WorldWideScience

Sample records for antagonist induce sensitization

  1. Caffeine and a selective adenosine A2A receptor antagonist induce sensitization and cross-sensitization behavior associated with increased striatal dopamine in mice

    Directory of Open Access Journals (Sweden)

    Hsu Chih W

    2010-01-01

    Full Text Available Abstract Background Caffeine, a nonselective adenosine A1 and A2A receptor antagonist, is the most widely used psychoactive substance in the world. Evidence demonstrates that caffeine and selective adenosine A2A antagonists interact with the neuronal systems involved in drug reinforcement, locomotor sensitization, and therapeutic effect in Parkinson's disease (PD. Evidence also indicates that low doses of caffeine and a selective adenosine A2A antagonist SCH58261 elicit locomotor stimulation whereas high doses of these drugs exert locomotor inhibition. Since these behavioral and therapeutic effects are mediated by the mesolimbic and nigrostriatal dopaminergic pathways which project to the striatum, we hypothesize that low doses of caffeine and SCH58261 may modulate the functions of dopaminergic neurons in the striatum. Methods In this study, we evaluated the neuroadaptations in the striatum by using reverse-phase high performance liquid chromatography (HPLC to quantitate the concentrations of striatal dopamine and its metabolites, dihydroxylphenylacetic acid (DOPAC and homovanilic acid (HVA, and using immunoblotting to measure the level of phosphorylation of tyrosine hydroxylase (TH at Ser31, following chronic caffeine and SCH58261 sensitization in mice. Moreover, to validate further that the behavior sensitization of caffeine is through antagonism at the adenosine A2A receptor, we also evaluate whether chronic pretreatment with a selective adenosine A2A antagonist SCH58261 or a selective adenosine A1 antagonist DPCPX can sensitize the locomotor stimulating effects of caffeine. Results Chronic treatments with low dose caffeine (10 mg/kg or SCH58261 (2 mg/kg increased the concentrations of dopamine, DOPAC and HVA, concomitant with increased TH phosphorylation at Ser31 and consequently enhanced TH activity in the striatal tissues in both caffeine- and SCH58261-sensitized mice. In addition, chronic caffeine or SCH58261 administration induced

  2. Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization.

    Science.gov (United States)

    Romero, L; Zamanillo, D; Nadal, X; Sánchez-Arroyos, R; Rivera-Arconada, I; Dordal, A; Montero, A; Muro, A; Bura, A; Segalés, C; Laloya, M; Hernández, E; Portillo-Salido, E; Escriche, M; Codony, X; Encina, G; Burgueño, J; Merlos, M; Baeyens, J M; Giraldo, J; López-García, J A; Maldonado, R; Plata-Salamán, C R; Vela, J M

    2012-08-01

    The sigma-1 (σ(1) ) receptor is a ligand-regulated molecular chaperone that has been involved in pain, but there is limited understanding of the actions associated with its pharmacological modulation. Indeed, the selectivity and pharmacological properties of σ(1) receptor ligands used as pharmacological tools are unclear and the demonstration that σ(1) receptor antagonists have efficacy in reversing central sensitization-related pain sensitivity is still missing. The pharmacological properties of a novel σ(1) receptor antagonist (S1RA) were first characterized. S1RA was then used to investigate the effect of pharmacological antagonism of σ(1) receptors on in vivo nociception in sensitizing conditions and on in vitro spinal cord sensitization in mice. Drug levels and autoradiographic, ex vivo binding for σ(1) receptor occupancy were measured to substantiate behavioural data. Formalin-induced nociception (both phases), capsaicin-induced mechanical hypersensitivity and sciatic nerve injury-induced mechanical and thermal hypersensitivity were dose-dependently inhibited by systemic administration of S1RA. Occupancy of σ(1) receptors in the CNS was significantly correlated with the antinociceptive effects. No pharmacodynamic tolerance to the antiallodynic and antihyperalgesic effect developed following repeated administration of S1RA to nerve-injured mice. As a mechanistic correlate, electrophysiological recordings demonstrated that pharmacological antagonism of σ(1) receptors attenuated the wind-up responses in spinal cords sensitized by repetitive nociceptive stimulation. These findings contribute to evidence identifying the σ(1) receptor as a modulator of activity-induced spinal sensitization and pain hypersensitivity, and suggest σ(1) receptor antagonists as potential novel treatments for neuropathic pain. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  3. Prolonged Survival in a Case of Chemotherapy-Sensitive Gastric Cancer That Produced Alpha-Fetoprotein and Protein Induced by Vitamin K Antagonist-II

    Directory of Open Access Journals (Sweden)

    Naotaka Ogasawara

    2015-04-01

    Full Text Available The number of reported cases of alpha-fetoprotein (AFP-producing gastric cancer has gradually increased, with a reported prevalence of 1.3-1.5% of all gastric cancer cases. However, reports of gastric cancer accompanied by elevated serum levels of both AFP and protein induced by vitamin K antagonist-II (PIVKA-II are rare. The prognosis of AFP- and PIVKA-II-producing gastric cancer has been reported to be very poor because the tumor cells were considered to have a high malignant potential and the cancer progressed rapidly. We described a case of gastric cancer producing AFP and PIVKA-II in which chemotherapy was effective and resulted in prolonged survival, and these two tumor markers were useful for monitoring the treatment response. Routine health screening using upper abdominal ultrasonography revealed hepatic tumors in an apparently healthy 65-year-old man. Whole-body computed tomography (CT revealed multiple hepatic tumors, and an esophagogastroduodenoscopy (EGD revealed a Bormann type 3 tumor in the lower stomach. A biopsy specimen confirmed that the tumor was immunohistochemically positive for AFP, PIVKA-II, and human epidermal growth factor receptor 2. After chemotherapy, the gastric tumor appeared as a small elevated lesion on EGD, and CT revealed a remarkable reduction in the size of the metastatic liver tumors. The patient is still alive, 35 months after the initial chemotherapy.

  4. Non-NMDA receptor antagonist-induced drinking in rat

    Science.gov (United States)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  5. [Necrotic leg ulcer revealing vasculitis induced by vitamin K antagonists].

    Science.gov (United States)

    Chabli, H; Hocar, O; Akhdari, N; Amal, S; Hakkou, M; Hamdaoui, A

    2015-12-01

    Vitamin K antagonists are widely used in thromboembolic diseases. Hemorrhagic complications related to drug overdose represent their main side effect. We report a rare side effect, a severe and unexpected type of skin vasculitis - necrotic leg ulcer - induced by vitamin K antagonist. A 63-year-old female with a history of diabetes developed hyperalgesic necrotic ulcerations on the lower limbs one month after starting an acenocoumarol-based treatment for ischemic heart disease. Histological examination revealed lymphocytic vasculitis with fibrinoid necrosis. Etiological explorations searching for vasculitis were negative. In the absence of a precise etiology, drug-induced ulcer was suspected. Low molecular weight heparin was prescribed to replace acenocoumarol. The lesions slowly resolved with topical treatment. The chronological criteria and the negativity of etiological explorations allowed the diagnosis of vitamin K antagonist-induced necrotic skin ulcer. Clinicians should be aware of this rare complication induced by oral anticoagulants because of its practical therapeutic implications. This is the first case of necrotic leg ulcer induced by acenocoumarol corresponding histologically to necrotising lymphocytic vasculitis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. In vitro sensitivity of antagonistic Trichoderma atroviride to herbicides

    Directory of Open Access Journals (Sweden)

    Patricia Helena Santoro

    2014-04-01

    Full Text Available Trichoderma atroviride was tested in vitro for its sensitivity to different herbicides. The dosages tested were recommended dosage (RD, half dosage (½RD, and double dosage (2RD. Germination, colony-forming units (CFU, radial growth, and spore production were evaluated. Carfentrazone-ethyl and sulfentrazone inhibited the germination at RD and 2RD. A reduction in the CFU was observed for glufosinate-ammonium, atrazine, carfentrazone-ethyl, diuron + paraquat dichloride, imazapyr, oxyfluorfen, and sulfentrazone at each of the tested dosages. Radial growth was influenced by ametryn, atrazine, carfentrazone-ethyl, oxyfluorfen, and sulfentrazone herbicides, with an 80% reduction of the colonial area. Spore production was affected by carfentrazone-ethyl, oxyfluorfen, and sulfentrazone with colonial area reductions of over 70%. It was concluded that 2,4 D, clomazone, and imazapyr herbicides showed the least toxicity to T. atroviride and should be used in the crops where the fungus has been applied for phytopathogen control.

  7. Human muscle spindle sensitivity reflects the balance of activity between antagonistic muscles.

    Science.gov (United States)

    Dimitriou, Michael

    2014-10-08

    Muscle spindles are commonly considered as stretch receptors encoding movement, but the functional consequence of their efferent control has remained unclear. The "α-γ coactivation" hypothesis states that activity in a muscle is positively related to the output of its spindle afferents. However, in addition to the above, possible reciprocal inhibition of spindle controllers entails a negative relationship between contractile activity in one muscle and spindle afferent output from its antagonist. By recording spindle afferent responses from alert humans using microneurography, I show that spindle output does reflect antagonistic muscle balance. Specifically, regardless of identical kinematic profiles across active finger movements, stretch of the loaded antagonist muscle (i.e., extensor) was accompanied by increased afferent firing rates from this muscle compared with the baseline case of no constant external load. In contrast, spindle firing rates from the stretching antagonist were lowest when the agonist muscle powering movement (i.e., flexor) acted against an additional resistive load. Stepwise regressions confirmed that instantaneous velocity, extensor, and flexor muscle activity had a significant effect on spindle afferent responses, with flexor activity having a negative effect. Therefore, the results indicate that, as consequence of their efferent control, spindle sensitivity (gain) to muscle stretch reflects the balance of activity between antagonistic muscles rather than only the activity of the spindle-bearing muscle. Copyright © 2014 the authors 0270-6474/14/3413644-12$15.00/0.

  8. The leukotriene B4 receptors BLT1 and BLT2 form an antagonistic sensitizing system in peripheral sensory neurons.

    Science.gov (United States)

    Zinn, Sebastian; Sisignano, Marco; Kern, Katharina; Pierre, Sandra; Tunaru, Sorin; Jordan, Holger; Suo, Jing; Treutlein, Elsa-Marie; Angioni, Carlo; Ferreiros, Nerea; Leffler, Andreas; DeBruin, Natasja; Offermanns, Stefan; Geisslinger, Gerd; Scholich, Klaus

    2017-04-14

    Sensitization of the heat-activated ion channel transient receptor potential vanilloid 1 (TRPV1) through lipids is a fundamental mechanism during inflammation-induced peripheral sensitization. Leukotriene B4 is a proinflammatory lipid mediator whose role in peripheral nociceptive sensitization is not well understood to date. Two major G-protein-coupled receptors for leukotriene B4 have been identified: the high-affinity receptor BLT1 and the low-affinity receptor BLT2. Transcriptional screening for the expression G-protein-coupled receptors in murine dorsal root ganglia showed that both receptors were among the highest expressed in dorsal root ganglia. Calcium imaging revealed a sensitization of TRPV1-mediated calcium increases in a relative narrow concentration range for leukotriene B4 (100-200 nm). Selective antagonists and neurons from knock-out mice demonstrated a BLT1-dependent sensitization of TRPV1-mediated calcium increases. Accordingly, leukotriene B4-induced thermal hyperalgesia was mediated through BLT1 and TRPV1 as shown using the respective knock-out mice. Importantly, higher leukotriene B4 concentrations (>0.5 μm) and BLT2 agonists abolished sensitization of the TRPV1-mediated calcium increases. Also, BLT2 activation inhibited protein kinase C- and protein kinase A-mediated sensitization processes through the phosphatase calcineurin. Consequently, a selective BLT2-receptor agonist increased thermal and mechanical withdrawal thresholds during zymosan-induced inflammation. In accordance with these data, immunohistochemical analysis showed that both leukotriene B4 receptors were expressed in peripheral sensory neurons. Thus, the data show that the two leukotriene B4 receptors have opposing roles in the sensitization of peripheral sensory neurons forming a self-restricting system. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yi [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu (China); Xie, Xiaoyan; Li, Xinyi; Wang, Peiqi [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University (China); Jing, Qian; Yue, Jiaqi; Liu, Yang [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Cheng, Zhong [Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu (China); Li, Jingyi, E-mail: li--jingyi@hotmail.com [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Song, Haixing [The School of Biomedical Sciences, Chengdu Medical College, Chengdu 610083 (China); Li, Guoyu, E-mail: liguoyulisa@163.com [School of Pharmacy, Shihezi University, Shihezi 832003 (China); Liu, Rui, E-mail: liurui_scu@hotmail.com [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University (China); Wang, Jinhui [School of Pharmacy, Shihezi University, Shihezi 832003 (China)

    2016-05-20

    Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cell lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery. -- Highlights: •FGFR1 antagonist inhibits cell viability in FGFR1-amplified breast cancer cells. •FGFR1 antagonist induces autophagy in FGFR1-amplified breast cancer cells. •FGFR1 antagonist-induced autophagy is protective. •FGFR1 antagonist induces autophagy by inhibiting Akt/mTOR pathway.

  10. FGFR antagonist induces protective autophagy in FGFR1-amplified breast cancer cell

    International Nuclear Information System (INIS)

    Chen, Yi; Xie, Xiaoyan; Li, Xinyi; Wang, Peiqi; Jing, Qian; Yue, Jiaqi; Liu, Yang; Cheng, Zhong; Li, Jingyi; Song, Haixing; Li, Guoyu; Liu, Rui; Wang, Jinhui

    2016-01-01

    Breast cancer, representing approximately 30% of all gynecological cancer cases diagnosed yearly, is a leading cause of cancer-related mortality for women. Amplification of FGFR1 is frequently observed in breast cancers and is associated with poor prognosis. Though FGFRs have long been considered as anti-cancer drug targets, and a cluster of FGFR antagonists are currently under clinical trials, the precise cellular responses under the treatment of FGFR antagonists remains unclear. Here, we show that PD166866, an FGFR1-selective inhibitor, inhibits proliferation and triggers anoikis in FGFR1-amplified breast cancer cell lines. Notably, we demonstrate that PD166866 induces autophagy in FGFR1-amplified breast cancer cell lines, while blockage of autophagy by Atg5 knockdown further enhances the anti-proliferative activities of PD166866. Moreover, mechanistic study reveals that PD166866 induces autophagy through repressing Akt/mTOR signaling pathway. Together, the present study provides new insights into the molecular mechanisms underlying the anti-tumor activities of FGFR antagonists, and may further assist the FGFRs-based drug discovery. -- Highlights: •FGFR1 antagonist inhibits cell viability in FGFR1-amplified breast cancer cells. •FGFR1 antagonist induces autophagy in FGFR1-amplified breast cancer cells. •FGFR1 antagonist-induced autophagy is protective. •FGFR1 antagonist induces autophagy by inhibiting Akt/mTOR pathway.

  11. Serotonin 2C receptor antagonists induce fast-onset antidepressant effects.

    Science.gov (United States)

    Opal, M D; Klenotich, S C; Morais, M; Bessa, J; Winkle, J; Doukas, D; Kay, L J; Sousa, N; Dulawa, S M

    2014-10-01

    Current antidepressants must be administered for several weeks to produce therapeutic effects. We show that selective serotonin 2C (5-HT2C) antagonists exert antidepressant actions with a faster-onset (5 days) than that of current antidepressants (14 days) in mice. Subchronic (5 days) treatment with 5-HT2C antagonists induced antidepressant behavioral effects in the chronic forced swim test (cFST), chronic mild stress (CMS) paradigm and olfactory bulbectomy paradigm. This treatment regimen also induced classical markers of antidepressant action: activation of cAMP response element-binding protein (CREB) and induction of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex (mPFC). None of these effects were induced by subchronic treatment with citalopram, a prototypical selective serotonin reuptake inhibitor (SSRI). Local infusion of 5-HT2C antagonists into the ventral tegmental area was sufficient to induce BDNF in the mPFC, and dopamine D1 receptor antagonist treatment blocked the antidepressant behavioral effects of 5-HT2C antagonists. 5-HT2C antagonists also activated mammalian target of rapamycin (mTOR) and eukaryotic elongation factor 2 (eEF2) in the mPFC, effects recently linked to rapid antidepressant action. Furthermore, 5-HT2C antagonists reversed CMS-induced atrophy of mPFC pyramidal neurons. Subchronic SSRI treatment, which does not induce antidepressant behavioral effects, also activated mTOR and eEF2 and reversed CMS-induced neuronal atrophy, indicating that these effects are not sufficient for antidepressant onset. Our findings reveal that 5-HT2C antagonists are putative fast-onset antidepressants, which act through enhancement of mesocortical dopaminergic signaling.

  12. Effect of beta-adrenergic receptor antagonists on nicotine-induced tail-tremor in rats.

    Science.gov (United States)

    Suemaru, K; Gomita, Y; Furuno, K; Araki, Y

    1993-09-01

    The effects of various beta-adrenergic receptor antagonists on nicotine-induced tail-tremor were investigated in rats. Atenolol (5 and 10 mg/kg, IP), arotinolol (5 and 10 mg/kg, IP), and carteolol (5 and 10 mg/kg, IP), hydrophilic beta-adrenergic receptor antagonists, did not affect the tail-tremor induced by nicotine given at a dose of 0.5 mg/kg SC. However, propranolol (5-20 mg/kg, IP) and pindolol (5-20 mg/kg, IP), nonselective and lipophilic beta-adrenergic receptor antagonists, did suppress the tail-tremor dose dependently. In contrast, metoprolol (5-20 mg/kg, IP), lipophilic and beta 1-selective adrenergic receptor antagonists, did not show such an effect. These results suggest that nicotine-induced tail-tremors may be mediated through central beta 2-adrenergic receptors as an appearance and developmental mechanism.

  13. Nullifying drug-induced sensitization: behavioral and electrophysiological evaluations of dopaminergic and serotonergic ligands in methamphetamine-sensitized rats.

    Science.gov (United States)

    McDaid, J; Tedford, C E; Mackie, A R; Dallimore, J E; Mickiewicz, A L; Shen, F; Angle, J M; Napier, T C

    2007-01-05

    Repeated exposure to methamphetamine produces a persistent enhancement of the acute motor effects of the drug, commonly referred to as behavioral sensitization. Behavioral sensitization involves monoaminergic projections to several forebrain nuclei. We recently revealed that the ventral pallidum (VP) may also be involved. In this study, we sought to establish if treatments with antagonists or partial agonists to monoaminergic receptors could "reverse" methamphetamine-induced behavioral and VP neuronal sensitization. Behavioral sensitization was obtained in rats with five once-daily s.c. injections of 2.5mg/kg methamphetamine, an effect that persisted for at least 60 days. After the development of sensitization, 15 once-daily treatments of mirtazapine (a 5-HT(2/3), alpha(2) and H(1) antagonist), SKF38393 (D(1) partial agonist) or SCH23390 (dopamine D(1) antagonist) nullified indices of motor sensitization as assessed by measuring the motoric response to an acute methamphetamine challenge 30 days after the fifth repeated methamphetamine treatment. VP neurons recorded in vivo from methamphetamine-sensitized rats at the 30-day withdrawal time also showed a robust downward shift in the excitatory responses observed to an acute i.v. methamphetamine challenge in non-sensitized rats. This decreased excitatory effect was reversed by mirtazapine, but not by other antagonists that were tested. These data suggest a potential therapeutic benefit for mirtazapine in the treatment of methamphetamine addiction, and point to a possible role for the VP in the sensitization process to methamphetamine.

  14. In vivo demonstration of cardiac beta 2-adrenoreceptor sensitization by beta 1-antagonist treatment.

    Science.gov (United States)

    Hall, J A; Petch, M C; Brown, M J

    1991-10-01

    Treatment with beta 1-selective antagonists causes selective sensitization of isolated strips of human atrial myocardium to the inotropic action of epinephrine and beta 2-agonists but not of norepinephrine. To determine whether beta 1-selective antagonist treatment alters the responsiveness of cardiac beta 2-adrenoreceptors in vivo, we measured the positive chronotropic responses to salbutamol injected into the right coronary artery. Ten patients treated with atenolol (50-100 mg daily) were compared with 10 patients not treated with beta-blockers. The mean dose required to cause an increase in heart rate of 30 beats/min was 2.29 micrograms (log dose 0.36 +/- 0.12 micrograms [mean +/- SEM]) in the atenolol-treated patients. In the non-beta-blocker-treated patients, the dose required to cause an increase in heart rate of 30 beats/min was significantly greater, 8.91 micrograms (log dose 0.95 +/- 0.11 micrograms) (p less than 0.005). We conclude that treatment with beta 1-selective beta-blockers leads to increased cardiac responsiveness to beta 2-adrenoreceptor stimulation. This may be the underlying mechanism of the beta-blocker withdrawal syndrome and may make the heart more susceptible to the adverse effects of epinephrine in situations of stress (e.g., myocardial infarction).

  15. Effects of sigma(1) receptor ligand MS-377 on D(2) antagonists-induced behaviors.

    Science.gov (United States)

    Karasawa, Jun-ichi; Takahashi, Shinji; Takagi, Kaori; Horikomi, Kazutoshi

    2002-10-01

    (R)-(+)-1-(4-Chlorophenyl)-3-[4-(2-methoxyethyl)piperazin-1-yl]methyl-2-pyrrolidinone L-tartrate (MS-377) is a novel antipsychotic agent with selective and high affinity for sigma(1) receptor. The present study was carried out to clarify the interaction of MS-377 with dopamine D(2) receptor antagonists (D(2) antagonists) in concurrent administration, and then the involvement of sigma receptors in the interaction. The effects of MS-377 on haloperidol- or sultopride-induced inhibition of apomorphine-induced climbing behavior and catalepsy were investigated in mice and rats, respectively. In addition, the effects of (+)-SKF-10,047 and SA4503, both of which are sigma receptor agonists, and WAY-100,635, which is a 5-HT(1A) receptor antagonist, on the interaction due to the concurrent use were also investigated. MS-377 potentiated the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior in a dose-dependent manner. In contrast, MS-377 did not affect the catalepsy induction by these drugs. The potentiation of the inhibitory effects of haloperidol or sultopride on apomorphine-induced climbing behavior by MS-377 was not inhibited by WAY-100,635, but was inhibited by (+)-SKF-10,047 and SA4503. These findings showed that MS-377 potentiates the efficacy of D(2) antagonists, but it does not deteriorate the adverse effect. Moreover, sigma(1) receptors are involved in this potentiation of the efficacy of D(2) antagonists by MS-377.

  16. Novel neurokinin-1 antagonists as antiemetics for the treatment of chemotherapy-induced emesis.

    Science.gov (United States)

    Reddy, G Kesava; Gralla, Richard J; Hesketh, Paul J

    2006-04-01

    Despite significant advances in supportive care in oncology, many patients with cancer still experience chemotherapy- induced nausea and vomiting (CINV). Historically, there were only 3 neurotransmitter receptors (dopamine D2, cannabinoid- 1, and 5-hydroxytryptamine-3) that were the known targets for antiemetic therapy. Major advances in the management of chemotherapy-induced emesis were seen with the introduction of 5-hydroxytryptamine-3 receptor antagonists, which include palonosetron, ondansetron, tropisetron, dolasetron, and granisetron. However, recently, selective inhibitors of substance P have shown promising activity in the management of CINV in patients with cancer. Substance P mediates a number of biologic effects by binding to a specific neuroreceptor, neurokinin-1 (NK-1). Among the NK-1 receptor antagonists, aprepitant has been approved for the treatment of CINV. Currently, several other NK-1 receptor antagonists, including casopitant, vestipitant, netupitant, and SCH619734, are undergoing clinical evaluation for the prevention of CINV in patients with a variety of malignancies. The clinical potential of these novel NK-1 receptor antagonists and their respective ongoing clinical trials for the management of chemotherapy-induced emesis are discussed briefly herein.

  17. Cannabinoid receptor 1 antagonist treatment induces glucagon release and shows an additive therapeutic effect with GLP-1 agonist in diet-induced obese mice.

    Science.gov (United States)

    Patel, Kartikkumar Navinchandra; Joharapurkar, Amit Arvind; Patel, Vishal; Kshirsagar, Samadhan Govind; Bahekar, Rajesh; Srivastava, Brijesh Kumar; Jain, Mukul R

    2014-12-01

    Cannabinoid 1 (CB1) receptor antagonists reduce body weight and improve insulin sensitivity. Preclinical data indicates that an acute dose of CB1 antagonist rimonabant causes an increase in blood glucose. A stable analog of glucagon-like peptide 1 (GLP-1), exendin-4 improves glucose-stimulated insulin secretion in pancreas, and reduces appetite through activation of GLP-1 receptors in the central nervous system and liver. We hypothesized that the insulin secretagogue effect of GLP-1 agonist exendin-4 may synergize with the insulin-sensitizing action of rimonabant. Intraperitoneal as well as intracerebroventricular administration of rimonabant increased serum glucose upon glucose challenge in overnight fasted, diet-induced obese C57 mice, with concomitant rise in serum glucagon levels. Exendin-4 reversed the acute hyperglycemia induced by rimonabant. The combination of exendin-4 and rimonabant showed an additive effect in the food intake, and sustained body weight reduction upon repeated dosing. The acute efficacy of both the compounds was additive for inducing nausea-like symptoms in conditioned aversion test in mice, whereas exendin-4 treatment antagonized the effect of rimonabant on forced swim test upon chronic dosing. Thus, the addition of exendin-4 to rimonabant produces greater reduction in food intake owing to increased aversion, but reduces the other central nervous system side effects of rimonabant. The hyperglucagonemia induced by rimonabant is partially responsible for enhancing the antiobesity effect of exendin-4.

  18. Folic acid sensitive birth defects in association with intrauterine exposure to folic acid antagonists

    NARCIS (Netherlands)

    Meijer, W.M.; Walle, H.E.K.de; Kerstjens-Frederikse, W.S; de Jong-van den Berg, Lolkje Theodora Wilhelmina

    2005-01-01

    Since the protective effect of folic acid (FA) on birth defects is well known, it is reasonable to assume intrauterine exposure to FA antagonists increases the risk on these defects. We have therefore performed case-control analyses to investigate the risk of intrauterine exposure to FA antagonists,

  19. Developmental Programming: Prenatal and Postnatal Androgen Antagonist and Insulin Sensitizer Interventions Prevent Advancement of Puberty and Improve LH Surge Dynamics in Prenatal Testosterone-Treated Sheep.

    Science.gov (United States)

    Padmanabhan, Vasantha; Veiga-Lopez, Almudena; Herkimer, Carol; Abi Salloum, Bachir; Moeller, Jacob; Beckett, Evan; Sreedharan, Rohit

    2015-07-01

    Prenatal T excess induces maternal hyperinsulinemia, early puberty, and reproductive/metabolic defects in the female similar to those seen in women with polycystic ovary syndrome. This study addressed the organizational/activational role of androgens and insulin in programming pubertal advancement and periovulatory LH surge defects. Treatment groups included the following: 1) control; 2) prenatal T; 3) prenatal T plus prenatal androgen antagonist, flutamide; 4) prenatal T plus prenatal insulin sensitizer, rosiglitazone; 5) prenatal T and postnatal flutamide; 6) prenatal T and postnatal rosiglitazone; and 7) prenatal T and postnatal metformin. Prenatal treatments spanned 30-90 days of gestation and postnatal treatments began at approximately 8 weeks of age and continued throughout. Blood samples were taken twice weekly, beginning at approximately 12 weeks of age to time puberty. Two-hour samples after the synchronization with prostaglandin F2α were taken for 120 hours to characterize LH surge dynamics at 7 and 19 months of age. Prenatal T females entered puberty earlier than controls, and all interventions prevented this advancement. Prenatal T reduced the percentage of animals having LH surge, and females that presented LH surge exhibited delayed timing and dampened amplitude of the LH surge. Prenatal androgen antagonist, but not other interventions, restored LH surges without normalizing the timing of the surge. Normalization of pubertal timing with prenatal/postnatal androgen antagonist and insulin sensitizer interventions suggests that pubertal advancement is programmed by androgenic actions of T involving insulin as a mediary. Restoration of LH surges by cotreatment with androgen antagonist supports androgenic programming at the organizational level.

  20. Antagonistic Coevolution Drives Whack-a-Mole Sensitivity in Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Jeewoen Shin

    2015-10-01

    Full Text Available Robustness, defined as tolerance to perturbations such as mutations and environmental fluctuations, is pervasive in biological systems. However, robustness often coexists with its counterpart, evolvability--the ability of perturbations to generate new phenotypes. Previous models of gene regulatory network evolution have shown that robustness evolves under stabilizing selection, but it is unclear how robustness and evolvability will emerge in common coevolutionary scenarios. We consider a two-species model of coevolution involving one host and one parasite population. By using two interacting species, key model parameters that determine the fitness landscapes become emergent properties of the model, avoiding the need to impose these parameters externally. In our study, parasites are modeled on species such as cuckoos where mimicry of the host phenotype confers high fitness to the parasite but lower fitness to the host. Here, frequent phenotype changes are favored as each population continually adapts to the other population. Sensitivity evolves at the network level such that point mutations can induce large phenotype changes. Crucially, the sensitive points of the network are broadly distributed throughout the network and continually relocate. Each time sensitive points in the network are mutated, new ones appear to take their place. We have therefore named this phenomenon "whack-a-mole" sensitivity, after a popular fun park game. We predict that this type of sensitivity will evolve under conditions of strong directional selection, an observation that helps interpret existing experimental evidence, for example, during the emergence of bacterial antibiotic resistance.

  1. Studies of the voltage-sensitive calcium channels in smooth muscle, neuronal, and cardiac tissues using 1,4-dihydropyridine calcium channel antagonists and activators

    Energy Technology Data Exchange (ETDEWEB)

    Wei, X.

    1988-01-01

    This study describes the investigation of the voltage-sensitive Ca{sup +} channels in vascular and intestinal smooth muscle, chick neural retina cells and neonatal rat cardiac myocytes using 1,4-dihydropyridine Ca{sup 2+} channel antagonists and activators. In rat aorta, the tumor promoting phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) produced Ca{sup 2+}-dependent contractile responses. The responses to TPA were blocked by the Ca{sup 2+} channel antagonists. The effects of the enantiomers of Bay K 8644 and 202-791 were characterized in both rat tail artery and guinea pig ileal longitudinal smooth muscle preparations using pharmacologic and radioligand binding assays. The (S)-enantiomers induced contraction and potentiated the responses to K{sup +} depolarization. The (R)-enantiomers inhibited the tension responses to K{sup +}. All the enantiomers inhibited specific ({sup 3}H)nitrendipine binding. The pharmacologic activities of both activator and antagonist ligands correlated on a 1:1 basis with the binding affinities. In chick neural retina cells the (S)-enantiomers of Bay K 8644 and 202-791 enhanced Ca{sup 2+} influx. In contrast, the (R)-enantiomers inhibited Ca{sup 2+} influx. The enantiomers of Bay K 8644 and 202-791 inhibited specific ({sup 3}H)PN 200-110 binding competitively. Binding of 1,4-dihydropyridines was characterized in neonatal rat heart cells.

  2. Effects of oral cetirizine, a selective H1 antagonist, on allergen- and exercise-induced bronchoconstriction in subjects with asthma.

    LENUS (Irish Health Repository)

    Gong, H

    1990-03-01

    The protective efficacy of oral cetirizine, a selective and potent H1-receptor antagonist, against the immediate bronchoconstrictive response to allergen inhalation and exercise challenge was evaluated in 16 subjects with stable, predominantly mild asthma. The subjects underwent double-blind, crossover pretreatments in randomized order in two separate protocols with (1) three daily oral doses of 20 mg of cetirizine and placebo, followed by allergen inhalation, and (2) single oral doses of cetirizine (5, 10, and 20 mg), albuterol (4 mg), and placebo, followed by exercise with cold-air inhalation. Cetirizine failed to decrease bronchial sensitivity to inhaled allergen in eight of 10 subjects. Neither cetirizine nor albuterol uniformly inhibited exercise-induced bronchoconstriction. Serum concentrations of cetirizine were consistent with systemic H1-blocking activity. Modest bronchodilation occurred after administration of cetirizine and albuterol before exercise but not after the third dose of cetirizine in the allergen protocol. One subject developed moderate drowsiness during multiple dosing with cetirizine. Thus, cetirizine, in the doses studied, is not uniformly effective in preventing allergen- or exercise-induced bronchoconstriction. Histamine is one of many mediators participating in immediate asthmatic responses, and selective H1 antagonists do not completely block these airway events. However, cetirizine may still clinically benefit some patients with asthma, such as patients with allergic rhinitis or urticaria.

  3. Attenuation of antagonist-induced impairment of dopamine receptors by L-prolyl-L-leucyl-glycinamide

    International Nuclear Information System (INIS)

    Saleh, M.I.M.

    1988-01-01

    The present study was undertaken in order to determine whether chronic,long-term postnatal challenge of rat pups per se, with specific dopamine D1 and D2 receptor antagonists, would modify the ontogeny of the respective receptor types. Since the neuropeptide L-prolyl-L-leucyl-glycinamide (PLG) attenuates the effect of haloperidol on dopamine D2 receptors in adult rats it was of interest to determine whether PLG would modulate antagonists-induced alterations in the ontogeny of striatal dopamine D1 and D2 receptors. Half of the rats were treated daily for 32 days from birth with SCH-23390, a selective dopamine D1 antagonist; or spiroperidol, a selective dopamine D2 antagonists; or both SCH-23390 and spiroperidol; or saline. The other half of the litters were treated with PLG, in combination with the other treatments. Animals were decapitated at 5, 8, and 12 weeks from birth for neurochemical analysis of the striatum. Chronic SCH-23390 treatment produced a 70-80% decrease in the binding of [ 3 H] SCH-23390 to striatal homogenates. The alteration at 5 weeks was associated with a 78% decrease in the Bmax for [ 3 H] SCH-23390 binding, and no change in the K D . Similarly, at 5, 8, and 12 weeks, chronic spiroperidol treatment reduced the binding of [ 3 H] spiroperidol to striatal homogenates by 70-80%

  4. Brief treatment with the glucocorticoid receptor antagonist mifeprestone normalizes the corticosterone-induced reduction of adult hippocampal neurogenesis.

    NARCIS (Netherlands)

    Mayer, J.; Klumpers, L.; Maslam, S.; de Kloet, E.R.; Joëls, M.; Lucassen, P.J.

    2006-01-01

    The glucocorticoid receptor antagonist mifepristone has been shown to rapidly and effectively ameliorate symptoms of psychotic major depression. To better understand its mechanism, we investigated mifepristone's cellular effects, and found that it rapidly reversed a chronic corticosterone-induced

  5. Dual orexin receptor antagonist 12 inhibits expression of proteins in neurons and glia implicated in peripheral and central sensitization.

    Science.gov (United States)

    Cady, R J; Denson, J E; Sullivan, L Q; Durham, P L

    2014-06-06

    Sensitization and activation of trigeminal nociceptors is implicated in prevalent and debilitating orofacial pain conditions including temporomandibular joint (TMJ) disorders. Orexins are excitatory neuropeptides that function to regulate many physiological processes and are reported to modulate nociception. To determine the role of orexins in an inflammatory model of trigeminal activation, the effects of a dual orexin receptor antagonist (DORA-12) on levels of proteins that promote peripheral and central sensitization and changes in nocifensive responses were investigated. In adult male Sprague-Dawley rats, mRNA for orexin receptor 1 (OX₁R) and receptor 2 (OX₂R) were detected in trigeminal ganglia and spinal trigeminal nucleus (STN). OX₁R immunoreactivity was localized primarily in neuronal cell bodies in the V3 region of the ganglion and in laminas I-II of the STN. Animals injected bilaterally with complete Freund's adjuvant (CFA) in the TMJ capsule exhibited increased expression of P-p38, P-ERK, and lba1 in trigeminal ganglia and P-ERK and lba1 in the STN at 2 days post injection. However, levels of each of these proteins in rats receiving daily oral DORA-12 were inhibited to near basal levels. Similarly, administration of DORA-12 on days 3 and 4 post CFA injection in the TMJ effectively inhibited the prolonged stimulated expression of protein kinase A, NFkB, and Iba1 in the STN on day 5 post injection. While injection of CFA mediated a nocifensive response to mechanical stimulation of the orofacial region at 2h and 3 and 5 days post injection, treatment with DORA-12 suppressed the nocifensive response on day 5. Somewhat surprisingly, nocifensive responses were again observed on day 10 post CFA stimulation in the absence of daily DORA-12 administration. Our results provide evidence that DORA-12 can inhibit CFA-induced stimulation of trigeminal sensory neurons by inhibiting expression of proteins associated with sensitization of peripheral and central

  6. Intracerebroventricular infusion of the (Pro)renin receptor antagonist PRO20 attenuates deoxycorticosterone acetate-salt-induced hypertension.

    Science.gov (United States)

    Li, Wencheng; Sullivan, Michelle N; Zhang, Sheng; Worker, Caleb J; Xiong, Zhenggang; Speth, Robert C; Feng, Yumei

    2015-02-01

    We previously reported that binding of prorenin to the (pro)renin receptor (PRR) plays a major role in brain angiotensin II formation and the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Here, we designed and developed an antagonistic peptide, PRO20, to block prorenin binding to the PRR. Fluorescently labeled PRO20 bound to both mouse and human brain tissues with dissociation constants of 4.4 and 1.8 nmol/L, respectively. This binding was blocked by coincubation with prorenin and was diminished in brains of neuron-specific PRR-knockout mice, indicating specificity of PRO20 for PRR. In cultured human neuroblastoma cells, PRO20 blocked prorenin-induced calcium influx in a concentration- and AT(1) receptor-dependent manner. Intracerebroventricular infusion of PRO20 dose-dependently inhibited prorenin-induced hypertension in C57Bl6/J mice. Furthermore, acute intracerebroventricular infusion of PRO20 reduced blood pressure in both DOCA-salt and genetically hypertensive mice. Chronic intracerebroventricular infusion of PRO20 attenuated the development of hypertension and the increase in brain hypothalamic angiotensin II levels induced by DOCA-salt. In addition, chronic intracerebroventricular infusion of PRO20 improved autonomic function and spontaneous baroreflex sensitivity in mice treated with DOCA-salt. In summary, PRO20 binds to both mouse and human PRRs and decreases angiotensin II formation and hypertension induced by either prorenin or DOCA-salt. Our findings highlight the value of the novel PRR antagonist, PRO20, as a lead compound for a novel class of antihypertensive agents and as a research tool to establish the validity of brain PRR antagonism as a strategy for treating hypertension. © 2014 American Heart Association, Inc.

  7. Intracerebroventricular Infusion of the (Pro)renin Receptor Antagonist PRO20 Attenuates Deoxycorticosterone Acetate-Salt–Induced Hypertension

    Science.gov (United States)

    Li, Wencheng; Sullivan, Michelle N.; Zhang, Sheng; Worker, Caleb J.; Xiong, Zhenggang; Speth, Robert C.; Feng, Yumei

    2016-01-01

    We previously reported that binding of prorenin to the (pro)renin receptor (PRR) plays a major role in brain angiotensin II formation and the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Here, we designed and developed an antagonistic peptide, PRO20, to block prorenin binding to the PRR. Fluorescently labeled PRO20 bound to both mouse and human brain tissues with dissociation constants of 4.4 and 1.8 nmol/L, respectively. This binding was blocked by coincubation with prorenin and was diminished in brains of neuron-specific PRR-knockout mice, indicating specificity of PRO20 for PRR. In cultured human neuroblastoma cells, PRO20 blocked prorenin-induced calcium influx in a concentration- and AT1 receptor–dependent manner. Intracerebroventricular infusion of PRO20 dose-dependently inhibited prorenin-induced hypertension in C57Bl6/J mice. Furthermore, acute intracerebroventricular infusion of PRO20 reduced blood pressure in both DOCA-salt and genetically hypertensive mice. Chronic intracerebroventricular infusion of PRO20 attenuated the development of hypertension and the increase in brain hypothalamic angiotensin II levels induced by DOCA-salt. In addition, chronic intracerebroventricular infusion of PRO20 improved autonomic function and spontaneous baroreflex sensitivity in mice treated with DOCA-salt. In summary, PRO20 binds to both mouse and human PRRs and decreases angiotensin II formation and hypertension induced by either prorenin or DOCA-salt. Our findings highlight the value of the novel PRR antagonist, PRO20, as a lead compound for a novel class of antihypertensive agents and as a research tool to establish the validity of brain PRR antagonism as a strategy for treating hypertension. PMID:25421983

  8. Pushing the threshold: how NMDAR antagonists induce homeostasis through protein synthesis to remedy depression

    Science.gov (United States)

    Raab-Graham, Kimberly F.; Workman, Emily R.; Namjoshi, Sanjeev; Niere, Farr

    2016-01-01

    Healthy neurons have an optimal operating range, coded globally by the frequency of action potentials or locally by calcium. The maintenance of this range is governed by homeostatic plasticity. Here, we discuss how new approaches to treat depression alter synaptic activity. These approaches induce the neuron to recruit homeostatic mechanisms to relieve depression. Homeostasis generally implies that the direction of activity necessary to restore the neuron’s critical operating range is opposite in direction to its current activity pattern. Unconventional antidepressant therapies deep brain stimulation and NMDAR antagonists alter the neuron’s “depressed” state by pushing the neuron’s current activity in the same direction but to the extreme edge. These therapies rally the intrinsic drive of neurons in the opposite direction, thereby allowing the cell to return to baseline activity, form new synapses, and restore proper communication. In this review, we discuss seminal studies on protein synthesis dependent homeostatic plasticity and their contribution to our understanding of molecular mechanisms underlying the effectiveness of NMDAR antagonists as rapid antidepressants. Rapid antidepressant efficacy is likely to require a cascade of mRNA translational regulation. Emerging evidence suggests that changes in synaptic strength or intrinsic excitability converge on the same protein synthesis pathways, relieving depressive symptoms. Thus, we address the question: Are there multiple homeostatic mechanisms that induce the neuron and neuronal circuits to self-correct to regulate mood in vivo? Targeting alternative ways to induce homeostatic protein synthesis may provide, faster, safer, and longer lasting antidepressants. PMID:27125595

  9. US -endorphin-(1-27) is a naturally occurring antagonist to etorphine-induced analgesia

    Energy Technology Data Exchange (ETDEWEB)

    Nicolas, P.; Li, C.H.

    1985-05-01

    The potent opioid peptide US -endorphin is found in the brain and pituitary with two related fragments, US -endorphin-(1-27) and US -endorphin-(1-26). The fragments, retain substantial opioid-receptor binding activity but are virtually inactive analgesically. US -Endorphin-(1-27) inhibits US -endorphin-induced and etorphine-induced analgesia when coinjected intracerebroventricularly into mice. Antagonism by competition at the same site(s) is suggested from parallel shifts of the dose-response curves of etorphine or US -endorphin in the presence of US -endorphin-(1-27). Its potency is 4-5 times greater than that of the opiate antagonist naloxone. US -Endorphin-(1-26) does not antagonize the antinociceptive action of etorphine or US -endorphin in doses up to 500 pmol per animal.

  10. Enhanced bradycardia induced by beta-adrenoceptor antagonists in rats pretreated with isoniazid.

    Science.gov (United States)

    Vidrio, H; Sánchez-Salvatori, M A; Medina, M

    1998-12-01

    High doses of isoniazid increase hypotension induced by vasodilators and change the accompanying reflex tachycardia to bradycardia, an interaction attributed to decreased synthesis of brain gamma-aminobutyric acid (GABA). In the present study, the possible enhancement by isoniazid of bradycardia induced by beta-adrenoceptor antagonists was determined in rats anaesthetised with chloralose-urethane. Isoniazid significantly increased bradycardia after propranolol, pindolol, labetalol and atenolol, as well as after clonidine, but not after hexamethonium or carbachol. Enhancement was not observed in rats pretreated with methylatropine or previously vagotomised. These results are compatible with interference by isoniazid with GABAergic inhibition of cardiac parasympathetic tone. Such interference could be exerted centrally, possibly at the nucleus ambiguus, or peripherally at the sinus node.

  11. Elevation of cytosolic calcium level triggers calcium antagonist-induced gingival overgrowth.

    Science.gov (United States)

    Hattori, Toshimi; Wang, Pao-Li

    2008-03-31

    Calcium (Ca2+) antagonists induce gingival overgrowth as a side effect but the pathogenic mechanism is still unknown. The Ca2+-channel activator Bay K 8644 elevates intracellular Ca2+ concentration ([Ca2+]i) and enhances the cell proliferation of gingival fibroblasts in a dose-dependent manner. Verapamil, an L-type Ca2+-channel blocker, also elevates [Ca2+]i in gingival fibroblasts, but it has no effect on other fibroblasts such as those of the lung, skin, and muscle. Moreover, verapamil enhances the proliferation of fibroblasts of the gingiva but has no effect on the proliferation of those of other tissues. These findings confirm that [Ca2+]i elevation induces the proliferation of gingival fibroblasts.

  12. The Dual Orexin Receptor Antagonist Almorexant Induces Sleep and Decreases Orexin-Induced Locomotion by Blocking Orexin 2 Receptors

    Science.gov (United States)

    Mang, Géraldine M.; Dürst, Thomas; Bürki, Hugo; Imobersteg, Stefan; Abramowski, Dorothee; Schuepbach, Edi; Hoyer, Daniel; Fendt, Markus; Gee, Christine E.

    2012-01-01

    Study Objectives: Orexin peptides activate orexin 1 and orexin 2 receptors (OX1R and OX2R), regulate locomotion and sleep-wake. The dual OX1R/OX2R antagonist almorexant reduces activity and promotes sleep in multiple species, including man. The relative contributions of the two receptors in locomotion and sleep/wake regulation were investigated in mice. Design: Mice lacking orexin receptors were used to determine the contribution of OX1R and OX2R to orexin A-induced locomotion and to almorexant-induced sleep. Setting: N/A. Patients or Participants: C57BL/6J mice and OX1R+/+, OX1R-/-, OX2R+/+, OX2R-/- and OX1R-/-/OX2R-/- mice. Interventions: Intracerebroventricular orexin A; oral dosing of almorexant. Measurements and Results: Almorexant attenuated orexin A-induced locomotion. As in other species, almorexant dose-dependently increased rapid eye movement sleep (REM) and nonREM sleep in mice. Almorexant and orexin A were ineffective in OX1R-/-/OX2R-/- mice. Both orexin A-induced locomotion and sleep induction by almorexant were absent in OX2R-/- mice. Interestingly, almorexant did not induce cataplexy in wild-type mice under conditions where cataplexy was seen in mice lacking orexins and in OX1R-/-/OX2R-/- mice. Almorexant dissociates very slowly from OX2R as measured functionally and in radioligand binding. Under non equilibrium conditions in vitro, almorexant was a dual antagonist whereas at equilibrium, almorexant became OX2R selective. Conclusions: In vivo, almorexant specifically inhibits the actions of orexin A. The two known orexin receptors mediate sleep induction by almorexant and orexin A-induced locomotion. However, OX2R activation mediates locomotion induction by orexin A and antagonism of OX2R is sufficient to promote sleep in mice. Citation: Mang GM; Dürst T; Bürki H; Imobersteg S; Abramowski D; Schuepbach E; Hoyer D; Fendt M; Gee CE. The dual orexin receptor antagonist almorexant induces sleep and decreases orexin-induced locomotion by blocking orexin

  13. Effect of the CRF1-receptor antagonist pexacerfont on stress-induced eating and food craving.

    Science.gov (United States)

    Epstein, David H; Kennedy, Ashley P; Furnari, Melody; Heilig, Markus; Shaham, Yavin; Phillips, Karran A; Preston, Kenzie L

    2016-12-01

    In rodents, antagonism of receptors for corticotropin-releasing factor (CRF) blocks stress-induced reinstatement of drug or palatable food seeking. To test anticraving properties of the CRF 1 antagonist pexacerfont in humans. We studied stress-induced eating in people scoring high on dietary restraint (food preoccupation and chronic unsuccessful dieting) with body-mass index (BMI) >22. In a double-blind, between-groups trial, 31 "restrained" eaters were stabilized on either pexacerfont (300 mg/day for 7 days, then 100 mg/day for 21 days) or placebo. On day 15, they underwent a math-test stressor; during three subsequent visits, they heard personalized craving-induction scripts. In each session, stress-induced food consumption and craving were assessed in a bogus taste test and on visual analog scales. We used digital video to monitor daily ingestion of study capsules and nightly rating of food problems/preoccupation on the Yale Food Addiction Scale (YFAS). The study was stopped early due to an administrative interpretation of US federal law, unrelated to safety or outcome. The bogus taste tests suggested some protective effect of pexacerfont against eating after a laboratory stressor (r effect  = 0.30, 95 % CL = -0.12, 0.63, Bayes factor 11.30). Similarly, nightly YFAS ratings were lower with pexacerfont than placebo (r effect  = 0.39, CI 0.03, 0.66), but this effect should be interpreted with caution because it was present from the first night of pill ingestion, despite pexacerfont's slow pharmacokinetics. The findings may support further investigation of the anticraving properties of CRF 1 antagonists, especially for food.

  14. Intra-ventral pallidal glutamate antagonists block expression of morphine-induced place preference.

    Science.gov (United States)

    Dallimore, Jeanine E; Mickiewicz, Amanda L; Napier, T Celeste

    2006-10-01

    The role of ionotropic glutamate receptors within the ventral pallidum (VP) in the expression of conditioned place preference (CPP) and motor adaptations to morphine was evaluated. VP-cannulated rats were subjected to 3 days of conditioning in which saline was paired to one distinct chamber in the morning and morphine (8 mg/kg ip or its vehicle) was paired to an alternate chamber in the afternoon. This induced (a) CPP expression in drug-free rats 1 day later, which was blocked by immediate pretreatments with intra-VP injections of a glutamate antagonist cocktail (DL-2-amino-5- phosphonopentanoic acid lithium salt [AP-5] + 6-cyano-7-nitroquinoxaline-2,3-dione disodium salt [CNQX]), and (b) changes in motor function expressed following an acute morphine challenge 18 days later, which were absent if preceded by a 10-day treatment with the glutamate antagonists injected unilaterally once daily in alternating hemispheres. Thus, VP ionotropic glutamate receptors are critical mediators of the expression of place preference and motor adaptations subsequent to repeated morphine exposure.

  15. Does airborne nickel exposure induce nickel sensitization?

    Science.gov (United States)

    Mann, Eugen; Ranft, Ulrich; Eberwein, Georg; Gladtke, Dieter; Sugiri, Dorothee; Behrendt, Heidrun; Ring, Johannes; Schäfer, Torsten; Begerow, Jutta; Wittsiepe, Jürgen; Krämer, Ursula; Wilhelm, Michael

    2010-06-01

    Nickel is one of the most prevalent causes of contact allergy in the general population. This study focuses on human exposure to airborne nickel and its potential to induce allergic sensitization. The study group consisted of 309 children at school-starter age living in the West of Germany in the vicinity of two industrial sources and in a rural town without nearby point sources of nickel. An exposure assessment of nickel in ambient air was available for children in the Ruhr district using routinely monitored ambient air quality data and dispersion modelling. Internal nickel exposure was assessed by nickel concentrations in morning urine samples of the children. The observed nickel sensitization prevalence rates varied between 12.6% and 30.7%. Statistically significant associations were showed between exposure to nickel in ambient air and urinary nickel concentration as well as between urinary nickel concentration and nickel sensitization. Furthermore, an elevated prevalence of nickel sensitization was associated with exposure to increased nickel concentrations in ambient air. The observed associations support the assumption that inhaled nickel in ambient air might be a risk factor for nickel sensitization; further studies in larger collectives are necessary.

  16. Induction of the Wnt antagonist Dickkopf-1 is involved in stress-induced hippocampal damage.

    Directory of Open Access Journals (Sweden)

    Francesco Matrisciano

    Full Text Available The identification of mechanisms that mediate stress-induced hippocampal damage may shed new light into the pathophysiology of depressive disorders and provide new targets for therapeutic intervention. We focused on the secreted glycoprotein Dickkopf-1 (Dkk-1, an inhibitor of the canonical Wnt pathway, involved in neurodegeneration. Mice exposed to mild restraint stress showed increased hippocampal levels of Dkk-1 and reduced expression of β-catenin, an intracellular protein positively regulated by the canonical Wnt signalling pathway. In adrenalectomized mice, Dkk-1 was induced by corticosterone injection, but not by exposure to stress. Corticosterone also induced Dkk-1 in mouse organotypic hippocampal cultures and primary cultures of hippocampal neurons and, at least in the latter model, the action of corticosterone was reversed by the type-2 glucocorticoid receptor antagonist mifepristone. To examine whether induction of Dkk-1 was causally related to stress-induced hippocampal damage, we used doubleridge mice, which are characterized by a defective induction of Dkk-1. As compared to control mice, doubleridge mice showed a paradoxical increase in basal hippocampal Dkk-1 levels, but no Dkk-1 induction in response to stress. In contrast, stress reduced Dkk-1 levels in doubleridge mice. In control mice, chronic stress induced a reduction in hippocampal volume associated with neuronal loss and dendritic atrophy in the CA1 region, and a reduced neurogenesis in the dentate gyrus. Doubleridge mice were resistant to the detrimental effect of chronic stress and, instead, responded to stress with increases in dendritic arborisation and neurogenesis. Thus, the outcome of chronic stress was tightly related to changes in Dkk-1 expression in the hippocampus. These data indicate that induction of Dkk-1 is causally related to stress-induced hippocampal damage and provide the first evidence that Dkk-1 expression is regulated by corticosteroids in the central

  17. Increased HIV-1 sensitivity to neutralizing antibodies by mutations in the Env V3-coding region for resistance to CXCR4 antagonists.

    Science.gov (United States)

    Hikichi, Yuta; Yokoyama, Masaru; Takemura, Taichiro; Fujino, Masayuki; Kumakura, Sei; Maeda, Yosuke; Yamamoto, Naoki; Sato, Hironori; Matano, Tetsuro; Murakami, Tsutomu

    2016-09-01

    HIV-1 passage in cell culture in the presence of chemokine receptor antagonists can result in selection of viruses with env mutations that confer resistance to these inhibitors. In the present study, we examined the effect of HIV-1env mutations that confer resistance to CXCR4 antagonists on envelope (Env) sensitivity to neutralizing antibodies (NAbs). Serial passage of CXCR4-tropic HIV-1 NL4-3 in PM1/CCR5 cells under CXCR4 antagonists KRH-3955, AMD3100 and AMD070 yielded two KRH-3955-resistant, one AMD3100-resistant and one AMD070-resistant viruses. These viruses had multiple env mutations including the Env gp120 V3 region. The majority of viruses having these CXCR4 antagonist-resistant Envs showed higher sensitivity to NAbs 447-52D, b12 and 2F5 targeting the V3 region, the gp120 CD4-binding site and the gp41 membrane proximal region, respectively, compared to NL4-3 WT virus. Recombinant NL4-3 viruses with the V3-coding region replaced with those derived from the CXCR4 antagonist-resistant viruses showed increased sensitivity to NAbs b12, 2F5 and 447-52D. Molecular dynamics simulations of Env gp120 outer domains predicted that the V3 mutations increased levels of fluctuations at the tip and stem of the V3 loop. These results indicate that mutations in the V3-coding region that result in loss of viral sensitivity to CXCR4 antagonists increase viral sensitivity to NAbs, providing insights into our understanding of the interplay of viral Env accessibility to chemokine receptors and sensitivity to NAbs.

  18. Inhibition of common cold-induced aggravation of childhood asthma by leukotriene receptor antagonists.

    Science.gov (United States)

    Yoshihara, Shigemi; Fukuda, Hironobu; Abe, Toshio; Nishida, Mitsuhiro; Yamada, Yumi; Kanno, Noriko; Arisaka, Osamu

    2012-09-01

    Virus infection is an important risk factor for aggravation of childhood asthma. The objective of this study was to examine the effect of drugs on aggravation of asthma induced by a common cold. Asthma control was examined in a survey of 1,014 Japanese pediatric patients with bronchial asthma. The occurrence of common cold, asthma control, and drugs used for asthma control were investigated using a modified Childhood Asthma Control Test (C-ACT) for patients aged cold and aggravation of asthma were significantly higher in patients aged cold-induced aggravation was significantly less effective in patients aged cold, asthma control was significantly more effective for those treated with leukotriene receptor antagonists (LTRAs) compared to treatment without LTRAs. Asthma control did not differ between patients who did or did not take inhaled corticosteroids or long-acting β2 stimulants. These findings showed a high prevalence of common cold in younger patients with childhood asthma and indicated that common cold can induce aggravation of asthma. LTRAs are useful for long-term asthma control in very young patients who develop an asthma attack due to a common cold.

  19. NPS 2143, a selective calcium-sensing receptor antagonist inhibits lipopolysaccharide-induced pulmonary inflammation.

    Science.gov (United States)

    Lee, Jae-Won; Park, Hyun Ah; Kwon, Ok-Kyoung; Park, Ji-Won; Lee, Gilhye; Lee, Hee Jae; Lee, Seung Jin; Oh, Sei-Ryang; Ahn, Kyung-Seop

    2017-10-01

    NPS 2143, a novel and selective antagonist of calcium-sensing receptor (CaSR) has been reported to possess anti-inflammatory activity. In the present study, we examined the protective effect of NPS 2143 on lipopolysaccharide (LPS)-induced acute lung injury (ALI). NPS 2143 pretreatment significantly inhibited the influx of inflammatory cells and the expression of monocyte chemoattractant protein-1 (MCP-1) in the lung of mice with LPS-induced ALI. NPS 2143 decreased the levels of neutrophil elastase (NE) and protein concentration in the bronchoalveolar lavage fluid (BALF). NPS 2143 also reduced the production of inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the BALF and serum. In addition, NPS 2143 attenuated the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and increased the activation of AMP-activated protein kinase (AMPK) in the lung. NPS 2143 also downregulated the activation of nuclear factor-kappa B (NF-κB) in the lung. In LPS-stimulated H292 airway epithelial cells, NPS 2143 attenuated the releases of IL-6 and MCP-1. Furthermore, NPS 2143 upregulated the activation of AMPK and downregulated the activation of NF-κB. These results suggest that NPS 2143 could be potential agent for the treatment of inflammatory diseases including ALI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Definition of critical periods for Hedgehog pathway antagonist-induced holoprosencephaly, cleft lip, and cleft palate.

    Directory of Open Access Journals (Sweden)

    Galen W Heyne

    Full Text Available The Hedgehog (Hh signaling pathway mediates multiple spatiotemporally-specific aspects of brain and face development. Genetic and chemical disruptions of the pathway are known to result in an array of structural malformations, including holoprosencephaly (HPE, clefts of the lip with or without cleft palate (CL/P, and clefts of the secondary palate only (CPO. Here, we examined patterns of dysmorphology caused by acute, stage-specific Hh signaling inhibition. Timed-pregnant wildtype C57BL/6J mice were administered a single dose of the potent pathway antagonist vismodegib at discrete time points between gestational day (GD 7.0 and 10.0, an interval approximately corresponding to the 15th to 24th days of human gestation. The resultant pattern of facial and brain dysmorphology was dependent upon stage of exposure. Insult between GD7.0 and GD8.25 resulted in HPE, with peak incidence following exposure at GD7.5. Unilateral clefts of the lip extending into the primary palate were also observed, with peak incidence following exposure at GD8.875. Insult between GD9.0 and GD10.0 resulted in CPO and forelimb abnormalities. We have previously demonstrated that Hh antagonist-induced cleft lip results from deficiency of the medial nasal process and show here that CPO is associated with reduced growth of the maxillary-derived palatal shelves. By defining the critical periods for the induction of HPE, CL/P, and CPO with fine temporal resolution, these results provide a mechanism by which Hh pathway disruption can result in "non-syndromic" orofacial clefting, or HPE with or without co-occurring clefts. This study also establishes a novel and tractable mouse model of human craniofacial malformations using a single dose of a commercially available and pathway-specific drug.

  1. The Histamine H3 Receptor Antagonist DL77 Ameliorates MK801-Induced Memory Deficits in Rats

    Directory of Open Access Journals (Sweden)

    Nermin Eissa

    2018-02-01

    Full Text Available The role of Histamine H3 receptors (H3Rs in memory, and the prospective of H3R antagonists in pharmacological control of neurodegenerative disorders, e.g., Alzheimer disease (AD is well-accepted. For that reason, the procognitive effects of the H3R antagonist DL77 on cognitive impairments induced with MK801 were tested in an inhibitory passive avoidance paradigm (PAP and novel object recognition (NOR task in adult male rats, using donepezil (DOZ as a standard drug. Acute systemic pretreatment with DL77 (2.5, 5, and 10 mg/kg, i.p. significantly ameliorated memory deficits induced with MK801 in PAP (all P < 0.05, n = 7. The ameliorative effect of most promising dose of DL77 (5 mg/kg, i.p. was reversed when rats were co-injected with the H3R agonist R-(α-methylhistamine (RAMH, 10 mg/kg, i.p. (p = 0.701 for MK801-amnesic group vs. MK801+DL77+RAMH group, n = 6. In the NOR paradigm, DL77 (5 mg/kg, i.p. counteracted long-term memory (LTM deficits induced with MK801 (P < 0.05, n = 6–8, and the DL77-provided effect was similar to that of DOZ (p = 0.788, n = 6–8, and was reversed when rats were co-injected with RAMH (10 mg/kg, i.p. (p = 0.877, n = 6, as compared to the (MK801-amnesic group. However, DL77 (5 mg/kg, i.p. did not alter short-term memory (STM impairment in NOR test (p = 0.772, n = 6–8, as compared to (MK801-amnesic group. Moreover, DL77 (5 mg/kg failed to modify anxiety and locomotor behaviors of animals innate to elevated-plus maze (EPM (p = 0.67 for percentage of time spent exploring the open arms, p = 0.52 for number of entries into the open arms, p = 0.76 for percentage of entries into the open arms, and p = 0.73 number of closed arm entries as compared to saline-treated groups, all n = 6, demonstrating that the procognitive effects observed in PAP or NOR tests were unconnected to alterations in emotions or in natural locomotion of tested animals. These results signify the potential involvement of H3Rs in modulating

  2. Interleukin-1 receptor antagonist protects against lipopolysaccharide induced diaphragm weakness in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Kanakeswary Karisnan

    Full Text Available Chorioamnionitis (inflammation of the fetal membranes is strongly associated with preterm birth and in utero exposure to inflammation significantly impairs contractile function in the preterm lamb diaphragm. The fetal inflammatory response to intra-amniotic (IA lipopolysaccharide (LPS is orchestrated via interleukin 1 (IL-1. We aimed to determine if LPS induced contractile dysfunction in the preterm diaphragm is mediated via the IL-1 pathway. Pregnant ewes received IA injections of recombinant human IL-1 receptor antagonist (rhIL-1ra (Anakinra; 100 mg or saline (Sal 3 h prior to second IA injections of LPS (4 mg or Sal at 119d gestational age (GA. Preterm lambs were killed after delivery at 121d GA (term = 150 d. Muscle fibres dissected from the right hemi-diaphragm were mounted in an in vitro muscle test system for assessment of contractile function. The left hemi-diaphragm was snap frozen for molecular and biochemical analyses. Maximum specific force in lambs exposed to IA LPS (Sal/LPS group was 25% lower than in control lambs (Sal/Sal group; p=0.025. LPS-induced diaphragm weakness was associated with higher plasma IL-6 protein, diaphragm IL-1β mRNA and oxidised glutathione levels. Pre-treatment with rhIL-1ra (rhIL-1ra/LPS ameliorated the LPS-induced diaphragm weakness and blocked systemic and local inflammatory responses, but did not prevent the rise in oxidised glutathione. These findings indicate that LPS induced diaphragm dysfunction is mediated via IL-1 and occurs independently of oxidative stress. Therefore, the IL-1 pathway represents a potential therapeutic target in the management of impaired diaphragm function in preterm infants.

  3. Amelioration of cold injury-induced cortical brain edema formation by selective endothelin ETB receptor antagonists in mice.

    Science.gov (United States)

    Michinaga, Shotaro; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Koyama, Yutaka

    2014-01-01

    Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs) are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice). Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV) administration of BQ788 (ETB antagonist), IRL-2500 (ETB antagonist), or FR139317 (ETA antagonist) prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults.

  4. Anti-obesity effects of the combined administration of CB1 receptor antagonist rimonabant and melanin-concentrating hormone antagonist SNAP-94847 in diet-induced obese mice.

    Science.gov (United States)

    Verty, A N A; Lockie, S H; Stefanidis, A; Oldfield, B J

    2013-02-01

    Current anti-obesity monotherapies have proven only marginally effective and are often accompanied by adverse side effects. The cannabinoid 1 (CB1) receptor antagonist rimonabant, while effective at producing weight loss, has been discontinued from clinical use owing to increased incidence of depression. This study investigates the interaction between the cannabinoid and melanin-concentrating hormone (MCH) systems in food intake, body weight control, and mood. Lean male C57BL/6 mice were injected i.p. with rimonabant (0.0, 0.03, 0.3 and 3.0 mg kg(-1)) or the MCH1-R antagonist SNAP-94847 (0.0, 1.0, 5.0 and 10.0 mg kg(-1)) to establish dose response parameters for each drug. Diet-induced obese (DIO) mice were given either vehicle, sub-threshold dose of rimonabant and SNAP-94847 alone or in combination. Impact on behavioral outcomes, food intake, body weight, plasma metabolites and expression of key metabolic proteins in the brown adipose tissue (BAT) and white adipose tissue (WAT) were measured. The high doses of rimonabant and SNAP-94847 produced a reduction in food intake after 2 and 24 h. Combining sub-threshold doses of rimonabant and SNAP-94847 produced a significantly greater loss of body weight in DIO mice compared with vehicle and monotherapies. In addition, combining sub effective doses of these drugs led to a shift in markers of thermogenesis in BAT and lipid metabolism in WAT consistent with increased energy expenditure and lipolysis. Furthermore, co-administration of rimonabant and SNAP-94847 produced a transient reduction in food intake, and significantly reduced fat mass and adipocyte size. Importantly, SNAP-94847 significantly attenuated the ability of rimonabant to reduced immobility time in the forced swim test. These results provide proof of principle that combination of rimonabant and a MCH1 receptor antagonist is highly effective in reducing body weight below that achieved by rimonabant and SNAP-94847 monotherapies. In addition, the

  5. From the Cover: Glutamate antagonists limit tumor growth

    Science.gov (United States)

    Rzeski, Wojciech; Turski, Lechoslaw; Ikonomidou, Chrysanthy

    2001-05-01

    Neuronal progenitors and tumor cells possess propensity to proliferate and to migrate. Glutamate regulates proliferation and migration of neurons during development, but it is not known whether it influences proliferation and migration of tumor cells. We demonstrate that glutamate antagonists inhibit proliferation of human tumor cells. Colon adenocarcinoma, astrocytoma, and breast and lung carcinoma cells were most sensitive to the antiproliferative effect of the N-methyl-D-aspartate antagonist dizocilpine, whereas breast and lung carcinoma, colon adenocarcinoma, and neuroblastoma cells responded most favorably to the -amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonist GYKI52466. The antiproliferative effect of glutamate antagonists was Ca2+ dependent and resulted from decreased cell division and increased cell death. Morphological alterations induced by glutamate antagonists in tumor cells consisted of reduced membrane ruffling and pseudopodial protrusions. Furthermore, glutamate antagonists decreased motility and invasive growth of tumor cells. These findings suggest anticancer potential of glutamate antagonists.

  6. The depressor response to intracerebroventricular hypotonic saline is sensitive to TRPV4 antagonist RN1734

    Directory of Open Access Journals (Sweden)

    Claire H Feetham

    2015-04-01

    Full Text Available Several reports have shown that the periventricular region of the brain, including the paraventricular nucleus (PVN, is critical to sensing and responding to changes in plasma osmolality. Further studies also implicate the transient receptor potential ion channel, type V4 (TRPV4 channel in this homeostatic behaviour. In previous work we have shown that TRPV4 ion channels couple to calcium-activated potassium channels in the PVN to decrease action potential firing frequency in response to hypotonicity. In the present study we investigated whether, similarly, intracerebroventricular (ICV application of hypotonic solutions modulated cardiovascular parameters, and if so whether this was sensitive to a TRPV4 channel inhibitor. We found that ICV injection of 270mOsmol artificial cerebrospinal fluid (ACSF decreased mean blood pressure, but not heart rate, compared to naïve mice or mice injected with 300mOsmol ACSF. This effect was abolished by treatment with the TRPV4 inhibitor RN1734. These data suggest that periventricular targets within the brain are capable of generating depressor action in response to TRPV4 ion channel activation. Potentially, in the future, the TRPV4 channel, or the TRPV4–KCa coupling mechanism, may serve as a therapeutic target for treatment of cardiovascular disease.

  7. Mirtazapine prevents induction and expression of cocaine-induced behavioral sensitization in rats.

    Science.gov (United States)

    Salazar-Juárez, Alberto; Barbosa-Méndez, Susana; Jurado, Noe; Hernández-Miramontes, Ricardo; Leff, Philippe; Antón, Benito

    2016-07-04

    Cocaine abuse is a major health problem worldwide. Treatment based on both 5-HT2A/C and 5-HT3 receptor antagonists attenuate not only the effects of cocaine abuse but also the incentive/motivational effect related to cocaine-paired cues. Mirtazapine, an antagonist of postsynaptic α2-adrenergic, 5-HT2A/C and 5HT3 receptors and inverse agonist of the 5-HT2C receptor, has been shown to effectively modify, at the preclinical and clinical levels, various behavioral alterations induced by drugs abuse. Therefore, it is important to assess whether chronic dosing of mirtazapine alters locomotor effects of cocaine as well as induction and expression of cocaine sensitization. Our results reveal that a daily mirtazapine regimen administered for 30days effectively induces a significant attenuation of cocaine-dependent locomotor activity and as well as the induction and expression of behavioral sensitization. These results suggest that mirtazapine may be used as a potentially effective therapy to attenuate induction and expression of cocaine-induced locomotor sensitization. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Changes in antagonistic activity of lactic acid bacteria induced by their response to technological factors

    Directory of Open Access Journals (Sweden)

    Dovile Jonkuviene

    2015-12-01

    Full Text Available This study examined the changes in antagonistic activity of selected lactic acid bacteria (LAB in response to technological factors used in food production. The antimicrobial activity of 12 selected LAB strains was assessed against the bacterial and fungal strains using the agar well diffusion method. Sodium chloride (NaCl 6.5–8.0%, glucose 20-30% and pH 4.0, pH 8.0 and higher were the most crucial factors in reducing the spectra of the microorganisms antagonized. Heating at 80 °C or 100 °C had a greater negative impact than 63 °C on the antifungal activity of LAB. Freezing at –72 °C eliminated the antifungal activity, or it changed from fungicidal to fungistatic. Although each LAB demonstrated the ability to retain antimicrobial activity induced by various technological factors, Lactococcus lactis 768/5 was superior in retaining high antimicrobial activity against tested indicator strains.

  9. Drinking sucrose or saccharin enhances sensitivity of rats to quinpirole-induced yawning.

    Science.gov (United States)

    Serafine, Katherine M; Bentley, Todd A; Kilborn, Dylan J; Koek, Wouter; France, Charles P

    2015-10-05

    Diet can impact sensitivity of rats to some of the behavioral effects of drugs acting on dopamine systems. The current study tested whether continuous access to sucrose is necessary to increase yawning induced by the dopamine receptor agonist quinpirole, or if intermittent access is sufficient. These studies also tested whether sensitivity to quinpirole-induced yawning increases in rats drinking the non-caloric sweetener saccharin. Dose-response curves (0.0032-0.32 mg/kg) for quinpirole-induced yawning were determined once weekly in rats with free access to standard chow and either continuous access to water, 10% sucrose solution, or 0.1% saccharin solution, or intermittent access to sucrose or saccharin (i.e., 2 days per week with access to water on other days). Cumulative doses of quinpirole increased then decreased yawning, resulting in an inverted U-shaped dose-response curve. Continuous or intermittent access to sucrose enhanced sensitivity to quinpirole-induced yawning. Continuous, but not intermittent, access to saccharin also enhanced sensitivity to quinpirole-induced yawning. In all groups, pretreatment with the selective D3 receptor antagonist PG01037 shifted the ascending limb of the quinpirole dose-response curve to the right, while pretreatment with the selective D2 receptor antagonist L-741,626 shifted the descending limb to the right. These results suggest that even intermittent consumption of diets containing highly palatable substances (e.g. sucrose) alters sensitivity to drugs acting on dopamine systems in a manner that could be important in vulnerability to abuse drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Exercise-induced bronchoconstriction: The effects of montelukast, a leukotriene receptor antagonist

    Directory of Open Access Journals (Sweden)

    James P Kemp

    2009-11-01

    Full Text Available James P KempClinical Professor of Pediatrics, Division of Immunology and Allergy, University of California School of Medicine, San Diego, CA, USAAbstract: Exercise-induced bronchoconstriction (EIB is very common in both patients with asthma and those who are otherwise thought to be normal. The intensity of exercise as well as the type of exercise is important in producing symptoms. This may make some types of exercise such as swimming more suitable and extended running more difficult for patients with this condition. A better understanding of EIB will allow the physician to direct the patient towards a type of exercise and medications that can result in a more active lifestyle without the same concern for resulting symptoms. This is especially important for schoolchildren who are usually enrolled in physical education classes and elite athletes who may desire to participate in competitive sports. Fortunately several medications (short- and long-acting β2-agonists, cromolyn, nedocromil, inhaled corticosteroids, and more recently leukotriene modifiers have been shown to be effective in preventing or attenuating the effects of exercise in many patients. In addition, inhaled β2-agonists have been shown to quickly reverse the airway obstruction that develops in patients and continue to be the reliever medications of choice. Inhaled corticosteroids are increasingly being recommended as regular therapy now that the role of inflammation and airway injury has been identified in EIB. With the discovery that there is a release of mediators such as histamine and leukotrienes from cells in the airway following exercise with resulting airway obstruction in susceptible individuals, interest has turned to attenuating their effects with mediator antagonists especially those that block the effects of leukotrienes. Studies with an oral leukotriene antagonist, montelukast, have shown beneficial effects in adults and children aged as young as 6 years with EIB

  11. Development of a peptidomimetic antagonist of neuropeptide FF receptors for the prevention of opioid-induced hyperalgesia.

    Science.gov (United States)

    Bihel, Frédéric; Humbert, Jean-Paul; Schneider, Séverine; Bertin, Isabelle; Wagner, Patrick; Schmitt, Martine; Laboureyras, Emilie; Petit-Demoulière, Benoît; Schneider, Elodie; Mollereau, Catherine; Simonnet, Guy; Simonin, Frédéric; Bourguignon, Jean-Jacques

    2015-03-18

    Through the development of a new class of unnatural ornithine derivatives as bioisosteres of arginine, we have designed an orally active peptidomimetic antagonist of neuropeptide FF receptors (NPFFR). Systemic low-dose administration of this compound to rats blocked opioid-induced hyperalgesia, without any apparent side-effects. Interestingly, we also observed that this compound potentiated opioid-induced analgesia. This unnatural ornithine derivative provides a novel therapeutic approach for both improving analgesia and reducing hyperalgesia induced by opioids in patients being treated for chronic pain.

  12. Prevention of chemotherapy-induced nausea: the role of neurokinin-1 (NK1) receptor antagonists.

    Science.gov (United States)

    Bošnjak, Snežana M; Gralla, Richard J; Schwartzberg, Lee

    2017-05-01

    Chemotherapy-induced nausea (CIN) has a significant negative impact on the quality of life of cancer patients. The use of 5-hydroxytryptamine-3 (5-HT 3 ) receptor antagonists (RAs) has reduced the risk of vomiting, but (except for palonosetron) their effect on nausea, especially delayed nausea, is limited. This article reviews the role of NK 1 RAs when combined with 5-HT 3 RA-dexamethasone in CIN prophylaxis. Aprepitant has not shown consistent superiority over a two-drug (ondansetron-dexamethasone) combination in nausea control after cisplatin- or anthracycline-cyclophosphamide (AC)-based highly emetogenic chemotherapy (HEC). Recently, dexamethasone and dexamethasone-metoclopramide were demonstrated to be non-inferior to aprepitant and aprepitant-dexamethasone, respectively, for the control of delayed nausea after HEC (AC/cisplatin), and are now recognized in the guidelines. The potential impact of the new NK 1 RAs rolapitant and netupitant (oral fixed combination with palonosetron, as NEPA) in CIN prophylaxis is discussed. While the clinical significance of the effect on nausea of the rolapitant-granisetron-dexamethasone combination after cisplatin is not conclusive, rolapitant addition showed no improvement in nausea prophylaxis after AC or moderately emetogenic chemotherapy (MEC). NEPA was superior to palonosetron in the control of nausea after HEC (AC/cisplatin). Moreover, the efficacy of NEPA in nausea control was maintained over multiple cycles of HEC/MEC. Recently, NK 1 RAs have been challenged by olanzapine, with olanzapine showing superior efficacy in nausea prevention after HEC. Fixed antiemetic combinations (such as NEPA) or new antiemetics with a long half-life that may be given once per chemotherapy cycle (rolapitant or NEPA) may improve patient compliance with antiemetic treatment.

  13. The functional antagonist Met-RANTES: a modified agonist that induces differential CCR5 trafficking.

    Science.gov (United States)

    Kiss, Debra L; Longden, James; Fechner, Gregory A; Avery, Vicky M

    2009-01-01

    CC chemokine receptor 5 (CCR5) is a pro-inflammatory chemokine receptor that is expressed on cells of the immune system, and specializes in cell migration in response to inflammation and tissue damage. Due to its key role in cell communication and migration, this receptor is involved in various inflammatory and autoimmune diseases, in addition to HIV infection. Met-RANTES is a modified CCR5 ligand that has previously been shown to antagonize CCR5 activation and function in response to its natural ligands in vitro. In vivo, Met-RANTES is able to reduce inflammation in models of induced inflammatory and autoimmune diseases. However, due to the fact that Met-RANTES is also capable of partial agonist activity regarding receptor signaling and internalization, it is clear that Met-RANTES does not function as a conventional receptor antagonist. To further elucidate the effect of Met-RANTES on CCR5, receptor trafficking was investigated in a CHO-CCR5-GFP cell line using the Opera confocal plate reader. The internalization response of CCR5 was quantified, and showed that Met-RANTES internalized CCR5 in a slower, less potent manner than the agonists CCL3 and CCL5. Fluorescent organelle labeling and live cell imaging showed CCL3 and CCL5 caused CCR5 to traffic through sorting endosomes, recycling endosomes and the Golgi apparatus. In contrast, Met-RANTES caused CCR5 to traffic through sorting endosomes and the Golgi apparatus in a manner that was independent of recycling endosomes. As receptor trafficking impacts on cell surface expression and the ability of the receptor to respond to more ligand, this information may indicate an alternative regulation of CCR5 by Met-RANTES that allows the modified ligand to reduce inflammation through stimulation of a pro-inflammatory receptor.

  14. Dantrolene: A Selective Ryanodine Receptor Antagonist, Protects Against Pentylenetetrazole-Induced Seizure in Mice

    Directory of Open Access Journals (Sweden)

    Mojtaba Keshavarz

    2016-10-01

    Full Text Available Ryanodine receptor abnormalities has implicated in the generation and maintenance of seizure. Dantrolene, a selective ryanodine receptor antagonist, may be a potential drug for the prevention of seizure. Therefore, we aimed to clarify the protective effects of dantrolene against pentylenetetrazole seizure in mice. Male albino mice were received an intra-peritoneal injection of pentylenetetrazole (80 mg/kg in seven separate groups (n=8. We used dantrolene (10,20 and 40 mg/kg, caffeine (200 mg/kg, dantrolene (40 mg/kg + caffeine (200 mg/kg, diazepam (5 mg/kg as a positive control and vehicle 30 minutes before the injection of pentylenetetrazole. Then, we registered the latency time of the first seizure, the severity of seizures and the incidence of seizure and death. Kruskal-Wallis test followed by Mann-Whitney and Fisher’s exact test were used to analyze the data. Dantrolene (10,20 and 40 mg/kg significantly increased the latency time for the first seizure. Furthermore, dantrolene (20 and 40 mg/kg, but not 10 mg/kg attenuated the severity of seizures in comparison to the vehicle group. Moreover, dantrolene only at the dose of 40 mg/kg prevented from tonic-clonic seizure and death in comparison to the vehicle group. In contrast, the addition of caffeine abolished the protective effects of dantrolene on the tonic-clonic seizure/death and inhibited the beneficial effects of dantrolene on the severity of pentylenetetrazol seizures. The acute dantrolene administration produced an anticonvulsant effect in the pentylenetetrazole-induced seizure. Moreover, caffeine prevented from dantrolene anticonvulsant effects. These results may imply about ryanodine receptors and intracellular calcium roles in the generation and control of pentylenetetrazole seizure.

  15. Effect of the endothelin receptor antagonist tezosentan on alpha-naphthylthiourea-induced lung injury in rats

    Directory of Open Access Journals (Sweden)

    Figen Atalay

    2012-02-01

    Full Text Available Acute lung injury is an inflammatory syndrome that increases the permeability of the blood-gas barrier, resulting in high morbidity and mortality. Despite intensive research, treatment options remain limited. We investigated the protective efficacy of tezosentan, a novel, dual endothelin receptor antagonist, in an experimental model of alpha-naphthylthiourea (ANTU-induced acute lung injury in rats. ANTU was intraperitoneally (i.p. injected into rats at a dose of 10 mg/kg. Tezosentan was injected 30 minutes before ANTU was subcutaneously (s.c. injected at doses of 2, 10, or 30 mg/kg, 60 minutes before ANTU was injected at doses of 2, 10, or 30 mg/kg (i.p., and 90 minutes before ANTU at a dose of 10 mg/kg (i.p.. Four hours later, the lung weight/body weight (LW/BW ratio and pleural effusion (PE were measured. When injected 30 minutes before ANTU at doses of 2, 10, or 30 mg/kg (s.c., tezosentan had no effect on lung pathology. When injected 60 minutes before ANTU at doses of 2, 10, or 30 mg/kg (i.p. or 90 minutes before ANTU (10 mg/kg, i.p., tezosentan significantly decreased the PE/BW ratio and had a prophylactic effect on PE formation at all doses. Therefore, tezosentan may attenuate lung injury. Furthermore, its acute and inhibitory effects on fluid accumulation were more effective in the pleural cavity than in the interstitial compartment in this experimental model.

  16. Efficacy of glutamate receptor antagonists in the management of functional disorders in cytotoxic brain oedema induced by hexachlorophene.

    Science.gov (United States)

    Häntzschel, A; Andreas, K

    1998-02-01

    The hexachlorophene-induced cytotoxic brain oedema is an experimental model of brain damage, suitable for testing cerebroprotective substances (Andreas 1993). In order to examine whether glutamate receptors are involved in mediating functional disorders due to neurotoxic brain damage, we have studied the protective effects of several competitive and non-competitive antagonists using adult male Wistar rats in a simple "ladder-test" for assessing coordinative motor behaviour. Hexachlorophene-induced brain damage was verified by histological examination of the cerebellum with vacuolation of white matter, astrocyte hypertrophy and astrocyte proliferation taken as signs of neurotoxic injury. The non-competitive N-methyl-D-aspartate (NMDA) antagonist dizocilpine maleate (MK-801) decreased the motor disturbance on the first and second day of the "ladder-test" when applied in the doses 0.1 mg/kg and 0.2 mg/kg intraperitoneally for 3 weeks during the hexachlorophene treatment. Acute MK-801 administration (0.1 mg/kg intraperitoneally) after 3 weeks hexachlorophene exposure improved the coordinative motor response only on the first day. When testing the competitive NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP-5) in the dose 1.0 mg/kg intraperitoneally the motor disturbance was lowered significantly earlier than in spontaneous remission. Similar effects were observed with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the dose of 0.8 mg/kg intraperitoneally, an antagonist interacting both with the strychnine-insensitive binding site for glycine within the NMDA receptor complex and with the kainate(+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor complex. Concurrent MK-801 administration decreased the vacuolation of white matter. The results suggest that NMDA receptors and non-NMDA receptors are involved in development of functional disorders induced by hexachlorophene.

  17. Ultra-low dose cannabinoid antagonist AM251 enhances cannabinoid anticonvulsant effects in the pentylenetetrazole-induced seizure in mice.

    Science.gov (United States)

    Gholizadeh, Shervin; Shafaroodi, Hamed; Ghasemi, Mehdi; Bahremand, Arash; Sharifzadeh, Mohammad; Dehpour, Ahmad Reza

    2007-11-01

    Several lines of evidence suggest that cannabinoid compounds are anticonvulsant since they have inhibitory effects at micromolar doses, which are mediated by activated receptors coupling to Gi/o proteins. Surprisingly, both the analgesic and anticonvulsant effects of opioids are enhanced by ultra-low doses (nanomolar to picomolar) of the opioid antagonist naltrexone and as opioid and cannabinoid systems interact, it has been shown that ultra-low dose naltrexone also enhances cannabinoid-induced antinociception. However, regarding the seizure modulating properties of both classes of receptors this study investigated whether ultra-low dose cannabinoid antagonist AM251 influences cannabinoid anticonvulsant effects. The clonic seizure threshold (CST) was tested in separate groups of male NMRI mice following injection of vehicle, the cannabinoid selective agonist arachidonyl-2-chloroethylamide (ACEA) and ultra-low doses of the cannabinoid CB1 antagonist AM251 and a combination of ACEA and AM251 doses in a model of clonic seizure induced by pentylenetetrazole (PTZ). Systemic administration of ultra-low doses of AM251 (10 fg/kg-100 ng/kg) significantly potentiated the anticonvulsant effect of ACEA at 0.5 and 1 mg/kg. Moreover, inhibition of cannabinoid induced excitatory signaling by AM251 (100 pg/kg) unmasked a strong anticonvulsant effect for very low doses of ACEA (100 ng/kg-100 microg/kg), suggesting that a presumed inhibitory component of cannabinoid receptor signaling can exert strong seizure-protective effects even at very low levels of cannabinoid receptor activation. A similar potentiation by AM251 (100 pg/kg and 1 ng/kg) of anticonvulsant effects of non-effective dose of ACEA (0.5 and 1 mg/kg) was also observed in the generalized tonic-clonic model of seizure. The present data suggest that ultra-low doses of cannabinoid receptor antagonists may provide a potent strategy to modulate seizure susceptibility, especially in conjunction with very low doses of

  18. The kappa-opioid receptor antagonist nor-BNI inhibits cocaine and amphetamine, but not cannabinoid (WIN 52212-2), abstinence-induced withdrawal in planarians: an instance of 'pharmacologic congruence'.

    Science.gov (United States)

    Raffa, Robert B; Stagliano, Gregory W; Ross, Geoffrey; Powell, Jenay A; Phillips, Austin G; Ding, Zhe; Rawls, Scott M

    2008-02-08

    The broad applicability of receptor theory to diverse species, from invertebrates to mammals, provides evidence for the evolution in complexity of pharmacologic receptor diversification and of receptor-effector signal transduction mechanisms. However, pre-mammalian species have less receptor subtype differentiation, and thus, might share signal transduction pathways to a greater extent than do mammals, a phenomenon that we term 'pharmacologic congruence'. We have demonstrated previously that the lowest species considered to have a centralized nervous system, planarians, display both abstinence-induced and antagonist-precipitated withdrawal signs, indicative of the development of physical dependence. We report here: (1) amphetamine abstinence-induced withdrawal, and (2) the attenuation of cocaine and amphetamine, but not cannabinoid agonist (WIN 52212-2), abstinence-induced withdrawal by the opioid receptor antagonist naloxone and by the selective kappa-opioid receptor subtype antagonist nor-BNI (nor-Binaltorphimine), but not by the selective mu-opioid or the delta-opioid receptor subtype antagonists CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2)) and naltrindole. These results provide evidence that the withdrawal from cocaine and amphetamine, but not cannabinoids, in planarians is mediated through a common nor-BNI-sensitive (kappa-opioid receptor-like) pathway.

  19. Casopitant: a novel NK1-receptor antagonist in the prevention of chemotherapy-induced nausea and vomiting

    Directory of Open Access Journals (Sweden)

    Christina Ruhlmann

    2009-05-01

    Full Text Available Christina Ruhlmann, Jørn HerrstedtOdense University Hospital, Department of Oncology, Odense, DenmarkAbstract: Chemotherapy-induced nausea and vomiting (CINV are among the most feared and distressing symptoms experienced by patients with cancer. The knowledge of the pathogenesis and neuropharmacology of CINV has expanded enormously over the last decades, the most significant discoveries being the role of 5-hydroxytryptamine (5-HT3- and neurokinin (NK1 receptors in the emetic reflex arch. This has led to the development of two new classes of antiemetics acting as highly selective antagonists at one of these receptors. These drugs have had a huge impact in the protection from chemotherapy-induced vomiting, whereas the effect on nausea seems to be limited. The first NK1 receptor antagonist, aprepitant, became clinically available in 2003, and casopitant, the second in this class of antiemetics, has now completed phase III trials. This review delineates the properties and clinical use of casopitant in the prevention of CINV.Keywords: casopitant, GW679769, NK1 receptor antagonist, chemotherapy, emesis

  20. Muscarinic cholinergic receptor antagonists in the VTA and RMTg have opposite effects on morphine-induced locomotion in mice.

    Science.gov (United States)

    Steidl, Stephan; Dhillon, Ekamjeet S; Sharma, Natasha; Ludwig, Jessica

    2017-04-14

    The ventral tegmental area (VTA) and the rostromedial tegmental nucleus (RMTg) each contribute to opiate reward and each receive inputs from the laterodorsal tegmental and pedunculopontine tegmental nuclei, the two principle brainstem cholinergic cell groups. We compared the contributions of VTA or RMTg muscarinic cholinergic receptors to locomotion induced by morphine infusions into the same sites. VTA co-infusion of atropine completely blocked VTA morphine-induced locomotion providing additional support for the important role of VTA muscarinic cholinergic receptors in the stimulant effects of opiates. By contrast, RMTg co-infusion of atropine increased RMTg morphine-induced locomotion. Furthermore, RMTg co-infusion of the M3-selective antagonist 4-DAMP, but not the M4-selective antagonist Tropicamide, strongly increased RMTg morphine-induced locomotion. RMTg infusions of 4-DAMP, but not of Tropicamide, by themselves strongly increased drug-free locomotion. Muscarinic cholinergic receptors in the RMTg thus also contribute to the stimulant effects of morphine, but in a way opposite to those in VTA. We suggest that the net effect of endogenous cholinergic input to the RMTg on drug-free and on RMTg morphine-induced locomotion is inhibitory. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants.

    Science.gov (United States)

    Adam, Mohamed; Heuer, Holger; Hallmann, Johannes

    2014-01-01

    The potential of bacterial antagonists of fungal pathogens to control the root-knot nematode Meloidogyne incognita was investigated under greenhouse conditions. Treatment of tomato seeds with several strains significantly reduced the numbers of galls and egg masses compared with the untreated control. Best performed Bacillus subtilis isolates Sb4-23, Mc5-Re2, and Mc2-Re2, which were further studied for their mode of action with regard to direct effects by bacterial metabolites or repellents, and plant mediated effects. Drenching of soil with culture supernatants significantly reduced the number of egg masses produced by M. incognita on tomato by up to 62% compared to the control without culture supernatant. Repellence of juveniles by the antagonists was shown in a linked twin-pot set-up, where a majority of juveniles penetrated roots on the side without inoculated antagonists. All tested biocontrol strains induced systemic resistance against M. incognita in tomato, as revealed in a split-root system where the bacteria and the nematodes were inoculated at spatially separated roots of the same plant. This reduced the production of egg masses by up to 51%, while inoculation of bacteria and nematodes in the same pot had only a minor additive effect on suppression of M. incognita compared to induced systemic resistance alone. Therefore, the plant mediated effect was the major reason for antagonism rather than direct mechanisms. In conclusion, the bacteria known for their antagonistic potential against fungal pathogens also suppressed M. incognita. Such "multi-purpose" bacteria might provide new options for control strategies, especially with respect to nematode-fungus disease complexes that cause synergistic yield losses.

  2. A Meta-Analysis of Adenosine A2A Receptor Antagonists on Levodopa-Induced Dyskinesia In Vivo

    Directory of Open Access Journals (Sweden)

    Wen-Wen Wang

    2017-12-01

    Full Text Available BackgroundLong-term use of levodopa (l-dopa is inevitably complicated with highly disabling fluctuations and drug-induced dyskinesias, which pose major challenges to the existing drug therapy of Parkinson’s disease.MethodsIn this study, we conducted a systematic review and meta-analysis to assess the efficacy of A2A receptor antagonists on reducing l-dopa-induced dyskinesias (LID.ResultsNine studies with a total of 152 animals were included in this meta-analysis. Total abnormal involuntary movements (AIM score, locomotor activity, and motor disability were reported as outcome measures in 5, 5, and 3 studies, respectively. Combined standardized mean difference (SMD estimates were calculated using a random-effects model. We pooled the whole data and found that, when compared to l-dopa alone, A2A receptor antagonists plus l-dopa treatment showed no effect on locomotor activity (SMD −0.00, 95% confidence interval (CI: −2.52 to 2.52, p = 1.0, superiority in improvement of motor disability (SMD −5.06, 95% CI: −9.25 to −0.87, p = 0.02 and more effective in control of AIM (SMD −1.82, 95% CI: −3.38 to −0.25, p = 0.02.ConclusionTo sum up, these results demonstrated that A2A receptor antagonists appear to have efficacy in animal models of LID. However, large randomized clinical trials testing the effects of A2A receptor antagonists in LID patients are always warranted.

  3. Modulation of bleomycin-induced lung fibrosis by pegylated hyaluronidase and dopamine receptor antagonist in mice.

    Directory of Open Access Journals (Sweden)

    Evgenii Germanovich Skurikhin

    Full Text Available Hyaluronidases are groups of enzymes that degrade hyaluronic acid (HA. To stop enzymatic hydrolysis we modified testicular hyaluronidase (HYAL by activated polyethylene oxide with the help of electron-beam synthesis. As a result we received pegylated hyaluronidase (pegHYAL. Spiperone is a selective D2 dopamine receptor antagonist. It was demonstrated on the model of a single bleomycin damage of alveolar epithelium that during the inflammatory phase monotherapy by pegHYAL or spiperone reduced the populations of hematopoietic stem /progenitor cells in the lung parenchyma. PegHYAL also reduced the levels of transforming growth factor (TGF-β, interleukin (IL-1β, tumor necrosis factor (TNF-α in the serum and lungs, while spiperone reduced the level of the serum IL-1β. Polytherapy by spiperone and pegHYAL caused the increase of the quantity of hematopoietic stem/ progenitor cells in the lungs. Such an influx of blood cell precursors was observed on the background of considerable fall level of TGF-β and the increase level of TNF-α in the serum and lungs. These results show pegHYAL reduced the bleomycin-induced fibrosis reaction (production and accumulation of collagen in the lung parenchyma. This effect was observed at a single and repetitive bleomycin damage of alveolar epithelium, the antifibrotic activity of pegHYAL surpassing the activity of testicular HYAL. The antifibrotic effect of pegHYAL is enhanced by an additional instillation of spiperone. Therapy by pegHYAL causes the flow of CD31‒ CD34‒ CD45‒ CD44+ CD73+ CD90+ CD106+-cells into the fibrous lungs. These cells are incapable of differentiating into fibroblast cells. Spiperone instillation separately or together with pegHYAL reduced the MSC-like cells considerably. These data enable us to assume, that pegHYAL is a new and promising instrument both for preventive and therapy of toxic pneumofibrosis. The blockage of D2 dopamine receptors with the following change of hyaluronan

  4. βCCT, AN ANTAGONIST SELECTIVE FOR α1 GABAA RECEPTORS, REVERSES DIAZEPAM WITHDRAWAL-INDUCED ANXIETY IN RATS

    Science.gov (United States)

    Divljaković, Jovana; Milić, Marija; Namjoshi, Ojas A.; Tiruveedhula, Veera V.; Timić, Tamara; Cook, James M.; Savić, Miroslav M.

    2012-01-01

    The abrupt discontinuation of prolonged benzodiazepine treatment elicits a withdrawal syndrome with increased anxiety as a major symptom. The neural mechanisms underlying benzodiazepine physical dependence are still insufficiently understood. Flumazenil, the non-selective antagonist of the benzodiazepine binding site of GABAA receptors was capable of preventing and reversing the increased anxiety during benzodiazepine withdrawal in animals and humans in some, but not all studies. On the other hand, a number of data suggest that GABAA receptors containing α1 subunits are critically involved in processes developing during prolonged use of benzodiazepines, such are tolerance to sedative effects, liability to physical dependence and addiction. Hence, we investigated in the elevated plus maze the level of anxiety 24 h following 21 days of diazepam treatment and the influence of flumazenil or a preferential α1-subunit selective antagonist βCCt on diazepam withdrawal syndrome in rats. Abrupt cessation of protracted once-daily intraperitoneal administration of 2 mg/kg diazepam induced a withdrawal syndrome, measured by increased anxiety-like behavior in the elevated plus maze 24 h after treatment cessation. Acute challenge with either flumazenil (10 mg/kg) or βCCt (1.25, 5 and 20 mg/kg) alleviated the diazepam withdrawal-induced anxiety. Moreover, both antagonists induced an anxiolytic-like response close, though not identical, to that seen with acute administration of diazepam. These findings imply that the mechanism by which antagonism at GABAA receptors may reverse the withdrawal-induced anxiety involves the α1 subunit and prompt further studies aimed at linking the changes in behavior with possible adaptive changes in subunit expression and function of GABAA receptors. PMID:23149168

  5. Developmental Programming: Prenatal and Postnatal Androgen Antagonist and Insulin Sensitizer Interventions Prevent Advancement of Puberty and Improve LH Surge Dynamics in Prenatal Testosterone-Treated Sheep

    OpenAIRE

    Padmanabhan, Vasantha; Veiga-Lopez, Almudena; Herkimer, Carol; Abi Salloum, Bachir; Moeller, Jacob; Beckett, Evan; Sreedharan, Rohit

    2015-01-01

    Prenatal T excess induces maternal hyperinsulinemia, early puberty, and reproductive/metabolic defects in the female similar to those seen in women with polycystic ovary syndrome. This study addressed the organizational/activational role of androgens and insulin in programming pubertal advancement and periovulatory LH surge defects. Treatment groups included the following: 1) control; 2) prenatal T; 3) prenatal T plus prenatal androgen antagonist, flutamide; 4) prenatal T plus prenatal insuli...

  6. Importance of D1 and D2 receptor stimulation for the induction and expression of cocaine-induced behavioral sensitization in preweanling rats.

    Science.gov (United States)

    McDougall, Sanders A; Rudberg, Krista N; Veliz, Ana; Dhargalkar, Janhavi M; Garcia, Aleesha S; Romero, Loveth C; Gonzalez, Ashley E; Mohd-Yusof, Alena; Crawford, Cynthia A

    2017-05-30

    The behavioral manifestations of psychostimulant-induced sensitization vary markedly between young and adult rats, suggesting that the neural mechanisms mediating this phenomenon differ across ontogeny. In this project we examined the importance of D1 and D2 receptors for the induction and expression of cocaine-induced behavioral sensitization during the preweanling period. In the behavioral experiments, rats were injected with reversible D1 and/or D2 antagonists (SCH23390 and/or raclopride) or an irreversible receptor antagonist (EEDQ) either before cocaine administration on the pretreatment day (induction) or before cocaine challenge on the test day (expression). In the EEDQ experiments, receptor specificity was assessed by using selective dopamine antagonists to protect D1 and/or D2 receptors from inactivation. Receptor binding assays showed that EEDQ caused substantial reductions in dorsal striatal D1 and D2 binding sites, while SCH23390 and raclopride fully protected D1 and D2 receptors from EEDQ-induced alkylation. Behavioral results showed that neither D1 nor D2 receptor stimulation was necessary for the induction of cocaine sensitization in preweanling rats. EEDQ disrupted the sensitization process, suggesting that another receptor type sensitive to EEDQ alkylation was necessary for the induction process. Expression of the sensitized response was prevented by an acute injection of a D1 receptor antagonist. The pattern of DA antagonist-induced effects described for preweanling rats is, with few exceptions, similar to what is observed when the same drugs are administered to adult rats. Thus, it appears that maturational changes in D1 and D2 receptor systems are not responsible for ontogenetic differences in the behavioral manifestation of cocaine sensitization. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. PAR1 antagonists inhibit thrombin-induced platelet activation whilst leaving the PAR4-mediated response intact.

    Science.gov (United States)

    Judge, Heather M; Jennings, Lisa K; Moliterno, David J; Hord, Edward; Ecob, Rosemary; Tricoci, Pierluigi; Rorick, Tyrus; Kotha, Jayaprakash; Storey, Robert F

    2015-01-01

    Thrombin-induced platelet activation is initiated by PAR1 and PAR4 receptors. Vorapaxar, a PAR1 antagonist, has been assessed in patients with acute coronary syndromes (ACS) and stable atherosclerotic disease in addition to standard-of-care treatment. In clinical trials, vorapaxar has been observed to reduce the frequency of ischaemic events in some subgroups though in others has increased the frequency of bleeding events. Among patients undergoing CABG surgery, which is associated with excess thrombin generation, bleeding was not increased. The aim of these studies was to investigate the effects of selective PAR1 antagonism on thrombin-induced platelet activation in patients receiving vorapaxar or placebo in the TRACER trial and to explore the roles of PAR1 and PAR4 in thrombin-induced platelet activation in healthy volunteers. ACS patients receiving vorapaxar or placebo in the TRACER trial were studied at baseline and 4 hours, 1 and 4 months during drug administration. Thrombin-induced calcium mobilisation in platelet-rich plasma was assessed by flow cytometry. In vitro studies were performed in healthy volunteers using the PAR1 antagonist SCH79797 or PAR4 receptor desensitisation. Vorapaxar treatment significantly inhibited thrombin-induced calcium mobilisation, leaving a residual, delayed response. These findings were consistent with calcium mobilisation mediated via the PAR4 receptor and were reproduced in vitro using SCH79797. PAR4 receptor desensitization, in combination with SCH79797, completely inhibited thrombin-induced calcium mobilisation confirming that the residual calcium mobilisation was mediated via PAR4. In conclusion vorapaxar selectively antagonises the PAR1-mediated component of thrombin-induced platelet activation, leaving the PAR4-mediated response intact, which may explain why vorapaxar is well tolerated in patients undergoing CABG surgery since higher thrombin levels in this setting may override the effects of PAR1 antagonism through PAR4

  8. Stress-induced visceral hypersensitivity in maternally separated rats can be reversed by peripherally restricted histamine-1-receptor antagonists.

    Directory of Open Access Journals (Sweden)

    Oana I Stanisor

    Full Text Available BACKGROUND: The histamine-1 receptor (H1R antagonist ketotifen increased the threshold of discomfort in hypersensitive IBS patients. The use of peripherally restricted and more selective H1R antagonists may further improve treatment possibilities. We examined the use of fexofenadine and ebastine to reverse post-stress visceral hypersensitivity in maternally separated rats. METHODS: The visceromotor response to colonic distension was assessed in adult maternally separated and nonhandled rats pre- and 24 hours post water avoidance. Subsequently rats were treated with vehicle alone or different dosages of fexofenadine (1.8 and 18 mg/kg or ebastine (0.1 and 1.0 mg/kg and re-evaluated. Colonic tissue was collected to assess relative RMCP-2 and occludin expression levels by Western blot and histamine-1 receptor by RT-qPCR. β-hexosaminidase release by RBL-2H3 cells was used to establish possible mast cell stabilizing properties of the antagonists. KEY RESULTS: Water avoidance only induced enhanced response to distension in maternally separated rats. This response was reversed by 1.8 and 18 mg/kg fexofenadine. Reversal was also obtained by 1.0 but not 0.1 mg/kg ebastine. RMCP-2 expression levels were comparable in these two ebastine treatment groups but occludin was significantly higher in 1.0 mg/kg treated rats. There were no differences in histamine-1 receptor expression between nonhandled and maternally separated rats. Fexofenadine but not ebastine showed mast cell stabilizing quality. CONCLUSIONS: Our results indicate that the peripherally restricted 2(nd generation H1-receptor antagonists fexofenadine and ebastine are capable of reversing post stress visceral hypersensitivity in rat. These data justify future IBS patient trials with these well tolerated compounds.

  9. A selective, non-peptide CRF receptor 1 antagonist prevents sodium lactate-induced acute panic-like responses.

    Science.gov (United States)

    Shekhar, Anantha; Johnson, Philip L; Fitz, Stephanie D; Nakazato, Atsuro; Chaki, Shigeyuki; Steckler, Thomas; Schmidt, Mark

    2011-04-01

    Corticotropin releasing factor (CRF) is implicated in a variety of stress-related disorders such as depression and anxiety, and blocking CRF receptors is a putative strategy for treating such disorders. Using a well-studied animal model of panic, we tested the efficacy of JNJ19567470/CRA5626, a selective, non-peptidergic CRF type 1 receptor (CRF1) antagonist (3, 10 and 40 mg/kg intraperitoneal injection), in preventing the sodium lactate (NaLac)-induced panic-like behavioural and cardiovascular responses. Adult male rats with chronic reduction of GABA levels (by inhibition of GABA synthesis with l-allyglycine, a glutamic acid decarboxylase inhibitor) in the dorsomedial/perifornical hypothalamus are highly anxious and exhibit physiological and behavioural responses to intravenous NaLac infusions similar to patients with panic disorder. These 'panic-prone' rats pre-treated with vehicle injections displayed NaLac-induced increases in autonomic responses (i.e. tachycardia and hypertensive responses), anxiety-like behaviour in the social interaction test, and flight-like increases in locomotor activity. However, systemically injecting such panic-prone rats with the highest dose of CRF1 receptor antagonist prior to NaLac infusions blocked all NaLac-induced behaviour and cardiovascular responses. These data suggest that selective CRF1 receptor antagonists could be a novel target for developing anti-panic drugs that are as effective as benzodiazepines in acute treatment of a panic attack without the deleterious side-effects (e.g. sedation and cognitive impairment) associated with benzodiazepines.

  10. Vitamin A active metabolite, all-trans retinoic acid, induces spinal cord sensitization. II. Effects after intrathecal administration

    Science.gov (United States)

    Alique, M; Lucio, F J; Herrero, J F

    2006-01-01

    Background and purpose: In our previous study (see accompanying paper) we observed that all-trans retinoic acid (ATRA) p.o. induces changes in spinal cord neuronal responses similar to those observed in inflammation-induced sensitization. In the present study we assessed the it. effects of ATRA, and its mechanisms of action. Experimental approach: The effects of all drugs were studied after it. administration in nociceptive withdrawal reflexes using behavioural tests in awake male Wistar rats. Key results: The administration of ATRA in normal rats induced a dose-dependent enhancement of nociceptive responses to noxious mechanical and thermal stimulation, as well as responses to innocuous stimulation. The intensity of the responses was similar to that observed in non-treated animals after carrageenan-induced inflammation. The effect induced by ATRA was fully prevented by the previous administration of the retinoic acid receptor (RAR) pan-antagonist LE540 but not by the retinoid X receptor (RXR) pan-antagonist HX531, suggesting a selective action on spinal cord RARs. The COX inhibitor dexketoprofen and the interleukin-1 receptor antagonist IL-1ra inhibited ATRA effect. The results indicate that COX and interleukin-1 are involved in the effects of ATRA in the spinal cord, similar to that seen in inflammation. Conclusions and implications: In conclusion, ATRA induces changes in the spinal cord similar to those observed in inflammation. The sensitization-like effect induced by ATRA was mediated by RARs and associated with a modulation of COX-2 and interleukin-1 activities. ATRA might be involved in the mechanisms underlying the initiation and/or maintenance of sensitization in the spinal cord. PMID:16847438

  11. Neuroendocrine and sympathetic responses to an orexin receptor antagonist, SB-649868, and alprazolam following insulin-induced hypoglycemia in humans.

    Science.gov (United States)

    Patel, Ameera X; Miller, Sam R; Nathan, Pradeep J; Kanakaraj, Ponmani; Napolitano, Antonella; Lawrence, Philip; Koch, Annelize; Bullmore, Edward T

    2014-10-01

    The orexin-hypocretin system is important for translating peripheral metabolic signals and central neuronal inputs to a diverse range of behaviors, from feeding, motivation and arousal, to sleep and wakefulness. Orexin signaling is thus an exciting potential therapeutic target for disorders of sleep, feeding, addiction, and stress. Here, we investigated the low dose pharmacology of orexin receptor antagonist, SB-649868, on neuroendocrine, sympathetic nervous system, and behavioral responses to insulin-induced hypoglycemic stress, in 24 healthy male subjects (aged 18-45 years; BMI 19.0-25.9 kg/m(2)), using a randomized, double-blind, placebo-controlled, within-subject crossover design. Alprazolam, a licensed benzodiazepine anxiolytic, was used as a positive comparator, as it has previously been validated using the insulin tolerance test (ITT) model in humans. Of the primary endpoints, ITT induced defined increases in pulse rate, plasma cortisol, and adrenocorticotropic hormone in the placebo condition, but these responses were not significantly impacted by alprazolam or SB-649868 pre-treatment. Of the secondary endpoints, ITT induced a defined increase in plasma concentrations of adrenaline, noradrenaline, growth hormone (GH), and prolactin in the placebo condition. Alprazolam pre-treatment significantly reduced the GH response to ITT (p neuroendocrine or sympathetic nervous systems, but could not be validated for studying low dose orexin antagonist activity.

  12. "Interaction of different doses of Aspartame with Morphine-induced antinociception in the presence of MK-801, a NMDA antagonist "

    Directory of Open Access Journals (Sweden)

    Abdollahi M

    2002-07-01

    Full Text Available This study was designed to investigate the relative role of sweetness and comparative effects of different taste sensation of the non - caloric sweetener , aspartame on pain and its interaction with MK - 80] as a non - selective MMDA antagonist by formalin - test in mice. The formalin - test was chosen because it measures the response to a long - lasting nociceptive stimulus and closely resembles to the clinical pain. Morphine induced a dose dependent antinociception in the early and late phases of formalin test. Twelve days pretreatment of animals by aspartame ( 0.08% , 0.16% , 0.32% significantly potentiated morphine - induced (1.5-9 mg/kg analgesia in the early phase but significantly antagonized its analgesic effect in the late phase, dose dependently. Aspartame (0.16% alone showed a reduction in pain response . Naloxone (0.4 mg/kg significantly antagonized the antinociceptive effect of morphine in the presence of aspartame (0-0.32% in the early phase. Increasing the dose of aspartame decreased effects of naloxone. MK-801 (0.1 mg/kg as an N- Methyl - D - Aspartate (NMDA antagonist significantly potentiated the effect of aspartame on morphine - induced antinociception in the early phase. In the late phase, naloxone (0.4 mg/kg increased pain response but MK- 801 (0.1 mg/kg induced anti-inflammatory effect significantly. Treatment of animals with MK- 801 alone, significantly induced analgesia in both phases of formalin - test. This effect was potentiated with aspartame dose - dependently. Possible interaction of aspartame with NMDA receptors and its role to facilitate endogenous opioid system are proposed mechanisms of aspartame in modulating morphine - induced antinociception. Furthermore, the resulting association between morphine and aspartame chronic consumption may be explained as an interactive action rather than simple dose combination of both drugs.

  13. Netupitant, a Potent and Highly Selective NK1 Receptor Antagonist, Alleviates Acetic Acid-Induced Bladder Overactivity in Anesthetized Guinea-Pigs

    OpenAIRE

    Palea, Stefano; Guilloteau, V?ronique; Rekik, Mo?z; Lovati, Emanuela; Guerard, Marc; Guardia, Maria-Alba; Lluel, Philippe; Pietra, Claudio; Yoshiyama, Mitsuharu

    2016-01-01

    Introduction. Tachykinins potently contract the isolated urinary bladder from a number of animal species and play an important role in the regulation of the micturition reflex. On the guinea-pig isolated urinary bladder we examined the effects of a new potent and selective NK1 receptor antagonist (netupitant) on the contractions induced by a selective NK1 receptor agonist, SP-methylester (SP-OMe). Moreover, the effects of netupitant and another selective NK1 antagonist (L-733,060) were studie...

  14. CGRP receptors mediating CGRP-, adrenomedullin- and amylin-induced relaxation in porcine coronary arteries. Characterization with 'Compound 1' (WO98/11128), a non-peptide antagonist

    DEFF Research Database (Denmark)

    Hasbak, P; Sams, A; Schifter, S

    2001-01-01

    . The partial porcine mRNA sequences shared 82 - 92% nucleotide identity with human sequences. 3. The human peptides alphaCGRP, betaCGRP, AM and amylin induced relaxation with pEC(50) values of 8.1, 8.1, 6.7 and 6.1 M respectively. 4. The antagonistic properties of a novel non-peptide CGRP antagonist 'Compound...

  15. Rimonabant, a selective cannabinoid1 receptor antagonist, protects against light-induced retinal degeneration in vitro and in vivo.

    Science.gov (United States)

    Imamura, Tomoyo; Tsuruma, Kazuhiro; Inoue, Yuki; Otsuka, Tomohiro; Ohno, Yuta; Ogami, Shiho; Yamane, Shinsaku; Shimazawa, Masamitsu; Hara, Hideaki

    2017-05-15

    The endocannabinoid system is involved in some neurodegenerative diseases such as Alzheimer's disease. An endogenous constellation of proteins related to cannabinoid 1 receptor signaling, including free fatty acids, diacylglycerol lipase, and N-acylethanolamine-hydrolyzing acid amidase, are localized in the murine retina. Moreover, the expression levels of endogenous agonists of cannabinoid receptors are changed in the vitreous fluid. However, the role of the endocannabinoid system in the retina, particularly in the light-induced photoreceptor degeneration, remains unknown. Therefore, we investigated involvement of the cannabinoid 1 receptor in light-induced retinal degeneration using in vitro and in vivo models. To evaluate the effect of cannabinoid 1 receptors in light irradiation-induced cell death, the mouse retinal cone-cell line (661W) was treated with a cannabinoid 1 receptor antagonist, rimonabant. Time-dependent changes of expression and localization of retinal cannabinoid 1 receptors were measured using Western blot and immunostaining. Retinal damage was induced in mice by exposure to light, followed by intravitreal injection of rimonabant. Electroretinograms and histologic analyses were performed. Rimonabant suppressed light-induced photoreceptor cell death. Cannabinoid 1 receptor expression was upregulated by light exposure. Treatment with rimonabant improved both a- and b-wave amplitudes and the thickness of the outer nuclear layer. These results suggest that the cannabinoid 1 receptor is involved in light-induced retinal degeneration and it may represent a therapeutic target in the light-induced photoreceptor degeneration related diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Post-sensitization treatment with rimonabant blocks the expression of cocaine-induced behavioral sensitization and c-Fos protein in mice.

    Science.gov (United States)

    Marinho, Eduardo A V; Oliveira-Lima, Alexandre J; Yokoyama, Thais S; Santos-Baldaia, Renan; Ribeiro, Luciana T C; Baldaia, Marilia A; da Silva, Raphael Wuo; Hollais, Andre Willian; Talhati, Fernanda; Longo, Beatriz Monteiro; Berro, Lais Fernanda; Frussa-Filho, Roberto

    2017-05-01

    CB1 receptor antagonists have been shown to prevent acute and long-term behavioral effects of cocaine. Here we evaluate the effectiveness of the CB1 receptor antagonist rimonabant to modify sensitized responses to cocaine. Mice were treated with saline or cocaine injections in a 15-day intermittent sensitization treatment and subsequently treated with either vehicle, 1 or 10mg/kg rimonabant in the drug-associated environment for 8 consecutive days. Animals were then challenged with saline and cocaine in the open-field apparatus on subsequent days to evaluate the expression of conditioned and sensitized effects to cocaine. c-Fos protein expression was evaluated in the nucleus accumbens (NAcc), ventral tegmental area (VTA), basolateral amygdala (BLA), medial prefrontal cortex (mPFC) and caudate-putamen (CPu) after the last (cocaine) challenge. Previous treatment with 10mg/kg rimonabant blocked the expression of conditioned hyperlocomotion and behavioral sensitization to cocaine, but not acute cocaine-induced hyperlocomotion. These behavioral effects were accompanied by significant changes in c-Fos expression in the brain reward system. Chronic cocaine sensitization blunted a subsequent acute cocaine-induced increase in c-Fos protein in the NAcc, effect that was reversed by previous treatment with rimonabant. Treatment with 10mg/kg rimonabant also attenuated the significant increase in c-Fos expression in the CPu, mPFC and BLA induced by previous chronic sensitization with cocaine. Our findings add to the evidence that drugs targeting CB1 receptors are good candidates for the treatment of cocaine abuse and provide further insights into the mechanisms underlying endocannabinoid signaling within the brain reward system in the context of cocaine abuse. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The 5-HT3Receptor Antagonist Ondansetron Attenuates Pancreatic Injury in Cerulein-Induced Acute Pancreatitis Model.

    Science.gov (United States)

    Tsukamoto, Atsushi; Sugimoto, Takuto; Onuki, Yuta; Shinoda, Hajime; Mihara, Taiki; Hori, Masatoshi; Inomata, Tomo

    2017-08-01

    The 5-hydroxytryptamine-3 receptor (5-HT 3 R) antagonist ondansetron has been clinically approved as an anti-emetic agent. Recent findings indicate that ondansetron has anti-inflammatory properties. The aim of the present study was to assess the therapeutic action of ondansetron in cerulein-induced acute pancreatitis model. Male-BALB/c mice were used in the present study. Acute pancreatitis was induced by an hourly injection of cerulein. Ondansetron was administered subcutaneously at a dose of 3 mg/kg. The messenger RNA (mRNA) expression of 5-HT 3 R in pancreatic tissue was assessed with RT-PCR. Plasma amylase, lipase, and interleukin (IL)-6 levels were evaluated. Pancreatic injury was histopathologically graded, and myeloperoxidase (MPO)-positive cells were counted. 5-HT 3 R mRNA was expressed in the pancreas. In acute pancreatitis model mice, amylase, lipase, and IL-6 levels were significantly increased in the blood. With ondansetron treatment, these levels were significantly decreased. Histopathological evaluation revealed that ondansetron attenuated the inflammatory damage in acute pancreatitis. The number of infiltrated neutrophils stained by MPO was decreased by ondansetron treatment. In summary, the 5-HT 3 R antagonist ondansetron attenuated pancreatic injury through its anti-inflammatory action. These findings suggest that ondansetron may potentially be of use for therapy of acute pancreatitis.

  18. The effect of montelukast (MK-0476), a cysteinyl leukotriene receptor antagonist, on allergen-induced airway responses and sputum cell counts in asthma

    NARCIS (Netherlands)

    Diamant, Z.; Grootendorst, D. C.; Veselic-Charvat, M.; Timmers, M. C.; de Smet, M.; Leff, J. A.; Seidenberg, B. C.; Zwinderman, A. H.; Peszek, I.; Sterk, P. J.

    1999-01-01

    Cysteinyl leukotrienes are capable of inducing chemotaxis of eosinophils in vitro and within the airways of animals and humans in vivo. We hypothesized that montelukast (MK-0476), a potent cysLT1 receptor antagonist, would protect against allergen-induced early (EAR) and late (LAR) asthmatic

  19. The role of endothelin-1 and endothelin receptor antagonists in allergic rhinitis inflammation: ovalbumin-induced rat model.

    Science.gov (United States)

    Tatar, A; Yayla, M; Kose, D; Halici, Z; Yoruk, O; Polat, E

    2016-09-01

    Desloratadine is a biologically active metabolite of loratadine which is indicated for the treatment of allergic rhinitis. Bosentan is a dual endothelin receptor antagonist used to treatment of pulmonary artery hypertension (PAH). In this study, we aimed to determine the role of endothelins in allergic rhinitis (AR) and the effects of endothelin receptor antagonists in AR rat models through comparison with desloratadine. In total, 20 adult Sprague-Dawley rats were used in this study. An ovalbumin-induced allergic rhinitis model was formed in three study groups except for the control group. Bosentan (100 mg/kg/day) was given to the bosentan-treated group for 7 days and desloratadine (10 mg/kg/day) was administered to the antihistaminic-treated group for 7 days. Nasal symptom scorings and histopathological examinations of the nasal tissues were carried out. Serum IgE levels and ET-1 and TNF-alpha mRNA expression levels were analysed. Between group comparisons for nasal symptoms, histopathological analysis, and molecular analyses were performed with a one-way ANOVA and Duncans multiple comparison tests. Significance was accepted at p smaller than 0.05. Bosentan inhibited nasal symptom more significantly than desloratadine. The IgE level, ET-1 and TNF-alpha mRNA expression levels statistically increased in the allergic rhinitis group when compared to other groups. Conversely, the bosentan-treatment group showed a significant recovery from the same parameters. The deterioration in histopathological parameters reached the highest levels in the allergic rhinitis group. The histopathological findings were close to those of the control group in the bosentan and antihistaminic-treated group. ET-1 is one of the mediators that impact AR development and ET-1 antagonists can be useful for symptom control and for decreasing allergic inflammation in AR patients.

  20. Drp1 is dispensable for apoptotic cytochrome c release in primed MCF10A and fibroblast cells but affects Bcl-2 antagonist-induced respiratory changes.

    Science.gov (United States)

    Clerc, P; Ge, S X; Hwang, H; Waddell, J; Roelofs, B A; Karbowski, M; Sesaki, H; Polster, B M

    2014-04-01

    Dynamin-related protein 1 (Drp1) mediates mitochondrial fission and is thought to promote Bax/Bak-induced cytochrome c release during apoptosis. Conformationally active Bax, Bak and Bax/Bak-activating BH3-only proteins, such as Bim, are restrained by anti-apoptotic Bcl-2 proteins in cells that are 'primed for death'. Inhibition of Bcl-2/Bcl-xL/Bcl-w by the antagonist ABT-737 causes rapid apoptosis of primed cells. Hence, we determined whether Drp1 is required for cytochrome c release, respiratory alterations and apoptosis of cells that are already primed for death. We tested the Drp1 inhibitor mdivi-1 for inhibition of cytochrome c release in MCF10A cells primed by Bcl-2 overexpression. We measured ATP synthesis-dependent, -independent and cytochrome c-limited maximal oxygen consumption rates (OCRs) and cell death of immortalized wild-type (WT) and Drp1 knockout (KO) mouse embryonic fibroblasts (MEFs) treated with ABT-737. Mdivi-1 failed to attenuate ABT-737-induced cytochrome c release. ABT-737 decreased maximal OCR measured in the presence of uncoupler in both WT and Drp1 KO MEF, consistent with respiratory impairment due to release of cytochrome c. However, Drp1 KO MEF were slightly less sensitive to this ABT-737-induced respiratory inhibition compared with WT, and were resistant to an initial ABT-737-induced increase in ATP synthesis-independent O2 consumption. Nevertheless, caspase-dependent cell death was not reduced. Pro-apoptotic Bax was unaltered, whereas Bak was up-regulated in Drp1 KO MEF. The findings indicate that once fibroblast cells are primed for death, Drp1 is not required for apoptosis. However, Drp1 may contribute to ABT-737-induced respiratory changes and the kinetics of cytochrome c release. © 2013 The British Pharmacological Society.

  1. Radiation-induced glomerular thrombus formation and nephropathy are not prevented by the ADP receptor antagonist clopidogrel

    International Nuclear Information System (INIS)

    Poele, Johannes A.M. te; Kleef, Ellen M. van; Wal, Anja F. van der; Dewit, Luc G.H.; Stewart, Fiona A.

    2001-01-01

    Purpose: To assess the effects of kidney irradiation on glomerular adenosine diphosphatase (ADPase) activity and intraglomerular microthrombus formation, and their correlation to the development of renal functional impairment. Methods and Materials: C3H/HenAf-nu + mice were given single-dose or fractionated kidney irradiations. Glomerular ADPase activity was measured using a cerium-based histochemical method. Microthrombus formation within the glomeruli was assessed by a semiquantitative immunohistochemical analysis of fibrinogen/fibrin deposits. Renal function was assessed by the [ 51 Cr]EDTA retention assay. Results: The ADPase activity was significantly reduced, to approximately 50% of pretreatment value, 4-40 weeks after 10-16 Gy single-dose irradiation and at 44 weeks after 20x2 Gy. No dose-effect relationship was found. An approximately fourfold increase in glomerular fibrinogen/fibrin staining was observed at 1 year after irradiation. This increase was not influenced by treating the mice with daily, oral clopidogrel, a platelet ADP receptor antagonist, which reduced platelet aggregation by more than 75%. Radiation-induced impairment of glomerular filtration was also not affected by the clopidogrel treatment. Conclusion: These data indicate that irradiation significantly reduced glomerular ADPase activity, which correlated with an increased glomerular fibrinogen/fibrin deposition. We were not able to reduce these prothrombotic changes, nor to protect against radiation nephropathy, by pharmacological intervention with an ADP-receptor antagonist

  2. Smac mimetics as IAP antagonists.

    Science.gov (United States)

    Fulda, Simone

    2015-03-01

    As the Inhibitor of Apoptosis (IAP) proteins are expressed at high levels in human cancers, they represent promising targets for therapeutic intervention. Small-molecule inhibitors of IAP proteins mimicking the endogenous IAP antagonist Smac, called Smac mimetics, neutralize IAP proteins and thereby promote the induction of cell death. Smac mimetics have been shown in preclinical models of human cancer to directly trigger cancer cell death or to sensitize for cancer cell death induced by a variety of cytotoxic stimuli. Smac mimetics are currently undergoing clinical evaluation in phase I/II trials, demonstrating that therapeutic targeting of IAP proteins has reached the clinical stage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Effect of dopamine D3 antagonists on PPI in DBA/2J mice or PPI deficit induced by neonatal ventral hippocampal lesions in rats.

    Science.gov (United States)

    Zhang, Min; Ballard, Michael E; Kohlhaas, Kathy L; Browman, Kaitlin E; Jongen-Rêlo, Ana-Lucia; Unger, Liliane V; Fox, Gerard B; Gross, Gerhard; Decker, Michael W; Drescher, Karla U; Rueter, Lynne E

    2006-07-01

    Schizophrenic patients typically exhibit impairment of sensorimotor gating, which can be modeled in animal models such as the test of prepulse inhibition of startle response (PPI) in rodents. It has been found that antipsychotics enhanced PPI in DBA mice and reversed the PPI deficit induced by neonatal ventral hippocampal (NVH) lesions in rats. However, the relative involvement of D(3) and D(2) receptors in these effects is unknown since all antipsychotics are D(2)/D(3) antagonists with limited binding preference at D(2) receptors. Therefore, in the current study, we investigated the influence of several dopamine antagonists with higher selectivity at D(3) vs D(2) receptors on PPI in DBA/2J mice and in NVH-lesioned rats. The PPI in DBA/2J mice was enhanced by the nonselective D(2)/D(3) antagonists, haloperidol at 0.3-3 mg/kg, or risperidone at 0.3-1 mg/kg, while PPI-enhancing effects were observed after the administration of higher doses of the preferential D(3)/D(2) antagonist, BP 897 at 8 mg/kg, and the selective D(3) antagonists, SB 277011 at 30 mg/kg and A-437203 at 30 mg/kg. No effect was observed following the treatment with the selective D(3) antagonist, AVE 5997 up to 30 mg/kg. The PPI deficits induced by NVH lesions were reversed by haloperidol but not by the more selective D(3) antagonists, A-437203 and AVE 5997. BP 897 enhanced PPI nonselectivity, that is, in both lesioned and nonlesioned rats. In summary, the present study indicates that PPI-enhancing effects induced by antipsychotics in DBA/2J mice and in NVH-lesioned rats are unlikely to be mediated by D(3) receptors.

  4. Fasitibant chloride, a kinin B2 receptor antagonist, and dexamethasone interact to inhibit carrageenan-induced inflammatory arthritis in rats

    Science.gov (United States)

    Valenti, Claudio; Giuliani, Sandro; Cialdai, Cecilia; Tramontana, Manuela; Maggi, Carlo Alberto

    2012-01-01

    BACKGROUND AND PURPOSE Bradykinin, through the kinin B2 receptor, is involved in inflammatory processes related to arthropathies. B2 receptor antagonists inhibited carrageenan-induced arthritis in rats in synergy with anti-inflammatory steroids. The mechanism(s) underlying this drug interaction was investigated. EXPERIMENTAL APPROACH Drugs inhibiting inflammatory mediators released by carrageenan were injected, alone or in combination, into the knee joint of pentobarbital anaesthetized rats 30 min before intra-articular administration of carrageenan. Their effects on the carrageenan-induced inflammatory responses (joint pain, oedema and neutrophil recruitment) and release of inflammatory mediators (prostaglandins, IL-1β, IL-6 and the chemokine GRO/CINC-1), were assessed after 6 h. KEY RESULTS The combination of fasitibant chloride (MEN16132) and dexamethasone was more effective than each drug administered alone in inhibiting knee joint inflammation and release of inflammatory mediators. Fasitibant chloride, MK571, atenolol, des-Arg9-[Leu8]-bradykinin (B2 receptor, leukotriene, catecholamine and B1 receptor antagonists, respectively) and dexketoprofen (COX inhibitor), reduced joint pain and, except for the latter, also diminished joint oedema. A combination of drugs inhibiting joint pain (fasitibant chloride, des-Arg9-[Leu8]-bradykinin, dexketoprofen, MK571 and atenolol) and oedema (fasitibant chloride, des-Arg9-[Leu8]-bradykinin, MK571 and atenolol) abolished the respective inflammatory response, producing inhibition comparable with that achieved with the combination of fasitibant chloride and dexamethasone. MK571 alone was able to block neutrophil recruitment. CONCLUSIONS AND IMPLICATIONS Bradykinin-mediated inflammatory responses to intra-articular carrageenan were not controlled by steroids, which were not capable of preventing bradykinin effects either by direct activation of the B2 receptor, or through the indirect effects mediated by release of eicosanoids

  5. Alopecia induced by tumour necrosis factor-alpha antagonists: description of 52 cases and disproportionality analysis in a nationwide pharmacovigilance database.

    Science.gov (United States)

    Béné, Johana; Moulis, Guillaume; Auffret, Marine; Lefevre, Guillaume; Coquerelle, Pascal; Coupe, Patrick; Péré, Patrice; Gautier, Sophie

    2014-08-01

    The aim of this research was to describe the cases of TNF-α antagonist-related alopecia reported in the French Pharmacovigilance Database (FPVD) and to investigate the association between exposure to TNF-α antagonists and occurrence of alopecia. All spontaneous reports of TNF-α antagonist-related alopecia recorded in the FPVD between January 2000 and April 2012 were colligated and described. We conducted disproportionality analyses (case/non-case method) to assess the link between the occurrence of alopecia and exposure to TNF-α antagonists. Cases were all reports of alopecia and non-cases were all other reports recorded during the study period. Exposure to TNF-α antagonists was sought in cases and in non-cases. Reporting odds ratios (RORs) were calculated to assess the association. Docetaxel was used as positive control and acetaminophen as negative control. We performed sensitivity analyses excluding cases of androgenic alopecia and those occurring in psoriatic patients. Among 282 590 spontaneous reports of adverse drug reactions (ADRs) collated in the FPVD, 1068 cases (alopecia reports) were identified. Of these cases, 52 (4.9%) occurred during exposure to TNF-α antagonists (18 involved infliximab, 17 adalimumab, 15 etanercept and 2 certolizumab). Exposure to TNF-α antagonists was more frequent among alopecia reports than among other ADR reports for all TNF-α antagonists pooled (ROR 3.0, 95% CI 2.3, 4.0) as well as for each antagonist separately, with similar values. Sensitivity analyses yielded similar results. The RORs were 29.9 (95% CI 25.3, 35.5) with docetaxel and 0.3 (95% CI 0.2, 0.4) with acetaminophen. The present study confirms a strong link between TNF-α antagonist exposure (class effect) and the occurrence of alopecia. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Endothelin receptor antagonist prevents parathyroid cell proliferation of low calcium diet-induced hyperparathyroidism in rats.

    Science.gov (United States)

    Kanesaka, Y; Tokunaga, H; Iwashita, K; Fujimura, S; Naomi, S; Tomita, K

    2001-01-01

    Secondary hyperparathyroidism, one of the most frequently encountered disorders of the calcium homeostasis, is characterized by an increase in parathyroid epithelial (PT) cell number, which is crucial from a functional viewpoint. However, it is still unknown what factors are involved in PT cell proliferation. Endothelin-1 (ET-1), a vasoconstrictive peptide, has been shown to act as a mitogen in a variety of cell types. Rat PT cells are reported to synthesize ET-1 and possess its receptors. To test the hypothesis that ET-1 plays a role in PT cell proliferation, we used rat test subjects fed a low calcium diet for 8 weeks (low Ca rats). The number of the proliferating PT cells, measured by proliferating cell nuclear antigen immunostaining, was significantly increased, with striking immunoreactivity of ET-1 in the low Ca rats. An endothelin receptor antagonist, bosentan (100 mg/kg.day), prevented any increase in the proliferation of PT cells in the low Ca rats (14.3 +/- 2.7/1000 PT cells with no bosentan; 2.1 +/- 1.3 with bosentan; P hyperparathyroidism.

  7. N-acetyl-L-tryptophan, a substance-P receptor antagonist attenuates aluminum-induced spatial memory deficit in rats.

    Science.gov (United States)

    Fernandes, Joylee; Mudgal, Jayesh; Rao, Chamallamudi Mallikarjuna; Arora, Devinder; Basu Mallik, Sanchari; Pai, K S R; Nampoothiri, Madhavan

    2018-06-01

    Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease. Neurokinin substance P is a key mediator which modulates neuroinflammation through neurokinin receptor. Involvement of substance P in Alzheimer's disease is still plausible and various controversies exist in this hypothesis. Preventing the deleterious effects of substance P using N-acetyl-L-tryptophan, a substance P antagonist could be a promising therapeutic strategy. This study was aimed to evaluate the effect of N-acetyl-L-tryptophan on aluminum induced spatial memory alterations in rats. Memory impairment was induced using aluminum chloride (AlCl 3 ) at a dose of 10 mg/kg for 42 d. After induction of dementia, rats were exposed to 30 and 50 mg/kg of N-acetyl-L-tryptophan for 28 d. Spatial memory alterations were measured using Morris water maze. Acetylcholinesterase activity and antioxidant enzyme glutathione level were assessed in hippocampus, frontal cortex and striatum. The higher dose of N-acetyl-L-tryptophan (50 mg/kg) significantly improved the aluminum induced memory alterations. N-acetyl-L-tryptophan exposure resulted in significant increase in acetylcholinesterase activity and glutathione level in hippocampus. The neuroprotective effect of N-acetyl-L-tryptophan could be due to its ability to block substance P mediated neuroinflammation, reduction in oxidative stress and anti-apoptotic properties. To conclude, N-acetyl-L-tryptophan may be considered as a novel neuroprotective therapy in Alzheimer's disease.

  8. Butyrate down regulates BCL-XL and sensitizes human fibroblasts to radiation and chemotherapy induced apoptosis

    International Nuclear Information System (INIS)

    Chung, Diana H.; Ljungman, Mats; Zhang Fenfen; Chen Feng; McLaughlin, William P.

    1997-01-01

    Purpose/Objective: Butyrate is a short chain fatty acid that has been implicated in the induction of cell cycle arrest, cell differentiation and apoptosis. The purpose of this study was to determine if butyrate treatment sensitizes cells to radiation or chemotherapy induced apoptosis. Materials and Methods: Normal neonatal human diploid fibroblasts were used throughout this study. Apoptosis was scored and quantified using three different methods. First, cell morphology using propidium iodide and fluorescence microscopy was used to qualitatively determine apoptosis and to quantify the percentage of cells undergoing apoptosis. Second, apoptosis induced DNA degradation was scored by quantifying the amount of cells appearing in a sub-G1 peak using fixed and PI-stained cells and flow cytometry. Third, apoptosis-induced DNA degradation was examined by using an assay involving direct lysis of cells in the wells of agarose gels followed by conventional gel electrophoresis. Western blotting was used to quantify the cellular levels of the apoptosis regulators, Bcl-2, Bcl-XL and Bax. Results: Human diploid fibroblasts, which were resistant to radiation induced apoptosis, were found to undergo massive apoptosis when radiation was combined with butyrate treatment. Sensitization was obtained when butyrate was added before or after radiation although the combination of both pre and post-treatment was the most effective. Butyrate was also found to enhance UV light and cisplatin-induced apoptosis. These findings correlated with a reduction of the apoptosis antagonist Bcl-XL. Bcl-XL levels significantly dropped in a time and dose dependent manner. In addition, butyrate effectively blocked UV-induced accumulation of p53. Conclusion: Our results suggest that butyrate may be an attractive agent to use in combination with radiation or chemotherapy to lower the apoptotic threshold of tumor cells, regardless of the p53 status of the tumor cells

  9. Effect of the AT1-receptor antagonists losartan, irbesartan, and telmisartan on angiotensin II-induced facilitation of sympathetic neurotransmission in the rat mesenteric artery

    NARCIS (Netherlands)

    Balt, J. C.; Mathy, M. J.; Nap, A.; Pfaffendorf, M.; van Zwieten, P. A.

    2001-01-01

    SUMMARY: The effect of the AT1-receptor antagonists losartan, irbesartan, and telmisartan on angiotensin II (Ang II)-induced facilitation of noradrenergic neurotransmission was investigated in the isolated rat mesenteric artery under isometric conditions. Electrical field stimulation (2, 4, and 8

  10. Neuroprotection Against NMDA Induced Cell Death in Rat Nucleus Basalis by Ca2+ Antagonist Nimodipine, Influence of Aging and Developmental Drug Treatment

    NARCIS (Netherlands)

    Luiten, P.G.M.; Douma, B.R.K.; Zee, E.A. van der; Nyakas, C.

    In the current study the neuroprotective effect of the L-type calcium channel antagonist nimodipine in rat brain was investigated in N-methyl-D-aspartate-induced neuronal degeneration in vivo. In the present model NMDA was unilaterally injected in the magnocellular nucleus basalis and the neurotoxic

  11. Vitamin K-antagonists accelerate atherosclerotic calcification and induce a vulnerable plaque phenotype.

    Directory of Open Access Journals (Sweden)

    Leon J Schurgers

    Full Text Available Vitamin K-antagonists (VKA are treatment of choice and standard care for patients with venous thrombosis and thromboembolic risk. In experimental animal models as well as humans, VKA have been shown to promote medial elastocalcinosis. As vascular calcification is considered an independent risk factor for plaque instability, we here investigated the effect of VKA on coronary calcification in patients and on calcification of atherosclerotic plaques in the ApoE(-/- model of atherosclerosis.A total of 266 patients (133 VKA users and 133 gender and Framingham Risk Score matched non-VKA users underwent 64-slice MDCT to assess the degree of coronary artery disease (CAD. VKA-users developed significantly more calcified coronary plaques as compared to non-VKA users. ApoE(-/- mice (10 weeks received a Western type diet (WTD for 12 weeks, after which mice were fed a WTD supplemented with vitamin K(1 (VK(1, 1.5 mg/g or vitamin K(1 and warfarin (VK(1&W; 1.5 mg/g & 3.0 mg/g for 1 or 4 weeks, after which mice were sacrificed. Warfarin significantly increased frequency and extent of vascular calcification. Also, plaque calcification comprised microcalcification of the intimal layer. Furthermore, warfarin treatment decreased plaque expression of calcification regulatory protein carboxylated matrix Gla-protein, increased apoptosis and, surprisingly outward plaque remodeling, without affecting overall plaque burden.VKA use is associated with coronary artery plaque calcification in patients with suspected CAD and causes changes in plaque morphology with features of plaque vulnerability in ApoE(-/- mice. Our findings underscore the need for alternative anticoagulants that do not interfere with the vitamin K cycle.

  12. Quinidine, but not eicosanoid antagonists or dexamethasone, protect the gut from platelet activating factor-induced vasoconstriction, edema and paralysis.

    Science.gov (United States)

    Lautenschläger, Ingmar; Frerichs, Inéz; Dombrowsky, Heike; Sarau, Jürgen; Goldmann, Torsten; Zitta, Karina; Albrecht, Martin; Weiler, Norbert; Uhlig, Stefan

    2015-01-01

    Intestinal circulatory disturbances, atony, edema and swelling are of great clinical relevance, but the related mechanisms and possible therapeutic options are poorly characterized, in part because of the difficulties to comprehensively analyze these conditions. To overcome these limitations we have developed a model of the isolated perfused rat small intestine where all of these symptoms can be studied simultaneously. Here we used this model to study the role of eicosanoids, steroids and quinidine in platelet-activating factor (PAF)-induced intestinal disorders. A vascular bolus of PAF (0.5 nmol) triggered release of thromboxane and peptidoleukotrienes into the vascular bed (peak concentration 35 nM and 0.8 nM) and reproduced all symptoms of intestinal failure: mesenteric vasoconstriction, translocation of fluid and macromolecules from the vasculature to the lumen and lymphatics, intestinal edema formation, loss of intestinal peristalsis and decreased galactose uptake. All effects of PAF were abolished by the PAF-receptor antagonist ABT491 (2.5 μM). The COX and LOX inhibitors ASA and AA861 (500 μM, 10 μM) did not exhibit barrier-protective effects and the eicosanoid antagonists SQ29548 and MK571 (10 μM, each) only moderately attenuated the loss of vascular fluid, the redistribution to the lumen and the transfer of FITC dextran to the lumen. The steroid dexamethasone (10 μM) showed no barrier-protective properties and failed to prevent edema formation. Quinidine (100 μM) inhibited the increase in arterial pressure, stabilized all the intestinal barriers, and reduced lymph production and the transfer of FITC dextran to the lymph. While quinidine by itself reduced peristalsis, it also obviated paralysis, preserved intestinal functions and prevented edema formation. We conclude that quinidine exerts multiple protective effects against vasoconstriction, edema formation and paralysis in the intestine. The therapeutic use of quinidine for intestinal ailments

  13. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4 Induced Hepatic Fibrosis in Mice.

    Directory of Open Access Journals (Sweden)

    Leola N Chow

    Full Text Available Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM-induced pulmonary fibrosis and carbon tetrachloride (CCl4-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC, the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis.

  14. Antagonist Effects of Veratric Acid against UVB-Induced Cell Damages

    Directory of Open Access Journals (Sweden)

    Deokhoon Park

    2013-05-01

    Full Text Available Ultraviolet (UV radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid is one of the major benzoic acid derivatives from vegetables and fruits and it also occurs naturally in medicinal mushrooms which have been reported to have anti-inflammatory and anti-oxidant activities. However, it has rarely been applied in skin care. This study, therefore, aimed to explore the possible roles of veratric acid in protection against UVB-induced damage in HaCaT cells. Results showed that veratric acid can attenuate cyclobutane pyrimidine dimers (CPDs formation, glutathione (GSH depletion and apoptosis induced by UVB. Furthermore, veratric acid had inhibitory effects on the UVB-induced release of the inflammatory mediators such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of veratric acid on human skin. Overall, results demonstrated significant benefits of veratric acid on the protection of keratinocyte against UVB-induced injuries and suggested its potential use in skin photoprotection.

  15. Antagonist effects of veratric acid against UVB-induced cell damages.

    Science.gov (United States)

    Shin, Seoung Woo; Jung, Eunsun; Kim, Seungbeom; Lee, Kyung-Eun; Youm, Jong-Kyung; Park, Deokhoon

    2013-05-10

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, 3,4-dimethoxybenzoic acid) is one of the major benzoic acid derivatives from vegetables and fruits and it also occurs naturally in medicinal mushrooms which have been reported to have anti-inflammatory and anti-oxidant activities. However, it has rarely been applied in skin care. This study, therefore, aimed to explore the possible roles of veratric acid in protection against UVB-induced damage in HaCaT cells. Results showed that veratric acid can attenuate cyclobutane pyrimidine dimers (CPDs) formation, glutathione (GSH) depletion and apoptosis induced by UVB. Furthermore, veratric acid had inhibitory effects on the UVB-induced release of the inflammatory mediators such as IL-6 and prostaglandin-E2. We also confirmed the safety and clinical efficacy of veratric acid on human skin. Overall, results demonstrated significant benefits of veratric acid on the protection of keratinocyte against UVB-induced injuries and suggested its potential use in skin photoprotection.

  16. PC1, a non-peptide PKR1-preferring antagonist, reduces pain behavior and spinal neuronal sensitization in neuropathic mice.

    Science.gov (United States)

    Guida, F; Lattanzi, R; Boccella, S; Maftei, D; Romano, R; Marconi, V; Balboni, G; Salvadori, S; Scafuro, M A; de Novellis, V; Negri, L; Maione, S; Luongo, L

    2015-01-01

    Peripheral neuropathy is characterized by abnormal pain responses triggered by the release of several mediators and neuronal hyperexcitability at the spinal cord level. Emerging evidence indicates that the enhanced activity of dorsal horn neurons requires communication with glia and microglia, cells that are physiologically involved in neuronal wellbeing. Prokineticins (PKs), which include PK1 and PK2, represent a novel family of chemokines characterized by a unique structural motif comprising five disulfide bonds. They are expressed in the peripheral and central nervous system. PKs bind two G protein coupled receptors, PKR1 and PKR2, and participate in the regulation of several biological processes, including pain sensation. This study aimed to investigate the anti-nociceptive effect of PC1, a non-peptide PKR1-preferring antagonist, in a mouse model of neuropathic pain. To do this, we assessed the activity of spinal cord nociceptive neurons as well as astrocyte and microglia phenotypes after repeated administration of PC1 in vivo. PC1 treatment strongly delayed the development of thermal hyperalgesia and tactile and mechanical allodynia. It also reduced spinal microglial and glial activation 8 days post injury in spared nerve injury (SNI) mice. Neuropathic mice showed an increased level of PK2 protein in the spinal cord, mostly in astrocytes. PC1 treatment completely reversed the increased responsiveness to mechanical stimuli, the decreased threshold of neuronal activation, and the increased spontaneous activity that were observed in nociceptive specific (NS) neurons of SNI mice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta [Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan); Watanabe, Tatsuo [Laboratory of Food Chemistry, School of Food and Nutritional Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan); Imai, Yasuyuki, E-mail: imai@u-shizuoka-ken.ac.jp [Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan)

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  18. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    International Nuclear Information System (INIS)

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta; Watanabe, Tatsuo; Imai, Yasuyuki

    2012-01-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  19. 5-Methoxy-N,N-dimethyltryptamine-induced analgesia is blocked by alpha-adrenoceptor antagonists in rats.

    Science.gov (United States)

    Archer, T.; Danysz, W.; Jonsson, G.; Minor, B. G.; Post, C.

    1986-01-01

    The effects of the alpha-adrenoceptor antagonists prazosin, phentolamine and yohimbine upon 5-methoxy-N,N-dimethyltryptamine (5-MeODMT)-induced analgesia were tested in the hot-plate, tail-flick and shock-titration tests of nociception with rats. Intrathecally injected yohimbine and phentolamine blocked or attenuated the analgesia produced by systemic administration of 5-MeODMT in all three nociceptive tests. Intrathecally administered prazosin attenuated the analgesic effects of 5-MeODMT in the hot-plate and tail-flick tests, but not in the shock titration test. Intrathecal yohimbine showed a dose-related lowering of pain thresholds in saline and 5-MeODMT-treated animals. Phentolamine and prazosin produced normal dose-related curves in the hot-plate test and biphasic effects in the shock titration and tail-flick tests. These results demonstrate a functional interaction between alpha 2-adrenoceptors and 5-HT agonist-induced analgesia at a spinal level in rats. PMID:2877697

  20. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome

    OpenAIRE

    Steiner, Michel A.; Sciarretta, Carla; Pasquali, Anne; Jenck, Francois

    2013-01-01

    The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1) in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF) diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO) associated with metabolic syndrome (MetS...

  1. Effects of the histamine H₃ receptor antagonist ABT-239 on cognition and nicotine-induced memory enhancement in mice.

    Science.gov (United States)

    Kruk, Marta; Miszkiel, Joanna; McCreary, Andrew C; Przegaliński, Edmund; Filip, Małgorzata; Biała, Grażyna

    2012-01-01

    The strong correlation between central histaminergic and cholinergic pathways on cognitive processes has been reported extensively. However, the role of histamine H(3) receptor mechanisms interacting with nicotinic mechanisms has not previously been extensively investigated. The current study was conducted to determine the interactions of nicotinic and histamine H(3) receptor systems with regard to learning and memory function using a modified elevated plus-maze test in mice. In this test, the latency for mice to move from the open arm to the enclosed arm (i.e., transfer latency) was used as an index of memory. We tested whether ABT-239 (4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl), an H(3) receptor antagonist/inverse agonist, had influence on two different stages of memory, i.e., memory acquisition and consolidation (administered prior to or immediately after the first trial, respectively) and whether ABT-239 influenced nicotine-induced memory enhancement. Our results revealed that the acute administration of nicotine (0.035 and 0.175 mg/kg), but not of ABT-239 (0.1-3 mg/kg) reduced transfer latency in the acquisition and consolidation phases. In combination studies, concomitant administration of either ABT-239 (1 and 3 mg/kg) and nicotine (0.035 mg/kg), or ABT-239 (0.1 mg/kg) and nicotine (0.0175 mg/kg) further increased nicotine-induced improvement in both memory acquisition and consolidation. The present data confirm an important role for H(3) receptors in regulating nicotine-induced mnemonic effects since inhibition of H(3) receptors augmented nicotine-induced memory enhancement in mice.

  2. Inhibition of Common Cold-Induced Aggravation of Childhood Asthma by Leukotriene Receptor Antagonists

    Directory of Open Access Journals (Sweden)

    Shigemi Yoshihara

    2012-01-01

    Conclusions: : These findings showed a high prevalence of common cold in younger patients with childhood asthma and indicated that common cold can induce aggravation of asthma. LTRAs are useful for long-term asthma control in very young patients who develop an asthma attack due to a common cold.

  3. Role of Leukotriene Receptor Antagonists in the Treatment of Exercise-Induced Bronchoconstriction: A Review

    Directory of Open Access Journals (Sweden)

    Philteos George S

    2005-06-01

    Full Text Available Abstract Asthma is a very common disorder that still causes significant morbidity and mortality. A high percentage of individuals with asthma also experience exercise-induced bronchoconstriction (EIB. This article reviews the current literature and updates the reader on the safety, efficacy, and clinical applications of leukotriene modifiers in the treatment of EIB.

  4. Antagonist Effects of Veratric Acid against UVB-Induced Cell Damages

    OpenAIRE

    Shin, Seoung; Jung, Eunsun; Kim, Seungbeom; Lee, Kyung-Eun; Youm, Jong-Kyung; Park, Deokhoon

    2013-01-01

    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in human epidermis, resulting in inflammation, photoaging, and photocarcinogenesis. Adequate protection of skin against the harmful effect of UV irradiation is essential. In recent years naturally occurring herbal compounds such as phenolic acids, flavonoids, and high molecular weight polyphenols have gained considerable attention as beneficial protective agents. The simple phenolic veratric acid (VA, ...

  5. Inhibition of Common Cold-Induced Aggravation of Childhood Asthma by Leukotriene Receptor Antagonists

    OpenAIRE

    Shigemi Yoshihara; Hironobu Fukuda; Toshio Abe; Mitsuhiro Nishida; Yumi Yamada; Noriko Kanno; Osamu Arisaka

    2012-01-01

    Background: : Virus infection is an important risk factor for aggravation of childhood asthma. The objective of this study was to examine the effect of drugs on aggravation of asthma induced by a common cold. Methods: : Asthma control was examined in a survey of 1,014 Japanese pediatric patients with bronchial asthma. The occurrence of common cold, asthma control, and drugs used for asthma control were investigated using a modified Childhood Asthma Control Test (C-ACT) for patients aged

  6. KPR-2579, a novel TRPM8 antagonist, inhibits acetic acid-induced bladder afferent hyperactivity in rats.

    Science.gov (United States)

    Aizawa, Naoki; Fujimori, Yoshikazu; Kobayashi, Jun-Ichi; Nakanishi, Osamu; Hirasawa, Hideaki; Kume, Haruki; Homma, Yukio; Igawa, Yasuhiko

    2018-02-21

    Transient receptor potential melastatin 8 (TRPM8) is proposed to be a promising therapeutic target for hypersensitive bladder disorders. We examined the effects of KPR-2579, a novel selective TRPM8 antagonist, on body temperature and on mechanosensitive bladder single-unit afferent activities (SAAs) provoked by intravesical acetic acid (AA) instillation in rats. Female Sprague-Dawley rats were used. Effects of cumulative intravenous (i.v.) administrations of KPR-2579 (0.03-1 mg/kg) on deep body temperature were investigated (N = 18). In separate animals, effects of bolus administration of KPR-2579 (0.03 or 0.3 mg/kg, i.v.) on bladder hyperactivity induced by intravesical instillation of 0.1% AA were investigated using cystometry (N = 57) in a conscious free-moving condition or urethane-anesthetized condition, and SAA measurements (N = 41) were performed in a urethane-anesthetized condition. KPR-2579 at any doses tested did not affect body temperature. In cystometry measurements, a high dose (0.3 mg/kg) of KPR-2579 counteracted the shortened intercontraction interval provoked by AA instillation. In SAA measurements, 48 single afferent fibers (n = 24 in each fiber) were isolated. AA instillations significantly increased the SAAs of C fibers, but not of Aδ fibers, in the presence of KPR-2579's vehicle and a low dose (0.03 mg/kg) of KPR-2579. Pretreatment with a high dose (0.3 mg/kg) of KPR-2579 significantly inhibited the AA-induced activation of C-fiber SAAs. The present results suggest that TRPM8 channels play a role in the AA-induced pathological activation of mechanosensitive bladder C fibers in rats. KRP-2579 may be a promising drug for hypersensitive bladder disorders. © 2018 Wiley Periodicals, Inc.

  7. Stress-induced visceral hypersensitivity in maternally separated rats can be reversed by peripherally restricted histamine-1-receptor antagonists

    NARCIS (Netherlands)

    Stanisor, Oana I.; van Diest, Sophie A.; Yu, Zhumei; Welting, Olaf; Bekkali, Noor; Shi, Jing; de Jonge, Wouter J.; Boeckxstaens, Guy E.; van den Wijngaard, Rene M.

    2013-01-01

    The histamine-1 receptor (H1R) antagonist ketotifen increased the threshold of discomfort in hypersensitive IBS patients. The use of peripherally restricted and more selective H1R antagonists may further improve treatment possibilities. We examined the use of fexofenadine and ebastine to reverse

  8. The IL-6 receptor super-antagonist Sant7 enhances antiproliferative and apoptotic effects induced by dexamethasone and zoledronic acid on multiple myeloma cells.

    Science.gov (United States)

    Tassone, Pierfrancesco; Galea, Eulalia; Forciniti, Samantha; Tagliaferri, Pierosandro; Venuta, Salvatore

    2002-10-01

    Interleukin-6 (IL-6) is the major growth and survival factor for multiple myeloma (MM), and has been shown to protect MM cells from apoptosis induced by a variety of agents. IL-6 receptor antagonists, which prevent the assembly of functional IL-6 receptor complexes, inhibit cell proliferation and induce apoptosis in MM cells. We have investigated whether the IL-6 receptor super-antagonist Sant7 might enhance the antiproliferative and apoptotic effects induced by the combination of dexamethasone (Dex) and zoledronic acid (Zln) on human MM cell lines and primary cells from MM patients. Here we show that each of these compounds individually induced detectable antiproliferative effects on MM cells. Sant7 significantly enhanced growth inhibition and apoptosis induced by Dex and Zln on both MM cell lines and primary MM cells. These results indicate that overcoming IL-6 mediated cell resistance by Sant7 potentiates the effect of glucocorticoides and bisphosphonates on MM cell growth and survival, providing a rationale for therapies including IL-6 antagonists in MM.

  9. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth

    DEFF Research Database (Denmark)

    Greenberger, Lee M; Horak, Ivan D; Filpula, David

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that plays a critical role in angiogenesis, survival, metastasis, drug resistance, and glucose metabolism. Elevated expression of the alpha-subunit of HIF-1 (HIF-1alpha), which occurs in response to hypoxia or activation of growth factor...... the expression of HIF-1alpha mRNA. In vitro, in human prostate (15PC3, PC3, and DU145) and glioblastoma (U373) cells, EZN-2968 induced a potent, selective, and durable antagonism of HIF-1 mRNA and protein expression (IC(50), 1-5 nmol/L) under normoxic and hypoxic conditions associated with inhibition of tumor......-regulation of endogenous HIF-1alpha and vascular endothelial growth factor in the liver. The effect can last for days after administration of single dose of EZN-2968 and is associated with long residence time of locked nucleic acid in certain tissues. In efficacy studies, tumor reduction was found in nude mice implanted...

  10. Effect of the selective NMDA NR2B antagonist, ifenprodil, on acute tolerance to ethanol-induced motor impairment in adolescent and adult rats.

    Science.gov (United States)

    Ramirez, Ruby Liane; Varlinskaya, Elena I; Spear, Linda P

    2011-06-01

    Adolescent rats have been observed to be less sensitive than adults to a number of acute ethanol effects, including ethanol-induced motor impairment. These adolescent insensitivities may be related in part to the more rapid emergence of within session (acute) tolerance in adolescents than adults. Adolescent-related alterations in neural systems that serve as ethanol target sites, including changes in NMDA receptor subunit expression, may influence the responsiveness of adolescents to acute ethanol effects. This study explored the role of NMDA NR2B receptors in the development of acute tolerance to ethanol-induced motor impairment in male adolescent [postnatal day (P)28-30] and adult (P68-70) Sprague-Dawley rats. Motor-impairing effects of ethanol on the stationary inclined plane and blood ethanol concentrations (BECs) were examined following challenge at each age with a functionally equivalent ethanol dose (adolescents: 2.25 g/kg; adults: 1.5 g/kg). Data were collected at two postinjection intervals (10 or 60 minutes) to compare rate of recovery from ethanol intoxication with BEC declines using the Radlow approach (Radlow, 1994) and changes in motor impairment/BEC ratios over time for assessing acute tolerance. Both vehicle-treated adolescent and adult animals showed similar acute tolerance development to the motor-impairing effects of ethanol at these functionally equivalent doses on the stationary inclined plane, as indexed by an increasing time-dependent dissociation between BECs and ethanol-induced motor impairment, with motor impairment declining faster than BECs, as well as by significant declines in motor impairment/BEC ratios over time. Acute tolerance development was reliably blocked by administration of the NR2B antagonist, ifenprodil, (5.0 mg/kg), in adult rats, whereas adolescents were affected by a higher dose (10.0 mg/kg). These data support the suggestion that alterations in NMDA receptor systems occurring during adolescence may contribute to

  11. Reversal of TMS-induced motor twitch by training is associated with a reduction in excitability of the antagonist muscle

    Directory of Open Access Journals (Sweden)

    Fregni Felipe

    2011-08-01

    Full Text Available Abstract Background A single session of isolated repetitive movements of the thumb can alter the response to transcranial magnetic stimulation (TMS, such that the related muscle twitch measured post-training occurs in the trained direction. This response is attributed to transient excitability changes in primary motor cortex (M1 that form the early part of learning. We investigated; (1 whether this phenomenon might occur for movements at the wrist, and (2 how specific TMS activation patterns of opposing muscles underlie the practice-induced change in direction. Methods We used single-pulse suprathreshold TMS over the M1 forearm area, to evoke wrist movements in 20 healthy subjects. We measured the preferential direction of the TMS-induced twitch in both the sagittal and coronal plane using an optical goniometer fixed to the dorsum of the wrist, and recorded electromyographic (EMG activity from the flexor carpi radialis (FCR and extensor carpi radialis (ECR muscles. Subjects performed gentle voluntary movements, in the direction opposite to the initial twitch for 5 minutes at 0.2 Hz. We collected motor evoked potentials (MEPs elicited by TMS at baseline and for 10 minutes after training. Results Repetitive motor training was sufficient for TMS to evoke movements in the practiced direction opposite to the original twitch. For most subjects the effect of the newly-acquired direction was retained for at least 10 minutes before reverting to the original. Importantly, the direction change of the movement was associated with a significant decrease in MEP amplitude of the antagonist to the trained muscle, rather than an increase in MEP amplitude of the trained muscle. Conclusions These results demonstrate for the first time that a TMS-twitch direction change following a simple practice paradigm may result from reduced corticospinal drive to muscles antagonizing the trained direction. Such findings may have implications for training paradigms in

  12. Non-analgesic effects of opioids: management of opioid-induced constipation by peripheral opioid receptor antagonists: prevention or withdrawal?

    Science.gov (United States)

    Holzer, Peter

    2012-01-01

    The therapeutic action of opioid analgesics is compromised by peripheral adverse effects among which opioid-induced constipation (OIC) is the most disabling, with a prevalence reported to vary between 15 and 90 %. Although OIC is usually treated with laxatives, there is insufficient clinical evidence that laxatives are efficacious in this indication. In contrast, there is ample evidence from double- blind, randomized and placebo-controlled trials that peripheral opioid receptor antagonists (PORAs) counteract OIC. This specific treatment modality is currently based on subcutaneous methylnaltrexone for the interruption of OIC in patients with advanced illness, and a fixed combination of oral prolonged-release naloxone with prolonged-release oxycodone for the prevention of OIC in the treatment of non-cancer and cancer pain. Both drugs counteract OIC while the analgesic effect of opioids remains unabated. The clinical studies show that more than 50 % of the patients with constipation under opioid therapy may benefit from the use of PORAs, while PORA-resistant patients are likely to suffer from non-opioid-induced constipation, the prevalence of which increases with age. While the addition of naloxone to oxycodone seems to act by preventing OIC, the intermittent dosing of methylnaltrexone every other day seems to stimulate defaecation by provoking an intestinal withdrawal response. The availability of PORAs provides a novel opportunity to specifically control OIC and other peripheral adverse effects of opioid analgesics (e.g., urinary retention and pruritus). The continuous dosing of a PORA has the advantage of few adverse effects, while intermittent dosing of a PORA can be associated with abdominal cramp-like pain.

  13. Capsaicin-induced central sensitization evokes segmental increases in trigger point sensitivity in humans.

    Science.gov (United States)

    Srbely, John Z; Dickey, James P; Bent, Leah R; Lee, David; Lowerison, Mark

    2010-07-01

    This study investigated whether inducing central sensitization evokes segmental increases in trigger point pressure sensitivity. We evoked central sensitization at the C(5) segment and validated its presence via mechanical cutaneous sensitivity (brush allodynia) testing. Trigger point pressure sensitivity was quantified using the pain pressure threshold (PPT) value. A 50 cm(2) area of the C(5) dermatome at the right lateral elbow was pretreated with 45 degrees heat for 10 minutes. Test subjects (n = 20) then received topical capsaicin cream (0.075%; Medicis, Toronto, Canada) to the C(5) dermatome, whereas control subjects (n = 20) received a topical placebo cream (Biotherm Massage, Montreal, Canada). PPT readings were recorded from the infraspinatus (C(5,6)) and gluteus medius (L(4,5)S(1)) trigger points at zero (pre-intervention), 10, 20, and 30 minutes after intervention; all PPT readings were normalized to pre-intervention (baseline) values. The difference between the PPT readings at the 2 trigger point sites represents the direct influence of segmental mechanisms on the trigger point sensitivity at the infraspinatus site (PPT(seg)). Test subjects demonstrated statistically significant increases in Total Allodynia scores and significant decreases in PPT(seg) at 10, 20, and 30 minutes after application, when compared with control subjects. These results demonstrate that increases in central sensitization evoke increases in trigger point pressure sensitivity in segmentally related muscles. Myofascial pain is the most common form of musculoskeletal pain. Myofascial trigger points play an important role in the clinical manifestation of myofascial pain syndrome. Elucidating the role of central sensitization in the pathophysiology of trigger points is fundamental to developing optimal strategies in the management of myofascial pain syndrome.

  14. Toxic clinical hypoxic radiation sensitizers plus radiation-induced toxicity

    International Nuclear Information System (INIS)

    Richmond, R.C.

    1984-01-01

    The operational definition espoused twelve years ago that clinical hypoxic radiation sensitizers should be nontoxic interferes with the recognition and research of useful radiation sensitizers. Eight years ago the toxic antitumor drug cis-dichlorodiammineplatinum(II) was reported to be a hypoxic radiation sensitizer and the selective antitumor action of this drug was stressed as potentially creating tumor-targeted radiation sensitization. This rationale of oxidative antitumor drugs as toxic and targeted clinical sensitizers is useful, and has led to the study reported here. The antitumor drug cis-(1,1-cyclobutane-dicarboxylato)diammineplatinum(II), or JM-8, is being tested in clinical trials. Cells of S. typhimurium in PBS in the presence of 0.2mM JM-8 are found to be sensitized to irradiation under hypoxic, but not oxic, conditions. JM-8 is nontoxic to bacteria at this concentration, but upon irradiation the JM-8 solution becomes highly toxic. This radiation induced toxicity of JM-8 preferentially develops from hypoxic solution, and thus contributes to the rationale of hypoxic tumor cell destruction

  15. Stereoselective inhibition of thromboxane-induced coronary vasoconstriction by 1,4-dihydropyridine calcium channel antagonists

    International Nuclear Information System (INIS)

    Eltze, M.; Boer, R.; Sanders, K.H.; Boss, H.; Ulrich, W.R.; Flockerzi, D.

    1990-01-01

    The biological activity of the (+)-S- and (-)-R-enantiomers of niguldipine, of the (-)-S- and (+)-R-enantiomers of felodipine and nitrendipine, and of rac-nisoldipine and rac-nimodipine was investigated in vitro and in vivo. Inhibition of coronary vasoconstriction due to the thromboxane A2 (TxA2)-mimetic U-46619 in guinea pig Langendorff hearts, displacement of (+)-[ 3 H]isradipine from calcium channel binding sites of guinea pig skeletal muscle T-tubule membranes, and blood pressure reduction in spontaneously hypertensive rats were determined. The enantiomers were obtained by stereoselective synthesis. Cross-contamination was less than 0.5% for both S- and R-enantiomers of niguldipine and nitrendipine and less than 1% for those of felodipine. From the doses necessary for a 50% inhibition of coronary vasoconstriction, stereoselectivity ratios for (+)-(S)-/(-)-(R)-niguldipine, (-)-(S)-/(+)-(R)-felodipine, and (-)-(S)-/(+)-(R)-nitrendipine of 28, 13, and 7, respectively, were calculated. The potency ratio rac-nisoldipine/rac-nimodipine was 3.5. Ratios obtained from binding experiments and antihypertensive activity were (+)-(S)-/(-)-(R)-niguldipine = 45 and 35, (-)-(S)-/(+)-(R)-felodipine = 12 and 13, (-)-(S)-/(+)-(R)-nitrendipine = 8 and 8, and rac-nisoldipine/rac-nimodipine = 8 and 7, respectively. Highly significant correlations were found between the in vitro potency of the substances to prevent U-46619-induced coronary vasoconstriction and their affinity for calcium channel binding sites as well as their antihypertensive activity

  16. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model.

    Science.gov (United States)

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta; Watanabe, Tatsuo; Imai, Yasuyuki

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Andrographolide sensitizes prostate cancer cells to TRAIL-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Ruo-Jing Wei

    2018-01-01

    Full Text Available Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is a promising agent for anticancer therapy. The identification of small molecules that can establish the sensitivity of prostate cancer (PCa cells to TRAIL-induced apoptosis is crucial for the targeted treatment of PCa. PC3, DU145, JAC-1, TsuPr1, and LNCaP cells were treated with Andrographolide (Andro and TRAIL, and the apoptosis was measured using the Annexin V/PI double staining method. Real time-polymerase chain reaction (PCR and Western blot analysis were performed to measure the expression levels of target molecules. RNA interference technique was used to down-regulate the expression of the target protein. We established a nude mouse xenograft model of PCa, which was used to measure the caspase-3 activity in the tumor cells using flow cytometry. In this research study, our results demonstrated that Andro preferentially increased the sensitivity of PCa cells to TRAIL-induced apoptosis at subtoxic concentrations, and the regulation mechanism was related to the up-regulation of DR4. In addition, it also increased the p53 expression and led to the generation of reactive oxygen species (ROS in the cells. Further research revealed that the DR4 inhibition, p53 expression, and ROS generation can significantly reduce the apoptosis induced by the combination of TRAIL and Andro in PCa cells. In conclusion, Andro increases the sensitivity of PCa cells to TRAIL-induced apoptosis through the generation of ROS and up-regulation of p53 and then promotes PCa cell apoptosis associated with the activation of DR4.

  18. Andrographolide sensitizes prostate cancer cells to TRAIL-induced apoptosis.

    Science.gov (United States)

    Wei, Ruo-Jing; Zhang, Xin-Shi; He, Da-Lin

    2018-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for anticancer therapy. The identification of small molecules that can establish the sensitivity of prostate cancer (PCa) cells to TRAIL-induced apoptosis is crucial for the targeted treatment of PCa. PC3, DU145, JAC-1, TsuPr1, and LNCaP cells were treated with Andrographolide (Andro) and TRAIL, and the apoptosis was measured using the Annexin V/PI double staining method. Real time-polymerase chain reaction (PCR) and Western blot analysis were performed to measure the expression levels of target molecules. RNA interference technique was used to down-regulate the expression of the target protein. We established a nude mouse xenograft model of PCa, which was used to measure the caspase-3 activity in the tumor cells using flow cytometry. In this research study, our results demonstrated that Andro preferentially increased the sensitivity of PCa cells to TRAIL-induced apoptosis at subtoxic concentrations, and the regulation mechanism was related to the up-regulation of DR4. In addition, it also increased the p53 expression and led to the generation of reactive oxygen species (ROS) in the cells. Further research revealed that the DR4 inhibition, p53 expression, and ROS generation can significantly reduce the apoptosis induced by the combination of TRAIL and Andro in PCa cells. In conclusion, Andro increases the sensitivity of PCa cells to TRAIL-induced apoptosis through the generation of ROS and up-regulation of p53 and then promotes PCa cell apoptosis associated with the activation of DR4.

  19. Role of Prefrontal Serotonergic and Dopaminergic Systems in Encounter-Induced Hyperactivity in Methamphetamine-Sensitized Mice.

    Science.gov (United States)

    Tanaka, Tatsunori; Ago, Yukio; Umehara, Chiaki; Imoto, Emina; Hasebe, Shigeru; Hashimoto, Hitoshi; Takuma, Kazuhiro; Matsuda, Toshio

    2017-05-01

    Isolation-reared mice show social encounter-induced hyperactivity with activation of prefrontal serotonergic and dopaminergic systems, but it is not known whether this stress response is observed in other pathological conditions. Here we examined whether the social encounter stimulation induces abnormal behavior during withdrawal in chronic methamphetamine-treated mice. To induce methamphetamine-induced behavioral sensitization, male mice were injected with methamphetamine (1 mg/kg) once daily for 7 days. The encounter with an intruder elicited hyperactivity 24 h after the last injection of methamphetamine in methamphetamine-sensitized mice. This response was observed even as long as 2 weeks after withdrawal of methamphetamine. The encounter increased c-Fos expression in the prefrontal cortex, dorsal raphe nucleus and ventral tegmental area in methamphetamine-sensitized mice, while it did not in control mice. Furthermore, the encounter increased extracellular serotonin (5-HT) and dopamine, but not noradrenaline, levels in the prefrontal cortex in methamphetamine-sensitized mice. Local injection of 5,7-dihydroxytryptamine and 6-hydroxydopamine into the prefrontal cortex attenuated encounter-induced hyperactivity in methamphetamine-sensitized mice and it markedly decreased prefrontal 5-HT and dopamine levels, respectively. Pharmacological analysis showed that the encounter-induced hyperactivity is mediated by dopamine D1 receptors and 5-HT2A receptors and attenuated by anxiolytics and antidepressants such as diazepam, osemozotan and selective 5-HT reuptake inhibitors. The effect of paroxetine was blocked by the 5-HT3 receptor antagonist azasetron. The present study shows that psychological stress elicits hyperactivity with activation of prefrontal 5-HT and dopamine systems in methamphetamine-dependent mice and suggests that the abnormal behavior is associated with anxiety and depression. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  20. NMDA receptor activation antagonizes the NMDA antagonist-induced antianxiety effect in the elevated plus-maze test in mice.

    Science.gov (United States)

    Poleszak, Ewa; Serefko, Anna; Szopa, Aleksandra; Wośko, Sylwia; Dudka, Jarosław; Wróbel, Andrzej; Oniszczuk, Tomasz; Wlaź, Piotr

    2013-01-01

    The purpose of this study was to determine how the activation of different regulatory domains of the NMDA complex affects the antianxiety effect of antagonists acting at its distinct binding sites. The anxiolytic-like activity was assessed by the elevated plus-maze test in mice. The anxiolytic activity of CGP 37849 (a competitive NMDA receptor antagonist) and L-701,324 (an antagonist at glycine site) was confirmed, but effects of both were significantly reduced by N-methyl-D-aspartic acid (NMDA) or by D-serine agonists at glutamate and glycine site of the NMDA receptor complex, respectively. The obtained data suggest that stimulation of the glutamate or glycine recognition site of the NMDA receptor complex significantly decreases the antianxiety properties of antagonists of either site.

  1. Closed headpiece of integrin [alpah]IIb[beta]3 and its complex with an [alpha]IIb[beta]3-specific antagonist that does not induce opening

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Jieqing; Zhu, Jianghai; Negri, Ana; Provasi, Davide; Filizola, Marta; Coller, Barry S.; Springer, Timothy A. (Sinai); (Rockefeller); (CH-Boston)

    2011-08-24

    The platelet integrin {alpha}{sub IIb}{beta}{sub 3} is essential for hemostasis and thrombosis through its binding of adhesive plasma proteins. We have determined crystal structures of the {alpha}{sub IIb}{beta}{sub 3} headpiece in the absence of ligand and after soaking in RUC-1, a novel small molecule antagonist. In the absence of ligand, the {alpha}{sub IIb}{beta}{sub 3} headpiece is in a closed conformation, distinct from the open conformation visualized in presence of Arg-Gly-Asp (RGD) antagonists. In contrast to RGD antagonists, RUC-1 binds only to the {alpha}{sub IIb} subunit. Molecular dynamics revealed nearly identical binding. Two species-specific residues, {alpha}{sub IIb} Y190 and {alpha}{sub aIIb} D232, in the RUC-1 binding site were confirmed as important by mutagenesis. In sharp contrast to RGD-based antagonists, RUC-1 did not induce {alpha}{sub IIb}{beta}{sub 3} to adopt an open conformation, as determined by gel filtration and dynamic light scattering. These studies provide insights into the factors that regulate integrin headpiece opening, and demonstrate the molecular basis for a novel mechanism of integrin antagonism.

  2. AMN082, a metabotropic glutamate receptor 7 allosteric agonist, attenuates locomotor sensitization and cross-sensitization induced by cocaine and morphine in mice.

    Science.gov (United States)

    Jenda, M; Gawel, K; Marszalek, M; Komsta, L; Kotlinska, J H

    2015-03-03

    Previous studies have indicated that metabotropic glutamate receptors 7 (mGluR7s) are involved in drug addiction. However, the role of these receptors in drug-induced behavioral sensitization is unknown. The aim of the present study was to determine whether systemic injection of AMN082, a selective mGluR7 allosteric agonist, reduces the cocaine- and morphine-induced hyperactivity and the development and expression of locomotor sensitization, and also affects the reciprocal cross-sensitization to the stimulant effect of cocaine and morphine in mice. AMN082 (1.25-10.0 mg/kg, i.p.) did not have an impact on locomotion of naive mice and did not affect the acute cocaine- or morphine-induced hyperactivity, except the dose of 10 mg/kg that suppressed the locomotor effect of both drugs. Repeated exposure to cocaine or morphine (10 mg/kg, 5× every 3 days) gradually increased locomotion during induction of sensitization and after 4 (cocaine) or 7 day (morphine) withdrawal phase when challenged with cocaine (10 mg/kg, i.p.) or morphine (10 mg/kg, i.p.) on day 17 or 20, respectively. Pretreatment of animals with the lower doses of AMN082 (1.25-5.0 mg/kg, i.p.), 30 min before every cocaine or morphine injection during repeated drug administration or before cocaine or morphine challenge, dose-dependently attenuated the development, as well as the expression of cocaine or morphine locomotor sensitization. AMN082 also inhibited the reciprocal cross-sensitization between these drugs. Prior to administration of MMPIP (10 mg/kg, i.p.), a selective mGluR7 antagonist reversed the inhibitory effect of AMN082 on the development or expression of cocaine or morphine sensitization. These data indicate that AMN082 attenuated the development and expression of cocaine and morphine sensitization, and the reciprocal cross-sensitization via a mechanism that involves mGluR7s. Thus, AMN082 might have therapeutic implications not only in the treatment of cocaine or opioid addiction but also in the

  3. Chronic escitalopram treatment caused dissociative adaptation in serotonin (5-HT) 2C receptor antagonist-induced effects in REM sleep, wake and theta wave activity.

    Science.gov (United States)

    Kostyalik, Diána; Kátai, Zita; Vas, Szilvia; Pap, Dorottya; Petschner, Péter; Molnár, Eszter; Gyertyán, István; Kalmár, Lajos; Tóthfalusi, László; Bagdy, Gyorgy

    2014-03-01

    Several multi-target drugs used in treating psychiatric disorders, such as antidepressants (e.g. agomelatine, trazodone, nefazodone, amitriptyline, mirtazapine, mianserin, fluoxetine) or most atypical antipsychotics, have 5-hydroxytryptamine 2C (5-HT2C) receptor-blocking property. Adaptive changes in 5-HT2C receptor-mediated functions are suggested to contribute to therapeutic effects of selective serotonin reuptake inhibitor (SSRI) antidepressants after weeks of treatment, at least in part. Beyond the mediation of anxiety and other functions, 5-HT2C receptors are involved in sleep regulation. Anxiety-related adaptive changes caused by antidepressants have been studied extensively, although sleep- and electroencephalography (EEG)-related functional studies are still lacking. The aim of this study was to investigate the effects of chronic SSRI treatment on 5-HT2C receptor antagonist-induced functions in different vigilance stages and on quantitative EEG (Q-EEG) spectra. Rats were treated with a single dose of the selective 5-HT2C receptor antagonist SB-242084 (1 mg/kg, i.p.) or vehicle at the beginning of passive phase following a 20-day-long SSRI (escitalopram; 10 mg/kg/day, osmotic minipump) or VEHICLE pretreatment. Fronto-parietal electroencephalogram, electromyogram and motility were recorded during the first 3 h of passive phase. We found that the chronic escitalopram pretreatment attenuated the SB-242084-caused suppression in rapid eye movement sleep (REMS). On the contrary, the 5-HT2C receptor antagonist-induced elevations in passive wake and theta (5-9 Hz) power density during active wake and REMS were not affected by the SSRI. In conclusion, attenuation in certain, but not all vigilance- and Q-EEG-related functions induced by the 5-HT2C receptor antagonist, suggests dissociation in 5-HT2C receptor adaptation.

  4. A randomised trial evaluating the effects of the TRPV1 antagonist SB705498 on pruritus induced by histamine, and cowhage challenge in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Rachel A Gibson

    Full Text Available Transient receptor potential vanilloid type 1 (TRPV1 is a non-selective cation channel widely expressed in skin tissues, and peripheral sensory nerve fibres. Activation of TRPV1 releases neuropeptides; the resulting neurogenic inflammation is believed to contribute to the development of pruritus. A TRPV1 antagonist has the potential to perform as an anti-pruritic agent. SB705498 is a TRPV1 antagonist that has demonstrated in vitro activity against cloned TRPV1 human receptors and when orally administered has demonstrated pharmacodynamic activity in animal models and clinical studies.To select a topical dose of SB705498 using the TRPV1 agonist capsaicin; to confirm engagement of the TRPV1 antagonistic action of SB705498 and assess whether the dose selected has an effect on itch induced by two challenge agents.A clinical study was conducted in 16 healthy volunteers to assess the effects of 3 doses of SB705498 on skin flare induced by capsaicin. Subjects with a robust capsaicin response were chosen to determine if the selected topical formulation of SB705498 had an effect on challenge agent induced itch.Following capsaicin challenge the greatest average reduction in area of flare was seen for the 3% formulation. This dose was selected for further investigation. Itch intensity induced by two challenge agents (cowhage and histamine was assessed on the Computerised Visual Analogue Scale. The difference in average itch intensity (Weighted Mean Over 15 Mins between the 3% dose of SB705498 and placebo for the cowhage challenge was -0.64, whilst the histamine challenge showed on average a -4.65 point change.The 3% topical formulation of SB705498 cream was clinically well tolerated and had target specific pharmacodynamic activity. However there were no clinically significant differences on pruritus induced by either challenge agent in comparison to placebo. SB705498 is unlikely to be of symptomatic benefit for histaminergic or non-histaminergic induced

  5. The ability of H1 or H2 receptor antagonists or their combination in counteracting the glucocorticoid-induced alveolar bone loss in rats.

    Science.gov (United States)

    Ezzat, Bassant A; Abbass, Marwa M S

    2014-02-01

    The aim of the present study was to compare between three possible osteoporotic treatments in prevention of glucocorticoid-induced alveolar bone loss. Fifty adult female Wistar rats with an average weight 150-200 g were randomized into five groups: group I (control) was intraperitoneally injected with saline. The other experimental groups (II & III, IV & V) were intraperitoneally injected with 200 µg/100 g body weight dexamethasone. The experimental groups III, IV and V received intraperitoneal injection of 10 mg/kg/day pheniramine maleate (H1 receptor antagonist), ranitidine hydrochloride (H2 receptor antagonist) and concomitant doses of both H1 & H2 receptor antagonists respectively. After 30 days, the rats have been sacrificed. The mandibles were examined histologically, histochemically and histomorphometrically. The bone mineral density was measured using dual-energy X-ray absorptiometry (DEXA). Histopathologically the glucocorticoid group showed wide medullary cavities with wide osteocytic lacunae. These marrow cavities were reduced in the prophylactic groups (III, IV) but increased in group V. Bone histomorphometric analysis revealed improvement in static bone parameters in groups III and IV and deterioration in group V in comparison to group II. The DEXA revealed significant reduction in the bone mineral density in all experimental groups compared to the control group. In a rat model, the administration of H1 or H2 receptor antagonists separately could minimize the alveolar bone loss caused by the administration of glucocorticoids while concomitant administration of both H1 and H2 receptor antagonists deteriorated the bone condition. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Necrose cutânea induzida por antagonistas da vitamina K Skin necrosis induced by vitamin K antagonists

    Directory of Open Access Journals (Sweden)

    Jose Manoel da Silva Silvestre

    2009-12-01

    Full Text Available Os anticoagulantes orais que atuam através do antagonismo à vitamina K são utilizados na prática clínica há muito tempo, porém ainda há dificuldades no seu manejo e na condução das complicações. Entre as complicações, as mais conhecidas são os transtornos hemorrágicos, mas outras também devem ser reconhecidas, tais como a necrose induzida por varfarina. Esta é uma grave, porém rara complicação, cuja fisiopatologia é ainda obscura e cujas causas são indefinidas. Dentre as possíveis causas, as mais prováveis são a deficiência de proteína C e de proteína S, reações de hipersensibilidade e deficiência de fator VII. Há maior incidência desta complicação entre mulheres de meia-idade, acometendo preferencialmente mamas e glúteos. As medidas mais importantes para o tratamento são: suspensão imediata da droga, uso de heparina não fracionada ou de baixo peso molecular em doses terapêuticas, emprego da vitamina K e, eventualmente, infusão de plasma fresco congelado ou de proteína C ativada recombinante.Oral anticoagulants acting via vitamin K antagonists have long been employed in the clinical practice. However, difficulties related to the management of treatment regimens and complications still persist. Among the complications, bleeding disorders are widely known, but others should also be taken into consideration, such as warfarin-induced skin necrosis. The pathophysiology of this rare but severe complication is still obscure, and its causes remain to be defined. Among possible causes, protein C and protein S deficiency, hypersensitivity reactions and VII factor deficiency are the most probable ones. There is an increased incidence of warfarin-induced skin necrosis among middle-aged women, usually affecting breasts and buttocks. The most important treatment measures are immediate discontinuation of the drug, use of unfractionated or low-molecular-weight heparin at therapeutic doses, use of vitamin K and

  7. BITC Sensitizes Pancreatic Adenocarcinomas to TRAIL-induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Christina A. Wicker

    2009-01-01

    Full Text Available Pancreatic adenocarcinoma is an aggressive cancer with a greater than 95% mortality rate and short survival after diagnosis. Chemotherapeutic resistance hinders successful treatment. This resistance is often associated with mutations in codon 12 of the K-Ras gene (K-Ras 12, which is present in over 90% of all pancreatic adenocarcinomas. Codon 12 mutations maintain Ras in a constitutively active state leading to continuous cellular proliferation. Our study determined if TRAIL resistance in pancreatic adenocarcinomas with K-Ras 12 mutations could be overcome by first sensitizing the cells with Benzyl isothiocyanate (BITC. BITC is a component of cruciferous vegetables and a cell cycle inhibitor. BxPC3, MiaPaCa2 and Panc-1 human pancreatic adenocarcinoma cell lines were examined for TRAIL resistance. Our studies show BITC induced TRAIL sensitization by dual activation of both the extrinsic and intrinsic apoptotic pathways.

  8. Effect of glycine site/NMDA receptor antagonist MRZ2/576 on the conditioned place preference and locomotor activity induced by morphine in mice*

    OpenAIRE

    Zhu, Yong-ping; Long, Zai-hao; Zheng, Ming-lan; Binsack, Ralf

    2006-01-01

    Objective: To study the effect of glycine site/NMDA (N-methyl-D-aspartate) receptor antagonist MRZ2/576 on the conditioned place preference (CPP) and locomotor activity induced by morphine in mice. Methods: Different doses (1.25, 2.5 and 5 mg/kg, i.p.) of MRZ2/576 were used to evaluate the effect of MRZ2/576 on the acquisition and expression of CPP induced by morphine (5 mg/kg) in mice. In addition, we examined the locomotor activity of mice in conditioning and testing phase of CPP paradigm. ...

  9. Central α-adrenoceptors contribute to mustard oil-induced central sensitization in the rat medullary dorsal horn.

    Science.gov (United States)

    Wang, H; Xie, Y F; Chiang, C Y; Dostrovsky, J O; Sessle, B J

    2013-04-16

    Our previous studies have demonstrated that application of the inflammatory irritant mustard oil (MO) to the tooth pulp produces trigeminal central sensitization that includes increases in mechanoreceptive field size and responses to noxious stimuli and decrease in activation threshold in brainstem nociceptive neurons of trigeminal subnucleus caudalis (the medullary dorsal horn, MDH). The aim of the present study was to test if central noradrenergic processes are involved in the central sensitization of MDH neurons and if α1-adrenoceptors or α2-adrenoceptors or both are involved. In urethane/α-chloralose-anesthetized rats, the activity of extracellularly recorded and functionally identified single nociceptive neurons in the MDH was studied. Continuous intrathecal (i.t.) superfusion of the adrenergic modulator guanethidine and α-adrenoceptor blocker phentolamine or selective α1-adrenoceptor antagonist prazosin over the medulla strongly attenuated all three MO-induced parameters of central sensitization in the MDH nociceptive neurons, compared to phosphate-buffered saline (as vehicle control). In contrast, i.t. superfusion of the selective α2-adrenoceptor antagonist yohimbine had little effect on the mechanoreceptive field expansion and the decreased mechanical activation threshold, and indeed facilitated responses to noxious stimuli of sensitized nociceptive neurons. Superfusion of each of the four chemicals alone did not affect baseline nociceptive neuronal properties. These findings provide the first documentation of the involvement of central noradrenergic processes in MDH in the development of the central sensitization, and that α1- and α2-adrenoceptors may be differentially involved. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Sensitization for Anticancer Drug-Induced Apoptosis by Betulinic Acid

    Directory of Open Access Journals (Sweden)

    Simone Fulda

    2005-02-01

    Full Text Available We previously described that betulinic acid (BetA, a naturally occurring pentacyclic triterpenoid, induces apoptosis in tumor cells through the mitochondrial pathway. Here, for the first time, we provide evidence that BetA cooperated with anticancer drugs to induce apoptosis and to inhibit clonogenic survival of tumor cells. Combined treatment with BetA and anticancer drugs acted in concert to induce loss of mitochondrial membrane potential and the release of cytochrome c and Smac from mitochondria, resulting in activation of caspases and apoptosis. Overexpression of Bcl-2, which blocked mitochondrial perturbations, also inhibited the cooperative effect of BetA and anticancer drugs, indicating that cooperative interaction involved the mitochondrial pathway. Notably, cooperation of BetA and anticancer drugs was found for various cytotoxic compounds with different modes of action (e.g., doxorubicin, cisplatin, Taxol, VP16, or actinomycin D. Importantly, BetA and anticancer drugs cooperated to induce apoptosis in different tumor cell lines, including p53 mutant cells, and also in primary tumor cells, but not in human fibroblasts indicating some tumor specificity. These findings indicate that using BetA as sensitizer in chemotherapy-based combination regimens may be a novel strategy to enhance the efficacy of anticancer therapy, which warrants further investigation.

  11. Estradiol facilitation of cocaine-induced locomotor sensitization in female rats requires activation of mGluR5.

    Science.gov (United States)

    Martinez, Luis A; Peterson, Brittni M; Meisel, Robert L; Mermelstein, Paul G

    2014-09-01

    In comparison to men, women exhibit enhanced responsiveness to the stimulating and addictive properties of cocaine. A growing body of evidence implicates the steroid hormone estradiol in mediating this sex difference, yet the mechanisms underlying estradiol enhancement of behavioral responses to cocaine in females are not known. Recently, we have found that estrogen receptor alpha (ERα) functionally couples with the metabotropic glutamate receptor 5 (mGluR5) to mediate the effects of estradiol on both cellular activation as well as dendritic spine plasticity in brain regions involved in cocaine-induced behavioral sensitization. Thus, we sought to determine whether mGluR5 activation is required for the facilitative effects of estradiol on locomotor responses to cocaine. To test this hypothesis, ovariectomized (OVX) female rats were tested for locomotor activity on the first and fifth days of daily systemic injections of cocaine. For the 2 days prior to each locomotor test, animals were injected with the mGluR5 antagonist MPEP (or vehicle) and estradiol (or oil). MPEP treatment blocked the facilitative effects of estradiol on cocaine-induced locomotor sensitization, without affecting acute responses to cocaine or the inhibitory actions of estradiol on weight gain. Considered together, these data indicate that mGluR5 activation is critical for the actions of estradiol on cocaine-induced behavioral sensitization. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Peripherally Administered Y2-Receptor Antagonist BIIE0246 Prevents Diet-Induced Obesity in Mice With Excess Neuropeptide Y, but Enhances Obesity in Control Mice.

    Science.gov (United States)

    Ailanen, Liisa; Vähätalo, Laura H; Salomäki-Myftari, Henriikka; Mäkelä, Satu; Orpana, Wendy; Ruohonen, Suvi T; Savontaus, Eriika

    2018-01-01

    Neuropeptide Y (NPY) plays an important role in the regulation of energy homeostasis in the level of central and sympathetic nervous systems (SNSs). Genetic silencing of peripheral Y 2 -receptors have anti-obesity effects, but it is not known whether pharmacological blocking of peripheral Y 2 -receptors would similarly benefit energy homeostasis. The effects of a peripherally administered Y 2 -receptor antagonist were studied in healthy and energy-rich conditions with or without excess NPY. Genetically obese mice overexpressing NPY in brain noradrenergic nerves and SNS (OE-NPY DβH ) represented the situation of elevated NPY levels, while wildtype (WT) mice represented the normal NPY levels. Specific Y 2 -receptor antagonist, BIIE0246, was administered (1.3 mg/kg/day, i.p.) for 2 or 4.5 weeks to OE-NPY DβH and WT mice feeding on chow or Western diet. Treatment with Y 2 -receptor antagonist increased body weight gain in both genotypes on chow diet and caused metabolic disturbances (e.g., hyperinsulinemia and hypercholesterolemia), especially in WT mice. During energy surplus (i.e., on Western diet), blocking of Y 2 -receptors induced obesity in WT mice, whereas OE-NPY DβH mice showed reduced fat mass gain, hepatic glycogen and serum cholesterol levels relative to body adiposity. Thus, it can be concluded that with normal NPY levels, peripheral Y 2 -receptor antagonist has no potential for treating obesity, but oppositely may even induce metabolic disorders. However, when energy-rich diet is combined with elevated NPY levels, e.g., stress combined with an unhealthy diet, Y 2 -receptor antagonism has beneficial effects on metabolic status.

  13. Monomeric tartrate resistant acid phosphatase induces insulin sensitive obesity.

    Directory of Open Access Journals (Sweden)

    Pernilla Lång

    2008-03-01

    Full Text Available Obesity is associated with macrophage infiltration of adipose tissue, which may link adipose inflammation to insulin resistance. However, the impact of inflammatory cells in the pathophysiology of obesity remains unclear. Tartrate resistant acid phosphatase (TRAP is an enzyme expressed by subsets of macrophages and osteoclasts that exists either as an enzymatically inactive monomer or as an active, proteolytically processed dimer.Using mice over expressing TRAP, we show that over-expression of monomeric, but not the dimeric form in adipose tissue leads to early onset spontaneous hyperplastic obesity i.e. many small fat cells. In vitro, recombinant monomeric, but not proteolytically processed TRAP induced proliferation and differentiation of mouse and human adipocyte precursor cells. In humans, monomeric TRAP was highly expressed in the adipose tissue of obese individuals. In both the mouse model and in the obese humans the source of TRAP in adipose tissue was macrophages. In addition, the obese TRAP over expressing mice exhibited signs of a low-grade inflammatory reaction in adipose tissue without evidence of abnormal adipocyte lipolysis, lipogenesis or insulin sensitivity.Monomeric TRAP, most likely secreted from adipose tissue macrophages, induces hyperplastic obesity with normal adipocyte lipid metabolism and insulin sensitivity.

  14. RF313, an orally bioavailable neuropeptide FF receptor antagonist, opposes effects of RF-amide-related peptide-3 and opioid-induced hyperalgesia in rodents.

    Science.gov (United States)

    Elhabazi, Khadija; Humbert, Jean-Paul; Bertin, Isabelle; Quillet, Raphaelle; Utard, Valérie; Schneider, Séverine; Schmitt, Martine; Bourguignon, Jean-Jacques; Laboureyras, Emilie; Ben Boujema, Meric; Simonnet, Guy; Ancel, Caroline; Simonneaux, Valérie; Beltramo, Massimiliano; Bucher, Bernard; Sorg, Tania; Meziane, Hamid; Schneider, Elodie; Petit-Demoulière, Benoit; Ilien, Brigitte; Bihel, Frédéric; Simonin, Frédéric

    2017-05-15

    Although opiates represent the most effective analgesics, their use in chronic treatments is associated with numerous side effects including the development of pain hypersensitivity and analgesic tolerance. We recently identified a novel orally active neuropeptide FF (NPFF) receptor antagonist, RF313, which efficiently prevents the development of fentanyl-induced hyperalgesia in rats. In this study, we investigated the properties of this compound into more details. We show that RF313 exhibited a pronounced selectivity for NPFF receptors, antagonist activity at NPFF1 receptor (NPFF1R) subtype both in vitro and in vivo and no major side effects when administered in mice up to 30 mg/kg. When co-administered with opiates in rats and mice, it improved their analgesic efficacy and prevented the development of long lasting opioid-induced hyperalgesia. Moreover, and in marked contrast with the dipeptidic NPFF receptor antagonist RF9, RF313 displayed negligible affinity and no agonist activity (up to 100 μM) toward the kisspeptin receptor. Finally, in male hamster, RF313 had no effect when administered alone but fully blocked the increase in LH induced by RFRP-3, while RF9 per se induced a significant increase in LH levels which is consistent with its ability to activate kisspeptin receptors. Altogether, our data indicate that RF313 represents an interesting compound for the development of therapeutic tools aiming at improving analgesic action of opiates and reducing adverse side effects associated with their chronic administration. Moreover, its lack of agonist activity at the kisspeptin receptor indicates that RF313 might be considered a better pharmacological tool, when compared to RF9, to examine the regulatory roles of RF-amide-related peptides and NPFF1R in reproduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The cholecystokinin-B receptor antagonist CI-988 failed to affect CCK-4 induced symptoms in panic disorder patients

    NARCIS (Netherlands)

    vanMegen, HJGM; Westenberg, HGM; denBoer, JA; Slaap, B; vanEsRadhakishun, F; Pande, AC

    The effects of the cholecystokinin-B (CCK-B) receptor antagonist CI-988 on symptoms elicited by the cholecystokinin tetrapeptide (CCK4) were studied in DSM-IIIR patients with panic disorder. The study employed a double-blind, two-period incomplete block design. Patients (n = 14) received two

  16. The Histamine H3 Receptor Antagonist E159 Reverses Memory Deficits Induced by Dizocilpine in Passive Avoidance and Novel Object Recognition Paradigm in Rats

    Directory of Open Access Journals (Sweden)

    Alaa Alachkar

    2017-10-01

    Full Text Available The involvement of histamine H3 receptors (H3Rs in memory is well known, and the potential of H3R antagonists in therapeutic management of neuropsychiatric diseases, e.g., Alzheimer disease (AD is well established. Therefore, the effects of histamine H3 receptor (H3R antagonist E159 (2.5–10 mg/kg, i.p. in adult male rats on dizocilpine (DIZ-induced memory deficits were studied in passive avoidance paradigm (PAP and in novel object recognition (NOR using pitolisant (PIT and donepezil (DOZ as standard drugs. Upon acute systemic pretreatment of E159 at three different doses, namely 2.5, 5, and 10 mg/kg, i.p., 2.5 and 5 but not 10 mg/kg of E159 counteracted the DIZ (0.1 mg-induced memory deficits, and this E159 (2.5 mg-elicited memory-improving effects in DIZ-induced amnesic model were moderately abrogated after acute systemic administration of scopolamine (SCO, H2R antagonist zolantidine (ZOL, but not with H1R antagonist pyrilamine to the animals. Moreover, the observed memory-enhancing effects of E159 (2.5 mg/kg, i.p. were strongly abrogated when animals were administered with a combination of SCO and ZOL. Furthermore, the E159 (2.5 mg-provided significant memory-improving effect of in DIZ-induced short-term memory (STM impairment in NOR was comparable to the DOZ-provided memory-enhancing effect, and was abolished when animals were injected with the CNS-penetrant histamine H3R agonist R-(α-methylhistamine (RAMH. However, E159 at a dose of 2.5 mg/kg failed to exhibit procognitive effect on DIZ-induced long-term memory (LTM in NOR. Furthermore, the results observed revealed that E159 (2.5 mg/kg did not alter anxiety levels and locomotor activity of animals naive to elevated-plus maze (EPM, demonstrating that improved performances with E159 (2.5 mg/kg in PAP or NOR are unrelated to changes in emotional responding or in spontaneous locomotor activity. These results provide evidence for the potential of drugs targeting H3Rs for the treatment of

  17. The Fly Sensitizing Pigment Enhances UV Spectral Sensitivity While Preventing Polarization-Induced Artifacts

    Directory of Open Access Journals (Sweden)

    Marko Ilić

    2018-02-01

    Full Text Available Microvillar photoreceptors are intrinsically capable of detecting the orientation of e-vector of linearly polarized light. They provide most invertebrates with an additional sensory channel to detect important features of their visual environment. However, polarization sensitivity (PS of photoreceptors may lead to the detection of polarization-induced false colors and intensity contrasts. Most insect photoreceptors are thus adapted to have minimal PS. Flies have twisted rhabdomeres with microvilli rotated along the length of the ommatidia to reduce PS. The additional UV-absorbing sensitizing pigment on their opsin minimizes PS in the ultraviolet. We recorded voltage from Drosophila photoreceptors R1–6 to measure the spectral dependence of PS and found that PS in the UV is invariably negligible but can be substantial above 400 nm. Using modeling, we demonstrate that in R1–6 without the sensitizing pigment, PS in the UV (PSUV would exceed PS in the visible part of the spectrum (PSVIS by a factor PSUV/PSVIS = 1.2–1.8, as lower absorption of Rh1 rhodopsin reduces self-screening. We use polarimetric imaging of objects relevant to fly polarization vision to show that their degree of polarization outdoors is highest in the short-wavelength part of the spectrum. Thus, under natural illumination, the sensitizing pigment in R1–6 renders even those cells with high PS in the visible part unsuitable for proper polarization vision. We assume that fly ventral polarization vision can be mediated by R7 alone, with R1–6 serving as an unpolarized reference channel.

  18. 2,8-Diazaspiro[4.5]decan-8-yl)pyrimidin-4-amine potent CCR4 antagonists capable of inducing receptor endocytosis.

    Science.gov (United States)

    Shukla, Lena; Ajram, Laura A; Begg, Malcolm; Evans, Brian; Graves, Rebecca H; Hodgson, Simon T; Lynn, Sean M; Miah, Afjal H; Percy, Jonathan M; Procopiou, Panayiotis A; Richards, Stephen A; Slack, Robert J

    2016-06-10

    A number of potent 2,8-diazaspiro[4.5]decan-8-yl)pyrimidin-4-amine CCR4 antagonists binding to the extracellular allosteric site were synthesised. (R)-N-(2,4-Dichlorobenzyl)-2-(2-(pyrrolidin-2-ylmethyl)-2,8-diazaspiro[4.5]decan-8-yl)pyrimidin-4-amine (R)-(18a) has high affinity in both the [(125)I]-TARC binding assay with a pKi of 8.8, and the [(35)S]-GTPγS functional assay with a pIC50 of 8.1, and high activity in the human whole blood actin polymerisation assay (pA2 = 6.7). The most potent antagonists were also investigated for their ability to induce endocytosis of CCR4 and were found to internalise about 60% of the cell surface receptors, a property which is not commonly shared by small molecule antagonists of chemokine receptors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. GABAB antagonists

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Hansen, J J; Krogsgaard-Larsen, P

    1994-01-01

    chromatographic techniques. The absolute stereochemistry of (-)-(R)-phaclofen was established by X-ray crystallographic analysis. (-)-(R)-Phaclofen was shown to inhibit the binding of [3H]-(R)-baclofen to GABAB receptor sites on rat cerebellar membranes (IC50 = 76 +/- 13 microM), whereas (+)-(S......)-baclofen and the antagonist (-)-(R)-phaclofen suggests that these ligands interact with the GABAB receptor sites in a similar manner. Thus, it may be concluded that the different pharmacological effects of these compounds essentially result from the different spatial and proteolytic properties of their acid groups....

  20. The mGluR5 antagonist MPEP elevates accumbal dopamine and glycine levels; interaction with strychnine-sensitive glycine receptors.

    Science.gov (United States)

    Chau, PeiPei; Söderpalm, Bo; Ericson, Mia

    2011-10-01

    Studies have indicated that the metabotropic glutamate receptor 5 (mGluR5) antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) decreases ethanol self-administration, and the same receptor type was also suggested to be involved in the mechanism of action of the anti-craving substance acamprosate. Our previous research suggested that glycine receptors (GlyRs) in the nucleus accumbens (nAc) play a major part in mediating the dopamine-elevating properties of ethanol and are highly involved in the ethanol intake-reducing effect of acamprosate. The aim of this study was to examine if modulation of nAc dopamine via mGluR5 antagonism or GlyR agonism is a linked or separated phenomena. The extracellular levels of dopamine as well as of the GlyR ligands, glycine, taurine and β-alanine were measured in the nAc by means of microdialysis after local perfusion of MPEP (100 or 500 µM) with or without pre-treatment with strychnine. MPEP increased dopamine levels, an effect that was blocked by pre-treatment with strychnine. In addition, the higher MPEP concentration increased glycine output, whereas no alterations of taurine or β-alanine were observed. These results indicate a relationship between the glutamatergic and glycinergic transmitter systems in regulating dopamine output, possibly via alteration of extracellular glycine levels. Taken together with our previous data demonstrating the importance of accumbal GlyRs both in ethanol-induced elevation of nAc dopamine and in ethanol consumption, it is plausible that the effects of MPEP treatment, on dopamine output and on ethanol intake, may be mediated via interaction with the same neuronal circuitry that previously has been demonstrated for ethanol, taurine and acamprosate. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  1. Novel Peripherally Restricted Cannabinoid 1 Receptor Selective Antagonist TXX-522 with Prominent Weight-Loss Efficacy in Diet Induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-10-01

    Full Text Available The clinical development of the first generation of globally active cannabinoid 1 receptor (CB1R antagonists was suspended because of their adverse neuropsychiatric effects. Selective blockade of peripheral CB1Rs has the potential to provide a viable strategy for the treatment of severe obesity while avoiding these central nervous system side effects. In the current study, a novel compound (TXX-522 was rationally designed based on the parent nucleus of a classical CB1R-selective antagonist/inverse agonist, rimonabant (SR141716A. Docking assays indicate that TXX-522 was bound with the CB1R in a mode similar to that of SR141716A. TXX-522 showed good binding, CB1R-selectivity (over the CB2R, and functional antagonist activities in a range of in vitro molecular and cellular assays. In vivo analysis of the steady state distribution of TXX-522 in the rat brain and blood tissues and the assay of its functional effects on CB1R activity collectively showed that TXX-522 showed minimal brain penetration. Moreover, the in vivo pharmacodynamic study further revealed that TXX-522 had good oral bioavailability and a potent anti-obesity effect, and ameliorated insulin resistance in high-fat diet-induced obese mice. No impact on food intake was observed in this model, confirming the limited brain penetration of this compound. Thus, the current study indicates that TXX-522 is a novel and potent peripherally acting selective CB1R antagonist with the potential to control obesity and related metabolic disorders.

  2. Characterization of cutaneous vascular permeability induced by platelet-activating factor in guinea pigs and rats and its inhibition by a platelet-activating factor receptor antagonist

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, S.B.; Li, C.L.; Lam, M.H.; Shen, T.Y.

    1985-06-01

    Mechanisms of platelet-activating factor (PAF)-induced increases of cutaneous vascular permeability in guinea pigs and in rats were further explored. PAF so far is the most potent vasoactive mediator, being more than 1000-fold more potent than histamine and bradykinin in both species. In guinea pigs, there is a time delay of 5 to 10 minutes before PAF action, whereas, in the rat, the increased vasopermeability occurs immediately following the intradermal PAF injection. Relative vasoactive potencies of PAF and several structure-related analogues in both species correlate very well with their relative inhibition of the binding of /sup 3/H-PAF to specific receptor sites on isolated rabbit platelet plasma membranes and their aggregatory abilities of rabbit platelets. Furthermore, the PAF-induced cutaneous vascular permeability is inhibitable by a competitive specific PAF receptor antagonist, kadsurenone, suggesting that binding of PAF to its specific receptor site is the first step to initiate its action of increased cutaneous vascular permeability. Several pure cyclooxygenase inhibitors, including indomethacin, diflunisal, and flurbiprofen, and the dual cyclooxygenase/lipoxygenase inhibitor, BW755C, but not the histamine antagonists, inhibit the PAF-induced vasopermeability in guinea pigs. The inhibition by indomethacin or BW755C can be fully reversed by coinjection intradermally with PAF and prostaglandin E1 but not leukotriene B4. Also, prostaglandin E1 but not leukotriene B4 enhances the guinea pig in vivo response to PAF in this model. However, in rats, none of the cyclooxygenase inhibitors, histamine antagonists, or BW755C inhibit the PAF effect of cutaneous phenomena.

  3. Characterization of cutaneous vascular permeability induced by platelet-activating factor in guinea pigs and rats and its inhibition by a platelet-activating factor receptor antagonist

    International Nuclear Information System (INIS)

    Hwang, S.B.; Li, C.L.; Lam, M.H.; Shen, T.Y.

    1985-01-01

    Mechanisms of platelet-activating factor (PAF)-induced increases of cutaneous vascular permeability in guinea pigs and in rats were further explored. PAF so far is the most potent vasoactive mediator, being more than 1000-fold more potent than histamine and bradykinin in both species. In guinea pigs, there is a time delay of 5 to 10 minutes before PAF action, whereas, in the rat, the increased vasopermeability occurs immediately following the intradermal PAF injection. Relative vasoactive potencies of PAF and several structure-related analogues in both species correlate very well with their relative inhibition of the binding of 3 H-PAF to specific receptor sites on isolated rabbit platelet plasma membranes and their aggregatory abilities of rabbit platelets. Furthermore, the PAF-induced cutaneous vascular permeability is inhibitable by a competitive specific PAF receptor antagonist, kadsurenone, suggesting that binding of PAF to its specific receptor site is the first step to initiate its action of increased cutaneous vascular permeability. Several pure cyclooxygenase inhibitors, including indomethacin, diflunisal, and flurbiprofen, and the dual cyclooxygenase/lipoxygenase inhibitor, BW755C, but not the histamine antagonists, inhibit the PAF-induced vasopermeability in guinea pigs. The inhibition by indomethacin or BW755C can be fully reversed by coinjection intradermally with PAF and prostaglandin E1 but not leukotriene B4. Also, prostaglandin E1 but not leukotriene B4 enhances the guinea pig in vivo response to PAF in this model. However, in rats, none of the cyclooxygenase inhibitors, histamine antagonists, or BW755C inhibit the PAF effect of cutaneous phenomena

  4. Anticonvulsant and neuroprotective effects of the novel calcium antagonist NP04634 on kainic acid-induced seizures in rats.

    Science.gov (United States)

    Morales-Garcia, Jose A; Luna-Medina, Rosario; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana

    2009-12-01

    Kainic acid (KA)-induced status epilepticus (SE) is a well-characterized model of excitotoxic neuronal injury. Excitotoxicity results from activation of specific glutamate receptors, with resultant elevation of intracellular Ca(2+). The CA1 and CA3 subregions of the hippocampus are especially vulnerable to KA, and this pattern of neuronal injury resembles that occurring in patients with temporal lobe epilepsy. Calcium plays an essential role in excitotoxicity, and accordingly calcium channel inhibitors have been shown to have protective effects in various experimental models of epilepsy and brain injury. Moreover, they also potentiate the antiseizure efficacy of conventional antiepileptic drugs. This study was undertaken to determine whether NP04634, a novel compound, reported as a non-L-type voltage-sensitive calcium channel (VSCC) inhibitor, could prevent the entrance in SE and the neuronal loss evoked by intraperitoneal injection of KA. Our results show that intragastrical administration of NP04634 reduced the percentage of rats that entered SE after KA injection, increased the latency of SE entry, and significantly reduced the mortality of rats that entered SE. Also, NP04634 prevented the loss of hippocampal CA1 and CA3 pyramidal neurons and reduced the gliosis induced by KA. These results point to a potential anticonvulsant and neuroprotective role for NP04634. Copyright 2009 Wiley-Liss, Inc.

  5. Pre-treatment with Toll-like receptor 4 antagonist inhibits lipopolysaccharide-induced preterm uterine contractility, cytokines, and prostaglandins in rhesus monkeys

    Science.gov (United States)

    Adams Waldorf, Kristina M.; Persing, David; Novy, Miles J.; Sadowsky, Drew W.; Gravett, Michael G.

    2009-01-01

    Intra-uterine infection, which occurs in the majority of early preterm births, triggers an immune response culminating in preterm labor. We hypothesized that blockade of lipopolysaccharide (LPS)-induced immune responses by a Toll-like receptor 4 antagonist (TLR4A) would prevent elevations in amniotic fluid (AF) cytokines, prostaglandins, and uterine contractility. Chronically catheterized rhesus monkeys at 128-147 days gestation received intra-amniotic infusions of either: 1) saline (n=6), 2) LPS (0.15-10μg; n=4), or 3) TLR4A pre-treatment with LPS (10 μg) one hour later (n=4). AF cytokines, prostaglandins, and uterine contractility were compared using oneway ANOVA with Bonferroni-adjusted pairwise comparisons. Compared to saline controls, LPS induced significant elevations in AF IL-8, TNF-α, PGE2, PGF2α, and uterine contractility (p<0.05). In contrast, TLR4A pre-treatment inhibited LPS-induced uterine activity and was associated with significantly lower AF IL-8, TNF-α, PGE2, and PGF2α versus LPS alone (p<0.05). Toll-like receptor antagonists, together with antibiotics, may delay or prevent infection-associated preterm birth. PMID:18187405

  6. Calcium antagonist induced vasodilation in peripheral, coronary and cerebral vasculature as important factors in the treatment of elderly hypertensives

    OpenAIRE

    Erne, P.; Conen, D.; Kiowski, W.; Bolli, P.; Müller, F. B.; Bühler, F. R.

    2017-01-01

    Increased arteriolar tone is the pathophysiological hallmark of essential hypertension and is determined by the intracellular free calcium concentration in the vascular smooth muscle cell. Calcium influx is an important determinant of vasoconstriction and excess calcium influx-dependent vasoconstriction has been shown by plethysmographical studies in patients with essential hypertension. Calcium antagonists acutely lower BP by reducing calcium influx, calcium concentration and peripheral resi...

  7. Oxidative stress-induced glomerular mineralocorticoid receptor activation limits the benefit of salt reduction in Dahl salt-sensitive rats.

    Directory of Open Access Journals (Sweden)

    Kento Kitada

    Full Text Available Mineralocorticoid receptor (MR antagonists attenuate renal injury in salt-sensitive hypertensive rats with low plasma aldosterone levels. We hypothesized that oxidative stress causes MR activation in high-salt-fed Dahl salt-sensitive rats. Furthermore, we determined if MR activation persisted and induced renal injury, even after switching from a high- to a normal-salt diet.High-salt feeding for 4 weeks increased dihydroethidium fluorescence (DHE, an oxidant production marker, p22phox (a NADPH oxidase subunit and serum and glucocorticoid-regulated kinase-1 (SGK1, an MR transcript in glomeruli, compared with normal-salt feeding, and these changes persisted 4 weeks after salt withdrawal. Tempol treatment (0.5 mmol/L during high-salt feeding abolished the changes in DHE fluorescence, p22phox and SGK1. Dietary salt reduction after a 4-week high-salt diet decreased both blood pressure and proteinuria, but was associated with significantly higher proteinuria than in normal control rats at 4 weeks after salt reduction. Administration of tempol during high-salt feeding, or eplerenone, an MR antagonist (100 mg/kg/day, started after salt reduction, recovered proteinuria to normal levels at 4 weeks after salt reduction. Paraquat, a reactive oxygen species generator, enhanced MR transcriptional activity in cultured rat mesangial cells and mouse podocytes.These results suggest that oxidative stress plays an important role in glomerular MR activation in Dahl salt-sensitive rats. Persistent MR activation even after reducing salt intake could limit the beneficial effects of salt restriction.

  8. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence.

    Science.gov (United States)

    Trovero, Fabrice; David, Sabrina; Bernard, Philippe; Puech, Alain; Bizot, Jean-Charles; Tassin, Jean-Pol

    2016-01-01

    Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg) and cyproheptadine (1 mg/kg) (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively) blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v) and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France) and cyproheptadine (1 mg/kg) could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs.

  9. The Combination of Marketed Antagonists of α1b-Adrenergic and 5-HT2A Receptors Inhibits Behavioral Sensitization and Preference to Alcohol in Mice: A Promising Approach for the Treatment of Alcohol Dependence.

    Directory of Open Access Journals (Sweden)

    Fabrice Trovero

    Full Text Available Alcohol-dependence is a chronic disease with a dramatic and expensive social impact. Previous studies have indicated that the blockade of two monoaminergic receptors, α1b-adrenergic and 5-HT2A, could inhibit the development of behavioral sensitization to drugs of abuse, a hallmark of drug-seeking and drug-taking behaviors in rodents. Here, in order to develop a potential therapeutic treatment of alcohol dependence in humans, we have blocked these two monoaminergic receptors by a combination of antagonists already approved by Health Agencies. We show that the association of ifenprodil (1 mg/kg and cyproheptadine (1 mg/kg (α1-adrenergic and 5-HT2 receptor antagonists marketed as Vadilex ® and Periactine ® in France, respectively blocks behavioral sensitization to amphetamine in C57Bl6 mice and to alcohol in DBA2 mice. Moreover, this combination of antagonists inhibits alcohol intake in mice habituated to alcohol (10% v/v and reverses their alcohol preference. Finally, in order to verify that the effect of ifenprodil was not due to its anti-NMDA receptors property, we have shown that a combination of prazosin (0.5 mg/kg, an α1b-adrenergic antagonist, Mini-Press ® in France and cyproheptadine (1 mg/kg could also reverse alcohol preference. Altogether these findings strongly suggest that combined prazosin and cyproheptadine could be efficient as a therapy to treat alcoholism in humans. Finally, because α1b-adrenergic and 5-HT2A receptors blockade also inhibits behavioral sensitization to psychostimulants, opioids and tobacco, it cannot be excluded that this combination will exhibit some efficacy in the treatment of addiction to other abused drugs.

  10. Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson's disease.

    Science.gov (United States)

    Levandis, Giovanna; Bazzini, Eleonora; Armentero, Marie-Thérèse; Nappi, Giuseppe; Blandini, Fabio

    2008-01-01

    Altered glutamatergic neurotransmission is central to the expression of Parkinson's disease (PD) symptoms and may underlie l-DOPA-induced dyskinesias. Drugs acting on glutamate metabotropic receptors (mGluR) of group I can modulate subthalamic nucleus (STN) overactivity, which plays a pivotal role in these phenomena, and may counteract dyskinesias. To address these issues, we investigated the effects of a 3-week treatment with mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP), or of a subthalamic lesion, on abnormal involuntary movements (AIMs) and associated striatal expression of transcription factor FosB/Delta FosB caused by chronic l-DOPA administration, in rats with a nigrostriatal lesion. MPEP virtually abolished AIMs and reduced, dramatically, striatal expression of FosB/Delta FosB. Reduced FosB/Delta FosB expression, coupled with nonsignificant reduction of AIMs, was also observed in STN-lesioned rats. Our data confirm the role of glutamatergic neurotransmission in the pathogenesis of dyskinesias and the potential of mGluR5 antagonists in the treatment of l-DOPA-induced dyskinesias.

  11. Micronuclei: sensitivity for the detection of radiation induced damage

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Nasazzi, N.B.; Taja, M.R.

    1998-01-01

    The in vitro cytokinesis-block (CB) micronucleus (MN) assay for human peripheral blood has been used extensively for the assessment of chromosomal damage induced by ionizing radiation and chemicals and considered a suitable biological dosimeter for estimating in vivo whole body exposures, particularly in the case of large scale radiation accidents. One of the major drawbacks of the MN assay is its reduced sensitivity for the detection of damage induced by low doses of low LET radiation, due to the high variability among the spontaneous MN frequencies. It is suggested that age, smoking habit and sex are the main confounding factors that contribute to the observed variability. Previous work in our laboratory, shows a significant positive correlation of the spontaneous and radiation induced MN frequencies with age and smoking habit, the latter being the strongest confounder. These findings led to in vitro studies of the dose-response relationships for smoking and non smoking donors evaluated separately, using 60 Co γ rays. The objectives of the present work are: 1-To increase the amount of data of the dose-response relationships, using γ rays from a 60 Co source, for smoking and non smoking donors, in order to find, if applicable, a correction factor for the calibration curve that takes into account the smoking habit of the individual in the case of accidental overexposure dose assessment, particularly in the low dose range. 2-To establish general conclusions on the current state of the technique. The sample for smoking and non smoking calibration curves was enlarged in the range of 0Gy to 2Gy. The fitting of both curves, performed up to the 2Gy dose, resulted in a linear quadratic model. MN distribution among bi nucleated cells was found to be over dispersed with respect to Poisson distribution, the average ratio of variance to mean being 1.13 for non smokers and 1.17 for smokers. Each fitted calibration curve, for smoking and non smoking donors, fell within the 95

  12. Particle transport model sensitivity on wave-induced processes

    Science.gov (United States)

    Staneva, Joanna; Ricker, Marcel; Krüger, Oliver; Breivik, Oyvind; Stanev, Emil; Schrum, Corinna

    2017-04-01

    Different effects of wind waves on the hydrodynamics in the North Sea are investigated using a coupled wave (WAM) and circulation (NEMO) model system. The terms accounting for the wave-current interaction are: the Stokes-Coriolis force, the sea-state dependent momentum and energy flux. The role of the different Stokes drift parameterizations is investigated using a particle-drift model. Those particles can be considered as simple representations of either oil fractions, or fish larvae. In the ocean circulation models the momentum flux from the atmosphere, which is related to the wind speed, is passed directly to the ocean and this is controlled by the drag coefficient. However, in the real ocean, the waves play also the role of a reservoir for momentum and energy because different amounts of the momentum flux from the atmosphere is taken up by the waves. In the coupled model system the momentum transferred into the ocean model is estimated as the fraction of the total flux that goes directly to the currents plus the momentum lost from wave dissipation. Additionally, we demonstrate that the wave-induced Stokes-Coriolis force leads to a deflection of the current. During the extreme events the Stokes velocity is comparable in magnitude to the current velocity. The resulting wave-induced drift is crucial for the transport of particles in the upper ocean. The performed sensitivity analyses demonstrate that the model skill depends on the chosen processes. The results are validated using surface drifters, ADCP, HF radar data and other in-situ measurements in different regions of the North Sea with a focus on the coastal areas. The using of a coupled model system reveals that the newly introduced wave effects are important for the drift-model performance, especially during extremes. Those effects cannot be neglected by search and rescue, oil-spill, transport of biological material, or larva drift modelling.

  13. Influenza A virus does not encode a tetherin antagonist with Vpu-like activity and induces IFN-dependent tetherin expression in infected cells.

    Directory of Open Access Journals (Sweden)

    Michael Winkler

    Full Text Available The interferon-induced host cell factor tetherin inhibits release of human immunodeficiency virus (HIV from the plasma membrane of infected cells and is counteracted by the HIV-1 protein Vpu. Influenza A virus (FLUAV also buds from the plasma membrane and is not inhibited by tetherin. Here, we investigated if FLUAV encodes a functional equivalent of Vpu for tetherin antagonism. We found that expression of the FLUAV protein NS1, which antagonizes the interferon (IFN response, did not block the tetherin-mediated restriction of HIV release, which was rescued by Vpu. Similarly, tetherin-mediated inhibition of HIV release was not rescued by FLUAV infection. In contrast, FLUAV infection induced tetherin expression on target cells in an IFN-dependent manner. These results suggest that FLUAV escapes the antiviral effects of tetherin without encoding a tetherin antagonist with Vpu-like activity.

  14. THE EFFECT OF SOME ALPHA-ADRENOCEPTOR ANTAGONISTS ON SPONTANEOUS MYOGENIC ACTIVITY IN THE RAT PORTAL-VEIN AND THE PUTATIVE INVOLVEMENT OF ATP-SENSITIVE K+ CHANNELS

    NARCIS (Netherlands)

    SCHWIETERT, R; WILHELM, D; WILFFERT, B; VANZWIETEN, PA

    1992-01-01

    In the present study we showed that the alpha-adrenoceptor antagonists phentolamine, yohimbine, prazosin, corynanthine and idazoxan, when cumulatively applied in high concentrations (1-100-mu-mol/l), can increase spontaneous myogenic activity in the rat portal vein. 5-Methyl-urapidil and rauwolscine

  15. The effect of some α-adrenoceptor antagonists on spontaneous myogenic activity in the rat portal vein and the putative involvement of ATP-sensitive K+channels

    NARCIS (Netherlands)

    Schwietert, R.; Wilhelm, D.; Wilffert, B.; Van Zwieten, P.A.

    1992-01-01

    In the present study we showed that the α-adrenoceptor antagonists phentolamine, yohimbine, prazosin, corynanthine and idazoxan, when cumulatively applied in high concentrations (1-100 μmol/l), can increase spontaneous myogenic activity in the rat portal vein. 5-Methyl-urapidil and rauwolscine were

  16. The Effects of the Adenosine Receptor Antagonists on the Reverse of Cardiovascular Toxic Effects Induced by Citalopram In-Vivo Rat Model of Poisoning

    Directory of Open Access Journals (Sweden)

    Müjgan Büyükdeligöz

    2015-09-01

    Full Text Available Background: Citalopram is a selective serotonin reuptake inhibitor that requires routine cardiac monitoring to prevent a toxic dose. Prolongation of the QT interval has been observed in acute citalopram poisoning. Our previous experimental study showed that citalopram may be lead to QT prolongation by stimulating adenosine A1 receptors without affecting the release of adenosine. Aims: We examined the effects of adenosine receptor antagonists in reversing the cardiovascular toxic effects induced by citalopram in rats. Study Design: Animal experimentation. Methods: Rats were divided into three groups randomly (n=7 for each group. Sodium cromoglycate (20 mg/kg was administered to all rats to inhibit adenosine A3 receptor mast cell activation. Citalopram toxicity was achieved by citalopram infusion (4 mg/kg/min for 20 minutes. After citalopram infusion, in the control group (Group 1, rats were given an infusion of dextrose solution for 60 minutes. In treatment groups, the selective adenosine A1 antagonist DPCPX (Group 2, 8-cyclopentyl-1,3-dipropylxanthine, 20 μg/kg/min or the selective A2a antagonist CSC (Group 3, 8-(3-chlorostyrylcaffeine, 24 μg/kg/min was infused for 60 minutes. Mean arterial pressure (MAP, heart rate (HR, QRS duration and QT interval measurements were followed during the experiment period. Statistical analysis was performed by ANOVA followed by Tukey’s multiple comparison tests. Results: Citalopram infusion reduced MAP and HR and prolonged the QT interval. It did not cause any significant difference in QRS duration in any group. When compared to the control group, DPCPX after citalopram infusion shortened the prolongation of the QT interval after 40, 50 and 60 minutes (p<0.01. DPCPX infusion shortened the prolongation of the QT interval at 60 minutes compared with the CSC group (p<0.05. CSC infusion shortened the prolongation of the QT at 60 minutes compared with the control group (p<0.05. Conclusion: DPCPX improved QT

  17. Sex and smoking sensitive model of radon induced lung cancer

    International Nuclear Information System (INIS)

    Zhukovsky, M.; Yarmoshenko, I.

    2006-01-01

    Radon and radon progeny inhalation exposure are recognized to cause lung cancer. Only strong evidence of radon exposure health effects was results of epidemiological studies among underground miners. Any single epidemiological study among population failed to find reliable lung cancer risk due to indoor radon exposure. Indoor radon induced lung cancer risk models were developed exclusively basing on extrapolation of miners data. Meta analyses of indoor radon and lung cancer case control studies allowed only little improvements in approaches to radon induced lung cancer risk projections. Valuable data on characteristics of indoor radon health effects could be obtained after systematic analysis of pooled data from single residential radon studies. Two such analyses are recently published. Available new and previous data of epidemiological studies of workers and general population exposed to radon and other sources of ionizing radiation allow filling gaps in knowledge of lung cancer association with indoor radon exposure. The model of lung cancer induced by indoor radon exposure is suggested. The key point of this model is the assumption that excess relative risk depends on both sex and smoking habits of individual. This assumption based on data on occupational exposure by radon and plutonium and also on the data on external radiation exposure in Hiroshima and Nagasaki and the data on external exposure in Mayak nuclear facility. For non-corrected data of pooled European and North American studies the increased sensitivity of females to radon exposure is observed. The mean value of ks for non-corrected data obtained from independent source is in very good agreement with the L.S.S. study and Mayak plutonium workers data. Analysis of corrected data of pooled studies showed little influence of sex on E.R.R. value. The most probable cause of such effect is the change of men/women and smokers/nonsmokers ratios in corrected data sets in North American study. More correct

  18. Sensitized enantioselective laser-induced phosphorescence detection in chiral capillary electrophoresis

    NARCIS (Netherlands)

    Lammers, I.; Buijs, J.B.; Ariese, F.; Gooijer, C.

    2010-01-01

    The sensitivity of enantioselective cyclodextrin-induced room-temperature phosphorescence detection of camphorquinone (CQ) is enhanced using sensitization via a donor with a high extinction coefficient. The enantiomeric distinction is based on the different phosphorescence lifetimes of (+)-CQ and

  19. Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats

    Directory of Open Access Journals (Sweden)

    Mayako Yamazaki

    2015-03-01

    Full Text Available Despite the human 5-HT5A receptor being cloned in 1994, the biological function of this receptor has not been extensively characterized due to a lack of specific ligands. We recently reported that the selective 5-HT5A receptor antagonist ASP5736 ameliorated cognitive impairment in several animal models of schizophrenia. Given that areas of the brain with high levels of 5-HT5A receptor expression, such as the hippocampus and cerebral cortex, have important functions in cognition and memory, we evaluated the chemically diverse, potent and brain-penetrating 5-HT5A receptor antagonists ASP5736, AS2030680, and AS2674723 in rodent models of cognitive dysfunction associated with dementia. Each of these compounds exhibited a high affinity for recombinant 5-HT5A receptors that was comparable to that of the non-selective ligand of this receptor, lysergic acid diethylamide (LSD. Although each compound had a low affinity for other receptors, 5-HT5A was the only receptor for which all three compounds had a high affinity. Each of the three compounds ameliorated scopolamine-induced working memory deficit in mice and improved reference memory impairment in aged rats at similar doses. Further, ASP5736 decreased the binding of LSD to 5-HT5A receptors in the olfactory bulb of rats in a dose-dependent manner and occupied 15%–50% of brain 5-HT5A receptors at behaviorally effective doses. These results indicate that the 5-HT5A receptor is involved in learning and memory and that treatment with 5-HT5A receptor antagonists might be broadly effective for cognitive impairment associated with not only schizophrenia but also dementia.

  20. Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats.

    Science.gov (United States)

    Yamazaki, Mayako; Okabe, Mayuko; Yamamoto, Noriyuki; Yarimizu, Junko; Harada, Katsuya

    2015-03-01

    Despite the human 5-HT5A receptor being cloned in 1994, the biological function of this receptor has not been extensively characterized due to a lack of specific ligands. We recently reported that the selective 5-HT5A receptor antagonist ASP5736 ameliorated cognitive impairment in several animal models of schizophrenia. Given that areas of the brain with high levels of 5-HT5A receptor expression, such as the hippocampus and cerebral cortex, have important functions in cognition and memory, we evaluated the chemically diverse, potent and brain-penetrating 5-HT5A receptor antagonists ASP5736, AS2030680, and AS2674723 in rodent models of cognitive dysfunction associated with dementia. Each of these compounds exhibited a high affinity for recombinant 5-HT5A receptors that was comparable to that of the non-selective ligand of this receptor, lysergic acid diethylamide (LSD). Although each compound had a low affinity for other receptors, 5-HT5A was the only receptor for which all three compounds had a high affinity. Each of the three compounds ameliorated scopolamine-induced working memory deficit in mice and improved reference memory impairment in aged rats at similar doses. Further, ASP5736 decreased the binding of LSD to 5-HT5A receptors in the olfactory bulb of rats in a dose-dependent manner and occupied 15%-50% of brain 5-HT5A receptors at behaviorally effective doses. These results indicate that the 5-HT5A receptor is involved in learning and memory and that treatment with 5-HT5A receptor antagonists might be broadly effective for cognitive impairment associated with not only schizophrenia but also dementia. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  1. Protein induced by vitamin K absence or antagonist-II (PIVKA-II) specifically increased in Italian hepatocellular carcinoma patients.

    Science.gov (United States)

    Viggiani, Valentina; Palombi, Sara; Gennarini, Giuseppina; D'Ettorre, Gabriella; De Vito, Corrado; Angeloni, Antonio; Frati, Luigi; Anastasi, Emanuela

    2016-10-01

    As a marker for Hepatocellular Carcinoma (HCC), Protein Induced by Vitamin K Absence II (PIVKA-II) seems to be superior to alpha fetoprotein (AFP). To better characterize the role of PIVKA-II, both AFP and PIVKA-II have been measured in Italian patients with diagnosis of HCC compared with patients affected by non-oncological liver pathologies. Sixty serum samples from patients with HCC, 60 samples from patients with benign liver disease and 60 samples obtained from healthy blood donors were included in the study. PIVKA-II and AFP were measured by LUMIPULSE(®) G1200 (Fujirebio-Europe, Belgium). We considered as PIVKA-II cutoff 70 mAU/ml (mean +3SD) of the values observed in healthy subjects. The evaluation of PIVKA-II showed a positivity of 70% in patients with HCC and 5% in patients with benign diseases (p < 0.0001) whereas high levels of AFP were observed in 55% of HCC patients and in 47% of patients with benign diseases. The combined Receiver Operating Characteristic (ROC) analysis of the two analytes revealed a higher sensitivity (75%) compared to those observed for the individual biomarkers. In conclusion, we demonstrate that as a marker for HCC, PIVKA-II is more specific for HCC and less prone to elevation during chronic liver diseases. The combination of the two biomarkers, evaluated by the ROC analysis, improved the specificity compared to a single marker. These data suggest that the combined analysis of the two markers could be a useful tool in clinical practice.

  2. Kindling-induced potentiation of excitatory and inhibitory inputs to hippocampal dentate granule cells. II. Effects of the NMDA antagonist MK-801.

    LENUS (Irish Health Repository)

    Robinson, G B

    1991-10-18

    The effect of the non-competitive N-methyl-D-aspartate antagonist MK-801 on the early development of kindling-induced potentiation was examined in the rabbit hippocampal dentate gyrus. MK-801 (0.5 mg\\/kg) was administered 2 h before each daily kindling stimulation was applied to the perforant path. This treatment continued for the first 10 days of kindling. MK-801 depressed the growth of the afterdischarge duration and suppressed development of behavioral seizures. MK-801 did not block kindling-induced potentiation of either the perforant path-dentate granule cell population spike or excitatory postsynaptic potential. Random impulse train stimulation and non-linear systems analytic techniques were used to examine kindling-induced potentiation of presumed GABAergic recurrent inhibitory circuits. Both the magnitude and duration of kindling-induced response inhibition, to the second of each pair of impulses within the train, were reduced in rabbits pretreated with MK-801. These results suggest that MK-801 differentially affects kindling-induced potentiation of excitatory and inhibitory circuits within the rabbit hippocampal dentate gyrus.

  3. Selective A2A receptor antagonist prevents microglia-mediated neuroinflammation and protects retinal ganglion cells from high intraocular pressure-induced transient ischemic injury.

    Science.gov (United States)

    Madeira, Maria H; Boia, Raquel; Elvas, Filipe; Martins, Tiago; Cunha, Rodrigo A; Ambrósio, António Francisco; Santiago, Ana Raquel

    2016-03-01

    Glaucoma is a leading cause of vision loss and blindness worldwide, characterized by chronic and progressive neuronal loss. Reactive microglial cells have been recognized as a neuropathologic feature, contributing to local inflammation and retinal neurodegeneration. In a recent in vitro work (organotypic cultures), we demonstrated that blockade of adenosine A2A receptor (A2AR) prevents the neuroinflammatory response and affords protection to retinal ganglion cells (RGCs) against exposure to elevated hydrostatic pressure (EHP), to mimic elevated intraocular pressure (IOP), the main risk factor for glaucoma development. Herein, we investigated whether a selective A2AR antagonist (SCH 58261) could modulate retinal microglia reactivity and their inflammatory response. Furthermore, we took advantage of the high IOP-induced transient ischemia (ischemia-reperfusion, I-R) animal model to evaluate the protective role of A2AR blockade in the control of retinal neuroinflammation and neurodegeneration. Primary microglial cell cultures were challenged either with lipopolysaccharide or with EHP, in the presence or absence of A2AR antagonist SCH 58261 (50 nM). In addition, I-R injury was induced in adult Wistar rats after intravitreal administration of SCH 58261 (100 nM, 5 μL). Our results showed that SCH 58261 attenuated microglia reactivity and the increased expression and release of proinflammatory cytokines. Moreover, intravitreal administration of SCH 58261 prevented I-R-induced cell death and RGC loss, by controlling microglial-mediated neuroinflammatory response. These results prompt the proposal that A2AR blockade may have great potential in the management of retinal neurodegenerative diseases characterized by microglia reactivity and RGC death, such as glaucoma and ischemic diseases. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effects of L-type Ca2+ channel antagonists on in vitro excystment of Paragonimus ohirai metacercariae induced by sodium cholate.

    Science.gov (United States)

    Ikeda, Teruaki

    2006-09-01

    The inhibitory effects of L-type Ca2+ channel antagonists on Na cholate-induced in vitro excystment (CIIE) of Paragonimus ohirai metacercariae were studied. At concentrations of 10 microM, nicardipine and nimodipine inhibited CIIE completely and by approximately 92%, respectively. Nitrendipine and (+/-)-verapamil inhibited CIIE by about one half and one third, respectively. Nifedipine and diltiazem did not inhibit CIIE significantly. At higher concentrations, nitrendipine at 20 microM completely inhibited CIIE, and (+/-)-verapamil at 40 microM inhibited CIIE by 93%. Nifedipine and diltiazem inhibited CIIE only slightly and little, respectively, even at 40 microM. Complete inhibition by nicardipine at 10 microM required preincubation of metacercariae with the antagonist for 15 min. The inhibitory effects of nicardipine and nimodipine were reversible, and most of the nimodipine-treated metacercariae could excyst within 1 h after being washed, but the nicardipine-treated ones started to excyst 1 h after washing. Nicardipine suppressed the active movement of encysted juveniles evoked by Na cholate, whereas nimodipine did not suppress this significantly. These results suggested that L-type Ca2+ channels appeared to be involved in CIIE of P. ohirai metacercariae and that the inhibitory effect of the channels was due primarily to factors other than the inhibition of muscular activity, probably involving the secretion and release of enzymes lytic against the metacercarial cyst wall.

  5. The N-Methyl-d-Aspartate Receptor Antagonist MK-801 Prevents Thallium-Induced Behavioral and Biochemical Alterations in the Rat Brain.

    Science.gov (United States)

    Osorio-Rico, Laura; Villeda-Hernández, Juana; Santamaría, Abel; Königsberg, Mina; Galván-Arzate, Sonia

    2015-01-01

    Thallium (Tl(+)) is a toxic heavy metal capable of increasing oxidative damage and disrupting antioxidant defense systems. Thallium invades the brain cells through potassium channels, increasing neuronal excitability, although until now the possible role of glutamatergic transmission in this event has not been investigated. Here, we explored the possible involvement of a glutamatergic component in the Tl(+)-induced toxicity through the N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine (MK-801) in rats. The effects of MK-801 (1 mg/kg, intraperitoneally [ip]) on early (24 hours) motor alterations, lipid peroxidation, reduced glutathione (GSH) levels, and GSH peroxidase activity induced by Tl(+) acetate (32 mg/kg, ip) were evaluated in adult rats. MK-801 attenuated the Tl(+)-induced hyperactivity and lipid peroxidation in the rat striatum, hippocampus and midbrain, and produced mild effects on other end points. Our findings suggest that glutamatergic transmission via NMDA receptors might be involved in the Tl(+)-induced altered regional brain redox activity and motor performance in rats. © The Author(s) 2015.

  6. Guttiferone K induces autophagy and sensitizes cancer cells to nutrient stress-induced cell death.

    Science.gov (United States)

    Wu, Man; Lao, Yuanzhi; Xu, Naihan; Wang, Xiaoyu; Tan, Hongsheng; Fu, Wenwei; Lin, Zhixiu; Xu, Hongxi

    2015-09-15

    Medicinal plants have long been an excellent source of pharmaceutical agents. Autophagy, a catabolic degradation process through lysosomes, plays an important role in tumorigenesis and cancer therapy. Through a screen designed to identify autophagic regulators from a library of natural compounds, we found that Guttiferone K (GUTK) can activate autophagy in several cancer cell lines. The objective of this study is to investigate the mechanism by which GUTK sensitizes cancer cells to cell death in nutrient starvation condition. Cell death analysis was performed by propidium iodide staining with flow cytometry or Annexin V-FITC/PI staining assay. DCFH-DA staining was used for intracellular ROS measurement. Protein levels were analyzed by western blot analysis. Cell viability was measured by MTT assay. Exposure to GUTK was observed to markedly induce GFP-LC3 puncta formation and activate the accumulation of LC3-II and the degradation of p62 in HeLa cells, suggesting that GUTK is an autophagy inducer. Importantly, hydroxychloroquine, an autophagy inhibitor, was found to significantly prevent GUTK-induced cell death in nutrient starvation conditions, suggesting that the cell death observed is largely dependent on autophagy. We further provide evidence that GUTK inhibits Akt phosphorylation, thereby inhibiting the mTOR pathway in cancer cells during nutrient starvation. In addition, GUTK causes the accumulation of reactive oxygen species (ROS) and the phosphorylation of JNK in EBSS, which may mediate both autophagy and apoptosis. These data indicate that GUTK sensitizes cancer cells to nutrient stress-induced cell death though Akt/mTOR dependent autophagy pathway. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  7. The sensitivity of diffuse large B-cell lymphoma cell lines to histone deacetylase inhibitor-induced apoptosis is modulated by BCL-2 family protein activity.

    Directory of Open Access Journals (Sweden)

    Ryan C Thompson

    Full Text Available BACKGROUND: Diffuse large B-cell lymphoma (DLBCL is a genetically heterogeneous disease and this variation can often be used to explain the response of individual patients to chemotherapy. One cancer therapeutic approach currently in clinical trials uses histone deacetylase inhibitors (HDACi's as monotherapy or in combination with other agents. METHODOLOGY/PRINCIPAL FINDINGS: We have used a variety of cell-based and molecular/biochemical assays to show that two pan-HDAC inhibitors, trichostatin A and vorinostat, induce apoptosis in seven of eight human DLBCL cell lines. Consistent with previous reports implicating the BCL-2 family in regulating HDACi-induced apoptosis, ectopic over-expression of anti-apoptotic proteins BCL-2 and BCL-XL or pro-apoptotic protein BIM in these cell lines conferred further resistance or sensitivity, respectively, to HDACi treatment. Additionally, BCL-2 family antgonist ABT-737 increased the sensitivity of several DLBCL cell lines to vorinostat-induced apoptosis, including one cell line (SUDHL6 that is resistant to vorinostat alone. Moreover, two variants of the HDACi-sensitive SUDHL4 cell line that have decreased sensitivity to vorinostat showed up-regulation of BCL-2 family anti-apoptotic proteins such as BCL-XL and MCL-1, as well as decreased sensitivity to ABT-737. These results suggest that the regulation and overall balance of anti- to pro-apoptotic BCL-2 family protein expression is important in defining the sensitivity of DLBCL to HDACi-induced apoptosis. However, the sensitivity of DLBCL cell lines to HDACi treatment does not correlate with expression of any individual BCL-2 family member. CONCLUSIONS/SIGNIFICANCE: These studies indicate that the sensitivity of DLBCL to treatment with HDACi's is dependent on the complex regulation of BCL-2 family members and that BCL-2 antagonists may enhance the response of a subset of DLBCL patients to HDACi treatment.

  8. Rapid and Persistent Suppression of Feeding Behavior Induced by Sensitization Training in "Aplysia"

    Science.gov (United States)

    Acheampong, Ama; Kelly, Kathleen; Shields-Johnson, Maria; Hajovsky, Julie; Wainwright, Marcy; Mozzachiodi, Riccardo

    2012-01-01

    In "Aplysia," noxious stimuli induce sensitization of defensive responses. However, it remains largely unknown whether such stimuli also alter nondefensive behaviors. In this study, we examined the effects of noxious stimuli on feeding. Strong electric shocks, capable of inducing sensitization, also led to the suppression of feeding. The use of…

  9. Individual differences are critical in determining modafinil-induced behavioral sensitization and cross-sensitization with methamphetamine in mice.

    Science.gov (United States)

    Soeiro, Aline da Costa; Moreira, Karin Di Monteiro; Abrahao, Karina Possa; Quadros, Isabel Marian Hartmann; Oliveira, Maria Gabriela Menezes

    2012-08-01

    Modafinil is a non-amphetaminic psychostimulant used therapeutically for sleep and psychiatric disorders. However, some studies indicate that modafinil can have addictive properties. The present study examined whether modafinil can produce behavioral sensitization in mice, an experience and drug-dependent behavioral adaptation, and if individual differences play a role in this process. We further tested context-related factors and cross-sensitization between modafinil and methamphetamine. Important individual differences in the behavioral sensitization of Swiss Albino mice were observed after repeated administration of 50 mg/kg modafinil (Experiment 1), or 1 mg/kg methamphetamine (Experiment 2). Only mice classified as sensitized subgroup developed clear behavioral sensitization to the drugs. After a withdrawal period, mice received challenges of modafinil (Experiment 1), or methamphetamine (Experiment 2) and locomotor activity was evaluated in the activity cages (previous context) and in the open field arena (new context) in order to evaluate the context dependency of behavioral sensitization. The expression of sensitization to modafinil, but not to methamphetamine, was affected by contextual testing conditions, since modafinil-sensitized mice only expressed sensitization in the activity cage, but not in the open field. Subsequently, locomotor cross-sensitization between methamphetamine and modafinil was assessed by challenging modafinil-pretreated mice with 1mg/kg methamphetamine (Experiment 1), and methamphetamine-pretreated mice with 50mg/kg modafinil (Experiment 2). We observed a symmetrical cross-sensitization between the drugs only in those mice that were classified as sensitized subgroup. Our findings indicate that repeated exposure to modafinil induces behavioral sensitization only in some animals by similar neurobiological, but not contextual, mechanisms to those of methamphetamine. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The CRF₁ receptor antagonist SSR125543 prevents stress-induced long-lasting sleep disturbances in a mouse model of PTSD: comparison with paroxetine and d-cycloserine.

    Science.gov (United States)

    Philbert, Julie; Beeské, Sandra; Belzung, Catherine; Griebel, Guy

    2015-02-15

    The selective CRF₁ (corticotropin releasing factor type 1) receptor antagonist SSR125543 has been previously shown to attenuate the long-term behavioral and electrophysiological effects produced by traumatic stress exposure in mice. Sleep disturbances are one of the most commonly reported symptoms by people with post-traumatic stress disorder (PTSD). The present study aims at investigating whether SSR125543 (10 mg/kg/day/i.p. for 2 weeks) is able to attenuate sleep/wakefulness impairment induced by traumatic stress exposure in a model of PTSD in mice using electroencephalographic (EEG) analysis. Effects of SSR125543 were compared to those of the 5-HT reuptake inhibitor, paroxetine (10 mg/kg/day/i.p.), and the partial N-methyl-d-aspartate (NMDA) receptor agonist, d-cycloserine (10 mg/kg/day/i.p.), two compounds which have demonstrated clinical efficacy against PTSD. Baseline EEG recording was performed in the home cage for 6h prior to the application of two electric foot-shocks of 1.5 mA. Drugs were administered from day 1 post-stress to the day preceding the second EEG recording session, performed 14 days later. Results showed that at day 14 post-stress, shocked mice displayed sleep fragmentation as shown by an increase in the occurrence of both non-rapid eye movement (NREM) sleep and wakefulness bouts. The duration of wakefulness, NREM and REM sleep were not significantly affected. The stress-induced effects were prevented by repeated administration of SSR125543, paroxetine and D-cycloserine. These findings confirm further that the CRF₁ receptor antagonist SSR125543 is able to attenuate the deleterious effects of traumatic stress exposure. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Influence of the novel histamine H₃ receptor antagonist ST1283 on voluntary alcohol consumption and ethanol-induced place preference in mice.

    Science.gov (United States)

    Bahi, Amine; Sadek, Bassem; Schwed, Stephan J; Walter, Miriam; Stark, Holger

    2013-07-01

    Growing evidence supports a role for the central histaminergic system to have a modulatory influence on drug addiction in general and alcohol-use disorders in particular through histamine H3 receptors (H3R). In the present study, the effects of systemic injection of the newly synthesized H3R antagonist ST1283 on ethanol (EtOH) voluntary intake and EtOH-conditioned reward in mice have been investigated. Oral EtOH, saccharin, and quinine intake was assessed in a two-bottle choice paradigm using escalating concentrations of alcohol or tastant solutions. EtOH-induced place preference (CPP), EtOH-induced locomotor activity, and blood ethanol concentration (BEC) were also measured. Following administration of the H3R antagonist (2.5, 5, and 10 mg/kg, i.p.), there was a significant dose-dependent decrease in alcohol consumption and preference. Importantly, vehicle- and ST1283 (5 mg/kg)-treated mice showed similar consumption and preference to increasing concentration of both sweet and bitter tastes. More interestingly, systemic administration of ST1283 inhibited EtOH-CPP and EtOH-enhanced locomotion. This inhibition was blocked when mice were pretreated with the selective H3R agonist R-(alpha)-methyl-histamine (10 mg/kg). Finally, vehicle- and ST1283-treated mice had similar BECs. Our results show that ST1283 may decrease voluntary EtOH consumption and EtOH-CPP by altering its reinforcing effects, suggesting a novel role for histamine signaling in regulation of alcoholism. Lastly, the results add to the growing literature on H3R modulation in the pharmacotherapy of EtOH addiction.

  12. Repeated exposure of adolescent rats to oral methylphenidate does not induce behavioral sensitization or cross-sensitization to nicotine

    Directory of Open Access Journals (Sweden)

    C.C. Justo

    2010-07-01

    Full Text Available Several lines of evidence indicate that the use of stimulant drugs, including methylphenidate (MPD, increases tobacco smoking. This has raised concerns that MPD use during adolescence could facilitate nicotine abuse. Preclinical studies have shown that repeated treatment with an addictive drug produces sensitization to that drug and usually cross-sensitization to other drugs. Behavioral sensitization has been implicated in the development of drug addiction. We examined whether repeated oral MPD administration during adolescence could induce behavioral sensitization to MPD and long-lasting cross-sensitization to nicotine. Adolescent male Wistar rats were treated orally with 10 mg/kg MPD or saline (SAL from postnatal day (PND 27 to 33. To evaluate behavioral sensitization to MPD in adolescent rats (PND 39, the SAL pretreated group was subdivided into two groups that received intragastric SAL (1.0 mL/kg or MPD (10 mg/kg; MPD pretreated rats received MPD (10 mg/kg. Cross-sensitization was evaluated on PND 39 or PND 70 (adulthood. To this end, SAL- and MPD-pretreated groups received subcutaneous injections of SAL (1.0 mL/kg or nicotine (0.4 mg/kg. All groups had 8 animals. Immediately after injections, locomotor activity was determined. The locomotor response to MPD challenge of MPD-pretreated rats was not significantly different from that of the SAL-pretreated group. Moreover, the locomotor response of MPD-pretreated rats to nicotine challenge was not significantly different from that of the SAL-pretreated group. This lack of sensitization and cross-sensitization suggests that MPD treatment during adolescence does not induce short- or long-term neuroadaptation in rats that could increase sensitivity to MPD or nicotine.

  13. 5-HT3 receptor antagonist MDL 72222 attenuates cocaine- and mazindol-, but not methylphenidate-induced neurochemical and behavioral effects in the rat.

    Science.gov (United States)

    Kankaanpää, Aino; Meririnne, Esa; Seppälä, Timo

    2002-02-01

    It has previously been demonstrated that the 5-HT(3) receptors located in the mesolimbic brain areas are able to modulate the dopaminergic effects of various abused drugs, including cocaine (COC). The present experiments investigated the role of 5-HT(3) receptors in the actions of selected monoamine uptake inhibitors. The ability of the 5-HT(3) receptor antagonist MDL 72222 (MDL; 0.1 and 1.0 mg/kg) to modify the neurochemical and behavioral changes induced by COC (20 mg/kg), mazindol (MAZ; 10 mg/kg), and methylphenidate (MP; 5.0 or 10, and 20 mg/kg) was assessed with an in vivo microdialysis technique, a conditioned place preference method, and motor activity measurements. MDL robustly attenuated the elevation of extracellular dopamine levels in the nucleus accumbens, acquisition of place preference, and motor activity induced by COC and MAZ, but not those induced by MP, the only drug with no significant effect on 5-HT. In contrast, expression of COC-induced place preference was not attenuated by MDL. These results show that COC- and MAZ-induced reward-related neurochemical and behavioral effects, preferentially those implicated in development of conditioned reward, are modified by the 5-HT(3) blockade. In contrast to COC and MAZ, the changes induced by MP, which has less effect on the serotonergic system, remain unchanged. Thus it appears that involvement of a serotonergic component in the mechanism of action of a drug could be a prerequisite for effective antagonism by 5-HT(3) receptor blockers.

  14. Combined receptor antagonist stimulation of the hypothalamic-pituitary-adrenal axis test identifies impaired negative feedback sensitivity to cortisol in obese men.

    Science.gov (United States)

    Mattsson, Cecilia; Reynolds, Rebecca M; Simonyte, Kotryna; Olsson, Tommy; Walker, Brian R

    2009-04-01

    Hypothalamic-pituitary-adrenal (HPA) axis dysregulation may underlie disorders including obesity, depression, cognitive decline, and the metabolic syndrome. Conventional tests of HPA axis negative feedback rely on glucocorticoid receptor (GR) agonists such as dexamethasone but do not test feedback by endogenous cortisol, potentially mediated by both GR and mineralocorticoid receptors (MR). The objective of the study was to use a combination of GR (RU38486, mifepristone) and MR (spironolactone) antagonists to explore the poorly understood activation of the HPA axis that occurs in obesity. This was a double-blind, placebo-controlled, randomized, crossover study. The study was conducted at a clinical research facility. Participants included 15 lean (body mass index 22.0 +/- 1.6 kg/m(2)) and 16 overweight/obese (body mass index 30.1 +/- 3.5 kg/m(2)) men. Subjects attended on four occasions for blood and saliva sampling every 30 min between 1800 and 2200 h. At 1100 and 1600 h before visits, subjects took 200 mg spironolactone, 400 mg RU38486, 200 mg spironolactone + 400 mg RU38486, or placebo orally. Serum cortisol levels after drug or placebo were measured. Cortisol levels did not differ between lean and obese after placebo. Spironolactone and RU38486 alone had modest effects, increasing cortisol by less than 50% in both groups. However, combined spironolactone plus RU38486 elevated cortisol concentrations substantially, more so in lean than obese men [2.9- (0.3) vs. 2.2 (0.3)-fold elevation, P = 0.002]. Combined receptor antagonist stimulation of the HPA axis reveals redundancy of MR and GR in negative feedback in humans. Obese men have impaired responses to combined receptor antagonist stimulation, suggesting impaired negative feedback by endogenous cortisol. Such an approach may be useful to dissect abnormal HPA axis control in neuropsychiatric and other disorders.

  15. Histologic and inflammatory lamellar changes in horses with oligofructose-induced laminitis treated with a CXCR1/2 antagonist

    Directory of Open Access Journals (Sweden)

    Leonardo R. de Lima

    2016-01-01

    Full Text Available Abstract: With the hypothesis that blocking chemokine signaling can ameliorate acute laminitis, the aim was to evaluate the therapeutic effect of intravenous DF1681B, a selective antagonist for CXCR1 and CXCR2 (chemokine receptors, in an oligofructose equine laminitis model. To twelve mixed breed clinically healthy hoses with no previous history of hoof-related lameness was administered oligofructose (10g/kg given by nasogastric tube and divided into two groups: treated (intravenous DF1681B at 30mg/kg 6, 12, 18, and 24h after oligofructose and non-treated groups. Laminar biopsies were performed before and 12, 36, and 72h after administering oligofructose. Samples were stained with periodic acid-Schiff (PAS and scored from 0 to 6 according to epidermal cell and basal membrane changes. The IL-1β, IL-6, and CXCL1 RNA expressions were determined by RT-PCR. Parametric and non-parametric tests were used to compare times within each group (P<0.05. The PAS grades and IL-1β and IL-6 RNA expression increased in the non-treated group, but remained constant in the treated horses. In conclusion, DF1681B therapy reduced laminar inflammation and epidermal deterioration in treated horses. CXCR1/2 blockage should be considered therapeutically for equine acute laminitis.

  16. Characterization of subtle brain abnormalities in a mouse model of Hedgehog pathway antagonist-induced cleft lip and palate.

    Science.gov (United States)

    Lipinski, Robert J; Holloway, Hunter T; O'Leary-Moore, Shonagh K; Ament, Jacob J; Pecevich, Stephen J; Cofer, Gary P; Budin, Francois; Everson, Joshua L; Johnson, G Allan; Sulik, Kathleen K

    2014-01-01

    Subtle behavioral and cognitive deficits have been documented in patient cohorts with orofacial clefts (OFCs). Recent neuroimaging studies argue that these traits are associated with structural brain abnormalities but have been limited to adolescent and adult populations where brain plasticity during infancy and childhood may be a confounding factor. Here, we employed high resolution magnetic resonance microscopy to examine primary brain morphology in a mouse model of OFCs. Transient in utero exposure to the Hedgehog (Hh) signaling pathway antagonist cyclopamine resulted in a spectrum of facial dysmorphology, including unilateral and bilateral cleft lip and palate, cleft of the secondary palate only, and a non-cleft phenotype marked by midfacial hypoplasia. Relative to controls, cyclopamine-exposed fetuses exhibited volumetric differences in several brain regions, including hypoplasia of the pituitary gland and olfactory bulbs, hyperplasia of the forebrain septal region, and expansion of the third ventricle. However, in affected fetuses the corpus callosum was intact and normal division of the forebrain was observed. This argues that temporally-specific Hh signaling perturbation can result in typical appearing OFCs in the absence of holoprosencephaly--a condition classically associated with Hh pathway inhibition and frequently co-occurring with OFCs. Supporting the premise that some forms of OFCs co-occur with subtle brain malformations, these results provide a possible ontological basis for traits identified in clinical populations. They also argue in favor of future investigations into genetic and/or environmental modulation of the Hh pathway in the etiopathogenesis of orofacial clefting.

  17. Attenuation of cocaine-induced locomotor sensitization in rats sustaining genetic or pharmacologic antagonism of ghrelin receptors.

    Science.gov (United States)

    Clifford, P Shane; Rodriguez, Juan; Schul, Destri; Hughes, Samuel; Kniffin, Tracey; Hart, Nigel; Eitan, Shoshana; Brunel, Luc; Fehrentz, Jean-Alain; Martinez, Jean; Wellman, Paul J

    2012-11-01

    Systemic infusions of the orexigenic peptide ghrelin (GHR) increase dopamine levels within the nucleus accumbens and augment cocaine-stimulated locomotion and conditioned place preference in rats; observations that suggest an important role for GHR and GHR receptors (GHR-Rs) in drug reinforcement. In the present studies, we examined the development of cocaine locomotor sensitization in rats, sustaining either pharmacologic antagonism or genetic ablation of GHR-Rs. In a pharmacologic study, adult male rats were injected (i.p.) with either 0, 3 or 6 mg/kg JMV 2959 (a GHR-R1 receptor antagonist), and 20 minutes later, with either vehicle or 10 mg/kg cocaine HCl on each of 7 consecutive days. Rats pretreated with JMV 2959 showed significantly attenuated cocaine-induced hyperlocomotion. In a second study, adult wild-type (WT) or mutant rats sustaining ENU-induced knockout of GHR-R [GHR-R ((-/-) )] received daily injections (i.p.) of vehicle (0.9% saline) or 10.0 mg/kg cocaine HCl for 14 successive days. GHR-R null rats treated repeatedly with cocaine showed diminished development of cocaine locomotor sensitization relative to WT rats treated with cocaine. To verify the lack of GHR-R function in the GHR-R ((-/-) ) rats, a separate feeding experiment was conducted in which WT rats, but not GHR-R ((-/-) ) rats, were noted to eat more after a systemic injection of 15 nmol GHR than after vehicle. These results suggest that GHR-R activity is required for the induction of locomotor sensitization to cocaine and complement an emerging literature implicating central GHR systems in drug reward. GHR is an orexigenic gut peptide that is transported across the blood-brain barrier and interacts with GHR-Rs located on ventral tegmental dopamine neurons. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  18. Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis.

    Science.gov (United States)

    Xu, Juan; Li, Yuan; Wang, Ying; Liu, Hongxia; Lei, Lei; Yang, Hailian; Liu, Guoqin; Ren, Dongtao

    2008-10-03

    Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant growth, development, and responses to various environmental stimuli. We demonstrate that MKK9, an MKK, is an upstream activator of the MPKs MPK3 and MPK6 both in vitro and in planta. Expression of active MKK9 protein in transgenic plants induces the synthesis of ethylene and camalexin through the activation of the endogenous MPK3 and MPK6 kinases. As a consequence, transcription of multiple genes responsible for ethylene biosynthesis, ethylene responses, and camalexin biosynthesis is coordinately up-regulated. The activation of MKK9 inhibits hypocotyl elongation in the etiolated seedlings. MKK9-mediated effects on hypocotyl elongation were blocked by the ethylene biosynthesis inhibitor, aminoethoxyvinylglycine, and ethylene receptor antagonist, Ag(+). Expression of active MKK9 protein enhances the sensitivity of transgenic seedlings to salt stress, whereas loss of MKK9 activity reduces salt sensitivity indicating a role for MKK9 in the salt stress response. The results reported here reveal that the MKK9-MPK3/MPK6 cascade participates in the regulation of the biosynthesis of ethylene and camalexin and may be an important axis in the stress responses of Arabidopsis.

  19. Pigment epithelium-derived factor up-regulation induced by memantine, an N-methyl-D-aspartate receptor antagonist, is involved in increased proliferation of hippocampal progenitor cells.

    Science.gov (United States)

    Namba, T; Yabe, T; Gonda, Y; Ichikawa, N; Sanagi, T; Arikawa-Hirasawa, E; Mochizuki, H; Kohsaka, S; Uchino, S

    2010-05-05

    Memantine is classified as an NMDA receptor antagonist. We recently reported that memantine promoted the proliferation of neural progenitor cells and the production of mature granule neurons in the adult hippocampus. However, the molecular mechanism responsible for the memantine-induced promotion of cellular proliferation remains unknown. In this study we searched for a factor that mediates memantine-induced cellular proliferation, and found that pigment epithelium-derived factor (PEDF), a broad-acting neurotrophic factor, is up-regulated in the dentate gyrus of adult mice after the injection of memantine. PEDF mRNA expression increased significantly by 3.5-fold at 1 day after the injection of memantine. In addition, the expression level of PEDF protein also increased by 1.8-fold at 2 days after the injection of memantine. Immunohistochemical study using anti-PEDF antibody showed that the majority of the PEDF-expressing cells were protoplasmic and perivascular astrocytes. Using a neurosphere assay, we confirmed that PEDF enhanced cellular proliferation under the presence of fibroblast growth factor-2 (FGF-2) and epidermal growth factor (EGF) but was not involved in the multilineage potency of hippocampal progenitor cells. Over expression of PEDF by adeno-associated virus, however, did not stimulate cellular proliferation, suggesting PEDF per se does not promote cellular proliferation in vivo. These findings suggest that the memantine induced PEDF up-regulation is involved in increased proliferation of hippocampal progenitor cells. (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Effects of Preoperative Serotonin-Receptor-Antagonist Administration in Spinal Anesthesia-Induced Hypotension: A Randomized, Double-blind Comparison Study of Ramosetron and Ondansetron.

    Science.gov (United States)

    Shin, Hyun-Jung; Choi, Eun-Su; Lee, Gwan-Woo; Do, Sang-Hwan

    2015-01-01

    The adverse effects of spinal anesthesia (SA) include arterial hypotension and bradycardia. The aim of this study was to compare the effects of 2 type 3 serotonin receptor antagonists in SA-induced adverse effects. Specifically, we assessed whether ramosetron was more effective than ondansetron in reducing SA-induced decreases in blood pressure (BP) and heart rate (HR). A total of 117 patients undergoing orthopedic surgery and receiving SA were intravenously administered 0.3 mg of ramosetron (n = 39, group R), 4 mg of ondansetron (n = 39, group O4), or 8 mg of ondansetron (n = 39, group O8). Systolic BP (SBP), diastolic BP (DBP), mean BP (MBP), HR, and the lowest SBP, DBP, MBP, and HR values were measured preoperatively (baseline) and intraoperatively. The incidence of postoperative nausea and vomiting, the need for rescue antiemetics, the amount of patient-controlled analgesia consumption, and pain score in the first 48 hours after surgery were determined. Baseline values did not significantly differ among the 3 groups. After SA, SBP, DBP, MBP, and HR were lower than their baseline values in all 3 groups. The differences between the baseline and the lowest values were significantly less in group R than in groups O4 and O8 with respect to SBP (P controlled analgesia consumption, or pain score. The administration of ramosetron (0.3 mg) significantly attenuated the SA-induced decrease in BP compared with 4 or 8 mg of ondansetron and HR compared with 4 mg of ondansetron.

  1. Transcriptome Profiling of the Virus-Induced Innate Immune Response in Pteropus vampyrus and Its Attenuation by Nipah Virus Interferon Antagonist Functions.

    Science.gov (United States)

    Glennon, Nicole B; Jabado, Omar; Lo, Michael K; Shaw, Megan L

    2015-08-01

    Bats are important reservoirs for several viruses, many of which cause lethal infections in humans but have reduced pathogenicity in bats. As the innate immune response is critical for controlling viruses, the nature of this response in bats and how it may differ from that in other mammals are of great interest. Using next-generation transcriptome sequencing (mRNA-seq), we profiled the transcriptional response of Pteropus vampyrus bat kidney (PVK) cells to Newcastle disease virus (NDV), an avian paramyxovirus known to elicit a strong innate immune response in mammalian cells. The Pteropus genus is a known reservoir of Nipah virus (NiV) and Hendra virus (HeV). Analysis of the 200 to 300 regulated genes showed that genes for interferon (IFN) and antiviral pathways are highly upregulated in NDV-infected PVK cells, including genes for beta IFN, RIG-I, MDA5, ISG15, and IRF1. NDV-infected cells also upregulated several genes not previously characterized to be antiviral, such as RND1, SERTAD1, CHAC1, and MORC3. In fact, we show that MORC3 is induced by both IFN and NDV infection in PVK cells but is not induced by either stimulus in human A549 cells. In contrast to NDV infection, HeV and NiV infection of PVK cells failed to induce these innate immune response genes. Likewise, an attenuated response was observed in PVK cells infected with recombinant NDVs expressing the NiV IFN antagonist proteins V and W. This study provides the first global profile of a robust virus-induced innate immune response in bats and indicates that henipavirus IFN antagonist mechanisms are likely active in bat cells. Bats are the reservoir host for many highly pathogenic human viruses, including henipaviruses, lyssaviruses, severe acute respiratory syndrome coronavirus, and filoviruses, and many other viruses have also been isolated from bats. Viral infections are reportedly asymptomatic or heavily attenuated in bat populations. Despite their ecological importance to viral maintenance, research

  2. Extreme Thermal Sensitivity and Pain-Induced Sensitization in a Fibromyalgia Patient

    Directory of Open Access Journals (Sweden)

    Fong Wong

    2010-01-01

    Full Text Available During the course of a psychophysical study of fibromyalgia syndrome (FMS, one of the subjects with a long history of headache and facial pain displayed an extraordinarily severe thermal allodynia. Her stimulus-response function for ratings of cutaneous heat pain revealed a sensitivity clearly beyond that of normal controls and most FMS subjects. Specially designed psychophysical methods showed that heat sensitivity sometimes increased dramatically within a series of stimuli. Prior exposure to moderate heat pain served as a trigger for allodynic ratings of series of normally neutral thermal stimulation. These observations document a case of breakthrough pain sensitivity with implications for mechanisms of FMS pain.

  3. Randomised trial of the effect of a gastrin/CCK2receptor antagonist on esomeprazole-induced hypergastrinaemia: evidence against rebound hyperacidity.

    Science.gov (United States)

    Boyce, Malcolm; van den Berg, Frans; Mitchell, Toni; Darwin, Kate; Warrington, Steve

    2017-02-01

    Hypergastrinaemia induced by proton pump inhibitor (PPI) therapy may cause ECL-cell and parietal-cell hyperplasia and rebound hyperacidity and dyspepsia after PPI withdrawal. The aim of the study was to assess the effect of different dosage-regimens of netazepide, a gastrin/CCK 2 receptor antagonist, on PPI-induced hypergastrinaemia and elevated chromogranin A (CgA). Six groups of eight healthy subjects participated in a randomised, double-blind study of esomeprazole 40 mg daily for 28 days, in combination with netazepide 1, 5 or 25 mg or placebo, daily, during the last 14 days of esomeprazole or during 14 days after treatment withdrawal. Fasting serum gastrin and plasma CgA were measured during treatment and after withdrawal, as biomarkers of acid suppression and ECL-cell activity, respectively. Dyspepsia was monitored throughout the study. Esomeprazole increased gastrin and CgA. Netazepide increased gastrin, but not CgA, and inhibited dose dependently the CgA response to esomeprazole. Gastrin and CgA returned to baseline within 2-3 days of esomeprazole withdrawal; netazepide did not shorten that time. There was no rebound dyspepsia after esomeprazole withdrawal. Esomeprazole and netazepide each increase gastrin, consistent with a secondary effect of gastric acid suppression, but by different mechanisms. Esomeprazole-induced hypergastrinaemia stimulates ECL cells and thereby increases CgA. Netazepide-induced hypergastrinaemia does not increase CgA, because netazepide blocks gastrin/CCK 2 receptors on ECL cells. Co-administration of netazepide 5 mg abolishes the effect of esomeprazole-induced hypergastrinaemia on ECL cells. The quick return to baseline of gastrin and CgA and absence of dyspepsia after esomeprazole withdrawal do not support the concept of rebound hyperacidity.

  4. Participation of the central p38 and ERK1/2 pathways in IL-1β-induced sensitization of nociception in rats.

    Science.gov (United States)

    Yang, Kui Y; Bae, Won S; Kim, Min J; Bae, Yong C; Kim, Young J; Kim, Hyun J; Nam, Soon H; Ahn, Dong K

    2013-10-01

    This study examined the participation of central mitogen-activated protein kinases (MAPKs) in the central sensitization produced by a subcutaneous injection of interleukin-1β (IL-1β) in male Sprague-Dawley rats. Formalin-induced responses were evaluated 24h after an IL-1β injection. A subcutaneous injection of 10ng of IL-1β elevated the formalin-induced scratching response significantly in the second phase compared to the vehicle-treated group. Pretreatment with an IL-1 receptor antagonist reduced the IL-1β-induced sensitization. Pretreatment with IL-1β increased the p-ERK and p-p38 expression induced by the formalin injection. Double immunofluorescence data revealed increases in phospho-extracellular signal-regulated kinase (p-ERK) immunoreactive cells that co-localize with neuronal nuclei (NeuN), a neuronal marker, and in phospho-p38 (p-p38) immunoreactive cells that co-localize with NeuN and OX42, a microglia marker. The intracisternal administration of minocycline (50μg), a microglia inhibitor, attenuated the increased formalin-induced scratching responses in the IL-1β-treated rats. The intracisternal administration of PD98059 (1, 10μg), a MEK inhibitor, and SB203580 (1, 5μg), a p38 inhibitor, also attenuated the number of formalin-induced scratches in the second phase in the IL-1β-treated rats. These results suggest that the IL-1β-induced central sensitization of nociception is mediated by the central MAPK pathways, which are activated differentially in the neurons and microglia under inflammatory pain conditions. Therefore, blockade of the MAPK pathways can be as a potential therapeutic target for the central sensitization of inflammatory pain. © 2013 Elsevier Inc. All rights reserved.

  5. Compact High Sensitive Laser-Induced Breakdown Spectroscopy Instrument Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Laser induced breakdown spectroscopy (LIBS) is a versatile tool for in situ substance characterization. Existing LIBS instruments are not compact enough for space...

  6. Evaluating the function of calcium antagonist on the Cd-induced stress in sperm of Russian sturgeon, Acipenser gueldenstaedtii

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhihua, E-mail: zhihuali06@yahoo.com [University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany (Czech Republic); Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Jingzhou 434000 (China); Li Ping [University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany (Czech Republic); Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Jingzhou 434000 (China); Rodina, Marek; Randak, Tomas [University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany (Czech Republic)

    2010-11-15

    In the current study, the sperm of Russian sturgeon (Acipenser gueldenstaedtii) was used to evaluate the roles of Verapamil (VRP), a calcium channel blocker, against cadmium (Cd)-induced stress. Sturgeon sperm were exposed for 2 h at 50 {mu}g/L VRP, 5.0 {mu}g/L Cd, the mixture of 50 {mu}g/L VRP + 5.0 {mu}g/L Cd, 50 {mu}g/L Cd and the mixture of 50 {mu}g/L VRP + 50 {mu}g/L Cd. After exposure, the sperm motility parameters (motility and velocity), oxidative stress levels (lipid peroxidation [LPO] and carbonyl protein [CP]) and antioxidant enzyme activities (superoxide dismutase [SOD], glutathione reductase [GR], glutathione peroxidase [GPx]) were measured in sturgeon sperm. Compared to the control, Cd-induced stress was apparent as reflected by depressed motility parameters, induced oxidative stress and inhibited antioxidant enzyme activities at both Cd concentrations. In the presence of VRP, Cd-induced stress was reduced in sturgeon sperm, especially all the measured parameters in the sperm exposed at 5.0 {mu}g/L Cd returned to control levels, expect for the sperm motility. The present results indicate that VRP can reduce the Cd-induced stress in sturgeon sperm and suggest that using of sperm in vitro assays may provide a novel and efficient means for evaluating the effects of residual metals in the aquatic environment of sturgeon.

  7. Distinct sensitivity to caffeine-induced insomnia related to age.

    Science.gov (United States)

    Frozi, Júlia; de Carvalho, Hudson W; Ottoni, Gustavo L; Cunha, Rodrigo A; Lara, Diogo R

    2018-01-01

    Caffeine acts by antagonizing the effect of the endogenous homeostatic sleep factor adenosine. In the current study we aimed to evaluate the pattern of caffeine-induced insomnia and its relation to age and sex in a general population sample derived from a web survey. The sample included 75,534 participants (28.1% men) from 18 to 75 years who answered self-report questionnaires by accessing a website in Brazilian Portuguese (BRAINSTEP project). In our sample, 3620 (17.0%) men and 9920 (18.3%) women reported insomnia due to caffeine intake. Caffeine-induced insomnia increased with aging in both men and women. This difference remained after adjusting for sociodemographic, psychiatric and sleep related variables as well as caffeine intake. Women showed higher proportion of caffeine-induced insomnia than men, but this difference did not remain after controlling for covariates. Also, individuals with caffeine-induced insomnia reported poorer sleep quality, higher latency to fall asleep and a higher proportion of psychiatric diagnoses and daily use of hypnotic drugs. In conclusion, our results show an age-associated increase in caffeine-induced insomnia and poorer mental health indicators among people with caffeine-induced insomnia complaints.

  8. Resonance-induced sensitivity enhancement method for conductivity sensors

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Shih, Chi-yuan (Inventor); Li, Wei (Inventor); Zheng, Siyang (Inventor)

    2009-01-01

    Methods and systems for improving the sensitivity of a variety of conductivity sensing devices, in particular capacitively-coupled contactless conductivity detectors. A parallel inductor is added to the conductivity sensor. The sensor with the parallel inductor is operated at a resonant frequency of the equivalent circuit model. At the resonant frequency, parasitic capacitances that are either in series or in parallel with the conductance (and possibly a series resistance) is substantially removed from the equivalent circuit, leaving a purely resistive impedance. An appreciably higher sensor sensitivity results. Experimental verification shows that sensitivity improvements of the order of 10,000-fold are possible. Examples of detecting particulates with high precision by application of the apparatus and methods of operation are described.

  9. Effect of the Toll-Like Receptor 4 Antagonist Eritoran on Retinochoroidal Inflammatory Damage in a Rat Model of Endotoxin-Induced Inflammation

    Directory of Open Access Journals (Sweden)

    Feyzahan Ekici

    2014-01-01

    Full Text Available Purpose. We investigated the effect of eritoran, a Toll-like receptor 4 antagonist, on retinochoroidal inflammatory damage in an endotoxin-induced inflammatory rat model. Methods. Endotoxin-induced inflammatory model was obtained by intraperitoneal injection of 1.5 mg/kg lipopolysaccharide (LPS. Group 1 had control rats; in groups 2-3 LPS and 0.5 mg/kg sterile saline were injected; and in groups 4-5 LPS and 0.5 mg/kg eritoran were injected. Blood samples were taken and eyes were enucleated after 12 hours (h (groups 2 and 4 or 24 hours (Groups 3 and 5. Tumor necrosis factor-α (TNF-α and malondialdehyde (MDA levels in the serum and retinochoroidal tissue and nuclear factor kappa-B (NFκB levels in retinochoroidal tissue were determined. Histopathological examination was performed and retinochoroidal changes were scored. Results. Eritoran treatment resulted in lower levels of TNF-α, MDA, and NFκB after 12 h which became significant after 24 h. Serum TNF-α and retinochoroidal tissue NFκB levels were similar to control animals at the 24th h of the study. Eritoran significantly reversed histopathological damage after 24 h. Conclusions. Eritoran treatment resulted in less inflammatory damage in terms of serum and retinochoroidal tissue parameters.

  10. Role of neurokinin 1 receptors in dextran sulfate-induced colitis: studies with gene-deleted mice and the selective receptor antagonist netupitant.

    Science.gov (United States)

    Szitter, István; Pintér, Erika; Perkecz, Anikó; Kemény, Agnes; Kun, József; Kereskai, László; Pietra, Claudio; Quinn, John P; Zimmer, Andreas; Berger, Alexandra; Paige, Christopher J; Helyes, Zsuzsanna

    2014-05-01

    The function of the neurokinin 1 (NK1) receptor was investigated in the DSS-induced mouse colitis model using NK1 receptor-deficient mice and the selective antagonist netupitant. Colitis was induced by oral administration of 20 mg/ml DSS solution for 7 days in C57BL/6 and Tacr1 KO animals (n = 5-7). During the induction, one-half of the C57BL/6 and Tacr1 KO group received one daily dose of 6 mg/kg netupitant, administered intraperitoneally, the other half of the group received saline, respectively. Disease activity index (DAI), on the basis of stool consistency, blood and weight loss, was determined over 7 days. Histological evaluation, myeloperoxidase (MPO) measurement, cytokine concentrations and receptor expression analysis were performed on the colon samples. NK1 receptors are up-regulated in the colon in response to DSS treatment. DSS increased DAI, histopathological scores, BLC, sICAM-1, IFN-γ, IL-16 and JE in wildtype mice, which were significantly reduced in NK1 receptor-deficient ones. NK1 receptor antagonism with netupitant significantly diminished DAI, inflammatory histopathological alterations, BLC, IFN-γ, IL-13 and IL-16 in wildtype mice, but not in the NK1-deficient ones. MPO was similarly elevated and netupitant significantly decreased its activity in both groups. NK1 receptor antagonism could be beneficial for colitis via inhibiting different inflammatory mechanisms.

  11. NMDA antagonist, but not nNOS inhibitor, requires AMPA receptors in the ventromedial prefrontal cortex (vmPFC) to induce antidepressant-like effects

    DEFF Research Database (Denmark)

    Pereira, V. S.; Wegener, Gregers; Joca, S. R.

    2013-01-01

    Depressed individuals and stressed animals show enhanced levels of glutamate and neuronal nitric oxide synthase (nNOS) activity in limbic structures, including the vmPFC. Systemic administration of glutamatergic NMDA receptor antagonists or inhibitors of nitric oxide (NO) synthesis induces...... of the glutamatergic and nitrergic systems of the vmPFC on the behavioral consequences induced by forced swimming (FS), an animal model of depression. Male Wistar rats (230-260g) with guide cannulas aimed at the prelimbic (PL) region of vmPFC were submitted to a 15min session of FS and, 24h later, they were submitted...... administration into vmPFC-PL reduced the IT (Mean(plus or minus)SEM: vehicle: 116.3(plus or minus)21.17; LY 1nmol: 164.4(plus or minus)18.92; LY 3nmol: 28.71(plus or minus)10.21null; LY 10nmol: 39.43(plus or minus)7.99null; nullp...

  12. The glucocorticoid antagonist mifepristone attenuates sound-induced long-term deficits in auditory nerve response and central auditory processing in female rats.

    Science.gov (United States)

    Singer, Wibke; Kasini, Kamyar; Manthey, Marie; Eckert, Philipp; Armbruster, Philipp; Vogt, Miriam Annika; Jaumann, Mirko; Dotta, Michela; Yamahara, Kohei; Harasztosi, Csaba; Zimmermann, Ulrike; Knipper, Marlies; Rüttiger, Lukas

    2018-01-12

    Systemic corticosteroids have been the mainstay of treatment for various hearing disorders for more than 30 yr. Accordingly, numerous studies have described glucocorticoids (GCs) and stressors to be protective in the auditory organ against damage associated with a variety of health conditions, including noise exposure. Conversely, stressors are also predictive risk factors for hearing disorders. How both of these contrasting stress actions are linked has remained elusive. Here, we demonstrate that higher corticosterone levels during acoustic trauma in female rats is highly correlated with a decline of auditory fiber responses in high-frequency cochlear regions, and that hearing thresholds and the outer hair cell functions (distortion products of otoacoustic emissions) are left unaffected. Moreover, when GC receptor (GR) or mineralocorticoid receptor (MR) activation was antagonized by mifepristone or spironolactone, respectively, GR, but not MR, inhibition significantly and permanently attenuated trauma-induced effects on auditory fiber responses, including inner hair cell ribbon loss and related reductions of early and late auditory brainstem responses. These findings strongly imply that higher corticosterone stress levels profoundly impair auditory nerve processing, which may influence central auditory acuity. These changes are likely GR mediated as they are prevented by mifepristone.-Singer, W., Kasini, K., Manthey, M., Eckert, P., Armbruster, P., Vogt, M. A., Jaumann, M., Dotta, M., Yamahara, K., Harasztosi, C., Zimmermann, U., Knipper, M., Rüttiger, L. The glucocorticoid antagonist mifepristone attenuates sound-induced long-term deficits in auditory nerve response and central auditory processing in female rats.

  13. Controlled Release of Interleukin-1 Receptor Antagonist from Hyaluronic Acid-Chitosan Microspheres Attenuates Interleukin-1β-Induced Inflammation and Apoptosis in Chondrocytes

    Directory of Open Access Journals (Sweden)

    Bo Qiu

    2016-01-01

    Full Text Available This paper investigates the protective effect of interleukin-1 receptor antagonist (IL-1Ra released from hyaluronic acid chitosan (HA-CS microspheres in a controlled manner on IL-1β-induced inflammation and apoptosis in chondrocytes. The IL-1Ra release kinetics was characterized by an initial burst release, which was reduced to a linear release over eight days. Chondrocytes were stimulated with 10 ng/ml IL-1β and subsequently incubated with HA-CS-IL-1Ra microspheres. The cell viability was decreased by IL-1β, which was attenuated by HA-CS-IL-1Ra microspheres as indicated by an MTT assay. ELISA showed that HA-CS-IL-1Ra microspheres inhibited IL-1β-induced inflammation by attenuating increases in NO2- and prostaglandin E2 levels as well as increase in glycosaminoglycan release. A terminal deoxyribonucleotide transferase deoxyuridine triphosphate nick-end labeling assay revealed that the IL-1β-induced chondrocyte apoptosis was decreased by HA-CS-IL-1Ra microspheres. Moreover, HA-CS-IL-1Ra microspheres blocked IL-1β-induced chondrocyte apoptosis by increasing B-cell lymphoma 2 (Bcl-2 and decreasing Bcl-2-associated X protein and caspase-3 expressions at mRNA and protein levels, as indicated by reverse-transcription quantitative polymerase chain reaction and western blot analysis, respectively. The results of the present study indicated that HA-CS-IL-1Ra microspheres as a controlled release system of IL-1Ra possess potential anti-inflammatory and antiapoptotic properties in rat chondrocytes due to their ability to regulate inflammatory factors and apoptosis associated genes.

  14. Orexin receptor antagonist-induced sleep does not impair the ability to wake in response to emotionally salient acoustic stimuli in dogs

    Directory of Open Access Journals (Sweden)

    Pamela L. Tannenbaum

    2014-05-01

    Full Text Available The ability to awaken from sleep in response to important stimuli is a critical feature of normal sleep, as is maintaining sleep continuity in the presence of irrelevant background noise. Dual orexin receptor antagonists (DORAs effectively promote sleep across species by targeting the evolutionarily conserved wake-promoting orexin signaling pathway. This study in dogs investigated whether DORA-induced sleep preserved the ability to awaken appropriately to salient acoustic stimuli but remain asleep when exposed to irrelevant stimuli. Sleep and wake in response to DORAs, vehicle, GABA-A receptor modulators (diazepam, eszopiclone and zolpidem and antihistamine (diphenhydramine administration were evaluated in telemetry-implanted adult dogs with continuous electrocorticogram, electromyogram, electrooculogram, and activity recordings. DORAs induced sleep, but GABA-A modulators and antihistamine induced paradoxical hyperarousal. Thus, salience gating studies were conducted during DORA-22 (0.3, 1, and 5 mg/kg; day and night and vehicle nighttime sleep. The acoustic stimuli were either classically conditioned using food reward and positive attention (salient stimulus or presented randomly (neutral stimulus. Once conditioned, the tones were presented at sleep times corresponding to maximal DORA-22 exposure. In response to the salient stimuli, dogs woke completely from vehicle and orexin-antagonized sleep across all sleep stages but rarely awoke to neutral stimuli. Notably, acute pharmacological antagonism of orexin receptors paired with emotionally salient anticipation produced wake, not cataplexy, in a species where genetic (chronic loss of orexin receptor signaling leads to narcolepsy/cataplexy. DORA-induced sleep in this species thereby retains the desired capacity to awaken to emotionally salient acoustic stimuli while preserving uninterrupted sleep in response to irrelevant stimuli.

  15. The anti-inflammatory effect of montelukast, a cysteinyl leukotriene receptor-1 antagonist, against estradiol-induced nonbacterial inflammation in the rat prostate.

    Science.gov (United States)

    Said, Mahmoud M; Bosland, Maarten C

    2017-02-01

    There is no standard treatment of chronic nonbacterial prostatitis in humans. The current study was aimed to investigate the effect of montelukast, an antagonist of cysteinyl leukotriene receptor-1, against estrogen-induced, nonbacterial lateral lobe-specific prostate inflammation in rats. Male Wistar rats were randomized into five groups of six rats, including sham controls (group 1) and castrated rats (group 2), whereas nonbacterial prostatitis (NBP) was induced in groups 3-5 by castration followed by a daily subcutaneous injection of estradiol (0.25 mg/kg body weight) for 30 days. The rats were left otherwise untreated (group 3) or received a daily oral administration of montelukast (1 and 10 mg/kg body weight for groups 4 and 5, respectively) from the 17th day after castration for two consecutive weeks. Compared with sham controls, induction of NBP led to a significant increase in serum leukotriene B 4 (LTB4), tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) levels, along with a significant upregulation in the transcript level of proinflammatory molecules (nuclear factor kappa beta [NF-κβ] and inducible nitric oxide synthase [iNOS]), chemokines (monocyte chemoattractant protein-1 [MCP-1] and eotaxin), and E-selectin in the lateral prostate. Histological examination revealed intense inflammation in the prostate with leukocyte infiltration and acinar degeneration following estradiol treatment of castrated rats. Montelukast significantly suppressed the increase in serum and prostate proinflammatory mediators/chemokines expression and abolished the histologically inflammatory changes in the lateral prostate. These findings indicate that montelukast inhibits estradiol-induced NBP in a rat model through anti-inflammatory mechanisms, suggesting its future beneficial effect for the treatment of clinical chronic NBP.

  16. Antinociceptive synergistic effect of spinal mGluR2/3 antagonist and glial cells inhibitor on peripheral inflammation-induced mechanical hypersensitivity.

    Science.gov (United States)

    Zhang, Ting; Zhang, Jing; Shi, Juan; Feng, Yupeng; Sun, Zhong Sheng; Li, Huili

    2009-05-29

    Metabotropic glutamate receptor (mGluR) 2/3 is distributed in neurons and glial cells in many regions of the nervous system, but its role in nociceptive processing is unclear. In this study, we examined the mRNA expressions of mGluR2 and mGluR3, by real-time RT-PCR, in the spinal cord. We further investigated the possible involvement of mGluR2/3 and mechanisms underlying peripheral inflammatory pain induced by subcutaneous complete Freund's adjuvant (CFA) injection. We demonstrate that compared to the controls, the mRNA expression levels of mGluR2 and mGluR3 were significantly higher 4h after CFA injection. Functionally, blocking mGluR2/3 by their antagonist (2S)-2-amino-2-[(1S, 2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495) alleviated the CFA-induced mechanical allodynia and the inhibitory effects were reversed by mGluR2/3 agonist (2R, 4R)-4-aminopyrrolidine-2,4-dicarboxylate ((2R, 4R)-APDC). In addition, a glial metabolism inhibitor dl-fluorocitric acid barium salt (fluorocitric acid) also inhibited the CFA-induced mechanical allodynia in a dose-dependent manner. Remarkably, simultaneous inhibition of mGluR2/3 and glial metabolism had synergistic effects. The co-administration of LY341495 and fluorocitric acid with minimal dosages produced significant more inhibition than the additive effects by the individual inhibitor alone. In summary, our data suggest that spinal mGluR2/3 contributes to the generation of mechanical allodynia induced by peripheral inflammation. We also suggest that involvement of mGluR2/3 in the communication between glial cells and neurons takes part in the processing of nociceptive information.

  17. A rapid and sensitive method for diagnosis of dermatophyte induced ...

    African Journals Online (AJOL)

    Sherin M. Emam

    2015-08-29

    Aug 29, 2015 ... Subjects and methods: This study was conducted during the period from April 2013 through May. 2014. ... a diagnostic tool that has a higher sensitivity (93.3%) and is faster than nested PCR (73.3%) and other conventional methods. .... used as a template for the second (nested) PCR, using the same PCR ...

  18. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

    Science.gov (United States)

    Wu, Liping; Oshima, Tadayuki; Shan, Jing; Sei, Hiroo; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2015-10-15

    Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs. Copyright © 2015 the American Physiological Society.

  19. Sensitivity and subsequent "down regulation" of sensitivity induced by chlorocresol in guinea pigs

    DEFF Research Database (Denmark)

    Andersen, Klaus Ejner

    1985-01-01

    Chlorocresol was shown to have great potential for contact sensitization in the guinea-pig maximization test at the Day-21 challenge; 2 weeks later, the reactivity was significantly decreased. Cyclophosphamide (250 mg/kg) was interperitoneally injected and used as a modulator for the immune...

  20. Prophylaxis of Radiation-Induced Nausea and Vomiting Using 5-Hydroxytryptamine-3 Serotonin Receptor Antagonists: A Systematic Review of Randomized Trials

    Energy Technology Data Exchange (ETDEWEB)

    Salvo, Nadia; Doble, Brett [Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario (Canada); Khan, Luluel [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Amirthevasar, Gayathri [Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario (Canada); Dennis, Kristopher [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Pasetka, Mark; DeAngelis, Carlo [Department of Oncology Pharmacy, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Tsao, May [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada); Chow, Edward, E-mail: Edward.Chow@sunnybrook.ca [Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario (Canada)

    2012-01-01

    Purpose: To systematically review the effectiveness and safety of 5-hydroxytryptamine-3 receptor antagonists (5-HT3 RAs) compared with other antiemetic medication or placebo for prophylaxis of radiation-induced nausea and vomiting. Methods and Materials: We searched the following electronic databases: MEDLINE, Embase, the Cochrane Central Register of Controlled Clinical Trials, and Web of Science. We also hand-searched reference lists of included studies. Randomized, controlled trials that compared a 5-HT3 RA with another antiemetic medication or placebo for preventing radiation-induced nausea and vomiting were included. We excluded studies recruiting patients receiving concomitant chemotherapy. When appropriate, meta-analysis was conducted using Review Manager (v5) software. Relative risks were calculated using inverse variance as the statistical method under a random-effects model. We assessed the quality of evidence by outcome using the Grading of Recommendations Assessment, Development, and Evaluation approach. Results: Eligibility screening of 47 articles resulted in 9 included in the review. The overall methodologic quality was moderate. Meta-analysis of 5-HT3 RAs vs. placebo showed significant benefit for 5-HT3 RAs (relative risk [RR] 0.70; 95% confidence interval [CI] 0.57-0.86 for emesis; RR 0.84, 95% CI 0.73-0.96 for nausea). Meta-analysis comparing 5-HT3 RAs vs. metoclopramide showed a significant benefit of the 5-HT3 RAs for emetic control (RR 0.27, 95% CI 0.15-0.47). Conclusion: 5-Hydroxytryptamine-3 RAs are superior to placebo and other antiemetics for prevention of emesis, but little benefit was identified for nausea prevention. 5-Hydroxytryptamine-3 RAs are suggested for prevention of emesis. Limited evidence was found regarding delayed emesis, adverse events, quality of life, or need for rescue medication. Future randomized, controlled trials should evaluate different 5-HT3 antiemetics and new agents with novel mechanisms of action such at the NK

  1. Prophylaxis of Radiation-Induced Nausea and Vomiting Using 5-Hydroxytryptamine-3 Serotonin Receptor Antagonists: A Systematic Review of Randomized Trials

    International Nuclear Information System (INIS)

    Salvo, Nadia; Doble, Brett; Khan, Luluel; Amirthevasar, Gayathri; Dennis, Kristopher; Pasetka, Mark; DeAngelis, Carlo; Tsao, May; Chow, Edward

    2012-01-01

    Purpose: To systematically review the effectiveness and safety of 5-hydroxytryptamine-3 receptor antagonists (5-HT3 RAs) compared with other antiemetic medication or placebo for prophylaxis of radiation-induced nausea and vomiting. Methods and Materials: We searched the following electronic databases: MEDLINE, Embase, the Cochrane Central Register of Controlled Clinical Trials, and Web of Science. We also hand-searched reference lists of included studies. Randomized, controlled trials that compared a 5-HT3 RA with another antiemetic medication or placebo for preventing radiation-induced nausea and vomiting were included. We excluded studies recruiting patients receiving concomitant chemotherapy. When appropriate, meta-analysis was conducted using Review Manager (v5) software. Relative risks were calculated using inverse variance as the statistical method under a random-effects model. We assessed the quality of evidence by outcome using the Grading of Recommendations Assessment, Development, and Evaluation approach. Results: Eligibility screening of 47 articles resulted in 9 included in the review. The overall methodologic quality was moderate. Meta-analysis of 5-HT3 RAs vs. placebo showed significant benefit for 5-HT3 RAs (relative risk [RR] 0.70; 95% confidence interval [CI] 0.57–0.86 for emesis; RR 0.84, 95% CI 0.73–0.96 for nausea). Meta-analysis comparing 5-HT3 RAs vs. metoclopramide showed a significant benefit of the 5-HT3 RAs for emetic control (RR 0.27, 95% CI 0.15–0.47). Conclusion: 5-Hydroxytryptamine-3 RAs are superior to placebo and other antiemetics for prevention of emesis, but little benefit was identified for nausea prevention. 5-Hydroxytryptamine-3 RAs are suggested for prevention of emesis. Limited evidence was found regarding delayed emesis, adverse events, quality of life, or need for rescue medication. Future randomized, controlled trials should evaluate different 5-HT3 antiemetics and new agents with novel mechanisms of action such at

  2. NETUPITANT, A POTENT AND HIGHLY SELECTIVE NK1 RECEPTOR ANTAGONIST, ALLEVIATES ACETIC ACID-INDUCED BLADDER OVERACTIVITY IN ANESTHETIZED GUINEA-PIGS

    Directory of Open Access Journals (Sweden)

    Stefano Palea

    2016-08-01

    Full Text Available Introduction. Tachykinins potently contract the isolated urinary bladder from a number of animal species and play an important role in the regulation of the micturition reflex. On the guinea-pig isolated urinary bladder we examined the effects of a new potent and selective NK1 receptor antagonist (netupitant on the contractions induced by a selective NK1 receptor agonist, SP-methylester (SP-OMe. Moreover, the effects of netupitant and another selective NK1 antagonist (L-733,060 were studied in anesthetized guinea-pigs using two experimental models, the isovolumetric bladder contractions and a model of bladder overactivity induced by intravesical administration of acetic acid (AA. Methods and Results. Detrusor muscle strips were mounted in 5 mL organ baths and isometric contractions to cumulative concentrations of SP-OME were recorded before and after incubation with increasing concentrations of netupitant. In anesthetized female guinea-pigs, reflex bladder activity was examined under isovolumetric conditions with the bladder distended with saline or during cystometry using intravesical infusion of acetic acid (AA. After a 30 min stabilization period, netupitant (0.1-3 mg/kg, i.v. or L-733,060 (3-10 mg/kg, i.v. were administered. In the detrusor muscle, netupitant produced a concentration-dependent inhibition (mean pKB = 9.24 of the responses to SP-OMe. Under isovolumetric conditions, netupitant or L-733,060 reduced bladder contraction frequency in a dose-dependent manner, but neither drug changed bladder contraction amplitude. In the AA model, netupitant dose-dependently increased intercontraction interval (ICI but had no effect on the amplitude of micturition (AM. L-733,060 dose-dependently increased ICI also but this effect was paralleled by a significant reduction of AM. Conclusion. Netupitant decreases the frequency of reflex bladder contractions without altering their amplitude, suggesting that this drug targets the afferent limb of the

  3. Netupitant, a Potent and Highly Selective NK1 Receptor Antagonist, Alleviates Acetic Acid-Induced Bladder Overactivity in Anesthetized Guinea-Pigs.

    Science.gov (United States)

    Palea, Stefano; Guilloteau, Véronique; Rekik, Moéz; Lovati, Emanuela; Guerard, Marc; Guardia, Maria-Alba; Lluel, Philippe; Pietra, Claudio; Yoshiyama, Mitsuharu

    2016-01-01

    Introduction. Tachykinins potently contract the isolated urinary bladder from a number of animal species and play an important role in the regulation of the micturition reflex. On the guinea-pig isolated urinary bladder we examined the effects of a new potent and selective NK1 receptor antagonist (netupitant) on the contractions induced by a selective NK1 receptor agonist, SP-methylester (SP-OMe). Moreover, the effects of netupitant and another selective NK1 antagonist (L-733,060) were studied in anesthetized guinea-pigs using two experimental models, the isovolumetric bladder contractions and a model of bladder overactivity induced by intravesical administration of acetic acid (AA). Methods and Results. Detrusor muscle strips were mounted in 5 mL organ baths and isometric contractions to cumulative concentrations of SP-OME were recorded before and after incubation with increasing concentrations of netupitant. In anesthetized female guinea-pigs, reflex bladder activity was examined under isovolumetric conditions with the bladder distended with saline or during cystometry using intravesical infusion of AA. After a 30 min stabilization period, netupitant (0.1-3 mg/kg, i.v.) or L-733,060 (3-10 mg/kg, i.v.) were administered. In the detrusor muscle, netupitant produced a concentration-dependent inhibition (mean pKB = 9.24) of the responses to SP-OMe. Under isovolumetric conditions, netupitant or L-733,060 reduced bladder contraction frequency in a dose-dependent manner, but neither drug changed bladder contraction amplitude. In the AA model, netupitant dose-dependently increased intercontraction interval (ICI) but had no effect on the amplitude of micturition (AM). L-733,060 dose-dependently increased ICI also but this effect was paralleled by a significant reduction of AM. Conclusion. Netupitant decreases the frequency of reflex bladder contractions without altering their amplitude, suggesting that this drug targets the afferent limb of the micturition reflex circuit

  4. The ventral pallidum is critically involved in the development and expression of morphine-induced sensitization.

    Science.gov (United States)

    Mickiewicz, Amanda L; Dallimore, Jeanine E; Napier, T Celeste

    2009-03-01

    Repeated, intermittent exposure to drugs of abuse results in response enhancements to subsequent drug treatments, a phenomenon referred to as sensitization. As persistent neuronal sensitization may contribute to the long-lasting consequences of drug abuse, characterizing the neuroanatomical substrates of sensitization is providing insights into addiction. It is known that the ventral tegmental area (VTA) is necessary for induction, and expression involves the nucleus accumbens (NAc). We reveal here that the ventral pallidum (VP), a brain region reciprocally innervated by the VTA and the NAc, is a critical mediator of opiate-induced behavioral sensitization. Blockade of VP mu-opioid receptors (via intra-VP CTOP injections) negated the ability of systemic administration of the opiate, morphine to induce motor sensitization, and for sensitized rats to subsequently express enhanced responding to a morphine challenge. Intra-VP morphine was sufficient to induce motor sensitization, and this sensitization was expressed following 17 days of withdrawal. Rats with a treatment history of intra-VP morphine demonstrated cross-sensitization to a challenge injection of systemically administered morphine. Conversely, repeated systemic treatments of morphine cross-sensitized to an intra-VP morphine challenge. These results indicate that activation of VP mu-opioid receptors is sufficient to evoke behavioral sensitization and that these receptors are necessary for sensitized responding to systemic morphine. The study pioneers the concept that both development and expression of drug-induced sensitization are regulated by the VP. Thus, the VP is likely an important contributor to neuronal adaptations that underlie addiction.

  5. Swertisin, a C-glucosylflavone, ameliorates scopolamine-induced memory impairment in mice with its adenosine A1 receptor antagonistic property.

    Science.gov (United States)

    Lee, Hyung Eun; Jeon, Se Jin; Ryu, Byeol; Park, Se Jin; Ko, Sang Yoon; Lee, Younghwan; Kim, Eunji; Lee, Sunhee; Kim, Haneul; Jang, Dae Sik; Ryu, Jong Hoon

    2016-06-01

    Swertisin, a C-glucosylflavone isolated from Swertia japonica, has been known to have anti-inflammatory or antidiabetic activities. Until yet, however, its cognitive function is not investigated. In the present study, we endeavored to elucidate the effects of swertisin on cholinergic blockade-induced memory impairment. Swertisin (5 or 10mg/kg, p.o.) significantly ameliorated scopolamine-induced cognitive impairment in the several behavioral tasks. Also, single administration of swertisin (10mg/kg, p.o.) in normal naïve mice enhanced the latency time in the passive avoidance task. In addition, the ameliorating effect of swertisin on scopolamine-induced memory impairment was significantly antagonized by a sub-effective dose of N6-cyclopentyladenosine (CPA, 0.1mg/kg, i.p). The adenosine A1 receptor antagonistic property of swertisin was confirmed by receptor binding assay. Furthermore, the administration of swertisin significantly increased the phosphorylation levels of hippocampal or cortical protein kinase A (PKA, 5 or 10mg/kg) and CREB (10mg/kg), and co-administration of CPA (0.1mg/kg, i.p) blocked the increased phosphorylated levels of PKA and CREB in the both cortex and hippocampus. Taken together, these results indicate that the memory-ameliorating effects of swertisin may be, in part, mediated through the adenosinergic neurotransmitter system, and that swertisin may be useful for the treatment of cognitive dysfunction observed in several diseases such as Alzheimer's disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. The selective dopamine D3 receptor antagonist, SR 21502, reduces cue-induced reinstatement of heroin seeking and heroin conditioned place preference in rats.

    Science.gov (United States)

    Galaj, Ewa; Manuszak, Monica; Babic, Sandra; Ananthan, Subramaniam; Ranaldi, Robert

    2015-11-01

    Because the role of dopamine (DA) D3 receptors has been investigated primarily in relation to cocaine-related behaviors little is known of the role of these receptors in heroin seeking. To investigate the effect of the selective DA D3 receptor antagonist, SR 21502, on cue-induced reinstatement of heroin seeking and heroin conditioned place preference (CPP). In experiment 1, rats were trained to self-administer intravenous heroin for 15 days followed by extinction. Following extinction animals were treated with one of several SR 21502 doses (0, 7.5, 10 or 15mg/kg) and a cue-induced reinstatement test was conducted. In experiment 2, animals were conditioned to experience heroin in one compartment of a CPP apparatus and saline in the other. On the test day animals were treated with 0, 3.75, 7.5, 10 or 15mg/kg of SR 21502 and tested for their CPP. The results from experiment 1 showed a significant dose-related reduction in cue-induced reinstatement of active lever pressing in the 7.5 and 10mg groups and an absence of the reinstatement effect in the 15mg group. In experiment 2, animals treated with vehicle or 3.75mg of SR 21502 showed significant heroin place preferences but those treated with the higher doses showed no CPP. Our findings suggest that DA D3 receptors play a significant role in heroin approach behaviors driven by conditioned stimuli. As such, we propose that SR 21502 holds potential as an effective pharmacotherapeutic agent for relapse prevention and should be studied further. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Acid-induced sweetness of neoculin is ascribed to its pH-dependent agonistic-antagonistic interaction with human sweet taste receptor.

    Science.gov (United States)

    Nakajima, Ken-ichiro; Morita, Yuji; Koizumi, Ayako; Asakura, Tomiko; Terada, Tohru; Ito, Keisuke; Shimizu-Ibuka, Akiko; Maruyama, Jun-ichi; Kitamoto, Katsuhiko; Misaka, Takumi; Abe, Keiko

    2008-07-01

    Neoculin (NCL) is a sweet protein that also has taste-modifying activity to convert sourness to sweetness. However, it has been unclear how NCL induces this unique sensation. Here we quantitatively evaluated the pH-dependent acid-induced sweetness of NCL using a cell-based assay system. The human sweet taste receptor, hT1R2-hT1R3, was functionally expressed in HEK293T cells together with G alpha protein. When NCL was applied to the cells under different pH conditions, it activated hT1R2-hT1R3 in a pH-dependent manner as the condition changed from pH 8 to 5. The pH-response sigmoidal curve resembled the imidazole titration curve, suggesting that His residues were involved in the taste-modifying activity. We then constructed an NCL variant in which all His residues were replaced with Ala and found that the variant elicited strong sweetness at neutral pH as well as at acidic pH. Since NCL and the variant elicited weak and strong sweetness at the same neutral pH, respectively, we applied different proportions of NCL-variant mixtures to the cells at this pH. As a result, NCL competitively inhibits the variant-induced receptor activation. All these data suggest that NCL acts as an hT1R2-hT1R3 agonist at acidic pH but functionally changes into its antagonist at neutral pH.

  8. The EP4 receptor antagonist, L-161,982, blocks prostaglandin E2-induced signal transduction and cell proliferation in HCA-7 colon cancer cells

    International Nuclear Information System (INIS)

    Cherukuri, Durga Prasad; Chen, Xiao B.O.; Goulet, Anne-Christine; Young, Robert N.; Han, Yongxin; Heimark, Ronald L.; Regan, John W.; Meuillet, Emmanuelle; Nelson, Mark A.

    2007-01-01

    Accumulating evidence indicates that elevated levels of prostaglandin E 2 (PGE 2 ) can increase intestinal epithelial cell proliferation, and thus play a role in colorectal tumorigenesis. PGE 2 exerts its effects through four G-protein-coupled PGE receptor (EP) subtypes, named the EP1, EP2, EP3, and EP4. Increased phosphorylation of extracellular regulated kinases (ERK1/2) is required for PGE 2 to stimulate cell proliferation of human colon cancer cells. However, the EP receptor(s) that are involved in this process remain unknown. We provide evidence that L-161,982, a selective EP4 receptor antagonist, completely blocks PGE 2 -induced ERK phosphorylation and cell proliferation of HCA-7 cells. In order to identify downstream target genes of ERK1/2 signaling, we found that PGE 2 induces expression of early growth response gene-1 (EGR-1) downstream of ERK1/2 and regulates its expression at the level of transcription. PGE 2 treatment induces phosphorylation of cyclic AMP response element binding protein (CREB) at Ser133 residue and CRE-mediated luciferase activity in HCA-7 cells. Studies with dominant-negative CREB mutant (ACREB) provide clear evidence for the involvement of CREB in PGE 2 driven egr-1 transcription in HCA-7 cells. In conclusion, this study reveals that egr-1 is a target gene of PGE 2 in HCA-7 cells and is regulated via the newly identified EP4/ERK/CREB pathway. Finally our results support the notion that antagonizing EP4 receptors may provide a novel therapeutic approach to the treatment of colon cancer

  9. The AT1 Receptor Antagonist, L-158,809, Prevents or Ameliorates Fractionated Whole-Brain Irradiation-Induced Cognitive Impairment

    International Nuclear Information System (INIS)

    Robbins, Mike E.; Payne, Valerie B.S.; Tommasi, Ellen B.S.; Diz, Debra I.; Hsu, Fang-Chi; Brown, William R.; Wheeler, Kenneth T.; Olson, John; Zhao Weiling

    2009-01-01

    Purpose: We hypothesized that administration of the angiotensin type 1 (AT1) receptor antagonist, L-158,809, to young adult male rats would prevent or ameliorate fractionated whole-brain irradiation (WBI)-induced cognitive impairment. Materials and Methods: Groups of 80 young adult male Fischer 344 x Brown Norway (F344xBN) rats, 12-14 weeks old, received either: (1) fractionated WBI; 40 Gy of γ rays in 4 weeks, 2 fractions/week, (2) sham-irradiation; (3) WBI plus L-158,809 (20 mg/L drinking water) starting 3 days prior, during, and for 14, 28, or 54 weeks postirradiation; and (4) sham-irradiation plus L-158,809 for 14, 28, or 54 weeks postirradiation. An additional group of rats (n = 20) received L-158,809 before, during, and for 5 weeks postirradiation, after which they received normal drinking water up to 28 weeks postirradiation. Results: Administration of L-158,809 before, during, and for 28 or 54 weeks after fractionated WBI prevented or ameliorated the radiation-induced cognitive impairment observed 26 and 52 weeks postirradiation. Moreover, giving L-158,809 before, during, and for only 5 weeks postirradiation ameliorated the significant cognitive impairment observed 26 weeks postirradiation. These radiation-induced cognitive impairments occurred without any changes in brain metabolites or gross histologic changes assessed at 28 and 54 weeks postirradiation, respectively. Conclusions: Administering L-158,809 before, during, and after fractionated WBI can prevent or ameliorate the chronic, progressive, cognitive impairment observed in rats at 26 and 52 weeks postirradiation. These findings offer the promise of improving the quality of life for brain tumor patients

  10. Temperature sensitivity of the penicillin-induced autolysis mechanism in nongrowing cultures of Escherichia coli.

    OpenAIRE

    Kusser, W; Ishiguro, E E

    1987-01-01

    The effect of incubation temperature on the ampicillin-induced autolysis of nongrowing Escherichia coli was determined. The autolysis mechanisms in amino acid-deprived relA mutant cells treated with chloramphenicol were temperature sensitive. This temperature-sensitive autolysis was demonstrated in three independent ways: turbidimetric determinations, viable cell counts, and solubilization of radiolabeled peptidoglycan.

  11. Comparison and Analysis of Delirium Induced by Histamine H2 Receptor Antagonists and Proton Pump Inhibitors in Cancer Patients

    Directory of Open Access Journals (Sweden)

    Shiro Fujii

    2012-07-01

    Full Text Available Objective: H2 blockers have been reported to be responsible for drug-induced delirium. We compared the incidence of delirium between two groups of patients who were treated with H2 blockers (H2 group or proton pump inhibitors (PPI group for anastomotic ulcer prevention following surgical treatment of esophageal cancer. Method: The incidence and severity of delirium were retrospectively compared in patients of the H2 group (30 cases; age, 65.2 ± 8.1 years and the PPI group (30 cases; 65.2 ± 6.5 years. The diagnosis of delirium was based on the Diagnostic and Statistical Manual of Mental Disorders-IV-Text Revision. Delirium severity was rated on the Delirium Rating Scale (DRS. Results: The incidence of delirium was significantly lower in the PPI group than in the H2 group (p = 0.047. In the 11 patients from the H2 group who developed delirium, discontinuation of H2 blockers resulted in a significant reduction in the DRS score (p = 0.009. In three patients for whom H2 blockers were discontinued, DRS scores decreased by 50% or more three days after discontinuation compared to the prediscontinuation score. Conclusions: These results suggested that switching antiulcer drugs from H2 blockers to PPIs reduced delirium and thus provided an appropriate coping method for drug-induced delirium from antiulcer drugs.

  12. Increased capsaicin-induced secondary hyperalgesia in patients with multiple chemical sensitivity

    DEFF Research Database (Denmark)

    Holst, Helle; Arendt-Nielsen, Lars; Mosbech, Holger

    2011-01-01

    in experimental pain models to provoke peripheral and central sensitization. In patients with symptoms elicited by odorous chemicals capsaicin-induced secondary hyperalgesia and temporal summation were assessed as markers for abnormal central nociceptive processing together with neurogenic inflammation (flare).......the underlying cause of pathophysiological mechanisms triggering multiple chemical sensitivity (MCS) remains disputed.Recently, alterations in the central nervous system, for example,central sensitization, similar to various chronic pain disorders, have been suggested. Capsaicin is used...

  13. Antagonist of peroxisome proliferator-activated receptor γ induces cerebellar amyloid-β levels and motor dysfunction in APP/PS1 transgenic mice

    International Nuclear Information System (INIS)

    Du, Jing; Sun, Bing; Chen, Kui; Fan, Li; Wang, Zhao

    2009-01-01

    Recent evidences show that peroxisome proliferator-activated receptor γ (PPARγ) is involved in the modulation of the amyloid-β (Aβ) cascade causing Alzheimer's disease (AD) and treatment with PPARγ agonists protects against AD pathology. However, the function of PPARγ steady-state activity in Aβ cascade and AD pathology remains unclear. In this study, an antagonist of PPARγ, GW9662, was injected into the fourth ventricle of APP/PS1 transgenic mice to inhibit PPARγ activity in cerebellum. The results show that inhibition of PPARγ significantly induced Aβ levels in cerebellum and caused cerebellar motor dysfunction in APP/PS1 transgenic mice. Moreover, GW9662 treatment markedly decreased the cerebellar levels of insulin-degrading enzyme (IDE), which is responsible for the cellular degradation of Aβ. Since cerebellum is spared from significant Aβ accumulation and neurotoxicity in AD patients and animal models, these findings suggest a crucial role of PPARγ steady-state activity in protection of cerebellum against AD pathology.

  14. Mechanisms and latest clinical studies of new NK1 receptor antagonists for chemotherapy-induced nausea and vomiting: Rolapitant and NEPA (netupitant/palonosetron).

    Science.gov (United States)

    Rojas, Camilo; Slusher, Barbara S

    2015-12-01

    Many patients undergoing moderately or highly emetogenic chemotherapy experience chemotherapy-induced nausea/vomiting (CINV) and report reduced daily functioning, despite prophylaxis with antiemetic drugs. While modern antiemetics have largely alleviated acute emesis, management of nausea and delayed emesis remains particularly challenging. We briefly review the pathophysiologic mechanisms of CINV and the clinical impact of current antiemetics, i.e., the serotonin subtype 3 (5-HT3) receptor antagonists (RAs) and neurokinin-1 (NK1)RAs, before summarizing recent data from clinical trials of new agents. The new antiemetics reviewed include the two most recently approved drugs, the NK1RA rolapitant and the fixed-dose combination product, NEPA, which is composed of the NK1RA netupitant and the 5-HT3RA palonosetron. Phase 3 studies demonstrate improved control of CINV in the delayed and overall phases when rolapitant is added to a standard 5-HT3RA regimen. Phase 2 and phase 3 clinical trials with NEPA demonstrate improved control of CINV in the acute, delayed, and overall phases vs. 5-HT3RA regimens. These data suggest that delayed emesis can be substantially reduced via combined 5-HT3 and NK1 receptor neurotransmitter pathway inhibition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Sulfur Mustard Induces Immune Sensitization in Hairless Guinea Pigs

    Science.gov (United States)

    Mishra, Neerad C.; Rir-sima-ah, Jules; March, Thomas; Weber, Waylon; Benson, Janet; Jaramillo, Richard; Seagrave, Jean-Clare; Schultz, Gregory; Grotendorst, Gary; Sopori, Mohan

    2009-01-01

    Sulfur mustard (SM, bis-(2-chloroethyl) sulfide) is a well known chemical warfare agent that may cause long-term debilitating injury. Because of the ease of production and storage, it has a strong potential for chemical terrorism; however, the mechanism by which SM causes chronic tissue damage is essentially unknown. SM is a potent protein alkylating agent, and we tested the possibility that SM modifies cellular antigens, leading to an immunological response to “altered self” and a potential long-term injury. To that end, in this communication, we show that dermal exposure of euthymic hairless guinea pigs induced infiltration of both CD4+ and CD8+ T cells into the SM-exposed skin and strong upregulated expression of proinflammatory cytokines and chemokines (TNF-α, IFN-γ, and IL-8) in distal tissues such as the lung and the lymph nodes. Moreover, we present evidence for the first time that SM induces a specific delayed-type hypersensitivity response that is associated with splenomegaly, lymphadenopathy, and proliferation of cells in these tissues. These results clearly suggest that dermal exposure to SM leads to immune activation, infiltration of T cells into the SM-exposed skin, delayed-type hypersensitivity response, and molecular imprints of inflammation in tissues distal from the site of SM exposure. These immunological responses may contribute to the long-term sequelae of SM toxicity. PMID:19887117

  16. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Michel Alexander Steiner

    2013-12-01

    Full Text Available The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1 in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO associated with metabolic syndrome (MetS. Rats were fed either standard chow (SC or a cafeteria (CAF diet comprised of intermittent human snacks and a constant free choice between a HF/sweet (HF/S diet and SC for 13 weeks. Thereafter the SC group was treated with vehicle (for 4 weeks and the CAF group was divided into a vehicle and an ACT-335827 treatment group. Energy and water intake, food preference, and indicators of MetS (abdominal obesity, glucose homeostasis, plasma lipids, and blood pressure were monitored. Hippocampus-dependent memory, which can be impaired by DIO, was assessed. CAF diet fed rats treated with ACT-335827 consumed less of the HF/S diet and more of the SC, but did not change their snack or total kcal intake compared to vehicle-treated rats. ACT-335827 increased water intake and the high-density lipoprotein associated cholesterol proportion of total circulating cholesterol. ACT-335827 slightly increased body weight gain (4% versus controls and feed efficiency in the absence of hyperphagia. These effects were not associated with significant changes in the elevated fasting glucose and triglyceride (TG plasma levels, glucose intolerance, elevated blood pressure, and adiposity due to CAF diet consumption. Neither CAF diet consumption alone nor ACT-335827 affected memory. In conclusion, the main metabolic characteristics associated with DIO and MetS in rats remained unaffected by chronic ACT-335827 treatment, suggesting that pharmacological OXR-1 blockade has minimal impact in this

  17. Peripheral CB1 Receptor Neutral Antagonist, AM6545, Ameliorates Hypometabolic Obesity and Improves Adipokine Secretion in Monosodium Glutamate Induced Obese Mice

    Directory of Open Access Journals (Sweden)

    Haiming Ma

    2018-03-01

    Full Text Available Effect of peripheral cannabinoid receptor 1 (CB1R blockade by AM6545 in the monosodium glutamate (MSG-induced hypometabolic and hypothalamic obesity was observed, and the impact on intraperitoneal adipose tissue and adipokines was investigated. The MSG mice is characterized by excessive abdominal obesity, and combined with dyslipidemia and insulin resistance. 3-Week AM6545 treatment dose-dependently decreased the body weight, intraperitoneal fat mass, and rectified the accompanied dyslipidemia include elevated serum triglyceride, total cholesterol, free fatty acids, and lowered LDLc level. Glucose intolerance and hyperinsulinemia were also alleviated. But AM6545 didn’t affect the food-intake consistently through the experiment. In line with the reduction on fat mass, the size of adipocyte was reduced markedly. Most interestingly, AM6545 showed significant improvement on levels of circulating adipokines including lowering leptin, asprosin and TNFα, and increasing HMW adiponectin. Correspondingly, dysregulated gene expression of lipogenesis, lipolysis, and adipokines in the adipose tissue were nearly recovered to normal level after AM6545 treatment. Additionally, western blot analysis revealed that AM6545 corrected the elevated CB1R and PPARγ protein expression, while increased the key energy uncoupling protein UCP1 expression in adipose tissue. Taken together, the current study indicates that AM6545 induced a comprehensive metabolic improvement in the MSG mice including counteracting the hypometabolic and hypothalamic obesity, and improving the accompanied dyslipidemia and insulin resistance. One key underlying mechanism is related to ameliorate on the metabolic deregulation of adipose tissue, the synthesis and secretion of adipokines were thus rectified, and finally the catabolism was increased and the anabolism was reduced in intraperitoneal adipose tissue. Findings from this study will provide the valuable information about peripheral CB1R

  18. Drinking sucrose or saccharin enhances sensitivity of rats to quinpirole-induced yawning

    OpenAIRE

    Serafine, Katherine M; Bentley, Todd A; Kilborn, Dylan J; Koek, Wouter; France, Charles P

    2015-01-01

    Diet can impact sensitivity of rats to some of the behavioral effects of drugs acting on dopamine systems. The current study tested whether continuous access to sucrose is necessary to increase yawning induced by the dopamine receptor agonist quinpirole, or if intermittent access is sufficient. These studies also tested whether sensitivity to quinpirole-induced yawning increases in rats drinking the non-caloric sweetener saccharin. Dose-response curves (0.0032–0.32 mg/kg) for quinpirole-induc...

  19. Observing object motion induces increased generalization and sensitivity.

    Science.gov (United States)

    Balas, Benjamin; Sinha, Pawan

    2008-01-01

    Learning to recognize a new object requires binding together dissimilar images of that object into a common representation. Temporal proximity is a useful computational cue for learning invariant representations. We report experiments that demonstrate two distinct psychophysical effects of temporal association via observed object motion on object perception. First, we use an implicit priming criterion to demonstrate that observation of a dynamic object induces generalization over close temporal neighbors. Second, in contrast to predictions from previous work, we find that shape discrimination between images actually improves following the same training procedure. We suggest that these apparently conflicting sets of results, one demonstrating blurring and the other demonstrating sharpening of the perceived distinction between temporally proximate frames, are consistent with a highly redundant code for object appearance.

  20. Sensitive detection of DNA oxidation damage induced by nanomaterials.

    Science.gov (United States)

    Collins, Andrew; El Yamani, Naouale; Dusinska, Maria

    2017-06-01

    From a toxicological point of view, nanomaterials are of interest; because - on account of their great surface area relative to mass - they tend to be more reactive than the bulk chemicals from which they are derived. They might in some cases have the potential to damage DNA directly, or could act via the induction of oxidative stress. The comet assay (single cell gel electrophoresis) is widely used to measure DNA strand breaks and also oxidised bases, by including in the procedure digestion with lesion-specific enzymes such as formamidopyrimidine DNA glycosylase (which converts oxidised purines to breaks) or endonuclease III (recognising oxidised pyrimidines). We summarise reports in which these enzymes have been used to study a variety of nanomaterials in diverse cell types. We also stress that it is important to carry out tests of cell viability alongside the genotoxicity assay, since cytotoxicity can lead to adventitious DNA damage. Different concentrations of nanomaterials should be investigated, concentrating on a non-cytotoxic range; and incubating for short and longer periods can give valuable information about the mode of damage induction. The use of lesion-specific enzymes can substantially enhance the sensitivity of the comet assay in detecting genotoxic effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Surgical incision can alter capsaicin-induced central sensitization in rat brainstem nociceptive neurons.

    Science.gov (United States)

    Lam, D K; Sessle, B J; Hu, J W

    2008-10-15

    Surgical trauma can affect spinal neuronal excitability, but there have been no studies of the effects of surgical cutaneous injury on central nociceptive processing of deep afferent inputs evoked by noxious stimuli such as capsaicin. Thus our aim was to test the effect of surgical cutaneous incision in influencing central sensitization induced by capsaicin injection into the temporomandibular joint (TMJ). The activity of single nociceptive neurons activated by noxious mechanical stimulation of the TMJ was recorded in the trigeminal subnucleus caudalis/upper cervical cord of halothane-anesthetized rats. The cutaneous mechanoreceptive field (RF), cutaneous mechanical activation threshold (MAT) and TMJ MAT of neurons before and after both surgical cutaneous incision alone and capsaicin injection were compared with results of incision and lidocaine pretreatment of the facial skin overlying the TMJ and capsaicin injection into the TMJ. Incision itself induced a barrage of neuronal spikes and excitability increases reflecting central sensitization (cutaneous RF expansion, cutaneous MAT reduction) in most neurons tested whereas lidocaine pretreatment significantly attenuated the barrage and central sensitization. Capsaicin injection into the TMJ induced cutaneous RF expansion, cutaneous MAT reduction and TMJ MAT reduction following lidocaine pretreatment of the cutaneous incision site whereas capsaicin injection following incision alone not only failed to induce further central sensitization but also decreased the existing incision-induced central sensitization (no cutaneous RF expansion, increased cutaneous MAT and TMJ MAT) in most neurons tested. These findings suggest that central sensitization induced by capsaicin alone or by cutaneous incision alone can readily occur in TMJ-responsive nociceptive neurons and that following incision-induced excitability increases, capsaicin may result in a temporary suppression of nociceptive neuronal changes reflecting central

  2. Involvement of the strychnine-sensitive glycine receptor in the anxiolytic effects of GlyT1 inhibitors on maternal separation-induced ultrasonic vocalization in rat pups.

    Science.gov (United States)

    Komatsu, Hiroko; Furuya, Yoshiaki; Sawada, Kohei; Asada, Takashi

    2015-01-05

    Several studies have shown that glycine transporter 1 (GlyT1) inhibitors have anxiolytic actions. There are two types of glycine receptor: the strychnine-sensitive glycine receptor (GlyA) and the strychnine-insensitive glycine receptor (GlyB); however, which receptor is the main contributor to the anxiolytic actions of GlyT1 inhibitors is yet to be determined. Here, we clarified which glycine receptor is the main contributor to the anxiolytic effects of GlyT1 inhibitors by using maternal separation-induced ultrasonic vocalization (USV) by rat pups as an index of anxiety. We confirmed that administration of the benzodiazepine diazepam or the selective serotonin reuptake inhibitor escitaloplam, which are both clinically proven anxiolytics, or the GlyT1 inhibitor SSR504734 (2-chloro-N-[(S)-phenyl[(2S)-piperidin-2-yl] methyl]-3-trifluoromethyl benzamide), decreases USV in rat pups. In addition, we showed that another GlyT1 inhibitor, ALX5407 ((R)-N-[3-(4'-fluorophenyl)-3(4'-phenylphenoxy)propyl]sarcosine) also decreases USV in rat pups. SSR504734- or ALX5407-induced decreases in USV were dose-dependently reversed by administration of the GlyA antagonist strychnine, whereas the diazepam- or escitalopram-induced decreases in USV were not. Furthermore, GlyT1-induced decreases in USV were not reversed by administration of the GlyB antagonist L-687,414. Together, these results suggest that GlyA activation is the main contributor to the anxiolytic actions of GlyT1 inhibitors and that the anxiolytic actions of diazepam and escitalopram cannot be attributed to GlyA activation. Our findings provide new insights into the importance of the activation of GlyA in the anxiolytic effects of GlyT1 inhibitors. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Geomagnetically induced currents in Uruguay: Sensitivity to modelling parameters

    Science.gov (United States)

    Caraballo, R.

    2016-11-01

    According to the traditional wisdom, geomagnetically induced currents (GIC) should occur rarely at mid-to-low latitudes, but in the last decades a growing number of reports have addressed their effects on high-voltage (HV) power grids at mid-to-low latitudes. The growing trend to interconnect national power grids to meet regional integration objectives, may lead to an increase in the size of the present energy transmission networks to form a sort of super-grid at continental scale. Such a broad and heterogeneous super-grid can be exposed to the effects of large GIC if appropriate mitigation actions are not taken into consideration. In the present study, we present GIC estimates for the Uruguayan HV power grid during severe magnetic storm conditions. The GIC intensities are strongly dependent on the rate of variation of the geomagnetic field, conductivity of the ground, power grid resistances and configuration. Calculated GIC are analysed as functions of these parameters. The results show a reasonable agreement with measured data in Brazil and Argentina, thus confirming the reliability of the model. The expansion of the grid leads to a strong increase in GIC intensities in almost all substations. The power grid response to changes in ground conductivity and resistances shows similar results in a minor extent. This leads us to consider GIC as a non-negligible phenomenon in South America. Consequently, GIC must be taken into account in mid-to-low latitude power grids as well.

  4. Effects of the cannabinoid CB1 receptor agonist CP55,940 and antagonist SR141716A on d-amphetamine-induced behaviours in Cebus monkeys

    DEFF Research Database (Denmark)

    Madsen, Morten V; Peacock, Linda; Werge, Thomas

    2006-01-01

    Several clinical studies have shown that alterations in the cannabinoid system in the brain may be associated with schizophrenia. Although evidence points towards an antipsychotic potential for cannabinoid antagonists, experimental studies have shown inconsistent behavioural effects of cannabinoid...

  5. Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454.

    Science.gov (United States)

    Amirkhosravi, Ali; Mousa, Shaker A; Amaya, Mildred; Blaydes, Susan; Desai, Hina; Meyer, Todd; Francis, John L

    2003-09-01

    Platelets are known to play a role in blood borne metastasis. Previous experimental studies have suggested that platelet GpIIb/IIIa may be a therapeutic target. However, the need for intravenous administration limits the potential application of current GpIIb/IIIa inhibitors to cancer therapy. The aim of the present study was to assess the efficacy of a novel, non-peptide oral GpIIb/IIIa antagonist (XV454) on tumor cell-induced platelet aggregation in vivo and on experimental metastasis. A Lewis lung carcinoma (LL2) mouse model of experimental metastasis was used in this study. XV454 (100 micro g) was administered intravenously (via tail vein) or orally (gavages) to 20 g mice. To determine the effect of XV454 on platelet aggregation, blood samples were collected by cardiac puncture 10 minutes after intravenous and 1-24 hrs after oral XV454, and platelet function was assessed by aggregometry, thrombelastography and the Platelet Function Analyzer (PFA100). The effect of XV454 on tumor cell-induced thrombocytopenia was determined 10 minutes after intravenous and 3 hrs after oral XV454 administration. Tumor cells (2 x 10(6)) were injected intravenously and 15 minutes after cell injection, platelet count was measured and compared to baseline (pre-injection) counts. To assess the effect on metastasis, XV454 was administered intravenous or orally 10 minutes and 3 hrs before tumor cell injection, respectively. Eighteen days later, surface lung tumor nodules were counted and the total lung tumor burden assessed. In a fourth group, in addition to the initial oral dose (before tumor cell injection), oral XV454 was given daily for the first week and three times in the second week. Administration of XV454 (5 mg/kg) completely inhibited platelet aggregation and this effect persisted for at least 24 hrs after oral delivery. Both intravenous and oral XV454 significantly inhibited tumor cell-induced thrombocytopenia (P < 0.01), the number of surface lung tumor nodules (80-85%; P

  6. Combined treatment with a β3 -adrenergic receptor agonist and a muscarinic receptor antagonist inhibits detrusor overactivity induced by cold stress in spontaneously hypertensive rats.

    Science.gov (United States)

    Imamura, Tetsuya; Ogawa, Teruyuki; Minagawa, Tomonori; Nagai, Takashi; Suzuki, Toshiro; Saito, Tetsuichi; Yokoyama, Hitoshi; Nakazawa, Masaki; Ishizuka, Osamu

    2017-04-01

    This study determined if combined treatment with the muscarinic receptor (MR) antagonist solifenacin and the β 3 -adrenergic receptor (AR) agonist mirabegron could inhibit detrusor overactivity induced by cold stress in spontaneously hypertensive rats (SHRs). Thirty-two female 10-week-old SHRs were fed an 8% NaCl-supplemented diet for 4 weeks. Cystometric measurements of the unanesthetized, unrestricted rats were performed at room temperature (RT, 27 ± 2°C) for 20 min. The rats were then intravenously administered vehicle, 0.1 mg/kg solifenacin alone, 0.1 mg/kg mirabegron alone, or the combination of 0.1 mg/kg mirabegron and 0.1 mg/kg solifenacin (n = 8 each group). Five minutes later, the treated rats were exposed to low temperature (LT, 4 ± 2°C) for 40 min. Finally, the rats were returned to RT. After the cystometric investigations, the β 3 -ARs and M 3 -MRs expressed within the urinary bladders were analyzed. Just after transfer from RT to LT, vehicle-, solifenacin-, and mirabegron-treated SHRs exhibited detrusor overactivity that significantly decreased voiding interval and bladder capacity. However, treatment with the combination of solifenacin and mirabegron partially inhibited the cold stress-induced detrusor overactivity patterns. The decreases of voiding interval and bladder capacity in the combination-treated rats were significantly inhibited compared to other groups. Within the urinary bladders, there were no differences between expression levels of M 3 -MR and β 3 -AR mRNA. The tissue distribution of M 3 -MRs was similar to that of the β 3 -ARs. This study suggested that the combination of solifenacin and mirabegron act synergistically to inhibit the cold stress-induced detrusor overactivity in SHRs. Neurourol. Urodynam. 36:1026-1033, 2017. © 2016 The Authors. Neurourology and Urodynamics Published by Wiley Periodicals, Inc. © 2016 The Authors. Neurourology and Urodynamics Published by Wiley Periodicals, Inc.

  7. Attenuation of cold stress-induced exacerbation of cardiac and adipose tissue pathology and metabolic disorders in a rat model of metabolic syndrome by the glucocorticoid receptor antagonist RU486.

    Science.gov (United States)

    Nagasawa, K; Matsuura, N; Takeshita, Y; Ito, S; Sano, Y; Yamada, Y; Uchinaka, A; Murohara, T; Nagata, K

    2016-04-25

    Chronic stress affects the central nervous system as well as endocrine, metabolic and immune systems. However, the effects of cold stress on cardiovascular and metabolic disorders in metabolic syndrome (MetS) have remained unclear. We recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of MetS. We have now investigated the effects of chronic cold stress and glucocorticoid receptor (GR) blockade on cardiac and adipose tissue pathology as well as on metabolic parameters in this model. DS/obese rats were exposed to cold stress (immersion in ice-cold water to a depth of 1-2 cm for 2 h per day) with or without subcutaneous injection of the GR antagonist RU486 (2 mg kg(-1)day(-1)) for 4 weeks beginning at 9 weeks of age. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+)) littermates served as a control. Chronic cold stress exacerbated hypertension as well as left ventricular (LV) hypertrophy, fibrosis and diastolic dysfunction in DS/obese rats in a manner sensitive to RU486 treatment. Cold stress with or without RU486 did not affect body weight or fat mass. In contrast, cold stress further increased cardiac oxidative stress as well as macrophage infiltration and proinflammatory gene expression in LV and visceral fat tissue, with all of these effects being attenuated by RU486. Cold stress also further increased GR and 11β-hydroxysteroid dehydrogenase type 1 mRNA and protein abundance in LV and visceral adipose tissue, and these effects were again inhibited by RU486. In addition, RU486 ameliorated the stress-induced aggravation of dyslipidemia, glucose intolerance and insulin resistance in DS/obese rats. Our results implicate GR signaling in cold stress-induced exacerbation of cardiac and adipose tissue pathology as well as of abnormal glucose and lipid metabolism in a rat model of MetS.

  8. Sensitivity analysis of the noise-induced oscillatory multistability in Higgins model of glycolysis

    Science.gov (United States)

    Ryashko, Lev

    2018-03-01

    A phenomenon of the noise-induced oscillatory multistability in glycolysis is studied. As a basic deterministic skeleton, we consider the two-dimensional Higgins model. The noise-induced generation of mixed-mode stochastic oscillations is studied in various parametric zones. Probabilistic mechanisms of the stochastic excitability of equilibria and noise-induced splitting of randomly forced cycles are analysed by the stochastic sensitivity function technique. A parametric zone of supersensitive Canard-type cycles is localized and studied in detail. It is shown that the generation of mixed-mode stochastic oscillations is accompanied by the noise-induced transitions from order to chaos.

  9. Investigating racial disparities in use of NK1 receptor antagonists to prevent chemotherapy-induced nausea and vomiting among women with breast cancer.

    Science.gov (United States)

    Check, Devon K; Reeder-Hayes, Katherine E; Basch, Ethan M; Zullig, Leah L; Weinberger, Morris; Dusetzina, Stacie B

    2016-04-01

    Chemotherapy-induced nausea and vomiting (CINV) is a major concern for cancer patients and, if uncontrolled, can seriously compromise quality of life (QOL) and other treatment outcomes. Because of the expense of antiemetic medications used to prevent CINV (particularly oral medications filled through Medicare Part D), disparities in their use may exist. We used 2006-2012 SEER-Medicare data to evaluate the use of neurokinin-1 receptor antagonists (NK1s), a potent class of antiemetics, among black and white women initiating highly emetogenic chemotherapy for the treatment of early-stage breast cancer. We used modified Poisson regression to assess the relationship between race and (1) any NK1 use, (2) oral NK1 (aprepitant) use, and (3) intravenous NK1 (fosaprepitant) use. We report adjusted risk ratios (aRR) and 95 % confidence intervals (CI). The study included 1130 women. We observed racial disparities in use of any NK1 (aRR: 0.68, 95 % CI 0.51-0.91) and in use of oral aprepitant specifically (aRR: 0.54, 95 % CI 0.35-0.83). We did not observe disparities in intravenous fosaprepitant use. After controlling for variables related to socioeconomic status, disparities in NK1 and aprepitant use were reduced but not eliminated. We found racial disparities in women's use of oral NK1s for the prevention of CINV. These disparities may be partly explained by racial differences in socioeconomic status, which may translate into differential ability to afford the medication.

  10. Prevention of drug priming- and cue-induced reinstatement of MDMA-seeking behaviors by the CB1 cannabinoid receptor antagonist AM251.

    Science.gov (United States)

    Nawata, Yoko; Kitaichi, Kiyoyuki; Yamamoto, Tsuneyuki

    2016-03-01

    3,4-Methylenedioxymethamphetamine (MDMA), a methamphetamine (METH) derivative, exhibits METH-like actions at monoamine transporters and positive reinforcing effects in rodents and primates. The purposes of the present study were to determine whether cross-reinstatement would be observed between MDMA and METH and if the cannabinoid receptor, a receptor known to play critical roles in the brain reward system, could modulate MDMA craving. Rats were trained to press a lever for intravenous MDMA (0.3mg/infusion) or METH (0.02mg/infusion) infusions under a fixed ratio 1 schedule paired with drug-associated cues (light and tone). Following drug self-administration acquisition training, rats underwent extinction training (an infusion of saline). Reinstatement tests were performed once the extinction criteria were achieved. In MDMA-trained rats, the MDMA-priming injection (3.2mg/kg, i.p.) or re-exposure to MDMA-associated cues reinstated MDMA-seeking behavior. Additionally, a priming injection of METH (1.0mg/kg, i.p.) also reinstated MDMA-seeking behavior. In contrast, none of the MDMA doses reinstated METH-seeking behavior in the METH-trained rats. The CB1 cannabinoid receptor antagonist AM251 markedly attenuated the MDMA-seeking behaviors induced by MDMA-priming injection or re-exposure to MDMA-associated cues in a dose-dependent manner. These findings show that MDMA has obvious addictive potential for reinstating drug-seeking behavior and that METH can be an effective stimulus for reinstating MDMA-seeking behaviors. Furthermore, based on the attenuating effect of AM251 in the reinstatement of MDMA-seeking behaviors, drugs that suppress CB1 receptors may be used in treatment of MDMA dependence. Copyright © 2016. Published by Elsevier Ireland Ltd.

  11. β(3)-Adrenoceptor Antagonist SR59230A Attenuates the Imbalance of Systemic and Myocardial Oxygen Transport Induced by Dopamine in Newborn Lambs.

    Science.gov (United States)

    Gill, Richdeep S; Cheung, Po-Yin; Yu, Xiaoyang; Aklabi, Mohammed Al; Nagendran, Jeevan; Quinonez, Luis G; Li, Ying Qian; Miller, John; Ross, David B; Rebeyka, Ivan M; Li, Jia

    2012-01-01

    In neonates, the increase in O(2)-delivery (DO(2)) by dopamine is offset by a greater increase in O(2)-consumption (VO(2)). This has been attributed to β(3)-adrenergic receptors in neonatal brown fat tissue. β(3) receptors in the heart have negative inotropic properties. We evaluated the effects of SR59230A, a β(3)-antagonist, on the balance of systemic and myocardial O(2)-transport in newborn lambs treated with dopamine. Lambs (2-5 days old, n = 12) were anesthetized and mechanically ventilated. Heart rate (HR) and rectal temperature were monitored. VO(2) was measured by respiratory mass spectrometry and cardiac output (CO) by a pulmonary artery transonic flowmeter. Arterial, jugular bulb venous and coronary sinus blood gases and lactate were measured to calculate DO(2), O(2) extraction ratio (ERO(2)), myocardial O(2) and lactate extraction ratios (mERO(2), mERlac). After baseline measurements, lambs were randomized to receive SR59230A at 5 mg/kg iv (SRG) or placebo. Both groups received incremental doses of a dopamine infusion (0-5-10-15-20 mcg/kg/min) every 15 min. Measurements were repeated at the end of each dose. After SR59230A infusion, CO and HR trended to decrease (P = 0.06), but no significant changes occurred in other parameters. Over the incremental doses of dopamine, temperature increased in both groups (P 0.1). DO(2) trended to a small increase (P = 0.08). VO(2) increased in both groups (P transport induced by dopamine at higher doses. Studies are warranted to examine the effect of SR59230A in cases of cardiac dysfunction and increased VO(2), observed after cardiac surgery.

  12. Disruption of laminin-integrin-CD151-focal adhesion kinase axis sensitizes breast cancer cells to ErbB2 antagonists.

    Science.gov (United States)

    Yang, Xiuwei H; Flores, Ludmila M; Li, Qinglin; Zhou, Pengcheng; Xu, Fenghui; Krop, Ian E; Hemler, Martin E

    2010-03-15

    Resistance to anti-ErbB2 agents is a significant problem in the treatment of human ErbB2+ breast cancers. We show here that adhesion of human ErbB2+ breast cancer cells to basement membrane laminin-5 provides substantial resistance to trastuzumab and lapatinib, agents that respectively target the extracellular and kinase domains of ErbB2. Knockdown of laminin-binding integrins (alpha6beta4, alpha3beta1) or associated tetraspanin protein CD151 reversed laminin-5 resistance and sensitized ErbB2+ cells to trastuzumab and lapatinib. CD151 knockdown, together with trastuzumab treatment, inhibited ErbB2 activation and downstream signaling through Akt, Erk1/2, and focal adhesion kinase (FAK). Hence, ErbB2 function in mammary tumor cells is promoted by integrin-mediated adhesion to laminin-5, with strong support by CD151, leading to signaling through FAK. Consequently, removal or inhibition of any of these components (laminin-5, integrin, CD151, FAK) markedly sensitizes cells to anti-ErbB2 agents. These new insights should be useful when devising strategies for overcoming drug resistance in ErbB2+ cancers.

  13. MLL-Rearranged Acute Lymphoblastic Leukemias Activate BCL-2 through H3K79 Methylation and Are Sensitive to the BCL-2-Specific Antagonist ABT-199.

    Science.gov (United States)

    Benito, Juliana M; Godfrey, Laura; Kojima, Kensuke; Hogdal, Leah; Wunderlich, Mark; Geng, Huimin; Marzo, Isabel; Harutyunyan, Karine G; Golfman, Leonard; North, Phillip; Kerry, Jon; Ballabio, Erica; Chonghaile, Triona Ní; Gonzalo, Oscar; Qiu, Yihua; Jeremias, Irmela; Debose, LaKiesha; O'Brien, Eric; Ma, Helen; Zhou, Ping; Jacamo, Rodrigo; Park, Eugene; Coombes, Kevin R; Zhang, Nianxiang; Thomas, Deborah A; O'Brien, Susan; Kantarjian, Hagop M; Leverson, Joel D; Kornblau, Steven M; Andreeff, Michael; Müschen, Markus; Zweidler-McKay, Patrick A; Mulloy, James C; Letai, Anthony; Milne, Thomas A; Konopleva, Marina

    2015-12-29

    Targeted therapies designed to exploit specific molecular pathways in aggressive cancers are an exciting area of current research. Mixed Lineage Leukemia (MLL) mutations such as the t(4;11) translocation cause aggressive leukemias that are refractory to conventional treatment. The t(4;11) translocation produces an MLL/AF4 fusion protein that activates key target genes through both epigenetic and transcriptional elongation mechanisms. In this study, we show that t(4;11) patient cells express high levels of BCL-2 and are highly sensitive to treatment with the BCL-2-specific BH3 mimetic ABT-199. We demonstrate that MLL/AF4 specifically upregulates the BCL-2 gene but not other BCL-2 family members via DOT1L-mediated H3K79me2/3. We use this information to show that a t(4;11) cell line is sensitive to a combination of ABT-199 and DOT1L inhibitors. In addition, ABT-199 synergizes with standard induction-type therapy in a xenotransplant model, advocating for the introduction of ABT-199 into therapeutic regimens for MLL-rearranged leukemias. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Substance P spinal signaling induces glial activation and nociceptive sensitization after fracture

    OpenAIRE

    Li, Wen-Wu; Guo, Tian-Zhi; Shi, Xiaoyou; Sun, Yuan; Wei, Tzuping; Clark, David J; Kingery, Wade S

    2015-01-01

    Tibia fracture in rodents induces substance P (SP)-dependent keratinocyte activation and inflammatory changes in the hindlimb, similar to those seen in complex regional pain syndrome (CRPS). In animal pain models spinal glial cell activation results in nociceptive sensitization. This study tested the hypothesis that limb fracture triggers afferent C-fiber SP release in the dorsal horn, resulting in chronic glia activation and central sensitization. At 4 weeks after tibia fracture and casting ...

  15. A single social defeat induces short-lasting behavioral sensitization to amphetamine.

    Science.gov (United States)

    de Jong, Jelly G; Wasilewski, Michal; van der Vegt, Bea J; Buwalda, Bauke; Koolhaas, Jaap M

    2005-01-17

    Repeated, intermittent exposure to psychostimulants or stressors results in long-lasting, progressive sensitization of the behavioral effects of a subsequent amphetamine (AMPH) challenge. Although behavioral sensitization has also been observed following a single drug pretreatment, the sensitizing potential of a single exposure to stress is not clear. Both drug- and stress-induced sensitization depend on an enhanced dopaminergic neurotransmission in the mesolimbic DA system. Apart from responding to rewards, this system is also involved in responding towards aversive social stimuli. Therefore, social stressors may be particularly effective in inducing cross-sensitization to stimulant drugs. We examined the time course of sensitization to the locomotor effects of the stimulant, AMPH, following a single social stressor: a social defeat. Wistar rats were exposed in a resident-intruder paradigm to an unfamiliar dominant male conspecific (Wild-Type Groningen), resulting in defeat. The locomotor effects of a subsequent AMPH challenge (0.25 or 1.0 mg/kg) were evaluated 3, 14, and 21 days later by scoring horizontal movement in an open field. AMPH had significantly larger locomotor-activating effects in animals that had been defeated 3 days earlier compared to nondefeated controls. However, this sensitized response was no longer present 14 or 21 days after defeat. Therefore, we conclude that social defeat induces short-lasting cross-sensitization to the locomotor effects of AMPH in rats, but is not sufficient for long-term sensitization. The transient enhancement of responses to dopaminergic drugs may be indicative of a temporary role of dopamine in the cascade of physiological and behavioral changes following social defeat.

  16. Sucrose and naltrexone prevent increased pain sensitivity and impaired long-term memory induced by repetitive neonatal noxious stimulation: Role of BDNF and β-endorphin.

    Science.gov (United States)

    Nuseir, Khawla Q; Alzoubi, Karem H; Alhusban, Ahmed; Bawaane, Areej; Al-Azzani, Mohammed; Khabour, Omar F

    2017-10-01

    Pain in neonates is associated with short and long-term adverse outcomes. Data demonstrated that long-term consequences of untreated pain are linked to the plasticity of the neonate's brain. Sucrose is effective and safe for reducing painful procedures from single events. However, the mechanism of sucrose-induced analgesia is not fully understood. The role of the opioid system in this analgesia using the opioid receptor antagonist Naltrexone was investigated, plus the long-term effects on learning and memory formation during adulthood. Pain was induced in rat pups via needle pricks of the paws. Sucrose solution and/or naltrexone were administered before the pricks. All treatments started on day one of birth and continued for two weeks. At the end of 8weeks, behavioral studies were conducted to test spatial learning and memory using radial arm water maze (RAWM), and pain threshold via foot-withdrawal response to a hot plate. The hippocampus was dissected; levels of brain derived neurotrophic factor (BDNF) and endorphins were assessed using ELISA. Acute repetitive neonatal pain increased pain sensitivity later in life, while naltrexone with sucrose decreased pain sensitivity. Naltrexone and/or sucrose prevented neonatal pain induced impairment of long-term memory, while neonatal pain decreased levels of BDNF in the hippocampus; this decrease was averted by sucrose and naltrexone. Sucrose with naltrexone significantly increased β-endorphin levels in noxiously stimulated rats. In conclusion, naltrexone and sucrose can reverse increased pain sensitivity and impaired long-term memory induced by acute repetitive neonatal pain probably by normalizing BDNF expression and increasing β-endorphin levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Thrombin-receptor antagonist vorapaxar in acute coronary syndromes

    DEFF Research Database (Denmark)

    Tricoci, Pierluigi; Huang, Zhen; Held, Claes

    2012-01-01

    Vorapaxar is a new oral protease-activated-receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation.......Vorapaxar is a new oral protease-activated-receptor 1 (PAR-1) antagonist that inhibits thrombin-induced platelet activation....

  18. Effect of prenatal methadone on reinstated behavioral sensitization induced by methamphetamine in adolescent rats.

    Science.gov (United States)

    Wong, Chih-Shung; Lee, Yih-Jing; Chiang, Yao-Chang; Fan, Lir-Wan; Ho, Ing-Kang; Tien, Lu-Tai

    2014-01-01

    It has been known that methadone maintenance treatment is the standard treatment of choice for pregnant opiate addicts. However, there are few data on newborn outcomes especially in the cross talk with other addictive agents. The present study was to investigate the effect of prenatal exposure to methadone on methamphetamine (METH)-induced behavioral sensitization as an indicator of drug addiction in later life. Pregnant rats received saline or methadone (7 mg/kg, s.c.) twice daily from E3 to E20. To induce behavioral sensitization, offspring (5 weeks old) were treated with METH (1mg/kg, i.p.) or saline once daily for 5 consecutive days. Ninety-six hours (day 9) after the 5th treatment with METH or saline, animals received a single dose of METH (1mg/kg, i.p.) or saline to induce the reinstated behavioral sensitization. Prenatal methadone treatment enhanced the level of development of locomotor behavioral sensitization to METH administration in adolescent rats. Prenatal methadone treatment also enhanced the reinstated locomotor behavioral sensitization in adolescent rats after the administration had ceased for 96 h. These results indicate that prenatal methadone exposure produces a persistent lesion in the dopaminergic system, as indicated by enhanced METH-induced locomotor behavioral sensitization (before drug abstinence) and reinstated locomotor behavioral sensitization (after short term drug abstinence) in adolescent rats. These findings show that prenatal methadone exposure may enhance susceptibility to the development of drug addiction in later life. This could provide a reference for drug usage such as methamphetamine in their offspring of pregnant woman who are treating with methadone. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  19. High frequency electrical stimulation concurrently induces central sensitization and ipsilateral inhibitory pain modulation.

    Science.gov (United States)

    Vo, L; Drummond, P D

    2013-03-01

    In healthy humans, analgesia to blunt pressure develops in the ipsilateral forehead during various forms of limb pain. The aim of the current study was to determine whether this analgesic response is induced by ultraviolet B radiation (UVB), which evokes signs of peripheral sensitization, or by high-frequency electrical stimulation (HFS), which triggers signs of central sensitization. Before and after HFS and UVB conditioning, sensitivity to heat and to blunt and sharp stimuli was assessed at and adjacent to the treated site in the forearm. In addition, sensitivity to blunt pressure was measured bilaterally in the forehead. The effect of ipsilateral versus contralateral temple cooling on electrically evoked pain in the forearm was then examined, to determine whether HFS or UVB conditioning altered inhibitory pain modulation. UVB conditioning triggered signs of peripheral sensitization, whereas HFS conditioning triggered signs of central sensitization. Importantly, ipsilateral forehead analgesia developed after HFS but not UVB conditioning. In addition, decreases in electrically evoked pain at the HFS-treated site were greater during ipsilateral than contralateral temple cooling, whereas decreases at the UVB-treated site were similar during both procedures. HFS conditioning induced signs of central sensitization in the forearm and analgesia both in the ipsilateral forehead and the HFS-treated site. This ipsilateral analgesia was not due to peripheral sensitization or other non-specific effects, as it failed to develop after UVB conditioning. Thus, the supra-spinal mechanisms that evoke central sensitization might also trigger a hemilateral inhibitory pain modulation process. This inhibitory process could sharpen the boundaries of central sensitization or limit its spread. © 2012 European Federation of International Association for the Study of Pain Chapters.

  20. PXR antagonists and implication in drug metabolism

    Science.gov (United States)

    Mani, Sridhar; Dou, Wei; Redinbo, Matthew R.

    2013-01-01

    Adopted orphan nuclear receptor (NR), pregnane X receptor (PXR), plays a central role in the regulation of xeno- and endobiotic metabolism. Since the discovery of the functional role of PXR in 1998, there is evolving evidence for the role of PXR agonists in abrogating metabolic pathophysiology (e.g., cholestasis, hypercholesterolemia, and inflammation). However, more recently, it is clear that PXR is also an important mediator of adverse xeno- (e.g., enhances acetaminophen toxicity) and endobiotic (e.g., hepatic steatosis) metabolic phenotypes. Moreover, in cancer therapeutics, PXR activation can induce drug resistance, and there is growing evidence for tissue-specific enhancement of the malignant phenotype. Thus, in these instances, there may be a role for PXR antagonists. However, as opposed to the discovery efforts for PXR agonists, there are only a few antagonists described. The mode of action of these antagonists (e.g., sulforaphane) remains less clear. Our laboratory efforts have focused on this question. Since the original discovery of azoles analogs as PXR antagonists, we have preliminarily defined an important PXR antagonist pharmacophore and developed less-toxic PXR antagonists. In this review, we describe our published and unpublished findings on recent structure-function studies involving the azole chemical scaffold. Further work in the future is needed to fully define potent, more-selective PXR antagonists that may be useful in clinical application. PMID:23330542

  1. Induced plant volatiles allow sensitive monitoring of plant health status in greenhouses

    NARCIS (Netherlands)

    Jansen, R.M.C.; Hofstee, J.W.; Wildt, J.; Verstappen, F.W.A.; Bouwmeester, H.J.; Henten, van E.J.

    2009-01-01

    This paper provides a synthesis of our research on the use of induced plant volatiles for sensitive monitoring of plant health status in greenhouses. The main research objective of this research was to investigate whether plant-emitted volatiles can be used to detect a Botrytis cinerea infection in

  2. Inflammation-induced pain sensitization in men and women: does sex matter in experimental endotoxemia?

    Science.gov (United States)

    Wegner, Alexander; Elsenbruch, Sigrid; Rebernik, Laura; Roderigo, Till; Engelbrecht, Elisa; Jäger, Marcus; Engler, Harald; Schedlowski, Manfred; Benson, Sven

    2015-10-01

    A role of the innate immune system is increasingly recognized as a mechanism contributing to pain sensitization. Experimental administration of the bacterial endotoxin lipopolysaccharide (LPS) constitutes a model to study inflammation-induced pain sensitization, but all existing human evidence comes from male participants. We assessed visceral and musculoskeletal pain sensitivity after low-dose LPS administration in healthy men and women to test the hypothesis that women show greater LPS-induced hyperalgesia compared with men. In this randomized, double-blind, placebo-controlled crossover study, healthy men (n = 20) and healthy women using oral contraceptives (n = 20) received an intravenous injection of 0.4 ng/kg body weight LPS or placebo. Pain sensitivity was assessed with established visceral and musculoskeletal pain models (ie, rectal pain thresholds; pressure pain thresholds for different muscle groups), together with a heartbeat perception (interoceptive accuracy) task. Plasma cytokines (tumor necrosis factor-α and interleukin-6) were measured along with state anxiety at baseline and up to 6-hour postinjection. Lipopolysaccharide application led to significant increases in plasma cytokines and state anxiety and decreased interoceptive awareness in men and women (P pain thresholds were significantly decreased in the LPS condition (all P inflammation-induced pain sensitization in both sexes.

  3. The pilosebaceous unit—a phthalate-induced pathway to skin sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Simonsson, Carl, E-mail: carl.simonsson@chem.gu.se [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg (Sweden); Stenfeldt, Anna-Lena; Karlberg, Ann-Therese [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg (Sweden); Ericson, Marica B., E-mail: marica.ericson@physics.gu.se [Department of Physics, University of Gothenburg, SE-412 96, Gothenburg (Sweden); Jonsson, Charlotte A.M. [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg (Sweden)

    2012-10-01

    Allergic contact dermatitis (ACD) is caused by low-molecular weight compounds called haptens. It has been shown that the potency of haptens can depend on the formulation in which they are applied on the skin. Specifically the sensitization potency of isothiocyanates, a group of haptens which can be released from e.g. adhesive tapes and neoprene materials, increases with the presence of phthalates; however, the underlying mechanisms are not clear. A better understanding of the mechanisms governing the potency of haptens is important, e.g. to improve the risk assessment and the formulation of chemicals in consumer products. In this study we have explored phthalate-induced effects on the sensitization potency, skin distribution, and reactivity of fluorescent model isothiocyanate haptens using non-invasive two-photon microscopy to provide new insights regarding vehicle effects in ACD. The data presented in this paper indicate that the sensitization potency of isothiocyanates increases when applied in combination with dibutylphthalate due to a specific uptake via the pilosebaceous units. The results highlight the importance of shunt pathways when evaluating the bioavailability of skin sensitizers. The findings also indicate that vehicle-dependent hapten reactivity towards stratum corneum proteins regulates the bioavailability, and thus the potency, of skin sensitizers. -- Highlights: ► Vehicle effects on sensitization potency were investigated in the LLNA. ► In vivo cutaneous absorption of contact sensitizers was visualized using TPM. ► Sensitizing potency of isothiocyanates depends on the presence of a phthalate. ► Phthalate induced cutaneous absorption via the pilosebaceous units. ► Vehicle-dependent reactivity regulates sensitization potency.

  4. Accelerated habit formation following amphetamine exposure is reversed by D1, but enhanced by D2, receptor antagonists

    Directory of Open Access Journals (Sweden)

    Andrew John Dudley Nelson

    2013-05-01

    Full Text Available Repeated exposure to the psychostimulant amphetamine has been shown to disrupt goal-directed instrumental actions and promote the early and abnormal development of goal-insensitive habitual responding (Nelson and Killcross, 2006. To investigate the neuropharmacological specificity of this effect as well as restore goal-directed responding in animals with pre-training amphetamine exposure, animals were treated with the non-selective dopamine antagonist α-flupenthixol, the selective D1 antagonist SCH 23390 or the selective D2 antagonist eticlopride, prior to instrumental training (3 sessions. Subsequently, the reinforcer was paired with LiCL-induced gastric-malaise and animals were given a test of goal-sensitivity both in extinction and reacquisition. The effect of these dopaminergic antagonists on the sensitivity of lever press performance to outcome devaluation was assessed in animals with pre-training exposure to amphetamine (Experiments 1a-1c or in non-sensitized animals (Experiment 2. Both α-flupenthixol and SCH23390 reversed accelerated habit formation following amphetamine sensitization. However, eticlopride appeared to enhance this effect and render instrumental performance compulsive as these animals were unable to inhibit responding both in extinction and reacquisition, even though a consumption test confirmed they had acquired an aversion to the reinforcer. These findings demonstrate that amphetamine induced-disruption of goal-directed behaviour is mediated by activity at distinct dopamine receptor subtypes and may represent a putative model of the neurochemical processes involved in the loss of voluntary control over behaviour.

  5. Antipsychotic-induced sensitization and tolerance: Behavioral characteristics, developmental impacts, and neurobiological mechanisms.

    Science.gov (United States)

    Li, Ming

    2016-08-01

    Antipsychotic sensitization and tolerance refer to the increased and decreased drug effects due to past drug use, respectively. Both effects reflect the long-term impacts of antipsychotic treatment on the brain and result from the brain's adaptive response to the foreign property of the drug. In this review, clinical evidence of the behavioral aspect of antipsychotic sensitization and tolerance is selectively reviewed, followed by an overview of preclinical literature that examines these behavioral characteristics and the related pharmacological and nonpharmacological factors. Next, recent work on the developmental impacts of adolescent antipsychotic sensitization and tolerance is presented and recent research that delineates the neurobiological mechanisms of antipsychotic sensitization and tolerance is summarized. A theoretical framework based on "drug learning and memory" principles is proposed to account for the phenomena of antipsychotic sensitization and tolerance. It is maintained that antipsychotic sensitization and tolerance follow basic principles of learning or acquisition ("induction") and memory ("expression"). The induction and expression of both effects reflect the consequences of associative and nonassociative processing and are strongly influenced by various pharmacological, environmental, and behavioral factors. Drug-induced neuroplasticity, such as functional changes of striatal dopamine D2 and prefrontal serotonin (5-HT)2A receptors and their mediated signaling pathways, in principle, is responsible for antipsychotic sensitization and tolerance. Understanding the behavioral characteristics and neurobiological underpinnings of antipsychotic sensitization and tolerance has greatly enhanced our understanding of mechanisms of antipsychotic action, and may have important implications for future drug discovery and clinical practice. © The Author(s) 2016.

  6. Clonal deletion and clonal anergy in the thymus induced by cellular elements with different radiation sensitivities

    International Nuclear Information System (INIS)

    Roberts, J.L.; Sharrow, S.O.; Singer, A.

    1990-01-01

    The present study demonstrates that immune tolerance can be achieved in the thymus both by clonal deletion and by clonal inactivation, but that the two tolerant states are induced by cellular elements with different radiation sensitivities. TCR engagement of self antigens on bone marrow-derived, radiation-sensitive (presumably dendritic) cells induces clonal deletion of developing thymocytes, whereas TCR engagement of self antigens on radiation-resistant cellular elements, such as thymic epithelium, induces clonal anergy. The nondeleted, anergic thymocytes can express IL-2-Rs but are unable to proliferate in response to either specific antigen or anti-TCR antibodies, and do develop into phenotypically mature cells that emigrate out of the thymus and into the periphery

  7. Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy

    Science.gov (United States)

    Tamarov, Konstantin P.; Osminkina, Liubov A.; Zinovyev, Sergey V.; Maximova, Ksenia A.; Kargina, Julia V.; Gongalsky, Maxim B.; Ryabchikov, Yury; Al-Kattan, Ahmed; Sviridov, Andrey P.; Sentis, Marc; Ivanov, Andrey V.; Nikiforov, Vladimir N.; Kabashin, Andrei V.; Timoshenko, Victor Yu

    2014-11-01

    Offering mild, non-invasive and deep cancer therapy modality, radio frequency (RF) radiation-induced hyperthermia lacks for efficient biodegradable RF sensitizers to selectively target cancer cells and thus avoid side effects. Here, we assess crystalline silicon (Si) based nanomaterials as sensitizers for the RF-induced therapy. Using nanoparticles produced by mechanical grinding of porous silicon and ultraclean laser-ablative synthesis, we report efficient RF-induced heating of aqueous suspensions of the nanoparticles to temperatures above 45-50°C under relatively low nanoparticle concentrations (Combined with the possibility of involvement of parallel imaging and treatment channels based on unique optical properties of Si-based nanomaterials, the proposed method promises a new landmark in the development of new modalities for mild cancer therapy.

  8. Palmitoylethanolamide attenuates cocaine-induced behavioral sensitization and conditioned place preference in mice.

    Science.gov (United States)

    Zambrana-Infantes, Emma; Rosell Del Valle, Cristina; Ladrón de Guevara-Miranda, David; Galeano, Pablo; Castilla-Ortega, Estela; Rodríguez De Fonseca, Fernando; Blanco, Eduardo; Santín, Luis Javier

    2018-03-01

    Cocaine addiction is a chronically relapsing disorder characterized by compulsive drug-seeking and drug-taking behaviors. Previous studies have demonstrated that cocaine, as well as other drugs of abuse, alters the levels of lipid-based signaling molecules, such as N-acylethanolamines (NAEs). Moreover, brain levels of NAEs have shown sensitivity to cocaine self-administration and extinction training in rodents. Given this background, the aim of this study was to investigate the effects of repeated or acute administration of palmitoylethanolamide (PEA), an endogenous NAE, on psychomotor sensitization and cocaine-induced contextual conditioning. To this end, the potential ability of repeated PEA administration (1 or 10 mg/kg, i.p.) to modulate the acquisition of cocaine-induced behavioral sensitization (BS) and conditioned place preference (CPP) was assessed in male C57BL/6J mice. In addition, the expression of cocaine-induced BS and CPP following acute PEA administration were also studied. Results showed that repeated administration of both doses of PEA were able to block the acquisition of cocaine-induced BS. Furthermore, acute administration of both doses of PEA was able to abolish the expression of BS, while the highest dose also abolished the expression of cocaine-induced CPP. Taken together, these results indicate that exogenous administration of PEA attenuated psychomotor sensitization, while the effect of PEA in cocaine-induced CPP depended on whether PEA was administered repeatedly or acutely. These findings could be relevant to understand the role that NAEs play in processes underlying the development and maintenance of cocaine addiction. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Effects of the calcium channel antagonist mibefradil on haemodynamic and morphological parameters in myocardial infarction-induced cardiac failure in rats

    NARCIS (Netherlands)

    Sandmann, S.; Spitznagel, H.; Chung, O.; Xia, Q. G.; Illner, S.; Jänichen, G.; Rossius, B.; Daemen, M. J.; Unger, T.

    1998-01-01

    Calcium channel antagonists (CCA) have been proposed for the prevention of cardiac events after myocardial infarction (MI). Mibefradil is a CCA featuring a selective blockade of T-type Ca2(+)-channels. The aim of the study was to characterize the effects of mibefradil on haemodynamic and

  10. A peptide antagonist of ErbB receptors, Inherbin3, induces neurite outgrowth from rat cerebellar granule neurons through ErbB1 inhibition

    DEFF Research Database (Denmark)

    Xu, Ruodan; Pankratova, Stanislava; Christiansen, Søren Hofman

    2013-01-01

    ErbB receptors not only function in cancer, but are also key developmental regulators in the nervous system. We previously identified an ErbB1 peptide antagonist, Inherbin3, that is capable of inhibiting tumor growth in vitro and in vivo. In this study, we found that inhibition of ErbB1 kinase...

  11. Botulinum neurotoxin type-A when utilized in animals with trigeminal sensitization induced a antinociceptive effect

    Directory of Open Access Journals (Sweden)

    Elcio J Piovesan

    2016-06-01

    Full Text Available ABSTRACT Purpose of the study was evaluate the possible antinociceptive effect of botulinum neurotoxin type-A (BoNT/A in an experimental model of trigeminal neuralgia. Method Neuropathic pain was induced by surgical constriction of the infraorbital nerve in rats. A control group underwent a sham procedure consisting of surgical exposure of the nerve. Subgroups of each group received either BoNT/A or isotonic saline solution. The clinical response was assessed with the -20°C test. Animals that underwent nerve constriction developed sensitization; the sham group did not. Results The sensitization was reversed by BoNT/A treatment evident 24 hours following application. Pronociceptive effect was observed in the sham group following BoNT/A. Conclusion BoNT/A has an antinociceptive effect in sensitized animals and a pronociceptive effect in non-sensitized animals.

  12. Transient inflammation-induced ongoing pain is driven by TRPV1 sensitive afferents

    Directory of Open Access Journals (Sweden)

    Mercado Ramon

    2011-01-01

    Full Text Available Abstract Background Tissue injury elicits both hypersensitivity to evoked stimuli and ongoing, stimulus-independent pain. We previously demonstrated that pain relief elicits reward in nerve-injured rats. This approach was used to evaluate the temporal and mechanistic features of inflammation-induced ongoing pain. Results Intraplantar Complete Freund's Adjuvant (CFA produced thermal hyperalgesia and guarding behavior that was reliably observed within 24 hrs and maintained, albeit diminished, 4 days post-administration. Spinal clonidine produced robust conditioned place preference (CPP in CFA treated rats 1 day, but not 4 days following CFA administration. However, spinal clonidine blocked CFA-induced thermal hyperalgesia at both post-CFA days 1 and 4, indicating different time-courses of ongoing and evoked pain. Peripheral nerve block by lidocaine administration into the popliteal fossa 1 day following intraplantar CFA produced a robust preference for the lidocaine paired chamber, indicating that injury-induced ongoing pain is driven by afferent fibers innervating the site of injury. Pretreatment with resiniferatoxin (RTX, an ultrapotent capsaicin analogue known to produce long-lasting desensitization of TRPV1 positive afferents, fully blocked CFA-induced thermal hypersensitivity and abolished the CPP elicited by administration of popliteal fossa lidocaine 24 hrs post-CFA. In addition, RTX pretreatment blocked guarding behavior observed 1 day following intraplantar CFA. In contrast, administration of the selective TRPV1 receptor antagonist, AMG9810, at a dose that reversed CFA-induced thermal hyperalgesia failed to reduce CFA-induced ongoing pain or guarding behavior. Conclusions These data demonstrate that inflammation induces both ongoing pain and evoked hypersensitivity that can be differentiated on the basis of time course. Ongoing pain (a is transient, (b driven by peripheral input resulting from the injury, (c dependent on TRPV1 positive

  13. Interferon-gamma sensitizes colonic epithelial cell lines to physiological and therapeutic inducers of colonocyte apoptosis.

    LENUS (Irish Health Repository)

    O'Connell, J

    2012-02-03

    Homeostasis in the colonic epithelium is achieved by a continuous cycle of proliferation and apoptosis, in which imbalances are associated with disease. Inflammatory bowel disease (IBD) and colon cancer are associated with either excessive or insufficient apoptosis of colonic epithelial cells, respectively. By using two colonic epithelial cell lines, HT29 and SW620, we investigated how the epithelial cell\\'s sensitivity to apoptosis was regulated by the proinflammatory cytokine interferon-gamma (IFN-gamma). We found that IFN-gamma sensitized HT29 cells, and to a lesser extent SW620, to diverse inducers of apoptosis of physiologic or therapeutic relevance to the colon. These apoptosis inducers included Fas (CD95\\/APO-1) ligand (FasL), short-chain fatty acids, and chemotherapeutic drugs. The extent of IFN-gamma-mediated apoptosis sensitization in these two cell lines correlated well with the degree of IFN-gamma-mediated upregulation of the proapoptotic protease caspase-1. Although IFN-gamma alone effectively sensitized HT29 cells to apoptosis, inclusion of the protein synthesis inhibitor cyclohexamide (CHX) during apoptotic challenge was necessary for maximal sensitization of SW620. The requirement of CHX to sensitize SW620 cells to apoptosis implies a need to inhibit translation of antiapoptotic proteins absent from HT29. In particular, the antiapoptotic protein Bcl-2 was strongly expressed in SW620 cells but absent from HT29. Our results indicate that IFN-gamma increases the sensitivity of colonic epithelial cells to diverse apoptotic stimuli in concert, via upregulation of caspase-1. Our findings implicate caspase-1 and Bcl-2 as important central points of control determining the general sensitivity of colonic epithelial cells to apoptosis.

  14. Availability of N-Methyl-d-Aspartate Receptor Coagonists Affects Cocaine-Induced Conditioned Place Preference and Locomotor Sensitization: Implications for Comorbid Schizophrenia and Substance Abuse.

    Science.gov (United States)

    Puhl, Matthew D; Berg, Alexandra R; Bechtholt, Anita J; Coyle, Joseph T

    2015-06-01

    Schizophrenia is associated with high prevalence of substance abuse. Recent research suggests that dysregulation of N-methyl-d-aspartate receptor (NMDAR) function may play a role in the pathophysiology of both schizophrenia and drug addiction, and thus, may account for this high comorbidity. Our laboratory has developed two transgenic mouse lines that exhibit contrasting NMDAR activity based on the availability of the glycine modulatory site (GMS) agonists d-serine and glycine. Glycine transporter 1 knockdowns (GlyT1(+/-)) exhibit NMDAR hyperfunction, whereas serine racemase knockouts (SR(-/-)) exhibit NMDAR hypofunction. We characterized the behavior of these lines in a cocaine-induced (20 mg/kg) conditioned place preference (CPP) and locomotor sensitization paradigm. Compared with wild-type mice, GlyT1(+/-) mice displayed hastened extinction of CPP and robust cocaine-induced reinstatement. SR(-/-) mice appeared to immediately "forget" the learned preference, because they did not exhibit cocaine-induced reinstatement and also displayed attenuated locomotor sensitization. Treatment of GlyT1(+/-) mice with gavestinel (10 mg/kg on day 1; 5 mg/kg on days 2-17), a GMS antagonist, attenuated cocaine-induced CPP and caused them to immediately "forget" the learned preference. Treatment of SR(-/-) mice with d-serine (300 mg/kg on day 1; 150 mg/kg on days 2-17) to normalize brain levels caused them to avoid the cocaine-paired side of the chamber during extinction. These results highlight NMDAR dysfunction as a possible neural mechanism underlying comorbid schizophrenia and substance abuse. Also, these findings suggest drugs that directly or indirectly activate the NMDAR GMS could be an effective treatment of cocaine abuse. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Central sensitization and MAPKs are involved in occlusal interference-induced facial pain in rats.

    Science.gov (United States)

    Cao, Ye; Li, Kai; Fu, Kai-Yuan; Xie, Qiu-Fei; Chiang, Chen-Yu; Sessle, Barry J

    2013-08-01

    We previously developed a rat dental occlusal interference model of facial pain that was produced by bonding a crown onto the right maxillary first molar and was reflected in sustained facial hypersensitivity that was suggestive of the involvement of central sensitization mechanisms. The aim of the present study was to investigate potential central mechanisms involved in the occlusal interference-induced facial hypersensitivity. A combination of behavioral, immunohistochemical, Western blot, and electrophysiological recording procedures was used in 98 male adult Sprague Dawley rats that either received the occlusal interference or were sham-operated or naive rats. Immunohistochemically labeled astrocytes and microglia in trigeminal subnucleus caudalis (Vc) showed morphological changes indicative of astrocyte and microglial activation after the occlusal interference. Prolonged upregulation of p38 mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) was also documented in Vc after placement of the occlusal interference and was expressed in both neurons and glial cells at time points when rats showed peak mechanical facial hypersensitivity. The intrathecal administration of the p38 MAPK inhibitor SB203580 to the medulla significantly inhibited the occlusal interference-induced hypersensitivity, and the ERK inhibitor PD98059 produced an even stronger effect. Central sensitization of functionally identified Vc nociceptive neurons following placement of the occlusal interference was also documented by extracellular electrophysiological recordings, and intrathecal administration of PD98059 could reverse the neuronal central sensitization. These novel findings suggest that central mechanisms including central sensitization of trigeminal nociceptive neurons and non-neuronal processes involving MAPKs play significant roles in the production of occlusal interference-induced facial pain. Central mechanisms including trigeminal nociceptive

  16. Ret-dependent and Ret-independent mechanisms of Gfl-induced sensitization

    Directory of Open Access Journals (Sweden)

    Meadows Rena M

    2011-03-01

    Full Text Available Abstract Background The GDNF family ligands (GFLs are regulators of neurogenic inflammation and pain. We have previously shown that GFLs increase the release of the sensory neuron neuropeptide, calcitonin gene-related peptide (CGRP from isolated mouse DRG. Results Inhibitors of the mitogen-activated protein kinase (MAPK pathway abolished the enhancement of CGRP release by GDNF. Neurturin-induced enhancement in the stimulated release of CGRP, used as an indication of sensory neuronal sensitization, was abolished by inhibition of the phosphatidylinositol-3 kinase (PI-3K pathway. Reduction in Ret expression abolished the GDNF-induced sensitization, but did not fully inhibit the increase in stimulus-evoked release of CGRP caused by neurturin or artemin, indicating the presence of Ret-independent GFL-induced signaling in sensory neurons. Integrin β-1 and NCAM are involved in a component of Ret-independent GFL signaling in sensory neurons. Conclusions These data demonstrate the distinct and variable Ret-dependent and Ret-independent signaling mechanisms by which GFLs induce sensitization of sensory neurons. Additionally, there is a clear disconnect between intracellular signaling pathway activation and changes in sensory neuronal function.

  17. PMS1077 sensitizes TNF-α induced apoptosis in human prostate cancer cells by blocking NF-κB signaling pathway.

    Directory of Open Access Journals (Sweden)

    Jie Shi

    Full Text Available Our previous studies have demonstrated that PMS1077, a platelet-activating factor (PAF antagonist, could induce apoptosis of Raji cells. However, the mechanism of action has not yet been determined. The nuclear transcription factor-kappa B (NF-κB signaling pathway plays a critical role in tumor cell survival, proliferation, invasion, metastasis, and angiogenesis, so we determined the effects of PMS1077 and its structural analogs on tumor necrosis factor-α (TNF-α induced activation of NF-κB signaling. In this study, we found that PMS1077 inhibited TNF-α induced expression of the NF-κB regulated reporter gene in a dose dependent manner. Western blot assay indicated that PMS1077 suppressed the TNF-α induced inhibitor of κB-α (IκB-α phosphorylation, IκB-α degradation, and p65 phosphorylation. PMS1077 consistently blocked TNF-α induced p65 nuclear translocation as demonstrated in the immunofluorescence assay used. Docking studies by molecular modeling predicted that PMS1077 might interact directly with the IκB kinase-β (IKK-β subunit. These results suggested that PMS1077 might suppress the activation of NF-κB by targeting IKK-β involved in the NF-κB signaling pathway. Finally, we showed that PMS1077 sensitized cells to TNF-α induced apoptosis by suppressing the expression of NF-κB regulated anti-apoptotic genes. Our results reveal a novel function of PMS1077 on the NF-κB signaling pathway and imply that PMS1077 can be considered as an anti-tumor lead compound.

  18. Prenatal tactile stimulation attenuates drug-induced behavioral sensitization, modifies behavior, and alters brain architecture.

    Science.gov (United States)

    Muhammad, Arif; Kolb, Bryan

    2011-07-11

    Based on the findings of postnatal tactile stimulation (TS), a favorable experience in rats, the present study examined the influence of prenatal TS on juvenile behavior, adult amphetamine (AMPH) sensitization, and structural alteration in the prefrontal cortex (PFC) and the striatum. Female rats received TS through a baby hair brush throughout pregnancy, and the pups born were tested for open field locomotion, elevated plus maze (EPM), novel object recognition (NOR), and play fighting behaviors. Development and persistence of drug-induced behavioral sensitization in adults were tested by repeated AMPH administration and a challenge, respectively. Structural plasticity in the brain was assessed from the prefrontal cortical thickness and striatum size from serial coronal sections. The results indicate that TS females showed enhanced exploration in the open field. TS decreased the frequency of playful attacks whereas the response to face or evade an attack was not affected. Anxiety-like behavior and cognitive performance were not influenced by TS. AMPH administration resulted in gradual increase in locomotor activity (i.e., behavioral sensitization) that persisted at least for 2 weeks. However, both male and female TS rats exhibited attenuated AMPH sensitization compared to sex-matched controls. Furthermore, the drug-associated alteration in the prefrontal cortical thickness and striatum size observed in controls were prevented by TS experience. In summary, TS during prenatal development modified juvenile behavior, attenuated drug-induced behavioral sensitization in adulthood, and reorganized brain regions implicated in drug addiction. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Serum vaspin concentrations in relation to insulin sensitivity following RYGB-induced weight loss.

    Science.gov (United States)

    Handisurya, Ammon; Riedl, Michaela; Vila, Greisa; Maier, Christina; Clodi, Martin; Prikoszovich, Thomas; Ludvik, Bernhard; Prager, Gerhard; Luger, Anton; Kautzky-Willer, Alexandra

    2010-02-01

    Recently, vaspin was identified as a novel adipokine with insulin-sensitizing effects that might be implicated in endogenous glucose regulation. Our objective was to evaluate the impact of acute weight loss and metabolic changes on serum vaspin concentrations in morbidly obese subjects following laparoscopic Roux-en-Y gastric bypass (RYGB) surgery. Longitudinal, clinical intervention study in 33 morbidly obese subjects before and 12 months after RYGB was conducted. Fasting serum concentrations of vaspin were measured by a commercially available ELISA and correlated with BMI, parameters of insulin sensitivity, and other biochemical measurements. Fasting insulin sensitivity was estimated using the homeostasis model assessment (HOMA) of insulin resistance. RYGB-induced weight loss resulted in a reduction of circulating vaspin, leptin, insulin, and C-peptide levels as well as of BMI, HbA1c, and HOMA (p RYGB-induced changes in BMI. Following RYGB surgery, changes in serum vaspin concentrations correlate significantly with the reduction of circulating leptin, insulin, and C-peptide levels and with the amelioration of insulin sensitivity. However, further studies have to elucidate whether vaspin is only a biomarker for body-weight-related changes of insulin sensitivity or whether it is implicated in the regulation of human glucose homeostasis.

  20. Identifying airway sensitizers: cytokine mRNA profiles induced by various anhydrides

    International Nuclear Information System (INIS)

    Plitnick, L.M.; Loveless, S.E.; Ladics, G.S.; Holsapple, M.P.; Smialowicz, R.J.; Woolhiser, M.R.; Anderson, P.K.; Smith, C.; Selgrade, M.J.K.

    2003-01-01

    Exposure to low molecular weight (LMW) chemicals in the workplace has been linked to a variety of respiratory effects. Within the LMW chemicals, one of the major classes involved in these effects are the acid anhydrides. The immunological basis of respiratory hypersensitivity involves CD4+ cells. By virtue of their induction of cytokines typical of CD4+ T-helper type 2 (Th2) cells--interleukin (IL)-4, 10, and 13--respiratory sensitizers may be identified and differentiated from contact sensitizers which induce Th1 cytokines (IL-2 and IFN-γ). Our previous work suggested that the ribonuclease protection assay (RPA) was useful in identifying the respiratory sensitizer, trimellitic anhydride (TMA), based on quantitative differences in Th2 cytokine mRNA as compared to the contact sensitizer dinitrochlorobenzene (DNCB). Therefore, the purpose of the studies described in this report was to expand the chemicals tested in the RPA. To this end, four acid anhydrides with known respiratory sensitization potential, TMA, maleic anhydride (MA), phthalic anhydride (PA) and hexahydrophthalic anhydride (HHPA), were tested. Although previously determined to induce immunologically equivalent responses in a local lymph node assay (LLNA), the initial dose chosen (2.5%) failed to induce Th2 cytokine mRNA expression. To determine if the lack of cytokine expression was related to dose, LLNAs were conducted at higher doses for each of the anhydrides. The highest doses evaluated (four- to six-fold higher than those used in the initial RPA) gave equivalent proliferative responses for the various anhydrides and were used for subsequent RPA testing. At these higher doses, significant increases in Th2 versus Th1 cytokine mRNA were observed for all anhydrides tested. These results suggest that the RPA has the potential to serve as a screen for the detection of LMW airway sensitizing chemicals. However, the basis for selecting immunologically equivalent doses may require some modification

  1. Descending facilitation from the rostral ventromedial medulla maintains nerve injury-induced central sensitization.

    Science.gov (United States)

    Vera-Portocarrero, L P; Zhang, E-T; Ossipov, M H; Xie, J Y; King, T; Lai, J; Porreca, F

    2006-07-21

    Nerve injury can produce hypersensitivity to noxious and normally innocuous stimulation. Injury-induced central (i.e. spinal) sensitization is thought to arise from enhanced afferent input to the spinal cord and to be critical for expression of behavioral hypersensitivity. Descending facilitatory influences from the rostral ventromedial medulla have been suggested to also be critical for the maintenance, though not the initiation, of experimental neuropathic pain. The possibility that descending facilitation from the rostral ventromedial medulla is required for the maintenance of central sensitization was examined by determining whether ablation of mu-opioid receptor-expressing cells within the rostral ventromedial medulla prevented the enhanced expression of repetitive touch-evoked FOS within the spinal cord of animals with spinal nerve ligation injury as well as nerve injury-induced behavioral hypersensitivity. Rats received a single microinjection of vehicle, saporin, dermorphin or dermorphin-saporin into the rostral ventromedial medulla and 28 days later, underwent either sham or spinal nerve ligation procedures. Animals receiving rostral ventromedial medulla pretreatment with vehicle, dermorphin or saporin that were subjected to spinal nerve ligation demonstrated both thermal and tactile hypersensitivity, and showed significantly increased expression of touch-evoked FOS in the dorsal horn ipsilateral to nerve injury compared with sham-operated controls at days 3, 5 or 10 post-spinal nerve ligation. In contrast, nerve-injured animals pretreated with dermorphin-saporin showed enhanced behaviors and touch-evoked FOS expression in the spinal dorsal horn at day 3, but not days 5 and 10, post-spinal nerve ligation when compared with sham-operated controls. These results indicate the presence of nerve injury-induced behavioral hypersensitivity associated with nerve injury-induced central sensitization. Further, the results demonstrate the novel concept that once

  2. Role of ATP-sensitive potassium channels in the piracetam induced blockade of opioid effects.

    Science.gov (United States)

    Rehni, Ashish K; Singh, Nirmal; Jindal, Seema

    2007-12-01

    The present study has been designed to investigate the effect of piracetam on morphine/ buprenorphine-induced antinociception in rats and effect of piracetam on morphine or minoxidil induced relaxation in KCl-precontracted isolated rat aortic ring preparation. Nociceptive threshold was measured by the tail flick test in rats. The cumulative dose responses of morphine or minoxidil were recorded in KCl-precontracted isolated rat aortic ring preparation. Piracetam attenuated buprenorphine-induced antinociception in rats. Piracetam significantly reduced the morphine and minoxidil induced relaxation in KCl precontracted isolated rat aortic ring preparation suggesting that piracetam interferes with opioid receptor and ATP-sensitive potassium channel (KATP) opener mediated responses in vitro. Thus, it may be suggested that piracetam attenuates opioid effects by an opioid receptor-KATP channel linked mechanism.

  3. Multi-stress resistance in Lactococcus lactis is actually escape from purine-induced stress sensitivity

    DEFF Research Database (Denmark)

    Ryssel, Mia; Hviid, Anne-Mette Meisner; Dawish, Mohamed S.

    2014-01-01

    in the rich and complex M17 medium. When salvage of purines and subsequent conversion to GTP was permitted in various genetic backgrounds of L. lactis MG1363, the cells became sensitive to acid stress, indicating that an excess of guanine nucleotides induces stress sensitivity. The addition of phosphate...... nucleotides is formed as a result of an improved conversion of guanosine in the salvage pathway. Based upon our findings, we suggest that L. lactis MG1363 is naturally multi-stress resistant in habitats devoid of any purine source. However, any exogenous purine that results in increased guanine nucleotide...

  4. Evidence for the concentration induced extinction of gas sensitivity in amorphous and nanostructured Te thin films

    International Nuclear Information System (INIS)

    Tsiulyanu, D.; Mocreac, O.; Enachi, M.; Volodina, G.

    2013-01-01

    The extinction of sensitivity to nitrogen dioxide induced by high gas concentration have been observed in ultrathin tellurium films. The phenomenon becomes apparent in both continuous and nanostructured films shown by AFM, SEM and XRD analyses to be in amorphous state. Sensitivity of 30 nm thickness Te film decreases near linearly with concentration increase between 150 and 500 ppb of nitrogen dioxide. The results are explained in terms of formation of a nitrogen dioxide catalytic gate in which a molecule adsorbs (and desorbs) without reacting. (authors)

  5. Evaluation of antagonistic fungi against charcoal rot of sunflower ...

    African Journals Online (AJOL)

    In vitro, sensitivity of Macrophomina phaseolina (Tassi) Goid determined through inhibition zone technique to various antagonistic fungi viz., Aspergillus niger, Aspergillus flavus, Trichoderma viride, Trichoderma harzianum and Penicillium capsulatum amended into PDA medium. All the antagonists reduced the colony ...

  6. Sensitization of restraint-induced corticosterone secretion after chronic restraint in rats: Involvement of 5-HT7 receptors

    Science.gov (United States)

    García-Iglesias, Brenda B.; Mendoza-Garrido, María E.; Gutiérrez-Ospina, Gabriel; Rangel-Barajas, Claudia; Noyola-Díaz, Martha; Terrón, José A.

    2013-01-01

    Serotonin (5-HT) modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. We examined the effect of chronic restraint stress (CRS; 20 min/day) as compared to control (CTRL) conditions for 14 days, on: 1) restraint-induced ACTH and corticosterone (CORT) secretion in rats pretreated with vehicle or SB-656104 (a 5-HT7 receptor antagonist); 2) 5-HT7 receptor-like immunoreactivity (5-HT7-LI) and protein in the hypothalamic paraventricular nucleus (PVN) and adrenal glands (AG); 3) baseline levels of 5-HT and 5-hydroxyindolacetic acid (5-HIAA), and 5-HIAA/5-HT ratio in PVN and AG; and 4) 5-HT-like immunoreactivity (5-HT-LI) in AG and tryptophan hydroxylase (TPH) protein in PVN and AG. On day 15, animals were subdivided into Treatment and No treatment groups. Treatment animals received an i.p. injection of vehicle or SB-656104; No Treatment animals received no injection. Sixty min later, Treatment animals were either decapitated with no further stress (0 min) or submitted to acute restraint (10, 30, 60 or 120 min); hormone serum levels were measured. No Treatment animals were employed for the rest of measurements. CRS decreased body weight gain and increased adrenal weight. In CTRL animals, acute restraint increased ACTH and CORT secretion in a time of restraint-dependent manner; both responses were inhibited by SB-656104. Exposure to CRS abolished ACTH but magnified CORT responses to restraint as compared to CTRL conditions; SB-656104 had no effect on ACTH levels but significantly inhibited sensitized CORT responses. In CTRL animals, 5-HT7-LI was detected in magnocellular and parvocellular subdivisions of PVN and sparsely in adrenal cortex. Exposure to CRS decreased 5-HT7-LI and protein in the PVN, but increased 5-HT7-LI in the adrenal cortex and protein in whole AG. Higher 5-HT and 5-HIAA levels were detected in PVN and AG from CRS animals but 5-HIAA/5-HT ratio increased in AG only. Finally, whereas 5-HT-LI was sparsely observed in the adrenal cortex

  7. S-adenosylmethionine modifies cocaine-induced DNA methylation and increases locomotor sensitization in mice.

    Science.gov (United States)

    Anier, Kaili; Zharkovsky, Alexander; Kalda, Anti

    2013-10-01

    Several studies suggest that individual variability is a critical component underlying drug addiction as not all members of a population who use addictive substance become addicted. There is evidence that the overall epigenetic status of a cell (epigenome) can be modulated by a variety of environmental factors, such as nutrients and chemicals. Based on these data, our aim was to investigate whether environmental factors like S-adenosylmethionine (SAM) via affecting epigenome could alter cocaine-induced gene expression and locomotor sensitization in mice. Our results demonstrate that repeated SAM (10 mm/kg) pretreatment significantly potentiated cocaine-induced locomotor sensitization. Using mouse nucleus accumbens (NAc) tissue, whole-genome gene expression profiling revealed that repeated SAM treatment affected a limited number of genes, but significantly modified cocaine-induced gene expression by blunting non-specifically the cocaine response. At the gene level, we discovered that SAM modulated cocaine-induced DNA methylation by inhibiting both promoter-associated CpG-island hyper- and hypomethylation in the NAc but not in the reference tissue cerebellum. Finally, our in vitro and in vivo data show that the modulating effect of SAM is in part due to decreased methyltransferase activity via down-regulation of Dnmt3a mRNA. Taken together, our results suggest that environmental factors that affect the NAc-cell epigenome may alter the development of psychostimulant-induced addiction and this may explain, at least partly, why some individuals are more vulnerable to drug addiction.

  8. Effects of ayahuasca on the development of ethanol-induced behavioral sensitization and on a post-sensitization treatment in mice.

    Science.gov (United States)

    Oliveira-Lima, A J; Santos, R; Hollais, A W; Gerardi-Junior, C A; Baldaia, M A; Wuo-Silva, R; Yokoyama, T S; Costa, J L; Malpezzi-Marinho, E L A; Ribeiro-Barbosa, P C; Berro, L F; Frussa-Filho, R; Marinho, E A V

    2015-04-01

    Hallucinogenic drugs were used to treat alcoholic patients in the past, and recent developments in the study of hallucinogens led to a renewal of interest regarding the application of these drugs in the treatment of addiction. In this scenario, accumulating evidence suggests that the hallucinogenic brew ayahuasca (Aya) may have therapeutic effects on substance abuse problems. We investigated the effects of Aya on spontaneous locomotor activity and ethanol(Eth)-induced hyperlocomotion and subsequent locomotor sensitization by a two-injection protocol. Additionally, we tested the effect of Aya on an 8-day counter-sensitization protocol to modify sensitized responses induced by a repeated treatment with Eth (1.8g/kg) for 8 alternate days. Aya showed high sensitivity in preventing the development of Eth-induced behavioral sensitization, attenuating it at all doses (30, 100, 200, 300 or 500 mg/kg) without modifying spontaneous locomotor activity. At the highest doses (300 and 500 mg/kg), Aya also showed selectivity to both acute and sensitized Eth responses. Finally, a counter-sensitization strategy with 100 or 300 mg/kg of Aya for 8 consecutive days after the establishment of Eth-induced behavioral sensitization was effective in blocking its subsequent expression on an Eth challenge. We demonstrated that Aya not only inhibits early behaviors associated with the initiation and development of Eth addiction, but also showed effectiveness in reversing long-term drug effects expression, inhibiting the reinstatement of Eth-induced behavioral sensitization when administered in the Eth-associated environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. The angiotensin II AT1 receptor antagonist irbesartan prevents thromboxane A2-induced vasoconstriction in the rat hind-limb vascular bed in vivo.

    Science.gov (United States)

    Fukuhara, M; Neves, L A; Li, P; Diz, D I; Ferrario, C M; Brosnihan, K B

    2001-03-01

    We studied the vasoconstrictor effects of the thromboxane A2 (TxA2) analogue U46619 in the perfused hind limb of rats under constant flow before and after intravenous injection of irbesartan, an angiotensin II AT1 receptor antagonist, to test whether irbesartan interacts in vivo with the thromboxane A2/prostaglandin endoperoxidase H2 (TxA2/PGH2) receptor. Male Sprague-Dawley rats (n = 15, body weight 350-420 g) were anesthetized with thiobutabarbital sodium (Inactin, 100 mg/kg intraperitoneally). Regional vascular responses to U46619 (0.5 and 1.0 microg) were investigated in the rat hind quarter under conditions of controlled flow before and after administration of irbesartan (10 mg/kg, intravenously). In addition, to test the specificity of the effect of irbesartan on U46619, phenylephrine (0.5, 1.0 microg) and another AT1 receptor antagonist, candesartan CV11974 (0.3 mg/kg, intravenously) were used. The dose-dependent increases in hind-limb perfusion pressure produced by U46619 were significantly attenuated by prior injection of irbesartan, at a dose that blocked the angiotensin II (Ang II) pressor responses. The specificity for the response was shown with the demonstrations that the increase in vascular resistance produced by phenylephrine was unchanged by irbesartan and, furthermore, that the increase in vascular resistance produced by U46619 was unchanged by another AT1 receptor antagonist, candesartan. This study demonstrates that irbesartan interacts at the TxA2/PGH2 receptor in the rat's hind limb in vivo, to modify changes in local regional vascular resistance. The dual antagonistic actions of irbesartan, acting at both AT1 and TxA2 receptors in blood vessels, may overall enhance its therapeutic profile in the treatment of hypertension.

  10. Mechanisms involved in carbachol-induced Ca2+ sensitization of contractile elements in rat proximal and distal colon

    Science.gov (United States)

    Takeuchi, Tadayoshi; Kushida, Masahiko; Hirayama, Nobue; Kitayama, Muneyoshi; Fujita, Akikazu; Hata, Fumiaki

    2004-01-01

    Mechanisms involved in Ca2+ sensitization of contractile elements induced by the activation of muscarinic receptors in membrane-permeabilized preparations of the rat proximal and distal colon were studied. In α-toxin-permeabilized preparations from the rat proximal and distal colon, Ca2+ induced a rapid phasic and subsequent tonic component. After Ca2+-induced contraction reached a plateau, guanosine 5′-triphosphate (GTP) and carbachol (CCh) in the presence of GTP further contracted preparations of both the proximal and distal colon (Ca2+ sensitization). Y-27632, a rho-kinase inhibitor, inhibited GTP plus CCh-induced Ca2+ sensitization more significantly in the proximal colon than in the distal colon. Y-27632 at 10 μM had no effect on Ca2+-induced contraction or slightly inhibited phorbol-12,13-dibutyrate-induced Ca2+ sensitization in either proximal or distal colon. Chelerythrine, a protein kinase C inhibitor, inhibited GTP plus CCh-induced Ca2+ sensitization in the distal colon, but not in the proximal colon. The component of Ca2+ sensitization that persisted after the chelerythrine treatment was completely inhibited by Y-27632. In β-escin-permeabilized preparations of the proximal colon, C3 exoenzyme completely inhibited GTP plus CCh-induced Ca2+ sensitization, but PKC(19–31) did not. In the distal colon, C3 exoenzyme abolished GTP-induced Ca2+ sensitization. It inhibited CCh-induced sensitization by 50 % and the remaining component was inhibited by PKC(19–31). These results suggest that both protein kinase C and rho pathways in parallel mediate the Ca2+ sensitization coupled to activation of muscarinic receptors in the rat distal colon, whereas the rho pathway alone mediates this action in the proximal colon. PMID:15159278

  11. TPA-inducible proteins may account for sensitivity to promotion of transformation

    International Nuclear Information System (INIS)

    Hirano, K.; Smith, B.; Colburn, N.H.

    1986-01-01

    The preneoplastic JB6 mouse epidermal cell system includes cell lines sensitive (P + ) or resistant (P - ) to tumor promoter induced neoplastic transformation. The authors investigated whether a difference in TPA-inducible proteins may explain this differential sensitivity. The synthesis of a 39 Kd cytoplasmic protein (Major Excreted Protein) was TPA-inducible, but to a similar extent in both P + and P - cells. TPA stimulated phosphorylation but not synthesis of the previously described stress protein pp80 in both P + and P - cells from 1 to 5 hr after treatment. Pulse labelling of P + and P - cells with 35 S-methionine revealed a TPA dependent P + specific transient increase in the synthesis of 58Kd protein. Induction was observed at 1 hr, and returned to basal levels by 4 hr and 20 hr, in nuclear and cytoplasmic fractions, respectively. This protein is not phosphorylated in response to TPA treatment. P + cells differ from P - cells in one or more genes that specify sensitivity to promotion of transformation, designated pro genes. Antibodies to three peptides representing the pro-1 open reading frame were used in immunoprecipitation and Western blotting to isolate the pro-1 gene product. A 43 Kd protein was immunologically responsive to the pro-1 peptide antibodies, and showed an increased signal 40 min after TPA treatment. Since the predicted molecular weight of a pro-1 gene product is only 7 Kd, the possibility of a modification of the protein by poly(ADP-ribosylation) or glycosylation is being investigated

  12. Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport

    Science.gov (United States)

    Velez, Juliana; Pan, Rongqing; Lee, Jason T.C.; Enciso, Leonardo; Suarez, Marta; Duque, Jorge Eduardo; Jaramillo, Daniel; Lopez, Catalina; Morales, Ludis; Bornmann, William; Konopleva, Marina; Krystal, Gerald; Andreeff, Michael; Samudio, Ismael

    2016-01-01

    Metformin displays antileukemic effects partly due to activation of AMPK and subsequent inhibition of mTOR signaling. Nevertheless, Metformin also inhibits mitochondrial electron transport at complex I in an AMPK-independent manner, Here we report that Metformin and rotenone inhibit mitochondrial electron transport and increase triglyceride levels in leukemia cell lines, suggesting impairment of fatty acid oxidation (FAO). We also report that, like other FAO inhibitors, both agents and the related biguanide, Phenformin, increase sensitivity to apoptosis induction by the bcl-2 inhibitor ABT-737 supporting the notion that electron transport antagonizes activation of the intrinsic apoptosis pathway in leukemia cells. Both biguanides and rotenone induce superoxide generation in leukemia cells, indicating that oxidative damage may sensitize toABT-737 induced apoptosis. In addition, we demonstrate that Metformin sensitizes leukemia cells to the oligomerization of Bak, suggesting that the observed synergy with ABT-737 is mediated, at least in part, by enhanced outer mitochondrial membrane permeabilization. Notably, Phenformin was at least 10-fold more potent than Metformin in abrogating electron transport and increasing sensitivity to ABT-737, suggesting that this agent may be better suited for targeting hematological malignancies. Taken together, our results suggest that inhibition of mitochondrial metabolism by Metformin or Phenformin is associated with increased leukemia cell susceptibility to induction of intrinsic apoptosis, and provide a rationale for clinical studies exploring the efficacy of combining biguanides with the orally bioavailable derivative of ABT-737, Venetoclax. PMID:27283492

  13. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity

    International Nuclear Information System (INIS)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Mehendale, Harihara M.

    2008-01-01

    Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD 10 dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen led to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-α, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 ± 14.0 nmol/min/g heart in ND versus 400.2 ± 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-α2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and downregulating the JAK/STAT3

  14. TIMP-1 gene deficiency increases tumour cell sensitivity to chemotherapy-induced apoptosis

    DEFF Research Database (Denmark)

    Davidsen, Marie Louise; Würts, S.Ø.; Rømer, Maria Unni Koefoed

    2006-01-01

    in cancer. In this regard, several studies have demonstrated an antiapoptotic effect of TIMP-1 in a number of different cell types. Since chemotherapy works by inducing apoptosis in cancer cells, we raised the hypothesis that TIMP-1 promotes resistance against chemotherapeutic drugs. In order to investigate...... this hypothesis, we have established TIMP-1 gene-deficient and TIMP-1 wild-type fibrosarcoma cells from mouse lung tissue. We have characterised these cells with regard to TIMP-1 genotype, TIMP-1 expression, malignant transformation and sensitivity to chemotherapy-induced apoptosis. We show that TIMP-1 gene...... deficiency increases the response to chemotherapy considerably, confirming that TIMP-1 protects the cells from apoptosis. This is to our knowledge the first study investigating TIMP-1 and chemotherapy-induced apoptosis employing a powerful model system comprising TIMP-1 gene-deficient cells...

  15. GPER activation ameliorates aortic remodeling induced by salt-sensitive hypertension.

    Science.gov (United States)

    Liu, Liu; Kashyap, Shreya; Murphy, Brennah; Hutson, Dillion D; Budish, Rebecca A; Trimmer, Emma H; Zimmerman, Margaret A; Trask, Aaron J; Miller, Kristin S; Chappell, Mark C; Lindsey, Sarah H

    2016-04-15

    The mRen2 female rat is an estrogen- and salt-sensitive model of hypertension that reflects the higher pressure and salt sensitivity associated with menopause. We previously showed that the G protein-coupled estrogen receptor (GPER) mediates estrogenic effects in this model. The current study hypothesized that GPER protects against vascular injury during salt loading. Intact mRen2 female rats were fed a normal (NS; 0.5% Na(+)) or high-salt diet (HS; 4% Na(+)) for 10 wk, which significantly increased systolic blood pressure (149 ± 5 vs. 224 ± 8 mmHg;PTreatment with the selective GPER agonist G-1 for 2 wk did not alter salt-sensitive hypertension (216 ± 4 mmHg;P> 0.05) or ex vivo vascular responses to angiotensin II or phenylephrine (P> 0.05). However, G-1 significantly attenuated salt-induced aortic remodeling assessed by media-to-lumen ratio (NS: 0.43; HS+veh: 0.89; HS+G-1: 0.61;P< 0.05). Aortic thickening was not accompanied by changes in collagen, elastin, or medial proliferation. However, HS induced increases in medial layer glycosaminoglycans (0.07 vs. 0.42 mm(2);P< 0.001) and lipid peroxidation (0.11 vs. 0.51 mm(2);P< 0.01), both of which were reduced by G-1 (0.20 mm(2)and 0.23 mm(2); both P< 0.05). We conclude that GPER's beneficial actions in the aorta of salt-loaded mRen2 females occur independently of changes in blood pressure and vasoreactivity. GPER-induced attenuation of aortic remodeling was associated with a reduction in oxidative stress and decreased accumulation of glycosaminoglycans. Endogenous activation of GPER may protect females from salt- and pressure-induced vascular damage. Copyright © 2016 the American Physiological Society.

  16. Free radical scavenging reverses fructose-induced salt-sensitive hypertension

    Directory of Open Access Journals (Sweden)

    Zenner ZP

    2017-12-01

    Full Text Available Zachary P Zenner, Kevin L Gordish, William H Beierwaltes Department of Internal Medicine, Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, MI, USA Abstract: We have previously reported that a moderate dietary supplementation of 20% fructose but not glucose leads to a salt-sensitive hypertension related to increased proximal sodium–hydrogen exchanger activity and increased renal sodium retention. We also found that while high salt increased renal nitric oxide formation, this was retarded in the presence of fructose intake. We hypothesized that at least part of the pathway leading to fructose-induced salt-sensitive hypertension could be due to fructose-induced formation of reactive oxygen species and inappropriate stimulation of renin secretion, all of which would contribute to an increase in blood pressure. We found that both 20% fructose intake and a high-salt diet stimulated 8-isoprostane excretion. The superoxide dismutase (SOD mimetic tempol significantly reduced this elevated excretion. Next, we placed rats on a high-salt diet (4% for 1 week in combination with normal rat chow or 20% fructose with or without chronic tempol administration. A fructose plus high-salt diet induced a rapid increase (15 mmHg in systolic blood pressure and reversed high salt suppression of plasma renin activity. Tempol treatment reversed the pressor response and restored high salt suppression of renin. We conclude that fructose-induced salt-sensitive hypertension is driven by increased renal reactive oxygen species formation associated with salt retention and an enhanced renin–angiotensin system. Keywords: reactive oxygen species, tempol, sodium, renin, oxidative stress

  17. Circulating cytokines as determinants of weight loss-induced improvements in insulin sensitivity.

    Science.gov (United States)

    Weiss, Edward P; Reeds, Dominic N; Ezekiel, Uthayashanker R; Albert, Stewart G; Villareal, Dennis T

    2017-01-01

    Dietary calorie restriction and exercise promote weight loss and may have additive effects for improving insulin sensitivity, independent of weight loss. It is not known if these effects are attributable to changes in circulating cytokines. We evaluated the hypothesis that modest, matched weight loss induced by calorie restriction and exercise have additive effects on circulating cytokines and these changes correlate with improvements in insulin sensitivity. Overweight and sedentary women and men (n = 52, 45-65 years) were randomized to undergo 7 % weight loss by using 3-6 months of calorie restriction, exercise, or a combination of both calorie restriction and exercise. Concentrations of cytokines and hormones were measured in fasting and oral glucose tolerance test blood samples. Insulin sensitivity was estimated based on oral glucose tolerance test for glucose and insulin. With all groups combined, fasting leptin (p weight adiponectin (p = 0.04) decreased and pentraxin-3 increased (p calorie restriction had additive effects on leptin, with a similar trend for high molecular weight adiponectin. Monocyte chemoattractant protein-1 and C-reactive protein concentrations did not change. Calorie restriction and exercise had opposite effects on soluble tumor necrosis factor receptor-1. Modest weight loss in overweight adults decreases serum leptin and high molecular weight adiponectin, and increases pentraxin-3 concentrations in a manner that correlates with increased insulin sensitivity. Exercise has additive effects to those induced by calorie restriction for reductions in leptin and possibly adiponectin. These changes may contribute to the additive effects of calorie restriction and exercise for improving insulin sensitivity.

  18. Effects of kinin B(1) and B(2) receptor antagonists on overactive urinary bladder syndrome induced by spinal cord injury in rats.

    Science.gov (United States)

    Forner, Stefânia; Andrade, Edinéia L; Martini, Alessandra C; Bento, Allisson F; Medeiros, Rodrigo; Koepp, Janice; Calixto, João B

    2012-12-01

    Kinin B(1) and B(2) receptors have been implicated in physiological and pathological conditions of the urinary bladder. However, their role in overactive urinary bladder (OAB) syndrome following spinal cord injury (SCI) remains elusive. We investigated the role of kinin B(1) and B(2) receptors in OAB after SCI in rats. SCI was associated with a marked inflammatory response and functional changes in the urinary bladder. SCI resulted in an up-regulation of B(1) receptor mRNA in the urinary bladder, dorsal root ganglion and spinal cord, as well as in B(1) protein in the urinary bladder and B(1) and B(2) receptor protein in spinal cord. Interestingly, both B(1) and B(2) protein expression were similarly distributed in detrusor muscle and urothelium of animals with SCI. In vitro stimulation of urinary bladder with the selective B(1) or B(2) agonist elicited a higher concentration-response curve in the SCI urinary bladder than in naive or sham urinary bladders. Cystometry revealed that treatment of SCI animals with the B(2) selective antagonist icatibant reduced the amplitude and number of non-voiding contractions (NVCs). The B(1) antagonist des-Arg(9) -[Leu(8) ]-bradykinin reduced the number of NVCs while the non-peptide B(1) antagonist SSR240612 reduced the number of NVCs, the urinary bladder capacity and increased the voiding efficiency and voided volume. Taken together, these data show the important roles of B(1) and B(2) receptors in OAB following SCI in rats and suggest that blockade of these receptors could be a potential therapeutic target for controlling OAB. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  19. Effects of kinin B1 and B2 receptor antagonists on overactive urinary bladder syndrome induced by spinal cord injury in rats

    Science.gov (United States)

    Forner, Stefânia; Andrade, Edinéia L; Martini, Alessandra C; Bento, Allisson F; Medeiros, Rodrigo; Koepp, Janice; Calixto, João B

    2012-01-01

    Background and Purpose Kinin B1 and B2 receptors have been implicated in physiological and pathological conditions of the urinary bladder. However, their role in overactive urinary bladder (OAB) syndrome following spinal cord injury (SCI) remains elusive. Experimental Approach We investigated the role of kinin B1 and B2 receptors in OAB after SCI in rats. Key Results SCI was associated with a marked inflammatory response and functional changes in the urinary bladder. SCI resulted in an up-regulation of B1 receptor mRNA in the urinary bladder, dorsal root ganglion and spinal cord, as well as in B1 protein in the urinary bladder and B1 and B2 receptor protein in spinal cord. Interestingly, both B1 and B2 protein expression were similarly distributed in detrusor muscle and urothelium of animals with SCI. In vitro stimulation of urinary bladder with the selective B1 or B2 agonist elicited a higher concentration-response curve in the SCI urinary bladder than in naive or sham urinary bladders. Cystometry revealed that treatment of SCI animals with the B2 selective antagonist icatibant reduced the amplitude and number of non-voiding contractions (NVCs). The B1 antagonist des-Arg9-[Leu8]-bradykinin reduced the number of NVCs while the non-peptide B1 antagonist SSR240612 reduced the number of NVCs, the urinary bladder capacity and increased the voiding efficiency and voided volume. Conclusions and Implications Taken together, these data show the important roles of B1 and B2 receptors in OAB following SCI in rats and suggest that blockade of these receptors could be a potential therapeutic target for controlling OAB. PMID:22862305

  20. Prevention of Spinal Anesthesia-Induced Hypotension During Cesarean Delivery by 5-Hydroxytryptamine-3 Receptor Antagonists: A Systematic Review and Meta-analysis and Meta-regression.

    Science.gov (United States)

    Heesen, Michael; Klimek, Markus; Hoeks, Sanne E; Rossaint, Rolf

    2016-10-01

    Hypotension remains a frequent complication of spinal anesthesia, increasing the risk of nausea and vomiting, altered mental status, and aspiration. The aim of this systematic review and meta-analysis was to determine whether 5-hydroxytryptamine3 (5-HT3) receptor antagonists, administered before the initiation of spinal anesthesia, mitigate hypotension. After a systematic literature search in various databases, randomized placebo-controlled double-blind trials studying the preventive effect of 5-HT3 receptor antagonists were included. A random-effects model was applied, risk ratio (RR, binary variables) or weighted mean difference (continuous variables) with 95% confidence intervals (CIs) were calculated. The primary outcome was the incidence of hypotension. Seventeen trials (8 obstetric, 9 non-obstetric) reporting on 1604 patients were identified. Ondansetron in doses from 2 to 12 mg was studied in 12 trials. Prophylactic 5-HT3 administration significantly reduced the risk of hypotension in the combined analysis of 17 trials, RR 0.54 (95% CI 0.36-0.81, I = 79%). In obstetric trials, the RR was 0.52, 95% CI 0.30-0.88, I = 87% (number needed to treat 4). In non-obstetric studies, the 95% CIs were wide and included a clinically relevant reduction in the risk of hypotension (RR 0.50, 95% CI 0.22-1.16; I = 66%). Contour-enhanced funnel plots confirmed publication bias. Meta-regression showed a significant ondansetron dose response in non-obstetric patients (β = -0.355, P = .04). In the combined and in the obstetric-only analysis, the risk of bradycardia was significantly reduced as was the use of phenylephrine equivalents. 5-HT3 antagonists are effective in reducing the incidence of hypotension and bradycardia; the effects are moderate and are only significant in the subgroup of patients undergoing cesarean delivery. The effects in the non-obstetric population are not significant.

  1. Diuretics prevent thiazolidinedione-induced cardiac hypertrophy without compromising insulin-sensitizing effects in mice.

    Science.gov (United States)

    Chang, Cherng-Shyang; Tsai, Pei-Jane; Sung, Junne-Ming; Chen, Ju-Yi; Ho, Li-Chun; Pandya, Kumar; Maeda, Nobuyo; Tsai, Yau-Sheng

    2014-02-01

    Much concern has arisen regarding critical adverse effects of thiazolidinediones (TZDs), including rosiglitazone and pioglitazone, on cardiac tissue. Although TZD-induced cardiac hypertrophy (CH) has been attributed to an increase in plasma volume or a change in cardiac nutrient preference, causative roles have not been established. To test the hypothesis that volume expansion directly mediates rosiglitazone-induced CH, mice were fed a high-fat diet with rosiglitazone, and cardiac and metabolic consequences were examined. Rosiglitazone treatment induced volume expansion and CH in wild-type and PPARγ heterozygous knockout (Pparg(+/-)) mice, but not in mice defective for ligand binding (Pparg(P465L/+)). Cotreatment with the diuretic furosemide in wild-type mice attenuated rosiglitazone-induced CH, hypertrophic gene reprogramming, cardiomyocyte apoptosis, hypertrophy-related signal activation, and left ventricular dysfunction. Similar changes were observed in mice treated with pioglitazone. The diuretics spironolactone and trichlormethiazide, but not amiloride, attenuated rosiglitazone effects on volume expansion and CH. Interestingly, expression of glucose and lipid metabolism genes in the heart was altered by rosiglitazone, but these changes were not attenuated by furosemide cotreatment. Importantly, rosiglitazone-mediated whole-body metabolic improvements were not affected by furosemide cotreatment. We conclude that releasing plasma volume reduces adverse effects of TZD-induced volume expansion and cardiac events without compromising TZD actions in metabolic switch in the heart and whole-body insulin sensitivity. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  2. Oncostatin M induces heat hypersensitivity by gp130-dependent sensitization of TRPV1 in sensory neurons

    Directory of Open Access Journals (Sweden)

    Langeslag Michiel

    2011-12-01

    Full Text Available Abstract Oncostatin M (OSM is a member of the interleukin-6 cytokine family and regulates eg. gene activation, cell survival, proliferation and differentiation. OSM binds to a receptor complex consisting of the ubiquitously expressed signal transducer gp130 and the ligand binding OSM receptor subunit, which is expressed on a specific subset of primary afferent neurons. In the present study, the effect of OSM on heat nociception was investigated in nociceptor-specific gp130 knock-out (SNS-gp130-/- and gp130 floxed (gp130fl/fl mice. Subcutaneous injection of pathophysiologically relevant concentrations of OSM into the hind-paw of C57BL6J wild type mice significantly reduced paw withdrawal latencies to heat stimulation. In contrast to gp130fl/fl mice, OSM did not induce heat hypersensitivity in vivo in SNS-gp130-/- mice. OSM applied at the receptive fields of sensory neurons in in vitro skin-nerve preparations showed that OSM significantly increased the discharge rate during a standard ramp-shaped heat stimulus. The capsaicin- and heat-sensitive ion channel TRPV1, expressed on a subpopulation of nociceptive neurons, has been shown to play an important role in inflammation-induced heat hypersensitivity. Stimulation of cultured dorsal root ganglion neurons with OSM resulted in potentiation of capsaicin induced ionic currents. In line with these recordings, mice with a null mutation of the TRPV1 gene did not show any signs of OSM-induced heat hypersensitivity in vivo. The present data suggest that OSM induces thermal hypersensitivity by directly sensitizing nociceptors via OSMR-gp130 receptor mediated potentiation of TRPV1.

  3. Sensitization to UV-induced apoptosis by the histone deacetylase inhibitor trichostatin A (TSA)

    International Nuclear Information System (INIS)

    Kim, Myoung Sook; Baek, Jin Hyen; Chakravarty, Devulapalli; Sidransky, David; Carrier, France

    2005-01-01

    UV-induced apoptosis is a protective mechanism that is primarily caused by DNA damage. Cyclobutane pyrimidine dimers (CPD) and 6-4 photoproducts are the main DNA adducts triggered by UV radiation. Because the formation of DNA lesions in the chromatin is modulated by the structure of the nucleosomes, we postulated that modification of chromatin compaction could affect the formation of the lesions and consequently apoptosis. To verify this possibility we treated human colon carcinoma RKO cells with the histone deacetylase inhibitor trichostatin A (TSA) prior to exposure to UV radiation. Our data show that pre-treatment with TSA increased UV killing efficiency by more than threefold. This effect correlated with increased formation of CPDs and consequently apoptosis. On the other hand, TSA treatment after UV exposure rather than before had no more effect than UV radiation alone. This suggests that a primed (opened) chromatin status is required to sensitize the cells. Moreover, TSA sensitization to UV-induced apoptosis is p53 dependent. p53 and acetylation of the core histones may thus contribute to UV-induced apoptosis by modulating the formation of DNA lesions on chromatin

  4. Fasting boosts sensitivity of human skin melanoma to cisplatin-induced cell death.

    Science.gov (United States)

    Antunes, Fernanda; Corazzari, Marco; Pereira, Gustavo; Fimia, Gian Maria; Piacentini, Mauro; Smaili, Soraya

    2017-03-25

    Melanoma is one of leading cause of tumor death worldwide. Anti-cancer strategy includes combination of different chemo-therapeutic agents as well as radiation; however these treatments have limited efficacy and induce significant toxic effects on healthy cells. One of most promising novel therapeutic approach to cancer therapy is the combination of anti-cancer drugs with calorie restriction. Here we investigated the effect Cisplatin (CDDP), one of the most potent chemotherapeutic agent used to treat tumors, in association with fasting in wild type and mutated BRAF V600E melanoma cell lines. Here we show that nutrient deprivation can consistently enhance the sensitivity of tumor cells to cell death induction by CDDP, also of those malignancies particularly resistant to any treatment, such as oncogenic BRAF melanomas. Mechanistic studies revealed that the combined therapy induced cell death is characterized by ROS accumulation and ATF4 in the absence of ER-stress. In addition, we show that autophagy is not involved in the enhanced sensitivity of melanoma cells to combined CDDP/EBSS-induced apoptosis. While, the exposure to 2-DG further enhanced the apoptotic rate observed in SK Mel 28 cells upon treatment with both CDDP and EBSS. Copyright © 2016. Published by Elsevier Inc.

  5. Experimentally induced central sensitization in the cervical spine evokes postural stiffening strategies in healthy young adults.

    Science.gov (United States)

    Huntley, Andrew H; Srbely, John Z; Zettel, John L

    2015-02-01

    Dysequilibrium of cervicogenic origin can result from pain and injury to cervical paraspinal tissues post-whiplash; however, the specific physiological mechanisms still remain unclear. Central sensitization is a neuradaptive process which has been clinically associated with conditions of chronic pain and hypersensitivity. Strong links have been demonstrated between pain hypersensitivity and postural deficits post-whiplash; however, the precise mechanisms are still poorly understood. The purpose of this study was to explore the mechanisms of cervicogenic disequilibrium by investigating the effect of experimentally induced central sensitization in the cervical spine on postural stability in young healthy adults. Sixteen healthy young adults (7 males (22.6±1.13 years) and 9 females (22±2.69 years)) performed 30-s full-tandem stance trials on an AMTI force plate under normal and centrally sensitized conditions. The primary outcome variables included the standard deviation of the center of pressure (COP) position in medio-lateral (M-L) and antero-posterior (A-P) directions; sway range of the COP in M-L and A-P directions and the mean power frequency (MPF) of the COP and horizontal ground shear forces. Variability and sway range of the COP decreased with experimental induction of central sensitization, accompanied by an increase in MPF of COP displacement in both M-L and A-P directions, suggesting an increase in postural stiffening post-sensitization versus non-sensitized controls. Future studies need to further explore this relationship in clinical (whiplash, chronic pain) populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Capsaicin Enhances the Drug Sensitivity of Cholangiocarcinoma through the Inhibition of Chemotherapeutic-Induced Autophagy.

    Directory of Open Access Journals (Sweden)

    Zai-Fa Hong

    Full Text Available Cholangiocarcinoma (CCA, a devastating cancer with a poor prognosis, is resistant to the currently available chemotherapeutic agents. Capsaicin, the major pungent ingredient found in hot red chili peppers of the genus Capsicum, suppresses the growth of several malignant cell lines. Our aims were to investigate the role and mechanism of capsaicin with respect to the sensitivity of CCA cells to chemotherapeutic agents. The effect of capsaicin on CCA tumor sensitivity to 5-fluorouracil (5-FU was assessed in vitro in CCA cells and in vivo in a xenograft model. The drug sensitivity of QBC939 to 5-FU was significantly enhanced by capsaicin compared with either agent alone. In addition, the combination of capsaicin with 5-FU was synergistic, with a combination index (CI < 1, and the combined treatment also suppressed tumor growth in the CCA xenograft to a greater extent than 5-FU alone. Further investigation revealed that the autophagy induced by 5-FU was inhibited by capsaicin. Moreover, the decrease in AKT and S6 phosphorylation induced by 5-FU was effectively reversed by capsaicin, indicating that capsaicin inhibits 5-FU-induced autophagy by activating the phosphoinositide 3-kinase (PI3K/protein kinase B (AKT/mammalian target of rapamycin (mTOR pathway in CCA cells. Taken together, these results demonstrate that capsaicin may be a useful adjunct therapy to improve chemosensitivity in CCA. This effect likely occurs via PI3K/AKT/mTOR pathway activation, suggesting a promising strategy for the development of combination drugs for CCA.

  7. Mucosal exposure to cockroach extract induces allergic sensitization and allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Arizmendi Narcy G

    2011-12-01

    Full Text Available Abstract Background Allergic sensitization to aeroallergens develops in response to mucosal exposure to these allergens. Allergic sensitization may lead to the development of asthma, which is characterized by chronic airway inflammation. The objective of this study is to describe in detail a model of mucosal exposure to cockroach allergens in the absence of an exogenous adjuvant. Methods Cockroach extract (CE was administered to mice intranasally (i.n. daily for 5 days, and 5 days later mice were challenged with CE for 4 consecutive days. A second group received CE i.n. for 3 weeks. Airway hyperresponsiveness (AHR was assessed 24 h after the last allergen exposure. Allergic airway inflammation was assessed by BAL and lung histology 48 h after the last allergen exposure. Antigen-specific antibodies were assessed in serum. Lungs were excised from mice from measurement of cytokines and chemokines in whole lung lysate. Results Mucosal exposure of Balb/c mice to cockroach extract induced airway eosinophilic inflammation, AHR and cockroach-specific IgG1; however, AHR to methacholine was absent in the long term group. Lung histology showed patchy, multicentric damage with inflammatory infiltrates at the airways in both groups. Lungs from mice from the short term group showed increased IL-4, CCL11, CXCL1 and CCL2 protein levels. IL4 and CXCL1 were also increased in the BAL of cockroach-sensitized mice in the short-term protocol. Conclusions Mucosal exposure to cockroach extract in the absence of adjuvant induces allergic airway sensitization characterized by AHR, the presence of Th2 cytokines in the lung and eosinophils in the airways.

  8. Sensitization to the psychosis-inducing effects of cocaine compared with measures of cocaine craving and cue reactivity.

    Science.gov (United States)

    Reid, Malcolm S; Ciplet, Debra; O'Leary, Siobhan; Branchey, Marc; Buydens-Branchey, Laure; Angrist, Burt

    2004-01-01

    A previous study has suggested that sensitization to the psychosis-inducing effects of cocaine may be a marker of vulnerability to relapse in cocaine addiction. In this report, cocaine-dependent subjects participating in a study on naturally occurring and cue-induced cocaine craving were interviewed about prior experience of cocaine-induced psychosis and the degree to which this effect had become more frequent or severe or had occurred at lower cumulative doses. Sensitization to cocaine-induced psychosis was negatively correlated with baseline measures of drug dependence severity and indices of cocaine craving over the preceding 24 hours but not with measures of cocaine cue reactivity.

  9. Coronary dilation with nitrocompounds and calcium antagonists.

    Science.gov (United States)

    Jost, S; Rafflenbeul, W; Lichtlen, P R

    1990-01-01

    The vasodilatory effects of nitrocompounds and calcium antagonists on epicardial coronary arteries represent substantial antianginal mechanisms in the presence of coronary vasospasm or eccentric coronary stenoses. With high doses of nitrocompounds, angiographically normal coronary segments can be dilated by an average of approx. 30%, some coronary stenoses even by up to 100%, usually without severe reduction of blood pressure. With calcium antagonists, a similar extent of dilation of normal coronary arteries and eccentric stenoses can be obtained. Our own group demonstrated an average dilation of normal coronary arteries of about 20% after intravenous administration of dihydropyridine calcium antagonists; however, the average systolic blood pressure dropped below 100 mmHg after these compounds. Hence, although in isolated human coronary arteries high concentrations of calcium antagonists were shown to induce a considerably greater vasodilation than nitrocompounds, the early drop in blood pressure prohibits a higher dosage of calcium antagonists in vivo. In the presence of coronary artery disease, particularly when associated with coronary vasospasm, a combination of the two groups of compounds might be recommendable, since an addition of the effects of coronary vasomotor tone is likely. Furthermore, the antianginal effects of a reduction of preload and afterload are complementary.

  10. X-ray-induced chromosome aberrations in Down lymphocytes: an explanation of their increased sensitivity

    International Nuclear Information System (INIS)

    Preston, R.J.

    1981-01-01

    Unstimulated lymphocytes from individuals with Down Syndrome (trisomy 21) are more sensitive to the induction of dicentric and ring aberrations by X rays than normal lymphocytes. Several explanations involving the more rapid rejoining of X-ray-induced lesions in Down cells have been offered. It is shown here that the repair of the DNA damage converted into chromosome aberrations is more rapid in Down cells than normal cells. This more rapid repair results in a higher probability of producing chromosome aberrations, and hence higher aberration frequencies in Down than normal cells

  11. X-ray-induced chromosome aberrations in Down lymphocytes: an explanation of their increased sensitivity

    International Nuclear Information System (INIS)

    Preston, R.J.

    1981-01-01

    Unstimulated lymphocytes from individuals with Down Syndrome (trisomy 21) are more sensitive to the induction of dicentric and ring aberrations by X rays than normal lymphocytes. Several explanations involving the more rapid rejoining of X-ray--induced lesions in Down cells have been offered. It is shown here that the repair of the DNA damage converted into chromosome aberrations is more rapid in Down cells than normal cells. This more rapid repair results in a higher probability of producing chromosomes aberrations, and hence higher aberration frequencies in Down than normal cells

  12. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Mehtar-Tani, Yacine [Institute of Nuclear Theory, University of Washington,Seattle, WA 98195-1550 (United States); Tywoniuk, Konrad [Theoretical Physics Department, CERN,1211 Geneva 23 (Switzerland)

    2017-04-21

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the “soft drop declustering” procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  13. A large area position-sensitive ionization chamber for heavy-ion-induced reaction studies

    CERN Document Server

    Pant, L M; Dinesh, B V; Thomas, R G; Saxena, A; Sawant, Y S; Choudhury, R K

    2002-01-01

    A large area position-sensitive ionization chamber with a wide dynamic range has been developed to measure the mass, charge and energy of the heavy ions and the fission fragments produced in heavy-ion-induced reactions. The split anode geometry of the detector makes it suitable for both particle identification and energy measurements for heavy ions and fission fragments. The detector has been tested with alpha particles from sup 2 sup 4 sup 1 Am- sup 2 sup 3 sup 9 Pu source, fission fragments from sup 2 sup 5 sup 2 Cf and the heavy-ion beams from the 14UD Mumbai Pelletron accelerator facility. Using this detector, measurements on mass and total kinetic energy distributions in heavy-ion-induced fusion-fission reactions have been carried out for a wide range of excitation energies. Results on deep inelastic collisions and mass-energy correlations on different systems using this detector setup are discussed.

  14. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    CERN Document Server

    Mehtar-Tani, Yacine

    2017-04-21

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the "soft drop declustering" procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  15. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    Science.gov (United States)

    Mehtar-Tani, Yacine; Tywoniuk, Konrad

    2017-04-01

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the "soft drop declustering" procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  16. Groomed jets in heavy-ion collisions: sensitivity to medium-induced bremsstrahlung

    International Nuclear Information System (INIS)

    Mehtar-Tani, Yacine; Tywoniuk, Konrad

    2017-01-01

    We argue that contemporary jet substructure techniques might facilitate a more direct measurement of hard medium-induced gluon bremsstrahlung in heavy-ion collisions, and focus specifically on the “soft drop declustering” procedure that singles out the two leading jet substructures. Assuming coherent jet energy loss, we find an enhancement of the distribution of the energy fractions shared by the two substructures at small subjet energy caused by hard medium-induced gluon radiation. Departures from this approximation are discussed, in particular, the effects of colour decoherence and the contamination of the grooming procedure by soft background. Finally, we propose a complementary observable, that is the ratio of the two-pronged probability in Pb-Pb to proton-proton collisions and discuss its sensitivity to various energy loss mechanisms.

  17. Effect of Herbal-Acupuncture on Repeated Cocaine-induced Behavioral Sensitization in the Rat

    Directory of Open Access Journals (Sweden)

    B.B. Lee

    2004-02-01

    Full Text Available Substantial evidence suggests that behavioral and reinforcing effects of cocaine can be mediated by the mesolimbic dopaminergic system. It has been shown that repeated injections of cocaine produce increase in locomotor activity, expression of the immediate-early gene, c-fos in the nucleus accumbens (NAc, which was one of the main dopaminergic terminal areas. Herbal-acupuncture as a therapeutic intervention has been widely used for the treatment of many functional disorders such as drug abuse. Coptidis Rhizoma (CR and its main component, berberine (BER were selected as herbal medicine of herbal-acupuncture. Both medicines have been known to have the therapeutic effect on the central nervous system. In order to investigate the effects of CR and BER herbal-acupuncture at shenmen (HT7 point (CR/H and BER/H on the cocaine-induced behavioral sensitization, the influence of CR/H and BER/H on repeated cocaine-induced locomotor activity, the change of c-Fos expression in the brain by immunohistochemistry were examined. Male SD rats were given CR/H (0.4 mg/kg and BER/H (0.1 mg/kg 30 min before daily injections of cocaine hydrochloride (15 mg/kg, i.p. 10 days. After 3 days withdrawal, rats received a challenge injection of cocaine (15 mg/kg, i.p.. Systemic challenge with cocaine produced much larger increased locomotor activity, accumbal Fos-like immunoreactivity in the NAc. Pretreatment with CR/H and BER/H significantly inhibited cocaine-induced locomotor activity, the change of c-Fos expression in the rats. Our data demonstrated that the inhibitory effects of cocaine-induced behavioral sensitization by CR/H and BER/H were closely associated with the reduction of presynaptic dopamine release in the NAc. These results suggest that CR/H and BER/H can be effectively applied to cocaine addiction.

  18. Sensitivity of Spores of Eight Bacillus Cereus Strains to Pressure-Induced Germination by Moderate Hydrostatic Pressure, Time and Temperature

    National Research Council Canada - National Science Library

    Kalchayanand, Norasak; Ray, Bibek; Dunne, C. P; Sikes, Anthony

    2005-01-01

    The spores of eight Bacillus cereus strains were pressurized at 138 to 483 MPa for 5 to 20 min at 25 to 70 C in order to determine the sensitive and the resistant strains to pressure-induced germination...

  19. Augmented acetylcholine-induced, Rho-mediated Ca2+ sensitization of bronchial smooth muscle contraction in antigen-induced airway hyperresponsive rats

    Science.gov (United States)

    Chiba, Yoshihiko; Takada, Yuka; Miyamoto, Shigeki; Mitsui-Saito, Minori; Karaki, Hideaki; Misawa, Miwa

    1999-01-01

    Treatment with acetylcholine (ACh) of a β-escin-permeabilized intrapulmonary bronchial smooth muscle of the rat induced force when the Ca2+ concentration was clamped at 1 μM. The ACh-induced Ca2+ sensitization of myofilaments was significantly greater in antigen-induced airway hyperresponsive rats than in control rats. The ACh-induced Ca2+ sensitization was completely blocked by treatment with Clostridium botulinum C3 exoenzyme, an inactivator of Rho family of proteins. Moreover, the protein level of RhoA in the intrapulmonary bronchi was significantly increased in the airway hyperresponsive rats. Thus, increased airway smooth muscle contractility observed in asthmatics may be related to augmented agonist-induced, Rho-mediated Ca2+ sensitization of myofilaments. PMID:10401547

  20. Chlamydia pneumoniae infection induced allergic airway sensitization is controlled by regulatory T-cells and plasmacytoid dendritic cells.

    Directory of Open Access Journals (Sweden)

    Timothy R Crother

    Full Text Available Chlamydia pneumoniae (CP is associated with induction and exacerbation of asthma. CP infection can induce allergic airway sensitization in mice in a dose- and time-dependent manner. Allergen exposure 5 days after a low dose (mild-moderate, but not a high dose (severe CP infection induces antigen sensitization in mice. Innate immune signals play a critical role in controlling CP infection induced allergic airway sensitization, however these mechanisms have not been fully elucidated. Wild-type, TLR2-/-, and TLR4-/- mice were infected intranasally (i.n. with a low dose of CP, followed by i.n. exposure to human serum albumin (HSA and challenged with HSA 2 weeks later. Airway inflammation, immunoglobulins, eosinophils, and goblet cells were measured. Low dose CP infection induced allergic sensitization in TLR2-/- mice, but not in TLR4-/- mice, due to differential Treg responses in these genotypes. TLR2-/- mice had reduced numbers of Tregs in the lung during CP infection while TLR4-/- mice had increased numbers. High dose CP infection resulted in an increase in Tregs and pDCs in lungs, which prevented antigen sensitization in WT mice. Depletion of Tregs or pDCs resulted in allergic airway sensitization. We conclude that Tregs and pDCs are critical determinants regulating CP infection-induced allergic sensitization. Furthermore, TLR2 and TLR4 signaling during CP infection may play a regulatory role through the modulation of Tregs.

  1. ERK inhibition sensitizes CZ415-induced anti-osteosarcoma activity in vitro and in vivo.

    Science.gov (United States)

    Yin, Gang; Fan, Jin; Zhou, Wei; Ding, Qingfeng; Zhang, Jun; Wu, Xuan; Tang, Pengyu; Zhou, Hao; Wan, Bowen; Yin, Guoyong

    2017-10-10

    mTOR is a valuable oncotarget for osteosarcoma. The anti-osteosarcoma activity by a novel mTOR kinase inhibitor, CZ415, was evaluated. We demonstrated that CZ415 potently inhibited survival and proliferation of known osteosarcoma cell lines (U2OS, MG-63 and SaOs2), and primary human osteosarcoma cells. Further, CZ415 provoked apoptosis and disrupted cell cycle progression in osteosarcoma cells. CZ415 treatment in osteosarcoma cells concurrently blocked mTORC1 and mTORC2 activation. Intriguingly, ERK-MAPK activation could be a major resistance factor of CZ415. ERK inhibition (by MEK162/U0126) or knockdown (by targeted ERK1/2 shRNAs) dramatically sensitized CZ415-induced osteosarcoma cell apoptosis. In vivo , CZ415 oral administration efficiently inhibited U2OS tumor growth in mice. Its activity was further potentiated with co-administration of MEK162. Collectively, we demonstrate that ERK inhibition sensitizes CZ415-induced anti-osteosarcoma activity in vitro and in vivo . CZ415 could be further tested as a promising anti-osteosarcoma agent, alone or in combination of ERK inhibition.

  2. Role of induced negative and positive emotions in sensitivity to itch and pain in women.

    Science.gov (United States)

    van Laarhoven, A I M; Walker, A L; Wilder-Smith, O H; Kroeze, S; van Riel, P L C M; van de Kerkhof, P C M; Kraaimaat, F W; Evers, A W M

    2012-08-01

    Itch and pain are common symptoms in skin disease. It has been suggested that negative emotions may play a role in itch and pain. To date, however, the role of emotions has only been studied for pain in experimental studies, not yet for itch. To investigate the effects of negative and positive emotions on the sensitivity to itch and pain. Film fragments were used to induce a negative or positive emotional state in healthy women. Itch and pain were induced using the following somatosensory stimuli: electrical stimulation, histamine iontophoresis and the cold pressor test. Results showed that the scores for itch and pain evoked by histamine and the cold pressor test, respectively, were significantly higher in the negative than in the positive emotion condition, whereas tolerance thresholds to electrical stimulation and the cold pressor test, and stimulus unpleasantness scores did not differ between the two conditions. These findings for the first time indicate in an experimental design that emotions play a role in sensitivity to somatosensory sensations of both itch and pain. © 2012 The Authors. BJD © 2012 British Association of Dermatologists.

  3. Sustained nociceptive mechanical stimulation of latent myofascial trigger point induces central sensitization in healthy subjects.

    Science.gov (United States)

    Xu, Yi-Meng; Ge, Hong-You; Arendt-Nielsen, Lars

    2010-12-01

    The aim of the study is to test if sustained nociceptive mechanical stimulation (SNMS) of latent myofascial trigger points (MTrPs) induces widespread mechanical hyperalgesia. SNMS was obtained by inserting and retaining an intramuscular electromyographic (EMG) needle within a latent MTrP or a nonMTrP in the finger extensor muscle for 8 minutes in 12 healthy subjects. Pain intensity (VAS) and referred pain area induced by SNMS were recorded. Pressure pain threshold (PPT) was measured immediately before and after, and 10-, 20-, and 30-minutes after SNMS at the midpoint of the contralateral tibialis anterior muscle. Surface and intramuscular EMG during SNMS were recorded. When compared to nonMTrPs, maximal VAS and the area under VAS curve (VASauc) were significantly higher and larger during SNMS of latent MTrPs (both, P induction of local and referred pain. This study shows that MTrPs are one of the important peripheral pain generators and initiators for central sensitization. Therapeutic methods for decreasing the sensitivity and motor-unit excitability of MTrPs may prevent the development of muscle cramps and thus decrease local and referred pain. Copyright © 2010 American Pain Society. Published by Elsevier Inc. All rights reserved.

  4. Sensitive electrochemical measurement of hydroxyl radical generation induced by the xanthine-xanthine oxidase system.

    Science.gov (United States)

    Tatsumi, Hirosuke; Tsuchiya, Yui; Sakamoto, Koichi

    2014-12-15

    A sensitive electrochemical measurement system for hydroxyl radical (OH) was developed using enzyme-catalyzed signal amplification. In the presence of 2,6-xylenol as a trapping agent, glucose as a substrate, and pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH) as a catalyst, the amperometric signal of the trapping adduct 2,6-dimethylhydroquinone (DMHQ) produced by the hydroxylation of 2,6-xylenol was able to be amplified and detected sensitively. The limit of detection (signal/noise [S/N]=3) for DMHQ was 1 nM. There was no significant interference from urate and other oxidizable compounds in the reaction mixture at the applied potential of 0V versus Ag/AgCl. This method was employed to observe the OH generation induced by the xanthine-xanthine oxidase (XO) system. The reaction rates of the DMHQ production induced from the xanthine-XO system in the presence and absence of various Fe(III) complexes and proteins were compared. Those with a free coordination site on the Fe atom effectively enhanced the OH generation. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Gastric myoelectric activity during cisplatin-induced acute and delayed emesis reveals a temporal impairment of slow waves in ferrets: effects not reversed by the GLP-1 receptor antagonist, exendin (9-39).

    Science.gov (United States)

    Lu, Zengbing; Ngan, Man P; Lin, Ge; Yew, David T W; Fan, Xiaodan; Andrews, Paul L R; Rudd, John A

    2017-11-17

    Preclinical studies show that the glucagon-like peptide-1 (GLP-1) receptor antagonist, exendin (9-39), can reduce acute emesis induced by cisplatin. In the present study, we investigate the effect of exendin (9-39) (100 nmol/24 h, i.c.v), on cisplatin (5 mg/kg, i.p.)-induced acute and delayed emesis and changes indicative of 'nausea' in ferrets. Cisplatin induced 37.2 ± 2.3 and 59.0 ± 7.7 retches + vomits during the 0-24 (acute) and 24-72 h (delayed) periods, respectively. Cisplatin also increased ( P Advanced multifractal detrended fluctuation analysis revealed that the slow wave signal shape became more simplistic during delayed emesis. Cisplatin did not affect blood pressure (BP), but transiently increased heart rate, and decreased heart rate variability (HRV) during acute emesis; HRV spectral analysis indicated a shift to 'sympathetic dominance'. A hyperthermic response was seen during acute emesis, but hypothermia occurred during delayed emesis and there was also a decrease in HR. Exendin (9-39) did not improve feeding and drinking but reduced cisplatin-induced acute emesis by ~59 % ( P waves may represent a novel approach to treat the side effects of chemotherapy.

  6. Strain rate sensitivity and evolution of dislocations and twins in a twinning-induced plasticity steel

    International Nuclear Information System (INIS)

    Liang, Z.Y.; Wang, X.; Huang, W.; Huang, M.X.

    2015-01-01

    The present work investigated the effect of strain rates (10 −3 to 10 3 s −1 ) on the deformation behaviour of a twinning-induced plasticity (TWIP) steel. The strain rate sensitivity was studied in terms of instantaneous strain rate sensitivity (ISRS) and strain rate sensitivity of work-hardening (SRSW). While ISRS concerns the instantaneous flow stress change upon strain rate jump, SRSW deals with the subsequent modification in microstructure evolution, i.e. change of work-hardening rate. The present TWIP steel demonstrates a positive ISRS which remains stable during deformation and a negative SRSW, i.e. lower work-hardening rate at higher strain rate. Synchrotron X-ray diffraction experiments indicate that the negative SRSW should be attributed to the suppression of dislocations and deformation twins at high strain rate. This unexpected finding is different to conventional face-centred cubic (fcc) metals which generally show enhanced work-hardening rate at higher strain rate. A constitutive model which is strain rate- and temperature-dependent is developed to explain the stable ISRS and the negative SRSW. The modelling results reveal that the stable ISRS should be attributed to the thermally-activated dislocation motion dominated by interstitial carbon atoms and the negative SRSW should be due to the suppression of the dislocations and deformation twins caused by the adiabatic heating associated with high strain rate deformation

  7. Evaluation of radiation-induced sensitization using electrochemical potentiokinetic reactivation technique for austenitic stainless steels

    International Nuclear Information System (INIS)

    Inazumi, T.; Bell, G.E.C.; Hishinuma, A.

    1990-01-01

    The electrochemical potentiokinetic reactivation (EPR) test technique was applied to the determination of sensitization in a neutron-irradiated (420 degree C, 10 dpa) titanium-modified austenitic stainless steel. Miniaturized specimens (3 mm diam by 0.25 mm thick) in solution-annealed and 25% cold-worked conditions were tested. The degree of sensitization (DOS) was calculated in terms of the reactivation charge (Pa). Results indicated the occurrence of radiation-induced sensitization when compared to control specimens thermally aged at the irradiation temperature. Post-EPR examination of the specimen surfaces showed etching across the face of each grain as well as at grain boundaries. This indicates that the Pa value normalized by the total grain boundary area, which is an accepted EPR-DOS criterion, cannot be directly used as an indicator of the DOS to determine the susceptibility of this irradiated material to intergranular stress corrosion cracking (IGSCC). Further investigations are necessary to correlate the results in this study to the IGSCC susceptibility of the irradiated stainless steel. 26 refs., 7 figs., 3 tabs

  8. Quercetin sensitizes fluconazole-resistant candida albicans to induce apoptotic cell death by modulating quorum sensing.

    Science.gov (United States)

    Singh, B N; Upreti, D K; Singh, B R; Pandey, G; Verma, S; Roy, S; Naqvi, A H; Rawat, A K S

    2015-04-01

    Quorum sensing (QS) regulates group behaviors of Candida albicans such as biofilm, hyphal growth, and virulence factors. The sesquiterpene alcohol farnesol, a QS molecule produced by C. albicans, is known to regulate the expression of virulence weapons of this fungus. Fluconazole (FCZ) is a broad-spectrum antifungal drug that is used for the treatment of C. albicans infections. While FCZ can be cytotoxic at high concentrations, our results show that at much lower concentrations, quercetin (QC), a dietary flavonoid isolated from an edible lichen (Usnea longissima), can be implemented as a sensitizing agent for FCZ-resistant C. albicans NBC099, enhancing the efficacy of FCZ. QC enhanced FCZ-mediated cell killing of NBC099 and also induced cell death. These experiments indicated that the combined application of both drugs was FCZ dose dependent rather than QC dose dependent. In addition, we found that QC strongly suppressed the production of virulence weapons-biofilm formation, hyphal development, phospholipase, proteinase, esterase, and hemolytic activity. Treatment with QC also increased FCZ-mediated cell death in NBC099 biofilms. Interestingly, we also found that QC enhances the anticandidal activity of FCZ by inducing apoptotic cell death. We have also established that this sensitization is reliant on the farnesol response generated by QC. Molecular docking studies also support this conclusion and suggest that QC can form hydrogen bonds with Gln969, Thr1105, Ser1108, Arg1109, Asn1110, and Gly1061 in the ATP binding pocket of adenylate cyclase. Thus, this QS-mediated combined sensitizer (QC)-anticandidal agent (FCZ) strategy may be a novel way to enhance the efficacy of FCZ-based therapy of C. albicans infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Terbium fluorescence as a sensitive, inexpensive probe for UV-induced damage in nucleic acids

    International Nuclear Information System (INIS)

    El-Yazbi, Amira F.; Loppnow, Glen R.

    2013-01-01

    Graphical abstract: -- Highlights: •Simple, inexpensive, mix-and-read assay for positive detection of DNA damage. •Recognition of undamaged DNA via hybridization to a hairpin probe. •Terbium(III) fluorescence reports the amount of damage by binding to ssDNA. •Tb/hairpin is a highly selective and sensitive fluorescent probe for DNA damage. -- Abstract: Much effort has been focused on developing methods for detecting damaged nucleic acids. However, almost all of the proposed methods consist of multi-step procedures, are limited, require expensive instruments, or suffer from a high level of interferences. In this paper, we present a novel simple, inexpensive, mix-and-read assay that is generally applicable to nucleic acid damage and uses the enhanced luminescence due to energy transfer from nucleic acids to terbium(III) (Tb 3+ ). Single-stranded oligonucleotides greatly enhance the Tb 3+ emission, but duplex DNA does not. With the use of a DNA hairpin probe complementary to the oligonucleotide of interest, the Tb 3+ /hairpin probe is applied to detect ultraviolet (UV)-induced DNA damage. The hairpin probe hybridizes only with the undamaged DNA. However, the damaged DNA remains single-stranded and enhances the intrinsic fluorescence of Tb 3+ , producing a detectable signal directly proportional to the amount of DNA damage. This allows the Tb 3+ /hairpin probe to be used for sensitive quantification of UV-induced DNA damage. The Tb 3+ /hairpin probe showed superior selectivity to DNA damage compared to conventional molecular beacons probes (MBs) and its sensitivity is more than 2.5 times higher than MBs with a limit of detection of 4.36 ± 1.2 nM. In addition, this probe is easier to synthesize and more than eight times cheaper than MBs, which makes its use recommended for high-throughput, quantitative analysis of DNA damage

  10. Caveolin-1 sensitizes rat pituitary adenoma GH3 cells to bromocriptine induced apoptosis

    Directory of Open Access Journals (Sweden)

    Huang Mu-Chiou

    2007-03-01

    Full Text Available Abstract Background Prolactinoma is the most frequent pituitary tumor in humans. The dopamine D2 receptor agonist bromocriptine has been widely used clinically to treat human breast tumor and prolactinoma through inhibition of hyperprolactinemia and induction of tumor cell apoptosis, respectively, but the molecular mechanism of bromocriptine induction of pituitary tumor apoptosis remains unclear. Caveolin-1 is a membrane-anchored protein enriched on caveolae, inverted flask-shaped invaginations on plasma membranes where signal transduction molecules are concentrated. Currently, caveolin-1 is thought to be a negative regulator of cellular proliferation and an enhancer of apoptosis by blocking signal transduction between cell surface membrane receptors and intracellular signaling protein cascades. Rat pituitary adenoma GH3 cells, which express endogenous caveolin-1, exhibit increased apoptosis and shrinkage after exposure to bromocriptine. Hence, the GH3 cell line is an ideal model for studying the molecular action of bromocriptine on prolactinoma. Results The expression of endogenous caveolin-1 in GH3 cells was elevated after bromocriptine treatment. Transiently expressed mouse recombinant caveolin-1 induced apoptosis in GH3 cells by enhancing the activity of caspase 8. Significantly, caveolin-1 induction of GH3 cell apoptosis was sensitized by the administration of bromocriptine. Phosphorylation of caveolin-1 at tyrosine 14 was enhanced after bromocriptine treatment, suggesting that bromocriptine-induced phosphorylation of caveolin-1 may contribute to sensitization of apoptosis in GH3 cells exposed to bromocriptine. Conclusion Our results reveal that caveolin-1 increases sensitivity for apoptosis induction in pituitary adenoma GH3 cells and may contribute to tumor shrinkage after clinical bromocriptine treatment.

  11. Visible light induced photoelectrochemical biosensing based on oxygen-sensitive quantum dots

    International Nuclear Information System (INIS)

    Wang Wenjing; Bao Lei; Lei Jianping; Tu Wenwen; Ju Huangxian

    2012-01-01

    Highlights: ► The near-infrared QDs are synthesized in an aqueous solution. ► QDs-based biosensor exhibits visible-light induced cathodic photocurrent. ► The oxygen dependency of the photocurrent is verified. ► A photoelectrochemical strategy is established by coupling with enzymatic reaction. ► Photoelectrochemical sensor shows high upper detection limit, acceptable stability and accuracy. - Abstract: A visible light induced photoelectrochemical biosensing platform based on oxygen-sensitive near-infrared quantum dots (NIR QDs) was developed for detection of glucose. The NIR QDs were synthesized in an aqueous solution, and characterized with scanning electron microscopy and X-ray photoelectron spectroscopy. The as-prepared NIR QDs were employed to construct oxygen-sensitive photoelectrochemical biosensor on a fluorine-doped tin oxide (FTO) electrode. The oxygen dependency of the photocurrent was investigated at as-prepared electrode, which demonstrated the signal of photocurrent is suppressed with the decreasing of oxygen. Coupling with the consumption of oxygen during enzymatic reaction, a photoelectrochemical strategy was proposed for the detection of substrate. Using glucose oxidase (GOx) as a model enzyme, that is, GOx was covalently attached to the surface of CdTe QDs, the resulting biosensor showed the sensitive response to glucose. Under the irradiation of visible light of a wavelength at 505 nm, the proposed photoelectrochemical method could detect glucose ranging from 0.1 mM to 11 mM with a detection limit of 0.04 mM. The photoelectrochemical biosensor showed a good performance with high upper detection limit, acceptable stability and accuracy, providing an alternative method for monitoring biomolecules and extending the application of near-infrared QDs.

  12. Manipulation of pH induced sensitivity of a fluorescent probe in presence of silver nanoparticles

    International Nuclear Information System (INIS)

    Kacmaz, Sibel; Ertekin, Kadriye; Oter, Ozlem; Hizliateş, Cevher Gundogdu; Ergun, Yavuz; Celik, Erdal

    2015-01-01

    In this study, pH induced spectral response of the newly synthesized carbazole derivative (9-butyl-bis-3-(4-(dimethylamino) phenyl) allylidene)-9H-carbazole-3,6-diamine) has been declared. We utilized silver nanoparticles (AgNPs) along with ionic liquid as additives for manipulation of the spectral response. Plasticized ethyl cellulose (EC) was used as matrix material. Fibers and porous films were produced by electrospinning technique. The emission intensity at 631 nm has been followed as the analytical signal. Utilization of silver nanoparticles in electrospun polymeric fibers for pH sensing purposes resulted with many advantages such as tuned sensitivity, linear calibration plot for larger pH ranges, increased surface area and enhancement in all sensor dynamics. Additionally, we performed manipulation of the pKa within the same matrix exploiting the silver NPs. Characteristics of the pH induced response for the offered composition was superior with respect to the previously reported ones. When stored at the ambient air of the laboratory there was no significant drift in the signal intensity after 16 months. Our sensitivity and stability tests are still in progress. - Highlights: • A carbozole derivative was used for the first time for sensing of pH along with silver nanoparticles. • The sensor slides fabricated in form of nanofibers. • The Ag containing and Ag-free slides were produced by electrospinning technique. • pH Sensitivity of the dye was compared for both; Ag containing and Ag-free forms. • We performed manipulation of the pKa within the same matrix exploiting the silver NPs.

  13. Efficacy of a Novel Sigma-1 Receptor Antagonist for Oxaliplatin-Induced Neuropathy: A Randomized, Double-Blind, Placebo-Controlled Phase IIa Clinical Trial.

    Science.gov (United States)

    Bruna, Jordi; Videla, Sebastián; Argyriou, Andreas A; Velasco, Roser; Villoria, Jesús; Santos, Cristina; Nadal, Cristina; Cavaletti, Guido; Alberti, Paola; Briani, Chiara; Kalofonos, Haralabos P; Cortinovis, Diego; Sust, Mariano; Vaqué, Anna; Klein, Thomas; Plata-Salamán, Carlos

    2018-01-01

    This trial assessed the efficacy of MR309 (a novel selective sigma-1 receptor ligand previously developed as E-52862) in ameliorating oxaliplatin-induced peripheral neuropathy (oxaipn). A discontinuous regimen of MR309 (400 mg/day, 5 days per cycle) was tested in patients with colorectal cancer receiving FOLFOX in a phase II, randomized, double-blind, placebo-controlled, multicenter clinical trial. Outcome measures included changes in 24-week quantitative measures of thermal sensitivity and total neuropathy score. In total, 124 patients were randomized (1:1) to MR309 or placebo. Sixty-three (50.8%) patients withdrew prematurely before completing 12 planned oxaliplatin cycles. Premature withdrawal because of cancer progression was less frequent in the MR309 group (7.4% vs 25.0% with placebo; p = 0.054). MR309 significantly reduced cold pain threshold temperature [mean treatment effect difference (SE) vs placebo: 5.29 (1.60)°C; p = 0.001] and suprathreshold cold stimulus-evoked pain intensity [mean treatment effect difference: 1.24 (0.57) points; p = 0.032]. Total neuropathy score, health-related quality-of-life measures, and nerve-conduction parameters changed similarly in both arms, whereas the proportion of patients with severe chronic neuropathy (National Cancer Institute Common Terminology Criteria for Adverse Events ≥ 3) was significantly lower in the MR309 group (3.0% vs 18.2% with placebo; p = 0.046). The total amount of oxaliplatin delivered was greater in the active arm (1618.9 mg vs 1453.8 mg with placebo; p = 0.049). Overall, 19.0% of patients experienced at least 1 treatment-related adverse event (25.8% and 11.9% with MR309 and placebo, respectively). Intermittent treatment with MR309 was associated with reduced acute oxaipn and higher oxaliplatin exposure, and showed a potential neuroprotective role for chronic cumulative oxaipn. Furthermore, MR309 showed an acceptable safety profile.

  14. Stress-induced alterations in estradiol sensitivity increase risk for obesity in women.

    Science.gov (United States)

    Michopoulos, Vasiliki

    2016-11-01

    The prevalence of obesity in the United States continues to rise, increasing individual vulnerability to an array of adverse health outcomes. One factor that has been implicated causally in the increased accumulation of fat and excess food intake is the activity of the limbic-hypothalamic-pituitary-adrenal (LHPA) axis in the face of relentless stressor exposure. However, translational and clinical research continues to understudy the effects sex and gonadal hormones and LHPA axis dysfunction in the etiology of obesity even though women continue to be at greater risk than men for stress-induced disorders, including depression, emotional feeding and obesity. The current review will emphasize the need for sex-specific evaluation of the relationship between stress exposure and LHPA axis activity on individual risk for obesity by summarizing data generated by animal models currently being leveraged to determine the etiology of stress-induced alterations in feeding behavior and metabolism. There exists a clear lack of translational models that have been used to study female-specific risk. One translational model of psychosocial stress exposure that has proven fruitful in elucidating potential mechanisms by which females are at increased risk for stress-induced adverse health outcomes is that of social subordination in socially housed female macaque monkeys. Data from subordinate female monkeys suggest that increased risk for emotional eating and the development of obesity in females may be due to LHPA axis-induced changes in the behavioral and physiological sensitivity of estradiol. The lack in understanding of the mechanisms underlying these alterations necessitate the need to account for the effects of sex and gonadal hormones in the rationale, design, implementation, analysis and interpretation of results in our studies of stress axis function in obesity. Doing so may lead to the identification of novel therapeutic targets with which to combat stress-induced obesity

  15. The α1 Antagonist Doxazosin Alters the Behavioral Effects of Cocaine in Rats

    Directory of Open Access Journals (Sweden)

    Colin N. Haile

    2012-11-01

    Full Text Available Medications that target norepinephrine (NE neurotransmission alter the behavioral effects of cocaine and may be beneficial for stimulant-use disorders. We showed previously that the short-acting, α1-adrenergic antagonist, prazosin, blocked drug-induced reinstatement of cocaine-seeking in rats and doxazosin (DOX, a longer-acting α1 antagonist blocked cocaine’s subjective effects in cocaine-dependent volunteers. To further characterize DOX as a possible pharmacotherapy for cocaine dependence, we assessed its impact on the development and expression of cocaine-induced locomotor sensitization in rats. Rats (n = 6–8 were administered saline, cocaine (COC, 10 mg/kg or DOX (0.3 or 1.0 mg/kg alone or in combination for 5 consecutive days (development. Following 10-days of drug withdrawal, all rats were administered COC and locomotor activity was again assessed (expression. COC increased locomotor activity across days indicative of sensitization. The high dose (1.0 mg/kg, but not the low dose (0.3 mg/kg of DOX significantly decreased the development and expression of COC sensitization. DOX alone did not differ from saline. These results are consistent with studies showing that α1 receptors are essential for the development and expression of cocaine’s behavioral effects. Results also suggest that blockade of both the development and expression of locomotor sensitization may be important characteristics of possible pharmacotherapies for cocaine dependence in humans.

  16. Rapamycin sensitizes T-ALL cells to dexamethasone-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Mu Dezhi

    2010-11-01

    Full Text Available Abstract Background Glucocorticoid (GC resistance is frequently seen in acute lymphoblastic leukemia of T-cell lineage (T-ALL. In this study we investigate the potential and mechanism of using rapamycin to restore the sensitivity of GC-resistant T-ALL cells to dexamethasone (Dex treatment. Methods Cell proliferation was detected by 3-(4,5-dimethylthiazol-2-yl- 2,5-diphenyltetrazolium bromide (MTT assay. Fluorescence-activated cell sorting (FACS analysis was used to analyze apoptosis and cell cycles. Western blot analysis was performed to test the expression of the downstream effector proteins of mammalian target of rapamycin (mTOR, the cell cycle regulatory proteins, and apoptosis associated proteins. Results 10 nM rapamycin markedly increased GC sensitivity in GC-resistant T-ALL cells and this effect was mediated, at least in part, by inhibition of mTOR signaling pathway. Cell cycle arrest was associated with modulation of G1-S phase regulators. Both rapamycin and Dex can induce up-regulation of cyclin-dependent kinase (CDK inhibitors of p21 and p27 and co-treatment of rapamycin with Dex resulted in a synergistic induction of their expressions. Rapamycin did not obviously affect the expression of cyclin A, whereas Dex induced cyclin A expression. Rapamycin prevented Dex-induced expression of cyclin A. Rapamycin had a stronger inhibition of cyclin D1 expression than Dex. Rapamycin enhanced GC-induced apoptosis and this was not achieved by modulation of glucocorticoid receptor (GR expression, but synergistically up-regulation of pro-apoptotic proteins like caspase-3, Bax, and Bim, and down-regulation of anti-apoptotic protein of Mcl-1. Conclusion Our data suggests that rapamycin can effectively reverse GC resistance in T-ALL and this effect is achieved by inducing cell cycles arrested at G0/G1 phase and activating the intrinsic apoptotic program. Therefore, combination of mTOR inhibitor rapamycin with GC containing protocol might be an attracting

  17. Non-Selective Cannabinoid Receptor Antagonists, Hinokiresinols Reduce Infiltration of Microglia/Macrophages into Ischemic Brain Lesions in Rat via Modulating 2-Arachidonolyglycerol-Induced Migration and Mitochondrial Activity.

    Directory of Open Access Journals (Sweden)

    Angela M A Anthony Jalin

    Full Text Available Growing evidence suggests that therapeutic strategies to modulate the post-ischemic inflammatory responses are promising approaches to improve stroke outcome. Although the endocannabinoid system has been emerged as an endogenous therapeutic target to regulate inflammation after stroke insult, the downstream mechanisms and their potentials for therapeutic intervention remain controversial. Here we identified trans- and cis-hinokiresinols as novel non-selective antagonists for two G-protein-coupled cannabinoid receptors, cannabinoid receptor type 1 and type 2. The Electric Cell-substrate Impedance Sensing and Boyden chamber migration assays using primary microglial cultures revealed that both hinokiresinols significantly inhibited an endocannabinoid, 2-arachidonoylglycerol-induced migration. Hinokiresinols modulated 2-arachidonoylglycerol-induced mitochondrial bioenergetics in microglia as evidenced by inhibition of ATP turnover and reduction in respiratory capacity, thereby resulting in impaired migration activity. In rats subjected to transient middle cerebral artery occlusion (1.5-h followed by 24-h reperfusion, post-ischemic treatment with hinokiresinols (2 and 7-h after the onset of ischemia, 10 mg/kg significantly reduced cerebral infarct and infiltration of ED1-positive microglial/macrophage cells into cerebral ischemic lesions in vivo. Co-administration of exogenous 2-AG (1 mg/kg, i.v., single dose at 2 h after starting MCAO abolished the protective effect of trans-hinokiresionol. These results suggest that hinokiresinols may serve as stroke treatment by targeting the endocannabinoid system. Alteration of mitochondrial bioenergetics and consequent inhibition of inflammatory cells migration may be a novel mechanism underlying anti-ischemic effects conferred by cannabinoid receptor antagonists.

  18. Wheat-Dependent Exercise-Induced Anaphylaxis Sensitized with Hydrolyzed Wheat Protein in Soap

    Directory of Open Access Journals (Sweden)

    Yuko Chinuki

    2012-01-01

    Full Text Available Wheat-dependent exercise-induced anaphylaxis (WDEIA is a specific form of wheat allergy typically induced by exercise after ingestion of wheat products. Wheat ω-5 gliadin is a major allergen associated with conventional WDEIA, and detection of serum immunoglobulin E (IgE specific to recombinant ω-5 gliadin is a reliable method for its diagnosis. Recently, an increased incidence of a new subtype of WDEIA, which is likely to be sensitized via a percutaneous and/or rhinoconjunctival route to hydrolyzed wheat protein (HWP, has been observed. All of the patients with this new subtype had used the same brand of soap, which contained HWP. Approximately half of these patients developed contact allergy several months later and subsequently developed WDEIA. In each of these patients, contact allergy with soap exposure preceded food ingestion-induced reactions. Other patients directly developed generalized symptoms upon ingestion of wheat products. The predominant observed symptom of the new WDEIA subtype was angioedema of the eyelids; a number of patients developed anaphylaxis. This new subtype of WDEIA has little serum ω-5 gliadin-specific serum IgE.

  19. Evolutionary Changes in Sensitivity to Hormonally Induced Gonadal Sex Reversal in a Frog Species.

    Science.gov (United States)

    Miura, Ikuo; Ohtani, Hiromi; Ogata, Mitsuaki; Ezaz, Tariq

    2016-01-01

    The Japanese frog Glandirana rugosa is unique in that it shows geographic variation in sex chromosome differentiation and heterogametic sex determination. To elucidate the cause of interpopulation differences in gonadal sex differentiation, we investigated hormonally induced sex reversal and the expression patterns of genes associated with sex determination during early tadpole development. We found that sex reversal was easily induced in XX females and XY males of 2 forms (West-Japan and East-Japan) of G. rugosa with the ancestral homomorphic sex chromosomes under male heterogametic sex determination. During sex reversal, expression of CYP19 and/or FOXL2 was dependent on the phenotypic sex of the gonad. In contrast, sex reversal was not induced in ZW females of a population with a heteromorphic ZW sex chromosome system or in XX females or XY males in a population with a heteromorphic XY sex chromosome system. The latter 2 populations are evolutionarily derived forms. These results indicate an evolutionary direction for the gonadal sex differentiation mechanism. The original system was highly sensitive to sex hormones and allowed almost complete sex reversal. From this ancestral form, a new system evolved that was resistant to hormones and showed a change in the heterogametic sex and the sex chromosome differentiation mechanism. © 2016 S. Karger AG, Basel.

  20. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    International Nuclear Information System (INIS)

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R.

    2011-01-01

    cultures were more sensitive to neurite outgrowth inhibitors, they also had a lower dynamic range for detecting chemical-induced neurite outgrowth inhibition and greater variability from culture-to-culture as compared to rat primary cortical cultures.

  1. A novel 5HT3 antagonist 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide) prevents diabetes-induced depressive phenotypes in mice: Modulation of serotonergic system.

    Science.gov (United States)

    Gupta, Deepali; Thangaraj, Devadoss; Radhakrishnan, Mahesh

    2016-01-15

    Despite the presence of a multitudinous pharmacotherapy, diabetes-induced depressive disorder remains undertreated. Evidence suggests that brain serotonergic deficits are associated with depressive-like behavior in diabetes and that 5HT3 receptor (5HT3R) antagonists have serotonergic facilitatory effects. This study examined the effects of a novel 5HT3R antagonist, 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide), in diabetes-induced depressive phenotypes. Experimentally, (1) to evaluate the effects of 4i, mice with 8-weeks of diabetes (induced by streptozotocin, 200mg/kg, i.p.) were treated with vehicle, 4i (0.5 and 1mg/kg/day, i.p.), fluoxetine (10mg/kg/day, i.p.) for 4-weeks and subjected to neurobehavioral assays, followed by biochemical estimation of serotonin levels in midbrain, prefrontal-cortex and cerebellum. (2) To evaluate the role of 5HT3R in the postulated effect of 4i, diabetic mice were given 4i (1mg/kg/day, i.p.) after 1h of 1-(m-chlorophenyl)-biguanide (mCPBG, a 5HT3R agonist, 10mg/kg/day, i.p.) treatment and subjected to the same protocol. The results showed that diabetic mice exhibited a significant behavioral deficit, including depression-like behavior in forced swim test, anxiety-like in open field test and sociability deficits in social interaction test, along with a significant decrease in serotonin level in these brain regions. 4i (1mg/kg), similar to fluoxetine, prevented these behavioral abnormalities and normalized brain serotonin levels. 4i (0.5mg/kg) ameliorated only diabetes-induced depressive-like behavior and serotonin deficits, but not anxiety-like effects. mCPBG blunted 4i-mediated behavioral response and increase in brain serotonin levels. Altogether, this study suggests that 4i prevents diabetes-induced depressive phenotypes in mice, which may involve antagonism of 5HT3Rs and increase in serotonin levels in discrete brain regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Chronic exposure to MDMA (Ecstasy elicits behavioral sensitization in rats but fails to induce cross-sensitization to other psychostimulants

    Directory of Open Access Journals (Sweden)

    Swann Alan C

    2006-01-01

    Full Text Available Abstract Background The recreational use of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy among adolescents and young adults has become increasingly prevalent in recent years. While evidence suggests that the long-term consequences of MDMA use include neurodegeneration to serotonergic and, possibly, dopaminergic pathways, little is known about susceptibility, such as behavioral sensitization, to MDMA. Methods The objectives of this study were to examine the dose-response characteristics of acute and chronic MDMA administration in rats and to determine whether MDMA elicits behavioral sensitization and whether it cross-sensitizes with amphetamine and methylphenidate. Adult male Sprague-Dawley rats were randomly divided into three MDMA dosage groups (2.5 mg/kg, 5.0 mg/kg, and 10.0 mg/kg and a saline control group (N = 9/group. All three MDMA groups were treated for six consecutive days, followed by a 5-day washout, and subsequently re-challenged with their respective doses of MDMA (day 13. Rats were then given an additional 25-day washout period, and re-challenged (day 38 with similar MDMA doses as before followed by either 0.6 mg/kg amphetamine or 2.5 mg/kg methylphenidate on the next day (day 39. Open-field locomotor activity was recorded using a computerized automated activity monitoring system. Results Acute injection of 2.5 mg/kg MDMA showed no significant difference in locomotor activity from rats given saline (control group, while animals receiving acute 5.0 mg/kg or 10.0 mg/kg MDMA showed significant increases in locomotor activity. Rats treated chronically with 5.0 mg/kg and 10.0 mg/kg MDMA doses exhibited an augmented response, i.e., behavioral sensitization, on experimental day 13 in at least one locomotor index. On experimental day 38, all three MDMA groups demonstrated sensitization to MDMA in at least one locomotor index. Amphetamine and methylphenidate administration to MDMA-sensitized animals did not elicit any significant change

  3. Treatment with a CRH-R1 antagonist prevents stress-induced suppression of the central neural drive to the reproductive axis in female macaques

    OpenAIRE

    Herod, S. M.; Pohl, C. R.; Cameron, J. L.

    2010-01-01

    In response to everyday life stress, some individuals readily develop reproductive dysfunction (i.e., they are stress sensitive), whereas others are more stress resilient. When exposed to mild combined psychosocial plus metabolic stress (change in social environment plus reduced diet), female cynomolgus monkeys can be categorized as stress sensitive (SS; they rapidly become anovulatory in response to stress), medium stress resilient (MSR; they slowly become anovulatory in response to prolonge...

  4. T-type calcium channel antagonists, mibefradil and NNC-55-0396 inhibit cell proliferation and induce cell apoptosis in leukemia cell lines.

    Science.gov (United States)

    Huang, Weifeng; Lu, Chunjing; Wu, Yong; Ouyang, Shou; Chen, Yuanzhong

    2015-05-21

    T-type Ca(2+) channels are often aberrantly expressed in different human cancers and participate in the regulation of cell cycle progression, proliferation and death. RT-PCR, Q-PCR, western blotting and whole-cell patch-clamp recording were employed to assess the expression of T-type Ca(2+) channels in leukemia cell lines. The function of T-type Ca(2+) channels in leukemia cell growth and the possible mechanism of the effect of T-type Ca(2+) channel antagonists on cell proliferation and apoptosis were examined in T-lymphoma cell lines. We show that leukemia cell lines exhibited reduced cell growth when treated with T-type Ca(2+) channel inhibitors, mibefradil and NNC-55-0396 in a concentration-dependent manner. Mechanistically, these inhibitors played a dual role on cell viability: (i) blunting proliferation, through a halt in the progression to the G1-S phase; and (ii) promoting cell apoptosis, partially dependent on the endoplasmic reticulum Ca(2+) release. In addition, we observed a reduced phosphorylation of ERK1/2 in MOLT-4 cells in response to mibefradil and NNC-55-0396 treatment. These results indicate that mibefradil and NNC-55-0396 regulate proliferation and apoptosis in T-type Ca(2+) channel expressing leukemia cell lines and suggest a potential therapeutic target for leukemia.

  5. Memantine, an antagonist of the NMDA glutamate receptor, affects cell proliferation, differentiation and the intracellular cycle and induces apoptosis in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Flávia Silva Damasceno

    2014-02-01

    Full Text Available Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and affects approximately 10 million people in endemic areas of Mexico and Central and South America. Currently available chemotherapies are limited to two compounds: Nifurtimox and Benznidazole. Both drugs reduce the symptoms of the disease and mortality among infected individuals when used during the acute phase, but their efficacy during the chronic phase (during which the majority of cases are diagnosed remains controversial. Moreover, these drugs have several side effects. The aim of this study was to evaluate the effect of Memantine, an antagonist of the glutamate receptor in the CNS of mammals, on the life cycle of T. cruzi. Memantine exhibited a trypanocidal effect, inhibiting the proliferation of epimastigotes (IC50 172.6 µM. Furthermore, this compound interfered with metacyclogenesis (approximately 30% reduction and affected the energy metabolism of the parasite. In addition, Memantine triggered mechanisms that led to the apoptosis-like cell death of epimastigotes, with extracellular exposure of phosphatidylserine, increased production of reactive oxygen species, decreased ATP levels, increased intracellular Ca(2+ and morphological changes. Moreover, Memantine interfered with the intracellular cycle of the parasite, specifically the amastigote stage (IC50 31 µM. Interestingly, the stages of the parasite life cycle that require more energy (epimastigote and amastigote were more affected as were the processes of differentiation and cell invasion.

  6. Fascaplysin sensitizes cells to TRAIL-induced apoptosis through upregulating DR5 expression

    Science.gov (United States)

    Wang, Feng; Chen, Haimin; Yan, Xiaojun; Zheng, Yanling

    2013-05-01

    This study investigated the molecular mechanism of anti-tumor effect of fascaplysin, a nitrogenous red pigment firstly isolated from a marine sponge. Microarray analysis show that the TNF and TNF receptor superfamily in human umbilical vein endothelial cells (HUVEC) and human hepatocarcinoma cells (BEL-7402) were significantly regulated by fascaplysin. Western Blot results reveal that fascaplysin increased the expression of cleaved caspase-9, active caspase-3, and decreased the level of procaspase-8 and Bid. Flow cytometry and cytotoxicity tests indicate that fascaplysin sensitized cells to tumor necrosis-related apoptosisinducing ligand-(TRAIL) induced apoptosis, which was markedly blocked by TRAIL R2/Fc chimera, a dominant negative form of TRAIL receptor DR5. Therefore, our results demonstrate that fascaplysin promotes apoptosis through the activation of TRAIL signaling pathway by upregulating DR5 expression.

  7. Breast cancer cells with acquired antiestrogen resistance are sensitized to cisplatin-induced cell death

    DEFF Research Database (Denmark)

    Yde, Christina Westmose; Gyrd-Hansen, Mads; Lykkesfeldt, Anne E

    2007-01-01

    for future breast cancer treatment. In this study, we have investigated the effect of the chemotherapeutic compound cisplatin using a panel of antiestrogen-resistant breast cancer cell lines established from the human breast cancer cell line MCF-7. We show that the antiestrogen-resistant cells...... with parental MCF-7 cells. Our data show that Bcl-2 can protect antiestrogen-resistant breast cancer cells from cisplatin-induced cell death, indicating that the reduced expression of Bcl-2 in the antiestrogen-resistant cells plays a role in sensitizing the cells to cisplatin treatment.......Antiestrogens are currently used for treating breast cancer patients who have estrogen receptor-positive tumors. However, patients with advanced disease will eventually develop resistance to the drugs. Therefore, compounds effective on antiestrogen-resistant tumors will be of great importance...

  8. Activation of RAGE/STAT3 pathway by methylglyoxal contributes to spinal central sensitization and persistent pain induced by bortezomib.

    Science.gov (United States)

    Wei, Jia-You; Liu, Cui-Cui; Ouyang, Han-Dong; Ma, Chao; Xie, Man-Xiu; Liu, Meng; Lei, Wan-Long; Ding, Huan-Huan; Wu, Shao-Ling; Xin, Wen-Jun

    2017-10-01

    Bortezomib is a first-line chemotherapeutic drug widely used for multiple myeloma and other nonsolid malignancies. Although bortezomib-induced persistent pain is easily diagnosed in clinic, the pathogenic mechanism remains unclear. Here, we studied this issue with use of a rat model of systemic intraperitoneal administration of bortezomib for consecutive 5days. Consisted with our previous study, we found that bortezomib treatment markedly induced mechanical allodynia in rats. Furthermore, we first found that bortezomib treatment significantly induced the upregulation of methylglyoxal in spinal dorsal horn of rats. Spinal local application of methylglyoxal also induced mechanical allodynia and central sensitization in normal rats. Moreover, administration of bortezomib upregulated the expression of receptors for advanced glycation end products (RAGE) and phosphorylated STAT3 (p-STAT3) in dorsal horn. Importantly, intrathecal injection of metformin, a known scavenger of methylglyoxal, significantly attenuated the upregulation of methylglyoxal and RAGE in dorsal horn, central sensitization and mechanical allodynia induced by bortezomib treatment, and blockage of RAGE also prevented the upregulation of p-STAT3, central sensitization and mechanical allodynia induced by bortezomib treatment. In addition, inhibition of STAT3 activity by S3I-201 attenuated bortezomib-induced mechanical allodynia and central sensitization. Local knockdown of STAT3 also ameliorated the mechanical allodynia induced by bortezomib administration. Our results suggest that accumulation of methylglyoxal may activate the RAGE/STAT3 signaling pathway in dorsal horn, and contributes to the spinal central sensitization and persistent pain induced by bortezomib treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Lansoprazole induces sensitivity to suboptimal doses of paclitaxel in human melanoma.

    Science.gov (United States)

    Azzarito, Tommaso; Venturi, Giulietta; Cesolini, Albino; Fais, Stefano

    2015-01-28

    Tumor acidity is now considered an important determinant of drug-resistance and tumor progression, and anti-acidic approaches, such as Proton Pump inhibitors (PPIs), have demonstrated promising antitumor and chemo-sensitizing efficacy. The main purpose of the present study was to evaluate the possible PPI-induced sensitization of human melanoma cells to Paclitaxel (PTX). Our results show that PTX and the PPI Lansoprazole (LAN) combination was extremely efficient against metastatic melanoma cells, as compared to the single treatments, both in vitro and in vivo. We also showed that acidity plays an important role on the anti-tumor activity of these drugs, being detrimental for PTX activity, while crucial for the synergistic effect of PTX following pretreatment with LAN, due to its nature of pro-drug needing protonation for a full activation. We obtained straightforward results in a human melanoma xenograft model combining well tolerated LAN doses with suboptimal and poorly toxic doses of PTX. With this study we provide a clear evidence that the PPI LAN may be included in new combined therapy of human melanoma together with low doses of PTX. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Low-loss planar metamaterials electromagnetically induced transparency for sensitive refractive index sensing

    Science.gov (United States)

    Tian, Ying; Hu, Sen; Huang, Xiaojun; Yu, Zetai; Lin, Hai; Yang, Helin

    2017-10-01

    A low-loss and high transmission electromagnetically induced transparency like (EIT- like) structure is experimentally and numerically demonstrated in this paper. The proposed planar structure based on EIT-like metamaterial consists of two separate split-ring resonators, and its resulting transmission level can maximally reach 0.89 with significant suppression of radiation loss. According to the effective medium theory, the imaginary parts of the effective permittivity and permeability of the metamaterial are used as the evidence of low-loss. In the analysis, the simulated surface current, magnetic field distribution and coupled oscillator model reveal the principle of high transmittance EIT-effect. Furthermore, the peak of transparency frequency is highly sensitive to the variation of refractive index in the background medium. The sensor based on the proposed EIT structure can achieve a sensitivity of 1.69 GHz/RIU (refractive index unit) and a figure of merit of 11.66. Such metamaterials have potential perspectives in sensing and chiral slow light devices.

  11. An Enzyme-Induced Novel Biosensor for the Sensitive Electrochemical Determination of Isoniazid

    Science.gov (United States)

    Chokkareddy, Rajasekhar; Bhajanthri, Natesh Kumar; Redhi, Gan G.

    2017-01-01

    In this present work, a glassy carbon electrode (GCE) was modified primarily with multiwalled carbon nanotubes (MWCNTs) and a composite of MWCNTs and titanium oxide nanoparticles (TiO2NPs). The enzyme horseradish peroxidase (HRP) was immobilized to enhance the sensing ability of GCE. The proposed biosensor was used for the sensitive determination of isoniazid (INZ) in various pharmaceutical samples. The electrochemical behaviour of the developed MWCNT-TiO2NPs-HRP-GCE biosensor was studied by using cyclic voltammetry (CV) and differential pulse voltammetric (DPV) techniques. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetry (TGA) and transmission electron microscopy (TEM) techniques were used to characterize the developed sensor. Phosphate buffer solution (PBS) with pH 7 was used as supporting electrolyte in the present investigation. The cyclic voltammetric results revealed that the increment of anodic peak currents for the enzyme-induced sensor was almost 8-fold greater than that of a bare GCE. The DPV technique exhibited good limit of detection and limit of quantification values, viz., 0.0335 μM and 0.1118 μM, respectively. Moreover, the developed sensor showed long-lasting stability and repeatability without any interferents. This strongly indicates that the fabricated sensor shows outstanding electrochemical performance towards INZ, with excellent selectivity and sensitivity. The developed sensor was successfully applied to pharmaceutical samples and gave good percentages of recoveries. PMID:28587260

  12. [Emission spectrum temperature sensitivity of Mg4FGeO6 : mn induced by laser].

    Science.gov (United States)

    Wang, Sheng; Liu, Jing-Ru; Shao, Jun; Hu, Zhi-Yun; Tao, Bo; Huang, Mei-Sheng

    2013-08-01

    In order to develop a new sort of thermally sensitive phosphor coating, the emission spectrum thermally sensitivity of Mg4FGeO6 : Mn induced by laser was studied. The spectrum measurement system with heating function was set up, and the emission spectrum of Mg4FGeO6 : Mn at various temperatures were measured. Absorption spectrum was measured, and the mechanism of formation of the structure of double peak was analyzed with the perturbation theory of crystal lattice. The group of peaks around 630 nm is represented by the transitions 4F"2 to 4A2, whereas the group of peaks around 660 nm is due to the transitions 4F'2 to 4A2. The occupancy of both excited states 4F'2 and 4F"2 is in thermal equilibrium. Thus increasing temperature causes the intensity of the emission in the group around 630 nm to increase at the expense of the emission intensity of the group around 660 nm. The various spectral regions in emission differ with temperature, which could be used to support the intensity-ratio measurement method. The intensity-ratio change curve as a function of temperature was fitted, which shows that the range of temperature measurement is between room temperature and 800 K.

  13. Increased sensitivity to cocaine-induced analgesia in Spontaneously Hypertensive Rats (SHR

    Directory of Open Access Journals (Sweden)

    Takahashi Reinaldo N

    2007-02-01

    Full Text Available Abstract This study examined the analgesic effect of cocaine in Spontaneously Hypertensive Rats (SHR, which are considered a suitable model for the study of attention deficit hyperactivity disorder (ADHD, and in Wistar (WIS rats of both sexes using the hot-plate test. In addition, we tested whether habituation to the unheated hot-plate apparatus, that "normalizes" the basal hypoalgesic phenotype of SHR, alters the subsequent cocaine-induced analgesia (CIA in this strain. SHR of both sexes were hypoalgesic compared to WIS rats in the hot-plate test and showed higher sensitivity to CIA. Habituation to the unheated hot-plate reduced the basal nociceptive latency of SHR, suggesting cognitive/emotional modulation of pain in this strain, but did not alter the magnitude of CIA. The present study shows increased sensitivity to CIA in SHR, which may be related to abnormalities in the mesocorticolimbic dopaminergic system. Further studies using SHR strain may reveal new information on the neurobiological mechanisms underlying ADHD and its co-morbidity with drug addiction.

  14. Hyperbaric oxygen therapy attenuates central sensitization induced by a thermal injury in humans.

    Science.gov (United States)

    Rasmussen, V M; Borgen, A E; Jansen, E C; Rotbøll Nielsen, P H; Werner, M U

    2015-07-01

    Hyperbaric oxygen (HBO2 ) treatment has in animal experiments demonstrated antinociceptive effects. It was hypothesized that these effects would attenuate secondary hyperalgesia areas (SHAs), an expression of central sensitization, after a first-degree thermal injury in humans. Seventeen healthy volunteers were examined during two sessions using a randomized crossover design. Volunteers were studied during control conditions (ambient pressure, FI O2  = 0.21) and during HBO2 (2.4 standard atmosphere, FI O2  = 1.0, 90 min) conditions in a pressure chamber. Quantitative sensory testing, including assessment of SHAs was performed. A statistically significant overall attenuation of SHAs was seen during the HBO2 sessions compared with the control-sessions (P = 0.011). In the eight volunteers starting with the HBO2 session, no difference in SHAs compared with control was demonstrated. However, in the nine volunteers starting with the control session, a statistical significant attenuation of SHAs was demonstrated in the HBO2 session (P = 0.004). The results indicate that HBO2 therapy in humans attenuates central sensitization induced by a thermal skin injury, compared with control. These new and original findings in humans corroborate animal experimental data. The thermal injury model may give impetus to future human neurophysiological studies exploring the central effects of hyperbaric oxygen treatment. © 2015 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  15. Highly sensitive SnO2 sensor via reactive laser-induced transfer

    Science.gov (United States)

    Palla Papavlu, Alexandra; Mattle, Thomas; Temmel, Sandra; Lehmann, Ulrike; Hintennach, Andreas; Grisel, Alain; Wokaun, Alexander; Lippert, Thomas

    2016-04-01

    Gas sensors based on tin oxide (SnO2) and palladium doped SnO2 (Pd:SnO2) active materials are fabricated by a laser printing method, i.e. reactive laser-induced forward transfer (rLIFT). Thin films from tin based metal-complex precursors are prepared by spin coating and then laser transferred with high resolution onto sensor structures. The devices fabricated by rLIFT exhibit low ppm sensitivity towards ethanol and methane as well as good stability with respect to air, moisture, and time. Promising results are obtained by applying rLIFT to transfer metal-complex precursors onto uncoated commercial gas sensors. We could show that rLIFT onto commercial sensors is possible if the sensor structures are reinforced prior to printing. The rLIFT fabricated sensors show up to 4 times higher sensitivities then the commercial sensors (with inkjet printed SnO2). In addition, the selectivity towards CH4 of the Pd:SnO2 sensors is significantly enhanced compared to the pure SnO2 sensors. Our results indicate that the reactive laser transfer technique applied here represents an important technical step for the realization of improved gas detection systems with wide-ranging applications in environmental and health monitoring control.

  16. Rosiglitazone Improves Insulin Sensitivity and Baroreflex Gain in Rats with Diet-Induced Obesity

    Science.gov (United States)

    Zhao, Ding; McCully, Belinda H.

    2012-01-01

    Obesity decreases baroreflex gain (BRG); however, the mechanisms are unknown. We tested the hypothesis that impaired BRG is related to the concurrent insulin resistance, and, therefore, BRG would be improved after treatment with the insulin-sensitizing drug rosiglitazone. Male rats fed a high-fat diet diverged into obesity-prone (OP) and obesity-resistant (OR) groups after 2 weeks. Then, OP and OR rats, as well as control (CON) rats fed a standard diet, were treated daily for 2 to 3 weeks with rosiglitazone (3 or 6 mg/kg) or its vehicle by gavage. Compared with OR and CON rats, conscious OP rats exhibited reductions in BRG (OP, 2.9 ± 0.1 bpm/mm Hg; OR, 4.0 ± 0.2 bpm/mm Hg; CON, 3.9 ± 0.2 bpm/mm Hg; P baroreflex pathways, elicited markedly reduced decreases in heart rate and arterial pressure, but these responses were not improved by rosiglitazone. In conclusion, diet-induced obesity impairs BRG via a central mechanism that is related to the concurrent insulin resistance. Rosiglitazone normalizes BRG, but not by improving brain baroreflex processing or insulin sensitivity. PMID:22815534

  17. The presence of a membrane-bound progesterone receptor sensitizes the estradiol-induced effect on the proliferation of human breast cancer cells.

    Science.gov (United States)

    Neubauer, Hans; Yang, Yang; Seeger, Harald; Fehm, Tanja; Cahill, Michael A; Tong, Xiaowen; Ruan, Xiangyan; Mueck, Alfred O

    2011-08-01

    Breast cancer risk is still an important topic regarding hormone therapy as well as oral contraception. Evidence that progestogens may play a crucial role is accumulating. Progesterone receptor membrane component 1 (PGRMC1) expressed in breast cancer may be important in tumorigenesis and thus may increase breast cancer risk. The aim of this project was to investigate the influence of different estradiol (E2) concentrations and the addition of two progestogens on MCF-7 breast cancer cells overexpressing PGRMC1. MCF-7 cells were stably transfected with PGRMC1 expression plasmid (MCF-7/PGRMC1-3HA [WT-12]). To test the effects of E2 and progestogens on cell proliferation, MCF-7 and WT-12 cells were stimulated with different concentrations of E2 (10 and 10 M) alone and in combination with progesterone and medroxyprogesterone acetate (each 10 M). E2 elicited a concentration-dependent proliferative effect on both cell lines, which was much more pronounced in WT-12 cells (50% vs 200%). This effect could be completely abrogated by the addition of the E2 antagonist fulvestrant. Addition of progesterone had no influence on the E2-induced effect, whereas medroxy-progesterone acetate enhanced the E2-induced effect at a low E2 concentration, which was, again, more pronounced in the WT-12 cells. The figures were between 20% and 40% in MCF-7 and between 60% and 250% in WT-12 cells. Overexpression of PGRMC1 sensitizes the proliferative response of the MCF-7 breast cancer cell line to estradiol. The effect of progestogens on breast cancer tumorigenesis may depend on the specific progestogen used for hormone therapy or oral contraception.

  18. Administration of the GABAA receptor antagonist picrotoxin into rat supramammillary nucleus induces c-Fos in reward-related brain structures. Supramammillary picrotoxin and c-Fos expression

    Directory of Open Access Journals (Sweden)

    Shin Rick

    2010-08-01

    Full Text Available Abstract Background Picrotoxin blocks GABAA receptors, whose activation typically inhibits neuronal firing activity. We recently found that rats learn to selectively self-administer picrotoxin or bicuculline, another GABAA receptor antagonist, into the supramammillary nucleus (SuM, a posterior hypothalamic structure localized anterior to the ventral tegmental area. Other drugs such as nicotine or the excitatory amino acid AMPA are also self-administered into the SuM. The SuM appears to be functionally linked with the mesolimbic dopamine system and is closely connected with other brain structures that are implicated in motivational processes, including the prefrontal cortex, septal area, preoptic area, lateral hypothalamic area and dorsal raphe nucleus. Here, we hypothesized that these brain structures are activated by picrotoxin injections into the SuM. Results Picrotoxin administration into the SuM markedly facilitated locomotion and rearing. Further, it increased c-Fos expression in this region, suggesting blockade of tonic inhibition and thus the disinhibition of local neurons. This manipulation also increased c-Fos expression in structures including the ventral tegmental area, medial shell of the nucleus accumbens, medial prefrontal cortex, septal area, preoptic area, lateral hypothalamic area and dorsal raphe nucleus. Conclusions Picrotoxin administration into the SuM appears to disinhibit local neurons and recruits activation of brain structures associated with motivational processes, including the mesolimbic dopamine system, prefrontal cortex, septal area, preoptic area, lateral hypothalamic area and dorsal raphe nucleus. These regions may be involved in mediating positive motivational effects triggered by intra-SuM picrotoxin.

  19. Effect of histamine H1 receptor antagonists on TARC/CCL17 and MDC/CCL22 production from CD14+ cells induced by antigenic stimulation in vitro.

    Science.gov (United States)

    Shoji, Naruo; Asano, Kazuhito; Furuta, Atsuko; Hirano, Kojiro; Suzaki, Harumi

    2011-01-01

    Thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) are accepted to be important molecules in the development and maintenance of allergic diseases. Although several types of histamine H(1) receptor antagonist (antihistamine) have been developed and used for the treatment of allergic diseases, the influence of antihistamines on TARC and MDC production is not well understood. The present study was undertaken to examine the influence of antihistamines on TARC and MDC production from CD14+ cells after antigenic stimulation in vitro. CD14+ cells prepared from patients with pollinosis to Japanese cedar pollen were stimulated with specific allergen extracted from Japanese cedar pollen (Cry j 1) in the presence of azelastine (AZE), ketotifen (KET), fexofenadine (FEX) and oxatomide (OXA) for 6 days. TARC and MDC levels in culture supernatants were examined by ELISA. We also examined the influence of FEX on TARC and MDC mRNA expression, phosphorylation of mitogen-activated protein kinases (MAPKs) and transcription factor activation in CD14+ cells after Cry j 1 stimulation. FEX at 250 ng/ml, which is almost equal to therapeutic blood levels, caused a significant inhibition of TARC and MDC production.However, AZE, OXA and KET required higher concentrations than their therapeutic blood levels to suppress production of these factors. FEX at 250 ng/ml also suppressed NF-κB activation, phosphorylation of p38 MAPK and extracellular signal-regulated kinases 1 and 2 and expression of mRNA for TARC and MDC. These results suggest that antihistamines, especially FEX, suppress CC chemokine production from CD14+ cells through interference with antigen-mediated signaling and result in favorable modification of allergic disease states or conditions. Copyright © 2010 S. Karger AG, Basel.

  20. TRAIL-induced cleavage and inactivation of SPAK sensitizes cells to apoptosis

    International Nuclear Information System (INIS)

    Polek, Tara C.; Talpaz, Moshe; Spivak-Kroizman, Taly R.

    2006-01-01

    Ste20-related proline-alanine-rich kinase (SPAK) has been linked to various cellular processes, including proliferation, differentiation, and ion transport regulation. Recently, we showed that SPAK mediates signaling by the TNF receptor, RELT. The presence of a caspase cleavage site in SPAK prompted us to study its involvement in apoptotic signaling induced by another TNF member, TRAIL. We show that TRAIL stimulated caspase 3-like proteases that cleaved SPAK at two distinct sites. Cleavage had little effect on the activity of SPAK but removed its substrate-binding domain. In addition, TRAIL reduced the activity of SPAK in HeLa cells in a caspase-independent manner. Thus, TRAIL inhibited SPAK by two mechanisms: activation of caspases, which removed its substrate-binding domain, and caspase-independent down-regulation of SPAK activity. Furthermore, reducing the amount of SPAK by siRNA increased the sensitivity of HeLa cells to TRAIL-induced apoptosis. Thus, TRAIL down-regulation of SPAK is an important event that enhances its apoptotic effects

  1. Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage.

    Science.gov (United States)

    Puster, Matthew; Rodríguez-Manzo, Julio A; Balan, Adrian; Drndić, Marija

    2013-12-23

    Graphene-based nanopore devices are promising candidates for next-generation DNA sequencing. Here we fabricated graphene nanoribbon-nanopore (GNR-NP) sensors for DNA detection. Nanopores with diameters in the range 2-10 nm were formed at the edge or in the center of graphene nanoribbons (GNRs), with widths between 20 and 250 nm and lengths of 600 nm, on 40 nm thick silicon nitride (SiN(x)) membranes. GNR conductance was monitored in situ during electron irradiation-induced nanopore formation inside a transmission electron microscope (TEM) operating at 200 kV. We show that GNR resistance increases linearly with electron dose and that GNR conductance and mobility decrease by a factor of 10 or more when GNRs are imaged at relatively high magnification with a broad beam prior to making a nanopore. By operating the TEM in scanning TEM (STEM) mode, in which the position of the converged electron beam can be controlled with high spatial precision via automated feedback, we were able to prevent electron beam-induced damage and make nanopores in highly conducting GNR sensors. This method minimizes the exposure of the GNRs to the beam before and during nanopore formation. The resulting GNRs with unchanged resistances after nanopore formation can sustain microampere currents at low voltages (∼50 mV) in buffered electrolyte solution and exhibit high sensitivity, with a large relative change of resistance upon changes of gate voltage, similar to pristine GNRs without nanopores.

  2. Downregulation of DcR3 sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Liang CJ

    2017-01-01

    Full Text Available Chaojie Liang,* Yingchen Xu,* Guangming Li, Tuanjie Zhao, Feng Xia, Guanqun Li, Dongxin Zhang, Jixiang Wu Department of General Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, People’s Republic of China *These authors contributed equally to this work Abstract: Decoy receptor 3 (DcR3 has been recently described as an antiapoptosis and prometastasis factor since it can competitively bind to FasL, TL1A, and LIGHT, and it is highly expressed in many malignant tumors. Downregulation of DcR3 can promote tumor cell apoptosis and inhibit metastasis. A previous study demonstrated that reduction of DcR3 could induce tumor necrosis factor-related apoptosis-inducing ligand (TRAIL-mediated apoptosis in pancreatic cancer cells. However, whether such an effect is seen in hepatocellular carcinoma (HCC remains to be explored. This study was designed to investigate the sensitivity of HCC cells to TRAIL after silencing DcR3, and this was done by evaluating the expression of DcR3 in HCC cells and the effect on TRAIL-mediated apoptosis after downregulation of DcR3. Our data showed that DcR3 was highly expressed in HepG2, BEL-7402, Hep3B, Huh-7, MHCC97H, and SMCC7721 cell lines compared with normal liver cell line LO-2. Both HepG2 and BEL-7402 were tolerant to TRAIL-mediated apoptosis, and the tolerance was negatively correlated to the expression of DcR3. Silencing of DcR3 with shRNA and treatment with TRAIL induced obvious apoptosis in HepG2 and BEL-7402, with more cancer cells found in the G1 phase. SiDcR3 combined with TRAIL could induce activation of caspases-3, -8, and -9, raise the expression of the apoptotic protein Bax, and reduce the expression of antiapoptotic proteins (Bcl-2, Mcl-1, Bcl-XL, IAP-2, and survivin. Caspase-8 inhibitor Ac-IETD-CHO significantly decreased the activation of caspase cascade, indicating that the extrinsic pathway may have a vital role in the apoptotic events induced by SiDcR3/TRAIL. Furthermore, our

  3. Wheel-running mitigates psychomotor sensitization initiation but not post-sensitization conditioned activity and conditioned place preference induced by cocaine in mice.

    Science.gov (United States)

    Geuzaine, Annabelle; Tirelli, Ezio

    2014-04-01

    Previous literature suggests that physical exercise allowed by an unlimited access to a running wheel for several weeks can mitigate chronic neurobehavioral responsiveness to several addictive drugs in rodents. Here, the potential preventive effects of unlimited wheel-running on the initiation of psychomotor sensitization and the acquisition and extinction of conditioned place preference (CPP) induced by 10 mg/kg cocaine in C56BL/6J mice were assessed in two independent experiments. To this end, half of the mice were singly housed with a running wheel at 28 days of age for 10 weeks prior to psychopharmacological tests, during which housing conditions did not change, and the other half of mice were housed without running wheel. In Experiment 1, prior to initiating sensitization, psychomotor activity on the two first drug-free once-daily sessions was not affected by wheel-running. This was also found for the acute psychomotor-activating effect of cocaine on the first sensitization session. Psychomotor sensitization readily developed over the 9 following once-daily sessions in mice housed without wheel, whereas it was inhibited in mice housed with a wheel. However, that difference did not transfer to post-sensitization conditioned activity. In contrast with the sensitization results, mice housed with a wheel still expressed a clear-cut CPP which did not extinguish differently from that of the other group, a result in disaccord with previous studies reporting either an attenuating or an increasing effect of wheel-running on cocaine-induced conditioned reward. The available results together indicate that interactions between wheel-running and cocaine effects are far from being satisfactorily characterized. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Metallothionein-I/II null mice are sensitive to chronic oral cadmium-induced nephrotoxicity.

    Science.gov (United States)

    Liu, Y; Liu, J; Habeebu, S M; Waalkes, M P; Klaassen, C D

    2000-09-01

    Chronic exposure to cadmium (Cd) via food and drinking water is a major human health concern. We have previously shown that metallothionein (MT), a metal-binding protein, plays an important role in protecting against Cd toxicity produced by repeated sc injections. However, it is unclear whether MT protects against Cd-induced nephrotoxicity following chronic oral exposure, a route with obvious human relevance. To clarify this issue, MT-I/II knockout (MT-null) and background-matched wild-type (WT) mice were allowed free access to drinking water containing CdCl(2) (30, 100, and 300 ppm Cd), or feed containing CdCl(2) (100 ppm Cd) for 6 months, and the resultant nephrotoxicity was examined. Chronic oral Cd exposure produced a dose-dependent accumulation of Cd in liver and kidney of WT mice, reaching levels up to 50 microg Cd/g tissue. Immunohistological localization of renal MT indicated that chronic oral Cd exposure in WT mice greatly increased MT in the proximal tubules and the medulla, with cellular localization in both the cytoplasm and nuclei. As expected, no MT was detected in kidneys of MT-null mice. After 6 months of Cd exposure, tissue Cd concentrations in MT-null mice were only about one-fifth of that in WT mice. Even though the renal Cd concentrations were much lower in the MT-null mice, they were more sensitive than WT mice to Cd-induced renal injury, as evidenced by more severe nephropathic lesions, increased urinary excretion of gamma-glutamyl-transferase and glucose, and elevated blood urea nitrogen. Six months of Cd exposure to MT-null animals resulted in greater increases in renal caspase-3 activity, an indicator of apoptosis, than to WT mice. In conclusion, this study demonstrates that lack of MT renders MT-null mice vulnerable to Cd-induced nephrotoxicity after chronic oral exposure, the primary route of human Cd exposure.

  5. A single social defeat induces short-lasting behavioral sensitization to amphetamine

    NARCIS (Netherlands)

    de Jong, JG; Wasilewski, M; van der Vegt, BJ; Buwalda, B; Koolhaas, Jacob

    2005-01-01

    Repeated, intermittent exposure to psychostimulants or stressors results in long-lasting, progressive sensitization of the behavioral effects of a subsequent amphetamine (AMPH) challenge. Although behavioral sensitization has also been observed following a single drug pretreatment, the sensitizing

  6. Sleep Deprivation-Induced Blood-Brain Barrier Breakdown and Brain Dysfunction are Exacerbated by Size-Related Exposure to Ag and Cu Nanoparticles. Neuroprotective Effects of a 5-HT3 Receptor Antagonist Ondansetron.

    Science.gov (United States)

    Sharma, Aruna; Muresanu, Dafin F; Lafuente, José V; Patnaik, Ranjana; Tian, Z Ryan; Buzoianu, Anca D; Sharma, Hari S

    2015-10-01

    Military personnel are often subjected to sleep deprivation (SD) during combat operations. Since SD is a severe stress and alters neurochemical metabolism in the brain, a possibility exists that acute or long-term SD will influence blood-brain barrier (BBB) function and brain pathology. This hypothesis was examined in young adult rats (age 12 to 14 weeks) using an inverted flowerpot model. Rats were placed over an inverted flowerpot platform (6.5 cm diameter) in a water pool where the water levels are just 3 cm below the surface. In this model, animals can go to sleep for brief periods but cannot achieve deep sleep as they would fall into water and thus experience sleep interruption. These animals showed leakage of Evans blue in the cerebellum, hippocampus, caudate nucleus, parietal, temporal, occipital, cingulate cerebral cortices, and brain stem. The ventricular walls of the lateral and fourth ventricles were also stained blue, indicating disruption of the BBB and the blood-cerebrospinal fluid barrier (BCSFB). Breakdown of the BBB or the BCSFB fluid barrier was progressive in nature from 12 to 48 h but no apparent differences in BBB leakage were seen between 48 and 72 h of SD. Interestingly, rats treated with metal nanoparticles, e.g., Cu or Ag, showed profound exacerbation of BBB disruption by 1.5- to 4-fold, depending on the duration of SD. Measurement of plasma and brain serotonin showed a close correlation between BBB disruption and the amine level. Repeated treatment with the serotonin 5-HT3 receptor antagonist ondansetron (1 mg/kg, s.c.) 4 and 8 h after SD markedly reduced BBB disruption and brain pathology after 12 to 24 h SD but not following 48 or 72 h after SD. However, TiO2-nanowired ondansetron (1 mg/kg, s.c) in an identical manner induced neuroprotection in rats following 48 or 72 h SD. However, plasma and serotonin levels were not affected by ondansetron treatment. Taken together, our observations are the first to show that (i) SD could induce BBB

  7. Oxytocin antagonist disrupts hypotension-evoked renin secretion and other responses in conscious rats

    DEFF Research Database (Denmark)

    Huang, W.; Sjöquist, M.; Skøtt, O.

    2001-01-01

    antagonist did not alter the hypotension induced by hydralazine or diazoxide, but it did markedly blunt the induced increase in PRA. The OT receptor antagonist also blunted the hypotension-evoked increase in heart rate and plasma vasopressin levels, suggesting that the antagonist may have generally disrupted...... afferent signaling of hypotension. Thus hypotension-evoked OT secretion may contribute to cardiovascular homeostasis by enhancing baroreceptor signals that stimulate increases in renin secretion, vasopressin secretion, and heart rate during arterial hypotension in rats....

  8. Novel TRAIL sensitizer Taraxacum officinale F.H. Wigg enhances TRAIL-induced apoptosis in Huh7 cells.

    Science.gov (United States)

    Yoon, Ji-Yong; Cho, Hyun-Soo; Lee, Jeong-Ju; Lee, Hyo-Jung; Jun, Soo Young; Lee, Jae-Hye; Song, Hyuk-Hwan; Choi, SangHo; Saloura, Vassiliki; Park, Choon Gil; Kim, Cheol-Hee; Kim, Nam-Soon

    2016-04-01

    TRAIL (TNF-related apoptosis inducing ligand) is a promising anti-cancer drug target that selectively induces apoptosis in cancer cells. However, many cancer cells are resistant to TRAIL-induced apoptosis. Therefore, reversing TRAIL resistance is an important step for the development of effective TRAIL-based anti-cancer therapies. We previously reported that knockdown of the TOR signaling pathway regulator-like (TIPRL) protein caused TRAIL-induced apoptosis by activation of the MKK7-c-Jun N-terminal Kinase (JNK) pathway through disruption of the MKK7-TIPRL interaction. Here, we identified Taraxacum officinale F.H. Wigg (TO) as a novel TRAIL sensitizer from a set of 500 natural products using an ELISA system and validated its activity by GST pull-down analysis. Furthermore, combination treatment of Huh7 cells with TRAIL and TO resulted in TRAIL-induced apoptosis mediated through inhibition of the MKK7-TIPRL interaction and subsequent activation of MKK7-JNK phosphorylation. Interestingly, HPLC analysis identified chicoric acid as a major component of the TO extract, and combination treatment with chicoric acid and TRAIL induced TRAIL-induced cell apoptosis via JNK activation due to inhibition of the MKK7-TIPRL interaction. Our results suggest that TO plays an important role in TRAIL-induced apoptosis, and further functional studies are warranted to confirm the importance of TO as a novel TRAIL sensitizer for cancer therapy. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  9. Inducing Cold-Sensitivity in the Frigophilic Fly Drosophila montana by RNAi.

    Directory of Open Access Journals (Sweden)

    Felipe M Vigoder

    Full Text Available Cold acclimation is a critical physiological adaptation for coping with seasonal cold. By increasing their cold tolerance individuals can remain active for longer at the onset of winter and can recover more quickly from a cold shock. In insects, despite many physiological studies, little is known about the genetic basis of cold acclimation. Recently, transcriptomic analyses in Drosophila virilis and D. montana revealed candidate genes for cold acclimation by identifying genes upregulated during exposure to cold. Here, we test the role of myo-inositol-1-phosphate synthase (Inos, in cold tolerance in D. montana using an RNAi approach. D. montana has a circumpolar distribution and overwinters as an adult in northern latitudes with extreme cold. We assessed cold tolerance of dsRNA knock-down flies using two metrics: chill-coma recovery time (CCRT and mortality rate after cold acclimation. Injection of dsRNAInos did not alter CCRT, either overall or in interaction with the cold treatment, however it did induced cold-specific mortality, with high levels of mortality observed in injected flies acclimated at 5°C but not at 19°C. Overall, injection with dsRNAInos induced a temperature-sensitive mortality rate of over 60% in this normally cold-tolerant species. qPCR analysis confirmed that dsRNA injection successfully reduced gene expression of Inos. Thus, our results demonstrate the involvement of Inos in increasing cold tolerance in D. montana. The potential mechanisms involved by which Inos increases cold tolerance are also discussed.

  10. Taurine induces anti-anxiety by activating strychnine-sensitive glycine receptor in vivo.

    Science.gov (United States)

    Zhang, Cheng Gao; Kim, Sung-Jin

    2007-01-01

    Taurine has a variety of actions in the body such as cardiotonic, host-defensive, radioprotective and glucose-regulatory effects. However, its action in the central nervous system remains to be characterized. In the present study, we tested to see whether taurine exerts anti-anxiety effects and to explore its mechanism of anti-anxiety activity in vivo. The staircase test and elevated plus maze test were performed to test the anti-anxiety action of taurine. Convulsions induced by strychnine, picrotoxin, yohimbine and isoniazid were tested to explore the mechanism of anti-anxiety activity of taurine. The Rotarod test was performed to test muscle relaxant activity and the passive avoidance test was carried out to test memory activity in response to taurine. Taurine (200 mg/kg, p.o.) significantly reduced rearing numbers in the staircase test while it increased the time spent in the open arms as well as the number of entries to the open arms in the elevated plus maze test, suggesting that it has a significant anti-anxiety activity. Taurine's action could be due to its binding to and activating of strychnine-sensitive glycine receptor in vivo as it inhibited convulsion caused by strychnine; however, it has little effect on picrotoxin-induced convulsion, suggesting its anti-anxiety activity may not be linked to GABA receptor. It did not alter memory function and muscle activity. Taken together, these results suggest that taurine could be beneficial for the control of anxiety in the clinical situations. Copyright (c) 2007 S. Karger AG, Basel.

  11. The sensitivity of grass shrimp, Palaemonetes pugio, embryos to organophosphate pesticide induced acetylcholinesterase inhibition.

    Science.gov (United States)

    Lund; Fulton; Key

    2000-03-01

    Grass shrimp, Palaemonetes pugio, are common inhabitants of salt marshes along the Atlantic and Gulf coasts of North America. Grass shrimp embryos are brooded externally on the abdomen of adult females for about 2 weeks prior to hatching. In South Carolina, the spring spawning period for grass shrimp coincides with the period of peak pesticide application on crops grown along the South Carolina coast. Thus, grass shrimp of all developmental stages are at risk of exposure to pesticides present in nonpoint source agricultural runoff. Organophosphate (OP) insecticides are commonly applied agricultural chemicals which produce toxicity by inhibiting the nervous system enzyme, acetylcholinesterase (AChE). The purpose of this study was to examine the development of AChE activity in grass shrimp embryos and to assess their sensitivity to OP-induced AChE inhibition. Embryos were exposed for 24 h to either chlorpyrifos or malathion. All exposure concentrations were nominal and ranged from 0 to 2.00 µg l(-1) for chlorpyrifos and from 0 to 120.00 µg l(-1) for malathion. Quantifiable levels of AChE activity first appeared at Stage V of development and increased as embryonic development progressed. AChE inhibition by the OPs was assessed in Stage VI and Stage VII embryos. Both stages of embryos were more sensitive to chlorpyrifos than malathion. The 24-h Effective Concentration (EC(50)) values for chlorpyrifos were 0.49 µg l(-1) (95% C.I.=0.33-0.77 µg l(-1)) and 0.36 µg l(-1) (95% C.I.=0.33-0.38 µg l(-1)) for Stage VI and Stage VII embryos, respectively. In comparison, malathion 24-h EC(50) values were 55.53 µg l(-1) (95% C.I.=22.08-80.73 µg l(-1)) for Stage VI embryos and 29.93 µg l(-1) (95% C.I.=25.22-44.22 µg l(-1)) for Stage VII embryos. For both OPs, there were no significant differences in the EC(50) values calculated for Stage VI and Stage VII embryos; however, AChE inhibition was significantly (Pinsecticide. A comparison of the results of these embryo tests

  12. Sensitivity evaluation and selective plane imaging geometry for x-ray-induced luminescence imaging.

    Science.gov (United States)

    Quigley, Bryan P; Smith, Corey D; Cheng, Shih-Hsun; Souris, Jeffrey S; Pelizzari, Charles A; Chen, Chin-Tu; Lo, Leu-Wei; Reft, Chester S; Wiersma, Rodney D; La Riviere, Patrick J

    2017-10-01

    X-ray-induced luminescence (XIL) is a hybrid x-ray/optical imaging modality that employs nanophosphors that luminescence in response to x-ray irradiation. X-ray-activated phosphorescent nanoparticles have potential applications in radiation therapy as theranostics, nanodosimeters, or radiosensitizers. Extracting clinically relevant information from the luminescent signal requires the development of a robust imaging model that can determine nanophosphor distributions at depth in an optically scattering environment from surface radiance measurements. The applications of XIL in radiotherapy will be limited by the dose-dependent sensitivity at depth in tissue. We propose a novel geometry called selective plane XIL (SPXIL), and apply it to experimental measurements in optical gel phantoms and sensitivity simulations. An imaging model is presented based on the selective plane geometry which can determine the detected diffuse optical signal for a given x-ray dose and nanophosphor distribution at depth in a semi-infinite, optically homogenous material. The surface radiance in the model is calculated using an analytical solution to the extrapolated boundary condition. Y 2 O 3 :Eu 3+ nanoparticles are synthesized and inserted into various optical phantom in order to measure the luminescent output per unit dose for a given concentration of nanophosphors and calibrate an imaging model for XIL sensitivity simulations. SPXIL imaging with a dual-source optical gel phantom is performed, and an iterative Richardson-Lucy deconvolution using a shifted Poisson noise model is applied to the measurements in order to reconstruct the nanophosphor distribution. Nanophosphor characterizations showed a peak emission at 611 nm, a linear luminescent response to tube current and nanoparticle concentration, and a quadratic luminescent response to tube voltage. The luminescent efficiency calculation accomplished with calibrated bioluminescence mouse phantoms determines 1.06 photons were emitted

  13. Naloxone : actions of an antagonist

    NARCIS (Netherlands)

    Dorp, Eveline Louise Arianna van

    2009-01-01

    The opioid antagonist naloxone has a special place in pharmacology – it has no intrinsic action of its own, but it is able to save lives in the case of life threatening side-effects caused by other drugs. Naloxone is an antagonist for all opioid receptors, but most specifically for the μ-opioid

  14. Modafinil Induces Rapid-Onset Behavioral Sensitization and Cross-Sensitization with Cocaine in Mice: Implications for the Addictive Potential of Modafinil.

    Science.gov (United States)

    Wuo-Silva, Raphael; Fukushiro, Daniela F; Hollais, André W; Santos-Baldaia, Renan; Mári-Kawamoto, Elisa; Berro, Laís F; Yokoyama, Thaís S; Lopes-Silva, Leonardo B; Bizerra, Carolina S; Procópio-Souza, Roberta; Hashiguchi, Debora; Figueiredo, Lilian A; Costa, Jose L; Frussa-Filho, Roberto; Longo, Beatriz M

    2016-01-01

    There is substantial controversy about the addictive potential of modafinil, a wake-promoting drug used to treat narcolepsy, proposed as pharmacotherapy for cocaine abuse, and used indiscriminately by healthy individuals due to its positive effects on arousal and cognition. The rapid-onset type of behavioral sensitization (i.e., a type of sensitization that develops within a few hours from the drug priming administration) has been emerged as a valuable tool to study binge-like patterns of drug abuse and the neuroplastic changes that occur quickly after drug administration that ultimately lead to drug abuse. Our aim was to investigate the possible development of rapid-onset behavioral sensitization to modafinil and bidirectional rapid-onset cross-sensitization with cocaine in male Swiss mice. A priming injection of a high dose of modafinil (64 mg/kg) induced rapid-onset behavioral sensitization to challenge injections of modafinil at the doses of 16, 32, and 64 mg/kg, administered 4 h later. Furthermore, rapid-onset cross-sensitization was developed between modafinil and cocaine (64 mg/kg modafinil and 20 mg/kg cocaine), in a bidirectional way. These results were not due to residual levels of modafinil as the behavioral effects of the priming injection of modafinil were no longer present and modafinil plasma concentration was reduced at 4 h post-administration. Taken together, the present findings provide preclinical evidence that modafinil can be reinforcing per se and can enhance the reinforcing effects of stimulants like cocaine within hours after administration.

  15. ERK potentiates p38 in central sensitization induced by traumatic occlusion.

    Science.gov (United States)

    Jing, Lei; Liu, Xiao-Dong; Yang, Hong-Xu; Zhang, Mian; Wang, Ying; Duan, Li; Zhang, Jing; Lu, Lei; Yang, Ting; Wang, Dong-Mei; Chen, Liang-Wei; Wang, Mei-Qing

    2017-01-06

    This study was to investigate the role of p38 activation via ERK1/2 phosphorylation in neurons and microglia of the spinal trigeminal subnucleus caudalis (Vc) in the promotion of orofacial hyperalgesia induced by unilateral anterior crossbite (UAC) traumatic occlusion in adult rats. U0126, a p-ERK1/2 inhibitor, was injected intracisternally before UAC implant. The effects of the U0126 injection were compared to those following the injection of SB203580, a p-p38 inhibitor. Mechanical hyperalgesia was evaluated via pressure pain threshold measurements. Brain stem tissues were processed for a Western blot analysis to evaluate the activation of ERK1/2 and p38. Double immunofluorescence was also performed to observe the expression of p-ERK1/2 and p-p38 in neurons (labeled by NeuN) and microglia (labeled by OX42). The data showed that UAC caused orofacial hyperalgia ipsilaterally on d1 to d7, peaking on d3 (Pcentral sensitization via the activation of ERK1/2 and p38 in both neurons and microglia in the Vc, potentially impacting the effects of p-ERK1/2 during p38 activation. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Oleuropein activated AMPK and induced insulin sensitivity in C2C12 muscle cells.

    Science.gov (United States)

    Hadrich, Fatma; Garcia, Marie; Maalej, Amina; Moldes, Marthe; Isoda, Hiroko; Feve, Bruno; Sayadi, Sami

    2016-04-15

    Oleuropein has been recognized as an important medicinal compound because of its various biological properties, including anti-cancer, antidiabetic and anti-atherosclerotic activities. Here, we evaluate the antioxidant activity as well as the mechanism of the hypoglycemic effects of oleuropein in C2C12 cells and we establish the mechanism underlying these effects. To perform this study, C2C12 cells viability was analyzed via MTT assay and the antioxidant activity was investigated by ROS and TBARS assays. Also, the effect of oleuropein on AMPK and PI3 kinase signaling pathways was evaluated. Treatment with oleuropein was able to protect cells against H2O2 induced stress in cells. On the other hand, the molecular bases of its actions have been scarcely understood. Oleuropein significantly enhanced glucose consumption and the phosphorylation of AMPK (AMP-activated protein kinase/ACC (acetyl-CoA carboxylase)) and MAPKs (mitogen-activated protein kinases), but not PI3 kinase (Phosphatidylinositol 3-kinase)/Akt. However, the co-treatment of oleuropein and insulin improved the insulin sensitivity via insulin-dependent (PI3 kinase/Akt) and insulin independent (AMPK/ACC) pathways. These results could be confirmed from the findings of GLUT4 translocation which was strongly enhanced in the case of oleuropein. Our results provide important insights for the possible mechanism of action of oleuropein as a therapeutic agent in diabetic patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis

    DEFF Research Database (Denmark)

    Zhuang, Hongqin; Jiang, Weiwei; Cheng, Wei

    2010-01-01

    Tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) has recently emerged as a cancer therapeutic agent because it preferentially induces apoptosis in human cancer over normal cells. Most tumor cells, including lung cancer cell line A549, unfortunately, are resistant to TRAIL...... siRNA on drug sensitization of A549 cells to TRAIL treatment. The results showed that treatment of A549 cells with HSP27 siRNA down-regulated HSP27 expression but did not induce significant apoptosis. However, combination of HSP27 siRNA with TRAIL-induced significant apoptosis in TRAIL-resistant A549...... cells. In addition to inducing caspases activation and apoptosis, combined treatment with HSP27 siRNA and TRAIL also increased JNK and p53 expression and activity. Collectively, these findings provide a conclusion that siRNA targeting of the HSP27 gene specifically down-regulated HSP27 expression in A...

  18. Dose- and time-dependent effects of mirtazapine on the expression of cocaine-induced behavioral sensitization in rats.

    Science.gov (United States)

    Barbosa-Méndez, Susana; Matus-Ortega, Maura; Flores-Zamora, Anabel; Jurado, Noe; Salazar-Juárez, Alberto

    2017-08-01

    Relapse to cocaine use is a major problem in the clinical treatment of cocaine dependence. Antidepressant medications have been studied as potential therapeutic drugs to relieve a cocaine dependence disorder. Mirtazapine is an antidepressant implicated in reducing behavioral alterations induced by drugs of abuse. We have reported elsewhere that 30mg/kg mirtazapine administered for 30 days during cocaine extinction significantly attenuated the induction and expression of cocaine-induced locomotor sensitization and decreased the duration of the cocaine-induced locomotor effect. This study focused on exploring whether different mirtazapine dosing regimens could optimize and/or improve the effect of 30mg/kg mirtazapine administered for 30 days on cocaine-induced locomotor activity during the expression phase of behavioral sensitization. Our study revealed that the daily dosing regimen with a fixed dose of mirtazapine (30mg/kg ip) over 60 days improved the decrease in cocaine-induced locomotor activity and behavioral sensitization obtained by dosing of 30mg mirtazapine for 30 days. In addition, it showed that a dosing regimen of 30mg/Kg mirtazapine for 30 days managed to reduce cocaine toxicity. These results suggested that dosage of mirtazapine for 30 consecutive days may be an effective therapy. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  19. Inducing Expectations for Health: Effects of Verbal Suggestion and Imagery on Pain, Itch, and Fatigue as Indicators of Physical Sensitivity.

    Directory of Open Access Journals (Sweden)

    Kaya J Peerdeman

    Full Text Available Research into placebo effects has convincingly shown that inducing positive outcome expectations can reduce pain and other physical sensations. However, the comparative effects of different expectation inductions, such as verbal suggestion or mental imagery, and their generic effects on physical sensitivity, to different sensations such as pain, itch, and fatigue, are still largely unknown. In the current study, we assessed the individual and combined effects of verbal suggestion and imagery on pain, itch, and fatigue as indicators of physical sensitivity in a randomized study design. Healthy participants (n = 116 were given an inert (placebo capsule that was said to be effective for reducing physical sensitivity in either the majority (positive verbal suggestion or the minority (control verbal suggestion of users. Subsequently, they imagined either their best possible health (positive imagery or a typical day (control imagery. Sensitivity to pain, itch, and fatigue was tested using a cold pressor test, histamine iontophoresis, and a bicycle test, respectively. Heart rate and skin conductance were recorded continuously. Results showed that positive verbal suggestion and imagery successfully induced positive expectations, but they did not affect physical sensitivity, as indicated by sensitivity to pain, itch, or fatigue, or concurrent physiological responses. These results could indicate that the specificity and concreteness of expectation inductions might be important for their applicability in the treatment of physical symptoms.Nederlands Trial Register NTR3641.

  20. Endogenous opioids released during non-nociceptive environmental stress induce latent pain sensitization Via a NMDA-dependent process.

    Science.gov (United States)

    Le Roy, Chloé; Laboureyras, Emilie; Gavello-Baudy, Stéphanie; Chateauraynaud, Jérémy; Laulin, Jean-Paul; Simonnet, Guy

    2011-10-01

    Although stress induces analgesia, there is evidence that stressful events may exacerbate pain syndromes. Here, we studied the effects of 1 to 3 prestressful events (days 0, 2, and 7), such as non-nociceptive environmental stress, on inflammatory hyperalgesia induced by a carrageenan injection (day 14) in 1 rat hind paw. Changes in nociceptive threshold were evaluated by the paw pressure vocalization test. The higher the number of stress sessions presented to the rats, the greater was the inflammatory hyperalgesia. Blockade of opioid receptors by naltrexone before each stress inhibited stress-induced analgesia and suppressed the exaggerated inflammatory hyperalgesia. Stressed versus nonstressed animals could be discriminated by their response to a fentanyl ultra-low dose (fULD), that produced hyperalgesia or analgesia, respectively. This pharmacological test permitted the prediction of the pain vulnerability level of prestressed rats because fULD analgesic or hyperalgesic indices were positively correlated with inflammatory hyperalgesic indices (r(2) = .84). In prestressed rats, fULD-induced hyperalgesia and the exaggerated inflammatory hyperalgesia were prevented NMDA receptor antagonists. This study provides some preclinical evidence that pain intensity is not only the result of nociceptive input level but is also dependent on the individual history, especially prior life stress events associated with endogenous opioid release. Based on these preclinical data, it would be of clinical interest to evaluate whether prior stressful events may also affect further pain sensation in humans. Moreover, this preclinical model could be a good tool for evaluating new therapeutic strategies for relieving pain hypersensitivity. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  1. Viral Inhibition of the IFN-Induced JAK/STAT Signalling Pathway: Development of Live Attenuated Vaccines by Mutation of Viral-Encoded IFN-Antagonists

    Directory of Open Access Journals (Sweden)

    Stephen B. Fleming

    2016-06-01

    Full Text Available The interferon (IFN induced anti-viral response is amongst the earliest and most potent of the innate responses to fight viral infection. The induction of the Janus kinase/signal transducer and activation of transcription (JAK/STAT signalling pathway by IFNs leads to the upregulation of hundreds of interferon stimulated genes (ISGs for which, many have the ability to rapidly kill viruses within infected cells. During the long course of evolution, viruses have evolved an extraordinary range of strategies to counteract the host immune responses in particular by targeting the JAK/STAT signalling pathway. Understanding how the IFN system is inhibited has provided critical insights into viral virulence and pathogenesis. Moreover, identification of factors encoded by viruses that modulate the JAK/STAT pathway has opened up opportunities to create new anti-viral drugs and rationally attenuated new generation vaccines, particularly for RNA viruses, by reverse genetics.

  2. The improvement effects of edible bird’s nest on proliferation and activation of B lymphocyte and its antagonistic effects on immunosuppression induced by cyclophosphamide

    Directory of Open Access Journals (Sweden)

    Zhao R

    2016-01-01

    Full Text Available Ran Zhao,1,* Geng Li,1,* Xiu-juan Kong,1 Xiu-yan Huang,2 Wei Li,1 Yao-ying Zeng,2 Xiao-ping Lai31Traditional Chinese Medicinal College, Guangzhou University of Chinese Medicine, 2Life Science College, Jinan University, Guangzhou, 3Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, People’s Republic of China*These authors contributed equally to this workAbstract: Edible bird’s nest (EBN is regarded as an immune-enhancing food in the People’s Republic of China. The aim of this study is to demonstrate the efficiency of EBN in improving the immunity of mouse both in vivo and in vitro. We observed the effects of EBN on spleen lymphocytes proliferation and activation, as well as immunoglobulin isotypes as indicators. In addition, we evaluated the content of total sIgA in the intestinal juice to assess mucosal immunity. The results showed that EBN could promote the proliferation and activation of B-cells and increase IgE, IgA, IgM, and IgG3 levels. We also found that EBN extract can promote the secretion of sIgA in the small intestine. Using cyclophosphamide (CY, we established an immunosuppressed mouse model in which we identified a reversal influence on the ratio of CD3+/CD19+ cells, which indicates that EBN also protects B-cells from the damage induced by CY. We also applied polymyxin B to exclude the interference of lipopolysaccharide throughout the experiment. In conclusion, we found that EBN can reduce the intestinal immune injury induced by CY by accelerating the proliferation and activation of B-cells and enhancing antibody secretion of B-cells.Keywords: chemotherapy, immunological enhancement, intestinal mucosal immune, EBN

  3. Allergy-inducing nickel concentration is lowered by lipopolysaccharide at both the sensitization and elicitation steps in a murine model.

    Science.gov (United States)

    Kinbara, M; Sato, N; Kuroishi, T; Takano-Yamamoto, T; Sugawara, S; Endo, Y

    2011-02-01

    Nickel (Ni) is the major cause of contact allergy. We previously found that lipopolysaccharide (LPS, a cell-surface component of gram-negative bacteria) markedly promotes Ni allergy in a murine model. Establishing the minimum concentration or amount of Ni needed to induce allergic responses may help us to prevent or reduce such responses. Using the above murine model, we examined the influence of LPS on the minimum allergy-inducing concentrations of Ni (Ni-MAICs) at the sensitization step and at the elicitation step. BALB/c mice were sensitized by intraperitoneal injection of a mixture containing various concentrations of LPS and NiCl(2). Ten days later, their ear pinnas were challenged intradermally with a mixture containing various concentrations of LPS and NiCl(2), and ear swelling was measured. Without LPS, the Ni-MAICs at the sensitization and elicitation steps were around 1×10(-2) mol L(-1) and 1×10(-5) mol L(-1) , respectively. Sensitization with NiCl(2) + LPS did not alter the value at elicitation. Surprisingly, LPS markedly reduced these Ni-MAICs (to around 1×10(-6) molL(-1) at sensitization, with 25 μg mL(-1) LPS, and 1×10(-12) mol L(-1) at elicitation, with 0·5 μg mL(-1) LPS). The effect of LPS depended on its concentration and the timing of its injection. Our findings suggest that: (i) Ni-MAIC is higher at sensitization than at elicitation; (ii) once sensitization is established, Ni allergy can easily be induced by a low concentration of Ni; and (iii) a bacterial milieu or infection may greatly facilitate the establishment and elicitation of Ni allergy. © 2010 The Authors. BJD © 2010 British Association of Dermatologists.

  4. Caffeine- and ryanodine-sensitive Ca(2+)-induced Ca2+ release from the endoplasmic reticulum in honeybee photoreceptors.

    Science.gov (United States)

    Walz, B; Baumann, O; Zimmermann, B; Ciriacy-Wantrup, E V

    1995-04-01

    Light stimulation of invertebrate microvillar photoreceptors causes a large rapid elevation in Cai, shown previously to modulate the adaptational state of the cells. Cai rises, at least in part, as a result of Ins(1,4,5)P3-induced Ca2+ release from the submicrovillar endoplasmic reticulum (ER). Here, we provide evidence for Ca(2+)-induced Ca2+ release (CICR) in an insect photoreceptor. In situ microphotometric measurements of Ca2+ fluxes across the ER membrane in permeabilized slices of drone bee retina show that (a) caffeine induces Ca2+ release from the ER; (b) caffeine and Ins(1,4,5)P3 open distinct Ca2+ release pathways because only caffeine-induced Ca2+ release is ryanodine sensitive and heparin insensitive, and because caffeine and Ins(1,4,5)P3 have additive effects on the rate of Ca2+ release; (c) Ca2+ itself stimulates release of Ca2+ via a ryanodine-sensitive pathway; and (d) cADPR is ineffective in releasing Ca2+. Microfluorometric intracellular Ca2+ measurements with fluo-3 indicate that caffeine induces a persistent elevation in Cai. Electrophysiological recordings demonstrate that caffeine mimics all aspects of Ca(2+)-mediated facilitation and adaptation in drone photoreceptors. We conclude that the ER in drone photoreceptors contains, in addition to the Ins(1,4,5)P3-sensitive release pathway, a CICR pathway that meets key pharmacological criteria for a ryanodine receptor. Coexpression of both release mechanisms could be required for the production of rapid light-induced Ca2+ elevations, because Ca2+ amplifies its own release through both pathways by a positive feedback. CICR may also mediate the spatial spread of Ca2+ release from the submicrovillar ER toward more remote ER subregions, thereby activating Ca(2+)-sensitive cell processes that are not directly involved in phototransduction.

  5. Pharmacological analysis of calcium antagonist receptors

    International Nuclear Information System (INIS)

    Reynolds, I.J.

    1987-01-01

    This work focuses on two aspects of the action of calcium antagonist drugs, namely, the interaction of drugs with receptors for verapamil-like calcium antagonists, and the interactions of drugs with voltage-sensitive calcium fluxes in rat brain synaptosomes. From binding studies I have found that the ligand of choice for labeling the verapamil receptor is (-)[ 3 H]desmethoxy-verapamil. This drug labels potently, reversibly and stereoselectively two receptors in membranes prepared from rat brain and rabbit skeletal muscle tissues. In equilibrium studies dihydropyridine calcium antagonists interact in a non-competitive fashion, while many non-DHPs are apparently competitive. In-depth kinetic studies in skeletal muscle membranes indicate that the two receptors are linked in a negative heterotropic fashion, and that low-affinity binding of (-) [ 3 H]desmethoxy-verapamil may be to the diltiazem receptor. However, these studies were not able to distinguish between the hypothesis that diltiazem binds to spatially separate, allosterically coupled receptors, and the hypothesis that diltiazem binds to a subsite of the verapamil receptor

  6. Cannabinoid receptor antagonists: pharmacological opportunities, clinical experience, and translational prognosis.

    Science.gov (United States)

    Janero, David R; Makriyannis, Alexandros

    2009-03-01

    The endogenous cannabinoid (CB) (endocannabinoid) signaling system is involved in a variety of (patho)physiological processes, primarily by virtue of natural, arachidonic acid-derived lipids (endocannabinoids) that activate G protein-coupled CB1 and CB2 receptors. A hyperactive endocannabinoid system appears to contribute to the etiology of several disease states that constitute significant global threats to human health. Consequently, mounting interest surrounds the design and profiling of receptor-targeted CB antagonists as pharmacotherapeutics that attenuate endocannabinoid transmission for salutary gain. Experimental and clinical evidence supports the therapeutic potential of CB1 receptor antagonists to treat overweight/obesity, obesity-related cardiometabolic disorders, and substance abuse. Laboratory data suggest that CB2 receptor antagonists might be effective immunomodulatory and, perhaps, anti-inflammatory drugs. One CB1 receptor antagonist/inverse agonist, rimonabant, has emerged as the first-in-class drug approved outside the United States for weight control. Select follow-on agents (taranabant, otenabant, surinabant, rosonabant, SLV-319, AVE1625, V24343) have also been studied in the clinic. However, rimonabant's market withdrawal in the European Union and suspension of rimonabant's, taranabant's, and otenabant's ongoing development programs have highlighted some adverse clinical side effects (especially nausea and psychiatric disturbances) of CB1 receptor antagonists/inverse agonists. Novel CB1 receptor ligands that are peripherally directed and/or exhibit neutral antagonism (the latter not affecting constitutive CB1 receptor signaling) may optimize the benefits of CB1 receptor antagonists while minimizing any risk. Indeed, CB1 receptor-neutral antagonists appear from preclinical data to offer efficacy comparable to or better than that of prototype CB1 receptor antagonists/inverse agonists, with less propensity to induce nausea. Continued

  7. An α4β1 integrin antagonist decreases airway inflammation in ovalbumin-exposed mice

    Science.gov (United States)

    Kenyon, Nicholas J.; Liu, Ruiwu; O’Roark, Erin M.; Huang, Wenzhe; Peng, Li; Lam, Kit S.

    2008-01-01

    Inhibition of the α4 subunit of both the α4β1 and α4β7 integrins has shown promise in decreasing airway inflammation and airway hyperresponsiveness in various animal models. We hypothesized that a novel, high-affinity α4β1 antagonist (LLP2A) would decrease the migration of eosinophils to the lung and ameliorate the airway hyperresponsiveness in a mouse model of ovalbumin-induced airway inflammation. To test this hypothesis, we administered LLP2A, or scrambled LLP2A (a negative control), prior to exposure of sensitized BALB/c mice to ovalbumin aerosol. We can partially prevent, or reverse, the airway inflammatory response, but not airways hyperresponsiveness, by treatment of mice with LLP2A, a synthetic peptidomimetic α4β1 antagonist LLP2A. Specifically engineered, PEGylated (PEG) formulations of this antagonist further reduce the airway inflammatory response to ovalbumin lbumin, presumably by improving the circulating half-life of the drug. PMID:19103195

  8. Olanzapine-Based Triple Regimens Versus Neurokinin-1 Receptor Antagonist-Based Triple Regimens in Preventing Chemotherapy-Induced Nausea and Vomiting Associated with Highly Emetogenic Chemotherapy: A Network Meta-Analysis.

    Science.gov (United States)

    Zhang, Zhonghan; Zhang, Yaxiong; Chen, Gang; Hong, Shaodong; Yang, Yunpeng; Fang, Wenfeng; Luo, Fan; Chen, Xi; Ma, Yuxiang; Zhao, Yuanyuan; Zhan, Jianhua; Xue, Cong; Hou, Xue; Zhou, Ting; Ma, Shuxiang; Gao, Fangfang; Huang, Yan; Chen, Likun; Zhou, Ningning; Zhao, Hongyun; Zhang, Li

    2018-01-12

    The current antiemetic prophylaxis for patients treated with highly emetogenic chemotherapy (HEC) included the olanzapine-based triplet and neurokinin-1 receptor antagonists (NK-1RAs)-based triplet. However, which one shows better antiemetic effect remained unclear. We systematically reviewed 43 trials, involving 16,609 patients with HEC, which compared the following antiemetics at therapeutic dose range for the treatment of chemotherapy-induced nausea and vomiting: olanzapine, aprepitant, casopitant, fosaprepitant, netupitant, and rolapitant. The main outcomes were the proportion of patients who achieved no nausea, complete response (CR), and drug-related adverse events. A Bayesian network meta-analysis was performed. Olanzapine-based triple regimens showed significantly better no-nausea rate in overall phase and delayed phase than aprepitant-based triplet (odds ratios 3.18, 3.00, respectively), casopitant-based triplet (3.78, 4.12, respectively), fosaprepitant-based triplet (3.08, 4.10, respectively), rolapitant-based triplet (3.45, 3.20, respectively), and conventional duplex regimens (4.66, 4.38, respectively). CRs of olanzapine-based triplet were roughly equal to different NK-1RAs-based triplet but better than the conventional duplet. Moreover, no significant drug-related adverse events were observed in olanzapine-based triple regimens when compared with NK-1RAs-based triple regimens and duplex regimens. Additionally, the costs of olanzapine-based regimens were obviously much lower than the NK-1RA-based regimens. Olanzapine-based triplet stood out in terms of nausea control and drug price but represented no significant difference of CRs in comparison with NK-1RAs-based triplet. Olanzapine-based triple regimens should be an optional antiemetic choice for patients with HEC, especially those suffering from delayed phase nausea. According to the results of this study, olanzapine-based triple antiemetic regimens were superior in both overall and delayed

  9. Effect of H4R antagonist N-(2-aminoethyl)-5-chloro-1H-indol-2-carboxamides and 5-chloro-2-(piperazin-1-ylmethyl)-1H-benzimidazole on histamine and 4-methylhistamine-induced mast cell response.

    Science.gov (United States)

    Nagarajan, Gomathi; Mariappanadar, Vairamani; Tamizh, Muthu; Kaliappan, Ilango; Elden, Berla Thangam

    2017-06-01

    The histamine plays a decisive role in acute and chronic inflammatory responses and is regulated through its four types of distinct receptors designated from H1 to H4. Recently histamine 4 receptor (H4R) antagonists have been reported to possess various pharmacological effects against various allergic diseases. To investigate the inhibitory effect of N-(2-aminoethyl)-5-chloro-1H-indol-2-carboxamide (Compound A) and 5-chloro-2-(piperazin-1-ylmethyl)-1H-benzimidazole (Compound L) on H4R-mediated calcium mobilization, cytokine IL-13 production, ERK1/2, Akt and NF-κB activation in human mastocytoma cells-1 (HMC-1). Compounds A and L were synthesized chemically and their inhibitory effect on intracellular calcium release was analyzed by Fluo-4 calcium assay, cytokine measurement through ELISA and activation of signaling molecules by western blot. Pre-treatment with compounds A and L significantly reduced the H4R-mediated intracellular calcium release. Histamine and 4-methylhistamine (4-MH) induced Th2 cytokine IL-13 production in HMC-1 cells, was inhibited by compound A (77.61%, 74.25% at 1 μM concentration) and compound L (79.63%, 81.70% at 1 μM concentration). Furthermore, histamine induced the phosphorylation of ERK1/2, Akt and NF-κB was suppressed by compounds A and L at varying levels, ERK1/2 (88%, 86%), Akt (88%, 89%) and NF-κB (89%, 87%) in HMC-1 cells. Taken together these data demonstrate that compound A and compound L may block H4R-mediated downstream signaling events.

  10. Acute kidney injury induces high-sensitivity troponin measurement changes after cardiac surgery.

    Science.gov (United States)

    Omar, Amr S; Mahmoud, Khaled; Hanoura, Samy; Osman, Hany; Sivadasan, Praveen; Sudarsanan, Suraj; Shouman, Yasser; Singh, Rajvir; AlKhulaifi, Abdulaziz

    2017-01-31

    The value of cardiac troponin as a risk assessment tool for cardiac disease in the setting of end-stage renal diseases (ESRD) is not equivalent to its value in those with normal renal function. This consideration had not been studied in settings of acute kidney injury (AKI). We aim to explore the diagnostic value of high sensitive troponin T (hsTnT) in the settings of cardiac surgery-induced AKI. Single center observational retrospective study. Based on the AKI Network, patients divided into 2 groups, group I without AKI (259 patients) and group II with AKI (100 patients) where serial testing of hsTnT and creatine kinase (CK)-MB were followed in both groups. Patients with (ESRD) were excluded. The mean age in our study was 55.1 ± 10.2 years. High association of AKI (27.8%) was found in our patients. Both groups were matched regarding the age, gender, body mass index, the association of diabetes or hypertension, and Euro score. AKI group had significantly higher mortality 5% vs group I 1.1% (p = 0.03). The hsTnt showed a significant sustained rise in the AKI group as compared to the non-AKI group, however CK-MB changes were significant initially but not sustained. The AKI group was more associated with heart failure 17.9% vs 4.9% (p = 0.001); and post-operative atrial fibrillation, 12.4% vs 2.9% (p = 0.005). Lengths of ventilation, stays in ICU and in hospital were significantly higher in the AKI group. Unlike the CK-MB profile, the hsTnT showed significant changes between both groups all over the course denoting possible delayed clearance in patients with AKI.

  11. Particulate matter induces cardiac arrhythmias via dysregulation of carotid body sensitivity and cardiac sodium channels.

    Science.gov (United States)

    Wang, Ting; Lang, Gabriel D; Moreno-Vinasco, Liliana; Huang, Yong; Goonewardena, Sascha N; Peng, Ying-Jie; Svensson, Eric C; Natarajan, Viswanathan; Lang, Roberto M; Linares, Jered D; Breysse, Patrick N; Geyh, Alison S; Samet, Jonathan M; Lussier, Yves A; Dudley, Samuel; Prabhakar, Nanduri R; Garcia, Joe G N

    2012-04-01

    The mechanistic links between exposure to airborne particulate matter (PM) pollution and the associated increases in cardiovascular morbidity and mortality, particularly in people with congestive heart failure (CHF), have not been identified. To advance understanding of this issue, genetically engineered mice (CREB(A133)) exhibiting severe dilated cardiomyopathic changes were exposed to ambient PM collected in Baltimore. CREB(A133) mice, which display aberrant cardiac physiology and anatomy reminiscent of human CHF, displayed evidence of basal autonomic aberrancies (compared with wild-type mice) with PM exposure via aspiration, producing significantly reduced heart rate variability, respiratory dysynchrony, and increased ventricular arrhythmias. Carotid body afferent nerve responses to hypoxia and hyperoxia-induced respiratory depression were pronounced in PM-challenged CREB(A133) mice, and denervation of the carotid bodies significantly reduced PM-mediated cardiac arrhythmias. Genome-wide expression analyses of CREB(A133) left ventricular tissues demonstrated prominent Na(+) and K(+) channel pathway gene dysregulation. Subsequent PM challenge increased tyrosine phosphorylation and nitration of the voltage-gated type V cardiac muscle α-subunit of the Na(+) channel encoded by SCN5A. Ranolazine, a Na(+) channel modulator that reduces late cardiac Na(+) channel currents, attenuated PM-mediated cardiac arrhythmias and shortened PM-elongated QT intervals in vivo. These observations provide mechanistic insights into the epidemiologic findings in susceptibility of human CHF populations to PM exposure. Our results suggest a multiorgan pathobiology inherent to the CHF phenotype that is exaggerated by PM exposure via heightened carotid body sensitivity and cardiac Na(+) channel dysfunction.

  12. Chromatin structure influence the sensitivity of DNA to ionizing radiation induced DNA damage

    International Nuclear Information System (INIS)

    Gupta, Sanjay

    2016-01-01

    Chromatin acts as a natural hindrance in DNA-damage recognition, repair and recovery. Histone and their variants undergo differential post-translational modification(s) and regulate chromatin structure to facilitate DNA damage response (DDR). During the presentation we will discuss the importance of chromatin organization and histone modification(s) during IR-induced DNA damage response in human liver cells. Our data shows G1-phase specific decrease of H3 serine10 phosphorylation in response to DNA damage is coupled with chromatin compaction in repair phase of DDR. The loss of H3Ser10P during DNA damage shows an inverse correlation with gain of γH2AX from a same mono-nucleosome in a dose-dependent manner. The loss of H3Ser10P is a universal phenomenon as it is independent of origin of cell lines and nature of genotoxic agents in G1 phase cells. The reversible reduction of H3Ser10P is mediated by opposing activities of phosphatase, MKP1 and kinase, MSK1 of the MAP kinase pathway. The present study suggests distinct reversible histone marks are associated with G1-phase of cell cycle and plays a critical role in chromatin organization which may facilitate differential sensitivity against radiation. Thus, the study raises the possibility of combinatorial modulation of H3Ser10P and histone acetylation with specific inhibitors to target the radio-resistant cancer cells in G1-phase and thus may serve as promising targets for cancer therapy. (author)

  13. A role for b-cell-depleting agents in treating psoriatic skin lesions induced by tumor necrosis factor-alpha antagonists: A case report and literature review

    Directory of Open Access Journals (Sweden)

    Ancuta Codrina Mihaela

    2014-01-01

    Full Text Available Despite recent advances in understanding the pathological pathways, clinical pattern and management opportunities for new-onset psoriasis as a paradoxical adverse event in patients receiving TNF inhibitors for their immune-mediated disorder, there is a subset of patients who are either partial responders or non-responders, whatever the therapeutic scenario. We present the case of new-onset psoriasis and severe alopecia development in a case study of long-standing rheumatoid arthritis (RA treated with adalimumab (ADA and leflunomide. Since skin lesions and alopecia are resistant to the classic protocol (topical treatment, ADA discontinuation and RA becomes highly active, rituximab (RTX was started. Dramatic improvement in joint disease, total remission of alopecia and partial remission of pustular psoriasis were described after the first RTX cycle. Although B-cell-depleting agents result in controversial effects on psoriatic skin lesions, this is the first case of ADA-induced psoriasis and alopecia that improved under RTX, suggesting a possible role in treating such a patient population.

  14. Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Lee, Dong-Hyoung; Han, Sol-Chan; Kim, Tae-Hyeong; Yun, Jong-Il

    2011-12-15

    We have applied a dual-pulse laser-induced breakdown spectroscopy (DP-LIBS) to sensitively detect concentrations of boron and lithium in aqueous solution. Sequential laser pulses from two separate Q-switched Nd:YAG lasers at 532 nm wavelength have been employed to generate laser-induced plasma on a water jet. For achieving sensitive elemental detection, the optimal timing between two laser pulses was investigated. The optimum time delay between two laser pulses for the B atomic emission lines was found to be less than 3 μs and approximately 10 μs for the Li atomic emission line. Under these optimized conditions, the detection limit was attained in the range of 0.8 ppm for boron and 0.8 ppb for lithium. In particular, the sensitivity for detecting boron by excitation of laminar liquid jet was found to be excellent by nearly 2 orders of magnitude compared with 80 ppm reported in the literature. These sensitivities of laser-induced breakdown spectroscopy are very practical for the online elemental analysis of boric acid and lithium hydroxide serving as neutron absorber and pH controller in the primary coolant water of pressurized water reactors, respectively.

  15. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    Science.gov (United States)

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.

  16. Studies on antagonistic marine streptomycetes

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, D.; Nair, S.

    Sixty nine strains of Streptomyces sp. isolated from the sediments of Andaman and Nicobar islands (Bay of Bengal) were screened for their antagonistic property against a number of test cultures (Vibrio sp., Klebsiella sp., Escherichia coli, Shigella...

  17. SIRT1 sensitizes hepatocellular carcinoma cells expressing hepatitis B virus X protein to oxidative stress-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Srisuttee, Ratakorn [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Koh, Sang Seok [Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Department of Functional Genomics, University of Science and Technology, Daejeon 305-333 (Korea, Republic of); Malilas, Waraporn; Moon, Jeong; Cho, Il-Rae [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of); Jhun, Byung Hak [Department of Applied Nanoscience, Pusan National University, Busan 609-735 (Korea, Republic of); Horio, Yoshiyuki [Department of Pharmacology, Sapporo Medical University, Sapporo 060-8556 (Japan); Chung, Young-Hwa, E-mail: younghc@pusan.ac.kr [WCU, Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2012-12-07

    Highlights: Black-Right-Pointing-Pointer Up-regulation of SIRT1 protein and activity sensitizes Hep3B-HBX cells to oxidative stress-induced apoptosis. Black-Right-Pointing-Pointer Nuclear localization of SIRT1 is not required for oxidation-induced apoptosis. Black-Right-Pointing-Pointer Ectopic expression and enhanced activity of SIRT1 attenuate JNK phosphorylation. Black-Right-Pointing-Pointer Inhibition of SIRT1 activity restores resistance to oxidation-induced apoptosis through JNK activation. -- Abstract: We previously showed that SIRT1 deacetylase inhibits proliferation of hepatocellular carcinoma cells expressing hepatitis B virus (HBV) X protein (HBX), by destabilization of {beta}-catenin. Here, we report another role for SIRT1 in HBX-mediated resistance to oxidative stress. Ectopic expression and enhanced activity of SIRT1 sensitize Hep3B cells stably expressing HBX to oxidative stress-induced apoptosis. SIRT1 mutant analysis showed that nuclear localization of SIRT1 is not required for sensitization of oxidation-mediated apoptosis. Furthermore, ectopic expression of SIRT1 and treatment with resveratrol (a SIRT1 activator) attenuated JNK phosphorylation, which is a prerequisite for resistance to oxidative stress-induced apoptosis. Conversely, suppression of SIRT1 activity with nicotinamide inhibited the effect of resveratrol on JNK phosphorylation, leading to restoration of resistance to oxidation-induced apoptosis. Taken together, these results suggest that up-regulation of SIRT1 under oxidative stress may be a therapeutic strategy for treatment of hepatocellular carcinoma cells related to HBV through inhibition of JNK activation.

  18. Andrographolide sensitizes cancer cells to TRAIL-induced apoptosis via p53-mediated death receptor 4 up-regulation.

    Science.gov (United States)

    Zhou, Jing; Lu, Guo-Dong; Ong, Chye-Sun; Ong, Choon-Nam; Shen, Han-Ming

    2008-07-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is an important member of the tumor necrosis factor subfamily with great potential in cancer therapy. Andrographolide (Andro), a diterpenoid lactone isolated from a traditional herbal medicine Andrographis paniculata, is known to possess potent anti-inflammatory and anticancer activities. Here, we showed that pretreatment with Andro significantly enhances TRAIL-induced apoptosis in various human cancer cell lines, including those TRAIL-resistant cells. Such sensitization is achieved through transcriptional up-regulation of death receptor 4 (DR4), a death receptor of TRAIL. In search of the molecular mechanisms responsible for DR4 up-regulation, we found that the tumor suppressor p53 plays an essential role in DR4 transcriptional activation. Andro is capable of activating p53 via increased p53 phosphorylation and protein stabilization, a process mediated by enhanced reactive oxygen species production and subsequent c-Jun NH(2)-terminal kinase activation. Pretreatment with an antioxidant (N-acetylcysteine) or a c-Jun NH(2)-terminal kinase inhibitor (SP600125) effectively prevented Andro-induced p53 activation and DR4 up-regulation and eventually blocked the Andro-induced sensitization on TRAIL-induced apoptosis. Taken together, these results present a novel anticancer effect of Andro and support its potential application in cancer therapy to overcome TRAIL resistance.

  19. Optogenetics reveals a role for accumbal medium spiny neurons expressingdopamine D2 receptors in cocaine-induced behavioral sensitization

    Directory of Open Access Journals (Sweden)

    Shelly Sooyun eSong

    2014-10-01

    Full Text Available Long-lasting, drug-induced adaptations within the nucleus accumbens (NAc have beenproposed to contribute to drug-mediated addictive behaviors. Here we have used anoptogenetic approach to examine the role of NAc medium spiny neurons (MSNs expressingdopamine D2 receptors (D2R in cocaine-induced behavioral sensitization. Adeno-associatedviral vectors coding channelrhodopsin-2 (ChR2 were delivered into the NAc of D2R-Cretransgenic mice. This allowed us to selectively photostimulate D2R-MSNs in NAc. D2RMSNsform local inhibitory circuits, because photostimulation of D2R-MSN evokedinhibitory postsynaptic currents in neighboring MSNs. Photostimulation of NAc D2R-MSNin vivo affected neither the initiation nor the expression of cocaine-induced behavioralsensitization. However, photostimulation during the drug withdrawal period attenuatedexpression of cocaine-induced behavioral sensitization. These results show that D2R-MSNsof NAc play a key role in withdrawal-induced plasticity and may contribute to relapse aftercessation of drug abuse.

  20. P53 modulation of radiation induced G1 arrests and intrinsic radiation sensitivity

    International Nuclear Information System (INIS)

    Mei Su; Pardo, F.S.

    1995-01-01

    Objective: Wild type p53 functions as a cell cycle control protein at the G1/S cell cycle interface. DNA damage following exposure to ionizing radiation result in increases in p53 expression concomitant with cell cycle arrest at the G1/S boundary. We sought to investigate the relationship between p53 expression and cell cycle arrest in REC transfected with p53 expression vectors. Methods: REC were transfected with both mutant and wild type p53 expression vector by a calcium phosphate-based method. Transfected cellular populations, consisting of 3-6 clones isolated from the transfection studies, were used for subsequent analyses. Radiation survival assays measured clonogenic survival following exposure to 250 kVp x-rays under oxic conditions. The data were fitted to the linear quadratic model of cell survival, emphasizing D and SF2 as parameters. Expression of p53 protein was determined in transfected cellular populations both prior to and following doses of 0,2,5,10, and 15 Gy. Flow cytometric techniques assessed radiation-induced cell cycle changes for up to 48 hours following irradiation, with particular emphasis on the kinetics of both the G1/S and G2/M cell cycle transitions. Results: Cellular populations transfected with mutant p53 express levels of p53 approximately 10-fold higher than untransfected or mock-transfected counterparts. REC transfected with wild type p53 were more sensitive to ionizing radiation in vitro (2-tailed test, SF2, MID). REC transfected with wild type p53, as well as those that are untransfected or mock-transfected, reveal dose dependent arrests at the G1/S interface concomitant with modest elevations in p53 protein production. Cells transfected with mutant p53 demonstrate a lack of arrest following irradiation without significant upregulation of overall p53 protein production. REC transfected with a human mutant p53 allele, reveal increases in resistance to ionizing radiation in vitro (p<.05, SF2,MID). Conclusion: Following exposure to

  1. Differential and additive suppressive effects of 5-HT3 (palonosetron)- and NK1 (netupitant)-receptor antagonists on cisplatin-induced vomiting and ERK1/2, PKA and PKC activation.

    Science.gov (United States)

    Darmani, Nissar A; Zhong, Weixia; Chebolu, Seetha; Mercadante, Frank

    2015-04-01

    To better understand the anti-emetic profile of the 5-HT3 (palonosetron)- and the tachykinin NK1 (netupitant) -receptor antagonists, either alone or in combination, we evaluated the effects of palonosetron and/or netupitant pretreatment on cisplatin-evoked vomiting and changes in the phosphorylation of brainstem kinases such as the extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), protein kinase C alpha/beta (PKCα/β), and protein kinase A (PKA) in the least shrew. Our results demonstrate that cisplatin (10mg/kg, i.p.) causes emesis in the least shrew over 40h with respective peak early- and delayed-phases occurring at 1 - 2 and 32 - 34h post-injection. During the early phase (0 - 16h post cisplatin), palonosetron (0.1mg/kg, s.c.) significantly protected shrews from vomiting with a near complete suppression of vomit frequency. Palonosetron also significantly protected shrews from vomiting during the delayed phase (27 - 40h post cisplatin), but the reduction in mean vomit frequency failed to achieve significance. On the other hand, netupitant (5mg/kg, i.p.) totally abolished vomiting during the delayed phase, and tended to suppress the mean vomit frequency during the acute phase. The combined treatment protected shrews almost completely from vomiting during both phases. Brainstem pERK1/2 levels were significantly elevated at all time-points except at 40h post-cisplatin administration. PKA phosphorylation tended to be elevated throughout the delayed phase, but a significant increase only occurred at 33h. Brainstem pPKCα/β levels were enhanced during acute-phase with a significant elevation at 2h. Palonosetron, netupitant or their combination had no effect on elevated pERK1/2 levels during acute phase, but the combination reversed ERK1/2 phosphorylation at 33h post-cisplatin treatment. In addition, only the combined regimen prevented the cisplatin-induced PKCα/β phosphorylation observed at the acute phase. On the other hand, palonosetron and

  2. Effect of NMDA NR2B antagonist on neuropathic pain in two spinal cord injury models.

    Science.gov (United States)

    Kim, Youngkyung; Cho, Hwi-young; Ahn, Young Ju; Kim, Junesun; Yoon, Young Wook

    2012-05-01

    N-Methyl-d-aspartate (NMDA) receptors are thought to play an important role in the processes of central sensitization and pathogenesis of neuropathic pain, particularly after spinal cord injury (SCI). NMDA antagonists effectively reduce neuropathic pain, but serious side effects prevent their use as therapeutic drugs. NMDA NR2B antagonists have been reported to effectively reduce inflammatory and neuropathic pain. In this study, we investigated the effects of NR2B antagonists on neuropathic pain and the expression of NR2B in the spinal cord in 2 SCI models. SCI was induced at T12 by a New York University impactor (contusion) or by sectioning of the lateral half of the spinal cord (hemisection). Ifenprodil (100, 200, 500, 1000nmol) and Ro25-6981 (20, 50, 100, 200nmol) were intrathecally injected and behavioral tests were conducted. Ifenprodil increased the paw withdrawal threshold in both models but also produced mild motor depression at higher doses. Ro25-6981 increased the mechanical nociceptive threshold in a dose-dependent manner without motor depression. NR2B expression was significantly increased on both sides at the spinal segments of L1-2 and L4-5 in the hemisection model but did not change in the contusion model. Increased expression of NR2B in the hemisection model was reduced by intrathecal ifenprodil. These results suggest that intrathecal NMDA NR2B antagonist increased the mechanical nociceptive threshold after SCI without motor depression. A selective subtype of NMDA receptor, such as NR2B, may be a more selective target for pain control because NMDA receptors play a crucial role in the development and maintenance of chronic pain. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  3. Punishment sensitivity modulates the processing of negative feedback but not error-induced learning

    Directory of Open Access Journals (Sweden)

    Kerstin eUnger

    2012-06-01

    Full Text Available Accumulating evidence suggests that individual differences in punishment and reward sensitivity are associated with functional alterations in neural systems underlying error and feedback processing. In particular, individuals highly sensitive to punishment have been found to be characterized by larger midfrontal error signals as reflected in the error negativity (Ne/ERN and the FRN (feedback-related negativity. By contrast, reward sensitivity has been shown to relate to the error positivity (Pe. Given that Ne/ERN, FRN, and Pe have been functionally linked to flexible behavioral adaptation, the aim of the present research was to examine how these electrophysiological reflections of error and feedback processing vary as a function of punishment and reward sensitivity during reinforcement learning. We applied a probabilistic learning task that involved three different conditions of feedback validity (100%, 80%, and 50%. In contrast to prior studies using response competition tasks, we did not find reliable correlations between punishment sensitivity and the Ne/ERN. Instead, higher punishment sensitivity predicted larger FRN amplitudes, irrespective of feedback validity. Moreover, higher reward sensitivity was associated with a larger Pe. However, only reward sensitivity was related to better overall learning performance and higher post-error accuracy, whereas highly punishment sensitive participants showed impaired learning performance, suggesting that larger negative feedback-related error signals were not beneficial for learning or even reflected maladaptive information processing in these individuals. Thus, although our findings indicate that individual differences in reward and punishment sensitivity are related to electrophysiological correlates of error and feedback processing, we found less evidence for influences of these personality characteristics on the relation between performance monitoring and feedback-based learning.

  4. Punishment sensitivity modulates the processing of negative feedback but not error-induced learning.

    Science.gov (United States)

    Unger, Kerstin; Heintz, Sonja; Kray, Jutta

    2012-01-01

    Accumulating evidence suggests that individual differences in punishment and reward sensitivity are associated with functional alterations in neural systems underlying error and feedback processing. In particular, individuals highly sensitive to punishment have been found to be characterized by larger mediofrontal error signals as reflected in the error negativity/error-related negativity (Ne/ERN) and the feedback-related negativity (FRN). By contrast, reward sensitivity has been shown to relate to the error positivity (Pe). Given that Ne/ERN, FRN, and Pe have been functionally linked to flexible behavioral adaptation, the aim of the present research was to examine how these electrophysiological reflections of error and feedback processing vary as a function of punishment and reward sensitivity during reinforcement learning. We applied a probabilistic learning task that involved three different conditions of feedback validity (100%, 80%, and 50%). In contrast to prior studies using response competition tasks, we did not find reliable correlations between punishment sensitivity and the Ne/ERN. Instead, higher punishment sensitivity predicted larger FRN amplitudes, irrespective of feedback validity. Moreover, higher reward sensitivity was associated with a larger Pe. However, only reward sensitivity was related to better overall learning performance and higher post-error accuracy, whereas highly punishment sensitive participants showed impaired learning performance, suggesting that larger negative feedback-related error signals were not beneficial for learning or even reflected maladaptive information processing in these individuals. Thus, although our findings indicate that individual differences in reward and punishment sensitivity are related to electrophysiological correlates of error and feedback processing, we found less evidence for influences of these personality characteristics on the relation between performance monitoring and feedback-based learning.

  5. Stat1 activation attenuates IL-6 induced Stat3 activity but does not alter apoptosis sensitivity in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Dimberg Lina Y

    2012-07-01

    Full Text Available Abstract Background Multiple myeloma (MM is at present an incurable malignancy, characterized by apoptosis-resistant tumor cells. Interferon (IFN treatment sensitizes MM cells to Fas-induced apoptosis and is associated with an increased activation of Signal transducer and activator of transcription (Stat1. The role of Stat1 in MM has not been elucidated, but Stat1 has in several studies been ascribed a pro-apoptotic role. Conversely, IL-6 induction of Stat3 is known to confer resistance to apoptosis in MM. Methods To delineate the role of Stat1 in IFN mediated sensitization to apoptosis, sub-lines of the U-266-1970 MM cell line with a stable expression of the active mutant Stat1C were utilized. The influence of Stat1C constitutive transcriptional activation on endogenous Stat3 expression and activation, and the expression of apoptosis-related genes were analyzed. To determine whether Stat1 alone would be an important determinant in sensitizing MM cells to apoptosis, the U-266-1970-Stat1C cell line and control cells were exposed to high throughput compound screening (HTS. Results To explore the role of Stat1 in IFN mediated apoptosis sensitization of MM, we established sublines of the MM cell line U-266-1970 constitutively expressing the active mutant Stat1C. We found that constitutive nuclear localization and transcriptional activity of Stat1 was associated with an attenuation of IL-6-induced Stat3 activation and up-regulation of mRNA for the pro-apoptotic Bcl-2 protein family genes Harakiri, the short form of Mcl-1 and Noxa. However, Stat1 activation alone was not sufficient to sensitize cells to Fas-induced apoptosis. In a screening of > 3000 compounds including bortezomib, dexamethasone, etoposide, suberoylanilide hydroxamic acid (SAHA, geldanamycin (17-AAG, doxorubicin and thalidomide, we found that the drug response and IC50 in cells constitutively expressing active Stat1 was mainly unaltered. Conclusion We conclude that Stat1 alters IL-6

  6. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    International Nuclear Information System (INIS)

    Taylor, David J; Parsons, Christine E; Han, Haiyong; Jayaraman, Arul; Rege, Kaushal

    2011-01-01

    Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL) and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward malignant cells over normal pancreatic epithelial cells

  7. Parallel screening of FDA-approved antineoplastic drugs for identifying sensitizers of TRAIL-induced apoptosis in cancer cells

    Directory of Open Access Journals (Sweden)

    Taylor David J

    2011-11-01

    Full Text Available Abstract Background Tumor Necrosis Factor-α Related Apoptosis Inducing Ligand (TRAIL and agonistic antibodies to death receptor 4 and 5 are promising candidates for cancer therapy due to their ability to induce apoptosis selectively in a variety of human cancer cells, while demonstrating little cytotoxicity in normal cells. Although TRAIL and agonistic antibodies to DR4 and DR5 are considered safe and promising candidates in cancer therapy, many malignant cells are resistant to DR-mediated, TRAIL-induced apoptosis. In the current work, we screened a small library of fifty-five FDA and foreign-approved anti-neoplastic drugs in order to identify candidates that sensitized resistant prostate and pancreatic cancer cells to TRAIL-induced apoptosis. Methods FDA-approved drugs were screened for their ability to sensitize TRAIL resistant prostate cancer cells to TRAIL using an MTT assay for cell viability. Analysis of variance was used to identify drugs that exhibited synergy with TRAIL. Drugs demonstrating the highest synergy were selected as leads and tested in different prostate and pancreatic cancer cell lines, and one immortalized human pancreatic epithelial cell line. Sequential and simultaneous dosing modalities were investigated and the annexin V/propidium iodide assay, in concert with fluorescence microscopy, was employed to visualize cells undergoing apoptosis. Results Fourteen drugs were identified as having synergy with TRAIL, including those whose TRAIL sensitization activities were previously unknown in either prostate or pancreatic cancer cells or both. Five leads were tested in additional cancer cell lines of which, doxorubicin, mitoxantrone, and mithramycin demonstrated synergy in all lines. In particular, mitoxantrone and mithramycin demonstrated significant synergy with TRAIL and led to reduction of cancer cell viability at concentrations lower than 1 μM. At these low concentrations, mitoxantrone demonstrated selectivity toward

  8. Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats

    Science.gov (United States)

    Escobar, Angélica P; González, Marcela P; Meza, Rodrigo C; Noches, Verónica; Henny, Pablo; Gysling, Katia; España, Rodrigo A; Fuentealba, José A

    2017-01-01

    Abstract Background Increased locomotor activity in response to the same stimulus is an index of behavioral sensitization observed in preclinical models of drug addiction and compulsive behaviors. Repeated administration of quinpirole, a D2/D3 dopamine agonist, induces locomotor sensitization. This effect is potentiated and accelerated by co-administration of U69593, a kappa opioid receptor agonist. The mechanism underlying kappa opioid receptor potentiation of quinpirole-induced locomotor sensitization remains to be elucidated. Methods Immunofluorescence anatomical studies were undertaken in mice brain slices and rat presynaptic synaptosomes to reveal kappa opioid receptor and D2R pre- and postsynaptic colocalization in the nucleus accumbens. Tonic and phasic dopamine release in the nucleus accumbens of rats repeatedly treated with U69593 and quinpirole was assessed by microdialysis and fast scan cyclic voltammetry. Results Anatomical data show that kappa opioid receptor and D2R colocalize postsynaptically in medium spiny neurons of the nucleus accumbens and the highest presynaptic colocalization occurs on the same dopamine terminals. Significantly reduced dopamine levels were observed in quinpirole, and U69593-quinpirole treated rats, explaining sensitization of D2R. Presynaptic inhibition induced by kappa opioid receptor and D2R of electrically evoked dopamine release was faster in U69593-quinpirole compared with quinpirole-repeatedly treated rats. Conclusions Pre- and postsynaptic colocalization of kappa opioid receptor and D2R supports a role for kappa opioid receptor potentiating both the D2R inhibitory autoreceptor function and the inhibitory action of D2R on efferent medium spiny neurons. Kappa opioid receptor co-activation accelerates D2R sensitization by contributing to decrease dopamine release in the nucleus accumbens. PMID:28531297

  9. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    International Nuclear Information System (INIS)

    Mota, Alba; Jiménez-Garcia, Lidia; Herránz, Sandra; Heras, Beatriz de las; Hortelano, Sonsoles

    2015-01-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  10. α-Hispanolol sensitizes hepatocellular carcinoma cells to TRAIL-induced apoptosis via death receptor up-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Mota, Alba, E-mail: amota@iib.uam.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Jiménez-Garcia, Lidia, E-mail: ljimenez@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Herránz, Sandra, E-mail: sherranz@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain); Heras, Beatriz de las, E-mail: lasheras@ucm.es [Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), Madrid (Spain); Hortelano, Sonsoles, E-mail: shortelano@isciii.es [Unidad de Terapias Farmacológicas, Área de Genética Humana, Instituto de Investigación de Enfermedades Raras (IIER), Instituto de Salud Carlos III, Madrid (Spain)

    2015-08-01

    Hispanolone derivatives have been previously described as anti-inflammatory and antitumoral agents. However, their effects on overcoming Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance remain to be elucidated. In this study, we analyzed the cytotoxic effects of the synthetic hispanolone derivative α-hispanolol (α-H) in several tumor cell lines, and we evaluated the induction of apoptosis, as well as the TRAIL-sensitizing potential of α-H in the hepatocellular carcinoma cell line HepG2. Our data show that α-H decreased cell viability in a dose-dependent manner in HeLa, MDA-MB231, U87 and HepG2 cell lines, with a more prominent effect in HepG2 cells. Interestingly, α-H had no effect on non-tumoral cells. α-H induced activation of caspase-8 and caspase-9 and also increased levels of the proapoptotic protein Bax, decreasing antiapoptotic proteins (Bcl-2, X-IAP and IAP-1) in HepG2 cells. Specific inhibition of caspase-8 abrogated the cascade of caspase activation, suggesting that the extrinsic pathway has a critical role in the apoptotic events induced by α-H. Furthermore, combined treatment of α-H with TRAIL enhanced apoptosis in HepG2 cells, activating caspase-8 and caspase-9. This correlated with up-regulation of both the TRAIL death receptor DR4 and DR5. DR4 or DR5 neutralizing antibodies abolished the effect of α-H on TRAIL-induced apoptosis, suggesting that sensitization was mediated through the death receptor pathway. Our results demonstrate that α-H induced apoptosis in the human hepatocellular carcinoma cell line HepG2 through activation of caspases and induction of the death receptor pathway. In addition, we describe a novel function of α-H as a sensitizer on TRAIL-induced apoptotic cell death in HepG2 cells. - Highlights: • α-Hispanolol induced apoptosis in the human hepatocellular carcinoma cell line HepG2. • α-Hispanolol induced activation of caspases and the death receptor pathway. • α-Hispanolol enhanced

  11. Rapid induction of dopamine sensitization in the nucleus accumbens shell induced by a single injection of cocaine.

    Science.gov (United States)

    Singer, Bryan F; Bryan, Myranda A; Popov, Pavlo; Robinson, Terry E; Aragona, Brandon J

    2017-05-01

    Repeated intermittent exposure to cocaine results in the neurochemical sensitization of dopamine (DA) transmission within the nucleus accumbens (NAc). Indeed, the excitability of DA neurons in the ventral tegmental area (VTA) is enhanced within hours of initial psychostimulant exposure. However, it is not known if this is accompanied by a comparably rapid change in the ability of cocaine to increase extracellular DA concentrations in the ventral striatum. To address this question we used fast-scan cyclic voltammetry (FSCV) in awake-behaving rats to measure DA responses in the NAc shell following an initial intravenous cocaine injection, and then again 2-h later. Both injections quickly elevated DA levels in the NAc shell, but the second cocaine infusion produced a greater effect than the first, indicating sensitization. This suggests that a single injection of cocaine induces sensitization-related plasticity very rapidly within the mesolimbic DA system. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death.

    Science.gov (United States)

    Kim, Jin Sik; Lee, Jin; Chung, Hai Won; Choi, Han; Paik, Sang Gi; Kim, In Gyu

    2006-09-01

    Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.

  13. Hepatocellular carcinoma repression by TNFα-mediated synergistic lethal effect of mitosis defect-induced senescence and cell death sensitization.

    Science.gov (United States)

    Li, Dan; Fu, Jing; Du, Min; Zhang, Haibin; Li, Lu; Cen, Jin; Li, Weiyun; Chen, Xiaotao; Lin, Yunfei; Conway, Edward M; Pikarsky, Eli; Wang, Hongyan; Pan, Guoyu; Ji, Yuan; Wang, Hong-Yang; Hui, Lijian

    2016-10-01

    Hepatocellular carcinoma (HCC) is a cancer lacking effective therapies. Several measures have been proposed to treat HCCs, such as senescence induction, mitotic inhibition, and cell death promotion. However, data from other cancers suggest that single use of these approaches may not be effective. Here, by genetic targeting of Survivin, an inhibitor of apoptosis protein (IAP) that plays dual roles in mitosis and cell survival, we identified a tumor necrosis factor alpha (TNFα)-mediated synergistic lethal effect between senescence and apoptosis sensitization in malignant HCCs. Survivin deficiency results in mitosis defect-associated senescence in HCC cells, which triggers local inflammation and increased TNFα. Survivin inactivation also sensitizes HCC cells to TNFα-triggered cell death, which leads to marked HCC regression. Based on these findings, we designed a combination treatment using mitosis inhibitor and proapoptosis compounds. This treatment recapitulates the therapeutic effect of Survivin deletion and effectively eliminates HCCs, thus representing a potential strategy for HCC therapy. Survivin ablation dramatically suppresses human and mouse HCCs by triggering senescence-associated TNFα and sensitizing HCC cells to TNFα-induced cell death. Combined use of mitotic inhibitor and second mitochondrial-derived activator of caspases mimetic can induce senescence-associated TNFα and enhance TNFα-induced cell death and synergistically eliminate HCC. (Hepatology 2016;64:1105-1120). © 2016 The Authors. (Hepatology published by Wiley Periodicals, Inc., on behalf of the American Association for the Study of Liver Diseases.

  14. An ancestral haplotype of the human PERIOD2 gene associates with reduced sensitivity to light-induced melatonin suppression.

    Directory of Open Access Journals (Sweden)

    Tokiho Akiyama

    Full Text Available Humans show various responses to the environmental stimulus in individual levels as "physiological variations." However, it has been unclear if these are caused by genetic variations. In this study, we examined the association between the physiological variation of response to light-stimulus and genetic polymorphisms. We collected physiological data from 43 subjects, including light-induced melatonin suppression, and performed haplotype analyses on the clock genes, PER2 and PER3, exhibiting geographical differentiation of allele frequencies. Among the haplotypes of PER3, no significant difference in light sensitivity was found. However, three common haplotypes of PER2 accounted for more than 96% of the chromosomes in subjects, and 1 of those 3 had a significantly low-sensitive response to light-stimulus (P < 0.05. The homozygote of the low-sensitive PER2 haplotype showed significantly lower percentages of melatonin suppression (P < 0.05, and the heterozygotes of the haplotypes varied their ratios, indicating that the physiological variation for light-sensitivity is evidently related to the PER2 polymorphism. Compared with global haplotype frequencies, the haplotype with a low-sensitive response was more frequent in Africans than in non-Africans, and came to the root in the phylogenetic tree, suggesting that the low light-sensitive haplotype is the ancestral type, whereas the other haplotypes with high sensitivity to light are the derived types. Hence, we speculate that the high light-sensitive haplotypes have spread throughout the world after the Out-of-Africa migration of modern humans.

  15. The influence of radiolytic sensitizers in natural rubber latex vulcanization induced by ionizing radiation

    International Nuclear Information System (INIS)

    Guedes, S.M.L.; Souza, A. de

    1991-01-01

    This work made on radiation vulcanization of natural rubber latex process by gamma rays from 60 Co source and electron beam of 1.5 MeV, 25 m A by Dynamitron, instead of classic process using sulfur. The experiment was carried out to study the influence of sensitizers (C Cl 4 and n-butyl acrylate) and was reported the vulcanization dose for each sensitizers, related to maximum tensile strength. The results show the possibility to introduce the volatile sensitizer (n-butyl acrylate) instead of C Cl 4 (toxic) in industry applications. (author)

  16. Glutathione regulation of redox-sensitive signals in tumor necrosis factor-α-induced vascular endothelial dysfunction

    International Nuclear Information System (INIS)

    Tsou, T.-C.; Yeh, S.C.; Tsai, F.-Y.; Chen, J.-W.; Chiang, H.-C.

    2007-01-01

    We investigated the regulatory role of glutathione in tumor necrosis factor-alpha (TNF-α)-induced vascular endothelial dysfunction as evaluated by using vascular endothelial adhesion molecule expression and monocyte-endothelial monolayer binding. Since TNF-α induces various biological effects on vascular cells, TNF-α dosage could be a determinant factor directing vascular cells into different biological fates. Based on the adhesion molecule expression patterns responding to different TNF-α concentrations, we adopted the lower TNF-α (0.2 ng/ml) to rule out the possible involvement of other TNF-α-induced biological effects. Inhibition of glutathione synthesis by L-buthionine-(S,R)-sulfoximine (BSO) resulted in down-regulations of the TNF-α-induced adhesion molecule expression and monocyte-endothelial monolayer binding. BSO attenuated the TNF-α-induced nuclear factor-kappaB (NF-κB) activation, however, with no detectable effect on AP-1 and its related mitogen-activated protein kinases (MAPKs). Deletion of an AP-1 binding site in intercellular adhesion molecule-1 (ICAM-1) promoter totally abolished its constitutive promoter activity and its responsiveness to TNF-α. Inhibition of ERK, JNK, or NF-κB attenuates TNF-α-induced ICAM-1 promoter activation and monocyte-endothelial monolayer binding. Our study indicates that TNF-α induces adhesion molecule expression and monocyte-endothelial monolayer binding mainly via activation of NF-κB in a glutathione-sensitive manner. We also demonstrated that intracellular glutathione does not modulate the activation of MAPKs and/or their downstream AP-1 induced by lower TNF-α. Although AP-1 activation by the lower TNF-α was not detected in our systems, we could not rule out the possible involvement of transiently activated MAPKs/AP-1 in the regulation of TNF-α-induced adhesion molecule expression

  17. NOXA-induced alterations in the Bax/Smac axis enhance sensitivity of ovarian cancer cells to cisplatin.

    Directory of Open Access Journals (Sweden)

    Chao Lin

    Full Text Available Ovarian cancer is the most common cause of death from gynecologic malignancy. Deregulation of p53 and/or p73-associated apoptotic pathways contribute to the platinum-based resistance in ovarian cancer. NOXA, a pro-apoptotic BH3-only protein, is identified as a transcription target of p53 and/or p73. In this study, we found that genetic variants of Bcl-2 proteins exist among cisplatin-sensitive and -resistant ovarian cancer cells, and the responses of NOXA and Bax to cisplatin are regulated mainly by p53. We further evaluated the effect of NOXA on cisplatin. NOXA induced apoptosis and sensitized A2780s and SKOV3 cells to cisplatin in vitro and in vivo. The effects were mediated by elevated Bax expression, enhanced caspase activation, release of Cyt C and Smac into the cytosol. Furthermore, gene silencing of Bax or Smac significantly attenuated NOXA and/or cisplatin-induced apoptosis in chemosensitive A2780s cells, whereas overexpression of Bax or addition of Smac-N7 peptide significantly increased NOXA and/or cisplatin-induced apoptosis in chemoresistant SKOV3 cells. To our knowledge, these data suggest a new mechanism by which NOXA chemosensitized ovarian cancer cells to cisplatin by inducing alterations in the Bax/Smac axis. Taken together, our findings show that NOXA is potentially useful as a chemosensitizer in ovarian cancer therapy.

  18. NOXA-Induced Alterations in the Bax/Smac Axis Enhance Sensitivity of Ovarian Cancer Cells to Cisplatin

    Science.gov (United States)

    Lin, Chao; Zhao, Xin-yu; Li, Lei; Liu, Huan-yi; Cao, Kang; Wan, Yang; Liu, Xin-yu; Nie, Chun-lai; Liu, Lei; Tong, Ai-ping; Deng, Hong-xin; Li, Jiong; Yuan, Zhu; Wei, Yu-quan

    2012-01-01

    Ovarian cancer is the most common cause of death from gynecologic malignancy. Deregulation of p53 and/or p73-associated apoptotic pathways contribute to the platinum-based resistance in ovarian cancer. NOXA, a pro-apoptotic BH3-only protein, is identified as a transcription target of p53 and/or p73. In this study, we found that genetic variants of Bcl-2 proteins exist among cisplatin-sensitive and -resistant ovarian cancer cells, and the responses of NOXA and Bax to cisplatin are regulated mainly by p53. We further evaluated the effect of NOXA on cisplatin. NOXA induced apoptosis and sensitized A2780s and SKOV3 cells to cisplatin in vitro and in vivo. The effects were mediated by elevated Bax expression, enhanced caspase activation, release of Cyt C and Smac into the cytosol. Furthermore, gene silencing of Bax or Smac significantly attenuated NOXA and/or cisplatin-induced apoptosis in chemosensitive A2780s cells, whereas overexpression of Bax or addition of Smac-N7 peptide significantly increased NOXA and/or cisplatin-induced apoptosis in chemoresistant SKOV3 cells. To our knowledge, these data suggest a new mechanism by which NOXA chemosensitized ovarian cancer cells to cisplatin by inducing alterations in the Bax/Smac axis. Taken together, our findings show that NOXA is potentially useful as a chemosensitizer in ovarian cancer therapy. PMID:22590594

  19. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy

    NARCIS (Netherlands)

    Weijer, Ruud; Broekgaarden, Mans; Krekorian, Massis; Alles, Lindy K.; van Wijk, Albert C.; Mackaaij, Claire; Verheij, Joanne; van der Wal, Allard C.; van Gulik, Thomas M.; Storm, Gert; Heger, Michal

    2016-01-01

    Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression levels of

  20. Inhibition of hypoxia inducible factor 1 and topoisomerase with acriflavine sensitizes perihilar cholangiocarcinomas to photodynamic therapy

    NARCIS (Netherlands)

    Weijer, R.; Broekgaarden, M.; Krekorian, M.; Alles, L.K.; van Wijk, A.C; Mackaaij, C.; Verheij, J.; van der Wal, A.C.; van Gullik, T.M.; Storm, Gerrit; Heger, M.

    2016-01-01

    Background: Photodynamic therapy (PDT) induces tumor cell death by oxidative stress and hypoxia but also survival signaling through activation of hypoxia-inducible factor 1 (HIF-1). Since perihilar cholangiocarcinomas are relatively recalcitrant to PDT, the aims were to (1) determine the expression

  1. Molecular basis of ‘hypoxic’ breast cancer cell radio-sensitization: phytochemicals converge on radiation induced Rel signaling

    International Nuclear Information System (INIS)

    Aravindan, Sheeja; Natarajan, Mohan; Herman, Terence S; Awasthi, Vibhudutta; Aravindan, Natarajan

    2013-01-01

    Heterogeneously distributed hypoxic areas are a characteristic property of locally advanced breast cancers (BCa) and generally associated with therapeutic resistance, metastases, and poor patient survival. About 50% of locally advanced BCa, where radiotherapy is less effective are suggested to be due to hypoxic regions. In this study, we investigated the potential of bioactive phytochemicals in radio-sensitizing hypoxic BCa cells. Hypoxic (O2-2.5%; N2-92.5%; CO2-5%) MCF-7 cells were exposed to 4 Gy radiation (IR) alone or after pretreatment with Curcumin (CUR), curcumin analog EF24, neem leaf extract (NLE), Genistein (GEN), Resveratrol (RES) or raspberry extract (RSE). The cells were examined for inhibition of NFκB activity, transcriptional modulation of 88 NFκB signaling pathway genes, activation and cellular localization of radio-responsive NFκB related mediators, eNos, Erk1/2, SOD2, Akt1/2/3, p50, p65, pIκBα, TNFα, Birc-1, -2, -5 and associated induction of cell death. EMSA revealed that cells exposed to phytochemicals showed complete suppression of IR-induced NFκB. Relatively, cells exposed EF24 revealed a robust inhibition of IR-induced NFκB. QPCR profiling showed induced expression of 53 NFκB signaling pathway genes after IR. Conversely, 53, 50, 53, 53, 53 and 53 of IR-induced genes were inhibited with EF24, NLE, CUR, GEN, RES and RSE respectively. In addition, 25, 29, 24, 16, 11 and 21 of 35 IR-suppressed genes were further inhibited with EF24, NLE, CUR, GEN, RES and RSE respectively. Immunoblotting revealed a significant attenuating effect of IR-modulated radio-responsive eNos, Erk1/2, SOD2, Akt1/2/3, p50, p65, pIκBα, TNFα, Birc-1, -2 and −5 with EF24, NLE, CUR, GEN, RES or RSE. Annexin V-FITC staining showed a consistent and significant induction of IR-induced cell death with these phytochemicals. Notably, EF24 robustly conferred IR-induced cell death. Together, these data identifies the potential hypoxic cell radio-sensitizers and further

  2. Isoflurane Anesthesia Interferes with the Expression of Cocaine-Induced Sensitization in Female Rats

    OpenAIRE

    Siegal, Nora; Dow-Edwards, Diana

    2009-01-01

    Repeated cocaine administration results in a progressive sensitization of behavior which typically occurs more readily in female rats than in males. Our recent studies of rats undergoing surgical procedures revealed that following anesthesia, females sensitized less than males receiving identical repeated cocaine injections. Since isoflurane acts primarily by increasing the effects of the inhibitory neurotransmitter γ-amino butyric acid (GABA) and reducing the effects of the excitatory amino ...

  3. Strychnine-sensitive glycine receptors mediate analgesia induced by emulsified inhalation anaesthetics in thermal nociception but not in chemical nociception.

    Science.gov (United States)

    Chen, Yan; Dai, Ti-Jun; Zeng, Yin-Ming

    2007-03-01

    The present study was designed to investigate the role of strychnine-sensitive glycine receptors in analgesia induced by emulsified inhalation anaesthetics. After having established the mice model of analgesia by intraperitoneal or subcutaneous injections of appropriate doses of ether, enflurane, isoflurane or sevoflurane, we injected different doses of strychnine intrathecally and then observed the effects on the tail-flick latency using the tail-withdrawal test and the writhing times and acetic acid-induced writhing test. In the tail-withdrawal test, all four emulsified inhalation anaesthetics (intraperitoneally) significantly increased the tail-flick latency (P strychnine. In the acetic acid-induced writhing test, writhing times inhibition induced by subcutaneous administration of four emulsified inhalation anaesthetics was not effected by intrathecal strychnine (0.1, 0.2 and 0.4 microg). The data presented in this study suggest that glycine receptors are specifically involved in mediating the analgesic effect of ether, enflurane, isoflurane and sevoflurane on thermal-induced nociception but not chemically induced nociception.

  4. Repeated hapten exposure induces persistent tactile sensitivity in mice modeling localized provoked vulvodynia.

    Directory of Open Access Journals (Sweden)

    Jasmine Landry

    Full Text Available Vulvodynia is a remarkably prevalent chronic pain condition of unknown etiology. Epidemiologic studies associate the risk of vulvodynia with a history of atopic disease. We used an established model of hapten-driven contact hypersensitivity to investigate the underlying mechanisms of allergy-provoked prolonged sensitivity to pressure.We sensitized female ND4 Swiss mice to the hapten oxazolone on their flanks, and subsequently challenged them four days later with oxazolone or vehicle for ten consecutive days on the labia. We evaluated labiar sensitivity to touch, local mast cell accumulation, and hyperinnervation after ten challenges.Oxazolone-challenged mice developed significant tactile sensitivity that persisted for over three weeks after labiar allergen exposures ceased. Allergic sites were characterized by mast cell accumulation, sensory hyper-innervation and infiltration of regulatory CD4+CD25+FoxP3+ T cells as well as localized early increases in transcripts encoding Nerve Growth Factor and nerve-mast cell synapse marker Cell Adhesion Molecule 1. Local depletion of mast cells by intra-labiar administration of secretagogue compound 48/80 led to a reduction in both nerve density and tactile sensitivity.Mast cells regulate allergy-provoked persistent sensitivity to touch. Mast cell-targeted therapeutic strategies may provide novel means to manage and limit chronic pain conditions associated with atopic disease.

  5. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not in adolescent rats susceptible to diet-induced obesity.

    Science.gov (United States)

    Oginsky, Max F; Maust, Joel D; Corthell, John T; Ferrario, Carrie R

    2016-03-01

    Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. We examined differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity and basal differences in striatal neuron function in adult and in adolescent obesity-prone and obesity-resistant rats. Susceptible and resistant outbred rats were identified based on "junk-food" diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine-induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). In rats that became obese after eating junk-food, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ∼60 % at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals, and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats.

  6. Enhanced cocaine-induced locomotor sensitization and intrinsic excitability of NAc medium spiny neurons in adult but not adolescent rats susceptible to diet-induced obesity

    Science.gov (United States)

    Oginsky, Max F.; Maust, Joel D.; Corthell, John T.; Ferrario, Carrie R.

    2015-01-01

    Rationale Basal and diet-induced differences in mesolimbic function, particularly within the nucleus accumbens (NAc), may contribute to human obesity; these differences may be more pronounced in susceptible populations. Objectives We determined whether there are differences in cocaine-induced behavioral plasticity in rats that are susceptible vs. resistant to diet-induced obesity, and basal differences in the striatal neuron function in adult and adolescent obesity-prone and obesity-resistant rats. Methods Susceptible and resistant outbred rats were identified based on “junk-food” diet-induced obesity. Then, the induction and expression of cocaine-induced locomotor sensitization, which is mediated by enhanced striatal function and is associated with increased motivation for rewards and reward-paired cues, were evaluated. Basal differences in mesolimbic function were examined in selectively bred obesity-prone and obesity-resistant rats (P70-80 and P30-40) using both cocaine induced locomotion and whole-cell patch clamping approaches in NAc core medium spiny neurons (MSNs). Results In rats that became obese after eating “junk-food”, the expression of locomotor sensitization was enhanced compared to non-obese rats, with similarly strong responses to 7.5 and 15 mg/kg cocaine. Without diet manipulation, obesity-prone rats were hyper-responsive to the acute locomotor-activating effects of cocaine, and the intrinsic excitability of NAc core MSNs was enhanced by ~60% at positive and negative potentials. These differences were present in adult, but not adolescent rats. Post-synaptic glutamatergic transmission was similar between groups. Conclusions Mesolimbic systems, particularly NAc MSNs, are hyper-responsive in obesity-prone individuals; and interactions between predisposition and experience influence neurobehavioral plasticity in ways that may promote weight gain and hamper weight loss in susceptible rats. PMID:26612617

  7. Respiratory Syncytial Virus Fusion Protein-Induced Toll-Like Receptor 4 (TLR4) Signaling Is Inhibited by the TLR4 Antagonists Rhodobacter sphaeroides Lipopolysaccharide and Eritoran (E5564) and Requires Direct Interaction with MD-2

    Science.gov (United States)

    Rallabhandi, Prasad; Phillips, Rachel L.; Boukhvalova, Marina S.; Pletneva, Lioubov M.; Shirey, Kari Ann; Gioannini, Theresa L.; Weiss, Jerrold P.; Chow, Jesse C.; Hawkins, Lynn D.; Vogel, Stefanie N.; Blanco, Jorge C. G.

    2012-01-01

    ABSTRACT Respiratory syncytial virus (RSV) is a leading cause of infant mortality worldwide. Toll-like receptor 4 (TLR4), a signaling receptor for structurally diverse microbe-associated molecular patterns, is activated by the RSV fusion (F) protein and by bacterial lipopolysaccharide (LPS) in a CD14-dependent manner. TLR4 signaling by LPS also requires the presence of an additional protein, MD-2. Thus, it is possible that F protein-mediated TLR4 activation relies on MD-2 as well, although this hypothesis has not been formally tested. LPS-free RSV F protein was found to activate NF-κB in HEK293T transfectants that express wild-type (WT) TLR4 and CD14, but only when MD-2 was coexpressed. These findings were confirmed by measuring F-protein-induced interleukin 1β (IL-1β) mRNA in WT versus MD-2−/− macrophages, where MD-2−/− macrophages failed to show IL-1β expression upon F-protein treatment, in contrast to the WT. Both Rhodobacter sphaeroides LPS and synthetic E5564 (eritoran), LPS antagonists that inhibit TLR4 signaling by binding a hydrophobic pocket in MD-2, significantly reduced RSV F-protein-mediated TLR4 activity in HEK293T-TLR4–CD14–MD-2 transfectants in a dose-dependent manner, while TLR4-independent NF-κB activation by tumor necrosis factor alpha (TNF-α) was unaffected. In vitro coimmunoprecipitation studies confirmed a physical interaction between native RSV F protein and MD-2. Further, we demonstrated that the N-terminal domain of the F1 segment of RSV F protein interacts with MD-2. These data provide new insights into the importance of MD-2 in RSV F-protein-mediated TLR4 activation. Thus, targeting the interaction between MD-2 and RSV F protein may potentially lead to novel therapeutic approaches to help control RSV-induced inflammation and pathology. PMID:22872782

  8. Effects of ionotropic glutamate receptor antagonists on rat dural artery diameter in an intravital microscopy model

    DEFF Research Database (Denmark)

    Chan, K Y; Gupta, S; de Vries, R

    2010-01-01

    studies have shown that glutamate receptor antagonists affect the pathophysiology of migraine. This study investigated whether antagonists of NMDA (ketamine and MK801), AMPA (GYKI52466) and kainate (LY466195) glutamate receptors affected dural vasodilatation induced by alpha-CGRP, capsaicin...

  9. PKCδ sensitizes neuroblastoma cells to L-buthionine-sulfoximine and etoposide inducing reactive oxygen species overproduction and DNA damage.

    Directory of Open Access Journals (Sweden)

    Barbara Marengo

    Full Text Available Neuroblastoma is a type of pediatric cancer. The sensitivity of neuroblastoma (NB cancer cells to chemotherapy and radiation is inhibited by the presence of antioxidants, such as glutathione (GSH, which is crucial in counteracting the endogenous production of reactive oxygen species (ROS. We have previously demonstrated that cells depleted of GSH undergo apoptosis via oxidative stress and Protein kinase C (PKC δ activation. In the present study, we transfected PKCδ in NB cells resistant to oxidative death induced by L-buthionine-S,R-sulfoximine (BSO, a GSH-depleting agent. Cell responses, in terms of ROS production, apoptosis and DNA damage were evaluated. Moreover, PKCδ activation was monitored by analyzing the phosphorylation status of threonine 505 residue, carrying out PKC activity assay and investigating the subcellular localization of the kinase. The cell responses obtained in BSO-resistant cells were also compared with those obtained in BSO-sensitive cells subjected to the same experimental protocol. Our results demonstrate, for the first time, that PKCδ induces DNA oxidation and ROS overproduction leading to apoptosis of BSO-resistant NB cells and potentiates the cytotoxic effects induced by BSO in sensitive cells. Moreover, PKCδ overexpression enhances the sensitivity of NB cells to etoposide, a well-characterised drug, commonly used in neuroblastoma therapy. Altogether our data provide evidence of a pro-oxidant role of PKCδ that might be exploited to design new therapeutic strategies aimed at selective killing of cancer cells and overcoming drug resistance. However, it becomes evident that a more detailed understanding of ROS-mediated signaling in cancer cells is necessary for the development of redox-modulated therapeutic approaches.

  10. The SMAC mimetic BV6 induces cell death and sensitizes different cell lines to TNF-α and TRAIL-induced apoptosis.

    Science.gov (United States)

    El-Mesery, Mohamed; Shaker, Mohamed E; Elgaml, Abdelaziz

    2016-12-01

    The inhibitors of apoptosis proteins are implicated in promoting cancer cells survival and resistance toward immune surveillance and chemotherapy. Second mitochondria-derived activator of caspases (SMAC) mimetics are novel compounds developed to mimic the inhibitory effect of the endogenous SMAC/DIABLO on these IAPs. Here, we examined the potential effects of the novel SMAC mimetic BV6 on different human cancer cell lines. Our results indicated that BV6 was able to induce cell death in different human cancer cell lines. Mechanistically, BV6 dose dependently induced degradation of IAPs, including cIAP1 and cIAP2. This was coincided with activating the non-canonical NF -kappa B (NF-κB) pathway, as indicated by stabilizing NF-κB-inducing kinase (NIK) for p100 processing to p52. More interestingly, BV6 was able to sensitize some of the resistant cancer cell lines to apoptosis induced by the death ligands tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) that are produced by different cells of the immune system. Such cell death enhancement was mediated by inducing an additional cleavage of caspase-9 to augment that of caspase-8 induced by death ligands. This eventually led to more processing of the executioner caspase-3 and poly (ADP-ribose) polymerase (PARP). In conclusion, therapeutic targeting of IAPs by BV6 might be an effective approach to enhance cancer regression induced by immune system. Our data also open up the future possibility of using BV6 in combination with other antitumor therapies to overcome cancer drug resistance.

  11. Bronchoprotection with a leukotriene receptor antagonist in asthmatic preschool children

    DEFF Research Database (Denmark)

    Bisgaard, H; Nielsen, K G

    2000-01-01

    We hypothesized that a leukotriene receptor antagonist (LTRA) could provide bronchoprotection against the cold, dry air-induced response in asthmatic preschool children. In a randomized, double-blind, placebo-controlled crossover study, we examined the effect of the specific LTRA montelukast at 5...

  12. Sympatho-inhibitory properties of various AT1 receptor antagonists

    NARCIS (Netherlands)

    Balt, Jippe C.; Mathy, Marie-Jeanne; Pfaffendorf, Martin; van Zwieten, Peter A.

    2002-01-01

    It is well known that angiotensin II (Ang II) can facilitate the effects of sympathetic neurotransmission. In the present study, using various experimental models, we investigated the inhibitory effects of several Ang II subtype 1 receptor (AT1) antagonists on this Ang II-induced facilitation. We

  13. Contrasting effects of intralocus sexual conflict on sexually antagonistic coevolution

    NARCIS (Netherlands)

    Pennell, Tanya M; de Haas, Freek J H; Morrow, Edward H; van Doorn, G Sander

    2016-01-01

    Evolutionary conflict between the sexes can induce arms races in which males evolve traits that are detrimental to the fitness of their female partners, and vice versa. This interlocus sexual conflict (IRSC) has been proposed as a cause of perpetual intersexual antagonistic coevolution with

  14. The Effect of Sympathetic Antagonists on the Antidepressant Action ...

    African Journals Online (AJOL)

    Alprazolam is an anti-anxiety drug shown to be effective in the treatment of depression. In this study, the effect of sympathetic receptor antagonists on alprazolam–induced antidepressant action was studied using a mouse model of forced swimming behavioral despair. The interaction of three sympathetic receptor ...

  15. Selective Glucocorticoid Receptor (GR-II Antagonist Reduces Body Weight Gain in Mice

    Directory of Open Access Journals (Sweden)

    Tomoko Asagami

    2011-01-01

    Full Text Available Previous research has shown that mifepristone can prevent and reverse weight gain in animals and human subjects taking antipsychotic medications. This proof-of-concept study tested whether a more potent and selective glucocorticoid receptor antagonist could block dietary-induced weight gain and increase insulin sensitivity in mice. Ten-week-old, male, C57BL/6J mice were fed a diet containing 60% fat calories and water supplemented with 11% sucrose for 4 weeks. Groups (=8 received one of the following: CORT 108297 (80 mg/kg QD, CORT 108297 (40 mg/kg BID, mifepristone (30 mg/kg BID, rosiglitazone (10 mg/kg QD, or vehicle. Compared to mice receiving a high-fat, high-sugar diet plus vehicle, mice receiving a high-fat, high-sugar diet plus either mifepristone or CORT 108297 gained significantly less weight. At the end of the four week treatment period, mice receiving CORT 108297 40 mg/kg BID or CORT 108297 80 mg/kg QD also had significantly lower steady plasma glucose than mice receiving vehicle. However, steady state plasma glucose after treatment was not highly correlated with reduced weight gain, suggesting that the effect of the glucocorticoid receptor antagonist on insulin sensitivity may be independent of its mitigating effect on weight gain.

  16. ATP-sensitive potassium channel: a novel target for protection against UV-induced human skin cell damage.

    Science.gov (United States)

    Cao, Cong; Healey, Sarah; Amaral, Ashley; Lee-Couture, Avery; Wan, Shu; Kouttab, Nicola; Chu, Wenming; Wan, Yinsheng

    2007-07-01

    Ultraviolet radiation (UV) induces cell damages leading to skin photoaging and skin cancer. ATP-sensitive potassium (K(ATP)) channel openers (KCOs) have been shown to exert significant myocardial preservation and neuroprotection in vitro and in vivo, and yet the potential role of those KCOs in protection against UV-induced skin cell damage is unknown. We investigated the effects of pinacidil and diazoxide, two classical KCOs, on UV-induced cell death using cultured human keratinocytes (HaCat cells). Here, we demonstrated for the first time that Kir 6.1, Kir 6.2 and SUR2 subunits of K(ATP) channels are functionally expressed in HaCaT cells and both non-selective K(ATP) channel opener pinacidil and mitoK(ATP) (mitochondrial K(ATP)) channel opener diazoxide attenuated UV-induced keratinocytes cell death. The protective effects were abolished by both non-selective K(ATP) channel blocker glibenclamide and selective mitoK(ATP) channel blocker 5-hydroxydecanoate (5-HD). Also, activation of K(ATP) channel with pinacidil or diazoxide resulted in suppressive effects on UV-induced MAPK activation and reactive oxygen species (ROS) production. Unexpectedly, we found that the level of intracellular ROS was slightly elevated in HaCaT cells when treated with pinacidil or diazoxide alone. Furthermore, UV-induced mitochondrial membrane potential loss, cytochrome c release and ultimately apoptotic cell death were also inhibited by preconditioning with pinacidil and diazoxide, and their effects were reversed by glibenclamide and 5-HD. Taken together, we contend that mitoK(ATP) is likely to contribute the protection against UV-induced keratinocytes cell damage. Our findings suggest that K(ATP) openers such as pinacidil and diazoxide may be utilized to prevent from UV-induced skin aging.

  17. Testing environment shape differentially modulates baseline and nicotine-induced changes in behavior: Sex differences, hypoactivity, and behavioral sensitization.

    Science.gov (United States)

    Illenberger, J M; Mactutus, C F; Booze, R M; Harrod, S B

    2018-02-01

    In those who use nicotine, the likelihood of dependence, negative health consequences, and failed treatment outcomes differ as a function of gender. Women may be more sensitive to learning processes driven by repeated nicotine exposure that influence conditioned approach and craving. Sex differences in nicotine's influence over overt behaviors (i.e. hypoactivity or behavioral sensitization) can be examined using passive drug administration models in male and female rats. Following repeated intravenous (IV) nicotine injections, behavioral sensitization is enhanced in female rats compared to males. Nonetheless, characteristics of the testing environment also mediate rodent behavior following drug administration. The current experiment used a within-subjects design to determine if nicotine-induced changes in horizontal activity, center entries, and rearing displayed by male and female rats is detected when behavior was recorded in round vs. square chambers. Behaviors were recorded from each group (males-round: n=19; males-square: n=18; females-square: n=19; and females-round: n=19) immediately following IV injection of saline, acute nicotine, and repeated nicotine (0.05mg/kg/injection). Prior to nicotine treatment, sex differences were apparent only in round chambers. Following nicotine administration, the order of magnitude for the chamber that provided enhanced detection of hypoactivity or sensitization was contingent upon both the dependent measure under examination and the animal's biological sex. As such, round and square testing chambers provide different, and sometimes contradictory, accounts of how male and female rats respond to nicotine treatment. It is possible that a central mechanism such as stress or cue sensitivity is impacted by both drug exposure and environment to drive the sex differences observed in the current experiment. Until these complex relations are better understood, experiments considering sex differences in drug responses should balance

  18. Visceral afferent activation-induced changes in sympathetic nerve activity and baroreflex sensitivity.

    Science.gov (United States)

    Saleh, T M; Connell, B J; Allen, G V

    1999-06-01

    The following experiments were done to determine whether changes in baroreflex sensitivity evoked by cervical vagus nerve stimulation are due to sympathoexcitation mediated by the parabrachial nucleus. The relative contribution of cardiopulmonary and general gastric afferents within the cervical vagus nerve to the depression in baroreflex sensitivity are also investigated. Male Sprague-Dawley rats anesthetized with thiobutabarbital sodium (50 mg/kg) were instrumented to measure blood pressure and heart rate or for the continuous monitoring of renal sympathetic nerve activity. Baroreflex sensitivity was measured using bolus injections of phenylephrine. Electrical stimulation of the cervical vagus (with or without the aortic depressor nerve) or the abdominal vagus nerve produced a significant increase in renal nerve activity and a decrease in baroreflex sensitivity. Both of these effects were blocked after the microinjection of lidocaine into the parabrachial nucleus before nerve stimulation. Therefore, we conclude that an increase in the activity of cardiac, pulmonary, or general gastric afferents mediated the increased sympathetic output and decreased baroreflex sensitivity via a pathway involving the parabrachial nucleus.

  19. Spectral sensitivity of light induced respiratory activity of photoreceptor mitochondria in the intact fly

    NARCIS (Netherlands)

    Tinbergen, J.; Stavenga, D.G.

    1987-01-01

    Fly Calliphora erythrocephala (white eyed) photoreceptors were investigated in intact, living animals by microspectrofluorometry in vivo. The fluorescence of mitochondrial flavoproteins was used to monitor transient changes in oxidative metabolism, which were induced by a test light following a

  20. The Attractiveness of Opposites: Agonists and Antagonists.

    LENUS (Irish Health Repository)

    O'Brien, Tony

    2015-02-02

    ABSTRACT Opioid-induced bowel dysfunction, of which constipation is the most common aspect, is a major limiting factor in the use of opioids for pain management. The availability of an oral, long-acting formulation of oxycodone and naloxone represents a highly significant development in pain management. The combination of an opioid analgesic with an opioid antagonist offers reliable pain control with a significant reduction in the burden of opioid-induced constipation. This report is adapted from paineurope 2014; Issue 3, ©Haymarket Medical Publications Ltd, and is presented with permission. paineurope is provided as a service to pain management by Mundipharma International, LTD and is distributed free of charge to healthcare professionals in Europe. Archival issues can be accessed via the website: http:\\/\\/www.paineurope.com at which European health professionals can register online to receive copies of the quarterly publication.

  1. Moderate and severe perinatal asphyxia induces differential effects on cocaine sensitization in adult rats.

    Science.gov (United States)

    Galeano, Pablo; Romero, Juan Ignacio; Luque-Rojas, María Jesús; Suárez, Juan; Holubiec, Mariana Inés; Bisagno, Verónica; Santín, Luis Javier; De Fonseca, Fernando Rodríguez; Capani, Francisco; Blanco, Eduardo

    2013-09-01

    Perinatal asphyxia (PA) increases the likelihood of suffering from dopamine-related disorders, such as ADHD and schizophrenia. Since dopaminergic transmission plays a major role in cocaine sensitization, the purpose of this study was to determine whether PA could be associated with altered behavioral sensitization to cocaine. To this end, adult rats born vaginally (CTL), by caesarean section (C+), or by C+ with 15 min (PA15, moderate PA) or 19 min (PA19, severe PA) of global anoxia were repeatedly administered with cocaine (i.p., 15 mg/kg) and then challenged with cocaine (i.p., 15 mg/kg) after a 5-day withdrawal period. In addition, c-Fos, FosB/ΔFosB, DAT, and TH expression were assessed in dorsal (CPu) and ventral (NAcc) striatum. Results indicated that PA15 rats exhibited an increased locomotor sensitization to cocaine, while PA19 rats displayed an abnormal acquisition of locomotor sensitization and did not express a sensitized response to cocaine. c-Fos expression in NAcc, but not in CPu, was associated with these alterations in cocaine sensitization. FosB/ΔFosB expression was increased in all groups and regions after repeated cocaine administration, although it reached lower expression levels in PA19 rats. In CTL, C+, and PA15, but not in PA19 rats, the expression of TH in NAcc was reduced in groups repeatedly treated with cocaine, independently of the challenge test. Furthermore, this reduction was more pronounced in PA15 rats. DAT expression remained unaltered in all groups and regions studied. These results suggest that moderate PA may increase the vulnerability to drug abuse and in particular to cocaine addiction. Copyright © 2013 Wiley Periodicals, Inc.

  2. Pancreatic beta-cell lipotoxicity induced by overexpression of hormone-sensitive lipase

    DEFF Research Database (Denmark)

    Winzell, Maria Sörhede; Svensson, Håkan; Enerbäck, Sven

    2003-01-01

    Lipid perturbations associated with triglyceride overstorage in beta-cells impair insulin secretion, a process termed lipotoxicity. To assess the role of hormone-sensitive lipase, which is expressed and enzymatically active in beta-cells, in the development of lipotoxicity, we generated transgenic...... mice overexpressing hormone-sensitive lipase specifically in beta-cells. Transgenic mice developed glucose intolerance and severely blunted glucose-stimulated insulin secretion when challenged with a high-fat diet. As expected, both lipase activity and forskolin-stimulated lipolysis was increased...

  3. Sensitivity of Induced Seismic Sequences to Rate-and-State Frictional Processes

    Science.gov (United States)

    Kroll, Kayla A.; Richards-Dinger, Keith B.; Dieterich, James H.

    2017-12-01

    It is well established that subsurface injection of fluids increases pore fluid pressures that may lead to shear failure along a preexisting fault surface. Concern among oil and gas, geothermal, and carbon storage operators has risen dramatically over the past decade due to the increase in the number and magnitude of induced earthquakes. Efforts to mitigate the risk associated with injection-induced earthquakes include modeling of the interaction between fluids and earthquake faults. Here we investigate this relationship with simulations that couple a geomechanical reservoir model and RSQSim, a physics-based earthquake simulator. RSQSim employs rate- and state-dependent friction (RSF) that enables the investigation of the time-dependent nature of earthquake sequences. We explore the effect of two RSF parameters and normal stress on the spatiotemporal characteristics of injection-induced seismicity. We perform >200 simulations to systematically investigate the effect of these model components on the evolution of induced seismicity sequences and compare the spatiotemporal characteristics of our synthetic catalogs to observations of induced earthquakes. We find that the RSF parameters control the ability of seismicity to migrate away from the injection well, the total number and maximum magnitude of induced events. Additionally, the RSF parameters control the occurrence/absence of premonitory events. Lastly, we find that earthquake stress drops can be modulated by the normal stress and/or the RSF parameters. Insight gained from this study can aid in further development of models that address best practice protocols for injection operations, site-specific models of injection-induced earthquakes, and probabilistic hazard and risk assessments.

  4. Andrographolide sensitizes cisplatin-induced apoptosis via suppression of autophagosome-lysosome fusion in human cancer cells.

    Science.gov (United States)

    Zhou, Jing; Hu, Shuai-Er; Tan, Shi-Hao; Cao, Ruoxi; Chen, Yiyang; Xia, Dajing; Zhu, Xinqiang; Yang, Xing-Fen; Ong, Choon-Nam; Shen, Han-Ming

    2012-03-01

    Suppression of autophagy has been increasingly recognized as a novel cancer therapeutic approach. Andrographolide (Andro), a diterpenoid lactone isolated from an herbal plant Andrographis paniculata, is known to possess anti-inflammatory and anticancer activity. In this study, we sought to examine the effect of Andro on autophagy, and to evaluate whether such effect is relevant to the sensitization effect of Andro on apoptosis induced by DNA damage agents in cancer cells. First, we found that Andro is able to significantly enhance autophagic markers in various cancer cell lines, including GFP-LC3 puncta and LC3-II level. Interestingly, Andro treatment also led to marked increase of p62 protein level and addition of chloroquine (CQ) failed to further enhance either LC3-II or p62 level, indicating that Andro is likely to suppress autophagic flux at the maturation and degradation stage. Next, we provided evidence that Andro inhibits autophagosome maturation not by affecting the lysosomal function, but by impairing autophagosome-lysosome fusion. Lastly, we demonstrated that treatment with cisplatin, a DNA damage agent, induces autophagy in cancer cells. Importantly, Andro is capable of sensitizing cisplatin-induced cell killing determined with both short-term apoptosis assays and long-term clonogenic test, via suppression of autophagy, a process independent of p53. In summary, these observations collectively suggest that Andro could be a promising anti-cancer agent in combination therapy via its potent inhibitory effect on autophagy by disrupting autophagosome-lysosome fusion.

  5. Histone Deacetylase Inhibitor Induced Radiation Sensitization Effects on Human Cancer Cells after Photon and Hadron Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Ariungerel Gerelchuluun

    2018-02-01

    Full Text Available Suberoylanilide hydroxamic acid (SAHA is a histone deacetylase inhibitor, which has been widely utilized throughout the cancer research field. SAHA-induced radiosensitization in normal human fibroblasts AG1522 and lung carcinoma cells A549 were evaluated with a combination of γ-rays, proton, and carbon ion exposure. Growth delay was observed in both cell lines during SAHA treatment; 2 μM SAHA treatment decreased clonogenicity and induced cell cycle block in G1 phase but 0.2 μM SAHA treatment did not show either of them. Low LET (Linear Energy Transfer irradiated A549 cells showed radiosensitization effects on cell killing in cycling and G1 phase with 0.2 or 2 μM SAHA pretreatment. In contrast, minimal sensitization was observed in normal human cells after low and high LET radiation exposure. The potentially lethal damage repair was not affected by SAHA treatment. SAHA treatment reduced the rate of γ-H2AX foci disappearance and suppressed RAD51 and RPA (Replication Protein A focus formation. Suppression of DNA double strand break repair by SAHA did not result in the differences of SAHA-induced radiosensitization between human cancer cells and normal cells. In conclusion, our results suggest SAHA treatment will sensitize cancer cells to low and high LET radiation with minimum effects to normal cells.

  6. Interleukin-1-receptor antagonist in type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Larsen, Claus M; Faulenbach, Mirjam; Vaag, Allan

    2007-01-01

    BACKGROUND: The expression of interleukin-1-receptor antagonist is reduced in pancreatic islets of patients with type 2 diabetes mellitus, and high glucose concentrations induce the production of interleukin-1beta in human pancreatic beta cells, leading to impaired insulin secretion, decreased cell...... proliferation, and apoptosis. METHODS: In this double-blind, parallel-group trial involving 70 patients with type 2 diabetes, we randomly assigned 34 patients to receive 100 mg of anakinra (a recombinant human interleukin-1-receptor antagonist) subcutaneously once daily for 13 weeks and 36 patients to receive...

  7. Vineyard snail allergy possibly induced by sensitization to house-dust mite (Dermatophagoides pteronyssinus)

    NARCIS (Netherlands)

    de Maat-Bleeker, F.; Akkerdaas, J. H.; van Ree, R.; Aalberse, R. C.

    1995-01-01

    A female patient experienced a severe allergic reaction after consumption of vineyard snails. The patient proved to be sensitized to house-dust mite (HDM) and demonstrated a positive skin test and specific IgE to snail (Eobania vermiculata, Lofarma). The snail RAST was > 80% inhibited by HDM,

  8. Sensitivity of cells to apoptosis induced by iron deprivation can be reversibly changed by iron availability

    Czech Academy of Sciences Publication Activity Database

    Koc, Michal; Naďová, Zuzana; Kovář, Jan

    2006-01-01

    Roč. 39, č. 6 (2006), s. 551-561 ISSN 0960-7722 R&D Projects: GA AV ČR(CZ) KJB5052401 Institutional research plan: CEZ:AV0Z50520514 Keywords : apoptosis * iron deprivation * changed cell sensitivity to apoptosis by iron availability Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.492, year: 2006

  9. Repeated patch testing to nickel during childhood do not induce nickel sensitization

    DEFF Research Database (Denmark)

    Søgaard Christiansen, Elisabeth

    2014-01-01

    Background: Previously, patch test reactivity to nickel sulphate in a cohort of unselected infants tested repeatedly at 3-72 months of age has been reported. A reproducible positive reaction at 12 and 18 months was selected as a sign of nickel sensitivity, provided a patch test with an empty Finn...

  10. 3-Bromopyruvate induces necrotic cell death in sensitive melanoma cell lines

    International Nuclear Information System (INIS)

    Qin, J.-Z.; Xin, H.; Nickoloff, B.J.

    2010-01-01

    Clinicians successfully utilize high uptake of radiolabeled glucose via PET scanning to localize metastases in melanoma patients. To take advantage of this altered metabolome, 3-bromopyruvate (BrPA) was used to overcome the notorious resistance of melanoma to cell death. Using four melanoma cell lines, BrPA triggered caspase independent necrosis in two lines, whilst the other two lines were resistant to killing. Mechanistically, sensitive cells differed from resistant cells by; constitutively lower levels of glutathione, reduction of glutathione by BrPA only in sensitive cells; increased superoxide anion reactive oxygen species, loss of outer mitochondrial membrane permeability, and rapid ATP depletion. Sensitive cell killing was blocked by N-acetylcysteine or glutathione. When glutathione levels were reduced in resistant cell lines, they became sensitive to killing by BrPA. Taken together, these results identify a metabolic-based Achilles' heel in melanoma cells to be exploited by use of BrPA. Future pre-clinical and clinical trials are warranted to translate these results into improved patient care for individuals suffering from metastatic melanoma.

  11. PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells.

    Science.gov (United States)

    Sun, C-G; Zhuang, J; Teng, W-J; Wang, Z; Du, S-S

    2015-05-29

    We explored whether p53 upregulated modulator of apoptosis (PUMA) gene transfection could enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells. The liposome-mediated recombinant eukaryotic expression vector PU-MA-pCDNA3 and empty vector plasmid were stably transfected into MCF-7 cells. Epirubicin (0.01-100 μM) was applied to MCF-7, MCF-7/PUMA, and MCF-7/pCDNA3 cells for 72 h. The MTT assay was used to calculate the cell survival rate in each group, and the 50% inhibitory concentration (IC50) was calculated. The IC50 values of epirubicin in MCF-7, MCF-7/PUMA, and MCF-7/pCDNA3 cells were 13 ± 1.4, 1.8 ± 0.2, and 10.7 ± 1.3 μM, respectively. The sensitivity of MCF-7/PUMA cells to epirubicin increased 7.2-fold. Epirubicin induced apoptosis in MCF-7 cells dose-dependently, but MCF-7/PUMA cell-induced apoptosis was more significant compared to controls. Low concentrations of epirubicin (0.1 μM) caused low levels of apoptosis of MCF-7/pCDNA3 (1.15 ± 0.26%) and MCF-7 cells (0.9 ± 0.24%), but significantly induced apoptosis of MCF-7/PUMA cells (6.44 ± 1.46%). High epirubicin concentration (1 μM) induced apoptosis in each group, but the epirubicin MCF-7/PUMA apoptosis rate (35.47 ± 9.36%) was significantly higher than that of MCF-7 (12.6 ± 3.73%) and MCF-7/ pCDNA3 (15.2 ± 5.17%) cells (P PUMA protein expression in MCF-7/PUMA cells was significantly higher than that in MCF-7 and MCF-7/pCDNA3 cells by Western blot analysis. There-fore, stable transfection of PUMA can significantly enhance epirubicin-induced apoptosis sensitivity of MCF-7 breast cancer cells.

  12. Monocrotophos induces the expression and activity of xenobiotic metabolizing enzymes in pre-sensitized cultured human brain cells.

    Directory of Open Access Journals (Sweden)

    Vinay K Tripathi

    Full Text Available The expression and metabolic profile of cytochrome P450s (CYPs is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y and glial (U373-MG cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC, cyclophosphamide (CPA, ethanol and known neurotoxicant- monocrotophos (MCP, a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against

  13. Maternal insulin sensitivity is associated with oral glucose-induced changes in fetal brain activity.

    Science.gov (United States)

    Linder, Katarzyna; Schleger, Franziska; Ketterer, Caroline; Fritsche, Louise; Kiefer-Schmidt, Isabelle; Hennige, Anita; Häring, Hans-Ulrich; Preissl, Hubert; Fritsche, Andreas

    2014-06-01

    Fetal programming plays an important role in the pathogenesis of type 2 diabetes. The aim of the present study was to investigate whether maternal metabolic changes during OGTT influence fetal brain activity. Thirteen healthy pregnant women underwent an OGTT (75 g). Insulin sensitivity was determined by glucose and insulin measurements at 0, 60 and 120 min. At each time point, fetal auditory evoked fields were recorded with a fetal magnetoencephalographic device and response latencies were determined. Maternal insulin increased from a fasting level of 67 ± 25 pmol/l (mean ± SD) to 918 ± 492 pmol/l 60 min after glucose ingestion and glucose levels increased from 4.4 ± 0.3 to 7.4 ± 1.1 mmol/l. Over the same time period, fetal response latencies decreased from 297 ± 99 to 235 ± 84 ms (p = 0.01) and then remained stable until 120 min (235 ± 84 vs 251 ± 91 ms, p = 0.39). There was a negative correlation between maternal insulin sensitivity and fetal response latencies 60 min after glucose ingestion (r = 0.68, p = 0.02). After a median split of the group based on maternal insulin sensitivity, fetuses of insulin-resistant mothers showed a slower response to auditory stimuli (283 ± 79 ms) than those of insulin-sensitive mothers (178 ± 46 ms, p = 0.03). Lower maternal insulin sensitivity is associated with slower fetal brain responses. These findings provide the first evidence of a direct effect of maternal metabolism on fetal brain activity and suggest that central insulin resistance may be programmed during fetal development.

  14. Rainfall-induced fecal indicator organisms transport from manured fields: model sensitivity analysis.

    Science.gov (United States)

    Martinez, Gonzalo; Pachepsky, Yakov A; Whelan, Gene; Yakirevich, Alexander M; Guber, Andrey; Gish, Timothy J

    2014-02-01

    Microbial quality of surface waters attracts attention due to food- and waterborne disease outbreaks. Fecal indicator organisms (FIOs) are commonly used for the microbial pollution level evaluation. Models predicting the fate and transport of FIOs are required to design and evaluate best management practices that reduce the microbial pollution in ecosystems and water sources and thus help to predict the risk of food and waterborne diseases. In this study we performed a sensitivity analysis for the KINEROS/STWIR model developed to predict the FIOs transport out of manured fields to other fields and water bodies in order to identify input variables that control the transport uncertainty. The distributions of model input parameters were set to encompass values found from three-year experiments at the USDA-ARS OPE3 experimental site in Beltsville and publicly available information. Sobol' indices and complementary regression trees were used to perform the global sensitivity analysis of the model and to explore the interactions between model input parameters on the proportion of FIO removed from fields. Regression trees provided a useful visualization of the differences in sensitivity of the model output in different parts of the input variable domain. Environmental controls such as soil saturation, rainfall duration and rainfall intensity had the largest influence in the model behavior, whereas soil and manure properties ranked lower. The field length had only moderate effect on the model output sensitivity to the model inputs. Among the manure-related properties the parameter determining the shape of the FIO release kinetic curve had the largest influence on the removal of FIOs from the fields. That underscored the need to better characterize the FIO release kinetics. Since the most sensitive model inputs are available in soil and weather databases or can be obtained using soil water models, results indicate the opportunity of obtaining large-scale estimates of FIO

  15. Conditional advice and inducements: are readers sensitive to implicit speech acts during comprehension?

    Science.gov (United States)

    Haigh, Matthew; Stewart, Andrew J; Wood, Jeffrey S; Connell, Louise

    2011-03-01

    Conditionals can implicitly convey a range of speech acts including promises, tips, threats and warnings. These are traditionally divided into the broader categories of advice (tips and warnings) and inducements (promises and threats). One consequence of this distinction is that speech acts from within the same category should be harder to differentiate than those from different categories. We examined this in two self-paced reading experiments. Experiment 1 revealed a rapid processing penalty when inducements (promises) and advice (tips) were anaphorically referenced using a mismatching speech act. In Experiment 2 a delayed penalty was observed when a speech act (promise or threat) was referenced by a mismatching speech act from the same category of inducements. This suggests that speech acts from the same category are harder to discriminate than those from different categories. Our findings not only support a semantic distinction between speech act categories, but also reveal pragmatic differences within categories. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Increased sensitivity of DNA damage response-deficient cells to stimulated microgravity-induced DNA lesions.

    Directory of Open Access Journals (Sweden)

    Nan Li

    Full Text Available Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG. In this study we used mouse embryonic stem (MES and mouse embryonic fibroblast (MEF cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced<