inflammatory and anti-apoptotic role in acute and chronic inflammation, and has been used in many experimental and clinical applications. In the present study, we implanted IL-1Ra-expressing AF-MSCs into injured liver via the portal vein, using D-galactosamine-induced FHF in a rat model. IL-1Ra expression, hepatic injury, liver regeneration, cytokines (IL-1β, IL-6, and animal survival were assessed after cell transplantation. Our results showed that AF-MSCs over-expressing IL-1Ra prevented liver failure and reduced mortality in rats with FHF. These animals also exhibited improved liver function and increased survival rates after injection with these cells. Using green fluorescent protein as a marker, we demonstrated that the engrafted cells and their progeny were incorporated into injured livers and produced albumin. This study suggests that AF-MSCs genetically modified to over-express IL-1Ra can be implanted into the injured liver to provide a novel therapeutic approach to the treatment of FHF.

  17. N-Methyl D-Aspartate Receptor Antagonist Kynurenic Acid affects Human Cortical Development

    Directory of Open Access Journals (Sweden)

    Inseyah Bagasrawala

    2016-09-01

    Full Text Available Kynurenic acid (KYNA, a neuroactive metabolite of tryptophan degradation, acts as an endogenous N-methyl-D-aspartate receptor (NMDAR antagonist. Elevated levels of KYNA have been observed in pregnant women after viral infections and are considered to play a role in neurodevelopmental disorders. However, the consequences of KYNA-induced NMDAR blockade in human cortical development still remain elusive. To study the potential impact of KYNA on human neurodevelopment, we used an in vitro system of multipotent cortical progenitors, i.e., radial glia cells (RGCs, enriched from human cerebral cortex at mid-gestation (16-19 gestational weeks. KYNA treatment significantly decreased RGCs proliferation and survival by antagonizing NMDAR. This alteration resulted in a reduced number of cortical progenitors and neurons while number and activation of astrocytes increased. KYNA treatment reduced differentiation of RGCs into GABAergic neurons, while differentiation into glutamatergic neurons was relatively spared. Furthermore, in mixed cortical cultures KYNA triggered an inflammatory response as evidenced by increased levels of the pro-inflammatory cytokine IL-6. In conclusion, elevated levels of KYNA play a significant role in human RGC fate determination by antagonizing NMDARs and by activating an inflammatory response. The altered cell composition observed in cell culture following exposure to elevated KYNA levels suggests a mechanism for impairment of cortical circuitry formation in the fetal brain after viral infection, as seen in neurodevelopmental disorders such as schizophrenia.

  18. Antischistosomal activity of a calcium channel antagonist on schistosomula and adult Schistosoma mansoni worms

    Directory of Open Access Journals (Sweden)

    Vanessa Silva-Moraes

    2013-08-01

    Full Text Available Current schistosomiasis control strategies are largely based on chemotherapeutic agents and a limited number of drugs are available today. Praziquantel (PZQ is the only drug currently used in schistosomiasis control programs. Unfortunately, this drug shows poor efficacy in patients during the earliest infection phases. The effects of PZQ appear to operate on the voltage-operated Ca2+channels, which are located on the external Schistosoma mansoni membrane. Because some Ca2+channels have dihydropyridine drug class (a class that includes nifedipine sensitivity, an in vitro analysis using a calcium channel antagonist (clinically used for cardiovascular hypertension was performed to determine the antischistosomal effects of nifedipine on schistosomula and adult worm cultures. Nifedipine demonstrated antischistosomal activity against schistosomula and significantly reduced viability at all of the concentrations used alone or in combination with PZQ. In contrast, PZQ did not show significant efficacy when used alone. Adult worms were also affected by nifedipine after a 24 h incubation and exhibited impaired motility, several lesions on the tegument and intense contractility. These data support the idea of Ca2+channels subunits as drug targets and favour alternative therapeutic schemes when drug resistance has been reported. In this paper, strong arguments encouraging drug research are presented, with a focus on exploring schistosomal Ca2+channels.

  19. Predictions of in vivo prolactin levels from in vitro k I values of d 2 receptor antagonists using an agonist-antagonist interaction model

    NARCIS (Netherlands)

    Petersson, K.J.; Vermeulen, A.M.J.; Friberg, L.E.

    2013-01-01

    Prolactin elevation is a side effect of all currently available D2 receptor antagonists used in the treatment of schizophrenia. Prolactin elevation is the result of a direct antagonistic D2 effect blocking the tonic inhibition of prolactin release by dopamine. The aims of this work were to assess

  20. Role of ionotropic GABA, glutamate and glycine receptors in the tonic and reflex control of cardiac vagal outflow in the rat

    Directory of Open Access Journals (Sweden)

    Goodchild Ann K

    2010-10-01

    Full Text Available Abstract Background Cardiac vagal preganglionic neurons (CVPN are responsible for the tonic, reflex and respiratory modulation of heart rate (HR. Although CVPN receive GABAergic and glutamatergic inputs, likely involved in respiratory and reflex modulation of HR respectively, little else is known regarding the functions controlled by ionotropic inputs. Activation of g-protein coupled receptors (GPCR alters these inputs, but the functional consequence is largely unknown. The present study aimed to delineate how ionotropic GABAergic, glycinergic and glutamatergic inputs contribute to the tonic and reflex control of HR and in particular determine which receptor subtypes were involved. Furthermore, we wished to establish how activation of the 5-HT1A GPCR affects tonic and reflex control of HR and what ionotropic interactions this might involve. Results Microinjection of the GABAA antagonist picrotoxin into CVPN decreased HR but did not affect baroreflex bradycardia. The glycine antagonist strychnine did not alter HR or baroreflex bradycardia. Combined microinjection of the NMDA antagonist, MK801, and AMPA antagonist, CNQX, into CVPN evoked a small bradycardia and abolished baroreflex bradycardia. MK801 attenuated whereas CNQX abolished baroreceptor bradycardia. Control intravenous injections of the 5-HT1A agonist 8-OH-DPAT evoked a small bradycardia and potentiated baroreflex bradycardia. These effects were still observed following microinjection of picrotoxin but not strychnine into CVPN. Conclusions We conclude that activation of GABAA receptors set the level of HR whereas AMPA to a greater extent than NMDA receptors elicit baroreflex changes in HR. Furthermore, activation of 5-HT1A receptors evokes bradycardia and enhances baroreflex changes in HR due to interactions with glycinergic neurons involving strychnine receptors. This study provides reference for future studies investigating how diseases alter neurochemical inputs to CVPN.

  1. Does protein binding modulate the effect of angiotensin II receptor antagonists?

    Directory of Open Access Journals (Sweden)

    Marc P Maillard

    2001-03-01

    Full Text Available IntroductionAngiotensin II AT 1-receptor antagonists are highly bound to plasma proteins (≥ 99%. With some antagonists, such as DuP-532, the protein binding was such that no efficacy of the drug could be demonstrated clinically. Whether protein binding interferes with the efficacy of other antagonists is not known. We have therefore investigated in vitro how plasma proteins may affect the antagonistic effect of different AT1-receptor antagonists.MethodsA radio-receptor binding assay was used to analyse the interaction between proteins and the ability of various angiotensin II (Ang II antagonists to block AT1-receptors. In addition, the Biacore technology, a new technique which enables the real-time monitoring of binding events between two molecules, was used to evaluate the dissociation rate constants of five AT1-receptor antagonists from human serum albumin.ResultsThe in vitro AT 1-antagonistic effects of different Ang II receptor antagonists were differentially affected by the presence of human plasma, with rightward shifts of the IC50 ranging from one to several orders of magnitude. The importance of the shift correlates with the dissociation rate constants of these drugs from albumin. Our experiments also show that the way that AT1-receptor antagonists bind to proteins differs from one compound to another. These results suggest that the interaction with plasma proteins appears to modulate the efficacy of some Ang II antagonists.ConclusionAlthough the high binding level of Ang II receptor antagonist to plasma proteins appears to be a feature common to this class of compounds, the kinetics and characteristics of this binding is of great importance. With some antagonists, protein binding interferes markedly with their efficacy to block AT1-receptors.

  2. Sexually antagonistic "zygotic drive" of the sex chromosomes.

    Directory of Open Access Journals (Sweden)

    William R Rice

    2008-12-01

    Full Text Available Genomic conflict is perplexing because it causes the fitness of a species to decline rather than improve. Many diverse forms of genomic conflict have been identified, but this extant tally may be incomplete. Here, we show that the unusual characteristics of the sex chromosomes can, in principle, lead to a previously unappreciated form of sexual genomic conflict. The phenomenon occurs because there is selection in the heterogametic sex for sex-linked mutations that harm the sex of offspring that does not carry them, whenever there is competition among siblings. This harmful phenotype can be expressed as an antagonistic green-beard effect that is mediated by epigenetic parental effects, parental investment, and/or interactions among siblings. We call this form of genomic conflict sexually antagonistic "zygotic drive", because it is functionally equivalent to meiotic drive, except that it operates during the zygotic and postzygotic stages of the life cycle rather than the meiotic and gametic stages. A combination of mathematical modeling and a survey of empirical studies is used to show that sexually antagonistic zygotic drive is feasible, likely to be widespread in nature, and that it can promote a genetic "arms race" between the homo- and heteromorphic sex chromosomes. This new category of genomic conflict has the potential to strongly influence other fundamental evolutionary processes, such as speciation and the degeneration of the Y and W sex chromosomes. It also fosters a new genetic hypothesis for the evolution of enigmatic fitness-reducing traits like the high frequency of spontaneous abortion, sterility, and homosexuality observed in humans.

  3. Central actions of a novel and selective dopamine antagonist

    International Nuclear Information System (INIS)

    Schulz, D.W.

    1985-01-01

    Receptors for the neurotransmitter dopamine traditionally have been divided into two subgroups: the D 1 class, which is linked to the stimulation of adenylate cyclase-activity, and the D 2 class which is not. There is much evidence suggesting that it is the D 2 class which is not. There is much evidence suggesting that it is the D 2 dopamine receptor that mediates the physiological and behavioral actions of dopamine in the intact animal. However, the benzazepine SCH23390 is a dopamine antagonist which has potent behavioral actions while displaying apparent neurochemical selectivity for the D 1 class of dopamine receptors. The purpose of this dissertation was to (1) confirm and characterize this selectivity, and (2) test certain hypothesis related to possible modes of action of SCH233390. The inhibition of adenylate cyclase by SCH23390 occurred via an action at the dopamine receptor only. A radiolabeled analog of SCH23390 displayed the receptor binding properties of a specific high-affinity ligand, and regional receptor densities were highly correlated with dopamine levels. The subcellular distribution of [ 3 H]-SCH23390 binding did not correspond completely with that of dopamine-stimulated adenylate cyclase. The neurochemical potency of SCH23390 as a D 1 receptor antagonist was preserved following parental administration. A variety of dopamine agonists and antagonists displayed a high correlation between their abilities to compete for [ 3 H]-SCH23390 binding in vitro and to act at an adenylate cyclase-linked receptor. Finally, the relative affinities of dopamine and SCH23390 for both D 1 receptors and [ 3 H]-SCH23390 binding sites were comparable. It is concluded that the behavioral effects of SCH23390 are mediated by actions at D 1 dopamine receptors only, and that the physiological importance of this class of receptors should be reevaluated

  4. Classification and virtual screening of androgen receptor antagonists.

    Science.gov (United States)

    Li, Jiazhong; Gramatica, Paola

    2010-05-24

    Computational tools, such as quantitative structure-activity relationship (QSAR), are highly useful as screening support for prioritization of substances of very high concern (SVHC). From the practical point of view, QSAR models should be effective to pick out more active rather than inactive compounds, expressed as sensitivity in classification works. This research investigates the classification of a big data set of endocrine-disrupting chemicals (EDCs)-androgen receptor (AR) antagonists, mainly aiming to improve the external sensitivity and to screen for potential AR binders. The kNN, lazy IB1, and ADTree methods and the consensus approach were used to build different models, which improve the sensitivity on external chemicals from 57.1% (literature) to 76.4%. Additionally, the models' predictive abilities were further validated on a blind collected data set (sensitivity: 85.7%). Then the proposed classifiers were used: (i) to distinguish a set of AR binders into antagonists and agonists; (ii) to screen a combined estrogen receptor binder database to find out possible chemicals that can bind to both AR and ER; and (iii) to virtually screen our in-house environmental chemical database. The in silico screening results suggest: (i) that some compounds can affect the normal endocrine system through a complex mechanism binding both to ER and AR; (ii) new EDCs, which are nonER binders, but can in silico bind to AR, are recognized; and (iii) about 20% of compounds in a big data set of environmental chemicals are predicted as new AR antagonists. The priority should be given to them to experimentally test the binding activities with AR.

  5. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABAA receptors

    International Nuclear Information System (INIS)

    Shakarjian, Michael P.; Velíšková, Jana; Stanton, Patric K.; Velíšek, Libor

    2012-01-01

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic–clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic–clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic–clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABA A receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists is more likely to be effective in treating TMDT poisoning. -- Highlights: ► TMDT produces convulsions and lethality at low doses in mice. ► Diazepam pre- or post-treatments inhibit TMDT-induced convulsions and death.

  6. Differential antagonism of tetramethylenedisulfotetramine-induced seizures by agents acting at NMDA and GABA{sub A} receptors

    Energy Technology Data Exchange (ETDEWEB)

    Shakarjian, Michael P., E-mail: michael_shakarjian@nymc.edu [Department of Environmental Health Science, School of Health Sciences and Practice, Institute of Public Health, New York Medical College, Valhalla, NY, 10595 (United States); Department of Medicine, Division of Pulmonary and Critical Care Medicine, UMDNJ–Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Velíšková, Jana, E-mail: jana_veliskova@nymc.edu [Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 (United States); Department of Obstetrics and Gynecology, New York Medical College, Valhalla, NY 10595 (United States); Department of Neurology, New York Medical College, Valhalla, NY 10595 (United States); Stanton, Patric K., E-mail: patric_stanton@nymc.edu [Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 (United States); Department of Neurology, New York Medical College, Valhalla, NY 10595 (United States); Velíšek, Libor, E-mail: libor_velisek@nymc.edu [Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 (United States); Department of Neurology, New York Medical College, Valhalla, NY 10595 (United States); Department of Pediatrics, New York Medical College, Valhalla, NY 10595 (United States)

    2012-11-15

    Tetramethylenedisulfotetramine (TMDT) is a highly lethal neuroactive rodenticide responsible for many accidental and intentional poisonings in mainland China. Ease of synthesis, water solubility, potency, and difficulty to treat make TMDT a potential weapon for terrorist activity. We characterized TMDT-induced convulsions and mortality in male C57BL/6 mice. TMDT (ip) produced a continuum of twitches, clonic, and tonic–clonic seizures decreasing in onset latency and increasing in severity with increasing dose; 0.4 mg/kg was 100% lethal. The NMDA antagonist, ketamine (35 mg/kg) injected ip immediately after the first TMDT-induced seizure, did not change number of tonic–clonic seizures or lethality, but increased the number of clonic seizures. Doubling the ketamine dose decreased tonic–clonic seizures and eliminated lethality through a 60 min observation period. Treating mice with another NMDA antagonist, MK-801, 0.5 or 1 mg/kg ip, showed similar effects as low and high doses of ketamine, respectively, and prevented lethality, converting status epilepticus EEG activity to isolated interictal discharges. Treatment with these agents 15 min prior to TMDT administration did not increase their effectiveness. Post-treatment with the GABA{sub A} receptor allosteric enhancer diazepam (5 mg/kg) greatly reduced seizure manifestations and prevented lethality 60 min post-TMDT, but ictal events were evident in EEG recordings and, hours post-treatment, mice experienced status epilepticus and died. Thus, TMDT is a highly potent and lethal convulsant for which single-dose benzodiazepine treatment is inadequate in managing electrographic seizures or lethality. Repeated benzodiazepine dosing or combined application of benzodiazepines and NMDA receptor antagonists is more likely to be effective in treating TMDT poisoning. -- Highlights: ► TMDT produces convulsions and lethality at low doses in mice. ► Diazepam pre- or post-treatments inhibit TMDT-induced convulsions and death

  7. Membrane Formation in Liquids by Adding an Antagonistic Salt

    Directory of Open Access Journals (Sweden)

    Koichiro Sadakane

    2018-03-01

    Full Text Available Antagonistic salts are composed of hydrophilic and hydrophobic ions. In a binary mixture, such as water and organic solvent, these ion pairs preferentially dissolve to those phases, respectively, and there is a coupling between the charge density and the composition. The heterogeneous distribution of ions forms a large electric double layer at the interface between these solvents. This reduces the interfacial tension between water and organic solvent, and stabilizes an ordered structure, such as a membrane. These phenomena have been extensively studied from both theoretical and experimental point of view. In addition, the numerical simulations can reproduce such ordered structures.

  8. Synthesis of carbon-11 labelled calcium channel antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Holschbach, M.; Roden, W.; Hamkens, W. (Kernforschungsanlage Juelich GmbH (Germany). Inst. fuer Medizin)

    1991-04-01

    A useful synthetic approach to carbon-11 labelled 1,4-dihydropyridines is described. Carbon-11 labelled calcium channel antagonists {sup 11}C-Nifedipine, {sup 11}C-Nisoldipine, {sup 11}C-nitrendipine and {sup 11}C-CF{sub 3}-Nifedipine were synthesized by a modified Hantzsch method using protected carboxy functions. Deprotection of the carboxylic acids by alkaline hydrolysis followed by conversion into the corresponding potassium salts and subsequent methylation with {sup 11}CH{sub 3}I produced the labelled compounds in very good chemical and radiochemical yields (94%). (author).

  9. The opiate antagonist, naltrexone, in the treatment of trichotillomania

    DEFF Research Database (Denmark)

    Grant, Jon E; Odlaug, Brian Lawrence; Schreiber, Liana R N

    2014-01-01

    Trichotillomania (TTM) is characterized by repetitive hair pulling resulting in hair loss. Data on the pharmacological treatment of TTM are limited. This study examined the opioid antagonist, naltrexone, in adults with TTM who had urges to pull their hair. Fifty-one individuals with TTM were...... randomized to naltrexone or placebo in an 8-week, double-blind trial. Subjects were assessed with measures of TTM severity and selected cognitive tasks. Naltrexone failed to demonstrate significantly greater reductions in hair pulling compared to placebo. Cognitive flexibility, however, significantly...

  10. Pharmacoepidemiological assessment of drug interactions with vitamin K antagonists

    DEFF Research Database (Denmark)

    Pottegård, Anton; Christensen, R. D.; Wang, S. V.

    2014-01-01

    PurposeWe present a database of prescription drugs and international normalized ratio (INR) data and the applied methodology for its use to assess drug-drug interactions with vitamin K antagonists (VKAs). We use the putative interaction between VKAs and tramadol as a case study. MethodsWe used...... definitions, and other drugs. ResultsWe identified 513 VKA users with at least 1 INR measurement 4.0 and concomitant tramadol and VKA exposure during the observation period. The overall IRR was 1.80 (95% confidence interval [CI], 1.53-2.10), with a stronger association among users of phenprocoumon compared...

  11. ANTIHYPERTENSIVE TREATMENT IN ELDERLY PATIENTS WITH DIHYDROPYRIDINE CALCIUM ANTAGONISTS

    Directory of Open Access Journals (Sweden)

    Y. A. Karpov

    2006-01-01

    Full Text Available The proofs of necessity of active arterial hypertension (AH treatment in elderly patients are given. Peculiarities of pathogenesis of AH in elderly patients, connected predominantly with loss of big arteries elasticity and reasoning widely spread of isolated systolic AH in these patients, are discussed. Advantages of dihydropyridine calcium antagonists (DPCA for AH treatment in elderly patients are proved, safety of treatment with DPCA is discussed. Data of clinical studies is analyzed. Analysis of target levels of blood pressure for antihypertensive treatment in elderly hypertensive patients is made. As a conclusion DPCA are the medicines of choice for AH treatment in elderly patients.

  12. Membrane formation in liquids by adding an antagonistic salt

    Science.gov (United States)

    Sadakane, Koichiro; Seto, Hideki

    2018-03-01

    Antagonistic salts are composed of hydrophilic and hydrophobic ions. In a binary mixture, such as water and organic solvent, these ion pairs preferentially dissolve to those phases, respectively, and there is a coupling between the charge density and the composition. The heterogeneous distribution of ions forms a large electric double layer at the interface between these solvents. This reduces the interfacial tension between water and organic solvent, and stabilizes an ordered structure, such as a membrane. These phenomena have been extensively studied from both theoretical and experimental point of view. In addition, the numerical simulations can reproduce such ordered structures.

  13. Cognitive impairment and pragmatics.

    Science.gov (United States)

    Gutiérrez-Rexach, Javier; Schatz, Sara

    2016-01-01

    One of the most important ingredients of felicitous conversation exchanges is the adequate expression of illocutionary force and the achievement of perlocutionary effects, which can be considered essential to the functioning of pragmatic competence. The breakdown of illocutionary and perlocutionary functions is one of the most prominent external features of cognitive impairment in Alzheimer's Disease, with devastating psychological and social consequences for patients, their family and caregivers. The study of pragmatic functions is essential for a proper understanding of the linguistic and communicative aspects of Alzheimer's disease.

  14. Mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Pavlović Dragan M.

    2009-01-01

    Full Text Available Mild cognitive impairment (MCI is a syndrome that spans the area between normal ageing and dementia. It is classified into amnestic and non-amnestic types, both with two subtypes: single domain and multiple domains. Prevalence of MCI depends on criteria and population and can vary from 0.1 to 42% persons of older age. In contrast to dementia, cognitive deterioration is less severe and activities of daily living are preserved. Most impaired higher cognitive functions in MCI are memory, executive functions, language, visuospatial functions, attention etc. Also there are depression, apathy or psychomotor agitation, and signs of psychosis. Aetiology of MCI is multiple, mostly neurodegenerative, vascular, psychiatric, internistic, neurological, traumatic and iatrogenic. Persons with amnestic MCI are at a higher risk of converting to Alzheimer's disease, while those with a single non-memory domain are at risk of developing frontotemporal dementia. Some MCI patients also progress to other dementia types, vascular among others. In contrast, some patients have a stationary course, some improve, while others even normalize. Every suspicion of MCI warrants a detailed clinical exploration to discover underlying aetiology, laboratory analyses, neuroimaging methods and some cases require a detailed neuropsychological assessment. At the present time there is no efficacious therapy for cognitive decline in MCI or the one that could postpone conversion to dementia. The treatment of curable causes, application of preventive measures and risk factor control are reasonable measures in the absence of specific therapy.

  15. Fertility impairment in radiotherapy

    Directory of Open Access Journals (Sweden)

    Marta Biedka

    2016-02-01

    Full Text Available Infertility as a result of antineoplastic therapy is becoming a very important issue due to the growing incidence of neoplastic diseases. Routinely applied antineoplastic treatments and the illness itself lead to fertility disorders. Therapeutic methods used in antineoplastic treatment may cause fertility impairment or sterilization due to permanent damage to reproductive cells. The risk of sterilization depends on the patient’s sex, age during therapy, type of neoplasm, radiation dose and treatment area. It is known that chemotherapy and radiotherapy can lead to fertility impairment and the combination of these two gives an additive effect. The aim of this article is to raise the issue of infertility in these patients. It is of growing importance due to the increase in the number of children and young adults who underwent radiotherapy in the past. The progress in antineoplastic therapy improves treatment results, but at the same time requires a deeper look at existential needs of the patient. Reproductive function is an integral element of self-esteem and should be taken into account during therapy planning.

  16. Evodiamine as a novel antagonist of aryl hydrocarbon receptor

    International Nuclear Information System (INIS)

    Yu, Hui; Tu, Yongjiu; Zhang, Chun; Fan, Xia; Wang, Xi; Wang, Zhanli; Liang, Huaping

    2010-01-01

    Research highlights: → Evodiamine interacted with the AhR. → Evodiamine inhibited the specific binding of [ 3 H]-TCDD to the AhR. → Evodiamine acts as an antagonist of the AhR. -- Abstract: Evodiamine, the major bioactive alkaloid isolated from Wu-Chu-Yu, has been shown to interact with a wide variety of proteins and modify their expression and activities. In this study, we investigated the interaction between evodiamine and the aryl hydrocarbon receptor (AhR). Molecular modeling results revealed that evodiamine directly interacted with the AhR. Cytosolic receptor binding assay also provided the evidence that evodiamine could interact with the AhR with the K i value of 28.4 ± 4.9 nM. In addition, we observed that evodiamine suppressed the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced nuclear translocation of the AhR and the expression of CYP1A1 dose-dependently. These results suggested that evodiamine was able to bind to the AhR as ligand and exhibit antagonistic effects.

  17. Histamine H1 antagonists and clinical characteristics of febrile seizures.

    Science.gov (United States)

    Zolaly, Mohammed A

    2012-01-01

    The purpose of this study was to determine whether seizure susceptibility due to antihistamines is provoked in patients with febrile seizures. The current descriptive study was carried out from April 2009 to February 2011 in 250 infants and children who visited the Madinah Maternity and Children's Hospital as a result of febrile convulsions. They were divided into two groups according to administration of antihistamines at the onset of fever. Detailed clinical manifestations were compared between patients with and without administration of antihistamines. The time from fever detection to seizure onset was significantly shorter in the antihistamine group than that in the nonantihistamine group, and the duration of seizures was significantly longer in the antihistamine group than in the nonantihistamine group. No significant difference was found in time from fever detection to seizure onset or seizure duration between patients who received a first-generation antihistamine and those who received a second-generation antihistamine. Due to their central nervous system effects, H1 antagonists should not be administered to patients with febrile seizures and epilepsy. Caution should be exercised regarding the use of histamine H1 antagonists in young infants, because these drugs could potentially disturb the anticonvulsive central histaminergic system.

  18. Rogue sperm indicate sexually antagonistic coevolution in nematodes.

    Directory of Open Access Journals (Sweden)

    Ronald E Ellis

    2014-07-01

    Full Text Available Intense reproductive competition often continues long after animals finish mating. In many species, sperm from one male compete with those from others to find and fertilize oocytes. Since this competition occurs inside the female reproductive tract, she often influences the outcome through physical or chemical factors, leading to cryptic female choice. Finally, traits that help males compete with each other are sometimes harmful to females, and female countermeasures may thwart the interests of males, which can lead to an arms race between the sexes known as sexually antagonistic coevolution. New studies from Caenorhabditis nematodes suggest that males compete with each other by producing sperm that migrate aggressively and that these sperm may be more likely to win access to oocytes. However, one byproduct of this competition appears to be an increased probability that these sperm will go astray, invading the ovary, prematurely activating oocytes, and sometimes crossing basement membranes and leaving the gonad altogether. These harmful effects are sometimes observed in crosses between animals of the same species but are most easily detected in interspecies crosses, leading to dramatically lowered fitness, presumably because the competitiveness of the sperm and the associated female countermeasures are not precisely matched. This mismatch is most obvious in crosses involving individuals from androdioecious species (which have both hermaphrodites and males, as predicted by the lower levels of sperm competition these species experience. These results suggest a striking example of sexually antagonistic coevolution and dramatically expand the value of nematodes as a laboratory system for studying postcopulatory interactions.

  19. Human Homosexuality: A Paradigmatic Arena for Sexually Antagonistic Selection?

    Science.gov (United States)

    Ciani, Andrea Camperio; Battaglia, Umberto; Zanzotto, Giovanni

    2015-01-01

    Sexual conflict likely plays a crucial role in the origin and maintenance of homosexuality in our species. Although environmental factors are known to affect human homosexual (HS) preference, sibling concordances and population patterns related to HS indicate that genetic components are also influencing this trait in humans. We argue that multilocus, partially X-linked genetic factors undergoing sexually antagonistic selection that promote maternal female fecundity at the cost of occasional male offspring homosexuality are the best candidates capable of explaining the frequency, familial clustering, and pedigree asymmetries observed in HS male proband families. This establishes male HS as a paradigmatic example of sexual conflict in human biology. HS in females, on the other hand, is currently a more elusive phenomenon from both the empirical and theoretical standpoints because of its fluidity and marked environmental influence. Genetic and epigenetic mechanisms, the latter involving sexually antagonistic components, have been hypothesized for the propagation and maintenance of female HS in the population. However, further data are needed to truly clarify the evolutionary dynamics of this trait. PMID:25635045

  20. Biological Control of Sclerotinia sclerotiorum in Lettuce Using Antagonistic Bacteria

    Directory of Open Access Journals (Sweden)

    Bong-Goan Chon

    2013-03-01

    Full Text Available To isolate antagonistic bacteria against sclerotinia rot of lettuce, caused by Sclerotinia sclerotiorum, soil samples were collected from the diseased greenhouse field in Namyangju city, Gyeong-gi province from 2007 to 2008. A total of 196 bacterial isolates were isolated using serial dilution method. In dual culture assay in vitro, 26 isolates showed more than 80% of inhibition rates of mycelial growth of S. sclerotiorum. Based on 16S rDNA sequence analysis, the 26 isolates were identified as Bacillus megaterium, B. cereus, B. subtilis, Arthrobacter nicotianae, A. ramosus, Pseudomonas filiscindens, Stenotrophomonas maltophilia, Brevibacterium frigoritolerans and Sphingobacterium faecium. The 26 isolates inhibited the mycelial growth of S. sclerotiorum up to 80% and the sclerotial germination 0−100%. In the greenhouse pot test of ten isolates conducted in summer, 2 isolates B. megaterium (DK6 and B. cereus (C210 showed control efficacy on sclerotia viability of S. sclerotiorum, 20% and 35%, respectively. In the greenhouse pot test in winter, the disease incidence of the control group was 80%, whereas those of 9 isolates among 26 were approximately 20%. From the result, the 9 isolates are expected as potentially antagonistic bacteria for biological control of sclerotinia rot of lettuce caused by S. sclerotiorum.

  1. Discovery of Novel Proline-Based Neuropeptide FF Receptor Antagonists.

    Science.gov (United States)

    Nguyen, Thuy; Decker, Ann M; Langston, Tiffany L; Mathews, Kelly M; Siemian, Justin N; Li, Jun-Xu; Harris, Danni L; Runyon, Scott P; Zhang, Yanan

    2017-10-18

    The neuropeptide FF (NPFF) system has been implicated in a number of physiological processes including modulating the pharmacological activity of opioid analgesics and several other classes of drugs of abuse. In this study, we report the discovery of a novel proline scaffold with antagonistic activity at the NPFF receptors through a high throughput screening campaign using a functional calcium mobilization assay. Focused structure-activity relationship studies on the initial hit 1 have resulted in several analogs with calcium mobilization potencies in the submicromolar range and modest selectivity for the NPFF1 receptor. Affinities and potencies of these compounds were confirmed in radioligand binding and functional cAMP assays. Two compounds, 16 and 33, had good solubility and blood-brain barrier permeability that fall within the range of CNS permeant candidates without the liability of being a P-glycoprotein substrate. Finally, both compounds reversed fentanyl-induced hyperalgesia in rats when administered intraperitoneally. Together, these results point to the potential of these proline analogs as promising NPFF receptor antagonists.

  2. Opioid antagonists in broadly defined behavioral addictions: a narrative review.

    Science.gov (United States)

    Piquet-Pessôa, Marcelo; Fontenelle, Leonardo F

    2016-01-01

    Naltrexone (NTX), a mu-opioid receptor antagonist, has been approved for the treatment of alcoholism and opioid dependence. More recently, however, NTX and a related drug, nalmefene (NMF), have also shown positive results for the treatment of gambling disorders. In this study, we reviewed the trials testing the effect of opioid antagonists (OA) in gambling disorders and in other broadly defined behavioral addictions, including selected DSM-5 disruptive, impulse-control, and conduct disorders, obsessive-compulsive and related disorders, eating disorders, and other conditions not currently recognized by official classification schemes. We found six randomized controlled trials (RCTs) of OA in gambling disorder, two RCTs of OA in trichotillomania (hair pulling disorder), two RCTs of OA in binge eating disorder, and one RCT of OA for kleptomania. We also reviewed case reports on hypersexual disorder, compulsive buying and skin picking disorders. The reviewed data supported the use of OA, namely NTX and NMF, in gambling disorder (both) and kleptomania (NTX). We did not find enough evidence to support the use of NTX or NMF in trichotillomania (hair pulling disorder), excoriation (skin-picking) disorder, compulsive buying disorder, hypersexual disorder, or binge eating disorder.

  3. Human homosexuality: a paradigmatic arena for sexually antagonistic selection?

    Science.gov (United States)

    Camperio Ciani, Andrea; Battaglia, Umberto; Zanzotto, Giovanni

    2015-01-29

    Sexual conflict likely plays a crucial role in the origin and maintenance of homosexuality in our species. Although environmental factors are known to affect human homosexual (HS) preference, sibling concordances and population patterns related to HS indicate that genetic components are also influencing this trait in humans. We argue that multilocus, partially X-linked genetic factors undergoing sexually antagonistic selection that promote maternal female fecundity at the cost of occasional male offspring homosexuality are the best candidates capable of explaining the frequency, familial clustering, and pedigree asymmetries observed in HS male proband families. This establishes male HS as a paradigmatic example of sexual conflict in human biology. HS in females, on the other hand, is currently a more elusive phenomenon from both the empirical and theoretical standpoints because of its fluidity and marked environmental influence. Genetic and epigenetic mechanisms, the latter involving sexually antagonistic components, have been hypothesized for the propagation and maintenance of female HS in the population. However, further data are needed to truly clarify the evolutionary dynamics of this trait. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Pregnancy outcome of “delayed start” GnRH antagonist protocol versus GnRH antagonist protocol in poor responders: A clinical trial study

    Directory of Open Access Journals (Sweden)

    Abbas Aflatoonian

    2017-08-01

    Full Text Available Background: Management of poor-responding patients is still major challenge in assisted reproductive techniques (ART. Delayed-start GnRH antagonist protocol is recommended to these patients, but little is known in this regards. Objective: The goal of this study was assessment of delayed-start GnRH antagonist protocol in poor responders, and in vitro fertilization (IVF outcomes. Materials and Methods: This randomized clinical trial included sixty infertile women with Bologna criteria for ovarian poor responders who were candidate for IVF. In case group (n=30, delayed-start GnRH antagonist protocol administered estrogen priming followed by early follicular-phase GnRH antagonist treatment for 7 days before ovarian stimulation with gonadotropin. Control group (n=30 treated with estrogen priming antagonist protocol. Finally, endometrial thickness, the rates of oocytes maturation, , embryo formation, and pregnancy were compared between two groups. Results: Rates of implantation, chemical, clinical, and ongoing pregnancy in delayed-start cycles were higher although was not statistically significant. Endometrial thickness was significantly higher in case group. There were no statistically significant differences in the rates of oocyte maturation, embryo formation, and IVF outcomes between two groups. Conclusion: There is no significant difference between delayed-start GnRH antagonist protocol versus GnRH antagonist protocol.

  5. CALCIUM ANTAGONISTS IN CLINICAL PRACTICE: FOCUS ON METABOLIC AND VASCULAR EFFECTS

    OpenAIRE

    D. V. Nebieridze

    2007-01-01

    The efficacy of calcium antagonists widely used in cardiological practice is proved both by placebo-controlled studies and in comparative trials with end-point control. Calcium antagonists are the most effective vasoprotective medicines. In our study we had shown antihypertensive efficacy and ability to improve endothelium function of non-dihydropyridine calcium antagonist, diltiazem (Altiazem RR). Altiazem RR can be drug of choice in wide profile of patients with arterial hypertension, espec...

  6. DIHYDROPYRIDINE CALCIUM ANTAGONISTS: DATA OF EVIDENCE BASED MEDICINE AND RECOM-MENDATIONS ON PRACTICAL USE

    OpenAIRE

    S. Y. Martsevich

    2015-01-01

    The classification of calcium antagonists is presented. There were considered the results of large randomized trials, which were devoted to study of influence of dihydropyridine calcium antagonists on the risk of cardiovascular complications. The place of dihydropyridine calcium antagonists in modern recommendations on treatment of arterial hypertension and ischemic heart disease is defined. The clinical importance of differences between various presentations of dihy-dropyridine calcium antag...

  7. DIHYDROPYRIDINE CALCIUM ANTAGONISTS: DATA OF EVIDENCE BASED MEDICINE AND RECOM-MENDATIONS ON PRACTICAL USE

    OpenAIRE

    S. Y. Martsevich

    2007-01-01

    The classification of calcium antagonists is presented. There were considered the results of large randomized trials, which were devoted to study of influence of dihydropyridine calcium antagonists on the risk of cardiovascular complications. The place of dihydropyridine calcium antagonists in modern recommendations on treatment of arterial hypertension and ischemic heart disease is defined. The clinical importance of differences between various presentations of dihy-dropyridine calcium antag...

  8. How European cardiologists perceive the role of calcium antagonists in follow-up after myocardial infarction

    OpenAIRE

    Opie, L. H.; Lüscher, T. F.; Ferrari, R.; Hansen, J. Fischer

    2017-01-01

    About one hundred European cardiologists discussed the role of calcium antagonists in the follow-up management of myocardial infarction, β-blockers are the treatment of choice. Where these are contra-indicated or otherwise unsuitable, many clinicians would use a non-dihydropyridine calcium antagonist alone or in combination with an ACE inhibitor. There is broad agreement that calcium antagonists should not be used in patients with concomitant left ventricular failure. Cholesterol estimation i...

  9. Characterization and bioactivity of novel calcium antagonists - N-methoxy-benzyl haloperidol quaternary ammonium salt

    OpenAIRE

    Chen, Yi-Cun; Zhu, Wei; Zhong, Shu-Ping; Zheng, Fu-Chun; Gao, Fen-Fei; Zhang, Yan-Mei; Xu, Han; Zheng, Yan-Shan; Shi, Gang-Gang

    2015-01-01

    BACKGROUND AND PURPOSE Calcium antagonists play an important role in clinical practice. However, most of them have serious side effects. We have synthesized a series of novel calcium antagonists, quaternary ammonium salt derivatives of haloperidol with N-p-methoxybenzyl (X1), N-m-methoxybenzyl (X2) and N-o-methoxybenzyl (X3) groups. The objective of this study was to investigate the bioactivity of these novel calcium antagonists, especially the vasodilation activity and cardiac side-effects. ...

  10. CALCIUM ANTAGONISTS IN CLINICAL PRACTICE: FOCUS ON METABOLIC AND VASCULAR EFFECTS

    OpenAIRE

    D. V. Nebieridze

    2015-01-01

    The efficacy of calcium antagonists widely used in cardiological practice is proved both by placebo-controlled studies and in comparative trials with end-point control. Calcium antagonists are the most effective vasoprotective medicines. In our study we had shown antihypertensive efficacy and ability to improve endothelium function of non-dihydropyridine calcium antagonist, diltiazem (Altiazem RR). Altiazem RR can be drug of choice in wide profile of patients with arterial hypertension, espec...

  11. Oxytocin antagonist disrupts hypotension-evoked renin secretion and other responses in conscious rats

    DEFF Research Database (Denmark)

    Huang, W.; Sjöquist, M.; Skøtt, O.

    2001-01-01

    antagonist did not alter the hypotension induced by hydralazine or diazoxide, but it did markedly blunt the induced increase in PRA. The OT receptor antagonist also blunted the hypotension-evoked increase in heart rate and plasma vasopressin levels, suggesting that the antagonist may have generally disrupted...... afferent signaling of hypotension. Thus hypotension-evoked OT secretion may contribute to cardiovascular homeostasis by enhancing baroreceptor signals that stimulate increases in renin secretion, vasopressin secretion, and heart rate during arterial hypotension in rats....

  12. A Rare Case of Intermittent Claudication Associated with Impaired Arterial Vasodilation

    Directory of Open Access Journals (Sweden)

    J. J. Posthuma

    2017-01-01

    Full Text Available Exercise-related intermittent claudication is marked by reduced blood flow to extremities caused by either stenosis or impaired vascular function. Although intermittent claudication is common in the elderly, it rarely occurs in the young and middle-aged individuals. Here, we report a case of exercise-related claudication in a 41-year-old woman, in the absence of overt vascular pathology. Using a series of imaging and functional tests, we established that her complaints were due to impaired arterial vasodilation, possibly due to a defect in nitrous oxide-mediated dilation. The symptoms were reversible upon administration of a calcium antagonist, showing reversibility of the vascular impairment. Identification of reversible vascular “stiffness” merits consideration in young and otherwise healthy subjects with claudication of unknown origin.

  13. The Cultivation of Antagonistic Bacteria in Irradiated Sludge for Biological Control of Soft Rot Erwinias : Screening of Antagonistic Bacteria for biological Control of Soft Rot Erwinias

    International Nuclear Information System (INIS)

    Sermkiattipong, Ng.; Sangsuk, L; Rattanapiriyakul, P; Dejsirilert, S.; Thaveechai, N.

    1998-01-01

    Pure cultures of 57 bacterial isolates for antagonistic activity screening were isolated from three areas of soft rot infested vegetable soil and 58 isolates were obtained from commercial seed compost and seed compost product of Division of Soil and Water Conservation, Department of Land Development. A total of 115 bacterial isolates were evaluated for antagonizing activity against Erwinia carotovora subsp. atroceptica in vitro. Out of them, 18 isolates were antagonists by showing zone of inhibition ranging from 1 to 17 mm by diameter. Most of antagonistic bacteria were identified as Bacillus spp. whereas only one isolate was Pseudomonas vesicularis

  14. Risperidone and the 5-HT2A receptor antagonist, M100907 improve probabilistic reversal learning in BTBR T+ tf/J mice

    Science.gov (United States)

    Amodeo, Dionisio A.; Jones, Joshua H.; Sweeney, John A.; Ragozzino, Michael E.

    2014-01-01

    Lay Abstract Restricted interests and repetitive behaviors in autism can lead to an ‘insistence on sameness’ for routines and decision-making. The ability to adapt choice patterns when external contingencies change is commonly referred to as cognitive flexibility. To date, there are limited options for treating cognitive inflexibility in autism. Risperidone, an atypical antipsychotic, is approved to treat irritability in autism, but less is known of whether it is effective in treating cognitive inflexibility. Risperidone acts at multiple receptors although only actions at a subset of these receptors may be beneficial for cognitive flexibility. 5HT2A receptor blockade represents one pharmacological action of risperidone. Rodent studies have shown that 5HT2A receptor antagonists improve attention and cognitive flexibility. The present studies investigated whether risperidone and/or M100907, a 5HT2A receptor antagonist, improved cognitive flexibility in the BTBR mouse model of autism. The BTBR mouse compared to C57BL/6J (B6) mice exhibit a deficit in reversing learned choice patterns comparable to that in individuals with autism. The present experiments used a two-choice probabilistic reversal learning test in which the ‘correct’ choice was reinforced on 80% of trials and the ‘incorrect’ choice reinforced on 20% of trials. After initial acquisition, the contingencies were reversed. Both risperidone and M100907 improved probabilistic reversal learning performance in BTBR mice. The same treatments did not improve reversal learning in B6 mice. Because risperidone can often lead to unwanted side effects, treatment with a 5HT2A receptor antagonist may offer an alternative for improving cognitive flexibility in individuals with autism. Scientific Abstract Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions with restricted interests and repetitive behaviors (RRBs). RRBs can severely limit daily living and

  15. Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa.

    Science.gov (United States)

    Scarborough, R M; Naughton, M A; Teng, W; Rose, J W; Phillips, D R; Nannizzi, L; Arfsten, A; Campbell, A M; Charo, I F

    1993-01-15

    Members of the snake venon-derived, "disintegrin" peptide family containing the Arg-Gly-Asp (RGD) amino acid sequence are among the most potent inhibitors of the binding of adhesive proteins to platelet glycoprotein (GP) IIb-IIIa. However, GPIIb-IIIa antagonists containing the RGD sequence are not integrin specific and inhibit the adhesive functions of many other RGD-dependent integrins. The single disintegrin peptide, barbourin, containing a conservative amino acid substitution of Lys (K) for Arg (R) in the RGD sequence, is however, highly specific for GPIIb-IIIa. Using this information we have tested the hypothesis that both structural and conformational elements of barbourin are important for its high affinity and selectivity for platelet GPIIb-IIIa by synthesizing a series of conformationally constrained, disulfide-bridged peptides containing the KGD amino acid sequence. Incorporation of the KGD sequence into a cyclic peptide template, followed by systematic optimization of the cyclic ring size, optimization of secondary hydrophobic binding site interactions, and the derivatization of the lysyl side chain functionality of the KGD sequence has resulted in peptide analogs which display inhibitory potency and GPIIb-IIIa selectivity comparable to that of barbourin. This study demonstrates that the specificity and potency of the disintegrin family of antagonists, in particular barbourin, can be mimicked by small, conformationally restrained peptides.

  16. Distinct effects of nociceptin analogs on scopolamine-induced memory impairment in mice.

    Science.gov (United States)

    Miwa, Masaya; Shinki, Chieko; Uchida, Shogo; Hiramatsu, Masayuki

    2009-01-14

    Nociceptin, also known as orphanin FQ, binds to opioid receptor like-1 (NOP) receptors. Nociceptin and NOP receptor play important roles in several physiological functions in the central nervous system. We reported that although high doses of nociceptin impaired learning and memory and these effects were blocked by nocistatin, naloxone benzoylhydrazone and [NPhe(1)]nociceptin(1-13)NH(2), low doses of nociceptin improved scopolamine- or mecamylamine-induced impairment of learning and memory, and these ameliorating effects were not blocked by these antagonists. In the present study, to confirm our previous findings, the effects of [Arg(14), Lys(15)]nociceptin and [(pF)Phe(4)]nociceptin(1-13)NH(2), highly potent and long-lasting nociceptin analogs, on the memory impairment induced by scopolamine using the Y-maze and step-down type passive avoidance tests were investigated. [Arg(14), Lys(15)]Nociceptin (0.1 and/or 1 pmol/mouse, i.c.v.) significantly improved impairment of memory function. Although this analog was about 30 times more potent than nociceptin, the doses ameliorating these memory impairments were comparable to those of the natural ligand nociceptin. The ameliorating effects of [Arg(14), Lys(15)]nociceptin were not blocked by an NOP receptor antagonist, [NPhe(1)]nociceptin(1-13)NH(2). Interestingly, another potent nociceptin analog, [(pF)Phe(4)]nociceptin(1-13)NH(2) could not improve impairment of memory function. These results confirmed that there are novel mechanisms underlying these ameliorating effects and these seem not to be mediated via an NOP receptor.

  17. NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes.

    Science.gov (United States)

    Lalo, Ulyana; Pankratov, Yuri; Kirchhoff, Frank; North, R Alan; Verkhratsky, Alexei

    2006-03-08

    Chemical transmission between neurons and glial cells is an important element of integration in the CNS. Here, we describe currents activated by NMDA in cortical astrocytes, identified in transgenic mice that express enhanced green fluorescent protein under control of the human glial fibrillary acidic protein promoter. Astrocytes were studied by whole-cell voltage clamp either in slices or after gentle nonenzymatic mechanical dissociation. Acutely isolated astrocytes showed a three-component response to glutamate. The initial rapid component was blocked by 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), which is an antagonist of AMPA receptors (IC50, 2 microM), and the NMDA receptor antagonist D-AP-5 blocked the later sustained component (IC50, 0.6 microM). The third component of glutamate application response was sensitive to D,L-threo-beta-benzyloxyaspartate, a glutamate transporter blocker. Fast application of NMDA evoked concentration-dependent inward currents (EC50, 0.3 microM); these showed use-dependent block by (+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-imine maleate (MK-801). These NMDA-evoked currents were linearly dependent on membrane potential and were not affected by extracellular magnesium at concentrations up to 10 mM. Electrical stimulation of axons in layer IV-VI induced a complex inward current in astrocytes situated in the cortical layer II, part of which was sensitive to MK-801 at holding potential -80 mV and was not affected by the AMPA glutamate receptor antagonist NBQX. The fast miniature spontaneous currents were observed in cortical astrocytes in slices as well. These currents exhibited both AMPA and NMDA receptor-mediated components. We conclude that cortical astrocytes express functional NMDA receptors that are devoid of Mg2+ block, and these receptors are involved in neuronal-glial signal transmission.

  18. Roles of NMDA and dopamine in food-foraging decision-making strategies of rats in the social setting.

    Science.gov (United States)

    Li, Fang; Cao, Wen-Yu; Huang, Fu-Lian; Kang, Wen-Jing; Zhong, Xiao-Lin; Hu, Zhao-Lan; Wang, Hong-Tao; Zhang, Juan; Zhang, Jian-Yi; Dai, Ru-Ping; Zhou, Xin-Fu; Li, Chang-Qi

    2016-01-11

    In highly complex social settings, an animal's motivational drive to pursue an object depends not only on the intrinsic properties of the object, but also on whether the decision-making animal perceives an object as being the most desirable among others. Mimetic desire refers to a subject's preference for objects already possessed by another subject. To date, there are no appropriate animal models for studying whether mimetic desire is at play in guiding the decision-making process. Furthermore, the neuropharmacological bases of decision-making processes are not well understood. In this study, we used an animal model (rat) to investigate a novel food-foraging paradigm for decision-making, with or without a mimetic desire paradigm. Faced with the choice of foraging in a competitive environment, rats preferred foraging for the desirable object, indicating the rats' ability for decision-making. Notably, treatment with the non-competitive N-methyl-D-aspartate receptor antagonist MK-801, but not with the dopamine D1 or D2 receptor antagonists, SCH23390 and haloperidol, respectively, suppressed the food foraging preference when there was a competing resident rat in the cage. None of these three antagonists affected the food-foraging preference for palatable food. Moreover, MK-801 and SCH23390, but not haloperidol, were able to abolish the desirable environment effect on standard food-foraging activities in complex social settings. These results highlight the concept that mimetic desire exerts a powerful influence on food-foraging decision-making in rats and, further, illustrate the various roles of the glutamatergic and dopaminergic systems in mediating these processes.

  19. Protease-activated receptor 1-dependent neuronal damage involves NMDA receptor function.

    Science.gov (United States)

    Hamill, Cecily E; Mannaioni, Guido; Lyuboslavsky, Polina; Sastre, Aristide A; Traynelis, Stephen F

    2009-05-01

    Protease-activated receptor 1 (PAR1) is a G-protein coupled receptor that is expressed throughout the central nervous system. PAR1 activation by brain-derived as well as blood-derived proteases has been shown to have variable and complex effects in a variety of animal models of neuronal injury and inflammation. In this study, we have evaluated the effects of PAR1 on lesion volume in wild-type or PAR1-/- C57Bl/6 mice subjected to transient occlusion of the middle cerebral artery or injected with NMDA in the striatum. We found that removal of PAR1 reduced infarct volume following transient focal ischemia to 57% of control. Removal of PAR1 or application of a PAR1 antagonist also reduced the neuronal injury associated with intrastriatal injection of NMDA to 60% of control. To explore whether NMDA receptor potentiation by PAR1 activation contributes to the harmful effects of PAR1, we investigated the effect of NMDA receptor antagonists on the neuroprotective phenotype of PAR1-/- mice. We found that MK801 reduced penumbral but not core neuronal injury in mice subjected to transient middle cerebral artery occlusion or intrastriatal NMDA injection. Lesion volumes in both models were not significantly different between PAR1-/- mice treated with and without MK801. Use of the NMDA receptor antagonist and dissociative anesthetic ketamine also renders NMDA-induced lesion volumes identical in PAR1-/- mice and wild-type mice. These data suggest that the ability of PAR1 activation to potentiate NMDA receptor function may underlie its harmful actions during injury.

  20. [Multilingualism and specific language impairment].

    Science.gov (United States)

    Arkkila, Eva; Smolander, Sini; Laasonen, Marja

    2013-01-01

    Specific language impairment is one of the most common developmental disturbances in childhood. With the increase of the foreign language population group an increasing number of children assimilating several languages and causing concern in language development attend clinical examinations. Knowledge of factors underlying the specific language impairment and the specific impairment in general, special features of language development of those learning several languages, as well as the assessment and support of the linguistic skills of a multilingual child is essential. The risk of long-term problems and marginalization is high for children having specific language impairment.

  1. Glutamine antagonist-mediated immune suppression decreases pathology but delays virus clearance in mice during nonfatal alphavirus encephalomyelitis.

    Science.gov (United States)

    Baxter, Victoria K; Glowinski, Rebecca; Braxton, Alicia M; Potter, Michelle C; Slusher, Barbara S; Griffin, Diane E

    2017-08-01

    Infection of weanling C57BL/6 mice with the TE strain of Sindbis virus (SINV) causes nonfatal encephalomyelitis associated with hippocampal-based memory impairment that is partially prevented by treatment with 6-diazo-5-oxo-l-norleucine (DON), a glutamine antagonist (Potter et al., J Neurovirol 21:159, 2015). To determine the mechanism(s) of protection, lymph node and central nervous system (CNS) tissues from SINV-infected mice treated daily for 1 week with low (0.3mg/kg) or high (0.6mg/kg) dose DON were examined. DON treatment suppressed lymphocyte proliferation in cervical lymph nodes resulting in reduced CNS immune cell infiltration, inflammation, and cell death compared to untreated SINV-infected mice. Production of SINV-specific antibody and interferon-gamma were also impaired by DON treatment with a delay in virus clearance. Cessation of treatment allowed activation of the antiviral immune response and viral clearance, but revived CNS pathology, demonstrating the ability of the immune response to mediate both CNS damage and virus clearance. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol.

    Science.gov (United States)

    Cazorla, Francisco M; Duckett, Simon B; Bergström, Ed T; Noreen, Sadaf; Odijk, Roeland; Lugtenberg, Ben J J; Thomas-Oates, Jane E; Bloemberg, Guido V

    2006-04-01

    A collection of 905 bacterial isolates from the rhizospheres of healthy avocado trees was obtained and screened for antagonistic activity against Dematophora necatrix, the cause of avocado Dematophora root rot (also called white root rot). A set of eight strains was selected on the basis of growth inhibitory activity against D. necatrix and several other important soilborne phytopathogenic fungi. After typing of these strains, they were classified as belonging to Pseudomonas chlororaphis, Pseudomonas fluorescens, and Pseudomonas putida. The eight antagonistic Pseudomonas spp. were analyzed for their secretion of hydrogen cyanide, hydrolytic enzymes, and antifungal metabolites. P. chlororaphis strains produced the antibiotic phenazine-1-carboxylic acid and phenazine-1-carboxamide. Upon testing the biocontrol ability of these strains in a newly developed avocado-D. necatrix test system and in a tomato-F oxysporum test system, it became apparent that P. fluorescens PCL1606 exhibited the highest biocontrol ability. The major antifungal activity produced by strain P. fluorescens PCL1606 did not correspond to any of the major classes of antifungal antibiotics produced by Pseudomonas biocontrol strains. This compound was purified and subsequently identified as 2-hexyl 5-propyl resorcinol (HPR). To study the role of HPR in biocontrol activity, two Tn5 mutants of P. fluorescens PCL1606 impaired in antagonistic activity were selected. These mutants were shown to impair HRP production and showed a decrease in biocontrol activity. As far as we know, this is the first report of a Pseudomonas biocontrol strain that produces HPR in which the production of this compound correlates with its biocontrol activity.

  3. Functionalized Congeners of P2Y1 Receptor Antagonists:

    Energy Technology Data Exchange (ETDEWEB)

    de Castro, Sonia [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Maruoka, Hiroshi [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Hong, Kunlun [ORNL; Kilbey, II, S Michael [ORNL; Costanzi, Stefano [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health; Hechler, Béatrice [University of Strasbourg; Gachet, Christian [EFS-Alsace, Strasbourg, France; Harden, T. Kendall [University of North Carolina School of Medicine; Jacobson, Kenneth A. [National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health

    2010-01-01

    The P2Y{sub 1} receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y{sub 1} receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N{sup 6}-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y{sub 1} receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of an intermediate amide group revealed high affinity of carboxylic congener 8 (K{sub i} 23 nM) and extended amine congener 15 (K{sub i} 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended {epsilon}-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y{sub 1} receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y{sub 1} receptor modeling and ligand docking. Attempted P2Y{sub 1} antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor

  4. Clinical experience in Europe with uroselective alpha1-antagonists.

    Science.gov (United States)

    Debruyne, F M; Van der Poel, H G

    1999-01-01

    alpha1-Adrenoreceptors are thought to be involved in prostate smooth muscle contractions and could hence play a role in the dynamic component of intravesical obstruction associated with symptomatic BPH. Consequently, since the mid-eighties alpha receptor blocking agents have been used for the treatment of BPH. Non-selective alpha blockers are usually associated with systemic side-effects which resulted in an exclusion or withdrawal of many patients from this form of treatment. With the availability of so-called uroselective alpha blockers the management picture has changed since it was anticipated that these compounds cause lesser side-effects with at least the same, or even better, efficacy. Comparative clinical studies are essential for determining the eventual advantages of the uroselective alpha1-antagonists and a large number of such studies have been performed worldwide studying the various available compounds. European studies with terazosin showed clear superiority of the drug over the placebo while causing only limited side-effects. Various other studies using alpha-blocking agents such as doxazosin, tamsulosin and alfuzosin yielded identical results. Especially with tamsulosin and alfuzosin, the side-effects were comparable with those encountered in the placebo group. About 7% of the patients using tamsulosin experienced retrograde ejaculation in one study which did not occur in the alfuzosin studies. Important studies in Europe have also investigated the value of a combination of an alpha blocker with a 5alpha-reductase inhibitor. Comparable studies in which both alfuzosin and doxazosin were combined with the 5alpha-reductase inhibitor Proscar have shown that a combination is not superior to a blocker monotherapy and especially in the ALFIN study the results show that alfuzosin monotherapy is superior to Proscar in the management of symptomatic BPH. European studies have evaluated Quality of Life, sexuality as well as socio-economical outcome of the

  5. 20 CFR 416.998 - If you become disabled by another impairment(s).

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false If you become disabled by another impairment... Disability Or Blindness § 416.998 If you become disabled by another impairment(s). If a new severe impairment(s) begins in or before the month in which your last impairment(s) ends, we will find that your...

  6. 20 CFR 404.1598 - If you become disabled by another impairment(s).

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false If you become disabled by another impairment... Disability § 404.1598 If you become disabled by another impairment(s). If a new severe impairment(s) begins in or before the month in which your last impairment(s) ends, we will find that your disability is...

  7. D2 dopamine receptors enable Δ9-tetrahydrocannabinol induced memory impairment and reduction of hippocampal extracellular acetylcholine concentration

    Science.gov (United States)

    Nava, F; Carta, G; Battasi, A M; Gessa, G L

    2000-01-01

    The systemic administration of Δ9-tetrahydrocannabinol (2.5–7.5 mg kg−1) reduced hippocampal extracellular acetylcholine concentration and impaired working memory in rats.Both effects were antagonized not only by the CB1 cannabinoid receptor antagonist SR141716A (0.5 mg kg−1, i.p.) but also unexpectedly by the D2 dopamine receptor antagonist S(−)-sulpiride (5, 10 and 25 mg kg−1, i.p.). Conversely, Δ9-tetrahydrocannabinol-induced memory impairment and inhibition of hippocampal extracellular acetylcholine concentration were potentiated by the subcutaneous administration of the D2 dopamine receptor agonist (−)-quinpirole (25 and 500 μg kg−1). The inhibition of hippocampal extracellular acetylcholine concentration and working memory produced by the combination of (−)-quinpirole and Δ9-tetrahydrocannabinol was suppressed by either SR141716A or S(−)-sulpiride.Our findings suggest that impairment of working memory and inhibition of hippocampal extracellular acetylcholine concentration are mediated by the concomitant activation of D2 dopamine and CB1 cannabinoid receptors, and that D2 dopamine receptor antagonists may be useful in the treatment of the cognitive deficits induced by marijuana. PMID:10903956

  8. Glutamatergic induction of CREB phosphorylation and Fos expression in primary cultures of the suprachiasmatic hypothalamus in vitro is mediated by co-ordinate activity of NMDA and non-NMDA receptors.

    Science.gov (United States)

    Schurov, I L; McNulty, S; Best, J D; Sloper, P J; Hastings, M H

    1999-01-01

    Exposure of Syrian hamsters to light 1 h after lights-off rapidly (10 min) induced nuclear immunoreactivity (-ir) to the phospho-Ser133 form of the Ca2+/cAMP response element (CRE) binding protein (pCREB) in the retinorecipient zone of the suprachiasmatic nuclei (SCN). Light also induced nuclear Fos-ir in the same region of the SCN after 1 h. The glutamatergic N-methyl-D-aspartate (NMDA) receptor blocker MK801 attenuated the photic induction of both factors. To investigate glutamatergic regulation of pCREB and Fos further, tissue blocks and primary cultures of neonatal hamster SCN were examined by Western blotting and immunocytochemistry in vitro. On Western blots of SCN tissue, the pCREB-ir signal at 45 kDa was enhanced by glutamate or a mixture of glutamatergic agonists (NMDA, amino-methyl proprionic acid (AMPA), and Kainate (KA)), whereas total CREB did not change. Glutamate or the mixture of agonists also induced a 56 kDa band identified as Fos protein in SCN tissue. In dissociated cultures of SCN, glutamate caused a rapid (15 min) induction of nuclear pCREB-ir and Fos-ir (after 60 min) exclusively in neurones, both GABA-ir and others. Treatment with NMDA alone had no effect on pCREB-ir. AMPA alone caused a slight increase in pCREB-ir. However, kainate alone or in combination with NMDA and AMPA induced nuclear pCREB-ir equal to that induced by glutamate. The effects of glutamate on pCREB-ir and Fos-ir were blocked by antagonists of both NMDA (MK801) and AMPA/KA (NBQX) receptors. In the absence of extracellular Mg2+, MK801 blocked glutamatergic induction of Fos-ir. However, the AMPA/KA receptor antagonist was no longer effective at blocking glutamatergic induction of either Fos-ir or pCREB-ir, consistent with the model that glutamate regulates gene expression in the SCN by a co-ordinate action through both NMDA and AMPA/KA receptors. Glutamatergic induction of nuclear pCREB-ir in GABA-ir neurones was blocked by KN-62 an inhibitor of Ca2+/Calmodulin (Ca

  9. 5-Hydroxytryptamine3 receptor antagonists and cardiac side effects

    DEFF Research Database (Denmark)

    Brygger, Louise; Herrstedt, Jørn

    2014-01-01

    INTRODUCTION: 5-Hydroxytryptamine3-receptor antagonists (5-HT3-RA) are the most widely used antiemetics in oncology, and although tolerability is high, QTC prolongation has been observed in some patients. AREAS COVERED: The purpose of this article is to outline the risk of cardiac adverse events...... in clinical trials. Furthermore, polypharmacy is frequent and drug-drug interactions between chemotherapy and other QTc-prolonging drugs may influence the pharmacokinetics and pharmacodynamics of the 5-HT3-RAs. During the next 10 - 15 years a huge increase in the number of cancer patients is expected......, primarily in the group of 65-plus-year old. Therefore it will be crucial to address the incidence of cardiac AEs in cancer patients with known heart disease receiving chemotherapy and a 5-HT3 RA for the prophylaxis of CINV....

  10. Mesenteric vascular reactivity to histamine receptor agonists and antagonists. [Dogs

    Energy Technology Data Exchange (ETDEWEB)

    Walus, K.M.; Fondacaro, J.D.; Jacobson, E.D.

    1981-05-01

    Response patterns of intestinal blood flow, oxygen extraction and consumption, blood flow distribution, and motility were assessed during intraarterial infusions of histamine, histamine after H1 or H2 blockade, dimaprit or dimaprit after H2 blockade. Histamine produced an initial peak response of blood flow with a slow decrease thereafter. Oxygen extraction was evenly depressed throughout the infusion, and oxygen consumption increased at the beginning. All initial responses were blocked by tripelennamine. Ranitidine, a new H2 antagonist, accelerated the decay of all responses. Dimaprit produced effects identical to those of histamine after tripelennamine. Distribution of blood flow was unchanged at the beginning of histamine infusion, but subsequently showed a shift to muscularis which was blocked by tripelennamine. Histamine usually stimulated intestinal contractions and this effect was abolished by tripelennamine. Thus, H1 stimulation, besides producing an initial vasodilation, increases oxygen uptake and redistributes flow to the muscularis.

  11. Identification of Bexarotene as a PPARγ Antagonist with HDX

    Directory of Open Access Journals (Sweden)

    David P. Marciano

    2015-01-01

    Full Text Available The retinoid x receptors (RXRs are the pharmacological target of Bexarotene, an antineoplastic agent indicated for the treatment of cutaneous T cell lymphoma (CTCL. The RXRs form heterodimers with several nuclear receptors (NRs, including peroxisome proliferator-activated receptor gamma (PPARγ, to regulate target gene expression through cooperative recruitment of transcriptional machinery. Here we have applied hydrogen/deuterium exchange (HDX mass spectrometry to characterize the effects of Bexarotene on the conformational plasticity of the intact RXRα:PPARγ heterodimer. Interestingly, addition of Bexarotene to PPARγ in the absence of RXRα induced protection from solvent exchange, suggesting direct receptor binding. This observation was confirmed using a competitive binding assay. Furthermore, Bexarotene functioned as a PPARγ antagonist able to alter rosiglitazone induced transactivation in a cell based promoter:reporter transactivation assay. Together these results highlight the complex polypharmacology of lipophilic NR targeted small molecules and the utility of HDX for identifying and characterizing these interactions.

  12. [Chitinolytic activity of Bacillus Cohn.--phytopathogenic fungus antagonist].

    Science.gov (United States)

    Aktuganov, G E; Melent'ev, A I; Kuz'mina, L Iu; Galimzianova, N F; Shirokov, A V

    2003-01-01

    Among the 70 tested Bacillus spp. strains antagonistic to phytopathogenic fungi, 19 were found to possess chitinolytic activity when grown on solid media with 0.5% colloidal chitin. The chitinolytic activity of almost all of these 19 strains grown in liquid cultures ranged from 0.1 to 0.3 U/ml. One of the 19 strains exhibited exochitinase activity. In addition to chitinase, two strains also produced chitosanase and one strain, beta-1,3-glucanase. No correlation was found between the antifungal activity of the bacillar strains studied and their ability to synthesize extracellular chitinase. Among the 19 chitinolytic strains, the correlation between these parameters was also low (r x,y = 0.45), although the enzymatic preparations of most of these strains inhibited the growth of the phytopathogenic fungus Helminthosporium sativum.

  13. Secondary prevention with calcium antagonists after acute myocardial infarction

    DEFF Research Database (Denmark)

    Hansen, J F

    1992-01-01

    and preventing reinfarction, nevertheless demonstrated pronounced differences between the 3 drugs. Nifedipine had no effect on reinfarction or death. Diltiazem had no overall effect but prevented first reinfarction or cardiac death (cardiac events) in patients without heart failure, and increased cardiac events......Experimental studies have demonstrated that the 3 calcium antagonists nifedipine, diltiazem, and verapamil have a comparable effect in the prevention of myocardial damage during ischaemia. Secondary prevention trials after acute myocardial infarction, which aimed at improving survival...... in patients with heart failure before randomisation. Verapamil prevented first reinfarction or death (major events); the most pronounced effect was found in patients without heart failure before randomisation. Verapamil did not have detrimental effects in patients treated for heart failure before...

  14. Interaction intimacy organizes networks of antagonistic interactions in different ways.

    Science.gov (United States)

    Pires, Mathias M; Guimarães, Paulo R

    2013-01-06

    Interaction intimacy, the degree of biological integration between interacting individuals, shapes the ecology and evolution of species interactions. A major question in ecology is whether interaction intimacy also shapes the way interactions are organized within communities. We combined analyses of network structure and food web models to test the role of interaction intimacy in determining patterns of antagonistic interactions, such as host-parasite, predator-prey and plant-herbivore interactions. Networks describing interactions with low intimacy were more connected, more nested and less modular than high-intimacy networks. Moreover, the performance of the models differed across networks with different levels of intimacy. All models reproduced well low-intimacy networks, whereas the more elaborate models were also capable of reproducing networks depicting interactions with higher levels of intimacy. Our results indicate the key role of interaction intimacy in organizing antagonisms, suggesting that greater interaction intimacy might be associated with greater complexity in the assembly rules shaping ecological networks.

  15. Emerging therapies for atopic dermatitis: TRPV1 antagonists.

    Science.gov (United States)

    Bonchak, Jonathan G; Swerlick, Robert A

    2018-03-01

    Transient receptor potential (TRP) ion channels are important mediators of somatosensory signaling throughout the body. Our understanding of the contribution of TRPs to a multitude of cutaneous physiologic processes has grown substantially in the past decade. TRP cation channel subfamily V member 1 (TRPV1), one of the better-understood members of this large family of ion channels, affects multiple pathways involved in pruritus. Further, TRPV1 appears to play a role in maintaining skin barrier function. Together, these properties make TRPV1 a ripe target for new therapies in atopic dermatitis. Neurokinin antagonists may affect similar pathways and have been studied to this effect. Early trials data suggest that these therapies are safe, but assessment of their efficacy in atopic dermatitis is pending as we await publication of phase II and III clinical trials data. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  16. Discovery of novel N-aryl piperazine CXCR4 antagonists.

    Science.gov (United States)

    Zhao, Huanyu; Prosser, Anthony R; Liotta, Dennis C; Wilson, Lawrence J

    2015-11-01

    A novel series of CXCR4 antagonists with substituted piperazines as benzimidazole replacements is described. These compounds showed micromolar to nanomolar potency in CXCR4-mediated functional and HIV assays, namely inhibition of X4 HIV-1(IIIB) virus in MAGI-CCR5/CXCR4 cells and inhibition of SDF-1 induced calcium release in Chem-1 cells. Preliminary SAR investigations led to the identification of a series of N-aryl piperazines as the most potent compounds. Results show SAR that indicates type and position of the aromatic ring, as well as type of linker and stereochemistry are significant for activity. Profiling of several lead compounds showed that one (49b) reduced susceptibility towards CYP450 and hERG, and the best overall profile when considering both SDF-1 and HIV potencies (6-20 nM). Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Alpha antagonists and intraoperative floppy iris syndrome: A spectrum

    Directory of Open Access Journals (Sweden)

    Sharif A Issa

    2008-07-01

    Full Text Available Sharif A Issa, Omar H Hadid, Oliver Baylis, Margaret DayanDepartment of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne, UKBackground: To determine occurrence of features of intraoperative floppy iris syndrome (IFIS during cataract surgery in patients taking systemic alpha-antagonists (AA.Methods: We prospectively studied patients on AA and who underwent phacoemulsification. The following were recorded: pupil diameter preoperatively, iris flaccidity, iris prolapse and peroperative miosis.Results: We studied 40 eyes of 31 subjects. Mean age was 78 years. Overall, 14 eyes (13 patients showed signs of IFIS: 9/13 (69% eyes of patients on tamsulosin, 1/18 (6% eyes in the doxazosin group, 2/2 prazosin patients, 1/4 eyes in the indoramin group, and 1/2 eyes in two patients on a combination of doxazosin and tamsulosin. Most cases (92% had only one or two signs of IFIS. Bilateral cataract surgery was undertaken in 9 patients but only one patient (on tamsulosin had features of IFIS in both eyes, while 4 patients (2 on tamsulosin and 2 on other AA showed signs of IFIS in one eye only, and 4 patients did not show IFIS in either eye.Conclusion: Most AA were associated with IFIS, but it tends to present as a spectrum of signs rather than full triad originally described. Tamsulosin was most likely to be associated with IFIS; however, its intake does not necessarily mean that IFIS will occur. For patients on AA, the behavior of the iris intraoperatively in one eye is a poor predictor of the other eye. Surgeons should anticipate the occurrence of IFIS in any patient on AA.Keywords: alpha blocker, alpha antagonist, cataract surgery, intraoperative floppy iris syndrome, tamsulosin.

  18. Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise.

    Science.gov (United States)

    Casey, Darren P; Madery, Brandon D; Pike, Tasha L; Eisenach, John H; Dietz, Niki M; Joyner, Michael J; Wilkins, Brad W

    2009-10-01

    We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (alpha-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml x min(-1).100 mmHg(-1)) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (DeltaFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 +/- 29 and 314 +/- 34 ml x min(-1) x 100 mmHg(-1) (10% and 20%, respectively). Aminophylline administration did not affect DeltaFVC during hypoxic exercise at 10% (190 +/- 29 ml x min(-1)x100 mmHg(-1), P = 0.4) or 20% (287 +/- 48 ml x min(-1) x 100 mmHg(-1), P = 0.3). In protocol 2, DeltaFVC due to hypoxic exercise with phentolamine infusion was 313 +/- 30 and 453 +/- 41 ml x min(-1) x 100 mmHg(-1) (10% and 20% respectively). DeltaFVC was similar at 10% (352 +/- 39 ml min(-1) x 100 mmHg(-1), P = 0.8) and 20% (528 +/- 45 ml x min(-1) x 100 mmHg(-1), P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, DeltaFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans.

  19. ICT, Education, and Visual Impairment.

    Science.gov (United States)

    Douglas, Graeme

    2001-01-01

    Reviews developments in the use of information and communications technology (ICT) in the education of children with visual impairments. Highlights include the population of children with visual impairments in the United Kingdom; and World Health Organization classification of disability as a criteria by which the relevance of ICT can be measured.…

  20. Il1-β involvement in cognitive impairment after sepsis.

    Science.gov (United States)

    Mina, Francielle; Comim, Clarissa M; Dominguini, Diogo; Cassol, Omar J; Dall Igna, Dhébora M; Ferreira, Gabriela K; Silva, Milena C; Galant, Leticia S; Streck, Emílio L; Quevedo, João; Dal-Pizzol, Felipe

    2014-04-01

    Sepsis is defined as the host's reaction to infection and characterised by a systemic inflammatory response with important clinical implications. Central nervous system dysfunction secondary to sepsis is associated with local generation of pro- and anti-inflammatory cytokines, impaired cerebral microcirculation, an imbalance of neurotransmitters, apoptosis and cognitive impairment. It's known that the IL-1β is one of the first cytokines to be altered. Thus, the objective of this study was to evaluate the role of IL-1β in cognitive parameters in brain tissue through the use of an IL-1β (IL-1ra) receptor antagonist up to 10 days and to assess blood-brain barrier permeability, cytokine levels, oxidative parameters and energetic metabolism up to 24 h, after sepsis induction. To this aim, we used sham-operated Wistar rats or submitted to the cecal ligation and perforation (CLP) procedure. Immediately after, the animals received one dose of 10 μg of IL-1ra. After 24 h, the rats were killed and were evaluated for biochemical parameters in the pre-frontal cortex, hippocampus and striatum. After 10 days, the animals were submitted to the habituation to the open field and step-down inhibitory avoidance task. We observed that the use of IL-1ra reverted the increase of blood-brain barrier permeability in the pre-frontal cortex, hippocampus and striatum; the increase of IL-1β, IL1-6 and TNF-α levels in the pre-frontal cortex and striatum; the decrease of complex I activity in the pre-frontal, hippocampus and striatum; the increase of oxidative parameters in pre-frontal cortex, hippocampus and striatum; and cognitive impairment. In conclusion, the results observed in this study reinforce the role of acute brain inflammatory response, in particular, the IL1β response, in the cognitive impairment associated with sepsis.

  1. NMDA receptor antagonists in the treatment of patients with vascular cognitive imprairments

    Directory of Open Access Journals (Sweden)

    I.S. Preobrazhenskaya

    2014-01-01

    Full Text Available The paper discusses the possibilities of using the NMDA receptor antagonist memantine in patients with vascular cognitive impairments (CIs. The author gives the data available in the literature and the results of her investigations into the efficiency and safety of treatment in patients with vascular dementia and moderate vascular CIs. The paper presents the results of a Russian multicenter trial of the efficacy and safety of akatinol memantine in patients with CIs, which enrolled 240 patients (mean age 69.5±5.5 years with moderate CIs or mild dementia (the total Mini-Mental State Examination (MMSE scores were 22–28. A study group included 148 patients who took akatinol memantine during a follow-up; a comparison group consisted of 92 patients who did not. Therapeutic effectiveness was evaluated using the quantitative neuropsychological scales and from changes in the somatic and neurological status and in the magnitude of emotional disorders at the inclusion in the study (before treatment initiation and at 1.5, 3, and 6 months of therapy. During akatinol memantine therapy, there were significant reductions in the degree of CIs (lower total MMSE scores; p<0.00000, abnormalities in programming, generalization, and control over performed actions (a change in the total frontal lobe dysfunction battery scores;p<0.00000, and memory disorders, a significant increase in speech fluency (p<0.00000 and attention level (p< 0.00000, and a decrease in the degree of visuospatial deficits (p<0.00000. The effect of the therapy showed itself at its 3 months and continued to rise later on. The performed trial has indicated that akatinol memantine is an effective symptomatic drug to treat both moderate CIs and mild dementia.

  2. Emerging role of orexin antagonists in insomnia therapeutics: An update on SORAs and DORAs.

    Science.gov (United States)

    Kumar, Anil; Chanana, Priyanka; Choudhary, Supriti

    2016-04-01

    The pharmacological management of insomnia has lately become a challenge for researchers worldwide. As per the third International Classification of Sleep disorders (ICSD-3) insomnia can be defined as a state with repeated difficulty in sleep initiation, duration, consolidation, or quality that occurs despite adequate opportunity and circumstances for sleep, and results in some form of daytime impairment. The conventional treatments approved for management of insomnia were benzodiazepines (BZDs) (estazolam, quazepam, triazolam, flurazepam and temazepam) and non-BZDs, also known as z-drugs (zaleplon, zolpidem, and eszopiclone), tricyclic antidepressant (TCA) doxepin as well as melatonin agonists, e.g. ramelteon. But the potential of these agents to address sleep problems has been limited due to substantial side effects associated with them like hangover, dependence and tolerance, rebound insomnia, muscular atonia, inhibition of respiratory system, cognitive dysfunctions, and increased anxiety. Recently, orexin neuropeptides have been identified as regulators of transition between wakefulness and sleep and documented to aid an initial transitory effect towards wakefulness by activating cholinergic/monoaminergic neural pathways of the ascending arousal system. This has led to the development of orexin peptides and receptors, as possible therapeutic targets for the treatment of sleep disorders with the advantage of having lesser side effects as compared to conventional treatments. The present review focuses on the orexin peptides and receptors signifying their physiological profile as well as the development of orexin receptor antagonists as novel strategies in sleep medicine. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. A D1 receptor antagonist, ecopipam, for treatment of tics in Tourette syndrome.

    Science.gov (United States)

    Gilbert, Donald L; Budman, Cathy L; Singer, Harvey S; Kurlan, Roger; Chipkin, Richard E

    2014-01-01

    Dysregulation of dopaminergic signaling has been hypothesized to underlie the motor and phonic tics in Tourette syndrome (TS). The objective of this trial was to evaluate the safety and tic-reducing activity of the selective dopamine D1 receptor antagonist ecopipam in adults with TS. This was a multicenter, nonrandomized, open-label study of 50-mg ecopipam daily (weeks 1-2) and then 100 mg daily (weeks 3-8), taken orally before bedtime. The primary efficacy end point was the change in the Yale Global Tic Severity Scale (YGTSS) total tic score. Comorbid psychiatric symptoms and premonitory urges were rated; weight, serum metabolic studies, and adverse effects were monitored. Eighteen adults (15 men; 15 white, 2 African American, 1 Asian), with a mean age of 36.2 years (range, 18-63 years), were enrolled, and 15 completed the study. Mean (SD) YGTSS Total Tic score was 30.6 (8.8) at baseline and 25.3 (9.2) at 8 weeks (2-tailed paired t17 = 4.4; P = 0.0004). Mean (SD) YGTSS impairment score was 29.7 (10.9) at baseline and 22.8 (13.7) at final visit (t17 = 2.2; P = 0.04). There was no significant change in premonitory urges or psychiatric symptoms. Mean change in weight was -0.7 kg (P = 0.07). The most commonly reported adverse events were sedation (39%), fatigue (33%), insomnia (33%), somnolence (28%), anxiety (22%), headache (22%), and muscle twitching (22%). In this open-label study in adults with TS, tics were reduced after 8 weeks of treatment with ecopipam. To confirm safety and efficacy, randomized, double blind, placebo-controlled trials are warranted.

  4. Anti-inflammatory properties of a novel peptide interleukin 1 receptor antagonist

    DEFF Research Database (Denmark)

    Klementiev, Boris; Li, Shizhong; Korshunova, Irina

    2014-01-01

    Interleukin 1 (IL-1) is implicated in neuroinflammation, an essential component of neurodegeneration. We evaluated the potential anti-inflammatory effect of a novel peptide antagonist of IL-1 signaling, Ilantide.......Interleukin 1 (IL-1) is implicated in neuroinflammation, an essential component of neurodegeneration. We evaluated the potential anti-inflammatory effect of a novel peptide antagonist of IL-1 signaling, Ilantide....

  5. Translational modelling of prolactin response following administration of D2 antagonists in rats

    NARCIS (Netherlands)

    Taneja, Amit; Vermeulen, An; Huntjens, D.; Danhof, Meindert; de Lange, ECM; Proost, Johannes

    2015-01-01

    Objectives: Treatment with D2 antagonists results in prolactin release, and thus prolactin is a biomarker of dopamine antagonism. We compare the model performance of two semi-mechanistic PKPD models, the pool model and the agonist-antagonist interaction model, to describe prolactin release following

  6. CGRP receptor antagonists and antibodies against CGRP and its receptor in migraine treatment

    DEFF Research Database (Denmark)

    Edvinsson, Lars

    2015-01-01

    Recently developed calcitonin gene-related peptide (CGRP) receptor antagonistic molecules have shown promising results in clinical trials for acute treatment of migraine attacks. Drugs from the gepant class of CGRP receptor antagonists are effective and do not cause vasoconstriction, one...

  7. Does treatment with beta-adrenoceptor antagonists in vivo alter human adenylate cyclase responsiveness in vitro?

    NARCIS (Netherlands)

    Michel, M. C.; Klüppel, M.; Philipp, T.; Brodde, O. E.

    1991-01-01

    1. Treatment with beta-adrenoceptor antagonists in vivo can alter adenylate cyclase responsiveness in the human heart. We have determined the effects of treatment with four different beta-adrenoceptor antagonists in vivo on the responsiveness of lymphocyte and platelet adenylate cyclase in vitro in

  8. Folic acid sensitive birth defects in association with intrauterine exposure to folic acid antagonists

    NARCIS (Netherlands)

    Meijer, W.M.; Walle, H.E.K.de; Kerstjens-Frederikse, W.S; de Jong-van den Berg, Lolkje Theodora Wilhelmina

    2005-01-01

    Since the protective effect of folic acid (FA) on birth defects is well known, it is reasonable to assume intrauterine exposure to FA antagonists increases the risk on these defects. We have therefore performed case-control analyses to investigate the risk of intrauterine exposure to FA antagonists,

  9. Agar composition affects in vitro screening of biocontrol activity of antagonistic microorganisms

    NARCIS (Netherlands)

    Bosmans, Lien; De Bruijn, I.; de Mot, Rene; Readers, Hans; Lievens, Bart

    2016-01-01

    Agar-based screening assays are the method of choice when evaluating antagonistic potential of bacterial biocontrol-candidates against pathogens.Weshowed thatwhen using the samemedium, but different agar compositions, the activity of a bacterial antagonist against Agrobacteriumwas strongly affected.

  10. Intrahippocampal injection of Cortistatin-14 impairs recognition memory consolidation in mice through activation of sst2, ghrelin and GABAA/Breceptors.

    Science.gov (United States)

    Jiang, Jinhong; Peng, Yali; He, Zhen; Wei, Lijuan; Jin, Weidong; Wang, Xiaoli; Chang, Min

    2017-07-01

    Cortistatin-14 (CST-14), a neuropeptide related to somatostatin, is primarily localized within the cortex and hippocampus. In the hippocampus, CST-14 inhibits CA1 neuronal pyramidal cell firing and co-exists with GABA. However, its role in cognitive is still not clarified. The first aim of our study was to elucidate the role of CST-14 signaling in consolidation and reconsolidation of recognition memory in mice, using novel object recognition task. The results showed that central CST-14 induced in impairment of long-term and short-term recognition memory, indicating memory consolidation impairment effect. Similarly, we found that CST-14 did not impaired long-term and short-term reconsolidation recognition memory. To further investigate the underlying mechanisms of CST-14 in memory process, we used cyclosomatostatin (c-SOM, a selective sst 1-5 receptor antagonist), cyanamid154806 (a selective sst 2 receptor antagonist), ODN-8 (a high affinity and selectivity compound for sst 3 receptor), [d-Lys 3 ]GHRP-6 (a selective ghrelin receptor antagonist), picrotoxin (PTX, a GABA A receptor antagonist), and sacolfen (a GABA B receptor antagonist) to research its effects in recognition. Our results firstly indicated that the memory-impairing effects of CST-14 were significantly reversed by c-SOM, cyanamid154806, [d-Lys 3 ]GHRP-6, PTX and sacolfen, but not ODN-8, suggesting that the blockage of recognition memory consolidation induced by CST-14 involves sst 2 , ghrelin and GABA system. The present study provides a potential strategy to regulate memory processes, providing new evidence that reconsolidation is not a simple reiteration of consolidation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Nutrition and cognitive impairment

    Science.gov (United States)

    Hernando-Requejo, Virgilio

    2016-07-12

    Dementia, closely linked to environmental predisposing factors such as diet, is a public health problem of increasing magnitude: currently there are more than 35 million patients with Alzheimer´s disease, and is expected to exceed 135 million by 2050. If we can delay the development of dementia 5 years will reduce its prevalence by 50%. Patients with dementia modify their diet, and it has been reported in them deficits, among others, of folic acid, vitamin B12, B6, C, E, A, D, K, beta carotene and omega 3 fatty acids, that must be resolved with proper diet and with extra contributions if needed in some cases. But to reduce, or at least delay, the prevalence of dementia we advocate prevention through proper diet from the beginning of life, an idea that is reinforced given that cardiovascular risk factors are related directly to the development of dementia. A lot of literature are available that, although with limits, allows us to make nutritional recommendations for preventing cognitive impairment. Better results are achieved when complete diets have been studied and considered over specific nutrients separately. Particularly, the Mediterranean diet has great interest in this disease, since it ensures a high intake of vegetables, fruits, nuts, legumes, cereals, fish and olive oil, and moderate intake of meat, dairy products and alcohol. We will focus more on this article in this type of diet.

  12. Antagonistic activity of autosimbionts А. viridans, B. subtilis and their probiotic association to conditionally microflora

    Directory of Open Access Journals (Sweden)

    Stepansky D.A.

    2015-03-01

    Full Text Available In this research the data on examination of antagonist qualities of bioassotiantes A. viridans and strain B. subtilis 3 towards pathogenic and opportunistic pathogenic microflora isolated from oropharynx and nasopharynx of children who were in contact with patients with pulmonary tuberculosis (MBT + are submitted. The expressed antagonist activity of autosimbionts A. viridans towards pathogenic and opportunistic pathogenic microflora was shown. Common antagonist activity of A. viridans (k N 1 and B. subtilis 3 towards diverse strains of test-cultures is 1,5-2 times higher, than separate antagonist activity of A. viridans (k №1 and B. subtilis 3. Received research data showed the possibility of continuing work on development of probiotic associations, that contain representatives of normal microflora - bioassociants A. viridans and probiotic strains B. subtilis 3 with broadspectrum of antagonistic activity in relation to the various groups of bacterium.

  13. Comparison of excitotoxic profiles of ATPA, AMPA, KA and NMDA in organotypic hippocampal slice cultures

    DEFF Research Database (Denmark)

    Kristensen, Bjarne Winther; Noraberg, J; Zimmer, J

    2001-01-01

    ) values was found after 2 days of exposure: AMPA (3.7 mM)>NMDA (11 mM)=KA (13 mM)>ATPA (33 mM). Exposed to 30 microM ATPA, 3 microM AMPA and 10 microM NMDA, CA1 was the most susceptible subfield followed by fascia dentata and CA3. Using 8 microM KA, CA3 was the most susceptible subfield, followed...... by fascia dentata and CA1. In 100 microM concentrations, all four agonists induced the same, maximal PI uptake in all hippocampal subfields, corresponding to total neuronal degeneration. Using glutamate receptor antagonists, like GYKI 52466, NBQX and MK-801, inhibition data revealed that AMPA excitotoxicity...

  14. A framework for communication between visually impaired, hearing impaired and speech impaired using arduino

    Science.gov (United States)

    Sujatha, R.; Khandelwa, Prakhar; Gupta, Anusha; Anand, Nayan

    2017-11-01

    A long time ago our society accepted the notion of treating people with disabilities not as unviable and disabled but as differently-abled, recognizing their skills beyond their disabilities. The next step has to be taken by our scientific community, that is, to normalize lives of the people with disabilities and make it so as if they are no different to us. The primary step in this direction would be to normalize communication between people. People with an impaired speech or impaired vision or impaired hearing face difficulties while having a casual conversation with others. Any form of communication feels so strenuous that the impaired end up communicating just the important information and avoid a casual conversation. To normalize conversation between the impaired we need a simple and compact device which facilitates the conversation by providing the information in the desired form.

  15. Targeting CXCR4 by a selective peptide antagonist modulates tumor microenvironment and microglia reactivity in a human glioblastoma model.

    Science.gov (United States)

    Mercurio, Laura; Ajmone-Cat, Maria Antonietta; Cecchetti, Serena; Ricci, Alessandro; Bozzuto, Giuseppina; Molinari, Agnese; Manni, Isabella; Pollo, Bianca; Scala, Stefania; Carpinelli, Giulia; Minghetti, Luisa

    2016-03-25

    The CXCL12/CXCR4 pathway regulates tumor cell proliferation, metastasis, angiogenesis and the tumor-microenvironment cross-talk in several solid tumors, including glioblastoma (GBM), the most common and fatal brain cancer. In the present study, we evaluated the effects of peptide R, a new specific CXCR4 antagonist that we recently developed by a ligand-based approach, in an in vitro and in vivo model of GBM. The well-characterized CXCR4 antagonist Plerixafor was also included in the study. The effects of peptide R on CXCR4 expression, cell survival and migration were assessed on the human glioblastoma cell line U87MG exposed to CXCL12, by immunofluorescence and western blotting, MTT assay, flow cytometry and transwell chamber migration assay. Peptide R was then tested in vivo, by using U87MG intracranial xenografts in CD1 nude mice. Peptide R was administered for 23 days since cell implantation and tumor volume was assessed by magnetic resonance imaging (MRI) at 4.7 T. Glioma associated microglia/macrophage (GAMs) polarization (anti-tumor M1 versus pro-tumor M2 phenotypes) and expressions of vascular endothelial growth factor (VEGF) and CD31 were assessed by immunohistochemistry and immunofluorescence. We found that peptide R impairs the metabolic activity and cell proliferation of human U87MG cells and stably reduces CXCR4 expression and cell migration in response to CXCL12 in vitro. In the orthotopic U87MG model, peptide R reduced tumor cellularity, promoted M1 features of GAMs and astrogliosis, and hindered intra-tumor vasculature. Our findings suggest that targeting CXCR4 by peptide R might represent a novel therapeutic approach against GBM, and contribute to the rationale to further explore in more complex pre-clinical settings the therapeutic potential of peptide R, alone or in combination with standard therapies of GBM.

  16. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators

    Directory of Open Access Journals (Sweden)

    Andres D. Ramirez

    2013-12-01

    Full Text Available Dual orexin receptor antagonists (DORAs are a potential treatment for insomnia that function by blocking both the orexin 1 and orexin 2 receptors. The objective of the current study was to further confirm the impact of therapeutic mechanisms targeting insomnia on locomotor coordination and ethanol interaction using DORAs and gamma-aminobutyric acid (GABA-A receptor modulators of distinct chemical structure and pharmacologic properties in the context of sleep-promoting potential. The current study compared rat motor co-ordination after administration of DORAs, DORA-12 and almorexant, and GABA-A receptor modulators, zolpidem, eszopiclone and diazepam, alone or each in combination with ethanol. Motor performance was assessed by measuring time spent walking on a rotarod apparatus. Zolpidem, eszopiclone and diazepam (0.3–30 mg/kg administered orally [PO] impaired rotarod performance in a dose-dependent manner. Furthermore, all three GABA-A receptor modulators potentiated ethanol- (0.25–1.25 g/kg induced impairment on the rotarod. By contrast, neither DORA-12 (10–100 mg/kg, PO nor almorexant (30–300 mg/kg, PO impaired motor performance alone or in combination with ethanol. In addition, distinct differences in sleep architecture were observed between ethanol, GABA-A receptor modulators (zolpidem, eszopiclone and diazepam and DORA-12 in electroencephalogram studies in rats. These findings provide further evidence that orexin receptor antagonists have an improved motor side-effect profile compared with currently available sleep-promoting agents based on preclinical data and strengthen the rationale for further evaluation of these agents in clinical development.

  17. Anticonvulsant effects of isomeric nonimidazole histamine H3 receptor antagonists

    Directory of Open Access Journals (Sweden)

    Sadek B

    2016-11-01

    , in which 3-piperidinopropan-1-ol in ligand 2 was replaced by (4-(3-(piperidin-1-ylpropoxyphenylmethanol, and its (S-enantiomer (4 significantly and in a dose-dependent manner reduced convulsions or exhibited full protection in MES and PTZ convulsions model, respectively. Interestingly, the protective effects observed for the (R-enantiomer (3 in MES model were significantly greater than those of the standard H3R inverse agonist/antagonist pitolisant, comparable with those observed for PHT, and reversed when rats were pretreated with the selective H3R agonist R-(α-methyl-histamine. Comparisons of the observed antagonistic in vitro affinities among the ligands 1–6 revealed profound stereoselectivity at human H3Rs with varying preferences for this receptor subtype. Moreover, the in vivo anticonvulsant effects observed in this study for ligands 1–6 showed stereoselectivity in different convulsion models in male adult rats. Keywords: histamine, H3 receptor, isomeric antagonists, anticonvulsant activity, stereo­selectivity

  18. I.c.v. administration of the nonsteroidal glucocorticoid receptor antagonist, CP-472555, prevents exacerbated hypoglycemia during repeated insulin administration.

    Science.gov (United States)

    Kale, A Y; Paranjape, S A; Briski, K P

    2006-06-30

    Hypoglycemia elicits an integrated array of CNS-mediated counterregulatory responses, including activation of the hypothalamic-pituitary-adrenal axis. The role of antecedent adrenocortical hypersecretion in impaired glucose counterregulation remains controversial. The present studies utilized the selective, nonsteroidal glucocorticoid receptor antagonist, CP-472555, as a pharmacological tool to investigate the hypothesis that hypoglycemic hypercorticosteronemia modulates CNS efferent autonomic and neuroendocrine motor responses to recurring insulin-induced hypoglycemia via glucocorticoid receptor-dependent mechanisms. Groups of adult male rats were injected s.c. with either one or four doses of the intermediate-acting insulin, Humulin neutral protamine Hagedorn (NPH), on as many days, while controls were injected with diluent alone. Animals injected with four doses of insulin were pretreated by i.c.v. administration of graded doses of the glucocort