WorldWideScience

Sample records for antagonist binding sites

  1. Extra-helical binding site of a glucagon receptor antagonist.

    Science.gov (United States)

    Jazayeri, Ali; Doré, Andrew S; Lamb, Daniel; Krishnamurthy, Harini; Southall, Stacey M; Baig, Asma H; Bortolato, Andrea; Koglin, Markus; Robertson, Nathan J; Errey, James C; Andrews, Stephen P; Teobald, Iryna; Brown, Alastair J H; Cooke, Robert M; Weir, Malcolm; Marshall, Fiona H

    2016-05-12

    Glucagon is a 29-amino-acid peptide released from the α-cells of the islet of Langerhans, which has a key role in glucose homeostasis. Glucagon action is transduced by the class B G-protein-coupled glucagon receptor (GCGR), which is located on liver, kidney, intestinal smooth muscle, brain, adipose tissue, heart and pancreas cells, and this receptor has been considered an important drug target in the treatment of diabetes. Administration of recently identified small-molecule GCGR antagonists in patients with type 2 diabetes results in a substantial reduction of fasting and postprandial glucose concentrations. Although an X-ray structure of the transmembrane domain of the GCGR has previously been solved, the ligand (NNC0640) was not resolved. Here we report the 2.5 Å structure of human GCGR in complex with the antagonist MK-0893 (ref. 4), which is found to bind to an allosteric site outside the seven transmembrane (7TM) helical bundle in a position between TM6 and TM7 extending into the lipid bilayer. Mutagenesis of key residues identified in the X-ray structure confirms their role in the binding of MK-0893 to the receptor. The unexpected position of the binding site for MK-0893, which is structurally similar to other GCGR antagonists, suggests that glucagon activation of the receptor is prevented by restriction of the outward helical movement of TM6 required for G-protein coupling. Structural knowledge of class B receptors is limited, with only one other ligand-binding site defined--for the corticotropin-releasing hormone receptor 1 (CRF1R)--which was located deep within the 7TM bundle. We describe a completely novel allosteric binding site for class B receptors, providing an opportunity for structure-based drug design for this receptor class and furthering our understanding of the mechanisms of activation of these receptors. PMID:27111510

  2. Mapping of the leptin binding sites and design of a leptin antagonist.

    Science.gov (United States)

    Peelman, Frank; Van Beneden, Katrien; Zabeau, Lennart; Iserentant, Hannes; Ulrichts, Peter; Defeau, Delphine; Verhee, Annick; Catteeuw, Dominiek; Elewaut, Dirk; Tavernier, Jan

    2004-09-24

    The leptin/leptin receptor system shows strong similarities to the long-chain cytokine interleukin-6 (IL-6) and granulocyte colony-stimulating factor cytokine/receptor systems. The IL-6 family cytokines interact with their receptors through three different binding sites I-III. The leptin structure was superposed on the crystal structures of several long-chain cytokines, and a series of leptin mutants was generated focusing on binding sites I-III. The effect of the mutations on leptin receptor (LR) signaling and on binding to the membrane proximal cytokine receptor homology domain (CRH2) of the LR was determined. Mutations in binding site I at the C terminus of helix D show a modest effect on signaling and do not affect binding to CRH2. Binding site II is composed of residues at the surface of helices A and C. Mutations in this site impair binding to CRH2 but have only limited effect on signaling. Site III mutations around the N terminus of helix D impair receptor activation without affecting binding to CRH2. We identified an S120A/T121A mutant in binding site III, which lacks any signaling capacity, but which still binds to CRH2 with wild type affinity. This leptin mutant behaves as a potent leptin antagonist both in vitro and in vivo. PMID:15213225

  3. Binding characterization, synthesis and biological evaluation of RXRα antagonists targeting the coactivator binding site.

    Science.gov (United States)

    Xu, Dingyu; Guo, Shangjie; Chen, Ziwen; Bao, Yuzhou; Huang, Fengyu; Xu, Dan; Zhang, Xindao; Zeng, Zhiping; Zhou, Hu; Zhang, Xiaokun; Su, Ying

    2016-08-15

    Previously we identified the first retinoid X receptor-alpha (RXRα) modulators that regulate the RXRα biological function via binding to the coregulator-binding site. Here we report the characterization of the interactions between the hit molecule and RXRα through computational modeling, mutagenesis, SAR and biological evaluation. In addition, we reported studies of additional new compounds and identified a molecule that mediated the NF-κB pathway by inhibiting the TNFα-induced IκBα degradation and p65 nuclear translocation. PMID:27450787

  4. Immunohistochemical localization of the calcitonin gene-related peptide binding site in the primate trigeminovascular system using functional antagonist antibodies.

    Science.gov (United States)

    Miller, Silke; Liu, Hantao; Warfvinge, Karin; Shi, Licheng; Dovlatyan, Mary; Xu, Cen; Edvinsson, Lars

    2016-07-22

    Calcitonin gene-related peptide (CGRP) is a potent vasodilator and a neuromodulator implicated in the pathophysiology of migraine. It binds to the extracellular domains of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP) 1 that together form the CGRP receptor. Antagonist antibodies against CGRP and its binding site at the receptor are clinically effective in preventing migraine attacks. The blood-brain barrier penetration of these antagonist antibodies is limited, suggesting that a potential peripheral site of action is sufficient to prevent migraine attacks. To further understand the sites of CGRP-mediated signaling in migraine, we used immunohistochemical staining with recently developed antagonist antibodies specifically recognizing a fusion protein of the extracellular domains of RAMP1 and CLR that comprise the CGRP binding pocket at the CGRP receptor in monkey and man. We confirmed binding of the antagonist antibodies to human vascular smooth muscle cells (VSMCs) of dural meningeal arteries and neurons in the trigeminal ganglion, both of which are likely sites of action for therapeutic antibodies in migraine patients. We further used one of these antibodies for detailed mapping on cynomolgus monkey tissue and found antagonist antibody binding sites at multiple levels in the trigeminovascular system: in the dura mater VSMCs, in neurons and satellite glial cells in the trigeminal ganglion, and in neurons in the spinal trigeminal nucleus caudalis. These data reinforce and clarify our understanding of CGRP receptor localization in a pattern consistent with a role for CGRP receptors in trigeminal sensitization and migraine pathology. PMID:27155150

  5. Discovery and mapping of an intracellular antagonist binding site at the chemokine receptor CCR2

    DEFF Research Database (Denmark)

    Zweemer, Annelien J M; Bunnik, Julia; Veenhuizen, Margo;

    2014-01-01

    for an intracellular binding site for CCR2-RA-[R], JNJ-27141491, and SD-24. For CCR2-RA-[R] the most important residues for binding were found to be the highly conserved tyrosine Y(7.53) and phenylalanine F(8.50) of the NPxxYx(5,6)F motif, as well as V(6.36) at the bottom of TM-VI and K(8.49) in helix...

  6. Opiate antagonist binding sites in discrete brain regions of spontaneously hypertensive and normotensive Wistar-Kyoto rats

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N.H.; Gulati, A.; Bhargava, H.N. (Univ. of Illinois, Chicago (USA))

    1991-01-01

    The binding of {sup 3}H-naltrexone, an opiate receptor antagonist, to membranes of discrete brain regions and spinal cord of 10 week old spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. The brain regions examined were hypothalamus, amygdala, hippocampus, corpus striatum, pons and medulla, midbrain and cortex. {sup 3}H-Naltrexone bound to membranes of brain regions and spinal cord at a single high affinity site with an apparent dissociation constant value of 3 nM. The highest density of {sup 3}H-naltrexone binding sites were in hippocampus and lowest in the cerebral cortex. The receptor density (B{sub max}value) and apparent dissociation constant (K{sub d} value) values of {sup 3}H-naltrexone to bind to opiate receptors on the membranes of amygdala, hippocampus, corpus striatum, pons and medulla, midgrain, cortex and spinal cord of WKY and SHR rates did not differ. The B{sub max} value of {sup 3}H-naltrexone binding to membranes of hypothalamus of SHR rates was 518% higher than WKY rats but the K{sub d} values in the two strains did not differ. It is concluded that SHR rats have higher density of opiate receptors labeled with {sup 3}H-naltrexone in the hypothalamus only, in comparison with WKY rats, and that such a difference in the density of opiate receptors may be related to the elevated blood pressure in SHR rats.

  7. Crystal structure and pharmacological characterization of a novel N-methyl-D-aspartate (NMDA) receptor antagonist at the GluN1 glycine binding site

    DEFF Research Database (Denmark)

    Kvist, Trine; Steffensen, Thomas Bielefeldt; Greenwood, Jeremy R;

    2013-01-01

    glycine site antagonist, 1-thioxo-1,2-dihydro-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one (TK40). Here, we show by Schild analysis that TK40 is a potent competitive antagonist with Kb values of 21-63 nm at the GluN1 glycine-binding site of the four recombinant GluN1/N2A-D receptors. In addition, TK40...

  8. Adenosine A2A receptor binding profile of two antagonists, ST1535 and KW6002: consideration on the presence of atypical adenosine A2A binding sites

    Directory of Open Access Journals (Sweden)

    Teresa Riccioni

    2010-08-01

    Full Text Available Adenosine A2A receptors seem to exist in typical (more in striatum and atypical (more in hippocampus and cortex subtypes. In the present study, we investigated the affinity of two adenosine A2A receptor antagonists, ST1535 [2 butyl -9-methyl-8-(2H-1,2,3-triazol 2-yl-9H-purin-6-xylamine] and KW6002 [(E-1,3-diethyl-8-(3,4-dimethoxystyryl-7-methyl-3,7-dihydro-1H-purine-2,6,dione] to the “typical” and “atypical” A2A binding sites. Affinity was determined by radioligand competition experiments in membranes from rat striatum and hippocampus. Displacement of the adenosine analog [3H]CGS21680 [2-p-(2-carboxyethylphenethyl-amino-5’-N-ethylcarbox-amidoadenosine] was evaluated in the absence or in the presence of either CSC [8-(3-chlorostyryl-caffeine], an adenosine A2A antagonist that pharmacologically isolates atypical binding sites, or DPCPX (8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor antagonist that pharmacologically isolates typical binding site. ZM241385 [84-(2-[7-amino-2-(2-furyl [1,2,4]-triazol[2,3-a][1,3,5]triazin-5-yl amino]ethyl phenol] and SCH58261 [(5-amino-7-(β-phenylethyl-2-(8-furylpyrazolo(4,3-e-1,2,4-triazolo(1,5-c pyrimidine], two other adenosine A2A receptor antagonists, which were reported to differently bind to atypical and typical A2A receptors, were used as reference compounds. ST1535, KW6002, ZM241385 and SCH58261 displaced [3H]CGS21680 with higher affinity in striatum than in hippocampus. In hippocampus, no typical adenosine A2A binding was detected, and ST1535 was the only compound that occupied atypical A2A adenosine receptors. Present data are explained in terms of heteromeric association among adenosine A2A, A2B and A1 receptors, rather than with the presence of atypical A2A receptor subtype.

  9. Structural model for gamma-aminobutyric acid receptor noncompetitive antagonist binding: widely diverse structures fit the same site.

    Science.gov (United States)

    Chen, Ligong; Durkin, Kathleen A; Casida, John E

    2006-03-28

    Several major insecticides, including alpha-endosulfan, lindane, and fipronil, and the botanical picrotoxinin are noncompetitive antagonists (NCAs) for the GABA receptor. We showed earlier that human beta(3) homopentameric GABA(A) receptor recognizes all of the important GABAergic insecticides and reproduces the high insecticide sensitivity and structure-activity relationships of the native insect receptor. Despite large structural diversity, the NCAs are proposed to fit a single binding site in the chloride channel lumen lined by five transmembrane 2 segments. This hypothesis is examined with the beta(3) homopentamer by mutagenesis, pore structure studies, NCA binding, and molecular modeling. The 15 amino acids in the cytoplasmic half of the pore were mutated to cysteine, serine, or other residue for 22 mutants overall. Localization of A-1'C, A2'C, T6'C, and L9'C (index numbers for the transmembrane 2 region) in the channel lumen was established by disulfide cross-linking. Binding of two NCA radioligands [(3)H]1-(4-ethynylphenyl)-4-n-propyl-2,6,7-trioxabicyclo[2.2.2]octane and [(3)H] 3,3-bis-trifluoromethyl-bicyclo[2,2,1]heptane-2,2-dicarbonitrile was dramatically reduced with 8 of the 15 mutated positions, focusing attention on A2', T6', and L9' as proposed binding sites, consistent with earlier mutagenesis studies. The cytoplasmic half of the beta3 homopentamer pore was modeled as an alpha-helix. The six NCAs listed above plus t-butylbicyclophosphorothionate fit the 2' to 9' pore region forming hydrogen bonds with the T6' hydroxyl and hydrophobic interactions with A2', T6', and L9' alkyl substituents, thereby blocking the channel. Thus, widely diverse NCA structures fit the same GABA receptor beta subunit site with important implications for insecticide cross-resistance and selective toxicity between insects and mammals.

  10. Interactions of dopaminergic agonists and antagonists with dopaminergic D3 binding sites in rat striatum. Evidence that (/sup 3/H)dopamine can label a high affinity agonist-binding state of the D1 dopamine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Leff, S.E.; Creese, I.

    1985-02-01

    The interactions of dopaminergic agonists and antagonists with /sup 3/H-agonist labeled D3 dopaminergic binding sites of rat striatum have been characterized by radioligand-binding techniques. When the binding of (/sup 3/H)dopamine and (/sup 3/H)apomorphine to D2 dopamine receptors is blocked by the inclusion of D2 selective concentrations of unlabeled spiroperidol or domperidone, these ligands appear to label selectively the previously termed D3 binding site. Antagonist/(/sup 3/H)dopamine competition curves are of uniformly steep slope (nH . 1.0), suggesting the presence of a single D3 binding site. The relative potencies of antagonists to inhibit D3 specific (/sup 3/H)dopamine binding are significantly correlated with their potencies to block D1 dopamine receptors as measured by the inhibition of both dopamine-stimulated adenylate cyclase and (/sup 3/H)flupentixol-binding activities. The affinities of agonists to inhibit D3 specific (/sup 3/H)dopamine binding are also correlated with estimates of these agonists affinities for the high affinity binding component of agonist/(/sup 3/H)flupentixol competition curves. Both D3 specific (/sup 3/H) dopamine binding and the high affinity agonist-binding component of dopamine/(/sup 3/H)flupentixol competition curves show a similar sensitivity to guanine nucleotides. Taken together, these data strongly suggest that the D3 binding site is related to a high affinity agonist-binding state of the D1 dopamine receptor.

  11. Brevenal, a brevetoxin antagonist from Karenia brevis, binds to a previously unreported site on mammalian sodium channels.

    Science.gov (United States)

    Gold, Elena P; Jacocks, Henry M; Bourdelais, Andrea J; Baden, Daniel G

    2013-06-01

    Brevetoxins are a family of ladder-frame polyether toxins produced by the marine dinoflagellate Karenia brevis. During blooms of K. brevis, inhalation of brevetoxins aerosolized by wind and wave action can lead to asthma-like symptoms in persons at the beach. Consumption of either shellfish or finfish contaminated by K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to binding at a defined site on, and subsequent activation of, voltage-sensitive sodium channels (VSSCs) in cell membranes (site 5). In addition to brevetoxins, K. brevis produces several other ladder-frame compounds. One of these compounds, brevenal, has been shown to antagonize the effects of brevetoxin. In an effort to further characterize to effects of brevenal, a radioactive analog ([(3)H]-brevenol) was produced by reducing the side-chain terminal aldehyde moiety of brevenal to an alcohol using tritiated sodium borohydride. A KD of 67 nM and Bmax of 7.1 pmol/mg protein were obtained for [(3)H]-brevenol in rat brain synaptosomes, suggesting a 1:1 matching with VSSCs. Brevenal and brevenol competed for [(3)H]-brevenol binding with Ki values of 75 nM and 56 nM, respectively. However, although both brevenal and brevenol can inhibit brevetoxin binding, brevetoxin was completely ineffective at competition for [(3)H]-brevenol binding. After examining other site-specific compounds, it was determined that [(3)H]-brevenol binds to a site that is distinct from the other known sites including the brevetoxin site (site 5) although some interaction with site 5 is apparent. PMID:23789024

  12. Pre-treatment with the NMDA receptor glycine-binding site antagonist L-701,324 improves pharmacosensitivity in a mouse kindling model.

    Science.gov (United States)

    Zellinger, Christina; Salvamoser, Josephine D; Soerensen, Jonna; van Vliet, Erwin A; Aronica, Eleonora; Gorter, Jan; Potschka, Heidrun

    2014-05-01

    The glycine co-agonist binding site of the N-methyl-D-aspartat (NMDA) receptor is discussed as an interesting target for different central nervous system diseases. Antagonism at this co-agonist site has been suggested as an alternative to the use of non-competitive or competitive NMDA receptor antagonists, which are associated with a pronounced adverse effect profile in chronic epilepsy models and epilepsy patients. In the present study, we addressed the hypothesis that sub-chronic administration of the glycine-binding site antagonist L-701,324 might exert disease-modifying effects in fully kindled mice during a period with frequent seizure elicitation (massive kindling). Moreover, we analyzed whether L-701,324 exposure during this phase affects the subsequent response to an antiepileptic drug. L-701,324 treatment during the massive kindling phase did not affect ictogenesis. Mean seizure severity and cumulative seizure duration proved to be comparable between vehicle- and L-701,324-treated mice. Following withdrawal of L-701,324 seizure thresholds did not differ in a significant manner from those in animals that received vehicle injections. A low dosage of phenobarbital caused a significant increase of the generalized seizure threshold in the L-701,324 pre-treated group, whereas it did not exert a comparable effect in animals that received vehicle during the massive kindling phase. Analysis of P-glycoprotein in the hilus of the hippocampus revealed lower expression rates in L-701,324 pre-treated kindled mice. In conclusion, the data indicate that targeting of the NMDA receptor glycine-binding site does not result in anticonvulsant or disease-modifying effects. However, it might improve antiepileptic drug responses. The findings might be linked to an impact on P-glycoprotein expression. However, future studies are necessary to further evaluate the mechanisms and assess the potential of respective add-on approaches.

  13. In Silico Investigation of the Neurotensin Receptor 1 Binding Site: Overlapping Binding Modes for Small Molecule Antagonists and the Endogenous Peptide Agonist.

    Science.gov (United States)

    Lückmann, Michael; Holst, Birgitte; Schwartz, Thue W; Frimurer, Thomas M

    2016-01-01

    The neurotensin receptor 1 (NTSR1) belongs to the family of 7TM, G protein-coupled receptors, and is activated by the 13-amino-acid peptide neurotensin (NTS) that has been shown to play important roles in neurological disorders and the promotion of cancer cells. Recently, a high-resolution x-ray crystal structure of NTSR1 in complex with NTS8-13 has been determined, providing novel insights into peptide ligand recognition by 7TM receptors. SR48692, a potent and selective small molecule antagonist has previously been used extensively as a tool compound to study NTSR1 receptor signaling properties. To investigate the binding mode of SR48692 and other small molecule compounds to NTSR1, we applied an Automated Ligand-guided Backbone Ensemble Receptor Optimization protocol (ALiBERO), taking receptor flexibility and ligand knowledge into account. Structurally overlapping binding poses for SR48692 and NTS8-13 were observed, despite their distinct chemical nature and inverse pharmacological profiles. The optimized models showed significantly improved ligand recognition in a large-scale virtual screening assessment compared to the crystal structure. Our models provide new insights into small molecule ligand binding to NTSR1 and could facilitate the structure-based design of non-peptide ligands for the evaluation of the pharmacological potential of NTSR1 in neurological disorders and cancer. PMID:27491650

  14. HETEROGENEOUS RECEPTOR-BINDING OF CLASSICAL QUATERNARY MUSCARINIC ANTAGONISTS .1. BOVINE TISSUE DISTRIBUTION

    NARCIS (Netherlands)

    ROFFEL, AF; ENSING, K; INTHOUT, WG; DEZEEUW, RA; ZAAGSMA, J

    1991-01-01

    In competition experiments with the teritiary radioligand [H-3]dexetimide, classical quaternary muscarinic antagonists like ipratropium bromide and N-methylscopolamine bromide distinguished two muscarinic binding sites in bovine brain (total brain minus cerebellum) membranes, in contrast to their te

  15. Plant Hormone Binding Sites

    OpenAIRE

    Napier, Richard

    2004-01-01

    • Aims Receptors for plant hormones are becoming identified with increasing rapidity, although a frustrating number remain unknown. There have also been many more hormone‐binding proteins described than receptors. This Botanical Briefing summarizes what has been discovered about hormone binding sites, their discovery and descriptions, and will not dwell on receptor functions or activities except where these are relevant to understand binding.

  16. [3]tetrahydrotrazodone binding. Association with serotonin binding sites

    International Nuclear Information System (INIS)

    High (17 nM) and low (603 nM) affinity binding sites for [3]tetrahydrotrazodone ([3] THT), a biologically active analogue of trazodone, have been identified in rat brain membranes. The substrate specificity, concentration, and subcellular and regional distributions of these sites suggest that they may represent a component of the serotonin transmitter system. Pharmacological analysis of [3]THT binding, coupled with brain lesion and drug treatment experiments, revealed that, unlike other antidepressants, [3] THT does not attach to either a biogenic amine transporter or serotonin binding sites. Rather, it would appear that [3]THT may be an antagonist ligand for the serotonin binding site. This probe may prove of value in defining the mechanism of action of trazodone and in further characterizing serotonin receptors

  17. Development of prolactin receptor antagonists with reduced pH-dependence of receptor binding

    DEFF Research Database (Denmark)

    Hansen, Mathilde Johanne Kaas; Olsen, Johan Gotthardt; Bernichtein, Sophie;

    2011-01-01

    and thermodynamic characterization of receptor binding by isothermal titration calorimetry combined with in vitro bioactivity in living cells. Histidine residue 27 was recognized as a central hot spot for pH sensitivity and conservative substitutions at this site resulted in strong receptor binding at low pH. Pure...... antagonists were developed earlier and the histidine mutations were introduced within such background. The antagonistic properties were maintained and the high affinity at low pH conserved. The implications of these findings may open new areas of research in the field of prolactin cancer biology. Copyright...

  18. Polypharmacology within CXCR4: Multiple binding sites and allosteric behavior

    Science.gov (United States)

    Planesas, Jesús M.; Pérez-Nueno, Violeta I.; Borrell, José I.; Teixidó, Jordi

    2014-10-01

    CXCR4 is a promiscuous receptor, which binds multiple diverse ligands. As usual in promiscuous proteins, CXCR4 has a large binding site, with multiple subsites, and high flexibility. Hence, it is not surprising that it is involved in the phenomenon of allosteric modulation. However, incomplete knowledge of allosteric ligand-binding sites has hampered an in-depth molecular understanding of how these inhibitors work. For example, it is known that lipidated fragments of intracellular GPCR loops, so called pepducins, such as pepducin ATI-2341, modulate CXCR4 activity using an agonist allosteric mechanism. Nevertheless, there are also examples of small organic molecules, such as AMD11070 and GSK812397, which may act as antagonist allosteric modulators. Here, we give new insights into this issue by proposing the binding interactions between the CXCR4 receptor and the above-mentioned allosteric modulators. We propose that CXCR4 has minimum two topographically different allosteric binding sites. One allosteric site would be in the intracellular loop 1 (ICL1) where pepducin ATI-2341 would bind to CXCR4, and the second one, in the extracellular side of CXCR4 in a subsite into the main orthosteric binding pocket, delimited by extracellular loops n° 1, 2, and the N-terminal end, where antagonists AMD11070 and GSK812397 would bind. Prediction of allosteric interactions between CXCR4 and pepducin ATI-2341 were studied first by rotational blind docking to determine the main binding region and a subsequent refinement of the best pose was performed using flexible docking methods and molecular dynamics. For the antagonists AMD11070 and GSK812397, the entire CXCR4 protein surface was explored by blind docking to define the binding region. A second docking analysis by subsites of the identified binding region was performed to refine the allosteric interactions. Finally, we identified the binding residues that appear to be essential for CXCR4 (agonists and antagonists) allosteric

  19. Possible site of action of CGRP antagonists in migraine

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer; Olesen, Jes

    2011-01-01

    The calcitonin gene-related peptide (CGRP) receptor antagonists olcegepant and telcagepant are very potent drugs. Both are effective in migraine but in doses much higher than would be predicted from receptor binding and other in vitro results. This could perhaps suggest an effect of CGRP antagoni...

  20. Scaffold Optimisation of Tetravalent Antagonists of the Mannose Binding Lectin.

    Science.gov (United States)

    Goti, Giulio; Palmioli, Alessandro; Stravalaci, Matteo; Sattin, Sara; De Simoni, Maria-Grazia; Gobbi, Marco; Bernardi, Anna

    2016-03-01

    Antagonists of mannose binding lectin (MBL) have shown a protective role against brain reperfusion damage after acute ischemic stroke. Here we describe the design and streamlined synthesis of glycomimetic MBL antagonists based on a new tetravalent dendron scaffold. The dendron was developed by optimisation of a known polyester structure previously demonstrated to be very efficient for ligand presentation to MBL. Replacement of a labile succinyl ester bond with a more robust amide functionality, use of a longer and more hydrophilic linker, fast modular synthesis and orthogonal functionalisation at the focal point are the main features of the new scaffold. The glycoconjugate constructs become stable to silica gel chromatography and to water solutions at physiological pH, while preserving water solubility and activity in an SPR assay against the murine MBL-C isoform. Higher-order constructs were easily assembled, as demonstrated by the synthesis of a 16-valent dendrimer, which leads to two orders of magnitude increase in activity over the tetravalent version against MBL-C. PMID:26696414

  1. A Novel Binding Mode Reveals Two Distinct Classes of NMDA Receptor GluN2B-selective Antagonists.

    Science.gov (United States)

    Stroebel, David; Buhl, Derek L; Knafels, John D; Chanda, Pranab K; Green, Michael; Sciabola, Simone; Mony, Laetitia; Paoletti, Pierre; Pandit, Jayvardhan

    2016-05-01

    N-methyl-d-aspartate receptors (NMDARs) are glutamate-gated ion channels that play key roles in brain physiology and pathology. Because numerous pathologic conditions involve NMDAR overactivation, subunit-selective antagonists hold strong therapeutic potential, although clinical successes remain limited. Among the most promising NMDAR-targeting drugs are allosteric inhibitors of GluN2B-containing receptors. Since the discovery of ifenprodil, a range of GluN2B-selective compounds with strikingly different structural motifs have been identified. This molecular diversity raises the possibility of distinct binding sites, although supporting data are lacking. Using X-ray crystallography, we show that EVT-101, a GluN2B antagonist structurally unrelated to the classic phenylethanolamine pharmacophore, binds at the same GluN1/GluN2B dimer interface as ifenprodil but adopts a remarkably different binding mode involving a distinct subcavity and receptor interactions. Mutagenesis experiments demonstrate that this novel binding site is physiologically relevant. Moreover, in silico docking unveils that GluN2B-selective antagonists broadly divide into two distinct classes according to binding pose. These data widen the allosteric and pharmacological landscape of NMDARs and offer a renewed structural framework for designing next-generation GluN2B antagonists with therapeutic value for brain disorders. PMID:26912815

  2. Pharmacophore-based virtual screening, biological evaluation and binding mode analysis of a novel protease-activated receptor 2 antagonist.

    Science.gov (United States)

    Cho, Nam-Chul; Seo, Seoung-Hwan; Kim, Dohee; Shin, Ji-Sun; Ju, Jeongmin; Seong, Jihye; Seo, Seon Hee; Lee, Iiyoun; Lee, Kyung-Tae; Kim, Yun Kyung; No, Kyoung Tai; Pae, Ae Nim

    2016-08-01

    Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor, mediating inflammation and pain signaling in neurons, thus it is considered to be a potential therapeutic target for inflammatory diseases. In this study, we performed a ligand-based virtual screening of 1.6 million compounds by employing a common-feature pharmacophore model and two-dimensional similarity search to identify a new PAR2 antagonist. The common-feature pharmacophore model was established based on the biological screening results of our in-house library. The initial virtual screening yielded a total number of 47 hits, and additional biological activity tests including PAR2 antagonism and anti-inflammatory effects resulted in a promising candidate, compound 43, which demonstrated an IC50 value of 8.22 µM against PAR2. In next step, a PAR2 homology model was constructed using the crystal structure of the PAR1 as a template to explore the binding mode of the identified ligands. A molecular docking method was optimized by comparing the binding modes of a known PAR2 agonist GB110 and antagonist GB83, and applied to predict the binding mode of our hit compound 43. In-depth docking analyses revealed that the hydrophobic interaction with Phe243(5.39) is crucial for PAR2 ligands to exert antagonistic activity. MD simulation results supported the predicted docking poses that PAR2 antagonist blocked a conformational rearrangement of Na(+) allosteric site in contrast to PAR2 agonist that showed Na(+) relocation upon GPCR activation. In conclusion, we identified new a PAR2 antagonist together with its binding mode, which provides useful insights for the design and development of PAR2 ligands. PMID:27600555

  3. Adaptive evolution of transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Berg Johannes

    2004-10-01

    Full Text Available Abstract Background The regulation of a gene depends on the binding of transcription factors to specific sites located in the regulatory region of the gene. The generation of these binding sites and of cooperativity between them are essential building blocks in the evolution of complex regulatory networks. We study a theoretical model for the sequence evolution of binding sites by point mutations. The approach is based on biophysical models for the binding of transcription factors to DNA. Hence we derive empirically grounded fitness landscapes, which enter a population genetics model including mutations, genetic drift, and selection. Results We show that the selection for factor binding generically leads to specific correlations between nucleotide frequencies at different positions of a binding site. We demonstrate the possibility of rapid adaptive evolution generating a new binding site for a given transcription factor by point mutations. The evolutionary time required is estimated in terms of the neutral (background mutation rate, the selection coefficient, and the effective population size. Conclusions The efficiency of binding site formation is seen to depend on two joint conditions: the binding site motif must be short enough and the promoter region must be long enough. These constraints on promoter architecture are indeed seen in eukaryotic systems. Furthermore, we analyse the adaptive evolution of genetic switches and of signal integration through binding cooperativity between different sites. Experimental tests of this picture involving the statistics of polymorphisms and phylogenies of sites are discussed.

  4. Erythropoietin binding sites in human foetal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Pekonen, F.; Rosenloef, K.; Rutanen, E.-M.

    1987-01-01

    Using /sup 125/I labelled recombinant DNA human erythropoietin (EP), we have explored the presence and properties of EP binding sites in foetal human tissues. The EP binding site is present in the foetal liver already during the first trimester of pregnancy. The binding site has a equilibrium association constant of 4.1-6.2 x 10/sup 9/l/mol and is specific for EP. The cross-reactivities of FSH, TSH, hCG, insulin and renin substrate were less than 0.01%. The EP binding capacity of foetal liver was 5.4-16 fmol/mg membrane protein. In foetal lung tissue, a slight EP binding activity was observed, whereas foetal spleen, muscle, brain, thyroid and placental tissues were virtually devoid of EP binding capacity. The same level of binding was reached at 37 deg. C in 1 h and at 4 deg. C in 24 h. The binding was pH-dependent with maximal specific binding at pH 7.7. SDS-PAGE gel electrophoresis analysis of covalently cross-linked /sup 125/I-EP to foetal liver membranes suggested that the EP binding site was composed of two subunits with an apparent mol wt of 41000 and 86000 dalton, respectively.

  5. Erythropoietin binding sites in human foetal tissues

    International Nuclear Information System (INIS)

    Using 125I labelled recombinant DNA human erythropoietin (EP), we have explored the presence and properties of EP binding sites in foetal human tissues. The EP binding site is present in the foetal liver already during the first trimester of pregnancy. The binding site has a equilibrium association constant of 4.1-6.2 x 109l/mol and is specific for EP. The cross-reactivities of FSH, TSH, hCG, insulin and renin substrate were less than 0.01%. The EP binding capacity of foetal liver was 5.4-16 fmol/mg membrane protein. In foetal lung tissue, a slight EP binding activity was observed, whereas foetal spleen, muscle, brain, thyroid and placental tissues were virtually devoid of EP binding capacity. The same level of binding was reached at 37 deg. C in 1 h and at 4 deg. C in 24 h. The binding was pH-dependent with maximal specific binding at pH 7.7. SDS-PAGE gel electrophoresis analysis of covalently cross-linked 125I-EP to foetal liver membranes suggested that the EP binding site was composed of two subunits with an apparent mol wt of 41000 and 86000 dalton, respectively. (author)

  6. Molecular determinants of non-competitive antagonist binding to the mouse GPRC6A receptor

    DEFF Research Database (Denmark)

    Faure, Helene; Gorojankina, Tatiana; Rice, Nadejda;

    2009-01-01

    Calindol antagonist activity but was without effect on NPS2143 inhibitory response. In summary, these data suggest that Calindol is primarily anchored through an H-bond to E816(7.39) in TM7 and highlight important local differences at the level of the CaSR and GPRC6A allosteric binding pockets. We have...... identified the first antagonists of GPRC6A that could represent new tools to analyze GPRC6A functions and serve as chemical leads for the development of more specific modulators....

  7. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, PO Box 62, Berne (Switzerland)

    2014-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the {sup 125}iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer {sup 125}I-GLP-1(7-36)amide. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist {sup 125}I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer {sup 125}I-GLP-1(7-36)amide. For comparison, {sup 125}I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with {sup 125}I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  8. Agonist binding to high-affinity dopamine sites

    Energy Technology Data Exchange (ETDEWEB)

    Tedesco, J.L.

    1985-01-01

    The authors have characterized the dopamine D/sub 3/ site and its binding requirements. The dopamine D/sub 3/ site in calf caudate crude homogenate has a site density of 214-230 fmoles/mg. protein by both /sup 3/H-apomorphine (/sup 3/H-AOP) and /sup 3/H-dopamine (/sup 3/H-DA) Scatchard analysis of specific binding (SB). Stereospecific subsets of /sup 3/H-APO and /sup 3/H-DA sites were defined by the use of agonist and antagonist enantiomer-pairs as a rigorous test for D/sub 3/ site heterogeneity. IC/sub 50/ values for both /sup 3/H-APO and /sup 3/H-DA SB sites were assessed for 55 agonist ligands and an excellent correlation was obtained. The authors conclude that both /sup 3/H-ligands label the same D/sub 3/ site. The D/sub 3/ site affinities of 105 dopamine-agonist ligands, in particular 2-aminotetralins,, aporphines and flexible dopamine analogues were measured. Low D/sub 3/-site affinities of N-quaternary analogues confirm the need for a lone pair. Subadditivity of substituents' effects in semi-flexible DA analogues confirms their postulate that sidechain conformation is the critical determinant of affinity. They conclude that there are at least two high-affinity ligand conformations of the DA sidechain pharmacophore. These binding requirements are presented as two interface-Geometry tetrahedral models of the double H-bond interface between the D/sub 3/ site and the ideal ligand.

  9. Differential binding of urokinase and peptide antagonists to the urokinase receptor

    DEFF Research Database (Denmark)

    Engelholm, L H; Behrendt, N

    2001-01-01

    though these sequences contain very few substitutions relative to the human uPAR, the receptor protein products differ markedly in terms of ligand selectivity. Thus, a well described competitive peptide antagonist directed against the human uPAR reacts with only one of the monkey receptors (chimpanzee u......PAR), in spite of the fact that uPAR from all of the four species cross-reacts with human uPA. Notably, uPAR from African green monkey, which is completely devoid of reactivity with the peptide, contains only three substitutions relative to chimpanzee uPAR in the molecular regions critical for binding....... These findings aid the elucidation of the structure/function relationship of uPAR and, unexpectedly, identify a structural distinction governing the binding of uPA and a very similar peptide antagonist....

  10. Differential effect of glucocorticoid receptor antagonists on glucocorticoid receptor nuclear translocation and DNA binding

    Science.gov (United States)

    Spiga, Francesca; Knight, David M; Droste, Susanne K; Conway-Campbell, Becky; Kershaw, Yvonne; MacSweeney, Cliona P; Thomson, Fiona J; Craighead, Mark; Peeters, Bernard WMM; Lightman, Stafford L

    2016-01-01

    The effects of RU486 and S-P, a more selective glucocorticoid receptor antagonist from Schering-Plough, were investigated on glucocorticoid receptor nuclear translocation and DNA binding. In the in vitro study, AtT20 cells were treated with vehicle or with RU486, S-P or corticosterone (3–300 nM) or co-treated with vehicle or glucocorticoid receptor antagonists (3–300 nM) and 30 nM corticosterone. Both glucocorticoid receptor antagonists induced glucocorticoid receptor nuclear translocation but only RU486 induced DNA binding. RU486 potentiated the effect of corticosterone on glucocorticoid receptor nuclear translocation and DNA binding, S-P inhibited corticosterone-induced glucocorticoid receptor nuclear translocation, but not glucocorticoid receptor-DNA binding. In the in vivo study, adrenalectomized rats were treated with vehicle, RU486 (20 mg/kg) and S-P (50 mg/kg) alone or in combination with corticosterone (3 mg/kg). RU486 induced glucocorticoid receptor nuclear translocation in the pituitary, hippocampus and prefrontal cortex and glucocorticoid receptor-DNA binding in the hippocampus, whereas no effect of S-P on glucocorticoid receptor nuclear translocation or DNA binding was observed in any of the areas analysed. These findings reveal differential effects of RU486 and S-P on areas involved in regulation of hypothalamic–pituitary–adrenal axis activity in vivo and they are important in light of the potential use of this class of compounds in the treatment of disorders associated with hyperactivity of the hypothalamic–pituitary–adrenal axis. PMID:20093322

  11. Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem

    DEFF Research Database (Denmark)

    Eftekhari, Sajedeh; Roberts, Rhonda; Chen, Tsing-Bau;

    2016-01-01

    -like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1), respectively. To define CGRP receptor binding sites, in vitro autoradiography was performed with [(3)H]MK-3207 (a CGRP receptor antagonist). CLR and RAMP1 mRNA and protein expression were detected in the pineal gland, medial mammillary...

  12. High-affinity dextromethorphan binding sites in guinea pig brain. II. Competition experiments.

    Science.gov (United States)

    Craviso, G L; Musacchio, J M

    1983-05-01

    Binding of dextromethorphan (DM) to guinea pig brain is stereoselective, since levomethorphan is 20 times weaker than DM in competing for DM sites. In general, opiate agonists and antagonists as well as their corresponding dextrorotatory isomers are weak competitors for tritiated dextromethorphan ([3H]DM) binding sites and display IC50 values in the micromolar range. In contrast, several non-narcotic, centrally acting antitussives are inhibitory in the nanomolar range (IC50 values for caramiphen, carbetapentane, dimethoxanate, and pipazethate are 25 nM, 9 nM, 41 nM, and 190 nM, respectively). Other antitussives, such as levopropoxyphene, chlophedianol, and fominoben, have poor affinity for DM sites whereas the antitussive noscapine enhances DM binding by increasing the affinity of DM for its central binding sites. Additional competition studies indicate that there is no correlation of DM binding with any of the known or putative neurotransmitters in the central nervous system. DM binding is also not related to tricyclic antidepressant binding sites or biogenic amine uptake sites. However, certain phenothiazine neuroleptics and typical and atypical antidepressants inhibit binding with IC50 values in the nanomolar range. Moreover, the anticonvulsant drug diphenylhydantoin enhances DM binding in a manner similar to that of noscapine. Preliminary experiments utilizing acid extracts of brain have not demonstrated the presence of an endogenous ligand for DM sites. The binding characteristics of DM sites studied in rat and mouse brain indicate that the relative potencies of several antitussives to inhibit specific DM binding vary according to species. High-affinity, saturable, and stereoselective [3H]DM binding sites are present in liver homogenates, but several differences have been found for these peripheral binding sites and those described for brain. Although the nature of central DM binding sites is not known, the potent interaction of several classes of centrally

  13. Effects of sodium on cell surface and intracellular TH-naloxone binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, A.E.; Wooten, G.F.

    1987-07-27

    The binding of the opiate antagonist TH-naloxone was examined in rat whole brain homogenates and in crude subcellular fractions of these homogenates (nuclear, synaptosomal, and mitochondrial fractions) using buffers that approximated intra- (low sodium concentration) and extracellular (high sodium concentration) fluids. Saturation studies showed a two-fold decrease in the dissociation constant (Kd) in all subcellular fractions examined in extracellular buffer compared to intracellular buffer. In contrast, there was no significant effect of the buffers on the Bmax. Thus, TH-naloxone did not distinguish between binding sites present on cell surface and intracellular tissues in these two buffers. These results show that the sodium effect of opiate antagonist binding is probably not a function of altered selection of intra- and extracellular binding sites. 17 references, 2 tables.

  14. Effects of sodium on cell surface and intracellular 3H-naloxone binding sites

    International Nuclear Information System (INIS)

    The binding of the opiate antagonist 3H-naloxone was examined in rat whole brain homogenates and in crude subcellular fractions of these homogenates (nuclear, synaptosomal, and mitochondrial fractions) using buffers that approximated intra- (low sodium concentration) and extracellular (high sodium concentration) fluids. Saturation studies showed a two-fold decrease in the dissociation constant (Kd) in all subcellular fractions examined in extracellular buffer compared to intracellular buffer. In contrast, there was no significant effect of the buffers on the Bmax. Thus, 3H-naloxone did not distinguish between binding sites present on cell surface and intracellular tissues in these two buffers. These results show that the sodium effect of opiate antagonist binding is probably not a function of altered selection of intra- and extracellular binding sites. 17 references, 2 tables

  15. Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae kleb.

    Science.gov (United States)

    Berg, Gabriele; Zachow, Christin; Lottmann, Jana; Götz, Monika; Costa, Rodrigo; Smalla, Kornelia

    2005-08-01

    Fungi with antagonistic activity toward plant pathogens play an essential role in plant growth and health. To analyze the effects of the plant species and the site on the abundance and composition of fungi with antagonistic activity toward Verticillium dahliae, fungi were isolated from oilseed rape and strawberry rhizosphere and bulk soil from three different locations in Germany over two growing seasons. A total of 4,320 microfungi screened for in vitro antagonism toward Verticillium resulted in 911 active isolates. This high proportion of fungi antagonistic toward the pathogen V. dahliae was found for bulk and rhizosphere soil at all sites. A plant- and site-dependent specificity of the composition of antagonistic morphotypes and their genotypic diversity was found. The strawberry rhizosphere was characterized by preferential occurrence of Penicillium and Paecilomyces isolates and low numbers of morphotypes (n = 31) and species (n = 13), while Monographella isolates were most frequently obtained from the rhizosphere of oilseed rape, for which higher numbers of morphotypes (n = 41) and species (n = 17) were found. Trichoderma strains displayed high diversity in all soils, but a high degree of plant specificity was shown by BOX-PCR fingerprints. The diversity of rhizosphere-associated antagonists was lower than that of antagonists in bulk soil, suggesting that some fungi were specifically enriched in each rhizosphere. A broad spectrum of new Verticillium antagonists was identified, and the implications of the data for biocontrol applications are discussed. PMID:16085804

  16. Structural insights from binding poses of CCR2 and CCR5 with clinically important antagonists: a combined in silico study.

    Directory of Open Access Journals (Sweden)

    Gugan Kothandan

    Full Text Available Chemokine receptors are G protein-coupled receptors that contain seven transmembrane domains. In particular, CCR2 and CCR5 and their ligands have been implicated in the pathophysiology of a number of diseases, including rheumatoid arthritis and multiple sclerosis. Based on their roles in disease, they have been attractive targets for the pharmaceutical industry, and furthermore, targeting both CCR2 and CCR5 can be a useful strategy. Owing to the importance of these receptors, information regarding the binding site is of prime importance. Structural studies have been hampered due to the lack of X-ray crystal structures, and templates with close homologs for comparative modeling. Most of the previous models were based on the bovine rhodopsin and β2-adrenergic receptor. In this study, based on a closer homolog with higher resolution (CXCR4, PDB code: 3ODU 2.5 Å, we constructed three-dimensional models. The main aim of this study was to provide relevant information on binding sites of these receptors. Molecular dynamics simulation was done to refine the homology models and PROCHECK results indicated that the models were reasonable. Here, binding poses were checked with some established inhibitors of high pharmaceutical importance against the modeled receptors. Analysis of interaction modes gave an integrated interpretation with detailed structural information. The binding poses confirmed that the acidic residues Glu291 (CCR2 and Glu283 (CCR5 are important, and we also found some additional residues. Comparisons of binding sites of CCR2/CCR5 were done sequentially and also by docking a potent dual antagonist. Our results can be a starting point for further structure-based drug design.

  17. Computational Prediction of RNA-Binding Proteins and Binding Sites.

    Science.gov (United States)

    Si, Jingna; Cui, Jing; Cheng, Jin; Wu, Rongling

    2015-01-01

    Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%-8% of all proteins are RNA-binding proteins (RBPs). Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein-RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein-RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  18. Computational Prediction of RNA-Binding Proteins and Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-11-01

    Full Text Available Proteins and RNA interaction have vital roles in many cellular processes such as protein synthesis, sequence encoding, RNA transfer, and gene regulation at the transcriptional and post-transcriptional levels. Approximately 6%–8% of all proteins are RNA-binding proteins (RBPs. Distinguishing these RBPs or their binding residues is a major aim of structural biology. Previously, a number of experimental methods were developed for the determination of protein–RNA interactions. However, these experimental methods are expensive, time-consuming, and labor-intensive. Alternatively, researchers have developed many computational approaches to predict RBPs and protein–RNA binding sites, by combining various machine learning methods and abundant sequence and/or structural features. There are three kinds of computational approaches, which are prediction from protein sequence, prediction from protein structure, and protein-RNA docking. In this paper, we review all existing studies of predictions of RNA-binding sites and RBPs and complexes, including data sets used in different approaches, sequence and structural features used in several predictors, prediction method classifications, performance comparisons, evaluation methods, and future directions.

  19. The CERT antagonist HPA-12: first practical synthesis and individual binding evaluation of the four stereoisomers.

    Science.gov (United States)

    Santos, Cécile; Fleury, Laurence; Rodriguez, Frédéric; Markus, Jozef; Berkeš, Dušan; Daïch, Adam; Ausseil, Frédéric; Baudoin-Dehoux, Cécile; Ballereau, Stéphanie; Génisson, Yves

    2015-05-01

    The first unified synthetic route to the four enantiopure HPA-12 stereoisomers in multi-gram scale is reported based on Crystallization-Induced Asymmetric Transformation (CIAT) technology. This preparative stereoselective synthesis allowed the unprecedented comparative evaluation of HPA-12 stereoisomers regarding their interaction with the CERT START domain. In vitro binding assay coupled to in silico docking approach indicate a possible interaction for the four derivatives. The first TR-FRET homogeneous-phase assay was developed to quantify their binding to the START domain, allowing complete determination of HPA-12 EC₅₀. Results indicate that not only the (1R,3S) lead to the strongest binding, but that both 1R and 3S stereocenters similarly contribute to extent of recognition This automated homogenous assay further opens up promising prospect for the identification of novel potential CERT antagonist by means of high throughput screening.

  20. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    Energy Technology Data Exchange (ETDEWEB)

    Singh,S.; Yamashita, A.; Gouaux, E.

    2007-01-01

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 {angstrom} above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the

  1. Antidepressant Binding Site in a Bacterial Homologue of Neurotransmitter Transporters

    International Nuclear Information System (INIS)

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 (angstrom) above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational

  2. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters.

    Science.gov (United States)

    Singh, Satinder K; Yamashita, Atsuko; Gouaux, Eric

    2007-08-23

    Sodium-coupled transporters are ubiquitous pumps that harness pre-existing sodium gradients to catalyse the thermodynamically unfavourable uptake of essential nutrients, neurotransmitters and inorganic ions across the lipid bilayer. Dysfunction of these integral membrane proteins has been implicated in glucose/galactose malabsorption, congenital hypothyroidism, Bartter's syndrome, epilepsy, depression, autism and obsessive-compulsive disorder. Sodium-coupled transporters are blocked by a number of therapeutically important compounds, including diuretics, anticonvulsants and antidepressants, many of which have also become indispensable tools in biochemical experiments designed to probe antagonist binding sites and to elucidate transport mechanisms. Steady-state kinetic data have revealed that both competitive and noncompetitive modes of inhibition exist. Antagonist dissociation experiments on the serotonin transporter (SERT) have also unveiled the existence of a low-affinity allosteric site that slows the dissociation of inhibitors from a separate high-affinity site. Despite these strides, atomic-level insights into inhibitor action have remained elusive. Here we screen a panel of molecules for their ability to inhibit LeuT, a prokaryotic homologue of mammalian neurotransmitter sodium symporters, and show that the tricyclic antidepressant (TCA) clomipramine noncompetitively inhibits substrate uptake. Cocrystal structures show that clomipramine, along with two other TCAs, binds in an extracellular-facing vestibule about 11 A above the substrate and two sodium ions, apparently stabilizing the extracellular gate in a closed conformation. Off-rate assays establish that clomipramine reduces the rate at which leucine dissociates from LeuT and reinforce our contention that this TCA inhibits LeuT by slowing substrate release. Our results represent a molecular view into noncompetitive inhibition of a sodium-coupled transporter and define principles for the rational design of

  3. Preliminary Molecular Dynamic Simulations of the Estrogen Receptor Alpha Ligand Binding Domain from Antagonist to Apo

    Directory of Open Access Journals (Sweden)

    Adrian E. Roitberg

    2008-06-01

    Full Text Available Estrogen receptors (ER are known as nuclear receptors. They exist in the cytoplasm of human cells and serves as a DNA binding transcription factor that regulates gene expression. However the estrogen receptor also has additional functions independent of DNA binding. The human estrogen receptor comes in two forms, alpha and beta. This work focuses on the alpha form of the estrogen receptor. The ERα is found in breast cancer cells, ovarian stroma cells, endometrium, and the hypothalamus. It has been suggested that exposure to DDE, a metabolite of DDT, and other pesticides causes conformational changes in the estrogen receptor. Before examining these factors, this work examines the protein unfolding from the antagonist form found in the 3ERT PDB crystal structure. The 3ERT PDB crystal structure has the estrogen receptor bound to the cancer drug 4-hydroxytamoxifen. The 4-hydroxytamoxifen ligand was extracted before the simulation, resulting in new conformational freedom due to absence of van der Waals contacts between the ligand and the receptor. The conformational changes that result expose the binding clef of the co peptide beside Helix 12 of the receptor forming an apo conformation. Two key conformations in the loops at either end of the H12 are produced resulting in the antagonist to apo conformation transformation. The results were produced over a 42ns Molecular Dynamics simulation using the AMBER FF99SB force field.

  4. Impact of Plant Species and Site on Rhizosphere-Associated Fungi Antagonistic to Verticillium dahliae Kleb.

    OpenAIRE

    Berg, Gabriele; Zachow, Christin; Lottmann, Jana; Götz, Monika; Costa, Rodrigo; Smalla, Kornelia

    2005-01-01

    Fungi with antagonistic activity toward plant pathogens play an essential role in plant growth and health. To analyze the effects of the plant species and the site on the abundance and composition of fungi with antagonistic activity toward Verticillium dahliae, fungi were isolated from oilseed rape and strawberry rhizosphere and bulk soil from three different locations in Germany over two growing seasons. A total of 4,320 microfungi screened for in vitro antagonism toward Verticillium resulte...

  5. GABAA receptor partial agonists and antagonists

    DEFF Research Database (Denmark)

    Krall, Jacob; Balle, Thomas; Krogsgaard-Larsen, Niels;

    2015-01-01

    antagonists and describes the development of potent antagonists from partial agonists originally derived from the potent GABAAR agonist muscimol. In this process, several heterocyclic aromatic systems have been used in combination with structural models in order to map the orthosteric binding site...... and to reveal structural details to be used for obtaining potency and subtype selectivity. The challenges connected to functional characterization of orthosteric GABAAR partial agonists and antagonists, especially with regard to GABAAR stoichiometry and alternative binding sites are discussed. GABAAR...

  6. SiteComp: a server for ligand binding site analysis in protein structures

    OpenAIRE

    Lin, Yingjie; Yoo, Seungyeul; Sanchez, Roberto

    2012-01-01

    Motivation: Computational characterization of ligand-binding sites in proteins provides preliminary information for functional annotation, protein design and ligand optimization. SiteComp implements binding site analysis for comparison of binding sites, evaluation of residue contribution to binding sites and identification of sub-sites with distinct molecular interaction properties.

  7. The angiotensin II type 1 receptor antagonist Losartan binds and activates bradykinin B2 receptor signaling

    DEFF Research Database (Denmark)

    Bonde, Marie Mi; Olsen, Kristine Boisen; Erikstrup, Niels;

    2011-01-01

    The angiotensin II type 1 receptor (AT1R) blocker (ARB) Losartan has cardioprotective effects during ischemia-reperfusion injury and inhibits reperfusion arrhythmias -effects that go beyond the benefits of lowering blood pressure. The renin-angiotensin and kallikrein-kinin systems are intricately...... connected and some of the cardioprotective effects of Losartan are abolished by blocking the bradykinin B2 receptor (B2R) signaling. In this study, we investigated the ability of six clinically available ARBs to specifically bind and activate the B2R. First, we investigated their ability to activate...... phosphoinositide (PI) hydrolysis in COS-7 cells transiently expressing the B2R. We found that only Losartan activated the B2R, working as a partial agonist compared to the endogenous ligand bradykinin. This effect was blocked by the B2R antagonist HOE 140. A competitive binding analysis revealed that Losartan does...

  8. Modulation of glutamate transport and receptor binding by glutamate receptor antagonists in EAE rat brain.

    Science.gov (United States)

    Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Salińska, Elżbieta; Strużyńska, Lidia

    2014-01-01

    The etiology of multiple sclerosis (MS) is currently unknown. However, one potential mechanism involved in the disease may be excitotoxicity. The elevation of glutamate in cerebrospinal fluid, as well as changes in the expression of glutamate receptors (iGluRs and mGluRs) and excitatory amino acid transporters (EAATs), have been observed in the brains of MS patients and animals subjected to experimental autoimmune encephalomyelitis (EAE), which is the predominant animal model used to investigate the pathophysiology of MS. In the present paper, the effects of glutamatergic receptor antagonists, including amantadine, memantine, LY 367583, and MPEP, on glutamate transport, the expression of mRNA of glutamate transporters (EAATs), the kinetic parameters of ligand binding to N-methyl-D-aspartate (NMDA) receptors, and the morphology of nerve endings in EAE rat brains were investigated. The extracellular level of glutamate in the brain is primarily regulated by astrocytic glutamate transporter 1 (GLT-1) and glutamate-aspartate transporter (GLAST). Excess glutamate is taken up from the synaptic space and metabolized by astrocytes. Thus, the extracellular level of glutamate decreases, which protects neurons from excitotoxicity. Our investigations showed changes in the expression of EAAT mRNA, glutamate transport (uptake and release) by synaptosomal and glial plasmalemmal vesicle fractions, and ligand binding to NMDA receptors; these effects were partially reversed after the treatment of EAE rats with the NMDA antagonists amantadine and memantine. The antagonists of group I metabotropic glutamate receptors (mGluRs), including LY 367385 and MPEP, did not exert any effect on the examined parameters. These results suggest that disturbances in these mechanisms may play a role in the processes associated with glutamate excitotoxicity and the progressive brain damage in EAE.

  9. Pharmacology and Structural Analysis of Ligand Binding to the Orthosteric Site of Glutamate-Like GluD2 Receptors

    DEFF Research Database (Denmark)

    Kristensen, Anders S; Hansen, Kasper B; Naur, Peter;

    2016-01-01

    -term depression. Here, we investigate the pharmacology of the orthosteric binding site in GluD2 by examining the activity of analogs of D-Ser and GluN1 glycine site competitive antagonists at GluD2 receptors containing the lurcher mutation (GluD2(LC)), which promotes spontaneous channel activation. We identify...

  10. Oxytocin binding sites in bovine mammary tissue

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressin binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.

  11. Comparison of Transcription Factor Binding Site Models

    KAUST Repository

    Bhuyan, Sharifulislam

    2012-05-01

    Modeling of transcription factor binding sites (TFBSs) and TFBS prediction on genomic sequences are important steps to elucidate transcription regulatory mechanism. Dependency of transcription regulation on a great number of factors such as chemical specificity, molecular structure, genomic and epigenetic characteristics, long distance interaction, makes this a challenging problem. Different experimental procedures generate evidence that DNA-binding domains of transcription factors show considerable DNA sequence specificity. Probabilistic modeling of TFBSs has been moderately successful in identifying patterns from a family of sequences. In this study, we compare performances of different probabilistic models and try to estimate their efficacy over experimental TFBSs data. We build a pipeline to calculate sensitivity and specificity from aligned TFBS sequences for several probabilistic models, such as Markov chains, hidden Markov models, Bayesian networks. Our work, containing relevant statistics and evaluation for the models, can help researchers to choose the most appropriate model for the problem at hand.

  12. Sodium modulation of 3H-agonist and 3H-antagonist binding to alpha 2-adrenoceptor subtypes.

    OpenAIRE

    MacKinnon, A. C.; Spedding, M.; Brown, C. M.(University of Victoria, V8W 3P6, Victoria, British Columbia, Canada)

    1993-01-01

    1. The alpha 2-adrenoceptors on human platelets and neonatal rat lung were characterized with the agonist and antagonist ligands [3H]-adrenaline and [3H]-RS-15385-197 respectively. A correlation of affinities for 3H-antagonist binding showed the receptors to be of the alpha 2A-(platelet) and alpha 2B-(neonatal rat lung) adrenoceptor subtypes, whereas a correlation of affinities for 3H-agonist binding showed the receptors to have similar characteristics (r = 0.88). 2. NaCl (100 mM) had no effe...

  13. STUDY OF ESTROGEN BINDING SITE ON HUMAN EJACULATED SPERMATOZOA

    Institute of Scientific and Technical Information of China (English)

    CHUJin-Shong; WANGYi-Fei

    1989-01-01

    The specific estrogen binding site for 17β-estradiol has been investigated on human spermatozoa by electron microscopec autoradiography. The results show that the binding sites were distributed over the surface of human spermatozoa: acrosomal cap, equatorial

  14. An antagonistic activity of etizolam on platelet-activating factor (PAF). In vitro effects on platelet aggregation and PAF receptor binding.

    Science.gov (United States)

    Mikashima, H; Takehara, S; Muramoto, Y; Khomaru, T; Terasawa, M; Tahara, T; Maruyama, Y

    1987-08-01

    The antagonistic effect of etizolam, an anti-anxiety drug, on platelet-activating factor (PAF) was investigated in rabbit platelets in vitro. Etizolam inhibited PAF-induced aggregation in a dose-dependent manner, with an IC50 of 3.8 microM, about one tenth that of triazolam (IC50 = 30 microM). At 300 microM, it inhibited both ADP and arachidonic acid-induced aggregation only slightly, while the other anti-anxiety drugs tested had no effect on PAF-induced aggregation even at this concentration. Etizolam and triazolam inhibited the specific binding of 3H-PAF to PAF receptor sites on washed rabbit platelets with IC50 values of 22 nM and 320 nM, respectively. Diazepam and estazolam were inactive even at 1 microM. These results indicate that etizolam is a specific antagonist of PAF. PMID:2890779

  15. The agonist SR 146131 and the antagonist SR 27897 occupy different sites on the human CCK(1) receptor.

    Science.gov (United States)

    Gouldson, P; Legoux, P; Carillon, C; Delpech, B; Le Fur, G; Ferrara, P; Shire, D

    2000-07-21

    1-[2-(4-(2-Chlorophenyl)thiazol-2-yl) aminocarbonyl indoyl] acetic acid (SR 27897) is an effective CCK(1) receptor antagonist, while the structurally related molecule 2-[4-(4-chloro-2, 5-dimethoxyphenyl)-5-(2-cyclohexyl-ethyl)-thiazol-2-ylcarbamoyl ]-5, 7-dimethyl-indol-1-yl-1-acetic acid (SR 146131) is a highly potent and specific agonist for the same receptor. To discover how the two molecules interact with the human cholecystokinin (CCK) CCK(1) receptor, we have carried out binding and activity studies with 33-point mutated receptors. Only six mutants showed altered [3H]SR 27897 binding properties, Lys(115), Lys(187), Phe(198), Trp(209), Leu(214) and Asn(333). In contrast, numerous mutations throughout the receptor either reduced SR 146131 agonist potency, Phe(97), Gly(122), Phe(198), Trp(209), Ile(229), Asn(333), Arg(336) and Leu(356) or increased it, Tyr(48), Cys(94), Asn(98), Leu(217) and Ser(359). Only mutations of Phe(198), Trp(209) and Asn(333) affected both SR 27897 and SR 146131 binding or activity. The collated information was used to construct molecular models of SR 27897 and SR 146131 bound to the human CCK(1) receptor. The clear difference in the binding sites of SR 27897 and SR 146131 offers a molecular explanation for their contrasting pharmacological characteristics. PMID:10988332

  16. Detection of secondary binding sites in proteins using fragment screening.

    Science.gov (United States)

    Ludlow, R Frederick; Verdonk, Marcel L; Saini, Harpreet K; Tickle, Ian J; Jhoti, Harren

    2015-12-29

    Proteins need to be tightly regulated as they control biological processes in most normal cellular functions. The precise mechanisms of regulation are rarely completely understood but can involve binding of endogenous ligands and/or partner proteins at specific locations on a protein that can modulate function. Often, these additional secondary binding sites appear separate to the primary binding site, which, for example for an enzyme, may bind a substrate. In previous work, we have uncovered several examples in which secondary binding sites were discovered on proteins using fragment screening approaches. In each case, we were able to establish that the newly identified secondary binding site was biologically relevant as it was able to modulate function by the binding of a small molecule. In this study, we investigate how often secondary binding sites are located on proteins by analyzing 24 protein targets for which we have performed a fragment screen using X-ray crystallography. Our analysis shows that, surprisingly, the majority of proteins contain secondary binding sites based on their ability to bind fragments. Furthermore, sequence analysis of these previously unknown sites indicate high conservation, which suggests that they may have a biological function, perhaps via an allosteric mechanism. Comparing the physicochemical properties of the secondary sites with known primary ligand binding sites also shows broad similarities indicating that many of the secondary sites may be druggable in nature with small molecules that could provide new opportunities to modulate potential therapeutic targets.

  17. Grafting of protein-protein binding sites

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A strategy for grafting protein-protein binding sites is described. Firstly, key interaction residues at the interface of ligand protein to be grafted are identified and suitable positions in scaffold protein for grafting these key residues are sought. Secondly, the scaffold proteins are superposed onto the ligand protein based on the corresponding Ca and Cb atoms. The complementarity between the scaffold protein and the receptor protein is evaluated and only matches with high score are accepted. The relative position between scaffold and receptor proteins is adjusted so that the interface has a reasonable packing density. Then the scaffold protein is mutated to corresponding residues in ligand protein at each candidate position. And the residues having bad steric contacts with the receptor proteins, or buried charged residues not involved in the formation of any salt bridge are mutated. Finally, the mutated scaffold protein in complex with receptor protein is co-minimized by Charmm. In addition, we deduce a scoring function to evaluate the affinity between mutated scaffold protein and receptor protein by statistical analysis of rigid binding data sets.

  18. Ethanol potently and competitively inhibits binding of the alcohol antagonist Ro15-4513 to α4/6β3δ GABAA receptors

    Science.gov (United States)

    Hanchar, H. Jacob; Chutsrinopkun, Panida; Meera, Pratap; Supavilai, Porntip; Sieghart, Werner; Wallner, Martin; Olsen, Richard W.

    2006-01-01

    Although GABAA receptors have long been implicated in mediating ethanol (EtOH) actions, receptors containing the “nonsynaptic” δ subunit only recently have been shown to be uniquely sensitive to EtOH. Here, we show that δ subunit-containing receptors bind the imidazo-benzodiazepines (BZs) flumazenil and Ro15-4513 with high affinity (Kd < 10 nM), contrary to the widely held belief that these receptors are insensitive to BZs. In immunopurified native cerebellar and recombinant δ subunit-containing receptors, binding of the alcohol antagonist [3H]Ro15-4513 is inhibited by low concentrations of EtOH (Ki ≈ 8 mM). Also, Ro15-4513 binding is inhibited by BZ-site ligands that have been shown to reverse the behavioral alcohol antagonism of Ro15-4513 (i.e., flumazenil, β-carbolinecarboxylate ethyl ester (β-CCE), and N-methyl-β-carboline-3-carboxamide (FG7142), but not including any classical BZ agonists like diazepam). Experiments that were designed to distinguish between a competitive and allosteric mechanism suggest that EtOH and Ro15-4513 occupy a mutually exclusive binding site. The fact that only Ro15-4513, but not flumazenil, can inhibit the EtOH effect, and that Ro15-4513 differs from flumazenil by only a single group in the molecule (an azido group at the C7 position of the BZ ring) suggest that this azido group in Ro15-4513 might be the area that overlaps with the alcohol-binding site. Our findings, combined with previous observations that Ro15-4513 is a behavioral alcohol antagonist, suggest that many of the behavioral effects of EtOH at relevant physiological concentrations are mediated by EtOH/Ro15-4513-sensitive GABAA receptors. PMID:16581914

  19. Characterization of a ligand binding site in the human transient receptor potential ankyrin 1 pore.

    Science.gov (United States)

    Klement, Göran; Eisele, Lina; Malinowsky, David; Nolting, Andreas; Svensson, Mats; Terp, Gitte; Weigelt, Dirk; Dabrowski, Michael

    2013-02-19

    The pharmacology and regulation of Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel activity is intricate due to the physiological function as an integrator of multiple chemical, mechanical, and temperature stimuli as well as differences in species pharmacology. In this study, we describe and compare the current inhibition efficacy of human TRPA1 on three different TRPA1 antagonists. We used a homology model of TRPA1 based on Kv1.2 to select pore vestibule residues available for interaction with ligands entering the vestibule. Site-directed mutation constructs were expressed in Xenopus oocytes and their functionality and pharmacology assessed to support and improve our homology model. Based on the functional pharmacology results we propose an antagonist-binding site in the vestibule of the TRPA1 ion channel. We use the results to describe the proposed intravestibular ligand-binding site in TRPA1 in detail. Based on the single site substitutions, we designed a human TRPA1 receptor by substituting several residues in the vestibule and adjacent regions from the rat receptor to address and explain observed species pharmacology differences. In parallel, the lack of effect on HC-030031 inhibition by the vestibule substitutions suggests that this molecule interacts with TRPA1 via a binding site not situated in the vestibule.

  20. Structure-guided optimization of estrogen receptor binding affinity and antagonist potency of pyrazolopyrimidines with basic side chains.

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, H.; Sheng, S.; Compton, D.; Kim, Y.; Joachimiak, A.; Sharma, S.; Carlson, K.; Katzenellenbogen, B.; Nettles, K.; Greene, G.; Katzenellenbogen, J.; Biosciences Division; Univ. of Illinois; Univ. of Chicago; The Scripps Research Inst.

    2007-01-01

    2,3-Diarylpyrazolo[1,5-a]pyrimidines are estrogen receptor (ER) antagonists of modest potency that we have described previously. Guided by the crystal structure of an ER-ligand complex that we have obtained with one of these compounds, we prepared analogs that contain a basic side chain at the 2- or 3-aryl group and quickly found one that, according to the structure-based prediction, shows an increase in binding affinity and antagonist potency and a loss of residual agonist activity.

  1. Characteristics of human erythrocyte insulin binding sites.

    OpenAIRE

    Okada, Yoshio

    1981-01-01

    Insulin and human erythrocyte cell membrane interactions were studied with respect to binding and dissociation. The per cent of specific binding of 125I-labeled insulin to erythrocytes was directly proportional to the cell concentration. The optimum pH for binding was 8.1. The initial binding rate was directly proportional to, and the steady state insulin binding was reversely proportional to, the incubation temperature. The per cent of specific binding of 125I-labeled insulin was 12.10 +/- 1...

  2. GABAB antagonists

    DEFF Research Database (Denmark)

    Frydenvang, Karla Andrea; Hansen, J J; Krogsgaard-Larsen, P;

    1994-01-01

    Phaclofen, which is the phosphonic acid analogue of the GABAB agonist (RS)-3-(4-chlorophenyl)-4-aminobutyric acid (baclofen), is a GABAB antagonist. As part of our studies on the structural requirements for activation and blockade of GABAB receptors, we have resolved phaclofen using chiral...... chromatographic techniques. The absolute stereochemistry of (-)-(R)-phaclofen was established by X-ray crystallographic analysis. (-)-(R)-Phaclofen was shown to inhibit the binding of [3H]-(R)-baclofen to GABAB receptor sites on rat cerebellar membranes (IC50 = 76 +/- 13 microM), whereas (+)-(S)-phaclofen was...... inactive in this binding assay (IC50 > 1000 microM). (-)-(R)-Phaclofen (200 microM) was equipotent with (RS)-phaclofen (400 microM) in antagonizing the action of baclofen in rat cerebral cortical slices, while (+)-(S)-phaclofen (200 microM) was inactive. The structural similarity of the agonist (R)-baclofen...

  3. Negative Example Aided Transcription Factor Binding Site Search

    OpenAIRE

    Lee, Chih; Huang, Chun-Hsi

    2011-01-01

    Computational approaches to transcription factor binding site identification have been actively researched for the past decade. Negative examples have long been utilized in de novo motif discovery and have been shown useful in transcription factor binding site search as well. However, understanding of the roles of negative examples in binding site search is still very limited. We propose the 2-centroid and optimal discriminating vector methods, taking into account negative examples. Cross-val...

  4. LASAGNA: A novel algorithm for transcription factor binding site alignment

    OpenAIRE

    Lee, Chih; Huang, Chun-Hsi

    2013-01-01

    Background Scientists routinely scan DNA sequences for transcription factor (TF) binding sites (TFBSs). Most of the available tools rely on position-specific scoring matrices (PSSMs) constructed from aligned binding sites. Because of the resolutions of assays used to obtain TFBSs, databases such as TRANSFAC, ORegAnno and PAZAR store unaligned variable-length DNA segments containing binding sites of a TF. These DNA segments need to be aligned to build a PSSM. While the TRANSFAC database provid...

  5. Searching for transcription factor binding sites in vector spaces

    OpenAIRE

    Lee Chih; Huang Chun-Hsi

    2012-01-01

    Abstract Background Computational approaches to transcription factor binding site identification have been actively researched in the past decade. Learning from known binding sites, new binding sites of a transcription factor in unannotated sequences can be identified. A number of search methods have been introduced over the years. However, one can rarely find one single method that performs the best on all the transcription factors. Instead, to identify the best method for a particular trans...

  6. Autoradiographic demonstration of oxytocin-binding sites in the macula densa

    Energy Technology Data Exchange (ETDEWEB)

    Stoeckel, M.E.; Freund-Mercier, M.J. (Centre National de la Recherche Scientifique, Strasbourg (France))

    1989-08-01

    Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective {sup 125}I-labeled OT antagonist ({sup 125}I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of {sup 125}I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experiments showed first that {sup 125}I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration.

  7. Binding of fusion protein FLSC IgG1 to CCR5 is enhanced by CCR5 antagonist Maraviroc.

    Science.gov (United States)

    Latinovic, Olga; Schneider, Kate; Szmacinski, Henryk; Lakowicz, Joseph R; Heredia, Alonso; Redfield, Robert R

    2014-12-01

    The CCR5 chemokine receptor is crucial for human immunodeficiency virus type 1 (HIV-1) infection, acting as the principal coreceptor for HIV-1 entry and transmission and is thus an attractive target for antiviral therapy. Studies have suggested that CCR5 surface density and its conformational changes subsequent to virion engagement are rate limiting for entry, and consequently, infection. Not all CCR5 antibodies inhibit HIV-1 infection, suggesting a need for more potent reagents. Here we evaluated full length single chain (FLSC) IgG1, a novel IgG-CD4-gp120(BAL) fusion protein with several characteristics that make it an attractive candidate for treatment of HIV-1 infections, including bivalency and a potentially increased serum half-life over FLSC, the parental molecule. FLSC IgG1 binds two domains on CCR5, the N-terminus and the second extracellular loop, lowering the levels of available CCR5 viral attachment sites. Furthermore, FLSC IgG1 synergizes with Maraviroc (MVC), the only licensed CCR5 antagonist. In this study, we used both microscopy and functional assays to address the mechanistic aspects of the interactions of FLSC IgG1 and MVC in the context of CCR5 conformational changes and viral infection. We used a novel stochastic optical reconstruction microscopy (STORM), based on high resolution localization of photoswitchable dyes to visualize direct contacts between FLSC IgG1 and CCR5. We compared viral entry inhibition by FLSC IgG1 with that of other CCR5 blockers and showed FLSC IgG1 to be the most potent. We also showed that lower CCR5 surface densities in HIV-1 infected primary cells result in lower FLSC IgG1 EC50 values. In addition, CCR5 binding by FLSC IgG1, but not CCR5 Ab 2D7, was significantly increased when cells were treated with MVC, suggesting MVC allosterically increases exposure of the FLSC IgG1 binding site. These data have implications for future antiviral therapy development.

  8. Autoradiographic localization of endothelin-1 binding sites in porcine skin

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.D.; Springall, D.R.; Wharton, J.; Polak, J.M. (Royal Postgraduate Medical School, London (England))

    1991-01-01

    Autoradiographic techniques and {sup 125}I-labeled endothelin-1 were used to study the distribution of endothelin-1 binding sites in porcine skin. Specific endothelin-1 binding sites were localized to blood vessels (capillaries, deep cutaneous vascular plexus, arteries, and arterioles), the deep dermal and connective tissue sheath of hair follicles, sebaceous and sweat glands, and arrector pili muscle. Specific binding was inhibited by endothelin-2 and endothelin-3 as well as endothelin-1. Non-specific binding was found in the epidermis and the medulla of hair follicles. No binding was found in connective tissue or fat. These vascular binding sites may represent endothelin receptors, in keeping with the known cutaneous vasoconstrictor actions of the peptide. If all binding sites are receptors, the results suggest that endothelin could also regulate the function of sweat glands and may have trophic effects in the skin.

  9. Protein function annotation by local binding site surface similarity.

    Science.gov (United States)

    Spitzer, Russell; Cleves, Ann E; Varela, Rocco; Jain, Ajay N

    2014-04-01

    Hundreds of protein crystal structures exist for proteins whose function cannot be confidently determined from sequence similarity. Surflex-PSIM, a previously reported surface-based protein similarity algorithm, provides an alternative method for hypothesizing function for such proteins. The method now supports fully automatic binding site detection and is fast enough to screen comprehensive databases of protein binding sites. The binding site detection methodology was validated on apo/holo cognate protein pairs, correctly identifying 91% of ligand binding sites in holo structures and 88% in apo structures where corresponding sites existed. For correctly detected apo binding sites, the cognate holo site was the most similar binding site 87% of the time. PSIM was used to screen a set of proteins that had poorly characterized functions at the time of crystallization, but were later biochemically annotated. Using a fully automated protocol, this set of 8 proteins was screened against ∼60,000 ligand binding sites from the PDB. PSIM correctly identified functional matches that predated query protein biochemical annotation for five out of the eight query proteins. A panel of 12 currently unannotated proteins was also screened, resulting in a large number of statistically significant binding site matches, some of which suggest likely functions for the poorly characterized proteins.

  10. Whole-genome cartography of estrogen receptor alpha binding sites.

    Directory of Open Access Journals (Sweden)

    Chin-Yo Lin

    2007-06-01

    Full Text Available Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor alpha (ERalpha binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERalpha binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (>5 kb from 5' and 3' ends of adjacent transcript, suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs, 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERalpha binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERalpha-positive from ERalpha-negative breast tumors. The expression dynamics of the genes adjacent to ERalpha binding sites suggest a direct induction of gene expression through binding to ERE-like sequences, whereas transcriptional repression by ERalpha appears to be through indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERalpha target genes. Unexpectedly, we found that only 22%-24% of the bona fide human ERalpha binding sites were overlapping conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERalpha

  11. Identification of gamma-aminobutyric acid and its binding sites in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, J.M.; Bergstrom, A.R.

    1988-01-01

    Gamma-aminobutyric acid (GABA), glutamate decarboxylase and GABA-transaminase were identified in the nematode Caenorhabditis elegans. The concentration of GABA in C. elegans is approximately 10-fold lower than the concentration of GABA in rat brain. Glutamate decarboxylase and GABA-transaminase, the GABA anabolic and catabolic enzymes, are also present in C. elegans. Crude membrane fractions were prepared from C. elegans and used to study specific (/sup 3/H) GABA binding sites. GABA binds to C. elegans membranes with high affinity and low capacity. Muscimol is a competitive inhibitor of specific GABA binding with a K/sub I/ value of 120 nM. None of the other GABA agonists or antagonists inhibited greater than 40% of the specific GABA binding at concentrations up to 10/sup -4/M. Thirteen spider venoms were examined as possible GABA agonists or antagonists, the venom from Calilena agelenidae inhibits specific GABA binding with a K/sub I/ value of 6 nl/ml. These results suggest that GABA has a physiological role as a neurotransmitter in C. elegans.

  12. Examining the Effects of Sodium Ions on the Binding of Antagonists to Dopamine D2 and D3 Receptors

    Science.gov (United States)

    Wood, Martyn D.; Strange, Philip G.

    2016-01-01

    Many G protein-coupled receptors have been shown to be sensitive to the presence of sodium ions (Na+). Using radioligand competition binding assays, we have examined and compared the effects of sodium ions on the binding affinities of a number of structurally diverse ligands at human dopamine D2 and dopamine D3 receptor subtypes, which are important therapeutic targets for the treatment of psychotic disorders. At both receptors, the binding affinities of the antagonists/inverse agonists SB-277011-A, L,741,626, GR 103691 and U 99194 were higher in the presence of sodium ions compared to those measured in the presence of the organic cation, N-methyl-D-glucamine, used to control for ionic strength. Conversely, the affinities of spiperone and (+)-butaclamol were unaffected by the presence of sodium ions. Interestingly, the binding of the antagonist/inverse agonist clozapine was affected by changes in ionic strength of the buffer used rather than the presence of specific cations. Similar sensitivities to sodium ions were seen at both receptors, suggesting parallel effects of sodium ion interactions on receptor conformation. However, no clear correlation between ligand characteristics, such as subtype selectivity, and sodium ion sensitivity were observed. Therefore, the properties which determine this sensitivity remain unclear. However these findings do highlight the importance of careful consideration of assay buffer composition for in vitro assays and when comparing data from different studies, and may indicate a further level of control for ligand binding in vivo. PMID:27379794

  13. Functional evolution of IGF2:IGF2R domain 11 binding generates novel structural interactions and a specific IGF2 antagonist.

    Science.gov (United States)

    Frago, Susana; Nicholls, Ryan D; Strickland, Madeleine; Hughes, Jennifer; Williams, Christopher; Garner, Lee; Surakhy, Mirvat; Maclean, Rory; Rezgui, Dellel; Prince, Stuart N; Zaccheo, Oliver J; Ebner, Daniel; Sanegre, Sabina; Yu, Sheng; Buffa, Francesca M; Crump, Matthew P; Hassan, Andrew Bassim

    2016-05-17

    Among the 15 extracellular domains of the mannose 6-phosphate/insulin-like growth factor-2 receptor (M6P/IGF2R), domain 11 has evolved a binding site for IGF2 to negatively regulate ligand bioavailability and mammalian growth. Despite the highly evolved structural loops of the IGF2:domain 11 binding site, affinity-enhancing AB loop mutations suggest that binding is modifiable. Here we examine the extent to which IGF2:domain 11 affinity, and its specificity over IGF1, can be enhanced, and we examine the structural basis of the mechanistic and functional consequences. Domain 11 binding loop mutants were selected by yeast surface display combined with high-resolution structure-based predictions, and validated by surface plasmon resonance. We discovered previously unidentified mutations in the ligand-interacting surface binding loops (AB, CD, FG, and HI). Five combined mutations increased rigidity of the AB loop, as confirmed by NMR. When added to three independently identified CD and FG loop mutations that reduced the koff value by twofold, these mutations resulted in an overall selective 100-fold improvement in affinity. The structural basis of the evolved affinity was improved shape complementarity established by interloop (AB-CD) and intraloop (FG-FG) side chain interactions. The high affinity of the combinatorial domain 11 Fc fusion proteins functioned as ligand-soluble antagonists or traps that depleted pathological IGF2 isoforms from serum and abrogated IGF2-dependent signaling in vivo. An evolved and reengineered high-specificity M6P/IGF2R domain 11 binding site for IGF2 may improve therapeutic targeting of the frequent IGF2 gain of function observed in human cancer. PMID:27140600

  14. Identification and characterization of anion binding sites in RNA

    Energy Technology Data Exchange (ETDEWEB)

    Kieft, Jeffrey S.; Chase, Elaine; Costantino, David A.; Golden, Barbara L. (Purdue); (Colorado)

    2010-05-24

    Although RNA molecules are highly negatively charged, anions have been observed bound to RNA in crystal structures. It has been proposed that anion binding sites found within isolated RNAs represent regions of the molecule that could be involved in intermolecular interactions, indicating potential contact points for negatively charged amino acids from proteins or phosphate groups from an RNA. Several types of anion binding sites have been cataloged based on available structures. However, currently there is no method for unambiguously assigning anions to crystallographic electron density, and this has precluded more detailed analysis of RNA-anion interaction motifs and their significance. We therefore soaked selenate into two different types of RNA crystals and used the anomalous signal from these anions to identify binding sites in these RNA molecules unambiguously. Examination of these sites and comparison with other suspected anion binding sites reveals features of anion binding motifs, and shows that selenate may be a useful tool for studying RNA-anion interactions.

  15. Distinct ETA receptor binding mode of macitentan as determined by site directed mutagenesis.

    Directory of Open Access Journals (Sweden)

    John Gatfield

    Full Text Available The competitive endothelin receptor antagonists (ERA bosentan and ambrisentan, which have long been approved for the treatment of pulmonary arterial hypertension, are characterized by very short (1 min occupancy half-lives at the ET(A receptor. The novel ERA macitentan, displays a 20-fold increased receptor occupancy half-life, causing insurmountable antagonism of ET-1-induced signaling in pulmonary arterial smooth muscle cells. We show here that the slow ET(A receptor dissociation rate of macitentan was shared with a set of structural analogs, whereas compounds structurally related to bosentan displayed fast dissociation kinetics. NMR analysis showed that macitentan adopts a compact structure in aqueous solution and molecular modeling suggests that this conformation tightly fits into a well-defined ET(A receptor binding pocket. In contrast the structurally different and negatively charged bosentan-type molecules only partially filled this pocket and expanded into an extended endothelin binding site. To further investigate these different ET(A receptor-antagonist interaction modes, we performed functional studies using ET(A receptor variants harboring amino acid point mutations in the presumed ERA interaction site. Three ET(A receptor residues significantly and differentially affected ERA activity: Mutation R326Q did not affect the antagonist activity of macitentan, however the potencies of bosentan and ambrisentan were significantly reduced; mutation L322A rendered macitentan less potent, whereas bosentan and ambrisentan were unaffected; mutation I355A significantly reduced bosentan potency, but not ambrisentan and macitentan potencies. This suggests that--in contrast to bosentan and ambrisentan--macitentan-ET(A receptor binding is not dependent on strong charge-charge interactions, but depends predominantly on hydrophobic interactions. This different binding mode could be the reason for macitentan's sustained target occupancy and

  16. Characterization of pancreatic somatostatin binding sites with a 125I-somatostatin 28 analog

    International Nuclear Information System (INIS)

    Somatostatin binding to guinea pig pancreatic acinar cell plasma membranes was characterized with an iodinated stable analog of somatostatin 28 (S28): 125I-[Leu8,DTrp22,Tyr25]S28. The binding was highly dependent on calcium ions. In 0.2 mM free Ca2+ medium, binding at 37 degrees C was saturable, slowly reversible and exhibited a single class of high affinity binding sites (KD = 0.05 +/- 0.01 nM, Bmax = 157 +/- 33 fmol/mg protein). Dissociation of bound radioactivity occurred with biphasic kinetics. Rate of dissociation increased when dissociation was measured at a time before equilibrium binding was reached. In 30 nM free Ca2+ medium, binding affinity and maximal binding capacity were decreased by about 4-fold. Decreasing calcium concentrations increased the amount of rapidly dissociating form of the receptor. Somatostatin 14 antagonist, Des AA1,2[AzaAla4-5,DTrp8, Phe12-13]-somatostatin was active at the membrane level in inhibiting the binding. We conclude that using 125I-[Leu8,DTrp22,Tyr25]S28 as radioligand allows us to characterize a population of specific somatostatin receptors which are not different from those we previously described with the radioligand 125I-[Tyr11]-somatostatin. Somatostatin receptors could exist in two interconvertible forms. Calcium ions are an essential component in the regulation of the conformational change of somatostatin receptors

  17. Nanoscale Synaptic Membrane Mimetic Allows Unbiased High Throughput Screen That Targets Binding Sites for Alzheimer's-Associated Aβ Oligomers.

    Directory of Open Access Journals (Sweden)

    Kyle C Wilcox

    Full Text Available Despite their value as sources of therapeutic drug targets, membrane proteomes are largely inaccessible to high-throughput screening (HTS tools designed for soluble proteins. An important example comprises the membrane proteins that bind amyloid β oligomers (AβOs. AβOs are neurotoxic ligands thought to instigate the synapse damage that leads to Alzheimer's dementia. At present, the identities of initial AβO binding sites are highly uncertain, largely because of extensive protein-protein interactions that occur following attachment of AβOs to surface membranes. Here, we show that AβO binding sites can be obtained in a state suitable for unbiased HTS by encapsulating the solubilized synaptic membrane proteome into nanoscale lipid bilayers (Nanodiscs. This method gives a soluble membrane protein library (SMPL--a collection of individualized synaptic proteins in a soluble state. Proteins within SMPL Nanodiscs showed enzymatic and ligand binding activity consistent with conformational integrity. AβOs were found to bind SMPL Nanodiscs with high affinity and specificity, with binding dependent on intact synaptic membrane proteins, and selective for the higher molecular weight oligomers known to accumulate at synapses. Combining SMPL Nanodiscs with a mix-incubate-read chemiluminescence assay provided a solution-based HTS platform to discover antagonists of AβO binding. Screening a library of 2700 drug-like compounds and natural products yielded one compound that potently reduced AβO binding to SMPL Nanodiscs, synaptosomes, and synapses in nerve cell cultures. Although not a therapeutic candidate, this small molecule inhibitor of synaptic AβO binding will provide a useful experimental antagonist for future mechanistic studies of AβOs in Alzheimer's model systems. Overall, results provide proof of concept for using SMPLs in high throughput screening for AβO binding antagonists, and illustrate in general how a SMPL Nanodisc system can

  18. Temperature and pressure adaptation of the binding site of acetylcholinesterase.

    Science.gov (United States)

    Hochachka, P W

    1974-12-01

    1. Studies with a carbon substrate analogue, 3,3-dimethylbutyl acetate, indicate that the hydrophobic contribution to binding at the anionic site of acetylcholinesterase is strongly disrupted at low temperatures and high pressures. 2. Animals living in different physical environments circumvent this problem by adjusting the enthalpic and entropic contributions to binding. 3. An extreme example of this adaptational strategy is supplied by brain acetylcholinesterase extracted from an abyssal fish living at 2 degrees C and up to several hundred atmospheres of pressure. This acetylcholinesterase appears to have a smaller hydrophobic binding region in the anionic site, playing a measurably decreased role in ligand binding. PMID:4462739

  19. Interaction of SR 33557 with skeletal muscle calcium channel blocker receptors in the baboon: characterization of its binding sites

    International Nuclear Information System (INIS)

    A procedure for the isolation of primate skeletal microsomal membranes was initiated. Membranes exhibited specific enzymatic markers such as 5'-nucleotidase, Ca2+,Mg(2+)-adenosine triphosphatase and an ATP-dependent calcium uptake. Baboon skeletal microsomes bound specifically with high-affinity potent Ca2+ channel blockers such as dihydropyridine, phenylalkylamine and benzothiazepine derivatives. Scatchard analysis of equilibrium binding assays with [3H](+)-PN 200-110, [3H](-)-desmethoxyverapamil [( 3H](-)-D888) and [3H]-d-cis-dilitiazem were consistent with a single class of binding sites for the three radioligands. The pharmacological profile of SR 33557, an original compound with calcium antagonist properties, was investigated using radioligand binding studies. SR 33557 totally inhibited the specific binding of the three main classes of Ca2+ channel effectors and interacted allosterically with them. In addition, SR 33557 bound with high affinity to a homogeneous population of binding sites in baboon skeletal muscle

  20. Meta-diamide insecticides acting on distinct sites of RDL GABA receptor from those for conventional noncompetitive antagonists.

    Science.gov (United States)

    Nakao, Toshifumi; Banba, Shinich; Nomura, Michikazu; Hirase, Kangetsu

    2013-04-01

    The RDL GABA receptor is an attractive target of insecticides. Here we demonstrate that meta-diamides [3-benzamido-N-(4-(perfluoropropan-2-yl)phenyl)benzamides] are a distinct class of RDL GABA receptor antagonists showing high insecticidal activity against Spodoptera litura. We also suggest that the mode of action of the meta-diamides is distinct from that of conventional noncompetitive antagonists (NCAs), such as fipronil, picrotoxin, lindane, dieldrin, and α-endosulfan. Using a membrane potential assay, we examined the effects of the meta-diamide 3-benzamido-N-(2-bromo-4-(perfluoropropan-2-yl)-6-(trifluoromethyl)phenyl)-2-fluorobenzamide (meta-diamide 7) and NCAs on mutant Drosophila RDL GABA receptors expressed in Drosophila Mel-2 cells. NCAs had little or no inhibitory activity against at least one of the three mutant receptors (A2'S, A2'G, and A2'N), which were reported to confer resistance to NCAs. In contrast, meta-diamide 7 inhibited all three A2' mutant receptors, at levels comparable to its activity with the wild-type receptor. Furthermore, the A2'S·T6'V mutation almost abolished the inhibitory effects of all NCAs. However, meta-diamide 7 inhibited the A2'S・T6'S mutant receptor at the same level as its activity with the wild-type receptor. In contrast, a G336M mutation in the third transmembrane domain of the RDL GABA receptor abolished the inhibitory activities of meta-diamide 7, although the G336M mutation had little effect on the inhibitory activities of conventional NCAs. Molecular modeling studies also suggested that the binding site of meta-diamides was different from those of NCAs. Meta-diamide insecticides are expected to be prominent insecticides effective against A2' mutant RDL GABA receptors with a different mode of action.

  1. PeptiSite: a structural database of peptide binding sites in 4D

    OpenAIRE

    Acharya, Chayan; Kufareva, Irina; Ilatovskiy, Andrey V.; Abagyan, Ruben

    2014-01-01

    We developed PeptiSite, a comprehensive and reliable database of biologically and structurally characterized peptide-binding sites, in which each site is represented by an ensemble of its complexes with protein, peptide and small molecule partners. The unique features of the database include (1) the ensemble site representation that provides a fourth dimension to the otherwise three dimensional data, (2) comprehensive characterization of the binding site architecture that may consist of a mul...

  2. Autoradiographic localization of relaxin binding sites in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Osheroff, P.L.; Phillips, H.S. (Genentech, Inc., South San Francisco, CA (USA))

    1991-08-01

    Relaxin is a member of the insulin family of polypeptide hormones and exerts its best understood actions in the mammalian reproductive system. Using a biologically active 32P-labeled human relaxin, the authors have previously shown by in vitro autoradiography specific relaxin binding sites in rat uterus, cervix, and brain tissues. Using the same approach, they describe here a detailed localization of human relaxin binding sites in the rat brain. Displaceable relaxin binding sites are distributed in discrete regions of the olfactory system, neocortex, hypothalamus, hippocampus, thalamus, amygdala, midbrain, and medulla of the male and female rat brain. Characterization of the relaxin binding sites in the subfornical organ and neocortex reveals a single class of high-affinity sites (Kd = 1.4 nM) in both regions. The binding of relaxin to two of the circumventricular organs (subfornical organ and organum vasculosum of the lamina terminalis) and the neurosecretory magnocellular hypothalamic nuclei (i.e., paraventricular and supraoptic nuclei) provides the anatomical and biochemical basis for emerging physiological evidence suggesting a central role for relaxin in the control of blood pressure and hormone release. They conclude that specific, high-affinity relaxin binding sites are present in discrete regions of the rat brain and that the distribution of some of these sites may be consistent with a role for relaxin in control of vascular volume and blood pressure.

  3. Microbes bind complement inhibitor factor H via a common site.

    Directory of Open Access Journals (Sweden)

    T Meri

    Full Text Available To cause infections microbes need to evade host defense systems, one of these being the evolutionarily old and important arm of innate immunity, the alternative pathway of complement. It can attack all kinds of targets and is tightly controlled in plasma and on host cells by plasma complement regulator factor H (FH. FH binds simultaneously to host cell surface structures such as heparin or glycosaminoglycans via domain 20 and to the main complement opsonin C3b via domain 19. Many pathogenic microbes protect themselves from complement by recruiting host FH. We analyzed how and why different microbes bind FH via domains 19-20 (FH19-20. We used a selection of FH19-20 point mutants to reveal the binding sites of several microbial proteins and whole microbes (Haemophilus influenzae, Bordetella pertussis, Pseudomonas aeruginosa, Streptococcus pneumonia, Candida albicans, Borrelia burgdorferi, and Borrelia hermsii. We show that all studied microbes use the same binding region located on one side of domain 20. Binding of FH to the microbial proteins was inhibited with heparin showing that the common microbial binding site overlaps with the heparin site needed for efficient binding of FH to host cells. Surprisingly, the microbial proteins enhanced binding of FH19-20 to C3b and down-regulation of complement activation. We show that this is caused by formation of a tripartite complex between the microbial protein, FH, and C3b. In this study we reveal that seven microbes representing different phyla utilize a common binding site on the domain 20 of FH for complement evasion. Binding via this site not only mimics the glycosaminoglycans of the host cells, but also enhances function of FH on the microbial surfaces via the novel mechanism of tripartite complex formation. This is a unique example of convergent evolution resulting in enhanced immune evasion of important pathogens via utilization of a "superevasion site."

  4. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key.

    Directory of Open Access Journals (Sweden)

    V Joachim Haupt

    Full Text Available Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology - a drug's ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand

  5. Development of a highly selective allosteric antagonist radioligand for the type 1 cholecystokinin receptor and elucidation of its molecular basis of binding.

    Science.gov (United States)

    Dong, Maoqing; Vattelana, Ashton M; Lam, Polo C-H; Orry, Andrew J; Abagyan, Ruben; Christopoulos, Arthur; Sexton, Patrick M; Haines, David R; Miller, Laurence J

    2015-01-01

    Understanding the molecular basis of ligand binding to receptors provides insights useful for rational drug design. This work describes development of a new antagonist radioligand of the type 1 cholecystokinin receptor (CCK1R), (2-fluorophenyl)-2,3-dihydro-3-[(3-isoquinolinylcarbonyl)amino]-6-methoxy-2-oxo-l-H-indole-3-propanoate (T-0632), and exploration of the molecular basis of its binding. This radioligand bound specifically with high affinity within an allosteric pocket of CCK1R. T-0632 fully inhibited binding and action of CCK at this receptor, while exhibiting no saturable binding to the closely related type 2 cholecystokinin receptor (CCK2R). Chimeric CCK1R/CCK2R constructs were used to explore the molecular basis of T-0632 binding. Exchanging exonic regions revealed the functional importance of CCK1R exon 3, extending from the bottom of transmembrane segment (TM) 3 to the top of TM5, including portions of the intramembranous pocket as well as the second extracellular loop region (ECL2). However, CCK1R mutants in which each residue facing the pocket was changed to that present in CCK2R had no negative impact on T-0632 binding. Extending the chimeric approach to ECL2 established the importance of its C-terminal region, and site-directed mutagenesis of each nonconserved residue in this region revealed the importance of Ser(208) at the top of TM5. A molecular model of T-0632-occupied CCK1R was consistent with these experimental determinants, also identifying Met(121) in TM3 and Arg(336) in TM6 as important. Although these residues are conserved in CCK2R, mutating them had a distinct impact on the two closely related receptors, suggesting differential orientation. This establishes the molecular basis of binding of a highly selective nonpeptidyl allosteric antagonist of CCK1R, illustrating differences in docking that extend beyond determinants attributable to distinct residues lining the intramembranous pocket in the two receptor subtypes. PMID:25319540

  6. The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site.

    Science.gov (United States)

    Berg, Gabriele; Opelt, Katja; Zachow, Christin; Lottmann, Jana; Götz, Monika; Costa, Rodrigo; Smalla, Kornelia

    2006-05-01

    Rhizobacteria with antagonistic activity towards plant pathogens play an essential role in root growth and plant health and are influenced by plant species in their abundance and composition. To determine the extent of the effect of the plant species and of the site on the abundance and composition of bacteria with antagonistic activity towards Verticillium dahliae, bacteria isolated from the rhizosphere of two Verticillium host plants, oilseed rape and strawberry, and from bulk soil were analysed at three different locations in Germany over two growing seasons. A total of 6732 bacterial isolates screened for in vitro antagonism towards Verticillium resulted in 560 active isolates, among which Pseudomonas (77%) and Serratia (6%) were the most dominant genera. The rhizosphere effect on the antagonistic bacterial community was shown by an enhanced proportion of antagonistic isolates, by enrichment of specific amplified ribosomal DNA restriction analysis types, species and genotypes, and by a reduced diversity in the rhizosphere in comparison to bulk soil. Such an effect was influenced by the plant species and by the site of its cultivation. Altogether, 16S rRNA gene sequencing of 66 isolates resulted in the identification of 22 different species. Antagonists of the genus Serratia were preferentially isolated from oilseed rape rhizosphere, with the exception of one site. For isolates of Pseudomonas and Serratia, plant-specific and site-specific genotypes were found. PMID:16629754

  7. Ligand Promiscuity of Aryl Hydrocarbon Receptor Agonists and Antagonists Revealed by Site-Directed Mutagenesis

    OpenAIRE

    Soshilov, Anatoly A; DENISON, Michael S.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by structurally diverse chemicals. To examine the mechanisms responsible for the promiscuity in AhR ligand binding, we determined the effects of mutations within the AhR ligand-binding domain (LBD) on the activity of diverse AhR ligands. Site-directed mutagenesis identified Ile319 of the mouse AhR and, to a lesser extent, Phe318 as residues involved in ligand-selective modulation of AhR transf...

  8. Insecticidal 3-benzamido-N-phenylbenzamides specifically bind with high affinity to a novel allosteric site in housefly GABA receptors.

    Science.gov (United States)

    Ozoe, Yoshihisa; Kita, Tomo; Ozoe, Fumiyo; Nakao, Toshifumi; Sato, Kazuyuki; Hirase, Kangetsu

    2013-11-01

    γ-Aminobutyric acid (GABA) receptors (GABARs) are an important target for existing insecticides such as fiproles. These insecticides act as noncompetitive antagonists (channel blockers) for insect GABARs by binding to a site within the intrinsic channel of the GABAR. Recently, a novel class of insecticides, 3-benzamido-N-phenylbenzamides (BPBs), was shown to inhibit GABARs by binding to a site distinct from the site for fiproles. We examined the binding site of BPBs in the adult housefly by means of radioligand-binding and electrophysiological experiments. 3-Benzamido-N-(2,6-dimethyl-4-perfluoroisopropylphenyl)-2-fluorobenzamide (BPB 1) (the N-demethyl BPB) was a partial, but potent, inhibitor of [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (GABA channel blocker) binding to housefly head membranes, whereas the 3-(N-methyl)benzamido congener (the N-methyl BPB) had low or little activity. A total of 15 BPB analogs were tested for their abilities to inhibit [(3)H]BPB 1 binding to the head membranes. The N-demethyl analogs, known to be highly effective insecticides, potently inhibited the [(3)H]BPB 1 binding, but the N-methyl analogs did not even though they, too, are considered highly effective. [(3)H]BPB 1 equally bound to the head membranes from wild-type and dieldrin-resistant (rdl mutant) houseflies. GABA allosterically inhibited [(3)H]BPB 1 binding. By contrast, channel blocker-type antagonists enhanced [(3)H]BPB 1 binding to housefly head membranes by increasing the affinity of BPB 1. Antiparasitic macrolides, such as ivermectin B1a, were potent inhibitors of [(3)H]BPB 1 binding. BPB 1 inhibited GABA-induced currents in housefly GABARs expressed in Xenopus oocytes, whereas it failed to inhibit l-glutamate-induced currents in inhibitory l-glutamate receptors. Overall, these findings indicate that BPBs act at a novel allosteric site that is different from the site for channel blocker-type antagonists and that is probably overlapped with the site for macrolides

  9. High density of benzodiazepine binding sites in the substantia innominata of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Sarter, M.; Schneider, H.H.

    1988-07-01

    In order to study the neuronal basis of the pharmacological interactions between benzodiazepine receptor ligands and cortical cholinergic turnover, we examined the regional distribution of specific benzodiazepine binding sites using in vitro autoradiography. In the basal forebrain, the substantia innominata contained a high density of (/sup 3/H)lormetazepam (LMZ) binding sites (Bmax = 277 fmol/mg tissue; Kd = 0.55 nM). The label could be displaced by diazepam (IC50 = 100 nM), the benzodiazepine receptor antagonist beta-carboline ZK 93426 (45 nM) and the partial inverse agonist beta-carboline FG 7142 (540 nM). It is hypothesized that the amnesic effects of benzodiazepine receptor agonists are exerted through benzodiazepine receptors which are situated on cholinergic neurons in the substantia innominata and are involved in a tonic inhibition of cortical acetylcholine release. The benzodiazepine receptor antagonist ZK 93426 may exert its nootropic effects via benzodiazepine receptors in the substantia innominata and, consequently, by disinhibiting cortical acetylcholine release.

  10. Chloride binding site of neurotransmitter sodium symporters

    DEFF Research Database (Denmark)

    Kantcheva, Adriana Krassimirova; Quick, Matthias; Shi, Lei;

    2013-01-01

    Neurotransmitter:sodium symporters (NSSs) play a critical role in signaling by reuptake of neurotransmitters. Eukaryotic NSSs are chloride-dependent, whereas prokaryotic NSS homologs like LeuT are chloride-independent but contain an acidic residue (Glu290 in LeuT) at a site where eukaryotic NSSs...

  11. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    Energy Technology Data Exchange (ETDEWEB)

    Gangi Setty, Thanuja [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Cho, Christine [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Govindappa, Sowmya [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India); Apicella, Michael A. [Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109 (United States); Ramaswamy, S., E-mail: ramas@instem.res.in [Institute for Stem Cell Biology and Regenerative Medicine, NCBS Campus, GKVK Post, Bangalore, Karnataka 560 065 (India)

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.

  12. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    International Nuclear Information System (INIS)

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which often takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states

  13. Calculation of binding constants and concentration of binding sites in a reaction of a ligand with a heterogeneous system of binding sites

    International Nuclear Information System (INIS)

    A method is presented for the calculation of association constants and the concentration of binding sites in a reaction of a ligand with a heterogeneous system of binding sites. The Scatchard plot for such a system is curvelinear and the method employs previously established relationships between the parameters of the limiting slopes to such a curve and the above mentioned association constants and concentrations of binding sites. The special case of a system with two different and non-interacting groups of binding sites was solved. The expressions thus obtained were used to characterize the reaction of a polypeptide neurotoxin with its specific binding sites in a membranal preparation from insect central nervous system. Moreover it is evident from these expressions that the widely accepted method to analyze such system, by an intuitive generalization of the method applicable to homogeneous systems, is erroneous and should be avoided. (author)

  14. Perturbation Approaches for Exploring Protein Binding Site Flexibility to Predict Transient Binding Pockets.

    Science.gov (United States)

    Kokh, Daria B; Czodrowski, Paul; Rippmann, Friedrich; Wade, Rebecca C

    2016-08-01

    Simulations of the long-time scale motions of a ligand binding pocket in a protein may open up new perspectives for the design of compounds with steric or chemical properties differing from those of known binders. However, slow motions of proteins are difficult to access using standard molecular dynamics (MD) simulations and are thus usually neglected in computational drug design. Here, we introduce two nonequilibrium MD approaches to identify conformational changes of a binding site and detect transient pockets associated with these motions. The methods proposed are based on the rotamerically induced perturbation (RIP) MD approach, which employs perturbation of side-chain torsional motion for initiating large-scale protein movement. The first approach, Langevin-RIP (L-RIP), entails a series of short Langevin MD simulations, each starting with perturbation of one of the side-chains lining the binding site of interest. L-RIP provides extensive sampling of conformational changes of the binding site. In less than 1 ns of MD simulation with L-RIP, we observed distortions of the α-helix in the ATP binding site of HSP90 and flipping of the DFG loop in Src kinase. In the second approach, RIPlig, a perturbation is applied to a pseudoligand placed in different parts of a binding pocket, which enables flexible regions of the binding site to be identified in a small number of 10 ps MD simulations. The methods were evaluated for four test proteins displaying different types and degrees of binding site flexibility. Both methods reveal all transient pocket regions in less than a total of 10 ns of simulations, even though many of these regions remained closed in 100 ns conventional MD. The proposed methods provide computationally efficient tools to explore binding site flexibility and can aid in the functional characterization of protein pockets, and the identification of transient pockets for ligand design. PMID:27399277

  15. Biophysical fitness landscapes for transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Allan Haldane

    2014-07-01

    Full Text Available Phenotypic states and evolutionary trajectories available to cell populations are ultimately dictated by complex interactions among DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell eukaryote S. cerevisiae is affected by interactions between transcription factors (TFs and their cognate DNA sites. Our study is informed by a comprehensive collection of genomic binding sites and high-throughput in vitro measurements of TF-DNA binding interactions. Using an evolutionary model for monomorphic populations evolving on a fitness landscape, we infer fitness as a function of TF-DNA binding to show that the shape of the inferred fitness functions is in broad agreement with a simple functional form inspired by a thermodynamic model of two-state TF-DNA binding. However, the effective parameters of the model are not always consistent with physical values, indicating selection pressures beyond the biophysical constraints imposed by TF-DNA interactions. We find little statistical support for the fitness landscape in which each position in the binding site evolves independently, indicating that epistasis is common in the evolution of gene regulation. Finally, by correlating TF-DNA binding energies with biological properties of the sites or the genes they regulate, we are able to rule out several scenarios of site-specific selection, under which binding sites of the same TF would experience different selection pressures depending on their position in the genome. These findings support the existence of universal fitness landscapes which shape evolution of all sites for a given TF, and whose properties are determined in part by the physics of protein-DNA interactions.

  16. Pharmacology of morphine and morphine-3-glucuronide at opioid, excitatory amino acid, GABA and glycine binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, S.E.; Smith, M.T. (Department of Pharmacy, The University of Queensland (Australia)); Dood, P.R. (Clinical Research Centre, Royal Brisbane Hospital Foundation, Brisbane (Australia))

    1994-07-01

    Morphine in high doses and its major metabolite, morphine-3-glucuronide, cause CNS excitation following intrathecal and intracerebroventricular administration by an unknown mechanism. This study investigated whether morphine and morphine-3-glucuronide interact at major excitatory (glutamate), major inhibitory (GABA or glycine), or opioid binding sites. Homogenate binding assays were performed using specific radioligands. At opioid receptors, morphine-3-glucuronide and morphine caused an equipotent sodium shift, consistent with morphine-3-glucuronide behaving as an agonist. This suggests that morphine-3-glucuronide-mediated excitation is not caused by an interaction at opioid receptors. Morphine-3-glucuronide and morphine caused a weak inhibition of the binding of [sup 3]H-MK801 (non-competitive antagonist) and [sup 125]I-ifenprodil (polyamine site antagonist), but at unphysiologically high concentrations. This suggests that CNS excitation would not result from an interaction of morphine-3-glucuronide and high-dose morphine with these sites on the NMDA receptor. Morphine-3-glucuronide and morphine inhibited the binding of [sup 3]H-muscimol (GABA receptor agonist), [sup 3]H-diazepam and [sup 3]H-flunitraxepam (benzodiazepine agonists) binding very weakly, suggesting the excitatory effects of morphine-3-glucuronide and high-dose morphine are not elicited through GABA[sub A] receptors. Morphine-3-glucuronide and high-dose morphine did not prevent re-uptake of glutamate into presynaptic nerve terminals. In addition, morphine-3-glucuronide and morphine did not inhibit the binding of [sup 3]H-strychnine (glycine receptor antagonist) to synaptic membranes prepared from bovine spinal cord. It is concluded that excitation caused by high-dose morphine and morphine-3-glucuronide is not mediated by an interaction with postsynaptic amino acid receptors. (au) (30 refs.).

  17. Domain-based small molecule binding site annotation

    Directory of Open Access Journals (Sweden)

    Dumontier Michel

    2006-03-01

    Full Text Available Abstract Background Accurate small molecule binding site information for a protein can facilitate studies in drug docking, drug discovery and function prediction, but small molecule binding site protein sequence annotation is sparse. The Small Molecule Interaction Database (SMID, a database of protein domain-small molecule interactions, was created using structural data from the Protein Data Bank (PDB. More importantly it provides a means to predict small molecule binding sites on proteins with a known or unknown structure and unlike prior approaches, removes large numbers of false positive hits arising from transitive alignment errors, non-biologically significant small molecules and crystallographic conditions that overpredict ion binding sites. Description Using a set of co-crystallized protein-small molecule structures as a starting point, SMID interactions were generated by identifying protein domains that bind to small molecules, using NCBI's Reverse Position Specific BLAST (RPS-BLAST algorithm. SMID records are available for viewing at http://smid.blueprint.org. The SMID-BLAST tool provides accurate transitive annotation of small-molecule binding sites for proteins not found in the PDB. Given a protein sequence, SMID-BLAST identifies domains using RPS-BLAST and then lists potential small molecule ligands based on SMID records, as well as their aligned binding sites. A heuristic ligand score is calculated based on E-value, ligand residue identity and domain entropy to assign a level of confidence to hits found. SMID-BLAST predictions were validated against a set of 793 experimental small molecule interactions from the PDB, of which 472 (60% of predicted interactions identically matched the experimental small molecule and of these, 344 had greater than 80% of the binding site residues correctly identified. Further, we estimate that 45% of predictions which were not observed in the PDB validation set may be true positives. Conclusion By

  18. The structure of a mixed GluR2 ligand-binding core dimer in complex with (S)-glutamate and the antagonist (S)-NS1209

    DEFF Research Database (Denmark)

    Kasper, Christina; Pickering, Darryl S; Mirza, Osman;

    2006-01-01

    of this novel class of antagonists. We present here the first X-ray structure of a mixed GluR2 ligand-binding core dimer, with the high-affinity antagonist (S)-8-methyl-5-(4-(N,N-dimethylsulfamoyl)phenyl)-6,7,8,9,-tetrahydro-1H-pyrrolo[3,2-h]-isoquinoline-2,3-dione-3-O-(4-hydroxybutyrate-2-yl)oxime [(S)-NS1209...

  19. Identification and characterization of anion binding sites in RNA.

    Science.gov (United States)

    Kieft, Jeffrey S; Chase, Elaine; Costantino, David A; Golden, Barbara L

    2010-06-01

    Although RNA molecules are highly negatively charged, anions have been observed bound to RNA in crystal structures. It has been proposed that anion binding sites found within isolated RNAs represent regions of the molecule that could be involved in intermolecular interactions, indicating potential contact points for negatively charged amino acids from proteins or phosphate groups from an RNA. Several types of anion binding sites have been cataloged based on available structures. However, currently there is no method for unambiguously assigning anions to crystallographic electron density, and this has precluded more detailed analysis of RNA-anion interaction motifs and their significance. We therefore soaked selenate into two different types of RNA crystals and used the anomalous signal from these anions to identify binding sites in these RNA molecules unambiguously. Examination of these sites and comparison with other suspected anion binding sites reveals features of anion binding motifs, and shows that selenate may be a useful tool for studying RNA-anion interactions. PMID:20410239

  20. Relating the shape of protein binding sites to binding affinity profiles: is there an association?

    Directory of Open Access Journals (Sweden)

    Bitter István

    2010-10-01

    Full Text Available Abstract Background Various pattern-based methods exist that use in vitro or in silico affinity profiles for classification and functional examination of proteins. Nevertheless, the connection between the protein affinity profiles and the structural characteristics of the binding sites is still unclear. Our aim was to investigate the association between virtual drug screening results (calculated binding free energy values and the geometry of protein binding sites. Molecular Affinity Fingerprints (MAFs were determined for 154 proteins based on their molecular docking energy results for 1,255 FDA-approved drugs. Protein binding site geometries were characterized by 420 PocketPicker descriptors. The basic underlying component structure of MAFs and binding site geometries, respectively, were examined by principal component analysis; association between principal components extracted from these two sets of variables was then investigated by canonical correlation and redundancy analyses. Results PCA analysis of the MAF variables provided 30 factors which explained 71.4% of the total variance of the energy values while 13 factors were obtained from the PocketPicker descriptors which cumulatively explained 94.1% of the total variance. Canonical correlation analysis resulted in 3 statistically significant canonical factor pairs with correlation values of 0.87, 0.84 and 0.77, respectively. Redundancy analysis indicated that PocketPicker descriptor factors explain 6.9% of the variance of the MAF factor set while MAF factors explain 15.9% of the total variance of PocketPicker descriptor factors. Based on the salient structures of the factor pairs, we identified a clear-cut association between the shape and bulkiness of the drug molecules and the protein binding site descriptors. Conclusions This is the first study to investigate complex multivariate associations between affinity profiles and the geometric properties of protein binding sites. We found that

  1. Insulin binding sites in various segments of the rabbit nephron

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, R.; Emmanouel, D.S.; Katz, A.I.

    1983-07-01

    Insulin binds specifically to basolateral renal cortical membranes and modifies tubular electrolyte transport, but the target sites of this hormone in the nephron have not been identified. Using a microassay that permits measurement of hormone binding in discrete tubule segments we have determined the binding sites of /sup 125/I-insulin along the rabbit nephron. Assays were performed under conditions that minimize insulin degradation, and specific binding was measured as the difference between /sup 125/I-insulin bound in the presence or absence of excess (10(-5) M) unlabeled hormone. Insulin monoiodinated in position A14 was used in all assays. Specific insulin binding (attomol . cm-1 +/- SE) was highest in the distal convoluted tubule (180.5 +/- 15.0) and medullary thick ascending limb of Henle's loop (132.9 +/- 14.6), followed by the proximal convoluted and straight tubule. When expressed per milligram protein, insulin binding capacity was highest along the entire thick ascending limb (medullary and cortical portions) and the distal convoluted tubule, i.e., the ''diluting segment'' (congruent to 10(-13) mol . mg protein-1), and was lower (congruent to 4 X 10(-14) mol . mg protein-1), and remarkably similar, in all other nephron segments. Binding specificity was verified in competition studies with unlabeled insulin, insulin analogues (proinsulin and desoctapeptide insulin), and unrelated hormones (glucagon, 1-34 parathyroid hormone, prolactin, follicle-stimulating hormone). In addition, serum containing antiinsulin receptor antibody from two patients with type B insulin resistance syndrome markedly inhibited insulin binding to isolated tubules. Whether calculated per unit tubule length or protein content, insulin binding is highest in the thick ascending limb and the distal convoluted tubule, the same nephron sites where a regulatory role in sodium transport has been postulated for this hormone.

  2. Insulin binding sites in various segments of the rabbit nephron

    International Nuclear Information System (INIS)

    Insulin binds specifically to basolateral renal cortical membranes and modifies tubular electrolyte transport, but the target sites of this hormone in the nephron have not been identified. Using a microassay that permits measurement of hormone binding in discrete tubule segments we have determined the binding sites of 125I-insulin along the rabbit nephron. Assays were performed under conditions that minimize insulin degradation, and specific binding was measured as the difference between 125I-insulin bound in the presence or absence of excess (10(-5) M) unlabeled hormone. Insulin monoiodinated in position A14 was used in all assays. Specific insulin binding (attomol . cm-1 +/- SE) was highest in the distal convoluted tubule (180.5 +/- 15.0) and medullary thick ascending limb of Henle's loop (132.9 +/- 14.6), followed by the proximal convoluted and straight tubule. When expressed per milligram protein, insulin binding capacity was highest along the entire thick ascending limb (medullary and cortical portions) and the distal convoluted tubule, i.e., the ''diluting segment'' (congruent to 10(-13) mol . mg protein-1), and was lower (congruent to 4 X 10(-14) mol . mg protein-1), and remarkably similar, in all other nephron segments. Binding specificity was verified in competition studies with unlabeled insulin, insulin analogues (proinsulin and desoctapeptide insulin), and unrelated hormones (glucagon, 1-34 parathyroid hormone, prolactin, follicle-stimulating hormone). In addition, serum containing antiinsulin receptor antibody from two patients with type B insulin resistance syndrome markedly inhibited insulin binding to isolated tubules. Whether calculated per unit tubule length or protein content, insulin binding is highest in the thick ascending limb and the distal convoluted tubule, the same nephron sites where a regulatory role in sodium transport has been postulated for this hormone

  3. Characterization of the slow calcium channel binding sites for [3H]SR 33557 in rat heart sarcolemmal membranes

    International Nuclear Information System (INIS)

    SR 33557 represents a new class of compounds (indolizine sulfone) that inhibit L-type Ca2+ channels. [3H]SR 33557 has been shown to bind with high affinity (Kd congruent to 0.36 nM, calculated from saturation isotherms and association/dissociation kinetics) to a single class of sites in a purified preparation of rat cardiac sarcolemmal membranes. The binding was found to be saturable and reversible. The maximal binding capacity was in approximately 1:1 stoichiometry with that of other Ca2+ channel antagonists. Various divalent cations (Mg2+, Mn2+, Ca2+, Ba2+, and Cd2+) were shown to inhibit specific [3H]SR 33557 binding, with Cd2+ being the most potent. Among several receptor or channel ligands (including omega-conotoxin and Na+ and K+ channel modulators), only the L-type Ca2+ channel antagonists were found to displace [3H]SR 33557. However, dihydropyridines, phenylalkylamines, benzothiazepines, and diphenylbutylpiperidines were found to inhibit [3H]SR 33557 in a noncompetitive manner as demonstrated by displacement and saturation experiments in addition to dissociation kinetics. From these results, we suggest that SR 33557 binds with high affinity to a unique site on the L-type Ca2+ channel found in rat cardiac sarcolemmal membranes

  4. Inhibition of in vivo [(3)H]MK-801 binding by NMDA receptor open channel blockers and GluN2B antagonists in rats and mice.

    Science.gov (United States)

    Fernandes, Alda; Wojcik, Trevor; Baireddy, Praveena; Pieschl, Rick; Newton, Amy; Tian, Yuan; Hong, Yang; Bristow, Linda; Li, Yu-Wen

    2015-11-01

    N-methyl-D-aspartate (NMDA) receptor antagonists, including open channel blockers and GluN2B receptor subtype selective antagonists, have been developed for the treatment of depression. The current study investigated effects of systemically administered NMDA channel blockers and GluN2B receptor antagonists on NMDA receptor activity in rodents using in vivo [(3)H]MK-801 binding. The receptor occupancy of GluN2B antagonists was measured using ex vivo [(3)H]Ro 25-6981 binding. Ketamine, a NMDA receptor channel blocker, produced a dose/exposure- and time-dependent inhibition of in vivo [(3)H]MK-801 binding that was maximal at ~100%. The complete inhibition of in vivo [(3)H]MK-801 binding was also observed with NMDA receptor channel blockers, AZD6765 (Lanicemine) and MK-801 (Dizocilpine). CP-101,606 (Traxoprodil), a GluN2B antagonist, produced a dose/exposure- and time-dependent inhibition of in vivo [(3)H]MK-801 binding that was maximal at ~60%. Partial inhibition was also observed with other GluN2B antagonists including MK-0657 (CERC-301), EVT-101, Ro 25-6981 and radiprodil. For all GluN2B antagonists tested, partial [(3)H]MK-801 binding inhibition was achieved at doses saturating GluN2B receptor occupancy. Combined treatment with ketamine (10mg/kg, i.p.) and Ro 25-6981(10mg/kg, i.p.) produced a level of inhibition of in vivo [(3)H]MK-801 binding that was similar to treatment with either agent alone. In conclusion, this in vivo [(3)H]MK-801 binding study shows that NMDA receptor activity in the rodent forebrain can be inhibited completely by channel blockers, but only partially (~60%) by GluN2B receptor antagonists. At doses effective in preclinical models of depression, ketamine may preferentially inhibit the same population of NMDA receptors as Ro 25-6981, namely those containing the GluN2B subunit. PMID:26325093

  5. Binding-site assessment by virtual fragment screening.

    Directory of Open Access Journals (Sweden)

    Niu Huang

    Full Text Available The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock approximately 11,000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors.

  6. Kinetics of binding of dihydropyridine calcium channel ligands to skeletal muscle membranes: Evidence for low-affinity sites and for the involvement of G proteins

    International Nuclear Information System (INIS)

    Detailed kinetic studies of the binding of the calcium channel antagonist (+)-[3H]PN200-110 to membrane preparations form rabbit skeletal muscle have demonstrated that, in addition to the high-affinity sites that are readily measured in equilibrium and kinetic experiments, there are also dihydropyridine binding sites with much lower affinities. These sites were detected by the ability of micromolar concentrations of several dihydropyridines to accelerate the rate of dissociation of (+)-[3H]PN200-110 from its high-affinity sites. The observed increase in rate was dependent on the concentration of competing ligand, and half-maximal effects occurred at approximately 10 μM for the agonist (±)-Bay K8644 and for the antagonists nifedipine, (±)-nitrendipine, and (+)-PN200-110. The low-affinity sites appear to be stereospecific since (-)-PN200-110 (1-200 μM) did not affect the dissociation rate. The possible involvement of guanine nucleotide binding proteins in dihydropyridine binding has been investigated by studying the effects of guanosine 5'-O-(3-thiotriphosphate) (GTPγS) and guanosine 5'-O-(2-thiodiphosphate) (GDPβS) on binding parameters. GTPγS did increase the ability of (±)-[3H]PN200-110. These results suggest that skeletal muscle dihydropyridine receptors have low-affinity binding sites that may be involved in the regulation of calcium channel function and that activation of a guanine nucleotide binding protein may modulate the binding of agonists but not of antagonists to these sites

  7. Characterization of Heparin-binding Site of Tissue Transglutaminase

    Science.gov (United States)

    Wang, Zhuo; Collighan, Russell J.; Pytel, Kamila; Rathbone, Daniel L.; Li, Xiaoling; Griffin, Martin

    2012-01-01

    Tissue transglutaminase (TG2) is a multifunctional Ca2+-activated protein cross-linking enzyme secreted into the extracellular matrix (ECM), where it is involved in wound healing and scarring, tissue fibrosis, celiac disease, and metastatic cancer. Extracellular TG2 can also facilitate cell adhesion important in wound healing through a nontransamidating mechanism via its association with fibronectin, heparan sulfates (HS), and integrins. Regulating the mechanism how TG2 is translocated into the ECM therefore provides a strategy for modulating these physiological and pathological functions of the enzyme. Here, through molecular modeling and mutagenesis, we have identified the HS-binding site of TG2 202KFLKNAGRDCSRRSSPVYVGR222. We demonstrate the requirement of this binding site for translocation of TG2 into the ECM through a mechanism involving cell surface shedding of HS. By synthesizing a peptide NPKFLKNAGRDCSRRSS corresponding to the HS-binding site within TG2, we also demonstrate how this mimicking peptide can in isolation compensate for the RGD-induced loss of cell adhesion on fibronectin via binding to syndecan-4, leading to activation of PKCα, pFAK-397, and ERK1/2 and the subsequent formation of focal adhesions and actin cytoskeleton organization. A novel regulatory mechanism for TG2 translocation into the extracellular compartment that depends upon TG2 conformation and the binding of HS is proposed. PMID:22298777

  8. Identification of critical residues in loop E in the 5-HT3ASR binding site

    Directory of Open Access Journals (Sweden)

    Muthalagi Mani

    2002-06-01

    Full Text Available Abstract Background The serotonin type 3 receptor (5-HT3R is a member of a superfamily of ligand gated ion channels. All members of this family share a large degree of sequence homology and presumably significant structural similarity. A large number of studies have explored the structure-function relationships of members of this family, particularly the nicotinic and GABA receptors. This information can be utilized to gain additional insights into specific structural and functional features of other receptors in this family. Results Thirteen amino acids in the mouse 5-HT3ASR that correspond to the putative E binding loop of the nicotinic α7 receptor were chosen for mutagenesis. Due to the presence of a highly conserved glycine in this region, it has been suggested that this binding loop is comprised of a hairpin turn and may form a portion of the ligand-binding site in this ion channel family. Mutation of the conserved glycine (G147 to alanine eliminated binding of the 5-HT3R antagonist [3H]granisetron. Three tyrosine residues (Y140, Y142 and Y152 also significantly altered the binding of 5-HT3R ligands. Mutations in neighboring residues had little or no effect on binding of these ligands to the 5-HT3ASR. Conclusion Our data supports a role for the putative E-loop region of the 5-HT3R in the binding of 5-HT, mCPBG, d-tc and lerisetron. 5-HT and mCPBG interact with Y142, d-tc with Y140 and lerisetron with both Y142 and Y152. Our data also provides support for the hypothesis that this region of the receptor is present in a loop structure.

  9. Molecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site

    Science.gov (United States)

    Martinez-Archundia, Marlet; Cordomi, Arnau; Garriga, Pere; Perez, Juan J.

    2012-01-01

    The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC) and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS). Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand. PMID:22500107

  10. Molecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site

    Directory of Open Access Journals (Sweden)

    Marlet Martinez-Archundia

    2012-01-01

    Full Text Available The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS. Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand.

  11. Structures of quinone binding sites in bc complexes: Functional implications

    International Nuclear Information System (INIS)

    Near-atomic resolution structures are becoming available for the respiratory chain enzyme known as ubiquinol:cytochrome c oxidoreductase or the cytochrome bc1 complex. Here we examine our current structure for the chicken bc1 complex to see what it can tell us about the mode of binding and mechanism of reaction of quinone at the two active sites

  12. Leveraging cross-species transcription factor binding site patterns

    DEFF Research Database (Denmark)

    Claussnitzer, Melina; Dankel, Simon N; Klocke, Bernward;

    2014-01-01

    to disease susceptibility. We show that integrative computational analysis of phylogenetic conservation with a complexity assessment of co-occurring transcription factor binding sites (TFBS) can identify cis-regulatory variants and elucidate their mechanistic role in disease. Analysis of established type 2...

  13. CLIPZ: a database and analysis environment for experimentally determined binding sites of RNA-binding proteins.

    Science.gov (United States)

    Khorshid, Mohsen; Rodak, Christoph; Zavolan, Mihaela

    2011-01-01

    The stability, localization and translation rate of mRNAs are regulated by a multitude of RNA-binding proteins (RBPs) that find their targets directly or with the help of guide RNAs. Among the experimental methods for mapping RBP binding sites, cross-linking and immunoprecipitation (CLIP) coupled with deep sequencing provides transcriptome-wide coverage as well as high resolution. However, partly due to their vast volume, the data that were so far generated in CLIP experiments have not been put in a form that enables fast and interactive exploration of binding sites. To address this need, we have developed the CLIPZ database and analysis environment. Binding site data for RBPs such as Argonaute 1-4, Insulin-like growth factor II mRNA-binding protein 1-3, TNRC6 proteins A-C, Pumilio 2, Quaking and Polypyrimidine tract binding protein can be visualized at the level of the genome and of individual transcripts. Individual users can upload their own sequence data sets while being able to limit the access to these data to specific users, and analyses of the public and private data sets can be performed interactively. CLIPZ, available at http://www.clipz.unibas.ch, aims to provide an open access repository of information for post-transcriptional regulatory elements.

  14. Incorporating evolution of transcription factor binding sites into annotated alignments

    Indian Academy of Sciences (India)

    Abha S Bais; Steffen Grossmann; Martin Vingron

    2007-08-01

    Identifying transcription factor binding sites (TFBSs) is essential to elucidate putative regulatory mechanisms. A common strategy is to combine cross-species conservation with single sequence TFBS annotation to yield ``conserved TFBSs”. Most current methods in this field adopt a multi-step approach that segregates the two aspects. Again, it is widely accepted that the evolutionary dynamics of binding sites differ from those of the surrounding sequence. Hence, it is desirable to have an approach that explicitly takes this factor into account. Although a plethora of approaches have been proposed for the prediction of conserved TFBSs, very few explicitly model TFBS evolutionary properties, while additionally being multi-step. Recently, we introduced a novel approach to simultaneously align and annotate conserved TFBSs in a pair of sequences. Building upon the standard Smith-Waterman algorithm for local alignments, SimAnn introduces additional states for profiles to output extended alignments or annotated alignments. That is, alignments with parts annotated as gaplessly aligned TFBSs (pair-profile hits) are generated. Moreover, the pair-profile related parameters are derived in a sound statistical framework. In this article, we extend this approach to explicitly incorporate evolution of binding sites in the SimAnn framework. We demonstrate the extension in the theoretical derivations through two position-specific evolutionary models, previously used for modelling TFBS evolution. In a simulated setting, we provide a proof of concept that the approach works given the underlying assumptions, as compared to the original work. Finally, using a real dataset of experimentally verified binding sites in human-mouse sequence pairs, we compare the new approach (eSimAnn) to an existing multi-step tool that also considers TFBS evolution. Although it is widely accepted that binding sites evolve differently from the surrounding sequences, most comparative TFBS identification

  15. Promoter-distal RNA polymerase II binding discriminates active from inactive CCAAT/ enhancer-binding protein beta binding sites

    Science.gov (United States)

    Savic, Daniel; Roberts, Brian S.; Carleton, Julia B.; Partridge, E. Christopher; White, Michael A.; Cohen, Barak A.; Cooper, Gregory M.; Gertz, Jason; Myers, Richard M.

    2015-01-01

    Transcription factors (TFs) bind to thousands of DNA sequences in mammalian genomes, but most of these binding events appear to have no direct effect on gene expression. It is unclear why only a subset of TF bound sites are actively involved in transcriptional regulation. Moreover, the key genomic features that accurately discriminate between active and inactive TF binding events remain ambiguous. Recent studies have identified promoter-distal RNA polymerase II (RNAP2) binding at enhancer elements, suggesting that these interactions may serve as a marker for active regulatory sequences. Despite these correlative analyses, a thorough functional validation of these genomic co-occupancies is still lacking. To characterize the gene regulatory activity of DNA sequences underlying promoter-distal TF binding events that co-occur with RNAP2 and TF sites devoid of RNAP2 occupancy using a functional reporter assay, we performed cis-regulatory element sequencing (CRE-seq). We tested more than 1000 promoter-distal CCAAT/enhancer-binding protein beta (CEBPB)-bound sites in HepG2 and K562 cells, and found that CEBPB-bound sites co-occurring with RNAP2 were more likely to exhibit enhancer activity. CEBPB-bound sites further maintained substantial cell-type specificity, indicating that local DNA sequence can accurately convey cell-type–specific regulatory information. By comparing our CRE-seq results to a comprehensive set of genome annotations, we identified a variety of genomic features that are strong predictors of regulatory element activity and cell-type–specific activity. Collectively, our functional assay results indicate that RNAP2 occupancy can be used as a key genomic marker that can distinguish active from inactive TF bound sites. PMID:26486725

  16. Irreversible blockade of the high and low affinity (3H) naloxone binding sites by C-6 derivatives of morphinane-6-ones

    International Nuclear Information System (INIS)

    C-6 derivatives-hydrazones, phenylhydrazones, dinitrophenylhydrazones, oximes and semicarbazones - of morphinane-6-ones were synthesized and their binding characteristics were studied on rat brain membranes. The dihydromorphinone and oxymorphone derivatives compete for the (3H)naloxone binding sites with high affinity, while the dihydrocodeinone and oxycodone derivatives are less potent. The affinity of the new compounds is decreased for the delta sites as compared to the parent ligands. The ligands bearing bulky substituents also bind with low affinity to the kappa sites. The modification decreased the Na+-index of compounds indicating their mixed agonist-antagonist character. The dihydromorphinone derivatives are all capable to block irreversibly the high affinity binding site of (3H)naloxone, whereas the dihydrocodeinone derivatives block irreversibly the low affinity site. A possible mechanism for the inhibition is suggested

  17. Irreversible blockade of the high and low affinity ( sup 3 H) naloxone binding sites by C-6 derivatives of morphinane-6-ones

    Energy Technology Data Exchange (ETDEWEB)

    Krizsan, D. (EGIS Pharmaceutical Works, Budapest (Hungary)); Varga, E.; Benyhe, S.; Szucs, M.; Borsodi, A. (Biological Research Center of the Hungarian Academy of Sciences, Szeged (Hungary)); Hosztafi, S. (Alkaloida Chemical Works, Tiszavasvari (Hungary))

    1991-01-01

    C-6 derivatives-hydrazones, phenylhydrazones, dinitrophenylhydrazones, oximes and semicarbazones - of morphinane-6-ones were synthesized and their binding characteristics were studied on rat brain membranes. The dihydromorphinone and oxymorphone derivatives compete for the ({sup 3}H)naloxone binding sites with high affinity, while the dihydrocodeinone and oxycodone derivatives are less potent. The affinity of the new compounds is decreased for the delta sites as compared to the parent ligands. The ligands bearing bulky substituents also bind with low affinity to the kappa sites. The modification decreased the Na{sup +}-index of compounds indicating their mixed agonist-antagonist character. The dihydromorphinone derivatives are all capable to block irreversibly the high affinity binding site of ({sup 3}H)naloxone, whereas the dihydrocodeinone derivatives block irreversibly the low affinity site. A possible mechanism for the inhibition is suggested.

  18. Variable structure motifs for transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Wernisch Lorenz

    2010-01-01

    Full Text Available Abstract Background Classically, models of DNA-transcription factor binding sites (TFBSs have been based on relatively few known instances and have treated them as sites of fixed length using position weight matrices (PWMs. Various extensions to this model have been proposed, most of which take account of dependencies between the bases in the binding sites. However, some transcription factors are known to exhibit some flexibility and bind to DNA in more than one possible physical configuration. In some cases this variation is known to affect the function of binding sites. With the increasing volume of ChIP-seq data available it is now possible to investigate models that incorporate this flexibility. Previous work on variable length models has been constrained by: a focus on specific zinc finger proteins in yeast using restrictive models; a reliance on hand-crafted models for just one transcription factor at a time; and a lack of evaluation on realistically sized data sets. Results We re-analysed binding sites from the TRANSFAC database and found motivating examples where our new variable length model provides a better fit. We analysed several ChIP-seq data sets with a novel motif search algorithm and compared the results to one of the best standard PWM finders and a recently developed alternative method for finding motifs of variable structure. All the methods performed comparably in held-out cross validation tests. Known motifs of variable structure were recovered for p53, Stat5a and Stat5b. In addition our method recovered a novel generalised version of an existing PWM for Sp1 that allows for variable length binding. This motif improved classification performance. Conclusions We have presented a new gapped PWM model for variable length DNA binding sites that is not too restrictive nor over-parameterised. Our comparison with existing tools shows that on average it does not have better predictive accuracy than existing methods. However, it does

  19. Shared Binding Sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A Toxins

    OpenAIRE

    Herrero, Salvador; González-Cabrera, Joel; Tabashnik, Bruce E; Ferré, Juan

    2001-01-01

    Bacillus thuringiensis toxins act by binding to specific target sites in the insect midgut epithelial membrane. The best-known mechanism of resistance to B. thuringiensis toxins is reduced binding to target sites. Because alteration of a binding site shared by several toxins may cause resistance to all of them, knowledge of which toxins share binding sites is useful for predicting cross-resistance. Conversely, cross-resistance among toxins suggests that the toxins share a binding site. At lea...

  20. 14C-glucose binding assay of the glucose transporter binding sites in muscular cell membrane

    International Nuclear Information System (INIS)

    A method of determining the binding sites of glucose transporter in rat muscular cell membrane was introduced. The crude products of cell membrane form the skeletal muscle of control and insulin treated rats were prepared, and then fractionated in sucrose gradient. Both plasma membrane and microsome membrane were incubated with D-[U-14C] glucose respectively for the measurement of radioactivity and Scatchard plot analysis. It was found that the binding sites of glucose transporter in plasma membrane and intracellular membrane were 5.6 nmol 14C-glucose/mg protein and 8.7 nmol 14C-glucose-mg protein respectively at basic state. Insulin treatment in experimental groups caused approximately 146% increase in plasma membrane fraction and 88% decrease in intracellular membrane fraction. Moreover, the kinetic data of Scatchard plot curve were similar to those of the [3H]-cytochalasin B binding assay. D-[U-14C] glucose binding assay of glucose transporter binding sites in muscular cell membrane is simple, easy and practicable. The D-[U-14C] glucose is commercially available

  1. HDAC Inhibitors without an Active Site Zn2+-Binding Group

    DEFF Research Database (Denmark)

    Vickers, Chris J.; Olsen, Christian Adam; Leman, Luke J.;

    2012-01-01

    potency against class 1 HDACs and are active in tissue culture against various human cancer cell lines. Importantly, enzymological analysis of 26 indicates that the cyclic α3β-tetrapeptide is a fast-on/ off competitive inhibitor of HDACs 1−3 with Ki values of 49, 33, and 37 nM, respectively. Our proof......Natural and synthetic histone deacetylase (HDAC) inhibitors generally derive their strong binding affinity and high potency from a key functional group that binds to the Zn2+ ion within the enzyme active site. However, this feature is also thought to carry the potential liability of undesirable off......-target interactions with other metalloenzymes. As a step toward mitigating this issue, here, we describe the design, synthesis, and structure−activity characterizations of cyclic α3β-tetrapeptide HDAC inhibitors that lack the presumed indispensable Zn2+-binding group. The lead compounds (e.g., 15 and 26) display good...

  2. Autologous peptides constitutively occupy the antigen binding site on Ia

    DEFF Research Database (Denmark)

    Buus, S; Sette, A; Colon, S M;

    1988-01-01

    Low molecular weight material associated with affinity-purified class II major histocompatibility complex (MHC) molecules of mouse (Ia) had the expected properties of peptides bound to the antigen binding site of Ia. Thus, the low molecular weight material derived from the I-Ad isotype was effici......Low molecular weight material associated with affinity-purified class II major histocompatibility complex (MHC) molecules of mouse (Ia) had the expected properties of peptides bound to the antigen binding site of Ia. Thus, the low molecular weight material derived from the I-Ad isotype...... was predominantly peptide in nature, as shown by its susceptibility to protease digestion. It was heterogeneous as measured by gel filtration (mean molecular weight approximately 3000), and when characterized by high-performance liquid chromatography, it eluted over a wide concentration of solvent. Such self...

  3. Direct GR Binding Sites Potentiate Clusters of TF Binding across the Human Genome.

    Science.gov (United States)

    Vockley, Christopher M; D'Ippolito, Anthony M; McDowell, Ian C; Majoros, William H; Safi, Alexias; Song, Lingyun; Crawford, Gregory E; Reddy, Timothy E

    2016-08-25

    The glucocorticoid receptor (GR) binds the human genome at >10,000 sites but only regulates the expression of hundreds of genes. To determine the functional effect of each site, we measured the glucocorticoid (GC) responsive activity of nearly all GR binding sites (GBSs) captured using chromatin immunoprecipitation (ChIP) in A549 cells. 13% of GBSs assayed had GC-induced activity. The responsive sites were defined by direct GR binding via a GC response element (GRE) and exclusively increased reporter-gene expression. Meanwhile, most GBSs lacked GC-induced reporter activity. The non-responsive sites had epigenetic features of steady-state enhancers and clustered around direct GBSs. Together, our data support a model in which clusters of GBSs observed with ChIP-seq reflect interactions between direct and tethered GBSs over tens of kilobases. We further show that those interactions can synergistically modulate the activity of direct GBSs and may therefore play a major role in driving gene activation in response to GCs. PMID:27565349

  4. Direct GR Binding Sites Potentiate Clusters of TF Binding across the Human Genome.

    Science.gov (United States)

    Vockley, Christopher M; D'Ippolito, Anthony M; McDowell, Ian C; Majoros, William H; Safi, Alexias; Song, Lingyun; Crawford, Gregory E; Reddy, Timothy E

    2016-08-25

    The glucocorticoid receptor (GR) binds the human genome at >10,000 sites but only regulates the expression of hundreds of genes. To determine the functional effect of each site, we measured the glucocorticoid (GC) responsive activity of nearly all GR binding sites (GBSs) captured using chromatin immunoprecipitation (ChIP) in A549 cells. 13% of GBSs assayed had GC-induced activity. The responsive sites were defined by direct GR binding via a GC response element (GRE) and exclusively increased reporter-gene expression. Meanwhile, most GBSs lacked GC-induced reporter activity. The non-responsive sites had epigenetic features of steady-state enhancers and clustered around direct GBSs. Together, our data support a model in which clusters of GBSs observed with ChIP-seq reflect interactions between direct and tethered GBSs over tens of kilobases. We further show that those interactions can synergistically modulate the activity of direct GBSs and may therefore play a major role in driving gene activation in response to GCs.

  5. Evolutionary computation for discovery of composite transcription factor binding sites

    OpenAIRE

    Fogel, Gary B.; Porto, V. William; Varga, Gabor; Dow, Ernst R.; Craven, Andrew M.; Powers, David M.; Harlow, Harry B.; Su, Eric W.; Onyia, Jude E.; Su, Chen

    2008-01-01

    Previous research demonstrated the use of evolutionary computation for the discovery of transcription factor binding sites (TFBS) in promoter regions upstream of coexpressed genes. However, it remained unclear whether or not composite TFBS elements, commonly found in higher organisms where two or more TFBSs form functional complexes, could also be identified by using this approach. Here, we present an important refinement of our previous algorithm and test the identification of composite elem...

  6. A systems biology approach to transcription factor binding site prediction.

    Directory of Open Access Journals (Sweden)

    Xiang Zhou

    Full Text Available BACKGROUND: The elucidation of mammalian transcriptional regulatory networks holds great promise for both basic and translational research and remains one the greatest challenges to systems biology. Recent reverse engineering methods deduce regulatory interactions from large-scale mRNA expression profiles and cross-species conserved regulatory regions in DNA. Technical challenges faced by these methods include distinguishing between direct and indirect interactions, associating transcription regulators with predicted transcription factor binding sites (TFBSs, identifying non-linearly conserved binding sites across species, and providing realistic accuracy estimates. METHODOLOGY/PRINCIPAL FINDINGS: We address these challenges by closely integrating proven methods for regulatory network reverse engineering from mRNA expression data, linearly and non-linearly conserved regulatory region discovery, and TFBS evaluation and discovery. Using an extensive test set of high-likelihood interactions, which we collected in order to provide realistic prediction-accuracy estimates, we show that a careful integration of these methods leads to significant improvements in prediction accuracy. To verify our methods, we biochemically validated TFBS predictions made for both transcription factors (TFs and co-factors; we validated binding site predictions made using a known E2F1 DNA-binding motif on E2F1 predicted promoter targets, known E2F1 and JUND motifs on JUND predicted promoter targets, and a de novo discovered motif for BCL6 on BCL6 predicted promoter targets. Finally, to demonstrate accuracy of prediction using an external dataset, we showed that sites matching predicted motifs for ZNF263 are significantly enriched in recent ZNF263 ChIP-seq data. CONCLUSIONS/SIGNIFICANCE: Using an integrative framework, we were able to address technical challenges faced by state of the art network reverse engineering methods, leading to significant improvement in direct

  7. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  8. Cloud computing for protein-ligand binding site comparison.

    Science.gov (United States)

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824

  9. The inhibitory binding site(s) of Zn2+ in cytochrome c oxidase.

    Science.gov (United States)

    Francia, Francesco; Giachini, Lisa; Boscherini, Federico; Venturoli, Giovanni; Capitanio, Giuseppe; Martino, Pietro Luca; Papa, Sergio

    2007-02-20

    EXAFS analysis of Zn binding site(s) in bovine-heart cytochrome c oxidase and characterization of the inhibitory effect of internal zinc on respiratory activity and proton pumping of the liposome reconstituted oxidase are presented. EXAFS identifies tetrahedral coordination site(s) for Zn(2+) with two N-histidine imidazoles, one N-histidine imidazol or N-lysine and one O-COOH (glutamate or aspartate), possibly located at the entry site of the proton conducting D pathway in the oxidase and involved in inhibition of the oxygen reduction catalysis and proton pumping by internally trapped zinc.

  10. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites.

    Directory of Open Access Journals (Sweden)

    Daniel M Dupont

    Full Text Available Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126 with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA. We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A controlling uPA activities. One of the aptamers (upanap-126 binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12 binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site.

  11. Interaction of pinaverium (a quaternary ammonium compound) with 1,4-dihydropyridine binding sites in rat ileum smooth muscle.

    Science.gov (United States)

    Feron, O; Wibo, M; Christen, M O; Godfraind, T

    1992-02-01

    1. The interaction of pinaverium bromide, a quaternary ammonium compound, with binding sites for (L-type) calcium channel blockers was investigated in rat ileum smooth muscle. 2. Pinaverium inhibited [3H]-(+)-PN200-110 ([3H]-(+)-isradipine) specific binding to tissue homogenates incompletely (Ki 0.38 microM; maximal inhibition 80%). In contrast, binding to single cell preparations (obtained by collagenase treatment) and to saponin-treated homogenates was completely inhibited. These data are compatible with the view that, in untreated homogenates, 20% of [3H]-(+)-isradipine binding sites are not accessible to pinaverium because it is associated with sealed inside-out vesicles. 3. Pinaverium bromide increased the apparent KD of [3H]-(+)-isradipine binding to saponin-treated homogenates but did not significantly affect the Bmax value. Moreover, the dissociation rate constant of [3H]-(+)-isradipine binding was not changed by pinaverium. These data suggest that pinaverium interacts with the dihydropyridine binding site in a competitive manner. However, in contrast to uncharged dihydropyridine calcium antagonists, pinaverium inhibited, rather than stimulated, [3H]-diltiazem binding to rat brain membranes (at 30-37 degrees C). 4. Although Bmax values of [3H]-(+)-isradipine were similar in homogenates prepared from tissue and cells (collagenase-treated), the KD value was significantly higher in cell homogenates (166 vs 95 pM). Similarly, the Ki value of pinaverium was higher in cell preparations than in tissue homogenates (0.77 vs 0.38 microM). Thus, collagenase can significantly modify the dihydropyridine recognition site.5. The competitive interaction of pinaverium, a permanently charged drug, with [3H]-(+)-isradipine bound to intact cells and its absence of interaction with [3H]-(+)-isradipine bound to sealed inside-out vesicles imply that the dihydropyridine receptor lies near the external surface of the plasma membrane. PMID:1313732

  12. Contrasting roles of leu(356) in the human CCK(1) receptor for antagonist SR 27897 and agonist SR 146131 binding.

    Science.gov (United States)

    Gouldson, P; Legoux, P; Carillon, C; Delpech, B; Le Fur, G; Ferrara, P; Shire, D

    1999-11-01

    A new highly specific, potent non-peptide agonist for the cholecystokinin subtype 1 receptor (CCK(1)), SR 146131 (2-[4-(4-chloro-2, 5-dimethoxyphenyl)-5-(2-cyclohexyl-ethyl)-thiazol-2-ylcarbamoyl ]-5, 7-dimethyl-indol-1-yl-1-acetic acid) was recently described [Bignon, E., Bachy, A., Boigegrain, R., Brodin, R., Cottineau, M., Gully, D., Herbert, J.-M., Keane, P., Labie, C., Molimard, J.-C., Olliero, D., Oury-Donat, F., Petereau, C., Prabonneaud, V., Rockstroh, M.-P., Schaeffer, P., Servant, O.Thurneyssen, O., Soubrié, P., Pascal, M., Maffrand, J.-P., Le Fur, G., 1999. SR 146131: a new, potent, orally active and selective non-peptide cholecystokinin subtype I receptor agonist: I. In vitro studies. J. Pharmacol. Exp. Ther. 289, 742-751]. From binding and activity assays with chimeric constructs of human CCK(1) and the cholecystokinin subtype 2 receptor (CCK(2)) and receptors carrying point mutations, we show that Leu(356), situated in transmembrane domain seven in the CCK(1) receptor, is a putative contact point for SR 146131. In contrast, Leu(356) is probably not in contact with the CCK(1) receptor specific antagonist SR 27897 (1-[2-(4-(2-chlorophenyl)thiazol-2-yl)aminocarbonyl indoyl]acetic acid), a compound structurally related to SR 146131, since its replacement by alanine, histidine or asparagine gave receptors having wild-type CCK(1) receptor SR 27897 binding affinity. Previous mutational analysis of His(381), the cognate position in the rat CCK(2) receptor, had implicated it as being involved in subtype specificity for SR 27897, results which we confirm with corresponding mutations in the human CCK(2) receptor. Moreover, binding and activity assays with the natural CCK receptor agonist, CCK-8S, show that CCK-8S is more susceptible to the mutations in that position in the CCK(1) receptor than in the CCK(2) receptor. The results suggest different binding modes for SR 27897, SR 146131 and CCK-8S in each CCK receptor subtype. PMID:10594328

  13. Possible sites of action of the new calcitonin gene-related peptide receptor antagonists

    DEFF Research Database (Denmark)

    Eftekhari, Sajedeh; Edvinsson, Lars

    2010-01-01

    synapses CGRP results in vasodilatation via receptors on the smooth muscle cells. At central synapses, CGRP acts postjunctionally on second-order neurons to transmit pain centrally via the brainstem and midbrain to higher cortical pain regions. The recently developed CGRP-receptor antagonists have...

  14. Phosphorylation and calcium antagonistically tune myosin-binding protein C's structure and function.

    Science.gov (United States)

    Previs, Michael J; Mun, Ji Young; Michalek, Arthur J; Previs, Samantha Beck; Gulick, James; Robbins, Jeffrey; Warshaw, David M; Craig, Roger

    2016-03-22

    During each heartbeat, cardiac contractility results from calcium-activated sliding of actin thin filaments toward the centers of myosin thick filaments to shorten cellular length. Cardiac myosin-binding protein C (cMyBP-C) is a component of the thick filament that appears to tune these mechanochemical interactions by its N-terminal domains transiently interacting with actin and/or the myosin S2 domain, sensitizing thin filaments to calcium and governing maximal sliding velocity. Both functional mechanisms are potentially further tunable by phosphorylation of an intrinsically disordered, extensible region of cMyBP-C's N terminus, the M-domain. Using atomic force spectroscopy, electron microscopy, and mutant protein expression, we demonstrate that phosphorylation reduced the M-domain's extensibility and shifted the conformation of the N-terminal domain from an extended structure to a compact configuration. In combination with motility assay data, these structural effects of M-domain phosphorylation suggest a mechanism for diminishing the functional potency of individual cMyBP-C molecules. Interestingly, we found that calcium levels necessary to maximally activate the thin filament mitigated the structural effects of phosphorylation by increasing M-domain extensibility and shifting the phosphorylated N-terminal fragments back to the extended state, as if unphosphorylated. Functionally, the addition of calcium to the motility assays ablated the impact of phosphorylation on maximal sliding velocities, fully restoring cMyBP-C's inhibitory capacity. We conclude that M-domain phosphorylation may have its greatest effect on tuning cMyBP-C's calcium-sensitization of thin filaments at the low calcium levels between contractions. Importantly, calcium levels at the peak of contraction would allow cMyBP-C to remain a potent contractile modulator, regardless of cMyBP-C's phosphorylation state.

  15. Flavopiridol inhibits glycogen phosphorylase by binding at the inhibitor site.

    Science.gov (United States)

    Oikonomakos, N G; Schnier, J B; Zographos, S E; Skamnaki, V T; Tsitsanou, K E; Johnson, L N

    2000-11-01

    Flavopiridol (L86-8275) ((-)-cis-5, 7-dihydroxy-2-(2-chlorophenyl)-8-[4-(3-hydroxy-1-methyl)-piperidinyl] -4H-benzopyran-4-one), a potential antitumor drug, currently in phase II trials, has been shown to be an inhibitor of muscle glycogen phosphorylase (GP) and to cause glycogen accumulation in A549 non-small cell lung carcinoma cells (Kaiser, A., Nishi, K., Gorin, F.A., Walsh, D.A., Bradbury, E. M., and Schnier, J. B., unpublished data). Kinetic experiments reported here show that flavopiridol inhibits GPb with an IC(50) = 15.5 microm. The inhibition is synergistic with glucose resulting in a reduction of IC(50) for flavopiridol to 2.3 microm and mimics the inhibition of caffeine. In order to elucidate the structural basis of inhibition, we determined the structures of GPb complexed with flavopiridol, GPb complexed with caffeine, and GPa complexed with both glucose and flavopiridol at 1.76-, 2.30-, and 2.23-A resolution, and refined to crystallographic R values of 0.216 (R(free) = 0.247), 0.189 (R(free) = 0.219), and 0.195 (R(free) = 0.252), respectively. The structures provide a rational for flavopiridol potency and synergism with glucose inhibitory action. Flavopiridol binds at the allosteric inhibitor site, situated at the entrance to the catalytic site, the site where caffeine binds. Flavopiridol intercalates between the two aromatic rings of Phe(285) and Tyr(613). Both flavopiridol and glucose promote the less active T-state through localization of the closed position of the 280s loop which blocks access to the catalytic site, thereby explaining their synergistic inhibition. The mode of interactions of flavopiridol with GP is different from that of des-chloro-flavopiridol with CDK2, illustrating how different functional parts of the inhibitor can be used to provide specific and potent binding to two different enzymes. PMID:10924512

  16. Characterization of Binding Sites of Eukaryotic Transcription Factors

    Institute of Scientific and Technical Information of China (English)

    Jiang Qian; Jimmy Lin; Donald J. Zack

    2006-01-01

    To explore the nature of eukaryotic transcription factor (TF) binding sites and determine how they differ from surrounding DNA sequences, we examined four features associated with DNA binding sites: G+C content, pattern complexity,palindromic structure, and Markov sequence ordering. Our analysis of the regulatory motifs obtained from the TRANSFAC database, using yeast intergenic sequences as background, revealed that these four features show variable enrichment in motif sequences. For example, motif sequences were more likely to have palindromic structure than were background sequences. In addition, these features were tightly localized to the regulatory motifs, indicating that they are a property of the motif sequences themselves and are not shared by the general promoter "environment" in which the regulatory motifs reside. By breaking down the motif sequences according to the TF classes to which they bind, more specific associations were identified. Finally, we found that some correlations, such as G+C content enrichment, were species-specific, while others, such as complexity enrichment, were universal across the species examined. The quantitative analysis provided here should increase our understanding of protein-DNA interactions and also help facilitate the discovery of regulatory motifs through bioinformatics.

  17. A Unitary Anesthetic Binding Site at High Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vedula, L. Sangeetha; Brannigan, Grace; Economou, Nicoleta J.; Xi, Jin; Hall, Michael A.; Liu, Renyu; Rossi, Matthew J.; Dailey, William P.; Grasty, Kimberly C.; Klein, Michael L.; Eckenhoff, Roderic G.; Loll, Patrick J.; (Drexel-MED); (UPENN)

    2009-10-21

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

  18. A Unitary Anesthetic-Binding Site at High Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Vedula, L.; Brannigan, G; Economou, N; Xi, J; Hall, M; Liu, R; Rossi, M; Dailey, W; Grasty, K; et. al.

    2009-01-01

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABAA receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

  19. A Unitary Anesthetic Binding Site at High Resolution

    Energy Technology Data Exchange (ETDEWEB)

    L Vedula; G Brannigan; N Economou; J Xi; M Hall; R Liu; M Rossi; W Dailey; K Grasty; et. al.

    2011-12-31

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.

  20. Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase

    DEFF Research Database (Denmark)

    Cuyvers, Sven; Dornez, Emmie; Abou Hachem, Maher;

    2012-01-01

    Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first was a cat......Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first...

  1. PeptiSite: a structural database of peptide binding sites in 4D.

    Science.gov (United States)

    Acharya, Chayan; Kufareva, Irina; Ilatovskiy, Andrey V; Abagyan, Ruben

    2014-03-21

    We developed PeptiSite, a comprehensive and reliable database of biologically and structurally characterized peptide-binding sites, in which each site is represented by an ensemble of its complexes with protein, peptide and small molecule partners. The unique features of the database include: (1) the ensemble site representation that provides a fourth dimension to the otherwise three dimensional data, (2) comprehensive characterization of the binding site architecture that may consist of a multimeric protein assembly with cofactors and metal ions and (3) analysis of consensus interaction motifs within the ensembles and identification of conserved determinants of these interactions. Currently the database contains 585 proteins with 650 peptide-binding sites. http://peptisite.ucsd.edu/ link allows searching for the sites of interest and interactive visualization of the ensembles using the ActiveICM web-browser plugin. This structural database for protein-peptide interactions enables understanding of structural principles of these interactions and may assist the development of an efficient peptide docking benchmark. PMID:24406170

  2. Novel Alexa Fluor-488 labeled antagonist of the A(2A) adenosine receptor: Application to a fluorescence polarization-based receptor binding assay.

    Science.gov (United States)

    Kecskés, Miklós; Kumar, T Santhosh; Yoo, Lena; Gao, Zhan-Guo; Jacobson, Kenneth A

    2010-08-15

    Fluorescence polarization (FP) assay has many advantages over the traditional radioreceptor binding studies. We developed an A(2A) adenosine receptor (AR) FP assay using a newly synthesized fluorescent antagonist of the A(2A)AR (MRS5346), a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine derivative conjugated to the fluorescent dye Alexa Fluor-488. MRS5346 displayed a K(i) value of 111+/-16nM in radioligand binding using [(3)H]CGS21680 and membranes prepared from HEK293 cells stably expressing the human A(2A)AR. In a cyclic AMP functional assay, MRS5346 was shown to be an A(2A)AR antagonist. MRS5346 did not show any effect on A(1) and A(3) ARs in binding or the A(2B)AR in a cyclic AMP assay at 10microM. Its suitability as a fluorescent tracer was indicated in an initial observation of an FP signal following A(2A)AR binding. The FP signal was optimal with 20nM MRS5346 and 150microg protein/mL HEK293 membranes. The association and dissociation kinetic parameters were readily determined using this FP assay. The K(d) value of MRS5346 calculated from kinetic parameters was 16.5+/-4.7nM. In FP competition binding experiments using MRS5346 as a tracer, K(i) values of known AR agonists and antagonists consistently agreed with K(i) values from radioligand binding. Thus, this FP assay, which eliminates using radioisotopes, appears to be appropriate for both routine receptor binding and high-throughput screening with respect to speed of analysis, displaceable signal and precision. The approach used in the present study could be generally applicable to other GPCRs.

  3. Site-specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced Ebola detection.

    Science.gov (United States)

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-07-01

    The nucleotide binding site (NBS) is a highly conserved region between the variable light and heavy chains at the Fab domains of all antibodies, and a small molecule that we identified, indole-3-butyric acid (IBA), binds specifically to this site. Fab fragment, with its small size and simple production methods compared to intact antibody, is good candidate for use in miniaturized diagnostic devices and targeted therapeutic applications. However, commonly used modification techniques are not well suited for Fab fragments as they are often more delicate than intact antibodies. Fab fragments are of particular interest for sensor surface functionalization but immobilization results in damage to the antigen binding site and greatly reduced activity due to their truncated size that allows only a small area that can bind to surfaces without impeding antigen binding. In this study, we describe an NBS-UV photocrosslinking functionalization method (UV-NBS(Biotin) in which a Fab fragment is site-specifically biotinylated with an IBA-EG11-Biotin linker via UV energy exposure (1 J/cm(2)) without affecting its antigen binding activity. This study demonstrates successful immobilization of biotinylated Ebola detecting Fab fragment (KZ52 Fab fragment) via the UV-NBS(Biotin) method yielding 1031-fold and 2-fold better antigen detection sensitivity compared to commonly used immobilization methods: direct physical adsorption and NHS-Biotin functionalization, respectively. Utilization of the UV-NBS(Biotin) method for site-specific conjugation to Fab fragment represents a proof of concept use of Fab fragment for various diagnostic and therapeutic applications with numerous fluorescent probes, affinity molecules and peptides.

  4. DIFFERENTIAL BINDING OF HUMAN INTERLEUKIN-1 (IL-1) RECEPTOR ANTAGONIST TO NATURAL AND RECOMBINANT SOLUBLE AND CELLULAR IL-1 TYPE-I RECEPTORS

    DEFF Research Database (Denmark)

    Svenson, Morten; Nedergaard, Susanne; Heegaard, Peter M. H.;

    1995-01-01

    A recently described factor, interleukin-1 receptor antagonist binding factor (IL-1raBF), in serum of normal individuals is immunologically related to the interleukin-1 receptor type I (IL-1RI). It is presumably a soluble form of the receptor that binds exclusively to interleukin-1 receptor...... antagonist (IL-1ra). Recombinant soluble human IL-1RI expressed in COS cells (sIL-1RI) consists of the extracellular part of the receptor and binds all three known IL-1 species but preferentially to IL-1ra. We further characterized the sizes and binding of IL-1raBF and sIL-1RI to IL-1ra by polyacrylamide gel...... electrophoresis in the presence of sodium dodecylsulfate, ligand binding interference analyses, N-glycosidase treatment, concanavalin A affinity chromatography, and with the use of monoclonal antibodies (mAb) to human recombinant IL-1ra. We also evaluated the binding of IL-1ra to cellular IL-1RI on MRC5...

  5. Dopamine transporter-dependent and -independent striatal binding of the benztropine analog JHW 007, a cocaine antagonist with low abuse liability

    Science.gov (United States)

    The benztropine analog JHW 007 displays high affinity for the dopamine transporter (DAT), but unlike typical DAT ligands, has relatively low abuse liability and blocks effects of cocaine,including its self-administration. To determine sites responsible for the cocaine-antagonist effects of JHW 007, ...

  6. Effect of positional dependence and alignment strategy on modeling transcription factor binding sites

    OpenAIRE

    Quader Saad; Huang Chun-Hsi

    2012-01-01

    Abstract Background Many consensus-based and Position Weight Matrix-based methods for recognizing transcription factor binding sites (TFBS) are not well suited to the variability in the lengths of binding sites. Besides, many methods discard known binding sites while building the model. Moreover, the impact of Information Content (IC) and the positional dependence of nucleotides within an aligned set of TFBS has not been well researched for modeling variable-length binding sites. In this pape...

  7. Determination of the binding mode for the cyclopentapeptide CXCR4 antagonist FC131 using a dual approach of ligand modifications and receptor mutagenesis

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Mungalpara, J; Steen, A;

    2014-01-01

    have previously been suggested based on molecular docking guided by structure-activity relationship (SAR) data; however, none of these have been verified by in vitro experiments. EXPERIMENTAL APPROACH: Heterologous (125) I-12G5-competition binding and functional assays (inhibition of CXCL12-mediated...... suggested from previous SAR studies. Furthermore, insights into the mechanism for CXCR4 activation by CXCL12 were gained. The combined findings will facilitate future design of novel CXCR4 antagonists....

  8. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively

    CERN Document Server

    Clifford, Jacob

    2015-01-01

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through Position Weight Matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain a...

  9. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.; Iyer, VenkyN.; Eisen, Michael B.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  10. Effects of cytosine methylation on transcription factor binding sites

    KAUST Repository

    Medvedeva, Yulia A

    2014-03-26

    Background: DNA methylation in promoters is closely linked to downstream gene repression. However, whether DNA methylation is a cause or a consequence of gene repression remains an open question. If it is a cause, then DNA methylation may affect the affinity of transcription factors (TFs) for their binding sites (TFBSs). If it is a consequence, then gene repression caused by chromatin modification may be stabilized by DNA methylation. Until now, these two possibilities have been supported only by non-systematic evidence and they have not been tested on a wide range of TFs. An average promoter methylation is usually used in studies, whereas recent results suggested that methylation of individual cytosines can also be important.Results: We found that the methylation profiles of 16.6% of cytosines and the expression profiles of neighboring transcriptional start sites (TSSs) were significantly negatively correlated. We called the CpGs corresponding to such cytosines " traffic lights" We observed a strong selection against CpG " traffic lights" within TFBSs. The negative selection was stronger for transcriptional repressors as compared with transcriptional activators or multifunctional TFs as well as for core TFBS positions as compared with flanking TFBS positions.Conclusions: Our results indicate that direct and selective methylation of certain TFBS that prevents TF binding is restricted to special cases and cannot be considered as a general regulatory mechanism of transcription. 2013 Medvedeva et al.; licensee BioMed Central Ltd.

  11. Monoclonal Anti—CD4 Antibody MT310 Binds HIV-1 gp120 Binding Site on CD4

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Tests show the monoclonal anti—CD4 antibody (mAb) MT310 recognizes the gp120-binding site on CD4 as part of its mechanism for strongly inhibiting human immunodeficiency virus type 1 (HIV-1) infection of CD4+ T cells. In competition tests, mAb MT310 and mAb Leu3a (an anti-CD4 mAb recognizing the gp120-binding site) all inhibited gp120-binding to CD4+ T lymphocytes, while mAb MT405 did not. This result suggests that MT310, like Leu3a, recognizes the gp120-binding site on CD4. To further confirm whether MT310 recognizes the gp120-binding site on CD4, we prepared rabbit anti-idiotypic antisera (Ab2) against MT310 (Ab1). The anti-idiotypic antisera against MT310 inhibited binding of MT310 and Leu3a to human CD4+ T lymphocytes, but did not block binding of MT151 with the second domain of CD4, while rabbit anti-idiotypic antisera to MT151 could block binding of itself to these cells, but could not inhibit the binding of MT310 and Leu3a, further indicating that MT310 recognized the gp120-binding site on CD4.

  12. The ebola virus interferon antagonist VP24 directly binds STAT1 and has a novel, pyramidal fold.

    Directory of Open Access Journals (Sweden)

    Adrianna P P Zhang

    2012-02-01

    Full Text Available Ebolaviruses cause hemorrhagic fever with up to 90% lethality and in fatal cases, are characterized by early suppression of the host innate immune system. One of the proteins likely responsible for this effect is VP24. VP24 is known to antagonize interferon signaling by binding host karyopherin α proteins, thereby preventing them from transporting the tyrosine-phosphorylated transcription factor STAT1 to the nucleus. Here, we report that VP24 binds STAT1 directly, suggesting that VP24 can suppress at least two distinct branches of the interferon pathway. Here, we also report the first crystal structures of VP24, derived from different species of ebolavirus that are pathogenic (Sudan and nonpathogenic to humans (Reston. These structures reveal that VP24 has a novel, pyramidal fold. A site on a particular face of the pyramid exhibits reduced solvent exchange when in complex with STAT1. This site is above two highly conserved pockets in VP24 that contain key residues previously implicated in virulence. These crystal structures and accompanying biochemical analysis map differences between pathogenic and nonpathogenic viruses, offer templates for drug design, and provide the three-dimensional framework necessary for biological dissection of the many functions of VP24 in the virus life cycle.

  13. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    Directory of Open Access Journals (Sweden)

    Arnoldo J Müller-Molina

    Full Text Available To know the map between transcription factors (TFs and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  14. TIM-4 structures identify a Metal Ion-dependent Ligand Binding Site where phosphatidylserine binds

    OpenAIRE

    Santiago, Cesar; Ballesteros, Angela; Martinez-Muñoz, Laura; Mellado, Mario; Kaplan, Gerardo G.; Freeman, Gordon J.; Casasnovas, José M.

    2007-01-01

    The T-cell immunoglobulin and mucin domain (TIM) proteins are important regulators of T cell responses. They have been linked to autoimmunity and cancer. Structures of the murine TIM-4 identified a Metal Ion-dependent Ligand Binding Site (MILIBS) in the immunoglobulin (Ig) domain of the TIM family. The characteristic CC’ loop of the TIM domain and the hydrophobic FG loop shaped a narrow cavity where acidic compounds penetrate and coordinate to a metal ion bound to conserved residues in the TI...

  15. Substance P and substance K receptor binding sites in the human gastrointestinal tract: localization by autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Gates, T.S.; Zimmerman, R.P.; Mantyh, C.R.; Vigna, S.R.; Maggio, J.E.; Welton, M.L.; Passaro, E.P. Jr.; Mantyh, P.W.

    1988-11-01

    Quantitative receptor autoradiography was used to localize and quantify the distribution of binding sites for /sup 125/I-radiolabeled substance P (SP), substance K (SK) and neuromedin K (NK) in the human GI tract using histologically normal tissue obtained from uninvolved margins of resections for carcinoma. The distribution of SP and SK binding sites is different for each gastrointestinal (GI) segment examined. Specific SP binding sites are expressed by arterioles and venules, myenteric plexus, external circular muscle, external longitudinal muscle, muscularis mucosa, epithelial cells of the mucosa, and the germinal centers of lymph nodules. SK binding sites are distributed in a pattern distinct from SP binding sites and are localized to the external circular muscle, external longitudinal muscle, and the muscularis mucosa. Binding sites for NK were not detected in any part of the human GI tract. These results demonstrate that: (1) surgical specimens from the human GI tract can be effectively processed for quantitative receptor autoradiography; (2) of the three mammalian tachykinins tested, SP and SK, but not NK binding sites are expressed in detectable levels in the human GI tract; (3) whereas SK receptor binding sites are expressed almost exclusively by smooth muscle, SP binding sites are expressed by smooth muscle cells, arterioles, venules, epithelial cells of the mucosa and cells associated with lymph nodules; and (4) both SP and SK binding sites expressed by smooth muscle are more stable than SP binding sites expressed by blood vessels, lymph nodules, and mucosal cells.

  16. Mechanisms of in vivo binding site selection of the hematopoietic master transcription factor PU.1.

    Science.gov (United States)

    Pham, Thu-Hang; Minderjahn, Julia; Schmidl, Christian; Hoffmeister, Helen; Schmidhofer, Sandra; Chen, Wei; Längst, Gernot; Benner, Christopher; Rehli, Michael

    2013-07-01

    The transcription factor PU.1 is crucial for the development of many hematopoietic lineages and its binding patterns significantly change during differentiation processes. However, the 'rules' for binding or not-binding of potential binding sites are only partially understood. To unveil basic characteristics of PU.1 binding site selection in different cell types, we studied the binding properties of PU.1 during human macrophage differentiation. Using in vivo and in vitro binding assays, as well as computational prediction, we show that PU.1 selects its binding sites primarily based on sequence affinity, which results in the frequent autonomous binding of high affinity sites in DNase I inaccessible regions (25-45% of all occupied sites). Increasing PU.1 concentrations and the availability of cooperative transcription factor interactions during lineage differentiation both decrease affinity thresholds for in vivo binding and fine-tune cell type-specific PU.1 binding, which seems to be largely independent of DNA methylation. Occupied sites were predominantly detected in active chromatin domains, which are characterized by higher densities of PU.1 recognition sites and neighboring motifs for cooperative transcription factors. Our study supports a model of PU.1 binding control that involves motif-binding affinity, PU.1 concentration, cooperativeness with neighboring transcription factor sites and chromatin domain accessibility, which likely applies to all PU.1 expressing cells.

  17. Genome-wide prediction, display and refinement of binding sites with information theory-based models

    Directory of Open Access Journals (Sweden)

    Leeder J Steven

    2003-09-01

    Full Text Available Abstract Background We present Delila-genome, a software system for identification, visualization and analysis of protein binding sites in complete genome sequences. Binding sites are predicted by scanning genomic sequences with information theory-based (or user-defined weight matrices. Matrices are refined by adding experimentally-defined binding sites to published binding sites. Delila-Genome was used to examine the accuracy of individual information contents of binding sites detected with refined matrices as a measure of the strengths of the corresponding protein-nucleic acid interactions. The software can then be used to predict novel sites by rescanning the genome with the refined matrices. Results Parameters for genome scans are entered using a Java-based GUI interface and backend scripts in Perl. Multi-processor CPU load-sharing minimized the average response time for scans of different chromosomes. Scans of human genome assemblies required 4–6 hours for transcription factor binding sites and 10–19 hours for splice sites, respectively, on 24- and 3-node Mosix and Beowulf clusters. Individual binding sites are displayed either as high-resolution sequence walkers or in low-resolution custom tracks in the UCSC genome browser. For large datasets, we applied a data reduction strategy that limited displays of binding sites exceeding a threshold information content to specific chromosomal regions within or adjacent to genes. An HTML document is produced listing binding sites ranked by binding site strength or chromosomal location hyperlinked to the UCSC custom track, other annotation databases and binding site sequences. Post-genome scan tools parse binding site annotations of selected chromosome intervals and compare the results of genome scans using different weight matrices. Comparisons of multiple genome scans can display binding sites that are unique to each scan and identify sites with significantly altered binding strengths

  18. L-(TH)glutamate binds to kainate-, NMDA- and AMPA-sensitive binding sites: an autoradiographic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Monaghan, D.T.; Yao, D.; Cotman, C.W.

    1985-08-12

    The anatomical distribution of L-(TH)glutamate binding sites was determined in the presence of various glutamate analogues using quantitative autoradiography. The binding of L-(TH)glutamate is accounted for by the presence of 3 distinct binding sites when measured in the absence of CaS , Cl and Na ions. The anatomical distribution and pharmacological specificity of these binding sites correspond to that reported for the 3 excitatory amino acid binding sites selectively labelled by D-(TH)2-amino-5-phosphonopentanoate (D-(TH)AP5), (TH)kainate ((TH)KA) and (TH) -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ((TH)AMPA) which are thought to be selective ligands for the N-methyl-D-aspartate (NMDA), KA and quisqualate (QA) receptors, respectively. (Auth.). 29 refs.; 1 figure; 1 table.

  19. Study on Synthesis and Binding Ability of a New Anion Receptor Containing NH Binding Sites

    Institute of Scientific and Technical Information of China (English)

    QIAO,Yan-Hong; LIN,Hai; LIN,Hua-Kuan

    2007-01-01

    A new colorimetric recognition receptor 1 based on the dual capability containing NH binding sites of selectively sensing anionic guest species has been synthesized. Compared with other halide anions, its UV/Vis absorption spectrum in dimethyl sulfoxide showed the response toward the presence of fluoride anion with high selectivity,and also displayed dramatic color changes from colorless to yellow in the presence of TBAF (5 × 10-5 mol/L). The similar UV/Vis absorption spectrum change also occurred when 1 was treated with AcO- while a little change with H2PO-4 and OH-. Receptor 1 has almost not affinity abilities to Cl-, Br- and I-. The binding ability of receptor 1to fluoride with high selectivity over other halides contributes to the anion size and the ability of forming hydrogen bonding. While the different ability of binding with geometrically triangular (AcO-), tetrahedral (H2PO-4 ) and linear (OH-) anions maybe result from their geometry configuration.

  20. Insight into the binding mode and the structural features of the pyrimidine derivatives as human A2A adenosine receptor antagonists.

    Science.gov (United States)

    Zhang, Lihui; Liu, Tianjun; Wang, Xia; Wang, Jinan; Li, Guohui; Li, Yan; Yang, Ling; Wang, Yonghua

    2014-01-01

    The interaction of 278 monocyclic and bicyclic pyrimidine derivatives with human A2A adenosine receptor (AR) was investigated by employing molecular dynamics, thermodynamic analysis and three-dimensional quantitative structure-activity relationship (3D-QSAR) approaches. The binding analysis reveals that the pyrimidine derivatives are anchored in TM2, 3, 5, 6 and 7 of A2A AR by the aromatic stacking and hydrogen bonding interactions. The key residues involving Phe168, Glu169, and Asn253 stabilize the monocyclic and bicyclic cores of inhibitors. The thermodynamic analysis by molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) approach also confirms the reasonableness of the binding modes. In addition, the ligand-/receptor-based comparative molecular similarity indices analysis (CoMSIA) models of high statistical significance were generated and the resulting contour maps correlate well with the structural features of the antagonists essential for high A2A AR affinity. A minor/bulky group with negative charge at C2/C6 of pyrimidine ring respectively enhances the activity for all these pyrimidine derivatives. Particularly, the higher electron density of the ring in the bicyclic derivatives, the more potent the antagonists. The obatined results might be helpful in rational design of novel candidate of A2A adenosine receptor antagonist for treatment of Parkinson's disease. PMID:23665268

  1. Molecular analysis of the notch repressor-complex in Drosophila: characterization of potential hairless binding sites on suppressor of hairless.

    Directory of Open Access Journals (Sweden)

    Patricia Kurth

    Full Text Available The Notch signalling pathway mediates cell-cell communication in a wide variety of organisms. The major components, as well as the basic mechanisms of Notch signal transduction, are remarkably well conserved amongst vertebrates and invertebrates. Notch signalling results in transcriptional activation of Notch target genes, which is mediated by an activator complex composed of the DNA binding protein CSL, the intracellular domain of the Notch receptor, and the transcriptional coactivator Mastermind. In the absence of active signalling, CSL represses transcription from Notch target genes by the recruitment of corepressors. The Notch activator complex is extremely well conserved and has been studied in great detail. However, Notch repressor complexes are far less understood. In Drosophila melanogaster, the CSL protein is termed Suppressor of Hairless [Su(H]. Su(H functions as a transcriptional repressor by binding Hairless, the major antagonist of Notch signalling in Drosophila, which in turn recruits two general corepressors--Groucho and C-terminal binding protein CtBP. Recently, we determined that the C-terminal domain (CTD of Su(H binds Hairless and identified a single site in Hairless, which is essential for contacting Su(H. Here we present additional biochemical and in vivo studies aimed at mapping the residues in Su(H that contact Hairless. Focusing on surface exposed residues in the CTD, we identified two sites that affect Hairless binding in biochemical assays. Mutation of these sites neither affects binding to DNA nor to Notch. Subsequently, these Su(H mutants were found to function normally in cellular and in vivo assays using transgenic flies. However, these experiments rely on Su(H overexpression, which does not allow for detection of quantitative or subtle differences in activity. We discuss the implications of our results.

  2. Methods and systems for identifying ligand-protein binding sites

    KAUST Repository

    Gao, Xin

    2016-05-06

    The invention provides a novel integrated structure and system-based approach for drug target prediction that enables the large-scale discovery of new targets for existing drugs Novel computer-readable storage media and computer systems are also provided. Methods and systems of the invention use novel sequence order-independent structure alignment, hierarchical clustering, and probabilistic sequence similarity techniques to construct a probabilistic pocket ensemble (PPE) that captures even promiscuous structural features of different binding sites for a drug on known targets. The drug\\'s PPE is combined with an approximation of the drug delivery profile to facilitate large-scale prediction of novel drug- protein interactions with several applications to biological research and drug development.

  3. Crystal structure of the high-affinity Na+,K+-ATPase–ouabain complex with Mg2+ bound in the cation binding site

    DEFF Research Database (Denmark)

    Laursen, Mette; Yatime, Laure; Nissen, Poul;

    2013-01-01

    The Na+,K+-ATPase maintains electrochemical gradients for Na+ and K+ that are critical for animal cells. Cardiotonic steroids (CTSs), widely used in the clinic and recently assigned a role as endogenous regulators of intracellular processes, are highly specific inhibitors of the Na+,K+-ATPase. Here......325 toward the cation site and thereby hindering deep ouabain binding. Thus, the structural data establish a basis for the interpretation of the biochemical evidence pointing at direct K+–Mg2+ competition and explain the well-known antagonistic effect of K+ on CTS binding....

  4. XAS and Pulsed EPR Studies of the Copper Binding Site in Riboflavin Binding Protein

    Energy Technology Data Exchange (ETDEWEB)

    Smith,S.; Bencze, K.; Wasiukanis, K.; Benore-Parsons, T.; Stemmler, T.

    2008-01-01

    Riboflavin Binding Protein (RBP) binds copper in a 1:1 molar ratio, forming a distinct well-ordered type II site. The nature of this site has been examined using X-ray absorption and pulsed electron paramagnetic resonance (EPR) spectroscopies, revealing a four coordinate oxygen/nitrogen rich environment. On the basis of analysis of the Cambridge Structural Database, the average protein bound copper-ligand bond length of 1.96 Angstroms, obtained by extended x-ray absorption fine structure (EXAFS), is consistent with four coordinate Cu(I) and Cu(II) models that utilize mixed oxygen and nitrogen ligand distributions. These data suggest a CuO3N coordination state for copper bound to RBP. While pulsed EPR studies including hyperfine sublevel correlation spectroscopy and electron nuclear double resonance show clear spectroscopic evidence for a histidine bound to the copper, inclusion of a histidine in the EXAFS simulation did not lead to any significant improvement in the fit.

  5. ncDNA and drift drive binding site accumulation

    Directory of Open Access Journals (Sweden)

    Ruths Troy

    2012-08-01

    Full Text Available Abstract Background The amount of transcription factor binding sites (TFBS in an organism’s genome positively correlates with the complexity of the regulatory network of the organism. However, the manner by which TFBS arise and accumulate in genomes and the effects of regulatory network complexity on the organism’s fitness are far from being known. The availability of TFBS data from many organisms provides an opportunity to explore these issues, particularly from an evolutionary perspective. Results We analyzed TFBS data from five model organisms – E. coli K12, S. cerevisiae, C. elegans, D. melanogaster, A. thaliana – and found a positive correlation between the amount of non-coding DNA (ncDNA in the organism’s genome and regulatory complexity. Based on this finding, we hypothesize that the amount of ncDNA, combined with the population size, can explain the patterns of regulatory complexity across organisms. To test this hypothesis, we devised a genome-based regulatory pathway model and subjected it to the forces of evolution through population genetic simulations. The results support our hypothesis, showing neutral evolutionary forces alone can explain TFBS patterns, and that selection on the regulatory network function does not alter this finding. Conclusions The cis-regulome is not a clean functional network crafted by adaptive forces alone, but instead a data source filled with the noise of non-adaptive forces. From a regulatory perspective, this evolutionary noise manifests as complexity on both the binding site and pathway level, which has significant implications on many directions in microbiology, genetics, and synthetic biology.

  6. The NMDA receptor ion channel: a site for binding of Huperzine A.

    Science.gov (United States)

    Gordon, R K; Nigam, S V; Weitz, J A; Dave, J R; Doctor, B P; Ved, H S

    2001-12-01

    Huperzine A (HUP-A), first isolated from the Chinese club moss Huperzia serrata, is a potent, reversible and selective inhibitor of acetylcholinesterase (AChE) over butyrylcholinesterase (BChE) (Life Sci. 54: 991-997). Because HUP-A has been shown to penetrate the blood-brain barrier, is more stable than the carbamates used as pretreatments for organophosphate poisoning (OP) and the HUP-A:AChE complex has a longer half-life than other prophylactic sequestering agents, HUP-A has been proposed as a pretreatment drug for nerve agent toxicity by protecting AChE from irreversible OP-induced phosphonylation. More recently (NeuroReport 8: 963-968), pretreatment of embryonic neuronal cultures with HUP-A reduced glutamate-induced cell death and also decreased glutamate-induced calcium mobilization. These results suggest that HUP-A might interfere with and be beneficial for excitatory amino acid overstimulation, such as seen in ischemia, where persistent elevation of internal calcium levels by activation of the N-methyl-D-aspartate (NMDA) glutamate subtype receptor is found. We have now investigated the interaction of HUP-A with glutamate receptors. Freshly frozen cortex or synaptic plasma membranes were used, providing 60-90% specific radioligand binding. Huperzine A (< or =100 microM) had no effect on the binding of [3H]glutamate (low- and high-affinity glutamate sites), [3H]MDL 105,519 (NMDA glycine regulatory site), [3H]ifenprodil (NMDA polyamine site) or [3H]CGS 19755 (NMDA antagonist). In contrast with these results, HUP-A non-competitively (Hill slope < 1) inhibited [3H]MK-801 and [3H]TCP binding (co-located NMDA ion channel PCP site) with pseudo K(i) approximately 6 microM. Furthermore, when neuronal cultures were pretreated with HUP-A for 45 min prior to NMDA exposure, HUP-A dose-dependently inhibited the NMDA-induced toxicity. Although HUP-A has been implicated to interact with cholinergic receptors, it was without effect at 100 microM on muscarinic (measured by

  7. Structure based design towards the identification of novel binding sites and inhibitors for the chikungunya virus envelope proteins.

    Science.gov (United States)

    Rashad, Adel A; Keller, Paul A

    2013-07-01

    Chikungunya virus is an emerging arbovirus that is widespread in tropical regions and is spreading quickly to temperate climates with recent epidemics in Africa, Asia, Europe and the Americas. It is having an increasingly major impact on humans with potentially life-threatening and debilitating arthritis. Thus far, neither vaccines nor medications are available to treat or control the virus and therefore, the development of medicinal chemistry is a vital and immediate issue that needs to be addressed. The viral envelope proteins play a major role during infection through mediation of binding and fusion with the infected cell surfaces. The possible binding target sites of the chikungunya virus envelope proteins have not previously been investigated; we describe here for the first time the identification of novel sites for potential binding on the chikungunya glycoprotein complexes and the identification of possible antagonists for these sites through virtual screening using two successive docking scores; FRED docking for fast precise screening, with the top hits then subjected to a ranking scoring using the AUTODOCK algorithm. Both the immature and the mature forms of the chikungunya envelope proteins were included in the study to increase the probability of finding positive and reliable hits. Some small molecules have been identified as good in silico chikungunya virus envelope proteins inhibitors and these could be good templates for drug design targeting this virus.

  8. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively.

    Science.gov (United States)

    Clifford, Jacob; Adami, Christoph

    2015-09-02

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  9. Osteopontin: A uranium phosphorylated binding-site characterization

    International Nuclear Information System (INIS)

    Herein, we describe the structural investigation of one possible uranyl binding site inside a non structured protein. This approach couples spectroscopy, thermodynamics, and theoretical calculations (DFT) and studies the interaction of uranyl ions with a phospho-peptide, thus mimicking a possible osteopontin (OPN) hydroxyapatite growth-inhibition site. Although thermodynamical aspects were investigated by using time-resolved laser fluorescence spectroscopy (TRLFS) and isothermal titration calorimetry (ITC), structural characterization was performed by extended X-ray absorption fine structure (EXAFS) at the U L(III)-edge combined with attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. From the vibrational and fluorescence spectra, several structural models of a UO22+/peptide complex were developed and subsequently refined by using theoretical calculations to fit the experimental EXAFS obtained. The structural effect of the pH value was also considered under acidic to moderately acidic conditions (pH 1.5-5.5). Most importantly, the uranyl/peptide coordination environment was similar to that of the native protein. (authors)

  10. A delocalized proton-binding site within a membrane protein.

    Science.gov (United States)

    Wolf, Steffen; Freier, Erik; Gerwert, Klaus

    2014-07-01

    The role of protein-bound water molecules in protein function and catalysis is an emerging topic. Here, we studied the solvation of an excess proton by protein-bound water molecules and the contribution of the surrounding amino acid residues at the proton release site of the membrane protein bacteriorhodopsin. It hosts an excess proton within a protein-bound water cluster, which is hydrogen bonded to several surrounding amino acids. Indicative of delocalization is a broad continuum absorbance experimentally observed by time-resolved Fourier transform infrared spectroscopy. In combination with site-directed mutagenesis, the involvement of several amino acids (especially Glu-194 and Glu-204) in the delocalization was elaborated. Details regarding the contributions of the glutamates and water molecules to the delocalization mode in biomolecular simulations are controversial. We carried out quantum mechanics/molecular mechanics (QM/MM) self-consistent charge density functional tight-binding simulations for all amino acids that have been experimentally shown to be involved in solvation of the excess proton, and systematically investigated the influence of the quantum box size. We compared calculated theoretical infrared spectra with experimental ones as a measure for the correct description of excess proton delocalization. A continuum absorbance can only be observed for small quantum boxes containing few amino acids and/or water molecules. Larger quantum boxes, including all experimentally shown involved amino acids, resulted in narrow absorbance bands, indicating protonation of a single binding site in contradiction to experimental results. We conclude that small quantum boxes seem to reproduce representative extreme cases of proton delocalization modes: proton delocalization only on water molecules or only between Glu-194 and Glu-204. Extending the experimental spectral region to lower wave numbers, a water-delocalized proton reproduces the observed continuum

  11. MicroRNA binding sites in C. elegans 3' UTRs.

    Science.gov (United States)

    Liu, Chaochun; Rennie, William A; Mallick, Bibekanand; Kanoria, Shaveta; Long, Dang; Wolenc, Adam; Carmack, C Steven; Ding, Ye

    2014-01-01

    MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression. Since the discovery of lin-4, the founding member of the miRNA family, over 360 miRNAs have been identified for Caenorhabditis elegans (C. elegans). Prediction and validation of targets are essential for elucidation of regulatory functions of these miRNAs. For C. elegans, crosslinking immunoprecipitation (CLIP) has been successfully performed for the identification of target mRNA sequences bound by Argonaute protein ALG-1. In addition, reliable annotation of the 3' untranslated regions (3' UTRs) as well as developmental stage-specific expression profiles for both miRNAs and 3' UTR isoforms are available. By utilizing these data, we developed statistical models and bioinformatics tools for both transcriptome-scale and developmental stage-specific predictions of miRNA binding sites in C. elegans 3' UTRs. In performance evaluation via cross validation on the ALG-1 CLIP data, the models were found to offer major improvements over established algorithms for predicting both seed sites and seedless sites. In particular, our top-ranked predictions have a substantially higher true positive rate, suggesting a much higher likelihood of positive experimental validation. A gene ontology analysis of stage-specific predictions suggests that miRNAs are involved in dynamic regulation of biological functions during C. elegans development. In particular, miRNAs preferentially target genes related to development, cell cycle, trafficking, and cell signaling processes. A database for both transcriptome-scale and stage-specific predictions and software for implementing the prediction models are available through the Sfold web server at http://sfold.wadsworth.org. PMID:24827614

  12. Mapping convulsants’ binding to the GABA-A receptor chloride ionophore: a proposed model for channel binding sites

    OpenAIRE

    Kalueff, A.V.

    2006-01-01

    Gamma aminobutyric acid (GABA) type A receptors play a key role in brain inhibitory neurotransmission, and are ligand-activated chloride channels blocked by numerous convulsant ligands. Here we summarize data on binding of picrotoxin, tetrazoles, β-lactams, bicyclophosphates, butyrolactones and neurotoxic pesticides to GABA-A ionophore, and discuss functional and structural overlapping of their binding sites. The paper reviews data on convulsants’ binding sensitivity to different point mutati...

  13. Shared binding sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A toxins.

    Science.gov (United States)

    Herrero, S; González-Cabrera, J; Tabashnik, B E; Ferré, J

    2001-12-01

    Bacillus thuringiensis toxins act by binding to specific target sites in the insect midgut epithelial membrane. The best-known mechanism of resistance to B. thuringiensis toxins is reduced binding to target sites. Because alteration of a binding site shared by several toxins may cause resistance to all of them, knowledge of which toxins share binding sites is useful for predicting cross-resistance. Conversely, cross-resistance among toxins suggests that the toxins share a binding site. At least two strains of diamondback moth (Plutella xylostella) with resistance to Cry1A toxins and reduced binding of Cry1A toxins have strong cross-resistance to Cry1Ja. Thus, we hypothesized that Cry1Ja shares binding sites with Cry1A toxins. We tested this hypothesis in six moth and butterfly species, each from a different family: Cacyreus marshalli (Lycaenidae), Lobesia botrana (Tortricidae), Manduca sexta (Sphingidae), Pectinophora gossypiella (Gelechiidae), P. xylostella (Plutellidae), and Spodoptera exigua (Noctuidae). Although the extent of competition varied among species, experiments with biotinylated Cry1Ja and radiolabeled Cry1Ac showed that Cry1Ja and Cry1Ac competed for binding sites in all six species. A recent report also indicates shared binding sites for Cry1Ja and Cry1A toxins in Heliothis virescens (Noctuidae). Thus, shared binding sites for Cry1Ja and Cry1A occur in all lepidopteran species tested so far. PMID:11722929

  14. Prediction of nucleosome positioning based on transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Xianfu Yi

    Full Text Available BACKGROUND: The DNA of all eukaryotic organisms is packaged into nucleosomes, the basic repeating units of chromatin. The nucleosome consists of a histone octamer around which a DNA core is wrapped and the linker histone H1, which is associated with linker DNA. By altering the accessibility of DNA sequences, the nucleosome has profound effects on all DNA-dependent processes. Understanding the factors that influence nucleosome positioning is of great importance for the study of genomic control mechanisms. Transcription factors (TFs have been suggested to play a role in nucleosome positioning in vivo. PRINCIPAL FINDINGS: Here, the minimum redundancy maximum relevance (mRMR feature selection algorithm, the nearest neighbor algorithm (NNA, and the incremental feature selection (IFS method were used to identify the most important TFs that either favor or inhibit nucleosome positioning by analyzing the numbers of transcription factor binding sites (TFBSs in 53,021 nucleosomal DNA sequences and 50,299 linker DNA sequences. A total of nine important families of TFs were extracted from 35 families, and the overall prediction accuracy was 87.4% as evaluated by the jackknife cross-validation test. CONCLUSIONS: Our results are consistent with the notion that TFs are more likely to bind linker DNA sequences than the sequences in the nucleosomes. In addition, our results imply that there may be some TFs that are important for nucleosome positioning but that play an insignificant role in discriminating nucleosome-forming DNA sequences from nucleosome-inhibiting DNA sequences. The hypothesis that TFs play a role in nucleosome positioning is, thus, confirmed by the results of this study.

  15. Discovery of a novel allosteric inhibitor-binding site in ERK5: comparison with the canonical kinase hinge ATP-binding site.

    Science.gov (United States)

    Chen, Hongming; Tucker, Julie; Wang, Xiaotao; Gavine, Paul R; Phillips, Chris; Augustin, Martin A; Schreiner, Patrick; Steinbacher, Stefan; Preston, Marian; Ogg, Derek

    2016-05-01

    MAP kinases act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, regulation of transcription and development. As a member of the MAP kinase family, ERK5 (MAPK7) is involved in the downstream signalling pathways of various cell-surface receptors, including receptor tyrosine kinases and G protein-coupled receptors. In the current study, five structures of the ERK5 kinase domain co-crystallized with ERK5 inhibitors are reported. Interestingly, three of the compounds bind at a novel allosteric binding site in ERK5, while the other two bind at the typical ATP-binding site. Binding of inhibitors at the allosteric site is accompanied by displacement of the P-loop into the ATP-binding site and is shown to be ATP-competitive in an enzymatic assay of ERK5 kinase activity. Kinase selectivity data show that the most potent allosteric inhibitor exhibits superior kinase selectivity compared with the two inhibitors that bind at the canonical ATP-binding site. An analysis of these structures and comparison with both a previously published ERK5-inhibitor complex structure (PDB entry 4b99) and the structures of three other kinases (CDK2, ITK and MEK) in complex with allosteric inhibitors are presented.

  16. Peripheral benzodiazepine binding sites on striated muscles of the rat: Properties and effect of denervation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, W.E.; Ickstadt, A. (Mainz Univ. (Germany, F.R.). Pharmakologisches Inst.); Hopf, H.Ch. (Mainz Univ. (Germany, F.R.))

    1985-01-01

    In order to test the hypothesis that peripheral benzodiazepine binding sites mediate some direct effects of benzodiazepines on striated muscles, the properties of specific /sup 3/H-Ro 5-4864 binding to rat biceps and rat diaphragm homogenates were investigated. In both tissues a single population of sites was found with a Ksub(D) value of 3 nmol/l. The density of these sites in both muscles was higher than the density in rat brain, but was considerably lower than in rat kidney. Competition experiments indicate a substrate specificity of specific /sup 3/H-Ro 5-4864 binding similar to the properties already demonstrated for the specific binding of this ligand to peripheral benzodiazepine binding sites in many other tissues. The properties of these sites in the rat diaphragm are not changed after motoric denervation by phrenicectomy. It is concluded that peripheral benzodiazepine binding sites are not involved in direct effects of benzodiazepines on striated muscles.

  17. The hepcidin-binding site on ferroportin is evolutionarily conserved

    OpenAIRE

    De Domenico, Ivana; Nemeth, Elizabeta; Nelson, Jenifer M.; Phillips, John D.; Ajioka, Richard S.; Kay, Michael S.; Kushner, James P.; Ganz, Tomas; Ward, Diane M.; Kaplan, Jerry

    2008-01-01

    Mammalian iron homeostasis is regulated by the interaction of the liver-produced peptide hepcidin and its receptor, the iron transporter ferroportin. Hepcidin binds to ferroportin resulting in degradation of ferroportin and decreased cellular iron export. We identify the hepcidin-binding domain (HBD) on ferroportin and show that a synthetic 19 amino acid peptide corresponding to the HBD recapitulates the characteristics and specificity of hepcidin binding to cell surface ferroportin. The bind...

  18. The function of the octamer-binding site in the DRA promoter

    Energy Technology Data Exchange (ETDEWEB)

    Voliva, C.F. [Monsanto Co., St. Louis, MO (United States); Jabrane-Ferrat, N.; Peterlin, B.M. [Univ. of California, San Francisco, CA (United States)

    1996-06-01

    The octamer binding site, which is located immediately upstream of the poorly conserved DRA TATA sequence, is important for high levels of expression of this human major histocompatibility class II gene in B cells. In this study, we demonstrate that the substitution of the DRA TATA sequence with the TATA box from the adenovirus Elb promoter removes the requirement for the octamer binding site for high levels of expression from the DRA promoter. Since only the TATA box from the Elb but not the DRA promoters binds the TATA binding protein, we conclude that the octamer binding site helps to recruit TBP to the DRA promoter. 32 refs., 7 figs.

  19. Multiplicity of carbohydrate-binding sites in -prism fold lectins: occurrence and possible evolutionary implications

    Indian Academy of Sciences (India)

    Alok Sharma; Divya Chandran; Desh D Singh; M Vijayan

    2007-09-01

    The -prism II fold lectins of known structure, all from monocots, invariably have three carbohydrate-binding sites in each subunit/domain. Until recently, -prism I fold lectins of known structure were all from dicots and they exhibited one carbohydrate-binding site per subunit/domain. However, the recently determined structure of the -prism fold I lectin from banana, a monocot, has two very similar carbohydrate-binding sites. This prompted a detailed analysis of all the sequences appropriate for two-lectin folds and which carry one or more relevant carbohydrate-binding motifs. The very recent observation of a -prism I fold lectin, griffithsin, with three binding sites in each domain further confirmed the need for such an analysis. The analysis demonstrates substantial diversity in the number of binding sites unrelated to the taxonomical position of the plant source. However, the number of binding sites and the symmetry within the sequence exhibit reasonable correlation. The distribution of the two families of -prism fold lectins among plants and the number of binding sites in them, appear to suggest that both of them arose through successive gene duplication, fusion and divergent evolution of the same primitive carbohydrate-binding motif involving a Greek key. Analysis with sequences in individual Greek keys as independent units lends further support to this conclusion. It would seem that the preponderance of three carbohydrate-binding sites per domain in monocot lectins, particularly those with the -prism II fold, is related to the role of plant lectins in defence.

  20. Evolutionary computation for discovery of composite transcription factor binding sites

    Science.gov (United States)

    Fogel, Gary B.; Porto, V. William; Varga, Gabor; Dow, Ernst R.; Craven, Andrew M.; Powers, David M.; Harlow, Harry B.; Su, Eric W.; Onyia, Jude E.; Su, Chen

    2008-01-01

    Previous research demonstrated the use of evolutionary computation for the discovery of transcription factor binding sites (TFBS) in promoter regions upstream of coexpressed genes. However, it remained unclear whether or not composite TFBS elements, commonly found in higher organisms where two or more TFBSs form functional complexes, could also be identified by using this approach. Here, we present an important refinement of our previous algorithm and test the identification of composite elements using NFAT/AP-1 as an example. We demonstrate that by using appropriate existing parameters such as window size, novel-scoring methods such as central bonusing and methods of self-adaptation to automatically adjust the variation operators during the evolutionary search, TFBSs of different sizes and complexity can be identified as top solutions. Some of these solutions have known experimental relationships with NFAT/AP-1. We also indicate that even after properly tuning the model parameters, the choice of the appropriate window size has a significant effect on algorithm performance. We believe that this improved algorithm will greatly augment TFBS discovery. PMID:18927103

  1. Mutations and binding sites of human transcription factors

    KAUST Repository

    Kamanu, Frederick Kinyua

    2012-06-01

    Mutations in any genome may lead to phenotype characteristics that determine ability of an individual to cope with adaptation to environmental challenges. In studies of human biology, among the most interesting ones are phenotype characteristics that determine responses to drug treatments, response to infections, or predisposition to specific inherited diseases. Most of the research in this field has been focused on the studies of mutation effects on the final gene products, peptides, and their alterations. Considerably less attention was given to the mutations that may affect regulatory mechanism(s) of gene expression, although these may also affect the phenotype characteristics. In this study we make a pilot analysis of mutations observed in the regulatory regions of 24,667 human RefSeq genes. Our study reveals that out of eight studied mutation types, insertions are the only one that in a statistically significant manner alters predicted transcription factor binding sites (TFBSs). We also find that 25 families of TFBSs have been altered by mutations in a statistically significant manner in the promoter regions we considered. Moreover, we find that the related transcription factors are, for example, prominent in processes related to intracellular signaling; cell fate; morphogenesis of organs and epithelium; development of urogenital system, epithelium, and tube; neuron fate commitment. Our study highlights the significance of studying mutations within the genes regulatory regions and opens way for further detailed investigations on this topic, particularly on the downstream affected pathways. 2012 Kamanu, Medvedeva, Schaefer, Jankovic, Archer and Bajic.

  2. Mutated primer binding sites interacting with different tRNAs allow efficient murine leukemia virus replication

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Duch, M; Lovmand, J;

    1993-01-01

    Two Akv murine leukemia virus-based retroviral vectors with primer binding sites matching tRNA(Gln-1) and tRNA(Lys-3) were constructed. The transduction efficiency of these mutated vectors was found to be comparable to that of a vector carrying the wild-type primer binding site matching t......RNA(Pro). Polymerase chain reaction amplification and sequence analysis of transduced proviruses confirmed the transfer of vectors with mutated primer binding sites and further showed that tRNA(Gln-2) may act efficiently in conjunction with the tRNA(Gln-1) primer binding site. We conclude that murine leukemia virus...

  3. Ligand binding studies in the mouse olfactory bulb: identification and characterisation of a L-[3H]carnosine binding site

    International Nuclear Information System (INIS)

    Binding sites for the dipeptide L-carnosine (β-alanyl-t-histidine) have been detected in membranes prepared from mouse olfactory bulbs. The binding of L-[3H]- carnosine was saturable, reversible and stereospecific and had a Ksub(d) of about 770 nM. The stereospecific binding of L-carnosine represented about 30% of the totoal binding at pH 6.8, and decreased markedly with increasing pH. Binding was stimulated by calcium, unaffected by zinc, magnesium or manganese and inhibted by sodium and potassium. Carnosine binding was sensitive to trypsin and phospholipases A and C, but not to neuraminidase. Nystatin and filipin, which interact with membrane lipids, also interfered with binding. Some peptide analogues of carnosine were potent inhibitors of binding, but a variety of drugs serving as potent inhibitors in other binding systems had no effect on carnosine binding. Carnosine binding to mouse olfactory bulb membranes was 15-fold higher than that seen in membranes prepared from cerebral hemispheres, 5-fold higher than in cerebellum membranes and 3-fold higher than in membranes from spinal medulla and the olfactory tubercle-lateral olfactory tract area. (Auth.)

  4. CD91 interacts with mannan-binding lectin (MBL) through the MBL-associated serine protease-binding site

    DEFF Research Database (Denmark)

    Duus, Karen; Thielens, Nicole M; Lacroix, Monique;

    2010-01-01

    CD91 plays an important role in the scavenging of apoptotic material, possibly through binding to soluble pattern-recognition molecules. In this study, we investigated the interaction of CD91 with mannan-binding lectin (MBL), ficolins and lung surfactant proteins. Both MBL and L-ficolin were found...... to bind CD91. The MBL-CD91 interaction was time- and concentration-dependent and could be inhibited by known ligands of CD91. MBL-associated serine protease 3 (MASP-3) also inhibited binding between MBL and CD91, suggesting that the site of interaction is located at or near the MASP-MBL interaction site....... This was confirmed by using MBL mutants deficient for MASP binding that were unable to interact with CD91. These findings demonstrate that MBL and L-ficolin interact with CD91, strongly suggesting that they have the potential to function as soluble recognition molecules for scavenging microbial and apoptotic...

  5. Platelet binding sites for factor VIII in relation to fibrin and phosphatidylserine.

    Science.gov (United States)

    Gilbert, Gary E; Novakovic, Valerie A; Shi, Jialan; Rasmussen, Jan; Pipe, Steven W

    2015-09-01

    Thrombin-stimulated platelets expose very little phosphatidylserine (PS) but express binding sites for factor VIII (fVIII), casting doubt on the role of exposed PS as the determinant of binding sites. We previously reported that fVIII binding sites are increased three- to sixfold when soluble fibrin (SF) binds the αIIbβ3 integrin. This study focuses on the hypothesis that platelet-bound SF is the major source of fVIII binding sites. Less than 10% of fVIII was displaced from thrombin-stimulated platelets by lactadherin, a PS-binding protein, and an fVIII mutant defective in PS-dependent binding retained platelet affinity. Therefore, PS is not the determinant of most binding sites. FVIII bound immobilized SF and paralleled platelet binding in affinity, dependence on separation from von Willebrand factor, and mediation by the C2 domain. SF also enhanced activity of fVIII in the factor Xase complex by two- to fourfold. Monoclonal antibody (mAb) ESH8, against the fVIII C2 domain, inhibited binding of fVIII to SF and platelets but not to PS-containing vesicles. Similarly, mAb ESH4 against the C2 domain, inhibited >90% of platelet-dependent fVIII activity vs 35% of vesicle-supported activity. These results imply that platelet-bound SF is a component of functional fVIII binding sites. PMID:26162408

  6. Characterization of 6-mercaptopurine binding to bovine serum albumin and its displacement from the binding sites by quercetin and rutin

    International Nuclear Information System (INIS)

    Binding of a drug to the serum albumins as major serum transport proteins can be influenced by other ligands leading to alteration of its pharmacological properties. In the present study, binding characteristics of 6-mercaptopurine (6-MP) with bovine serum albumin (BSA) together with its displacement from its binding site by quercetin and rutin have been investigated by the spectroscopic method. According to the binding parameters, a static quenching component in overall dynamic quenching process is operative in the interaction between 6-MP and BSA. The binding of 6-MP to BSA occurred spontaneously due to entropy-driven hydrophobic interactions. The synchronous fluorescence spectroscopy study revealed that the secondary structure of BSA is changed in the presence of 6-MP and both Tyr and Trp residues participate in the interaction between 6-MP and BSA with the later one being more dominant. The binding constant value of 6-MP–BSA in the presence of quercetin and rutin increased. 6-MP was displaced by ibuprofen indicating that the binding site of 6-MP on albumin is site II. Therefore, the change of the pharmacokinetic and pharmacodynamic properties of 6-MP by quercetin and rutin through alteration of binding capacity of 6-MP to the serum albumin cannot be ruled out. In addition, the displacement study showed that 6-MP is located in site II of BSA. - Highlights: ► Participation of both Tyr and particularly Trp residues in the interaction between 6-MP and BSA. ► Involvement of a static quenching component in an overall dynamic quenching process. ► Ability of quercetin and rutin to change the binding constants of 6-MP–BSA complex. ► Binding of 6-MP to BSA through entropy-driven hydrophobic interactions

  7. Characterization of 6-mercaptopurine binding to bovine serum albumin and its displacement from the binding sites by quercetin and rutin

    Energy Technology Data Exchange (ETDEWEB)

    Ehteshami, Mehdi [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rasoulzadeh, Farzaneh [Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Mahboob, Soltanali [Nutrition Research Center, School of Health and Nutrition, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of); Rashidi, Mohammad-Reza, E-mail: rashidi@tbzmed.ac.ir [Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz 51644-14766 (Iran, Islamic Republic of)

    2013-03-15

    Binding of a drug to the serum albumins as major serum transport proteins can be influenced by other ligands leading to alteration of its pharmacological properties. In the present study, binding characteristics of 6-mercaptopurine (6-MP) with bovine serum albumin (BSA) together with its displacement from its binding site by quercetin and rutin have been investigated by the spectroscopic method. According to the binding parameters, a static quenching component in overall dynamic quenching process is operative in the interaction between 6-MP and BSA. The binding of 6-MP to BSA occurred spontaneously due to entropy-driven hydrophobic interactions. The synchronous fluorescence spectroscopy study revealed that the secondary structure of BSA is changed in the presence of 6-MP and both Tyr and Trp residues participate in the interaction between 6-MP and BSA with the later one being more dominant. The binding constant value of 6-MP-BSA in the presence of quercetin and rutin increased. 6-MP was displaced by ibuprofen indicating that the binding site of 6-MP on albumin is site II. Therefore, the change of the pharmacokinetic and pharmacodynamic properties of 6-MP by quercetin and rutin through alteration of binding capacity of 6-MP to the serum albumin cannot be ruled out. In addition, the displacement study showed that 6-MP is located in site II of BSA. - Highlights: Black-Right-Pointing-Pointer Participation of both Tyr and particularly Trp residues in the interaction between 6-MP and BSA. Black-Right-Pointing-Pointer Involvement of a static quenching component in an overall dynamic quenching process. Black-Right-Pointing-Pointer Ability of quercetin and rutin to change the binding constants of 6-MP-BSA complex. Black-Right-Pointing-Pointer Binding of 6-MP to BSA through entropy-driven hydrophobic interactions.

  8. Oestradiol and testosterone binding sites in mice tibiae and their relationship with bone growth.

    Science.gov (United States)

    Lopez, A; Ventanas, J; Burgos, J

    1986-11-01

    High affinity oestradiol and testosterone binding sites were found in tibiae cytosol from entire male and female of different ages. Scatchard assay allowed to estimate a Kd of 2.7 X 10(-9) M for oestradiol binding sites indicating that the 3H-oestradiol binding was of high affinity. Oestradiol and testosterone binding sites abundance in mice tibiae are subject to change with age. It is not easy to establish a direct correlation between these changes and the values reported here on bone growth in weight and length, however seems possible to point a negative relationship between bone lengthening and oestradiol binding site levels in female, as well a positive relationship with testosterone in both sexes. The presence of oestradiol and testosterone binding sites in epiphyses and not in the diaphyses reinforces the hypothesis that both are playing some role in bone growth.

  9. Structural Perspectives on the Evolutionary Expansion of Unique Protein-Protein Binding Sites.

    Science.gov (United States)

    Goncearenco, Alexander; Shaytan, Alexey K; Shoemaker, Benjamin A; Panchenko, Anna R

    2015-09-15

    Structures of protein complexes provide atomistic insights into protein interactions. Human proteins represent a quarter of all structures in the Protein Data Bank; however, available protein complexes cover less than 10% of the human proteome. Although it is theoretically possible to infer interactions in human proteins based on structures of homologous protein complexes, it is still unclear to what extent protein interactions and binding sites are conserved, and whether protein complexes from remotely related species can be used to infer interactions and binding sites. We considered biological units of protein complexes and clustered protein-protein binding sites into similarity groups based on their structure and sequence, which allowed us to identify unique binding sites. We showed that the growth rate of the number of unique binding sites in the Protein Data Bank was much slower than the growth rate of the number of structural complexes. Next, we investigated the evolutionary roots of unique binding sites and identified the major phyletic branches with the largest expansion in the number of novel binding sites. We found that many binding sites could be traced to the universal common ancestor of all cellular organisms, whereas relatively few binding sites emerged at the major evolutionary branching points. We analyzed the physicochemical properties of unique binding sites and found that the most ancient sites were the largest in size, involved many salt bridges, and were the most compact and least planar. In contrast, binding sites that appeared more recently in the evolution of eukaryotes were characterized by a larger fraction of polar and aromatic residues, and were less compact and more planar, possibly due to their more transient nature and roles in signaling processes.

  10. Identification of clustered YY1 binding sites in Imprinting Control Regions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J D; Hinz, A; Bergmann, A; Huang, J; Ovcharenko, I; Stubbs, L; Kim, J

    2006-04-19

    Mammalian genomic imprinting is regulated by Imprinting Control Regions (ICRs) that are usually associated with tandem arrays of transcription factor binding sites. In the current study, the sequence features derived from a tandem array of YY1 binding sites of Peg3-DMR (differentially methylated region) led us to identify three additional clustered YY1 binding sites, which are also localized within the DMRs of Xist, Tsix, and Nespas. These regions have been shown to play a critical role as ICRs for the regulation of surrounding genes. These ICRs have maintained a tandem array of YY1 binding sites during mammalian evolution. The in vivo binding of YY1 to these regions is allele-specific and only to the unmethylated active alleles. Promoter/enhancer assays suggest that a tandem array of YY1 binding sites function as a potential orientation-dependent enhancer. Insulator assays revealed that the enhancer-blocking activity is detected only in the YY1 binding sites of Peg3-DMR but not in the YY1 binding sites of other DMRs. Overall, our identification of three additional clustered YY1 binding sites in imprinted domains suggests a significant role for YY1 in mammalian genomic imprinting.

  11. The selective glucocorticoid receptor antagonist ORG 34116 decreases immobility time in the forced swim test and affects cAMP-responsive element-binding protein phosphorylation in rat brain.

    Science.gov (United States)

    Bachmann, Cornelius G; Bilang-Bleuel, Alicia; De Carli, Sonja; Linthorst, Astrid C E; Reul, Johannes M H M

    2005-01-01

    Glucocorticoid receptor (GR) antagonists can block the retention of the immobility response in the forced swimming test. Recently, we showed that forced swimming evokes a distinct spatiotemporal pattern of cAMP-responsive element-binding protein (CREB) phosphorylation in the dentate gyrus (DG) and neocortex. In the present study, we found that chronic treatment of rats with the selective GR antagonist ORG 34116 decreased the immobility time in the forced swim test, increased baseline levels of phosphorylated CREB (P-CREB) in the DG and neocortex and affected the forced swimming-induced changes in P-CREB levels in a time- and site-specific manner. Overall, we observed that, in control rats, forced swimming evoked increases in P-CREB levels in the DG and neocortex, whereas in ORG 34116-treated animals a major dephosphorylation of P-CREB was observed. These observations underscore an important role of GRs in the control of the phosphorylation state of CREB which seems to be of significance for the immobility response in the forced swim test and extend the molecular mechanism of action of GRs in the brain.

  12. Site-directed alkylation of multiple opioid receptors. I. Binding selectivity

    International Nuclear Information System (INIS)

    A method for measuring and expressing the binding selectivity of ligands for mu, delta, and kappa opioid binding sites is reported. Radioligands are used that are partially selective for these sites in combination with membrane preparations enriched in each site. Enrichment was obtained by treatment of membranes with the alkylating agent beta-chlornaltrexamine in the presence of appropriate protecting ligands. After enrichment for mu receptors, [3H] dihydromorphine bound to a single type of site as judged by the slope of competition binding curves. After enrichment for delta or kappa receptors, binding sites for [3H] [D-Ala2, D-Leu5]enkephalin and [3H]ethylketocyclazocine, respectively, were still not homogeneous. There were residual mu sites in delta-enriched membranes but no evidence for residual mu or delta sites in kappa-enriched membranes were found. This method was used to identify ligands that are highly selective for each of the three types of sites

  13. In Silico Investigation of the Neurotensin Receptor 1 Binding Site

    DEFF Research Database (Denmark)

    Lückmann, Michael; Holst, Birgitte; Schwartz, Thue W.;

    2016-01-01

    the binding mode of SR48692 and other small mol. compds. to NTSR1, we applied an Automated Ligand-guided Backbone Ensemble Receptor Optimization protocol (ALiBERO), taking receptor flexibility and ligand knowledge into account. Structurally overlapping binding poses for SR48692 and NTS8-13 were obsd., despite...

  14. Using circular permutation analysis to redefine the R17 coat protein binding site.

    Science.gov (United States)

    Gott, J M; Pan, T; LeCuyer, K A; Uhlenbeck, O C

    1993-12-14

    The bacteriophage R17 coat protein binding site consists of an RNA hairpin with a single purine nucleotide bulge in the helical stem. Circular permutation analysis (CPA) was used to examine binding effects caused by a single break in the phosphodiester backbone. This method revealed that breakage of all but one phosphodiester bond within a well-defined binding site substantially reduced the binding affinity. This is probably due to destabilization of the hairpin structure upon breaking the ribose phosphates at these positions. One circularly permuted isomer with the 5' and 3' ends at the bulged nucleotide bound with wild-type affinity. However, extending the 5' end of this CP isomer greatly reduces binding, making it unlikely that this circularly permuted binding site will be active when embedded in a larger RNA. CPA also locates the 5' and 3' boundaries of protein binding sites on the RNA. The 5' boundary of the R17 coat protein site as defined by CPA was two nucleotides shorter (nucleotides -15 to +2) than the previously determined site (-17 to +2). The smaller binding site was verified by terminal truncation experiments. A minimal-binding fragment (-14 to +2) was synthesized and was found to bind tightly to the coat protein. The site size determined by 3-ethyl-1-nitrosourea-modification interference was larger at the 5' end (-16 to +1), probably due, however, to steric effects of ethylation of phosphate oxygens. Thus, the apparent site size of a protein binding site is dependent upon the method used. PMID:7504949

  15. Shared RNA-binding sites for interacting members of the Drosophila ELAV family of neuronal proteins

    OpenAIRE

    Borgeson, Claudia D.; Samson, Marie-Laure

    2005-01-01

    The product of the Drosophila embryonic lethal abnormal visual system is a conserved protein (ELAV) necessary for normal neuronal differentiation and maintenance. It possesses three RNA-binding domains and is involved in the regulation of RNA metabolism. The long elav 3′-untranslated region (3′-UTR) is necessary for autoregulation. We used RNA-binding assays and in vitro selection to identify the ELAV best binding site in the elav 3′-UTR. This site resembles ELAV-binding sites identified prev...

  16. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L;

    2008-01-01

    T. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed...... mutagenesis and by trapping the radiolabeled cocaine analog [3H]CFT in the transporter, either by cross-linking engineered cysteines or with an engineered Zn2+-binding site that was situated extracellularly to the predicted common binding pocket. Our data demonstrate the molecular basis for the competitive...

  17. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol;

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical...... for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon...... resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding...

  18. Replication and pathogenicity of primer binding site mutants of SL3-3 murine leukemia viruses

    DEFF Research Database (Denmark)

    Lund, Anders Henrik; Schmidt, J; Luz, A;

    1999-01-01

    Retroviral reverse transcription is primed by a cellular tRNA molecule annealed to an 18-bp primer binding site sequence. The sequence of the primer binding site coincides with that of a negatively acting cis element that mediates transcriptional silencing of murine leukemia virus (MLV) in undiff...

  19. Inhibition of RNA polymerase by captan at both DNA and substrate binding sites.

    Science.gov (United States)

    Luo, G; Lewis, R A

    1992-12-01

    RNA synthesis carried out in vitro by Escherichia coli RNA polymerase was inhibited irreversibly by captan when T7 DNA was used as template. An earlier report and this one show that captan blocks the DNA binding site on the enzyme. Herein, it is also revealed that captan acts at the nucleoside triphosphate (NTP) binding site, and kinetic relationships of the action of captan at the two sites are detailed. The inhibition by captan via the DNA binding site of the enzyme was confirmed by kinetic studies and it was further shown that [14C]captan bound to the beta' subunit of RNA polymerase. This subunit contains the DNA binding site. Competitive-like inhibition by captan versus UTP led to the conclusion that captan also blocked the NTP binding site. In support of this conclusion, [14C]captan was observed to bind to the beta subunit which contains the NTP binding site. Whereas, preincubation of RNA polymerase with both DNA and NTPs prevented captan inhibition, preincubation with either DNA or NTPs alone was insufficient to protect the enzyme from the action of captan. Furthermore, the interaction of [14C]captan with the beta and beta' subunits was not prevented by a similar preincubation. Captan also bound, to a lesser extent, to the alpha and sigma subunits. Therefore, captan binding appears to involve interaction with RNA polymerase at sites in addition to those for DNA and NTP; however, this action does not inhibit the polymerase activity.

  20. Does transcription play a role in creating a condensin binding site?

    Science.gov (United States)

    Bernard, Pascal; Vanoosthuyse, Vincent

    2015-01-01

    The highly conserved condensin complex is essential for the condensation and integrity of chromosomes through cell division. Published data argue that high levels of transcription contribute to specify some condensin-binding sites on chromosomes but the exact role of transcription in this process remains elusive. Here we discuss our recent data addressing the role of transcription in establishing a condensin-binding site.

  1. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    OpenAIRE

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L; Shi, Lei; Gracia, Luis; Raniszewska, Klaudia; Newman, Amy Hauck; Javitch, Jonathan A.; Weinstein, Harel; Gether, Ulrik; Loland, Claus J

    2008-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog LeuT. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopami...

  2. rVISTA for Comparative Sequence-Based Discovery of Functional Transcription Factor Binding Sites

    Energy Technology Data Exchange (ETDEWEB)

    Loots, Gabriela G.; Ovcharenko, Ivan; Pachter, Lior; Dubchak, Inna; Rubin, Edward M.

    2002-03-08

    Identifying transcriptional regulatory elements represents a significant challenge in annotating the genomes of higher vertebrates. We have developed a computational tool, rVISTA, for high-throughput discovery of cis-regulatory elements that combines transcription factor binding site prediction and the analysis of inter-species sequence conservation. Here, we illustrate the ability of rVISTA to identify true transcription factor binding sites through the analysis of AP-1 and NFAT binding sites in the 1 Mb well-annotated cytokine gene cluster1 (Hs5q31; Mm11). The exploitation of orthologous human-mouse data set resulted in the elimination of 95 percent of the 38,000 binding sites predicted upon analysis of the human sequence alone, while it identified 87 percent of the experimentally verified binding sites in this region.

  3. Rosetta and the Design of Ligand Binding Sites.

    Science.gov (United States)

    Moretti, Rocco; Bender, Brian J; Allison, Brittany; Meiler, Jens

    2016-01-01

    Proteins that bind small molecules (ligands) can be used as biosensors, signal modulators, and sequestering agents. When naturally occurring proteins for a particular target ligand are not available, artificial proteins can be computationally designed. We present a protocol based on RosettaLigand to redesign an existing protein pocket to bind a target ligand. Starting with a protein structure and the structure of the ligand, Rosetta can optimize both the placement of the ligand in the pocket and the identity and conformation of the surrounding sidechains, yielding proteins that bind the target compound. PMID:27094285

  4. The ryanodine receptor pore blocker neomycin also inhibits channel activity via a previously undescribed high-affinity Ca(2+) binding site.

    Science.gov (United States)

    Laver, Derek R; Hamada, Tomoyo; Fessenden, James D; Ikemoto, Noriaki

    2007-12-01

    In this study, we present evidence for the mechanism of neomycin inhibition of skeletal ryanodine receptors (RyRs). In single-channel recordings, neomycin produced monophasic inhibition of RyR open probability and biphasic inhibition of [(3)H]ryanodine binding. The half-maximal inhibitory concentration (IC(50)) for channel blockade by neomycin was dependent on membrane potential and cytoplasmic [Ca(2+)], suggesting that neomycin acts both as a pore plug and as a competitive antagonist at a cytoplasmic Ca(2+) binding site that causes allosteric inhibition. This novel Ca(2+)/neomycin binding site had a neomycin affinity of 100 nM: and a Ca(2+) affinity of 35 nM,: which is 30-fold higher than that of the well-described cytoplasmic Ca(2+) activation site. Therefore, a new high-affinity class of Ca(2+) binding site(s) on the RyR exists that mediates neomycin inhibition. Neomycin plugging of the channel pore induced brief (1-2 ms) conductance substates at 30% of the fully open conductance, whereas allosteric inhibition caused complete channel closure with durations that depended on the neomycin concentration. We quantitatively account for these results using a dual inhibition model for neomycin that incorporates voltage-dependent pore plugging and Ca(2+)-dependent allosteric inhibition.

  5. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.

    Science.gov (United States)

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  6. Spatial distribution of predicted transcription factor binding sites in Drosophila ChIP peaks.

    Science.gov (United States)

    Pettie, Kade P; Dresch, Jacqueline M; Drewell, Robert A

    2016-08-01

    In the development of the Drosophila embryo, gene expression is directed by the sequence-specific interactions of a large network of protein transcription factors (TFs) and DNA cis-regulatory binding sites. Once the identity of the typically 8-10bp binding sites for any given TF has been determined by one of several experimental procedures, the sequences can be represented in a position weight matrix (PWM) and used to predict the location of additional TF binding sites elsewhere in the genome. Often, alignments of large (>200bp) genomic fragments that have been experimentally determined to bind the TF of interest in Chromatin Immunoprecipitation (ChIP) studies are trimmed under the assumption that the majority of the binding sites are located near the center of all the aligned fragments. In this study, ChIP/chip datasets are analyzed using the corresponding PWMs for the well-studied TFs; CAUDAL, HUNCHBACK, KNIRPS and KRUPPEL, to determine the distribution of predicted binding sites. All four TFs are critical regulators of gene expression along the anterio-posterior axis in early Drosophila development. For all four TFs, the ChIP peaks contain multiple binding sites that are broadly distributed across the genomic region represented by the peak, regardless of the prediction stringency criteria used. This result suggests that ChIP peak trimming may exclude functional binding sites from subsequent analyses.

  7. High throughput techniques for discovering new glycine receptor modulators and their binding sites

    Directory of Open Access Journals (Sweden)

    Daniel F Gilbert

    2009-10-01

    Full Text Available The inhibitory glycine receptor (GlyR is a member of the Cys-loop receptor family that mediates inhibitory neurotransmission in the central nervous system. These receptors are emerging as potential drug targets for inflammatory pain, immunomodulation, spasticity and epilepsy. Antagonists that specifically inhibit particular GlyR isoforms are also required as pharmacological probes for elucidating the roles of particular GlyR isoforms in health and disease. Although a substantial number of both positive and negative GlyR modulators have been identified, very few of these are specific for the GlyR over other receptor types. Thus, the potential of known compounds as either therapeutic leads or pharmacological probes is limited. It is therefore surprising that there have been few published studies describing attempts to discover novel GlyR isoform-specific compounds. The first aim of this review is to consider various methods for efficiently screening compounds against these receptors. We conclude that an anion sensitive yellow fluorescent protein is optimal for primary screening and that automated electrophysiology of cells stably expressing GlyRs is useful for confirming hits and quantitating the actions of identified compounds. The second aim of this review is to demonstrate how these techniques are used in our laboratory for the purpose of both discovering novel GlyR-active compounds and characterizing their binding sites. We also describe a reliable, cost effective method for transfecting HEK293 cells in single wells of a 384 well plate using nanogram quantities of cDNA.

  8. Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species.

    Directory of Open Access Journals (Sweden)

    Robert K Bradley

    2010-03-01

    Full Text Available Changes in gene expression play an important role in evolution, yet the molecular mechanisms underlying regulatory evolution are poorly understood. Here we compare genome-wide binding of the six transcription factors that initiate segmentation along the anterior-posterior axis in embryos of two closely related species: Drosophila melanogaster and Drosophila yakuba. Where we observe binding by a factor in one species, we almost always observe binding by that factor to the orthologous sequence in the other species. Levels of binding, however, vary considerably. The magnitude and direction of the interspecies differences in binding levels of all six factors are strongly correlated, suggesting a role for chromatin or other factor-independent forces in mediating the divergence of transcription factor binding. Nonetheless, factor-specific quantitative variation in binding is common, and we show that it is driven to a large extent by the gain and loss of cognate recognition sequences for the given factor. We find only a weak correlation between binding variation and regulatory function. These data provide the first genome-wide picture of how modest levels of sequence divergence between highly morphologically similar species affect a system of coordinately acting transcription factors during animal development, and highlight the dominant role of quantitative variation in transcription factor binding over short evolutionary distances.

  9. Position specific variation in the rate of evolution intranscription factor binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Moses, Alan M.; Chiang, Derek Y.; Kellis, Manolis; Lander, EricS.; Eisen, Michael B.

    2003-08-28

    The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Here we analyze the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikataeto study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artifacts of computational motif finding algorithms. As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the effective use of comparative

  10. Common Internal Allosteric Network Links Anesthetic Binding Sites in a Pentameric Ligand-Gated Ion Channel.

    Science.gov (United States)

    Joseph, Thomas T; Mincer, Joshua S

    2016-01-01

    General anesthetics bind reversibly to ion channels, modifying their global conformational distributions, but the underlying atomic mechanisms are not completely known. We examine this issue by way of the model protein Gloeobacter violaceous ligand-gated ion channel (GLIC) using computational molecular dynamics, with a coarse-grained model to enhance sampling. We find that in flooding simulations, both propofol and a generic particle localize to the crystallographic transmembrane anesthetic binding region, and that propofol also localizes to an extracellular region shared with the crystallographic ketamine binding site. Subsequent simulations to probe these binding modes in greater detail demonstrate that ligand binding induces structural asymmetry in GLIC. Consequently, we employ residue interaction correlation analysis to describe the internal allosteric network underlying the coupling of ligand and distant effector sites necessary for conformational change. Overall, the results suggest that the same allosteric network may underlie the actions of various anesthetics, regardless of binding site. PMID:27403526

  11. Multiple sup 3 H-oxytocin binding sites in rat myometrial plasma membranes

    Energy Technology Data Exchange (ETDEWEB)

    Crankshaw, D.; Gaspar, V.; Pliska, V. (McMaster Univ., Hamilton, Ontario, (Canada))

    1990-01-01

    The affinity spectrum method has been used to analyse binding isotherms for {sup 3}H-oxytocin to rat myometrial plasma membranes. Three populations of binding sites with dissociation constants (Kd) of 0.6-1.5 x 10(-9), 0.4-1.0 x 10(-7) and 7 x 10(-6) mol/l were identified and their existence verified by cluster analysis based on similarities between Kd, binding capacity and Hill coefficient. When experimental values were compared to theoretical curves constructed using the estimated binding parameters, good fits were obtained. Binding parameters obtained by this method were not influenced by the presence of GTP gamma S (guanosine-5'-O-3-thiotriphosphate) in the incubation medium. The binding parameters agree reasonably well with those found in uterine cells, they support the existence of a medium affinity site and may allow for an explanation of some of the discrepancies between binding and response in this system.

  12. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data.

    Directory of Open Access Journals (Sweden)

    Xin He

    Full Text Available BACKGROUND: How transcription factors (TFs interact with cis-regulatory sequences and interact with each other is a fundamental, but not well understood, aspect of gene regulation. METHODOLOGY/PRINCIPAL FINDINGS: We present a computational method to address this question, relying on the established biophysical principles. This method, STAP (sequence to affinity prediction, takes into account all combinations and configurations of strong and weak binding sites to analyze large scale transcription factor (TF-DNA binding data to discover cooperative interactions among TFs, infer sequence rules of interaction and predict TF target genes in new conditions with no TF-DNA binding data. The distinctions between STAP and other statistical approaches for analyzing cis-regulatory sequences include the utility of physical principles and the treatment of the DNA binding data as quantitative representation of binding strengths. Applying this method to the ChIP-seq data of 12 TFs in mouse embryonic stem (ES cells, we found that the strength of TF-DNA binding could be significantly modulated by cooperative interactions among TFs with adjacent binding sites. However, further analysis on five putatively interacting TF pairs suggests that such interactions may be relatively insensitive to the distance and orientation of binding sites. Testing a set of putative Nanog motifs, STAP showed that a novel Nanog motif could better explain the ChIP-seq data than previously published ones. We then experimentally tested and verified the new Nanog motif. A series of comparisons showed that STAP has more predictive power than several state-of-the-art methods for cis-regulatory sequence analysis. We took advantage of this power to study the evolution of TF-target relationship in Drosophila. By learning the TF-DNA interaction models from the ChIP-chip data of D. melanogaster (Mel and applying them to the genome of D. pseudoobscura (Pse, we found that only about half of the

  13. Mapping the heparin-binding site of the osteoinductive protein NELL1 by site-directed mutagenesis.

    Science.gov (United States)

    Takahashi, Kaneyoshi; Imai, Arisa; Iijima, Masumi; Yoshimoto, Nobuo; Maturana, Andrés D; Kuroda, Shun'ichi; Niimi, Tomoaki

    2015-12-21

    Neural epidermal growth factor-like (NEL)-like 1 (NELL1) is a secretory osteogenic protein comprising an N-terminal thrombospondin-1-like (TSPN) domain, four von Willebrand factor type C domains, and six epidermal growth factor-like repeats. NELL1 shows heparin-binding activity; however, the biological significance remains to be explored. In this report, we demonstrate that NELL1 binds to cell surface proteoglycans through its TSPN domain. Major heparin-binding sites were identified on the three-dimensional structural model of the TSPN domain of NELL1. Mutant analysis of the heparin-binding sites indicated that the heparin-binding activity of the TSPN domain is involved in interaction of NELL1 with cell surface proteoglycans.

  14. Prediction of the key binding site of odorant-binding protein of Holotrichia oblita Faldermann (Coleoptera: Scarabaeida).

    Science.gov (United States)

    Zhuang, X; Wang, Q; Wang, B; Zhong, T; Cao, Y; Li, K; Yin, J

    2014-06-01

    The scarab beetle Holotrichia oblita Faldermann (Coleoptera: Scarabaeidae) is a predominant underground pest in the northern parts of China, and its larvae (grubs) cause great economic losses because of its wide range of host plants and covert habitats. Environmentally friendly strategies for controlling adults would have novel and broad potential applications. One potential pest management measure is the regulation of olfactory chemoreception to control target insect pests. In the process of olfactory recognition, odorant-binding proteins (OBPs) are believed to carry hydrophobic odorants from the environment to the surface of olfactory receptor neurons. To obtain a better understanding of the relationship between OBP structures and their ligands, homology modelling and molecular docking have been conducted on the interaction between HoblOBP1 and hexyl benzoate in the present study. Based on the results, site-directed mutagenesis and binding experiments were combined to describe the binding sites of HoblOBP1 and to explore its ligand-binding mechanism. After homology modelling of HoblOBP1, it was found that the three-dimensional structure of HoblOBP1 consists of six α-helices and three disulphide bridges that connect the helices, and the hydrophobic pockets are both composed of five helices. Based on the docking study, we found that van der Waals interactions and hydrophobic interactions are both important in the bonding between HoblOBP1 and hexyl benzoate. Intramolecular residues formed the hydrogen bonds in the C terminus of the protein and the bonds are crucial for the ligand-binding specificity. Finally, MET48, ILE80 and TYR111 are binding sites predicted for HoblOBP1. Using site-directed mutagenesis and fluorescence assays, it was found that ligands could not be recognized by mutant of Tyr111. A possible explanation is that the compound could not be recognized by the mutant, and remains in the binding cavity because of the loss of the intramolecular

  15. Investigation of the Binding Site of CCR2 using 4-Azetidinyl-1-aryl-cyclohexane Derivatives: A Membrane Modeling and Molecular Dynamics Study

    Energy Technology Data Exchange (ETDEWEB)

    Kothandan, Gugan; Gadhe, Changdev G.; Cho, Seung Joo [Chosun Univ., Gwangju (Korea, Republic of)

    2013-11-15

    Chemokine receptor (CCR2) is a G protein-coupled receptor that contains seven transmembrane helices. Recent pharmaceutical research has focused on the antagonism of CCR2 and candidate drugs are currently undergoing clinical studies for the treatment of diseases like arthritis, multiple sclerosis, and type 2 diabetes. In this study, we analyzed the time dependent behavior of CCR2 docked with a potent 4-azetidinyl-1-aryl-cyclohexane (4AAC) derivative using molecular dynamics simulations (MDS) for 20 nanoseconds (ns). Homology modeling of CCR2 was performed and the 4AAC derivative was docked into this binding site. The docked model of selected conformations was then utilized to study the dynamic behavior of the 4AAC enzyme complexes inside lipid membrane. MDS of CCR2-16b of 4AAC complexes allowed us to refine the system since binding of an inhibitor to a receptor is a dynamic process and identify stable structures and better binding modes. Structure activity relationships (SAR) for 4AAC derivatives were investigated and reasons for the activities were determined. Probable binding pose for some CCR2 antagonists were determined from the perspectives of binding site. Initial modeling showed that Tyr49, Trp98, Ser101, Glu291, and additional residues are crucial for 4AAC binding, but MDS analysis showed that Ser101 may not be vital. 4AAC moved away from Ser101 and the hydrogen bonding between 4AAC and Ser101 vanished. The results of this study provide useful information regarding the structure-based drug design of CCR2 antagonists and additionally suggest key residues for further study by mutagenesis.

  16. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin.

    Science.gov (United States)

    Makyio, Hisayoshi; Shimabukuro, Junpei; Suzuki, Tatsuya; Imamura, Akihiro; Ishida, Hideharu; Kiso, Makoto; Ando, Hiromune; Kato, Ryuichi

    2016-08-26

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding site has a different carbohydrate binding affinity. PMID:27318092

  17. Impact of Binding Site Comparisons on Medicinal Chemistry and Rational Molecular Design.

    Science.gov (United States)

    Ehrt, Christiane; Brinkjost, Tobias; Koch, Oliver

    2016-05-12

    Modern rational drug design not only deals with the search for ligands binding to interesting and promising validated targets but also aims to identify the function and ligands of yet uncharacterized proteins having impact on different diseases. Additionally, it contributes to the design of inhibitors with distinct selectivity patterns and the prediction of possible off-target effects. The identification of similarities between binding sites of various proteins is a useful approach to cope with those challenges. The main scope of this perspective is to describe applications of different protein binding site comparison approaches to outline their applicability and impact on molecular design. The article deals with various substantial application domains and provides some outstanding examples to show how various binding site comparison methods can be applied to promote in silico drug design workflows. In addition, we will also briefly introduce the fundamental principles of different protein binding site comparison methods.

  18. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin.

    Science.gov (United States)

    Makyio, Hisayoshi; Shimabukuro, Junpei; Suzuki, Tatsuya; Imamura, Akihiro; Ishida, Hideharu; Kiso, Makoto; Ando, Hiromune; Kato, Ryuichi

    2016-08-26

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding site has a different carbohydrate binding affinity.

  19. Evidence for two distinct binding sites for tau on microtubules

    Science.gov (United States)

    Makrides, Victoria; Massie, Michelle R.; Feinstein, Stuart C.; Lew, John

    2004-01-01

    The microtubule-associated protein tau regulates diverse and essential microtubule functions, from the nucleation and promotion of microtubule polymerization to the regulation of microtubule polarity and dynamics, as well as the spacing and bundling of axonal microtubules. Thermodynamic studies show that tau interacts with microtubules in the low- to mid-nanomolar range, implying moderate binding affinity. At the same time, it is well established that microtubule-bound tau does not undergo exchange with the bulk medium readily, suggesting that the tau-microtubule interaction is essentially irreversible. Given this dilemma, we investigated the mechanism of interaction between tau and microtubules in kinetic detail. Stopped-flow kinetic analysis reveals moderate binding affinity between tau and preassembled microtubules and rapid dissociation/association kinetics. In contrast, when microtubules are generated by copolymerization of tubulin and tau, a distinct population of microtubule-bound tau is observed, the binding of which seems irreversible. We propose that reversible binding occurs between tau and the surface of preassembled microtubules, whereas irreversible binding results when tau is coassembled with tubulin into a tau-microtubule copolymer. Because the latter is expected to be physiologically relevant, its characterization is of central importance. PMID:15096589

  20. An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins†

    OpenAIRE

    He, Yan; Estephan, Rima; Yang, Xiaomin; Vela, Adriana; Wang, Hsin; Bernard, Cédric; Stark, Ruth E.

    2011-01-01

    Liver fatty acid-binding protein (LFABP) is a 14-kDa cytosolic polypeptide, differing from other family members in number of ligand binding sites, diversity of bound ligands, and transfer of fatty acid(s) to membranes primarily via aqueous diffusion rather than direct collisional interactions. Distinct two-dimensional 1H-15N NMR signals indicative of slowly exchanging LFABP assemblies formed during stepwise ligand titration were exploited, without solving the protein-ligand complex structures...

  1. Computational predictions suggest that structural similarity in viral polymerases may lead to comparable allosteric binding sites.

    Science.gov (United States)

    Brown, Jodian A; Espiritu, Marie V; Abraham, Joel; Thorpe, Ian F

    2016-08-15

    The identification of ligand-binding sites is often the first step in drug targeting and design. To date there are numerous computational tools available to predict ligand binding sites. These tools can guide or mitigate the need for experimental methods to identify binding sites, which often require significant resources and time. Here, we evaluate four ligand-binding site predictor (LBSP) tools for their ability to predict allosteric sites within the Hepatitis C Virus (HCV) polymerase. Our results show that the LISE LBSP is able to identify all three target allosteric sites within the HCV polymerase as well as a known allosteric site in the Coxsackievirus polymerase. LISE was then employed to identify novel binding sites within the polymerases of the Dengue, West Nile, and Foot-and-mouth Disease viruses. Our results suggest that all three viral polymerases have putative sites that share structural or chemical similarities with allosteric pockets of the HCV polymerase. Thus, these binding locations may represent an evolutionarily conserved structural feature of several viral polymerases that could be exploited for the development of small molecule therapeutics. PMID:27262620

  2. 14-3-3 Binding and Sumoylation Concur to the Down-Modulation of β-catenin Antagonist chibby 1 in Chronic Myeloid Leukemia.

    Directory of Open Access Journals (Sweden)

    Manuela Mancini

    Full Text Available The down-modulation of the β-catenin antagonist Chibby 1 (CBY1 associated with the BCR-ABL1 fusion gene of chronic myeloid leukemia (CML contributes to the aberrant activation of β-catenin, particularly in leukemic stem cells (LSC resistant to tyrosine kinase (TK inhibitors. It is, at least partly, driven by transcriptional events and gene promoter hyper-methylation. Here we demonstrate that it also arises from reduced protein stability upon binding to 14-3-3σ adapter protein. CBY1/14-3-3σ interaction in BCR-ABL1+ cells is mediated by the fusion protein TK and AKT phosphorylation of CBY1 at critical serine 20, and encompasses the 14-3-3σ binding modes I and II involved in the binding with client proteins. Moreover, it is impaired by c-Jun N-terminal kinase (JNK phosphorylation of 14-3-3σ at serine 186, which promotes dissociation of client proteins. The ubiquitin proteasome system UPS participates in reducing stability of CBY1 bound with 14-3-3σ through enhanced SUMOylation. Our results open new routes towards the research on molecular pathways promoting the proliferative advantage of leukemic hematopoiesis over the normal counterpart.

  3. Characterization and autoradiographic localization of multiple tachykinin binding sites in gastrointestinal tract and bladder

    Energy Technology Data Exchange (ETDEWEB)

    Burcher, E.; Buck, S.H.; Lovenberg, W.; O' Donohue, T.L.

    1986-03-01

    Binding sites for the (125I)Bolton-Hunter-labeled tachykinins substance K (BHSK), eledoisin (BHE) and substance P (BHSP) were investigated using crude membrane suspensions and autoradiography. In smooth muscle membranes from guinea-pig small intestine and rat duodenum, specific binding of BHSK was saturable and reversible, showing a single class of sites with a KD of 1 to 3 nM and maximum number of specific binding sites of 1 to 2 fmol/mg of wet weight tissue. Pharmacological characterization of this binding revealed a novel receptor site (K) with affinity for substance K greater than kassinin greater than or equal to eledoisin greater than neuromedin K greater than substance P greater than physalaemin. Inhibition of the binding of BHSK in membranes from mouse urinary bladder exhibited a similar K-type pattern. In rat duodenum and mouse bladder membranes, the binding of BHE was inhibited by substance K greater than kassinin greater than eledoisin greater than neuromedin K greater than substance P greater than physalaemin indicating the same receptor site as for BHSK. In rat cerebral cortex membranes BHE binding was inhibited by neuromedin K = kassinin = eledoisin greater than physalaemin greater than substance K greater than substance P indicating a definitive tachykinin E receptor site. The same displacement pattern of BHE binding was also detected in longitudinal muscle membranes from the guinea-pig small intestine. In mouse bladder membranes and in rat and guinea-pig intestine, the binding of BHSP was inhibited by substance P greater than physalaemin greater than substance K greater than or equal to eledoisin = kassinin greater than neuromedin K indicating a definitive tachykinin P receptor site. Autoradiographic binding sites for both BHSK and BHSP were seen in circular muscle of the rat stomach, small intestine and colon and in circular and longitudinal muscle of the guinea-pig small intestine and colon.

  4. An Overview of the Prediction of Protein DNA-Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-03-01

    Full Text Available Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  5. GABA(A) receptors implicated in REM sleep control express a benzodiazepine binding site.

    Science.gov (United States)

    Nguyen, Tin Quang; Liang, Chang-Lin; Marks, Gerald A

    2013-08-21

    It has been reported that non-subtype-selective GABAA receptor antagonists injected into the nucleus pontis oralis (PnO) of rats induced long-lasting increases in REM sleep. Characteristics of these REM sleep increases were identical to those resulting from injection of muscarinic cholinergic agonists. Both actions were blocked by the muscarinic antagonist, atropine. Microdialysis of GABAA receptor antagonists into the PnO resulted in increased acetylcholine levels. These findings were consistent with GABAA receptor antagonists disinhibiting acetylcholine release in the PnO to result in an acetylcholine-mediated REM sleep induction. Direct evidence has been lacking for localization in the PnO of the specific GABAA receptor-subtypes mediating the REM sleep effects. Here, we demonstrated a dose-related, long-lasting increase in REM sleep following injection (60 nl) in the PnO of the inverse benzodiazepine agonist, methyl-6,7-dimethoxy-4-ethyl-β-carboline (DMCM, 10(-2)M). REM sleep increases were greater and more consistently produced than with the non-selective antagonist gabazine, and both were blocked by atropine. Fluorescence immunohistochemistry and laser scanning confocal microscopy, colocalized in PnO vesicular acetylcholine transporter, a presynaptic marker of cholinergic boutons, with the γ2 subunit of the GABAA receptor. These data provide support for the direct action of GABA on mechanisms of acetylcholine release in the PnO. The presence of the γ2 subunit at this locus and the REM sleep induction by DMCM are consistent with binding of benzodiazepines by a GABAA receptor-subtype in control of REM sleep.

  6. SITE-DIRECTED MUTAGENESIS OF PROPOSED ACTIVE-SITE RESIDUES OF PENICILLIN-BINDING PROTEIN-5 FROM ESCHERICHIA-COLI

    NARCIS (Netherlands)

    VANDERLINDEN, MPG; DEHAAN, L; DIDEBERG, O; KECK, W

    1994-01-01

    Alignment of the amino acid sequence of penicillin-binding protein 5 (PBP5) with the sequences of other members of the family of active-site-serine penicillin-interacting enzymes predicted the residues playing a role in the catalytic mechanism of PBP5. Apart from the active-site (Ser(44)), Lys(47),

  7. Genome-wide identification of estrogen receptor alpha-binding sites in mouse liver

    DEFF Research Database (Denmark)

    Gao, Hui; Fält, Susann; Sandelin, Albin;

    2007-01-01

    We report the genome-wide identification of estrogen receptor alpha (ERalpha)-binding regions in mouse liver using a combination of chromatin immunoprecipitation and tiled microarrays that cover all nonrepetitive sequences in the mouse genome. This analysis identified 5568 ERalpha-binding regions...... genes. The majority of ERalpha-binding regions lie in regions that are evolutionarily conserved between human and mouse. Motif-finding algorithms identified the estrogen response element, and variants thereof, together with binding sites for activator protein 1, basic-helix-loop-helix proteins, ETS...... signaling in mouse liver, by characterizing the first step in this signaling cascade, the binding of ERalpha to DNA in intact chromatin....

  8. Ligand-binding sites in human serum amyloid P component

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Heegaard, Peter M. H.; Roepstorff, P.;

    1996-01-01

    Amyloid P component (AP) is a naturally occurring glycoprotein that is found in serum and basement membranes, AP is also a component of all types of amyloid, including that found in individuals who suffer from Alzheimer's disease and Down's syndrome. Because AP has been found to bind strongly...

  9. Computational investigation of stoichiometric effects, binding site heterogeneities, and selectivities of molecularly imprinted polymers.

    Science.gov (United States)

    Terracina, Jacob J; Bergkvist, Magnus; Sharfstein, Susan T

    2016-06-01

    A series of quantum mechanical (QM) computational optimizations of molecularly imprinted polymer (MIP) systems were used to determine optimal monomer-to-target ratios. Imidazole- and xanthine-derived target molecules were studied. The investigation included both small-scale models (3-7 molecules) and larger-scale models (15-35 molecules). The optimal ratios differed between the small and larger scales. For the larger models containing multiple targets, binding-site surface area analysis was used to quantify the heterogeneity of these sites. The more fully surrounded sites had greater binding energies. No discretization of binding modes was seen, furthering arguments for continuous affinity distribution models. Molecular mechanical (MM) docking was then used to measure the selectivities of the QM-optimized binding sites. Selectivity was also shown to improve as binding sites become more fully encased by the monomers. For internal sites, docking consistently showed selectivity favoring the molecules that had been imprinted via QM geometry optimizations. The computationally imprinted sites were shown to exhibit size-, shape-, and polarity-based selectivity. Here we present a novel approach to investigate the selectivity and heterogeneity of imprinted polymer binding sites, by applying the rapid orientation screening of MM docking to the highly accurate QM-optimized geometries. Modeling schemes were designed such that no computing clusters or other specialized modeling equipment would be required. Improving the in silico analysis of MIP system properties will ultimately allow for the production of more sensitive and selective polymers. PMID:27207254

  10. Experimental and theoretical characterization of the high-affinity cation binding site of the purple membrane

    OpenAIRE

    Pardo, Leonardo; Sepulcre Sánchez, Francesc; Cladera Cerdà, Josep Bartomeu; Duñach, Mireia; Labarta, A.; Tejada, J.; Padrós Morell, Esteve

    1998-01-01

    Binding of Mn2+ or Mg2+ to the high-affinity site of the purple membrane from Halobacterium salinarium has been studied by superconducting quantum interference device magnetometry or by ab initio quantum mechanical calculations, respectively. The binding of Mn2+ cation, in a low-spin state, to the high-affinity site occurs through a major octahedral local symmetry character with a minor rhombic distortion and a coordination number of six. A molecular model of this binding site in the Schiff b...

  11. Brominated lipids identify lipid binding sites on the surface of the reaction center from Rhodobacter sphaeroides.

    Science.gov (United States)

    Roszak, Aleksander W; Gardiner, Alastair T; Isaacs, Neil W; Cogdell, Richard J

    2007-03-20

    This study describes the use of brominated phospholipids to distinguish between lipid and detergent binding sites on the surface of a typical alpha-helical membrane protein. Reaction centers isolated from Rhodobacter sphaeroides were cocrystallized with added brominated phospholipids. X-ray structural analysis of these crystals has revealed the presence of two lipid binding sites from the characteristic strong X-ray scattering from the bromine atoms. These results demonstrate the usefulness of this approach to mapping lipid binding sites at the surface of membrane proteins.

  12. Identification of ligands that target the HCV-E2 binding site on CD81.

    Science.gov (United States)

    Olaby, Reem Al; Azzazy, Hassan M; Harris, Rodney; Chromy, Brett; Vielmetter, Jost; Balhorn, Rod

    2013-04-01

    Hepatitis C is a global health problem. While many drug companies have active R&D efforts to develop new drugs for treating Hepatitis C virus (HCV), most target the viral enzymes. The HCV glycoprotein E2 has been shown to play an essential role in hepatocyte invasion by binding to CD81 and other cell surface receptors. This paper describes the use of AutoDock to identify ligand binding sites on the large extracellular loop of the open conformation of CD81 and to perform virtual screening runs to identify sets of small molecule ligands predicted to bind to two of these sites. The best sites selected by AutoLigand were located in regions identified by mutational studies to be the site of E2 binding. Thirty-six ligands predicted by AutoDock to bind to these sites were subsequently tested experimentally to determine if they bound to CD81-LEL. Binding assays conducted using surface Plasmon resonance revealed that 26 out of 36 (72 %) of the ligands bound in vitro to the recombinant CD81-LEL protein. Competition experiments performed using dual polarization interferometry showed that one of the ligands predicted to bind to the large cleft between the C and D helices was also effective in blocking E2 binding to CD81-LEL.

  13. Protein-binding RNA aptamers affect molecular interactions distantly from their binding sites

    DEFF Research Database (Denmark)

    Dupont, Daniel M; Thuesen, Cathrine K; Bøtkjær, Kenneth A;

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless...... potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area...... around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro...

  14. Difference in brain distributions of carbon 11-labeled 4-hydroxy-2(1H)-quinolones as PET radioligands for the glycine-binding site of the NMDA ion channel

    Energy Technology Data Exchange (ETDEWEB)

    Fuchigami, Takeshi [Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582 (Japan); Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Haradahira, Terushi [Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan)], E-mail: terushi@niu.ac.jp; Fujimoto, Noriko [Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582 (Japan); Okauchi, Takashi; Maeda, Jun; Suzuki, Kazutoshi; Suhara, Tetsuya [Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba 263-8555 (Japan); Yamamoto, Fumihiko; Sasaki, Shigeki; Mukai, Takahiro [Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582 (Japan); Yamaguchi, Hiroshi [Molecular Imaging Frontier Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Ogawa, Mikako [Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Magata, Yasuhiro [Photon Medical Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Molecular Imaging Frontier Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192 (Japan); Maeda, Minoru [Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582 (Japan)

    2008-02-15

    High-affinity iodine- and ethyl-C-5 substituted analogs of 4-hydroxy-3-(3-[{sup 11}C]methoxyphenyl)-2(1H)-quinolone ([{sup 11}C]4HQ) were synthesized as new positron emission tomography radioligands for the glycine-binding sites of the N-methyl-D-aspartate (NMDA) ion channel. Although both radioligands showed high in vitro specific binding to rat brain slices, their binding characteristics were quite different from each other. 5-Ethyl-[{sup 11}C]4HQ (5Et-[{sup 11}C]4HQ) showed higher in vitro binding in the forebrain regions than in the cerebellum, bindings that were strongly inhibited by both glycine-site agonists and antagonists. In contrast, 5-iodo-[{sup 11}C]4HQ (5I-[{sup 11}C]4HQ) showed a homogeneous in vitro binding throughout the brain, which was inhibited by antagonists but not by agonists. This difference in in vitro binding between 5Et-[{sup 11}C]4HQ and 5I-[{sup 11}C]4HQ was quite similar to that previously observed between [{sup 11}C]L-703,717 and [{sup 11}C]4HQ, both glycine-site antagonists. In vivo brain uptakes of these {sup 11}C-labeled 4-hydroxyquinolones were examined in mice. Initial brain uptakes of 5Et- and 5I-[{sup 11}C]4HQ at 1 min after intravenous injections were comparable to that of [{sup 11}C]4HQ, but they were 1.3-2.1 times higher than that of [{sup 11}C]L-703,717. The treatment with an anticoagulant, warfarin, only slightly increased the initial uptakes of [{sup 11}C]4HQ and 5Et-[{sup 11}C]4HQ in contrast to [{sup 11}C]L-703,717. The in vivo regional brain distributions were slightly different between the two radioligands. Pretreatment with nonradioactive ligand (2 mg/kg) slightly inhibited the binding of 5Et-[{sup 11}C]4HQ (16-36% inhibition) but not that of 5I-[{sup 11}C]4HQ. In this study, it was found that a small structural change in [{sup 11}C]4HQ resulted in a major change in binding characteristics and distributions, suggesting the existence of two binding sites for [{sup 11}C]4-hydroxyquinolones on the NMDA ion channel

  15. The Interaction of Integrin αIIbβ3 with Fibrin Occurs through Multiple Binding Sites in the αIIb β-Propeller Domain*

    Science.gov (United States)

    Podolnikova, Nataly P.; Yakovlev, Sergiy; Yakubenko, Valentin P.; Wang, Xu; Gorkun, Oleg V.; Ugarova, Tatiana P.

    2014-01-01

    The currently available antithrombotic agents target the interaction of platelet integrin αIIbβ3 (GPIIb-IIIa) with fibrinogen during platelet aggregation. Platelets also bind fibrin formed early during thrombus growth. It was proposed that inhibition of platelet-fibrin interactions may be a necessary and important property of αIIbβ3 antagonists; however, the mechanisms by which αIIbβ3 binds fibrin are uncertain. We have previously identified the γ370–381 sequence (P3) in the γC domain of fibrinogen as the fibrin-specific binding site for αIIbβ3 involved in platelet adhesion and platelet-mediated fibrin clot retraction. In the present study, we have demonstrated that P3 can bind to several discontinuous segments within the αIIb β-propeller domain of αIIbβ3 enriched with negatively charged and aromatic residues. By screening peptide libraries spanning the sequence of the αIIb β-propeller, several sequences were identified as candidate contact sites for P3. Synthetic peptides duplicating these segments inhibited platelet adhesion and clot retraction but not platelet aggregation, supporting the role of these regions in fibrin recognition. Mutant αIIbβ3 receptors in which residues identified as critical for P3 binding were substituted for homologous residues in the I-less integrin αMβ2 exhibited reduced cell adhesion and clot retraction. These residues are different from those that are involved in the coordination of the fibrinogen γ404–411 sequence and from auxiliary sites implicated in binding of soluble fibrinogen. These results map the binding of fibrin to multiple sites in the αIIb β-propeller and further indicate that recognition specificity of αIIbβ3 for fibrin differs from that for soluble fibrinogen. PMID:24338009

  16. Rat submaxillary gland contains predominantly P-type tachykinin binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Buck, S.H.; Burcher, E.

    1985-11-01

    The specific binding of the /sup 125/I-Bolton-Hunter labeled tachykinins substance K (BHSK), eledoisin (BHE), and substance P (BHSP) was examined in crude membrane suspensions and by autoradiography in rat submaxillary gland. All three ligands at 0.1 nM concentrations exhibited binding that was inhibited by tachykinins in a potency rank order of substance P greater than physalaemin greater than substance K greater than eledoisin greater than kassinin greater than neuromedin K with slope factors essentially equal to unity. All tachykinins were 5 to 10 times more potent in inhibiting BHSK and BHE binding compared to BHSP binding. Autoradiographic visualization of BHSK and BHSP binding sites in the gland revealed extensive labeling of mucous and serous acini. The intensity of labeling was much less for BHSK than for BHSP. The results indicate that the rat submaxillary gland contains predominantly P-type tachykinin binding sites.

  17. Evidence for two distinct binding sites for tau on microtubules

    OpenAIRE

    Makrides, Victoria; Massie, Michelle R.; Feinstein, Stuart C.; Lew, John

    2004-01-01

    The microtubule-associated protein tau regulates diverse and essential microtubule functions, from the nucleation and promotion of microtubule polymerization to the regulation of microtubule polarity and dynamics, as well as the spacing and bundling of axonal microtubules. Thermodynamic studies show that tau interacts with microtubules in the low- to mid-nanomolar range, implying moderate binding affinity. At the same time, it is well established that microtubule-bound tau does not undergo ex...

  18. Conversion of MyoD to a Neurogenic Factor: Binding Site Specificity Determines Lineage

    Directory of Open Access Journals (Sweden)

    Abraham P. Fong

    2015-03-01

    Full Text Available MyoD and NeuroD2, master regulators of myogenesis and neurogenesis, bind to a “shared” E-box sequence (CAGCTG and a “private” sequence (CAGGTG or CAGATG, respectively. To determine whether private-site recognition is sufficient to confer lineage specification, we generated a MyoD mutant with the DNA-binding specificity of NeuroD2. This chimeric mutant gained binding to NeuroD2 private sites but maintained binding to a subset of MyoD-specific sites, activating part of both the muscle and neuronal programs. Sequence analysis revealed an enrichment for PBX/MEIS motifs at the subset of MyoD-specific sites bound by the chimera, and point mutations that prevent MyoD interaction with PBX/MEIS converted the chimera to a pure neurogenic factor. Therefore, redirecting MyoD binding from MyoD private sites to NeuroD2 private sites, despite preserved binding to the MyoD/NeuroD2 shared sites, is sufficient to change MyoD from a master regulator of myogenesis to a master regulator of neurogenesis.

  19. Localization of CGRP receptor components, CGRP, and receptor binding sites in human and rhesus cerebellar cortex

    DEFF Research Database (Denmark)

    Eftekhari, Sajedeh; Salvatore, Christopher A; Gaspar, Renee C;

    2013-01-01

    receptor activity modifying protein 1 (RAMP1), was examined. In addition, expression of procalcitonin was studied. We observed high [(3)H]MK-3207 (CGRP receptor antagonist) binding densities in the molecular layer of rhesus cerebellar cortex; however, due to the limit of resolution of the autoradiographic....... Immunofluorescence revealed expression of CGRP, CLR, and RAMP1 in the Purkinje cells and in cells in the molecular layer. Procalcitonin was found in the same localization. Recent research in the biology of cerebellum indicates that it may have a role in nociception. For the first time we have identified CGRP and...

  20. Europium ion as a probe for binding sites to carrageenans

    International Nuclear Information System (INIS)

    Carrageenans, sulfated polysaccharides extracted from red algae, present a coil-helix transition and helix aggregation dependence on the type and concentration of counterions. In this study, we focus attention on a mixed valence counterion system: Eu3+/Na+ or K+ with different gel-forming carrageenans: kappa, iota, and kappa-2. Results of stationary and time-dependent luminescence showed to be a suitable tool to probe ion binding to both the negatively charged sulfate group and the hydroxyl groups present in the biopolymer. For lower europium ion concentrations, a single longer decay emission lifetime was detected, which was attributed to the binding of europium ion to the carrageenan sulfate groups. An additional decay ascribed to europium binding to hydroxyl groups was observed above a threshold concentration, and this decay was dependent on the carrageenan charge density. Symmetry of the europium ion microenvironment was estimated by the ratio between the intensities of its emission bands, which has been shown to depend on the concentration of europium ions and on the specificity of the monovalent counterion bound to the carrageenan

  1. Europium ion as a probe for binding sites to carrageenans

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Ana P.; Goncalves, Rogeria R.; Serra, Osvaldo A. [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo 14040-901 (Brazil); Zaniquelli, Maria Elisabete D. [Departamento de Quimica, Faculdade de Filosofia, Ciencias e Letras de Ribeirao Preto, Universidade de Sao Paulo, Ribeirao Preto, Sao Paulo 14040-901 (Brazil)], E-mail: medzaniquelli@ffclrp.usp.br; Wong, Kenneth [Laboratorio de Fisico-Quimica, Centro de Pesquisas de Paulinia, Rhodia Brasil, Paulinia, Sao Paulo (Brazil)

    2007-12-15

    Carrageenans, sulfated polysaccharides extracted from red algae, present a coil-helix transition and helix aggregation dependence on the type and concentration of counterions. In this study, we focus attention on a mixed valence counterion system: Eu{sup 3+}/Na{sup +} or K{sup +} with different gel-forming carrageenans: kappa, iota, and kappa-2. Results of stationary and time-dependent luminescence showed to be a suitable tool to probe ion binding to both the negatively charged sulfate group and the hydroxyl groups present in the biopolymer. For lower europium ion concentrations, a single longer decay emission lifetime was detected, which was attributed to the binding of europium ion to the carrageenan sulfate groups. An additional decay ascribed to europium binding to hydroxyl groups was observed above a threshold concentration, and this decay was dependent on the carrageenan charge density. Symmetry of the europium ion microenvironment was estimated by the ratio between the intensities of its emission bands, which has been shown to depend on the concentration of europium ions and on the specificity of the monovalent counterion bound to the carrageenan.

  2. Current Understanding of the Binding Sites, Capacity, Affinity, and Biological Significance of Metals in Melanin

    OpenAIRE

    Hong, Lian; Simon, John D.

    2007-01-01

    Metal chelation is often invoked as one of the main biological functions of melanin. In order to understand the interaction between metals and melanin, extensive studies have been carried out to determine the nature of the metal binding sites, binding capacity and affinity. These data are central to efforts aimed at elucidating the role metal binding plays in determining the physical, structural, biological, and photochemical properties of melanin. This article examines the current state of u...

  3. Localization of 125I-insulin binding sites in the rat hypothalamus by quantitative autoradiography

    International Nuclear Information System (INIS)

    In vitro autoradiography and computer video densitometry were used to localize and quantify binding of 125I-insulin in the hypothalamus of the rat brain. Highest specific binding was found in the arculate, dorsomedial, suprachiasmatic, paraventricular and periventricular regions. Significantly lower binding was present in the ventromedial nucleus and median eminence. The results are consistent with the hypothesis that insulin modulates the neural regulation of feeding by acting at sites in the hypothalamus. (author)

  4. Exploring the composition of protein-ligand binding sites on a large scale.

    Directory of Open Access Journals (Sweden)

    Nickolay A Khazanov

    Full Text Available The residue composition of a ligand binding site determines the interactions available for diffusion-mediated ligand binding, and understanding general composition of these sites is of great importance if we are to gain insight into the functional diversity of the proteome. Many structure-based drug design methods utilize such heuristic information for improving prediction or characterization of ligand-binding sites in proteins of unknown function. The Binding MOAD database if one of the largest curated sets of protein-ligand complexes, and provides a source of diverse, high-quality data for establishing general trends of residue composition from currently available protein structures. We present an analysis of 3,295 non-redundant proteins with 9,114 non-redundant binding sites to identify residues over-represented in binding regions versus the rest of the protein surface. The Binding MOAD database delineates biologically-relevant "valid" ligands from "invalid" small-molecule ligands bound to the protein. Invalids are present in the crystallization medium and serve no known biological function. Contacts are found to differ between these classes of ligands, indicating that residue composition of biologically relevant binding sites is distinct not only from the rest of the protein surface, but also from surface regions capable of opportunistic binding of non-functional small molecules. To confirm these trends, we perform a rigorous analysis of the variation of residue propensity with respect to the size of the dataset and the content bias inherent in structure sets obtained from a large protein structure database. The optimal size of the dataset for establishing general trends of residue propensities, as well as strategies for assessing the significance of such trends, are suggested for future studies of binding-site composition.

  5. CONREAL web server : identification and visualization of conserved transcription factor binding sites

    NARCIS (Netherlands)

    Berezikov, Eugene; Guryev, Victor; Cuppen, Edwin

    2005-01-01

    The use of orthologous sequences and phylogenetic footprinting approaches have become popular for the recognition of conserved and potentially functional sequences. Several algorithms have been developed for the identification of conserved transcription factor binding sites (TFBSs), which are charac

  6. Arabidopsis AtADF1 is Functionally Affected by Mutations on Actin Binding Sites

    Institute of Scientific and Technical Information of China (English)

    Chun-Hai Dong; Wei-Ping Tang; Jia-Yao Liu

    2013-01-01

    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin,and is directly involved in the depolymerization of actin filaments.To better understand the actin binding sites of the Arabidopsis thaliana L.AtADF1,we generated mutants of AtADF1 and investigated their functions in vitro and in vivo.Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G-and F-actin binding.The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A,R137/A) form another actin binding site that is important for F-actin binding.Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L.plants overexpressing these mutants,we analyzed how these mutant proteins regulate actin organization and affect seedling growth.Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional,unless the affinity foractin monomers is also affected.The G-actin binding activity of the ADF plays an essential role in actin binding,depolymerization of actin polymers,and therefore in the control of actin organization.

  7. Radiolabelling of phoneutria nigriventer spider toxin (Tx1): a tool to study its binding site

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Diniz, Carlos Roberto; Nascimento, Marta Cordeiro [FUNED, Belo Horizonte, MG (Brazil); Lima, Maria Elena de [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia

    1996-07-01

    The neurotoxin Tx1, isolated from the venom of the South American spider Phoneutria nigriventer produces tail elevation and spastic paralysis of posterior limbs after intracerebral ventricular injection in mice. Tx1 also produces ileum contraction in bioassay. We have investigated the binding of radioiodinated-Tx1 ({sup 125} I-Tx1) on the preparation of myenteric plexus-longitudinal muscle membrane from guinea pig ileum (MPLM) as a tool to characterize the interaction of this neurotoxin with its site. The neurotoxin Tx1 was radioiodinated with Na{sup 125} I by the lactoperoxidase method. {sup 125} I-Tx1 specifically binds to a single class of noninteracting binding sites of high affinity (Kd= 3.5 x 10{sup -10} M) and low capacity (1.2 pmol/mg protein). The specific binding increased in parallel with the protein concentration. In competition experiments the ligands of ionic channels used (sodium, potassium and calcium) did not affect the binding of {sup 125} I-Tx1 to MPLM neither did the cholinergic ligands (hemicholinium-3, hexamethonium, d-tubocurarine and atropine). Another neurotoxin (Tx2-6, one of the isoforms of Tx2 pool) decreased toxin with MPLM and showed that toxin has a specific and saturable binding site in guinea pig ileum and this binding site appears to be related to the Tx2 site. (author)

  8. DETERMINANTS OF LIGAND BINDING AFFINITY AND COOPERATIVITY AT THE GLUT1 ENDOFACIAL SITE

    OpenAIRE

    Robichaud, Trista; Appleyard, Antony N.; Herbert, Richard B.; Henderson, Peter J. F.; Carruthers, Anthony

    2011-01-01

    Cytochalasin B (CB) and forskolin (FSK) inhibit GLUT1-mediated sugar transport in red cells by binding at or close to the GLUT1 endofacial sugar binding site. Paradoxically, very low concentrations of each of these inhibitors produce a modest stimulation of sugar transport (Cloherty, E. K., Levine, K. B., & Carruthers, A. (2001). The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites. Biochemistry, 40(51), 15549–15561). This result is consistent with t...

  9. Protective Action of Resveratrol in Human Skin: Possible Involvement of Specific Receptor Binding Sites

    OpenAIRE

    Stéphane Bastianetto; Yvan Dumont; Albert Duranton; Freya Vercauteren; Lionel Breton; Rémi Quirion

    2010-01-01

    BACKGROUND: Resveratrol is a plant-derived polyphenol with purported protecting action on various disorders associated with aging. It has been suggested that resveratrol could exert its protective action by acting on specific plasma membrane polyphenol binding sites (Han Y.S., et al. (2006) J Pharmacol Exp Ther 318:238-245). The purpose of this study was to investigate, in human skin, the possible existence of specific binding sites that mediate the protective action of resveratrol. METHODS A...

  10. Effect of positional dependence and alignment strategy on modeling transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Quader Saad

    2012-07-01

    Full Text Available Abstract Background Many consensus-based and Position Weight Matrix-based methods for recognizing transcription factor binding sites (TFBS are not well suited to the variability in the lengths of binding sites. Besides, many methods discard known binding sites while building the model. Moreover, the impact of Information Content (IC and the positional dependence of nucleotides within an aligned set of TFBS has not been well researched for modeling variable-length binding sites. In this paper, we propose ML-Consensus (Mixed-Length Consensus: a consensus model for variable-length TFBS which does not exclude any reported binding sites. Methods We consider Pairwise Score (PS as a measure of positional dependence of nucleotides within an alignment of TFBS. We investigate how the prediction accuracy of ML-Consensus is affected by the incorporation of IC and PS with a particular binding site alignment strategy. We perform cross-validations for datasets of six species from the TRANSFAC public database, and analyze the results using ROC curves and the Wilcoxon matched-pair signed-ranks test. Results We observe that the incorporation of IC and PS in ML-Consensus results in statistically significant improvement in the prediction accuracy of the model. Moreover, the existence of a core region among the known binding sites (of any length is witnessed by the pairwise coexistence of nucleotides within the core length. Conclusions These observations suggest the possibility of an efficient multiple sequence alignment algorithm for aligning TFBS, accommodating known binding sites of any length, for optimal (or near-optimal TFBS prediction. However, designing such an algorithm is a matter of further investigation.

  11. Quantitative determination of angiotensin II binding sites in rat brain and pituitary gland by autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Israel, A.; Correa, F.M.A.; Niwa, M.; Saavedra, J.M. (National Inst. of Mental Health, Bethesda, MD (USA))

    1984-11-26

    Rat brain and pituitary angiotensin II (AII) binding sites were quantitated by incubation of tissue sections with /sup 125/I-(Sar/sup 1/) AII, Ultrofilm radioautography, computerized densitometry, and comparison with /sup 125/I-standards at appropriate film exposure times. The highest number of AII binding sites was found in anterior pituitary and the circumventricular organs, organon subfornicalis and organon vasculosum laminae terminalis.

  12. Partial enterectomy decreases somatostatin-binding sites in residual intestine of rabbits

    OpenAIRE

    Colás Escudero, Begoña; Bodega Magro, Guillermo; Sanz, M.; Prieto Villapún, Juan Carlos; Arilla Ferreiro, Eduardo

    1988-01-01

    Three weeks after partial enterectomy in the rabbit there was an increased somatostatin concentration and a decreased number of somatostatin-binding sites (without changes in the corresponding affinity values) in the cytosol of the residual intestinal tissue, except in the terminal ileum and the colon. Five weeks after surgery both the somatostatin concentration and the number of somatostatin-binding sites returned towards control values. These results suggest that an increase in bowel ...

  13. Identification of a novel platelet antagonist that binds to CLEC-2 and suppresses podoplanin-induced platelet aggregation and cancer metastasis.

    Science.gov (United States)

    Chang, Yao-Wen; Hsieh, Pei-Wen; Chang, Yu-Tsui; Lu, Meng-Hong; Huang, Tur-Fu; Chong, Kowit-Yu; Liao, Hsiang-Ruei; Cheng, Ju-Chien; Tseng, Ching-Ping

    2015-12-15

    Podoplanin (PDPN) enhances tumor metastases by eliciting tumor cell-induced platelet aggregation (TCIPA) through activation of platelet C-type lectin-like receptor 2 (CLEC-2). A novel and non-cytotoxic 5-nitrobenzoate compound 2CP was synthesized that specifically inhibited the PDPN/CLEC-2 interaction and TCIPA with no effect on platelet aggregation stimulated by other platelet agonists. 2CP possessed anti-cancer metastatic activity in vivo and augmented the therapeutic efficacy of cisplatin in the experimental animal model without causing a bleeding risk. Analysis of the molecular action of 2CP further revealed that Akt1/PDK1 and PKCμ were two alternative CLEC-2 signaling pathways mediating PDPN-induced platelet activation. 2CP directly bound to CLEC-2 and, by competing with the same binding pocket of PDPN in CLEC-2, inhibited PDPN-mediated platelet activation. This study provides evidence that 2CP is the first defined platelet antagonist with CLEC-2 binding activity. The augmentation in the therapeutic efficacy of cisplatin by 2CP suggests that a combination of a chemotherapeutic agent and a drug with anti-TCIPA activity such as 2CP may prove clinically effective. PMID:26528756

  14. Assessment of algorithms for inferring positional weight matrix motifs of transcription factor binding sites using protein binding microarray data.

    Directory of Open Access Journals (Sweden)

    Yaron Orenstein

    Full Text Available The new technology of protein binding microarrays (PBMs allows simultaneous measurement of the binding intensities of a transcription factor to tens of thousands of synthetic double-stranded DNA probes, covering all possible 10-mers. A key computational challenge is inferring the binding motif from these data. We present a systematic comparison of four methods developed specifically for reconstructing a binding site motif represented as a positional weight matrix from PBM data. The reconstructed motifs were evaluated in terms of three criteria: concordance with reference motifs from the literature and ability to predict in vivo and in vitro bindings. The evaluation encompassed over 200 transcription factors and some 300 assays. The results show a tradeoff between how the methods perform according to the different criteria, and a dichotomy of method types. Algorithms that construct motifs with low information content predict PBM probe ranking more faithfully, while methods that produce highly informative motifs match reference motifs better. Interestingly, in predicting high-affinity binding, all methods give far poorer results for in vivo assays compared to in vitro assays.

  15. Flow-cytometric determination of high-density-lipoprotein binding sites on human leukocytes

    International Nuclear Information System (INIS)

    In this method, leukocytes were isolated from 6 mL of EDTA-blood by density-gradient centrifugation and subsequently incubated with rhodamine isothiocyanate (RITC)-conjugated high-density lipoproteins (HDL). The receptor-bound conjugate particles were determined by fluorescent flow cytometry and compared with 125I-labeled HDL binding data for the same cells. Human granulocytes express the highest number of HDL binding sites (9.4 x 10(4)/cell), followed by monocytes (7.3 x 10(4)/cell) and lymphocytes (4.0 x 10(4)/cell). Compared with conventional analysis of binding of 125I-labeled HDL in tissue-culture dishes, the present determination revealed significantly lower values for nonspecific binding. In competition studies, the conjugate competes for the same binding sites as 125I-labeled HDL. With the use of tetranitromethane-treated HDL3, which fails to compete for the HDL receptor sites while nonspecific binding is not affected, we could clearly distinguish between 37 degrees C surface binding and specific 37 degrees C uptake of RITC-HDL3, confirming that the HDL receptor leads bound HDL particles into an intracellular pathway rather than acting as a docking type of receptor. Patients with familial dysbetalipoproteinemia showed a significantly higher number of HDL binding sites in the granulocyte population but normal in lymphocytes and monocytes, indicating increased uptake of cholesterol-containing lipoproteins. In patients with familial hypercholesterolemia, HDL binding was increased in all three cell types, indicating increased cholesterol uptake and increased cholesterol synthesis. The present method allows rapid determination of HDL binding sites in leukocytes from patients with various forms of hyper- and dyslipoproteinemias

  16. The TRPV5/6 calcium channels contain multiple calmodulin binding sites with differential binding properties.

    NARCIS (Netherlands)

    Kovalevskaya, N.V.; Bokhovchuk, F.M.; Vuister, G.W.

    2012-01-01

    The epithelial Ca(2+) channels TRPV5/6 (transient receptor potential vanilloid 5/6) are thoroughly regulated in order to fine-tune the amount of Ca(2+) reabsorption. Calmodulin has been shown to be involved into calcium-dependent inactivation of TRPV5/6 channels by binding directly to the distal C-t

  17. Surface binding sites in carbohydrate active enzymes: An emerging picture of structural and functional diversity

    DEFF Research Database (Denmark)

    Svensson, Birte; Cockburn, Darrell

    2013-01-01

    Carbohydrate active enzymes, particularly those that are active on polysaccharides, are often found associated with carbohydrate binding modules (CBMs), which can play several roles in supporting enzyme function, such as localizing the enzyme to the substrate. However, the presence of CBMs...... is not universal and is in fact rare among some families of enzymes. In some cases an alternative to possessing a CBM is for the enzyme to bind to the substrate at a site on the catalytic domain, but away from the active site. Such a site is termed a surface (or secondary) binding site (SBS). SBSs have been...... identified in enzymes from a wide variety of families, though almost half are found in the α-amylase family GH13. The roles attributed to SBSs are not limited to targeting the enzyme to the substrate, but also include a variety of others such as guiding the substrate into the active site, altering enzyme...

  18. Ca2+ binding sites in calmodulin and troponin C alter interhelical angle movements.

    Science.gov (United States)

    Goto, Kunihiko; Toyama, Akira; Takeuchi, Hideo; Takayama, Kazuyoshi; Saito, Tsutomu; Iwamoto, Masatoshi; Yeh, Jay Z; Narahashi, Toshio

    2004-03-12

    Molecular dynamics analyses were performed to examine conformational changes in the C-domain of calmodulin and the N-domain of troponin C induced by binding of Ca(2+) ions. Analyses of conformational changes in calmodulin and troponin C indicated that the shortening of the distance between Ca(2+) ions and Ca(2+) binding sites of helices caused widening of the distance between Ca(2+) binding sites of helices on opposite sides, while the hydrophobic side chains in the center of helices hardly moved due to their steric hindrance. This conformational change acts as the clothespin mechanism. PMID:15013750

  19. Localization of the Two Tropomyosin-Binding Sites of Troponin T

    OpenAIRE

    Jin, J.-P.; Chong, Stephen M.

    2010-01-01

    Troponin T (TnT) binds to tropomyosin (Tm) to anchor the troponin complex in the thin filament, and it thus serves as a vital link in the Ca2+ regulation of striated muscle contraction. Pioneer work three decades ago determined that the T1 and T2 chymotryptic fragments of TnT each contains a Tm-binding site. A more precise localization of the two Tm-binding sites of TnT remains to be determined. In the present study, we tested serial deletion constructs of TnT and carried out monoclonal antib...

  20. Solution measurement of DNA curvature in papillomavirus E2 binding sites

    OpenAIRE

    Zimmerman, Jeff M.; Maher, L. James

    2003-01-01

    ‘Indirect readout’ refers to the proposal that proteins can recognize the intrinsic three-dimensional shape or flexibility of a DNA binding sequence apart from direct protein contact with DNA base pairs. The differing affinities of human papillomavirus (HPV) E2 proteins for different E2 binding sites have been proposed to reflect indirect readout. DNA bending has been observed in X-ray structures of E2 protein–DNA complexes. X-ray structures of three different E2 DNA binding sites revealed di...

  1. Localization of binding sites for purified Escherichia coli P fimbriae in the human kidney.

    OpenAIRE

    Korhonen, T K; Virkola, R; Holthöfer, H

    1986-01-01

    Binding sites in the human kidney for purified P fimbriae of pyelonephritogenic Escherichia coli were determined. The purified KS71A (F7(1)) fimbriae bound only to epithelial elements of the kidney, i.e., to the apical aspect of proximal and distal tubular cells, as well as to the apical and cytoplasmic sites of collecting ducts. In addition, binding was seen at the vascular endothelium throughout the kidney and at the parietal epithelium of the glomeruli. The binding was specifically inhibit...

  2. Molecular simulations of Taxawallin I inside classical taxol binding site of β-tubulin.

    Science.gov (United States)

    Khan, Inamullah; Nisar, Muhammad; Ahmad, Manzoor; Shah, Hamidullah; Iqbal, Zafar; Saeed, Muhammad; Halimi, Syed Muhammad Ashhad; Kaleem, Waqar Ahmad; Qayum, Mughal; Aman, Akhter; Abdullah, Syed Muhammad

    2011-03-01

    A new taxoid Taxawallin I (1) along with two known taxoids (2-3) were isolated from methanolic bark extract of Taxus wallichiana Zucc. Structural characterization was confirmed by mass and NMR spectral techniques. Taxawallin I exhibited significant in-vitro anticancer activity against HepG2, A498, NCI-H226 and MDR 2780AD cancer lines. Tubulin binding assay was performed to assess its tubulin binding activity. Molecular docking analysis was performed to study the potential binding mode inside the taxol binding site of β-tubulin. PMID:20969934

  3. Differential Nucleosome Occupancies across Oct4-Sox2 Binding Sites in Murine Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Amy Sebeson

    Full Text Available The binding sequence for any transcription factor can be found millions of times within a genome, yet only a small fraction of these sequences encode functional transcription factor binding sites. One of the reasons for this dichotomy is that many other factors, such as nucleosomes, compete for binding. To study how the competition between nucleosomes and transcription factors helps determine a functional transcription factor site from a predicted transcription factor site, we compared experimentally-generated in vitro nucleosome occupancy with in vivo nucleosome occupancy and transcription factor binding in murine embryonic stem cells. Using a solution hybridization enrichment technique, we generated a high-resolution nucleosome map from targeted regions of the genome containing predicted sites and functional sites of Oct4/Sox2 regulation. We found that at Pax6 and Nes, which are bivalently poised in stem cells, functional Oct4 and Sox2 sites show high amounts of in vivo nucleosome displacement compared to in vitro. Oct4 and Sox2, which are active, show no significant displacement of in vivo nucleosomes at functional sites, similar to nonfunctional Oct4/Sox2 binding. This study highlights a complex interplay between Oct4 and Sox2 transcription factors and nucleosomes among different target genes, which may result in distinct patterns of stem cell gene regulation.

  4. Differential Nucleosome Occupancies across Oct4-Sox2 Binding Sites in Murine Embryonic Stem Cells.

    Science.gov (United States)

    Sebeson, Amy; Xi, Liqun; Zhang, Quanwei; Sigmund, Audrey; Wang, Ji-Ping; Widom, Jonathan; Wang, Xiaozhong

    2015-01-01

    The binding sequence for any transcription factor can be found millions of times within a genome, yet only a small fraction of these sequences encode functional transcription factor binding sites. One of the reasons for this dichotomy is that many other factors, such as nucleosomes, compete for binding. To study how the competition between nucleosomes and transcription factors helps determine a functional transcription factor site from a predicted transcription factor site, we compared experimentally-generated in vitro nucleosome occupancy with in vivo nucleosome occupancy and transcription factor binding in murine embryonic stem cells. Using a solution hybridization enrichment technique, we generated a high-resolution nucleosome map from targeted regions of the genome containing predicted sites and functional sites of Oct4/Sox2 regulation. We found that at Pax6 and Nes, which are bivalently poised in stem cells, functional Oct4 and Sox2 sites show high amounts of in vivo nucleosome displacement compared to in vitro. Oct4 and Sox2, which are active, show no significant displacement of in vivo nucleosomes at functional sites, similar to nonfunctional Oct4/Sox2 binding. This study highlights a complex interplay between Oct4 and Sox2 transcription factors and nucleosomes among different target genes, which may result in distinct patterns of stem cell gene regulation.

  5. Identification of neomycin B-binding site in T box antiterminator model RNA.

    Science.gov (United States)

    Anupam, Rajaneesh; Denapoli, Leyna; Muchenditsi, Abigael; Hines, Jennifer V

    2008-04-15

    The T box transcription antitermination mechanism regulates the expression of unique genes in many Gram-positive bacteria by responding, in a magnesium-dependent manner, to uncharged cognate tRNA base pairing with an antiterminator RNA element and other regions of the 5'-untranslated region. Model T box antiterminator RNA is known to bind aminoglycosides, ligands that typically bind RNA in divalent metal ion-binding sites. In this study, enzymatic footprinting and spectroscopic assays were used to identify and characterize the binding site of neomycin B to an antiterminator model RNA. Neomycin B binds the antiterminator bulge nucleotides in an electrostatic-dependent manner and displaces 3-4 monovalent cations, indicating that the antiterminator likely contains a divalent metal ion-binding site. Neomycin B facilitates rather than inhibits tRNA binding indicating that bulge-targeted inhibitors that bind the antiterminator via non-electrostatic interactions may be the more optimal candidates for antiterminator-targeted ligand design. PMID:18329274

  6. Differential Modulation of Annexin I Binding Sites on Monocytes and Neutrophils

    Directory of Open Access Journals (Sweden)

    H. S. Euzger

    1999-01-01

    Full Text Available Specific binding sites for the anti-inflammatory protein annexin I have been detected on the surface of human monocytes and polymorphonuclear leukocytes (PMN. These binding sites are proteinaceous in nature and are sensitive to cleavage by the proteolytic enzymes trypsin, collagenase, elastase and cathepsin G. When monocytes and PMN were isolated independently from peripheral blood, only the monocytes exhibited constitutive annexin I binding. However PMN acquired the capacity to bind annexin I following co-culture with monocytes. PMN incubation with sodium azide, but not protease inhibitors, partially blocked this process. A similar increase in annexin I binding capacity was also detected in PMN following adhesion to endothelial monolayers. We propose that a juxtacrine activation rather than a cleavage-mediated transfer is involved in this process. Removal of annexin I binding sites from monocytes with elastase rendered monocytes functionally insensitive to full length annexin I or to the annexin I-derived pharmacophore, peptide Ac2-26, assessed as suppression of the respiratory burst. These data indicate that the annexin I binding site on phagocytic cells may have an important function in the feedback control of the inflammatory response and their loss through cleavage could potentiate such responses.

  7. A Disease-Causing Variant in PCNA Disrupts a Promiscuous Protein Binding Site.

    Science.gov (United States)

    Duffy, Caroline M; Hilbert, Brendan J; Kelch, Brian A

    2016-03-27

    The eukaryotic DNA polymerase sliding clamp, proliferating cell nuclear antigen or PCNA, is a ring-shaped protein complex that surrounds DNA to act as a sliding platform for increasing processivity of cellular replicases and for coordinating various cellular pathways with DNA replication. A single point mutation, Ser228Ile, in the human PCNA gene was recently identified to cause a disease whose symptoms resemble those of DNA damage and repair disorders. The mutation lies near the binding site for most PCNA-interacting proteins. However, the structural consequences of the S228I mutation are unknown. Here, we describe the structure of the disease-causing variant, which reveals a large conformational change that dramatically transforms the binding pocket for PCNA client proteins. We show that the mutation markedly alters the binding energetics for some client proteins, while another, p21(CIP1), is only mildly affected. Structures of the disease variant bound to peptides derived from two PCNA partner proteins reveal that the binding pocket can adjust conformation to accommodate some ligands, indicating that the binding site is dynamic and pliable. Our work has implications for the plasticity of the binding site in PCNA and reveals how a disease mutation selectively alters interactions to a promiscuous binding site that is critical for DNA metabolism.

  8. Syntax compensates for poor binding sites to encode tissue specificity of developmental enhancers.

    Science.gov (United States)

    Farley, Emma K; Olson, Katrina M; Zhang, Wei; Rokhsar, Daniel S; Levine, Michael S

    2016-06-01

    Transcriptional enhancers are short segments of DNA that switch genes on and off in response to a variety of intrinsic and extrinsic signals. Despite the discovery of the first enhancer more than 30 y ago, the relationship between primary DNA sequence and enhancer activity remains obscure. In particular, the importance of "syntax" (the order, orientation, and spacing of binding sites) is unclear. A high-throughput screen identified synthetic notochord enhancers that are activated by the combination of ZicL and ETS transcription factors in Ciona embryos. Manipulation of these enhancers elucidated a "regulatory code" of sequence and syntax features for notochord-specific expression. This code enabled in silico discovery of bona fide notochord enhancers, including those containing low-affinity binding sites that would be excluded by standard motif identification methods. One of the newly identified enhancers maps upstream of the known enhancer that regulates Brachyury (Ci-Bra), a key determinant of notochord specification. This newly identified Ci-Bra shadow enhancer contains binding sites with very low affinity, but optimal syntax, and therefore mediates surprisingly strong expression in the notochord. Weak binding sites are compensated by optimal syntax, whereas enhancers containing high-affinity binding affinities possess suboptimal syntax. We suggest this balance has obscured the importance of regulatory syntax, as noncanonical binding motifs are typically disregarded by enhancer detection methods. As a result, enhancers with low binding affinities but optimal syntax may be a vastly underappreciated feature of the regulatory genome.

  9. Actinomycin D specifically inhibits the interaction between transcription factor Sp1 and its binding site.

    Science.gov (United States)

    Czyz, M; Gniazdowski, M

    1998-01-01

    The mode of action of many anticancer drugs involves DNA interactions. We here examine the ability of actinomycin D to alter the specific binding of transcription factors Spl and NFkappaB to their DNA sequences. Employing an electrophoretic mobility shift assay, it is shown that actinomycin D inhibits complex formation between nuclear proteins present in the extracts from stimulated human umbilical vein endothelial cells and the Sp1-binding site. Actinomycin D is also able to induce disruption of preformed DNA-protein complexes, pointing to the importance of an equilibrium of three components: actinomycin D, protein and DNA for drug action. The effect of actinomycin D is sequence-specific, since no inhibition is observed for interaction of nuclear proteins with the NFkappaB binding site. The results support the view that DNA-binding drugs displaying high sequence-selectivity can exhibit distinct effects on the interaction between DNA and different DNA-binding proteins. PMID:9701497

  10. In vivo labelling in several rat tissues of 'peripheral type' benzodiazepine binding sites

    International Nuclear Information System (INIS)

    'Peripheral type' benzodiazepine binding sites in several rat tissues were labelled by intravenous injection of [3H]PK 11195 and [3H]RO5-4864. Binding was saturable in all tissues studied and regional distribution paralleled the in vitro binding. A similar potency order of displacing compounds was found in vivo and in vitro PK 11195 > PK 11211 > RO5-4864 > diazepam > dipyridamole > clonazepam. These results demonstrate the feasibility of using this technique to examine the effects of pharmacological manipulation on the binding sites in their native state. However, some properties (broader maximum during time course, higher percentage of particulate binding in the brain and independence of temperature) make [3H]PK 11195 the most suitable ligand for this kind of studies. (Auth.)

  11. Effect of cysteamine on cytosolic somatostatin binding sites in rabbit duodenal mucosa

    International Nuclear Information System (INIS)

    Administration of cysteamine in rabbits elicited a rapid depletion of both duodenal mucosa and plasma somatostatin. A significant reduction was observed within 5 min, returning toward control values by 150 min. The depletion of somatostatin was associated with an increase in the binding capacity and a decrease in the affinity of both high- and low-affinity binding sites present in cytosol of duodenal mucosa. Incubation of cytosolic fraction from control rabbits with 1 mM cysteamine did not modify somatostatin binding. Furthermore, addition of cysteamine at the time of binding assay did not affect the integrity of 125I-Tyr11-somatostatin. It is concluded that in vivo administration of cysteamine to rabbits depletes both duodenal mucosa and plasma somatostatin and leads to up-regulation of duodenal somatostatin binding sites

  12. Oligomycin frames a common drug-binding site in the ATP synthase

    Energy Technology Data Exchange (ETDEWEB)

    Symersky, Jindrich; Osowski, Daniel; Walters, D. Eric; Mueller, David M. (Rosalind)

    2015-12-01

    We report the high-resolution (1.9 {angstrom}) crystal structure of oligomycin bound to the subunit c10 ring of the yeast mitochondrial ATP synthase. Oligomycin binds to the surface of the c10 ring making contact with two neighboring molecules at a position that explains the inhibitory effect on ATP synthesis. The carboxyl side chain of Glu59, which is essential for proton translocation, forms an H-bond with oligomycin via a bridging water molecule but is otherwise shielded from the aqueous environment. The remaining contacts between oligomycin and subunit c are primarily hydrophobic. The amino acid residues that form the oligomycin-binding site are 100% conserved between human and yeast but are widely different from those in bacterial homologs, thus explaining the differential sensitivity to oligomycin. Prior genetics studies suggest that the oligomycin-binding site overlaps with the binding site of other antibiotics, including those effective against Mycobacterium tuberculosis, and thereby frames a common 'drug-binding site.' We anticipate that this drug-binding site will serve as an effective target for new antibiotics developed by rational design.

  13. DNA-MATRIX: a tool for constructing transcription factor binding sites Weight matrix

    Directory of Open Access Journals (Sweden)

    Chandra Prakash Singh,

    2009-12-01

    Full Text Available Despite considerable effort to date, DNA transcription factor binding sites prediction in whole genome remains a challenge for the researchers. Currently the genome wide transcription factor binding sites prediction tools required either direct pattern sequence or weight matrix. Although there are known transcription factor binding sites pattern databases and tools for genome level prediction but no tool for weight matrix construction. Considering this, we developed a DNA-MATRIX tool for searching putative transcription factor binding sites in genomic sequences. DNA-MATRIX uses the simple heuristic approach for weight matrix construction, which can be transformed into different formats as per the requirement of researcher’s for further genome wide prediction and therefore provides the possibility to identify the conserved known DNA binding sites in the coregulated genes and also to search for a great variety of different regulatory binding patterns. The user may construct and save specific weight or frequency matrices in different formats derived through user selected set of known motif sequences.

  14. Cooperativity between calmodulin-binding sites in Kv7.2 channels.

    Science.gov (United States)

    Alaimo, Alessandro; Alberdi, Araitz; Gomis-Perez, Carolina; Fernández-Orth, Juncal; Gómez-Posada, Juan Camilo; Areso, Pilar; Villarroel, Alvaro

    2013-01-01

    Among the multiple roles assigned to calmodulin (CaM), controlling the surface expression of Kv7.2 channels by binding to two discontinuous sites is a unique property of this Ca(2+) binding protein. Mutations that interfere with CaM binding or the sequestering of CaM prevent this M-channel component from exiting the endoplasmic reticulum (ER), which reduces M-current density in hippocampal neurons, enhancing excitability and offering a rational mechanism to explain some forms of benign familial neonatal convulsions (BFNC). Previously, we identified a mutation (S511D) that impedes CaM binding while allowing the channel to exit the ER, hinting that CaM binding may not be strictly required for Kv7.2 channel trafficking to the plasma membrane. Alternatively, this interaction with CaM might escape detection and, indeed, we now show that the S511D mutant contains functional CaM-binding sites that are not detected by classical biochemical techniques. Surface expression and function is rescued by CaM, suggesting that free CaM in HEK293 cells is limiting and reinforcing the hypothesis that CaM binding is required for ER exit. Within the CaM-binding domain formed by two sites (helix A and helix B), we show that CaM binds to helix B with higher apparent affinity than helix A, both in the presence and absence of Ca(2+), and that the two sites cooperate. Hence, CaM can bridge two binding domains, anchoring helix A of one subunit to helix B of another subunit, in this way influencing the function of Kv7.2 channels.

  15. DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries

    Directory of Open Access Journals (Sweden)

    Marx Kenneth A

    2006-03-01

    Full Text Available Abstract Background The centromeres in yeast (S. cerevisiae are organized by short DNA sequences (125 bp on each chromosome consisting of 2 conserved elements: CDEI and CDEIII spaced by a CDEII region. CDEI and CDEIII are critical sequence specific protein binding sites necessary for correct centromere formation and following assembly with proteins, are positioned near each other on a specialized nucleosome. Hegemann et al. BioEssays 1993, 15: 451–460 reported single base DNA mutants within the critical CDEI and CDEIII binding sites on the centromere of chromosome 6 and quantitated centromere loss of function, which they measured as loss rates for the different chromosome 6 mutants during cell division. Olson et al. Proc Natl Acad Sci USA 1998, 95: 11163–11168 reported the use of protein-DNA crystallography data to produce a DNA dinucleotide protein deformability energetic scale (PD-scale that describes local DNA deformability by sequence specific binding proteins. We have used the PD-scale to investigate the DNA sequence dependence of the yeast chromosome 6 mutants' loss rate data. Each single base mutant changes 2 PD-scale values at that changed base position relative to the wild type. In this study, we have utilized these mutants to demonstrate a correlation between the change in DNA deformability of the CDEI and CDEIII core sites and the overall experimentally measured chromosome loss rates of the chromosome 6 mutants. Results In the CDE I and CDEIII core binding regions an increase in the magnitude of change in deformability of chromosome 6 single base mutants with respect to the wild type correlates to an increase in the measured chromosome loss rate. These correlations were found to be significant relative to 105 Monte Carlo randomizations of the dinucleotide PD-scale applied to the same calculation. A net loss of deformability also tends to increase the loss rate. Binding site position specific, 4 data-point correlations were also

  16. Repositioning of Tyrosine Kinase Inhibitors as Antagonists of ATP-Binding Cassette Transporters in Anticancer Drug Resistance

    Directory of Open Access Journals (Sweden)

    Yi-Jun Wang

    2014-09-01

    Full Text Available The phenomenon of multidrug resistance (MDR has attenuated the efficacy of anticancer drugs and the possibility of successful cancer chemotherapy. ATP-binding cassette (ABC transporters play an essential role in mediating MDR in cancer cells by increasing efflux of drugs from cancer cells, hence reducing the intracellular accumulation of chemotherapeutic drugs. Interestingly, small-molecule tyrosine kinase inhibitors (TKIs, such as AST1306, lapatinib, linsitinib, masitinib, motesanib, nilotinib, telatinib and WHI-P154, have been found to have the capability to overcome anticancer drug resistance by inhibiting ABC transporters in recent years. This review will focus on some of the latest and clinical developments with ABC transporters, TKIs and anticancer drug resistance.

  17. Modification of the loops in the ligand-binding site turns avidin into a steroid-binding protein

    Directory of Open Access Journals (Sweden)

    Kulomaa Markku S

    2011-06-01

    Full Text Available Abstract Background Engineered proteins, with non-immunoglobulin scaffolds, have become an important alternative to antibodies in many biotechnical and therapeutic applications. When compared to antibodies, tailored proteins may provide advantageous properties such as a smaller size or a more stable structure. Results Avidin is a widely used protein in biomedicine and biotechnology. To tailor the binding properties of avidin, we have designed a sequence-randomized avidin library with mutagenesis focused at the loop area of the binding site. Selection from the generated library led to the isolation of a steroid-binding avidin mutant (sbAvd-1 showing micromolar affinity towards testosterone (Kd ~ 9 μM. Furthermore, a gene library based on the sbAvd-1 gene was created by randomizing the loop area between β-strands 3 and 4. Phage display selection from this library led to the isolation of a steroid-binding protein with significantly decreased biotin binding affinity compared to sbAvd-1. Importantly, differential scanning calorimetry and analytical gel-filtration revealed that the high stability and the tetrameric structure were preserved in these engineered avidins. Conclusions The high stability and structural properties of avidin make it an attractive molecule for the engineering of novel receptors. This methodology may allow the use of avidin as a universal scaffold in the development of novel receptors for small molecules.

  18. Photoaffinity analogues of methotrexate as folate antagonist binding probes. 1. Photoaffinity labeling of murine L1210 dihydrofolate reductase and amino acid sequence of the binding region

    International Nuclear Information System (INIS)

    N/sup α/-(4-Amino-4-deoxy-10-methylpteroyl)-N/sup epsilon/-(4-azido-5-[125I]iodosalicylyl)-L-lysine, a photoaffinity analogue of methotrexate, is only 2-fold less potent than methotrexate in the inhibition of murine L1210 dihydrofolate reductase. Irradiation of the enzyme in the presence of an equimolar concentration of the 125I-labeled analogue ultimately leads to an 8% incorporation of the photoprobe. A 100-fold molar excess of methotrexate essentially blocks this incorporation. Cyanogen bromide digestion of the labeled enzyme, followed by high-pressure liquid chromatography purification of the generated peptides, indicates that greater than 85% of the total radioactivity is incorporated into a single cyanogen bromide peptide. Sequence analysis revealed this peptide to be residues 53-111, with a majority of the radioactivity centered around residues 63-65 (Lys-Asn-Arg). These data demonstrate that the photoaffinity analogue specifically binds to dihydrofolate reductase and covalently modifies the enzyme following irradiation and is therefore a photolabeling agent useful for probing the inhibitor binding domain of the enzyme

  19. Identification of candidate transcription factor binding sites in the cattle genome

    Science.gov (United States)

    A resource that provides candidate transcription factor binding sites does not currently exist for cattle. Such data is necessary, as predicted sites may serve as excellent starting locations for future 'omics studies to develop transcriptional regulation hypotheses. In order to generate this resour...

  20. Regression applied to protein binding site prediction and comparison with classification

    Directory of Open Access Journals (Sweden)

    Gala Jean-Luc

    2009-09-01

    Full Text Available Abstract Background The structural genomics centers provide hundreds of protein structures of unknown function. Therefore, developing methods enabling the determination of a protein function automatically is imperative. The determination of a protein function can be achieved by studying the network of its physical interactions. In this context, identifying a potential binding site between proteins is of primary interest. In the literature, methods for predicting a potential binding site location generally are based on classification tools. The aim of this paper is to show that regression tools are more efficient than classification tools for patches based binding site predictors. For this purpose, we developed a patches based binding site localization method usable with either regression or classification tools. Results We compared predictive performances of regression tools with performances of machine learning classifiers. Using leave-one-out cross-validation, we showed that regression tools provide better predictions than classification ones. Among regression tools, Multilayer Perceptron ranked highest in the quality of predictions. We compared also the predictive performance of our patches based method using Multilayer Perceptron with the performance of three other methods usable through a web server. Our method performed similarly to the other methods. Conclusion Regression is more efficient than classification when applied to our binding site localization method. When it is possible, using regression instead of classification for other existing binding site predictors will probably improve results. Furthermore, the method presented in this work is flexible because the size of the predicted binding site is adjustable. This adaptability is useful when either false positive or negative rates have to be limited.

  1. Endogenously generated plasmin at the vascular wall injury site amplifies lysine binding site-dependent plasminogen accumulation in microthrombi.

    Directory of Open Access Journals (Sweden)

    Tomasz Brzoska

    Full Text Available The fibrinolytic system plays a pivotal role in the regulation of hemostasis; however, it remains unclear how and when the system is triggered to induce thrombolysis. Using intra-vital confocal fluorescence microscopy, we investigated the process of plasminogen binding to laser-induced platelet-rich microthrombi generated in the mesenteric vein of transgenic mice expressing green fluorescent protein (GFP. The accumulation of GFP-expressing platelets as well as exogenously infused Alexa Fluor 568-labeled Glu-plasminogen (Glu-plg on the injured vessel wall was assessed by measuring the increase in the corresponding fluorescence intensities. Glu-plg accumulated in a time-dependent manner in the center of the microthrombus, where phosphatidylserine is exposed on platelet surfaces and fibrin formation takes place. The rates of binding of Glu-plg in the presence of ε-aminocaproic acid and carboxypeptidase B, as well as the rates of binding of mini-plasminogen lacking kringle domains 1-4 and lysine binding sites, were significantly lower than that of Glu-plg alone, suggesting that the binding was dependent on lysine binding sites. Furthermore, aprotinin significantly suppressed the accumulation of Glu-plg, suggesting that endogenously generated plasmin activity is a prerequisite for the accumulation. In spite of the endogenous generation of plasmin and accumulation of Glu-plg in the center of microthrombi, the microthrombi did not change in size during the 2-hour observation period. When human tissue plasminogen activator was administered intravenously, Glu-plg further accumulated and the microthrombi were lysed. Glu-plg appeared to accumulate in the center of microthrombi in the early phase of microthrombus formation, and plasmin activity and lysine binding sites were required for this accumulation.

  2. Activation of phenylalanine hydroxylase by phenylalanine does not require binding in the active site.

    Science.gov (United States)

    Roberts, Kenneth M; Khan, Crystal A; Hinck, Cynthia S; Fitzpatrick, Paul F

    2014-12-16

    Phenylalanine hydroxylase (PheH), a liver enzyme that catalyzes the hydroxylation of excess phenylalanine in the diet to tyrosine, is activated by phenylalanine. The lack of activity at low levels of phenylalanine has been attributed to the N-terminus of the protein's regulatory domain acting as an inhibitory peptide by blocking substrate access to the active site. The location of the site at which phenylalanine binds to activate the enzyme is unknown, and both the active site in the catalytic domain and a separate site in the N-terminal regulatory domain have been proposed. Binding of catecholamines to the active-site iron was used to probe the accessibility of the active site. Removal of the regulatory domain increases the rate constants for association of several catecholamines with the wild-type enzyme by ∼2-fold. Binding of phenylalanine in the active site is effectively abolished by mutating the active-site residue Arg270 to lysine. The k(cat)/K(phe) value is down 10⁴ for the mutant enzyme, and the K(m) value for phenylalanine for the mutant enzyme is >0.5 M. Incubation of the R270K enzyme with phenylalanine also results in a 2-fold increase in the rate constants for catecholamine binding. The change in the tryptophan fluorescence emission spectrum seen in the wild-type enzyme upon activation by phenylalanine is also seen with the R270K mutant enzyme in the presence of phenylalanine. Both results establish that activation of PheH by phenylalanine does not require binding of the amino acid in the active site. This is consistent with a separate allosteric site, likely in the regulatory domain.

  3. Impact of disruption of secondary binding site S2 on dopamine transporter function.

    Science.gov (United States)

    Zhen, Juan; Reith, Maarten E A

    2016-09-01

    The structures of the leucine transporter, drosophila dopamine transporter, and human serotonin transporter show a secondary binding site (designated S2 ) for drugs and substrate in the extracellular vestibule toward the membrane exterior in relation to the primary substrate recognition site (S1 ). The present experiments are aimed at disrupting S2 by mutating Asp476 and Ile159 to Ala. Both mutants displayed a profound decrease in [(3) H]DA uptake compared with wild-type associated with a reduced turnover rate kcat . This was not caused by a conformational bias as the mutants responded to Zn(2+) (10 μM) similarly as WT. The dopamine transporters with either the D476A or I159A mutation both displayed a higher Ki for dopamine for the inhibition of [3H](-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane binding than did the WT transporter, in accordance with an allosteric interaction between the S1 and S2 sites. The results provide evidence in favor of a general applicability of the two-site allosteric model of the Javitch/Weinstein group from LeuT to dopamine transporter and possibly other monoamine transporters. X-ray structures of transporters closely related to the dopamine (DA) transporter show a secondary binding site S2 in the extracellular vestibule proximal to the primary binding site S1 which is closely linked to one of the Na(+) binding sites. This work examines the relationship between S2 and S1 sites. We found that S2 site impairment severely reduced DA transport and allosterically reduced S1 site affinity for the cocaine analog [(3) H]CFT. Our results are the first to lend direct support for the application of the two-site allosteric model, advanced for bacterial LeuT, to the human DA transporter. The model states that, after binding of the first DA molecule (DA1 ) to the primary S1 site (along with Na(+) ), binding of a second DA (DA2 ) to the S2 site triggers, through an allosteric interaction, the release of DA1 and Na(+) into the cytoplasm. PMID

  4. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    Energy Technology Data Exchange (ETDEWEB)

    Nye, J.S.

    1988-01-01

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.

  5. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    International Nuclear Information System (INIS)

    The mechanism by which delta9 tetrahydrocannabinol (delta9THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5'-Trimethylammonium-delta8THC (TMA) is a positively charged analog of delta-8THC modified on the 5' carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of [3H]-5'-trimethylammonium-delta-8THC ([3H]TMA) to rat neuronal membranes. [3H]TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of [3H]TMA binding activity of approximately 60,000 daltons apparent molecular weight

  6. Putative hAPN receptor binding sites in SARS_CoV spike protein

    Institute of Scientific and Technical Information of China (English)

    YUXiao-Jing; LUOCheng; LinJian-Cheng; HAOPei; HEYou-Yu; GUOZong-Ming; QINLei; SUJiong; LIUBo-Shu; HUANGYin; NANPeng; LIChuan-Song; XIONGBin; LUOXiao-Min; ZHAOGuo-Ping; PEIGang; CHENKai-Xian; SHENXu; SHENJian-Hua; ZOUJian-Ping; HEWei-Zhong; SHITie-Liu; ZHONGYang; JIANGHua-Liang; LIYi-Xue

    2003-01-01

    AIM:To obtain the information of ligand-receptor binding between thd S protein of SARS_CoV and CD13, identify the possible interacting domains or motifs related to binding sites, and provide clues for studying the functions of SARS proteins and designing anti-SARS drugs and vaccines. METHODS: On the basis of comparative genomics, the homology search, phylogenetic analyses, and multi-sequence alignment were used to predict CD13 related interacting domains and binding sites sites in the S protein of SARS_CoV. Molecular modeling and docking simulation methods were employed to address the interaction feature between CD13 and S protein of SARS_CoV in validating the bioinformatics predictions. RESULTS:Possible binding sites in the SARS_CoV S protein to CD13 have been mapped out by using bioinformatics analysis tools. The binding for one protein-protein interaction pair (D757-R761 motif of the SARS_CoV S protein to P585-A653 domain of CD13) has been simulated by molecular modeling and docking simulation methods. CONCLUSION:CD13 may be a possible receptor of the SARS_CoV S protein which may be associated with the SARS infection. This study also provides a possible strategy for mapping the possible binding receptors of the proteins in a genome.

  7. Cloning and characterisation of a nuclear, site specific ssDNA binding protein.

    Science.gov (United States)

    Smidt, M P; Russchen, B; Snippe, L; Wijnholds, J; Ab, G

    1995-07-11

    Estradiol inducible, liver-specific expression of the apoVLDL II gene is mediated through the estrogen receptor and a variety of other DNA-binding proteins. In the present study we report the cloning and characterisation of a single-strand DNA binding protein that interacts with the lower strand of a complex regulatory site, which includes the major estrogen responsive element and a site that resembles the rat albumin site D (apoVLDL II site D). Based on its binding specificity determined with electro-mobility shift assays, the protein is named single-strand D-box binding factor (ssDBF). Analysis of the deduced 302 amino acid sequence revealed that the protein belongs to the heteronuclear ribonucleoprotein A/B family (hnRNP A/B) and resembles other known eukaryotic single-strand DNA binding proteins. Transient transfection experiments in a chicken liver cell-line showed that the protein represses estrogen-induced transcription. A protein with similar binding characteristics is present in liver nuclear extract. The relevance of the occurrence of this protein to the expression of the apoVLDL II gene is discussed. PMID:7630716

  8. A high affinity binding site for cytokinin to a particulate fraction in carrot suspension cells

    International Nuclear Information System (INIS)

    Carrot suspension cells contain one class of high affinity binding sites for cytokinin in an 80,000 X g particulate fraction. Binding of [8-14C] - benzylaminopurine (BA) to this fraction assayed by a sedimentation method was found to be optimal at ph 6.0 and thermolabile. Specific binding was proved in competition experiments in which labelled BA was displaced by increasing concentrations of unlabelled BA. Scatchard plots of these results displayed a dissociation constant (Ksub(d)) of 33+- 6 n.M. The number of binding sites found was 1,100+-120 fmol g-1 fresh weight which is equivalent to a frequency of 23,000 binding sites per cell. The specificity of the binding sites to cytokinins and their analogues followed the sequence BA with highest affinity, kinetin, zeatin, iP and adenine. The cytokinin ribosides generally had a lower affinity than their cytokinin bases, and the affinity decreased in the order [9 R] BA, [9 R] iP, [i R]Z, [9 R] A. (author)

  9. Interaction of Palmitic Acid with Metoprolol Succinate at the Binding Sites of Bovine Serum Albumin

    Directory of Open Access Journals (Sweden)

    Mashiur Rahman

    2014-12-01

    Full Text Available Purpose: The aim of this study was to characterize the binding profile as well as to notify the interaction of palmitic acid with metoprolol succinate at its binding site on albumin. Methods: The binding of metoprolol succinate to bovine serum albumin (BSA was studied by equilibrium dialysis method (ED at 27°C and pH 7.4, in order to have an insight in the binding chemistry of the drug to BSA in presence and absence of palmitic acid. The study was carried out using ranitidine as site-1 and diazepam as site-2 specific probe. Results: Different analysis of binding of metoprolol succinate to bovine serum albumin suggested two sets of association constants: high affinity association constant (k1 = 11.0 x 105 M-1 with low capacity (n1 = 2 and low affinity association (k2 = 4.0×105 M-1 constant with high capacity (n2 = 8 at pH 7.4 and 27°C. During concurrent administration of palmitic acid and metoprolol succinate in presence or absence of ranitidine or diazepam, it was found that palmitic acid displaced metoprolol succinate from its binding site on BSA resulting reduced binding of metoprolol succinate to BSA. The increment in free fraction of metoprolol succinate was from 26.27% to 55.08% upon the addition of increased concentration of palmitic acid at a concentration of 0×10-5 M to 16×10-5 M. In presence of ranitidine and diazepam, palmitic acid further increases the free fraction of metoprolol succinate from 33.05% to 66.95% and 40.68% to 72.88%, respectively. Conclusion: This data provided the evidence of interaction at higher concentration of palmitic acid at the binding sites on BSA, which might change the pharmacokinetic properties of metoprolol succinate.

  10. Transcriptional stimulation via SC site of Bombyx sericin-1 gene through an interaction with a DNA binding protein SGF-3.

    OpenAIRE

    Matsuno, K.; Takiya, S; Hui, C C; Suzuki, T.; Fukuta, M.; Ueno, K.; Suzuki, Y

    1990-01-01

    Three protein binding sites have been identified in the upstream region of the sericin-1 gene. Two of them, SA and SC sites, have been known as putative cis-acting elements. Using synthetic oligonucleotides of these binding sites, it was found that silk gland factor-1 (SGF-1) binds to the SA site, and silk gland factor-3 (SGF-3) binds to the SC site but not to a mutated SC site, SCM. Tissue distribution of the two factors was different. SGF-3 is present abundantly in the middle silk gland (MS...

  11. A nuclear magnetic resonance-based structural rationale for contrasting stoichiometry and ligand binding site(s) in fatty acid-binding proteins.

    Science.gov (United States)

    He, Yan; Estephan, Rima; Yang, Xiaomin; Vela, Adriana; Wang, Hsin; Bernard, Cédric; Stark, Ruth E

    2011-03-01

    Liver fatty acid-binding protein (LFABP) is a 14 kDa cytosolic polypeptide, differing from other family members in the number of ligand binding sites, the diversity of bound ligands, and the transfer of fatty acid(s) to membranes primarily via aqueous diffusion rather than direct collisional interactions. Distinct two-dimensional (1)H-(15)N nuclear magnetic resonance (NMR) signals indicative of slowly exchanging LFABP assemblies formed during stepwise ligand titration were exploited, without determining the protein-ligand complex structures, to yield the stoichiometries for the bound ligands, their locations within the protein binding cavity, the sequence of ligand occupation, and the corresponding protein structural accommodations. Chemical shifts were monitored for wild-type LFABP and an R122L/S124A mutant in which electrostatic interactions viewed as being essential to fatty acid binding were removed. For wild-type LFABP, the results compared favorably with the data for previous tertiary structures of oleate-bound wild-type LFABP in crystals and in solution: there are two oleates, one U-shaped ligand that positions the long hydrophobic chain deep within the cavity and another extended structure with the hydrophobic chain facing the cavity and the carboxylate group lying close to the protein surface. The NMR titration validated a prior hypothesis that the first oleate to enter the cavity occupies the internal protein site. In contrast, (1)H and (15)N chemical shift changes supported only one liganded oleate for R122L/S124A LFABP, at an intermediate location within the protein cavity. A rationale based on protein sequence and electrostatics was developed to explain the stoichiometry and binding site trends for LFABPs and to put these findings into context within the larger protein family. PMID:21226535

  12. In vivo brain dopaminergic receptor site mapping using /sup 75/Se-labeled pergolide analogs: the effects of various dopamine receptor agonists and antagonists

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, A.

    1986-01-01

    Perogolide mesylate is a new synthetic ergoline derivative which is reported to possess agonistic activity at central dopamine receptor sites in the brain. The authors have synthesized a (/sup 75/Se)-radiolabeled pergolide mesylate derivative, (/sup 75/Se)-pergolide tartrate, which, after i.v. administration to mature male rats, showed a time course differentiation in the uptake of this radiolabeled compound in isolated peripheral and central (brain) tissues that are known to be rich in dopamine receptor sites. Further studies were conducted in which the animals were preexposed to the dopamine receptor agonist SKF-38393, as well as the dopamine receptor antagonists (+)-butaclamol, (-)-butaclamol, (+/-)-butaclamol and (-)-chloroethylnorapomorphine, to substantiate the specific peripheral and central localization patterns of (/sup 75/Se)-pergolide tartrate. Further investigations were also conducted in which the animals received an i.v. administration of N-isopropyl-l-123-p-iodoamphetamine ((/sup 123/I)-iodoamphetamine). However, (/sup 123/I)-iodoamphetamine did not demonstrate a specific affinity for any type of receptor site in the brain. These investigations further substantiated the fact that (/sup 75/Se)-pergolide tartrate does cross the blood-brain barrier is quickly localized at specific dopamine receptor sites in the intact rat brain and that this localization pattern can be affected by preexposure to different dopamine receptor agonists and antagonists. Therefore, these investigations provided further evidence that (/sup 75/Se)-pergolide tartrate and other radiolabeled ergoline analogs might be useful as brain dopamine receptor localization radiopharmaceuticals.

  13. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    International Nuclear Information System (INIS)

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, 3H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a 3H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of 3H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A4, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each

  14. Evolving Transcription Factor Binding Site Models From Protein Binding Microarray Data

    KAUST Repository

    Wong, Ka-Chun

    2016-02-02

    Protein binding microarray (PBM) is a high-throughput platform that can measure the DNA binding preference of a protein in a comprehensive and unbiased manner. In this paper, we describe the PBM motif model building problem. We apply several evolutionary computation methods and compare their performance with the interior point method, demonstrating their performance advantages. In addition, given the PBM domain knowledge, we propose and describe a novel method called kmerGA which makes domain-specific assumptions to exploit PBM data properties to build more accurate models than the other models built. The effectiveness and robustness of kmerGA is supported by comprehensive performance benchmarking on more than 200 datasets, time complexity analysis, convergence analysis, parameter analysis, and case studies. To demonstrate its utility further, kmerGA is applied to two real world applications: 1) PBM rotation testing and 2) ChIP-Seq peak sequence prediction. The results support the biological relevance of the models learned by kmerGA, and thus its real world applicability.

  15. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1.

    Science.gov (United States)

    Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong; Cho, Sung-Hwan; Xu, Dong; Stacey, Gary

    2016-01-01

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecular interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. The in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues. PMID:27583834

  16. Molecular mechanism of AMD3100 antagonism in the CXCR4 receptor: transfer of binding site to the CXCR3 receptor

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Gerlach, Lars-Ole; Jakobsen, Janus S;

    2004-01-01

    , respectively. Metal ion binding in the cyclam rings of AMD3100 increased its dependence on Asp(262) and provided a tighter molecular map of the binding site, where borderline mutational hits became clear hits for the Zn(II)-loaded analog. The proposed binding site for AMD3100 was confirmed by a gradual build...

  17. The Adenovirus Type 3 Dodecahedron's RGD Loop Comprises an HSPG Binding Site That Influences Integrin Binding

    Directory of Open Access Journals (Sweden)

    E. Gout

    2010-01-01

    Full Text Available Human type 3 adenovirus dodecahedron (a virus like particle made of twelve penton bases features the ability to enter cells through Heparan Sulphate Proteoglycans (HSPGs and integrins interaction and is used as a versatile vector to deliver DNA or proteins. Cryo-EM reconstruction of the pseudoviral particle with Heparan Sulphate (HS oligosaccharide shows an extradensity on the RGD loop. A set of mutants was designed to study the respective roles of the RGD sequence (RGE mutant and of a basic sequence located just downstream. Results showed that the RGE mutant binding to the HS deficient CHO-2241 cells was abolished and unexpectedly, mutation of the basic sequence (KQKR to AQAS dramatically decreased integrin recognition by the viral pseudoparticle. This basic sequence is thus involved in integrin docking, showing a close interplay between HSPGs and integrin receptors.

  18. Functional identification of catalytic metal ion binding sites within RNA.

    Directory of Open Access Journals (Sweden)

    James L Hougland

    2005-09-01

    Full Text Available The viability of living systems depends inextricably on enzymes that catalyze phosphoryl transfer reactions. For many enzymes in this class, including several ribozymes, divalent metal ions serve as obligate cofactors. Understanding how metal ions mediate catalysis requires elucidation of metal ion interactions with both the enzyme and the substrate(s. In the Tetrahymena group I intron, previous work using atomic mutagenesis and quantitative analysis of metal ion rescue behavior identified three metal ions (MA, MB, and MC that make five interactions with the ribozyme substrates in the reaction's transition state. Here, we combine substrate atomic mutagenesis with site-specific phosphorothioate substitutions in the ribozyme backbone to develop a powerful, general strategy for defining the ligands of catalytic metal ions within RNA. In applying this strategy to the Tetrahymena group I intron, we have identified the pro-SP phosphoryl oxygen at nucleotide C262 as a ribozyme ligand for MC. Our findings establish a direct connection between the ribozyme core and the functionally defined model of the chemical transition state, thereby extending the known set of transition-state interactions and providing information critical for the application of the recent group I intron crystallographic structures to the understanding of catalysis.

  19. Outer membrane protein binding sites of complement component 3 during opsonization of Haemophilus influenzae.

    OpenAIRE

    Hetherington, S V; Patrick, C C; Hansen, E J

    1993-01-01

    Complement component 3 (C3) binding to Haemophilus influenzae type b (Hib) is an important step in host defense against invasive disease, but the details of this process remain poorly understood. We have shown that the P1 and P2 outer membrane proteins (OMPs) serve as binding sites for C3 on serum-opsonized Hib. Whole-cell lysates of opsonized Hib were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the resolved proteins were transferred to nitrocellulose. Immunobl...

  20. A Novel Alignment-Free Method for Comparing Transcription Factor Binding Site Motifs

    OpenAIRE

    Minli Xu; Zhengchang Su

    2010-01-01

    BACKGROUND: Transcription factor binding site (TFBS) motifs can be accurately represented by position frequency matrices (PFM) or other equivalent forms. We often need to compare TFBS motifs using their PFMs in order to search for similar motifs in a motif database, or cluster motifs according to their binding preference. The majority of current methods for motif comparison involve a similarity metric for column-to-column comparison and a method to find the optimal position alignment between ...

  1. Zinc-induced oligomerization of zinc α2 glycoprotein reveals multiple fatty acid-binding sites.

    Science.gov (United States)

    Zahid, Henna; Miah, Layeque; Lau, Andy M; Brochard, Lea; Hati, Debolina; Bui, Tam T T; Drake, Alex F; Gor, Jayesh; Perkins, Stephen J; McDermott, Lindsay C

    2016-01-01

    Zinc α2 glycoprotein (ZAG) is an adipokine with a class I MHC protein fold and is associated with obesity and diabetes. Although its intrinsic ligand remains unknown, ZAG binds the dansylated C11 fatty acid 11-(dansylamino)undecanoic acid (DAUDA) in the groove between the α1 and α2 domains. The surface of ZAG has approximately 15 weak zinc-binding sites deemed responsible for precipitation from human plasma. In the present study the functional significance of these metal sites was investigated. Analytical ultracentrifugation (AUC) and CD showed that zinc, but not other divalent metals, causes ZAG to oligomerize in solution. Thus ZAG dimers and trimers were observed in the presence of 1 and 2 mM zinc. Molecular modelling of X-ray scattering curves and sedimentation coefficients indicated a progressive stacking of ZAG monomers, suggesting that the ZAG groove may be occluded in these. Using fluorescence-detected sedimentation velocity, these ZAG-zinc oligomers were again observed in the presence of the fluorescent boron dipyrromethene fatty acid C16-BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-3-hexadecanoic acid). Fluorescence spectroscopy confirmed that ZAG binds C16-BODIPY. ZAG binding to C16-BODIPY, but not to DAUDA, was reduced by increased zinc concentrations. We conclude that the lipid-binding groove in ZAG contains at least two distinct fatty acid-binding sites for DAUDA and C16-BODIPY, similar to the multiple lipid binding seen in the structurally related immune protein CD1c. In addition, because high concentrations of zinc occur in the pancreas, the perturbation of these multiple lipid-binding sites by zinc may be significant in Type 2 diabetes where dysregulation of ZAG and zinc homoeostasis occurs.

  2. Novel Phosphotidylinositol 4,5-Bisphosphate Binding Sites on Focal Adhesion Kinase

    OpenAIRE

    Jun Feng; Blake Mertz

    2015-01-01

    Focal adhesion kinase (FAK) is a protein tyrosine kinase that is ubiquitously expressed, recruited to focal adhesions, and engages in a variety of cellular signaling pathways. Diverse cellular responses, such as cell migration, proliferation, and survival, are regulated by FAK. Prior to activation, FAK adopts an autoinhibited conformation in which the FERM domain binds the kinase domain, blocking access to the activation loop and substrate binding site. Activation of FAK occurs through confor...

  3. Structural proof of a dimeric positive modulator bridging two identical AMPA receptor-binding sites

    DEFF Research Database (Denmark)

    Kaae, Birgitte Høiriis; Harpsøe, Kasper; Kastrup, Jette Sandholm Jensen;

    2007-01-01

    have dramatically increased potencies, more than three orders of magnitude higher than the corresponding monomers. Dimer (R,R)-2a was cocrystallized with the GluR2-S1S2J construct, and an X-ray crystallographic analysis showed (R,R)-2a to bridge two identical binding pockets on two neighboring GluR2...... subunits. Thus, this is biostructural evidence of a homomeric dimer bridging two identical receptor-binding sites....

  4. Molecular docking characterizes substrate-binding sites and efflux modulation mechanisms within P-glycoprotein.

    Science.gov (United States)

    Ferreira, Ricardo J; Ferreira, Maria-José U; dos Santos, Daniel J V A

    2013-07-22

    P-Glycoprotein (Pgp) is one of the best characterized ABC transporters, often involved in the multidrug-resistance phenotype overexpressed by several cancer cell lines. Experimental studies contributed to important knowledge concerning substrate polyspecificity, efflux mechanism, and drug-binding sites. This information is, however, scattered through different perspectives, not existing a unifying model for the knowledge available for this transporter. Using a previously refined structure of murine Pgp, three putative drug-binding sites were hereby characterized by means of molecular docking. The modulator site (M-site) is characterized by cross interactions between both Pgp halves herein defined for the first time, having an important role in impairing conformational changes leading to substrate efflux. Two other binding sites, located next to the inner leaflet of the lipid bilayer, were identified as the substrate-binding H and R sites by matching docking and experimental results. A new classification model with the ability to discriminate substrates from modulators is also proposed, integrating a vast number of theoretical and experimental data. PMID:23802684

  5. Wnts grasp the WIF domain of Wnt Inhibitory Factor 1 at two distinct binding sites.

    Science.gov (United States)

    Kerekes, Krisztina; Bányai, László; Patthy, László

    2015-10-01

    Wnts have a structure resembling a hand with "thumb" and "index" fingers that grasp the cysteine rich domains of Frizzled receptors at two distinct binding sites. In the present work we show that the WIF domain of Wnt Inhibitory Factor 1 is also bound by Wnts at two sites. Using C-terminal domains of Wnt5a and Wnt7a and arginine-scanning mutagenesis of the WIF domain we demonstrate that, whereas the N-terminal, lipid-modified "thumb" of Wnts interacts with the alkyl-binding site of the WIF domain, the C-terminal domain of Wnts (Wnt-CTD) binds to a surface on the opposite side of the WIF domain. PMID:26342861

  6. GHB receptor targets in the CNS: Focus on high-affinity binding sites

    DEFF Research Database (Denmark)

    Bay, Tina; Eghorn, Laura Friis; Klein, Anders Bue;

    2014-01-01

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects...... of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation...... of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB...

  7. Site-Specific Oligonucleotide Binding Represses Transcription of the Human c-myc Gene in vitro

    Science.gov (United States)

    Cooney, Michael; Czernuszewicz, Graznya; Postel, Edith H.; Flint, S. Jane; Hogan, Michael E.

    1988-07-01

    A 27-base-long DNA oligonucleotide was designed that binds to duplex DNA at a single site within the 5' end of the human c-myc gene, 115 base pairs upstream from the transcription origin P1. On the basis of the physical properties of its bound complex, it was concluded that the oligonucleotide forms a colinear triplex with the duplex binding site. By means of an in vitro assay system, it was possible to show a correlation between triplex formation at -115 base pairs and repression of c-myc transcription. The possibility is discussed that triplex formation (site-specific RNA binding to a DNA duplex) could serve as the basis for an alternative program of gene control in vivo.

  8. Testosterone does not influence opiate binding sites in the male rat brain.

    Science.gov (United States)

    Cicero, T J; Newman, K S; Meyer, E R

    1983-09-26

    It has been reported previously that castration produces testosterone-reversible increases in the density of 3H-naltrexone binding sites in the male rat brain. Unfortunately, we were unable to replicate these observations in a comprehensive series of studies. Specifically, we found that castration failed to produce changes in the Kd or Bmax of opiate binding sites in whole male rat brain, or in the hypothalamus, utilizing 3H-dihydromorphine (a mu receptor ligand), 3H-D-alanine, D-leucine enkephalin (delta) or 3H-naltrexone (ubiquitous). Furthermore, we found that the relative proportion of mu and delta binding sites in brain was unchanged by castration. The reasons for the discrepancy between the present results and those previously reported are unclear, but it appears that the provocative hypothesis that testosterone influences opioid receptors in brain must be carefully reevaluated. PMID:6310295

  9. Asap: a framework for over-representation statistics for transcription factor binding sites

    DEFF Research Database (Denmark)

    Marstrand, Troels T; Frellsen, Jes; Moltke, Ida;

    2008-01-01

    BACKGROUND: In studies of gene regulation the efficient computational detection of over-represented transcription factor binding sites is an increasingly important aspect. Several published methods can be used for testing whether a set of hypothesised co-regulated genes share a common regulatory...... regime based on the occurrence of the modelled transcription factor binding sites. However there is little or no information available for guiding the end users choice of method. Furthermore it would be necessary to obtain several different software programs from various sources to make a well......-founded choice. METHODOLOGY: We introduce a software package, Asap, for fast searching with position weight matrices that include several standard methods for assessing over-representation. We have compared the ability of these methods to detect over-represented transcription factor binding sites in artificial...

  10. Ivermectin binding sites in human and invertebrate Cys-loop receptors.

    Science.gov (United States)

    Lynagh, Timothy; Lynch, Joseph W

    2012-08-01

    Ivermectin is a gold standard antiparasitic drug that has been used successfully to treat billions of humans, livestock and pets. Until recently, the binding site on its Cys-loop receptor target had been a mystery. Recent protein crystal structures, site-directed mutagenesis data and molecular modelling now explain how ivermectin binds to these receptors and reveal why it is selective for invertebrate members of the Cys-loop receptor family. Combining this with emerging genomic information, we are now in a position to predict species sensitivity to ivermectin and better understand the molecular basis of ivermectin resistance. An understanding of the molecular structure of the ivermectin binding site, which is formed at the interface of two adjacent subunits in the transmembrane domain of the receptor, should also aid the development of new lead compounds both as anthelmintics and as therapies for a wide variety of human neurological disorders. PMID:22677714

  11. Determination of the binding sites for oxaliplatin on insulin using mass spectrometry-based approaches

    DEFF Research Database (Denmark)

    Møller, Charlotte; Sprenger, Richard R.; Stürup, Stefan;

    2011-01-01

    . Identification of several of the binding sites was obtained using matrix-assisted laser desorption/ionization (MALDI)-ToF-ToF-MS and liquid chromatography-nESI-Q-ToF-MS. Upon comparing the top-down and bottom-up approaches, the suitability of the bottom-up approach for determining binding sites was questioned...... and fragmentation of the intact insulin-oxaliplatin adduct using nano-electrospray ionisation quadrupole time-of-flight mass spectrometry (nESI-Q-ToF-MS), the major binding site was assigned to histidine5 on the insulin B chain. In order to simplify the interpretation of the mass spectrum, the disulphide bridges...

  12. Interaction of triprolidine hydrochloride with serum albumins: thermodynamic and binding characteristics, and influence of site probes.

    Science.gov (United States)

    Sandhya, B; Hegde, Ashwini H; Kalanur, Shankara S; Katrahalli, Umesha; Seetharamappa, J

    2011-04-01

    The interaction between triprolidine hydrochloride (TRP) to serum albumins viz. bovine serum albumin (BSA) and human serum albumin (HSA) has been studied by spectroscopic methods. The experimental results revealed the static quenching mechanism in the interaction of TRP with protein. The number of binding sites close to unity for both TRP-BSA and TRP-HSA indicated the presence of single class of binding site for the drug in protein. The binding constant values of TRP-BSA and TRP-HSA were observed to be 4.75 ± 0.018 × 10(3) and 2.42 ± 0.024 × 10(4)M(-1) at 294 K, respectively. Thermodynamic parameters indicated that the hydrogen bond and van der Waals forces played the major role in the binding of TRP to proteins. The distance of separation between the serum albumin and TRP was obtained from the Förster's theory of non-radioactive energy transfer. The metal ions viz., K(+), Ca(2+), Co(2+), Cu(2+), Ni(2+), Mn(2+) and Zn(2+) were found to influence the binding of the drug to protein. Displacement experiments indicated the binding of TRP to Sudlow's site I on both BSA and HSA. The CD, 3D fluorescence spectra and FT-IR spectral results revealed the changes in the secondary structure of protein upon interaction with TRP.

  13. Receptor binding site-deleted foot-and-mouth disease (FMD) virus protects cattle from FMD.

    OpenAIRE

    McKenna, T S; Lubroth, J; Rieder, E; Baxt, B; Mason, P W

    1995-01-01

    Binding of foot-and-mouth disease virus (FMDV) to cells requires an arginine-glycine-aspartic acid (RGD) sequence in the capsid protein VP1. We have genetically engineered an FMDV in which these three amino acids have been deleted, producing a virus particle which is unable to bind to cells. Cattle vaccinated with these receptor binding site-deleted virions were protected from disease when challenged with a virulent virus, demonstrating that these RGD-deleted viruses could serve as the basis ...

  14. Sodium-dependent reorganization of the sugar-binding site of SGLT1

    DEFF Research Database (Denmark)

    Hirayama, Bruce A; Loo, Donald D F; Díez-Sampedro, Ana;

    2007-01-01

    The sodium-dependent glucose cotransporter SGLT1 undergoes a series of voltage- and ligand-induced conformational changes that underlie the cotransport mechanism. In this study we describe how the binding of external Na changes the conformation of the sugar-binding domain, exposing residues that...... involved in transport. Arranging the four TMHs to account for Na-dependent accessibility and potential for sugar interaction allows us to propose a testable model for the SGLT1 sugar binding site. Udgivelsesdato: 2007-Nov-20...

  15. Rational design of a protein that binds integrin αvβ3 outside the ligand binding site

    Science.gov (United States)

    Turaga, Ravi Chakra; Yin, Lu; Yang, Jenny J.; Lee, Hsiauwei; Ivanov, Ivaylo; Yan, Chunli; Yang, Hua; Grossniklaus, Hans E.; Wang, Siming; Ma, Cheng; Sun, Li; Liu, Zhi-Ren

    2016-01-01

    Integrin αvβ3 expression is altered in various diseases and has been proposed as a drug target. Here we use a rational design approach to develop a therapeutic protein, which we call ProAgio, that binds to integrin αvβ3 outside the classical ligand-binding site. We show ProAgio induces apoptosis of integrin αvβ3-expressing cells by recruiting and activating caspase 8 to the cytoplasmic domain of integrin αvβ3. ProAgio also has anti-angiogenic activity and strongly inhibits growth of tumour xenografts, but does not affect the established vasculature. Toxicity analyses demonstrate that ProAgio is not toxic to mice. Our study reports a new integrin-targeting agent with a unique mechanism of action, and provides a template for the development of integrin-targeting therapeutics. PMID:27241473

  16. Rational design of a protein that binds integrin αvβ3 outside the ligand binding site.

    Science.gov (United States)

    Turaga, Ravi Chakra; Yin, Lu; Yang, Jenny J; Lee, Hsiauwei; Ivanov, Ivaylo; Yan, Chunli; Yang, Hua; Grossniklaus, Hans E; Wang, Siming; Ma, Cheng; Sun, Li; Liu, Zhi-Ren

    2016-05-31

    Integrin αvβ3 expression is altered in various diseases and has been proposed as a drug target. Here we use a rational design approach to develop a therapeutic protein, which we call ProAgio, that binds to integrin αvβ3 outside the classical ligand-binding site. We show ProAgio induces apoptosis of integrin αvβ3-expressing cells by recruiting and activating caspase 8 to the cytoplasmic domain of integrin αvβ3. ProAgio also has anti-angiogenic activity and strongly inhibits growth of tumour xenografts, but does not affect the established vasculature. Toxicity analyses demonstrate that ProAgio is not toxic to mice. Our study reports a new integrin-targeting agent with a unique mechanism of action, and provides a template for the development of integrin-targeting therapeutics.

  17. Disruption of NAD~+ binding site in glyceraldehyde 3-phosphate dehydrogenase affects its intranuclear interactions

    Institute of Scientific and Technical Information of China (English)

    Manali; Phadke; Natalia; Krynetskaia; Anurag; Mishra; Carlos; Barrero; Salim; Merali; Scott; A; Gothe; Evgeny; Krynetskiy

    2015-01-01

    AIM:To characterize phosphorylation of human glyceraldehyde 3-phosphate dehydrogenase(GAPDH),and mobility of GAPDH in cancer cells treated with chemotherapeutic agents. METHODS:We used proteomics analysis to detect and characterize phosphorylation sites within human GAPDH. Site-specific mutagenesis and alanine scanning was then performed to evaluate functional significance of phosphorylation sites in the GAPDH polypeptide chain. Enzymatic properties of mutated GAPDH variants were assessed using kinetic studies. Intranuclear dynamics parameters(diffusion coefficient and the immobile fraction) were estimated using fluorescence recovery after photobleaching(FRAP) experiments and confocal microscopy. Molecular modeling experiments were performed to estimate the effects of mutations on NAD+ cofactor binding.RESULTS:Using MALDI-TOF analysis,we identified novel phosphorylation sites within the NAD+ binding center of GAPDH at Y94,S98,and T99. Using polyclonal antibody specific to phospho-T99-containing peptide within GAPDH,we demonstrated accumulation of phospho-T99-GAPDH inthe nuclear fractions of A549,HCT116,and SW48 cancer cel s after cytotoxic stress. We performed site-mutagenesis,and estimated enzymatic properties,intranuclear distribution,and intranuclear mobility of GAPDH mutated variants. Site-mutagenesis at positions S98 and T99 in the NAD+ binding center reduced enzymatic activity of GAPDH due to decreased affinity to NAD+(Km = 741 ± 257 μmol/L in T99 I vs 57 ± 11.1 μmol/L in wild type GAPDH. Molecular modeling experiments revealed the effect of mutations on NAD+ binding with GAPDH. FRAP(fluorescence recovery after photo bleaching) analysis showed that mutations in NAD+ binding center of GAPDH abrogated its intranuclear interactions. CONCLUSION:Our results suggest an important functional role of phosphorylated amino acids in the NAD+ binding center in GAPDH interactions with its intranuclear partners.

  18. Computational prediction of cAMP receptor protein (CRP) binding sites in cyanobacterial genomes

    Science.gov (United States)

    Xu, Minli; Su, Zhengchang

    2009-01-01

    Background Cyclic AMP receptor protein (CRP), also known as catabolite gene activator protein (CAP), is an important transcriptional regulator widely distributed in many bacteria. The biological processes under the regulation of CRP are highly diverse among different groups of bacterial species. Elucidation of CRP regulons in cyanobacteria will further our understanding of the physiology and ecology of this important group of microorganisms. Previously, CRP has been experimentally studied in only two cyanobacterial strains: Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120; therefore, a systematic genome-scale study of the potential CRP target genes and binding sites in cyanobacterial genomes is urgently needed. Results We have predicted and analyzed the CRP binding sites and regulons in 12 sequenced cyanobacterial genomes using a highly effective cis-regulatory binding site scanning algorithm. Our results show that cyanobacterial CRP binding sites are very similar to those in E. coli; however, the regulons are very different from that of E. coli. Furthermore, CRP regulons in different cyanobacterial species/ecotypes are also highly diversified, ranging from photosynthesis, carbon fixation and nitrogen assimilation, to chemotaxis and signal transduction. In addition, our prediction indicates that crp genes in modern cyanobacteria are likely inherited from a common ancestral gene in their last common ancestor, and have adapted various cellular functions in different environments, while some cyanobacteria lost their crp genes as well as CRP binding sites during the course of evolution. Conclusion The CRP regulons in cyanobacteria are highly diversified, probably as a result of divergent evolution to adapt to various ecological niches. Cyanobacterial CRPs may function as lineage-specific regulators participating in various cellular processes, and are important in some lineages. However, they are dispensable in some other lineages. The loss of CRPs in these species

  19. Computational prediction of cAMP receptor protein (CRP binding sites in cyanobacterial genomes

    Directory of Open Access Journals (Sweden)

    Su Zhengchang

    2009-01-01

    Full Text Available Abstract Background Cyclic AMP receptor protein (CRP, also known as catabolite gene activator protein (CAP, is an important transcriptional regulator widely distributed in many bacteria. The biological processes under the regulation of CRP are highly diverse among different groups of bacterial species. Elucidation of CRP regulons in cyanobacteria will further our understanding of the physiology and ecology of this important group of microorganisms. Previously, CRP has been experimentally studied in only two cyanobacterial strains: Synechocystis sp. PCC 6803 and Anabaena sp. PCC 7120; therefore, a systematic genome-scale study of the potential CRP target genes and binding sites in cyanobacterial genomes is urgently needed. Results We have predicted and analyzed the CRP binding sites and regulons in 12 sequenced cyanobacterial genomes using a highly effective cis-regulatory binding site scanning algorithm. Our results show that cyanobacterial CRP binding sites are very similar to those in E. coli; however, the regulons are very different from that of E. coli. Furthermore, CRP regulons in different cyanobacterial species/ecotypes are also highly diversified, ranging from photosynthesis, carbon fixation and nitrogen assimilation, to chemotaxis and signal transduction. In addition, our prediction indicates that crp genes in modern cyanobacteria are likely inherited from a common ancestral gene in their last common ancestor, and have adapted various cellular functions in different environments, while some cyanobacteria lost their crp genes as well as CRP binding sites during the course of evolution. Conclusion The CRP regulons in cyanobacteria are highly diversified, probably as a result of divergent evolution to adapt to various ecological niches. Cyanobacterial CRPs may function as lineage-specific regulators participating in various cellular processes, and are important in some lineages. However, they are dispensable in some other lineages. The

  20. Role of DNA binding sites and slow unbinding kinetics in titration-based oscillators.

    Science.gov (United States)

    Karapetyan, Sargis; Buchler, Nicolas E

    2015-12-01

    Genetic oscillators, such as circadian clocks, are constantly perturbed by molecular noise arising from the small number of molecules involved in gene regulation. One of the strongest sources of stochasticity is the binary noise that arises from the binding of a regulatory protein to a promoter in the chromosomal DNA. In this study, we focus on two minimal oscillators based on activator titration and repressor titration to understand the key parameters that are important for oscillations and for overcoming binary noise. We show that the rate of unbinding from the DNA, despite traditionally being considered a fast parameter, needs to be slow to broaden the space of oscillatory solutions. The addition of multiple, independent DNA binding sites further expands the oscillatory parameter space for the repressor-titration oscillator and lengthens the period of both oscillators. This effect is a combination of increased effective delay of the unbinding kinetics due to multiple binding sites and increased promoter ultrasensitivity that is specific for repression. We then use stochastic simulation to show that multiple binding sites increase the coherence of oscillations by mitigating the binary noise. Slow values of DNA unbinding rate are also effective in alleviating molecular noise due to the increased distance from the bifurcation point. Our work demonstrates how the number of DNA binding sites and slow unbinding kinetics, which are often omitted in biophysical models of gene circuits, can have a significant impact on the temporal and stochastic dynamics of genetic oscillators.

  1. Role of DNA binding sites and slow unbinding kinetics in titration-based oscillators

    Science.gov (United States)

    Karapetyan, Sargis; Buchler, Nicolas E.

    2015-12-01

    Genetic oscillators, such as circadian clocks, are constantly perturbed by molecular noise arising from the small number of molecules involved in gene regulation. One of the strongest sources of stochasticity is the binary noise that arises from the binding of a regulatory protein to a promoter in the chromosomal DNA. In this study, we focus on two minimal oscillators based on activator titration and repressor titration to understand the key parameters that are important for oscillations and for overcoming binary noise. We show that the rate of unbinding from the DNA, despite traditionally being considered a fast parameter, needs to be slow to broaden the space of oscillatory solutions. The addition of multiple, independent DNA binding sites further expands the oscillatory parameter space for the repressor-titration oscillator and lengthens the period of both oscillators. This effect is a combination of increased effective delay of the unbinding kinetics due to multiple binding sites and increased promoter ultrasensitivity that is specific for repression. We then use stochastic simulation to show that multiple binding sites increase the coherence of oscillations by mitigating the binary noise. Slow values of DNA unbinding rate are also effective in alleviating molecular noise due to the increased distance from the bifurcation point. Our work demonstrates how the number of DNA binding sites and slow unbinding kinetics, which are often omitted in biophysical models of gene circuits, can have a significant impact on the temporal and stochastic dynamics of genetic oscillators.

  2. Cortisol decreases 2[[sup 125]I] iodomelatonin binding sites in the duck thymus

    Energy Technology Data Exchange (ETDEWEB)

    Poon, A.M.S.; Liu, Z.M.; Tang, F.; Pang, S.F. (Univ. of Hong Kong (China))

    1994-03-01

    The immunosuppressive effect of chronic glucocorticoid treatment on 2[[sup 125]I] iodomelatonin binding in the duck thymus was studied. Two-week-old ducks were injected intraperitoneally with either 1 mg of cortisol per day (experimental group) or an equivalent volume of vehicle (control group) in the middle of the light period for seven days. 2[[sup 125]I] iodomelatonin binding assays were performed on thymic membranes. Cortisol injection reduced the body weight gain, size of the bursa of Fabricius and absolute weights of the primary lymphoid organs but had no effect on the spleen weights. The relative weights of the spleen were increased while those of the primary lymphoid organs were unchanged. The density of the thymus 2[[sup 125]I] iodomelatonin binding sites was decreased while the affinity was not affected. The modulation of the thymic 2[[sup 125]I] iodomelatonin binding sites by changes in the immune status of the duck suggests that these binding sites represent physiologically relevant melatonin receptors and that melatonin exerts its action on the lymphoid tissues directly. The authors findings support the hypothesis that the thymus is the target site for the immunomodulatory interactions between the pineal melatonin and the adrenal steroids. A possible inhibitory influence of adrenal steroids on the immuno-enhancing effect of melatonin is also suggested. 34 refs., 3 tabs.

  3. Identification of Covalent Binding Sites Targeting Cysteines Based on Computational Approaches.

    Science.gov (United States)

    Zhang, Yanmin; Zhang, Danfeng; Tian, Haozhong; Jiao, Yu; Shi, Zhihao; Ran, Ting; Liu, Haichun; Lu, Shuai; Xu, Anyang; Qiao, Xin; Pan, Jing; Yin, Lingfeng; Zhou, Weineng; Lu, Tao; Chen, Yadong

    2016-09-01

    Covalent drugs have attracted increasing attention in recent years due to good inhibitory activity and selectivity. Targeting noncatalytic cysteines with irreversible inhibitors is a powerful approach for enhancing pharmacological potency and selectivity because cysteines can form covalent bonds with inhibitors through their nucleophilic thiol groups. However, most human kinases have multiple noncatalytic cysteines within the active site; to accurately predict which cysteine is most likely to form covalent bonds is of great importance but remains a challenge when designing irreversible inhibitors. In this work, FTMap was first applied to check its ability in predicting covalent binding site defined as the region where covalent bonds are formed between cysteines and irreversible inhibitors. Results show that it has excellent performance in detecting the hot spots within the binding pocket, and its hydrogen bond interaction frequency analysis could give us some interesting instructions for identification of covalent binding cysteines. Furthermore, we proposed a simple but useful covalent fragment probing approach and showed that it successfully predicted the covalent binding site of seven targets. By adopting a distance-based method, we observed that the closer the nucleophiles of covalent warheads are to the thiol group of a cysteine, the higher the possibility that a cysteine is prone to form a covalent bond. We believe that the combination of FTMap and our distance-based covalent fragment probing method can become a useful tool in detecting the covalent binding site of these targets. PMID:27483186

  4. The nucleotide-binding site of Aquifex aeolicus LpxC

    OpenAIRE

    Buetow, Lori; Dawson, Alice; Hunter, William N.

    2006-01-01

    The structure of recombinant Aquifex aeolicus UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) in complex with UDP has been determined to a resolution of 2.2 Å. Previous studies have characterized the binding sites of the fatty-acid and sugar moieties of the substrate, UDP-(3-O-hydroxymyristoyl)-N-­acetylglucosamine, but not that of the nucleotide. The uracil-binding site is constructed from amino acids that are highly conserved across species. Hydrophobic associations with the Phe155 and ...

  5. Increased number of ouabain binding sites in lymphocytes from borderline hypertensives

    DEFF Research Database (Denmark)

    Nielsen, J R; Pedersen, K E; Klitgaard, N A;

    1989-01-01

    Lymphocytes were used as a cellular model for the in vitro measurements of maximal ouabain binding sites in order to assess any changes in young men at increased risk of developing essential hypertension, and to analyse whether any such changes were associated to borderline hypertension and...... triglyceride, and serum cholesterol, which may influence the number of ouabain binding sites. Only BMI entered the stepwise model. These results indicate the presence of an increased number of sodium-potassium pumps in lymphocytes from borderline hypertensives. This difference may be attributed to the blood...

  6. Evolution of allosteric citrate binding sites on 6-phosphofructo-1-kinase.

    Directory of Open Access Journals (Sweden)

    Aleksandra Usenik

    Full Text Available As an important part of metabolism, metabolic flux through the glycolytic pathway is tightly regulated. The most complex control is exerted on 6-phosphofructo-1-kinase (PFK1 level; this control overrules the regulatory role of other allosteric enzymes. Among other effectors, citrate has been reported to play a vital role in the suppression of this enzyme's activity. In eukaryotes, amino acid residues forming the allosteric binding site for citrate are found both on the N- and the C-terminal region of the enzyme. These site has evolved from the phosphoenolpyruvate/ADP binding site of bacterial PFK1 due to the processes of duplication and tandem fusion of prokaryotic ancestor gene followed by the divergence of the catalytic and effector binding sites. Stricter inhibition of the PFK1 enzyme was needed during the evolution of multi-cellular organisms, and the most stringent control of PFK1 by citrate occurs in vertebrates. By substituting a single amino acid (K557R or K617A as a component of the allosteric binding site in the C-terminal region of human muscle type PFK-M with a residue found in the corresponding site of a fungal enzyme, the inhibitory effect of citrate was attenuated. Moreover, the proteins carrying these single mutations enabled growth of E. coli transformants encoding mutated human PFK-M in a glucose-containing medium that did not support the growth of E. coli transformed with native human PFK-M. Substitution of another residue at the citrate-binding site (D591V of human PFK-M resulted in the complete loss of activity. Detailed analyses revealed that the mutated PFK-M subunits formed dimers but were unable to associate into the active tetrameric holoenzyme. These results suggest that stricter control over glycolytic flux developed in metazoans, whose somatic cells are largely characterized by slow proliferation.

  7. Germline V-genes sculpt the binding site of a family of antibodies neutralizing human cytomegalovirus

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, Christy A.; Bryson, Steve; McLean, Gary R.; Creagh, A. Louise; Pai, Emil F.; Schrader, John W. (Toronto); (UBC)

    2008-10-17

    Immunoglobulin genes are generated somatically through specialized mechanisms resulting in a vast repertoire of antigen-binding sites. Despite the stochastic nature of these processes, the V-genes that encode most of the antigen-combining site are under positive evolutionary selection, raising the possibility that V-genes have been selected to encode key structural features of binding sites of protective antibodies against certain pathogens. Human, neutralizing antibodies to human cytomegalovirus that bind the AD-2S1 epitope on its gB envelope protein repeatedly use a pair of well-conserved, germline V-genes IGHV3-30 and IGKV3-11. Here, we present crystallographic, kinetic and thermodynamic analyses of the binding site of such an antibody and that of its primary immunoglobulin ancestor. These show that these germline V-genes encode key side chain contacts with the viral antigen and thereby dictate key structural features of the hypermutated, high-affinity neutralizing antibody. V-genes may thus encode an innate, protective immunological memory that targets vulnerable, invariant sites on multiple pathogens.

  8. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry

    Science.gov (United States)

    Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  9. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry.

    Science.gov (United States)

    Zhang, Jingjing; Kitova, Elena N; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  10. A specific binding site recognizing a fragment of angiotensin II in bovine adrenal cortex membranes.

    Science.gov (United States)

    Bernier, S G; Fournier, A; Guillemette, G

    1994-12-12

    We have characterized a specific binding site for angiotensin IV in bovine adrenal cortex membranes. Pseudo-equilibrium studies at 37 degrees C for 2 h have shown that this binding site recognizes angiotensin IV with a high affinity (Kd = 0.24 +/- 0.03 nM). The binding site is saturable and relatively abundant (maximal binding capacity around 0.5 pmol/mg protein). Non-equilibrium kinetic analyses at 37 degrees C revealed a calculated kinetic Kd of 47 pM. The binding site is pharmacologically distinct from the classic angiotensin receptors AT1 or AT2. Competitive binding studies with bovine adrenal cortex membranes demonstrated the following rank order of effectiveness: angiotensin IV (Val-Tyr-Ile-His-Pro-Phe) = angiotensin II-(3-7) (Val-Tyr-Ile-His-Pro) > angiotensin III (Arg-Val-Tyr-Ile-His-Pro-Phe) > or = angiotensin II-(4-7) (Tyr-Ile-His-Pro) > angiotensin II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe) > angiotensin II-(1-6) (Asp-Arg-Val-Tyr-Ile-His) > angiotensin II-(4-8) (Tyr-Ile-His-Pro-Phe) > > > angiotensin II-(3-6) (Val-Tyr-Ile-His), angiotensin II-(4-6) (Tyr-Ile-His), L-158,809 (5,7-dimethyl-2-ethyl-3-[(2'(1-H-tetrazol-5-yl)[1,1'-biphenyl]-4-y l) methyl]-3-H-imidazo[4,5-beta]pyridine H2O) and PD 123319 (1-[4-(dimethylamino)3-methylphenyl]methyl-5-(diphenylacetyl)4,5,6 ,7- tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid). The divalent cations Mg2+ and Ca2+ were shown to diminish the binding of 125I-angiotensioffn IV to bovine adrenal cortex membranes.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Spatial determinants of the alfalfa mosaic virus coat protein binding site.

    Science.gov (United States)

    Laforest, Siana M; Gehrke, Lee

    2004-01-01

    The biological functions of RNA-protein complexes are, for the most part, poorly defined. Here, we describe experiments that are aimed at understanding the functional significance of alfalfa mosaic virus RNA-coat protein binding, an interaction that parallels the initiation of viral RNA replication. Peptides representing the RNA-binding domain of the viral coat protein are biologically active in initiating replication and bind to a 39-nt 3'-terminal RNA with a stoichiometry of two peptides: 1 RNA. To begin to understand how RNA-peptide interactions induce RNA conformational changes and initiate replication, the AMV RNA fragment was experimentally manipulated by increasing the interhelical spacing, by interrupting the apparent nucleotide symmetry, and by extending the binding site. In general, both asymmetric and symmetric insertions between two proposed hairpins diminished binding, whereas 5' and 3' extensions had minimal effects. Exchanging the positions of the binding site hairpins resulted in only a moderate decrease in peptide binding affinity without changing the hydroxyl radical footprint protection pattern. To assess biological relevance in viral RNA replication, the nucleotide changes were transferred into infectious genomic RNA clones. RNA mutations that disrupted coat protein binding also prevented viral RNA replication without diminishing coat protein mRNA (RNA 4) translation. These results, coupled with the highly conserved nature of the AUGC865-868 sequence, suggest that the distance separating the two proposed hairpins is a critical binding determinant. The data may indicate that the 5' and 3' hairpins interact with one of the bound peptides to nucleate the observed RNA conformational changes. PMID:14681584

  12. Cell-type specificity of ChIP-predicted transcription factor binding sites

    Directory of Open Access Journals (Sweden)

    Håndstad Tony

    2012-08-01

    Full Text Available Abstract Background Context-dependent transcription factor (TF binding is one reason for differences in gene expression patterns between different cellular states. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identifies genome-wide TF binding sites for one particular context—the cells used in the experiment. But can such ChIP-seq data predict TF binding in other cellular contexts and is it possible to distinguish context-dependent from ubiquitous TF binding? Results We compared ChIP-seq data on TF binding for multiple TFs in two different cell types and found that on average only a third of ChIP-seq peak regions are common to both cell types. Expectedly, common peaks occur more frequently in certain genomic contexts, such as CpG-rich promoters, whereas chromatin differences characterize cell-type specific TF binding. We also find, however, that genotype differences between the cell types can explain differences in binding. Moreover, ChIP-seq signal intensity and peak clustering are the strongest predictors of common peaks. Compared with strong peaks located in regions containing peaks for multiple transcription factors, weak and isolated peaks are less common between the cell types and are less associated with data that indicate regulatory activity. Conclusions Together, the results suggest that experimental noise is prevalent among weak peaks, whereas strong and clustered peaks represent high-confidence binding events that often occur in other cellular contexts. Nevertheless, 30-40% of the strongest and most clustered peaks show context-dependent regulation. We show that by combining signal intensity with additional data—ranging from context independent information such as binding site conservation and position weight matrix scores to context dependent chromatin structure—we can predict whether a ChIP-seq peak is likely to be present in other cellular contexts.

  13. Discovery and Characterization of a Cell-Permeable, Small-Molecule c-Abl Kinase Activator that Binds to the Myristoyl Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jingsong; Campobasso, Nino; Biju, Mangatt P.; Fisher, Kelly; Pan, Xiao-Qing; Cottom, Josh; Galbraith, Sarah; Ho, Thau; Zhang, Hong; Hong, Xuan; Ward, Paris; Hofmann, Glenn; Siegfried, Brett; Zappacosta, Francesca; Washio, Yoshiaki; Cao, Ping; Qu, Junya; Bertrand, Sophie; Wang, Da-Yuan; Head, Martha S.; Li, Hu; Moores, Sheri; Lai, Zhihong; Johanson, Kyung; Burton, George; Erickson-Miller, Connie; Simpson, Graham; Tummino, Peter; Copeland, Robert A.; Oliff, Allen (GSKPA)

    2014-10-02

    c-Abl kinase activity is regulated by a unique mechanism involving the formation of an autoinhibited conformation in which the N-terminal myristoyl group binds intramolecularly to the myristoyl binding site on the kinase domain and induces the bending of the {alpha}I helix that creates a docking surface for the SH2 domain. Here, we report a small-molecule c-Abl activator, DPH, that displays potent enzymatic and cellular activity in stimulating c-Abl activation. Structural analyses indicate that DPH binds to the myristoyl binding site and prevents the formation of the bent conformation of the {alpha}I helix through steric hindrance, a mode of action distinct from the previously identified allosteric c-Abl inhibitor, GNF-2, that also binds to the myristoyl binding site. DPH represents the first cell-permeable, small-molecule tool compound for c-Abl activation.

  14. Number of active transcription factor binding sites is essential for the Hes7 oscillator

    Directory of Open Access Journals (Sweden)

    de Angelis Martin

    2006-02-01

    Full Text Available Abstract Background It is commonly accepted that embryonic segmentation of vertebrates is regulated by a segmentation clock, which is induced by the cycling genes Hes1 and Hes7. Their products form dimers that bind to the regulatory regions and thereby repress the transcription of their own encoding genes. An increase of the half-life of Hes7 protein causes irregular somite formation. This was shown in recent experiments by Hirata et al. In the same work, numerical simulations from a delay differential equations model, originally invented by Lewis, gave additional support. For a longer half-life of the Hes7 protein, these simulations exhibited strongly damped oscillations with, after few periods, severely attenuated the amplitudes. In these simulations, the Hill coefficient, a crucial model parameter, was set to 2 indicating that Hes7 has only one binding site in its promoter. On the other hand, Bessho et al. established three regulatory elements in the promoter region. Results We show that – with the same half life – the delay system is highly sensitive to changes in the Hill coefficient. A small increase changes the qualitative behaviour of the solutions drastically. There is sustained oscillation and hence the model can no longer explain the disruption of the segmentation clock. On the other hand, the Hill coefficient is correlated with the number of active binding sites, and with the way in which dimers bind to them. In this paper, we adopt response functions in order to estimate Hill coefficients for a variable number of active binding sites. It turns out that three active transcription factor binding sites increase the Hill coefficient by at least 20% as compared to one single active site. Conclusion Our findings lead to the following crucial dichotomy: either Hirata's model is correct for the Hes7 oscillator, in which case at most two binding sites are active in its promoter region; or at least three binding sites are active, in which

  15. Thermodynamics of Calcium binding to the Calmodulin N-terminal domain to evaluate site-specific affinity constants and cooperativity.

    Science.gov (United States)

    Beccia, Maria Rosa; Sauge-Merle, Sandrine; Lemaire, David; Brémond, Nicolas; Pardoux, Romain; Blangy, Stéphanie; Guilbaud, Philippe; Berthomieu, Catherine

    2015-07-01

    Calmodulin (CaM) is an essential Ca(II)-dependent regulator of cell physiology. To understand its interaction with Ca(II) at a molecular level, it is essential to examine Ca(II) binding at each site of the protein, even if it is challenging to estimate the site-specific binding properties of the interdependent CaM-binding sites. In this study, we evaluated the site-specific Ca(II)-binding affinity of sites I and II of the N-terminal domain by combining site-directed mutagenesis and spectrofluorimetry. The mutations had very low impact on the protein structure and stability. We used these binding constants to evaluate the inter-site cooperativity energy and compared it with its lower limit value usually reported in the literature. We found that site I affinity for Ca(II) was 1.5 times that of site II and that cooperativity induced an approximately tenfold higher affinity for the second Ca(II)-binding event, as compared to the first one. We further showed that insertion of a tryptophan at position 7 of site II binding loop significantly increased site II affinity for Ca(II) and the intra-domain cooperativity. ΔH and ΔS parameters were studied by isothermal titration calorimetry for Ca(II) binding to site I, site II and to the entire N-terminal domain. They showed that calcium binding is mainly entropy driven for the first and second binding events. These findings provide molecular information on the structure-affinity relationship of the individual sites of the CaM N-terminal domain and new perspectives for the optimization of metal ion binding by mutating the EF-hand loops sequences.

  16. Sequence and structural features of binding site residues in protein-protein complexes: comparison with protein-nucleic acid complexes

    Directory of Open Access Journals (Sweden)

    Selvaraj S

    2011-10-01

    Full Text Available Abstract Background Protein-protein interactions are important for several cellular processes. Understanding the mechanism of protein-protein recognition and predicting the binding sites in protein-protein complexes are long standing goals in molecular and computational biology. Methods We have developed an energy based approach for identifying the binding site residues in protein–protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such as binding propensity, neighboring residues in the vicinity of binding sites, conservation score and conformational switching. Results We observed that the binding propensities of amino acid residues are specific for protein-protein complexes. Further, typical dipeptides and tripeptides showed high preference for binding, which is unique to protein-protein complexes. Most of the binding site residues are highly conserved among homologous sequences. Our analysis showed that 7% of residues changed their conformations upon protein-protein complex formation and it is 9.2% and 6.6% in the binding and non-binding sites, respectively. Specifically, the residues Glu, Lys, Leu and Ser changed their conformation from coil to helix/strand and from helix to coil/strand. Leu, Ser, Thr and Val prefer to change their conformation from strand to coil/helix. Conclusions The results obtained in this study will be helpful for understanding and predicting the binding sites in protein-protein complexes.

  17. Structural Studies of GABAA Receptor Binding Sites: Which Experimental Structure Tells us What?

    Science.gov (United States)

    Puthenkalam, Roshan; Hieckel, Marcel; Simeone, Xenia; Suwattanasophon, Chonticha; Feldbauer, Roman V; Ecker, Gerhard F; Ernst, Margot

    2016-01-01

    Atomic resolution structures of cys-loop receptors, including one of a γ-aminobutyric acid type A receptor (GABAA receptor) subtype, allow amazing insights into the structural features and conformational changes that these pentameric ligand-gated ion channels (pLGICs) display. Here we present a comprehensive analysis of more than 30 cys-loop receptor structures of homologous proteins that revealed several allosteric binding sites not previously described in GABAA receptors. These novel binding sites were examined in GABAA receptor homology models and assessed as putative candidate sites for allosteric ligands. Four so far undescribed putative ligand binding sites were proposed for follow up studies based on their presence in the GABAA receptor homology models. A comprehensive analysis of conserved structural features in GABAA and glycine receptors (GlyRs), the glutamate gated ion channel, the bacterial homologs Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus GLIC, and the serotonin type 3 (5-HT3) receptor was performed. The conserved features were integrated into a master alignment that led to improved homology models. The large fragment of the intracellular domain that is present in the structure of the 5-HT3 receptor was utilized to generate GABAA receptor models with a corresponding intracellular domain fragment. Results of mutational and photoaffinity ligand studies in GABAA receptors were analyzed in the light of the model structures. This led to an assignment of candidate ligands to two proposed novel pockets, candidate binding sites for furosemide and neurosteroids in the trans-membrane domain were identified. The homology models can serve as hypotheses generators, and some previously controversial structural interpretations of biochemical data can be resolved in the light of the presented multi-template approach to comparative modeling. Crystal and cryo-EM microscopic structures of the closest homologs that were solved in different conformational

  18. Multiple ETS family proteins regulate PF4 gene expression by binding to the same ETS binding site.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Okada

    Full Text Available In previous studies on the mechanism underlying megakaryocyte-specific gene expression, several ETS motifs were found in each megakaryocyte-specific gene promoter. Although these studies suggested that several ETS family proteins regulate megakaryocyte-specific gene expression, only a few ETS family proteins have been identified. Platelet factor 4 (PF4 is a megakaryocyte-specific gene and its promoter includes multiple ETS motifs. We had previously shown that ETS-1 binds to an ETS motif in the PF4 promoter. However, the functions of the other ETS motifs are still unclear. The goal of this study was to investigate a novel functional ETS motif in the PF4 promoter and identify proteins binding to the motif. In electrophoretic mobility shift assays and a chromatin immunoprecipitation assay, FLI-1, ELF-1, and GABP bound to the -51 ETS site. Expression of FLI-1, ELF-1, and GABP activated the PF4 promoter in HepG2 cells. Mutation of a -51 ETS site attenuated FLI-1-, ELF-1-, and GABP-mediated transactivation of the promoter. siRNA analysis demonstrated that FLI-1, ELF-1, and GABP regulate PF4 gene expression in HEL cells. Among these three proteins, only FLI-1 synergistically activated the promoter with GATA-1. In addition, only FLI-1 expression was increased during megakaryocytic differentiation. Finally, the importance of the -51 ETS site for the activation of the PF4 promoter during physiological megakaryocytic differentiation was confirmed by a novel reporter gene assay using in vitro ES cell differentiation system. Together, these data suggest that FLI-1, ELF-1, and GABP regulate PF4 gene expression through the -51 ETS site in megakaryocytes and implicate the differentiation stage-specific regulation of PF4 gene expression by multiple ETS factors.

  19. Locating the binding sites of antioxidants resveratrol, genistein and curcumin with tRNA.

    Science.gov (United States)

    N'soukpoé-Kossi, C N; Bourassa, P; Mandeville, J S; Bekale, L; Bariyanga, J; Tajmir-Riahi, H A

    2015-09-01

    We located the binding sites of antioxidants resveratrol, genistein and curcumin on tRNA in aqueous solution at physiological conditions using constant tRNA concentration and various polyphenol contents. FTIR, UV-visible, CD spectroscopic methods and molecular modeling were used to determine polyphenol binding sites, the binding constant and the effects of polyphenol complexation on tRNA conformation and particle formation. Structural analysis showed that polyphenols bind tRNA via G-C and A-U base pairs through hydrophilic, hydrophobic and H-bonding contacts with overall binding constants of K(res-tRNA)=8.95(±0.80)×10(3) M(-1), K(gen-tRNA)=3.07(±0.5)×10(3) M(-1) and K(cur-tRNA)=1.55(±0.3)×10(4) M(-1). Molecular modeling showed the participation of several nucleobases in polyphenol-tRNA adduct formation with free binding energy of -4.43 for resveratrol, -4.26 kcal/mol for genistein and -4.84 kcal/mol for curcumin, indicating that the interaction process is spontaneous at room temperature. While tRNA remains in A-family structure, major biopolymer aggregation and particle formation occurred at high polyphenol contents. PMID:26093317

  20. Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites.

    Directory of Open Access Journals (Sweden)

    Jose L S Lopes

    Full Text Available Diacylglycerol acyltransferase 1 (DGAT1 is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.

  1. rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines.

    Science.gov (United States)

    Chukwudi, Chinwe U

    2016-08-01

    The tetracycline antibiotics are known to be effective in the treatment of both infectious and noninfectious disease conditions. The 16S rRNA binding mechanism currently held for the antibacterial action of the tetracyclines does not explain their activity against viruses, protozoa that lack mitochondria, and noninfectious conditions. Also, the mechanism by which the tetracyclines selectively inhibit microbial protein synthesis against host eukaryotic protein synthesis despite conservation of ribosome structure and functions is still questionable. Many studies have investigated the binding of the tetracyclines to the 16S rRNA using the small ribosomal subunit of different bacterial species, but there seems to be no agreement between various reports on the exact binding site on the 16S rRNA. The wide range of activity of the tetracyclines against a broad spectrum of bacterial pathogens, viruses, protozoa, and helminths, as well as noninfectious conditions, indicates a more generalized effect on RNA. In the light of recent evidence that the tetracyclines bind to various synthetic double-stranded RNAs (dsRNAs) of random base sequences, suggesting that the double-stranded structures may play a more important role in the binding of the tetracyclines to RNA than the specific base pairs, as earlier speculated, it is imperative to consider possible alternative binding modes or sites that could help explain the mechanisms of action of the tetracyclines against various pathogens and disease conditions. PMID:27246781

  2. Recognition of anesthetic barbiturates by a protein binding site: a high resolution structural analysis.

    Directory of Open Access Journals (Sweden)

    Simon Oakley

    Full Text Available Barbiturates potentiate GABA actions at the GABA(A receptor and act as central nervous system depressants that can induce effects ranging from sedation to general anesthesia. No structural information has been available about how barbiturates are recognized by their protein targets. For this reason, we tested whether these drugs were able to bind specifically to horse spleen apoferritin, a model protein that has previously been shown to bind many anesthetic agents with affinities that are closely correlated with anesthetic potency. Thiopental, pentobarbital, and phenobarbital were all found to bind to apoferritin with affinities ranging from 10-500 µM, approximately matching the concentrations required to produce anesthetic and GABAergic responses. X-ray crystal structures were determined for the complexes of apoferritin with thiopental and pentobarbital at resolutions of 1.9 and 2.0 Å, respectively. These structures reveal that the barbiturates bind to a cavity in the apoferritin shell that also binds haloalkanes, halogenated ethers, and propofol. Unlike these other general anesthetics, however, which rely entirely upon van der Waals interactions and the hydrophobic effect for recognition, the barbiturates are recognized in the apoferritin site using a mixture of both polar and nonpolar interactions. These results suggest that any protein binding site that is able to recognize and respond to the chemically and structurally diverse set of compounds used as general anesthetics is likely to include a versatile mixture of both polar and hydrophobic elements.

  3. Recognition of AT-Rich DNA Binding Sites by the MogR Repressor

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Aimee; Higgins, Darren E.; Panne, Daniel; (Harvard-Med); (EMBL)

    2009-07-22

    The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity. The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.

  4. Characterization of two heparan sulphate-binding sites in the mycobacterial adhesin Hlp

    Directory of Open Access Journals (Sweden)

    Previato Jose O

    2008-05-01

    Full Text Available Abstract Background The histone-like Hlp protein is emerging as a key component in mycobacterial pathogenesis, being involved in the initial events of host colonization by interacting with laminin and glycosaminoglycans (GAGs. In the present study, nuclear magnetic resonance (NMR was used to map the binding site(s of Hlp to heparan sulfate and identify the nature of the amino acid residues directly involved in this interaction. Results The capacity of a panel of 30 mer synthetic peptides covering the full length of Hlp to bind to heparin/heparan sulfate was analyzed by solid phase assays, NMR, and affinity chromatography. An additional active region between the residues Gly46 and Ala60 was defined at the N-terminal domain of Hlp, expanding the previously defined heparin-binding site between Thr31 and Phe50. Additionally, the C-terminus, rich in Lys residues, was confirmed as another heparan sulfate binding region. The amino acids in Hlp identified as mediators in the interaction with heparan sulfate were Arg, Val, Ile, Lys, Phe, and Thr. Conclusion Our data indicate that Hlp interacts with heparan sulfate through two distinct regions of the protein. Both heparan sulfate-binding regions here defined are preserved in all mycobacterial Hlp homologues that have been sequenced, suggesting important but possibly divergent roles for this surface-exposed protein in both pathogenic and saprophic species.

  5. H274Y's Effect on Oseltamivir Resistance: What Happens Before the Drug Enters the Binding Site.

    Science.gov (United States)

    Yusuf, Muhammad; Mohamed, Nornisah; Mohamad, Suriyati; Janezic, Dusanka; Damodaran, K V; Wahab, Habibah A

    2016-01-25

    Increased reports of oseltamivir (OTV)-resistant strains of the influenza virus, such as the H274Y mutation on its neuraminidase (NA), have created some cause for concern. Many studies have been conducted in the attempt to uncover the mechanism of OTV resistance in H274Y NA. However, most of the reported studies on H274Y focused only on the drug-bound system, so the direct effects of the mutation on NA itself prior to drug binding still remain unclear. Therefore, molecular dynamics simulations of NA in apo form, followed by principal component analysis and interaction energy calculations, were performed to investigate the structural changes of the NA binding site as a result of the H274Y mutation. It was observed that the disruption of the NA binding site due to the H274Y mutation was initiated by the repulsive effect of Y274 on the 250-loop, which in turn altered the hydrogen-bonding network around residue 274. The rotated W295 side chain caused the upward movement of the 340-loop. Consequently, sliding box docking results suggested that the binding pathway of OTV was compromised because of the disruption of this binding site. This study also highlighted the importance of the functional group at C6 of the sialic acid mimicry. It is hoped that these results will improve the understanding of OTV resistance and shed some light on the design of a novel anti-influenza drug. PMID:26703840

  6. Global identification of hnRNP A1 binding sites for SSO-based splicing modulation

    DEFF Research Database (Denmark)

    Bruun, Gitte H; Doktor, Thomas K; Borch-Jensen, Jonas;

    2016-01-01

    for this deregulation by blocking other SREs with splice-switching oligonucleotides (SSOs). However, the location and sequence of most SREs are not well known. RESULTS: Here, we used individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) to establish an in vivo binding map for the key splicing...... regulatory factor hnRNP A1 and to generate an hnRNP A1 consensus binding motif. We find that hnRNP A1 binding in proximal introns may be important for repressing exons. We show that inclusion of the alternative cassette exon 3 in SKA2 can be significantly increased by SSO-based treatment which blocks an iCLIP......-identified hnRNP A1 binding site immediately downstream of the 5' splice site. Because pseudoexons are well suited as models for constitutive exons which have been inactivated by pathogenic mutations in SREs, we used a pseudoexon in MTRR as a model and showed that an iCLIP-identified hnRNP A1 binding site...

  7. Quantitative distribution of angiotensin II binding sites in rat brain by autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra, J.M.; Israel, A.; Plunkett, L.M.; Kurihara, M.; Shigematsu, K.; Correa, F.M.

    1986-07-01

    Angiotensin II binding sites were localized and quantified in individual brain nuclei from single rats by incubation of tissue sections with 1 nM /sup 125/I-(Sar1)-angiotensin II, (/sup 3/H)-Ultrofilm autoradiography, computerized microdensitometry and comparison with /sup 125/I-standards. High angiotensin II binding was present in the circumventricular organs (organon vasculosum laminae terminalis, organon subfornicalis and area postrema), in selected hypothalamic nuclei (nuclei suprachiasmatis, periventricularis and paraventricularis) and in the nucleus tractus olfactorii lateralis, the nucleus preopticus medianus, the dorsal motor nucleus of the vagus and the nucleus tractus solitarii. High affinity (KA from 0.3 to 1.5 X 10(9) M-1) angiotensin II binding sites were demonstrated in the organon subfornicalis, the nucleus tractus solitarii and the area postrema after incubation of consecutive sections from single rat brains with /sup 125/I-(Sar1)-angiotensin II in concentrations from 100 pM to 5 nM. These results demonstrate and characterize brain binding sites for angiotensin II of variable high affinity binding both inside and outside the blood-brain barrier.

  8. Sequence and structural features of binding site residues in protein-protein complexes: comparison with protein-nucleic acid complexes

    OpenAIRE

    Selvaraj S; Jayaram B; Saranya N; Gromiha M; Fukui Kazuhiko

    2011-01-01

    Abstract Background Protein-protein interactions are important for several cellular processes. Understanding the mechanism of protein-protein recognition and predicting the binding sites in protein-protein complexes are long standing goals in molecular and computational biology. Methods We have developed an energy based approach for identifying the binding site residues in protein–protein complexes. The binding site residues have been analyzed with sequence and structure based parameters such...

  9. Critical role of the H6-H7 loop in the conformational adaptation of all-trans retinoic acid and synthetic retinoids within the ligand-binding site of RARalpha.

    Science.gov (United States)

    Mailfait, S; Thoreau, E; Belaiche, D; Formstecher And B Sablonniè, P

    2000-06-01

    The pleiotropic effects of the natural and synthetic retinoids are mediated by the activation of the two subfamilies of nuclear receptors, the retinoic acid receptors (RARs) and the retinoic X receptors (RXRs). At the molecular level, these events begin with the specific ligand recognition by a nuclear receptor subtype. The adaptation of ligands to the receptor binding site leads to an optimal number of interactions for binding and selectivity which justifies elucidation of the structural requirements of the ligand binding pocket. To explore the contribution of H6-H7 loop folding in the ligand-induced conformational changes explained by the mouse-trap model, four RARalpha mutants were constructed. Ligand binding and transactivation studies revealed that three residues from the H6-H7 loop (Gly(301), Phe(302) and Gly(303)) are critical for the conformational adaptation of both synthetic agonists and antagonists. Model building and analysis of both RARalpha-ATRA and RARalpha-CD367 complexes demonstrate that accommodation of CD367 results in a less tight contact of the saturated ring of this ligand with the amino acid side chains of the receptor ligand-binding pocket compared with that of ATRA. According to the flexibility of the agonists tested (ATRA>TTNPB=Am580> CD367), we observed a decrease in binding that was dependent on ligand structure rigidity. In contrast, the binding and transactivating activities of the L266A mutant confirmed the structural constraints imposed by synthetic ligands on binding affinity for the receptor and revealed that subtle local rearrangements induced by specific conformational adaptation changes result in different binding affinities. Our results illustrate the dynamic nature of the interaction between RARalpha and its ligands and demonstrate the critical role of the H6-H7 loop in the binding of both synthetic retinoid agonists and antagonists.

  10. Neuroprotective effects of the strychnine-insensitive glycine site NMDA antagonist (R)-HA-966 in an experimental model of Parkinson's disease.

    Science.gov (United States)

    Kanthasamy, A G; Kanthasamy, A; Matsumoto, R R; Vu, T Q; Truong, D D

    1997-06-01

    The neuroprotective effects of (R)-HA-966 and (S)-HA-966 (3-amino-1-hydroxy-2-pyrrolidinone) were examined in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced animal model of Parkinson's disease. Systemic pretreatment of C57 black mice with the strychnine-insensitive glycine site antagonist, (R)-HA-966 (3-30 mg/kg, i.p.), dose-dependently attenuated MPTP-induced depletion of striatal dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC). Pretreatment with (R)-HA-966 also significantly protected the degeneration of tyrosine hydroxylase-positive neurons in the substantia nigra of mice treated with MPTP and alleviated the acute behavioral changes caused by the neurotoxin. In contrast, the other racemic form, (S)-HA-966, neither prevented the neurochemical depletions nor the neuronal injury caused by MPTP. These results indicate that excitatory mechanisms of neurodegeneration are involved in the pathophysiology of Parkinson's disease, and that strychnine-insensitive glycine site NMDA antagonists may serve as dopaminoprotective agents which intervene in the progressive neurodegeneration in Parkinson's disease. PMID:9219856

  11. Identification of the third binding site of arsenic in human arsenic (III methyltransferase.

    Directory of Open Access Journals (Sweden)

    Xiangli Li

    Full Text Available Arsenic (III methyltransferase (AS3MT catalyzes the process of arsenic methylation. Each arsenite (iAs(3+ binds to three cysteine residues, methylarsenite (MMA(3+ binds to two, and dimethylarsenite (DMA(3+ binds to one. However, only two As-binding sites (Cys156 and Cys206 have been confirmed on human AS3MT (hAS3MT. The third As-binding site is still undefined. Residue Cys72 in Cyanidioschyzon merolae arsenite S-adenosylmethyltransferase (CmArsM may be the third As-binding site. The corresponding residue in hAS3MT is Cys61. Functions of Cys32, Cys61, and Cys85 in hAS3MT are unclear though Cys32, Cys61, and Cys85 in rat AS3MT have no effect on the enzyme activity. This is why the functions of Cys32, Cys61, and Cys85 in hAS3MT merit investigation. Here, three mutants were designed, C32S, C61S, and C85S. Their catalytic activities and conformations were determined, and the catalytic capacities of C156S and C206S were studied. Unlike C85S, mutants C32S and C61S were completely inactive in the methylation of iAs(3+ and active in the methylation of MMA(3+. The catalytic activity of C85S was also less pronounced than that of WT-hAS3MT. All these findings suggest that Cys32 and Cys61 markedly influence the catalytic activity of hAS3MT. Cys32 and Cys61 are necessary to the first step of methylation but not to the second. Cys156 and Cys206 are required for both the first and second steps of methylation. The S(C32 is located far from arsenic in the WT-hAS3MT-SAM-As model. The distances between S(C61 and arsenic in WT-hAS3MT-As and WT-hAS3MT-SAM-As models are 7.5 Å and 4.1 Å, respectively. This indicates that SAM-binding to hAS3MT shortens the distance between S(C61 and arsenic and promotes As-binding to hAS3MT. This is consistent with the fact that SAM is the first substrate to bind to hAS3MT and iAs is the second. Model of WT-hAS3MT-SAM-As and the experimental results indicate that Cys61 is the third As-binding site.

  12. Use of (113)Cd NMR to probe the native metal binding sites in metalloproteins: an overview.

    Science.gov (United States)

    Armitage, Ian M; Drakenberg, Torbjörn; Reilly, Brian

    2013-01-01

    Our laboratories have actively published in this area for several years and the objective of this chapter is to present as comprehensive an overview as possible. Following a brief review of the basic principles associated with (113)Cd NMR methods, we will present the results from a thorough literature search for (113)Cd chemical shifts from metalloproteins. The updated (113)Cd chemical shift figure in this chapter will further illustrate the excellent correlation of the (113)Cd chemical shift with the nature of the coordinating ligands (N, O, S) and coordination number/geometry, reaffirming how this method can be used not only to identify the nature of the protein ligands in uncharacterized cases but also the dynamics at the metal binding site. Specific examples will be drawn from studies on alkaline phosphatase, Ca(2+) binding proteins, and metallothioneins.In the case of Escherichia coli alkaline phosphatase, a dimeric zinc metalloenzyme where a total of six metal ions (three per monomer) are involved directly or indirectly in providing the enzyme with maximal catalytic activity and structural stability, (113)Cd NMR, in conjunction with (13)C and (31)P NMR methods, were instrumental in separating out the function of each class of metal binding sites. Perhaps most importantly, these studies revealed the chemical basis for negative cooperativity that had been reported for this enzyme under metal deficient conditions. Also noteworthy was the fact that these NMR studies preceded the availability of the X-ray crystal structure.In the case of the calcium binding proteins, we will focus on two proteins: calbindin D(9k) and calmodulin. For calbindin D(9k) and its mutants, (113)Cd NMR has been useful both to follow actual changes in the metal binding sites and the cooperativity in the metal binding. Ligand binding to calmodulin has been studied extensively with (113)Cd NMR showing that the metal binding sites are not directly involved in the ligand binding. The (113)Cd

  13. The Human p73 Promoter: Characterization and Identification of Functional E2F Binding Sites

    Directory of Open Access Journals (Sweden)

    Ratnam S. Seelan

    2002-01-01

    Full Text Available p73, a member of the p53 family, is overexpressed in many cancers. To understand the mechanism(s underlying this overexpression, we have undertaken a detailed characterization of the human p73 promoter. The promoter is strongly activated in cells expressing exogenous E2F1 and suppressed by exogenous Rb. At least three functional E2F binding sites, located immediately upstream of exon 1 (at-284,-155 and-132 mediate this induction. 5' serially deleted promoter constructs and constructs harboring mutated E2F sites were analyzed for their response to exogenously expressed E2F1 or Rb to establish functionality of these sites. Authenticity of E2F sites was further confirmed by electrophoretic mobility shift assay (EMSA using E2F1 /DP1 heterodimers synthesized in vitro, followed by competition assays with unlabeled wild-type or mutant oligonucleotides and supershift analysis using anti-E2F1 antibodies. In vivo binding of E2F1 to the p73 promoter was demonstrated using nuclear extracts prepared from E2F1-inducible Saos2 cells. The region conferring the highest promoter activity was found to reside between-113 to-217 of the p73 gene. Two of the three functional E2F sites (at-155 and-132 reside within this region. Our results suggest that regulation of p73 expression is primarily mediated through binding of E2 F1 to target sites at-155 and-132.

  14. Tuning the ion selectivity of tetrameric cation channels by changing the number of ion binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Derebe, Mehabaw G.; Sauer, David B.; Zeng, Weizhong; Alam, Amer; Shi, Ning; Jiang, Youxing (UTSMC); (ETH Zurich)

    2015-11-30

    Selective ion conduction across ion channel pores is central to cellular physiology. To understand the underlying principles of ion selectivity in tetrameric cation channels, we engineered a set of cation channel pores based on the nonselective NaK channel and determined their structures to high resolution. These structures showcase an ensemble of selectivity filters with a various number of contiguous ion binding sites ranging from 2 to 4, with each individual site maintaining a geometry and ligand environment virtually identical to that of equivalent sites in K{sup +} channel selectivity filters. Combined with single channel electrophysiology, we show that only the channel with four ion binding sites is K{sup +} selective, whereas those with two or three are nonselective and permeate Na{sup +} and K{sup +} equally well. These observations strongly suggest that the number of contiguous ion binding sites in a single file is the key determinant of the channel's selectivity properties and the presence of four sites in K{sup +} channels is essential for highly selective and efficient permeation of K{sup +} ions.

  15. The TRIM-NHL protein LIN-41 and the OMA RNA-binding proteins antagonistically control the prophase-to-metaphase transition and growth of Caenorhabditis elegans oocytes.

    Science.gov (United States)

    Spike, Caroline A; Coetzee, Donna; Eichten, Carly; Wang, Xin; Hansen, Dave; Greenstein, David

    2014-12-01

    In many animals, oocytes enter meiosis early in their development but arrest in meiotic prophase I. Oocyte growth, which occurs during this arrest period, enables the acquisition of meiotic competence and the capacity to produce healthy progeny. Meiotic resumption, or meiotic maturation, involves the transition to metaphase I (M phase) and is regulated by intercellular signaling and cyclin-dependent kinase activation. Premature meiotic maturation would be predicted to diminish fertility as the timing of this event, which normally occurs after oocyte growth is complete, is crucial. In the accompanying article in this issue, we identify the highly conserved TRIM-NHL protein LIN-41 as a translational repressor that copurifies with OMA-1 and OMA-2, RNA-binding proteins redundantly required for normal oocyte growth and meiotic maturation. In this article, we show that LIN-41 enables the production of high-quality oocytes and plays an essential role in controlling and coordinating oocyte growth and meiotic maturation. lin-41 null mutants display a striking defect that is specific to oogenesis: pachytene-stage cells cellularize prematurely and fail to progress to diplotene. Instead, these cells activate CDK-1, enter M phase, assemble spindles, and attempt to segregate chromosomes. Translational derepression of the CDK-1 activator CDC-25.3 appears to contribute to premature M-phase entry in lin-41 mutant oocytes. Genetic and phenotypic analyses indicate that LIN-41 and OMA-1/2 exhibit an antagonistic relationship, and we suggest that translational regulation by these proteins could be important for controlling and coordinating oocyte growth and meiotic maturation.

  16. Binding of transcription factor GabR to DNA requires recognition of DNA shape at a location distinct from its cognate binding site

    Science.gov (United States)

    Al-Zyoud, Walid A.; Hynson, Robert MG.; Ganuelas, Lorraine A.; Coster, Adelle CF.; Duff, Anthony P.; Baker, Matthew AB.; Stewart, Alastair G.; Giannoulatou, Eleni; Ho, Joshua WK.; Gaus, Katharina; Liu, Dali; Lee, Lawrence K.; Böcking, Till

    2016-01-01

    Mechanisms for transcription factor recognition of specific DNA base sequences are well characterized and recent studies demonstrate that the shape of these cognate binding sites is also important. Here, we uncover a new mechanism where the transcription factor GabR simultaneously recognizes two cognate binding sites and the shape of a 29 bp DNA sequence that bridges these sites. Small-angle X-ray scattering and multi-angle laser light scattering are consistent with a model where the DNA undergoes a conformational change to bend around GabR during binding. In silico predictions suggest that the bridging DNA sequence is likely to be bendable in one direction and kinetic analysis of mutant DNA sequences with biolayer interferometry, allowed the independent quantification of the relative contribution of DNA base and shape recognition in the GabR–DNA interaction. These indicate that the two cognate binding sites as well as the bendability of the DNA sequence in between these sites are required to form a stable complex. The mechanism of GabR–DNA interaction provides an example where the correct shape of DNA, at a clearly distinct location from the cognate binding site, is required for transcription factor binding and has implications for bioinformatics searches for novel binding sites. PMID:26681693

  17. Investigation of the Copper Binding Site And the Role of Histidine As a Ligand in Riboflavin Binding Protein

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.R.; Bencze, K.Z.; Russ, K.A.; Wasiukanis, K.; Benore-Parsons, M.; Stemmler, T.L.

    2009-05-26

    Riboflavin Binding Protein (RBP) binds copper in a 1:1 molar ratio, forming a distinct well-ordered type II site. The nature of this site has been examined using X-ray absorption and pulsed electron paramagnetic resonance (EPR) spectroscopies, revealing a four coordinate oxygen/nitrogen rich environment. On the basis of analysis of the Cambridge Structural Database, the average protein bound copper-ligand bond length of 1.96 {angstrom}, obtained by extended x-ray absorption fine structure (EXAFS), is consistent with four coordinate Cu(I) and Cu(II) models that utilize mixed oxygen and nitrogen ligand distributions. These data suggest a Cu-O{sub 3}N coordination state for copper bound to RBP. While pulsed EPR studies including hyperfine sublevel correlation spectroscopy and electron nuclear double resonance show clear spectroscopic evidence for a histidine bound to the copper, inclusion of a histidine in the EXAFS simulation did not lead to any significant improvement in the fit.

  18. The role of DNA binding sites and slow unbinding kinetics in titration-based oscillators

    CERN Document Server

    Karapetyan, Sargis

    2015-01-01

    Genetic oscillators, such as circadian clocks, are constantly perturbed by molecular noise arising from the small number of molecules involved in gene regulation. One of the strongest sources of stochasticity is the binary noise that arises from the binding of a regulatory protein to a promoter in the chromosomal DNA. In this study, we focus on two minimal oscillators based on activator titration and repressor titration to understand the key parameters that are important for oscillations and for overcoming binary noise. We show that the rate of unbinding from the DNA, despite traditionally being considered a fast parameter, needs to be slow to broaden the space of oscillatory solutions. The addition of multiple, independent DNA binding sites further expands the oscillatory parameter space for the repressor-titration oscillator and lengthens the period of both oscillators. This effect is a combination of increased effective delay of the unbinding kinetics due to multiple binding sites and increased promoter ul...

  19. Resistance to Linezolid Caused by Modifications at Its Binding Site on the Ribosome

    DEFF Research Database (Denmark)

    Long, Katherine S.; Vester, Birte

    2012-01-01

    Linezolid is an oxazolidinone antibiotic in clinical use for the treatment of serious infections of resistant Gram-positive bacteria. It inhibits protein synthesis by binding to the peptidyl transferase center on the ribosome. Almost all known resistance mechanisms involve small alterations...... to the linezolid binding site, so this review will therefore focus on the various changes that can adversely affect drug binding and confer resistance. High-resolution structures of linezolid bound to the 50S ribosomal subunit show that it binds in a deep cleft that is surrounded by 23S rRNA nucleotides. Mutation...... of 23S rRNA has for some time been established as a linezolid resistance mechanism. Although ribosomal proteins L3 and L4 are located further away from the bound drug, mutations in specific regions of these proteins are increasingly being associated with linezolid resistance. However, very little...

  20. Probing the orthosteric binding site of GABAA receptors with heterocyclic GABA carboxylic acid bioisosteres

    DEFF Research Database (Denmark)

    Petersen, Jette G; Bergmann, Rikke; Krogsgaard-Larsen, Povl;

    2013-01-01

    the orthosteric binding site. The physicochemical properties of the heterocyclic moieties making them suitable for bioisosteric replacement of the carboxylic acid in the molecule of GABA are discussed. A variety of synthetic strategies for synthesis of the heterocyclic scaffolds are available. Likewise, methods...... for introduction of substituents into specific positions of the heterocyclic scaffolds facilitate the investigation of different regions in the orthosteric binding pocket in close vicinity of the core scaffolds of muscimol/GABA. The development of structural models, from pharmacophore models to receptor homology...... models, has provided more insight into the molecular basis for binding. Similar binding modes are proposed for the heterocyclic GABA analogues covered in this review by use of ligand-receptor docking into the receptor homology model and the presented structure-activity relationships. A network...

  1. External location of sites on pig erythrocyte membranes that bind nitrobenzylthioinosine

    Energy Technology Data Exchange (ETDEWEB)

    Agbanyo, F.R.; Cass, C.E.; Paterson, A.R.

    1988-03-01

    Nucleoside transport in erythrocytes of various species is inhibited by the binding of nitrobenzylthioinosine (NBMPR) to high affinity sites associated with nucleoside transport elements of the plasma membrane. The present study examined binding of (/sup 3/H)NBMPR to unsealed ghosts and to sealed right-side-out vesicles (ROVs) and inside-out vesicles (IOVs) prepared from pig erythrocytes. Kd values for NBMPR dissociation from the ligand-site complex in unsealed ghosts, ROVs and IOVs were similar (1.6-2.4 nM), and Bmax values (mean +/- SD) were, respectively, 22.2 +/- 5.5, 25.8 +/- 6.4, and 37.3 +/- 4.0 molecules/fg of protein, reflecting differences in the protein content of the membrane preparations. When temperatures were decreased from 22 degrees to 4 degrees, NBMPR binding to erythrocyte membrane preparations was reduced in IOVs relative to that in unsealed ghosts and ROVs. At 22 degrees, the association of NBMPR molecules with IOVs was slower than with ROVs and unsealed ghosts, differences that were virtually eliminated by permeabilization of the membrane preparations with saponin. Thus, the binding sites were more accessible to external NBMPR in sealed ROVs and unsealed ghosts than in sealed IOVs, indicating that the NBMPR sites are located on the extracellular aspect of the membrane.

  2. Selectivity of the surface binding site (SBS) on barley starch synthase I

    DEFF Research Database (Denmark)

    Wilkens, Casper; Cuesta-Seijo, Jose A.; Palcic, Monica;

    2014-01-01

    Starch synthase I (SSI) from various sources has been shown to preferentially elongate branch chains of degree of polymerisation (DP) from 6–7 to produce chains of DP 8–12. In the recently determined crystal structure of barley starch synthase I (HvSSI) a so-called surface binding site (SBS) was ...

  3. Asap: a framework for over-representation statistics for transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Troels T Marstrand

    Full Text Available BACKGROUND: In studies of gene regulation the efficient computational detection of over-represented transcription factor binding sites is an increasingly important aspect. Several published methods can be used for testing whether a set of hypothesised co-regulated genes share a common regulatory regime based on the occurrence of the modelled transcription factor binding sites. However there is little or no information available for guiding the end users choice of method. Furthermore it would be necessary to obtain several different software programs from various sources to make a well-founded choice. METHODOLOGY: We introduce a software package, Asap, for fast searching with position weight matrices that include several standard methods for assessing over-representation. We have compared the ability of these methods to detect over-represented transcription factor binding sites in artificial promoter sequences. Controlling all aspects of our input data we are able to identify the optimal statistics across multiple threshold values and for sequence sets containing different distributions of transcription factor binding sites. CONCLUSIONS: We show that our implementation is significantly faster than more naïve scanning algorithms when searching with many weight matrices in large sequence sets. When comparing the various statistics, we show that those based on binomial over-representation and Fisher's exact test performs almost equally good and better than the others. An online server is available at http://servers.binf.ku.dk/asap/.

  4. Training increases the concentration of [3H]ouabain-binding sites in rat skeletal muscle

    DEFF Research Database (Denmark)

    Kjeldsen, K; Richter, Erik; Galbo, H;

    1986-01-01

    ]ouabain-binding sites in rat hindlimb muscles was up to 46% (P less than 0.001) higher than in those obtained from age-matched controls. Whereas muscle Na+, K+ contents remained unchanged, the concentration of citrate synthase increased by up to 76% (P less than 0.001). Training induced no change in the [3H...

  5. PDNAsite: Identification of DNA-binding Site from Protein Sequence by Incorporating Spatial and Sequence Context.

    Science.gov (United States)

    Zhou, Jiyun; Xu, Ruifeng; He, Yulan; Lu, Qin; Wang, Hongpeng; Kong, Bing

    2016-01-01

    Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community. PMID:27282833

  6. Studies on ATP-diphosphohydrolase nucleotide-binding sites by intrinsic fluorescence

    Directory of Open Access Journals (Sweden)

    A.M. Kettlun

    2000-07-01

    Full Text Available Potato apyrase, a soluble ATP-diphosphohydrolase, was purified to homogeneity from several clonal varieties of Solanum tuberosum. Depending on the source of the enzyme, differences in kinetic and physicochemical properties have been described, which cannot be explained by the amino acid residues present in the active site. In order to understand the different kinetic behavior of the Pimpernel (ATPase/ADPase = 10 and Desirée (ATPase/ADPase = 1 isoenzymes, the nucleotide-binding site of these apyrases was explored using the intrinsic fluorescence of tryptophan. The intrinsic fluorescence of the two apyrases was slightly different. The maximum emission wavelengths of the Desirée and Pimpernel enzymes were 336 and 340 nm, respectively, suggesting small differences in the microenvironment of Trp residues. The Pimpernel enzyme emitted more fluorescence than the Desirée apyrase at the same concentration although both enzymes have the same number of Trp residues. The binding of the nonhydrolyzable substrate analogs decreased the fluorescence emission of both apyrases, indicating the presence of conformational changes in the neighborhood of Trp residues. Experiments with quenchers of different polarities, such as acrylamide, Cs+ and I- indicated the existence of differences in the nucleotide-binding site, as further shown by quenching experiments in the presence of nonhydrolyzable substrate analogs. Differences in the nucleotide-binding site may explain, at least in part, the kinetic differences of the Pimpernel and Desirée isoapyrases.

  7. Engineering Factor Xa Inhibitor with Multiple Platelet-Binding Sites Facilitates its Platelet Targeting

    Science.gov (United States)

    Zhu, Yuanjun; Li, Ruyi; Lin, Yuan; Shui, Mengyang; Liu, Xiaoyan; Chen, Huan; Wang, Yinye

    2016-01-01

    Targeted delivery of antithrombotic drugs centralizes the effects in the thrombosis site and reduces the hemorrhage side effects in uninjured vessels. We have recently reported that the platelet-targeting factor Xa (FXa) inhibitors, constructed by engineering one Arg-Gly-Asp (RGD) motif into Ancylostoma caninum anticoagulant peptide 5 (AcAP5), can reduce the risk of systemic bleeding than non-targeted AcAP5 in mouse arterial injury model. Increasing the number of platelet-binding sites of FXa inhibitors may facilitate their adhesion to activated platelets, and further lower the bleeding risks. For this purpose, we introduced three RGD motifs into AcAP5 to generate a variant NR4 containing three platelet-binding sites. NR4 reserved its inherent anti-FXa activity. Protein-protein docking showed that all three RGD motifs were capable of binding to platelet receptor αIIbβ3. Molecular dynamics simulation demonstrated that NR4 has more opportunities to interact with αIIbβ3 than single-RGD-containing NR3. Flow cytometry analysis and rat arterial thrombosis model further confirmed that NR4 possesses enhanced platelet targeting activity. Moreover, NR4-treated mice showed a trend toward less tail bleeding time than NR3-treated mice in carotid artery endothelium injury model. Therefore, our data suggest that engineering multiple binding sites in one recombinant protein is a useful tool to improve its platelet-targeting efficiency. PMID:27432161

  8. Engineering Factor Xa Inhibitor with Multiple Platelet-Binding Sites Facilitates its Platelet Targeting.

    Science.gov (United States)

    Zhu, Yuanjun; Li, Ruyi; Lin, Yuan; Shui, Mengyang; Liu, Xiaoyan; Chen, Huan; Wang, Yinye

    2016-01-01

    Targeted delivery of antithrombotic drugs centralizes the effects in the thrombosis site and reduces the hemorrhage side effects in uninjured vessels. We have recently reported that the platelet-targeting factor Xa (FXa) inhibitors, constructed by engineering one Arg-Gly-Asp (RGD) motif into Ancylostoma caninum anticoagulant peptide 5 (AcAP5), can reduce the risk of systemic bleeding than non-targeted AcAP5 in mouse arterial injury model. Increasing the number of platelet-binding sites of FXa inhibitors may facilitate their adhesion to activated platelets, and further lower the bleeding risks. For this purpose, we introduced three RGD motifs into AcAP5 to generate a variant NR4 containing three platelet-binding sites. NR4 reserved its inherent anti-FXa activity. Protein-protein docking showed that all three RGD motifs were capable of binding to platelet receptor αIIbβ3. Molecular dynamics simulation demonstrated that NR4 has more opportunities to interact with αIIbβ3 than single-RGD-containing NR3. Flow cytometry analysis and rat arterial thrombosis model further confirmed that NR4 possesses enhanced platelet targeting activity. Moreover, NR4-treated mice showed a trend toward less tail bleeding time than NR3-treated mice in carotid artery endothelium injury model. Therefore, our data suggest that engineering multiple binding sites in one recombinant protein is a useful tool to improve its platelet-targeting efficiency. PMID:27432161

  9. Elucidation of binding mechanism and identification of binding site for an anti HIV drug, stavudine on human blood proteins.

    Science.gov (United States)

    Sandhya, B; Hegde, Ashwini H; Seetharamappa, J

    2013-05-01

    The binding of stavudine (STV) to two human blood proteins [human hemoglobin (HHb) and human serum albumin (HSA)] was studied in vitro under simulated physiological conditions by spectroscopic methods viz., fluorescence, UV absorption, resonance light scattering, synchronous fluorescence, circular dichroism (CD) and three-dimensional fluorescence. The binding parameters of STV-blood protein were determined from fluorescence quenching studies. Stern-Volmer plots indicated the presence of static quenching mechanism in the interaction of STV with blood proteins. The values of n close to unity indicated that one molecule of STV bound to one molecule of blood protein. The binding process was found to be spontaneous. Analysis of thermodynamic parameters revealed the presence of hydrogen bond and van der Waals forces between protein and STV. Displacement experiments indicated the binding of STV to Sudlow's site I on HSA. Secondary structures of blood proteins have undergone changes upon interaction with STV as evident from the reduction of α-helices (from 46.11% in free HHb to 38.34% in STV-HHb, and from 66.44% in free HSA to 52.26% in STV-HSA). Further, the alterations in secondary structures of proteins in the presence of STV were confirmed by synchronous and 3D-fluorescence spectral data. The distance between the blood protein (donor) and acceptor (STV) was found to be 5.211 and 5.402 nm for STV-HHb and STV-HSA, respectively based on Föster's non-radiative energy transfer theory. Effect of some metal ions was also investigated. The fraction of STV bound to HSA was found to be 87.8%.

  10. The function of the secondary DNA-binding site of RecA protein during DNA strand exchange.

    OpenAIRE

    Mazin, A V; Kowalczykowski, S C

    1998-01-01

    RecA protein features two distinct DNA-binding sites. During DNA strand exchange, the primary site binds to single-stranded DNA (ssDNA), forming the helical RecA nucleoprotein filament. The weaker secondary site binds double-stranded DNA (dsDNA) during the homology search process. Here we demonstrate that this site has a second important function. It binds the ssDNA strand that is displaced from homologous duplex DNA during DNA strand exchange, stabilizing the initial heteroduplex DNA product...

  11. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, Thomas F.; Chapman, Michael S. (Oregon HSU)

    2012-05-24

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  12. Identification of the heparin binding site on adeno-associated virus serotype 3B (AAV-3B)

    Energy Technology Data Exchange (ETDEWEB)

    Lerch, Thomas F.; Chapman, Michael S., E-mail: chapmami@ohsu.edu

    2012-02-05

    Adeno-associated virus is a promising vector for gene therapy. In the current study, the binding site on AAV serotype 3B for the heparan sulfate proteoglycan (HSPG) receptor has been characterized. X-ray diffraction identified a disaccharide binding site at the most positively charged region on the virus surface. The contributions of basic amino acids at this and other sites were characterized using site-directed mutagenesis. Both heparin and cell binding are correlated to positive charge at the disaccharide binding site, and transduction is significantly decreased in AAV-3B vectors mutated at this site to reduce heparin binding. While the receptor attachment sites of AAV-3B and AAV-2 are both in the general vicinity of the viral spikes, the exact amino acids that participate in electrostatic interactions are distinct. Diversity in the mechanisms of cell attachment by AAV serotypes will be an important consideration for the rational design of improved gene therapy vectors.

  13. Predicting RNA-binding sites of proteins using support vector machines and evolutionary information

    Directory of Open Access Journals (Sweden)

    Su Emily

    2008-12-01

    Full Text Available Abstract Background RNA-protein interaction plays an essential role in several biological processes, such as protein synthesis, gene expression, posttranscriptional regulation and viral infectivity. Identification of RNA-binding sites in proteins provides valuable insights for biologists. However, experimental determination of RNA-protein interaction remains time-consuming and labor-intensive. Thus, computational approaches for prediction of RNA-binding sites in proteins have become highly desirable. Extensive studies of RNA-binding site prediction have led to the development of several methods. However, they could yield low sensitivities in trade-off for high specificities. Results We propose a method, RNAProB, which incorporates a new smoothed position-specific scoring matrix (PSSM encoding scheme with a support vector machine model to predict RNA-binding sites in proteins. Besides the incorporation of evolutionary information from standard PSSM profiles, the proposed smoothed PSSM encoding scheme also considers the correlation and dependency from the neighboring residues for each amino acid in a protein. Experimental results show that smoothed PSSM encoding significantly enhances the prediction performance, especially for sensitivity. Using five-fold cross-validation, our method performs better than the state-of-the-art systems by 4.90%~6.83%, 0.88%~5.33%, and 0.10~0.23 in terms of overall accuracy, specificity, and Matthew's correlation coefficient, respectively. Most notably, compared to other approaches, RNAProB significantly improves sensitivity by 7.0%~26.9% over the benchmark data sets. To prevent data over fitting, a three-way data split procedure is incorporated to estimate the prediction performance. Moreover, physicochemical properties and amino acid preferences of RNA-binding proteins are examined and analyzed. Conclusion Our results demonstrate that smoothed PSSM encoding scheme significantly enhances the performance of RNA-binding

  14. Mammalian TBX1 preferentially binds and regulates downstream targets via a tandem T-site repeat.

    Directory of Open Access Journals (Sweden)

    Raquel Castellanos

    Full Text Available Haploinsufficiency or mutation of TBX1 is largely responsible for the etiology of physical malformations in individuals with velo-cardio-facial/DiGeorge syndrome (VCFS/DGS/22q11.2 deletion syndrome. TBX1 encodes a transcription factor protein that contains an evolutionarily conserved DNA binding domain termed the T-box that is shared with other family members. All T-box proteins, examined so far, bind to similar but not identical consensus DNA sequences, indicating that they have specific binding preferences. To identify the TBX1 specific consensus sequence, Systematic Evolution of Ligands by Exponential Enrichment (SELEX was performed. In contrast to other TBX family members recognizing palindrome sequences, we found that TBX1 preferentially binds to a tandem repeat of 5'-AGGTGTGAAGGTGTGA-3'. We also identified a second consensus sequence comprised of a tandem repeat with a degenerated downstream site. We show that three known human disease-causing TBX1 missense mutations (F148Y, H194Q and G310S do not alter nuclear localization, or disrupt binding to the tandem repeat consensus sequences, but they reduce transcriptional activity in cell culture reporter assays. To identify Tbx1-downstream genes, we performed an in silico genome wide analysis of potential cis-acting elements in DNA and found strong enrichment of genes required for developmental processes and transcriptional regulation. We found that TBX1 binds to 19 different loci in vitro, which may correspond to putative cis-acting binding sites. In situ hybridization coupled with luciferase gene reporter assays on three gene loci, Fgf8, Bmper, Otog-MyoD, show that these motifs are directly regulated by TBX1 in vitro. Collectively, the present studies establish new insights into molecular aspects of TBX1 binding to DNA. This work lays the groundwork for future in vivo studies, including chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq to further elucidate the

  15. Mammalian TBX1 preferentially binds and regulates downstream targets via a tandem T-site repeat.

    Science.gov (United States)

    Castellanos, Raquel; Xie, Qing; Zheng, Deyou; Cvekl, Ales; Morrow, Bernice E

    2014-01-01

    Haploinsufficiency or mutation of TBX1 is largely responsible for the etiology of physical malformations in individuals with velo-cardio-facial/DiGeorge syndrome (VCFS/DGS/22q11.2 deletion syndrome). TBX1 encodes a transcription factor protein that contains an evolutionarily conserved DNA binding domain termed the T-box that is shared with other family members. All T-box proteins, examined so far, bind to similar but not identical consensus DNA sequences, indicating that they have specific binding preferences. To identify the TBX1 specific consensus sequence, Systematic Evolution of Ligands by Exponential Enrichment (SELEX) was performed. In contrast to other TBX family members recognizing palindrome sequences, we found that TBX1 preferentially binds to a tandem repeat of 5'-AGGTGTGAAGGTGTGA-3'. We also identified a second consensus sequence comprised of a tandem repeat with a degenerated downstream site. We show that three known human disease-causing TBX1 missense mutations (F148Y, H194Q and G310S) do not alter nuclear localization, or disrupt binding to the tandem repeat consensus sequences, but they reduce transcriptional activity in cell culture reporter assays. To identify Tbx1-downstream genes, we performed an in silico genome wide analysis of potential cis-acting elements in DNA and found strong enrichment of genes required for developmental processes and transcriptional regulation. We found that TBX1 binds to 19 different loci in vitro, which may correspond to putative cis-acting binding sites. In situ hybridization coupled with luciferase gene reporter assays on three gene loci, Fgf8, Bmper, Otog-MyoD, show that these motifs are directly regulated by TBX1 in vitro. Collectively, the present studies establish new insights into molecular aspects of TBX1 binding to DNA. This work lays the groundwork for future in vivo studies, including chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) to further elucidate the molecular

  16. De-novo identification of PPARgamma/RXR binding sites and direct targets during adipogenesis.

    Directory of Open Access Journals (Sweden)

    Mohamed Sabry Hamza

    Full Text Available BACKGROUND: The pathophysiology of obesity and type 2 diabetes mellitus is associated with abnormalities in endocrine signaling in adipose tissue and one of the key signaling affectors operative in these disorders is the nuclear hormone transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma. PPARgamma has pleiotropic functions affecting a wide range of fundamental biological processes including the regulation of genes that modulate insulin sensitivity, adipocyte differentiation, inflammation and atherosclerosis. To date, only a limited number of direct targets for PPARgamma have been identified through research using the well established pre-adipogenic cell line, 3T3-L1. In order to obtain a genome-wide view of PPARgamma binding sites, we applied the pair end-tagging technology (ChIP-PET to map PPARgamma binding sites in 3T3-L1 preadipocyte cells. METHODOLOGY/PRINCIPAL FINDINGS: Coupling gene expression profile analysis with ChIP-PET, we identified in a genome-wide manner over 7700 DNA binding sites of the transcription factor PPARgamma and its heterodimeric partner RXR during the course of adipocyte differentiation. Our validation studies prove that the identified sites are bona fide binding sites for both PPARgamma and RXR and that they are functionally capable of driving PPARgamma specific transcription. Our results strongly indicate that PPARgamma is the predominant heterodimerization partner for RXR during late stages of adipocyte differentiation. Additionally, we find that PPARgamma/RXR association is enriched within the proximity of the 5' region of the transcription start site and this association is significantly associated with transcriptional up-regulation of genes involved in fatty acid and lipid metabolism confirming the role of PPARgamma as the master transcriptional regulator of adipogenesis. Evolutionary conservation analysis of these binding sites is greater when adjacent to up-regulated genes than down

  17. Investigation of the metal binding site in methionine aminopeptidase by density functional theory

    DEFF Research Database (Denmark)

    Jørgensen, Anne Techau; Norrby, Per-Ola; Liljefors, Tommy

    2002-01-01

    All methionine aminopeptidases exhibit the same conserved metal binding site. The structure of this site with either Co2+ ions or Zn2+ ions was investigated using density functional theory. The calculations showed that the structure of the site was not influenced by the identity of the metal ions....... This was the case for both of the systems studied; one based on the X-ray structure of the human methionine aminopeptidase type 2 (hMetAP-2) and the other based on the X-ray structure of the E. coli methionine aminopeptidase type 1 (eMetAP-1). Another important structural issue is the identity of the bridging...

  18. Evaluation of a novel virtual screening strategy using receptor decoy binding sites.

    Science.gov (United States)

    Patel, Hershna; Kukol, Andreas

    2016-01-01

    Virtual screening is used in biomedical research to predict the binding affinity of a large set of small organic molecules to protein receptor targets. This report shows the development and evaluation of a novel yet straightforward attempt to improve this ranking in receptor-based molecular docking using a receptor-decoy strategy. This strategy includes defining a decoy binding site on the receptor and adjusting the ranking of the true binding-site virtual screen based on the decoy-site screen. The results show that by docking against a receptor-decoy site with Autodock Vina, improved Receiver Operator Characteristic Enrichment (ROCE) was achieved for 5 out of fifteen receptor targets investigated, when up to 15 % of a decoy site rank list was considered. No improved enrichment was seen for 7 targets, while for 3 targets the ROCE was reduced. The extent to which this strategy can effectively improve ligand prediction is dependent on the target receptor investigated. PMID:27553084

  19. A structural-based strategy for recognition of transcription factor binding sites.

    Directory of Open Access Journals (Sweden)

    Beisi Xu

    Full Text Available Scanning through genomes for potential transcription factor binding sites (TFBSs is becoming increasingly important in this post-genomic era. The position weight matrix (PWM is the standard representation of TFBSs utilized when scanning through sequences for potential binding sites. However, many transcription factor (TF motifs are short and highly degenerate, and methods utilizing PWMs to scan for sites are plagued by false positives. Furthermore, many important TFs do not have well-characterized PWMs, making identification of potential binding sites even more difficult. One approach to the identification of sites for these TFs has been to use the 3D structure of the TF to predict the DNA structure around the TF and then to generate a PWM from the predicted 3D complex structure. However, this approach is dependent on the similarity of the predicted structure to the native structure. We introduce here a novel approach to identify TFBSs utilizing structure information that can be applied to TFs without characterized PWMs, as long as a 3D complex structure (TF/DNA exists. This approach utilizes an energy function that is uniquely trained on each structure. Our approach leads to increased prediction accuracy and robustness compared with those using a more general energy function. The software is freely available upon request.

  20. STarMirDB: A database of microRNA binding sites.

    Science.gov (United States)

    Rennie, William; Kanoria, Shaveta; Liu, Chaochun; Mallick, Bibekanand; Long, Dang; Wolenc, Adam; Carmack, C Steven; Lu, Jun; Ding, Ye

    2016-06-01

    microRNAs (miRNAs) are an abundant class of small endogenous non-coding RNAs (ncRNAs) of ∼22 nucleotides (nts) in length. These small regulatory molecules are involved in diverse developmental, physiological and pathological processes. miRNAs target mRNAs (mRNAs) for translational repression and/or mRNA degradation. Predictions of miRNA binding sites facilitate experimental validation of miRNA targets. Models developed with data from CLIP studies have been used for predictions of miRNA binding sites in the whole transcriptomes of human, mouse and worm. The prediction results have been assembled into STarMirDB, a new database of miRNA binding sites available at http://sfold.wadsworth.org/starmirDB.php . STarMirDB can be searched by miRNAs or mRNAs separately or in combination. The search results are categorized into seed and seedless sites in 3' UTR, CDS and 5' UTR. For each predicted site, STarMirDB provides a comprehensive list of sequence, thermodynamic and target structural features that are known to influence miRNA: target interaction. A high resolution PDF diagram of the conformation of the miRNA:target hybrid is also available for visualization and publication. The results of a database search are available through both an interactive viewer and downloadable text files. PMID:27144897

  1. The conserved WW-domain binding sites in Dystroglycan C-terminus are essential but partially redundant for Dystroglycan function

    Directory of Open Access Journals (Sweden)

    Deng W-M

    2009-02-01

    Full Text Available Abstract Background Dystroglycan (Dg is a transmembrane protein that is a part of the Dystrophin Glycoprotein Complex (DGC which connects the extracellular matrix to the actin cytoskeleton. The C-terminal end of Dg contains a number of putative SH3, SH2 and WW domain binding sites. The most C-terminal PPXY motif has been established as a binding site for Dystrophin (Dys WW-domain. However, our previous studies indicate that both Dystroglycan PPXY motives, WWbsI and WWbsII can bind Dystrophin protein in vitro. Results We now find that both WW binding sites are important for maintaining full Dg function in the establishment of oocyte polarity in Drosophila. If either WW binding site is mutated, the Dg protein can still be active. However, simultaneous mutations in both WW binding sites abolish the Dg activities in both overexpression and loss-of-function oocyte polarity assays in vivo. Additionally, sequence comparisons of WW binding sites in 12 species of Drosophila, as well as in humans, reveal a high level of conservation. This preservation throughout evolution supports the idea that both WW binding sites are functionally required. Conclusion Based on the obtained results we propose that the presence of the two WW binding sites in Dystroglycan secures the essential interaction between Dg and Dys and might further provide additional regulation for the cytoskeletal interactions of this complex.

  2. HPV 16 E2 binding sites 1 and 2 become more methylated than E2 binding site 4 during cervical carcinogenesis.

    Science.gov (United States)

    Leung, Tsin-Wah; Liu, Stephanie S; Leung, Rebecca C Y; Chu, Mandy M Y; Cheung, Annie N Y; Ngan, Hextan Y S

    2015-06-01

    E2 protein binding to the four E2 binding sites (E2BSs) at the long control region of Human Papillomavirus (HPV) 16/18 genome may exert either transcriptional activation/repression on E6 and E7 oncoproteins. Methylation status at the E2BSs may affect the relative binding of E2 protein to them. In this study, methylation percentage at E2BS 1, 2 (promoter-proximal), and 4 (promoter-distal) were assessed by pyrosequencing and compared among HPV 16/18-positive cervical cancer, high-grade, and low-grade Cervical Intraepithelial Neoplasia, Atypical Squamous Cells of Undetermined Significance, and normal cervical epithelium. HPV 16 E2BS1&2 were more methylated than HPV 16 E2BS4 in cervical cancer whereas in cervical premalignant lesions and normal epithelium, HPV 16 E2BS1&2 were less methylated than HPV 16 E2BS4. HPV 18 E2BS1&2 remained more methylated than E2BS4 in all histological groups. HPV 16 E2BS1&2 methylation increased from high-grade lesions to cervical cancer (P E2 protein to E2BS4. Increasing methylation at HPV 16/18 E2BSs are potentially useful adjunctive molecular markers for predicting progression from low-grade to high-grade cervical premalignant lesions and from high-grade lesions to cervical cancer. PMID:25648229

  3. pMD-Membrane: A Method for Ligand Binding Site Identification in Membrane-Bound Proteins.

    Directory of Open Access Journals (Sweden)

    Priyanka Prakash

    2015-10-01

    Full Text Available Probe-based or mixed solvent molecular dynamics simulation is a useful approach for the identification and characterization of druggable sites in drug targets. However, thus far the method has been applied only to soluble proteins. A major reason for this is the potential effect of the probe molecules on membrane structure. We have developed a technique to overcome this limitation that entails modification of force field parameters to reduce a few pairwise non-bonded interactions between selected atoms of the probe molecules and bilayer lipids. We used the resulting technique, termed pMD-membrane, to identify allosteric ligand binding sites on the G12D and G13D oncogenic mutants of the K-Ras protein bound to a negatively charged lipid bilayer. In addition, we show that differences in probe occupancy can be used to quantify changes in the accessibility of druggable sites due to conformational changes induced by membrane binding or mutation.

  4. A conserved chloramphenicol binding site at the entrance to the ribosomal peptide exit tunnel

    DEFF Research Database (Denmark)

    Long, Katherine S; Porse, Bo T

    2003-01-01

    The antibiotic chloramphenicol produces modifications in 23S rRNA when bound to ribosomes from the bacterium Escherichia coli and the archaeon Halobacterium halobium and irradiated with 365 nm light. The modifications map to nucleotides m(5)U747 and C2611/C2612, in domains II and V, respectively......, of E.coli 23S rRNA and G2084 (2058 in E.coli numbering) in domain V of H.halobium 23S rRNA. The modification sites overlap with a portion of the macrolide binding site and cluster at the entrance to the peptide exit tunnel. The data correlate with the recently reported chloramphenicol binding site on...

  5. Metal ion binding sites of bacteriorhodopsin. Laser-induced lanthanide luminescence study

    International Nuclear Information System (INIS)

    Laser-excited luminescence lifetimes of lanthanide ions bound to bacteriorhodopsin have been measured in deionized membranes. The luminescence titration curve, as well as the binding curve of apomembrane (retinal-free) with Eu3+, has shown that the removal of the retinal does not significantly affect the affinity of Eu3+ for the two high affinity sites of bacteriorhodopsin. The D2O effects on decay rate constants indicate that Eu3+ bound to the high affinity sites of native membrane or apomembrane is coordinated by about six ligands in the first coordination sphere. Tb3+ is shown to be coordinated by four ligands. The data indicate that metal ions bind to the protein with a specific geometry. From intermetal energy transfer experiments using Eu3+-Pr3+, Tb3+-Ho3+, and Tb3+-Er3+, the distance between the two high affinity sites is estimated to be 7-8 A

  6. Identification of inhibitor binding site in human sirtuin 2 using molecular docking and dynamics simulations.

    Science.gov (United States)

    Sakkiah, Sugunadevi; Arooj, Mahreen; Kumar, Manian Rajesh; Eom, Soo Hyun; Lee, Keun Woo

    2013-01-01

    The ability to identify the site of a protein that can bind with high affinity to small, drug-like compounds has been an important goal in drug design. Sirtuin 2 (SIRT2), histone deacetylase protein family, plays a central role in the regulation of various pathways. Hence, identification of drug for SIRT2 has attracted great interest in the drug discovery community. To elucidate the molecular basis of the small molecules interactions to inhibit the SIRT2 function we employed the molecular docking, molecular dynamics simulations, and the molecular mechanism Poisson-Boltzmann/surface area (MM-PBSA) calculations. Five well know inhibitors such as suramin, mol-6, sirtinol, 67, and nf675 were selected to establish the nature of the binding mode of the inhibitors in the SIRT2 active site. The molecular docking and dynamics simulations results revealed that the hydrogen bonds between Arg97 and Gln167 are crucial to inhibit the function of SIRT2. In addition, the MM-PBSA calculations revealed that binding of inhibitors to SIRT2 is mainly driven by van der Waals/non-polar interactions. Although the five inhibitors are very different in structure, shape, and electrostatic potential, they are able to fit in the same binding pocket. These findings from this study provide insights to elucidate the binding pattern of SIRT2 inhibitors and help in the rational structure-based design of novel SIRT2 inhibitors with improved potency and better resistance profile. PMID:23382805

  7. Identification of inhibitor binding site in human sirtuin 2 using molecular docking and dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Sugunadevi Sakkiah

    Full Text Available The ability to identify the site of a protein that can bind with high affinity to small, drug-like compounds has been an important goal in drug design. Sirtuin 2 (SIRT2, histone deacetylase protein family, plays a central role in the regulation of various pathways. Hence, identification of drug for SIRT2 has attracted great interest in the drug discovery community. To elucidate the molecular basis of the small molecules interactions to inhibit the SIRT2 function we employed the molecular docking, molecular dynamics simulations, and the molecular mechanism Poisson-Boltzmann/surface area (MM-PBSA calculations. Five well know inhibitors such as suramin, mol-6, sirtinol, 67, and nf675 were selected to establish the nature of the binding mode of the inhibitors in the SIRT2 active site. The molecular docking and dynamics simulations results revealed that the hydrogen bonds between Arg97 and Gln167 are crucial to inhibit the function of SIRT2. In addition, the MM-PBSA calculations revealed that binding of inhibitors to SIRT2 is mainly driven by van der Waals/non-polar interactions. Although the five inhibitors are very different in structure, shape, and electrostatic potential, they are able to fit in the same binding pocket. These findings from this study provide insights to elucidate the binding pattern of SIRT2 inhibitors and help in the rational structure-based design of novel SIRT2 inhibitors with improved potency and better resistance profile.

  8. Localization of CGRP receptor components and receptor binding sites in rhesus monkey brainstem: A detailed study using in situ hybridization, immunofluorescence, and autoradiography.

    Science.gov (United States)

    Eftekhari, Sajedeh; Gaspar, Renee C; Roberts, Rhonda; Chen, Tsing-Bau; Zeng, Zhizhen; Villarreal, Stephanie; Edvinsson, Lars; Salvatore, Christopher A

    2016-01-01

    Functional imaging studies have revealed that certain brainstem areas are activated during migraine attacks. The neuropeptide calcitonin gene-related peptide (CGRP) is associated with activation of the trigeminovascular system and transmission of nociceptive information and plays a key role in migraine pathophysiology. Therefore, to elucidate the role of CGRP, it is critical to identify the regions within the brainstem that process CGRP signaling. In situ hybridization and immunofluorescence were performed to detect mRNA expression and define cellular localization of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1), respectively. To define CGRP receptor binding sites, in vitro autoradiography was performed with [(3)H]MK-3207 (a CGRP receptor antagonist). CLR and RAMP1 mRNA and protein expression were detected in the pineal gland, medial mammillary nucleus, median eminence, infundibular stem, periaqueductal gray, area postrema, pontine raphe nucleus, gracile nucleus, spinal trigeminal nucleus, and spinal cord. RAMP1 mRNA expression was also detected in the posterior hypothalamic area, trochlear nucleus, dorsal raphe nucleus, medial lemniscus, pontine nuclei, vagus nerve, inferior olive, abducens nucleus, and motor trigeminal nucleus; protein coexpression of CLR and RAMP1 was observed in these areas via immunofluorescence. [(3)H]MK-3207 showed high binding densities concordant with mRNA and protein expression. The present study suggests that several regions in the brainstem may be involved in CGRP signaling. Interestingly, we found receptor expression and antagonist binding in some areas that are not protected by the blood-brain barrier, which suggests that drugs inhibiting CGRP signaling may not be able to penetrate the central nervous system to antagonize receptors in these brain regions. PMID:26105175

  9. GHB receptor targets in the CNS: focus on high-affinity binding sites.

    Science.gov (United States)

    Bay, Tina; Eghorn, Laura F; Klein, Anders B; Wellendorph, Petrine

    2014-01-15

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB effects. In this research update, a description of the various reported receptors for GHB is provided, including GABAB receptors, certain GABAA receptor subtypes and other reported GHB receptors. The main focus will thus be on the high-affinity binding targets for GHB and their potential functional roles in the mammalian brain.

  10. STarMir Tools for Prediction of microRNA Binding Sites.

    Science.gov (United States)

    Kanoria, Shaveta; Rennie, William; Liu, Chaochun; Carmack, C Steven; Lu, Jun; Ding, Ye

    2016-01-01

    MicroRNAs (miRNAs) are a class of endogenous short noncoding RNAs that regulate gene expression by targeting messenger RNAs (mRNAs), which results in translational repression and/or mRNA degradation. As regulatory molecules, miRNAs are involved in many mammalian biological processes and also in the manifestation of certain human diseases. As miRNAs play central role in the regulation of gene expression, understanding miRNA-binding patterns is essential to gain an insight of miRNA mediated gene regulation and also holds promise for therapeutic applications. Computational prediction of miRNA binding sites on target mRNAs facilitates experimental investigation of miRNA functions. This chapter provides protocols for using the STarMir web server for improved predictions of miRNA binding sites on a target mRNA. As an application module of the Sfold RNA package, the current version of STarMir is an implementation of logistic prediction models developed with high-throughput miRNA binding data from cross-linking immunoprecipitation (CLIP) studies. The models incorporated comprehensive thermodynamic, structural, and sequence features, and were found to make improved predictions of both seed and seedless sites, in comparison to the established algorithms (Liu et al., Nucleic Acids Res 41:e138, 2013). Their broad applicability was indicated by their good performance in cross-species validation. STarMir is freely available at http://sfold.wadsworth.org/starmir.html . PMID:27665594

  11. Identification of small molecule binding sites within proteins using phage display technology.

    Energy Technology Data Exchange (ETDEWEB)

    Rodi, D. J.; Agoston, G. E.; Manon, R.; Lapcevich, R.; Green, S. J.; Makowski, L.; Biosciences Division; EntreMed Inc.; Florida State Univ.

    2001-11-01

    Affinity selection of peptides displayed on phage particles was used as the basis for mapping molecular contacts between small molecule ligands and their protein targets. Analysis of the crystal structures of complexes between proteins and small molecule ligands revealed that virtually all ligands of molecular weight 300 Da or greater have a continuous binding epitope of 5 residues or more. This observation led to the development of a technique for binding site identification which involves statistical analysis of an affinity-selected set of peptides obtained by screening of libraries of random, phage-displayed peptides against small molecules attached to solid surfaces. A random sample of the selected peptides is sequenced and used as input for a similarity scanning program which calculates cumulative similarity scores along the length of the putative receptor. Regions of the protein sequence exhibiting the highest similarity with the selected peptides proved to have a high probability of being involved in ligand binding. This technique has been employed successfully to map the contact residues in multiple known targets of the anticancer drugs paclitaxel (Taxol), docetaxel (Taxotere) and 2-methoxyestradiol and the glycosaminoglycan hyaluronan, and to identify a novel paclitaxel receptor [1]. These data corroborate the observation that the binding properties of peptides displayed on the surface of phage particles can mimic the binding properties of peptides in naturally occurring proteins. It follows directly that structural context is relatively unimportant for determining the binding properties of these disordered peptides. This technique represents a novel, rapid, high resolution method for identifying potential ligand binding sites in the absence of three-dimensional information and has the potential to greatly enhance the speed of development of novel small molecule pharmaceuticals.

  12. Identification and Analysis of Papillomavirus E2 Protein Binding Sites in the Human Genome

    OpenAIRE

    Võsa, Liisi; Sudakov, Aleksander; Remm, Maido; Ustav, Mart; Kurg, Reet

    2012-01-01

    Papillomavirus E2 protein is required for the replication and maintenance of viral genomes and transcriptional regulation of viral genes. E2 functions through sequence-specific binding to 12-bp DNA motifs—E2 binding sites (E2BS)—in the virus genome. Papillomaviruses are able to establish persistent infection in their host and have developed a long-term relationship with the host cell in order to guarantee the propagation of the virus. In this study, we have analyzed the occurrence and functio...

  13. Intravital imaging of Bacillus thuringiensis Cry1A toxin binding sites in the midgut of silkworm.

    Science.gov (United States)

    Li, Na; Wang, Jing; Han, Heyou; Huang, Liang; Shao, Feng; Li, Xuepu

    2014-02-15

    Identification of the resistance mechanism of insects against Bacillus thuringiensis Cry1A toxin is becoming an increasingly challenging task. This fact highlights the need for establishing new methods to further explore the molecular interactions of Cry1A toxin with insects and the receptor-binding region of Cry1A toxins for their wider application as biopesticides and a gene source for gene-modified crops. In this contribution, a quantum dot-based near-infrared fluorescence imaging method has been applied for direct dynamic tracking of the specific binding of Cry1A toxins, CrylAa and CrylAc, to the midgut tissue of silkworm. The in vitro fluorescence imaging displayed the higher binding specificity of CrylAa-QD probes compared to CrylAc-QD to the brush border membrane vesicles of midgut from silkworm. The in vivo imaging demonstrated that more CrylAa-QDs binding to silkworm midgut could be effectively and distinctly monitored in living silkworms. Furthermore, frozen section analysis clearly indicated the broader receptor-binding region of Cry1Aa compared to that of Cry1Ac in the midgut part. These observations suggest that the insecticidal activity of Cry toxins may depend on the receptor-binding sites, and this scatheless and visual near-infrared fluorescence imaging could provide a new avenue to study the resistance mechanism to maintain the insecticidal activity of B. thuringiensis toxins. PMID:24252542

  14. Novel Phosphotidylinositol 4,5-Bisphosphate Binding Sites on Focal Adhesion Kinase.

    Directory of Open Access Journals (Sweden)

    Jun Feng

    Full Text Available Focal adhesion kinase (FAK is a protein tyrosine kinase that is ubiquitously expressed, recruited to focal adhesions, and engages in a variety of cellular signaling pathways. Diverse cellular responses, such as cell migration, proliferation, and survival, are regulated by FAK. Prior to activation, FAK adopts an autoinhibited conformation in which the FERM domain binds the kinase domain, blocking access to the activation loop and substrate binding site. Activation of FAK occurs through conformational change, and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PIP2 are known to facilitate this process. PIP2 binding alters the autoinhibited conformation of the FERM and kinase domains and subsequently exposes the activation loop to phosphorylation. However, the detailed molecular mechanism of PIP2 binding and its role in FAK activation remain unclear. In this study, we conducted coarse-grained molecular dynamics simulations to investigate the binding of FAK to PIP2. Our simulations identified novel areas of basic residues in the kinase domain of FAK that potentially undergo transient binding to PIP2 through electrostatic attractions. Our investigation provides a molecular picture of PIP2-initiated FAK activation and introduces promising new pathways for future studies of FAK regulation.

  15. Oriented Immobilization of Fab Fragments by Site-Specific Biotinylation at the Conserved Nucleotide Binding Site for Enhanced Antigen Detection.

    Science.gov (United States)

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-09-01

    Oriented immobilization of antibodies and antibody fragments has become increasingly important as a result of the efforts to reduce the size of diagnostic and sensor devices to miniaturized dimensions for improved accessibility to the end-user. Reduced dimensions of sensor devices necessitate the immobilized antibodies to conserve their antigen binding activity for proper operation. Fab fragments are becoming more commonly used in small-scaled diagnostic devices due to their small size and ease of manufacture. In this study, we used the previously described UV-NBS(Biotin) method to functionalize Fab fragments with IBA-EG11-Biotin linker utilizing UV energy to initiate a photo-cross-linking reaction between the nucleotide binding site (NBS) on the Fab fragment and IBA-Biotin molecule. Our results demonstrate that immobilization of biotinylated Fab fragments via UV-NBS(Biotin) method generated the highest level of immobilized Fab on surfaces when compared to other typical immobilization methods while preserving antigen binding activity. UV-NBS(Biotin) method provided 432-fold, 114-fold, and 29-fold improved antigen detection sensitivity than physical adsorption, NHS-Biotin, and ε-NH3(+), methods, respectively. Additionally, the limit of detection (LOD) for PSA utilizing Fab fragments immobilized via UV-NBS(Biotin) method was significantly lower than that of the other immobilization methods, with an LOD of 0.4 pM PSA. In summary, site-specific biotinylation of Fab fragments without structural damage or loss in antigen binding activity provides a wide range of application potential for UV-NBS immobilization technique across numerous diagnostic devices and nanotechnologies.

  16. Endogenous progesterone and its cellular binding sites in wheat exposed to drought stress.

    Science.gov (United States)

    Janeczko, Anna; Oklešťková, Jana; Siwek, Agata; Dziurka, Michał; Pociecha, Ewa; Kocurek, Maciej; Novák, Ondřej

    2013-11-01

    Progesterone is a basic hormone that regulates the metabolism in mammals. The presence of this compound has also been found in certain plants. It is believed that progesterone can regulate growth processes and resistance to stress, however, its precise role in plants remains unknown. The research conducted in this study was aimed at analyzing the content of endogenous progesterone and its cellular binding sites in the leaves of spring wheat exposed to drought. Changes were studied in two cultivars of wheat - a cultivar sensitive to drought (Katoda) and tolerant cultivar (Monsun). Plants had undergone periodic droughts during the seedling stage or in the phase of heading. The occurrence of free progesterone as well as its conjugated forms was observed in wheat studied. The amount of progesterone ranged from 0.2 to 5.8pmolgFW(-1) and was dependent on the cultivar, age of the plants, stage of development and fluctuated as a result of the exposure to drought. Cv. Katoda responded to a water deficit by lowering the amount of progesterone and cv. Monsun by increasing its level. Progesterone in plants grown in limited water conditions occurred primarily in a free form. While in the optimal watering conditions, some of its pool was found in the form of conjugates. In the spring wheat the occurrence of binding sites for progesterone was detected in cell membranes, cytoplasm and nuclei in the range of 10-36fmol/mg of protein. The wheat cultivars tested, Monsun and Katoda, differ in their concentration of cellular binding sites for progesterone. This number varied in the individual fractions during different stages of plant development and due to the effect of drought stress. The number of binding sites for progesterone located in the membrane fraction of seedlings and flag leaves increased significantly under drought in the cv. Katoda (35-46%), but did not change in the cv. Monsun. Whereas the number of cytoplasmic progesterone binding sites increased during the drought in

  17. eMatchSite: sequence order-independent structure alignments of ligand binding pockets in protein models.

    Directory of Open Access Journals (Sweden)

    Michal Brylinski

    2014-09-01

    Full Text Available Detecting similarities between ligand binding sites in the absence of global homology between target proteins has been recognized as one of the critical components of modern drug discovery. Local binding site alignments can be constructed using sequence order-independent techniques, however, to achieve a high accuracy, many current algorithms for binding site comparison require high-quality experimental protein structures, preferably in the bound conformational state. This, in turn, complicates proteome scale applications, where only various quality structure models are available for the majority of gene products. To improve the state-of-the-art, we developed eMatchSite, a new method for constructing sequence order-independent alignments of ligand binding sites in protein models. Large-scale benchmarking calculations using adenine-binding pockets in crystal structures demonstrate that eMatchSite generates accurate alignments for almost three times more protein pairs than SOIPPA. More importantly, eMatchSite offers a high tolerance to structural distortions in ligand binding regions in protein models. For example, the percentage of correctly aligned pairs of adenine-binding sites in weakly homologous protein models is only 4-9% lower than those aligned using crystal structures. This represents a significant improvement over other algorithms, e.g. the performance of eMatchSite in recognizing similar binding sites is 6% and 13% higher than that of SiteEngine using high- and moderate-quality protein models, respectively. Constructing biologically correct alignments using predicted ligand binding sites in protein models opens up the possibility to investigate drug-protein interaction networks for complete proteomes with prospective systems-level applications in polypharmacology and rational drug repositioning. eMatchSite is freely available to the academic community as a web-server and a stand-alone software distribution at http://www.brylinski.org/ematchsite.

  18. Analysis of Binding Site Hot Spots on the Surface of Ras GTPase

    Energy Technology Data Exchange (ETDEWEB)

    Buhrman, Greg; O; #8242; Connor, Casey; Zerbe, Brandon; Kearney, Bradley M.; Napoleon, Raeanne; Kovrigina, Elizaveta A.; Vajda, Sandor; Kozakov, Dima; Kovrigin, Evgenii L.; Mattos, Carla (NCSU); (MCW); (BU)

    2012-09-17

    We have recently discovered an allosteric switch in Ras, bringing an additional level of complexity to this GTPase whose mutants are involved in nearly 30% of cancers. Upon activation of the allosteric switch, there is a shift in helix 3/loop 7 associated with a disorder to order transition in the active site. Here, we use a combination of multiple solvent crystal structures and computational solvent mapping (FTMap) to determine binding site hot spots in the 'off' and 'on' allosteric states of the GTP-bound form of H-Ras. Thirteen sites are revealed, expanding possible target sites for ligand binding well beyond the active site. Comparison of FTMaps for the H and K isoforms reveals essentially identical hot spots. Furthermore, using NMR measurements of spin relaxation, we determined that K-Ras exhibits global conformational dynamics very similar to those we previously reported for H-Ras. We thus hypothesize that the global conformational rearrangement serves as a mechanism for allosteric coupling between the effector interface and remote hot spots in all Ras isoforms. At least with respect to the binding sites involving the G domain, H-Ras is an excellent model for K-Ras and probably N-Ras as well. Ras has so far been elusive as a target for drug design. The present work identifies various unexplored hot spots throughout the entire surface of Ras, extending the focus from the disordered active site to well-ordered locations that should be easier to target.

  19. A cation-pi interaction in the binding site of the glycine receptor is mediated by a phenylalanine residue

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Millen, Kat S; Hanek, Ariele P;

    2008-01-01

    Cys-loop receptor binding sites characteristically contain many aromatic amino acids. In nicotinic ACh and 5-HT3 receptors, a Trp residue forms a cation-pi interaction with the agonist, whereas in GABA(A) receptors, a Tyr performs this role. The glycine receptor binding site, however, contains pr...

  20. Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Ruzanski, Christian;

    2014-01-01

    Surface binding sites (SBSs) interact with carbohydrates outside of the enzyme active site. They are frequently situated on catalytic domains and are distinct from carbohydrate binding modules (CBMs). SBSs are found in a variety of enzymes and often seen in crystal structures. Notably about half ...

  1. (/sup 3/H)dihydroergotamine as a high-affinity, slowly dissociating radioligand for 5-HT1B binding sites in rat brain membranes: evidence for guanine nucleotide regulation of agonist affinity states

    Energy Technology Data Exchange (ETDEWEB)

    Hamblin, M.W.; Ariani, K.; Adriaenssens, P.I.; Ciaranello, R.D.

    1987-12-01

    (/sup 3/H)Dihydroergotamine (DE) labels a population of binding sites in rat brain membranes with an affinity of approximately 70 pM in both hippocampus (maximal binding at saturation (Bmax) = 340 fmol/mg of protein) and cerebral cortex (Bmax = 250 fmol/mg of protein). Specific binding typically comprises about 97% of total binding at the Kd of the radioligand when nonspecific binding is determined in the presence of 100 nM unlabeled DE. Association kinetics at 37 degrees C are consistent with a uniform association rate constant for all sites labeled. Specific binding is completely reversible with addition of excess unlabeled DE, but dissociation does not proceed with simple first-order kinetics, suggesting the presence of more than one discrete binding site. Competition studies with selective drugs reveal alpha adrenergic, 5-HT1A and 5-HT1B components of (/sup 3/H)DE specific binding. When phentolamine (500 nM) is included to block alpha receptors and DPAT (100 nM) or spiroxatrine (500 nM) is included to block 5-HT1A receptors, specific binding is exclusively to sites with drug affinities characteristic of 5-HT1B receptors. Under these 5-HT1B-selective conditions, (/sup 3/H)DE binding is about 90% specific, with a Kd of about 50 to 60 pM and a Bmax of 96 fmol/mg of protein in hippocampus and 77 fmol/mg of protein in cortex. (/sup 3/H)DE binding to 5-HT1B sites is very slowly dissociable, with a T1/2 of greater than 2 h at 37 degrees C. 5-HT1B antagonists and DE itself yield competition curves at (/sup 3/H)DE-labeled 5-HT1B sites that are adequately fit assuming a single site in nonlinear regression analysis. Addition of 100 microM guanylyl 5'-imidodiphosphate appears to convert nearly all 5-HT1B sites to those having low affinity for agonists while having a much smaller effect on the binding of (/sup 3/H)DE.

  2. A second tubulin binding site on the kinesin-13 motor head domain is important during mitosis.

    Directory of Open Access Journals (Sweden)

    Dong Zhang

    Full Text Available Kinesin-13s are microtubule (MT depolymerases different from most other kinesins that move along MTs. Like other kinesins, they have a motor or head domain (HD containing a tubulin and an ATP binding site. Interestingly, kinesin-13s have an additional binding site (Kin-Tub-2 on the opposite side of the HD that contains several family conserved positively charged residues. The role of this site in kinesin-13 function is not clear. To address this issue, we investigated the in-vitro and in-vivo effects of mutating Kin-Tub-2 family conserved residues on the Drosophila melanogaster kinesin-13, KLP10A. We show that the Kin-Tub-2 site enhances tubulin cross-linking and MT bundling properties of KLP10A in-vitro. Disruption of the Kin-Tub-2 site, despite not having a deleterious effect on MT depolymerization, results in abnormal mitotic spindles and lagging chromosomes during mitosis in Drosophila S2 cells. The results suggest that the additional Kin-Tub-2 tubulin biding site plays a direct MT attachment role in-vivo.

  3. Cytochrome c1 exhibits two binding sites for cytochrome c in plants.

    Science.gov (United States)

    Moreno-Beltrán, Blas; Díaz-Quintana, Antonio; González-Arzola, Katiuska; Velázquez-Campoy, Adrián; De la Rosa, Miguel A; Díaz-Moreno, Irene

    2014-10-01

    In plants, channeling of cytochrome c molecules between complexes III and IV has been purported to shuttle electrons within the supercomplexes instead of carrying electrons by random diffusion across the intermembrane bulk phase. However, the mode plant cytochrome c behaves inside a supercomplex such as the respirasome, formed by complexes I, III and IV, remains obscure from a structural point of view. Here, we report ab-initio Brownian dynamics calculations and nuclear magnetic resonance-driven docking computations showing two binding sites for plant cytochrome c at the head soluble domain of plant cytochrome c1, namely a non-productive (or distal) site with a long heme-to-heme distance and a functional (or proximal) site with the two heme groups close enough as to allow electron transfer. As inferred from isothermal titration calorimetry experiments, the two binding sites exhibit different equilibrium dissociation constants, for both reduced and oxidized species, that are all within the micromolar range, thus revealing the transient nature of such a respiratory complex. Although the docking of cytochrome c at the distal site occurs at the interface between cytochrome c1 and the Rieske subunit, it is fully compatible with the complex III structure. In our model, the extra distal site in complex III could indeed facilitate the functional cytochrome c channeling towards complex IV by building a "floating boat bridge" of cytochrome c molecules (between complexes III and IV) in plant respirasome.

  4. Identification of High Affinity Fatty Acid Binding Sites on Human Serum Albumin by MM-PBSA Method

    OpenAIRE

    Fujiwara, Shin-ichi; Amisaki, Takashi

    2007-01-01

    Human serum albumin (HSA) has seven common fatty acid (FA) binding sites. In this study, we used the molecular mechanics Poisson-Boltzmann surface area method to identify high affinity FA binding sites on HSA in terms of binding free energy. Using multiple HSA-FA (myristate, palmitate) complex models constructed by molecular dynamics simulations, two methods were performed in molecular mechanics Poisson-Boltzmann surface area, the “three-trajectory method” and the “single-trajectory method”. ...

  5. Probing the aromatic-donor-binding site of horseradish peroxidase using site-directed mutagenesis and the suicide substrate phenylhydrazine.

    Science.gov (United States)

    Gilfoyle, D J; Rodriguez-Lopez, J N; Smith, A T

    1996-03-01

    The haem groups from two classes of site-directed mutants of horseradish peroxidase isoenzyme C (HRP-C) (distal haem pocket mutants, [H42L]HRP-C* and [R38K]-HRP-C* and peripheral-haem-access-channel mutants, [F142A]HRP-C* and [F143A]HRP-C*) were extracted and analysed by reverse-phase HPLC after phenylhydrazine-induced suicide inactivation. The relative abundance of the two covalently modified haems, C20-phenyl (delta-meso phenyl) and C18-hydroxymethyl haem, provided a sensitive topological probe for changes induced in the protein architecture in the vicinity of the haem active site and substrate-access channel. Although differing considerably in their efficiency as peroxidases ([H42L]HRP-C* exhibited only approximately 0.03% of the peroxidase activity of wild type), the variants studied gave rise to a modification pattern typical of an exposed haem edge thereby strengthening the argument that it is the overall protein topology rather than the intrinsic catalytic activity of the active site that determines the sites of covalent haem modification. Mutants which showed impaired ability to bind the aromatic donor benzhydroxamic acid were less readily modified by the phenyl radical at the haem C18-methyl position although the level of arylation at the haem C20 position remained remarkable constant. Our findings suggest that the overall efficacy of haem modification catalysed by HRP-C during turnover with phenylhydrazine and its vulnerability towards inactivation are related to its general ability to bind aromatic donor molecules. Results from phenylhydrazine treatment of HRP-C wild-type and mutant variants were compared with those obtained for Coprinus cinereus peroxidase, an enzyme which from its structure is known to have a remarkably open access channel to the haem edge. We show evidence that C. cinereus peroxidase is able to bind benzhydroxamic acid, albeit with a relatively high Kd (Kd 3.7 mM), a probe for aromatic-donor binding. We suggest reasons why

  6. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response.

    Science.gov (United States)

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2016-08-08

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  7. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response

    Science.gov (United States)

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D’Andrea, Luca Domenico

    2016-08-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  8. The binding sites for benztropines and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Jensen, Heidi Bisgaard; Larsen, M Andreas B; Mazier, Sonia;

    2011-01-01

    Analogs of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational...... the pocket, including(2) Val152(3.46) to Ala or Ile, Ser422(8.60) to Ala and Asn157(3.51) to Cys or Ala, resulted in decreased affinity for BZT and the analog JHW007, as assessed in [(3)H]dopamine uptake inhibition assays and/or [(3)H]CFT competition binding assay. A putative polar interaction of one...... with a larger decrease in the affinity for BZT than for JHW007. Summarized, our data suggest that BZTs display a classical competitive binding mode with binding sites overlapping those of cocaine and dopamine....

  9. The magic spot: a ppGpp binding site on E. coli RNA polymerase responsible for regulation of transcription initiation.

    Science.gov (United States)

    Ross, Wilma; Vrentas, Catherine E; Sanchez-Vazquez, Patricia; Gaal, Tamas; Gourse, Richard L

    2013-05-01

    The global regulatory nucleotide ppGpp ("magic spot") regulates transcription from a large subset of Escherichia coli promoters, illustrating how small molecules can control gene expression promoter-specifically by interacting with RNA polymerase (RNAP) without binding to DNA. However, ppGpp's target site on RNAP, and therefore its mechanism of action, has remained unclear. We report here a binding site for ppGpp on E. coli RNAP, identified by crosslinking, protease mapping, and analysis of mutant RNAPs that fail to respond to ppGpp. A strain with a mutant ppGpp binding site displays properties characteristic of cells defective for ppGpp synthesis. The binding site is at an interface of two RNAP subunits, ω and β', and its position suggests an allosteric mechanism of action involving restriction of motion between two mobile RNAP modules. Identification of the binding site allows prediction of bacterial species in which ppGpp exerts its effects by targeting RNAP.

  10. The Caulobacter crescentus chromosome replication origin evolved two classes of weak DnaA binding sites.

    Science.gov (United States)

    Taylor, James A; Ouimet, Marie-Claude; Wargachuk, Richard; Marczynski, Gregory T

    2011-10-01

    The Caulobacter crescentus replication initiator DnaA and essential response regulator CtrA compete to control chromosome replication. The C. crescentus replication origin (Cori) contains five strong CtrA binding sites but only two apparent DnaA boxes, termed G-boxes (with a conserved second position G, TGATCCACA). Since clusters of DnaA boxes typify bacterial replication origins, this discrepancy suggested that C. crescentus DnaA recognizes different DNA sequences or compensates with novel DNA-binding proteins. We searched for novel DNA sites by scanning mutagenesis of the most conserved Cori DNA. Autonomous replication assays showed that G-boxes and novel W-boxes (TCCCCA) are essential for replication. Further analyses showed that C. crescentus DnaA binds G-boxes with moderate and W-boxes with very weak affinities significantly below DnaA's capacity for high-affinity Escherichia coli-boxes (TTATCCACA). Cori has five conserved W-boxes. Increasing W-box affinities increases or decreases autonomous replication depending on their strategic positions between the G-boxes. In vitro, CtrA binding displaces DnaA from proximal G-boxes and from distal W-boxes implying CtrA-DnaA competition and DnaA-DnaA cooperation between G-boxes and W-boxes. Similarly, during cell cycle progression, CtrA proteolysis coincides with DnaA binding to Cori. We also observe highly conserved W-boxes in other replication origins lacking E. coli-boxes. Therefore, strategically weak DnaA binding can be a general means of replication control.

  11. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    Energy Technology Data Exchange (ETDEWEB)

    Matthew, E.; Parfitt, A.G.; Sugden, D.; Engelhardt, D.L.; Zimmerman, E.A.; Klein, D.C.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.

  12. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    International Nuclear Information System (INIS)

    Studies of [3H]diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot [Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture]. Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects of diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the [3H]diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT

  13. The serotonin transporter in rhesus monkey brain: comparison of DASB and citalopram binding sites

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Zhizhen [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States)]. E-mail: zhizhen_zeng@merck.com; Chen, T.-B. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Miller, Patricia J. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Dean, Dennis [Labeled Compound Synthesis Group, Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065-0900 (United States); Tang, Y.S. [Labeled Compound Synthesis Group, Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065-0900 (United States); Sur, Cyrille [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States); Williams, David L. [Imaging Department, Merck Research Laboratories, West Point, PA 19486 (United States)

    2006-05-15

    We have characterized the interaction of the serotonin transporter ligand [{sup 3}H]-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)-benzylamine (DASB) with rhesus monkey brain in vitro using tissue homogenate binding and autoradiographic mapping. [{sup 3}H]-DASB, a tritiated version of the widely used [{sup 11}C] positron emission tomography tracer, was found to selectively bind to a single population of sites with high affinity (K {sub d}=0.20{+-}0.04 nM). The serotonin transporter density (B {sub max}) obtained for rhesus frontal cortex was found to be 66{+-}8 fmol/mg protein using [{sup 3}H]-DASB, similar to the B {sub max} value obtained using the reference radioligand [{sup 3}H]-citalopram, a well-characterized and highly selective serotonin reuptake inhibitor (83{+-}22 fmol/mg protein). Specific binding sites of both [{sup 3}H]-DASB and [{sup 3}H]-citalopram were similarly and nonuniformly distributed throughout the rhesus central nervous system, in a pattern consistent with serotonin transporter localization reported for human brain. Regional serotonin transporter densities, estimated from optical densities of the autoradiographic images, were well correlated between the two radioligands. Finally, DASB and fluoxetine showed dose-dependent full inhibition of [{sup 3}H]-citalopram binding in a competition autoradiographic study, with K {sub i} values in close agreement with those obtained from rhesus brain homogenates. This side-by-side comparison of [{sup 3}H]-DASB and [{sup 3}H]-citalopram binding sites in rhesus tissue homogenates and in adjacent rhesus brain slices provides additional support for the use of [{sup 11}C]-DASB to assess the availability and distribution of serotonin transporters in nonhuman primates.

  14. A bidentate Lewis acid with a telluronium ion as an anion-binding site

    Science.gov (United States)

    Zhao, Haiyan; Gabbaï, François P.

    2010-11-01

    The search for receptors that can selectively capture small and potentially toxic anions in protic media has sparked a renewed interest in the synthesis and anion-binding properties of polydentate Lewis acids. Seeking new paradigms to enhance the anion affinities of such systems, we synthesized a bidentate Lewis acid that contains a boryl and a telluronium moiety as Lewis acidic sites. Anion-complexation studies indicate that this telluronium borane displays a high affinity for fluoride in methanol. Structural and computational studies show that the unusual fluoride affinity of this bidentate telluronium borane can be correlated with the formation of a B-F --> Te chelate motif supported by a strong lone-pair(F) --> σ*(Te-C) donor-acceptor interaction. These results, which illustrate the viability of heavier chalcogenium centres as anion-binding sites, allow us to introduce a novel strategy for the design of polydentate Lewis acids with enhanced anion affinities.

  15. Surface binding sites (SBSs), mechanism and regulation of enzymes degrading amylopectin and α-limit dextrins

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Cockburn, Darrell; Nielsen, Jonas W.;

    2013-01-01

    Certain enzymes interact with polysaccharides at surface binding sites (SBSs) situated outside of their active sites. SBSs are not easily identified and their function has been discerned in relatively few cases. Starch degradation is a concerted action involving GH13 hydrolases. New insight...... into barley seed α-amylase 1 (AMY1) and limit dextrinase (LD) includes i. kinetics of bi-exponential amylopectin hydrolysis by AMY1, one reaction having low Km (8 μg/mL) and high kcat (57 s-1) and the other high Km (97 μg/mL) and low kcat (23 s-1). β-Cyclodextrin (β-CD) inhibits the first reaction by binding...

  16. Genome wide mapping of Foxo1 binding-sites in murine T lymphocytes

    Directory of Open Access Journals (Sweden)

    Will Liao

    2014-12-01

    Full Text Available The Forkhead box O (Foxo family of transcription factors has a critical role in controlling the development, differentiation, and function of T cells. However, the direct target genes of Foxo transcription factors in T cells have not been well characterized. In this study, we focused on mapping the genome wide Foxo1-binding sites in naïve CD4+ T cells, CD8+ T cells, and Foxp3+ regulatory T (Treg cells. By using chromatin immunoprecipitation coupled with deep sequencing (ChIP-Seq, we identified Foxo1 binding sites that were shared among or specific to the three T cell populations. Here we describe the experiments, quality controls, as well as the deep sequencing data. Part of the data analysis has been published by Ouyang W et al. in Nature 2012 [1] and Kim MV et al. in Immunity 2013 [2], and the associated data set were uploaded to NCBI Gene Expression Omnibus.

  17. Soybean. beta. -glucan binding sites display maximal affinity for a heptaglucoside phytoalexin-elicitor

    Energy Technology Data Exchange (ETDEWEB)

    Cosio, E.G.; Waldmueller, T.; Frey, T.; Ebel, J. (Biologisches Institut II der Universitat Freiburg (West Germany))

    1990-05-01

    The affinity of soybean {beta}-glucan-binding sites for a synthetic heptaglucan elicitor was tested in a ligand-competition assay against a {sup 125}I-labeled 1,3-1,6-{beta}-glucan preparation (avg. DP=20). Half-maximal displacement of label (IC{sub 50}) was obtained at 9nM heptaglucan, the highest affinity of all fractions tested to date. Displacement followed a uniform sigmoidal pattern and was complete at 1{mu}M indicating access of heptaglucan to all sites available to the labeled elicitor. A mathematical model was used to predict IC{sub 50} values according to the DP of glucan fragments obtained from fungal cell walls. The lowest IC{sub 50} predicted by this model is 3nM. Binding affinity of the glucans was compared with their elicitor activity in a bioassay.

  18. FR258900, a potential anti-hyperglycemic drug, binds at the allosteric site of glycogen phosphorylase.

    Science.gov (United States)

    Tiraidis, Costas; Alexacou, Kyra-Melinda; Zographos, Spyros E; Leonidas, Demetres D; Gimisis, Thanasis; Oikonomakos, Nikos G

    2007-08-01

    FR258900 has been discovered as a novel inhibitor of human liver glycogen phosphorylase a and proved to suppress hepatic glycogen breakdown and reduce plasma glucose concentrations in diabetic mice models. To elucidate the mechanism of inhibition, we have determined the crystal structure of the cocrystallized rabbit muscle glycogen phosphorylase b-FR258900 complex and refined it to 2.2 A resolution. The structure demonstrates that the inhibitor binds at the allosteric activator site, where the physiological activator AMP binds. The contacts from FR258900 to glycogen phosphorylase are dominated by nonpolar van der Waals interactions with Gln71, Gln72, Phe196, and Val45' (from the symmetry-related subunit), and also by ionic interactions from the carboxylate groups to the three arginine residues (Arg242, Arg309, and Arg310) that form the allosteric phosphate-recognition subsite. The binding of FR258900 to the protein promotes conformational changes that stabilize an inactive T-state quaternary conformation of the enzyme. The ligand-binding mode is different from those of the potent phenoxy-phthalate and acyl urea inhibitors, previously described, illustrating the broad specificity of the allosteric site. PMID:17600143

  19. Fluconazole Binding and Sterol Demethylation in Three CYP51 Isoforms Indicate Differences in Active Site Topology

    Energy Technology Data Exchange (ETDEWEB)

    Bellamine, A.; Lepesheva, Galina I.; Waterman, Mike (Vanderbilt)

    2010-11-16

    14{alpha}-Demethylase (CYP51) is a key enzyme in all sterol biosynthetic pathways (animals, fungi, plants, protists, and some bacteria), catalyzing the removal of the C-14 methyl group following cyclization of squalene. Based on mutations found in CYP51 genes from Candida albicans azole-resistant isolates obtained after fluconazole treatment of fungal infections, and using site-directed mutagenesis, we have found that fluconazole binding and substrate metabolism vary among three different CYP51 isoforms: human, fungal, and mycobacterial. In C. albicans, the Y132H mutant from isolates shows no effect on fluconazole binding, whereas the F145L mutant results in a 5-fold increase in its IC{sub 50} for fluconazole, suggesting that F145 (conserved only in fungal 14{alpha}-demethylases) interacts with this azole. In C. albicans, F145L accounts, in part, for the difference in fluconazole sensitivity reported between mammals and fungi, providing a basis for treatment of fungal infections. The C. albicans Y132H and human Y145H CYP51 mutants show essentially no effect on substrate metabolism, but the Mycobacterium tuberculosis F89H CYP51 mutant loses both its substrate binding and metabolism. Because these three residues align in the three isoforms, the results indicate that their active sites contain important structural differences, and further emphasize that fluconazole and substrate binding are uncoupled properties.

  20. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM

    Science.gov (United States)

    Pfreundschuh, Moritz; Alsteens, David; Wieneke, Ralph; Zhang, Cheng; Coughlin, Shaun R.; Tampé, Robert; Kobilka, Brian K.; Müller, Daniel J.

    2015-11-01

    A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution.

  1. Regulation of CCL2 expression by an upstream TALE homeodomain protein-binding site that synergizes with the site created by the A-2578G SNP.

    Science.gov (United States)

    Page, Stephen H; Wright, Edward K; Gama, Lucio; Clements, Janice E

    2011-01-01

    CC Chemokine Ligand 2 (CCL2) is a potent chemoattractant produced by macrophages and activated astrocytes during periods of inflammation within the central nervous system. Increased CCL2 expression is correlated with disease progression and severity, as observed in pulmonary tuberculosis, HCV-related liver disease, and HIV-associated dementia. The CCL2 distal promoter contains an A/G polymorphism at position -2578 and the homozygous -2578 G/G genotype is associated with increased CCL2 production and inflammation. However, the mechanisms that contribute to the phenotypic differences in CCL2 expression are poorly understood. We previously demonstrated that the -2578 G polymorphism creates a TALE homeodomain protein binding site (TALE binding site) for PREP1/PBX2 transcription factors. In this study, we identified the presence of an additional TALE binding site 22 bp upstream of the site created by the -2578 G polymorphism and demonstrated the synergistic effects of the two sites on the activation of the CCL2 promoter. Using chromatin immunoprecipitation (ChIP) assays, we demonstrated increased binding of the TALE proteins PREP1 and PBX2 to the -2578 G allele, and binding of IRF1 to both the A and G alleles. The presence of TALE binding sites that form inverted repeats within the -2578 G allele results in increased transcriptional activation of the CCL2 distal promoter while the presence of only the upstream TALE binding site within the -2578 A allele exerts repression of promoter activity.

  2. FR258900, a potential anti-hyperglycemic drug, binds at the allosteric site of glycogen phosphorylase

    OpenAIRE

    Tiraidis, C.; Alexacou, K. M.; Zographos, Spyros E.; Leonidas, Demetres D.; Gimisis, T.; Oikonomakos, Nikos G.

    2007-01-01

    FR258900 has been discovered as a novel inhibitor of human liver glycogen phosphorylase a and proved to suppress hepatic glycogen breakdown and reduce plasma glucose concentrations in diabetic mice models. To elucidate the mechanism of inhibition, we have determined the crystal structure of the cocrystallized rabbit muscle glycogen phosphorylase b–FR258900 complex and refined it to 2.2 Å resolution. The structure demonstrates that the inhibitor binds at the allosteric activator site, where th...

  3. Combining features in a graphical model to predict protein binding sites.

    Science.gov (United States)

    Wierschin, Torsten; Wang, Keyu; Welter, Marlon; Waack, Stephan; Stanke, Mario

    2015-05-01

    Large efforts have been made in classifying residues as binding sites in proteins using machine learning methods. The prediction task can be translated into the computational challenge of assigning each residue the label binding site or non-binding site. Observational data comes from various possibly highly correlated sources. It includes the structure of the protein but not the structure of the complex. The model class of conditional random fields (CRFs) has previously successfully been used for protein binding site prediction. Here, a new CRF-approach is presented that models the dependencies of residues using a general graphical structure defined as a neighborhood graph and thus our model makes fewer independence assumptions on the labels than sequential labeling approaches. A novel node feature "change in free energy" is introduced into the model, which is then denoted by ΔF-CRF. Parameters are trained with an online large-margin algorithm. Using the standard feature class relative accessible surface area alone, the general graph-structure CRF already achieves higher prediction accuracy than the linear chain CRF of Li et al. ΔF-CRF performs significantly better on a large range of false positive rates than the support-vector-machine-based program PresCont of Zellner et al. on a homodimer set containing 128 chains. ΔF-CRF has a broader scope than PresCont since it is not constrained to protein subgroups and requires no multiple sequence alignment. The improvement is attributed to the advantageous combination of the novel node feature with the standard feature and to the adopted parameter training method.

  4. Transcriptional Activation of sclA by Mga Requires a Distal Binding Site in Streptococcus pyogenes

    OpenAIRE

    Almengor, Audry C.; McIver, Kevin S.

    2004-01-01

    Streptococcus pyogenes (the group A streptococcus [GAS]) is a medically significant pathogen of humans, causing a range of diseases from pharyngitis to necrotizing fasciitis. Several important GAS virulence genes are under the control of a pleiotropic regulator called Mga, or the multiple gene regulator of GAS, including the gene encoding the streptococcal collagen-like protein, or sclA. Analysis of the genome sequence upstream of sclA revealed two potential Mga-binding sites with homology to...

  5. Identification of a chloride ion binding site in Na+/Cl−-dependent transporters

    OpenAIRE

    Forrest, Lucy R.; Tavoulari, Sotiria; Zhang, Yuan-Wei; Rudnick, Gary; Honig, Barry

    2007-01-01

    The recent determination of the crystal structure of the leucine transporter from Aquifex aeolicus (aaLeuT) has provided significant insights into the function of neurotransmitter:sodium symporters. Transport by aaLeuT is Cl− independent, whereas many neurotransmitter:sodium symporters from higher organisms depend on Cl− ions. However, the only Cl− ion identified in the aaLeuT structure interacts with nonconserved residues in extracellular loops, and thus the relevance of this binding site is...

  6. Genome-wide de novo prediction of cis-regulatory binding sites in prokaryotes

    OpenAIRE

    Zhang, Shaoqiang; Xu, Minli; Li, Shan; Su, Zhengchang

    2009-01-01

    Although cis-regulatory binding sites (CRBSs) are at least as important as the coding sequences in a genome, our general understanding of them in most sequenced genomes is very limited due to the lack of efficient and accurate experimental and computational methods for their characterization, which has largely hindered our understanding of many important biological processes. In this article, we describe a novel algorithm for genome-wide de novo prediction of CRBSs with high accuracy. We desi...

  7. Protective action of resveratrol in human skin: possible involvement of specific receptor binding sites.

    Directory of Open Access Journals (Sweden)

    Stéphane Bastianetto

    Full Text Available BACKGROUND: Resveratrol is a plant-derived polyphenol with purported protecting action on various disorders associated with aging. It has been suggested that resveratrol could exert its protective action by acting on specific plasma membrane polyphenol binding sites (Han Y.S., et al. (2006 J Pharmacol Exp Ther 318:238-245. The purpose of this study was to investigate, in human skin, the possible existence of specific binding sites that mediate the protective action of resveratrol. METHODS AND FINDINGS: Using human skin tissue, we report here the presence of specific [(3H]-resveratrol binding sites (K(D  =  180 nM that are mainly located in the epidermis. Exposure of HaCaT cells to the nitric oxide free radical donor sodium nitroprusside (SNP; 0.3-3 mM resulted in cell death which was reduced by resveratrol (EC(50  =  14.7 µM, and to a much lesser extent by the resveratrol analogue piceatannol (EC(50  =  95 µM and epigallocatechin gallate (EC(50  =  200 µM, a green-tea derived polyphenol. The protective action of resveratrol likely relates to its anti-apoptotic effect since at the same range of concentration it was able to reduce both the number of apoptotic cells as well as mitochondrial apoptotic events triggered by SNP. CONCLUSION: Taken together, these findings suggest that resveratrol, by acting on specific polyphenol binding sites in epidermis, may be useful to prevent skin disorders associated with aging.

  8. SPIC: A novel similarity metric for comparing transcription factor binding site motifs based on information contents

    OpenAIRE

    Zhang, Shaoqiang; Zhou, Xiguo; Du, Chuanbin; Su, Zhengchang

    2013-01-01

    Background Discovering transcription factor binding sites (TFBS) is one of primary challenges to decipher complex gene regulatory networks encrypted in a genome. A set of short DNA sequences identified by a transcription factor (TF) is known as a motif, which can be expressed accurately in matrix form such as a position-specific scoring matrix (PSSM) and a position frequency matrix. Very frequently, we need to query a motif in a database of motifs by seeking its similar motifs, merge similar ...

  9. Analysis of Surface Binding Sites (SBS) within GH62, GH13, and GH77

    DEFF Research Database (Denmark)

    Wilkens, Casper; Cockburn, Darrell; Andersen, Susan;

    2015-01-01

    Certain interactions between carbohydrate active enzymes and polysaccharides involve surface binding sites (SBS) situated on catalytic domains outside of the active site. We recently undertook to develop a toolbox for SBS identification and characterization. In affinity gel electrophoresis (AGE......) SBS containing proteins are migrating slower in native polyacrylamide electrophoresis gels cast with polysaccharide versus without polysaccharide. Amylolytic enzymes from GH13 and GH77 and xylanases from GH10 and GH11 are the best studied GH families with respect to SBS, presenting about half...

  10. Site-selective dual modification of periplasmic binding proteins for sensing applications.

    Science.gov (United States)

    Crochet, Amanda P; Kabir, Mohiuddin M; Francis, Matthew B; Paavola, Chad D

    2010-09-15

    We have developed three sensitive and specific amino acid sensors based on bacterial periplasmic solute binding proteins. A site-specific amino-terminal transamination reaction provides a useful complement to cysteine chemistry for the covalent modification of biomolecules in this application. We demonstrate this combination to attach two different chromophores to a single biomolecule in two locations. The periplasmic glutamine binding protein from E. coli was modified with a pair of dyes suitable for fluorescence resonance energy transfer, and this conjugate exhibited an l-glutamine dependent optical response. Two periplasmic binding proteins from the thermophilic organism Thermotoga maritima, for arginine and aliphatic amino acids, were modified and evaluated similarly. All three conjugates manifested signal changes mediated by resonant energy transfer upon binding their respective ligands, with nanomolar dissociation constants and stereochemical specificity. This represents a readily generalizable method for construction of reagentless biosensors. The double-labeling strategy was also exploited for the surface attachment of a dye-labeled glutamine binding protein via a biotin-streptavidin interaction.

  11. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor.

    Science.gov (United States)

    Maillet, Emeline L; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Margolskee, Robert F; Osman, Roman; Max, Marianna

    2015-10-01

    The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2's VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste.

  12. Hydrophobicity of reactive site loop of SCCA1 affects its binding to hepatitis B virus

    Institute of Scientific and Technical Information of China (English)

    Min Chen; Tong Cheng; Chen-Yu Xu; Ting Wu; Shan-Hai Ou; Tao Zhang; Jun Zhang; Ning-Shao Xia

    2005-01-01

    AIM: To investigate the role of SCCA2 and other SCCA1 molecules in the process of hepatitis B virus (HBV) binding to mammalian cells.METHODS: SCCA1 and SCCA2 were isolated from HepG2. Binding protein (BP) genes were obtained through PCR. Recombinant baculoviruses expressing SCCA1, SCCA2, BP, and different mutants were constructed and utilized to infect mammalian cells to investigate the binding ability of infected cells to HBV.RESULTS: A SCCA1 gene (A1) was isolated from HepG2, but it appeared to lack the binding ability of infected cells to HBV. Two mutants, A1-BP and BP-A1, were constructed by interchanging the carboxyl terminal of A1 and BP. Cells expressing A1-BP showed an increased virus bindingcapacity, but not BP-A1. Comparison of A1 sequence with the sequence of BP indicated the presence of only three amino acid changes in the carboxyl terminal, two of them were found in the reactive site loop (RSL) of SCCA1. Primary structure assay revealed that the hydrophobicity of BP and AJ515706 in this domain was strong, but A1 was relatively weak. Changing the aa349 of A1 from low hydrophobic glutamic acid to high hydrophobic valine enhanced HBV binding. In contrast, HBV binding was reduced by changing the aa349 of BP from valine to glutamic acid. CONCLUSION: The reslts suggest that the hydrophobicity of RSL of SCCA1 may play an important role in HBV binding to cells.

  13. Proteins and Their Interacting Partners: An Introduction to Protein-Ligand Binding Site Prediction Methods.

    Science.gov (United States)

    Roche, Daniel Barry; Brackenridge, Danielle Allison; McGuffin, Liam James

    2015-12-15

    Elucidating the biological and biochemical roles of proteins, and subsequently determining their interacting partners, can be difficult and time consuming using in vitro and/or in vivo methods, and consequently the majority of newly sequenced proteins will have unknown structures and functions. However, in silico methods for predicting protein-ligand binding sites and protein biochemical functions offer an alternative practical solution. The characterisation of protein-ligand binding sites is essential for investigating new functional roles, which can impact the major biological research spheres of health, food, and energy security. In this review we discuss the role in silico methods play in 3D modelling of protein-ligand binding sites, along with their role in predicting biochemical functionality. In addition, we describe in detail some of the key alternative in silico prediction approaches that are available, as well as discussing the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and the Continuous Automated Model EvaluatiOn (CAMEO) projects, and their impact on developments in the field. Furthermore, we discuss the importance of protein function prediction methods for tackling 21st century problems.

  14. Site-directed mutagenesis of boar proacrosin reveals residues involved in binding of zona pellucida glycoproteins.

    Science.gov (United States)

    Jansen, S; Jones, R; Jenneckens, I; Marschall, B; Kriegesmann, B; Coadwell, J; Brenig, B

    1998-10-01

    Proacrosin, the zymogen form of the serine protease beta-acrosin, is thought to function as a secondary binding molecule between mammalian gametes during fertilization (Jansen et al., 1995: Int J Dev Biol 39, 501-510). The interaction involves strong ionic bonds between positively charged amino acids on proacrosin and negatively charged polysulphate groups on zona pellucida glycoproteins. In this investigation, we identified the basic residues on proacrosin that are important for this binding. Site-directed mutagenesis shows that two groups of amino acids comprising His47, Arg50, and Arg51 together with Arg250, Lys252, and Arg253 are crucial because their deletion or replacement severely reduces affinity for zona glycoproteins. Molecular models of proacrosin reveal that these residues are located along one face of the protein on two exposed surface loops that project over and around the catalytic site. These findings support the hypothesis that polysulphate binding sites on proacrosin are formed by a restricted number of basic amino acids on the surface of the protein, presenting a specific orientation that is complementary to negatively charged sulphate groups on zona glycoproteins. Identification and elucidation of the stereochemistry of these charged moieties will aid design of new kinds of nonsteroidal antifertility agents. PMID:9740326

  15. Improving the prediction of protein binding sites by combining heterogeneous data and Voronoi diagrams

    Directory of Open Access Journals (Sweden)

    Fernandez-Fuentes Narcis

    2011-08-01

    Full Text Available Abstract Background Protein binding site prediction by computational means can yield valuable information that complements and guides experimental approaches to determine the structure of protein complexes. Predictions become even more relevant and timely given the current resolution of protein interaction maps, where there is a very large and still expanding gap between the available information on: (i which proteins interact and (ii how proteins interact. Proteins interact through exposed residues that present differential physicochemical properties, and these can be exploited to identify protein interfaces. Results Here we present VORFFIP, a novel method for protein binding site prediction. The method makes use of broad set of heterogeneous data and defined of residue environment, by means of Voronoi Diagrams that are integrated by a two-steps Random Forest ensemble classifier. Four sets of residue features (structural, energy terms, sequence conservation, and crystallographic B-factors used in different combinations together with three definitions of residue environment (Voronoi Diagrams, sequence sliding window, and Euclidian distance have been analyzed in order to maximize the performance of the method. Conclusions The integration of different forms information such as structural features, energy term, evolutionary conservation and crystallographic B-factors, improves the performance of binding site prediction. Including the information of neighbouring residues also improves the prediction of protein interfaces. Among the different approaches that can be used to define the environment of exposed residues, Voronoi Diagrams provide the most accurate description. Finally, VORFFIP compares favourably to other methods reported in the recent literature.

  16. Proteins and Their Interacting Partners: An Introduction to Protein–Ligand Binding Site Prediction Methods

    Directory of Open Access Journals (Sweden)

    Daniel Barry Roche

    2015-12-01

    Full Text Available Elucidating the biological and biochemical roles of proteins, and subsequently determining their interacting partners, can be difficult and time consuming using in vitro and/or in vivo methods, and consequently the majority of newly sequenced proteins will have unknown structures and functions. However, in silico methods for predicting protein–ligand binding sites and protein biochemical functions offer an alternative practical solution. The characterisation of protein–ligand binding sites is essential for investigating new functional roles, which can impact the major biological research spheres of health, food, and energy security. In this review we discuss the role in silico methods play in 3D modelling of protein–ligand binding sites, along with their role in predicting biochemical functionality. In addition, we describe in detail some of the key alternative in silico prediction approaches that are available, as well as discussing the Critical Assessment of Techniques for Protein Structure Prediction (CASP and the Continuous Automated Model EvaluatiOn (CAMEO projects, and their impact on developments in the field. Furthermore, we discuss the importance of protein function prediction methods for tackling 21st century problems.

  17. LASAGNA-Search: an integrated web tool for transcription factor binding site search and visualization.

    Science.gov (United States)

    Lee, Chic; Huang, Chun-Hsi

    2013-03-01

    The release of ChIP-seq data from the ENCyclopedia Of DNA Elements (ENCODE) and Model Organism ENCyclopedia Of DNA Elements (modENCODE) projects has significantly increased the amount of transcription factor (TF) binding affinity information available to researchers. However, scientists still routinely use TF binding site (TFBS) search tools to scan unannotated sequences for TFBSs, particularly when searching for lesser-known TFs or TFs in organisms for which ChIP-seq data are unavailable. The sequence analysis often involves multiple steps such as TF model collection, promoter sequence retrieval, and visualization; thus, several different tools are required. We have developed a novel integrated web tool named LASAGNA-Search that allows users to perform TFBS searches without leaving the web site. LASAGNA-Search uses the LASAGNA (Length-Aware Site Alignment Guided by Nucleotide Association) algorithm for TFBS alignment. Important features of LASAGNA-Search include (i) acceptance of unaligned variable-length TFBSs, (ii) a collection of 1726 TF models, (iii) automatic promoter sequence retrieval, (iv) visualization in the UCSC Genome Browser, and (v) gene regulatory network inference and visualization based on binding specificities. LASAGNA-Search is freely available at http://biogrid.engr.uconn.edu/lasagna_search/. PMID:23599922

  18. Pocketome: an encyclopedia of small-molecule binding sites in 4D.

    Science.gov (United States)

    Kufareva, Irina; Ilatovskiy, Andrey V; Abagyan, Ruben

    2012-01-01

    The importance of binding site plasticity in protein-ligand interactions is well-recognized, and so are the difficulties in predicting the nature and the degree of this plasticity by computational means. To assist in understanding the flexible protein-ligand interactions, we constructed the Pocketome, an encyclopedia of about one thousand experimentally solved conformational ensembles of druggable binding sites in proteins, grouped by location and consistent chain/cofactor composition. The multiplicity of pockets within the ensembles adds an extra, fourth dimension to the Pocketome entry data. Within each ensemble, the pockets were carefully classified by the degree of their pairwise similarity and compatibility with different ligands. The core of the Pocketome is derived regularly and automatically from the current releases of the Protein Data Bank and the Uniprot Knowledgebase; this core is complemented by entries built from manually provided seed ligand locations. The Pocketome website (www.pocketome.org) allows searching for the sites of interest, analysis of conformational clusters, important residues, binding compatibility matrices and interactive visualization of the ensembles using the ActiveICM web browser plugin. The Pocketome collection can be used to build multi-conformational docking and 3D activity models as well as to design cross-docking and virtual ligand screening benchmarks.

  19. Antigen-binding site protection during radiolabeling leads to a higher immunoreactive fraction

    International Nuclear Information System (INIS)

    It is generally accepted that the immunointegrity of an antibody (Ab) depends on the preservation of its antigen-binding sites. Our goal was to radiolabel an antibody at several iodine:antibody molar ratios under conditions protecting its combining site and to compare its immunoreactive fraction (IRF) and electrophoretic mobility with those of the same antibody radiolabeled without protection. The data indicate that an antibody radiolabeled while its antigen-binding site is occupied by its antigen had the same IRF, regardless of the number of iodine atoms per antibody molecule. On the other hand, even at an I:Ab ratio of 1:1, the IRF of the same antibody radiolabeled without protection was lower than that of a protected one and decreased with increasing I:Ab ratios. In addition, the iodination of these Ab changes their electrophoretic mobility; however, when the Ab is labeled in the protected state, the degree of change is less. The binding of an antibody to its antigen prior to radiolabeling, therefore, enhances its immuno-integrity and prevents major conformational changes as reflected by electrophoresis

  20. Intracellular binding site kinetics of 201 Tl binding compared to β-adrenergic analog receptors in dog myocardium

    International Nuclear Information System (INIS)

    It has been demonstrated with the multiple indicator dilution technique (MID) in an isolated dog heart preparation, that the permeation of thallium ions across the sarcolemma is about ten times larger compared to potassium ions (cellular permeability surface area product PSM 8.90 +- 4.60 vs. 0.65 +- 0.46 ml/min gsup(-1)). Similarly, the intracellular (IC) distribution space of Tlsup(+) is larger compared to that of Ksup(+). These properties may explain in part the rapid and large extraction of Tl in the myocardium. To explain the slow washout rate of Tl from the myocardium (T 1/2>600 sec determined with an on-line residue detection) we proposed a temporary binding of Tl to an IC protein. In experiments the permeation properties of 201 Tl were compared to 125 I-cyanopinodolol (I-CP) and 131 I metabenzylquanidin (I-MBG) by means of MID. The latter two substances act at the β-adrenergic receptor site. Both substances have a lower capillary permeability surface area product PSC of 0.43 +- 0.37 ml/min gsup(-1) compared to that of 201 Tl (1.37 +- 0.49 ml/min gsup(-1)). I-CP and I-MBG are sequestered extracellularly in contrast to Tl, which permeates intracellularly. However, the relation between time and instantaneous extraction during a single bolus passage of 201 Tl is very comparable to that of those receptor substances suggesting also a receptor-type kinetics for Tl with intracellular binding which may elucidate its prolonged washout. (Author)

  1. The linoleic acid derivative DCP-LA selectively activates PKC-epsilon, possibly binding to the phosphatidylserine binding site.

    Science.gov (United States)

    Kanno, Takeshi; Yamamoto, Hideyuki; Yaguchi, Takahiro; Hi, Rika; Mukasa, Takeshi; Fujikawa, Hirokazu; Nagata, Tetsu; Yamamoto, Satoshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2006-06-01

    This study examined the effect of 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA), a newly synthesized linoleic acid derivative with cyclopropane rings instead of cis-double bonds, on protein kinase C (PKC) activity. In the in situ PKC assay with reverse-phase high-performance liquid chromatography, DCP-LA significantly activated PKC in PC-12 cells in a concentration-dependent (10 nM-100 microM) manner, with the maximal effect at 100 nM, and the DCP-LA effect was blocked by GF109203X, a PKC inhibitor, or a selective inhibitor peptide of the novel PKC isozyme PKC-epsilon. Furthermore, DCP-LA activated PKC in HEK-293 cells that was inhibited by the small, interfering RNA against PKC-epsilon. In the cell-free PKC assay, of the nine isozymes examined here, DCP-LA most strongly activated PKC-epsilon, with >7-fold potency over other PKC isozymes, in the absence of dioleoyl-phosphatidylserine and 1,2-dioleoyl-sn-glycerol; instead, the DCP-LA action was inhibited by dioleoyl-phosphatidylserine. DCP-LA also activated PKC-gamma, a conventional PKC, but to a much lesser extent compared with that for PKC-epsilon, by a mechanism distinct from PKC-epsilon activation. Thus, DCP-LA serves as a selective activator of PKC-epsilon, possibly by binding to the phosphatidylserine binding site on PKC-epsilon. These results may provide fresh insight into lipid signaling in PKC activation.

  2. Effect of iodination site on binding of radiolabeled ligand by insulin antibodies and insulin autoantibodies

    International Nuclear Information System (INIS)

    Four human insulins and four porcine insulins, each monoiodinated to the same specific activity at one of the four tyrosine residues (A14, A19, B16, B26) and purified by reversed-phase liquid chromatography, were tested in a radiobinding assay against a panel of insulin-antibody (IA)-positive sera from 10 insulin-treated diabetics and insulin-autoantibody-positive (IAA) sera from 10 nondiabetics. Of the 10 IAA-positive sera, five were fully cross reactive with both insulin species, and five were specific for human insulin. The rank order of binding of sera with the four ligands from each species was random for IA (mean rank values of 1.9 for A14, 2.0 for A19, 2.5 for B16, and 3.6 for B26 from a possible ranking range of 1 to 4), but more consistent for non-human-insulin-specific IAA (mean rank values 1.3 for A14, 3.8 for A19, 1.7 for B16, and 3.2 for B26 for labeled human insulins; 1.2 for A14, 4.0 for A19, 1.8 for B16, and 3.0 for B26 for labeled porcine insulins). The rank order of binding was virtually uniform for human-insulin-specific IAA (mean values 1.2 for A14, 3.0 for A19, 1.8 for B16, and 4.0 for B26). The influence of iodination site on the binding of labeled insulin appears to be dependent on the proximity of the labeled tyrosine to the antibody binding site and the clonal diversity, or restriction, of insulin-binding antibodies in the test serum. When IA and IAA are measured, the implications of this study regarding the choice of assay ligand may be important

  3. The distribution of iron between the metal-binding sites of transferrin human serum.

    Science.gov (United States)

    Williams, J; Moreton, K

    1980-02-01

    The Makey & Seal [(1976) Biochim. Biophys. Acta 453, 250--256] method of polyacrylamide-gel electrophoresis in buffer containing 6 M-urea was used to determine the distribution of iron between the N-terminal and C-terminal iron-binding sites of transferrin in human serum. In fresh serum the two sites are unequally occupied; there is preferential occupation of the N-terminal site. On incubation of the serum at 37 degrees C the preference of iron for the N-terminal site becomes more marked. On storage of serum at -15 degrees C the iron distribution changes so that there is a marked preference for the C-terminal site. Dialysis of serum against buffer at pH 7.4 also causes iron to be bound much more strongly by the C-terminal than by the N-terminal site. The original preference for the N-terminal site can be resroted to the dialysed serum by addition of the diffusible fraction.

  4. The specificity of the secondary DNA binding site of RecA protein defines its role in DNA strand exchange.

    OpenAIRE

    Mazin, A V; Kowalczykowski, S C

    1996-01-01

    The RecA protein-single-stranded DNA (ssDNA) filament can bind a second DNA molecule. Binding of ssDNA to this secondary site shows specificity, in that polypyrimidinic DNA binds to the RecA protein-ssDNA filament with higher affinity than polypurinic sequences. The affinity of ssDNA, which is identical in sequence to that bound in the primary site, is not always greater than that of nonhomologous DNA. Moreover, this specificity of DNA binding does not depend on the sequence of the DNA bound ...

  5. Mapping Topoisomerase IV Binding and Activity Sites on the E. coli Genome.

    Science.gov (United States)

    El Sayyed, Hafez; Le Chat, Ludovic; Lebailly, Elise; Vickridge, Elise; Pages, Carine; Cornet, Francois; Cosentino Lagomarsino, Marco; Espéli, Olivier

    2016-05-01

    Catenation links between sister chromatids are formed progressively during DNA replication and are involved in the establishment of sister chromatid cohesion. Topo IV is a bacterial type II topoisomerase involved in the removal of catenation links both behind replication forks and after replication during the final separation of sister chromosomes. We have investigated the global DNA-binding and catalytic activity of Topo IV in E. coli using genomic and molecular biology approaches. ChIP-seq revealed that Topo IV interaction with the E. coli chromosome is controlled by DNA replication. During replication, Topo IV has access to most of the genome but only selects a few hundred specific sites for its activity. Local chromatin and gene expression context influence site selection. Moreover strong DNA-binding and catalytic activities are found at the chromosome dimer resolution site, dif, located opposite the origin of replication. We reveal a physical and functional interaction between Topo IV and the XerCD recombinases acting at the dif site. This interaction is modulated by MatP, a protein involved in the organization of the Ter macrodomain. These results show that Topo IV, XerCD/dif and MatP are part of a network dedicated to the final step of chromosome management during the cell cycle. PMID:27171414

  6. Interaction of mono- and dianions with cyanase: evidence for apparent half-site binding.

    Science.gov (United States)

    Anderson, P M; Johnson, W V; Endrizzi, J A; Little, R M; Korte, J J

    1987-06-30

    Cyanase is an inducible enzyme in Escherichia coli that catalyzes bicarbonate-dependent hydrolysis of cyanate. The dianions oxalate, oxalacetate, and malonate are slow-binding inhibitors of cyanase, and some monoanions such as azide and chloride also inhibit cyanase activity [Anderson, P. M., & Little, R. M. (1986) Biochemistry 25, 1621-1626]. The purpose of this study was to investigate the interaction of selected dianions and monoanions by kinetic and equilibrium dialysis binding studies in an effort to obtain information about the active site and catalytic mechanism. Measurement of the effectiveness of 30 different dianions as inhibitors of cyanase showed a significant degree of structural and/or isomeric specificity and considerable variation with respect to the slow-binding nature of the inhibition. Oxalate and oxalacetate both show extreme slow-binding inhibition at very low concentrations. Kinetic studies of the rate of inhibition of cyanase by oxalate showed that the reaction is pseudo first order with respect to oxalate concentration and the results are consistent with a pathway in which oxalate forms a complex with the enzyme in a rapid initial reversible step followed by a slow isomerization step leading to a complex with a very low dissociation constant. The rate of inhibition is significantly reduced by the presence of relatively low concentrations of either azide (analogue of cyanate) or bicarbonate. Equilibrium dialysis binding studies showed that the stoichiometry of binding at saturation for oxalate, malonate, chloride, and bicarbonate is about 0.5 mol of ligand bound/mol of subunit for each compound.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Glucans synthesized in situ in experimental salivary pellicle function as specific binding sites for Streptococcus mutans.

    Science.gov (United States)

    Schilling, K M; Bowen, W H

    1992-01-01

    Many researchers have suggested that the role of glucan-mediated interactions in the adherence of Streptococcus mutans is restricted to accumulation of this cariogenic bacterium following its sucrose (i.e., glucan)-independent binding to saliva-coated tooth surfaces. However, the presence of enzymatically active glucosyltransferase in salivary pellicle suggests that glucans could also promote the initial adherence of S. mutans to the teeth. In the present study, the commonly used hydroxyapatite adherence assay was modified to include the incorporation of glucosyltransferase and the synthesis of glucans in situ on saliva-coated hydroxyapatite beads. Several laboratory strains and clinical isolates of S. mutans were examined for their ability to adhere to experimental pellicles, either with or without the prior formation of glucans in situ. Results showed that most strains of S. mutans bound stereospecifically to glucans synthesized in pellicle. Inhibition studies with various polysaccharides and fungal dextranase indicated that alpha 1,6-linked glucose residues were of primary importance in the glucan binding observed. Scanning electron microscopic analysis showed direct binding of S. mutans to hydroxyapatite surface-associated polysaccharide and revealed no evidence of trapping or cell-to-cell binding. S. mutans strains also attached to host-derived structures in experimental pellicles, and the data suggest that the bacterial adhesins which recognize salivary binding sites were distinct from glucan-binding adhesins. Furthermore, glucans formed in experimental pellicles appeared to mask the host-derived components. These results support the concept that glucans synthesized in salivary pellicle can promote the selective adherence of the cariogenic streptococci which colonize human teeth. Images PMID:1530843

  8. Influence of 3‧-3‧ inversion of polarity site within d(TGGGGT) on inter quartet cation binding

    Science.gov (United States)

    Šket, Primož; Korbar, Tjaša; Plavec, Janez

    2014-10-01

    Stability, dynamics and function of nucleic acids are affected by nature of cations that are involved in interaction with specific functionalities. Introduction of inversion of polarity sites represents a very useful and chemically accessible backbone modification, which can alter the binding affinity of cations. NMR study on cation binding between G-quartets in tetramolecular G-quadruplex adopted by d(5‧TGG3‧-3‧GGT5‧) with 3‧-3‧ inversion of polarity sites in the middle of G-tract showed existence of two different G-quadruplex forms with all strands in parallel orientation, where all guanine residues adopt anti conformation around glycosidic bonds in the presence of 15NH4+ ions. In one of the forms all three binding sites are equally populated, while in the second form the binding site next to the inversion of polarity site is not fully populated by 15NH4+ ions.

  9. Automatic generation of 3D motifs for classification of protein binding sites

    Directory of Open Access Journals (Sweden)

    Herzyk Pawel

    2007-08-01

    Full Text Available Abstract Background Since many of the new protein structures delivered by high-throughput processes do not have any known function, there is a need for structure-based prediction of protein function. Protein 3D structures can be clustered according to their fold or secondary structures to produce classes of some functional significance. A recent alternative has been to detect specific 3D motifs which are often associated to active sites. Unfortunately, there are very few known 3D motifs, which are usually the result of a manual process, compared to the number of sequential motifs already known. In this paper, we report a method to automatically generate 3D motifs of protein structure binding sites based on consensus atom positions and evaluate it on a set of adenine based ligands. Results Our new approach was validated by generating automatically 3D patterns for the main adenine based ligands, i.e. AMP, ADP and ATP. Out of the 18 detected patterns, only one, the ADP4 pattern, is not associated with well defined structural patterns. Moreover, most of the patterns could be classified as binding site 3D motifs. Literature research revealed that the ADP4 pattern actually corresponds to structural features which show complex evolutionary links between ligases and transferases. Therefore, all of the generated patterns prove to be meaningful. Each pattern was used to query all PDB proteins which bind either purine based or guanine based ligands, in order to evaluate the classification and annotation properties of the pattern. Overall, our 3D patterns matched 31% of proteins with adenine based ligands and 95.5% of them were classified correctly. Conclusion A new metric has been introduced allowing the classification of proteins according to the similarity of atomic environment of binding sites, and a methodology has been developed to automatically produce 3D patterns from that classification. A study of proteins binding adenine based ligands showed that

  10. Structure of Dioclea virgata lectin: relations between carbohydrate binding site and nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Delatorre, P.; Gadelha, C.A.A.; Santi-Gadelha, T. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Nobrega, R.B.; Rocha, B.A.M.; Nascimento, K.S.; Naganao, C.S.; Sampaio, A.H.; Cavada, B.S. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil); Pires, A.F.; Assreuy, A.M.S. [Universidade Estadual do Ceara (UECE), Fortaleza, CE (Brazil)

    2012-07-01

    Full text: Lectins are proteins/glycoproteins with at least one noncatalytic domain binding reversibly to specific monosaccharides or oligosaccharides. By binding to carbohydrate moieties on the cell surface, lectins participate in a range of cellular processes without changing the properties of the carbohydrates involved. The lectin of Dioclea virgata (DvirL), both native and complexed with X-man, was submitted to X-ray diffraction analysis and the crystal structure was compared to that of other Diocleinae lectins in order to better understand differences in biological proper- ties, especially with regard to the ability of lectins to induce nitric oxide (NO) production. The DvirL diffraction analysis revealed that both the native crystal and the X-Man-complexed form are orthorhombic and belong to space group I222. The cell parameters were: a=65.4 , b=86.6 and c=90.2 (native structure), and a=61.89 , b=87.67 and c=88.78 (X-Man-complexed structure). An association was observed between the volume of the carbohydrate recognition domain (CRD), the ability to induce NO production and the relative positions of Tyr12, Arg228 and Leu99. Thus, differences in biological activity induced by Diocleinae lectins are related to the configuration of amino acid residues in the carbohydrate binding site and to the structural conformation of subsequent regions capable of influencing site-ligand interactions. In conclusion, the ability of Diocleinae lectins to induce NO production depends on CRD configuration. (author)

  11. Competition for DNA binding sites using Promega DNA IQ™ paramagnetic beads.

    Science.gov (United States)

    Frégeau, Chantal J; De Moors, Anick

    2012-09-01

    The Promega DNA IQ™ system is easily amenable to automation and has been an integral part of standard operating procedures for many forensic laboratories including those of the Royal Canadian Mounted Police (RCMP) since 2004. Due to some failure to extract DNA from samples that should have produced DNA using our validated automated DNA IQ™-based protocol, the competition for binding sites on the DNA IQ™ magnetic beads was more closely examined. Heme from heavily blooded samples interfered slightly with DNA binding. Increasing the concentration of Proteinase K during lysis of these samples did not enhance DNA recovery. However, diluting the sample lysate following lysis prior to DNA extraction overcame the reduction in DNA yield and preserved portions of the lysates for subsequent manual or automated extraction. Dye/chemicals from black denim lysates competed for binding sites on the DNA IQ™ beads and significantly reduced DNA recovery. Increasing the size or number of black denim cuttings during lysis had a direct adverse effect on DNA yield from various blood volumes. The dilution approach was successful on these samples and permitted the extraction of high DNA yields. Alternatively, shortening the incubation time for cell lysis to 30 min instead of the usual overnight at 56 °C prevented competition from black denim dye/chemicals and increased DNA yields.

  12. Identification of two potential receptor-binding sites for hGM-CSF

    Directory of Open Access Journals (Sweden)

    Eberhardt M.O.

    2003-01-01

    Full Text Available Two receptor-binding sites for hGM-CSF are described. Competitive binding ELISA using four monoclonal antibodies (MAbs showed different epitope recognitions. The antibody combining sites were mapped using sets of overlapping peptides and hexapeptide libraries prepared by the SPOT synthesis technique. We identified the conformationally dependent epitopes A18E21R23R24F119 and R23E21N17W13 bound by MAb CC5B5 and the nonlinear epitope P118F119W13E14 bound by MAb M1B8. The epitopes recognized by these two MAbs are very closely located on the native protein surface. The peptide L61YKQGKLRGSLTK72 was recognized by MAb M7E10 and the peptide A1PAR4, representing the N-terminal sequence of the protein, was bound by the nonneutralizing MAb CC1H7. Inhibition assays of the GM-CSF biological activity demonstrated that MAb M1B8, CC5B5 and M7E10 bind to domains which are responsible for the interaction of the cytokine with the GM-CSF receptor.

  13. Single nucleotide polymorphisms in microRNA binding sites of oncogenes: implications in cancer and pharmacogenomics.

    Science.gov (United States)

    Manikandan, Mayakannan; Munirajan, Arasambattu Kannan

    2014-02-01

    Cancer, a complex genetic disease involving uncontrolled cell proliferation, is caused by inactivation of tumor suppressor genes and activation of oncogenes. A vast majority of these cancer causing genes are known targets of microRNAs (miRNAs) that bind to complementary sequences in 3' untranslated regions (UTR) of messenger RNAs and repress them from translation. Single Nucleotide Polymorphisms (SNPs) occurring naturally in such miRNA binding regions can alter the miRNA:mRNA interaction and can significantly affect gene expression. We hypothesized that 3'UTR SNPs in miRNA binding sites of proto-oncogenes could abrogate their post-transcriptional regulation, resulting in overexpression of oncogenic proteins, tumor initiation, progression, and modulation of drug response in cancer patients. Therefore, we developed a systematic computational pipeline that integrates data from well-established databases, followed stringent selection criteria and identified a panel of 30 high-confidence SNPs that may impair miRNA target sites in the 3' UTR of 54 mRNA transcripts of 24 proto-oncogenes. Further, 8 SNPs amidst them had the potential to determine therapeutic outcome in cancer patients. Functional annotation suggested that altogether these SNPs occur in proto-oncogenes enriched for kinase activities. We provide detailed in silico evidence for the functional effect of these candidate SNPs in various types of cancer.

  14. MeRNA: a Database of Metal Ion Binding Sites in RNAStructures

    Energy Technology Data Exchange (ETDEWEB)

    Stefan, Liliana R.; Zhang, Rui; Levitan, Aaron G.; Hendrix, DonnaF.; Brenner, Steven E.; Holbrook, Stephen R.

    2005-10-05

    Metal ions are essential for the folding of RNA into stable tertiary structures and for the catalytic activity of some RNA enzymes. To aid in the study of the roles of metal ions in RNA structural biology, we have created MeRNA (Metals in RNA), a comprehensive compilation of all metal binding sites identified in RNA three-dimensional structures available from the Protein Data Bank (PDB) and Nucleic Acid Database (NDB). Currently, our database contains information relating to binding of 9764 metal ions corresponding to 23 distinct elements; in 256 RNA structures. The metal ion locations were confirmed and ligands characterized using original literature references. MeRNA includes eight manually identified metal-ion binding motifs, which are described in the literature. MeRNA is searchable by PDB identifier, metal ion, method of structure determination, resolution and R-values for X-ray structure, and distance from metal to any RNA atom or to water. New structures with their respective binding motifs will be added to the database as they become available. The MeRNA database will further our understanding of the roles of metal ions in RNA folding and catalysis and have applications in structural and functional analysis, RNA design and engineering.

  15. Biocompatible medical implant materials with binding sites for a biodegradable drug-delivery system

    Directory of Open Access Journals (Sweden)

    Al-Dubai H

    2011-10-01

    Full Text Available Haifa Al-Dubai1, Gisela Pittner1, Fritz Pittner1, Franz Gabor21Max F Perutz Laboratories, Department of Biochemistry, University of Vienna, Vienna, Austria; 2Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Life Sciences, University of Vienna, Vienna, AustriaAbstract: Feasibility studies have been carried out for development of a biocompatible coating of medical implant materials allowing the binding of biodegradable drug-delivery systems in a way that their reloading might be possible. These novel coatings, able to bind biodegradable nanoparticles, may serve in the long run as drug carriers to mediate local pharmacological activity. After biodegradation of the nanoparticles, the binding sites could be reloaded with fresh drug-delivering particles. As a suitable receptor system for the nanoparticles, antibodies are anchored. The design of the receptor is of great importance as any bio- or chemorecognitive interaction with other components circulating in the blood has to be avoided. Furthermore, the binding between receptor and the particles has to be strong enough to keep them tightly bound during their lifetime, but on the other hand allow reloading after final degradation of the particles. The nanoparticles suggested as a drug-delivery system for medical implants can be loaded with different pharmaceuticals such as antibiotics, growth factors, or immunosuppressives. This concept may enable the changing of medication, even after implantation of the medical device, if afforded by patients’ needs.Keywords: antibody immobilization, biocompatible coating, chitosan nanoparticles, drug targeting, medical device

  16. SELMAP - SELEX affinity landscape MAPping of transcription factor binding sites using integrated microfluidics

    Science.gov (United States)

    Chen, Dana; Orenstein, Yaron; Golodnitsky, Rada; Pellach, Michal; Avrahami, Dorit; Wachtel, Chaim; Ovadia-Shochat, Avital; Shir-Shapira, Hila; Kedmi, Adi; Juven-Gershon, Tamar; Shamir, Ron; Gerber, Doron

    2016-01-01

    Transcription factors (TFs) alter gene expression in response to changes in the environment through sequence-specific interactions with the DNA. These interactions are best portrayed as a landscape of TF binding affinities. Current methods to study sequence-specific binding preferences suffer from limited dynamic range, sequence bias, lack of specificity and limited throughput. We have developed a microfluidic-based device for SELEX Affinity Landscape MAPping (SELMAP) of TF binding, which allows high-throughput measurement of 16 proteins in parallel. We used it to measure the relative affinities of Pho4, AtERF2 and Btd full-length proteins to millions of different DNA binding sites, and detected both high and low-affinity interactions in equilibrium conditions, generating a comprehensive landscape of the relative TF affinities to all possible DNA 6-mers, and even DNA10-mers with increased sequencing depth. Low quantities of both the TFs and DNA oligomers were sufficient for obtaining high-quality results, significantly reducing experimental costs. SELMAP allows in-depth screening of hundreds of TFs, and provides a means for better understanding of the regulatory processes that govern gene expression. PMID:27628341

  17. Characterization of EPPIN's semenogelin I binding site: a contraceptive drug target.

    Science.gov (United States)

    Silva, Erick J R; Hamil, Katherine G; Richardson, Richard T; O'Rand, Michael G

    2012-09-01

    Epididymal protease inhibitor (EPPIN) is found on the surface of spermatozoa and works as a central hub for a sperm surface protein complex (EPPIN protein complex [EPC]) that inhibits sperm motility on the binding of semenogelin I (SEMG1) during ejaculation. Here, we identify EPPIN's amino acids involved in the interactions within the EPC and demonstrate that EPPIN's sequence C102-P133 contains the major binding site for SEMG1. Within the same region, the sequence F117-P133 binds the EPC-associated protein lactotransferrin (LTF). We show that residues Cys102, Tyr107, and Phe117 in the EPPIN C-terminus are required for SEMG1 binding. Additionally, residues Tyr107 and Phe117 are critically involved in the interaction between EPPIN and LTF. Our findings demonstrate that EPPIN is a key player in the protein-protein interactions within the EPC. Target identification is an important step toward the development of a novel male contraceptive, and the functionality of EPPIN's residues Cys102, Tyr107, and Phe117 offers novel opportunities for contraceptive compounds that inhibit sperm motility by targeting this region of the molecule.

  18. Identification of 2-[125I]iodomelatonin binding sites in the thymus of mice and its significance

    Institute of Scientific and Technical Information of China (English)

    刘志民; 赵瑛; 彭树勋

    1995-01-01

    The melatonin binding sites in membrane preparations of the mouse thymus were demonstratedusing 2-[125I] iodomelatonin as a radioligand.The binding sites were stable,saturable,reversible and of highaffinity.Studies on specificity of 2-[125I] iodomelatonin binding suggested that the 2-[125I] iodomelatonin bindingsites are highly specific for melatonin.These binding sites fulfilled the standard criteria for receptors.Ourwork suggested that melatonin should have direct regulatory action on immune system mediated through themelatonin binding sites.Studies on the circadian rhythm showed that there existed the circadian rhythm in the bind-ing capacity for 2-[125I] iodomelatonin in the mouse thymus with the peak values at 12:00-16:00 andthe trough values between 00:00 and 4:00.The subceUular distribution of 2-[125I] iodomelatonin binding sitesin the mouse thymus was in the following descending order:nuclear>mitochondrial>microsomal>cytosolic frac-tion.There was also an age-related decrease in 2-[125I] iodomelatonin binding in the mouse thymus.This iscorrelated with the involution of the thymus.

  19. Wiz binds active promoters and CTCF-binding sites and is required for normal behaviour in the mouse

    Science.gov (United States)

    Isbel, Luke; Prokopuk, Lexie; Wu, Haoyu; Daxinger, Lucia; Oey, Harald; Spurling, Alex; Lawther, Adam J; Hale, Matthew W; Whitelaw, Emma

    2016-01-01

    We previously identified Wiz in a mouse screen for epigenetic modifiers. Due to its known association with G9a/GLP, Wiz is generally considered a transcriptional repressor. Here, we provide evidence that it may also function as a transcriptional activator. Wiz levels are high in the brain, but its function and direct targets are unknown. ChIP-seq was performed in adult cerebellum and Wiz peaks were found at promoters and transcription factor CTCF binding sites. RNA-seq in Wiz mutant mice identified genes differentially regulated in adult cerebellum and embryonic brain. In embryonic brain most decreased in expression and included clustered protocadherin genes. These also decreased in adult cerebellum and showed strong Wiz ChIP-seq enrichment. Because a precise pattern of protocadherin gene expression is required for neuronal development, behavioural tests were carried out on mutant mice, revealing an anxiety-like phenotype. This is the first evidence of a role for Wiz in neural function. DOI: http://dx.doi.org/10.7554/eLife.15082.001 PMID:27410475

  20. Quinacrine impairs enterovirus 71 RNA replication by preventing binding of polypyrimidine-tract binding protein with internal ribosome entry sites.

    Directory of Open Access Journals (Sweden)

    Jianmin Wang

    Full Text Available Since the 1980s, epidemics of enterovirus 71 (EV71 and other enteroviruses have occurred in Asian countries and regions, causing a wide range of human diseases. No effective therapy is available for the treatment of these infections. Internal ribosome entry sites (IRESs are indispensable for the initiation of translation in enteroviruses. Several cellular factors, as well as the ribosome, are recruited to the conserved IRES during this process. Quinacrine intercalates into the RNA architecture and inhibits RNA transcription and protein synthesis, and a recent study showed that quinacrine inhibited encephalomyocarditis virus and poliovirus IRES-mediated translation in vitro without disrupting internal cellular IRES. Here, we report that quinacrine was highly active against EV71, protecting cells from EV71 infection. Replication of viral RNA, expression of viral capsid protein, and production of virus were all strongly inhibited by quinacrine. Interaction of the polypyrimidine tract-binding protein (PTB with the conserved IRES was prevented by quinacrine. Coxsackieviruses and echovirus were also inhibited by quinacrine in cultured cells. These results indicate that quinacrine may serve as a potential protective agent for use in the treatment of patients with chronic enterovirus infection.

  1. (/sup 3/H)nitrobenzylthioinosine binding as a probe for the study of adenosine uptake sites in brain

    Energy Technology Data Exchange (ETDEWEB)

    Marangos, P.J.; Patel, J.; Clark-Rosenberg, R.; Martino, A.M.

    1982-07-01

    The binding of the potent adenosine uptake inhibitor (/sup 3/H)nitrobenzylthioinosine ((/sup 3/H)NBI) to brain membrane fractions was investigated. Reversible, saturable, specific, high-affinity binding was demonstrated in both rat and human brain. The KD in both was 0.15 nM with Bmax values of 140-200 fmol/mg protein. Linear Scatchard plots were routinely obtained, indicating a homogeneous population of binding sites in brain. The highest density of binding sites was found in the caudate and hypothalamus in both species. The binding site was heat labile and trypsin sensitive. Binding was also decreased by incubation of the membranes in 0.05% Triton X-100 and by treatment with dithiothreitol and iodoacetamide. Of the numerous salt and metal ions tested, only copper and zinc had significant effects on (/sup 3/H)NBI binding. The inhibitory potencies of copper and zinc were IC50 . 160 microM and 6 mM, respectively. Subcellular distribution studies revealed a high percentage of the (/sup 3/H)NBI binding sites on synaptosomes, indicating that these sites were present in the synaptic region. A study of the tissue distribution of the (/sup 3/H)NBI sites revealed very high densities of binding in erythrocyte, lung, and testis, with much lower binding densities in brain, kidney, liver, muscle, and heart. The binding affinity in the former group was approximately 1.5 nM, whereas that in the latter group was 0.15 nM, suggesting two types of binding sites. The pharmacologic profile of (/sup 3/H)NBI binding was consistent with its function as the adenosine transport site, distinct from the adenosine receptor, since thiopurines were very potent inhibitors of binding whereas adenosine receptor ligands, such as cyclohexyladenosine and 2-chloroadenosine, were three to four orders of magnitude less potent. (/sup 3/H)NBI binding in brain should provide a useful probe for the study of adenosine transport in the brain.

  2. Inhibition of [(11)C]mirtazapine binding by alpha(2)-adrenoceptor antagonists studied by positron emission tomography in living porcine brain

    DEFF Research Database (Denmark)

    Smith, Donald F.; Dyve, Suzan; Minuzzi, Luciano;

    2006-01-01

    We have developed [(11)C]mirtazapine as a ligand for PET studies of antidepressant binding in living brain. However, previous studies have determined neither optimal methods for quantification of [(11)C]mirtazapine binding nor the pharmacological identity of this binding. To obtain that informati...... brain. Synapse 59:463-471, 2006. (c) 2006 Wiley-Liss, Inc....

  3. Growth rate variation among passerine species in tropical and temperate sites: an antagonistic interaction between parental food provisioning and nest predation risk.

    Science.gov (United States)

    Martin, Thomas E; Lloyd, Penn; Bosque, Carlos; Barton, Daniel C; Biancucci, Atilio L; Cheng, Yi-Ru; Ton, Riccardo

    2011-06-01

    Causes of interspecific variation in growth rates within and among geographic regions remain poorly understood. Passerine birds represent an intriguing case because differing theories yield the possibility of an antagonistic interaction between nest predation risk and food delivery rates on evolution of growth rates. We test this possibility among 64 Passerine species studied on three continents, including tropical and north and south temperate latitudes. Growth rates increased strongly with nestling predation rates within, but not between, sites. The importance of nest predation was further emphasized by revealing hidden allometric scaling effects. Nestling predation risk also was associated with reduced total feeding rates and per-nestling feeding rates within each site. Consequently, faster growth rates were associated with decreased per-nestling food delivery rates across species, both within and among regions. These relationships suggest that Passerines can evolve growth strategies in response to predation risk whereby food resources are not the primary limit on growth rate differences among species. In contrast, reaction norms of growth rate relative to brood size suggest that food may limit growth rates within species in temperate, but not tropical, regions. Results here provide new insight into evolution of growth strategies relative to predation risk and food within and among species. PMID:21644952

  4. Growth rate variation among passerine species in tropical and temperate sites: an antagonistic interaction between parental food provisioning and nest predation risk

    Science.gov (United States)

    Martin, Thomas E.; Llyod, Penn; Bosque, Carlos; Barton, Daniel C.; Biancucci, Atilio L.; Cheng, Yi-Ru; Ton, Riccardo

    2011-01-01

    Causes of interspecific variation in growth rates within and among geographic regions remain poorly understood. Passerine birds represent an intriguing case because differing theories yield the possibility of an antagonistic interaction between nest predation risk and food delivery rates on evolution of growth rates. We test this possibility among 64 Passerine species studied on three continents, including tropical and north and south temperate latitudes. Growth rates increased strongly with nestling predation rates within, but not between, sites. The importance of nest predation was further emphasized by revealing hidden allometric scaling effects. Nestling predation risk also was associated with reduced total feeding rates and per-nestling feeding rates within each site. Consequently, faster growth rates were associated with decreased per-nestling food delivery rates across species, both within and among regions. These relationships suggest that Passerines can evolve growth strategies in response to predation risk whereby food resources are not the primary limit on growth rate differences among species. In contrast, reaction norms of growth rate relative to brood size suggest that food may limit growth rates within species in temperate, but not tropical, regions. Results here provide new insight into evolution of growth strategies relative to predation risk and food within and among species.

  5. Impact of Alu repeats on the evolution of human p53 binding sites

    Directory of Open Access Journals (Sweden)

    Sirotin Michael V

    2011-01-01

    Full Text Available Abstract Background The p53 tumor suppressor protein is involved in a complicated regulatory network, mediating expression of ~1000 human genes. Recent studies have shown that many p53 in vivo binding sites (BSs reside in transposable repeats. The relationship between these BSs and functional p53 response elements (REs remains unknown, however. We sought to understand whether the p53 REs also reside in transposable elements and particularly in the most-abundant Alu repeats. Results We have analyzed ~160 functional p53 REs identified so far and found that 24 of them occur in repeats. More than half of these repeat-associated REs reside in Alu elements. In addition, using a position weight matrix approach, we found ~400,000 potential p53 BSs in Alu elements genome-wide. Importantly, these putative BSs are located in the same regions of Alu repeats as the functional p53 REs - namely, in the vicinity of Boxes A/A' and B of the internal RNA polymerase III promoter. Earlier nucleosome-mapping experiments showed that the Boxes A/A' and B have a different chromatin environment, which is critical for the binding of p53 to DNA. Here, we compare the Alu-residing p53 sites with the corresponding Alu consensus sequences and conclude that the p53 sites likely evolved through two different mechanisms - the sites overlapping with the Boxes A/A' were generated by CG → TG mutations; the other sites apparently pre-existed in the progenitors of several Alu subfamilies, such as AluJo and AluSq. The binding affinity of p53 to the Alu-residing sites generally correlates with the age of Alu subfamilies, so that the strongest sites are embedded in the 'relatively young' Alu repeats. Conclusions The primate-specific Alu repeats play an important role in shaping the p53 regulatory network in the context of chromatin. One of the selective factors responsible for the frequent occurrence of Alu repeats in introns may be related to the p53-mediated regulation of Alu

  6. Motors and Their Tethers: The Role of Secondary Binding Sites in Processive Motility

    Science.gov (United States)

    Kincaid, Margaret M.; King, Stephen J.

    2007-01-01

    Cytoskeletal motors convert the energy from binding and hydrolyzing ATP into conformational changes that direct movement along a cytoskeletal polymer substrate. These enzymes utilize different mechanisms to generate long-range motion on the order of a micron or more that is required for functions ranging from muscle contraction to transport of growth factors along a nerve axon. Several of the individual cytoskeletal motors are processive, meaning that they have the ability to take sequential steps along their polymer substrate without dissociating from the polymer. This ability to maintain contact with the polymer allows individual motors to move cargos quickly from one cellular location to another. Many of the processive motors have now been found to utilize secondary binding sites that aid in motor processivity. PMID:17172850

  7. ATP and AMP Mutually Influence Their Interaction with the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) at Separate Binding Sites*

    OpenAIRE

    Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, ...

  8. The retrovirus HTLV-1 inserts an ectopic CTCF-binding site into the human genome

    Science.gov (United States)

    Satou, Yorifumi; Miyazato, Paola; Ishihara, Ko; Yaguchi, Hiroko; Melamed, Anat; Miura, Michi; Fukuda, Asami; Nosaka, Kisato; Watanabe, Takehisa; Rowan, Aileen G.; Nakao, Mitsuyoshi

    2016-01-01

    Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that causes malignant and inflammatory diseases in ∼10% of infected people. A typical host has between 104 and 105 clones of HTLV-1–infected T lymphocytes, each clone distinguished by the genomic integration site of the single-copy HTLV-1 provirus. The HTLV-1 bZIP (HBZ) factor gene is constitutively expressed from the minus strand of the provirus, whereas plus-strand expression, required for viral propagation to uninfected cells, is suppressed or intermittent in vivo, allowing escape from host immune surveillance. It remains unknown what regulates this pattern of proviral transcription and latency. Here, we show that CTCF, a key regulator of chromatin structure and function, binds to the provirus at a sharp border in epigenetic modifications in the pX region of the HTLV-1 provirus in T cells naturally infected with HTLV-1. CTCF is a zinc-finger protein that binds to an insulator region in genomic DNA and plays a fundamental role in controlling higher order chromatin structure and gene expression in vertebrate cells. We show that CTCF bound to HTLV-1 acts as an enhancer blocker, regulates HTLV-1 mRNA splicing, and forms long-distance interactions with flanking host chromatin. CTCF-binding sites (CTCF-BSs) have been propagated throughout the genome by transposons in certain primate lineages, but CTCF binding has not previously been described in present-day exogenous retroviruses. The presence of an ectopic CTCF-BS introduced by the retrovirus in tens of thousands of genomic locations has the potential to cause widespread abnormalities in host cell chromatin structure and gene expression. PMID:26929370

  9. Myosin VI regulates actin structure specialization through conserved cargo-binding domain sites.

    Directory of Open Access Journals (Sweden)

    Mamiko Isaji

    Full Text Available Actin structures are often stable, remaining unchanged in organization for the lifetime of a differentiated cell. Little is known about stable actin structure formation, organization, or maintenance. During Drosophila spermatid individualization, long-lived actin cones mediate cellular remodeling. Myosin VI is necessary for building the dense meshwork at the cones' fronts. We test several ideas for myosin VI's mechanism of action using domain deletions or site-specific mutations of myosin VI. The head (motor and globular tail (cargo-binding domains were both needed for localization at the cone front and dense meshwork formation. Several conserved partner-binding sites in the globular tail previously identified in vertebrate myosin VI were critical for function in cones. Localization and promotion of proper actin organization were separable properties of myosin VI. A vertebrate myosin VI was able to localize and function, indicating that functional properties are conserved. Our data eliminate several models for myosin VI's mechanism of action and suggest its role is controlling organization and action of actin assembly regulators through interactions at conserved sites. The Drosophila orthologues of interaction partners previously identified for vertebrate myosin VI are likely not required, indicating novel partners mediate this effect. These data demonstrate that generating an organized and functional actin structure in this cell requires multiple activities coordinated by myosin VI.

  10. Mesoscopic model and free energy landscape for protein-DNA binding sites: analysis of cyanobacterial promoters.

    Directory of Open Access Journals (Sweden)

    Rafael Tapia-Rojo

    2014-10-01

    Full Text Available The identification of protein binding sites in promoter sequences is a key problem to understand and control regulation in biochemistry and biotechnological processes. We use a computational method to analyze promoters from a given genome. Our approach is based on a physical model at the mesoscopic level of protein-DNA interaction based on the influence of DNA local conformation on the dynamics of a general particle along the chain. Following the proposed model, the joined dynamics of the protein particle and the DNA portion of interest, only characterized by its base pair sequence, is simulated. The simulation output is analyzed by generating and analyzing the Free Energy Landscape of the system. In order to prove the capacity of prediction of our computational method we have analyzed nine promoters of Anabaena PCC 7120. We are able to identify the transcription starting site of each of the promoters as the most populated macrostate in the dynamics. The developed procedure allows also to characterize promoter macrostates in terms of thermo-statistical magnitudes (free energy and entropy, with valuable biological implications. Our results agree with independent previous experimental results. Thus, our methods appear as a powerful complementary tool for identifying protein binding sites in promoter sequences.

  11. Ceruloplasmin revisited: structural and functional roles of various metal cation-binding sites

    International Nuclear Information System (INIS)

    The three-dimensional molecular structure of human serum ceruloplasmin has been reinvestigated using X-ray synchrotron data collected at 100 K from a crystal frozen to liquid-nitrogen temperature. The three-dimensional molecular structure of human serum ceruloplasmin has been reinvestigated using X-ray synchrotron data collected at 100 K from a crystal frozen to liquid-nitrogen temperature. The resulting model, with an increase in resolution from 3.1 to 2.8 Å, gives an overall improvement of the molecular structure, in particular the side chains. In addition, it enables the clear definition of previously unidentified Ca2+-binding and Na+-binding sites. The Ca2+ cation is located in domain 1 in a configuration very similar to that found in the activated bovine factor Va. The Na+ sites appear to play a structural role in providing rigidity to the three protuberances on the top surface of the molecule. These features probably help to steer substrates towards the mononuclear copper sites prior to their oxidation and to restrict the size of the approaching substrate. The trinuclear copper centre appears to differ from the room-temperature structure in that a dioxygen moiety is bound in a similar way to that found in the endospore coat protein CotA from Bacillus subtilis

  12. Using DNA duplex stability information for transcription factor binding site discovery.

    Science.gov (United States)

    Gordân, Raluca; Hartemink, Alexander J

    2008-01-01

    Transcription factor (TF) binding site discovery is an important step in understanding transcriptional regulation. Many computational tools have already been developed, but their success in detecting TF motifs is still limited. We believe one of the main reasons for the low accuracy of current methods is that they do not take into account the structural aspects of TF-DNA interaction. We have previously shown that knowledge about the structural class of the TF and information about nucleosome occupancy can be used to improve motif discovery. Here, we demonstrate the benefits of using information about the DNA double-helical stability for motif discovery. We notice that, in general, the energy needed to destabilize the DNA double helix is higher at TF binding sites than at random DNA sites. We use this information to derive informative positional priors that we incorporate into a motif finding algorithm. When applied to yeast ChIP-chip data, the new informative priors improve the performance of the motif finder significantly when compared to priors that do not use the energetic stability information.

  13. The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor

    Directory of Open Access Journals (Sweden)

    Kratochwil Nicole A

    2007-10-01

    Full Text Available Abstract Background Differences in sweet taste perception among species depend on structural variations of the sweet taste receptor. The commercially used isovanillyl sweetener neohesperidin dihydrochalcone activates the human but not the rat sweet receptor TAS1R2+TAS1R3. Analysis of interspecies combinations and chimeras of rat and human TAS1R2+TAS1R3 suggested that the heptahelical domain of human TAS1R3 is crucial for the activation of the sweet receptor by neohesperidin dihydrochalcone. Results By mutational analysis combined with functional studies and molecular modeling we identified a set of different amino acid residues within the heptahelical domain of human TAS1R3 that forms the neohesperidin dihydrochalcone binding pocket. Sixteen amino acid residues in the transmembrane domains 2 to 7 and one in the extracellular loop 2 of hTAS1R3 influenced the receptor's response to neohesperidin dihydrochalcone. Some of these seventeen residues are also part of the binding sites for the sweetener cyclamate or the sweet taste inhibitor lactisole. In line with this observation, lactisole inhibited activation of the sweet receptor by neohesperidin dihydrochalcone and cyclamate competitively, whereas receptor activation by aspartame, a sweetener known to bind to the N-terminal domain of TAS1R2, was allosterically inhibited. Seven of the amino acid positions crucial for activation of hTAS1R2+hTAS1R3 by neohesperidin dihydrochalcone are thought to play a role in the binding of allosteric modulators of other class C GPCRs, further supporting our model of the neohesperidin dihydrochalcone pharmacophore. Conclusion From our data we conclude that we identified the neohesperidin dihydrochalcone binding site at the human sweet taste receptor, which overlaps with those for the sweetener cyclamate and the sweet taste inhibitor lactisole. This readily delivers a molecular explanation of our finding that lactisole is a competitive inhibitor of the receptor

  14. Distinct DNA binding sites contribute to the TCF transcriptional switch in C. elegans and Drosophila.

    Directory of Open Access Journals (Sweden)

    Chandan Bhambhani

    2014-02-01

    Full Text Available Regulation of gene expression by signaling pathways often occurs through a transcriptional switch, where the transcription factor responsible for signal-dependent gene activation represses the same targets in the absence of signaling. T-cell factors (TCFs are transcription factors in the Wnt/ß-catenin pathway, which control numerous cell fate specification events in metazoans. The TCF transcriptional switch is mediated by many co-regulators that contribute to repression or activation of Wnt target genes. It is typically assumed that DNA recognition by TCFs is important for target gene location, but plays no role in the actual switch. TCF/Pangolin (the fly TCF and some vertebrate TCF isoforms bind DNA through two distinct domains, a High Mobility Group (HMG domain and a C-clamp, which recognize DNA motifs known as HMG and Helper sites, respectively. Here, we demonstrate that POP-1 (the C. elegans TCF also activates target genes through HMG and Helper site interactions. Helper sites enhanced the ability of a synthetic enhancer to detect Wnt/ß-catenin signaling in several tissues and revealed an unsuspected role for POP-1 in regulating the C. elegans defecation cycle. Searching for HMG-Helper site clusters allowed the identification of a new POP-1 target gene active in the head muscles and gut. While Helper sites and the C-clamp are essential for activation of worm and fly Wnt targets, they are dispensable for TCF-dependent repression of targets in the absence of Wnt signaling. These data suggest that a fundamental change in TCF-DNA binding contributes to the transcriptional switch that occurs upon Wnt stimulation.

  15. Interaction of pinaverium (a quaternary ammonium compound) with 1,4-dihydropyridine binding sites in rat ileum smooth muscle.

    OpenAIRE

    Feron, Olivier; Wibo, Maurice; Christen, M O; Godfraind, Theophile

    1992-01-01

    1. The interaction of pinaverium bromide, a quaternary ammonium compound, with binding sites for (L-type) calcium channel blockers was investigated in rat ileum smooth muscle. 2. Pinaverium inhibited [3H]-(+)-PN200-110 ([3H]-(+)-isradipine) specific binding to tissue homogenates incompletely (Ki 0.38 microM; maximal inhibition 80%). In contrast, binding to single cell preparations (obtained by collagenase treatment) and to saponin-treated homogenates was completely inhibited. These data are c...

  16. Mutant cycles at CFTR’s non-canonical ATP-binding site support little interface separation during gating

    OpenAIRE

    Szollosi, A; Muallem, D. R.; Csanady, L.; P.; Vergani

    2011-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel belonging to the adenosine triphosphate (ATP)-binding cassette (ABC) superfamily. ABC proteins share a common molecular mechanism that couples ATP binding and hydrolysis at two nucleotide-binding domains (NBDs) to diverse functions. This involves formation of NBD dimers, with ATP bound at two composite interfacial sites. In CFTR, intramolecular NBD dimerization is coupled to channel opening. Channel closing is tr...

  17. Structural analyses of the Slm1-PH domain demonstrate ligand binding in the non-canonical site.

    Directory of Open Access Journals (Sweden)

    Kanchan Anand

    Full Text Available BACKGROUND: Pleckstrin homology (PH domains are common membrane-targeting modules and their best characterized ligands are a set of important signaling lipids that include phosphatidylinositol phosphates (PtdInsPs. PH domains recognize PtdInsPs through two distinct mechanisms that use different binding pockets on opposite sides of the β-strands 1 and 2: i a canonical binding site delimited by the β1-β2 and β3-β4loops and ii a non-canonical binding site bordered by the β1-β2 and β5-β6loops. The PH domain-containing protein Slm1 from budding yeast Saccharomyces cerevisiae is required for actin cytoskeleton polarization and cell growth. We recently reported that this PH domain binds PtdInsPs and phosphorylated sphingolipids in a cooperative manner. PRINCIPAL FINDINGS: To study the structural basis for the Slm1-PH domain (Slm1-PH specificity, we co-crystallized this domain with different soluble compounds that have structures analogous to anionic lipid head groups of reported Slm1 ligands: inositol 4-phosphate, which mimics phosphatidylinositol-4-phosphate (PtdIns(4P, and phosphoserine as a surrogate for dihydrosphingosine 1-phosphate (DHS1-P. We found electron densities for the ligands within the so-called non-canonical binding site. An additional positively charged surface that contacts a phosphate group was identified next to the canonical binding site. CONCLUSIONS: Our results suggest that Slm1-PH utilizes a non-canonical binding site to bind PtdInsPs, similar to that described for the PH domains of β-spectrin, Tiam1 and ArhGAP9. Additionally, Slm1-PH may have retained an active canonical site. We propose that the presence of both a canonical and a non-canonical binding pocket in Slm1-PH may account for the cooperative binding to PtdInsPs and DHS-1P.

  18. Identification of an Inhibitory Alcohol Binding Site in GABAA ρ1 Receptors.

    Science.gov (United States)

    Borghese, Cecilia M; Ruiz, Carlos I; Lee, Ui S; Cullins, Madeline A; Bertaccini, Edward J; Trudell, James R; Harris, R Adron

    2016-01-20

    Alcohols inhibit γ-aminobutyric acid type A ρ1 receptor function. After introducing mutations in several positions of the second transmembrane helix in ρ1, we studied the effects of ethanol and hexanol on GABA responses using two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes. The 6' mutations produced the following effects on ethanol and hexanol responses: small increase or no change (T6'M), increased inhibition (T6'V), and small potentiation (T6'Y and T6'F). The 5' mutations produced mainly increases in hexanol inhibition. Other mutations produced small (3' and 9') or no changes (2' and L277 in the first transmembrane domain) in alcohol effects. These results suggest an inhibitory alcohol binding site near the 6' position. Homology models of ρ1 receptors based on the X-ray structure of GluCl showed that the 2', 5', 6', and 9' residues were easily accessible from the ion pore, with 5' and 6' residues from neighboring subunits facing each other; L3' and L277 also faced the neighboring subunit. We tested ethanol through octanol on single and double mutated ρ1 receptors [ρ1(I15'S), ρ1(T6'Y), and ρ1(T6'Y,I15'S)] to further characterize the inhibitory alcohol pocket in the wild-type ρ1 receptor. The pocket can only bind relatively short-chain alcohols and is eliminated by introducing Y in the 6' position. Replacing the bulky 15' residue with a smaller side chain introduced a potentiating binding site, more sensitive to long-chain than to short-chain alcohols. In conclusion, the net alcohol effect on the ρ1 receptor is determined by the sum of its actions on inhibitory and potentiating sites.

  19. The angiotensin hexapeptide 3-8 fragment potently inhibits [125I]angiotensin II binding to non-AT1 or -AT2 recognition sites in bovine adrenal cortex.

    Science.gov (United States)

    Jarvis, M F; Gessner, G W; Ly, C Q

    1992-08-25

    In the present studies, ligand competition experiments were conducted to examine the ability of angiotensin II peptide agonists and nonpeptide AT1- and AT2-selective receptor antagonists to inhibit the binding of [125I]angiotensin II to bovine adrenal cortical membranes. Angiotensin II, angiotensin III, the All-(3-8) hexapeptide fragment of angiotensin II, and the AT1-selective receptor antagonist L-158,809, inhibited [125I]angiotensin II binding in a biphasic fashion indicative of a ligand interaction at more than one recognition site. Approximately 20% of low affinity [125I]angiotensin II binding was inhibited only by high micromolar concentrations of L-158,809. RG 13647 (1(-1,4-benzodioxan-2-methyl)-5-diphenylacetyl-4,5,6,7-tetra hydro-1H-imidazo- [4,5,c]-pyridine-6-carboxylic acid) represents a potent and AT2-selective analog of PD 123177 and showed weak activity in competing for [125I]angiotensin II binding with an IC50 value of 100 microM. When subsequent competition studies were conducted in the presence of 1 microM L-158,809 to block [125I]angiotensin II to the AT1 receptor subtype, the angiotensin II agonists produced monophasic inhibition curves with AII-(3-8) showing the greatest activity (IC50 = 6 nM) followed by angiotensin III (IC50 = 15 nM) much greater than angiotensin II (IC50 = 110 nM). RG 13647 was not found to significantly inhibit this portion of [125I]angiotensin II binding. These data demonstrate that bovine adrenal cortex contains both the AT1 receptor subtype, as well as, a novel class of [125I]angiotensin II recognition sites which may be analogous to the recently described angiotensin IV (AT4) receptor.

  20. Location of the Bombyx mori aminopeptidase N type 1 binding site on Bacillus thuringiensis Cry1Aa toxin.

    Science.gov (United States)

    Atsumi, Shogo; Mizuno, Eri; Hara, Hirotaka; Nakanishi, Kazuko; Kitami, Madoka; Miura, Nami; Tabunoki, Hiroko; Watanabe, Ayako; Sato, Ryoichi

    2005-07-01

    We analyzed the binding site on Cry1Aa toxin for the Cry1Aa receptor in Bombyx mori, 115-kDa aminopeptidase N type 1 (BmAPN1) (K. Nakanishi, K. Yaoi, Y. Nagino, H. Hara, M. Kitami, S. Atsumi, N. Miura, and R. Sato, FEBS Lett. 519:215-220, 2002), by using monoclonal antibodies (MAbs) that block binding between the binding site and the receptor. First, we produced a series of MAbs against Cry1Aa and obtained two MAbs, MAbs 2C2 and 1B10, that were capable of blocking the binding between Cry1Aa and BmAPN1 (blocking MAbs). The epitope of the Fab fragments of MAb 2C2 overlapped the BmAPN1 binding site, whereas the epitope of the Fab fragments of MAb 1B10 did not overlap but was located close to the binding site. Using three approaches for epitope mapping, we identified two candidate epitopes for the blocking MAbs on Cry1Aa. We constructed two Cry1Aa toxin mutants by substituting a cysteine on the toxin surface at each of the two candidate epitopes, and the small blocking molecule N-(9-acridinyl)maleimide (NAM) was introduced at each cysteine substitution to determine the true epitope. The Cry1Aa mutant with NAM bound to Cys582 did not bind either of the two blocking MAbs, suggesting that the true epitope for each of the blocking MAbs was located at the site containing Val582, which also consisted of 508STLRVN513 and 582VFTLSAHV589. These results indicated that the BmAPN1 binding site overlapped part of the region blocked by MAb 2C2 that was close to but excluded the actual epitope of MAb 2C2 on domain III of Cry1Aa toxin. We also discuss another area on Cry1Aa toxin as a new candidate site for BmAPN1 binding. PMID:16000811