WorldWideScience

Sample records for ans advanced neutron

  1. Advanced Neutron Source (ANS) Project

    International Nuclear Information System (INIS)

    Campbell, J.H.; Thompson, P.B.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts

  2. Advanced Neutron Source (ANS) Project progress report

    International Nuclear Information System (INIS)

    McBee, M.R.; Chance, C.M.

    1990-04-01

    This report discusses the following topics on the advanced neutron source: quality assurance (QA) program; reactor core development; fuel element specification; corrosion loop tests and analyses; thermal-hydraulic loop tests; reactor control concepts; critical and subcritical experiments; material data, structural tests, and analysis; cold source development; beam tube, guide, and instrument development; hot source development; neutron transport and shielding; I ampersand C research and development; facility concepts; design; and safety

  3. An Advanced Neutron Spectrometer for Future Manned Exploration Missions

    Science.gov (United States)

    Christl, Mark; Apple, Jeffrey A.; Cox, Mark D.; Dietz, Kurtis L.; Dobson, Christopher C.; Gibson, Brian F.; Howard, David E.; Jackson, Amanda C.; Kayatin, Mathew J.; Kuznetsov, Evgeny N.; hide

    2014-01-01

    An Advanced Neutron Spectrometer (ANS) is being developed to support future manned exploration missions. This new instrument uses a refined gate and capture technique that significantly improves the identification of neutrons in mixed radiation fields found in spacecraft, habitats and on planetary surfaces. The new instrument is a composite scintillator comprised of PVT loaded with litium-6 glass scintillators. We will describe the detection concept and show preliminary results from laboratory tests and exposures at particle accelerators

  4. The Advanced Neutron Source

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1989-01-01

    The Advanced Neutron Source (ANS) is a new user experimental facility planned to be operational at Oak Ridge in the late 1990's. The centerpiece of the ANS will be a steady-state research reactor of unprecedented thermal neutron flux (φ th ∼ 9·10 19 m -2 ·s -1 ) accompanied by extensive and comprehensive equipment and facilities for neutron-based research. 5 refs., 5 figs

  5. Advanced Neutron Source (ANS) Project progress report, FY 1994

    International Nuclear Information System (INIS)

    Campbell, J.H.; King-Jones, K.H.; Thompson, P.B.

    1995-01-01

    The President's budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met

  6. Advanced Neutron Source (ANS) Project progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H.; King-Jones, K.H. [eds.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Central Engineering Services

    1995-01-01

    The President`s budget request for FY 1994 included a construction project for the Advanced Neutron Source (ANS). However, the budget that emerged from the Congress did not, and so activities during this reporting period were limited to continued research and development and to advanced conceptual design. A significant effort was devoted to a study, requested by the US Department of Energy (DOE) and led by Brookhaven National Laboratory, of the performance and cost impacts of reducing the uranium fuel enrichment below the baseline design value of 93%. The study also considered alternative core designs that might mitigate those impacts. The ANS Project proposed a modified core design, with three fuel elements instead of two, that would allow operation with only 50% enriched uranium and use existing fuel technology. The performance penalty would be 15--20% loss of thermal neutron flux; the flux would still just meet the minimum design requirement set by the user community. At the time of this writing, DOE has not established an enrichment level for ANS, but two advisory committees have recommended adopting the new core design, provided the minimum flux requirements are still met.

  7. Advanced thermal neutron area detector. The development and application of an imaging plate neutron detector

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1995-01-01

    This report reviews a newly developed imaging plate neutron detector (IP-ND), along with its actual application. First, imaging plate, which is an integrating two-dimensional radiation detector using photostimulated luminescence (PSL), is briefly mentioned. Then, IP-ND is described in terms of the following: design principle, trial manufacture of IP-ND, and performance (such as dynamic range, spatial resolution, neutron detection efficiency, and PSL according to kinds of neutron converters). The application of IP-ND is outlined under the following fields: (1) neutron radiography, (2) electric noiseless detector, (3) fast neutron detector, (4) neutron diffraction, (5) neutron scattering, and (6) neutron reflector. (N.K.)

  8. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H. (ed.) (Oak Ridge National Lab., TN (United States)); Selby, D.L.; Harrington, R.M. (Oak Ridge National Lab., TN (United States)); Thompson, P.B. (Martin Marietta Energy Systems, Inc., (United States). Engineering Division)

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I C Research and Development; Design; and Safety.

  9. Advanced Neutron Source (ANS) Project Progress report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H. [ed.] [Oak Ridge National Lab., TN (United States); Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., (United States). Engineering Division

    1992-01-01

    This report discusses the following about the Advanced Neutron Source: Project Management; Research and Development; Fuel Development; Corrosion Loop Tests and Analyses; Thermal-Hydraulic Loop Tests; Reactor Control and Shutdown Concepts; Critical and Subcritical Experiments; Material Data, Structural Tests, and Analysis; Cold-Source Development; Beam Tube, Guide, and Instrument Development; Hot-Source Development; Neutron Transport and Shielding; I & C Research and Development; Design; and Safety.

  10. The Advanced Neutron Source

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1990-01-01

    The Advanced Neutron Source (ANS) is to be a multipurpose neutron research center, constructed around a high-flux reactor now being designed at the Oak Ridge National Laboratory (ORNL). Its primary purpose is to place the United States in the forefront of neutron scattering in the twenty-first century. Other research programs include nuclear and fundamental physics, isotope production, materials irradiation, and analytical chemistry. The ANS will be a unique and invaluable research tool because of the unprecedented neutron flux available from the high-intensity research reactor. But this reactor would be ineffective without world-class research facilities that allow the fullest utilization of the available neutrons. And, in turn, those research facilities will not produce new and exciting science without a broad population of users from all parts of the nation and the world, placed in a stimulating environment in which experiments can be effectively conducted and in which scientific exchange is encouraged. This paper discusses the measures being taken to ensure that the design of the ANS focuses not only on the reactor, but on providing the experiment and user support facilities needed to allow its effective use

  11. SERA - an advanced treatment planning system for neutron therapy

    International Nuclear Information System (INIS)

    Wheeler, F.J.; Wessol, D.E.; Wemple, C.A.; Nigg, D.W.; Albright, C.L.; Cohen, M.T.; Frandsen, M.W.; Harkin, G.J.; Rossmeier, M.B.

    2001-01-01

    The technology for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT) has advanced significantly over the past few years. Because of the more complex nature of the problem, the computational methods that work well for treatment planning in photon radiotherapy are not applicable to BNCT. The necessary methods have, however, been developed and have been successfully employed both for research applications as well as human trials. Computational geometry for BNCT applications can be constructed directly from tomographic medical imagery and computed radiation dose distributions can be readily displayed in formats that are familiar to the radiotherapy community. The SERA system represents a significant advance in several areas for treatment planning. However further improvements in speed and results presentation are still needed for routine clinical applications, particularly when optimization of dose pattern is required. (author)

  12. SERA - An Advanced Treatment Planning System for Neutron Therapy

    International Nuclear Information System (INIS)

    Wemple, C. A.; Albright, C. L.; Nigg, D. W.; Wessol, D. W.; Wheeler, F. J.; Harkin, G. J.; Rossmeirer, M. B.; Cohen, M. T.; Frandsen, M. W.

    1999-01-01

    The technology for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT) has advanced significantly over the past few years. Because of the more complex nature of the problem, the computational methods that work well for treatment planning in photon radiotherapy are not applicable to BNCT. The necessary methods have, however, been developed and have been successfully employed both for research applications as well as human trials. Computational geometry for BNCT applications can be constructed directly from tomographic medical imagery and computed radiation dose distributions can be readily displayed in formats that are familiar to the radiotherapy community. The SERA system represents a significant advance in several areas for treatment planning. However further improvements in speed and results presentation are still needed for routine clinical applications, particularly when optimizations of dose pattern is required

  13. SERA - An Advanced Treatment Planning System for Neutron Therapy

    Energy Technology Data Exchange (ETDEWEB)

    C. A. Wemple; C. L. Albright; D. W. Nigg; D. W. Wessol; F. J. Wheeler; G. J. Harkin; M. B. Rossmeirer; M. T. Cohen; M. W. Frandsen

    1999-06-01

    The technology for computational dosimetry and treatment planning for Boron Neutron Capture Therapy (BNCT) has advanced significantly over the past few years. Because of the more complex nature of the problem, the computational methods that work well for treatment planning in photon radiotherapy are not applicable to BNCT. The necessary methods have, however, been developed and have been successfully employed both for research applications as well as human trials. Computational geometry for BNCT applications can be constructed directly from tomographic medical imagery and computed radiation dose distributions can be readily displayed in formats that are familiar to the radiotherapy community. The SERA system represents a significant advance in several areas for treatment planning. However further improvements in speed and results presentation are still needed for routine clinical applications, particularly when optimizations of dose pattern is required.

  14. Advanced Neutron Source (ANS) Project: Annual report, April 1987--March 1988

    Energy Technology Data Exchange (ETDEWEB)

    Selby, D.L.; Harrington, R.M.; Peretz, F.J.; McBee, M.R. (comp.)

    1989-02-01

    The Advanced Neutron Source (ANS) Project (formerly called the Center for Neutron Research) will provide the world's best facilities for the study of neutron scattering. The ANS high-power density reactor will be fueled with uranium silicide and cooled, moderated, and reflected by deuterium oxide. Peak neutron fluxes in the reflector are expected to be 5 to 10 x 10/sup 19/ neutrons/center dot/m/sup -2//center dot/s/sup -1/ with a power level between 270 and 300 MW. This report describes the status of technical work funded through the ANS Project during the period April 1987 through March 1988. Earlier work is described in Center for Neutron Research Project Status Report and other Oak Ridge National Laboratory reports. 22 refs., 57 figs., 23 tabs.

  15. The Advanced Neutron Source (ANS) project: A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5x10 19 m -2 ·sec -1 . Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities

  16. Advanced Neutron Source Cross Section Libraries (ANSL-V): ENDF/B-V based multigroup cross-section libraries for advanced neutron source (ANS) reactor studies

    International Nuclear Information System (INIS)

    Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Moses, D.L.; Petrie, L.M.; Primm, R.T. III; Slater, C.O.; Westfall, R.M.; Wright, R.Q.

    1990-09-01

    Pseudo-problem-independent, multigroup cross-section libraries were generated to support Advanced Neutron Source (ANS) Reactor design studies. The ANS is a proposed reactor which would be fueled with highly enriched uranium and cooled with heavy water. The libraries, designated ANSL-V (Advanced Neutron Source Cross Section Libraries based on ENDF/B-V), are data bases in AMPX master format for subsequent generation of problem-dependent cross-sections for use with codes such as KENO, ANISN, XSDRNPM, VENTURE, DOT, DORT, TORT, and MORSE. Included in ANSL-V are 99-group and 39-group neutron, 39-neutron-group 44-gamma-ray-group secondary gamma-ray production (SGRP), 44-group gamma-ray interaction (GRI), and coupled, 39-neutron group 44-gamma-ray group (CNG) cross-section libraries. The neutron and SGRP libraries were generated primarily from ENDF/B-V data; the GRI library was generated from DLC-99/HUGO data, which is recognized as the ENDF/B-V photon interaction data. Modules from the AMPX and NJOY systems were used to process the multigroup data. Validity of selected data from the fine- and broad-group neutron libraries was satisfactorily tested in performance parameter calculations

  17. Advanced Neutron Source (ANS) Project. Progress report FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.H. [ed.; Selby, D.L.; Harrington, R.M. [Oak Ridge National Lab., TN (United States); Thompson, P.B. [Martin Marietta Energy Systems, Inc., Oak Ridge, TN (United States). Engineering Div.

    1994-01-01

    This report covers the progress made in 1993 in the following sections: (1) project management; (2) research and development; (3) design and (4) safety. The section on research and development covers the following: (1) reactor core development; (2) fuel development; (3) corrosion loop tests and analysis; (4) thermal-hydraulic loop tests; (5) reactor control and shutdown concepts; (6) critical and subcritical experiments; (7) material data, structure tests, and analysis; (8) cold source development; (9) beam tube, guide, and instrument development; (10) neutron transport and shielding; (11) I and C research and development; and (12) facility concepts.

  18. Wetlands Assessment for site characterization, Advanced Neutron Source (ANS)

    International Nuclear Information System (INIS)

    Wade, M.C.; Socolof, M.L.

    1994-10-01

    This Wetlands Assessment has been prepared in accordance with the Department of Energy's (DOE) Code of Federal Regulations (CFR) 10 CFR 1022, Compliance with Floodplain/Wetlands Environmental Review Requirements, which established the policy and procedure for implementing Executive Order 11990, Protection of Wetlands. The proposed action is to conduct characterization activities in or near wetlands at the ANS site. The proposed action will covered under a Categorical Exclusion, therefore this assessment is being prepared as a separate document [10 CFR 1022.12(c)]. The purpose of this Wetlands Assessment is to fulfill the requirements of 10 CFR 1022.12(a) by describing the project, discussing the effects of the proposed action upon the wetlands, and considering alternatives to the proposed action

  19. Wetlands Assessment for site characterization, Advanced Neutron Source (ANS)

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.C.; Socolof, M.L. [Oak Ridge National Lab., TN (United States). Energy Div.; Rosensteel, B.; Awl, D. [JAYCOR, Vienna, VA (United States)

    1994-10-01

    This Wetlands Assessment has been prepared in accordance with the Department of Energy`s (DOE) Code of Federal Regulations (CFR) 10 CFR 1022, Compliance with Floodplain/Wetlands Environmental Review Requirements, which established the policy and procedure for implementing Executive Order 11990, Protection of Wetlands. The proposed action is to conduct characterization activities in or near wetlands at the ANS site. The proposed action will covered under a Categorical Exclusion, therefore this assessment is being prepared as a separate document [10 CFR 1022.12(c)]. The purpose of this Wetlands Assessment is to fulfill the requirements of 10 CFR 1022.12(a) by describing the project, discussing the effects of the proposed action upon the wetlands, and considering alternatives to the proposed action.

  20. Advances in neutron tomography

    Indian Academy of Sciences (India)

    Up to now the interaction of the neutron spin with magnetic fields in samples has not been applied to imaging techniques despite the fact that it was proposed many years ago. About ten years ago neutron depolarization as imaging signal for neutron radiography or tomography was demonstrated and in principle it works.

  1. ANSL-V: ENDF/B-V based multigroup cross-section libraries for Advanced Neutron Source (ANS) reactor studies

    International Nuclear Information System (INIS)

    Ford, W.E. III; Arwood, J.W.; Greene, N.M.; Petrie, L.M.; Primm, R.T. III; Waddell, M.W.; Webster, C.C.; Westfall, R.M.; Wright, R.Q.

    1987-01-01

    Multigroup P3 neutron, P0-P3 secondary gamma ray production (SGRP), and P6 gamma ray interaction (GRI) cross section libraries have been generated to support design work on the Advanced Neutron Source (ANS) reactor. The libraries, designated ANSL-V (Advanced Neutron Source Cross-Section Libraries), are data bases in a format suitable for subsequent generation of problem dependent cross sections. The ANSL-V libraries are available on magnetic tape from the Radiation Shielding Information Center at Oak Ridge National Laboratory

  2. (International Collaboration on Advanced Neutron Sources)

    Energy Technology Data Exchange (ETDEWEB)

    Hayter, J.B.

    1990-11-08

    The International Collaboration on Advanced Neutron Sources was started about a decade ago with the purpose of sharing information throughout the global neutron community. The collaboration has been extremely successful in optimizing the use of resources, and the discussions are open and detailed, with reasons for failure shared as well as reasons for success. Although the meetings have become increasingly oriented toward pulsed neutron sources, many of the neutron instrumentation techniques, such as the development of better monochromators, fast response detectors and various data analysis methods, are highly relevant to the Advanced Neutron Source (ANS). I presented one paper on the ANS, and another on the neutron optical polarizer design work which won a 1989 R D-100 Award. I also gained some valuable design ideas, in particular for the ANS hot source, in discussions with individual researchers from Canada, Western Europe, and Japan.

  3. Advanced Neutron Source operating philosophy

    International Nuclear Information System (INIS)

    Houser, M.M.

    1993-01-01

    An operating philosophy and operations cost estimate were prepared to support the Conceptual Design Report for the Advanced Neutron Source (ANS), a new research reactor planned for the Oak Ridge National Laboratory (ORNL). The operating philosophy was part of the initial effort of the ANS Human Factors Program, was integrated into the conceptual design, and addressed operational issues such as remote vs local operation; control room layout and responsibility issues; role of the operator; simulation and training; staffing levels; and plant computer systems. This paper will report on the overall plans and purpose for the operations work, the results of the work done for conceptual design, and plans for future effort

  4. Advanced Neutron Moderators for the ESS

    DEFF Research Database (Denmark)

    Schönfeldt, Troels

    , which generates an interest in moderator development. Many facilities have proposed and applied advanced moderator concepts to better utilize the produced neutrons. The topic of this thesis is the study of these advanced moderator concepts. Chapters 1 to 6 briefly summarize the historical development......Thermal and cold neutrons are used in a wide array of different experiments investigating the sub-micrometer properties of matter. Neutrons are typically produced at reactor or spallation sources and subsequently cooled to the wanted thermal or cold energy levels by employing neutron moderators....... Today these sources are still the most intense neutron sources. The short-pulsed sources SNS and J-PARC are the most powerful spallation sources in the world; although less intense than ILL and HFIR, these sources provide more useful neutrons because of their pulsed beam structure. This thesis focuses...

  5. Advances in neutron scattering spectroscopy

    International Nuclear Information System (INIS)

    White, J.W.

    1977-01-01

    Some aspects of the application of neutron scattering to problems in polymer science, surface chemistry, and adsorption phenomena, as well as molecular biology, are reviewed. In all these areas, very significant work has been carried out using the medium flux reactors at Harwell, Juelich and Risoe, even without the use of advanced multidetector techniques or of a neutron cold source. A general tendency can also be distinguished in that, for each of these new fields, a distinct preference for colder neutrons rather than thermal neutron beams can be seen. (author)

  6. Advances in neutron tomography

    Indian Academy of Sciences (India)

    much improved test experiments using polarized neutrons for radiographic imaging. For this purpose the CONRAD instrument of the HMI was equipped with polarizing and analysing benders very similar to conventional scattering experiments using polarized neu- trons. Magnetic fields in different coils and in samples ...

  7. Experimental tests of an advanced proton-to-neutron converter at ISOLDE-CERN

    CERN Document Server

    Gottberg, A; Luis, R; Ramos, J P; Seiffert, C; Cimmino, S; Marzari, S; Crepieux, B; Manea, V; Wolf, R N; Wienholtz, F; Kreim, S; Fedosseev, V N; Marsh, B A; Rothe, S; Vaz, P; Marques, J G; Stora, T

    2014-01-01

    The suppression of isobaric contaminations is of growing importance for many scientific programs using radioactive isotopes produced at isotope separation on-line (ISOL) facilities, such as ISOLDE-CERN. A solid tungsten proton-to-neutron converter has been used for ten years to produce neutron-rich fission fragments from an UC x target while suppressing the production of neutron-deficient isobaric contaminants. The remaining contamination is mainly produced by primary protons that are scattered by the heavy neutron converter and finally impinge on the UC x target itself. Therefore, the knowledge of the energy-dependant cross-sections of proton and neutron induced fission events is crucial in order to evaluate future converter concepts.

  8. Advanced Neutron Spectrometer

    Science.gov (United States)

    Christl, Mark; Dobson, Chris; Norwood, Joseph; Kayatin, Matthew; Apple, Jeff; Gibson, Brian; Dietz, Kurt; Benson, Carl; Smith, Dennis; Howard, David; hide

    2013-01-01

    Energetic neutron measurements remain a challenge for space science investigations and radiation monitoring for human exploration beyond LEO. We are investigating a new composite scintillator design that uses Li6 glass scintillator embedded in a PVT block. A comparison between Li6 and Boron 10 loaded scintillators are being studied to assess the advantages and shortcomings of these two techniques. We present the details of the new Li6 design and results from the comparison of the B10 and Li6 techniques during exposures in a mixed radiation field produced by high energy protons interacting in a target material.

  9. Development of advanced neutron beam technology

    Energy Technology Data Exchange (ETDEWEB)

    Seong, B. S.; Lee, J. S.; Sim, C. M. (and others)

    2007-06-15

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility.

  10. Development of advanced neutron beam technology

    International Nuclear Information System (INIS)

    Seong, B. S.; Lee, J. S.; Sim, C. M.

    2007-06-01

    The purpose of this work is to timely support the national science and technology policy through development of the advanced application techniques for neutron spectrometers, built in the previous project, in order to improve the neutron spectrometer techniques up to the world-class level in both quantity and quality and to reinforce industrial competitiveness. The importance of the research and development (R and D) is as follows: 1. Technological aspects - Development of a high value-added technology through performing the advanced R and D in the broad research areas from basic to applied science and from hard to soft condensed matter using neutron scattering technique. - Achievement of an important role in development of the new technology for the following industries aerospace, defense industry, atomic energy, hydrogen fuel cell etc. by the non-destructive inspection and analysis using neutron radiography. - Development of a system supporting the academic-industry users for the HANARO facility 2. Economical and Industrial Aspects - Essential technology in the industrial application of neutron spectrometer, in the basic and applied research of the diverse materials sciences, and in NT, BT, and IT areas - Broad impact on the economics and the domestic and international collaborative research by using the neutron instruments in the mega-scale research facility, HANARO, that is a unique source of neutron in Korea. 3. Social Aspects - Creating the scientific knowledge and contributing to the advanced industrial society through the neutron beam application - Improving quality of life and building a national consensus on the application of nuclear power by developing the RT fusion technology using the HANARO facility. - Widening the national research area and strengthening the national R and D capability by performing advanced R and D using the HANARO facility

  11. Neutron scattering of advanced magnetic materials

    Science.gov (United States)

    Yusuf, S. M.; Kumar, Amit

    2017-09-01

    An overview of notable contributions of neutron scattering in the advancement of magnetic materials has been presented. A brief description of static neutron scattering techniques, viz., diffraction, depolarization, small angle scattering, and reflectivity, employed in the studies of advanced magnetic materials, is given. Apart from providing the up-to-date literature, this review highlights the importance of neutron scattering techniques in achieving microscopic as well as mesoscopic understanding of static magnetic properties of the following selective classes of advanced magnetic materials: (i) magnetocaloric materials, (ii) permanent magnets, (iii) multiferroic materials, (iv) spintronic materials, and (v) molecular magnetic materials. In the area of magnetocaloric materials, neutron diffraction studies have greatly improved the understanding of magneto-structural coupling by probing (i) atomic site distribution, (ii) evolution of structural phases and lattice parameters across the TC, and (iii) microscopic details of magnetic ordering in several potential magnetocaloric materials. Such an understanding is vital to enhance the magnetocaloric effect. Structural and magnetic investigations, employing neutron diffraction and allied techniques, have helped to improve the quality of permanent magnets by tailoring (understanding) structural phases, magnetic ordering, crystallinity, microstructure (texture), and anisotropy. The neutron diffraction studies of structural distortions/instabilities and magnetic ordering in multiferroic materials have improved the microscopic understanding of magnetoelectric coupling that allows one to control magnetic order by an electric field and electric order by a magnetic field in multiferroic materials. In the field of molecular magnetic materials, neutron diffraction studies have enhanced the understanding of (i) structural and magnetic ordering, (ii) short-range structural and magnetic correlations, (iii) spin density distribution

  12. Fast Neutron Radiotherapy for Locally Advanced Prostate Cancer: Results of an RTOG Randomized Study

    Energy Technology Data Exchange (ETDEWEB)

    Laramore, George E. [Washington U.; Krall, John M. [Unlisted, PA; Thomas, Frank J. [Unlisted, OH; Griffin, Thomas W. [Washington U.; Maor, Moshe H. [Unlisted, TX; Hendrickson, Frank R. [Fermilab

    1985-01-01

    Between June 1977 and April 1983, the Radiation Therapy Oncology Group (RTOG) sponsored a Phase III randomized study investigating fast neutron radiation therapy in the treatment of patients with locally advanced (Stage C and D1) adenocarcinoma of the prostate gland. Patients were randomized to receive either conventional photon radiation therapy or fast neutron irradiation used in a mixed-beam treatment schedule (neutron/photon). A total of 91 analyzable patients were entered in the study; 78 of them were treated without major protocol deviations. The two treatment groups were balanced in regard to all major prognostic variables. Actuarial curves for "overall" survival, "determinantal" survival and local/regional control are presented both for the entire group of 91 patients and the 78 patients treated within protocol guidelines. The overall local/regional tumor recurrence rate is 7% for the mixed-beam treated group of patients and is 22% for the photon (X ray) treated group of patients. The difference is statistically significant at the p = 0.05 level. For the entire group of 91 evaluable patients, the 5-year "overall" survival rate is 62% for the mixed-beam-treated group and 35% for the photon-treated group. This difference is also statistically significant (p less than 0.05). However, this statistical significance is lost when the smaller number of patients treated strictly within protocol guidelines is considered. The significance is regained (p less than 0.02) when one looks at "determinantal" survival, which uses active cancer at time of death as the failure endpoint. This study demonstrates that a regional treatment modality, in this case mixed-beam irradiation, can influence both local/regional tumor control and survival in patients with locally-advanced adenocarcinoma of the prostate gland.

  13. Grazing incidence small-angle neutron scattering-an advanced scattering technique for the investigation of nanostructured polymer films

    Science.gov (United States)

    Müller-Buschbaum, P.; Gutmann, J. S.; Cubitt, R.; Petry, W.

    2004-07-01

    With grazing incidence small-angle neutron scattering (GISANS), the limitations of conventional small-angle neutron scattering with respect to extremely small sample volumes in the thin-film geometry are overcome. GISANS turned out to be a powerful advanced scattering technique for the investigation of nanostructured polymer films. Similar to atomic force microscopy the surface topography is probed. In addition, buried structures from inside the film are detectable. As an example of the actual limits, nanostructures resulting from destabilized diblock copolymer films of poly(styrene-block-paramethylstyrene) in the highly confined regime are investigated. The stability of the structure, introduced by toluene vapor treatment, against annealing above the micro-phase separation temperature is shown.

  14. Grazing incidence small-angle neutron scattering - an advanced scattering technique for the investigation of nanostructured polymer films

    International Nuclear Information System (INIS)

    Mueller-Buschbaum, P.; Gutmann, J.S.; Cubitt, R.; Petry, W.

    2004-01-01

    With grazing incidence small-angle neutron scattering (GISANS), the limitations of conventional small-angle neutron scattering with respect to extremely small sample volumes in the thin-film geometry are overcome. GISANS turned out to be a powerful advanced scattering technique for the investigation of nanostructured polymer films. Similar to atomic force microscopy the surface topography is probed. In addition, buried structures from inside the film are detectable. As an example of the actual limits, nanostructures resulting from destabilized diblock copolymer films of poly(styrene-block-paramethylstyrene) in the highly confined regime are investigated. The stability of the structure, introduced by toluene vapor treatment, against annealing above the micro-phase separation temperature is shown

  15. Oxidation behavior of plasma sintered beryllium–titanium intermetallic compounds as an advanced neutron multiplier

    International Nuclear Information System (INIS)

    Kim, Jae-Hwan; Nakamichi, Masaru

    2013-01-01

    Beryllium intermetallic compounds (beryllides) such as Be 12 Ti are very promising candidates for advanced neutron multiplier materials in a demonstration fusion power reactor (DEMO). However, beryllides are too brittle to be fabricated either into pebble-type or rod-type shapes via conventional methods (i.e. arc melting and hot isostatic pressing). We have proposed a plasma sintering technique as a new method for beryllide fabrication, and our studies on the properties of plasma sintered beryllides are ongoing. In the present work, the oxidation properties of plasma sintered beryllides were investigated at 1273 K for 24 h in a dry air atmosphere to evaluate the high temperature properties of this material. Thermal gravimetry measurements indicate that specimens with larger fractions of Be 12 Ti phase corresponding to samples that have been sintered for longer time periods, exhibit superior oxidation properties. Our evaluation of the oxidation behavior of each phase in our beryllide samples is as follows: Be 12 Ti and Be 17 Ti 2 both have good oxidation resistance, owing to the formation of dense and protective scales, while the Be and Be 2 Ti phases are mainly responsible for thermal-gravimetry (TG) weight gains, which is indicative of severe oxidation. We attribute the degradation in oxidation resistance specifically to Be 2 Ti that transforms into TiO 2 , and also find this phase to be the cause of deterioration in the mechanical properties of samples, owing to cracks near Be 2 Ti phase conglomerates

  16. Advanced Neutron Sources: Plant Design Requirements

    Energy Technology Data Exchange (ETDEWEB)

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW{sub th}, heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS.

  17. Advanced Neutron Sources: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source (ANS) is a new, world class facility for research using hot, thermal, cold, and ultra-cold neutrons. At the heart of the facility is a 350-MW th , heavy water cooled and moderated reactor. The reactor is housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides fans out into a large guide hall, housing about 30 neutron research stations. Office, laboratory, and shop facilities are included to provide a complete users facility. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory at the end of the decade. This Plant Design Requirements document defines the plant-level requirements for the design, construction, and operation of the ANS. This document also defines and provides input to the individual System Design Description (SDD) documents. Together, this Plant Design Requirements document and the set of SDD documents will define and control the baseline configuration of the ANS

  18. Advanced Neutron Source: Plant Design Requirements

    International Nuclear Information System (INIS)

    1990-07-01

    The Advanced Neutron Source will be a new world-class facility for research using hot, thermal, cold, and ultra-cold neutrons. The heart of the facility will be a 330-MW (fission), heavy-water cooled and heavy-water moderated reactor. The reactor will be housed in a central reactor building, with supporting equipment located in an adjoining reactor support building. An array of cold neutron guides will fan out into a large guide hall, housing about 30 neutron research stations. Appropriate office, laboratory, and shop facilities will be included to provide a complete facility for users. The ANS is scheduled to begin operation at the Oak Ridge National Laboratory early in the next decade. This PDR document defines the plant-level requirements for the design, construction, and operation of ANS. It also defines and provides input to the individual System Design Description (SDD) documents. Together, this PDR document and the set of SDD documents will define and control the baseline configuration of ANS

  19. Advanced neutron source materials surveillance program

    International Nuclear Information System (INIS)

    Heavilin, S.M.

    1995-01-01

    The Advanced Neutron Source (ANS) will be composed of several different materials, one of which is 6061-T6 aluminum. Among other components, the reflector vessel and the core pressure boundary tube (CPBT), are to be made of 6061-T6 aluminum. These components will be subjected to high thermal neutron fluences and will require a surveillance program to monitor the strength and fracture toughness of the 6061-T6 aluminum over their lifetimes. The purpose of this paper is to explain the steps that were taken in the summer of 1994 toward developing the surveillance program. The first goal was to decide upon standard specimens to use in the fracture toughness and tensile testing. Second, facilities had to be chosen for specimens representing the CPBT and the reflector vessel base, weld, and heat-affected-zone (HAZ) metals. Third, a timetable had to be defined to determine when to remove the specimens for testing

  20. ANL--LASL workshop on advanced neutron detection systems

    International Nuclear Information System (INIS)

    Kitchens, T.A.

    1979-06-01

    A two-day workshop on advanced neutron detectors and associated electronics was held in Los Alamos on April 5--6, 1979, as a part of the Argonne National Laboratory--Los Alamos Scientific Laboratory Coordination on neutron scattering instrumentation. This report contains an account of the information presented and conclusions drawn at the workshop

  1. Advanced Neutron Source: The users' perspective

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1990-01-01

    User experiments will cover fields such as activation analysis of pollutants, irradiation of materials for the fusion program, and neutron scattering studies of materials as diverse as viruses, aerospace composites, and superconductors. Production capabilities must also be provided for the production of isotopes, especially of transuranic elements. The different ways in which these research areas and their required infrastructure influence the design of the Advanced Neutron Source will be the subject of this paper

  2. 252Cf fission-neutron spectrum using a simplified time-of-flight setup: An advanced teaching laboratory experiment

    Science.gov (United States)

    Becchetti, F. D.; Febbraro, M.; Torres-Isea, R.; Ojaruega, M.; Baum, L.

    2013-02-01

    The removal of PuBe and AmBe neutron sources from many university teaching laboratories (due to heightened security issues) has often left a void in teaching various aspects of neutron physics. We have recently replaced such sources with sealed 252Cf oil-well logging sources (nominal 10-100 μCi), and developed several experiments using them as neutron sources. This includes a fission-neutron time-of-flight experiment using plastic scintillators, which utilizes the prompt γ rays emitted in 252Cf spontaneous fission as a fast timing start signal. The experiment can be performed with conventional nuclear instrumentation and a 1-D multi-channel pulse-height analyzer, available in most advanced teaching laboratories. Alternatively, a more sophisticated experiment using liquid scintillators and n/γ pulse-shape discrimination can be performed. Several other experiments using these neutron sources are also feasible. The experiments can introduce students to the problem of detecting the dark matter thought to dominate the universe and to the techniques used to detect contraband fissionable nuclear materials.

  3. Preliminary ANS [Advanced Neutron Source] reactor cold source gain factor calculations for liquid deuterium and liquid nitrogen-15

    International Nuclear Information System (INIS)

    Henderson, D.L.

    1988-11-01

    Individual energy group gain factors are computed for liquid nitrogen-15 and liquid deuterium cold source moderators using simple one-dimensional slab and spherical geometry calculational models. The energy spectrum of the neutron source is assumed to be that of a thermalized Maxwellian flux at 20/degree/C. The slab geometry calculations indicate that the optimum thickness for neutron transmission through a slab given an isotropic incident flux is for wavelengths above .6 nm, approximately .20 m for liquid deuterium and between .28 and .32 m for liquid nitrogen-15. The gain factors at .8 nm corresponding to these thicknesses are 15.5 for liquid deuterium and 3.50 for liquid nitrogen-15. The spherical geometry analysis showed that the cold neutron current below 10 MeV of 1.36 n/m 2 -s for the neutron component entering the cavity of a .16 m thick liquid deuterium spherical shell exceeds the neutron leakage current of 1.08 n/cm 2 -s from a .38 m diameter liquid deuterium solid sphere. However, the cold neutron factors for the neutron entering the void region are considerably lower than for the solid sphere case. 15 refs., 24 figs., 7 tabs

  4. SERA -- An advanced treatment planning system for neutron therapy and BNCT

    International Nuclear Information System (INIS)

    Nigg, D.W.; Wemple, C.A.; Wessol, D.E.; Wheeler, F.J.; Albright, C.; Cohen, M.; Frandsen, M.; Harkin, G.; Rossmeier, M.

    1999-01-01

    Detailed treatment planning calculations on a patient-specific basis are required for boron neutron capture therapy (BNCT). Two integrated treatment planning systems developed specifically for BNCT have been in clinical use in the United States over the past few years. The MacNCTPLAN BNCT treatment planning system is used in the clinical BNCT trials that are underway at the Massachusetts Institute of Technology. A second system, BNCT rtpe (BNCT radiation therapy planning environment), developed independently by the Idaho national Engineering and Environmental Laboratory (INEEL) in collaboration with Montana State University (MSU), is used for treatment planning in the current series of BNCT clinical trials for glioblastoma at Brookhaven National Laboratory (BNL). This latter system is also licensed for use at several other BNCT research facilities worldwide. Although the currently available BNCT planning systems have served their purpose well, they suffer from somewhat long computation times (2 to 3 CPU-hours or more per field) relative to standard photon therapy planning software. This is largely due to the need for explicit three-dimensional solutions to the relevant transport equations. The simplifying approximations that work well for photon transport computations are not generally applicable to neutron transport computations. Greater computational speeds for BNCT treatment planning must therefore generally be achieved through the application of improved numerical techniques rather than by simplification of the governing equations. Recent efforts at INEEL and MSU have been directed toward this goal. This has resulted in a new paradigm for this type of calculation and the subsequent creation of the new simulation environment for radiotherapy applications (SERA) treatment planning system for BNCT. SERA is currently in initial clinical testing in connection with the trials at BNL, and it is expected to replace the present BNCT rtpe system upon general release

  5. An advanced course in computational nuclear physics bridging the scales from quarks to neutron stars

    CERN Document Server

    Lombardo, Maria; Kolck, Ubirajara

    2017-01-01

    This graduate-level text collects and synthesizes a series of ten lectures on the nuclear quantum many-body problem. Starting from our current understanding of the underlying forces, it presents recent advances within the field of lattice quantum chromodynamics before going on to discuss effective field theories, central many-body methods like Monte Carlo methods, coupled cluster theories, the similarity renormalization group approach, Green’s function methods and large-scale diagonalization approaches. Algorithmic and computational advances show particular promise for breakthroughs in predictive power, including proper error estimates, a better understanding of the underlying effective degrees of freedom and of the respective forces at play. Enabled by recent improvements in theoretical, experimental and numerical techniques, the state-of-the art applications considered in this volume span the entire range, from our smallest components – quarks and gluons as the mediators of the strong force – to the c...

  6. Advancement of neutron radiography technique in JRR-3M

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito

    1999-01-01

    The JRR-3M thermal neutron radiography facility (JRR-3M TNRF) was completed in the JRR-3M of the Japan Atomic Energy Research Institute in 1991 and has been utilized as research tools for various kinds of research fields such as thermal hydraulic researches, agricultural researches, medical researches, archaeological researches and so on. High performance of the JRR-3M TNRF such as high neutron flux, high collimator ratio and wide radiographing field has enabled advanced researches and stimulated developments of advanced neutron radiography (NR) systems for higher spatial resolution and for higher temporal resolution. Static NR systems using neutron imaging plates or cooled CCD camera with high spatial resolution, a real-time NR system using a silicon intensifier target tube camera and a high-frame-rate NR system using a combination of an image intensifier and a high speed digital video camera with high temporal resolution have been developed to fill the requirements from researchers. (author)

  7. Current advances in neutron diffraction stress measurement

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Tomota, Yo

    2007-01-01

    Neutron diffraction has been employed for stress evaluation of various mechanical components. The hkl lattice plane spacings in a diffraction gauge volume are measured, then elastic strains are calculated and finally stresses are determined by using the Hooke's law. Since the real engineering mechanical parts are so complicated that more sophisticated method must be progressed to obtain stress distribution in the inside of a sample. Current advances on this issue are reviewed. (author)

  8. Materials science at an Advanced Hadron Facility

    International Nuclear Information System (INIS)

    Pynn, R.

    1988-01-01

    The uses of neutron scattering as a probe for condensed matter phenomena are described briefly and some arguments are given to justify the community's desire for more powerful neutron sources. Appropriate design parameters for a neutron source at an Advanced Hadron Facility are presented, and such a source is compared with other existing and planned spallation neutron sources. 5 refs

  9. Investigations of advanced magnetic materials using neutron scattering

    International Nuclear Information System (INIS)

    Yusuf, S.M.

    2016-01-01

    A wide class of advanced magnetic materials, such as molecular magnets, magnetic nanoparticles, 1-D and 2-D magnetic materials, high magnetocaloric materials, high magnetoresistive materials, and multiferroic materials by using neutron diffraction, neutron depolarization and polarized neutron small angle scattering techniques has been investigated. A detailed understanding of magnetic correlations in mesoscopic and microscopic length scales in such systems has been achieved. The results of some of these recent investigations, and highlight the usefulness of neutron diffraction, neutron depolarization, and polarized neutron small angle scattering techniques for studying advanced magnetic materials have been presented in this talk. The applied aspects of the derived results have been discussed

  10. Fast neutron therapy in advanced malignant tumour treatment

    International Nuclear Information System (INIS)

    Avinc, A.

    1998-01-01

    In this report the fast neutron therapy applications were examined by thoroughly consideration of the fast neutron sources and the interactions of the fast neutron by the medium. The efficacy of fast neutron radiotherapy with that of patients with locally advanced tumours were compared. Radiological data indicate that fast neutrons could bring benefit in the treatment of some tumour types especially salivary glands, paranasal sinuses, soft tissue sarcomas, prostatic adenocarcinomas, palliative treatment of melanoma and rectum. There is a significant improvement in local/regional control for the neutron group, but no improvement in the survival. The neutron therapy is suggested through which this benefit could be achieved

  11. Advanced Neutron Source radiological design criteria

    Energy Technology Data Exchange (ETDEWEB)

    Westbrook, J.L.

    1995-08-01

    The operation of the proposed Advanced Neutron Source (ANS) facility will present a variety of radiological protection problems. Because it is desired to design and operate the ANS according to the applicable licensing standards of the Nuclear Regulatory Commission (NRC), it must be demonstrated that the ANS radiological design basis is consistent not only with state and Department of Energy (DOE) and other usual federal regulations, but also, so far as is practicable, with NRC regulations and with recommendations of such organizations as the Institute of Nuclear Power Operations (INPO) and the Electric Power Research Institute (EPRI). Also, the ANS radiological design basis is in general to be consistent with the recommendations of authoritative professional and scientific organizations, specifically the National Council on Radiation Protection and Measurements (NCRP) and the International Commission on Radiological Protection (ICRP). As regards radiological protection, the principal goals of DOE regulations and guidance are to keep occupational doses ALARA [as low as (is) reasonably achievable], given the current state of technology, costs, and operations requirements; to control and monitor contained and released radioactivity during normal operation to keep public doses and releases to the environment ALARA; and to limit doses to workers and the public during accident conditions. Meeting these general design objectives requires that principles of dose reduction and of radioactivity control by employed in the design, operation, modification, and decommissioning of the ANS. The purpose of this document is to provide basic radiological criteria for incorporating these principles into the design of the ANS. Operations, modification, and decommissioning will be covered only as they are affected by design.

  12. Cold source vessel development for the advanced neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.T.; Lucas, A.T. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory (ORNL), will be a user-oriented neutron research facility that will produce the most intense flux of neutrons in the world. Among its many scientific applications, the productions of cold neutrons is a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410 mm diameter sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design are being performed with multi-dimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This paper presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that will be used to verify the final design.

  13. Advanced geometries for ballistic neutron guides

    International Nuclear Information System (INIS)

    Schanzer, Christian; Boeni, Peter; Filges, Uwe; Hils, Thomas

    2004-01-01

    Sophisticated neutron guide systems take advantage of supermirrors being used to increase the neutron flux. However, the finite reflectivity of supermirrors becomes a major loss mechanism when many reflections occur, e.g. in long neutron guides and for long wavelengths. In order to reduce the number of reflections, ballistic neutron guides have been proposed. Usually linear tapered sections are used to enlarge the cross-section and finally, focus the beam to the sample. The disadvantages of linear tapering are (i) an inhomogeneous phase space at the sample position and (ii) a decreasing flux with increasing distance from the exit of the guide. We investigate the properties of parabolic and elliptic tapering for ballistic neutron guides, using the Monte Carlo program McStas with a new guide component dedicated for such geometries. We show that the maximum flux can indeed be shifted away from the exit of the guide. In addition we explore the possibilities of parabolic and elliptic geometries to create point like sources for dedicated experimental demands

  14. A status report on the Advanced Neutron Source project

    International Nuclear Information System (INIS)

    West, C.D.

    1993-01-01

    The Advanced Neutron Source (ANS) will be a new laboratory for neutron research, centered around a 330 MW(f) research reactor cooled and reflected by heavy water and including extensive experiment systems and support facilities. The major components of the baseline design, occupying about 16 heetares, are a guide hall/research support area, containing most of the neutron beam experiment systems, shops and supporting laboratories; a 60 m diameter containment building housing the reactor and its pimary coolant system, and selected scientific research facilities; an operations support building with the majority of the remaining plant systems, an office/interface complex providing a carefully designed, user friendly entry point for access control; and several other major facilities including user housing, an electrical substation, a diesel generator building, a cryorefrigerator building, and heavy water cleanup and upgrade systems

  15. The advanced neutron source research and development plan

    International Nuclear Information System (INIS)

    Selby, D.L.

    1995-08-01

    The Advanced Neutron Source (ANS) is being designed as a user-oriented neutron research laboratory centered around the most intense continuous beams of thermal and subthermal neutrons in the world (an order of magnitude more intense than beams available from the most advanced existing reactors). The ANS will be built around a new research reactor of 330-MW fission power, producing an unprecedented peak thermal flux of >7 · 10 19 · m -2 · s -1 . Primarily a research facility, the ANS will accommodate more than 1000 academic, industrial, and government researchers each year. They will conduct basic research in all branches of science as well as applied research leading to better understanding of new materials, including high temperature super conductors, plastics, and thin films. Some 48 neutron beam stations will be set up in the ANS beam rooms and the neutron guide hall for neutron scattering and for fundamental and nuclear physics research. There also will be extensive facilities for materials irradiation, isotope production, and analytical chemistry. The top level work breakdown structure (WBS) for the project. As noted in this figure, one component of the project is a research and development (R ampersand D) program (WBS 1.1). This program interfaces with all of the other project level two WBS activities. Because one of the project guidelines is to meet minimum performance goals without relying on new inventions, this R ampersand D activity is not intended to produce new concepts to allow the project to meet minimum performance goals. Instead, the R ampersand D program will focus on the four objectives described

  16. Scientific opportunities with advanced facilities for neutron scattering

    International Nuclear Information System (INIS)

    Lander, G.H.; Emery, V.J.

    1984-01-01

    The present report documents deliberations of a large group of experts in neutron scattering and fundamental physics on the need for new neutron sources of greater intensity and more sophisticated instrumentation than those currently available. An additional aspect of the Workshop was a comparison between steady-state (reactor) and pulsed (spallation) sources. The main conclusions were: (1) the case for a new higher flux neutron source is extremely strong and such a facility will lead to qualitatively new advances in condensed matter science and fundamental physics; (2) to a large extent the future needs of the scientific community could be met with either a 5 x 10 15 n cm -2 s -1 steady state source or a 10 17 n cm -2 s -1 peak flux spallation source; and (3) the findings of this Workshop are consistent with the recommendations of the Major Materials Facilities Committee

  17. Dynamic modeling of the advanced neutron source reactor

    International Nuclear Information System (INIS)

    March-Leuba, J.; Ibn-Khayat, M.

    1990-01-01

    The purpose of this paper is to provide a summary description and some applications of a computer model that has been developed to simulate the dynamic behavior of the advanced neutron source (ANS) reactor. The ANS dynamic model is coded in the advanced continuous simulation language (ACSL), and it represents the reactor core, vessel, primary cooling system, and secondary cooling systems. The use of a simple dynamic model in the early stages of the reactor design has proven very valuable not only in the development of the control and plant protection system but also of components such as pumps and heat exchangers that are usually sized based on steady-state calculations

  18. Din - an indiviual neutron dosemeter

    International Nuclear Information System (INIS)

    Buxerolle, M.

    1987-09-01

    An albedo neutron dosemeter with 6 LiF and 7 Lif thermoluminescent detectors has been developed. A cadmium shield limits the effect of the distance from the body to the dosemeter and the effect of thermal neutrons scattered by the surroundings. The thickness of the cadmium filter has been adjusted so that the response is about the same for thermal neutrons (maxwellian) and epithermal neutrons (1/E spectrum with the energy E [fr

  19. The advanced neutron source - A world-class research reactor facility

    International Nuclear Information System (INIS)

    Thompson, P.B.; Meek, W.E.

    1993-01-01

    The advanced neutron source (ANS) is a new facility being designed at the Oak Ridge National Laboratory that is based on a heavy-water-moderated reactor and extensive experiment and user-support facilities. The primary purpose of the ANS is to provide world-class facilities for neutron scattering research, isotope production, and materials irradiation in the United States. The neutrons provided by the reactor will be thermalized to produce sources of hot, thermal, cold, very cold, and ultracold neutrons usable at the experiment stations. Beams of cold neutrons will be directed into a large guide hall using neutron guide technology, greatly enhancing the number of research stations possible in the project. Fundamental and nuclear physics, materials analysis, and other research pro- grams will share the neutron beam facilities. Sufficient laboratory and office space will be provided to create an effective user-oriented environment

  20. Thermal neutron beam modification studies using an isotope based neutron radiography facility

    International Nuclear Information System (INIS)

    Baheti, G.L.; Khatri, P.K.; Meghwal, L.R.; Meena, V.L.

    1996-01-01

    Neutron radiography has established itself as one of the advanced NDT technique. Isotope based facilities are being developed to make the technique available for inplant use. Quality of neutron radiograph obtained is a function of beam parameters like flux, Cd ratio and neutron to gamma ratio, scattered neutrons etc. These parameters can be modified using design features of the facility. Effect of modifications in these parameters on final image quality has been studied and were found to be useful in meeting the widely varying radiographic requirements, particularly through an isotope based facility. These modifications can also overcome some of the inherent limitations of isotope based neutron radiography facilities. (author)

  1. The Fifth International Symposium on Advanced Nuclear Energy Research - neutrons as microscopic probes

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1994-01-01

    New neutron sources being planned, such as the Advanced Neutron Source (ANS) or the European Spallation Source (ESS), will provide an order of magnitude flux increase over what is available today, but neutron scattering will still remain a signal-limited technique. At the same time, the development of new materials, such as polymer and ceramic composites or a variety of complex fluids, will increasingly require neutron-based research. This paper will discuss some of the new techniques which will allow us to make. better use of the available neutrons, either through improved instrumentation or through sample manipulation. Discussion will center primarily on unpolarized neutron techniques since polarized neutrons will be the subject of the next paper

  2. ADVANCEMENTS IN NEUTRON RADIOGRAPHY WITHIN THE DEPARTMENT OF THE ARMY

    Science.gov (United States)

    2016-11-01

    UNCLASSIFIED UNCLASSIFIED AD-E403 813 Technical Report AREIS-TR-16004 ADVANCEMENTS IN NEUTRON RADIOGRAPHY WITHIN THE... RADIOGRAPHY WITHIN THE DEPARTMENT OF THE ARMY 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHORS Stephan C. Zuber...advanced nondestructive testing (NDT) technologies and inspections. Within the past five years, neutron radiography (NR) has been a main focus of

  3. Recent advances in X-ray and neutron interferometry

    International Nuclear Information System (INIS)

    Bonse, U.

    1988-01-01

    Since their advent interferometry with X-rays and neutrons have been developed steadily. A number of excellent reviews is covering the development up to about five years ago. Advances since then are treated in this review. Topics included are: Understanding of angstrom wave interferometers, theory of operation, types, contrast, complementarity, strategies and refinement of measurement, nonlinear Fizeau effect with neutrons, action of gravity and inertia of neutron phase, interferometers with separated crystals, interferometer combining X-ray and optical operation, interferometer combining X-ray and neutron operation. (orig.)

  4. Enhancing the Detector for Advanced Neutron Capture Experiments

    Science.gov (United States)

    Couture, A.; Mosby, S.; Baramsai, B.; Bredeweg, T. A.; Jandel, M.; Macon, K.; O'Donnell, J. M.; Rusev, G.; Taddeucci, T. N.; Ullmann, J. L.; Walker, C. L.

    2015-05-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. The upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.

  5. Enhancing the Detector for Advanced Neutron Capture Experiments

    Directory of Open Access Journals (Sweden)

    Couture A.

    2015-01-01

    Full Text Available The Detector for Advanced Neutron Capture Experiments (DANCE has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. The upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.

  6. Neutron physics of a high converting advanced pressurized water reactor

    International Nuclear Information System (INIS)

    Berger, H.D.

    1985-01-01

    The neutron physics of an APWR are analysed by single pin-cell calculations as well as two-dimensional whole-reactor computations. The calculational methods of the two codes employed for this study, viz. the cell code SPEKTRA and the diffusion-burnup code DIBU, are presented in detail. The APWR-investigations carried out concentrate on the void coefficient characteristics of tight UO 2 /PuO 2 -lattices, control rod worths, burnup behaviour and spatial power distributions in APWR cores. The principal physics design differences between advanced pressurized water reactors and present-day PWRs are identified and discussed. (orig./HP) [de

  7. Neutron spectra produced by moderating an isotopic neutron source

    International Nuclear Information System (INIS)

    Carrillo Nunnez, Aureliano; Vega Carrillo, Hector Rene

    2001-01-01

    A Monte Carlo study has been carried out to determine the neutron spectra produced by an isotopic neutron source inserted in moderating media. Most devices used for radiation protection have a response strongly dependent on neutron energy. ISO recommends several neutron sources and monoenergetic neutron radiations, but actual working situations have broad spectral neutron distributions extending from thermal to MeV energies, for instance, near nuclear power plants, medical applications accelerators and cosmic neutrons. To improve the evaluation of the dosimetric quantities, is recommended to calibrate the radiation protection devices in neutron spectra which are nearly like those met in practice. In order to complete the range of neutron calibrating sources, it seems useful to develop several wide spectral distributions representative of typical spectra down to thermal energies. The aim of this investigation was to use an isotopic neutron source in different moderating media to reproduce some of the neutron fields found in practice. MCNP code has been used during calculations, in these a 239PuBe neutron source was inserted in H2O, D2O and polyethylene moderators. Moderators were modeled as spheres and cylinders of different sizes. In the case of cylindrical geometry the anisotropy of resulting neutron spectra was calculated from 0 to 2 . From neutron spectra dosimetric features were calculated. MCNP calculations were validated by measuring the neutron spectra of a 239PuBe neutron source inserted in a H2O cylindrical moderator. The measurements were carried out with a multisphere neutron spectrometer with a 6LiI(Eu) scintillator. From the measurements the neutron spectrum was unfolded using the BUNKIUT code and the UTA4 response matrix. Some of the moderators with the source produce a neutron spectrum close to spectra found in actual applications, then can be used during the calibration of radiation protection devices

  8. Status of neutron diagnostics on the experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, G. Q.; Hu, L. Q., E-mail: lqhu@ipp.ac.cn; Pu, N.; Zhou, R. J.; Xiao, M.; Cao, H. R.; Li, K.; Huang, J.; Xu, G. S.; Wan, B. N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Zhu, Y. B. [Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States); Fan, T. S.; Peng, X. Y.; Du, T. F.; Ge, L. J. [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Chengfu Road 201, 100871 Beijing (China)

    2016-11-15

    Neutron diagnostics have become a significant means to study energetic particles in high power auxiliary heating plasmas on the Experimental Advanced Superconducting Tokamak (EAST). Several kinds of neutron diagnostic systems have been implemented for time-resolved measurements of D-D neutron flux, fluctuation, emission profile, and spectrum. All detectors have been calibrated in laboratory, and in situ calibration using {sup 252}Cf neutron source in EAST is in preparation. A new technology of digitized pulse signal processing is adopted in a wide dynamic range neutron flux monitor, compact recoil proton spectrometer, and time of flight spectrometer. Improvements will be made continuously to the system to achieve better adaptation to the EAST’s harsh γ-ray and electro-magnetic radiation environment.

  9. Advanced plastic scintillators for fast neutron discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Patrick L [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Anstey, Mitchell [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Doty, F. Patrick [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Mengesha, Wondwosen [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    The present work addresses the need for solid-state, fast neutron discriminating scintillators that possess higher light yields and faster decay kinetics than existing organic scintillators. These respective attributes are of critical importance for improving the gamma-rejection capabilities and increasing the neutron discrimination performance under high-rate conditions. Two key applications that will benefit from these improvements include large-volume passive detection scenarios as well as active interrogation search for special nuclear materials. Molecular design principles were employed throughout this work, resulting in synthetically tailored materials that possess the targeted scintillation properties.

  10. Advanced neutron instrumentation at FRM-II

    International Nuclear Information System (INIS)

    Petry, Winfried

    2003-01-01

    The construction of the new German high flux neutron source FRM-II is finished and FRM-II is waiting for its licence to start nuclear operation. With the beginning of the routine operation 22 instruments will be in action, including 5 irradiation facilities and 17 beam tube instruments, most of them use neutron scattering techniques. Additional instruments are under construction. Some of these instruments are unique, others are expected to be the best of their kind, all instruments are based on innovative techniques. (author)

  11. Optics for Advanced Neutron Imaging and Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Moncton, David E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Khaykovich, Boris [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-03-30

    During the report period, we continued the work as outlined in the original proposal. We have analyzed potential optical designs of Wolter mirrors for the neutron-imaging instrument VENUS, which is under construction at SNS. In parallel, we have conducted the initial polarized imaging experiment at Helmholtz Zentrum, Berlin, one of very few of currently available polarized-imaging facilities worldwide.

  12. Use of the INAA [instrumental neutron activation analysis] Advance Prediction Computer Program [APCP] for research reactors

    International Nuclear Information System (INIS)

    Guinn, V.P.

    1990-01-01

    An important aspect of the neutron irradiation of small samples (usually solids or liquids) in research-type nuclear reactors is advance knowledge of the gamma-ray activity levels of the samples at the end of irradiation (EOI) and at subsequent decay times thereafter. Such knowledge is important in neutron activation analysis (NAA) as well as in other work involving reactor irradiations of samples. Obviously, the activity levels of the various neutron-induced radionuclides depend on a variety of factors: sample weight and elemental composition; neutron fluxes; length of irradiation; and length of decay. The instrumental NAA (INAA) Advance Prediction Computer Program (APCP) was developed and tested experimentally some years ago for work in the field of INAA. Very recently, the program has been rewritten for use with an IBM-compatible personal computer. To illustrate some of the features of the APCP output, an example is cited

  13. Implementation and Initial Testing of Advanced Processing and Analysis Algorithms for Correlated Neutron Counting

    Energy Technology Data Exchange (ETDEWEB)

    Santi, Peter Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cutler, Theresa Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzl, Vladimir [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzlova, Daniela [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Robert Francis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Croft, Stephen [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    In order to improve the accuracy and capabilities of neutron multiplicity counting, additional quantifiable information is needed in order to address the assumptions that are present in the point model. Extracting and utilizing higher order moments (Quads and Pents) from the neutron pulse train represents the most direct way of extracting additional information from the measurement data to allow for an improved determination of the physical properties of the item of interest. The extraction of higher order moments from a neutron pulse train required the development of advanced dead time correction algorithms which could correct for dead time effects in all of the measurement moments in a self-consistent manner. In addition, advanced analysis algorithms have been developed to address specific assumptions that are made within the current analysis model, namely that all neutrons are created at a single point within the item of interest, and that all neutrons that are produced within an item are created with the same energy distribution. This report will discuss the current status of implementation and initial testing of the advanced dead time correction and analysis algorithms that have been developed in an attempt to utilize higher order moments to improve the capabilities of correlated neutron measurement techniques.

  14. Reactor physics calculations for the control of the advanced neutron source reactor

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Abu-Shehadeh, M.; Perez, R.B.

    1988-01-01

    Efficient production of extremely high fluxes requires compact cores with consequent high power densities and initial excess reactivities. Strong space dependent neutron spectras and limited access to the small core are other characteristics that make design of the control system of these type of facilities an interesting problem. We present calculations of the worths of 10 B to reduce the initial excess reactivity, the worth of Hf and B control rods, and the neutron lifetimes, for the case of candidate designs for the Advanced Neutron Source reactor. 4 refs., 4 figs., 2 tabs

  15. Assessment of the roles of the Advanced Neutron Source Operators

    International Nuclear Information System (INIS)

    Hill, W.E.; Houser, M.M.; Knee, H.E.; Spelt, P.F.

    1995-03-01

    The Advanced Neutron Source (ANS) is unique in the extent to which human factors engineering (HFE) principles are being applied at the conceptual design stage. initial HFE accomplishments include the development of an ANS HFE program plan, operating philosophy, and functional analysis. In FY 1994, HFE activities focused on the role of the ANS control room reactor operator (RO). An operator-centered control room model was used in conjunction with information gathered from existing ANS system design descriptions and other literature to define a list of RO responsibilities. From this list, a survey instrument was developed and administered to ANS design engineers, operations management personnel at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR), and HFIR ROs to detail the nature of the RO position. Initial results indicated that the RO will function as a high-level system supervisor with considerable monitoring, verification, and communication responsibilities. The relatively high level of control automation has resulted in a reshaping of the RO's traditional safety and investment protection roles

  16. The advanced neutron source--designing to meet the needs of the user community

    International Nuclear Information System (INIS)

    Peretz, F.J.

    1989-01-01

    The Advanced Neutron Source (ANS) is to be a multi-purpose neutron research center, constructed around a high-flux reactor now being designed at the Oak Ridge National Laboratory (ORNL). Its primary purpose is to place the United States in the forefront of neutron scattering in the twenty-first century. Other research programs include nuclear and fundamental physics, isotopes production, materials irradiation, and analytical chemistry. The Advanced Neutron Source will be a unique and invaluable research tool because of the unprecedented neutron flux available from the high intensity research reactor. But that reactor would be ineffective without world-class research facilities that allow the fullest utilization of the available neutrons. And, in turn, those research facilities will not produce new and exciting science without a broad population of users coming from all parts of the nation, and the world, placed in a simulating environment in which experiments can be effectively conducted, and in which scientific exchange is encouraged. This paper discusses the measures being taken to ensure that the design of the ANS focuses not only on the reactor, but on providing the experiment and user support facilities needed to allow its effective use. 5 refs., 4 figs

  17. Advanced neutron source reactor probabilistic flow blockage assessment

    International Nuclear Information System (INIS)

    Ramsey, C.T.

    1995-08-01

    The Phase I Level I Probabilistic Risk Assessment (PRA) of the conceptual design of the Advanced Neutron Source (ANS) Reactor identified core flow blockage as the most likely internal event leading to fuel damage. The flow blockage event frequency used in the original ANS PRA was based primarily on the flow blockage work done for the High Flux Isotope Reactor (HFIR) PRA. This report examines potential flow blockage scenarios and calculates an estimate of the likelihood of debris-induced fuel damage. The bulk of the report is based specifically on the conceptual design of ANS with a 93%-enriched, two-element core; insights to the impact of the proposed three-element core are examined in Sect. 5. In addition to providing a probability (uncertainty) distribution for the likelihood of core flow blockage, this ongoing effort will serve to indicate potential areas of concern to be focused on in the preliminary design for elimination or mitigation. It will also serve as a loose-parts management tool

  18. Advances in associated-particle sealed-tube neutron probe diagnostics for substance detection

    International Nuclear Information System (INIS)

    Rhodes, E.; Dickerman, C.E.; Frey, M.

    1995-01-01

    The development and investigation of a small associated-particle sealed-tube neutron generator (APSTNG) shows potential to allow the associated-particle diagnostic method to be moved out of the laboratory into field applications. The APSTNG interrogates the inspected object with 14-MeV neutrons generated from the deuterium-tritium reaction and detects the alpha-particle associated with each neutron inside a cone encompassing the region of interest. Gamma-ray spectra of resulting neutron reactions identify many nuclides. Flight-times determined from detection times of the gamma-rays and alpha-particles can yield a separate coarse tomographic image of each identified nuclide, from a single orientation. Chemical substances are identified by comparing relative spectral line intensities with ratios of elements in reference compounds. The high-energy neutrons and gamma-rays penetrate large objects and dense materials. Generally no collimators or radiation shielding are needed. Proof-of-concept laboratory experiments have been successfully performed for simulated nuclear, chemical warfare, and conventional munitions. Most recently, inspection applications have been investigated for radioactive waste characterization, presence of cocaine in propane tanks, and uranium and plutonium smuggling. Based on lessons learned with the present APSTNG system, an advanced APSTNG tube (along with improved high voltage supply and control units) is being designed and fabricated that will be transportable and rugged, yield a substantial neutron output increase, and provide sufficiently improved lifetime to allow operation at more than an order of magnitude increase in neutron flux

  19. Fabrication development for the Advanced Neutron Source Reactor

    International Nuclear Information System (INIS)

    Pace, B.W.; Copeland, G.L.

    1995-08-01

    This report presents the fuel fabrication development for the Advanced Neutron Source (ANS) reactor. The fuel element is similar to that successfully fabricated and used in the High Flux Isotope Reactor (HFIR) for many years, but there are two significant differences that require some development. The fuel compound is U 3 Si 2 rather than U 3 O 8 , and the fuel is graded in the axial as well as the radial direction. Both of these changes can be accomplished with a straightforward extension of the HFIR technology. The ANS also requires some improvements in inspection technology and somewhat more stringent acceptance criteria. Early indications were that the fuel fabrication and inspection technology would produce a reactor core meeting the requirements of the ANS for the low volume fraction loadings needed for the highly enriched uranium design (up to 1.7 Mg U/m 3 ). Near the end of the development work, higher volume fractions were fabricated that would be required for a lower- enrichment uranium core. Again, results look encouraging for loadings up to ∼3.5 Mg U/m 3 ; however, much less evaluation was done for the higher loadings

  20. Californium-252 neutron curietherapy for advanced cervical cancer.

    Science.gov (United States)

    Maruyama, Y; Bell, P R; Yoneda, J; Van Nagell, J R

    1982-01-01

    Low dose rate neutron radiotherapy using fast neutrons emitted by the radionuclide 252Cf was combined with fractionated X- or gamma rays for the radiotherapy of advanced cervicovaginal tumors. Two different implant schedules were tested to determine the response of the tumors to the scheduling of therapy with the 252CF either early or delayed in the fractionated radiotherapy course. A 90% frequency of complete local clearance of pelvic tumors was observed by the early application of 252Cf. Neutron curietherapy applied as a boost treatment at the end of fractionated radiotherapy, resulted in only 40% local control. Improved results were observed by early implantation therapy and is postulated to be the result of more effective hypoxic tumor therapy and reoxygenation of the hypoxic pelvic tumor. The two groups of patients were compared as to their general status and medical condition and were found similar in age, frequency of associated disease, body weight and tumor stage. The failures of local control by early 252Cf neutron therapy, occurred in 2 patients with high-stage tumor and severe vascular disease and suggests that tumor response was partly dependent upon the integrity and elasticity of the small vessel system.

  1. Application of pixel-cell detector technology for Advanced Neutron Beam Monitors

    Energy Technology Data Exchange (ETDEWEB)

    Kopp, Daniel M. [ORDELA, Inc., Oak Ridge, TN (United States)

    2011-01-11

    Application of Pixel-Cell Detector Technology for Advanced Neutron Beam Monitors Specifications of currently available neutron beam detectors limit their usefulness at intense neutron beams of large-scale national user facilities used for the advanced study of materials. A large number of neutron-scattering experiments require beam monitors to operate in an intense neutron beam flux of >10E+7 neutrons per second per square centimeter. For instance, a 4 cm x 4 cm intense beam flux of 6.25 x 10E+7 n/s/cm2 at the Spallation Neutron Source will put a flux of 1.00 x 10E+9 n/s at the beam monitor. Currently available beam monitors with a typical efficiency of 1 x 10E-4 will need to be replaced in less than two years of operation due to wire and gas degradation issues. There is also a need at some instruments for beam position information that are beyond the capabilities of currently available He-3 and BF3 neutron beam monitors. ORDELA, Inc.’s research under USDOE SBIR Grant (DE-FG02-07ER84844) studied the feasibility of using pixel-cell technology for developing a new generation of stable, long-life neutron beam monitors. The research effort has led to the development and commercialization of advanced neutron beam detectors that will directly benefit the Spallation Neutron Source and other intense neutron sources such as the High Flux Isotope Reactor. A prototypical Pixel-Cell Neutron Beam Monitor was designed and constructed during this research effort. This prototype beam monitor was exposed to an intense neutron beam at the HFIR SNS HB-2 test beam site. Initial measurements on efficiency, uniformity across the detector, and position resolution yielded excellent results. The development and test results have provided the required data to initiate the fabrication and commercialization of this next generation of neutron-detector systems. ORDELA, Inc. has (1) identified low-cost design and fabrication strategies, (2) developed and built pixel-cell detectors and

  2. Neutronic design of an ADS

    International Nuclear Information System (INIS)

    Cintas, A; Lopasso, E.M; Marquez Damian, J.I

    2009-01-01

    We present a LEU-ADS design based on an existing Argentine experimental facility, the RA-8 pool type zero power reactor. The versatility of this reactor allows measurement of different core configurations using different fuel enrichment, burnable poison rods, water perturbations and different control rods types in critical or subcritical configurations with an external source. To assess the feasibility of the LEU-ADS, multiplication factors, kinetic parameters, spectra, and time flux evolution were computed. Two external sources were considered: an isotopic 252 C f source, and a D-D pulsed neutron source. Parameters for different core configurations were calculated, and the feasibility of using continuous and pulsed neutron sources was verified. [es

  3. Fast neutron irradiation for locally advanced pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Smith, F.P. (Georgetown Univ. Medical Center, Washington, DC); Schein, P.S.; MacDonald, J.S.; Woolley, P.V.; Ornitz, R.; Rogers, C.

    1981-11-01

    Nineteen patients with locally advanced pancreatic cancer and one patient with islet cell cancer were treated with 1700-1500 neutron rad alone or in combination with 5-fluorouracil to exploit the theoretic advantages of higher linear energy of transfer, and lower oxygen enhancement ratio of neutrons. Only 5 of 14 (36%) obtained partial tumor regression. The median survival for all patients with pancreatic cancer was 6 months, which is less than that reported with 5-fluorouracil and conventional photon irradiation. Gastrointestinal toxicity was considerable; hemorhagic gastritis in five patients, colitis in two and esophagitis in one. One patient developed radiation myelitis. We therefore, caution any enthusiasm for this modality of therapy until clear evidence of a therapeutic advantage over photon therapy is demonstrated in controlled clinical trials.

  4. Fast neutron irradiation for locally advanced pancreatic cancer

    International Nuclear Information System (INIS)

    Smith, F.P.; Schein, P.S.; MacDonald, J.S.; Woolley, P.V.; Ornitz, R.; Rogers, C.

    1981-01-01

    Nineteen patients with locally advanced pancreatic cancer and one patient with islet cell cancer were treated with 1700-1500 neutron rad alone or in combination with 5-fluorouracil to exploit the theoretic advantages of higher linear energy of transfer, and lower oxygen enhancement ratio of neutrons. Only 5 of 14 (36%) obtained partial tumor regression. The median survival for all patients with pancreatic cancer was 6 months, which is less than that reported with 5-fluorouracil and conventional photon irradiation. Gastrointestinal toxicity was considerable; hemorhagic gastritis in five patients, colitis in two and esophagitis in one. One patient developed radiation myelitis. We therefore, caution any enthusiasm for this modality of therapy until clear evidence of a therapeutic advantage over photon therapy is demonstrated in controlled clinical trials

  5. Performance of an elliptically tapered neutron guide

    International Nuclear Information System (INIS)

    Muehlbauer, Sebastian; Stadlbauer, Martin; Boeni, Peter; Schanzer, Christan; Stahn, Jochen; Filges, Uwe

    2006-01-01

    Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics

  6. Thermal-hydraulic studies of the Advanced Neutron Source cold source

    International Nuclear Information System (INIS)

    Williams, P.T.; Lucas, A.T.

    1995-08-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory, was to be a user-oriented neutron research facility producing the most intense steady-state flux of thermal and cold neutrons in the world. Among its many scientific applications, the production of cold neutrons was a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410-mm-diam sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel's inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design were performed with heat conduction simulations of the vessel walls and multidimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This report presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that were planned to verify the final design

  7. AND/R: Advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences

    International Nuclear Information System (INIS)

    Dura, Joseph A.; Pierce, Donald J.; Majkrzak, Charles F.; Maliszewskyj, Nicholas C.; McGillivray, Duncan J.; Loesche, Mathias; O'Donovan, Kevin V.; Mihailescu, Mihaela; Perez-Salas, Ursula; Worcester, David L.; White, Stephen H.

    2006-01-01

    An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 A -1 . A detailed description of this flexible instrument and its performance characteristics in various operating modes are given

  8. AND/R: Advanced neutron diffractometer/reflectometer for investigation of thin films and multilayers for the life sciences

    Science.gov (United States)

    Dura, Joseph A.; Pierce, Donald J.; Majkrzak, Charles F.; Maliszewskyj, Nicholas C.; McGillivray, Duncan J.; Lösche, Mathias; O'Donovan, Kevin V.; Mihailescu, Mihaela; Perez-Salas, Ursula; Worcester, David L.; White, Stephen H.

    2011-01-01

    An elastic neutron scattering instrument, the advanced neutron diffractometer/reflectometer (AND/R), has recently been commissioned at the National Institute of Standards and Technology Center for Neutron Research. The AND/R is the centerpiece of the Cold Neutrons for Biology and Technology partnership, which is dedicated to the structural characterization of thin films and multilayers of biological interest. The instrument is capable of measuring both specular and nonspecular reflectivity, as well as crystalline or semicrystalline diffraction at wave-vector transfers up to approximately 2.20 Å−1. A detailed description of this flexible instrument and its performance characteristics in various operating modes are given. PMID:21892232

  9. Advanced Neutron Source reactor control and plant protection systems design

    International Nuclear Information System (INIS)

    Anderson, J.L.; Battle, R.E.; March-Leuba, J.; Khayat, M.I.

    1992-01-01

    This paper describes the reactor control and plant protection systems' conceptual design of the Advanced Neutron Source (ANS). The Plant Instrumentation, Control, and Data Systems and the Reactor Instrumentation and Control System of the ANS are planned as an integrated digital system with a hierarchical, distributed control structure of qualified redundant subsystems and a hybrid digital/analog protection system to achieve the necessary fast response for critical parameters. Data networks transfer information between systems for control, display, and recording. Protection is accomplished by the rapid insertion of negative reactivity with control rods or other reactivity mechanisms to shut down the fission process and reduce heat generation in the fuel. The shutdown system is designed for high functional reliability by use of conservative design features and a high degree of redundance and independence to guard against single failures. Two independent reactivity control systems of different design principles are provided, and each system has multiple independent rods or subsystems to provide appropriate margin for malfunctions such as stuck rods or other single failures. Each system is capable of maintaining the reactor in a cold shutdown condition independently of the functioning of the other system. A highly reliable, redundant channel control system is used not only to achieve high availability of the reactor, but also to reduce challenges to the protection system by maintaining important plant parameters within appropriate limits. The control system has a number of contingency features to maintain acceptable, off-normal conditions in spite of limited control or plant component failures thereby further reducing protection system challenges

  10. Correcting the Response of an Albedo Neutron Dosimeter for Energy

    National Research Council Canada - National Science Library

    Riel, Gordon K; Winters, Patrick J; Cassata, James R; St. John, Ted; Benevides, Luis A

    2007-01-01

    The neutron response of an albedo neutron dosimeter varies greatly with energy. For example, the dosimeter, calibrated with moderated Californium fission neutrons, will read more than 30 times the dose from thermal neutrons and less than 3...

  11. SVIP-N 1.0: An integrated visualization platform for neutronics analysis

    International Nuclear Information System (INIS)

    Luo Yuetong; Long Pengcheng; Wu Guoyong; Zeng Qin; Hu Liqin; Zou Jun

    2010-01-01

    Post-processing is an important part of neutronics analysis, and SVIP-N 1.0 (scientific visualization integrated platform for neutronics analysis) is designed to ease post-processing of neutronics analysis through visualization technologies. Main capabilities of SVIP-N 1.0 include: (1) ability of manage neutronics analysis result; (2) ability to preprocess neutronics analysis result; (3) ability to visualization neutronics analysis result data in different way. The paper describes the system architecture and main features of SVIP-N, some advanced visualization used in SVIP-N 1.0 and some preliminary applications, such as ITER.

  12. An Emergency Dosimeter for Neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Braun, J.; Nilsson, R.

    1960-05-15

    A neutron dosimeter suitable for single emergency exposures is described. The dosimeter is furnished with detectors for thermal, epi-thermal and fast neutrons. This means that three of the constants by which the spectrum of the incident neutron flux is approximated, can be determined. The dose calculated from these approximated spectra is compared to the dose from spectra obtained in different standard spectra of types which may be expected in a radiation accident.

  13. Plant protection system optimization studies to mitigate consequences of large breaks in the advanced neutron source reactor

    International Nuclear Information System (INIS)

    Khayat, M.I.; March-Leuba, J.

    1993-01-01

    This paper documents some of the optimization studies performed to maximize the performance of the engineered safety features and scram systems to mitigate the consequences of large breaks in the primary cooling system of the advanced neutron source (ANS) reactor. The ANS is a new basic and applied research facility based on a powerful steady-state research reactor that provides beams of neutrons for measurements and experiments in the field of material science and engineering, biology, chemistry, material analysis, and nuclear science. To achieve the high neutron fluxes for these state-of-the-art experiments, the ANS design has a very high power density core (330 MW fission with an active volume of 67.6 ell) surrounded by a large heavy-water reflector, where most neutrons are moderated. This design maximizes the number of neutrons available for experiments but results in a low heat capacity core that creates unique challenges to the design of the plant protection system

  14. Fabrication of beryllide pebble as advanced neutron multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Nakamichi, Masaru, E-mail: nakamichi.masaru@jaea.go.jp; Kim, Jae-Hwan

    2014-10-15

    Highlights: • A new beryllide granulation process that combined process with a plasma sintering method for electrode fabrication and a rotating electrode method (REM) for granulation was suggested. • The beryllide electrode fabrication process was investigated for mass production. • As optimized beryllide electrode indicated higher ductility and was sintered at a lower temperature for a shorter time. • It appears to be more able to not only withstand the thermal shock from arc-discharge during granulation but also produce beryllide pebbles on a large scale. • These optimization results can reduce the time for electrode fabrication by 40%, they suggest the possibility of great reductions in time and cost for mass production of beryllide pebbles. - Abstract: Fusion reactors require advanced neutron multipliers with great stability at high temperatures. Beryllium intermetallic compounds, called beryllides such as Be{sub 12}Ti, are the most promising materials for use as advanced neutron multipliers. However, few studies have been conducted on the development of mass production methods for beryllide pebbles. A granulation process for beryllide needs to have both low cost and high efficiency. To fabricate beryllide pebbles, a new granulation process is established in this research by combining a plasma sintering method for beryllide synthesis and a rotating electrode method using a plasma-sintered electrode for granulation. The fabrication process of the beryllide electrode is investigated and optimized for mass production. The optimized beryllide electrode exhibits higher ductility and can be sintered at a lower temperature for a shorter time, indicating that it is more suitable not only for withstanding the thermal shock from arc-discharge during granulation but also for producing the beryllide pebbles on a large scale. Accordingly, because these optimization results can reduce the time required for electrode fabrication by 40%, they suggest the possibility

  15. Effect of neutron irradiation on fracture resistance of advanced SiC/SiC composites

    Science.gov (United States)

    Ozawa, Kazumi; Katoh, Yutai; Nozawa, Takashi; Snead, Lance L.

    2011-10-01

    In order to identify the neutron irradiation effects on fracture resistance of advanced SiC/SiC composites, unloading-reloading single edge notched bend tests were conducted and an analytical model based on non-linear fracture mechanics was applied. As a result of the analysis, energy release rate contributed by macro-crack initiation of 3.1 kJ/m 2 for both unirradiated and irradiated advanced SiC/SiC composites (Hi-Nicalon Type-S (0°/90° plain woven)/multilayer/chemically vapor infiltration) is estimated. This result indicates no significant degradation in fracture resistance after neutron irradiation to 5.9 × 10 25 n/m 2 at 800 °C.

  16. Experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source spectrum of the NBSR reactor at the NIST Center for Neutron Research

    Science.gov (United States)

    Cook, J. C.; Barker, J. G.; Rowe, J. M.; Williams, R. E.; Gagnon, C.; Lindstrom, R. M.; Ibberson, R. M.; Neumann, D. A.

    2015-08-01

    The recent expansion of the National Institute of Standards and Technology (NIST) Center for Neutron Research facility has offered a rare opportunity to perform an accurate measurement of the cold neutron spectrum at the exit of a newly-installed neutron guide. Using a combination of a neutron time-of-flight measurement, a gold foil activation measurement, and Monte Carlo simulation of the neutron guide transmission, we obtain the most reliable experimental characterization of the Advanced Liquid Hydrogen Cold Neutron Source brightness to date. Time-of-flight measurements were performed at three distinct fuel burnup intervals, including one immediately following reactor startup. Prior to the latter measurement, the hydrogen was maintained in a liquefied state for an extended period in an attempt to observe an initial radiation-induced increase of the ortho (o)-hydrogen fraction. Since para (p)-hydrogen has a small scattering cross-section for neutron energies below 15 meV (neutron wavelengths greater than about 2.3 Å), changes in the o- p hydrogen ratio and in the void distribution in the boiling hydrogen influence the spectral distribution. The nature of such changes is simulated with a continuous-energy, Monte Carlo radiation-transport code using 20 K o and p hydrogen scattering kernels and an estimated hydrogen density distribution derived from an analysis of localized heat loads. A comparison of the transport calculations with the mean brightness function resulting from the three measurements suggests an overall o- p ratio of about 17.5(±1) % o- 82.5% p for neutron energies<15 meV, a significantly lower ortho concentration than previously assumed.

  17. An introduction to neutron powder diffraction

    International Nuclear Information System (INIS)

    Kennedy, S.

    1999-01-01

    Full text: The aim of this presentation is to provide an introduction to neutron powder diffraction. The technique has developed from humble beginnings in the first generation of nuclear reactors in the late 1940's, to become one of the most widely used and productive forms of neutron beam research. Its popularity stems from the unique properties of thermal neutrons, which make them the ideal probe for obtaining spatial and dynamic information about atomic nuclei and magnetic dipoles in condensed matter. Neutron powder diffraction is particularly useful for location of lighter elements, in magnetic structure determination, for understanding thermal motions of atoms and for in-situ studies of materials at extreme temperatures and pressures. It is commonly used for research in condensed matter physics, structural chemistry and materials science at nuclear research reactors and spallation neutron sources around the world. The basic properties of thermal neutrons that are exploited in condensed matter research will be described. The neutron powder diffraction technique will be discussed with particular attention to comparisons with the X-ray powder diffraction technique, to which it is complementary. A brief description of the neutron powder diffraction facilities at ANSTO's HIFAR research reactor will be given, along with selected examples of neutron diffraction experiments that illustrate the power of the technique. Copyright (1999) Australian X-ray Analytical Association Inc

  18. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as 252 Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2

  19. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

  20. MCNP speed advances for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Goorley, J.T.; McKinney, G.; Adams, K.; Estes, G.

    1998-04-01

    The Boron Neutron Capture Therapy (BNCT) treatment planning process of the Beth Israel Deaconess Medical Center-M.I.T team relies on MCNP to determine dose rates in the subject's head for various beam orientations. In this time consuming computational process, four or five potential beams are investigated. Of these, one or two final beams are selected and thoroughly evaluated. Recent advances greatly decreased the time needed to do these MCNP calculations. Two modifications to the new MCNP4B source code, lattice tally and tracking enhancements, reduced the wall-clock run times of a typical one million source neutrons run to one hour twenty five minutes on a 200 MHz Pentium Pro computer running Linux and using the GNU FORTRAN compiler. Previously these jobs used a special version of MCNP4AB created by Everett Redmond, which completed in two hours two minutes. In addition to this 30% speedup, the MCNP4B version was adapted for use with Parallel Virtual Machine (PVM) on personal computers running the Linux operating system. MCNP, using PVM, can be run on multiple computers simultaneously, offering a factor of speedup roughly the same as the number of computers used. With two 200 MHz Pentium Pro machines, the run time was reduced to forty five minutes, a 1.9 factor of improvement over the single Linux computer. While the time of a single run was greatly reduced, the advantages associated with PVM derive from using computational power not already used. Four possible beams, currently requiring four separate runs, could be run faster when each is individually run on a single machine under Windows NT, rather than using Linux and PVM to run one after another with each multiprocessed across four computers. It would be advantageous, however, to use PVM to distribute the final two beam orientations over four computers

  1. MCNP speed advances for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Goorley, J.T.; McKinney, G.; Adams, K.; Estes, G.

    1998-04-01

    The Boron Neutron Capture Therapy (BNCT) treatment planning process of the Beth Israel Deaconess Medical Center-M.I.T team relies on MCNP to determine dose rates in the subject`s head for various beam orientations. In this time consuming computational process, four or five potential beams are investigated. Of these, one or two final beams are selected and thoroughly evaluated. Recent advances greatly decreased the time needed to do these MCNP calculations. Two modifications to the new MCNP4B source code, lattice tally and tracking enhancements, reduced the wall-clock run times of a typical one million source neutrons run to one hour twenty five minutes on a 200 MHz Pentium Pro computer running Linux and using the GNU FORTRAN compiler. Previously these jobs used a special version of MCNP4AB created by Everett Redmond, which completed in two hours two minutes. In addition to this 30% speedup, the MCNP4B version was adapted for use with Parallel Virtual Machine (PVM) on personal computers running the Linux operating system. MCNP, using PVM, can be run on multiple computers simultaneously, offering a factor of speedup roughly the same as the number of computers used. With two 200 MHz Pentium Pro machines, the run time was reduced to forty five minutes, a 1.9 factor of improvement over the single Linux computer. While the time of a single run was greatly reduced, the advantages associated with PVM derive from using computational power not already used. Four possible beams, currently requiring four separate runs, could be run faster when each is individually run on a single machine under Windows NT, rather than using Linux and PVM to run one after another with each multiprocessed across four computers. It would be advantageous, however, to use PVM to distribute the final two beam orientations over four computers.

  2. An Accelerator Neutron Source for BNCT

    International Nuclear Information System (INIS)

    Blue, Thomas E.

    2006-01-01

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were (1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, (2) that the patient treatment time be reasonable, (3) that the proton current required to treat patients in reasonable times be technologically achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally (4) that the treatment be safe for the patients

  3. An Accelerator Neutron Source for BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Thomas, E

    2006-03-14

    The overall goal of this project was to develop an accelerator-based neutron source (ABNS) for Boron Neutron Capture Therapy (BNCT). Specifically, our goals were to design, and confirm by measurement, a target assembly and a moderator assembly that would fulfill the design requirements of the ABNS. These design requirements were 1) that the neutron field quality be as good as the neutron field quality for the reactor-based neutron sources for BNCT, 2) that the patient treatment time be reasonable, 3) that the proton current required to treat patients in reasonable times be technologially achievable at reasonable cost with good reliability, and accelerator space requirements which can be met in a hospital, and finally 4) that the treatment be safe for the patients.

  4. An alternative method for the measurement of neutron flux

    Indian Academy of Sciences (India)

    Here, the neutron flux inferred from the neutron count rate obtained with R-12 SDD shows an excellent agreement with the flux inferred from the neutron dose rate in a non-dissipative medium. Keywords. Neutron dose; neutron flux; superheated droplet detector; bubble nucleation. PACS Nos 29.40.Rg; 29.40.–n; 29.25.Dz. 1.

  5. Proceedings of the fifteenth meeting of the international collaboration on advanced neutron sources (ICANS-XV). Advanced neutron sources towards the next century

    International Nuclear Information System (INIS)

    Suzuki, Jun-ichi; Itoh, Shinichi

    2001-03-01

    The fifteenth meeting of the International Collaboration on Advanced Neutron Sources (ICANS-XV) was held at Epocal Tsukuba, International Congress Center on 6-9 November 2000. It was hosted by Japan Atomic Energy Research Institute (JAERI) and High Energy Accelerator Research Organization (KEK). This meeting focused on 'Neutron Sources toward the 21st Century' and research activities related to targets and moderators, neutron scattering instruments and accelerators were presented. The 151 of the presented papers are indexed individually. (J.P.N.)

  6. Proceedings of the fifteenth meeting of the international collaboration on advanced neutron sources (ICANS-XV). Advanced neutron sources towards the next century

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Jun-ichi [Center for Neutron Science, Tokai Research Establishment, Japan Atomic Energy Research Institute, Tokai, Ibaraki (Japan); Itoh, Shinichi [Neutron Science Laboratory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (JP)] (eds.)

    2001-03-01

    The fifteenth meeting of the International Collaboration on Advanced Neutron Sources (ICANS-XV) was held at Epocal Tsukuba, International Congress Center on 6-9 November 2000. It was hosted by Japan Atomic Energy Research Institute (JAERI) and High Energy Accelerator Research Organization (KEK). This meeting focused on 'Neutron Sources toward the 21st Century' and research activities related to targets and moderators, neutron scattering instruments and accelerators were presented. The 151 of the presented papers are indexed individually. (J.P.N.)

  7. New opportunities in neutron capture research using advanced pulsed neutron sources

    International Nuclear Information System (INIS)

    Bowman, C.D.

    1987-08-01

    The extraordinary neutron intensities available from the new spallation pulsed neutron sources open up exciting opportunities for basic and applied research in neutron nuclear physics. Prospective experiments are reviewed with particular attention to those with a strong connection to capture gamma-ray spectroscopy

  8. New Advances in Neutron Diffraction Studies of Molecular Aqueous Solutions

    OpenAIRE

    Finney, J. L.

    1992-01-01

    Neutron scattering studies have played a major role in improving our understanding of the structures not only of simple single component liquids, but increasingly of mixtures and solutions. In addition to the improved quality of structural information available from neutrons (cf X-rays) resulting from the Q-indcpcndcnt neutron scattering factor and the ability to obtain high resolution information through access to high momentum transfer Q, the use of isotopes allows information at the partia...

  9. An efficient gravitational spectrometer for ultracold neutrons

    International Nuclear Information System (INIS)

    Geltenbort, P.; Goeltl, L.; Henneck, R.; Horras, M.; Kirch, K.; Knecht, A.; Lauss, B.; Meier, M.; Straumann, U.; Zsigmond, G.

    2010-01-01

    We report on the design and construction of an efficient gravitational spectrometer for ultracold neutrons. The spectrometer is suited to experiments that can greatly profit from knowledge of the neutron energy spectrum without losing available statistics, such as many of the current precision experiments that use ultracold neutrons. The description of the apparatus is complemented by the results of the first test measurements which served as a proof of principle and showed its capability of discriminating between different UCN energy ranges. The measurements showed the expected behavior and are in qualitative agreement with Monte Carlo simulations.

  10. An efficient gravitational spectrometer for ultracold neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Geltenbort, P. [Institut Laue-Langevin, Grenoble (France); Goeltl, L. [Paul Scherrer Institut, PSI, Villigen (Switzerland); ETH Zuerich, Zuerich (Switzerland); Henneck, R. [Paul Scherrer Institut, PSI, Villigen (Switzerland); Horras, M. [Paul Scherrer Institut, PSI, Villigen (Switzerland); Excellence Cluster ' Universe' , Technische Universitaet Muenchen, Garching (Germany); Kirch, K., E-mail: klaus.kirch@psi.c [Paul Scherrer Institut, PSI, Villigen (Switzerland); ETH Zuerich, Zuerich (Switzerland); Knecht, A., E-mail: a.knecht@psi.c [Paul Scherrer Institut, PSI, Villigen (Switzerland); University of Zuerich, Zuerich (Switzerland); ETH Zuerich, Zuerich (Switzerland); Lauss, B.; Meier, M. [Paul Scherrer Institut, PSI, Villigen (Switzerland); Straumann, U. [University of Zuerich, Zuerich (Switzerland); Zsigmond, G. [Paul Scherrer Institut, PSI, Villigen (Switzerland)

    2010-12-01

    We report on the design and construction of an efficient gravitational spectrometer for ultracold neutrons. The spectrometer is suited to experiments that can greatly profit from knowledge of the neutron energy spectrum without losing available statistics, such as many of the current precision experiments that use ultracold neutrons. The description of the apparatus is complemented by the results of the first test measurements which served as a proof of principle and showed its capability of discriminating between different UCN energy ranges. The measurements showed the expected behavior and are in qualitative agreement with Monte Carlo simulations.

  11. Study of neutron fields around an intense neutron generator.

    Science.gov (United States)

    Kicka, L; Machrafi, R; Miller, A

    2017-12-01

    Neutron fields in the vicinity of the newly built neutron facility, at the University of Ontario Institute of Technology (UOIT), have been investigated in a series of Monte Carlo simulations and measurements. The facility hosts a P-385 neutron generator based on a deuterium-deuterium fusion reaction. The neutron fluence at different locations around the neutron generator facility has been simulated using MCNPX 2.7E Monte Carlo particle transport program. To characterize neutron fields, three neutron sources were modeled with distributions corresponding to different incident deuteron energies of 90kV, 110kV, and 130kV. Measurements have been carried out to determine the dose rate at locations adjacent to the generator using bubble detectors (BDs). The neutron intensity was evaluated and the total dose rates corresponding to different applied acceleration potentials were estimated at various locations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A Review of Significant Advances in Neutron Imaging from Conception to the Present

    Science.gov (United States)

    Brenizer, J. S.

    This review summarizes the history of neutron imaging with a focus on the significant events and technical advancements in neutron imaging methods, from the first radiograph to more recent imaging methods. A timeline is presented to illustrate the key accomplishments that advanced the neutron imaging technique. Only three years after the discovery of the neutron by English physicist James Chadwick in 1932, neutron imaging began with the work of Hartmut Kallmann and Ernst Kuhn in Berlin, Germany, from 1935-1944. Kallmann and Kuhn were awarded a joint US Patent issued in January 1940. Little progress was made until the mid-1950's when Thewlis utilized a neutron beam from the BEPO reactor at Harwell, marking the beginning of the application of neutron imaging to practical applications. As the film method was improved, imaging moved from a qualitative to a quantitative technique, with applications in industry and in nuclear fuels. Standards were developed to aid in the quantification of the neutron images and the facility's capabilities. The introduction of dynamic neutron imaging (initially called real-time neutron radiography and neutron television) in the late 1970's opened the door to new opportunities and new challenges. As the electronic imaging matured, the introduction of the CCD imaging devices and solid-state light intensifiers helped address some of these challenges. Development of improved imaging devices for the medical community has had a major impact on neutron imaging. Additionally, amorphous silicon sensors provided improvements in temporal resolution, while providing a reasonably large imaging area. The development of new neutron imaging sensors and the development of new neutron imaging techniques in the past decade has advanced the technique's ability to provide insight and understanding of problems that other non-destructive techniques could not provide. This rapid increase in capability and application would not have been possible without the

  13. Advanced thermal-hydraulic and neutronic codes: current and future applications. Summary and conclusions

    International Nuclear Information System (INIS)

    2001-05-01

    An OECD Workshop on Advanced Thermal-Hydraulic and Neutronic Codes Applications was held from 10 to 13 April 2000, in Barcelona, Spain, sponsored by the Committee on the Safety of Nuclear Installations (CSNI) of the OECD Nuclear Energy Agency (NEA). It was organised in collaboration with the Spanish Nuclear Safety Council (CSN) and hosted by CSN and the Polytechnic University of Catalonia (UPC) in collaboration with the Spanish Electricity Association (UNESA). The objectives of the Workshop were to review the developments since the previous CSNI Workshop held in Annapolis [NEA/CSNI/ R(97)4; NUREG/CP-0159], to analyse the present status of maturity and remnant needs of thermal-hydraulic (TH) and neutronic system codes and methods, and finally to evaluate the role of these tools in the evolving regulatory environment. The Technical Sessions and Discussion Sessions covered the following topics: - Regulatory requirements for Best-Estimate (BE) code assessment; - Application of TH and neutronic codes for current safety issues; - Uncertainty analysis; - Needs for integral plant transient and accident analysis; - Simulators and fast running codes; - Advances in next generation TH and neutronic codes; - Future trends in physical modeling; - Long term plans for development of advanced codes. The focus of the Workshop was on system codes. An incursion was made, however, in the new field of applying Computational Fluid Dynamic (CFD) codes to nuclear safety analysis. As a general conclusion, the Barcelona Workshop can be considered representative of the progress towards the targets marked at Annapolis almost four years ago. The Annapolis Workshop had identified areas where further development and specific improvements were needed, among them: multi-field models, transport of interfacial area, 2D and 3D thermal-hydraulics, 3-D neutronics consistent with level of details of thermal-hydraulics. Recommendations issued at Annapolis included: developing small pilot/test codes for

  14. Proceedings of the workshop on advanced thermal-hydraulic and neutronic codes: current and future applications

    International Nuclear Information System (INIS)

    2001-01-01

    An OECD Workshop on Advanced Thermal-Hydraulic and Neutronic Codes Applications was held from 10 to 13 April 2000, in Barcelona, Spain, sponsored by the Committee on the Safety of Nuclear Installations (CSNI) of the OECD Nuclear Energy Agency (NEA). It was organised in collaboration with the Spanish Nuclear Safety Council (CSN) and hosted by CSN and the Polytechnic University of Catalonia (UPC) in collaboration with the Spanish Electricity Association (UNESA). The objectives of the Workshop were to review the developments since the previous CSNI Workshop held in Annapolis [NEA/CSNI/ R(97)4; NUREG/CP-0159], to analyse the present status of maturity and remnant needs of thermal-hydraulic (TH) and neutronic system codes and methods, and finally to evaluate the role of these tools in the evolving regulatory environment. The Technical Sessions and Discussion Sessions covered the following topics: - Regulatory requirements for Best-Estimate (BE) code assessment; - Application of TH and neutronic codes for current safety issues; - Uncertainty analysis; - Needs for integral plant transient and accident analysis; - Simulators and fast running codes; - Advances in next generation TH and neutronic codes; - Future trends in physical modeling; - Long term plans for development of advanced codes. The focus of the Workshop was on system codes. An incursion was made, however, in the new field of applying Computational Fluid Dynamic (CFD) codes to nuclear safety analysis. As a general conclusion, the Barcelona Workshop can be considered representative of the progress towards the targets marked at Annapolis almost four years ago. The Annapolis Workshop had identified areas where further development and specific improvements were needed, among them: multi-field models, transport of interfacial area, 2D and 3D thermal-hydraulics, 3-D neutronics consistent with level of details of thermal-hydraulics. Recommendations issued at Annapolis included: developing small pilot/test codes for

  15. Design of the cold neutron triple-axis spectrometer at the China Advanced Research Reactor

    International Nuclear Information System (INIS)

    Cheng, P.; Zhang, Hongxia; Bao, W.; Schneidewind, A.; Link, P.; Grünwald, A.T.D.; Georgii, R.; Hao, L.J.; Liu, Y.T.

    2016-01-01

    The design of the first cold neutron triple-axis spectrometer at the China Advanced Research Reactor is presented. Based on the Monte Carlo simulations using neutron ray-tracing program McStas, the parameters of major neutron optics in this instrument are optimized. The neutron flux at sample position is estimated to be 5.6 ×10 7 n/cm 2 /s at neutron incident energy E i =5 meV when the reactor operates normally at the designed 60 MW power. The performances of several neutron supermirror polarizing devices are compared and their critical parameters are optimized for this spectrometer. The polarization analysis will be realized with a flexible switch from the unpolarized experimental mode.

  16. Design of the cold neutron triple-axis spectrometer at the China Advanced Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, P.; Zhang, Hongxia; Bao, W. [Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872 (China); Schneidewind, A. [Jülich Center for Neutron Science (JCNS), Forschungszentrum Jülich GmbH, Outstation at Heinz MaierCLeibnitz Zentrum (MLZ), D-85747 Garching (Germany); Link, P. [Heinz Maier-Leibnitz Zentrum, Technische Universität München, D-85748 Garching (Germany); Grünwald, A.T.D. [II. Physikalisches Institut, Universität zu Köln, D-50937 Köln (Germany); Georgii, R. [Heinz Maier-Leibnitz Zentrum, Technische Universität München, D-85748 Garching (Germany); Hao, L.J.; Liu, Y.T. [China Institute of Atomic Energy, PO Box-275-30, Beijing 102413 (China)

    2016-06-11

    The design of the first cold neutron triple-axis spectrometer at the China Advanced Research Reactor is presented. Based on the Monte Carlo simulations using neutron ray-tracing program McStas, the parameters of major neutron optics in this instrument are optimized. The neutron flux at sample position is estimated to be 5.6 ×10{sup 7} n/cm{sup 2}/s at neutron incident energy E{sub i}=5 meV when the reactor operates normally at the designed 60 MW power. The performances of several neutron supermirror polarizing devices are compared and their critical parameters are optimized for this spectrometer. The polarization analysis will be realized with a flexible switch from the unpolarized experimental mode.

  17. Terrestrial neutron-induced soft errors in advanced memory devices

    CERN Document Server

    Nakamura, Takashi; Ibe, Eishi; Yahagi, Yasuo; Kameyama, Hideaki

    2008-01-01

    Terrestrial neutron-induced soft errors in semiconductor memory devices are currently a major concern in reliability issues. Understanding the mechanism and quantifying soft-error rates are primarily crucial for the design and quality assurance of semiconductor memory devices. This book covers the relevant up-to-date topics in terrestrial neutron-induced soft errors, and aims to provide succinct knowledge on neutron-induced soft errors to the readers by presenting several valuable and unique features. Sample Chapter(s). Chapter 1: Introduction (238 KB). Table A.30 mentioned in Appendix A.6 on

  18. Adjuvant neutron therapy in complex treatment of patients with locally advanced breast cancer

    Science.gov (United States)

    Lisin, V. A.; Velikaya, V. V.; Startseva, Zh. A.; Popova, N. O.; Goldberg, V. E.

    2017-09-01

    The study included 128 patients with stage T2-4N0-3M0 locally advanced breast cancer. All patients were divided into two groups. Group I (study group) consisted of 68 patients, who received neutron therapy, and group II (control group) comprised 60 patients, who received electron beam therapy. Neutron therapy was well tolerated by the patients and 1-2 grade radiation skin reactions were the most common. Neutron therapy was shown to be effective in multimodality treatment of the patients with locally advanced breast cancer. The 8-year recurrence-free survival rate in the patients with locally advanced breast cancer was 94.5 ± 4.1% after neutron therapy and 81.4 ± 5.9% after electron beam therapy (p = 0.05).

  19. Advanced LIGO constraints on neutron star mergers and r-process sites

    International Nuclear Information System (INIS)

    Côté, Benoit; Belczynski, Krzysztof; Fryer, Chris L.; Ritter, Christian

    2017-01-01

    The role of compact binary mergers as the main production site of r-process elements is investigated by combining stellar abundances of Eu observed in the Milky Way, galactic chemical evolution (GCE) simulations, and binary population synthesis models, and gravitational wave measurements from Advanced LIGO. We compiled and reviewed seven recent GCE studies to extract the frequency of neutron star–neutron star (NS–NS) mergers that is needed in order to reproduce the observed [Eu/Fe] versus [Fe/H] relationship. We used our simple chemical evolution code to explore the impact of different analytical delay-time distribution functions for NS–NS mergers. We then combined our metallicity-dependent population synthesis models with our chemical evolution code to bring their predictions, for both NS–NS mergers and black hole–neutron star mergers, into a GCE context. Finally, we convolved our results with the cosmic star formation history to provide a direct comparison with current and upcoming Advanced LIGO measurements. When assuming that NS–NS mergers are the exclusive r-process sites, and that the ejected r-process mass per merger event is 0.01 M ⊙ , the number of NS–NS mergers needed in GCE studies is about 10 times larger than what is predicted by standard population synthesis models. Here, these two distinct fields can only be consistent with each other when assuming optimistic rates, massive NS–NS merger ejecta, and low Fe yields for massive stars. For now, population synthesis models and GCE simulations are in agreement with the current upper limit (O1) established by Advanced LIGO during their first run of observations. Upcoming measurements will provide an important constraint on the actual local NS–NS merger rate, will provide valuable insights on the plausibility of the GCE requirement, and will help to define whether or not compact binary mergers can be the dominant source of r-process elements in the universe.

  20. Neutronics investigation of advanced self-cooled liquid blanket systems in helical reactor

    International Nuclear Information System (INIS)

    Tanaka, T.; Sagara, A.; Muroga, T.; Youssef, M.Z.

    2006-10-01

    Neutronics performances of advanced self-cooled liquid blanket systems have been investigated in design activity of the helical-type reactor FFHR2. In the present study, a new three-dimensional (3-D) neutronics calculation system has been developed for the helical-type reactor to enhance quick feedback between neutronics evaluation and design modification. Using this new calculation system, advanced Flibe-cooled and Li-cooled liquid blanket systems proposed for FFHR2 have been evaluated to make clear design issues to enhance neutronics performance. Based on calculated results, modification of the blanket dimensions and configuration have been attempted to achieve the adequate tritium breeding ability and neutron shielding performance in the helical reactor. The total tritium breeding ratios (TBRs) obtained after modifying the blanket dimensions indicated that all the advanced blanket systems proposed for FFHR2 would achieve adequate tritium self-sufficiency by dimension adjustment and optimization of structures in the breeder layers. Issues in neutron shielding performance have been investigated quantitatively using 3-D geometry of the helical blanket system, support structures, poloidal coils etc. Shielding performance of the helical coils against direct neutrons from core plasma would achieve design target by further optimization of shielding materials. However, suppression of the neutron streaming and reflection through the divertor pumping areas in the original design is important issue to protect the poloidal coils and helical coils, respectively. Investigation of the neutron wall loading indicated that the peaking factor of the neutron wall load distribution would be moderated by the toroidal and helical effect of the plasma distribution in the helical reactor. (author)

  1. Initial global 2-D shielding analysis for the Advanced Neutron Source core and reflector

    Energy Technology Data Exchange (ETDEWEB)

    Bucholz, J.A.

    1995-08-01

    This document describes the initial global 2-D shielding analyses for the Advanced Neutron Source (ANS) reactor, the D{sub 2}O reflector, the reflector vessel, and the first 200 mm of light water beyond the reflector vessel. Flux files generated here will later serve as source terms in subsequent shielding analyses. In addition to reporting fluxes and other data at key points of interest, a major objective of this report was to document how these analyses were performed, the phenomena that were included, and checks that were made to verify that these phenomena were properly modeled. In these shielding analyses, the fixed neutron source distribution in the core was based on the `lifetime-averaged` spatial power distribution. Secondary gamma production cross sections in the fuel were modified so as to account intrinsically for delayed fission gammas in the fuel as well as prompt fission gammas. In and near the fuel, this increased the low-energy gamma fluxes by 50 to 250%, but out near the reflector vessel, these same fluxes changed by only a few percent. Sensitivity studies with respect to mesh size were performed, and a new 2-D mesh distribution developed after some problems were discovered with respect to the use of numerous elongated mesh cells in the reflector. All of the shielding analyses were performed sing the ANSL-V 39n/44g coupled library with 25 thermal neutron groups in order to obtain a rigorous representation of the thermal neutron spectrum throughout the reflector. Because of upscatter in the heavy water, convergence was very slow. Ultimately, the fission cross section in the various materials had to be artificially modified in order to solve this fixed source problem as an eigenvalue problem and invoke the Vondy error-mode extrapolation technique which greatly accelerated convergence in the large 2-D RZ DORT analyses. While this was quite effective, 150 outer iterations (over energy) were still required.

  2. Final LDRD report : advanced plastic scintillators for neutron detection.

    Energy Technology Data Exchange (ETDEWEB)

    Vance, Andrew L.; Mascarenhas, Nicholas; O' Bryan, Greg; Mrowka, Stanley

    2010-09-01

    This report summarizes the results of a one-year, feasibility-scale LDRD project that was conducted with the goal of developing new plastic scintillators capable of pulse shape discrimination (PSD) for neutron detection. Copolymers composed of matrix materials such as poly(methyl methacrylate) (PMMA) and blocks containing trans-stilbene (tSB) as the scintillator component were prepared and tested for gamma/neutron response. Block copolymer synthesis utilizing tSBMA proved unsuccessful so random copolymers containing up to 30% tSB were prepared. These copolymers were found to function as scintillators upon exposure to gamma radiation; however, they did not exhibit PSD when exposed to a neutron source. This project, while falling short of its ultimate goal, demonstrated the possible utility of single-component, undoped plastics as scintillators for applications that do not require PSD.

  3. New generation of cryogen free advanced superconducting magnets for neutron scattering experiments

    International Nuclear Information System (INIS)

    Kirichek, O; Adroja, D T; Manuel, P; Bewley, R I; Brown, J; Kouzmenko, G; Wotherspoon, R

    2012-01-01

    Recent advances in superconducting technology and cryocooler refrigeration have resulted in a new generation of advanced superconducting magnets for neutron beam applications. These magnets have outstanding parameters such as high homogeneity and stability at highest magnetic fields possible, a reasonably small stray field, low neutron scattering background and larger exposure to neutron detectors. At the same time the pulse tube refrigeration technology provides a complete re-condensing regime which allows to minimise the requirements for cryogens without introducing additional noise and mechanical vibrations. The magnets can be used with dilution refrigerator insert which expands the temperature range from 20mK to 300K. Here we are going to present design, test results and the operational data of the 14T magnet for neutron diffraction and the 9T wide angle chopper magnet for neutron spectroscopy developed by Oxford Instruments in collaboration with ISIS neutron source. First scientific results obtained from the neutron scattering experiments with these magnets are also going to be discussed.

  4. Advanced Neutron Radiographic Equipment within the US Army

    Science.gov (United States)

    2014-01-29

    source like the neutron producing isotope Cf- 252 is dependent on the type of moderator materials, its size, and the dimensions of the collimation device...port made with various slabs, bricks, sheets, and foils of materials containing lead, boron , and HDPE. This port merely functioned as a scatter

  5. Neutronics assessment for the ARIES advanced reactor studies

    International Nuclear Information System (INIS)

    El-Guebaly, L.A.

    1995-01-01

    The ARIES tokamak designs have incorporated environmental and safety constraints in the design from the beginning. Low activation materials such as SiC or SiC composites, vanadium alloy, and modified HT-9 ferritic steel were utilized as the main structures in ARIES-IV, II, and III, respectively. All designs employ D-T fuel cycles except ARIES-III which is D- 3 He fuelled. An overall tritium breeding ratio of 1.12 seems adequate for ARIES-II and IV. The Li 2 O breeder requires a beryllium multiplier to achieve T self-sufficiency in the ARIES-IV design while the lithium has the ability to breed sufficient T in ARIES-II without a multiplier. Radiation damage concerns for the structures are the burn-up of the SiC and SiC composites and the atomic displacement in the vanadium. The first wall and blanket require frequent replacement (every 3-4 years) during reactor operation. The end-of-life fluences are 16.5MW yearsm -2 and 13MW yearsm -2 based on the 200dpa and 3% burn-up limits for the V and SiC structures respectively. Because of the lower neutron production, the ARIES-III first wall and shield are permanent components and require no replacement over the plant lifetime. A variety of shield options was examined and the ability of various materials to protect the magnets was assessed. At least 1.2m and 1.4m of inboard blanket-shield are required for magnet protection in ARIES-II and ARIES-IV respectively. The lack of T breeding and the lower wall loading result in a much thinner shield (0.65m) for ARIES-III. (orig.)

  6. Steady-state thermal-hydraulic design analysis of the Advanced Neutron Source reactor

    International Nuclear Information System (INIS)

    Yoder, G.L. Jr.; Dixon, J.R.; Elkassabgi, Y.; Felde, D.K.; Giles, G.E.; Harrington, R.M.; Morris, D.G.; Nelson, W.R.; Ruggles, A.E.; Siman-Tov, M.; Stovall, T.K.

    1994-05-01

    The Advanced Neutron Source (ANS) is a research reactor that is planned for construction at Oak Ridge National Laboratory. This reactor will be a user facility with the major objective of providing the highest continuous neutron beam intensities of any reactor in the world. Additional objectives for the facility include providing materials irradiation facilities and isotope production facilities as good as, or better than, those in the High Flux Isotope Reactor. To achieve these objectives, the reactor design uses highly subcooled heavy water as both coolant and moderator. Two separate core halves of 67.6-L total volume operate at an average power density of 4.5 MW(t)/L, and the coolant flows upward through the core at 25 m/s. Operating pressure is 3.1 MPa at the core inlet with a 1.4-MPa pressure drop through the core region. Finally, in order to make the resources available for experimentation, the fuel is designed to provide a 17-d fuel cycle with an additional 4 d planned in each cycle for the refueling process. This report examines the codes and models used to develop the thermal-hydraulic design for ANS, as well as the correlations and physical data; evaluates thermal-hydraulic uncertainties; reports on thermal-hydraulic design and safety analysis; describes experimentation in support of the ANS reactor design and safety analysis; and provides an overview of the experimental plan

  7. Conceptual design of a high-intensity positron source for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Hulett, L.D.; Eberle, C.C.

    1994-12-01

    The Advanced Neutron Source (ANS) is a planned new basic and applied research facility based on a powerful steady-state research reactor that provides neutrons for measurements and experiments in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The useful neutron flux will be at least five times more than is available in the world's best existing reactor facility. Construction of the ANS provides a unique opportunity to build a positron spectroscopy facility (PSF) with very-high-intensity beams based on the radioactive decay of a positron-generating isotope. The estimated maximum beam current is 1000 to 5000 times higher than that available at the world's best existing positron research facility. Such an improvement in beam capability, coupled with complementary detectors, will reduce experiment durations from months to less than one hour while simultaneously improving output resolution. This facility will remove the existing barriers to the routine use of positron-based analytical techniques and will be a giant step toward realization of the full potential of the application of positron spectroscopy to materials science. The ANS PSF is based on a batch cycle process using 64 Cu isotope as the positron emitter and represents the status of the design at the end of last year. Recent work not included in this report, has led to a proposal for placing the laboratory space for the positron experiments outside the ANS containment; however, the design of the positron source is not changed by that relocation. Hydraulic and pneumatic flight tubes transport the source material between the reactor and the positron source where the beam is generated and conditioned. The beam is then transported through a beam pipe to one of several available detectors. The design presented here includes all systems necessary to support the positron source, but the beam pipe and detectors have not been addressed yet

  8. Physical chemistry: an advanced treatise

    National Research Council Canada - National Science Library

    1967-01-01

    ... Reactions Physical Chemistry: An Advanced TreatisePHYSICAL An Advanced CHEMISTRY Treatise V O L U M E I / Thermodynamics Edited by W I L H E L M J O S T Institut fiir Chemie der Universitdt Gotting...

  9. Preliminary study of an intense neutron source

    International Nuclear Information System (INIS)

    Vetter, J.E.

    1977-12-01

    The first wall and the blanket of a fusion reactor are exposed to an intense high-energy neutron irradiation. The resulting damage effects are outside the domains where experience has been gathered with fission reactors. Neutron irradiation must be performed under largely practical conditions so that reliable data can be indicated which are useful for the design engineer. The intense neutron source described allows to generate in a volume sufficient for in-situ tests an irradiation environment in which the required fluxes of >= 10 14 cm -2 s -1 are attained with a fusion relevant spectrum. Due to its reliability and availability, the source is suited for long-term irradiations so that damage influencing the life time can be accumulated. A technical concept of such a source is presented. A linae accelerates >= 100 mA to 40 MeV and makes them impinge on one or several targets consisting of quickly moving liquid lithium. In this target neutrons are generated via a d-n-reaction, which subsequently penetrate into the irradiation spaces immediately behind the targets. The problems are indicated and cost and realization time are evaluated. (orig.) [de

  10. Advanced neutron diffraction techniques for strain measurements in polycrystalline materials

    OpenAIRE

    Mikula , P.; LukÁs , P.; VrÁna , M.; Klimanek , P.; Kschidock , T.; Macek , K.; Janovec , J.; Osborn , J.; Swallowe , G.

    1993-01-01

    Three unique high resolution experimental arrangements for nondestructive strain measurements which are based on neutron Bragg diffraction optics with cylindrically bent perfect crystals are reviewed. Using focusing in momentum and real space these techniques yield Δd/d (d-lattice spacing) resolution of 10-4 - 10-3 and considerably higher luminosity in comparison with the current dedicated instruments. They permit measurements not only macrostrain components resulting in angular shifts of dif...

  11. The SVM Method for Fissile Mass Estimation through Passive Neutron Interrogation: Advances and Developments

    International Nuclear Information System (INIS)

    Dubi, C.; Shvili, Israel I.

    2014-01-01

    Fissile mass estimation through passive neutron interrogation is now one of the main techniques for NDT of fissile mass estimation, due to the relative transparency of neutron radiation to structural materials- making it extremely effective in poorly characterized or dirty samples . Passive neutron interrogation relies on the fact that the number of neutrons emitted (per time unit) due to spontaneous fissions from the sample is proportional to the mass of the detected sample. However, since the measurement is effected by additional neutron sources- mainly (D±n) reactions and induced fission chain in the tested sample, a naive estimation, assuming a linear correspondence between the mass of the detected sample and the average number of detections, is bound to give an over estimation of the mass. Since most passive interrogation facilities are based on 3He detectors, the origin of the neutron cannot be determined by analyzing the energy spectrum (as all neutrons arrive at the detector in more or less the same energy), and a mathematical 'filter' is used to evaluate the noise to source ratio in the detection signal. The basic idea behind the mathematical filter is to utilize the fact that the different neutron sources have different statistical attributes- in particular, both the source event rate and the distribution of the number of neutrons released in each event differs between the different sources. There for, by studying the higher moments of the neutron population, new information about the source to noise ration may be obtained

  12. Modeling and analysis of hydrogen detonation events in the advanced neutron source reactor containment

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Kim, S.H.; Valenti, S.; Simpson, D.B.; Sawruk, W.

    1994-01-01

    This paper describes salient aspects of the modeling, analyses, and evaluations for hydrogen detonation in selected regions of the Advanced Neutron Source (ANS) containment during hypothetical severe accident conditions. Shock wave generation and transport modeling and analyses were conducted for two stratified configurations in the dome region of the high bay. Principal tools utilized for these purposes were the CTH and CET89 computer codes. Dynamic pressure loading functions were generated for key locations and used for evaluating structural response behavior for which a finite-element model was developed using the ANSYS code. For the range of conditions analyzed in the two critical dome regions, it was revealed that the ANS containment would be able to withstand detonation loads without failure. (author)

  13. Containment performance analyses for the Advanced Neutron Source Reactor at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kim, S.H.; Taleyarkhan, R.P.; Georgevich, V.

    1992-10-01

    This paper discusses salient aspects of methodology, assumptions, and modeling of various features related to estimation of source terms from two conservatively scoped severe accident scenarios in the Advanced Neutron Source (ANS) reactor at the Oak Ridge National Laboratory. Various containment configurations are considered for steaming-pool-type accidents and an accident involving molten core-concrete interaction. Several design features (such as rupture disks) are examined to study containment response during postulated severe accidents. Also, thermal-hydraulic response of the containment and radionuclide transport and retention in the containment are studied. The results are described as transient variations of source terms for each scenario, which are to be used for studying off-site radiological consequences and health effects for these postulated severe accidents. Also highlighted will be a comparison of source terms estimated by two different versions of the MELCOR code

  14. UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR-BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN

    NARCIS (Netherlands)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, E.; Ackley, K.; Adams, C.; Phythian-Adams, A.T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.T.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, R.D.; Barone, E.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, M.J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, A.L.S.; Bock, O.; Boer, M.; Bogaert, J.G.; Bogan, C.; Bohe, A.; Bond, T.C; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, A.D.; Brown, D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderon Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglia, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, D. S.; Chen, Y; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Qian; Chua, S. E.; Chung, E.S.; Ciani, G.; Clara, E.; Clark, J. A.; Cleva, E.; Coccia, E.; Cohadon, P. -E; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, A.C.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J. -P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, A.L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; De laurentis, M.; Deleglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.A.; Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Diaz, M. C.; Di Fiore, L.; Giovanni, M.G.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H. -B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, T. M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.M.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M; Fournier, J. -D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garunfi, E.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.P.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; Gonzalez, R.G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Lee-Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.M.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Buffoni-Hall, R.; Hall, E. D.; Hammond, G.L.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, P.J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C. -J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.A.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J. -M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, D.H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jimenez-Forteza, E.; Johnson, W.; Jones, I.D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.H.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kefelian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.E.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan., S.; Khan, Z.; Khazanov, E. A.; Kusunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, Namjun; Kim, W.; Kim, Y.M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Krolak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzar, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C.H.; Lee, K.H.; Lee, M.H.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Luck, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Zertuche, L. Magana; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, E.; Marion, F.; Marka, S.; Marka, Z.; Markosyan, A. S.; Maros, E.; Martelli, E.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A. L.; Miller, B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B.C.; Moore, J.C.; Moraru, D.; Gutierrez Moreno, M.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, S.D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P.G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Gutierrez-Neri, M.; Neunzert, A.; Newton-Howes, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Deill, J.; Oelker, E.; Ogin, G. H.; Oh, J.; Oh, S. H.; Ohme, F.; Oliver, M. B.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, E.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.S; Pascucci, D.; Pasqualetti, A.; Passahieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Proxhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Purrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, E. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, D.M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosinska, D.; Rowan, S.; Rudiger, A.; Ruggi, P.; Ryan, K.A.; Sachdev, P.S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J; Schmidt, P.; Schnabel, R.B.; Schofield, R. M. S.; Schonbecx, A.; Schreiber, K.E.C.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, M.S.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shaltevi, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, António Dias da; Singer, A; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, R. J. E.; Smith, N.D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, J.R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.D.; Talukder, D.; Tanner, D. B.; Tapai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, W.R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Toxmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Toyra, D.; Travasso, F.; Traylor, G.; Trifiro, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.G.; van den Brand, J. E. J.; Van Den Broeck, C.F.F.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heuningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasuth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P.J.; Venkateswara, K.; Verkindt, D.; Vetrano, E.; Vicere, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J. -Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, MT; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L. -W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.M.; Wessels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, D.R.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J.L.; Wu, D.S.; Wu, G.; Yablong, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrozny, A.; Zangrando, L.; Zanolin, M.; Zendri, J. -P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2016-01-01

    We report here the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave

  15. Advanced Neutron Source enrichment study. Volume 2: Appendices -- Final report, Revision 12/94

    International Nuclear Information System (INIS)

    Bari, R.A.; Ludewig, H.; Weeks, J.

    1994-01-01

    A study has been performed of the impact on performance of using low enriched uranium (20% 235 U) or medium enriched uranium (35% 235 U) as an alternative fuel for the Advanced Neutron Source, which is currently designed to use uranium enriched to 93% 235 U. Higher fuel densities and larger volume cores were evaluated at the lower enrichments in terms of impact on neutron flux, safety, safeguards, technical feasibility, and cost. The feasibility of fabricating uranium silicide fuel at increasing material density was specifically addressed by a panel of international experts on research reactor fuels. The most viable alternative designs for the reactor at lower enrichments were identified and discussed. Several sensitivity analyses were performed to gain an understanding of the performance of the reactor at parametric values of power, fuel density, core volume, and enrichment that were interpolations between the boundary values imposed on the study or extrapolations from known technology. Volume 2 of this report contains 26 appendices containing results, meeting minutes, and fuel panel presentations. There are 26 appendices in this volume

  16. Advanced neutron diffraction techniques for strain measurements in polycrystalline materials

    International Nuclear Information System (INIS)

    Mikula, P.; Lukas, P.; Vrana, M.; Klimanek, P.; Kschidock, T.; Macek, K.; Janovec, J.; Osborn, J.C.; Swallowe, G.M.

    1993-01-01

    Three unique high resolution experimental arrangements for nondestructive strain measurements which are based on neutron Bragg diffraction optics with cylindrically bent perfect crystals are reviewed. Using focusing in momentum and real space these techniques yield Δd/d (d-lattice spacing) resolution of 10 -4 - 10 -3 and considerably higher luminosity in comparison with the current dedicated instruments. They permit measurements not only macrostrain components resulting in angular shifts of diffraction peaks but also of microstrains by means of profile-broadening analysis. (orig.)

  17. In-Pile Experiment of a New Hafnium Aluminide Composite Material to Enable Fast Neutron Testing in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Douglas L. Porter; James R. Parry; Heng Ban

    2010-06-01

    A new hafnium aluminide composite material is being developed as a key component in a Boosted Fast Flux Loop (BFFL) system designed to provide fast neutron flux test capability in the Advanced Test Reactor. An absorber block comprised of hafnium aluminide (Al3Hf) particles (~23% by volume) dispersed in an aluminum matrix can absorb thermal neutrons and transfer heat from the experiment to pressurized water cooling channels. However, the thermophysical properties, such as thermal conductivity, of this material and the effect of irradiation are not known. This paper describes the design of an in-pile experiment to obtain such data to enable design and optimization of the BFFL neutron filter.

  18. Advanced Monte Carlo procedure for the IFMIF d-Li neutron source term based on evaluated cross section data

    International Nuclear Information System (INIS)

    Simakov, S.P.; Fischer, U.; Moellendorff, U. von; Schmuck, I.; Konobeev, A.Yu.; Korovin, Yu.A.; Pereslavtsev, P.

    2002-01-01

    A newly developed computational procedure is presented for the generation of d-Li source neutrons in Monte Carlo transport calculations based on the use of evaluated double-differential d+ 6,7 Li cross section data. A new code M c DeLicious was developed as an extension to MCNP4C to enable neutronics design calculations for the d-Li based IFMIF neutron source making use of the evaluated deuteron data files. The M c DeLicious code was checked against available experimental data and calculation results of M c DeLi and MCNPX, both of which use built-in analytical models for the Li(d, xn) reaction. It is shown that M c DeLicious along with newly evaluated d+ 6,7 Li data is superior in predicting the characteristics of the d-Li neutron source. As this approach makes use of tabulated Li(d, xn) cross sections, the accuracy of the IFMIF d-Li neutron source term can be steadily improved with more advanced and validated data

  19. Advanced Monte Carlo procedure for the IFMIF d-Li neutron source term based on evaluated cross section data

    CERN Document Server

    Simakov, S P; Moellendorff, U V; Schmuck, I; Konobeev, A Y; Korovin, Y A; Pereslavtsev, P

    2002-01-01

    A newly developed computational procedure is presented for the generation of d-Li source neutrons in Monte Carlo transport calculations based on the use of evaluated double-differential d+ sup 6 sup , sup 7 Li cross section data. A new code M sup c DeLicious was developed as an extension to MCNP4C to enable neutronics design calculations for the d-Li based IFMIF neutron source making use of the evaluated deuteron data files. The M sup c DeLicious code was checked against available experimental data and calculation results of M sup c DeLi and MCNPX, both of which use built-in analytical models for the Li(d, xn) reaction. It is shown that M sup c DeLicious along with newly evaluated d+ sup 6 sup , sup 7 Li data is superior in predicting the characteristics of the d-Li neutron source. As this approach makes use of tabulated Li(d, xn) cross sections, the accuracy of the IFMIF d-Li neutron source term can be steadily improved with more advanced and validated data.

  20. Advanced neutron source project information management. A model for the future

    International Nuclear Information System (INIS)

    King-Jones, K.; Cleaves, J.

    1995-01-01

    The Advanced Neutron Source (ANS) is a proposed new research facility that will provide steady-state beams of neutrons for experiments by more than 1000 researchers per year in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The facility will also include irradiation capabilities to produce radioisotopes for medical applications, research, industry, and materials testing. This paper discusses the architecture and data flow used by the project, some quantitative examinations of potential cost savings and return on investment and software applications used to generate and manage data across IBM-compatible personal computers, Macintosh, and Unix-based workstations. Personnel management aspects addressed include providing paper copy to users only when needed for adequate technical review, using graded approaches to providing support for numerous user-needed software applications, and implementing a phased approach to compliance with computer-aided acquisition and logistic support (CALS) standards that allows sufficient user flexibility for performing technical tasks while providing needed data sharing and integration

  1. Study on recriticality of fuel debris during hypothetical severe accidents in the Advanced Neutron Source reactor

    International Nuclear Information System (INIS)

    Kim, S.H.; Taleyarkhan, R.P.; Georgevich, V.; Navarro-Valenti, S.; Shin, S.T.

    1995-09-01

    A study has been performed to measure the potential of recriticality during hypothetical severe accident in Advanced Neutron Source (ANS). For the lumped debris configuration in the Reactor Coolant System (RCS), as found in the previous study, recriticality potential may be very low. However, if fuel debris is dispersed and mixed with heavy water in RCS, recriticality potential has been predicted to be substantial depending on thermal-hydraulic conditions surrounding fuel debris mixture. The recriticality potential in RCS is substantially reduced for the three element core design with 50% enrichment. Also, as observed in the previous study, strong dependencies of k eff on key thermal hydraulic parameters are shown. Light water contamination is shown to provide a positive reactivity, and void formation due to boiling of mixed water provides enough negative reactivity and to bring the system down to subcritical. For criticality potential in the subpile room, the lumped debris configuration does not pose a concern. Dispersed configuration in light water pool of the subpile room is also unlikely to result in criticality. However, if the debris is dispersed in the pool that is mixed with heavy water, the results indicate that a substantial potential exists for the debris to reach the criticality. However, if prompt recriticality disperses the debris completely in the subpile room pool, subsequent recriticality may be prevented since neutron leakage effects become large enough

  2. NATO Advanced Study Institute on Chemical Crystallography with Pulsed Neutrons and Synchrotron X-Rays

    CERN Document Server

    Jeffrey, George

    1988-01-01

    X-ray and neutron crystallography have played an increasingly impor­ tant role in the chemical and biochemical sciences over the past fifty years. The principal obstacles in this methodology, the phase problem and com­ puting, have been overcome. The former by the methods developed in the 1960's and just recognised by the 1985 Chemistry Nobel Prize award to Karle and Hauptman, the latter by the dramatic advances that have taken place in computer technology in the past twenty years. Within the last decade, two new radiation sources have been added to the crystallographer's tools. One is synchrotron X-rays and the other is spallation neutrons. Both have much more powerful fluxes than the pre­ vious sources and they are pulsed rather than continuos. New techniques are necessary to fully exploit the intense continuos radiation spectrum and its pulsed property. Both radiations are only available from particular National Laboratories on a guest-user basis for scientists outside these Na­ tional Laboratories. Hi...

  3. Advanced Neutron Source project information management: A model for the future

    International Nuclear Information System (INIS)

    King-Jones, K.; Cleaves, J.

    1995-01-01

    The Advanced Neutron Source (ANS) is a proposed new research facility that will provide steady-state beams of neutrons for experiments by more than 1,000 researchers per year in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The facility will also include irradiation capabilities to produce radioisotopes for medical applications, research, industry, and materials testing. This paper discusses the architecture and data flow used by the project, some quantitative examinations of potential cost savings and return on investment, and software applications used to generate and manage data across IBM-compatible personal computers, Macintosh, and Unix-based workstations. Personnel management aspects addressed include providing paper copy to users only when needed for adequate technical review, using graded approaches to providing support for numerous user-needed software applications, and implementing a phased approach to compliance with computer-aided acquisition and logistic support (CALS) standards that allows sufficient user flexibility for performing technical tasks while providing needed data sharing and integration

  4. Review and Assessment of Neutron Cross Section and Nubar Covariances for Advanced Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maslov,V.M.; Oblozinsky, P.; Herman, M.

    2008-12-01

    In January 2007, the National Nuclear Data Center (NNDC) produced a set of preliminary neutron covariance data for the international project 'Nuclear Data Needs for Advanced Reactor Systems'. The project was sponsored by the OECD Nuclear Energy Agency (NEA), Paris, under the Subgroup 26 of the International Working Party on Evaluation Cooperation (WPEC). These preliminary covariances are described in two recent BNL reports. The NNDC used a simplified version of the method developed by BNL and LANL that combines the recent Atlas of Neutron Resonances, the nuclear reaction model code EMPIRE and the Bayesian code KALMAN with the experimental data used as guidance. There are numerous issues involved in these estimates of covariances and it was decided to perform an independent review and assessment of these results so that better covariances can be produced for the revised version in future. Reviewed and assessed are uncertainties for fission, capture, elastic scattering, inelastic scattering and (n,2n) cross sections as well as prompt nubars for 15 minor actinides ({sup 233,234,236}U, {sup 237}Np, {sup 238,240,241,242}Pu, {sup 241,242m,243}Am and {sup 242,243,244,245}Cm) and 4 major actinides ({sup 232}Th, {sup 235,238}U and {sup 239}Pu). We examined available evaluations, performed comparison with experimental data, taken into account uncertainties in model parameterization and made use state-of-the-art nuclear reaction theory to produce the uncertainty assessment.

  5. IMPROVED COMPUTATIONAL NEUTRONICS METHODS AND VALIDATION PROTOCOLS FOR THE ADVANCED TEST REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg; Joseph W. Nielsen; Benjamin M. Chase; Ronnie K. Murray; Kevin A. Steuhm

    2012-04-01

    The Idaho National Laboratory (INL) is in the process of modernizing the various reactor physics modeling and simulation tools used to support operation and safety assurance of the Advanced Test Reactor (ATR). Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purpose. Of particular importance, a set of as-run core depletion HELIOS calculations for all ATR cycles since August 2009 was successfully completed during 2011. This demonstration supported a decision late in the year to proceed with the phased incorporation of the HELIOS methodology into the ATR fuel cycle management process beginning in 2012. On the experimental side of the project, new hardware was fabricated, measurement protocols were finalized, and the first four of six planned physics code validation experiments based on neutron activation spectrometry were conducted at the ATRC facility. Data analysis for the first three experiments, focused on characterization of the neutron spectrum in one of the ATR flux traps, has been completed. The six experiments will ultimately form the basis for a flexible, easily-repeatable ATR physics code validation protocol that is consistent with applicable ASTM standards.

  6. Advanced neutron source project information management. A model for the future

    Energy Technology Data Exchange (ETDEWEB)

    King-Jones, K.; Cleaves, J.

    1995-12-31

    The Advanced Neutron Source (ANS) is a proposed new research facility that will provide steady-state beams of neutrons for experiments by more than 1000 researchers per year in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The facility will also include irradiation capabilities to produce radioisotopes for medical applications, research, industry, and materials testing. This paper discusses the architecture and data flow used by the project, some quantitative examinations of potential cost savings and return on investment and software applications used to generate and manage data across IBM-compatible personal computers, Macintosh, and Unix-based workstations. Personnel management aspects addressed include providing paper copy to users only when needed for adequate technical review, using graded approaches to providing support for numerous user-needed software applications, and implementing a phased approach to compliance with computer-aided acquisition and logistic support (CALS) standards that allows sufficient user flexibility for performing technical tasks while providing needed data sharing and integration.

  7. Advanced Neutron Source project information management: A model for the future

    Energy Technology Data Exchange (ETDEWEB)

    King-Jones, K.; Cleaves, J.

    1995-12-31

    The Advanced Neutron Source (ANS) is a proposed new research facility that will provide steady-state beams of neutrons for experiments by more than 1,000 researchers per year in the fields of materials science and engineering, biology, chemistry, materials analysis, and nuclear science. The facility will also include irradiation capabilities to produce radioisotopes for medical applications, research, industry, and materials testing. This paper discusses the architecture and data flow used by the project, some quantitative examinations of potential cost savings and return on investment, and software applications used to generate and manage data across IBM-compatible personal computers, Macintosh, and Unix-based workstations. Personnel management aspects addressed include providing paper copy to users only when needed for adequate technical review, using graded approaches to providing support for numerous user-needed software applications, and implementing a phased approach to compliance with computer-aided acquisition and logistic support (CALS) standards that allows sufficient user flexibility for performing technical tasks while providing needed data sharing and integration.

  8. Updated pipe break analysis for Advanced Neutron Source Reactor conceptual design

    International Nuclear Information System (INIS)

    Wendel, M.W.; Chen, N.C.J.; Yoder, G.L.

    1994-01-01

    The Advanced Neutron Source Reactor (ANSR) is a research reactor to be built at the Oak Ridge National Laboratory that will supply the highest continuous neutron flux levels of any reactor in the world. It uses plate-type fuel with high-mass-flux and highly subcooled heavy water as the primary coolant. The Conceptual Safety Analysis for the ANSR was completed in June 1992. The thermal-hydraulic pipe-break safety analysis (performed with a specialized version of RELAP5/MOD3) focused primarily on double-ended guillotine breaks of the primary piping and some core-damage mitigation options for such an event. Smaller, instantaneous pipe breaks in the cold- and hot-leg piping were also analyzed to a limited extent. Since the initial analysis for the conceptual design was completed, several important changes to the RELAP5 input model have been made reflecting improvements in the fuel grading and changes in the elevation of the primary coolant pumps. Also, a new philosophy for pipe-break safety analysis (similar to that adopted for the New Production Reactor) accentuates instantaneous, limited flow area pipe-break accidents in addition to finite-opening-time, double-ended guillotine breaks of the major coolant piping. This paper discloses the results of the most recent instantaneous pipe-break calculations

  9. An extended range neutron rem counter

    International Nuclear Information System (INIS)

    Birattari, C.; Nuccetelli, C.; Pelliccioni, M.; Silari, M.

    1990-01-01

    Extensive Monte Carlo calculations have been carried out to assess the possibility of extending the sensitivity of a neutron rem counter of the Andersson-Braun type up to several hundred MeV. The validity of the model adopted has first been checked by comparing with experimental data the calculated response curve and the angular dependence of the sensitivity for a well known commercial rem counter. Next, a number of modifications to the configuration of the moderator-attenuator have been investigated. The response functions and angular distributions produced by two simple solutions yielding an instrument with a sensitivity extended up to 400 MeV are presented. The response of the original rem counter and of its two modified versions to nine test spectra has also been calculated. The resulting instrument is transportable rather than portable, but the availability of an extended range neutron survey meter would be of great advantage at medium and high energy particle accelerator facilities. (orig.)

  10. Advances in thermal hydraulic and neutronic simulation for reactor analysis and safety

    International Nuclear Information System (INIS)

    Tentner, A.M.; Blomquist, R.N.; Canfield, T.R.; Ewing, T.F.; Garner, P.L.; Gelbard, E.M.; Gross, K.C.; Minkoff, M.; Valentin, R.A.

    1993-01-01

    This paper describes several large-scale computational models developed at Argonne National Laboratory for the simulation and analysis of thermal-hydraulic and neutronic events in nuclear reactors and nuclear power plants. The impact of advanced parallel computing technologies on these computational models is emphasized

  11. Method for controlling an accelerator-type neutron source, and a pulsed neutron source

    International Nuclear Information System (INIS)

    Givens, W.W.

    1991-01-01

    The patent deals with an accelerator-type neutron source which employs a target, an ionization section and a replenisher for supplying accelerator gas. A positive voltage pulse is applied to the ionization section to produce a burst of neutrons. A negative voltage pulse is applied to the ionization section upon the termination of the positive voltage pulse to effect a sharp cut-off to the burst of neutrons. 4 figs

  12. An Evaluation of Grazing-Incidence Optics for Neutron Imaging

    Science.gov (United States)

    Gubarev, M. V.; Ramsey, B. D.; Engelhaupt, D. E.; Burgess, J.; Mildner, D. F. R.

    2007-01-01

    The focusing capabilities of neutron imaging optic based on the Wolter-1 geometry have been successfully demonstrated with a beam of long wavelength neutrons with low angular divergence.. A test mirror was fabricated using an electroformed nickel replication process at Marshall Space Flight Center. The neutron current density gain at the focal spot of the mirror is found to be at least 8 for neutron wavelengths in the range from 6 to 20 A. Possible applications of the optics are briefly discussed.

  13. Treatment of locally advanced adenoid cystic carcinoma of the head and neck with neutron radiotherapy

    International Nuclear Information System (INIS)

    Douglas, James G.; Laramore, George E.; Austin-Seymour, Mary; Koh Wuijin; Stelzer, Keith; Griffin, Thomas W.

    2000-01-01

    Purpose: To examine the efficacy of fast neutron radiotherapy for the treatment of locally advanced and/or recurrent adenoid cystic carcinoma of the head and neck and to identify prognostic variables associated with local-regional control and survival. Methods and Materials: One hundred fifty-nine patients with nonmetastatic, previously unirradiated, locally advanced, and/or recurrent adenoid cystic carcinoma (ACC) of the head and neck region were treated with fast neutron radiotherapy during the years 1985-1997. One hundred fifty-one patients had either unresectable disease, or gross residual disease (GRD) after an attempted surgical extirpation. Eight patients had microscopic residual disease and were analyzed separately. Sixty-two percent of patients had tumors arising in minor salivary glands, 29% in major salivary glands, and 9% in other sites such as the lacrimal glands, tracheal-bronchial tree, etc. Fifty-five percent of patients were treated for postsurgical recurrent disease and 13% of patients had lymph node involvement at the time of treatment. The median duration of follow-up was 32 months (range 3-142 months). Actuarial curves for survival, cause-specific survival, local-regional control, and the development of distant metastases are presented for times out to 11 years. Results: The 5-year actuarial local-regional tumor control rate for the 151 patients with GRD was 57%; the 5-year actuarial overall survival rate was 72%; and the 5-year actuarial cause-specific survival rate was 77%. Variables associated with decreased local-regional control in the patients with GRD as determined by multivariate analysis included base of skull involvement (p < 0.01) and biopsy only versus an attempted surgical resection prior to treatment (p = 0.03). Patients without these negative factors had an actuarial local-regional control rate of 80% at 5 years. Patients with microscopic residual disease (n = 8) had a 5-year actuarial local-regional control rate of 100%. Base of

  14. Sensitivity Analysis of Core Neutronic Parameters in Electron Accelerator-driven Subcritical Advanced Liquid Metal Reactor

    Directory of Open Access Journals (Sweden)

    Marziye Ebrahimkhani

    2016-02-01

    Full Text Available Calculation of the core neutronic parameters is one of the key components in all nuclear reactors. In this research, the energy spectrum and spatial distribution of the neutron flux in a uranium target have been calculated. In addition, sensitivity of the core neutronic parameters in accelerator-driven subcritical advanced liquid metal reactors, such as electron beam energy (Ee and source multiplication coefficient (ks, has been investigated. A Monte Carlo code (MCNPX_2.6 has been used to calculate neutronic parameters such as effective multiplication coefficient (keff, net neutron multiplication (M, neutron yield (Yn/e, energy constant gain (G0, energy gain (G, importance of neutron source (φ∗, axial and radial distributions of neutron flux, and power peaking factor (Pmax/Pave in two axial and radial directions of the reactor core for four fuel loading patterns. According to the results, safety margin and accelerator current (Ie have been decreased in the highest case of ks, but G and φ∗ have increased by 88.9% and 21.6%, respectively. In addition, for LP1 loading pattern, with increasing Ee from 100 MeV up to 1 GeV, Yn/e and G improved by 91.09% and 10.21%, and Ie and Pacc decreased by 91.05% and 10.57%, respectively. The results indicate that placement of the Np–Pu assemblies on the periphery allows for a consistent keff because the Np–Pu assemblies experience less burn-up.

  15. An empirical formula for scattered neutron components in fast neutron radiography

    International Nuclear Information System (INIS)

    Dou Haifeng; Tang Bin

    2011-01-01

    Scattering neutrons are one of the key factors that may affect the images of fast neutron radiography. In this paper, a mathematical model for scattered neutrons is developed on a cylinder sample, and an empirical formula for scattered neutrons is obtained. According to the results given by Monte Carlo methods, the parameters in the empirical formula are obtained with curve fitting, which confirms the logicality of the empirical formula. The curve-fitted parameters of common materials such as 6 LiD are given. (authors)

  16. Measurements of neutron cross sections for advanced nuclear energy systems at n_TOF (CERN

    Directory of Open Access Journals (Sweden)

    Barbagallo M.

    2014-03-01

    Full Text Available The n_TOF facility operates at CERN with the aim of addressing the request of high accuracy nuclear data for advanced nuclear energy systems as well as for nuclear astrophysics. Thanks to the features of the neutron beam, important results have been obtained on neutron induced fission and capture cross sections of U, Pu and minor actinides. Recently the construction of another beam line has started; the new line will be complementary to the first one, allowing to further extend the experimental program foreseen for next measurement campaigns.

  17. Advances in neutron capture therapy 2006. Proceedings of 12th international congress on neutron capture therapy

    International Nuclear Information System (INIS)

    Nakagawa, Yoshinobu; Kobayashi, Tooru; Fukuda, Hiroshi

    2006-01-01

    The Twelfth International Congress on Neutron Capture Therapy (ICNCT-12) is being held from October 9th to 13th, 2006 at the Kagawa International Congress Hall in Takamatsu, Kagawa, Japan. The main theme of the congress is From the past to the Future'. Five symposiums were organized to accommodate all the contributions from the international scientific committees of the International Society for Neutron Capture Therapy (ISNCT), and two symposiums were added to balance the number of fields of specialties. The seven symposiums for ICNCT-12 are as follows: 1) Clinical Results of BNCT for Brain Tumors, 2) Dosimetry, 3) Treatment Planning system, 4) Drug Delivery System, 5) Biomedical and General Matters, 6) BNCT Systems using Accelerators, 7) New Applications and Protocols for BNCT. There are a total of 195 presentations in this congress: 3 special lectures, 34 symposium presentations, 10 presentations in two special sessions from the recipients of the Ralph G. Fairchild Award, 70 presentations in the oral parallel sessions and 78 presentations in the poster sessions. A compilation of 169 papers are published in this proceedings. The 165 of the presented papers are indexed individually. (J.P.N.)

  18. Assessment of Laser-Driven Pulsed Neutron Sources for Poolside Neutron-based Advanced NDE – A Pathway to LANSCE-like Characterization at INL

    Energy Technology Data Exchange (ETDEWEB)

    Roth, Markus [Technische Univ. Darmstadt (Germany); Vogel, Sven C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bourke, Mark Andrew M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocko, Michael Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Glenzer, Siegfried [Stanford Univ., CA (United States); Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siders, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Haefner, Constantin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-04-19

    A variety of opportunities for characterization of fresh nuclear fuels using thermal (~25meV) and epithermal (~10eV) neutrons have been documented at Los Alamos National Laboratory. They include spatially resolved non-destructive characterization of features, isotopic enrichment, chemical heterogeneity and stoichiometry. The LANSCE spallation neutron source is well suited in neutron fluence and temporal characteristics for studies of fuels. However, recent advances in high power short pulse lasers suggest that compact neutron sources might, over the next decade, become viable at a price point that would permit their consideration for poolside characterization on site at irradiation facilities. In a laser-driven neutron source the laser is used to accelerate deuterium ions into a beryllium target where neutrons are produced. At this time, the technology is new and their total neutron production is approximately four orders of magnitude less than a facility like LANSCE. However, recent measurements on a sub-optimized system demonstrated >1010 neutrons in sub-nanosecond pulses in predominantly forward direction. The compactness of the target system compared to a spallation target may allow exchanging the target during a measurement to e.g. characterize a highly radioactive sample with thermal, epithermal, and fast neutrons as well as hard X-rays, thus avoiding sample handling. At this time several groups are working on laser-driven neutron production and are advancing concepts for lasers, laser targets, and optimized neutron target/moderator systems. Advances in performance sufficient to enable poolside fuels characterization with LANSCE-like fluence on sample within a decade may be possible. This report describes the underlying physics and state-of-the-art of the laser-driven neutron production process from the perspective of the DOE/NE mission. It also discusses the development and understanding that will be necessary to provide customized capability for

  19. design and Application of Neutron Residual Stress Diffractometer for China Advanced Research Reactor

    International Nuclear Information System (INIS)

    Li Junhong; Gao Jianbo; Li Jizhou; Han Songbai; Zu Yong; Liu Rongdeng; Liu Xiaolong; Liu Yuntao; Chen dongfeng

    2010-01-01

    The neutron residual stress diffractometer for China Advanced Research Reactor (CARR) is the first instrument in China for the residual stress measurement using neutron diffraction method. Its sample table and some affiliated equipment were relocated from Sweden. According to the situation of CARR, the conceptional and physical design and mechanism fabrication were finished. Now the whole instrument is going to be put in commissioning. The take-off angle of new monochromator's shielding could be continuously changeable from 41 degree to 109 degree. The position of monochromator could be adjusted conveniently and flexibly by a five axis table. The resolution of this diffractometer could reach 0.2% using the double focusing Si(311) monochromator. The technical specification of one dimension neutron position sensitive detector ORDELA 1128N is better than that of ORDELA 1150N used on REST. The various affiliated equipment of instrument enable the diffractometer to measure the texture and tensional experiment in situ. (authors)

  20. Thirty meters small angle neutron scattering instrument at China advanced research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongxia [State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Cheng, He, E-mail: hecheng@iccas.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Yuan, Guangcui [State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Han, Charles C., E-mail: c.c.han@iccas.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Li; Li, Tianfu; Wang, Hongli; Liu, Yun Tao; Chen, Dongfeng [China Institute of Atomic Energy, PO Box-275-30, Beijing 102413 (China)

    2014-01-21

    A high resolution 30 m small angle neutron scattering (SANS) instrument has been constructed by the Institute of Chemistry, Chinese Academy of Sciences (ICCAS), and installed at China Advanced Research Reactor (CARR). It is equipped with a mechanical velocity selector, pinhole (including multi-pinhole) collimation system, sample chamber, and high resolution two dimensional {sup 3}He position sensitive neutron detector. The flexible variations of incident neutron wavelength, source to sample distance, sample to detector distance and the presence of neutron focusing lenses enable a wide Q range from 0.001 Å{sup −1} to 0.5 Å{sup −1} in reciprocal space and to optimize the resolution required. The instrument is the first SANS instrument in China, and can be widely used for the structure characterization of various materials, as well as kinetic and dynamic observation during external stimulation. The design and characteristics of the instrument are presented in the manuscript. -- Highlights: • The first small angle neutron scattering instrument in China is developed. • It is equipped with a pinhole, multi-pinhole and focusing lenses. • It provides flexible variations of source-sample and sample-detector distances. • A wide Q ranges from 0.001 Å{sup −1} to 0.5 Å{sup −1} in reciprocal space.

  1. High Neutron Fluence Survivability Testing of Advanced Fiber Bragg Grating Sensors

    International Nuclear Information System (INIS)

    Fielder, Robert S.; Klemer, Daniel; Stinson-Bagby, Kelly L.

    2004-01-01

    The motivation for the reported research was to support NASA space nuclear power initiatives through the development of advanced fiber optic sensors for space-based nuclear power applications. The purpose of the high-neutron fluence testing was to demonstrate the survivability of fiber Bragg grating (FBG) sensors in a fission reactor environment. 520 FBGs were installed in the Ford reactor at the University of Michigan. The reactor was operated for 1012 effective full power hours resulting in a maximum neutron fluence of approximately 5x1019 n/cm2, and a maximum gamma dose of 2x103 MGy gamma. This work is significant in that, to the knowledge of the authors, the exposure levels obtained are approximately 1000 times higher than for any previously published experiment. Four different fiber compositions were evaluated. An 87% survival rate was observed for fiber Bragg gratings located at the fuel centerline. Optical Frequency Domain Reflectometry (OFDR), originally developed at the NASA Langley Research Center, can be used to interrogate several thousand low-reflectivity FBG strain and/or temperature sensors along a single optical fiber. A key advantage of the OFDR sensor technology for space nuclear power is the extremely low mass of the sensor, which consists of only a silica fiber 125μm in diameter. The sensors produced using this technology will fill applications in nuclear power for current reactor plants, emerging Generation-IV reactors, and for space nuclear power. The reported research was conducted by Luna Innovations and was funded through a Small Business Innovative Research (SBIR) contract with the NASA Glenn Research Center

  2. Development of An Epi-thermal Neutron Field for Fundamental Researches for BNCT with A DT Neutron Source

    Directory of Open Access Journals (Sweden)

    Osawa Yuta

    2017-01-01

    Full Text Available Boron Neutron Capture Therapy (BNCT is known to be a new promising cancer therapy suppressing influence against normal cells. In Japan, Accelerator Based Neutron Sources (ABNS are being developed for BNCT. For the spread of ABNS based BNCT, we should characterize the neutron field beforehand. For this purpose, we have been developing a low-energy neutron spectrometer based on 3He position sensitive proportional counter. In this study, a new intense epi-thermal neutron field was developed with a DT neutron source for verification of validity of the spectrometer. After the development, the neutron field characteristics were experimentally evaluated by using activation foils. As a result, we confirmed that an epi-thermal neutron field was successfully developed suppressing fast neutrons substantially. Thereafter, the neutron spectrometer was verified experimentally. In the verification, although a measured detection depth distribution agreed well with the calculated distribution by MCNP, the unfolded spectrum was significantly different from the calculated neutron spectrum due to contribution of the side neutron incidence. Therefore, we designed a new neutron collimator consisting of a polyethylene pre-collimator and boron carbide neutron absorber and confirmed numerically that it could suppress the side incident neutrons and shape the neutron flux to be like a pencil beam.

  3. Innovative and Advanced Coupled Neutron Transport and Thermal Hydraulic Method (Tool) for the Design, Analysis and Optimization of VHTR/NGNP Prismatic Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rahnema, Farzad; Garimeela, Srinivas; Ougouag, Abderrafi; Zhang, Dingkang

    2013-11-29

    This project will develop a 3D, advanced coarse mesh transport method (COMET-Hex) for steady- state and transient analyses in advanced very high-temperature reactors (VHTRs). The project will lead to a coupled neutronics and thermal hydraulic (T/H) core simulation tool with fuel depletion capability. The computational tool will be developed in hexagonal geometry, based solely on transport theory without (spatial) homogenization in complicated 3D geometries. In addition to the hexagonal geometry extension, collaborators will concurrently develop three additional capabilities to increase the code’s versatility as an advanced and robust core simulator for VHTRs. First, the project team will develop and implement a depletion method within the core simulator. Second, the team will develop an elementary (proof-of-concept) 1D time-dependent transport method for efficient transient analyses. The third capability will be a thermal hydraulic method coupled to the neutronics transport module for VHTRs. Current advancements in reactor core design are pushing VHTRs toward greater core and fuel heterogeneity to pursue higher burn-ups, efficiently transmute used fuel, maximize energy production, and improve plant economics and safety. As a result, an accurate and efficient neutron transport, with capabilities to treat heterogeneous burnable poison effects, is highly desirable for predicting VHTR neutronics performance. This research project’s primary objective is to advance the state of the art for reactor analysis.

  4. REAL STRUCTURE AND RESIDUAL STRESSES IN ADVANCED WELDS DETERMINED BY X-RAY AND NEUTRON DIFFRACTION

    Directory of Open Access Journals (Sweden)

    Karel Trojan

    2017-07-01

    Full Text Available The paper outlines the capability of X-ray diffraction (XRD for evaluation of real structure changes and residual stresses (RS on cross-section of advanced thick welds due to the welding of ferromagnetic plates. The results of neutron diffraction describe a three-dimensional state of RS and also verify previous assumptions of RS redistribution as a result of the surface preparation for determination 2D maps measured by XRD.

  5. PROCEEDINGS ON SYNCHROTRON RADIATION: China Spallation Neutron Source - an overview of application prospects

    Science.gov (United States)

    Wei, Jie; Fu, Shi-Nian; Tang, Jing-Yu; Tao, Ju-Zhou; Wang, Ding-Sheng; Wang, Fang-Wei; Wang, Sheng

    2009-11-01

    The China Spallation Neutron Source (CSNS) is an accelerator-based multidisciplinary user facility to be constructed in Dongguan, Guangdong, China. The CSNS complex consists of an H- linear accelerator, a rapid cycling synchrotron accelerating the beam to 1.6 GeV, a solid-tungsten target station, and instruments for spallation neutron applications. The facility operates at 25 Hz repetition rate with an initial design beam power of 120 kW and is upgradeable to 500 kW. Construction of the CSNS project will lay the foundation of a leading national research center based on advanced proton-accelerator technology, pulsed neutron-scattering technology, and related programs including muon, fast neutron, and proton applications as well as medical therapy and accelerator-driven subcritical reactor (ADS) applications to serve China's strategic needs in scientific research and technological innovation for the next 30 plus years.

  6. Upper Limits on the Rates of Binary Neutron Star and Neutron Star-Black Hole Mergers from Advanced LIGO’s First Observing Run

    Science.gov (United States)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio., M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-12-01

    We report here the non-detection of gravitational waves from the merger of binary-neutron star systems and neutron star-black hole systems during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). In particular, we searched for gravitational-wave signals from binary-neutron star systems with component masses \\in [1,3] {M}⊙ and component dimensionless spins <0.05. We also searched for neutron star-black hole systems with the same neutron star parameters, black hole mass \\in [2,99] {M}⊙ , and no restriction on the black hole spin magnitude. We assess the sensitivity of the two LIGO detectors to these systems and find that they could have detected the merger of binary-neutron star systems with component mass distributions of 1.35 ± 0.13 M ⊙ at a volume-weighted average distance of ˜70 Mpc, and for neutron star-black hole systems with neutron star masses of 1.4 M ⊙ and black hole masses of at least 5 M ⊙, a volume-weighted average distance of at least ˜110 Mpc. From this we constrain with 90% confidence the merger rate to be less than 12,600 Gpc-3 yr-1 for binary-neutron star systems and less than 3600 Gpc-3 yr-1 for neutron star-black hole systems. We discuss the astrophysical implications of these results, which we find to be in conflict with only the most optimistic predictions. However, we find that if no detection of neutron star-binary mergers is made in the next two Advanced LIGO and Advanced Virgo observing runs we would place significant constraints on the merger rates. Finally, assuming a rate of {10}-7+20 Gpc-3 yr-1, short gamma-ray bursts beamed toward the Earth, and assuming that all short gamma-ray bursts have binary-neutron star (neutron star-black hole) progenitors, we can use our 90% confidence rate upper limits to constrain the beaming angle of the gamma-ray burst to be greater than 2\\buildrel{\\circ}\\over{.} {3}-1.1+1.7 (4\\buildrel{\\circ}\\over{.} {3}-1.9+3.1).

  7. A shielding design for an accelerator-based neutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, A.E.; Blue, T.E. E-mail: blue.1@osu.edu; Woollard, J.E

    2004-11-01

    Research in boron neutron capture therapy (BNCT) at The Ohio State University Nuclear Engineering Department has been primarily focused on delivering a high quality neutron field for use in BNCT using an accelerator-based neutron source (ABNS). An ABNS for BNCT is composed of a proton accelerator, a high-energy beam transport system, a {sup 7}Li target, a target heat removal system (HRS), a moderator assembly, and a treatment room. The intent of this paper is to demonstrate the advantages of a shielded moderator assembly design, in terms of material requirements necessary to adequately protect radiation personnel located outside a treatment room for BNCT, over an unshielded moderator assembly design.

  8. Deformation Behavior of An Austenitic Steel by Neutron Diffraction

    Science.gov (United States)

    Harjo, Stefanus; Abe, Jun; Aizawa, Kazuya; Gong, Wu; Iwahashi, Takaaki

    An austenitic stainless steel type 304, which is one of the most popular materials in use, was tensile deformed and in situ neutron diffraction measurement was performed. The neutron diffraction measurement was conducted using an engineering materials diffractometer installed at MLF/J-PARC. Because of the combination of the high neutron intensity, the high counting rate and an event data recording method, in situ neutron diffraction during tensile loading at plastic deformation could be performed without any interruption for load or displacement. Intergranular strains and bulky stress observed during deformation were discussed on the crystal orientation dependence.

  9. Preliminary fracture analysis of the core pressure boundary tube for the Advanced Neutron Source Research Reactor

    International Nuclear Information System (INIS)

    Schulz, K.C.

    1995-08-01

    The outer core pressure boundary tube (CPBT) of the Advanced neutron Source (ANS) reactor being designed at Oak Ridge National Laboratory is currently specified as being composed of 6061-T6 aluminum. ASME Boiler and Pressure Vessel Code fracture analysis rules for nuclear components are based on the use of ferritic steels; the expressions, tables, charts and equations were all developed from tests and analyses conducted for ferritic steels. Because of the nature of the Code, design with thin aluminum requires analytical approaches that do not directly follow the Code. The intent of this report is to present a methodology comparable to the ASME Code for ensuring the prevention of nonductile fracture of the CPBT in the ANS reactor. 6061-T6 aluminum is known to be a relatively brittle material; the linear elastic fracture mechanics (LEFM) approach is utilized to determine allowable flaw sizes for the CPBT. A J-analysis following the procedure developed by the Electric Power Research Institute was conducted as a check; the results matched those for the LEFM analysis for the cases analyzed. Since 6061-T6 is known to embrittle when irradiated, the reduction in K Q due to irradiation is considered in the analysis. In anticipation of probable requirements regarding maximum allowable flaw size, a survey of nondestructive inspection capabilities is also presented. A discussion of probabilistic fracture mechanics approaches, principally Monte Carlo techniques, is included in this report as an introduction to what quantifying the probability of nonductile failure of the CPBT may entail

  10. UCN Source at an External Beam of Thermal Neutrons

    Directory of Open Access Journals (Sweden)

    E. V. Lychagin

    2015-01-01

    Full Text Available We propose a new method for production of ultracold neutrons (UCNs in superfluid helium. The principal idea consists in installing a helium UCN source into an external beam of thermal or cold neutrons and in surrounding this source with a solid methane moderator/reflector cooled down to ~4 K. The moderator plays the role of an external source of cold neutrons needed to produce UCNs. The flux of accumulated neutrons could exceed the flux of incident neutrons due to their numerous reflections from methane; also the source size could be significantly larger than the incident beam diameter. We provide preliminary calculations of cooling of neutrons. These calculations show that such a source being installed at an intense source of thermal or cold neutrons like the ILL or PIK reactor or the ESS spallation source could provide the UCN density 105 cm−3, the production rate 107 UCN/s−1. Main advantages of such an UCN source include its low radiative and thermal load, relatively low cost, and convenient accessibility for any maintenance. We have carried out an experiment on cooling of thermal neutrons in a methane cavity. The data confirm the results of our calculations of the spectrum and flux of neutrons in the methane cavity.

  11. Neutron matter, symmetry energy and neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Stefano, Gandolfi [Los Alamos National Laboratory (LANL); Steiner, Andrew W [ORNL

    2016-01-01

    Recent progress in quantum Monte Carlo with modern nucleon-nucleon interactions have enabled the successful description of properties of light nuclei and neutron-rich matter. Of particular interest is the nuclear symmetry energy, the energy cost of creating an isospin asymmetry, and its connection to the structure of neutron stars. Combining these advances with recent observations of neutron star masses and radii gives insight into the equation of state of neutron-rich matter near and above the saturation density. In particular, neutron star radius measurements constrain the derivative of the symmetry energy.

  12. An Exploration of Neutron Detection in Semiconducting Boron Carbide

    Science.gov (United States)

    Hong, Nina

    The 3He supply problem in the U.S. has necessitated the search for alternatives for neutron detection. The neutron detection efficiency is a function of density, atomic composition, neutron absorption cross section, and thickness of the neutron capture material. The isotope 10B is one of only a handful of isotopes with a high neutron absorption cross section---3840 barns for thermal neutrons. So a boron carbide semiconductor represents a viable alternative to 3He. This dissertation provides an evaluation of the performance of semiconducting boron carbide neutron detectors grown by plasma enhance chemical vapor deposition (PECVD) in order to determine the advantages and drawbacks of these devices for neutron detection. Improved handling of the PECVD system has resulted in an extremely stable plasma, enabling deposition of thick films of semiconducting boron carbide. A variety of material and semiconducting characterization tools have been used to investigate the structure and electronic properties of boron carbide thin films, including X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, infrared/Raman spectroscopy, current-voltage measurements and capacitance-voltage measurements. Elemental concentrations in the boron carbide films have been obtained from Rutherford backscattering and elastic recoil detection analysis. Solid state neutron detection devices have been fabricated in the form of heterostructured p-n diodes, p-type boron carbide/n-type Si. Operating conditions, including applied bias voltage, and time constants, have been optimized for maximum detection efficiency and correlated to the semiconducting properties investigated in separate electronic measurements. Accurate measurements of the neutron detection efficiency and the response of the detector to a wide range of neutron wavelengths have been performed at a well calibrated, tightly collimated, "white" cold neutron beam source using time-of-flight neutron detection technique

  13. Design of an improved neutron dose equivalent dosimeter

    CERN Document Server

    Brushwood, J M; Spyrou, N M

    2002-01-01

    This paper describes the design and development of a new active area neutron dosimeter. The design incorporates a traditional central detector with a moderator/filter arrangement and a number of outer PIN type photodiodes sensitised to thermal neutrons by the application of a lithium fluoride converter. The outer thermal detectors allow the determination of the neutron radiation field characteristics. The experimental programme has demonstrated that such an arrangement is capable of discriminating between various neutron fields and the usefulness of MCNP4b as a design tool.

  14. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    International Nuclear Information System (INIS)

    Rich, D.R.; Bowman, J.D.; Crawford, B.E.; Delheij, P.P.J.; Espy, M.A.; Haseyama, T.; Jones, G.; Keith, C.D.; Knudson, J.; Leuschner, M.B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilae, S.I.; Pomeroy, V.R.; Smith, D.A.; Snow, W.M.; Szymanski, J.J.; Stephenson, S.L.; Thompson, A.K.; Yuan, V.

    2002-01-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3 He spin filter and a relative transmission measurement technique. 3 He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method

  15. Advanced Multilayer Composite Heavy-Oxide Scintillator Detectors for High Efficiency Fast Neutron Detection

    Science.gov (United States)

    Ryzhikov, Vladimir D.; Naydenov, Sergei V.; Pochet, Thierry; Onyshchenko, Gennadiy M.; Piven, Leonid A.; Smith, Craig F.

    2018-01-01

    We have developed and evaluated a new approach to fast neutron and neutron-gamma detection based on large-area multilayer composite heterogeneous detection media consisting of dispersed granules of small-crystalline scintillators contained in a transparent organic (plastic) matrix. Layers of the composite material are alternated with layers of transparent plastic scintillator material serving as light guides. The resulting detection medium - designated as ZEBRA - serves as both an active neutron converter and a detection scintillator which is designed to detect both neutrons and gamma-quanta. The composite layers of the ZEBRA detector consist of small heavy-oxide scintillators in the form of granules of crystalline BGO, GSO, ZWO, PWO and other materials. We have produced and tested the ZEBRA detector of sizes 100x100x41 mm and greater, and determined that they have very high efficiency of fast neutron detection (up to 49% or greater), comparable to that which can be achieved by large sized heavy-oxide single crystals of about Ø40x80 cm3 volume. We have also studied the sensitivity variation to fast neutron detection by using different types of multilayer ZEBRA detectors of 100 cm2 surface area and 41 mm thickness (with a detector weight of about 1 kg) and found it to be comparable to the sensitivity of a 3He-detector representing a total cross-section of about 2000 cm2 (with a weight of detector, including its plastic moderator, of about 120 kg). The measured count rate in response to a fast neutron source of 252Cf at 2 m for the ZEBRA-GSO detector of size 100x100x41 mm3 was 2.84 cps/ng, and this count rate can be doubled by increasing the detector height (and area) up to 200x100 mm2. In summary, the ZEBRA detectors represent a new type of high efficiency and low cost solid-state neutron detector that can be used for stationary neutron/gamma portals. They may represent an interesting alternative to expensive, bulky gas counters based on 3He or 10B neutron

  16. Man/machine interface algorithm for advanced delayed-neutron signal characterization system

    International Nuclear Information System (INIS)

    Gross, K.C.

    1985-01-01

    The present failed-element rupture detector (FERD) at Experimental Breeder Reactor II (EBR-II) consists of a single bank of delayed-neutron (DN) detectors at a fixed transit time from the core. Plans are currently under way to upgrade the FERD in 1986 and provide advanced DN signal characterization capability that is embodied in an equivalent-recoil-area (ERA) meter. The new configuration will make available to the operator a wealth of quantitative diagnostic information related to the condition and dynamic evolution of a fuel breach. The diagnostic parameters will include a continuous reading of the ERA value for the breach; the transit time, T/sub tr/, for DN emitters traveling from the core to the FERD; and the isotopic holdup time, T/sub h/, for the source. To enhance the processing, interpretation, and display of these parameters to the reactor operator, a man/machine interface (MMI) algorithm has been developed to run in the background on EBR-II's data acquisition system (DAS). The purpose of this paper is to describe the features and implementation of this newly developed MMI algorithm

  17. Advanced computational methodology for full-core neutronics calculations

    Science.gov (United States)

    Hiruta, Hikaru

    The modern computational methodology for reactor physics calculations is based on single-assembly transport calculations with reflective boundary conditions that generate homogenized few-group data, and core-level coarse-mesh diffusion calculations that evaluate a large-scale behavior of the scalar flux. Recently, an alternative approach has been developed. It is based on the low-order equations of the quasidiffusion method in order to account accurately for complicated transport effects in full-core calculations. The low-order quasidiffusion (LOAD) equations can capture transport effects to an arbitrary degree of accuracy. This approach is combined with single-assembly transport calculations that use special albedo boundary conditions which enable one to simulate efficiently effects of an unlike neighboring assembly on assembly's group data. In this dissertation, we develop homogenization methodology based on the LOAD equations and spatially consistent coarse-mesh finite element discretization methods for the 2D low-order quasidiffusion equations for the full-core calculations. The coarse-mesh solution generated by this method preserves a number of spatial polynomial moments of the fine-mesh transport solution over coarse cells. The proposed method reproduces accurately the complicated large-scale behavior of the transport solution within assemblies. To demonstrate accuracy of the developed method, we present numerical results of calculations of test problems that simulate interaction of MOX and uranium assemblies. We also develop a splitting method that can efficiently solve the coarse-mesh discretized LOQD equations. The presented method splits the LOAD problem into two parts: (i) the D-problem that captures a significant part of transport solution in the central parts of assemblies and can be reduced to a diffusion-type equation, and (ii) the Q-problem that accounts for the complicated behavior of the transport solution near assembly boundaries. Independent

  18. Integral neutron transport theory, slowing-down theory for absorber lump in an isotropic neutron bath

    International Nuclear Information System (INIS)

    Tai, D.; Underhill, G.K.

    1975-01-01

    The Boltzmann integrodifferential neutron transport equation has been converted to an integral equation which incorporates the isotropic neutron bath boundary condition. The resulting integral equation is solved using the discrete ordinates method, resulting in solutions for the spatially-dependent and -independent fluxes in terms of transport probabilities and the neutron emission density. The transport probabilities and the lethargy-dependence solution are evaluated using a normalization condition and a neutron conservation equation, respectively, to correct for inherent error propagation. The formalism is applied to the calculation of uranium resonance integrals for a spherical, two-region lump consisting of a spherical absorber surrounded by a spherical cadmium cover. Calculated and experimental results for uranium-235 fission and uranium-238 capture resonance integrals compare favorably. 11 references. (U.S.)

  19. Secondary Neutron Production from Space Radiation Interactions: Advances in Model and Experimental Data Base Development

    Science.gov (United States)

    Heilbronn, Lawrence H.; Townsend, Lawrence W.; Braley, G. Scott; Iwata, Yoshiyuki; Iwase, Hiroshi; Nakamura, Takashi; Ronningen, Reginald M.; Cucinotta, Francis A.

    2003-01-01

    For humans engaged in long-duration missions in deep space or near-Earth orbit, the risk from exposure to galactic and solar cosmic rays is an important factor in the design of spacecraft, spacesuits, and planetary bases. As cosmic rays are transported through shielding materials and human tissue components, a secondary radiation field is produced. Neutrons are an important component of that secondary field, especially in thickly-shielded environments. Calculations predict that 50% of the dose-equivalent in a lunar or Martian base comes from neutrons, and a recent workshop held at the Johnson Space Center concluded that as much as 30% of the dose in the International Space Station may come from secondary neutrons. Accelerator facilities provide a means for measuring the effectiveness of various materials in their ability to limit neutron production, using beams and energies that are present in cosmic radiation. The nearly limitless range of beams, energies, and target materials that are present in space, however, means that accelerator-based experiments will not provide a complete database of cross sections and thick-target yields that are necessary to plan and design long-duration missions. As such, accurate nuclear models of neutron production are needed, as well as data sets that can be used to compare with, and verify, the predictions from such models. Improvements in a model of secondary neutron production from heavy-ion interactions are presented here, along with the results from recent accelerator-based measurements of neutron-production cross sections. An analytical knockout-ablation model capable of predicting neutron production from high-energy hadron-hadron interactions (both nucleon-nucleus and nucleus-nucleus collisions) has been previously developed. In the knockout stage, the collision between two nuclei result in the emission of one or more nucleons from the projectile and/or target. The resulting projectile and target remnants, referred to as

  20. An empirical fit to estimated neutron emission cross sections from ...

    Indian Academy of Sciences (India)

    Neutron emission cross section for various elements from 9Be to 209Bi have been calculated using the hybrid model code ALICE-91 for proton induced reactions in the energy range 25 MeV to 105 MeV. An empirical expression relating neutron emission cross section to target mass number and incident proton energy has ...

  1. Research possibilities with an intense neutron generator

    International Nuclear Information System (INIS)

    Bartholomew, G.A.

    1966-01-01

    As the title suggests this paper will depart somewhat from the general topic of this session and will be concerned more with applications of accelerators than with accelerators them elves. The particular application of interest at our laboratory concerns the use of a high current intermediate energy proton accelerator as the basis for a versatile intense neutron source. Chalk River's entry into the intermediate energy accelerator field with neutron production as the primary motivation is somewhat unusual. Although neutron production is also being explored by other laboratories interested in intermediate energy accelerators, e.g., Oak Ridge National Laboratory and Los Alamos Scientific Laboratory, it has not been the major motivation. Our initial motivation was in fact the production of thermal neutrons and this interest has remained foremost in our ING program. We are currently writing a proposal for this project. Our target is to have a proton beam in 1973. (author)

  2. An introduction to the neutron transport phenomena

    International Nuclear Information System (INIS)

    Kulikowska, T.

    2001-01-01

    The main goal of the present lecture is to is to give a short description of neutron transport phenomena limited to those definitions that are necessary to understand the approach to practical solution of the problem given in the second lecture on reactor lattice transport calculations. The discussion of the neutron cross sections has been skipped as other lecturers have treated this subject in detail. (author)

  3. Preliminary probabilistic design accident evaluation of the cold source facilities of the advanced neutron source

    International Nuclear Information System (INIS)

    Harrington, R.M.; Ramsey, C.T.

    1995-08-01

    Consistent with established Advanced Neutron Source (ANS) project policy for the use of probabilistic risk assessment (PRA) in design, a task has been established to use PRA techniques to help guide the design and safety analysis of the ANS cold sources. The work discussed in this report is the first formal output of the cold source PRA task. The major output at this stage is a list of design basis accidents, categorized into approximate frequency categories. This output is expected to focus attention on continued design work to define and optimize the design such that design basis accidents are better defined and have acceptable outcomes. Categorizing the design basis events (DBEs) into frequency categories should prove helpful because it will allow appropriate acceptance criteria to be applied. Because the design of the cold source is still proceeding, it is beyond the scope of this task to produce detailed event probability calculations or even, in some cases, detailed event sequence definitions. That work would take place as a logically planned follow-on task, to be completed as the design matures. Figure 1.1 illustrates the steps that would typically be followed in selecting design basis accidents with the help of PRA. Only those steps located above the dashed line on Fig. 1.1 are included in the scope of the present task. (Only an informal top-level failure modes and effects analysis was done.) With ANS project closeout expected in the near future, the scope of this task has been abbreviated somewhat beyond the state of available design information on the ANS cold sources, or what could be achieved in a reasonable time. This change was necessary to ensure completion before the closeout and because the in-depth analytical support necessary to define fully some of the accidents has already been curtailed

  4. Circular arc fuel plate stability experiments and analyses for the advanced neutron source

    International Nuclear Information System (INIS)

    Swinson, W.F.; Battiste, R.L.; Yahr, G.T.

    1995-08-01

    The thin fuel plates planned for the Advanced Neutron Source are to be cooled by forcing heavy water at high velocity, 25 m/s, through thin cooling channels on each side of each plate. Because the potential for structural failure of the plates is a design concern, considerable effort has been expended in assessing this potential. As part of this effort, experimental flow tests and analyses to evaluate the structural response of circular arc plates have been conducted, and the results are given in this report

  5. Solution of neutronic and thermal-hydraulic problems on an engineering work station

    International Nuclear Information System (INIS)

    Zee, S.K.; Sills, E.D.; Turinsky, P.J.; Doster, J.M.

    1986-01-01

    Interest is in developing neutronic and thermal-hydraulic computer programs that execute efficiently on advanced engineering work stations. Engineering work stations are characterized by a 32-bit arithmetic processor, graphics capabilities, and networking capabilities. These attributes allow an engineer to solve substantive problems in a graphical interactive environment with shared resources available via networking. An advanced engineering work station is further characterized as having computational capability comparable to a mainframe, achieved via a parallel computer architecture obtained by both multi-central processing units (CPUs) and vector pipelines. In this paper, the authors present timing studies completed on an engineering work station, and then extrapolate performance on an advanced engineering work station using results from a supercomputer with parallel architecture. In this paper, the authors report on two codes, a neutronic code and a LWR system's thermal-hydraulic code. The neutronic code solves the two-group, two-dimensional (x-y) neutron diffusion equations using the finite difference method. The system's thermal-hydraulic codes solves the mixture drift-flux representation of the tube-stream form of the Navier-Stokes equations (four-equation model)

  6. Advances in explosives analysis--part II: photon and neutron methods.

    Science.gov (United States)

    Brown, Kathryn E; Greenfield, Margo T; McGrane, Shawn D; Moore, David S

    2016-01-01

    The number and capability of explosives detection and analysis methods have increased dramatically since publication of the Analytical and Bioanalytical Chemistry special issue devoted to Explosives Analysis [Moore DS, Goodpaster JV, Anal Bioanal Chem 395:245-246, 2009]. Here we review and critically evaluate the latest (the past five years) important advances in explosives detection, with details of the improvements over previous methods, and suggest possible avenues towards further advances in, e.g., stand-off distance, detection limit, selectivity, and penetration through camouflage or packaging. The review consists of two parts. Part I discussed methods based on animals, chemicals (including colorimetry, molecularly imprinted polymers, electrochemistry, and immunochemistry), ions (both ion-mobility spectrometry and mass spectrometry), and mechanical devices. This part, Part II, will review methods based on photons, from very energetic photons including X-rays and gamma rays down to the terahertz range, and neutrons.

  7. RELAP5 analyses of two hypothetical flow reversal events for the advanced neutron source reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, N.C.J.; Wendel, M.W.; Yoder, G.L. Jr. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    This paper presents RELAP5 results of two hypothetical, low flow transients analyzed as part of the Advanced Neutron Source Reactor safety program. The reactor design features four independent coolant loops (three active and one in standby), each containing a main curculation pump (with battery powered pony motor), heat exchanger, an accumulator, and a check valve. The first transient assumes one of these pumps fails, and additionally, that the check valve in that loop remains stuck in the open position. This accident is considered extremely unlikely. Flow reverses in this loop, reducing the core flow because much of the coolant is diverted from the intact loops back through the failed loop. The second transient examines a 102-mm-diam instantaneous pipe break near the core inlet (the worst break location). A break is assumed to occur 90 s after a total loss-of-offsite power. Core flow reversal occurs because accumulator injection overpowers the diminishing pump flow. Safety margins are evaluated against four thermal limits: T{sub wall}=T{sub sat}, incipient boiling, onset of significant void, and critical heat flux. For the first transient, the results show that these limits are not exceeded (at a 95% non-exceedance probability level) if the pony motor battery lasts 30 minutes (the present design value). For the second transient, the results show that the closest approach of the fuel surface temperature to the local saturation temperature during core flow reversal is about 39{degrees}C. Therefore the fuel remains cool during this transient. Although this work is done specifically for the ANSR geometry and operating conditions, the general conclusions may be applicable to other highly subcooled reactor systems.

  8. Development of an Improved Direct Neutron Sensor

    National Research Council Canada - National Science Library

    LeVert, Francis

    1997-01-01

    ... of 2.5 MeV and a 14 MeV neutron generator. The conductive polymer film was inserted between two structural elements consisting of quartz plates of polyethylene prisms with electrode structures formed with conductive paints or other conductive...

  9. Moire effects in neutron interferometry and their use in the experimental search for an electric charge of the neutron

    International Nuclear Information System (INIS)

    Ioffe, A.I.

    1984-01-01

    The operation of neutron interferometers is analyzed with particular emphasis on the Moire effects present. The high sensitivity of neutron interferometers to deflection of the incident and propagating beams is shown to make these instruments a promising tool in the experimental search for an electric charge on the neutron. The corresponding estimates for interferometers of different types are given. It is shown that by using diffraction grating interferometers for very cold neutrons, the present-day upper limit for the neutron charge can be lowered by several orders of magnitude. (orig.)

  10. An automatic evaluation system for NTA film neutron dosimeters

    CERN Document Server

    Müller, R

    1999-01-01

    At CERN, neutron personal monitoring for over 4000 collaborators is performed with Kodak NTA films, which have been shown to be the most suitable neutron dosimeter in the radiation environment around high-energy accelerators. To overcome the lengthy and strenuous manual scanning process with an optical microscope, an automatic analysis system has been developed. We report on the successful automatic scanning of NTA films irradiated with sup 2 sup 3 sup 8 Pu-Be source neutrons, which results in densely ionised recoil tracks, as well as on the extension of the method to higher energy neutrons causing sparse and fragmentary tracks. The application of the method in routine personal monitoring is discussed. $9 overcome the lengthy and strenuous manual scanning process with an optical microscope, an automatic analysis system has been developed. We report on the successful automatic scanning of NTA films irradiated with /sup 238/Pu-Be source $9 discussed. (10 refs).

  11. PREFACE: Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques

    Science.gov (United States)

    Sakurai, Kenji

    2010-12-01

    updates on recent progress and global trends in the field. We planned to cover quite a wide area of surface and buried interface science with x-rays and neutrons. Following a great deal of discussion during the editing process, we have decided to change direction. As we intend to publish similar special issues on a frequent basis, we will not insist on editing this issue as systematic and complete collections of research. Many authors decided to write an ordinary research paper rather than an article including systematic accounts. Due to this change in policy, some authors declined to contribute, and the number of papers is now just 12. However, readers will find that the special issue gives an interesting collection of new original research in surface and buried interface studies with x-rays and neutrons. The 12 papers cover the following research topics: (1) polymer analysis by diffuse scattering; (2) discussion of the electrochemical solid--liquid interface by synchrotron x-ray diffraction; (3) analysis of capped nanodots by grazing incidence small-angle x-ray scattering (GISAXS); (4) discussion of the strain distribution in silicon by high-resolution x-ray diffraction; (5) study of mesoporous structures by a combination of x-ray reflectivity and GISAXS; (6) discussion of energy-dispersive x-ray reflectometry and its applications; (7) neutron reflectivity studies on hydrogen terminated silicon interface; (8) the fabrication and performance of a special mirror for water windows; (9) depth selective analysis by total-reflection x-ray diffraction; (10) nanoparticle thin films prepared by a gas deposition technique; (11) discussion of crystal truncation rod (CTR) scattering of semiconductor nanostructures; (12) magnetic structure analysis of thin films by polarized neutron reflectivity. While not discussed in the present special issue, x-ray and neutron techniques have made great progress. The most important steps forward have been in 2D/3D real-space imaging, and realtime

  12. ICANS-XIV. The fourteenth meeting of the international collaboration on advanced neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J. M.; Tobin, C. A.

    1999-01-01

    The meeting began with a reception on Sunday evening. Monday's plenary sessions included status reports on the four operating spallation neutron sources, IPNS, ISIS, KENS, and the Lujan Center; on the INR source under construction at Troitsk; on the IBR-2 pulsed reactor at Dubna; and on proposals for five new installations. We also heard reports on spin-off activities: the ASTE tests (liquid mercury target tests at the AGS accelerator at Brookhaven), the ACoM activities (developments aimed to provide cold moderators suitable for high-power pulsed sources), and the International Workshop on Cold Moderators for Pulsed Neutron Sources, held in September 1997 at Argonne. Jose Alonso and Bob Macek delivered enlightening invited talks overviewing linear accelerators and rings for spallation neutron sources. The rest of the meeting was devoted to targets and moderators and to instrumentation in a normal rotation of ICANS topics. There were altogether 84 oral reports and 23 poster presentations. On Tuesday and on Wednesday morning, we divided into separate series of sessions on Instrumentation and on Targets and Moderators. In the first, we had reports and discussions on instrumentation and techniques, on computer software, on instrument suites, and on new instruments and equipment. In the second series were sessions on liquid target systems, on solid target systems, on neutron production and target physics, on moderator physics and performance, and on target and moderator neutronics. The Tuesday evening meetings went on until 10:00, making for a 14-hour working day. That everyone willingly endured the long hours is a credit to the dedication of the attendees. On Wednesday afternoon, we boarded buses for the 1-hour trip to Argonne, where attendees toured IPNS and the Advanced Photon Source. Returning to Starved Rock, we enjoyed boat rides on the Illinois River and then a barbecue banquet dinner at the Lodge. All day Thursday and Friday morning, the attendees, in small

  13. Advanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques - A European effort to accelerate fusion materials development

    DEFF Research Database (Denmark)

    Linsmeier, Ch.; Fu, C.-C.; Kaprolat, A.

    2013-01-01

    having energies up to 14 MeV. In addition to withstanding the effects of neutrons, the mechanical stability of structural materials has to be maintained up to high temperatures. Plasma-exposed materials must be compatible with the fusion plasma, both with regard to the generation of impurities injected......For the realization of fusion as an energy source, the development of suitable materials is one of the most critical issues. The required material properties are in many aspects unique compared to the existing solutions, particularly the need for necessary resistance to irradiation with neutrons...... as testing under neutron flux-induced conditions. For the realization of a DEMO power plant, the materials solutions must be available in time. The European initiative FEMaS-CA – Fusion Energy Materials Science – Coordination Action – aims at accelerating materials development by integrating advanced...

  14. An introduction to small-angle neutron scattering

    International Nuclear Information System (INIS)

    Windsor, C.G.

    1988-01-01

    Neutron and X-ray small-angle scattering provide, along with electron microscopy and diffraction, the principal techniques for the microscopic characterization of materials. Neutron, X-ray and electron beams each have quite different properties. In fact, each has unique advantages. The penetration of neutrons through most materials is responsible for many applications. The ever-increasing intensity of available X-ray beams is opening new fields. The advantage of electron beams is their ability to work in both real and reciprocal space. The problems of transforming the results of an experiment in reciprocal space to give an interpretation in real space are central to small-angle scattering, and are discussed. Several examples will be given of the successful use of small-angle neutron scattering applied to problems where other techniques have failed to make a decisive contribution. (orig.)

  15. An automated neutron monitor maintenance system

    International Nuclear Information System (INIS)

    Moore, F.S.; Griffin, J.C.; Odell, D.M.C.

    1996-01-01

    Neutron detectors are commonly used by the nuclear materials processing industry to monitor fissile materials in process vessels and tanks. The proper functioning of these neutron monitors must be periodically evaluated. We have developed and placed in routine use a PC-based multichannel analyzer (MCA) system for on-line BF3 and He-3 gas-filled detector function testing. The automated system: 1) acquires spectral data from the monitor system, 2) analyzes the spectrum to determine the detector's functionality, 3) makes suggestions for maintenance or repair, as required, and 4) saves the spectrum and results to disk for review. The operator interface has been designed to be user-friendly and to minimize the training requirements of the user. The system may also be easily customized for various applications

  16. An accurate solution of point reactor neutron kinetics equations of multi-group of delayed neutrons

    International Nuclear Information System (INIS)

    Yamoah, S.; Akaho, E.H.K.; Nyarko, B.J.B.

    2013-01-01

    Highlights: ► Analytical solution is proposed to solve the point reactor kinetics equations (PRKE). ► The method is based on formulating a coefficient matrix of the PRKE. ► The method was applied to solve the PRKE for six groups of delayed neutrons. ► Results shows good agreement with other traditional methods in literature. ► The method is accurate and efficient for solving the point reactor kinetics equations. - Abstract: The understanding of the time-dependent behaviour of the neutron population in a nuclear reactor in response to either a planned or unplanned change in the reactor conditions is of great importance to the safe and reliable operation of the reactor. In this study, an accurate analytical solution of point reactor kinetics equations with multi-group of delayed neutrons for specified reactivity changes is proposed to calculate the change in neutron density. The method is based on formulating a coefficient matrix of the homogenous differential equations of the point reactor kinetics equations and calculating the eigenvalues and the corresponding eigenvectors of the coefficient matrix. A small time interval is chosen within which reactivity relatively stays constant. The analytical method was applied to solve the point reactor kinetics equations with six-groups delayed neutrons for a representative thermal reactor. The problems of step, ramp and temperature feedback reactivities are computed and the results compared with other traditional methods. The comparison shows that the method presented in this study is accurate and efficient for solving the point reactor kinetics equations of multi-group of delayed neutrons

  17. Data analysis for neutron monitoring in an enrichment facility

    International Nuclear Information System (INIS)

    Markin, J.T.; Stewart, J.E.; Goldman, A.S.

    1982-01-01

    Area monitoring of neutron radiation to detect high-enriched uranium production is a potential strategy for inspector verification of operations in the cascade area of a centrifuge enrichment facility. This paper discusses the application of statistical filtering and hypothesis testing procedures to experimental data taken in an enrichment facility. The results demonstrate that these data analysis methods can enhance detection of facility misoperation by neutron monitoring

  18. A process for detecting an interface by neutron diffusion

    International Nuclear Information System (INIS)

    1976-01-01

    The invention concerns a process and an apparatus for detecting an interface of substances having different hydrogen contents, present in a pipe or receptacle in metal (steel). It can concern the interface of a diphasic flow (hydrocarbons or water in the presence of gases, air or other gases) or of the level of an organic solid powdery substance containing hydrogen. A neutron source containing 0.1 to 1 μg of 252 Cf and a neutron detector are placed on or near the external face of the steel wall. The neutron detector is not located at more than 50 cm from the neutron source; it is a counter tube filled with He-3 more sensitive to neutrons diffused by collision with the hydrogen than to the fast neutrons of the source. In particular, the invention makes it possible to detect the liquids (water, hydrocarbons) present in the gas conveying facilities, the presence of foam or the level of a fluidised bed of polymer substances. It can be used for warning or control purposes [fr

  19. Structural characterization of advanced ceramics using the neutron diffractometer developed by Instituto de Pesquisas Energeticas e Nucleares (IPEN)

    International Nuclear Information System (INIS)

    Parente, C.B.R.; Mazzocchi, V.L.

    1999-01-01

    Application of neutron diffractometer at the Instituto de Pesquisas Energeticas Nucleares, Sao Paulo, Brazil, in the structural investigations of advanced ceramics was presented. Methodology of the analysis of neutron diffraction patterns was tested with BaLiF 3 single crystals and also doped with Ni 2+ or Pb 2+ ions. The same methodology was used to investigate the HTSC phases in the system Bi-Sr-Ca-Cu-O. The system Bi 1.7 Pb 0.3 Sr 2 Ca 2.2 Cu 3.5 O 10.6 was also investigated. Addition of Pb 2+ ions increased the fraction of high-T c phase 2223. Symmetry in neutron multiple diffraction patterns, obtained for aluminium single crystal, was elaborated. Crystal lattice parameter for aluminium single crystal was determined at different temperatures using neutron multiple diffraction. (author)

  20. An Ultracold Neutron Source using Superfluid Helium at TRIUMF

    Science.gov (United States)

    Matsumiya, Ryohei; Kawasaki, Shinsuke; Canada-Japan UCN Collaboration Collaboration

    2016-09-01

    An Ultracold Neutrons (UCN) are an extremely slow neutrons with a kinetic energy in the order of 100 neV. As a consequence, UCNs are totally reflected at surface of certain materials and can be confined in a material bottle. Using this unique property, UCNs are used for various experiments such as neutron electric dipole moment searches, neutron lifetime measurements, gravity experiments, and other. A UCN source has been developed at the Research Center for Nuclear Physics (RCNP), in Osaka Japan. The UCN source is composed of a combination of a spallation neutron source and a superfluid helium UCN converter. Spallation neutrons are thermalized first by warm and cold D2O moderators. After that they give their kinetic energy to a phonon (single- phonon excitation) or phonons (multi-phonon excitation) in superfluid helium to result in UCNs. The UCN source achieved 26 UCN/cm3 at 1 μA proton current at RCNP. Now, the source is adapted to a new, dedicated proton beam line at TRIUMF for use at higher proton beam currents up to 40 μA. The developments at RCNP and future prospects at TRIUMF will be discussed.

  1. Neutron interrogation to identify chemical elements with an ion-tube neutron source (INS)

    International Nuclear Information System (INIS)

    Alvarez, R.A.; Dougan, A.D.; Rowland, M.R.; Wang, T.F.

    1995-01-01

    A non-destructive analysis technique using a portable, electric ion-tube neutron source (INS) and gamma ray detector has been used to identify the key constituent elements in a number of sealed munitions, and from the elemental makeup, infer the types of agent within each. The high energy (14 MeV) and pulsed character of the neutron flux from an INS provide a method of measuring, quantitatively, the oxygen, carbon, and fluorine content of materials in closed containers, as well as the other constituents that can be measured with low-energy neutron probes. The broad range of elements that can be quantitatively measured with INS-based instruments provides a capability of verifying common munition fills; it provides the greatest specificity of any portable neutron-based technique for determining the full matrix of chemical elements in completely unrestricted sample scenarios. The specific capability of quantifying the carbon and oxygen content of materials should led to a fast screening technique which, can discriminate very quickly between high-explosive and chemical agent-filled containers. (author) 12 refs.; 5 figs.; 3 tabs

  2. An evaluated neutronic data file for bismuth

    International Nuclear Information System (INIS)

    Guenther, P.T.; Lawson, R.D.; Meadows, J.W.; Smith, A.B.; Smith, D.L.; Sugimoto, M.; Howerton, R.J.

    1989-11-01

    A comprehensive evaluated neutronic data file for bismuth, extending from 10 -5 eV to 20.0 MeV, is described. The experimental database, the application of the theoretical models, and the evaluation rationale are outlined. Attention is given to uncertainty specification, and comparisons are made with the prior ENDF/B-V evaluation. The corresponding numerical file, in ENDF/B-VI format, has been transmitted to the National Nuclear Data Center, Brookhaven National Laboratory. 106 refs., 10 figs., 6 tabs

  3. An evaluated neutronic data file for bismuth

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, P.T.; Lawson, R.D.; Meadows, J.W.; Smith, A.B.; Smith, D.L.; Sugimoto, M. (Argonne National Lab., IL (USA)); Howerton, R.J. (Lawrence Livermore National Lab., CA (USA))

    1989-11-01

    A comprehensive evaluated neutronic data file for bismuth, extending from 10{sup {minus}5} eV to 20.0 MeV, is described. The experimental database, the application of the theoretical models, and the evaluation rationale are outlined. Attention is given to uncertainty specification, and comparisons are made with the prior ENDF/B-V evaluation. The corresponding numerical file, in ENDF/B-VI format, has been transmitted to the National Nuclear Data Center, Brookhaven National Laboratory. 106 refs., 10 figs., 6 tabs.

  4. Advances in radiation-hydrodynamics and atomic physics simulation for current and new neutron-less targets

    International Nuclear Information System (INIS)

    Velarde, G.; Minguez, E.; Bravo, E.

    2003-01-01

    We present advances in advanced fusion cycles, atomic physics and radiation hydrodynamics. With ARWEN code we analyze a target design for ICF based on jet production. ARWEN is 2D Adaptive Mesh Refinement fluid dynamic and multigroup radiation transport. We are designing, by using also ARWEN, a target for laboratory simulation of astrophysical phenomena. We feature an experimental device to reproduce collisions of two shock waves, scaled to roughly represent cosmic supernova remnants. Opacity calculations are obtained with ANALOP code, which uses parametric potentials fitting to self-consistent potentials. It includes temperature and density effects by linearized Debye-Hueckel and it treats excited configurations and H+He-like lines. Advanced fusion cycles, as the a neutronic proton-boron 11 reaction, require very high ignition temperatures. Plasma conditions for a fusion-burning wave to propagate at such temperatures are rather extreme and complex, because of the overlapping effects of the main energy transport mechanisms. Calculations on the most appropriate ICF regimes for this purpose are presented. (author)

  5. A High Temperature-Tolerant and Radiation-Resistant In-Core Neutron Sensor for Advanced Reactors. Final report

    International Nuclear Information System (INIS)

    Cao, Lei; Miller, Don

    2015-01-01

    The objectives of this project are to develop a small and reliable gallium nitride (GaN) neutron sensor that is capable of withstanding high neutron fluence and high temperature, isolating gamma background, and operating in a wide dynamic range. The first objective will be the understanding of the fundamental materials properties and electronic response of a GaN semiconductor materials and device in an environment of high temperature and intense neutron field. To achieve such goal, an in-situ study of electronic properties of GaN device such as I-V, leakage current, and charge collection efficiency (CCE) in high temperature using an external neutron beam will be designed and implemented. We will also perform in-core irradiation of GaN up to the highest yet fast neutron fluence and an off-line performance evaluation.

  6. A High Temperature-Tolerant and Radiation-Resistant In-Core Neutron Sensor for Advanced Reactors. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Lei [The Ohio State Univ., Columbus, OH (United States); Miller, Don [The Ohio State Univ., Columbus, OH (United States)

    2015-01-23

    The objectives of this project are to develop a small and reliable gallium nitride (GaN) neutron sensor that is capable of withstanding high neutron fluence and high temperature, isolating gamma background, and operating in a wide dynamic range. The first objective will be the understanding of the fundamental materials properties and electronic response of a GaN semiconductor materials and device in an environment of high temperature and intense neutron field. To achieve such goal, an in-situ study of electronic properties of GaN device such as I-V, leakage current, and charge collection efficiency (CCE) in high temperature using an external neutron beam will be designed and implemented. We will also perform in-core irradiation of GaN up to the highest yet fast neutron fluence and an off-line performance evaluation.

  7. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    International Nuclear Information System (INIS)

    Burns, T.D. Jr.

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 x 10 8 n/cm 2 · s. The fast neutron and gamma radiation KERMA factors are 10 x 10 -11 cGy·cm 2 /n epi and 20 x 10 -11 cGy·cm 2 /n epi , respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power

  8. An investigation of the neutron die-away time in passive neutron waste assay systems

    International Nuclear Information System (INIS)

    Baeten, P.; Bruggeman, M.; Carchon, R.

    1997-02-01

    Neutron coincidence counting applied to the assay of Pu-bearing waste is commonly based on the assumption that the time intervals between detected fission neutrons are distributed according to a mono-exponential function, often called Rossi-alpha distribution. The time constant of this characteristic exponential function is generally referred to as the die-away time of the detector assembly. In fact, the distribution of time intervals is derived from the more fundamental arrival time distribution, which is also assumed to obey a mono-exponential law. In view of the design studies for a neutron counter, the validity of this basic assumption was investigated. Different parameters such as neutron moderation and absorption in the sample and the presence of cadmium-lining were investigated by means of Monte Carlo simulations using the NCNP-code. The simulation results lead to the conclusion that the description of the arrival time function with a mono-exponential function with a sample-independent die-away time is only a first approximations. The mono-exponential decay is perturbed by a second time component related to the detection of neutrons already thermalized in the sample. This thermal component cannot be described by a mono-exponential function, but has a characteristic shape with a fast build-up reaching a maximum followed by a slow decay as a function of the arrival time. The relative contribution of this component strongly depends on the absorption and moderation of the sample matrix. This component cannot be described by a simple analytical expression involving sample related parameters. Hence, no direct useful information can be withdrawn from the arrival time probability function to characterize the waste matrix. The thermal component can be strongly suppressed by the use of cadmium-lining in front of the detector blocks simplifying the mathematical description of the arrival time probability function. Indications of the bias introduced by an inaccurate

  9. Development and applications of methodologies for the neutronic design of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR)

    Science.gov (United States)

    Fratoni, Massimiliano

    This study investigated the neutronic characteristics of the Pebble Bed Advanced High Temperature Reactor (PB-AHTR), a novel nuclear reactor concept that combines liquid salt (7LiF-BeF2---flibe) cooling and TRISO coated-particle fuel technology. The use of flibe enables operation at high power density and atmospheric pressure and improves passive decay-heat removal capabilities, but flibe, unlike conventional helium coolant, is not transparent to neutrons. The flibe occupies 40% of the PB-AHTR core volume and absorbs ˜8% of the neutrons, but also acts as an effective neutron moderator. Two novel methodologies were developed for calculating the time dependent and equilibrium core composition: (1) a simplified single pebble model that is relatively fast; (2) a full 3D core model that is accurate and flexible but computationally intensive. A parametric analysis was performed spanning a wide range of fuel kernel diameters and graphite-to-heavy metal atom ratios to determine the attainable burnup and reactivity coefficients. Using 10% enriched uranium ˜130 GWd/tHM burnup was found to be attainable, when the graphite-to-heavy metal atom ratio (C/HM) is in the range of 300 to 400. At this or smaller C/HM ratio all reactivity coefficients examined---coolant temperature, coolant small and full void, fuel temperature, and moderator temperature, were found to be negative. The PB-AHTR performance was compared to that of alternative options for HTRs, including the helium-cooled pebble-bed reactor and prismatic fuel reactors, both gas-cooled and flibe-cooled. The attainable burnup of all designs was found to be similar. The PB-AHTR generates at least 30% more energy per pebble than the He-cooled pebble-bed reactor. Compared to LWRs the PB-AHTR requires 30% less natural uranium and 20% less separative work per unit of electricity generated. For deep burn TRU fuel made from recycled LWR spent fuel, it was found that in a single pass through the core ˜66% of the TRU can be

  10. An active pixels spectrometers for neutronic fields metrology

    International Nuclear Information System (INIS)

    Taforeau, Julien

    2013-01-01

    The fundamental metrology is responsible for the sustainability of the measurement systems and handles to supply the reference standards. Concerning the metrology of ionizing radiations and, in particular the neutron metrology, detectors standards are used to characterize reference fields, in terms of energy and fluence. The dosimeters or particle detectors are calibrated on these reference fields. This thesis presents the development of a neutron spectrometer neutron candidate to the status of primary standard for the characterization of neutron fields in the range from 5 to 20 MeV. The spectrometer uses the recoil proton telescope as detection principle; the CMOS technology, through three sensor positions, is taking advantage to realize the tracking of protons. A Si(Li) detector handles the measure of the residual proton energy. The device simulations, realized under MCNPX, allow to estimate its performances and to validate the neutron energy reconstruction. An essential step of characterization of the telescope elements and in particular of CMOS sensors is also proposed to guarantee the validity of posterior experimental measurements. The tests realized as well in mono-energy fields as in radionuclide source show the very good performances of the system. The quantification of uncertainties indicates an energy estimation with 1.5 % accuracy and a resolution of less than 6 %. The fluence measurement is performed with an uncertainty about 4 to 6%. (author)

  11. 6.3 MeV fast neutrons in the treatment of patients with locally advanced and locally recurrent breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Velikaya, V. V., E-mail: viktoria.v.v@inbox.ru; Startseva, Zh. A., E-mail: zhanna.alex@rambler.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation); Musabaeva, L. I., E-mail: musabaevaLI@oncology.tomsk.ru; Lisin, V. A., E-mail: Lisin@oncology.tomsk.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation)

    2016-08-02

    The study included 135 breast cancer patients (70 patients with locally recurrent breast cancer and 65 patients with locally advanced breast cancer with unfavorable prognostic factors) who received the neutron therapy alone or in combination with the photon therapy. The neutron therapy was shown to be effective in multimodality treatment of patients with locally advanced and locally recurrent breast cancer. The 8-year survival rate in patients without repeated breast cancer recurrence was 87.6 ± 8.7% after the neutron and neutron-photon therapy and 54.3 ± 9.2% after the electron beam therapy.

  12. Prototyping an Active Neutron Veto for SuperCDMS

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, Robert [Southern Methodist U.; Loer, Ben [Fermilab

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  13. Prototyping an active neutron veto for SuperCDMS

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, Robert [Department of Physics, Southern Methodist University, Dallas, Texas 75275 (United States); Loer, Ben [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  14. An intense neutron generator based on a proton accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, G.A.; Milton, J.C.D.; Vogt, E.W

    1964-07-01

    A study has been made of the demand for a neutron facility with a thermal flux of {>=} 10{sup 16} n cm{sup -2} sec{sup -1} and of possible methods of producing such fluxes with existing or presently developing technology. Experimental projects proposed by neutron users requiring high fluxes call for neutrons of all energies from thermal to 100 MeV with both continuous-wave and pulsed output. Consideration of the heat generated in the source per useful neutron liberated shows that the (p,xn) reaction with 400 1000 MeV bombarding energies and heavy element targets (e.g. bismuth, lead) is capable of greater specific source strength than other possible methods realizable within the time scale. A preliminary parameter optimization carried through for the accelerator currently promising greatest economy (the separated orbit cyclotron or S.O.C.), reveals that a facility delivering a proton beam of about 65 mA at about 1 BeV would satisfy the flux requirement with a neutron cost significantly more favourable than that projected for a high flux reactor. It is suggested that a proton storage ring providing post-acceleration pulsing of the proton beam should be developed for the facility. With this elaboration, and by taking advantage of the intrinsic microscopic pulse structure provided by the radio frequency duty cycle, a very versatile source may be devised capable of producing multiple beams of continuous and pulsed neutrons with a wide range of energies and pulse widths. The source promises to be of great value for high flux irradiations and as a pilot facility for advanced reactor technology. The proposed proton accelerator also constitutes a meson source capable of producing beams of {pi} and {mu} mesons and of neutrinos orders of magnitude more intense than those of any accelerator presently in use. These beams, which can be produced simultaneously with the neutron beams, open vast areas of new research in fundamental nuclear structure, elementary particle physics

  15. Advanced plutonium assembly (apa): evolution of the concept, neutron and thermal-mechanic constraints

    International Nuclear Information System (INIS)

    Porta, J.; Gastaldi, B.; Krakowiak-Aillaud, C.; Buffe, L.

    2002-01-01

    The APA concept was developed with the aim of increasing the PWR capacity to burn plutonium emerging from the recycling of irradiated fuels in the French park of nuclear power plants. At first, a concept using annular pins was optimised to allow a good consumption of plutonium while preserving an acceptable neutron control. To cope with the technological problems and those posed by the manufacture of these annular pins, an alternative concept is presented here. It poses as initial conditions the conservation of both the plutonium balance and the respect of the reactivity control. (authors)

  16. Advances on the study of air pollution in Cordoba by neutron activation analysis

    International Nuclear Information System (INIS)

    Pla, Rita R.; Jasan, Raquel C.; Pignata, Maria L.

    1999-01-01

    Air pollution biomonitoring has been carried out in an area of 160.000 km 2 by neutron activation analysis of lichen samples (Usnea sp. and Ramalina ecklonii) in the framework of a Co-ordinated Research Programme of the IAEA and an ARCAL Technical Co-operation Project. The samples were irradiated in the RA-3 reactor and after a decay time of 6, 12 and 30 days, 24 elements (As, Ba, Br, Ce, Co, Cr, Cs, Eu, Fe, Hf, La, Lu, Na, Nd, Rb, Sb, Sc, Sm, Ta, Tb, Th, U and Zn) were determined by gamma spectrometry. (author)

  17. Measurement of leakage neutron spectra from advanced blanket materials and structural materials induced by D-T neutrons. Correction for energy loss of charged particle in sample materials

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Takashi; Kondo, Tetsuo; Takagi, Hiroyuki; Murata, Isao; Takahashi, Akito [Osaka Univ., Department of Nuclear Engineering, Suita, Osaka (Japan); Kokooo [Department of Physics, University of Mawlamyine (Myanmar); Maekawa, Fujio; Ikeda, Yujiro; Takeuchi, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-03-01

    D-T neutron benchmark experiments for LiAlO{sub 2}, Li{sub 2}TiO{sub 3}, Li{sub 2}ZrO{sub 3}, Cu and W have been conducted at FNS of JAERI to validate five nuclear data files. The former three are promising advanced breeder materials and the latter two are important structural materials in a fusion reactor. From the results, all the nuclear data files were confirmed to be fairly reliable with respect to the prediction of neutron spectrum in the use of Li{sub 2}TiO{sub 3} and Cu. For LiAlO{sub 2} and W, some large discrepancies between the experimental and calculated data were observed. For Li{sub 2}ZrO{sub 3}, the C/E values became very large for all the nuclear data files. (author)

  18. An ultra-cold neutron source at the MLNSC

    Energy Technology Data Exchange (ETDEWEB)

    Bowles, T.J.; Brun, T.; Hill, R.; Morris, C.; Seestrom, S.J. [Los Alamos National Lab., NM (United States); Crow, L. [Univ. of Rhode Island, Kingston, RI (United States); Serebrov, A. [Petersburg Nuclear Physics Inst. (Russian Federation)

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have carried out the research and development of an Ultra-Cold Neutron (UCN) source at the Manuel Lujan Neutron Scattering Center (MLNSC). A first generation source was constructed to test the feasibility of a rotor source. The source performed well with an UCN production rate reasonably consistent with that expected. This source can now provide the basis for further development work directed at using UCN in fundamental physics research as well as possible applications in materials science.

  19. Response dependence of an albedo-neutron dosemeter on the properties of shielding

    International Nuclear Information System (INIS)

    Doerschel, B.; Herforth, L.; Schuricht, V.

    1976-07-01

    The ratio of the response of an albedo-neutron dosemeter to the biological neutron dose has been calculated for pile and 14-MeV neutrons in dependence on the thickness of several shielding materials, such as iron, water, and concrete. The results obtained show great differences of this ratio for pile and 14-MeV neutrons. Therefore, errors in estimating the biological neutron dose due to changes in the primary neutron energy spectra beyond shields limit the application of simple albedo-neutron dosemeters

  20. An experimental setup for measurement of neutron energy spectra in lithium with collimated 14.7 MeV neutrons

    Science.gov (United States)

    Ofek, R.; Tsechanski, A.; Profio, A. E.; Shani, G.

    1989-06-01

    Neutron energy spectra in an 88 cm diameter, 88 cm long lithium tank were measured with the Ben Gurion University experimental setup. In this setup, the lithium tank is separated from the DT neutron generator by a 120 cm thick paraffin wall with a 6 cm diameter collimator through it, along the axis of the neutron generator and the lithium tank. This enables unidirectionality and monoenergeticity of the neutrons penetrating the lithium tank. A neutron energy spectrum is obtained by unfolding with the code FORIST of proton-recoil spectra measured by an NE213 liquid scintillator. The important features of the spectrometry system, comprised of the NE213 scintillator and the attached electronic system, are the high pulse shape discrimination capability of the NE213 scintillator, which enables the separation of neutron and gamma events, relatively high energy resolution, and the system linearity. Also the simultaneous measurement of the low gain and high gain proton-recoil spectra prevents a distortion of the unfolded neutron spectrum. The neutron energy spectra are absolutely normalized and internormalized to each other by an absolutely calibrated, second NE213 scintillator, placed close to the neutron generator. The measured neutron energy spectra inside the lithium tank were compared to some preliminary calculations of the spectra, carried out with the discrete-ordinates transport code DOT4.2. Both spectra are in poor agreement. These discrepancies are assigned mainly to the inadequancy of the transport calculations. Finally, the distribution of the tritium production in the lithium tank, with the same experimental configurations, was calculated with the code DOT4.2 as well. The results indicate that the collimated neutron beam configuration is inappropriate for the purpose of tritium breeding ratio measurements.

  1. Design and tests of an adaptive focusing neutron guide

    International Nuclear Information System (INIS)

    Valicu, Roxana Georgiana

    2012-01-01

    This work contains the Monte Carlo Simulations, as well as the first tests with an adaptive focusing neutron guide for creating a focus that does not depend on the wavelength of the incoming neutrons. All known neutron guides consist of a rectangular shape, built out of four glass plates. The inner side of the guide is coated with a complex structure of metal layers. This reflects and guides the neutrons (in analogy with the reflection of the light). For beam focusing neutron guides with fixed curvature can be built. For most experiments it is important that the beam is focused on to a small surface of the sample. In the case of focusing guides with fixed curvature it has been observed that the focusing (dimension and position of the beam focus) is wavelength dependent. This is why for measurements that are performed with different wavelengths it is very important to change the curvature of the neutron guide in order to obtain optimal results. In this work we have designed, constructed and tested a guide where we can change the curvature during the experiment. In this way we can obtain a variable curvature in horizontal as well as in vertical direction. For a curvature in the horizontal or vertical direction it is not necessary to move all four walls, only two of the opposed plates. The element that changes the curvature of the guide consists of an acting element (piezomotor) as well as a rod that can be operated by the piezomotor and that acts through a lever onto the plate. The action of a force and a consecutive torsion momentum at the free end of the plate changes the curvature of the whole plate in an almost parabolic way. Making use of the Monte Carlo simulations we were able to determine the optimal curvature for each wavelength of a neutron guide for the spectrometer TOFTOF installed at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II). First tests have shown that with an adaptive focusing guide one can gain up to a factor three in intensity at

  2. Design and tests of an adaptive focusing neutron guide

    Energy Technology Data Exchange (ETDEWEB)

    Valicu, Roxana Georgiana

    2012-08-23

    This work contains the Monte Carlo Simulations, as well as the first tests with an adaptive focusing neutron guide for creating a focus that does not depend on the wavelength of the incoming neutrons. All known neutron guides consist of a rectangular shape, built out of four glass plates. The inner side of the guide is coated with a complex structure of metal layers. This reflects and guides the neutrons (in analogy with the reflection of the light). For beam focusing neutron guides with fixed curvature can be built. For most experiments it is important that the beam is focused on to a small surface of the sample. In the case of focusing guides with fixed curvature it has been observed that the focusing (dimension and position of the beam focus) is wavelength dependent. This is why for measurements that are performed with different wavelengths it is very important to change the curvature of the neutron guide in order to obtain optimal results. In this work we have designed, constructed and tested a guide where we can change the curvature during the experiment. In this way we can obtain a variable curvature in horizontal as well as in vertical direction. For a curvature in the horizontal or vertical direction it is not necessary to move all four walls, only two of the opposed plates. The element that changes the curvature of the guide consists of an acting element (piezomotor) as well as a rod that can be operated by the piezomotor and that acts through a lever onto the plate. The action of a force and a consecutive torsion momentum at the free end of the plate changes the curvature of the whole plate in an almost parabolic way. Making use of the Monte Carlo simulations we were able to determine the optimal curvature for each wavelength of a neutron guide for the spectrometer TOFTOF installed at the Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II). First tests have shown that with an adaptive focusing guide one can gain up to a factor three in intensity at

  3. The development report of an intelligent neutron fluence integration monitor

    International Nuclear Information System (INIS)

    Jiang Zongbing; Wei Ying

    1996-10-01

    An intelligent neutron fluence integration monitor is introduced. It is used to measure the received neutron fluence of the monocrystalline silicon in reactor radiation channel. The significance of study and specifications of the instrument are briefly described. The emphasis is on the working principle, structure and characteristics of the instrument is intelligent due to use of monolithic microcomputer. It has many advantages proved in the actual practice, such as powerful function, high accuracy, diversity of application, high level automatization, easy to operate, high reliability, etc. After using this instrument the monocrystalline silicon radiation technology is improved and the efficiency of production is raised. (1 fig.)

  4. An inelastic neutron scattering study of hematite nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Mikkel Fougt; Klausen, Stine Nyborg; Lefmann, K

    2003-01-01

    We have studied the magnetic dynamics in nanocrystalline hematite by inelastic neutron scattering at the high-resolution time-of-flight spectrometer IRIS at ISIS. Compared to previous inelastic neutron scattering experiments an improvement of the resolution function is achieved and more detailed...... moment at the antiferromagnetic Bragg reflection. We have studied different weightings of the particle size distribution. The data and their temperature dependence can with good agreement be interpreted on the basis of the Neel-Brown theory for superparamagnetic relaxation and a model for the collective...

  5. Creative scientific research international session of 2nd meeting on advanced pulsed-neutron research on quantum functions in nano-scale materials

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2005-06-01

    1 MW-class pulsed-neutron sources will be constructed in Japan, United State and United Kingdom in a few years. Now is the time for a challenge to innovate on neutron science and extend new science fields. Toward the new era, we develop new pulsed-neutron technologies as well as new neutron devices under the international collaborations with existing pulsed-neutron facilities, such as the UK-Japan collaboration program on neutron scattering. At the same time, the new era will bring international competitions to neutron researchers. We aim to create new neutron science toward the new pulsed-neutron era by introducing the new technologies developed here. For this purpose, we have started the research project, 'Advanced pulsed-neutron research on quantum functions in nano-scale materials,' in the duration between JFY2004 and JFY2008. The 2nd meeting of this project was held on 22-24 February 2005 to summarize activities in FY2004 and to propose research projects in the coming new fiscal year. In this international session as a part of this meeting, the scientific results and research plans on the UK-Japan collaboration program, the research plans on the collaboration between IPNS (Intense Pulsed Neutron Source, Argonne National Laboratory) and KENS (Neutron Science Laboratory, KEK), also the recent scientific results arisen form this project were presented. (author)

  6. Measurements of the thermal neutron flux for an accelerator-based photoneutron source.

    Science.gov (United States)

    Taheri, Ali; Pazirandeh, Ali

    2016-12-01

    To have access to an appropriate neutron source is one of the most demanding requirements for neutron studies. This is important specially in laboratory and clinical applications, which need more compact and accessible sources. The most known neutron sources are fission reactors and natural isotopes, but there is an increasing interest for using accelerator based neutron sources because of their advantages. In this paper, we shall present a photo-neutron source prototype which is designed and fabricated to be used for different neutron researches including in-laboratory neutron activation analysis and neutron imaging, and also preliminary studies in boron neutron capture therapy (BNCT). Series of experimental tests were conducted to examine the intensity and quality of the neutron field produced by this source. Monte-Carlo simulations were also utilized to provide more detailed evaluation of the neutron spectrum, and determine the accuracy of the experiments. The experiments demonstrated a thermal neutron flux in the order of 10 7 (n/cm 2 .s), while simulations affirmed this flux and showed a neutron spectrum with a sharp peak at thermal energy region. According to the results, about 60 % of produced neutrons are in the range of thermal to epithermal neutrons.

  7. Reactor physics methods, models, and applications used to support the conceptual design of the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Gehin, J.C.; Worley, B.A.; Renier, J.P.; Wemple, C.A.; Jahshan, S.N.; Ryskammp, J.M.

    1995-08-01

    This report summarizes the neutronics analysis performed during 1991 and 1992 in support of characterization of the conceptual design of the Advanced Neutron Source (ANS). The methods used in the analysis, parametric studies, and key results supporting the design and safety evaluations of the conceptual design are presented. The analysis approach used during the conceptual design phase followed the same approach used in early ANS evaluations: (1) a strong reliance on Monte Carlo theory for beginning-of-cycle reactor performance calculations and (2) a reliance on few-group diffusion theory for reactor fuel cycle analysis and for evaluation of reactor performance at specific time steps over the fuel cycle. The Monte Carlo analysis was carried out using the MCNP continuous-energy code, and the few- group diffusion theory calculations were performed using the VENTURE and PDQ code systems. The MCNP code was used primarily for its capability to model the reflector components in realistic geometries as well as the inherent circumvention of cross-section processing requirements and use of energy-collapsed cross sections. The MCNP code was used for evaluations of reflector component reactivity effects and of heat loads in these components. The code was also used as a benchmark comparison against the diffusion-theory estimates of key reactor parameters such as region fluxes, control rod worths, reactivity coefficients, and material worths. The VENTURE and PDQ codes were used to provide independent evaluations of burnup effects, power distributions, and small perturbation worths. The performance and safety calculations performed over the subject time period are summarized, and key results are provided. The key results include flux and power distributions over the fuel cycle, silicon production rates, fuel burnup rates, component reactivities, control rod worths, component heat loads, shutdown reactivity margins, reactivity coefficients, and isotope production rates

  8. Neutron sources and applications

    Energy Technology Data Exchange (ETDEWEB)

    Price, D.L. [ed.] [Argonne National Lab., IL (United States); Rush, J.J. [ed.] [National Inst. of Standards and Technology, Gaithersburg, MD (United States)

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications.

  9. Neutron sources and applications

    International Nuclear Information System (INIS)

    Price, D.L.; Rush, J.J.

    1994-01-01

    Review of Neutron Sources and Applications was held at Oak Brook, Illinois, during September 8--10, 1992. This review involved some 70 national and international experts in different areas of neutron research, sources, and applications. Separate working groups were asked to (1) review the current status of advanced research reactors and spallation sources; and (2) provide an update on scientific, technological, and medical applications, including neutron scattering research in a number of disciplines, isotope production, materials irradiation, and other important uses of neutron sources such as materials analysis and fundamental neutron physics. This report summarizes the findings and conclusions of the different working groups involved in the review, and contains some of the best current expertise on neutron sources and applications

  10. An improved computer controlled triple-axis neutron spectrometer

    International Nuclear Information System (INIS)

    Cooper, M.J.; Hall, J.W.; Hutchings, M.T.

    1975-07-01

    A description is given of the computer-controlled triple-axis neutron spectrometer installed at the PLUTO reactor at Harwell. The reasons for an nature of recent major improvements are discussed. Following a general description of the spectrometer, details are then given of the new computerised control system, including the functions of the various programs which are now available to the user. (author)

  11. Neutron Star Physics in the SKA Era An Indian Perspective

    Indian Academy of Sciences (India)

    65

    2016-07-04

    Jul 4, 2016 ... tens of thousands of new neutron stars giving a major fillip to a wide range of scientific investigations. ..... can provide an interesting line of investigation into the physics of these systems. ..... the fainter pulsars, and hence, aid in developing a robust physical model applicable to majority of pulsars. 2.

  12. Beryllide pebble fabrication of Be–Zr compositions as advanced neutron multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Nakamichi, Masaru, E-mail: nakamichi.masaru@jaea.go.jp; Kim, Jae Hwan; Ochiai, Kentaro

    2016-11-01

    Highlights: • Fabrication of beryllide pebbles of Be–Zr compositions was conducted from the viewpoint of pebble mass production. • Prototypic Be–Zr beryllides pebbles were successfully fabricated using the plasma-sintered electrodes by the rotating electrode method. • By utilizing plasma-sintered electrodes with high Be and Zr contents, Be{sub 13}Zr pebbles had a high granulation yield of 84%. • The Be{sub 13}Zr pebbles displayed better oxidation properties as compared to pure Be pebbles. - Abstract: Fusion reactors require advanced neutron multipliers with high stability at high temperatures. Beryllium intermetallic compounds (beryllides) have a universally robust potential for high temperature use. Fabrication of beryllide pebbles of Be–Zr compositions was conducted from the viewpoint of pebble mass production. Prototypic pebbles were successfully fabricated using the plasma-sintered electrodes with high Be and Zr contents for enhanced of the thermal shock resistivity of the electrodes during granulation by a rotating electrode method. From the results of granulation examinations, it was revealed that granulation yields varied greatly depending on compositions of the plasma-sintered electrodes themselves. By utilizing plasma-sintered electrodes with high Be and Zr contents, Be{sub 13}Zr pebbles had a high granulation yield of 84%. Moreover, the Be{sub 13}Zr pebbles displayed better oxidation properties as compared to pure Be pebbles.

  13. Natural circulation analysis for the advanced neutron source reactor refueling process 11

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, R.F.; Dasardhi, S.; Elkassabgi, Y. [Texas A& M Univ., Kingsville, TX (United States); Yoder, G.L. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    During the refueling process of the Advanced Neutron Source Reactor (ANSR), the spent fuel elements must be moved from the primary coolant loop (containing D{sub 2}O), through a heavy water pool, and finally into a light water spent fuel storage area. The present refueling scheme utilizes remote refueling equipment to move the spent fuel elements through a D{sub 2}O filled stack and tunnel into a temporary storage canal. A transfer lock is used to move the spent fuel elements from the D{sub 2}O-filled interim storage canal to a light water pool. Each spent fuel element must be cooled during this process, using either natural circulation or forced convection. This paper presents a summary of the numerical techniques used to analyze natural circulation cooling of the ANSR fuel elements as well as selected results of the calculations. Details of the analysis indicate that coolant velocities below 10 cm/s exist in the coolant channels under single phase natural circulation conditions. Also, boiling does not occur within the channels if power levels are below a few hundred kW when the core transitions to natural circulation conditions.

  14. Technological advances in cosmogenic neutron detectors for measuring soil water content

    Science.gov (United States)

    Zreda, M. G.; Schrön, M.; Köhli, M.

    2017-12-01

    The cosmic-ray neutron probe is used for measuring area-average soil water content at the hectometer scale. Early work showed a simple exponential decrease with distance of the instrument's sensitivity and a footprint 300 m in radius. Recent research suggested a much higher sensitivity to local neutrons and reduced footprint. We show results confirming the high sensitivity to local neutrons, describe two ways to reduce local and increase far-field effects, and propose ways of measuring neutrons at different spatial scales. Measurements with moderated detectors across a 10-m-wide creek and a 2-m-wide water tank show a decrease by 30% and 20%, respectively, of neutron intensity over water compared to that over land nearby. These results mean that the detector is sensitive to meter-scale heterogeneities of water content. This sensitivity can be reduced by rising the detector or by shielding it from local neutrons. The effect of local water distributions on the measured neutron intensity decreases with height. In the water tank experiment it disappeared almost completely at the height of 2 m, leading to the conjecture that the height roughly equal to the horizontal scale of heterogeneity would eliminate the sensitivity. This may or may not be practical. Shielding the detector below by a hydrogenous material removes a substantial fraction of the local neutrons. The shielded detector has a reduced count rate, reduced sensitivity to local neutrons and increased sensitivity to neutrons farther afield, and a larger footprint. Such a detector could be preferable to the current cosmogenic-neutron probe under heterogeneous soil water conditions. The shielding experiments also inspired the development of a local-area neutron detector. It has hydrogenous neutron shields on all sides except the bottom, substantially blocking the neutrons coming from afar, while allowing the neutrons coming directly from below. Its footprint is equal to its physical dimension when the detector is

  15. Experimental study on the performance of an epithermal neutron flux monitor for BNCT.

    Science.gov (United States)

    Guan, Xingcai; Manabe, Masanobu; Tamaki, Shingo; Liu, Shuangtong; Sato, Fuminobu; Murata, Isao; Wang, Tieshan

    2016-07-01

    The performance of an epithermal neutron (0.5eVflux monitor designed for boron neutron capture therapy (BNCT) was experimentally studied by using a prototype monitor in an appropriate neutron field at the intense deuterium-tritium neutron source facility OKTAVIAN of Osaka University, Japan. It was convinced from the experimental results that the developed monitor worked well and the epithermal neutron fluxes in BNCT neutron sources can be measured within 5% by the monitor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. FRUIT: An operational tool for multisphere neutron spectrometry in workplaces

    Science.gov (United States)

    Bedogni, Roberto; Domingo, Carles; Esposito, Adolfo; Fernández, Francisco

    2007-10-01

    FRUIT (Frascati Unfolding Interactive Tool) is an unfolding code for Bonner sphere spectrometers (BSS) developed, under the Labview environment, at the INFN-Frascati National Laboratory. It models a generic neutron spectrum as the superposition of up to four components (thermal, epithermal, fast and high energy), fully defined by up to seven positive parameters. Different physical models are available to unfold the sphere counts, covering the majority of the neutron spectra encountered in workplaces. The iterative algorithm uses Monte Carlo methods to vary the parameters and derive the final spectrum as limit of a succession of spectra fulfilling the established convergence criteria. Uncertainties on the final results are evaluated taking into consideration the different sources of uncertainty affecting the input data. Relevant features of FRUIT are (1) a high level of interactivity, allowing the user to follow the convergence process, (2) the possibility to modify the convergence tolerances during the run, allowing a rapid achievement of meaningful solutions and (3) the reduced dependence of the results from the initial hypothesis. This provides a useful instrument for spectrometric measurements in workplaces, where detailed a priori information is usually unavailable. This paper describes the characteristics of the code and presents the results of performance tests over a significant variety of reference and workplace neutron spectra ranging from thermal up to hundreds MeV neutrons.

  17. FRUIT: An operational tool for multisphere neutron spectrometry in workplaces

    International Nuclear Information System (INIS)

    Bedogni, Roberto; Domingo, Carles; Esposito, Adolfo; Fernandez, Francisco

    2007-01-01

    FRUIT (Frascati Unfolding Interactive Tool) is an unfolding code for Bonner sphere spectrometers (BSS) developed, under the Labview environment, at the INFN-Frascati National Laboratory. It models a generic neutron spectrum as the superposition of up to four components (thermal, epithermal, fast and high energy), fully defined by up to seven positive parameters. Different physical models are available to unfold the sphere counts, covering the majority of the neutron spectra encountered in workplaces. The iterative algorithm uses Monte Carlo methods to vary the parameters and derive the final spectrum as limit of a succession of spectra fulfilling the established convergence criteria. Uncertainties on the final results are evaluated taking into consideration the different sources of uncertainty affecting the input data. Relevant features of FRUIT are (1) a high level of interactivity, allowing the user to follow the convergence process, (2) the possibility to modify the convergence tolerances during the run, allowing a rapid achievement of meaningful solutions and (3) the reduced dependence of the results from the initial hypothesis. This provides a useful instrument for spectrometric measurements in workplaces, where detailed a priori information is usually unavailable. This paper describes the characteristics of the code and presents the results of performance tests over a significant variety of reference and workplace neutron spectra ranging from thermal up to hundreds MeV neutrons

  18. Choice of a process design for simultaneous detritiation and upgrading of heavy water for the Advanced Neutron Source

    International Nuclear Information System (INIS)

    Miller, A.I.; Spagnolo, D.A.

    1995-01-01

    Tritium removal and heavy water upgrading are essential components of the heavy water-moderated reactor that is the heart of the Advanced Neutron Source (ANS) to be built at Oak Ridge National Laboratory. The technologies for these two processes, which are closely related, are reviewed in the context of the ANS requirements. The evolution of the design of the Heavy Water Upgrading and Detritiation Facility (HWUDF) for ANS is outlined, and the final conceptual design is presented. The conceptual design of HWUDF has two main component systems: (a) a front-end combined electrolysis and catalytic exchange (CECE) system and (b) a back-end cryogenic distillation (CD) system. The CECE process consists of a countercurrent exchange column for hydrogen-water exchange over a wetproofed catalyst and electrolysis to convert water into hydrogen. It accepts all the tritiated heavy water streams of the reactor and performs an almost total separation into a protium (light hydrogen) stream containing tritium and deuterium at only natural abundance and a deuterium stream containing all the tritium and almost no protium. The tritium-containing deuterium stream is then processed by a CD unit, which removes over 90% of the tritium and concentrates it to >99% tritium for indefinite storage as a metal tritide. Deuterium gas with a small residue of tritium is recombined with oxygen from the electrolytic cells and returned as heavy water to the reactor

  19. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Jr., Thomas Dean [Univ. of Virginia, Charlottesville, VA (United States)

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 x 108 n/cm2 • s. The fast neutron and gamma radiation KERMA factors are 10 x 10-11cGy•cm2/nepi and 20 x 10-11 cGy•cm2/nepi , respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power.

  20. BUMS--Bonner sphere Unfolding Made Simple an HTML based multisphere neutron spectrometer unfolding package

    CERN Document Server

    Sweezy, J; Veinot, K

    2002-01-01

    A new multisphere neutron spectrometer unfolding package, Bonner sphere Unfolding Made Simple (BUMS) has been developed that uses an HTML interface to simplify data input and code execution for the novice and the advanced user. This new unfolding package combines the unfolding algorithms contained in other popular unfolding codes under one easy to use interface. The interface makes use of web browsing software to provide a graphical user interface to the unfolding algorithms. BUMS integrates the SPUNIT, BON, MAXIET, and SAND-II unfolding algorithms into a single package. This package also includes a library of 14 response matrices, 58 starting spectra, and 24 dose and detector responses. BUMS has several improvements beyond the addition of unfolding algorithms. It has the ability to search for the most appropriate starting spectra. Also, plots of the unfolded neutron spectra are automatically generated. The BUMS package runs via a web server and may be accessed by any computer with access to the Internet at h...

  1. Neutron diffraction

    International Nuclear Information System (INIS)

    Elcomb, M.M.

    2002-01-01

    Full text: Thermal neutrons have a particular combination of properties, which make them the probe of choice for a wide range of scattering applications. They penetrate most materials easily, the wavelength matches interatomic spacings, the energy matches the atomic vibrational energies and the magnetic moment allows them to uniquely interact with magnetic structures. Their widely varying scattering length is also used to advantage. It enables the determination of light atoms in the presence of heavy ones: hydrogen in organic molecules, and oxygen in the high Tc superconductors for example, or solving problems in alloy systems where distinction of atoms, which are neighbours in the periodic table, is required. In the 50 years since thermal neutron beams have been used for research there has been a steady increase in applications as technology has advanced. This also applies to the environments in which the materials are studied. In-situ studies at other than ambient temperatures, pressures and magnetic fields are now routine. By using multiple detector channels in powder instruments the data collection rate has increased by an order of magnitude to some extent compensating for the diffuse nature of the neutron source. The applications of neutron scattering are becoming more industrially oriented. The talk will highlight the complementarity of neutrons to other more readily available techniques, and give examples of recent research and applications. Copyright (2002) Australian X-ray Analytical Association Inc

  2. Proceedings of the 1986 workshop on advanced time-of-flight neutron powder diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, A.C.; Smith, K. (comps.)

    1986-09-01

    This report contains abstracts of talks and summaries of discussions from a small workshop held to discuss the future of time-of-flight neutron powder diffraction and its implementation at the Los Alamos Neutron Scattering Center. 47 refs., 3 figs.

  3. Proceedings of the 1986 workshop on advanced time-of-flight neutron powder diffraction

    International Nuclear Information System (INIS)

    Lawson, A.C.; Smith, K.

    1986-09-01

    This report contains abstracts of talks and summaries of discussions from a small workshop held to discuss the future of time-of-flight neutron powder diffraction and its implementation at the Los Alamos Neutron Scattering Center. 47 refs., 3 figs

  4. Study on severe accident fuel dispersion behavior in the Advanced Neutron Source reactor at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V.; Xiang, J.Y.

    1995-01-01

    Core flow blockage events are a leading contributor to core damage initiation risk in the Advanced Neutron Source (ANS) reactor. During such an accident, insufficient cooling of the fuel could result in core heatup and melting under full coolant flow condition. Coolant inertia forces acting on the melt surface would likely break up the melt into small particles. Under thermal-hydraulic conditions of ANS coolant channel, micro-fine melt particles are expected. Heat transfer between melt particle and coolant, which affects particle breakup, was studied. The study indicates that the thermal effect on melt fragmentation seems to be negligible because the time corresponding to the breakup due to hydrodynamic forces is much shorter than the time for the melt surface to solidify. The study included modeling and analyses to predict transient behavior and transport of debris particles throughout the coolant system. The transient model accounts for the surface forces acting on the particle that results from the pressure variation on the surface, inertia, virtual mass, viscous force due to relative motion of particle in the coolant, gravitation, and resistance due to inhomogenous coolant velocity radially across piping due to possible turbulent coolant motions. Results indicate that debris particles would reside longest in heat exchangers because of lower coolant velocity there. Also core debris tends to move together upon melting and entrainment

  5. Study on severe accident fuel dispersion behavior in the advanced neutron source reactor at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S. [Oak Ridge National Lab., TN (United States)] [and others

    1995-09-01

    Core flow blockage events have been determined to represent a leading contributor to core damage initiation risk in the Advanced Neutron Source (ANS) reactor. During such an accident, insufficient cooling of the fuel in a few adjacent blocked coolant channels out of several hundred channels, could also result in core heatup and melting under full coolant flow condition in other coolant channels. Coolant inertia forces acting on the melt surface would likely break up the melt into small particles. Under thermal-hydraulic conditions of ANS coolant channel, micro-fine melt particles are expected. Hat transfer between melt particle and coolant, which affects the particle breakup characteristics, was studied. The study indicates that the thermal effect on melt fragmentation seems to be negligible because the time corresponding to the breakup due to hydrodynamic forces is much shorter than the time for the melt surface to solidify. The study included modeling and analyses to predict transient behavior and transport of debris particles throughout the coolant system. The transient model accounts for the surface forces acting on the particle that results from the pressure variation on the surface, inertia, virtual mass, viscous force due to the relative motion of the particle in the coolant, gravitation, and resistance due to inhomogenous coolant velocity radially across piping due to possible turbulent coolant motions. The results indicate that debris particles would reside longest in heat exchangers because of lower coolant velocity there. Also they are entrained and move together in a cloud.

  6. Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN

    Science.gov (United States)

    Barbagallo, M.; Mastromarco, M.; Colonna, N.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.; Žugec, P.

    2014-12-01

    The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.

  7. Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN

    Directory of Open Access Journals (Sweden)

    Barbagallo M.

    2014-01-01

    Full Text Available The study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under construction.

  8. Spatial Multiplication Model as an alternative to the Point Model in Neutron Multiplicity Counting

    Energy Technology Data Exchange (ETDEWEB)

    Hauck, Danielle K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzl, Vladimir [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-26

    The point model is commonly used in neutron multiplicity counting to relate the correlated neutron detection rates (singles, doubles, triples) to item properties (mass, (α,n) reaction rate and neutron multiplication). The point model assumes that the probability that a neutron will induce fission is a constant across the physical extent of the item. However, in reality, neutrons near the center of an item have a greater probability of inducing fission then items near the edges. As a result, the neutron multiplication has a spatial distribution.

  9. An advanced ISOL facility based on ATLAS

    CERN Document Server

    Nolen, J A; Pardo, R C; Savard, G; Rehm, K E; Schiffer, J P; Henning, W F; Jiang, C L; Ahmad, L; Back, B B; Kaye, R A; Petra, M; Portillo, M; Greene, J; Clifft, B E; Specht, J R; Janssens, R V F; Siemssen, R H; Gómez, I; Reed, C B; Hassanein, A M

    1999-01-01

    The Argonne concept for an accelerator complex for efficiently producing high-quality radioactive beams from an ion source energy up to 6-15 MeV/u is described. The Isotope-Separator-On-Line (ISOL) method is used. A high-power $9 driver accelerator produces radionuclides in a target that is closely coupled to an ion source and mass separator. By using a driver accelerator which can deliver a variety of beams and energies the radionuclide production mechanisms $9 can be chosen to optimize yields for the species of interest. To effectively utilize the high beam power of the driver two-step target /ion source geometries are proposed: (1) Neutron production with intermediate energy deuterons on $9 a primary target to produce neutron- rich fission products in a secondary /sup 238/U target, and (2) Fragmentation of neutron-rich heavy ion beams such as /sup 18/O in a target/catcher geometry. Heavy ion beams with total energies in $9 the 1-10 GeV range are also available for radionuclide production via high-energy sp...

  10. New techniques in neutron scattering

    International Nuclear Information System (INIS)

    Hayter, J.B.

    1993-01-01

    New neutron sources being planned, such as the Advanced Neutron Source (ANS) or the European Spallation Source (ESS), will provide an order of magnitude flux increase over what is available today, but neutron scattering will still remain a signal-limited technique. At the same time, the development of new materials, such as polymer and ceramic composites or a variety of complex fluids, will increasingly require neutron-based research. This paper will discuss some of the new techniques which will allow us to make better use of the available neutrons, either through improved instrumentation or through sample manipulation. Discussion will center primarily on unpolarized neutron techniques since polarized neutrons will be the subject of the next paper. (author)

  11. Principle and Uncertainty Quantification of an Experiment Designed to Infer Actinide Neutron Capture Cross-Sections

    International Nuclear Information System (INIS)

    Youinou, G.; Palmiotti, G.; Salvatorre, M.; Imel, G.; Pardo, R.; Kondev, F.; Paul, M.

    2010-01-01

    An integral reactor physics experiment devoted to infer higher actinide (Am, Cm, Bk, Cf) neutron cross sections will take place in the US. This report presents the principle of the planned experiment as well as a first exercise aiming at quantifying the uncertainties related to the inferred quantities. It has been funded in part by the DOE Office of Science in the framework of the Recovery Act and has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation. The principle is to irradiate different pure actinide samples in a test reactor like INL's Advanced Test Reactor, and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after neutron irradiation allows the energy integrated neutron cross-sections to be inferred since the relation between the two are the well-known neutron-induced transmutation equations. This approach has been used in the past and the principal novelty of this experiment is that the atom densities of the different transmutation products will be determined with the Accelerator Mass Spectroscopy (AMS) facility located at ANL. While AMS facilities traditionally have been limited to the assay of low-to-medium atomic mass materials, i.e., A 200. The detection limit of AMS being orders of magnitude lower than that of standard mass spectroscopy techniques, more transmutation products could be measured and, potentially, more cross-sections could be inferred from the irradiation of a single sample. Furthermore, measurements will be carried out at the INL using more standard methods in order to have another set of totally uncorrelated information.

  12. On the Modeling of Local Neutronically-Coupled Flow-Induced Oscillations in Advanced Boiling Water Reactors

    International Nuclear Information System (INIS)

    Aniel-Buchheit, Sylvie; Podowski, Michael Z.

    2006-01-01

    The purpose of this paper is to discuss the development in progress of a complete space- and time-dependent model of the coupled neutron kinetic and reactor thermal-hydraulics. The neutron kinetics model is based on two-group diffusion equations with Doppler and void reactivity feedback effects. This model is coupled with the model of two-phase flow and heat transfer in parallel coolant channels. The modeling concepts considered for this purpose include one-dimensional drift flux and two-fluid models, as well a CFD model implemented in the NPHASE advanced computational multiphase fluid dynamics (CMFD) computer code. Two methods of solution for the overall model are proposed. One is based on direct numerical integration of the spatially-discretized governing equations. The other approach is based on a quasi-analytical modal approach to the neutronics model, in which a complete set of eigenvectors is found for step-wise temporal changes of the cross-sections of core materials (fuel and coolant/moderator). The issues investigated in the paper include details of model formulation, as well as the results of calculations for neutronically-coupled density-wave oscillations. (authors)

  13. Proceedings of the 182nd basic science seminar (The workshop on neutron structural biology ) 'New frontiers of structural biology advanced by solution scattering'

    International Nuclear Information System (INIS)

    Fujiwara, Satoru

    2001-03-01

    182nd advanced science seminar (the workshop on neutron structural biology) was held in February 9-10, 2000 at Tokai. Thirty-six participants from universities, research institutes, and private companies took part in the workshop, and total of 24 lectures were given. This proceedings collects abstracts, the figures and tables, which the speakers used in their lectures. The proceedings contains two reviews from the point of view of x-ray and neutron scatterings, and six subjects (21 papers) including neutron and x-ray scattering in the era of structure genomics, structural changes detected with solution scattering, a new way in structural biology opened by neutron crystallography and neutron scattering, x-ray sources and detectors, simulation and solution scattering, and neutron sources and detectors. (Kazumata, Y.)

  14. Fast Neutron Radiotherapy for Locally Advanced Prostate Cancer: Final Report of a Radiation Therapy Oncology Group Randomized Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Laramore, G. E.; Krall, J. M.; Thomas, F. J.; Russell, K. J.; Maor, M. H.; Hendrickson, F. R.; Martz, K. L.; Griffin, T. W.; Davis, L. W.

    1993-01-01

    Between June 1977 and April 1983 the Radiation Therapy Oncology Group (RTOG) sponsored a Phase III randomized trial investigating the use of fast neutron radiotherapy for patients with locally advanced (Stages C and D1) adenocarcinoma of the prostate gland. Patients were randomized to receive either conventional photon radiation or fast neutron radiation used in a mixed-beam (neutron/photon) treatment schedule. A total of 91 analyzable patients were entered into the study, and the two patient groups were balanced with respect to the major prognostic variables. Actuarial curves are presented for local/regional control and "overall" survival. Ten-year results for clinically assessed local control are 70% for the mixed-beam group versus 58% for the photon group (p = 0.03) and for survival are 46% for the mixed-beam group versus 29% for the photon group (p = 0.04). This study suggests that a regional method of treatment can influence both local tumor control and survival in patients with locally advanced adenocarcinoma of the prostate gland.

  15. The neutron silicon lens. An update of the thermal neutron lens results

    International Nuclear Information System (INIS)

    Johnson, M.W.; Daymond, M.R.

    2001-01-01

    This paper introduces the concept of the Neutron Silicon Lens (NSL) and provides and update on the experimental results achieved to date. The NSL design is a cylindrical neutron lens based on the use of multiple neutron mirrors supported and separated by silicon wafers. Such lenses would have many applications in both the primary and scattered beams on neutron instruments, and would lead to immediate improvements where the sample to be illuminated is small, as in high pressure or engineering strain scanning instruments. (author)

  16. MANTRA: An integral reactor physics experiment to infer the neutron capture cross sections of actinides and fission products in fast and epithermal spectra

    International Nuclear Information System (INIS)

    Youinou, G.; Veselka, H.; Palmiotti, G.; Murray, P.; Maddock, T.; Jones, W.; Glass, C.; Fonnesbeck, J.; Berg, J.; Vondrasek, R.; Paul, M.; Pardo, R.; Palchan, T.; Nusair, O.; Nair, C.; Kondrashev, S.; Kondev, F.G.; Bauder, W.; Salvatores, M.; Nimmagadda, J.; Imel, G.

    2014-01-01

    This paper presents an update of an on-going collaborative INL-ANL-ISU integral reactor physics experiment whose objective is to infer the effective neutron capture cross sections for most of the actinides of importance for reactor physics and fuel cycle studies in both fast and epithermal spectra. Some fission products are also being considered. The principle of the experiment is to irradiate very pure actinide samples in the Advanced Test Reactor at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation together with the neutron fluence will allow inference of effective neutron capture cross-sections in different neutron spectra. (authors)

  17. An alternative model for neutron flux maximization in research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Teruel, F.E.; Rizwan, Uddin [Illinois Univ. at Urbana-Champaign, Urbana, IL (United States)

    2005-07-01

    We present a core design for a new research reactor. The desired characteristics in this pool type research reactor of 10 MW power are: high thermal neutron fluxes, plenty of space to locate facilities in the reflector and an acceptable life cycle. In addition, the design is limited to standard fuel material of low enrichment uranium. Following the design of the German research reactor, FRM-II, which delivers high thermal neutron fluxes, an asymmetric cylindrical core with an inner and outer reflector is developed. This design concept analyzed using MCNP and ORIGEN2, achieves the desired features and allows further improvement. The final design is conservatively characterized by a life cycle of 41 days, a maximum thermal neutron flux peak in the reflector of 3.9 E 14 n.cm{sup -2} s{sup -1} and plenty of space to locate facilities and irradiate materials in the outer and inner reflector. This design may be used as a base for further development. (authors)

  18. Advanced setup for high-pressure and low-temperature neutron diffraction at hydrostatic conditions

    International Nuclear Information System (INIS)

    Lokshin, Konstantin A.; Zhao Yusheng

    2005-01-01

    We describe a design of the experimental setup for neutron diffraction studies at low temperatures and hydrostatic pressure. The significant benefit of the setup, compared to the previous methods, is that it makes possible the simultaneous collection of neutrons diffracted at the 30 deg. -150 deg. range with no contamination by the primary scattering from the sample surroundings and without cutting out the incident and diffracted beams. The suggested design is most useful for third-generation time-of-flight diffractometers and constant wavelength instruments. Application of the setup expands the capabilities of high-pressure neutron diffraction, allowing time-resolved kinetics and structural studies, multihistogram Rietveld, and pair distribution function and texture analyses. The high efficiency of the setup was proven for the HIPPO diffractometer at Los Alamos Neutron Science Center under pressures up to 10 kbar and temperatures from 4 to 300 K

  19. Monte Carlo calculation of ''skyshine'' neutron dose from ALS [Advanced Light Source

    International Nuclear Information System (INIS)

    Moin-Vasiri, M.

    1990-06-01

    This report discusses the following topics on ''skyshine'' neutron dose from ALS: Sources of radiation; ALS modeling for skyshine calculations; MORSE Monte-Carlo; Implementation of MORSE; Results of skyshine calculations from storage ring; and Comparison of MORSE shielding calculations

  20. Broad Energy Range Neutron Spectroscopy using a Liquid Scintillator and a Proportional Counter: Application to a Neutron Spectrum Similar to that from an Improvised Nuclear Device.

    Science.gov (United States)

    Xu, Yanping; Randers-Pehrson, Gerhard; Marino, Stephen A; Garty, Guy; Harken, Andrew; Brenner, David J

    2015-09-11

    A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n) 3 He and D(d,n) 3 He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9 Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

  1. Secondary neutron dose measurement for proton eye treatment using an eye snout with a borated neutron absorber

    Science.gov (United States)

    2013-01-01

    Background We measured and assessed ways to reduce the secondary neutron dose from a system for proton eye treatment. Methods Proton beams of 60.30 MeV were delivered through an eye-treatment snout in passive scattering mode. Allyl diglycol carbonate (CR-39) etch detectors were used to measure the neutron dose in the external field at 0.00, 1.64, and 6.00 cm depths in a water phantom. Secondary neutron doses were measured and compared between those with and without a high-hydrogen–boron-containing block. In addition, the neutron energy and vertices distribution were obtained by using a Geant4 Monte Carlo simulation. Results The ratio of the maximum neutron dose equivalent to the proton absorbed dose (H(10)/D) at 2.00 cm from the beam field edge was 8.79 ± 1.28 mSv/Gy. The ratio of the neutron dose equivalent to the proton absorbed dose with and without a high hydrogen-boron containing block was 0.63 ± 0.06 to 1.15 ± 0.13 mSv/Gy at 2.00 cm from the edge of the field at depths of 0.00, 1.64, and 6.00 cm. Conclusions We found that the out-of-field secondary neutron dose in proton eye treatment with an eye snout is relatively small, and it can be further reduced by installing a borated neutron absorbing material. PMID:23866307

  2. Advanced sample environments for in situ neutron diffraction studies of nuclear materials

    Science.gov (United States)

    Reiche, Helmut Matthias

    Generation IV nuclear reactor concepts, such as the supercritical-water-cooled nuclear reactor (SCWR), are actively researched internationally. Operating conditions above the critical point of water (374°C, 22.1 MPa) and fuel core temperature that potentially exceed 1850°C put a high demand on the surrounding materials. For their safe application, it is essential to characterize and understand the material properties on an atomic scale such as crystal structure and grain orientation (texture) changes as a function of temperature and stress. This permits the refinement of models predicting the macroscopic behavior of the material. Neutron diffraction is a powerful tool in characterizing such crystallographic properties due to their deep penetration depth into condensed matter. This leads to the ability to study bulk material properties, as opposed to surface effects, and allows for complex sample environments to study e.g. the individual contributions of thermo-mechanical processing steps during manufacturing, operating or accident scenarios. I present three sample environments for in situ neutron diffraction studies that provide such crystallographic information and have been successfully commissioned and integrated into the user program of the High Pressure -- Preferred Orientation (HIPPO) diffractometer at the Los Alamos Neutron Science Center (LANSCE) user facility. I adapted a sample changer for reliable and fast automated texture measurements of multiple specimens. I built a creep furnace combining a 2700 N load frame with a resistive vanadium furnace, capable of temperatures up to 1000°C, and manipulated by a pair of synchronized rotation stages. This combination allows following deformation and temperature dependent texture and strain evolutions in situ. Utilizing the presented sample changer and creep furnace we studied pressure tubes made of Zr-2.5wt%Nb currently employed in CANDURTM nuclear reactors and proposed for future SCWRs, acting as the primary

  3. The neutron production rate measurement of an indigenously developed compact D-D neutron generator

    Directory of Open Access Journals (Sweden)

    Das Basanta Kumar

    2013-01-01

    Full Text Available One electrostatic accelerator based compact neutron generator was developed. The deuterium ions generated by the ion source were accelerated by one accelerating gap after the extraction from the ion source and bombarded to a target. Two different types of targets, the drive - in titanium target and the deuteriated titanium target were used. The neutron generator was operated at the ion source discharge potential at +Ve 1 kV that generates the deuterium ion current of 200 mA at the target while accelerated through a negative potential of 80 kV in the vacuum at 1.3×10-2 Pa filled with deuterium gas. A comparative study for the neutron yield with both the targets was carried out. The neutron flux measurement was done by the bubble detectors purchased from Bubble Technology Industries. The number of bubbles formed in the detector is the direct measurement of the total energy deposited in the detector. By counting the number of bubbles the total dose was estimated. With the help of the ICRP-74 neutron flux to dose equivalent rate conversion factors and the solid angle covered by the detector, the total neutron flux was calculated. In this presentation the operation of the generator, neutron detection by bubble detector and estimation of neutron flux has been discussed.

  4. A new shipping container for an intense neutron emitter

    International Nuclear Information System (INIS)

    Bigelow, J.E.; Alexander, C.W.; Pace, J.V. III; Simmons, C.M.

    1994-01-01

    Californium-252 is an intense neutron emitter (2.34 x 10 12 n/s·g) used in medicine, research, and industry. The western world's sole source of this rare radioisotope is the Californium Facility at Oak Ridge National Laboratory's Radiochemical Engineering Development Center (REDC). A project has been initiated at the REDC to design a new Type B Californium Shipping Container. This effort is essential for future transportation of californium to meet the needs of users all over the world. The shipping container must meet all requirements for transport by motor freight, air, vessel, and rail, both domestic and foreign. There are unique problems in the design, fabrication, and licensing of a new Type B shipping container that will accommodate up to 60 milligrams of californium-252. One of the first challenges in the design phase of the project is the selection of a material to shield the high neutron flux. The more stringent safety precautions of today's world impel us to consider more exotic materials for such a purpose. The candidate materials must be examined not just for their neutron shielding properties, but also in conjunction with other properties such as thermal and structural requirements to withstand the hypothetical accident conditions. The design and building of such a container is a formidable task requiring much planning. The licensing process, with the complex, interactive federal codes, is a special challenge and may be the biggest on the project in terms of time and money

  5. Proposal for an accelerator-based neutron generator

    International Nuclear Information System (INIS)

    Grand, P.

    1975-07-01

    An Accelerator-based Neutron Generator is described that consists of a 30-MeV deuteron linear accelerator using a flowing liquid lithium target. With a continuous deuteron current of 100 milliamperes, a source intensity of more than 10 16 neutrons per second will be produced. The neutrons will be emitted in a roughly collimated beam. The proposed facility can be divided into two areas: the 30-MeV linear accelerator and the multiple-target experimental area. The 30-MeV accelerator will consist of eight rf accelerating cavities in a single vacuum tank, each cavity being powered by its own rf power amplifier operating at 50 MHz. To shield the beam bunches from the rf field when it is in the decelerating direction, 66 ''drift tubes'' will be included; the drift-tube structures will include quadrupole magnets which will keep the beam focused. The accelerator will produce a continuous beam of 100 milliamperes. Beam power will thus be 3.0 megawatts; total power including rf losses in the accelerating cavities will be 4.5 megawatts. The injectors for the linear accelerator will be two 500-kV dc accelerators, one for injection of D + ions and the other for D - ions. They can be used simultaneously or one can serve as a spare in case of breakdown or maintenance of the other. (U.S.)

  6. Advances in neutronics and radiological protection of HiPER 4a

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, Rafael, E-mail: rafael.juarez@upm.es [Instituto de Fusion Nuclear/UPM, Madrid (Spain); Sanz, Javier [Instituto de Fusion Nuclear/UPM, Madrid (Spain); Dept. Ingenieria Energetica UNED, Madrid (Spain); Perlado, Jose M. [Instituto de Fusion Nuclear/UPM, Madrid (Spain)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We have performed an overview of the radiological response of the facility in burst operation, period between bursts and decommissioning. Black-Right-Pointing-Pointer The facility is divided in three areas, from the least to the most exposed: area 1, 2 and 3. Black-Right-Pointing-Pointer During the operation, entrance is forbidden in area 1 and 2. The pinholes are responsible for the dose rates in area 2. Black-Right-Pointing-Pointer Between burst, entrance is forbidden inside the chamber and in area 1. Black-Right-Pointing-Pointer All the components of the facility can undergo clearance or manual maintenance within 30 years after the final shutdown. - Abstract: The HiPER project, phase 4a, is evolving. In this study we present the progress made in the field of neutronics and radiological protection for an integrated design of the facility. In the current model, we take into account the optical systems inside the target bay, as well as the remote handling requirements and related infrastructure, together with different shields. The last reference irradiation scenario, consisting of 20 MJ of neutron yields, 5 yields per burst, one burst every week and 30 years of expected lifetime is considered for this study. We have performed a characterization of the dose rates behavior in the facility, both during operation and between bursts. The dose rates are computed for workers, regarding to maintenance and handling, and also for optical systems, regarding to damage. Furthermore, we have performed a waste management assessment of all the components inside the target bay. Results indicate that remote maintenance is mandatory in some areas. The small beam penetrations in the shields are responsible for some high doses in some specific locations. With regards to optics, the residual doses are as high as prompt doses. It is found that the whole target bay may be fully managed as a waste in 30 years by recycling and/or clearance, with no

  7. Determination of the thermal and epithermal neutron sensitivities of an LBO chamber.

    Science.gov (United States)

    Endo, Satoru; Sato, Hitoshi; Shimazaki, Takuto; Nakajima, Erika; Kotani, Kei; Suda, Mitsuru; Hamano, Tsuyoshi; Kajimoto, Tsuyoshi; Tanaka, Kenichi; Hoshi, Masaharu

    2017-08-01

    An LBO (Li 2 B 4 O 7 ) walled ionization chamber was designed to monitor the epithermal neutron fluence in boron neutron capture therapy clinical irradiation. The thermal and epithermal neutron sensitivities of the device were evaluated using accelerator neutrons from the 9 Be(d, n) reaction at a deuteron energy of 4 MeV (4 MeV d-Be neutrons). The response of the chamber in terms of the electric charge induced in the LBO chamber was compared with the thermal and epithermal neutron fluences measured using the gold-foil activation method. The thermal and epithermal neutron sensitivities obtained were expressed in units of pC cm 2 , i.e., from the chamber response divided by neutron fluence (cm -2 ). The measured LBO chamber sensitivities were 2.23 × 10 -7  ± 0.34 × 10 -7 (pC cm 2 ) for thermal neutrons and 2.00 × 10 -5  ± 0.12 × 10 -5 (pC cm 2 ) for epithermal neutrons. This shows that the LBO chamber is sufficiently sensitive to epithermal neutrons to be useful for epithermal neutron monitoring in BNCT irradiation.

  8. Determination of the thermal and epithermal neutron sensitivities of an LBO chamber

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Satoru; Kotani, Kei; Kajimoto, Tsuyoshi; Tanaka, Kenichi [Hiroshima University, Quantum Energy Applications, Graduate School of Engineering, Higashi-Hiroshima (Japan); Sato, Hitoshi; Nakajima, Erika [Ibaraki Prefectural University of Health Science, Radiological Sciences, Ibaraki (Japan); Shimazaki, Takuto [Hiroshima University, Quantum Energy Applications, Graduate School of Engineering, Higashi-Hiroshima (Japan); Delta Kogyo Co., Ltd., Hiroshima (Japan); Suda, Mitsuru; Hamano, Tsuyoshi [National Institute of Radiological Sciences, Chiba-Shi, Chiba (Japan); Hoshi, Masaharu [Hiroshima University, Institute for Peace Science, Hiroshima (Japan)

    2017-08-15

    An LBO (Li{sub 2}B{sub 4}O{sub 7}) walled ionization chamber was designed to monitor the epithermal neutron fluence in boron neutron capture therapy clinical irradiation. The thermal and epithermal neutron sensitivities of the device were evaluated using accelerator neutrons from the {sup 9}Be(d, n) reaction at a deuteron energy of 4 MeV (4 MeV d-Be neutrons). The response of the chamber in terms of the electric charge induced in the LBO chamber was compared with the thermal and epithermal neutron fluences measured using the gold-foil activation method. The thermal and epithermal neutron sensitivities obtained were expressed in units of pC cm{sup 2}, i.e., from the chamber response divided by neutron fluence (cm{sup -2}). The measured LBO chamber sensitivities were 2.23 x 10{sup -7} ± 0.34 x 10{sup -7} (pC cm{sup 2}) for thermal neutrons and 2.00 x 10{sup -5} ± 0.12 x 10{sup -5} (pC cm{sup 2}) for epithermal neutrons. This shows that the LBO chamber is sufficiently sensitive to epithermal neutrons to be useful for epithermal neutron monitoring in BNCT irradiation. (orig.)

  9. Advanced quantum communications an engineering approach

    CERN Document Server

    Imre, Sandor

    2012-01-01

    The book provides an overview of the most advanced quantum informational geometric techniques, which can help quantum communication theorists analyze quantum channels, such as security or additivity properties. Each section addresses an area of major research of quantum information theory and quantum communication networks. The authors present the fundamental theoretical results of quantum information theory, while also presenting the details of advanced quantum ccommunication protocols with clear mathematical and information theoretical background. This book bridges the gap between quantum ph

  10. Enriched boric acid as an optimized neutron absorber in the EPR primary coolant

    International Nuclear Information System (INIS)

    Cosse, Christelle; Jolivel, Fabienne; Berger, Martial

    2012-09-01

    This paper focuses on one of the most important EPR PWR reactor design optimizations, through primary coolant conditioning by enriched boric acid (EBA). On PWRs throughout the world, boric acid has already been implemented in primary coolant and associated auxiliary systems for criticality control, due to its high Boron 10 neutron absorption cross section. Boric acid also allows primary coolant pH 300C control in combination with lithium hydroxide in many PWRs. The boric acid employed in the majority of existing PWRs is the 'natural' one, with a typical isotopic atomic abundance in Boron 10 about 19.8 at.%. However, EPR requirements for neutron management are more important, due to its fully optimized design compared to older PWRs. From the boron point of view, it means that criticality could be controlled either by increased 'natural' Boron concentrations or by using EBA. Comparatively to 'natural' boric acid, EBA allows for: - the use of smaller storage volumes for an identical total Boron concentration, or lower total Boron concentration if the tank volumes are kept identical. The latter also reduces the risks of boric acid crystallization, in spite of increased neutron-absorbing properties - the application of an evolutionary chemistry operating regime called Advanced pH Control, making it possible to maintain a constant pH 300C value at 7.2 in the primary coolant at nominal conditions throughout entire cycles. This optimized stability of pH 300C will contribute to reduce the consequences of contamination of the reactor coolant system by corrosion products, and consequently, all related issues - the reduction of borated liquid wastes, thanks to maximal recycling resulting from EPR design. The increased design costs associated with EBA are consequently compensated by a reduced total consumption of this chemical. Therefore, the basic design choice for the EPR is the use of EBA. For the Flamanville 3 EPR, according to the above

  11. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC

    Energy Technology Data Exchange (ETDEWEB)

    Magee, R. M., E-mail: rmagee@trialphaenergy.com; Clary, R.; Korepanov, S.; Jauregui, F.; Allfrey, I.; Garate, E.; Valentine, T.; Smirnov, A. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2016-11-15

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10{sup 7} n/s AmBe source. The practical issues of each method are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.

  12. An empirical fit to estimated neutron emission cross sections from ...

    Indian Academy of Sciences (India)

    dominated by neutrons spanning a wide range of energy from slow neutrons to several tens of MeV [1]. Moreover, protons ... expression to calculate neutron emission from proton induced reactions in the energy range. 25–105 MeV. ..... nuclear model calculations for nuclear technology applications, Trieste, Italy, SMR/284-1.

  13. An empirical fit to estimated neutron emission cross sections from ...

    Indian Academy of Sciences (India)

    dominated by neutrons spanning a wide range of energy from slow neutrons to several tens of MeV [1]. Moreover, protons in the energy region below 200 MeV are constituents of cosmic rays (solar protons) which directly or through secondary neutrons induce radiation damage to the electronic components in airplanes, ...

  14. An alternative method for the measurement of neutron flux

    Indian Academy of Sciences (India)

    Abstract. A simple and easy method for measuring the neutron flux is presented. This paper deals with the experimental verification of neutron dose rate–flux relationship for a non-dissipative medium. Though the neutron flux cannot be obtained from the dose rate in a dissipative medium, experimental result shows that for ...

  15. An alternative method for the measurement of neutron flux

    Indian Academy of Sciences (India)

    A simple and easy method for measuring the neutron flux is presented. This paper deals with the experimental verification of neutron dose rate–flux relationship for a non-dissipative medium. Though the neutron flux cannot be obtained from the dose rate in a dissipative medium, experimental result shows that for ...

  16. Measurements of neutron flux from an inertial-electrostatic confinement device

    International Nuclear Information System (INIS)

    Westenskow, G.A.

    1975-08-01

    A neutron-detection system was built for the purpose of measuring the neutron flux from an Inertial-Electrostatic Confinement Device located at Brigham Young University. A BF 3 proportional counter was used for absolute flux measurements and a pair of scintillation detectors was used to compare neutron output under different operating conditions. The detectors were designed to be compatible with the operating conditions of the device and to be able to measure small changes in neutron output. The detectors were calibrated using a Pu-Be source with corrections made for laboratory conditions. Performance of the counting system was checked and data were collected on the neutron flux from the device

  17. Advanced sources and optical components for the McStas neutron scattering instrument simulation package

    DEFF Research Database (Denmark)

    Farhi, E.; Monzat, C.; Arnerin, R.

    2014-01-01

    as in Guide_anyshape component for reflecting or absorbing complex set-up. The PSD_Detector component models a neutron absorbing gas volume, taking into account for instance the penetration depth and the associated parallax effect, the charge cloud generated at the absorption location. This gas volume can......We present new McStas components Virtual_mcnp_input and Virtual_tripoli4_input, Virtual_mcnp_output and Virtual_tripoli_output to be used as interface for the MCNP and Tripoli neutron transport codes. Similarly, the new Lens component can be used to describe any refracting material set...

  18. Advanced midwifery practice: An evolutionary concept analysis.

    Science.gov (United States)

    Goemaes, Régine; Beeckman, Dimitri; Goossens, Joline; Shawe, Jill; Verhaeghe, Sofie; Van Hecke, Ann

    2016-11-01

    the concept of 'advanced midwifery practice' is explored to a limited extent in the international literature. However, a clear conception of advanced midwifery practice is vital to advance the discipline and to achieve both internal and external legitimacy. This concept analysis aims to clarify advanced midwifery practice and identify its components. a review of the literature was executed using Rodgers' evolutionary method of concept analysis to analyze the attributes, references, related terms, antecedents and consequences of advanced midwifery practice. an international consensus definition of advanced midwifery practice is currently lacking. Four major attributes of advanced midwife practitioners (AMPs) are identified: autonomy in practice, leadership, expertise, and research skills. A consensus was found on the need of preparation at master's level for AMPs. Such midwives have a broad and internationally varied scope of practice, fulfilling different roles such as clinicians, clinical and professional leaders, educators, consultants, managers, change agents, researchers, and auditors. Evidence illustrating the important part AMPs play on a clinical and strategic level is mounting. the findings of this concept analysis support a wide variety in the emergence, titles, roles, and scope of practice of AMPs. Research on clinical and strategic outcomes of care provided by AMPs supports further implementation of these roles. As the indistinctness of AMPs' titles and roles is one of the barriers for implementation, a clear conceptualization of advanced midwifery practice seems essential for successful implementation. an international debate and consensus on the defining elements of advanced midwifery practice could enhance the further development of midwifery as a profession and is a prerequisite for its successful implementation. Due to rising numbers of AMPs, extension of practice and elevated quality requirements in healthcare, more outcomes research exclusively

  19. Time-of-flight diffraction at pulsed neutron sources: An introduction to the symposium

    International Nuclear Information System (INIS)

    Jorgensen, J.D.

    1994-01-01

    In the 25 years since the first low-power demonstration experiments, pulsed neutron sources have become as productive as reactor sources for many types of diffraction experiments. The pulsed neutron sources presently operating in the United States, England, and Japan offer state of the art instruments for powder and single crystal diffraction, small angle scattering, and such specialized techniques as grazing-incidence neutron reflection, as well as quasielastic and inelastic scattering. In this symposium, speakers review the latest advances in diffraction instrumentation for pulsed neutron sources and give examples of some of the important science presently being done. In this introduction to the symposium, I briefly define the basic principles of pulsed neutron sources, review their development, comment in general terms on the development of time-of-flight diffraction instrumentation for these sources, and project how this field will develop in the next ten years

  20. An extension of diffusion theory for thermal neutrons near boundaries

    International Nuclear Information System (INIS)

    Alvarez Rivas, J. L.

    1963-01-01

    The distribution of thermal neutron flux has been measured inside and outside copper rods of several diameters, immersed in water. It has been found that these distributions can be calculated by means of elemental diffusion theory if the value of the coefficient of diffusion is changed. this parameter is truly a diffusion coefficient, which now also depends on the diameter of the rod. Through a model an expression of this coefficient is introduced which takes account of the measurements of the author and of those reported in PIGC P/928 (1995), ANL-5872 (1959), DEGR 319 (D) (1961). This model could be extended also to plane geometry. (Author) 19 refs

  1. Neutron activation analysis of an Egyptian cigarette and its ash

    International Nuclear Information System (INIS)

    Iskander, F.Y.

    1985-01-01

    The concentration of 28 elements in tobacco and cigarette paper in an Egyptian cigarette was determined using instrumental neutron activation analysis. These elements are: Al, As, Ba, Br, Ca, Ce, Cl, Co, Cr, Cs, Eu, Fe, Hf, K, La, Mg, Mn, Na, Ni, Rb, Sb, Sc, Se, Sr, Th, Ti, V and Zn. The cigarette filter (before and after normal smoking) and the produced ash were analyzed to determine the adsorption of the elements on the filter and their remains in ash. The material balance for the determined elements were calculated. (author)

  2. Neutronic design studies for an unattended, low power reactor

    International Nuclear Information System (INIS)

    Palmer, R.G.; Durkee, J.W. Jr.

    1986-01-01

    The Los Alamos National Laboratory is involved in the design and demonstrations of a small, long-lived nuclear heat and electric power source for potential applications at remote sites where alternate fossil energy systems would not be cost effective. This paper describes the neutronic design analysis that was performed to arrive at two conceptual designs, one using thermoelectric conversion, the other using an organic Rankine cycle. To meet the design objectives and constraints a number of scoping and optimization studies were carried out. The results of calculations of control worths, temperature coefficients of reactivity and fuel depletion effects are reported

  3. Advanced in-situ measurement of soil carbon content using inelastic neutron scattering

    Science.gov (United States)

    Measurement and mapping of natural and anthropogenic variations in soil carbon stores is a critical component of any soil resource evaluation process. Emerging modalities for soil carbon analysis in the field is the registration of gamma rays from soil under neutron irradiation. The inelastic neutro...

  4. Advanced liguid and solid extraction procedures for ultratrace determination of rhenium by radiochemical neutron activation analysis

    Czech Academy of Sciences Publication Activity Database

    Mizera, Jiří; Kučera, Jan; Řanda, Zdeněk; Lučaníková, M.

    2006-01-01

    Roč. 56, v tisku (2006), s. 315-321 ISSN 0011-4626 R&D Projects: GA ČR(CZ) GA203/04/0943 Institutional research plan: CEZ:AV0Z10480505 Keywords : determination of rhenium * radiochemical neutron activation analysis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.568, year: 2006

  5. Application of Neutron Measurements to Advance Semiconductor Manufacturing: Next-Generation Lithography and Nanoporous Thin Films

    Science.gov (United States)

    Lin, Eric

    2010-03-01

    As feature sizes in microelectronic devices continue to decrease to sub-32 nm dimensions, new measurement methods are needed to understand the physical phenomena used in state-of-the-art lithography methods that may limit their fabrication and probe the structure and properties of new electronics materials. Neutron (and x-ray) beams have emerged as powerful probes of new manufactured structures with characteristic length scales ranging from (1 to 100) nm in thin films and in the bulk. In particular, X-ray reflectivity (XR), neutron reflectivity (NR), small angle neutron scattering (SANS), and small angle X-ray scattering (SAXS) can be applied in novel ways to address fundamental issues important to the microelectronics industry. This talk with highlight the application of neutron and x-ray measurement methods to investigate important problems in the development of photoresist materials used in lithography and of nanoporous low-dielectric-constant materials needed for next generation integrated circuits. Specific topics include: 1) the direct measurement of the reaction-diffusion front with nanometer resolution from ideal line-edges to probe image blur and roughness from photoacid diffusion 2) identification and measurement of a ``residual swelling fraction'' during the development and 3) measurements of the pore structure of low-dielectric constant thin films. Insights from these studies can provide guidelines and opportunities for the further extension of photoresist technology into the future and the integration of new materials into integrated circuits.

  6. Test of an albedo neutron dosimetry system: TLD calibration and readout procedure, neutron calibration, dosimetry properties, routine application

    International Nuclear Information System (INIS)

    Piesch, E.; Burgkhardt, B.

    1988-03-01

    The two-component albedo dosemeter in use consists of an universal boron-loaded plastic encapsulation, the beta and albedo neutron windows of which are adopted to the corresponding TLD system of the manufacturers Alnor, Harshaw, Panasonic and Vinten. Beside the TLD detectors the capsule may contain also track etch detectors. Within a BMU project the system was investigated by four governmental measurement services in the FRG with respect to its qualification for personnel monitoring with emphasis in the readout and calibration procedures for the TLD system, the evaluation technique for the estimation of the photon and neutron dose equivalent in routine monitoring and the calibration of the personnel dosemeter in stray neutron fields. The test has shown the readiness of the system to act in the application areas of nuclear power reactors and linacs behind heavy shieldings, in the fuel element cycle, use of fissile materials, criticality, use of radionuclide sources, high energy particle accelerators. The uncertainty due to energy dependence was found to be within a factor of 2 for a single application area. In the case of irradiations from the front half space the dose equivalent H'(10) is indicated sufficiently independent of the direction of the radiation incidence. After completion of the test the albedo dosemeter became the official neutron personnel dosemeter in the FRG. It allows the separate estimation of the dose equivalent of hard beta radiation, photon radiation and neutrons. (orig./HP) [de

  7. Experiment Design and Analysis Guide - Neutronics & Physics

    Energy Technology Data Exchange (ETDEWEB)

    Misti A Lillo

    2014-06-01

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  8. Progress Towards an Indirect Neutron Capture Capability at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Paul E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-20

    There are many neutron-capture cross sections of importance to radiochemical diagnostics and nuclear forensics which are beyond the reach of direct measurements. Hence, we have been developing an apparatus on flight path (FP) 13 at target 1 at LANSCE for tightly constraining these cross sections via determination of the underlying physical quantities. FP-13 was initially a cold-neutron beam line for materials science and therefore required substantial modification for use for nuclear physics. In FY17, we made several improvements to FP-13, demonstrated improved performance due to these changes via measurements on a variety of samples, identified a few more needed improvements, and reconfigured the beam line to implement the most important of these. New measurements to assess the impact of the most recent improvement will commence when beam is restored to LANSCE. Although FP-13 has not yet reached the performance required for small radioactive samples, measurements on a gold sample have led to an important science result which we are preparing for publication.

  9. Recent advancements of wide-angle polarization analysis with 3He neutron spin filters

    International Nuclear Information System (INIS)

    Chen, W.C.; Gentile, T.R.; Ye, Q.; Kirchhoff, A.; Watson, S.M.; Rodriguez-Rivera, J.A.; Qiu, Y.; Broholm, C.

    2016-01-01

    Wide-angle polarization analysis with polarized 3 He based neutron spin filters (NSFs) has recently been employed on the Multi-Axis Crystal Spectrometer (MACS) at the National Institute of Standards and Technology Center for Neutron Research (NCNR). Over the past several years, the apparatus has undergone many upgrades to address the fundamental requirements for wide angle polarization analysis using spin exchange optical pumping based 3 He NSFs. In this paper, we report substantial improvements in the on-beam-line performance of the apparatus and progress toward routine user capability. We discuss new standard samples used for 3 He NSF characterization and the flipping ratio measurement on MACS. We further discuss the management of stray magnetic fields produced by operation of superconducting magnets on the MACS instrument, which can significantly reduce the 3 He polarization relaxation time. Finally, we present the results of recent development of horseshoe-shaped wide angle cells. (paper)

  10. An improved fast neutron radiography quantitative measurement method

    International Nuclear Information System (INIS)

    Matsubayashi, Masahito; Hibiki, Takashi; Mishima, Kaichiro; Yoshii, Koji; Okamoto, Koji

    2004-01-01

    The validity of a fast neutron radiography quantification method, the Σ-scaling method, which was originally proposed for thermal neutron radiography was examined with Monte Carlo calculations and experiments conducted at the YAYOI fast neutron source reactor. Water and copper were selected as comparative samples for a thermal neutron radiography case and a dense object, respectively. Although different characteristics on effective macroscopic cross-sections were implied by the simulation, the Σ-scaled experimental results with the fission neutron spectrum cross-sections were well fitted to the measurements for both the water and copper samples. This indicates that the Σ-scaling method could be successfully adopted for quantitative measurements in fast neutron radiography

  11. Review of pipe-break probability assessment methods and data for applicability to the advanced neutron source project for Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Fullwood, R.R.

    1989-04-01

    The Advanced Neutron Source (ANS) (Difilippo, 1986; Gamble, 1986; West, 1986; Selby, 1987) will be the world's best facility for low energy neutron research. This performance requires the highest flux density of all non-pulsed reactors with concomitant low thermal inertial and fast response to upset conditions. One of the primary concerns is that a flow cessation of the order of a second may result in fuel damage. Such a flow stoppage could be the result of break in the primary piping. This report is a review of methods for assessing pipe break probabilities based on historical operating experience in power reactors, scaling methods, fracture mechanics and fracture growth models. The goal of this work is to develop parametric guidance for the ANS design to make the event highly unlikely. It is also to review and select methods that may be used in an interactive IBM-PC model providing fast and reasonably accurate models to aid the ANS designers in achieving the safety requirements. 80 refs., 7 figs

  12. Neutronic investigations of an equilibrium core for a tight-lattice light water reactor

    International Nuclear Information System (INIS)

    Broeders, C.H.M.

    1992-01-01

    Calculation procedures and first results concerning the neutronic design of an equilibrium core of an advanced pressurized water reactor (APWR) with mixed oxide fuel in a compact light water moderated triangular lattice are presented. Principle and qualification of the cell burnup calculations with the KARBUS program are briefly discussed. The fuel assembly design with single control rod positions filled with control rod material or coolant water requires special transport theory calculations, which are performed with a one-dimensional supercell model. The macroscopic fuel assembly cross section data is collected in a special library to be used in a new calculational procedure, ARCOSI, for multi-cycle reactor core simulations. Its first application for a reference design resulted in an equilibrium configuration with moderator density reactivity coefficients which are satisfactory as regards safety. (orig.) [de

  13. The Signal Chain - how the Removal of an Image Intensifier at the AERE Reactor in Bangladesh Improves Neutron Imaging

    Science.gov (United States)

    Schillinger, Burkhard; Saha, Sudipta

    Most neutron imaging systems use a neutron sensitive scintillation screen and camera. Due to the highly exothermic nature of the detection reaction, many thousand photons are produced for one detected neutron. If an additional image intensifier is used, the signal generated by very few neutrons may saturate the camera without delivering sufficient neutron statistics to examine a neutron radiography sample. This article takes a look at the signal chain for neutron radiography and tries to give some help for estimating required statistics and exposure times.

  14. The AECL study for an intense neutron - generator (technical details)

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Tunnicliffe, P.R.

    1966-01-01

    The AECL study for an intense neutron-generator has been in progress for two years. Recently the scientific and technical details and the conceptual designs were compiled in a report supporting proposals addressed to AECL's Board of Directors for further work. The compilation is being issued in this form to permit further discussion of the technical aspects. However readers are asked to appreciate that it was written primarily for an AECL audience, and specifically that those chapters giving tentative information about costs, the rate of investment and similar items have been omitted or modified, many references have been made to interim internal reports in order to complete the local documentation, but these references do not imply that the reports themselves can be made generally available. (author)

  15. The AECL study for an intense neutron - generator (technical details)

    Energy Technology Data Exchange (ETDEWEB)

    Bartholomew, G.A.; Tunnicliffe, P.R

    1966-07-01

    The AECL study for an intense neutron-generator has been in progress for two years. Recently the scientific and technical details and the conceptual designs were compiled in a report supporting proposals addressed to AECL's Board of Directors for further work. The compilation is being issued in this form to permit further discussion of the technical aspects. However readers are asked to appreciate that it was written primarily for an AECL audience, and specifically that those chapters giving tentative information about costs, the rate of investment and similar items have been omitted or modified, many references have been made to interim internal reports in order to complete the local documentation, but these references do not imply that the reports themselves can be made generally available. (author)

  16. The Advancement Value Chain: An Exploratory Model

    Science.gov (United States)

    Leonard, Edward F., III

    2005-01-01

    Since the introduction of the value chain concept in 1985, several varying, yet virtually similar, value chains have been developed for the business enterprise. Shifting to higher education, can a value chain be found that links together the various activities of advancement so that an institution's leaders can actually look at the philanthropic…

  17. An Advance Organizer for Teaching Bacterial Metabolism

    Science.gov (United States)

    Barbosa, Heloiza R.; Marques, Marilis V.; Torres, Bayardo B.

    2005-01-01

    The metabolic versatility of bacteria is a source of learning difficulty for students in classical microbiology courses. To facilitate the learning process, the authors developed an advance organizer. It consists of a set of six diagrams of metabolic pathways describing the basic living requirements of several types of bacteria: energy, carbon…

  18. An adjustable diaphragm/collimator for neutron diffraction experiments

    International Nuclear Information System (INIS)

    Simms, P.

    1981-01-01

    In single-crystal neutron diffraction experiments, the environment surrounding the specimen may produce unwanted scattering and this should be limited by a system of simple but easily adjustable diaphragms. Here a system is described which has been fitted to a number of neutron diffractometers at the Institut Laue-Langevin at Grenoble. (Auth.)

  19. Spectrum of neutrons leaking from an iron sphere with a central 14 MeV neutron source

    International Nuclear Information System (INIS)

    Borisov, A.A.; Zagryadskij, V.A.; Chuvilin, D.Yu.; Kralik, M.; Pulpan, J.; Tichy, M.

    1991-01-01

    Following a review of the present state of nuclear data requisite for the calculation of the transport of 14 MeV neutrons through iron of natural isotopic composition, the results are given of the calculation of the energy spectrum of such neutrons after their passage through an iron sphere 240 mm o.d. and 90 mm i.d., the neutron source being accommodated in the centre of the sphere. The calculations were made using the one-dimensional code BLANK working with the nuclear data libraries ENDL-75, ENDL-83, ENDL/B-IV, JENDL-2 and BROND, and using the three-dimensional code BRAND with the library ENDL-78. The calculated spectra were compared with the experimental spectrum measured at a distance of 3 m from the sphere by means of an NE-213 scintillator, which records reflected protons. The reflected proton spectrum was processed by the matrix method (program FORIST), and the result was normalized to one neutron emitted by the source, as were the calculated spectra. The comparison demonstrates that the experiment is best fitted by the spectrum calculated by using the library JENDL-2, where the integrals of the observed and calculated spectra over the 1-15 MeV range differ as little as approximately 10%. (author). 3 figs., 5 tabs., 16 refs

  20. Real Structure and Resudal Stresses in Advanced Welds Determined by X-ray and Neutron Diffraction

    Czech Academy of Sciences Publication Activity Database

    Trojan, K.; Hervoches, Charles; Ganev, N.; Mikula, Pavol; Čapek, J.

    2017-01-01

    Roč. 9, SEP (2017), s. 32-38 E-ISSN 2336-5382 R&D Projects: GA MŠk LM2015056; GA ČR GB14-36566G Institutional support: RVO:61389005 Keywords : laser and MAG welding * residual stresses * X-ray diffraction * neutron diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) https://ojs.cvut.cz/ojs/index.php/APP/article/view/4401/4298

  1. An ultracold neutron source at the NC State University PULSTAR reactor

    Science.gov (United States)

    Korobkina, E.; Wehring, B. W.; Hawari, A. I.; Young, A. R.; Huffman, P. R.; Golub, R.; Xu, Y.; Palmquist, G.

    2007-08-01

    Research and development is being completed for an ultracold neutron (UCN) source to be installed at the PULSTAR reactor on the campus of North Carolina State University (NCSU). The objective is to establish a university-based UCN facility with sufficient UCN intensity to allow world-class fundamental and applied research with UCN. To maximize the UCN yield, a solid ortho-D 2 converter will be implemented coupled to two moderators, D 2O at room temperature, to thermalize reactor neutrons, and solid CH 4, to moderate the thermal neutrons to cold-neutron energies. The source assembly will be located in a tank of D 2O in the space previously occupied by the thermal column of the PULSTAR reactor. Neutrons leaving a bare face of the reactor core enter the D 2O tank through a 45×45 cm cross-sectional area void between the reactor core and the D 2O tank. Liquid He will cool the disk-shaped UCN converter to below 5 K. Independently, He gas will cool the cup-shaped CH 4 cold-neutron moderator to an optimum temperature between 20 and 40 K. The UCN will be transported from the converter to experiments by a guide with an inside diameter of 16 cm. Research areas being considered for the PULSTAR UCN source include time-reversal violation in neutron beta decay, neutron lifetime determination, support measurements for a neutron electric-dipole-moment search, and nanoscience applications.

  2. Visualization of neutron flux and power distributions in TRIGA Mark II reactor as an educational tool

    International Nuclear Information System (INIS)

    Snoj, Luka; Ravnik, Matjaz; Lengar, Igor

    2008-01-01

    Modern Monte Carlo computer codes (e.g. MCNP) for neutron transport allow calculation of detailed neutron flux and power distribution in complex geometries with resolution of ∼1 mm. Moreover they enable the calculation of individual particle tracks, scattering and absorption events. With the use of advanced software for 3D visualization (e.g. Amira, Voxler, etc.) one can create and present neutron flux and power distribution in a 'user friendly' way convenient for educational purposes. One can view axial, radial or any other spatial distribution of the neutron flux and power distribution in a nuclear reactor from various perspectives and in various modalities of presentation. By visualizing the distribution of scattering and absorption events and individual particle tracks one can visualize neutron transport parameters (mean free path, diffusion length, macroscopic cross section, up-scattering, thermalization, etc.) from elementary point of view. Most of the people remember better, if they visualize the processes. Therefore the representation of the reactor and neutron transport parameters is a convenient modern educational tool for the (nuclear power plant) operators, nuclear engineers, students and specialists involved in reactor operation and design. The visualization of neutron flux and power distributions in Jozef Stefan Institute TRIGA Mark II research reactor is treated in the paper. The distributions are calculated with MCNP computer code and presented using Amira and Voxler software. The results in the form of figures are presented in the paper together with comments qualitatively explaining the figures. (authors)

  3. An Am-Be neutron source Accident and its management

    International Nuclear Information System (INIS)

    Bai Guang; Wang Xinyong; Wu Zhenghan

    1988-01-01

    An 241 Am-Be neutron source for inaustrial use was lost in a county of Guangdong Province in April, 1982. A school boy picked up and brought it to his home. The source was broken and 10 people were contaminated with radioactive substance. The boy (X) received the highest external irradiation, with chest dose of 0.12 Sv and hand dose of 0.32 Sv. His brother (Y) incurred the heaviest internal contamination by 241 Am, about 3.3 x 10 3 Bq. Decorporation was carried out in four persons including Y, and the excretion of 241 Am in stools and urine was increased significantly. With the medical examination performed upon these persons one and half years after the accident, no positive findings induced by radiation were found except the increase of chromosomal aberration rate in lymphocytes

  4. Inspection of an artificial heart by the neutron radiography technique

    CERN Document Server

    Pugliesi, R; Andrade, M L G; Menezes, M O; Pereira, M A S; Maizato, M J S

    1999-01-01

    The neutron radiography technique was employed to inspect an artificial heart prototype which is being developed to provide blood circulation for patients expecting heart transplant surgery. The radiographs have been obtained by the direct method with a gadolinium converter screen along with the double coated Kodak-AA emulsion film. The artificial heart consists of a flexible plastic membrane located inside a welded metallic cavity, which is employed for blood pumping purposes. The main objective of the present inspection was to identify possible damages in this plastic membrane, produced during the welding process of the metallic cavity. The obtained radiographs were digitized as well as analysed in a PC and the improved images clearly identify several damages in the plastic membrane, suggesting changes in the welding process.

  5. Neutron Energy Measurements in Radiological Emergency Response Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sanjoy Mukhopadhyay, Paul Guss, Michael Hornish, Scott Wilde, Tom Stampahar, Michael Reed

    2009-04-30

    We present significant results in recent advances in the determination of neutron energy. Neutron energy measurements are a small but very significant part of radiological emergency response applications. Mission critical information can be obtained by analyzing the neutron energy given off from radioactive materials. In the case of searching for special nuclear materials, neutron energy information from an unknown source can be of paramount importance.

  6. Fast Neutron Radiotherapy for Locally Advanced Prostate Cancer: Update of a Past Trial and Future Research Directions

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, John N. [U. Washington, Seattle (main); Krall, John M. [Unlisted, US, PA; Laramore, George E. [U. Washington, Seattle (main); Russell, Kenneth J. [U. Washington, Seattle (main); Thomas, Frank S. [Unlisted, US, OH; Maor, Moshe H. [Unlisted, US, TX; Hendrickson, Frank R. [Fermilab; Griffin, Thomas W. [U. Washington, Seattle (main)

    1987-01-01

    Between June, 1977 and April, 1983 the Radiation Therapy Oncology Group (RTOG) sponsored a Phase III study comparing fast neutron radiotherapy as part of a mixed beam (neutron/photon) regimen with conventional photon (x-ray) radiotherapy for patients with locally advanced (stages C and o1 ) adenocarcinoma of the prostate. A total of 91 analyzable patients were entered into the study with -the two treatment groups being balanced in regard to all major prognostic variables. The current analysis is for a median follow-up of 6.7 years (range 3.4-9.0). Actuarial curves are presented for local/regional control, overall survival and "determinantal" survival. The results are statistically significant in favor of the mixed beam group for all of the above parameters. At 5 years the local control rate is 81% on the mixed beam arm compared to 60% on the photon arm. Histologic evidence of residual prostatic carcinoma was documented in six patients with no clinical evidence of disease on both treatment arms. The actuarial overall survival rate at S years is 70% on the mixed beam compared to 56% on the photon arm. The determinantal survival at 5 years was 82%. on the mixed beam arm compared to 61% on the photon arm. The type of therapy appeared to be the most important predictor of both local tumor control and patient survival in a step-wise Cox analysis. There was no difference in the treatment related morbidity for the two patient groups. Mixed beam therapy may be superior to standard photon radiotherapy for treatment of locally advanced prostate cancer.

  7. Evaluation of Damage Tolerance of Advanced SiC/SiC Composites after Neutron Irradiation

    Science.gov (United States)

    Ozawa, Kazumi; Katoh, Yutai; Nozawa, Takashi; Hinoki, Tatsuya; Snead, Lance L.

    2011-10-01

    Silicon carbide composites (SiC/SiC) are attractive candidate materials for structural and functional components in fusion energy systems. The effect of neutron irradiation on damage tolerance of the nuclear grade SiC/SiC composites (plain woven Hi-Nicalon™ Type-S reinforced CVI matrix composites multilayer interphase and unidirectional Tyranno™-SA3 reinforced NITE matrix with carbon mono-layer interphase) was evaluated by means of miniaturized single-edged notched beam test. No significant changes in crack extension behavior and in the load-loadpoint displacement characteristics such as the peak load and hysteresis loop width were observed after irradiation to 5.9 × 1025 n/m2 (E > 0.1 MeV) at 800°C and to 5.8 × 1025 n/m2 at 1300°C. By applying a global energy balance analysis based on non-linear fracture mechanics, the energy release rate for these composite materials was found to be unchanged by irradiation with a value of 3±2 kJ/m2. This has led to the conclusion that, for these fairly aggressive irradiation conditions, the effect of neutron irradiation on the fracture resistance of these composites appears insignificant.

  8. Influence of an absorbing sublayer on polarizing property of magnetic neutron mirrors

    International Nuclear Information System (INIS)

    Korneev, D.A.; Pasyuk, V.V.; Petrenko, A.V.

    1991-01-01

    Measurements of the neutron reflectivity profile from absorbing thin film mirrors deposited onto glass substrates are presented and the results compared with theoretical predictions. The spectral dependence of the scattering length of natural Gd and GdTi alloy has been determined for the first time for the thermal neutron energy range. The unstable behavior of the neutron scattering length of Gd and consequently the principle impossibility of its compensation in a wide interval of neutron wavelengths is the reason of the strong decreasing of the polarizing properties of neutron guides with ferromagnetic mirrors. The possibility is discussed of producing a new absorbing sublayers with an important decrease of reflection in the neutron wavelength range from 1 to 10 A. The neutron reflectivity was analyzed for absorbing thin BTi, BV and CdV alloys on glass substrates. The calculated reflectivity as a function of neutron wavelength was optimized for concentration and layer thickness. Fist experimental data have been performed at the Laboratory of Neutron Physics (Joint Institute for Nuclear Research, Dubna) and are presented. (author). 7 refs, 7 figs

  9. Plan for the future of neutron research on condensed matter: an Argonne National Laboratory report prepared in response to the Report of the Review Panel on Neutron Scattering

    International Nuclear Information System (INIS)

    1981-01-01

    The Review Panel on Neutron Scattering has recommended an expanded budget to allow systematic development of the field. An alternative plan for the future of neutron research on condensed matter is presented here, in case it is not possible to fund the expanded budget. This plan leads, in a rational and logical way, to a world-class neutron source that will ensure the vitality of the field and exploit the many benefits that state-of-the-art neutron facilities can bring to programs in the materials and biological sciences. 2 tables

  10. Feasibility study of an innovative active neutron dosemeter

    Science.gov (United States)

    Hawkes, N. P.; Iwatschenko-Borho, M.; Leder, E.; Taylor, G. C.

    2017-11-01

    Prototypes of a novel pocket-sized active neutron dosemeter, based on a sensor made from the scintillator material Cs2LiYCl6:Ce (CLYC) coupled to a silicon photomultiplier (SiPM), were exposed to several well-characterised neutron fields produced at the National Physical Laboratory (NPL), UK. 6Li-enriched CLYC is extremely interesting as a dosemeter sensor because it can detect not only gamma rays but also thermal and fast neutrons, gammas being distinguishable from neutrons by pulse shape discrimination. Thermal and low energy neutrons are detected by the 6Li(n, α)3H reaction, which gives rise to a well-defined peak in the pulse height spectrum. Fast neutrons typically interact via 35Cl(n, p) or (n, α) reactions, and the kinetic energy of the reaction product gives rise to a pulse height spectrum that relates fairly straightforwardly to the original neutron energy spectrum. Because of this spectrometry capability, such a dosemeter has the potential to retain its accuracy to a much greater extent, compared with conventional devices, when used in radiation fields that differ from the one used for calibration. SiPMs are low-power and compact, allowing the prototype dosemeters produced for testing to fit entirely within a standard existing personal dosemeter housing. Tests were carried out in the low-scatter neutron facility at NPL, with measurements made both on-phantom and free-in-air. The former were done to evaluate the device's performance as a personal dosemeter, and the latter to explore its potential as a very light neutron area survey meter. In this paper the experimental results are presented, performance issues encountered during the trials are discussed, and preferred application scenarios are proposed.

  11. SUPER-FMIT, an accelerator-based neutron source for fusion components irradiation testing

    International Nuclear Information System (INIS)

    Burke, R.J.; Holmes, J.J.; Johnson, D.L.; Mann, F.M.; Miles, R.R.

    1984-01-01

    The SUPER-FMIT facility is proposed as an advanced accelerator based neutron source for high flux irradiation testing of large-sized fusion reactor components. The facility would require only small extensions to existing accelerator and target technology originally developed for the Fusion Materials Irradiation Test (FMIT) facility. There, neutrons would be produced by a 0.1 ampere beam of 35 MeV deuterons incident upon a liquid lithium target. The volume available for high flux (> 10 14 n/cm 2 -s) testing in SUPER-FMIT would be 14 liters, about a factor of 30 larger than in the FMIT facility. This is because the effective beam current of 35 MeV deuterons on target can be increased by a factor of ten to 1.0 amperes or more. Such a large increase can be accomplished by acceleration of multiple beams of molecular deuterium ions (D 2 +) to 70 MeV in a common accelerator sructure. The availability of multiple beams and large total current allows great variety in the testing that can be done. For example, fluxes greater than 10 16 n/cm 2 -s, multiple simultaneous experiments, and great flexibility in tailoring of spatial distributions of flux and spectra can be achieved

  12. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    International Nuclear Information System (INIS)

    Mitchell, H.E.

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 10 7 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF 3 composite and a stacked Al/Teflon design) at various incident electron energies

  13. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Hannah E. [Georgia Inst. of Technology, Atlanta, GA (United States)

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies.

  14. An accelerator neutron source for BNCT. Technical progress report, 1 June 1993--31 May 1994

    International Nuclear Information System (INIS)

    Blue, T.E.; Vafai, K.

    1994-02-01

    This is the progress report for the project entitled, ''An Accelerator Neutron Source for BNCT.'' The progress report is for the period from July 1, 1993 to date. The overall objective of our research project is to develop an Accelerator Epithermal Neutron Irradiation Facility (AENIF) for Boron Neutron Capture Therapy (BNCT). The AENIF consists of a 2.5 MeV high current proton accelerator, a lithium target to produce source neutrons, and a moderator/reflector assembly to obtain from the energetic source neutrons an epithermal neutron field suitable for BNCT treatments. Our project goals are to develop the non-accelerator components of the AENIF, and to specifically include in our development: (1) design, numerical simulation, and experimental verification of a target assembly which is capable of removing 75 kW of beam power; (2) re-optimization of the moderator assembly design based on in-phantom dose assessments using neutron spectra calculated in phantom and an energy-dependent neutron Relative Biological Effectiveness (RBE); (3) construction of a prototype moderator assembly and confirmation of its design by measurements; (4) design of the shielding of the accelerator and treatment rooms for an AENIF; and (5) design of a high energy beam transport system which is compatible with the shielding design and the thermal-hydraulic design

  15. Test and application of thermal neutron radiography facility at Xi'an pulsed reactor

    CERN Document Server

    Yang Jun; Zhao Xiang Feng; Wang Dao Hua

    2002-01-01

    A thermal neutron radiography facility at Xi'an Pulsed Reactor is described as well as its characteristics and application. The experiment results show the inherent unsharpness of BAS ND is 0.15 mm. The efficient thermal neutron n/gamma ratio is lower in not only steady state configuration but also pulsing state configuration and it is improved using Pb filter

  16. Monte Carlo Simulation of an Active Neutron Counter for Fissile Material Accounting

    International Nuclear Information System (INIS)

    Ahn, Seong-Kyu; Lee, Tae-Hoon; Shin, Hee-Sung; Kim, Ho-Dong

    2008-01-01

    Passive neutron coincidence counters have been developed for the measurement of special nuclear materials by the Korea Atomic Energy Research Institute (KAERI). Those passive-mode counters are based on spontaneous fission from plutonium or curium in special nuclear materials. Therefore, uranium and other fissile materials can not be assayed by a passive mode because of its very low spontaneous fission yield. An active neutron counting method is one of the possible ways to measure fissile material, in which a neutron interrogation source is adapted for induced fission. Passive neutron counter could be used in an active-mode with some appropriate modifications and interrogation sources. Preliminary research had been performed for an active-mode operation of a DUPIC safeguards neutron counter, which was developed as a passive counter, using a cadmium shutter and total neutron counting. In this paper, MCNP simulation result for active neutron coincidence counting has been described and discussed. The result could be applied to determine the possibility and necessary modification for an active mode operation of a developed neutron counter

  17. Neutron physics

    CERN Document Server

    Reuss, Paul

    2008-01-01

    Originally just an offshoot of nuclear physics, neutron physics soon became a branch of physics in its own right. It deals with the movement of neutrons in nuclear reactors and ail the nuclear reactions they trigger there, particularly the fission of heavy nuclei which starts a chain reaction to produce energy. Neutron Physics covers the whole range of knowledge of this complex science, discussing the basics of neutron physics and some principles of neutron physics calculations. Because neutron physics is the essential part of reactor physics, it is the main subject taught to students of Nuclear Engineering. This book takes an instructional approach for that purpose. Neutron Physics is also intended for ail physicists and engineers involved in development or operational aspects of nuclear power.

  18. An iterative method for solving neutron transport equation

    International Nuclear Information System (INIS)

    Simovic, R.

    1988-01-01

    Assuming a plane geometry and isotropic form of the neutron scattering function a new iterative method for solving the one-velocity transport equation is developed. The basic point of this method is the definition of the neutron fluxes Φ n± (x, μ, μ 0 ) representing the space dependent angular distributions of neutrons scattered n-times in directions μ 0. This makes possible to construct a new system for successive calculation of Φ n± (x, μ, μ 0 ) starting with the flux of un-collided neutrons. This treatment was shown to be more efficient than the ordinary one. As examples, the infinite medium Green functions and reflection coefficients of half space were calculated and analyzed. (author)

  19. An evaluated neutronic data file for elemental cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, P.; Lawson, R.; Meadows, J.; Sugimoto, M.; Smith, A.; Smith, D.; Howerton, R.

    1988-08-01

    A comprehensive evaluated neutronic data file for elemental cobalt is described. The experimental data base, the calculational methods, the evaluation techniques and judgments, and the physical content are outlined. The file contains: neutron total and scattering cross sections and associated properties, (n,2n) and (n,3n) processes, neutron radiative capture processes, charged-particle-emission processes, and photon-production processes. The file extends from 10/sup /minus/5/ eV to 20 MeV, and is presented in the ENDF/B-VI format. Detailed attention is given to the uncertainties and correlations associated with the prominent neutron-induced processes. The numerical contents of the file have been transmitted to the National Nuclear Data Center, Brookhaven National Laboratory. 143 refs., 16 figs., 5 tabs.

  20. Estimation of neutron dose equivalent at the mezzanine of the Advanced Light Source and the laboratory boundary using the ORNL program MORSE.

    Science.gov (United States)

    Sun, R K

    1990-12-01

    To investigate the radiation effect of neutrons near the Advanced Light Source (ALS) at Lawrence Berkeley Laboratory (LBL) with respect to the neutron dose equivalents in nearby occupied areas and at the site boundary, the neutron transport code MORSE, from Oak Ridge National Laboratory (ORNL), was used. These dose equivalents result from both skyshine neutrons transported by air scattering and direct neutrons penetrating the shielding. The ALS neutron sources are a 50-MeV linear accelerator and its transfer line, a 1.5-GeV booster, a beam extraction line, and a 1.9-GeV storage ring. The most conservative total occupational-dose-equivalent rate in the center of the ALS mezzanine, 39 m from the ALS center, was found to be 1.14 X 10(-3) Sv y-1 per 2000-h "occupational" year, and the total environmental-dose-equivalent rate at the ALS boundary, 125 m from the ALS center, was found to be 3.02 X 10(-4) Sv y-1 per 8760-h calendar year. More realistic dose-equivalent rates, using the nominal (expected) storage-ring current, were calculated to be 1.0 X 10(-4) Sv y-1 and 2.65 X 10(-5) Sv y-1 occupational year and calendar year, respectively, which are much lower than the DOE reporting levels.

  1. An investigation of fossil bone mineral structure with neutron scattering

    International Nuclear Information System (INIS)

    Batdehmbehrehl, G.; Chultehm, D.; Sangaa, D.

    1999-01-01

    Using the neutron diffraction method a domination of low crystal syngonic (sp. gr. P63/m) phase Ca 5 [PO 4 ] 3 (OH, F, Cl) in the fossil dinosaur bone has been established. It is shown that the neutron diffraction method has large advantages in apatite phase of any vertebrates studies and in the case of carbonate phase x-ray method it becomes to be preferable. (author)

  2. Basic of Neutron NDA

    Energy Technology Data Exchange (ETDEWEB)

    Trahan, Alexis Chanel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-15

    The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of 3He detector function and designs; and differentiate between passive and active assay techniques.

  3. Neutrons in science and technology

    International Nuclear Information System (INIS)

    Bromley, D.A.

    1984-01-01

    Occasionally to the fiftieth anniversy of the discovery of the neutron the author presents a historical review about the impact of this discovery on different fields at physics. Especially considered are nuclear physics, the neutron as an elementary particles, ultracold neutrons, condensed matter physics, radiation damage induced by neutrons, neutron activation analysis, imaging and radiography by neutrons, neutrons in mining operations, track etching, the use of intense gamma sources, gauging systems, neutron holography and neutron stars. (HSI)

  4. Research Reactor Application for Materials under High Neutron Fluence. Proceedings of an IAEA Technical Meeting (TM-34779)

    International Nuclear Information System (INIS)

    2011-05-01

    Research reactors (RRs) have played, and continue to play, a key role in the development of the peaceful uses of nuclear energy and technology. The role of the IAEA is to assist Member States in the effective utilization of these technologies in various domains of research such as fundamental and applied science, industry, human health care and environmental studies, as well as nuclear energy applications. In particular, material testing reactors (MTRs), serve as unique tools in scientific and technological development and they have quite a wide variety of applications. Today, a large range of different RR designs exist when compared with power reactors and they also have different operating modes, producing high neutron fluxes, which may be steady or pulsed. Recently, an urgent need has arisen for the development of new advanced materials, for example in the nuclear industry, where RRs offer capacities for irradiation programmes. Besides the scientific and research activities and commercial applications, RRs are also used extensively for educational training activities for scientists and engineers. This report is a compilation of outputs of an IAEA Technical Meeting (TM-34779) held on Research Reactor Application for Materials under High Neutron Fluence. The overall objective of the meeting was to review typical applications of small and medium size RRs, such as material characterization and testing, neutron physics and beam research, neutron radiography and imaging as well as isotope production and other types of non-nuclear applications. Several issues were discussed during the meeting, in particular: (1) recent development of irradiation facilities, specific irradiation programmes and their implementation; (2) effective and optimal RR operation regimes for irradiation purposes; (3) sharing of best practices and existing technical knowledge; and (4) fostering of advanced or innovative technologies, e.g. information exchange and effective collaboration. This

  5. MCViNE - An object oriented Monte Carlo neutron ray tracing simulation package

    Science.gov (United States)

    Lin, Jiao Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; Abernathy, Douglas L.; Lumsden, Mark D.; Winn, Barry; Aczel, Adam A.; Aivazis, Michael; Fultz, Brent

    2016-02-01

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiple scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. With simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.

  6. Determination of neutron flux with an arbitrary energy distribution by measurement of irradiated foils activity

    International Nuclear Information System (INIS)

    Ljubenov, V.; Milosevic, M.

    2003-01-01

    A procedure for the neutron flux determination in a neutron field with an arbitrary energy spectrum, based on the using of standard methods for the measurement of irradiated foils activity and on the application of the SCALE-4.4a code system for averaged cross section calculation is described in this paper. Proposed procedure allows to include the energy spectrum of neutron flux reestablished in the location of irradiated foils and the resonance self-shielding effects in the foils also. Example application of this procedure is given for the neutron flux determination inside the neutron filter with boron placed in the centre of heavy water critical assembly RB at the Vinca Institute (author)

  7. Characterisation of an accelerator-based neutron source for BNCT versus beam energy

    CERN Document Server

    Agosteo, S; D'Errico, F; Nath, R; Tinti, R

    2002-01-01

    Neutron capture in sup 1 sup 0 B produces energetic alpha particles that have a high linear energy transfer in tissue. This results in higher cell killing and a higher relative biological effectiveness compared to photons. Using suitably designed boron compounds which preferentially localize in cancerous cells instead of healthy tissues, boron neutron capture therapy (BNCT) has the potential of providing a higher tumor cure rate within minimal toxicity to normal tissues. This clinical approach requires a thermal neutron source, generally a nuclear reactor, with a fluence rate sufficient to deliver tumorcidal doses within a reasonable treatment time (minutes). Thermal neutrons do not penetrate deeply in tissue, therefore BNCT is limited to lesions which are either superficial or otherwise accessible. In this work, we investigate the feasibility of an accelerator-based thermal neutron source for the BNCT of skin melanomas. The source was designed via MCNP Monte Carlo simulations of the thermalization of a fast ...

  8. An investigation of epithermal neutron fluxes from lunar impact basins

    Science.gov (United States)

    Sinitsyn, M. P.

    2016-12-01

    The article presents the distribution of epithermal neutron fluxes and hydrogen contents in lunar impact basins and mare formations across the entire equatorial lunar surface. A distribution of a suppression factor of epithermal neutron flux in seleno-graphic longitude has been obtained. As a result of the distribution it may be concluded that the suppression factor (a degree of neutron flux reduction relative to a maximum,located near crater Tycho) has the highest value in the near side marine basins. In the same places the largest amount of hydrogen is contained. In contrast, the lower hydrogen contents and, accordingly, the minimum neutron suppression factors correspond to the mare formations and impact basins on the far side. So, suppression of epithermal neutrons is almost completely absent in the mare Moscoviense. Therefore, the corresponding concentration of hydrogen is also rather insignificant there. Additionally, the results presented here indicate that the concentration of hydrogen is a very complicated function of age (maturity) of the lunar surface. This in turn points to the lack of a gradual accumulation of hydrogen with time over a period of several million years or more. Taking into account that the age of the far side impact basins of the Moon is, in general, more than the age of the same near side objects, it is possible to assume indigenous origin of the hydrogen in marine lavas.

  9. Niobium as an ex-vessel neutron dosimeter for PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, L.M.; Apple, S.C.; Culp, R.R. (Arkansas Technical Univ., Russellville (United States))

    1991-01-01

    The use of niobium as a neutron monitor has generated considerable interest among those doing reactor pressure vessel neutron dosimetry. The product of the {sup 93}Nb(n,n{prime}){sup 93m}Nb reaction has a half-life of 16.1 years. It decays by internal conversion emitting 16.6- and 18.6keV X rays. Niobium's attributes are the similarity of its neutron cross section to the damage cross section of iron and its long half-life and activation sensitivity. Niobium's disadvantages are self-attenuation of the low-energy X rays and X-ray fluorescence induced by other radiation that might be present. Since 1983, several niobium foils have been irradiated along with conventional neutron dosimeters in the two nuclear reactors at Arkansas Nuclear One. The conventional dosimeter set contained copper, titanium, nickel, iron, {sup 238}U, and {sup 237}Np monitors. The niobium foils were analyzed for {sup 93m}Nb activity, correcting for both self-attenuation and fluorescence. Reaction rates were determined for each foil. These reaction rates were compared with reaction rates calculated from the neutron fluence measurements obtained with the conventional dosimeters. This paper discusses the stated disadvantages and the results of the reaction rate comparison.

  10. Characterisation of an isotopic neutron source: A comparison of conventional neutron detectors and micro-silica glass bead thermoluminescent detectors

    Science.gov (United States)

    Abubakar, Y. M.; Taggart, M. P.; Alsubaie, A.; Alanazi, A.; Alyahyawi, A.; Lohstroh, A.; Shutt, A.; Jafari, S. M.; Bradley, D. A.

    2017-11-01

    As a result of their thermoluminescent response, low cost commercial glass beads have been demonstrated to offer potential use as radiation dosimeters, providing capability in sensing different types of ionising radiation. With a linear response over a large range of dose and spatial resolution that allows measurements down to the order of 1 mm, their performance renders them of interest in situations in which sensitivity, dynamic range, and fine spatial resolution are called for. In the present work, the suitability of glass beads for characterisation of an Americium-Beryllium (241AmBe) neutron source has been assessed. Direct comparison has been made using conventional 3He and boron tri-fluoride neutron detectors as well as Monte Carlo simulation. Good agreement is obtained between the glass beads and gas detectors in terms of general reduction of count rate with distance. Furthermore, the glass beads demonstrate exceptional spatial resolution, leading to the observation of fine detail in the plot of dose versus distance from source. Fine resolution peaks arising in the measured plots, also present in simulations, are interesting features which based on our best knowledge have previously not been reported. The features are reproduced in both experiment and simulation but we do not have a firm reason for their origin. Of greater clarity is that the glass beads have considerable potential for use in high spatial resolution neutron field characterisation, subject to the availability of a suitable automated TLD reader.

  11. Determination of structural water by neutron protein crystallography: an analysis of the carbon monoxide myoglobin water structure

    International Nuclear Information System (INIS)

    Schoenborn, B.P.; Hanson, J.C.

    1979-01-01

    An ideal technique for studying the water structure of proteins using neutron crystallography is discussed. The advantages of using deuterons (D 2 O) instead of hydrogen (H 2 O) are explained. The results of an early unrefined met myoglobin neutron analysis are presented. More recent high resolution x-ray analysis of met myoglobin and refined neutron analysis of carbon monoxide myoglobin water structure were compared. Neutron maps were included

  12. Development of an advanced robot manipulator system

    International Nuclear Information System (INIS)

    Oomichi, Takeo; Higuchi, Masaru; Shimizu, Yujiro; Ohnishi, Ken

    1991-01-01

    A sophisticated manipulator system for an advanced robot was developed under the 'Advanced Robot Technology Development' Program promoted and supported by the Agency of Industrial Science and Technology of MITI. The authors have participated in the development of a fingered manipulator with force and tactile sensors applicable to a masterslave robot system. Our slave manipulator is equipped with four fingers. Though the finger needs many degrees of freedom so as to be suitable for skilful handing of an object, our fingers are designed to have minimum degree of freedom in order to reduce weight. Each finger tip was designed to be similar to a human finger which has flexibility, softness and contact feeling. The shape of the master finger manipulator was so designed that the movement of the fingers is smoother and that the constraint feeling of the operator is smaller. We were adopted to a pneumatic pressure system for transmitting the tactile feeling of the slave fingers to the master fingers. A multiple sensory bilateral control system which gives an operator a feeling of force and tactile reduces his feeling of constraint in carrying out work with a robot system. (author)

  13. An advanced interactive interface for robotics elearning

    Directory of Open Access Journals (Sweden)

    Fernando Torres

    2008-11-01

    Full Text Available Virtual and remote laboratories have improved learning and training in the academic community. They allow students to acquire methods, skills and experience related to real equipment in an intuitive and cost-effective way. The purpose of this paper is to present the development and the implementation of an e-learning environment in the field of Robotics. The main aim of this application is to allow students to simulate and to teleoperate a robot arm in an easy and user-friendly way, although it also includes many novel advanced features. The application has been developed using Easy Java Simulations (EJS, an open-source tool for people who do not need complex programming skills.

  14. An apparatus to search for free neutron-antineutron oscillations

    International Nuclear Information System (INIS)

    Bressi, G.; Calligarich, E.; Cambiaghi, M.; Dolfini, R.; Gigli Berzolari, A.; Lanza, A.; Liguori, G.; Mauri, F.; Piazzoli, A.; Ratti, S.P.; Scannicchio, D.; Torre, P.; Conversi, M.; De Zorzi, G.; Massa, F.; Zanello, D.; Cardarelli, R.; Santonico, R.; Terrani, M.

    1987-01-01

    After recalling the phenomenology of neutron-antineutron oscillations expected to occur if the baryon number is not rigorously conserved, the apparatus developed and used in a search for such a process, currently being carried out at the Pavia nuclear reactor, is described in some detail. The apparatus involves a large volume neutron channel (≅ 20 m 3 ) in which the earth magnetic field has been reduced by a factor 50, and large area detectors (scintillators, flash chambers and 'resistive plate counters') operating under conditions of extremely severe background from the reactor. (orig.)

  15. Numerical solution of time dependent neutron transport equation. An application

    International Nuclear Information System (INIS)

    Barroso, Dalton Ellery Girao

    2000-01-01

    In this work we show a simple method to solve numerically the time-dependent neutron transport equation which is a simple extension of the numerical methods used to solve the time-independent static transport equation. This is possible because the time-discretized transport equation has the same form as the time-independent transport equation, with only some additional terms. A general outline of the method is given and used to evaluate the neutron flux in a microexplosion calculation of a highly compressed micro fissile system composed by DT-Pu-Be microsphere. (author)

  16. Linac design study for an intense neutron-source driver

    International Nuclear Information System (INIS)

    Lynch, M.T.; Browman, A.; DeHaven, R.; Jameson, R.; Jason, A.; Neuschaefer, G.; Tallerico, P.; Regan, A.

    1993-01-01

    The 1-MW spallation-neutron source under design study at Los Alamos is driven by a linac-compressor-ring scheme that utilizes a large portion of the existing Los Alamos Meson Physics Facility (LAMPF) linac, as well as the facility infrastructure. The project is referred to as the National Center for Neutron Research (NCNR). A second phase of the proposal will upgrade the driver power to 5 MW. A description of the 1-MW scheme is given in this paper. In addition, the upgrade path to the substantial increase of beam power required for the 5 MW scenario is discussed

  17. An autonomous control framework for advanced reactors

    Directory of Open Access Journals (Sweden)

    Richard T. Wood

    2017-08-01

    Full Text Available Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors.

  18. An autonomous control framework for advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Richard T.; Upadhyaya, Belle R.; Floyd, Dan C. [Dept. of Nuclear Engineering, University of Tennessee, Knoxville (United States)

    2017-08-15

    Several Generation IV nuclear reactor concepts have goals for optimizing investment recovery through phased introduction of multiple units on a common site with shared facilities and/or reconfigurable energy conversion systems. Additionally, small modular reactors are suitable for remote deployment to support highly localized microgrids in isolated, underdeveloped regions. The long-term economic viability of these advanced reactor plants depends on significant reductions in plant operations and maintenance costs. To accomplish these goals, intelligent control and diagnostic capabilities are needed to provide nearly autonomous operations with anticipatory maintenance. A nearly autonomous control system should enable automatic operation of a nuclear power plant while adapting to equipment faults and other upsets. It needs to have many intelligent capabilities, such as diagnosis, simulation, analysis, planning, reconfigurability, self-validation, and decision. These capabilities have been the subject of research for many years, but an autonomous control system for nuclear power generation remains as-yet an unrealized goal. This article describes a functional framework for intelligent, autonomous control that can facilitate the integration of control, diagnostic, and decision-making capabilities to satisfy the operational and performance goals of power plants based on multimodular advanced reactors.

  19. In-flight neutron spectra as an ICF diagnostic for implosion asymmetries

    Science.gov (United States)

    Cerjan, C.; Sayre, D. B.; Sepke, S. M.

    2018-02-01

    The yield and spectral shape of the neutrons produced during in-flight reactions provide stringent constraints upon the symmetry of the fully compressed fuel conditions in Inertial Confinement Fusion implosions. Neutron production from a specific deuterium gas-filled implosion is simulated in detail and compared with the experimental neutron spectra along two lines-of-sight. An approximate reactivity formulation is applied to obtain further insight into the underlying fuel configuration. This analysis suggests that the differences observed in the observed spectra correspond to angularly dependent triton velocity distributions created by an asymmetric plasma configuration.

  20. The development of an automatic scanning method for CR-39 neutron dosimeter

    International Nuclear Information System (INIS)

    Tawara, Hiroko; Miyajima, Mitsuhiro; Sasaki, Shin-ichi; Hozumi, Ken-ichi

    1989-01-01

    A method of measuring low level neutron dose has been developed with CR-39 track detectors using an automatic scanning system. It is composed of the optical microscope with a video camera, an image processor and a personal computer. The focus point of the microscope and the X-Y stage are controlled from the computer. The minimum detectable neutron dose is estimated at 4.6 mrem in the uniform field of neutron with equivalent energy spectrum to Am-Be source from the results of automatic measurements. (author)

  1. Implementation of an Analytical Model for Leakage Neutron Equivalent Dose in a Proton Radiotherapy Planning System

    Directory of Open Access Journals (Sweden)

    John Eley

    2015-03-01

    Full Text Available Equivalent dose from neutrons produced during proton radiotherapy increases the predicted risk of radiogenic late effects. However, out-of-field neutron dose is not taken into account by commercial proton radiotherapy treatment planning systems. The purpose of this study was to demonstrate the feasibility of implementing an analytical model to calculate leakage neutron equivalent dose in a treatment planning system. Passive scattering proton treatment plans were created for a water phantom and for a patient. For both the phantom and patient, the neutron equivalent doses were small but non-negligible and extended far beyond the therapeutic field. The time required for neutron equivalent dose calculation was 1.6 times longer than that required for proton dose calculation, with a total calculation time of less than 1 h on one processor for both treatment plans. Our results demonstrate that it is feasible to predict neutron equivalent dose distributions using an analytical dose algorithm for individual patients with irregular surfaces and internal tissue heterogeneities. Eventually, personalized estimates of neutron equivalent dose to organs far from the treatment field may guide clinicians to create treatment plans that reduce the risk of late effects.

  2. Neutron activation analysis as an element of sculpture provenance establishing

    International Nuclear Information System (INIS)

    Panczyk, E.; Rowinska, L.; Walis, L.; Ligeza, M.; Nalepa, B.

    1998-01-01

    Investigation was carried out on the subject named ''Madonna Jackowa'' (XV cent.). The investigation object was to answer whether ''Madonna Jackowa'' was made of a native alabaster. Alabaster derived from five carious mines situated at the Cracow - Lvov line and ''Madonna Jackowa'' were analysed and the trace elements contents were compared. Instrumental neutron activation method was used for analysis of the trace. (author)

  3. Neutron scattering from an imperfect flux-line lattice

    International Nuclear Information System (INIS)

    Brandt, E.H.

    1978-01-01

    The diffraction of neutrons from the imperfect vortex lattice of a type-II superconductor is investigated. It is found that flux pinning leads not only to a broadening of the Bragg reflections but also to diffuse scattering into the first Brillouin zone, which at high fields exceeds Bragg scattering

  4. Small-angle neutron scattering in materials science - an introduction

    Energy Technology Data Exchange (ETDEWEB)

    Fratzl, P. [Vienna Univ., Inst. fuer Materialphysik, Vienna (Austria)

    1996-12-31

    The basic principles of the application of small-angle neutron scattering to materials research are summarized. The text focusses on the classical methods of data evaluation for isotropic and for anisotropic materials. Some examples of applications to the study of alloys, porous materials, composites and other complex materials are given. (author) 9 figs., 38 refs.

  5. Neutron activation analysis - an aid to forensic science

    International Nuclear Information System (INIS)

    Chattopadhyay, N.; Basu, A.K.; Tripathi, A.B.R.; Bhadkambekar, C.A.; Shukla, S.K.

    2006-01-01

    Forensic Science is oriented towards the examination of evidence specimens, collected from a scene of crime in order to establish the link between the criminal and the crime. This science therefore has a profound role to play in criminal justice delivery system. The importance of neutron activation analysis (NAA) as a specialised technique to aid crime investigation has emerged and has been recognised

  6. An introduction to NH-A neutron earth base moisture gage

    International Nuclear Information System (INIS)

    Zhu Huaian; Jiang Yulan; Yin Xilin; Yu Peiying; Luo Pinjie

    1988-01-01

    NH-A neutron earth base moisture gage is an accurate instrument which can measure earth moisture rapidly and non-destructively and display moisture results immediately. The deviation is estimated at ±0.012g/cm

  7. An apparatus for studying spallation neutrons in the Aberdeen Tunnel laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Blyth, S.C. [Department of Electro-Optical Engineering, National United University, Miao-Li, Taiwan (China); Chan, Y.L.; Chen, X.C.; Chu, M.C. [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Hahn, R.L. [Chemistry Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Ho, T.H.; Hsiung, Y.B. [Department of Physics, National Taiwan University, Taipei, Taiwan (China); Hu, B.Z. [Institute of Physics, National Chiao-Tung University, Hsinchu, Taiwan (China); Kwan, K.K.; Kwok, M.W. [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Kwok, T., E-mail: goodtalent@gmail.com [Department of Physics, University of Hong Kong, Hong Kong (China); Lau, Y.P.; Lee, K.P.; Leung, J.K.C.; Leung, K.Y. [Department of Physics, University of Hong Kong, Hong Kong (China); Lin, G.L. [Institute of Physics, National Chiao-Tung University, Hsinchu, Taiwan (China); Lin, Y.C. [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Luk, K.B. [Department of Physics, University of California at Berkeley, Berkeley, CA 94720 (United States); Luk, W.H. [Department of Physics, Chinese University of Hong Kong, Hong Kong (China); Ngai, H.Y. [Department of Physics, University of Hong Kong, Hong Kong (China); and others

    2013-09-21

    In this paper, we describe the design, construction and performance of an apparatus installed in the Aberdeen Tunnel laboratory in Hong Kong for studying spallation neutrons induced by cosmic-ray muons under a vertical rock overburden of 611 m water equivalent (m.w.e.). The apparatus comprises six horizontal layers of plastic-scintillator hodoscopes for determining the direction and position of the incident cosmic-ray muons. Sandwiched between the hodoscope planes is a neutron detector filled with 650 kg of liquid scintillator doped with about 0.06% of Gadolinium by weight for improving the efficiency of detecting the spallation neutrons. Performance of the apparatus is also presented.

  8. An automated delayed neutron counting system for mass determinations of special nuclear materials

    International Nuclear Information System (INIS)

    Sellers, M.T.; Kelly, D.G.; Corcoran, E.C.

    2012-01-01

    An automated delayed neutron counting (DNC) system has been developed at the Royal Military College of Canada (RMC) to enhance nuclear forensics capabilities pertaining to special nuclear material analysis. The system utilises the SLOWPOKE-2 Facility at RMC as a neutron source and 3 He detectors. System control and data acquisition occur through a LabVIEW platform. The time dependent count rate of the delayed neutron production has been examined for 235 U, using certified reference materials. Experimental validation according to ISO 17025 protocols suggests typical errors and precision of -3.6 and 3.1%, respectively, and a detection limit of 0.26 μg 235 U. (author)

  9. Characterization of neutron supermirror V-bender

    Energy Technology Data Exchange (ETDEWEB)

    Shin, E. J.; Seong, B. S.; Lee, J. S.; Hong, K. P.; Choi, B. H.; Lee, C. H

    2004-05-15

    Neutron supermirror is used not only for neutron guide tubes that their make it possible to transmit neutrons for long distance with low losses in intensity but for neutron benders used as a beam splitter. These devices are of main components of advanced neutron diffractometer or spectrometer with cold neutrons. In this report, the basic principles and applications of neutron guide tube and neutron supermirror as well as the performance test results of neutron V-bender were introduced. These information will be used for the development of advance cold neutron spectrometers in the future.

  10. Characterization of neutron supermirror V-bender

    International Nuclear Information System (INIS)

    Shin, E. J.; Seong, B. S.; Lee, J. S.; Hong, K. P.; Choi, B. H.; Lee, C. H.

    2004-05-01

    Neutron supermirror is used not only for neutron guide tubes that their make it possible to transmit neutrons for long distance with low losses in intensity but for neutron benders used as a beam splitter. These devices are of main components of advanced neutron diffractometer or spectrometer with cold neutrons. In this report, the basic principles and applications of neutron guide tube and neutron supermirror as well as the performance test results of neutron V-bender were introduced. These information will be used for the development of advance cold neutron spectrometers in the future

  11. Neutron activation analysis in an industrial laboratory using an off-site nuclear reactor

    International Nuclear Information System (INIS)

    Osborn, T.W.; Broering, W.B.

    1977-01-01

    A multifunctional research laboratory, such as Procter and Gamble's Miami Valley Laboratories, requires elemental analyses on many materials. A general survey technique is important even if the information it provides is incomplete or is less precise than single element analyses. Procter and Gamble has developed neutron activation analysis (NAA) capabilities using a nuclear reactor several hundred miles away. The concentration of 40 to 50 elements can be determined in a variety of matrices. We have found NAA to be a powerful supplement to some of the more classical analytical techniques even without having an on-site neutron source. We have also found an automated data acquisition system to be essential for the successful application of NAA in an industrial laboratory

  12. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  13. Production and applications of neutrons using particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Chichester, David L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2009-11-01

    Advances in neutron science have gone hand in hand with the development and of particle accelerators from the beginning of both fields of study. Early accelerator systems were developed simply to produce neutrons, allowing scientists to study their properties and how neutrons interact in matter, but people quickly realized that more tangible uses existed too. Today the diversity of applications for industrial accelerator-based neutron sources is high and so to is the actual number of instruments in daily use is high, and they serve important roles in the fields where they're used. This chapter presents a technical introduction to the different ways particle accelerators are used to produce neutrons, an historical overview of the early development of neutron-producing particle accelerators, a description of some current industrial accelerator systems, narratives of the fields where neutron-producing particle accelerators are used today, and comments on future trends in the industrial uses of neutron producing particle accelerators.

  14. New fabrication method for an ellipsoidal neutron focusing mirror with a metal substrate.

    Science.gov (United States)

    Guo, Jiang; Takeda, Shin; Morita, Shin-ya; Hino, Masahiro; Oda, Tatsuro; Kato, Jun-ichi; Yamagata, Yutaka; Furusaka, Michihiro

    2014-10-06

    We propose an ellipsoidal neutron focusing mirror using a metal substrate made with electroless nickel-phosphorus (NiP) plated material for the first time. Electroless NiP has great advantages for realizing an ellipsoidal neutron mirror because of its amorphous structure, good machinability and relatively large critical angle of total reflection for neutrons. We manufactured the mirror by combining ultrahigh precision cutting and fine polishing to generate high form accuracy and low surface roughness. The form accuracy of the mirror was estimated to be 5.3 μm P-V and 0.8 μm P-V for the minor-axis and major-axis direction respectively, while the surface roughness was reduced to 0.2 nm rms. The effect of form error on focusing spot size was evaluated by using a laser beam and the focusing performance of the mirror was verified by neutron experiments.

  15. Neutronic reactor

    International Nuclear Information System (INIS)

    Wende, C.W.J.

    1976-01-01

    A safety rod for a nuclear reactor has an inner end portion having a gamma absorption coefficient and neutron capture cross section approximately equal to those of the adjacent shield, a central portion containing materials of high neutron capture cross section and an outer end portion having a gamma absorption coefficient at least equal to that of the adjacent shield

  16. Plans for an Ultra Cold Neutron source at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Seestrom, S.J.; Bowles, T.J.; Hill, R.; Greene, G.L. [Los Alamos National Lab., NM (United States)

    1996-08-01

    Ultra Cold Neutrons (UCN) can be produced at spallation sources using a variety of techniques. To date the technique used has been to Bragg scatter and Doppler shift cold neutrons into UCN from a moving crystal. This is particularly applicable to short-pulse spallation sources. We are presently constructing a UCN source at LANSCE using method. In addition, large gains in UCN density should be possible using cryogenic UCN sources. Research is under way at Gatchina to demonstrate technical feasibility of be a frozen deuterium source. If successful, a source of this type could be implemented at future spallation source, such as the long pulse source being planned at Los Alamos, with a UCN density that may be two orders of magnitude higher than that presently available at reactors. (author)

  17. Generation of leading coefficients of orthogonal polynomials with an application to anisotropic scattering of neutrons

    International Nuclear Information System (INIS)

    Ofek, R.

    1984-01-01

    A simple method to generate leading coefficients for high-order sets of orthogonal polynomials, by derivation of recurrence expression for these coefficients, is developed. The method is applied to Legendre, Hermite, Chebyshev and Laguerre polynomials. The method may be used in calculations of high anisotropic neutron-scattering transfer cross-sections, where the angular distribution of the scattered neutrons is given in the ENDF/B files for most materials as coefficients of an expansion into Legendre polynomials. (author)

  18. An evaluated neutronic data file for elemental zirconium

    International Nuclear Information System (INIS)

    Smith, A.B.; Chiba, S.

    1994-09-01

    A comprehensive evaluated neutronic data file for elemental zirconium is derived and presented in the ENDF/B-VI formats. The derivation is based upon measured microscopic nuclear data, augmented by model calculations as necessary. The primary objective is a quality contemporary file suitable for fission-reactor development extending from conventional thermal to fast and innovative systems. This new file is a significant improvement over previously available evaluated zirconium files, in part, as a consequence of extensive new experimental measurements reported elsewhere

  19. An insight into neutron detection from polycrystalline CVD diamond films

    OpenAIRE

    Mer, C.; Pomorski, M.; Bergonzo, P.; Tromson, D.; Rebisz, M.; Domenech, T.; Vuillemin, J.C.; Foulon, F.; NESLADEK, Milos; WILLIAMS, Oliver; Jackman, R.B.

    2004-01-01

    Radiation detectors fabricated from chemical vapour deposited (CVD) diamond have now been fabricated addressing several photon and particle detectors in the frame of specific industrial applications. Regarding the nuclear industry needs, diamond-based detectors have been fabricated and this paper presents the various techniques that can be of interest for the detection of fission neutrons. The ability of diamond to withstand the high irradiation fluxes as encountered in nuclear reactors is on...

  20. Verification of an effective dose equivalent model for neutrons

    International Nuclear Information System (INIS)

    Tanner, J.E.; Piper, R.K.; Leonowich, J.A.; Faust, L.G.

    1991-10-01

    Since the effective dose equivalent, based on the weighted sum of organ dose equivalents, is not a directly measurable quantity, it must be estimated with the assistance of computer modeling techniques and a knowledge of the radiation field. Although extreme accuracy is not necessary for radiation protection purposes, a few well-chosen measurements are required to confirm the theoretical models. Neutron measurements were performed in a RANDO phantom using thermoluminescent dosemeters, track etch dosemeters, and a 1/2-in. (1.27-cm) tissue equivalent proportional counter in order to estimate neutron doses and dose equivalents within the phantom at specific locations. The phantom was exposed to bare and D 2 O-moderated 252 Cf neutrons at the Pacific Northwest Laboratory's Low Scatter Facility. The Monte Carlo code MCNP with the MIRD-V mathematical phantom was used to model the human body and calculate organ doses and dose equivalents. The experimental methods are described and the results of the measurements are compared to the calculations. 8 refs., 3 figs., 3 tabs

  1. The neutron

    International Nuclear Information System (INIS)

    Cheetham, A.K.

    1990-01-01

    In 1932, when Chadwick obtained the first unambiguous evidence for the existence of the neutron, his discovery confirmed the widely held belief that there existed a particle with zero charge and a mass similar to that of the proton. Indeed, as early as 1920, Lord Rutherford had suggested such a possibility in a lecture to the Royal Society. The discovery of the neutron had an immediate and dramatic impact in several areas. The nucleus, which had hitherto been regarded, somewhat unsatisfactorily, as a combination of protons and electrons, was now seen as comprising of protons and neutrons. This in turn lead to a proper understanding of the nature of isotopes and provided a fresh basis for nuclear theories. This paper examines the nature and properties of the neutron, and describes some facets of its remarkable role in contemporary science and technology. The aspects covered are its properties, the production and detection of neutrons, the reactions between neutrons and nuclei, fission reactions, neutron scattering, pulsed neutron scattering and neutron spectroscopy. (author)

  2. Analysis of containment performance and radiological consequences under severe accident conditions for the Advanced Neutron Source Reactor at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Taleyarkhan, R.P.

    1994-01-01

    A severe accident study was conducted to evaluate conservatively scoped source terms and radiological consequences to support the Advanced Neutron Source (ANS) Conceptual Safety Analysis Report (CSAR). Three different types of severe accident scenarios were postulated with a view of evaluating conservatively scoped source terms. The first scenario evaluates maximum possible steaming loads and associated radionuclide transport, whereas the next scenario is geared towards evaluating conservative containment loads from releases of radionuclide vapors and aerosols with associated generation of combustible gases. The third scenario follows the prescriptions given by the 10 CFR 100 guidelines. It was included in the CSAR for demonstrating site-suitability characteristics of the ANS. Various containment configurations are considered for the study of thermal-hydraulic and radiological behaviors of the ANS containment. Severe accident mitigative design features such as the use of rupture disks were accounted for. This report describes the postulated severe accident scenarios, methodology for analysis, modeling assumptions, modeling of several severe accident phenomena, and evaluation of the resulting source term and radiological consequences.

  3. Analysis of containment performance and radiological consequences under severe accident conditions for the Advanced Neutron Source Reactor at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kim, S.H.; Taleyarkhan, R.P.

    1994-01-01

    A severe accident study was conducted to evaluate conservatively scoped source terms and radiological consequences to support the Advanced Neutron Source (ANS) Conceptual Safety Analysis Report (CSAR). Three different types of severe accident scenarios were postulated with a view of evaluating conservatively scoped source terms. The first scenario evaluates maximum possible steaming loads and associated radionuclide transport, whereas the next scenario is geared towards evaluating conservative containment loads from releases of radionuclide vapors and aerosols with associated generation of combustible gases. The third scenario follows the prescriptions given by the 10 CFR 100 guidelines. It was included in the CSAR for demonstrating site-suitability characteristics of the ANS. Various containment configurations are considered for the study of thermal-hydraulic and radiological behaviors of the ANS containment. Severe accident mitigative design features such as the use of rupture disks were accounted for. This report describes the postulated severe accident scenarios, methodology for analysis, modeling assumptions, modeling of several severe accident phenomena, and evaluation of the resulting source term and radiological consequences

  4. Design of an electron-accelerator-driven compact neutron source for non-destructive assay

    Science.gov (United States)

    Murata, A.; Ikeda, S.; Hayashizaki, N.

    2017-09-01

    The threat of nuclear and radiological terrorism remains one of the greatest challenges to international security, and the threat is constantly evolving. In order to prevent nuclear terrorism, it is important to avoid unlawful import of nuclear materials, such as uranium and plutonium. Development of technologies for non-destructive measurement, detection and recognition of nuclear materials is essential for control at national borders. At Tokyo Institute of Technology, a compact neutron source system driven by an electron-accelerator has been designed for non-destructive assay (NDA). This system is composed of a combination of an S-band (2.856 GHz) RF-gun, a tungsten target to produce photons by bremsstrahlung, a beryllium target, which is suitable for use in generating neutrons because of the low threshold energy of photonuclear reactions, and a moderator to thermalize the fast neutrons. The advantage of this system can accelerate a short pulse beam with a pulse width less than 1 μs which is difficult to produce by neutron generators. The amounts of photons and neutron produced by electron beams were simulated using the Monte Carlo simulation code PHITS 2.82. When the RF-gun is operated with an average electron beam current of 0.1 mA, it is expected that the neutron intensities are 1.19 × 109 n/s and 9.94 × 109 n/s for incident electron beam energies of 5 MeV and 10 MeV, respectively.

  5. An integrated approach to selecting materials for fuel cladding in advanced high-temperature reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rangacharyulu, C., E-mail: chary.r@usask.ca [Univ. of Saskatchewan, Saskatoon, SK (Canada); Guzonas, D.A.; Pencer, J.; Nava-Dominguez, A.; Leung, L.K.H. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    An integrated approach has been developed for selection of fuel cladding materials for advanced high-temperature reactors. Reactor physics, thermalhydraulic and material analyses are being integrated in a systematic study comparing various candidate fuel-cladding alloys. The analyses established the axial and radial neutron fluxes, power distributions, axial and radial temperature distributions, rates of defect formation and helium production using AECL analytical toolsets and experimentally measured corrosion rates to optimize the material composition for fuel cladding. The project has just been initiated at University of Saskatchewan. Some preliminary results of the analyses are presented together with the path forward for the project. (author)

  6. Thermal and epithermal neutron flux distributions measurement in thermal column of TRR using an experimental-simulation method.

    Science.gov (United States)

    Adeli, Ruhollah; Kasesaz, Yaser; Shirmardi, Seyed Pezhman; Ezaty, Arsalan

    2018-03-01

    For designing an appropriate neutron beam, the determination of neutron flux at any irradiation facility is an important key factor. Due to the importance of determining the thermal and epithermal neutron fluxes in a typical thermal column of a reactor, a simple and accurate technique is introduced in this study. Absolute thermal and epithermal fluxes were measured experimentally at a certain point using the foil activation method by neutron bombardment of bare and cadmium covered Au foils. The relative neutron fluxes were also derived simply by means of Monte Carlo simulation by accurate modelling of the reactor components. Finally, by normalization of the relative distribution flux with regard to information about the absolute neutron flux, the accurate thermal and epithermal neutron distributions were derived, separately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Design and construction of an analytical instrument for neutron depth profiling

    International Nuclear Information System (INIS)

    Mutis, Octavio; Venegas, Rafael

    1998-01-01

    Full text: An experimental facility for Neutron Depth Profiling, recently constructed at CCHEN's laboratories is described. The technique allows to measure the mean atomic concentration ρ(x) of certain isotopes as a function of distance x to the surface for the first depth microns. The observation area is about 15 mm in diameter and the range in depth depends on the matrix stopping power and on the energy of the charged particle associated with the A(n,y)B reaction, in which this technique is supported, where A is the isotope to be detected, y is an α particle or a proton and B is the recoil nucleus. The spatial resolution depends upon the characteristics of the detection chain and its geometry and of the thermal spectrum of the beam. An appropriate deconvolution on the merging particle energy spectrum allows to recover the concentration profile. The application of the technique to the analysis of some phospho borosilicate films deposited on s Si substrate, lithium tantalate ceramics deposited on Si substrate and a sintered of lithium and Zn-Ni-Mn oxide are shown here with a resolution comparative to that of advanced laboratories

  8. Postirradiation evaluations of capsules HANS-1 and HANS-2 irradiated in the HFIR target region in support of fuel development for the advanced neutron source

    International Nuclear Information System (INIS)

    Hofman, G.L.; Snelgrove, J.L.; Copeland, G.L.

    1995-08-01

    This report describes the design, fabrication, irradiation, and evaluation of two capsule tests containing U 3 Si 2 fuel particles in contact with aluminum. The tests were in support of fuel qualification for the Advanced Neutron Source (ANS) reactor, a high-powered research reactor that was planned for the Oak Ridge National Laboratory. At the time of these tests, the fuel consisted of U 3 Si 2 , containing highly enriched uranium dispersed in aluminum at a volume fraction of ∼0.15. The extremely high thermal flux in the target region of the High Flux Isotope Reactor provided up to 90% burnup in one 23-d cycle. Temperatures up to 450 degrees C were maintained by gamma heating. Passive SiC temperature monitors were employed. The very small specimen size allowed only microstructural examination of the fuel particles but also allowed many specimens to be tested at a range of temperatures. The determination of fission gas bubble morphology by microstructural examination has been beneficial in developing a fuel performance model that allows prediction of fuel performance under these extreme conditions. The results indicate that performance of the reference fuel would be satisfactory under the ANS conditions. In addition to U 3 Si 2 , particles of U 3 Si, UAl 2 , UAl x , and U 3 O 8 were tested

  9. Transport phenomena an introduction to advanced topics

    CERN Document Server

    Glasgow, Larry A

    2010-01-01

    Enables readers to apply transport phenomena principles to solve advanced problems in all areas of engineering and science This book helps readers elevate their understanding of, and their ability to apply, transport phenomena by introducing a broad range of advanced topics as well as analytical and numerical solution techniques. Readers gain the ability to solve complex problems generally not addressed in undergraduate-level courses, including nonlinear, multidimensional transport, and transient molecular and convective transport scenarios. Avoiding rote memorization, the author em

  10. Neutron holography

    International Nuclear Information System (INIS)

    Beynon, T.D.

    1986-01-01

    the paper concerns neutron holography, which allows an image to be constructed of the surfaces, as well as the interiors, of objects. The technique of neutron holography and its applications are described. Present and future use of the method is briefly outlined. (U.K.)

  11. German neutron scattering conference. Programme and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Brueckel, Thomas (ed.)

    2012-07-01

    The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.

  12. German neutron scattering conference. Programme and abstracts

    International Nuclear Information System (INIS)

    Brueckel, Thomas

    2012-01-01

    The German Neutron Scattering Conference 2012 - Deutsche Neutronenstreutagung DN 2012 offers a forum for the presentation and critical discussion of recent results obtained with neutron scattering and complementary techniques. The meeting is organized on behalf of the German Committee for Research with Neutrons - Komitee Forschung mit Neutronen KFN - by the Juelich Centre for Neutron Science JCNS of Forschungszentrum Juelich GmbH. In between the large European and international neutron scattering conferences ECNS (2011 in Prague) and ICNS (2013 in Edinburgh), it offers the vibrant German and international neutron community an opportunity to debate topical issues in a stimulating atmosphere. Originating from ''BMBF Verbundtreffen'' - meetings for projects funded by the German Federal Ministry of Education and Research - this conference series has a strong tradition of providing a forum for the discussion of collaborative research projects and future developments in the field of research with neutrons in general. Neutron scattering, by its very nature, is used as a powerful probe in many different disciplines and areas, from particle and condensed matter physics through to chemistry, biology, materials sciences, engineering sciences, right up to geology and cultural heritage; the German Neutron Scattering Conference thus provides a unique chance for exploring interdisciplinary research opportunities. It also serves as a showcase for recent method and instrument developments and to inform users of new advances at neutron facilities.

  13. Imaging spectrometer - An advanced multispectral imaging concept

    Science.gov (United States)

    Wellman, J. B.; Breckinridge, J. B.; Kupferman, P. N.; Salazar, R.

    1982-01-01

    The concept of an imaging spectrometer, which is being studied as a potential Space Shuttle experiment, is evaluated as a 'push-broom' imager that includes a spectrometer to disperse each line of imaging information into its spectral components. Using this instrument, the dispersed energy falls upon a two-dimensional focal plane array that detects both spatial and spectral information. As the line field of view is advanced over the earth by the motion of the spacecraft, the focal plane is read out constantly, which produces 'push-broom' images at multiple wavelengths. Ground instantaneous fields of view of 10 m in the visual and 20 m in the infrared are provided by the system, at a spectral resolution of 20 nm over the range from 0.4-2.5 microns. The system utilizes a triple-pass Schmidt optical system with a mosaic focal plane. A subset of the data stream is selected and encoded for transmission by the use of onboard processing.

  14. AFDM: An advanced fluid-dynamics model

    International Nuclear Information System (INIS)

    Henneges, G.; Kleinheins, S.

    1994-01-01

    This volume of the Advanced Fluid-Dynamics Model (AFDM) documents the modeling of the equation of state (EOS) in the code. The authors present an overview of the basic concepts underlying the thermodynamics modeling and resulting EOS, which is a set of relations between the thermodynamic properties of materials. The AFDM code allows for multiphase-multimaterial systems, which they explore in three phase models: two-material solid, two-material liquid, and three-material vapor. They describe and compare two ways of specifying the EOS of materials: (1) as simplified analytic expressions, or (2) as tables that precisely describe the properties of materials and their interactions for mechanical equilibrium. Either of the two EOS models implemented in AFDM can be selected by specifying the option when preprocessing the source code for compilation. Last, the authors determine thermophysical properties such as surface tension, thermal conductivities, and viscosities in the model for the intracell exchanges of AFDM. Specific notations, routines, EOS data, plots, test results, and corrections to the code are available in the appendices

  15. An advanced approach to reactivity rating.

    Science.gov (United States)

    Kossoy, A; Benin, A; Akhmetshin, Yu

    2005-02-14

    Reactive hazards remain a significant safety challenge in the chemical industry despite continual attention devoted to this problem. The application of various criteria, which are recommended by the guidelines for assessment of reactive hazards, often causes unsafe results to be obtained. The main origins of such failures are as follows: (a) reactivity of a compound is considered as an inherent property of a compound; (b) some appropriate criteria are determined by using too simple methods that cannot reveal potential hazards properly. Four well-known hazard indicators--time to certain conversion limit, TCL; adiabatic time to maximum rate, TMR; adiabatic temperature rise; and NFPA reactivity rating number, Nr--are analyzed in the paper. It was ascertained that they could be safely used for preliminary assessment of reactive hazards provided that: (a) the selected indicator is appropriate for the specific conditions of a process; (b) the indicators have been determined by using the pertinent methods. The applicability limits for every indicator were determined and the advanced kinetics-based simulation approach, which allows reliable determination of the indicators, is proposed. The technique of applying this approach is illustrated by two practical examples.

  16. Cost engineering for an advanced reactor design

    International Nuclear Information System (INIS)

    Law, D.D.; Asamoto, R.; Jue, K.K.

    1987-01-01

    In this paper, the authors attempt to describe the cost engineering techniques and procedures used to prepare a cost estimate for evaluating an advanced reactor design. The particular program they use to illustrate their approach was for the General Electric PRISM design sponsored by the U.S. Department of Energy under a multi-year funding plan. The authors describe how the quantities of materials and equipment were obtained, how unit costs were selected, and how the estimates were prepared for the equipment and hardware unique to the PRISM design. Some features of the design and its construction were particularly significant in the cost of the plant. Identical reactor modules were combined to provide the desired power output. The small physical size of the module permitted full factory assembly, reduced field construction time and effort, which in turn resulted in lower costs, shorter schedule, and more consistent quality. Costs were based on use of a dedicated factory with continuous production, standardized design, prelicensing, plus modular and separated construction. After preparation of the estimate, many reviews and checks were made to evaluate the consistency, completeness, and reasonableness of the results in comparison with other available contractor and DOE data

  17. Use of research reactors for neutron activation analysis. Report of an advisory group meeting

    International Nuclear Information System (INIS)

    2001-04-01

    Neutron activation analysis (NAA) is an analytical technique based on the measurement of characteristic radiation from radionuclides formed directly or indirectly by neutron irradiation of the material of interest. In the last three decades, neutron activation analysis has been found to be extremely useful in the determination of trace and minor elements in many disciplines. These include environmental analysis applications, nutritional and health related studies, geological as well as material sciences. The most suitable source of neutrons for NAA is a research reactor. There are several application fields in which NAA has a superior position compared to other analytical methods, and there are good prospects in developing countries for long term growth. Therefore, the IAEA is making concerted efforts to promote neutron activation analysis and at the same time to assist developing Member States in better utilization of their research reactors. The purpose of the meeting was to discuss the benefits and the role of NAA in applications and research areas that may contribute towards improving utilization of research reactors. The participants focused on five specific topics: (1) Current trends in NAA; (2) The role of NAA compared to other methods of chemical analysis; (3) How to increase the number of NAA users through interaction with industries, research institutes, universities and medical institutions; (4) How to reduce costs and to maintain quality and reliability; (5) NAA using low power research reactors. Neutron activation analysis in its various forms is still active and there are good prospects in developing countries for long-term growth. This can be achieved by a more effective use of existing irradiation and counting facilities, a better end-user focus, and perhaps marginal improvements in equipment and techniques. Therefore, it is recommended that the Member States provide financial and other assistance to enhance the effectiveness of their laboratories

  18. Neutron dosimetry; Dosimetria de neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Fratin, Luciano

    1993-12-31

    sufficiently sensitive to thermal and intermediate neutrons but fast neutron monitoring ar radiological protection level would require an integration period of over a month. The proposed dosimetric procedure is based on the conjugated use of the developed personal dosemeter and the Bonner multisphere spectrometer. (author) 58 refs., 31 figs., 12 tabs.

  19. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    Energy Technology Data Exchange (ETDEWEB)

    Youinou, Gilles Jean-Michel [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(Ei), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after

  20. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    International Nuclear Information System (INIS)

    Youinou, Gilles Jean-Michel

    2015-01-01

    Neutron cross-sections characterize the way neutrons interact with matter. They are essential to most nuclear engineering projects and, even though theoretical progress has been made as far as the predictability of neutron cross-section models, measurements are still indispensable to meet tight design requirements for reduced uncertainties. Within the field of fission reactor technology, one can identify the following specializations that rely on the availability of accurate neutron cross-sections: (1) fission reactor design, (2) nuclear fuel cycles, (3) nuclear safety, (4) nuclear safeguards, (5) reactor monitoring and neutron fluence determination and (6) waste disposal and transmutation. In particular, the assessment of advanced fuel cycles requires an extensive knowledge of transuranics cross sections. Plutonium isotopes, but also americium, curium and up to californium isotope data are required with a small uncertainty in order to optimize significant features of the fuel cycle that have an impact on feasibility studies (e.g. neutron doses at fuel fabrication, decay heat in a repository, etc.). Different techniques are available to determine neutron cross sections experimentally, with the common denominator that a source of neutrons is necessary. It can either come from an accelerator that produces neutrons as a result of interactions between charged particles and a target, or it can come from a nuclear reactor. When the measurements are performed with an accelerator, they are referred to as differential since the analysis of the data provides the cross-sections for different discrete energies, i.e. σ(E i ), and for the diffusion cross sections for different discrete angles. Another approach is to irradiate a very pure sample in a test reactor such as the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The precise characterization of the nuclide densities before and after neutron

  1. Neutron science opportunities at pulsed spallation neutron sources

    International Nuclear Information System (INIS)

    Carpenter, J.M.

    1996-01-01

    Using the IPNS Upgrade plan developed at Argonne National Laboratory as a worked example of the design of a pulsed spallation neutron source, this paper explores some of the scientific applications of an advanced facility for materials science studies and the instrumentation for those purposes

  2. Neutron shielding material

    International Nuclear Information System (INIS)

    Nodaka, M.; Iida, T.; Taniuchi, H.; Yosimura, K.; Nagahama, H.

    1993-01-01

    From among the neutron shielding materials of the 'kobesh' series developed by Kobe Steel, Ltd. for transport and storage packagings, silicon rubber base type material has been tested for several items with a view to practical application and official authorization, and in order to determine its adaptability to actual vessels. Silicon rubber base type 'kobesh SR-T01' is a material in which, from among the silicone rubber based neutron shielding materials, the hydrogen content is highest and the boron content is most optimized. Its neutron shielding capability has been already described in the previous report (Taniuchi, 1986). The following tests were carried out to determine suitability for practical application; 1) Long-term thermal stability test 2) Pouring test on an actual-scale model 3) Fire test The experimental results showed that the silicone rubber based neutron shielding material has good neutron shielding capability and high long-term fire resistance, and that it can be applied to the advanced transport packaging. (author)

  3. Modeling and analysis framework for core damage propagation during flow-blockage-initiated accidents in the advanced neutron source reactor at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.H.; Taleyarkhan, R.P.; Navarro-Valenti, S.; Georgevich, V. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    This paper describes modeling and analysis to evaluate the extent of core damage during flow blockage events in the Advanced Neutron Source (ANS) reactor planned to be built at the Oak Ridge National Laboratory (ORNL). Damage propagation is postulated to occur from thermal conduction between damaged and undamaged plates due to direct thermal contact. Such direct thermal contact may occur because of fuel plate swelling during fission product vapor release or plate buckling. Complex phenomena of damage propagation were modeled using a one-dimensional heat transfer model. A scoping study was conducted to learn what parameters are important for core damage propagation, and to obtain initial estimates of core melt mass for addressing recriticality and steam explosion events. The study included investigating the effect of the plate contact area, the convective heat transfer coefficient, thermal conductivity upon fuel swelling, and the initial temperature of the plate being contacted by the damaged plate. Also, the side support plates were modeled to account for their effects on damage propagation. The results provide useful insights into how various uncertain parameters affect damage propagation.

  4. Feasibility evaluation of a neutron grating interferometer with an analyzer grating based on a structured scintillator

    Science.gov (United States)

    Kim, Youngju; Kim, Jongyul; Kim, Daeseung; Hussey, Daniel. S.; Lee, Seung Wook

    2018-03-01

    We introduce an analyzer grating based on a structured scintillator fabricated by a gadolinium oxysulfide powder filling method for a symmetric Talbot-Lau neutron grating interferometer. This is an alternative way to analyze the Talbot self-image of a grating interferometer without using an absorption grating to block neutrons. Since the structured scintillator analyzer grating itself generates the signal for neutron detection, we do not need an additional scintillator screen as an absorption analyzer grating. We have developed and tested an analyzer grating based on a structured scintillator in our symmetric Talbot-Lau neutron grating interferometer to produce high fidelity absorption, differential phase, and dark-field contrast images. The acquired images have been compared to results of a grating interferometer utilizing a typical absorption analyzer grating with two commercial scintillation screens. The analyzer grating based on the structured scintillator enhances interference fringe visibility and shows a great potential for economical fabrication, compact system design, and so on. We report the performance of the analyzer grating based on a structured scintillator and evaluate its feasibility for the neutron grating interferometer.

  5. A Delphi study to validate an advanced practice nursing tool.

    Science.gov (United States)

    Chang, Anne M; Gardner, Glenn E; Duffield, Christine; Ramis, Mary-Anne

    2010-10-01

    This paper is a report of a study conducted to validate an instrument for measuring advanced practice nursing role delineation in an international contemporary health service context using the Delphi technique. Although most countries now have clear definitions and competency standards for nurse practitioners, no such clarity exists for many advanced practice nurse roles, leaving healthcare providers uncertain whether their service needs can or should be met by an advanced practice nurse or a nurse practitioner. The validation of a tool depicting advanced practice nursing is essential for the appropriate deployment of advanced practice nurses. This paper is the second in a three-phase study to develop an operational framework for assigning advanced practice nursing roles. An expert panel was established to review the activities in the Strong Model of Advanced Practice Role Delineation tool. Using the Delphi technique, data were collected via an on-line survey through a series of iterative rounds in 2008. Feedback and statistical summaries of responses were distributed to the panel until the 75% consensus cut-off was obtained. After three rounds and modification of five activities, consensus was obtained for validation of the content of this tool. The Strong Model of Advanced Practice Role Delineation tool is valid for depicting the dimensions of practice of the advanced practice role in an international contemporary health service context thereby having the potential to optimize the utilization of the advanced practice nursing workforce. © 2010 The Authors. Journal of Advanced Nursing © 2010 Blackwell Publishing Ltd.

  6. Verification of an effective dose equivalent model for neutrons

    International Nuclear Information System (INIS)

    Tanner, J.E.; Piper, R.K.; Leonowich, J.A.; Faust, L.G.

    1992-01-01

    Since the effective dose equivalent, based on the weighted sum of organ dose equivalents, is not a directly measurable quantity, it must be estimated with the assistance of computer modelling techniques and a knowledge of the incident radiation field. Although extreme accuracy is not necessary for radiation protection purposes, a few well chosen measurements are required to confirm the theoretical models. Neutron doses and dose equivalents were measured in a RANDO phantom at specific locations using thermoluminescence dosemeters, etched track dosemeters, and a 1.27 cm (1/2 in) tissue-equivalent proportional counter. The phantom was exposed to a bare and a D 2 O-moderated 252 Cf neutron source at the Pacific Northwest Laboratory's Low Scatter Facility. The Monte Carlo code MCNP with the MIRD-V mathematical phantom was used to model the human body and to calculate the organ doses and dose equivalents. The experimental methods are described and the results of the measurements are compared with the calculations. (author)

  7. An experimental program on advanced robotics

    International Nuclear Information System (INIS)

    Yuan, J.S.C.; Stovman, J.; MacDonald, R.; Norgate, G.

    1987-01-01

    Remote handling in hostile environments, including space, nuclear facilities, and mines, requires hybrid systems which permit close cooperation between state of the art teleoperation and advanced robotics. Teleoperation using hand controller commands and television feedback can be enhanced by providing force-feel feedback and simulation graphics enhancement of the display. By integrating robotics features such as computer vision and force/tactile feedback with advanced local control systems, the overall effectiveness of the system can be improved and the operator workload reduced. This has been demonstrated in the laboratory. Applications such as a grappling drifting satellite or transferring material at sea are envisaged

  8. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  9. Sourceless formation evaluation. An LWD solution providing density and neutron measurements without the use of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, R.; Reichel, N. [Schlumberger, Sungai Buloh (Malaysia)

    2013-08-01

    For many years the industry has been searching for a way to eliminate the logistical difficulties and risk associated with deployment of radioisotopes for formation evaluation. The traditional gamma-gamma density (GGD) measurement uses the scattering of 662-keV gamma rays from a 137Cs radioisotopic source, with a 30.17-year half-life, to determine formation density. The traditional neutron measurement uses an Am-Be source emitting neutrons with an energy around 4 MeV, with a half-life of 432 years. Both these radioisotopic sources pose health, security, and environmental risks. Pulsed-neutron generators have been used in the industry for several decades in wireline tools and more recently in logging-while-drilling tools. These generators produce 14-MeV neutrons, many of which interact with the nuclei in the formation. Elastic collisions allow a neutron porosity measurement to be derived, which has been available to the industry since 2005. Inelastic interactions are typically followed by the emission of a variety of high-energy gamma rays. Similar to the case of the GGD measurement, the transport and attenuation of these gamma rays is a strong function of the formation density. However, the gamma-ray source is now distributed over a volume within the formation, where gamma rays have been induced by neutron interactions and the source can no longer be considered to be a point as in the case of a radioisotopic source. In addition, the extent of the induced source region depends on the transport of the fast neutrons from the source to the point of gamma-ray production. Even though the physics is more complex, it is possible to measure the formation density if the fast neutron transport is taken into account when deriving the density answer. This paper briefly reviews the physics underlying the sourceless neutron porosity and recently introduced neutron-gamma density (SNGD) measurement, demonstrates how they can be used in traditional workflows and illustrates their

  10. An overview of advanced power generation technologies

    International Nuclear Information System (INIS)

    Gardner, D.; Shaw, P.

    1993-01-01

    This paper is intended as a brief review of the technologies currently applied in Australian electricity generation and the technologies which are likely to be employed in the future. The paper opens with a review of the primary energy resources available for the generation of electricity in Australia, and the technologies currently employed. The development of advanced generation technologies around the world is reviewed, and the most likely technologies to be employed in Australia are described. There are a number of renewable and alternative technologies, such as generation from sewage digester, landfill or mine gases. Their impact would, however, be disproportionate because of the strong climate forcing effect of methane. Of the wide range of other emerging renewable technologies examined, solar thermal offers the best prospect of maturing into a financially-competitive technology for large scale generation in the next 20 years. However, will remain unable to compete with non-renewable technologies in normal financial terms, at least until 2005 and probably well beyond that date. Generation using the fission of nuclear fuels is a mature, proven technology. Based on the most likely fuel and other assumptions made in this study, the costs of nuclear generation are only moderately higher than conventional coal-fired options. Nuclear generation is thus a relatively low cost route to reductions in carbon dioxide emission for new plant, at $19/tonne CO 2 saved, in comparison with conventional black coal technology, and $13/tonne CO 2 compared with conventional brown coal firing. While major considerations of societal acceptance clearly exist, nuclear generation has the necessary technical and financial qualifications for serious consideration as an element in any greenhouse strategy. 5 tab., 2 figs

  11. Neutron scattering science in Australia

    International Nuclear Information System (INIS)

    Knott, Robert

    1999-01-01

    Neutron scattering science in Australia is making an impact on a number of fields in the scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a wide range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans are in progress to replace the present research reactor with a modern multi-purpose research reactor to offer the most advanced neutron scattering facilities. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. (author)

  12. Neutron scattering science in Australia

    Energy Technology Data Exchange (ETDEWEB)

    Knott, Robert [Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia)

    1999-10-01

    Neutron scattering science in Australia is making an impact on a number of fields in the scientific and industrial research communities. The unique properties of the neutron are being used to investigate problems in chemistry, materials science, physics, engineering and biology. The reactor HIFAR at the Australian Nuclear Science and Technology Organisation research laboratories is the only neutron source in Australia suitable for neutron scattering science. A suite of instruments provides a wide range of opportunities for the neutron scattering community that extends throughout universities, government and industrial research laboratories. Plans are in progress to replace the present research reactor with a modern multi-purpose research reactor to offer the most advanced neutron scattering facilities. The experimental and analysis equipment associated with a modern research reactor will permit the establishment of a national centre for world class neutron science research focussed on the structure and functioning of materials, industrial irradiations and analyses in support of Australian manufacturing, minerals, petrochemical, pharmaceuticals and information science industries. (author)

  13. Fission-fusion neutron source

    Science.gov (United States)

    Yu, Jinnan; Yu, Gang

    2009-04-01

    In order to meet the requirements of fusion power reactors and nuclear waste treatment, a concept of fission-fusion neutron source is proposed, which consists of a LiD assembly located in the heavy water region of the China Advanced Research Reactor. This assembly of LiD fuel rods will be irradiated with slow neutrons and will produce fusion neutrons in the central hole via the reaction 6Li(n, α). More precisely, tritium ions with a high energy of 2.739 MeV will be produced in LiD by the impinging slow neutrons. The tritium ions will in turn bombard the deuterium ions present in the LiD assembly, which will induce fusion reaction and then the production of 14 MeV neutrons. The fusion reaction rate will increase with the accumulation of tritium in LiD by the reaction between tritium and deuteron recoils produced by the 14 MeV neutrons. When the concentration of tritium reaches 0.5 · 10 22 and the fraction of fusion reactions between tritium and deuteron recoils approaches 1, the 14 MeV neutron flux is doubled and redoubled, an so forth, approaching saturation in which the tritium produced at a time t is exhausted by the fusion reactions to keep constant the tritium concentration in LiD.

  14. Neutron tubes

    Science.gov (United States)

    Leung, Ka-Ngo [Hercules, CA; Lou, Tak Pui [Berkeley, CA; Reijonen, Jani [Oakland, CA

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  15. Fuel, structural material and coolant for an advanced fast micro-reactor

    International Nuclear Information System (INIS)

    Nascimento, Jamil A. do; Guimaraes, Lamartine N.F.; Ono, Shizuca

    2011-01-01

    The use of nuclear reactors in space, seabed or other Earth hostile environment in the future is a vision that some Brazilian nuclear researchers share. Currently, the USA, a leader in space exploration, has as long-term objectives the establishment of a permanent Moon base and to launch a manned mission to Mars. A nuclear micro-reactor is the power source chosen to provide energy for life support, electricity for systems, in these missions. A strategy to develop an advanced micro-reactor technologies may consider the current fast reactor technologies as back-up and the development of advanced fuel, structural and coolant materials. The next generation reactors (GEN-IV) for terrestrial applications will operate with high output temperature to allow advanced conversion cycle, such as Brayton, and hydrogen production, among others. The development of an advanced fast micro-reactor may create a synergy between the GEN-IV and space reactor technologies. Considering a set of basic requirements and materials properties this paper discusses the choice of advanced fuel, structural and coolant materials for a fast micro-reactor. The chosen candidate materials are: nitride, oxide as back-up, for fuel, lead, tin and gallium for coolant, ferritic MA-ODS and Mo alloys for core structures. The next step will be the neutronic and burnup evaluation of core concepts with this set of materials. (author)

  16. Neutron physics

    International Nuclear Information System (INIS)

    Beckurts, K.H.; Wirtz, K.

    1974-01-01

    This textbook consists of four sections which deal with the following subjects: 1. Production of neutrons and their interactions with the nuclei; neutron sources; neutron detectors; cross-section measurements. 2. Theory of neutron interactions with macroscopic media; neutron slowing down; space distribution of moderated neutrons; neutron thermalization; neutron scattering. 3. Radioactive probe measurements of thermal neutron fluxes; activation by means of epithermal neutrons; threshold detectors of fast neutrons; neutron calibration. 4. Neutron energy; slowing down kernels; neutron age; diffusion length and absorption of neutrons

  17. Proton Neutron Gamma-X Detection (PNGXD): An introduction to contrast agent detection during proton therapy via prompt gamma neutron activation

    Science.gov (United States)

    Gräfe, James L.

    2017-09-01

    Proton therapy is an alternative external beam cancer treatment modality to the conventional linear accelerator-based X-ray radiotherapy. An inherent by-product of proton-nuclear interactions is the production of secondary neutrons. These neutrons have long been thought of as a secondary contaminant, nuisance, and source of secondary cancer risk. In this paper, a method is proposed to use these neutrons to identify and localize the presence of the tumor through neutron capture reactions with the gadolinium-based MRI contrast agent. This could provide better confidence in tumor targeting by acting as an additional quality assurance tool of tumor position during treatment. This effectively results in a neutron induced nuclear medicine scan. Gadolinium (Gd), is an ideal candidate for this novel nuclear contrast imaging procedure due to its unique nuclear properties and its widespread use as a contrast agent in MRI. Gd has one of the largest thermal neutron capture cross sections of all the stable nuclides, and the gadolinium-based contrast agents localize in leaky tissues and tumors. Initial characteristics of this novel concept were explored using the Monte Carlo code MCNP6. The number of neutron capture reactions per Gy of proton dose was found to be approximately 50,000 neutron captures/Gy, for a 8 cm3 tumor containing 300 ppm Gd at 8 cm depth with a simple simulation designed to represent the active delivery method. Using the passive method it is estimated that this number can be up to an order of magnitude higher. The thermal neutron distribution was found to not be localized within the spread out Bragg peak (SOBP) for this geometrical configuration and therefore would not allow for the identification of a geometric miss of the tumor by the proton SOBP. However, this potential method combined with nuclear medicine imaging and fused with online CBCT and prior MRI or CT imaging could help to identify tumor position during treatment. More computational and

  18. Unfolding an under-determined neutron spectrum using genetic algorithm based Monte Carlo

    International Nuclear Information System (INIS)

    Suman, V.; Sarkar, P.K.

    2011-01-01

    Spallation in addition to the other photon-neutron reactions in target materials and different components in accelerators may result in production of huge amount of energetic protons which further leads to the production of neutron and contributes to the main component of the total dose. For dosimetric purposes in accelerator facilities the detector measurements doesn't provide directly the actual neutron flux values but a cumulative picture. To obtain Neutron spectrum from the measured data, response functions of the measuring instrument together with the measurements are used into many unfolding techniques which are frequently used for unfolding the hidden spectral information. Here we discuss a genetic algorithm based unfolding technique which is in the process of development. Genetic Algorithm is a stochastic method based on natural selection, which mimics Darwinian theory of survival of the best. The above said method has been tested to unfold the neutron spectra obtained from a reaction carried out at an accelerator facility, with energetic carbon ions on thick silver target along with its respective neutron response of BC501A liquid scintillation detector. The problem dealt here is under-determined where the number of measurements is less than the required energy bin information. The results so obtained were compared with those obtained using the established unfolding code FERDOR, which unfolds data for completely determined problems. It is seen that the genetic algorithm based solution has a reasonable match with the results of FERDOR, when smoothening carried out by Monte Carlo is taken into consideration. This method appears to be a promising candidate for unfolding neutron spectrum in cases of under-determined and over-determined, where measurements are more. The method also has advantages of flexibility, computational simplicity and works well without need of any initial guess spectrum. (author)

  19. Neutron radiography at the HFR Petten

    International Nuclear Information System (INIS)

    Markgraf, J.F.W.

    1990-03-01

    This report contains the five papers on neutron radiography activities at the Petten High Flux Reactor (HFR) presented at the Third World Conference on Neutron Radiography which was held in May 1989 in Osaka, Japan. In addition, a survey on neutron radiography in Europe for industry and research as presented at the SITEF NDT symposium 1989 on European Advances in Non-Destructive Testing, held in Toulouse/France in October 1989 is included. The papers compiled here are concerned with: the neutron radiography services available in Petten; the experience with and applications of neutron radiography at Petten; image evaluation and analysis techniques at Petten; the practical utilization of nitrocellulose film in neutron radiography in Europe; an introduction into the basic principles of neutron radiography; an overview of the neutron radiography facilities in Europe for industry and research; and a survey of typical applications of neutron radiography in industry, research and sciences. It is the intention of this compilation to provide a comprehensive overview of the present Petten activities and European facilities in this young and promising field of non-destructive testing of materials and components from the nuclear and the non-nuclear industries and research organizations, and from the sciences

  20. Unlocking high spatial resolution in neutron imaging through an add-on fibre optics taper.

    Science.gov (United States)

    Morgano, M; Trtik, P; Meyer, M; Lehmann, E H; Hovind, J; Strobl, M

    2018-01-22

    The demand for high resolution neutron imaging has been steadily increasing over the past years. The number of facilities offering cutting edge resolution is however limited, due to (i) the design complexity of an optimized device able to reach a resolution in the order of ≈ 10 μm and (ii) limitations in available neutron flux. Here we propose a simple addition, based on a Fibre Optics Taper (FOT), that can be easily attached to an already existing scintillator-camera imaging detector in order to efficiently increase its spatial resolution and hence boost the capability of an instrument into high resolution applications.

  1. An Overview of Advanced Concepts for Launch

    Science.gov (United States)

    2012-02-09

    Weekly Launches” -Inspect & Rebuild. •SSTO -LOx/LH2: ms < 10% -Advanced Structure /Tank. -Aerospike. -Sensitive Design Space. Reusable...Altitude [km] Circular Orbit Kinetic Energy Potential Energy Total Mechanical Energy Mount Everest Pegasus Near Space Dirigible LEO (400km) GEO...Tallest Structure Burj Khalifa (828m) York Univ. (7m) •Above atmosphere. •Above winds. •Minor ∆V benefit. •Multiple candidates. 1. Solid

  2. Installation and testing of an optimized epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR)

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Kalef-Ezra, J.; Saraf, S.K.; Fiarman, S.; Ramsey, E.; Wielopolski, L.; Laster, B.; Wheeler, F. (Brookhaven National Lab., Upton, NY (USA); Ioannina Univ. (Greece); Brookhaven National Lab., Upton, NY (USA); State Univ. of New York, Stony Brook, NY (USA). Health Science Center; Brookhaven National Lab., Upton, NY (USA); EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1989-01-01

    Various calculations indicate that an optimized epithermal neutron beam can be produced by moderating fission neutrons either with a combination of Al and D{sub 2}O, or with Al{sub 2}O{sub 3}. We have designed, installed and tested an Al{sub 2}O{sub 3} moderated epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR). The epithermal neutron fluence rate of 1.8 {times} 10{sup 9} n/cm{sup 2}-sec produces a peak thermal neutron fluence rate of 1.9 to 2.8 {times} 10{sup 9} n/cm{sup 2}-sec in a tissue equivalent (TE) phantom head, depending on the configuration. Thus a single therapy treatment of 5 {times} 10{sup 12} n/cm{sup 2} can be delivered in 30--45 minutes. All irradiation times are given for a BMRR power of 3 MW, which is the highest power which can be delivered continuously. 18 refs., 8 figs., 4 tabs.

  3. Multi-Messenger Observations of Neutron Rich Matter

    Energy Technology Data Exchange (ETDEWEB)

    Horowitz, C. J. [UTK/ORNL/Indiana University

    2012-01-01

    At very high densities, electrons react with protons to form neutron rich matter. This material is central to many fundamental questions in nuclear physics and astrophysics. Moreover, neutron rich matter is being studied with an extraordinary variety of new tools such as the Facility for Rare Isotope Beams (FRIB) and the Laser Interferometer Gravitational Wave Observatory (LIGO). We describe the Lead Radius Experiment (PREX) that uses parity violating electron scattering to measure the neutron radius in 208Pb. This has important implications for neutron stars and their crusts. We discuss X-ray observations of neutron star radii. These also have important implications for neutron rich matter. Gravitational waves (GW) open a new window on neutron rich matter. They come from sources such as neutron star mergers, rotating neutron star mountains, and collective r-mode oscillations. Using large scale molecular dynamics simulations, we find neutron star crust to be very strong. It can support mountains on rotating neutron stars large enough to generate detectable gravitational waves. We believe that combing astronomical observations using photons, GW, and neutrinos, with laboratory experiments on nuclei, heavy ion collisions, and radioactive beams will fundamentally advance our knowledge of compact objects in the heavens, the dense phases of QCD, the origin of the elements, and of neutron rich matter.

  4. Application of an integrated PC-based neutronics code system to criticality safety

    International Nuclear Information System (INIS)

    Briggs, J.B.; Nigg, D.W.

    1991-01-01

    An integrated system of neutronics and radiation transport software suitable for operation in an IBM PC-class environment has been under development at the Idaho National Engineering Laboratory (INEL) for the past four years. Four modules within the system are particularly useful for criticality safety applications. Using the neutronics portion of the integrated code system, effective neutron multiplication values (k eff values) have been calculated for a variety of benchmark critical experiments for metal systems (Plutonium and Uranium), Aqueous Systems (Plutonium and Uranium) and LWR fuel rod arrays. A description of the codes and methods used in the analysis and the results of the benchmark critical experiments are presented in this paper. In general, excellent agreement was found between calculated and experimental results. (Author)

  5. Development of advanced neutron radiography for inspection on irradiated fuels and materials (2). Observation of hydride and oxide film on zircaloy cladding by using neutron radiography

    International Nuclear Information System (INIS)

    Yasuda, Ryou; Nakata, Masahito; Mastubayashi, Masahito; Harada, Katsuya

    2001-02-01

    Neutron radiography has been used as available diagnosis method of integrity on irradiated fuels, and has not been employed for estimating hydride and oxide film, which are influenced on integrity of Zircaloy cladding. Preliminary tests for PIE were carried out to assess possibility of neutron radiography as evaluation tool for hydrided and oxide film on the cladding. In these experiments, Zircaloy claddings with controlled amount of hydrogen absorption (200, 500, and 1000ppm) and thickness of oxide film were radiographed in center axis and in side directions of cladding tube by neutron imaging plate method. It is noted that thickness of oxide film was formed range from 7 μ m to 70 μ m at various temperatures (973, 1173, and 1323K) under steam atmosphere on the Zircaloy claddings. CT (Computed Tomography) restructure calculation was carried out to obtain cross section image of the claddings non-destructively. The Radiographs were qualitatively investigated about structure formation area and dependence of hydrogen absorption amount on PSL (Photo Simulated Luminescence) and CT values using by image analysis processor. At the results of imaging plate test, obvious difference was not found out between hydride formation (except for 1000ppm cladding) and standard claddings in side direction image. However, on the center axis direction image, outer circumference in the cladding cross-section that corresponded with hydride segregation area became blacker. In the case of oxide film formed cladding images, although oxide film could not find out on all speciments in the radiographs taken at the center axis and side directions, cross-section of claddings heat-processed at 973K showed appreciable blackness increasing with oxide film thickness on the radiographs. On the other hand, there is no effective difference between images of oxide film formed claddings processed at 1173K and 1323K and that of standard cladding. In CT image of 1000ppm hydrogen absorbed cladding, it is

  6. METHOD OF INITIATING AND SUSTAINING AN ENERGETIC PLASMA FOR NEUTRON PRODUCTION

    Science.gov (United States)

    Bell, P.R.; Mackin, R.J. Jr.; Simon, A.

    1961-08-22

    A method for producing an energetic plasma for neutron production and for faeling this plasma once it is formed is described. The plasma is initially fonmed as set forth in U. S. Patent No. 2,969,308. After the plasma is formed, cold neutral particles with an energy of at least 1 Kev are injected in a radial directinn and transverse to the axis of the device. These cold particles are substituted for the molecular ion injection and are used for fueling the plasma device on a continuous regulated basis in order to maintain a reaction temperature of about 60 Kev for producing neutrons. (AE C)

  7. An NaI(Tl) spectrometer system for keV neutron radiative-capture reactions

    International Nuclear Information System (INIS)

    Ohsaki, T.; Nagai, Y.; Igashira, M.; Shima, T.; Suzuki, T.S.; Kikuchi, T.; Kobayashi, T.; Takaoka, T.; Kinoshita, M.; Nobuhara, Y.

    1999-01-01

    An NaI(Tl) spectrometer system has been installed to measure the cross section of a radiative neutron-capture reaction of a nucleus at an astrophysically relevant energy of between 10 and 500 keV. The system consists of two large anti-Compton NaI(Tl) spectrometers and a new data-taking system. The spectrometer can detect a discrete γ-ray emitted promptly from a neutron-capture state to its low-lying state, and the data-taking system can transfer events with much higher rates, about 30-times higher, compared to the existing system

  8. Development of an area monitor for neutrons using solid state nuclear track detector

    International Nuclear Information System (INIS)

    Zahn, G.S.

    1994-01-01

    An area monitor for neutrons composed of the solid state nuclear track detector (SSNTD) Makrofol DE, together with a (n,α) converter, in the center of a 25 cm diameter polyethylene sphere, is developed. The optimal electrochemical etching conditions for the detection of thermal neutrons by the Makrofol DE using the BN converter are studied, leading to the choice of 55 min, at 30 0 C, under a 44,2 kV.cm -1 electric field with oscillation frequency of 2,0 khz. The response of this system to thermal neutrons, in the optimal conditions, is of 2,76(10)x 10 -3 tr/n. Changing from the BN converter to a 2,73(3)g compressed boric acid tablet this value lowers to 3,88(17)x 10 -4 tr/n. The performance of the whole monitor in the detection of fast neutrons is examined using the BN converter and neutrons from a 241 Am Be source, with a response of 4,4(2)x 10 3 tr.mSv -1 .cm -2 and operational limits between 7(3)μSv and 5,6(2)mSv. The result of the monitoring of the control room of the IPEN Cyclotron accelerator are also presented as a final test for the viability of the practical use of the monitor. (author). 34 refs, 15 figs, 6 tabs, 1 app

  9. Bis(pinacolato)diboron as an additive for the detection of thermal neutrons in plastic scintillators

    International Nuclear Information System (INIS)

    Mahl, Adam; Yemam, Henok A.; Stuntz, John; Remedes, Tyler; Sellinger, Alan; Greife, Uwe

    2016-01-01

    A readily available and inexpensive boron compound was tested as an additive for the detection of thermal neutrons in plastic scintillators. Bis(pinacolato)diboron (B 2 Pin 2 ) was determined to be a compatible boron source (8.51 wt% boron, 1.70 wt% 10 B) in poly(vinyltoluene) based matrices. Plastic scintillator blends of 1–20 wt% 2,5-diphenyloxazole (PPO), 0.1 wt% 1,4-bis(5-phenyloxazol-2-yl) benzene (POPOP) and 1–15 wt% B 2 Pin 2 were prepared that provided optical clarity, good mechanical properties, and the capability of thermal neutron detection. Independent of B 2 Pin 2 concentration, strong 10 B neutron capture signals around 90 keV ee were observed at essentially constant light output. Increasing PPO concentration allowed for the use of pulse shape discrimination (PSD) in both fast and thermal neutron detection. High PPO concentrations appear to cause additional alpha quenching that affected the 10 B neutron capture signal. Aging effects after storage in air for several months were observed, which led to degradation of performance and in some samples of mechanical stability.

  10. Design studies related to an in vivo neutron activation analysis facility for measuring total body nitrogen.

    Science.gov (United States)

    Stamatelatos, I E; Chettle, D R; Green, S; Scott, M C

    1992-08-01

    Design studies relating to an in vivo prompt capture neutron activation analysis facility measuring total body nitrogen are presented. The basis of the design is a beryllium-graphite neutron collimator and reflector configuration for (alpha, n) type radionuclide neutron sources (238PuBe or 241AmBe), so as to reflect leaking, or out-scattered, neutrons towards the subject. This improves the ratio of thermal neutron flux to dose and the spatial distribution of thermal flux achieved with these sources, whilst retaining their advantage of long half-lives as compared to 252Cf based systems. The common problem of high count-rate at the detector, and therefore high nitrogen region of interest background due to pile-up, is decreased by using a set of smaller (5.1 cm diameter x 10.2 cm long) NaI(Tl) detectors instead of large ones. The facility described presents a relative error of nitrogen measurement of 3.6% and a nitrogen to background ratio of 2.3 for 0.45 mSv skin dose (assuming ten 5.1 cm x 10.2 cm NaI(Tl) detectors).

  11. Neutrons as Party Animals: An Analogy for Understanding Heavy-Element Fissility

    Science.gov (United States)

    Reed, B. Cameron

    2012-12-01

    I teach a general education class on the history of nuclear physics and the Manhattan Project. About halfway through the course we come to the discovery of fission and Niels Bohr's insight that it is the rare isotope of uranium, U-235, which fissions under slow-neutron bombardment as opposed to the much more common U-238 isotope. As an "explanation" of the differing responses of the two isotopes to bombarding neutrons, I use the known (measured) masses of the various isotopes involved to compute the energies released upon neutron capture and then compare them to the fission barriers of the "compound" nuclei so formed (U-236 and U-239). The energy released in the (neutron + U-235) reaction exceeds the fission barrier by about one million electron-volts (1 MeV), while that for the (neutron + U-238) case falls about 1.6 MeV short. (The fission barriers are respectively about 5.7 and 6.5 MeV.)

  12. Bis(pinacolato)diboron as an additive for the detection of thermal neutrons in plastic scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Mahl, Adam [Department of Physics and the Nuclear Science and Engineering Center (NuSEC), Colorado School of Mines, Golden, CO 80401 (United States); Yemam, Henok A.; Stuntz, John [Department of Chemistry and Geochemistry and the Materials Science Program Colorado School of Mines, Golden, CO 80401 (United States); Remedes, Tyler [Department of Physics and the Nuclear Science and Engineering Center (NuSEC), Colorado School of Mines, Golden, CO 80401 (United States); Sellinger, Alan [Department of Chemistry and Geochemistry and the Materials Science Program Colorado School of Mines, Golden, CO 80401 (United States); Greife, Uwe, E-mail: ugreife@mines.edu [Department of Physics and the Nuclear Science and Engineering Center (NuSEC), Colorado School of Mines, Golden, CO 80401 (United States)

    2016-04-21

    A readily available and inexpensive boron compound was tested as an additive for the detection of thermal neutrons in plastic scintillators. Bis(pinacolato)diboron (B{sub 2}Pin{sub 2}) was determined to be a compatible boron source (8.51 wt% boron, 1.70 wt% {sup 10}B) in poly(vinyltoluene) based matrices. Plastic scintillator blends of 1–20 wt% 2,5-diphenyloxazole (PPO), 0.1 wt% 1,4-bis(5-phenyloxazol-2-yl) benzene (POPOP) and 1–15 wt% B{sub 2}Pin{sub 2} were prepared that provided optical clarity, good mechanical properties, and the capability of thermal neutron detection. Independent of B{sub 2}Pin{sub 2} concentration, strong {sup 10}B neutron capture signals around 90 keV{sub ee} were observed at essentially constant light output. Increasing PPO concentration allowed for the use of pulse shape discrimination (PSD) in both fast and thermal neutron detection. High PPO concentrations appear to cause additional alpha quenching that affected the {sup 10}B neutron capture signal. Aging effects after storage in air for several months were observed, which led to degradation of performance and in some samples of mechanical stability.

  13. Bis(pinacolato)diboron as an additive for the detection of thermal neutrons in plastic scintillators

    Science.gov (United States)

    Mahl, Adam; Yemam, Henok A.; Stuntz, John; Remedes, Tyler; Sellinger, Alan; Greife, Uwe

    2016-04-01

    A readily available and inexpensive boron compound was tested as an additive for the detection of thermal neutrons in plastic scintillators. Bis(pinacolato)diboron (B2Pin2) was determined to be a compatible boron source (8.51 wt% boron, 1.70 wt% 10B) in poly(vinyltoluene) based matrices. Plastic scintillator blends of 1-20 wt% 2,5-diphenyloxazole (PPO), 0.1 wt% 1,4-bis(5-phenyloxazol-2-yl) benzene (POPOP) and 1-15 wt% B2Pin2 were prepared that provided optical clarity, good mechanical properties, and the capability of thermal neutron detection. Independent of B2Pin2 concentration, strong 10B neutron capture signals around 90 keVee were observed at essentially constant light output. Increasing PPO concentration allowed for the use of pulse shape discrimination (PSD) in both fast and thermal neutron detection. High PPO concentrations appear to cause additional alpha quenching that affected the 10B neutron capture signal. Aging effects after storage in air for several months were observed, which led to degradation of performance and in some samples of mechanical stability.

  14. The Neutron, a Tool and an Object for Fundamental and Nuclear Physics Studies

    CERN Multimedia

    CERN. Geneva

    2004-01-01

    The Institut Laue-Langevin (ILL) is an international research institute which operates the currently most powerful source of neutrons in the world, a 58 MW reactor. The neutron beams provided by the reactor feed a broad range of instruments which are dedicated to a wide variety of research activities. The majority of instruments are dedicated to the study of solid-state physics, materials science, chemistry, the biosciences, and earth sciences. However, nuclear and low energy particle physics studies are also vigorously pursued with the aid of neutrons. The talk will mainly concentrate on this latter aspect. We make use of hot, thermal, cold, and ultra-cold neutrons with velocities of between a few kilometers and a few meters per second, corresponding to kinetic energies in the electronvolt-to-nanoelectronvolt range. It will be briefly discussed how thermal neutrons can be used to investigate the structure and behavior of nuclei by generating excited nuclear states. The main part of the talk will be dedicated...

  15. An on-line advanced plant simulator (OLAPS)

    International Nuclear Information System (INIS)

    Samuels, J.W.

    1989-01-01

    A PC based on-line advanced plant simulator (OLAPS) for high quality simulations of Portland General Electric's Trojan Nuclear Facility is presented. OLAPS is designed to simulate the thermal-hydraulics of the primary system including core, steam generators, pumps, piping and pressurizer. The simulations are based on a five equation model that has two mass equations, two energy equations, two energy equations, and one momentum equation with a drift flux model to provide closure. A regionwise point reactor kinetics model is used to model the neutron kinetics in the core. The conservation equations, constitutive models and the numerical methods used to solve them are described. OLAPS results are compared with data from chapter 15 of the Trojan Nuclear Facility's final safety analysis report

  16. Advances in atomic physics an overview

    CERN Document Server

    Cohen-Tannoudji, Claude

    2011-01-01

    This book presents a comprehensive overview of the spectacular advances seen in atomic physics during the last 50 years. The authors explain how such progress was possible by highlighting connections between developments that occurred at different times. They discuss the new perspectives and the new research fields that look promising. The emphasis is placed, not on detailed calculations, but rather on physical ideas. Combining both theoretical and experimental considerations, the book will be of interest to a wide range of students, teachers and researchers in quantum and atomic physics.

  17. An aerial radiological survey of the neutron products company and surrounding area

    International Nuclear Information System (INIS)

    Vojtech, R.J.

    1994-12-01

    An aerial radiological survey was conducted from November 1-10, 1993, over the Neutron Products Company and neighboring areas. The company, located in Dickerson, Maryland, has two major operations involving the radioisotope cobalt-60 ( 60 Co)-the manufacture of commercial 60 Co sources and the sterilization of medical products by exposure to radiation. The sterilization facility consists of two 60 Co sources with activities of approximately 500,000 and 1,500,000 Ci, respectively. The purpose of the aerial survey was to detect and document any anomalous gamma-emitting radionuclides in the environment which may have resulted from operations of the Neutron Products Company. The survey covered two areas: the first was a 6.5- by 6.5-kilometer area centered over the Neutron Products facility; the second area was a 2- by 2.5-kilometer region surrounding a waste pumping station on Muddy Branch in Gaithersburg, Maryland. This site is approximately fifteen kilometers southeast of the Neutron Products facility and was included because sanitary and other liquid waste materials from the plant site are being disposed of at the pumping station. Contour maps showing gamma radiation exposure rates at 1 meter above ground level, overlaid on an aerial photo of the area, were constructed from the data measured during the flights. The exposure rates measured within the survey regions were generally uniform and typical of rates resulting from natural background radiation. Only one area showed an enhanced exposure rate not attributable to natural background. This area, located directly over the Neutron Products facility, was analyzed and identified as 60 Co, the radioisotope used in the irradiation and source production operations conducted at the Neutron Products Company. The measurements over the Muddy Branch area in Gaithersburg were typical of natural background radiation and showed no evidence of 60 Co or any other man-made radionuclide

  18. An automated analysis workflow for optimization of force-field parameters using neutron scattering data

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Vickie E.; Borreguero, Jose M. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Bhowmik, Debsindhu [Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Ganesh, Panchapakesan; Sumpter, Bobby G. [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Proffen, Thomas E. [Neutron Data Analysis & Visualization Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Goswami, Monojoy, E-mail: goswamim@ornl.gov [Center for Nanophase Material Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States); Computational Sciences & Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 (United States)

    2017-07-01

    Graphical abstract: - Highlights: • An automated workflow to optimize force-field parameters. • Used the workflow to optimize force-field parameter for a system containing nanodiamond and tRNA. • The mechanism relies on molecular dynamics simulation and neutron scattering experimental data. • The workflow can be generalized to any other experimental and simulation techniques. - Abstract: Large-scale simulations and data analysis are often required to explain neutron scattering experiments to establish a connection between the fundamental physics at the nanoscale and data probed by neutrons. However, to perform simulations at experimental conditions it is critical to use correct force-field (FF) parameters which are unfortunately not available for most complex experimental systems. In this work, we have developed a workflow optimization technique to provide optimized FF parameters by comparing molecular dynamics (MD) to neutron scattering data. We describe the workflow in detail by using an example system consisting of tRNA and hydrophilic nanodiamonds in a deuterated water (D{sub 2}O) environment. Quasi-elastic neutron scattering (QENS) data show a faster motion of the tRNA in the presence of nanodiamond than without the ND. To compare the QENS and MD results quantitatively, a proper choice of FF parameters is necessary. We use an efficient workflow to optimize the FF parameters between the hydrophilic nanodiamond and water by comparing to the QENS data. Our results show that we can obtain accurate FF parameters by using this technique. The workflow can be generalized to other types of neutron data for FF optimization, such as vibrational spectroscopy and spin echo.

  19. Advances towards a portable pulsed source of neutrons and X-ray with energy of work close to 1 Joule

    International Nuclear Information System (INIS)

    Soto, Leopoldo; Pavez, C.; Moreno, Jose; Clausse, Alejandro; Barbaglia, Mario O.

    2005-01-01

    Plasma Focus devices are pulsed sources of X and neutron radiation from intense electrical discharges in deuterium. Classically these devices operate at energies between a few KJ to 1 MJ. In this work we present the design and feasibility studies of a Plasma Focus operating at energies close to 1 Joule. Experimental evidence of focalization is presented, and the optimum parameter relations at such low energies are discussed. The results indicate the device will be able to emit pulses about 1000 neutrons per J. (author) [es

  20. Development of five axis robotic system for an industrial neutron tomography imaging system

    International Nuclear Information System (INIS)

    Vyas, R.J.; Radke, M.G.; Mishra, J.K.; Arunkumar, G.V.D.; Ramakumar, M.S.

    1994-01-01

    Tomography is one of the latest techniques in the field of nondestructive testing. X-rays, gamma rays or neutrons are used as an energy source whereas five axis manipulator is designed to move the specimen across the beam. The 5 axis robotic system has been indigenously developed, designed, manufactured and tested to move up to 10 kg payload. Computer is necessary to process and store data and retrieve it for processing. The same computer is used for control of manipulator. Computer aided tomography is carried out for research and industrial use. Neutron beam will be used either for evaluation of organic materials in attenuation based measurements or for evaluation on the basis of neutron activation of materials like nuclear fuels. The paper describes the indigenously developed 5-axis robotic system as a part of a facility built around Kamini reactor at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam. (author). 4 figs

  1. Design status of an intense 14 MeV neutron source for cancer therapy

    CERN Document Server

    Yao, Z E; Cheng, S W; Jia, W B

    2002-01-01

    Design and development of an intense 14 MeV neutron source for cancer therapy is in progress at the Institute of Nuclear Research of Lanzhou University. The neutrons from the T(d,n) sup 4 He reaction are produced by bombarding a rotating titanium tritide target with a 40 mA deuteron beam at 600 keV. The designed neutron yield is 8x10 sup 1 sup 2 n/s and the maximum dose rate at a 100 cm source-to-skin distance is 25 cGy/min. The HV terminal, accelerating column and HV power supply are enclosed inside a stainless steel pressure vessel containing 6 atm SF sub 6 gas to provide the electrical insulation.

  2. Neutron diffraction investigation of an in-plane biaxial fatigued stainless steel sample of cruciform geometry

    Science.gov (United States)

    Taran, Yu V.; Balagurov, A. M.; Sheverev, S. G.; Schreiber, J.; Korsunsky, A. M.; Vorster, W. J. J.; Bomas, H.; Stoeberl, C.

    2008-03-01

    Fatigue and fracture under multiaxial stresses are among the most important current research topics aimed at ensuring improved reliability of industrial components. An ex situ in-plane biaxial low cycle fatigued sample of cruciform geometry from austenitic stainless steel AISI 321 H was investigated on the FSD stress-diffractometer at the IBR-2 pulsed nuclear reactor by using the neutron strain scanner and the uniaxial stress rig. The phase composition of fatigued material was determined and the residual macrostresses and phase microstresses were measured. To the best of our knowledge, no neutron diffraction investigations of materials subjected to biaxial loading have been previously carried out. The first results of the neutron diffraction experiment are presented and discussed.

  3. Neutron diffraction investigation of an in-plane biaxial fatigued stainless steel sample of cruciform geometry

    International Nuclear Information System (INIS)

    Taran, Yu V; Balagurov, A M; Sheverev, S G; Schreiber, J; Korsunsky, A M; Vorster, W J J; Bomas, H; Stoeberl, C

    2008-01-01

    Fatigue and fracture under multiaxial stresses are among the most important current research topics aimed at ensuring improved reliability of industrial components. An ex situ in-plane biaxial low cycle fatigued sample of cruciform geometry from austenitic stainless steel AISI 321 H was investigated on the FSD stress-diffractometer at the IBR-2 pulsed nuclear reactor by using the neutron strain scanner and the uniaxial stress rig. The phase composition of fatigued material was determined and the residual macrostresses and phase microstresses were measured. To the best of our knowledge, no neutron diffraction investigations of materials subjected to biaxial loading have been previously carried out. The first results of the neutron diffraction experiment are presented and discussed

  4. Using activation method to measure neutron spectrum in an irradiation chamber of a research reactor

    International Nuclear Information System (INIS)

    Zhou Xuemei; Liu Guimin; Wang Xiaohe; Li Da; Meng Lingjie

    2014-01-01

    Neutron spectrum should be measured before test samples are irradiated. Neutron spectrum in an irradiation chamber of a research reactor was measured by using activation method when the reactor is in normal operation under 2 MW. Sixteen kinds of non-fission foils (19 reaction channels) were selected, of which 10 were sensitive to thermal and intermediate energy regions, while the others were of different threshold energy and sensitive to fast energy regions. By measuring the foil radioactivity, the neutron spectrum was unfolded with the iterative methods SAND-II and MSIT. Finally, shielding corrections of group cross-section and main factors affecting the calculation accuracy were studied and the uncertainty of solution was analyzed using the Monte Carlo method in the process of SAND-II. (authors)

  5. Radial plasma profile and neutron yield in an adiabatic trap with fast atom injection

    International Nuclear Information System (INIS)

    Panov, D.A.

    1988-01-01

    Radial profiles of ion densities depending on two dimensionless parameters, which values are determined by the trap, plasma and injected beam parameters are found in dimensionless units for a plasma generated by fast atom injection in an adiabatic trap. The calculated profiles are used for determining the neutron yield. Simple approximated dimensional relations permitting to estimate quickly neutron yield, required injection power, flux of charge exchange atoms on the wall around the plasma in a wide energy range of injected atoms, trap field modulud, injection angle, trap radius and length are determined. The energetic efficiency of neutron production is estimated and it is shown that it grows with the injection energy. 7 refs.; 7 figs

  6. Prototype Demonstration of Gamma- Blind Tensioned Metastable Fluid Neutron/Multiplicity/Alpha Detector – Real Time Methods for Advanced Fuel Cycle Applications

    Energy Technology Data Exchange (ETDEWEB)

    McDeavitt, Sean M. [Texas A & M Univ., College Station, TX (United States)

    2016-12-20

    The content of this report summarizes a multi-year effort to develop prototype detection equipment using the Tensioned Metastable Fluid Detector (TMFD) technology developed by Taleyarkhan [1]. The context of this development effort was to create new methods for evaluating and developing advanced methods for safeguarding nuclear materials along with instrumentation in various stages of the fuel cycle, especially in material balance areas (MBAs) and during reprocessing of used nuclear fuel. One of the challenges related to the implementation of any type of MBA and/or reprocessing technology (e.g., PUREX or UREX) is the real-time quantification and control of the transuranic (TRU) isotopes as they move through the process. Monitoring of higher actinides from their neutron emission (including multiplicity) and alpha signatures during transit in MBAs and in aqueous separations is a critical research area. By providing on-line real-time materials accountability, diversion of the materials becomes much more difficult. The Tensioned Metastable Fluid Detector (TMFD) is a transformational technology that is uniquely capable of both alpha and neutron spectroscopy while being “blind” to the intense gamma field that typically accompanies used fuel – simultaneously with the ability to provide multiplicity information as well [1-3]. The TMFD technology was proven (lab-scale) as part of a 2008 NERI-C program [1-7]. The bulk of this report describes the advancements and demonstrations made in TMFD technology. One final point to present before turning to the TMFD demonstrations is the context for discussing real-time monitoring of SNM. It is useful to review the spectrum of isotopes generated within nuclear fuel during reactor operations. Used nuclear fuel (UNF) from a light water reactor (LWR) contains fission products as well as TRU elements formed through neutron absorption/decay chains. The majority of the fission products are gamma and beta emitters and they represent the

  7. Neutron activation analysis of an iranian cigarette and its smoke

    International Nuclear Information System (INIS)

    Abedinzadeh, Z.; Razeghi, M.; Parsa, B.

    1977-01-01

    Non-destructive neutron activation analysis, employing a high-resolution Ge(Li)detector, was applied to determine the concentration of 24 trace elements in the tobacco of the Zarrin cigarette which is commercially made in Iran. These elements are: Na, K, Sc, Cr, Mn, Fe, Co, Zn, Se, Br, Rb, Ag, Sb, Cs, Ba, La, Ce, Sm, Eu, Tb, Hf, Au, Hg and Th. The smokes from the combustion of this tobacco and of the cigarette paper were also analysed for these elements and the percentage transference values were calculated. The concentration of some of the trace elements in Zarrin cigarette tobacco obtained in this work from the pooled tobacco sample have significantly changed in comparison with the results obtained in the earlier observations based on individual cigarettes. Aside from the differences which may occur due to different sampling methods, this may be attributed to the variations in specific brands of commercial cigarettes over a period of time. The fact of particular importance is that the concentrations of Se, Hg and Sb in Zarrin cigarette tobacco have almost increased by a factor of 2,3 and 10, respectively. However, the levels of some elements such as K, Fe, Rb, Cs, Ce, Sm, Tb, Hf and Th have remained fairly constant during the two observation periods. (T.G.)

  8. Design of an oscillating radial collimator for use in a neutron diffractometer

    International Nuclear Information System (INIS)

    Deshpande, S.K.; Goyal, P.S.

    2003-01-01

    An oscillating radial collimator (ORC) has been designed for use at the IUC-DAEF neutron diffractometer that is being set up at the upcoming neutron beamline at Dhruva reactor, BARC. The design incorporates cadmium-plated stainless steel blades mounted between aluminium flanges in a vertical venetian blinds type arrangement. The oscillations are driven by a stepper motor using a worm and wheel segment. The design satisfies the requirements of high visibility over the small sample region but good cut-off away from it. (author)

  9. An alternative method of neutron-gamma mixed-field dosimetry by using paired ionization chambers

    International Nuclear Information System (INIS)

    Nohtomi, A.; Sugiura, N.; Itoh, T.; Sakae, T.; Terunuma, T.; Fujibuchi, T.

    2010-01-01

    In order to expand the available energy range of neutron dosimetry by the paired ionization chambers, an alternative method has been newly proposed. The method employs another TE-TE chamber with a gamma-ray attenuator instead of conventional C-CO 2 chamber. A rough comparison of uncertainty estimates between conventional method and newly proposed one is carried out. The result indicates that the accuracy of the present method is far less-sensitive to the change of neutron energy and is evidently superior to that of the conventional method.

  10. An alternative method of neutron-gamma mixed-field dosimetry by using paired ionization chambers

    International Nuclear Information System (INIS)

    Nohtomi, A.; Sugiura, N.; Itoh, T.; Sakae, T.; Terunuma, T.; Fujibuchi, T.

    2010-01-01

    In order to expand the available energy range of neutron dosimetry by the paired ionization chambers, an alternative method has been newly proposed. The method employs another TE-TE chamber with a gamma-ray attenuator instead of conventional C-CO 2 chamber. A rough comparison of uncertainty estimates between conventional method and newly-proposed one is carried out. The result indicates that the accuracy of the present method is far less-sensitive to the change of neutron energy and is evidently superior to that of the conventional method. (author)

  11. Measurement and calculation of the emission anisotropy of an X1 252Cf neutron source

    International Nuclear Information System (INIS)

    Hawkes, N. P.; Freedman, R.; Tagziria, H.; Thomas, D. J.

    2007-01-01

    The authors have measured the emission anisotropy from a 252 Cf spontaneous fission neutron source in an X1 encapsulation. The measurements were made in a large low-scatter laboratory using a long counter, and data were taken at angles varying in 10 deg. steps from 0 deg. to 180 deg. relative to the cylindrical axis of the source. Corrections were made for room scatter, loss of neutrons due to air scatter and detector dead time. Calculations corresponding to these measurements were subsequently carried out using the two Monte Carlo codes MCNP and MCBEND, and the results are compared with the measurements and with each other. (authors)

  12. Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source

    International Nuclear Information System (INIS)

    Bowman, C.D.; Arthur, E.D.; Lisowski, P.W.; Lawrence, G.P.; Jensen, R.J.; Anderson, J.L.; Blind, B.; Cappiello, M.; Davidson, J.W.; England, T.R.; Engel, L.N.; Haight, R.C.; Hughes, H.G. III; Ireland, J.R.; Krakowski, R.A.; LaBauve, R.J.; Letellier, B.C.; Perry, R.T.; Russell, G.J.; Staudhammer, K.P.; Versamis, G.; Wilson, W.B.

    1992-01-01

    We describe a new approach for commercial nuclear energy production without a long-term high-level waste stream and for transmutation of both fission product and higher actinide commercial nuclear waste using a thermal flux of accelerator-produced neutrons in the 10 16 n/cm 2 s range. Continuous neutron fluxes at this intensity, which is approximately 100 times larger than is typically available in a large scale thermal reactor, appear practical, owing to recent advances in proton linear accelerator technology and to the spallation target-moderator design presented here. This large flux of thermal neutrons makes possible a waste inventory in the transmutation system which is smaller by about a factor of 100 than competing concepts. The accelerator allows the system to operate well below criticality so that the possibility for a criticality accident is eliminated. No control rods are required. The successful implementation of this new method for energy generation and waste transmutation would eliminate the need for nuclear waste storage on a geologic time scale. The production of nuclear energy from 232 Th or 238 U is used to illustrate the general principles of commercial nuclear energy, production without long-term high-level waste. There appears to be sufficient thorium to meet the world's energy needs for many millenia. (orig.)

  13. Thermal Analysis and Design of an Advanced Space Suit

    Science.gov (United States)

    Lin, Chin H.; Campbell, Anthony B.; French, Jonathan D.; French, D.; Nair, Satish S.; Miles, John B.

    2000-01-01

    The thermal dynamics and design of an Advanced Space Suit are considered. A transient model of the Advanced Space Suit has been developed and implemented using MATLAB/Simulink to help with sizing, with design evaluation, and with the development of an automatic thermal comfort control strategy. The model is described and the thermal characteristics of the Advanced Space suit are investigated including various parametric design studies. The steady state performance envelope for the Advanced Space Suit is defined in terms of the thermal environment and human metabolic rate and the transient response of the human-suit-MPLSS system is analyzed.

  14. Pulsed neutron porosity logging system

    International Nuclear Information System (INIS)

    Smith, H.D. Jr.; Smith, M.P.; Schultz, W.E.

    1978-01-01

    An improved pulsed neutron porosity logging system is provided in the present invention. A logging tool provided with a 14 MeV pulsed neutron source, an epithermal neutron detector, and a fast neutron detector is moved through a borehole. Repetitive bursts of neutrons irradiate the earth formations and, during the bursts, the fast neutron population is sampled. During the interval between bursts the epithermal neutron population is sampled along with background gamma radiation due to lingering thermal neutrons. The fast and epithermal neutron population measurements are combined to provide a measurement of formation porosity

  15. An Upgrade for the Advanced Light Source

    International Nuclear Information System (INIS)

    Chemla, Daniel S.; Feinberg, Benedict; Hussain, Zahid; Kirz, Janos; Krebs, Gary F.; Padmore, Howard A.; Robin, David S.; Robinson, Arthur L.; Smith, Neville V.

    2004-01-01

    One of the first third-generation synchrotron light sources, the ALS, has been operating for almost a decade at Berkeley Lab, where experimenters have been exploiting its high brightness for forefront science. However, accelerator and insertion-device technology have significantly changed since the ALS was designed. As a result, the performance of the ALS is in danger of being eclipsed by that of newer, more advanced sources. The ALS upgrade that we are planning includes full-energy, top-off injection with higher storage-ring current and the replacement of five first-generation insertion devices with nine state-of-the art insertion devices and four new application-specific beamlines now being identified in a strategic planning process. The upgrade will help keep the ALS at the forefront of soft x-ray synchrotron light sources for the next two decades

  16. Density Functional Theory An Advanced Course

    CERN Document Server

    Dreizler, Reiner M

    2011-01-01

    Density Functional Theory (DFT) has firmly established itself as the workhorse for the atomic-level simulation of condensed matter phases, pure or composite materials and quantum chemical systems. The present book is a rigorous and detailed introduction to the foundations up to and including such advanced topics as orbital-dependent functionals and both time-dependent and relativistic DFT. Given the many ramifications of contemporary DFT, this text concentrates on the self-contained presentation of the basics of the most widely used DFT variants. This implies a thorough discussion of the corresponding existence theorems and effective single particle equations, as well as of key approximations utilized in implementations. The formal results are complemented by selected quantitative results, which primarily aim at illustrating strengths and weaknesses of a particular approach or functional. DFT for superconducting or nuclear and hadronic systems are not addressed in this work. The structure and material contain...

  17. Advanced Lung Cancer Screening: An Individualized Molecular Nanotechnology Approach

    Science.gov (United States)

    2016-03-01

    Award Number: W81XWH-12-1-0323 TITLE: Advanced Lung Cancer Screening: An Individualized Molecular Nanotechnology Approach PRINCIPAL...SUBTITLE Advanced Lung Cancer Screening: An Individualized Molecular Nanotechnology Approach 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...increasing its sensitivity and specificity through nanotechnology . Hypothesis: Detection of DNA methylation from individuals with cancer can be used to

  18. The D-D Neutron Generator as an Alternative to Am(Li) Isotopic Neutron Source in the Active Well Coincidence Counter

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, Robert Dennis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cleveland, Steven L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    The 235U mass assay of bulk uranium items, such as oxide canisters, fuel pellets, and fuel assemblies, is not achievable by traditional gamma-ray assay techniques due to the limited penetration of the item by the characteristic 235U gamma rays. Instead, fast neutron interrogation methods such as active neutron coincidence counting must be used. For international safeguards applications, the most commonly used active neutron systems, the Active Well Coincidence Counter (AWCC), Uranium Neutron Collar (UNCL) and 252Cf Shuffler, rely on fast neutron interrogation using an isotopic neutron source [i.e., 252Cf or Am(Li)] to achieve better measurement accuracies than are possible using gamma-ray techniques for high-mass, high-density items. However, the Am(Li) sources required for the AWCC and UNCL systems are no longer manufactured, and newly produced systems rely on limited supplies of sources salvaged from disused instruments. The 252Cf shuffler systems rely on the use of high-output 252Cf sources, which while still available have become extremely costly for use in routine operations and require replacement every five to seven years. Lack of a suitable alternative neutron interrogation source would leave a potentially significant gap in the safeguarding of uranium processing facilities. In this work, we made use of Oak Ridge National Laboratory’s (ORNL’s) Large Volume Active Well Coincidence Counter (LV-AWCC) and a commercially available deuterium-deuterium (D-D) neutron generator to examine the potential of the D-D neutron generator as an alternative to the isotopic sources. We present the performance of the LV-AWCC with D-D generator for the assay of 235U based on the results of Monte Carlo N-Particle (MCNP) simulations and measurements of depleted uranium (DU), low enriched uranium (LEU), and highly enriched uranium (HEU) items.

  19. Metabolic Dysregulation after Neutron Exposures Expected from an Improvised Nuclear Device.

    Science.gov (United States)

    Laiakis, Evagelia C; Wang, Yi-Wen; Young, Erik F; Harken, Andrew D; Xu, Yanping; Smilenov, Lubomir; Garty, Guy Y; Brenner, David J; Fornace, Albert J

    2017-07-01

    The increased threat of terrorism across the globe has raised fears that certain groups will acquire and use radioactive materials to inflict maximum damage. In the event that an improvised nuclear device (IND) is detonated, a potentially large population of victims will require assessment for radiation exposure. While photons will contribute to a major portion of the dose, neutrons may be responsible for the severity of the biologic effects and cellular responses. We investigated differences in response between these two radiation types by using metabolomics and lipidomics to identify biomarkers in urine and blood of wild-type C57BL/6 male mice. Identification of metabolites was based on a 1 Gy dose of radiation. Compared to X rays, a neutron spectrum similar to that encountered in Hiroshima at 1-1.5 km from the epicenter induced a severe metabolic dysregulation, with perturbations in amino acid metabolism and fatty acid β-oxidation being the predominant ones. Urinary metabolites were able to discriminate between neutron and X rays on day 1 as well as day 7 postirradiation, while serum markers showed such discrimination only on day 1. Free fatty acids from omega-6 and omega-3 pathways were also decreased with 1 Gy of neutrons, implicating cell membrane dysfunction and impaired phospholipid metabolism, which should otherwise lead to release of those molecules in circulation. While a precise relative biological effectiveness value could not be calculated from this study, the results are consistent with other published studies showing higher levels of damage from neutrons, demonstrated here by increased metabolic dysregulation. Metabolomics can therefore aid in identifying global perturbations in blood and urine, and effectively distinguishing between neutron and photon exposures.

  20. New neutron-based isotopic analytical methods; An explorative study of resonance capture and incoherent scattering

    NARCIS (Netherlands)

    Perego, R.C.

    2004-01-01

    Two novel neutron-based analytical techniques have been treated in this thesis, Neutron Resonance Capture Analysis (NRCA), employing a pulsed neutron source, and Neutron Incoherent Scattering (NIS), making use of a cold neutron source. With the NRCA method isotopes are identified by the

  1. Development of an area monitor for neutrons using solid state nuclear track detector; Desenvolvimento de um monitor de area para neutrons utilizando detector solido de tracos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, G.S.

    1994-12-31

    An area monitor for neutrons composed of the solid state nuclear track detector (SSNTD) Makrofol DE, together with a (n,{alpha}) converter, in the center of a 25 cm diameter polyethylene sphere, is developed. The optimal electrochemical etching conditions for the detection of thermal neutrons by the Makrofol DE using the BN converter are studied, leading to the choice of 55 min, at 30{sup 0} C, under a 44,2 kV.cm{sup -1} electric field with oscillation frequency of 2,0 khz. The response of this system to thermal neutrons, in the optimal conditions, is of 2,76(10)x 10{sup -3} tr/n. Changing from the BN converter to a 2,73(3)g compressed boric acid tablet this value lowers to 3,88(17)x 10{sup -4} tr/n. The performance of the whole monitor in the detection of fast neutrons is examined using the BN converter and neutrons from a {sup 241} Am Be source, with a response of 4,4(2)x 10{sup 3} tr.mSv{sup -1}.cm{sup -2} and operational limits between 7(3){mu}Sv and 5,6(2)mSv. The result of the monitoring of the control room of the IPEN Cyclotron accelerator are also presented as a final test for the viability of the practical use of the monitor. (author). 34 refs, 15 figs, 6 tabs, 1 app.

  2. Fast neutron radiation induced Glu-B1 deficient lines of an elite bread wheat variety

    Science.gov (United States)

    Five isogenic wheat lines deficient in high-molecular weight subunit (HMW-GS) proteins encoded by the B-genome were identified from a fast-neutron radiation-mutagenized population of Summit, an elite variety of bread wheat (Triticum aestivum L.). The mutant lines differ from the wild-type progenit...

  3. An exact formalism for Doppler-broadened neutron cross-sections

    International Nuclear Information System (INIS)

    Catsaros, Nicolas.

    1985-07-01

    An exact formalism (Ψ, Φ) is proposed for the calculation of Breit-Wigner or Adler-Adler Doppler-broadened neutron cross-sections. The well-known (Ψ, Φ) formalism is shown to be a zero-order approximation of the generalized (Ψ, Φ) formalism. (author)

  4. Advanced Asymptomatic Carotid Disease and Cognitive Impairment: An Understated Link?

    Directory of Open Access Journals (Sweden)

    Irena Martinić-Popović

    2012-01-01

    Full Text Available Advanced carotid disease is known to be associated with symptomatic cerebrovascular diseases, such as stroke or transient ischemic attack (TIA, as well as with poststroke cognitive impairment. However, cognitive decline often occurs in patients with advanced carotid stenosis without clinically evident stroke or TIA, so it is also suspected to be an independent risk factor for dementia. Neurosonological methods enable simple and noninvasive assessment of carotid stenosis in patients at risk of advanced atherosclerosis. Cognitive status in patients diagnosed with advanced carotid stenosis is routinely not taken into consideration, although if cognitive impairment is present, such patients should probably be called symptomatic. In this paper, we discuss results of some most important studies that investigated cognitive status of patients with asymptomatic advanced carotid disease and possible mechanisms involved in the causal relationship between asymptomatic advanced carotid disease and cognitive decline.

  5. An update on the treatment of advanced prostate cancer.

    Science.gov (United States)

    Ngugi, P M

    2007-09-01

    To obtain an update of the treatment of advanced prostate cancer. Review of all published literature on advanced prostate cancer was carried out through medline and index medicus search. Published data on advanced prostate cancer from June 2005 to June 2007 was included in the review. Abstracts of articles identified were assessed, read and analysed to determine relevance to the title under review. After establishing relevance from the abstract, the entire paper was read, and significant points included in the review. The mainstay of treatment of advanced prostate cancer remains hormone withdrawal. The introduction of docetaxel based chemotherapy has caused a paradigm shift.

  6. Source localization with an advanced gravitational wave detector network

    International Nuclear Information System (INIS)

    Fairhurst, Stephen

    2011-01-01

    We derive an expression for the accuracy with which sources can be localized using a network of gravitational wave detectors. The result is obtained via triangulation, using timing accuracies at each detector and is applicable to a network with any number of detectors. We use this result to investigate the ability of advanced gravitational wave detector networks to accurately localize signals from compact binary coalescences. We demonstrate that additional detectors can significantly improve localization results and illustrate our findings with networks comprised of the advanced LIGO, advanced Virgo and LCGT. In addition, we evaluate the benefits of relocating one of the advanced LIGO detectors to Australia.

  7. Determination of a neutron source position in an unknown homogeneous medium; the 2D case

    International Nuclear Information System (INIS)

    Dubinski, S.; Presler, O.; Alfassi, Z. B.

    2007-01-01

    The localisation of an unknown neutron source in various bulky homogeneous media was studied. For the planar case two 3 He detectors on the opposite faces of a box were used. It is shown that the location of a single small neutron emitting source in a large box can be found to a better than 7% by using two neutron detectors positioned on parallel faces of the box, coplanar with the source. The localisation requires measurement of the count rate of both the unknown source (ratio of the count rates of the two detectors is R(x)) and an extra source positioned on one of the faces of the box (ratio of the count rates of the two detectors R(0)). The location of the neutron source is found according to the equation x = -a/2 . (1 - ln[R (x) ]/ln[R (0) ]) The localisation is based on the finding that the ratio of the count rates of the two detectors is an exponential function of the distance of the source from one of the detectors. (authors)

  8. Evaluation of the Neutron Fluence at a Baffle-Former Zone in an Operating Reactor

    International Nuclear Information System (INIS)

    Lee, S. L.; Yoo, C. S.; Hwang, S. S.

    2008-01-01

    Neutron fluence evaluation has been performed on a reactor vessel in an operating nuclear power plant in order to evaluate the radiation embrittlement which is directly related to plant safety as well as a plant operating license, based on the operating history. Because, as the operating years increase, damage may occur in the internal structures such as a baffle former bolt due to various reasons, and one of these reasons comes from the neutron fluence, so called an irradiation assisted stress corrosion cracking, thus resulting in the shutdown of a plant and the replacement of a structure which has an economic disadvantage as well as a severe effect in the integrity of a plant. Neutron flux and fluence calculations for the baffle area for one of the reactors operating in Korea have been performed for all the operating cycles from the start of the reactor using real plant operating conditions such as the operating temperature, pressure and fuel loading pattern in order to evaluate any possibility that may cause a stress corrosion cracking due to the excessive neutron irradiation

  9. An overview of the advanced photon source

    International Nuclear Information System (INIS)

    Shenoy, G.K.; Moncton, D.E.

    1987-08-01

    The need for dedicated synchrotron radiation facilities based on insertion devices and a low emittance storage-ring has been recognized for many years. A facility optimized to produce x-rays from 1 to 100 keV is expected to dramatically enhance research capabilities in the areas of condense matter physics, material sciences, chemical sciences, and biological sciences, in addition to contributing in a major way to the industrial research. This goal will be accomplished by the construction of the Advanced Photon Source (APS) facility consisting of a 7-GeV positron storage-ring with 100 mA current and 35 straight-sections to accommodate insertion devices. The ring energy has been chosen so that a single undulator will provide radiation from 4 to 40 keV (using the first and the third harmonics) with 0.2% bandwidth. The low emittance of 7 x 10 -9 rad . m will provide hard-x-ray undulator radiation with very high brilliance (∼10 18 to 10 19 photons/(s mm 2 mrad 2 ). (Construction is expected to begin in 1989 at Argonne National Laboratory.) This overview will mainly address the facility from the users' point-of-view

  10. An ultraluminous X-ray source powered by an accreting neutron star.

    Science.gov (United States)

    Bachetti, M; Harrison, F A; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W

    2014-10-09

    The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second. Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 × 10(39) ergs per second. The pulsating source is spatially coincident with a variable source that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 × 10(40) ergs per second. This association implies a luminosity of about 100 times the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects.

  11. Junction temperature estimation for an advanced active power cycling test

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, S.

    2015-01-01

    estimation method using on-state VCE for an advanced active power cycling test is proposed. The concept of the advanced power cycling test is explained first. Afterwards the junction temperature estimation method using on-state VCE and current is presented. Further, the method to improve the accuracy...

  12. An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy.

    Science.gov (United States)

    Ferreira, Tiago H; Miranda, Marcelo C; Rocha, Zildete; Leal, Alexandre S; Gomes, Dawidson A; Sousa, Edesia M B

    2017-04-12

    Currently, nanostructured compounds have been standing out for their optical, mechanical, and chemical features and for the possibilities of manipulation and regulation of complex biological processes. One of these compounds is boron nitride nanotubes (BNNTs), which are a nanostructured material analog to carbon nanotubes, but formed of nitrogen and boron atoms. BNNTs present high thermal stability along with high chemical inertia. Among biological applications, its biocompatibility, cellular uptake, and functionalization potential can be highlighted, in addition to its eased utilization due to its nanometric size and tumor cell internalization. When it comes to new forms of therapy, we can draw attention to boron neutron capture therapy (BNCT), an experimental radiotherapy characterized by a boron-10 isotope carrier inside the target and a thermal neutron beam focused on it. The activation of the boron-10 atom by a neutron generates a lithium atom, a gamma ray, and an alpha particle, which can be used to destroy tumor tissues. The aim of this work was to use BNNTs as a boron-10 carrier for BNCT and to demonstrate its potential. The nanomaterial was characterized through XRD, FTIR, and SEM. The WST-8 assay was performed to confirm the cell viability of BNNTs. The cells treated with BNNTs were irradiated with the neutron beam of a Triga reactor, and the apoptosis caused by the activation of the BNNTs was measured with a calcein AM/propidium iodide test. The results demonstrate that this nanomaterial is a promising candidate for cancer therapy through BNCT.

  13. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    Science.gov (United States)

    Bowman, Charles D.

    1992-01-01

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  14. Dosimetry of clinical neutron and proton beams: An overview of recommendations

    International Nuclear Information System (INIS)

    Vynckier, S.

    2004-01-01

    Neutron therapy beams are obtained by accelerating protons or deuterons on Beryllium. These neutron therapy beams present comparable dosimetric characteristics as those for photon beams obtained with linear accelerators; for instance, the penetration of a p(65) + Be neutron beam is comparable with the penetration of an 8 MV photon beam. In order to be competitive with conventional photon beam therapy, the dosimetric characteristics of the neutron beam should therefore not deviate too much from the photon beam characteristics. This paper presents a brief summary of the neutron beams used in radiotherapy. The dosimetry of the clinical neutron beams is described. Finally, recent and future developments in the field of physics for neutron therapy is mentioned. In the last two decades, a considerable number of centres have established radiotherapy treatment facilities using proton beams with energies between 50 and 250 MeV. Clinical applications require a relatively uniform dose to be delivered to the volume to be treated, and for this purpose the proton beam has to be spread out, both laterally and in depth. The technique is called 'beam modulation' and creates a region of high dose uniformity referred to as the 'spread-out Bragg peak'. Meanwhile, reference dosimetry in these beams had to catch up with photon and electron beams for which a much longer tradition of dosimetry exists. Proton beam dosimetry can be performed using different types of dosemeters, such as calorimeters, Faraday cups, track detectors and ionisation chambers. National standard dosimetry laboratories will, however, not provide a standard for the dosimetry of proton beams. To achieve uniformity on an international level, the use of an ionisation chamber should be considered. This paper reviews and summarises the basic principles and recommendations for the absorbed dose determination in a proton beam, utilising ionisation chambers calibrated in terms of absorbed dose to water. These recommendations

  15. Improved Fission Neutron Data Base for Active Interrogation of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, Sara; Czirr, J. Bart; Haight, Robert; Kovash, Michael; Tsvetkov, Pavel

    2013-11-06

    This project will develop an innovative neutron detection system for active interrogation measurements. Many active interrogation methods to detect fissionable material are based on the detection of neutrons from fission induced by fast neutrons or high-energy gamma rays. The energy spectrum of the fission neutrons provides data to identify the fissionable isotopes and materials such as shielding between the fissionable material and the detector. The proposed path for the project is as follows. First, the team will develop new neutron detection systems and algorithms by Monte Carlo simulations and bench-top experiments. Next, They will characterize and calibrate detection systems both with monoenergetic and white neutron sources. Finally, high-fidelity measurements of neutron emission from fissions induced by fast neutrons will be performed. Several existing fission chambers containing U-235, Pu-239, U-238, or Th-232 will be used to measure the neutron-induced fission neutron emission spectra. The challenge for making confident measurements is the detection of neutrons in the energy ranges of 0.01 – 1 MeV and above 8 MeV, regions where the basic data on the neutron energy spectrum emitted from fission is least well known. In addition, improvements in the specificity of neutron detectors are required throughout the complete energy range: they must be able to clearly distinguish neutrons from other radiations, in particular gamma rays and cosmic rays. The team believes that all of these challenges can be addressed successfully with emerging technologies under development by this collaboration. In particular, the collaboration will address the area of fission neutron emission spectra for isotopes of interest in the advanced fuel cycle initiative (AFCI).

  16. 1st meeting on advanced pulsed-neutron research on quantum functions in nano-scale materials

    International Nuclear Information System (INIS)

    Itoh, Shinichi

    2004-12-01

    IMW class pulsed neutron source will be built in three places in the world, Japan, USA and England, from 2006 to 2007. In order to discuss how to study and develop each subject, the meeting was held at KEK, Japan, in August 19 to 20, 2004. The subjects of pulse neutron diffraction experiments in the joint project between Japan and England in the 2004 fiscal year are reported, too. The meeting included six parts such as the multi-dimensional accurate X-ray structure analysis of surface and interface quantum tissue structure, the quantum tissue structure and dynamics in non-uniform system, the quantum tissue structure of green products and its expression mechanism of various functions, the oxide high temperature superconductor, the development of device and the bio-molecular network based on hydrogen binding. (S.Y.)

  17. Workshop Summary: Fundamental Neutron Physics in the United States: An Opportunity in Nuclear, Particle, and Astrophysics for the Next Decade

    International Nuclear Information System (INIS)

    Greene, G.

    2001-01-01

    Low-energy neutrons from reactor and spallation neutron sources have been employed in a wide variety of investigations that shed light on important issues in nuclear, particle, and astrophysics; in the elucidation of quantum mechanics; in the determination of fundamental constants; and in the study of fundamental symmetry violation (Appendix A, Glossary). In many cases, these experiments provide important information that is not otherwise available from accelerator-based nuclear physics facilities or high energy accelerators. An energetic research community in the United States is engaged in ''fundamental'' neutron physics. With exciting recent results, the possibility of new and upgraded sources, and a number of new experimental ideas, there is an important opportunity for outstanding science in the next decade. ''Fundamental'' neutron physics experiments are usually intensity limited. Researchers require the highest flux neutron sources available, which are either high-flux reactors (continuous sources) or spallation neutron sources (pulsed sources). The primary mission of these major facilities is neutron scattering for materials science research. Notwithstanding this condensed matter focus, essentially all neutron scattering facilities have accepted the value of an on-site fundamental physics program and have typically allocated 5 to 10% of their capabilities (i.e., beam lines) toward nuclear and particle physics research activities

  18. Uses of advanced pulsed neutron sources. Report of a workshop held at Argonne National Laboratory October 21--24, 1975

    International Nuclear Information System (INIS)

    Carpenter, J.M.; Werner, S.A.

    1975-01-01

    The report contains the conclusions that were drawn by nine panels of scientists in the fields of Biology; Chemical Spectroscopy; Chemical Structures of Crystalline Solids; Chemical Structures of Disordered Solids and Inhomogeneous Systems; Dynamics of Solids, Liquids, Glasses and Gases; Magnetism; Neutron Sources; and Radiation Effects. The nine panel reports describe the applications found in these scientific areas, accompanying them with conceptual instruments designed for the measurements and with calculations to establish feasibility

  19. FOREWORD: Neutron metrology Neutron metrology

    Science.gov (United States)

    Thomas, David J.; Nolte, Ralf; Gressier, Vincent

    2011-12-01

    The International Committee for Weights and Measures (CIPM) has consultative committees covering various areas of metrology. The Consultative Committee for Ionizing Radiation (CCRI) differs from the others in having three sections: Section (I) deals with radiation dosimetry, Section (II) with radionuclide metrology and Section (III) with neutron metrology. In 2003 a proposal was made to publish special issues of Metrologia covering the work of the three Sections. Section (II) was the first to complete their task, and their special issue was published in 2007, volume 44(4). This was followed in 2009 by the special issue on radiation dosimetry, volume 46(2). The present issue, volume 48(6), completes the trilogy and attempts to explain neutron metrology, the youngest of the three disciplines, the neutron only having been discovered in 1932, to a wider audience and to highlight the relevance and importance of this field. When originally approached with the idea of this special issue, Section (III) immediately saw the value of a publication specifically on neutron metrology. It is a topic area where papers tend to be scattered throughout the literature in journals covering, for example, nuclear instrumentation, radiation protection or radiation measurements in general. Review articles tend to be few. People new to the field often ask for an introduction to the various topics. There are some excellent older textbooks, but these are now becoming obsolete. More experienced workers in specific areas of neutron metrology can find it difficult to know the latest position in related areas. The papers in this issue attempt, without presenting a purely historical outline, to describe the field in a sufficiently logical way to provide the novice with a clear introduction, while being sufficiently up-to-date to provide the more experienced reader with the latest scientific developments in the different topic areas. Neutron radiation fields obviously occur throughout the nuclear

  20. An in-situ check of the epithermal neutron log calibration

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1993-09-01

    The epithermal neutron log is used to measure the water content of the formation. The large hole epithermal neutron sonde (ENS) that we utilize at the Nevada Test Site (NTS) has been calibrated in the Hydrogen Content Test Facility (HCTF). These calibrations are used to correct the measured neutron count rate for the effects of tool stand-off and density. For sometime, the suspicion has existed that the water contents that are calculated from the ENS data are too large. Hole U2gj represented a unique opportunity to check the validity of the ENS calibration under realistic logging conditions; a portion of the hole had been cemented and re drilled and then logged. The cements have a known water content and can be used as an in situ calibration check. I found that the water contents from the log data after processing with the existing calibrations are consistent with these known cement water contents. In addition, the study indicates that the raw neutron data might be more appropriately smoothed by using a median smoother rather than the currently utilized mean smoother

  1. An in-situ check of the epithermal neutron log calibration

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1993-01-01

    The epithermal neutron log is used to measure the water content of the formation. The large hole epithermal neutron sonde (ENS) utilized at the Nevada Test Site (NTS) has been calibrated in the Hydrogen Content Test Facility (HCTF). These calibrations are used to correct the measured neutron count rate for the effects of tool stand-off and density. For some time, the suspicion has existed that the water contents that are calculated from the ENS data are too large. Hole U2gj represented a unique opportunity to check the validity of the ENS calibration under realistic logging conditions; a portion of the hole had been cemented and redrilled and then logged. The cements have a known water content and can be used as an in-situ calibration check. The author found that the water contents from the log data after processing with the existing calibrations are consistent with these known cement water contents. In addition, the study indicates that the raw neutron data might be more appropriately smoothed by using a median smoother rather than the currently utilized mean smoother

  2. An estimation of fast neutron fluence on the KMRR core wall

    International Nuclear Information System (INIS)

    Lee, Byung-Chul; Lee, Ji-Bok; Kang, Chang-Soon.

    1991-01-01

    The fast neutron fluence (E > 1 MeV) hitting the KMRR core wall of zircaloy-4 was calculated using a two-dimensional discrete ordinates transport computer code DOT4.2. For the nuclear data base, 171 neutron groups of the DLC-41C/VITAMIN-C library were collapsed into 21 groups, of which the highest 8 groups had E > 1 MeV, using an one-dimensional discrete ordinates transport computer code ANISN. To construct a three-dimensional flux, a leakage correction factor was introduced for axial leakage treatment. The leakage correction factor was obtained from ANISN cylinder and DOT(r,z) calculations. The calculated fast neutron fluence was compared with that of the three-dimensional simulation using a Monte Carlo transport computer code MCNP. Assuming a 30-yr reactor lifetime with 80% capacity factor, the maximum fast neutron fluence on the KMRR core wall is expected to be 9.80 x 10 22 n/cm 2 . (author)

  3. Neutron and ultrasonic determination of residual stress in an aluminum ring-plug

    International Nuclear Information System (INIS)

    Prask, H.J.; Gnaeupel-Herold, T.; Clark, A.V.; Hehman, C.S.; Nguyen, T.N.

    2000-01-01

    Stress is a principal cause of material failure. This has been a well-recognized problem for decades, yet--in general--neutron diffraction remains the only way to measure sub-surface residual stresses without destroying the component. A field-portable ultrasonic strain-meter is being developed at NIST (Boulder) to determine residual stresses in engineering specimens, nondestructively. To test this and other techniques an array of stress-measurement standards are being prepared. These will be characterized by neutron diffraction and then used to evaluate, quantitatively, the potential of new methods. The first standard specimen produced for this purpose is a large shrink-fit ring-plug of 2024 aluminum (305 mm OD, 25.4 mm thick, 101.6 mm diameter plug). Because of large grain size, a sample-rotation averaging technique was developed to make reliable neutron measurements possible. A comparison of the neutron diffraction and ultrasonic results for this specimen will be presented, along with strain gauge results

  4. Multiple small-angle neutron scattering for an arbitrary value of the Born parameter

    International Nuclear Information System (INIS)

    Bogdanov, S.G.; Men'shikov, A. Z.

    2000-01-01

    Computer calculations are made of the intensity of multiple small-angle neutron scattering using the general Moliere formula over a wide range of variation of the Born parameter, embracing the diffraction and refraction regimes, and a transition region between diffraction and reflection. A comparison is made with approximate formulas obtained earlier by Maleev et al. in the limiting cases of the Born parameter α > 1 for the diffraction and refraction regimes, respectively. It is shown that over a wide range of values of α the results of the calculations using the approximate and general formulas are the same. The theoretical conclusions were checked experimentally using data from measurements of small-angle neutron scattering for the domain structure of ferromagnets. Measurements were made of the neutron beam broadening for samples of different thickness and these were used to determine the effective domain sizes in pure iron and nickel exposed to thermal treatment and plastic deformation, and also in the Invar alloys Fe 65 Ni 35 and Fe 3 Pt. An analysis is made of the angular dependence of magnetic small-angle neutron scattering at the asymptote

  5. Development of an in situ neutron-scattering facility for research and education in the mechanical behavior of materials

    International Nuclear Information System (INIS)

    Liaw, P.K.; Choo, H.; Buchanan, R.A.; Hubbard, C.R.; Wang, X.L.

    2006-01-01

    The present work is to establish a suite of instruments for studying the mechanical behavior of advanced materials using in situ neutron-scattering at the impending Spallation Neutron Source (SNS, The Oak Ridge National Laboratory), which will provide the most intense pulsed-neutron source in the world. The state-of-the-art in situ and real-time characterization instrumentation will be developed for VULCAN at SNS. The VULCAN diffractometer is designed to conduct fundamental studies in materials science and engineering with a focus on the mechanical behavior. The instrumentation described here will enable VULCAN to fulfill its full potential. The characterization capabilities to be developed will far surpass anything else available in the world. The simultaneous neutron diffraction and small-angle neutron-scattering (SANS) during mechanical testing will have a tremendous impact on the fundamental understanding of the mechanical behavior of materials. The successful development of the present instrumentation will give materials scientists many new and valuable capabilities for the fundamental study of advanced materials with complex multi-phase/-scale microstructures and various sizes/types (1) under large static/dynamic mechanical loads (including tension, compression, and torsion, i.e., real-world conditions), (2) at high temperatures, and/or (3) under chemical environments. Moreover, such capabilities will allow engineers to probe the behavior of materials and components under realistic operating and processing conditions

  6. Neutron Scattering

    International Nuclear Information System (INIS)

    Fayer, Michael J.; Gee, Glendon W.

    2005-01-01

    The neutron probe is a standard tool for measuring soil water content. This article provides an overview of the underlying theory, describes the methodology for its calibration and use, discusses example applications, and identifies the safety issues. Soil water makes land-based life possible by satisfying plant water requirements, serving as a medium for nutrient movement to plant roots and nutrient cycling, and controlling the fate and transport of contaminants in the soil environment. Therefore, a successful understanding of the dynamics of plant growth, nutrient cycling, and contaminant behavior in the soil requires knowledge of the soil water content as well as its spatial and temporal variability. After more than 50 years, neutron probes remain the most reliable tool available for field monitoring of soil water content. Neutron probes provide integrated measurements over relatively large volumes of soil and, with proper access, allow for repeated sampling of the subsurface at the same locations. The limitations of neutron probes include costly and time-consuming manual operation, lack of data automation, and costly regulatory requirements. As more non-radioactive systems for soil water monitoring are developed to provide automated profiling capabilities, neutron-probe usage will likely decrease. Until then, neutron probes will continue to be a standard for reliable measurements of field water contents in soils around the globe

  7. Neutrons and materials

    International Nuclear Information System (INIS)

    Paulus, W.; Meinnel, J.

    2003-01-01

    The neutron is the only probe that gives information simultaneously on structure issues through interference phenomena and on dynamics issues through spectroscopy. The neutron carries a s=1/2 spin value which allows it to be polarizable and to interact with any magnetic field through the magnetic momentum associated to its spin. The great interest of neutron in research relies on 3 facts: -) the neutron fluxes used to study matter are supplied by nuclear reactors and spallation sources with wave lengths and energy range that directly correspond to interatomic distances and thermal-motion energies of matter, -) the possibility of setting or changing the contrast of an element by using its different isotopes, and -) the neutron does not carry an electrical charge so it can enter the bulk of matter easily and gives an image of stress and patterns of large pieces of metal through a non-destructive examination. This course reviews all the aspects of the use of neutron in physics and is made up of 16 chapters: 1) properties of neutrons, 2) neutron production, 3) complementarity between X-ray and neutrons, 4) neutron diffraction, 5) neutron diffusion, 6) neutron spectroscopy, 7) crystallography, 8) imaging techniques with neutrons, 9) neutron activation analysis, 10) low-angle diffusion, 11) neutron reflectivity, 12) non-destructive testing, 13) microstructure and diffraction rays of X-radiation, 14) access to neutron source facilities, 15) composites materials and neutron diffusion, and 16) studies of liquids and glasses through neutron and X-ray diffraction. (A.C.)

  8. Evaluation of radioactivity in the bodies of mice induced by neutron exposure from an epi-thermal neutron source of an accelerator-based boron neutron capture therapy system

    Science.gov (United States)

    NAKAMURA, Satoshi; IMAMICHI, Shoji; MASUMOTO, Kazuyoshi; ITO, Masashi; WAKITA, Akihisa; OKAMOTO, Hiroyuki; NISHIOKA, Shie; IIJIMA, Kotaro; KOBAYASHI, Kazuma; ABE, Yoshihisa; IGAKI, Hiroshi; KURITA, Kazuyoshi; NISHIO, Teiji; MASUTANI, Mitsuko; ITAMI, Jun

    2017-01-01

    This study aimed to evaluate the residual radioactivity in mice induced by neutron irradiation with an accelerator-based boron neutron capture therapy (BNCT) system using a solid Li target. The radionuclides and their activities were evaluated using a high-purity germanium (HP-Ge) detector. The saturated radioactivity of the irradiated mouse was estimated to assess the radiation protection needs for using the accelerator-based BNCT system. 24Na, 38Cl, 80mBr, 82Br, 56Mn, and 42K were identified, and their saturated radioactivities were (1.4 ± 0.1) × 102, (2.2 ± 0.1) × 101, (3.4 ± 0.4) × 102, 2.8 ± 0.1, 8.0 ± 0.1, and (3.8 ± 0.1) × 101 Bq/g/mA, respectively. The 24Na activation rate at a given neutron fluence was found to be consistent with the value reported from nuclear-reactor-based BNCT experiments. The induced activity of each nuclide can be estimated by entering the saturated activity of each nuclide, sample mass, irradiation time, and proton current into the derived activation equation in our accelerator-based BNCT system. PMID:29225308

  9. Investigation of Response of Several Neutron Surveymeters by a DT Neutron Generator

    International Nuclear Information System (INIS)

    Kim, Sang In; Jang, In Su; Kim, Jang Lyul; Lee, Jung IL; Kim, Bong Hwan

    2012-01-01

    Several neutron measuring devices were tested under the neutron fields characterized with two distinct kinds of thermal and fast neutron spectrum. These neutron fields were constructed by the mixing of both thermal neutron fields and fast neutron fields. The thermal neutron field was constructed using by a graphite pile with eight AmBe neutron sources. The fast neutron field of 14 MeV was made by a DT neutron generator. In order to change the fraction of fast neutron fluence rate in each neutron fields, a neutron generator was placed in the thermal neutron field at 50 cm and 150 cm from the reference position. The polyethylene neutron collimator was used to make moderated 14 MeV neutron field. These neutron spectra were measured by using a Bonner sphere system with an LiI scintillator, and dosimetric quantities delivered to neutron surveymeters were determined from these measurement results.

  10. Non-Destructive Spent Fuel Characterization with Semi-Conducting Gallium Arsinde Neutron Imaging Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Douglas S. McGregor; Holly K. Gersch; Jeffrey D. Sanders; John C. Lee; Mark D. Hammig; Michael R. Hartman; Yong Hong Yang; Raymond T. Klann; Brian Van Der Elzen; John T. Lindsay; Philip A. Simpson

    2002-01-30

    High resistivity bulk grown GaAs has been used to produce thermal neutron imaging devices for use in neutron radiography and characterizing burnup in spent fuel. The basic scheme utilizes a portable Sb/Be source for monoenergetic (24 keV) neutron radiation source coupled to an Fe filter with a radiation hard B-coated pixellated GaAs detector array as the primary neutron detector. The coated neutron detectors have been tested for efficiency and radiation hardness in order to determine their fitness for the harsh environments imposed by spent fuel. Theoretical and experimental results are presented, showing detector radiation hardness, expected detection efficiency and the spatial resolution from such a scheme. A variety of advanced neutron detector designs have been explored, with experimental results achieving 13% thermal neutron detection efficiency while projecting the possibility of over 30% thermal neutron detection efficiency.

  11. An international perspective of advanced practice nursing regulation.

    Science.gov (United States)

    Heale, R; Rieck Buckley, C

    2015-09-01

    There is no common understanding about the role of the advanced practice nurse across the globe and there is wide variation in the regulation of advanced practice nursing roles as well as their educational, licensing and credentialing requirements. The goal of this research was to examine the status of advanced practice nursing regulation globally. An online survey link was emailed to National Nursing Associations and nursing health policy makers worldwide from June to December 2011. Questions focused on regulation, education, scope of practice, and barriers and opposition. Analysis included frequency statistics and descriptive data for survey questions and content analysis for two open-ended questions. The survey was offered online and only in English. Therefore, technology and language barriers may have influenced the results. There is wide variation in educational requirements, regulation and scope of practice of advanced practice nurses. The barriers to advanced practice nursing are often linked to the status of legislation and credentialing in specific jurisdictions. A database of advanced practice nursing regulation and issues related to practice has the potential to become a valuable resource for individual countries. Each country has unique challenges related to health policy for advanced practice nursing roles. International nursing organizations have established programmes for regulation development; however, a stronger focus on monitoring regulation and more effective dissemination of information about available supports may have a bigger impact on the development and revision of health policy related to advanced practice nursing. © 2015 International Council of Nurses.

  12. Photoneutron Flux Measurement via Neutron Activation Analysis in a Radiotherapy Bunker with an 18 MV Linear Accelerator

    Directory of Open Access Journals (Sweden)

    Çeçen Yiğit

    2017-01-01

    Full Text Available In cancer treatment, high energy X-rays are used which are produced by linear accelerators (LINACs. If the energy of these beams is over 8 MeV, photonuclear reactions occur between the bremsstrahlung photons and the metallic parts of the LINAC. As a result of these interactions, neutrons are also produced as secondary radiation products (γ,n which are called photoneutrons. The study aims to map the photoneutron flux distribution within the LINAC bunker via neutron activation analysis (NAA using indium-cadmium foils. Irradiations made at different gantry angles (0°, 90°, 180° and 270° with a total of 91 positions in the Philips SLI-25 linear accelerator treatment room and location-based distribution of thermal neutron flux was obtained. Gamma spectrum analysis was carried out with high purity germanium (HPGe detector. Results of the analysis showed that the maximum neutron flux in the room occurred at just above of the LINAC head (1.2x105 neutrons/cm2.s which is compatible with an americium-beryllium (Am-Be neutron source. There was a 90% decrease of flux at the walls and at the start of the maze with respect to the maximum neutron flux. And, just in front of the LINAC door, inside the room, neutron flux was measured less than 1% of the maximum.

  13. A neutron activation detector

    International Nuclear Information System (INIS)

    Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.

    1973-01-01

    The present invention concerns a neutron activation detector made from a moulded and hardened composition. According to the invention, that composition contains an activable substance constituted by at least two chemical elements and/or compounds of at least two chemical elements. Each of these chemical elements is capable of reacting with the neutrons forming radio-active isotopes with vatious levels of energy during desintegration. This neutron detector is mainly suitable for measuring integral thermal neutron and fast neutron fluxes during irradiation of the sample, and also for measuring the intensities of neutron fields [fr

  14. Neutron in biology

    International Nuclear Information System (INIS)

    Niimura, Nobuo

    1997-01-01

    Neutron in biology can provide an experimental method of directly locating relationship of proteins and DNA. However, there are relatively few experimental study of such objects since it takes a lot of time to collect a sufficient number of Bragg reflections and inelastic spectra due to the low flux of neutron illuminating the sample. Since a next generation neutron source of JAERI will be 5MW spallation neutron source and its effective neutron flux will be 10 2 to 10 3 times higher than the one of JRR-3M, neutron in biology will open a completely new world for structural biology. (author)

  15. An Overview of Advanced Concepts for Space Access (Preprint)

    National Research Council Canada - National Science Library

    Ketsdever, Andrew D; Young, Marcus P; Mossman, Jason B; Pancotti, Anthony P

    2008-01-01

    A wide range of advanced launch concepts have been proposed in an effort to revolutionize space access through either a significant reduction in launch costs or significant improvements in launch performance...

  16. Mandibular advancement device for obstructive sleep apnea: An overview

    Directory of Open Access Journals (Sweden)

    S Raghavendra Jayesh

    2015-01-01

    Full Text Available This paper presents an overview of mandibular advancement device (MAD. The primary purpose of MAD is to move the mandible forwards relative to maxilla in ordered to widen the airway to prevent to closure.

  17. The implicit restarted Arnoldi method, an efficient alternative to solve the neutron diffusion equation

    International Nuclear Information System (INIS)

    Verdu, G.; Miro, R.; Ginestar, D.; Vidal, V.

    1999-01-01

    To calculate the neutronic steady state of a nuclear power reactor core and its subcritical modes, it is necessary to solve a partial eigenvalue problem. In this paper, an implicit restarted Arnoldi method is presented as an advantageous alternative to classical methods as the Power Iteration method and the Subspace Iteration method. The efficiency of these methods, has been compared calculating the dominant Lambda modes of several configurations of the Three Mile Island reactor core

  18. The implicit restarted Arnoldi method, an efficient alternative to solve the neutron diffusion equation

    Energy Technology Data Exchange (ETDEWEB)

    Verdu, G.; Miro, R. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Valencia (Spain); Ginestar, D. [Departamento de Matematica Aplicada, Universidad Politecnica de Valencia, Valencia (Spain); Vidal, V. [Departamento de Sistemas Informaticos y Computacion, Universidad Politecnica de Valencia, Valencia (Spain)

    1999-05-01

    To calculate the neutronic steady state of a nuclear power reactor core and its subcritical modes, it is necessary to solve a partial eigenvalue problem. In this paper, an implicit restarted Arnoldi method is presented as an advantageous alternative to classical methods as the Power Iteration method and the Subspace Iteration method. The efficiency of these methods, has been compared calculating the dominant Lambda modes of several configurations of the Three Mile Island reactor core.

  19. Design of an artificial neural network, with the topology oriented to the reconstruction of neutron spectra

    International Nuclear Information System (INIS)

    Arteaga A, T.; Ortiz R, J.M.; Vega C, H.R.; Hernandez D, V.M.; Manzanares A, E.; Mercado S, G.A.

    2006-01-01

    People that live in high places respect to the sea level, in latitudes far from the equator or that they travel by plane, they are exposed to atmospheres of high radiation generated by the cosmic rays. Another atmosphere with radiation is the medical equipment, particle accelerators and nuclear reactors. The evaluation of the biological risk for neutron radiation requires an appropriate and sure dosimetry. A commonly used system is the Bonner Sphere Spectrometer (EEB) with the purpose of reconstructing the spectrum that is important because the equivalent dose for neutrons depends strongly on its energy. The count rates obtained in each sphere are treated, in most of the cases, for iterative methods, Monte Carlo or Maximum Entropy. Each one of them has difficulties that it motivates to the development of complementary procedures. Recently it has been used Artificial Neural Networks, ANN) and not yet conclusive results have been obtained. In this work it was designed an ANN to obtain the neutron energy spectrum neutrons starting from the counting rate of count of an EEB. The ANN was trained with 129 reference spectra obtained of the IAEA (1990, 2001), 24 were built as defined energy, including isotopic sources of neutrons of reference and operational, of accelerators, reactors, mathematical functions, and of defined energy with several peaks. The spectrum was transformed from lethargy units to energy and were reaccommodated in 31 energies using the Monte Carlo code 4C. The reaccommodated spectra and the response matrix UTA4 were used to calculate the prospective count rates in the EEB. These rates were used as entrance and its respective spectrum was used as output during the net training. The net design is Retropropagation type with 5 layers of 7, 140, 140, 140 and 31 neurons, transfer function logsig, tansig, logsig, logsig, logsig respectively. Training algorithm, traingdx. After the training, the net was proven with a group of training spectra and others that

  20. Epigenetics: An Emerging Framework for Advanced Practice Psychiatric Nursing.

    Science.gov (United States)

    DeSocio, Janiece E

    2016-07-01

    The aims of this paper are to synthesize and report research findings from neuroscience and epigenetics that contribute to an emerging explanatory framework for advanced practice psychiatric nursing. Discoveries in neuroscience and epigenetics reveal synergistic mechanisms that support the integration of psychotherapy, psychopharmacology, and psychoeducation in practice. Advanced practice psychiatric nurses will benefit from an expanded knowledge base in neuroscience and epigenetics that informs and explains the scientific rationale for our integrated practice. © 2015 Wiley Periodicals, Inc.

  1. Support for cold neutron utilization

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kye Hong; Han, Young Soo; Choi, Sungmin; Choi, Yong; Kwon, Hoon; Lee, Kwang Hee

    2012-06-15

    - Support for experiments by users of cold neutron scattering instrument - Short-term training of current and potential users of cold neutron scattering instrument for their effective use of the instrument - International collaboration for advanced utilization of cold neutron scattering instruments - Selection and training of qualified instrument scientists for vigorous research endeavors and outstanding achievements in experiments with cold neutron - Research on nano/bio materials using cold neutron scattering instruments - Bulk nano structure measurement using small angle neutron scattering and development of analysis technique.

  2. Support for cold neutron utilization

    International Nuclear Information System (INIS)

    Lee, Kye Hong; Han, Young Soo; Choi, Sungmin; Choi, Yong; Kwon, Hoon; Lee, Kwang Hee

    2012-06-01

    - Support for experiments by users of cold neutron scattering instrument - Short-term training of current and potential users of cold neutron scattering instrument for their effective use of the instrument - International collaboration for advanced utilization of cold neutron scattering instruments - Selection and training of qualified instrument scientists for vigorous research endeavors and outstanding achievements in experiments with cold neutron - Research on nano/bio materials using cold neutron scattering instruments - Bulk nano structure measurement using small angle neutron scattering and development of analysis technique

  3. Neutron powder diffraction

    International Nuclear Information System (INIS)

    David, W.I.F.

    1990-01-01

    Neutron powder diffraction is a powerful technique that provides a detailed description of moderately complex crystal structures. This is nowhere more apparent than in the area of high temperature superconductors where neutron powder diffraction has provided precise structural and magnetic information, not only under ambient conditions but also at high and low temperatures and high pressures. Outside superconductor research, the variety of materials studied by neutron powder diffraction is equally impressive including zeolites, fast ionic conductors, permanent magnets and materials undergoing phase transitions. Recent advances that include high resolution studies and real-time crystallography are presented. Future possibilities of neutron powder diffraction are discussed

  4. Irradiation embrittlement of reactor pressure vessel steels (Report on analysis of the behaviour of advanced reactor pressure vessel steel under neutron irradiation)

    International Nuclear Information System (INIS)

    Sivaramakrishnan, K.S.; Chatterjee, S.; Anantharaman, S.; Balakrishnan, K.S.; Viswanathan, U.K.

    1984-01-01

    The International Working Group on Reliability of Reactor Pressure Components (IWG-RRPC) sponsored by IAEA launched a Coordinated Research Programme in 1977 to investigate the behaviour of Advanced Pressure Vessel Steels under neutron irradiation. IWG-RRPC included provision of various materials produced by organisation in Federal Republic of Germany, France, Japan and a reference Steel from United States of America to those countries participating in the programme. India joined the International Programme in 1977. The scope of study was mainly to evaluate the neutron irradiation induced change in nil ductility transition temperature and tensile properties on some selected materials. The required quantity of these materials was received from Japan, France, Federal Republic of Germany and United States of America. The paper reports the results obtained from the investigations carried out in the Radiometallurgy Division of Bhabha Atomic Research Centre, Trombay, Bombay, India, on Japanese plate, Japanese forging, French plate, French forging and French weld. Due to other important commitments of the CIRUS reactor, in which the irradiation was carried out, it was not possible to complete the entire programme at this time. (author)

  5. ALPES: an advanced logic programming environment

    Directory of Open Access Journals (Sweden)

    Cristina Ruggieri

    1988-11-01

    Full Text Available This paper introduces a software programming environment for an extended Prolog language, called ALPES. The purpose of ALPES is to enable a logic programming paradigm to become a software engineering tool to design, develop and prototype traditional software systems, as well as artificial intelligence applications. The key structuring concepts for programs, as well as for the system architecture as a whole are those of contexts, processes and communication. The software design and development methodologies induced by the use of the Alpes-Prolog language have been incrementally used to develop the environment itself. This research was conducted under the Esprit projects P973 (ALPES.

  6. Summary discussion: An integrated advanced tokamak reactor

    International Nuclear Information System (INIS)

    Sauthoff, N.R.

    1994-01-01

    The tokamak concept improvement workshop addressed a wide range of issues involved in the development of a more attractive tokamak. The agenda for the workshop progressed from a general discussion of the long-range energy context (with the objective being the identification of a set of criteria and ''figures of merit'' for measuring the attractiveness of a tokamak concept) to particular opportunities for the improvement of the tokamak concept. The discussions concluded with a compilation of research program elements leading to an improved tokamak concept

  7. Conception, development, and test of an apparature for the measurement of the electrical charge of the neutron

    International Nuclear Information System (INIS)

    Brose, Daniel

    2014-01-01

    The electric charge of the neutron is related to the question of charge conservation: If there exists a neutron charge there can be no quantization of charge in units of the elementary charge e. Charge quantization is not inherent in the theories of electrodynamics and the minimal standard model and hence it would not falsify them. But in further theories as grand unified theories charge quantization is an important aspect, for example to allow the decay of the proton. A measurement of a neutron charge would test these theories. In the past three years an apparatus for the measurement of the electric charge of the neutron was constructed. The principle was used before in 1988 but the current apparatus is an improvement in many aspects. E.g. the fluid Fomblin neutron mirror was the first use of a fluid neutron mirror ever. With all the improvements it was possible to reach an sensitivity five times higher than before. A possible neutron charge can be measured with an sensitivity of δq n =2.15.10 -20 (e)/(√(day)). In winter 2014 the measurement of the charge will be performed. Till then the sensitivity will be augmented to δq n =1.4.10 -21 (e)/(√(day)).

  8. Study on microstructures of advanced metallic materials by small-angle X-ray and neutron scattering

    International Nuclear Information System (INIS)

    Ohnuma, Masato; Suzuki, Jun-ichi

    2006-01-01

    The microstructure of metal-nonmetal nano-granular soft magnetic films, precipitation hardened stainless steel and Al-Mg-Si alloys, have been studied by small-angle X-ray/neutron scattering (SAXS/SANS). Quantitative evaluation of average scale of their microstructures in nanometer scale has been accomplished by SAXS and SANS. Using this information, the contribution of the microstructures in nanometer scale has been accomplished by SAXS and SANS. Using this information, the contribution of the microstructures to the magnetic and mechanical properties are discussed in this paper. (author)

  9. Deuterium z-pinch as a powerful source of multi-MeV ions and neutrons for advanced applications

    Czech Academy of Sciences Publication Activity Database

    Klir, D.; Shishlov, A. V.; Kokshenev, V. A.; Kubes, P.; Labetsky, A. Yu.; Rezac, K.; Cherdizov, R. K.; Cikhardt, J.; Cikhardtová, B.; Dudkin, G. N.; Fursov, F. I.; Garapatsky, A. A.; Kovalchuk, B. M.; Krása, Josef; Kravarik, J.; Kurmaev, N. E.; Orčíková, Hana; Padalko, V. N.; Ratakhin, N. A.; Sila, O.; Turek, Karel; Varlachev, V. A.; Velyhan, Andriy; Wagner, Richard

    2016-01-01

    Roč. 23, č. 3 (2016), 1-10, č. článku 032702. ISSN 1070-664X R&D Projects: GA ČR GA16-07036S; GA MŠk(CZ) LD14089; GA MŠk(CZ) LG13029 Grant - others:GA MŠk(CZ) LH13283 Institutional support: RVO:68378271 ; RVO:61389005 Keywords : neutrons * Z-pinch * ion sources * isotopes * protons Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.115, year: 2016

  10. Departmental portfolio in nursing - An advanced instrument.

    Science.gov (United States)

    Rassin, M; Silner, D; Ehrenfeld, M

    2006-01-01

    In this paper, we will demonstrate the importance of the departmental portfolio; suggest an execution plan, and present initial impressions from a pilot project of developing the concept of a departmental portfolio. The portfolio is well known in the field of nursing and so far has been used by individuals mainly as a personal tool in furthering one's professional career. In this paper, we will suggest that expanding the use of a portfolio will be also beneficial at a collective level, by creating a departmental portfolio. The main objective of the departmental portfolio is to further the educational and professional development of the department members, by using it as an educating, evaluating, and administrative tool. We argue that a departmental portfolio should consist of several chapters: a professional presentation of the department, including its nursing world view; the work related to the development of the staff and education in service; information that coordinates actions designed to further the nursing treatment for patients, and information that depicts the achievements of the department in fields such as service, education, research, and publication.

  11. An advanced KB mirror pair for microfocusing

    CERN Document Server

    Ferme, J J

    2001-01-01

    A new range of micro-focusing mirrors based on KB pairs has been developed by SESO for Beamline Nanospectroscopy at the Elettra Storage Ring in Trieste, Italy. Both the focusing and the aspheric shape are adjustable with stepper motors. The goal of the beamline is to have a high photon density spot with a variable size in the experimental chamber over the whole soft X-ray range. The estimated dimension of the final spot should be smaller than 4 mu m sup 2 FWHM, with a photon density of the order of 10 sup 1 sup 3 photons/s mu m sup 2; this may be achieved only by accepting an angular divergence on these mirrors of between 5 and 10 mrad. This condition can be fulfilled only with elliptical (or plane elliptical) mirrors with very limited residual slope errors (below 1 mu rad RMS) that are able to correct even small focal distance errors.

  12. Diffusion dynamics in an advanced optical trap

    Science.gov (United States)

    Tatarkova, Svetlana A.; Dholakia, Kishan

    2003-10-01

    Stochastic processes play a key role in the communications inside the cells, cell mitosis and membrane channel regulation. It has been suggested that the molecular transport mechanism can be based on rectified thermal diffusion in a Brownian ratchet. A two-dimensional optical potential of circular symmetry created by a Bessel light beam is an ideal playground to study these phenomena. This optical field can be tilted to create a periodic (washboard) potential of imperfect Brownian ratchet. The tilt variation induces a directed transport of microparticles or biomolecules across the potential barriers when biomolecules attached non-covalently to these microparticles. In the central maximum of Bessel beam particles can be guided due to radiation pressure. Our data offer a new venue for understanding of cooperative phenomena in biology.

  13. Light front field theory: an advanced primer

    International Nuclear Information System (INIS)

    Martinovic, L.

    2007-01-01

    We present an elementary introduction to quantum field theory formulated in terms of Dirac's light front variables. In addition to general principles and methods, a few more specific topics and approaches based on the author's work will be discussed. Most of the discussion deals with massive two-dimensional models formulated in a finite spatial volume starting with a detailed comparison between quantization of massive free fields in the usual field theory and the light front (LF) quantization. We discuss basic properties such as relativistic invariance and causality. After the LF treatment of the soluble Federbush model, a LF approach to spontaneous symmetry breaking is explained and a simple gauge theory - the massive Schwinger model in various gauges is studied. A LF version of bosonization and the massive Thirring model are also discussed. A special chapter is devoted to the method of discretized light cone quantization and its application to calculations of the properties of quantum solitons. The problem of LF zero modes is illustrated with the example of the two/dimensional Yukawa model. Hamiltonian perturbation theory in the LF formulation is derived and applied to a few simple processes to demonstrate its advantages. As a byproduct, it is shown that the LF theory cannot be obtained as a 'light-like' limit of the usual field theory quantized on a initial space-like surface. A simple LF formulation of the Higgs mechanism is then given Since our intention was to provide a treatment of the light front quantization accessible to postgradual students, an effort was made to discuss most of the topics pedagogically and number of technical details and derivations are contained in the appendices (Author)

  14. Arbitrary quadratures determination of the monoenergetic neutron density in an homogeneous finite sphere with isotropic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez G, J., E-mail: julian.sanchez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    The solution of the so-called Canonical problems of neutron transport theory has been given by Case, who developed a method akin to the classical eigenfunction expansion procedure, extended to admit singular eigenfunctions. The solution is given as a set consisting of a Fredholm integral equation coupled with a transcendental equation, which has to be solved for the expansion coefficients by iteration. CASE's method make extensive use of the results of the theory of functions of a complex variable and many successful approaches to solve in an approximate form the above mentioned set have been reported in the literature. We present here an entirely different approach which deals with the canonical problems in a more direct and elementary manner. As far as we know, the original idea for the latter method is due to Carlvik who devised the escape probability approximation to the solution of the neutron transport equation in its integral form. In essence, the procedure consists in assuming a sectionally constant form of the neutron density that in turn yields a set of linear algebraic equations obeyed by the assumed constant values of the density. Very well established techniques of numerical analysis for the solution of integral equations consist in independent approaches that generalize the sectionally constant approach by assuming a sectionally low degree polynomial for the unknown function. This procedure also known as the arbitrary quadratures method is especially suited to deal with cases where the kernel of the integral equation is singular. The author wishes to present the results obtained with the arbitrary quadratures method for the numerical calculation of the monoenergetic neutron density in a critical, homogeneous sphere of finite radius with isotropic scattering. The singular integral equation obeyed by the neutron density in the critical sphere is introduced, an outline of the method's main features is given, and tables and graphs of the density

  15. Arbitrary quadratures determination of the monoenergetic neutron density in an homogeneous finite sphere with isotropic scattering

    International Nuclear Information System (INIS)

    Sanchez G, J.

    2015-09-01

    The solution of the so-called Canonical problems of neutron transport theory has been given by Case, who developed a method akin to the classical eigenfunction expansion procedure, extended to admit singular eigenfunctions. The solution is given as a set consisting of a Fredholm integral equation coupled with a transcendental equation, which has to be solved for the expansion coefficients by iteration. CASE's method make extensive use of the results of the theory of functions of a complex variable and many successful approaches to solve in an approximate form the above mentioned set have been reported in the literature. We present here an entirely different approach which deals with the canonical problems in a more direct and elementary manner. As far as we know, the original idea for the latter method is due to Carlvik who devised the escape probability approximation to the solution of the neutron transport equation in its integral form. In essence, the procedure consists in assuming a sectionally constant form of the neutron density that in turn yields a set of linear algebraic equations obeyed by the assumed constant values of the density. Very well established techniques of numerical analysis for the solution of integral equations consist in independent approaches that generalize the sectionally constant approach by assuming a sectionally low degree polynomial for the unknown function. This procedure also known as the arbitrary quadratures method is especially suited to deal with cases where the kernel of the integral equation is singular. The author wishes to present the results obtained with the arbitrary quadratures method for the numerical calculation of the monoenergetic neutron density in a critical, homogeneous sphere of finite radius with isotropic scattering. The singular integral equation obeyed by the neutron density in the critical sphere is introduced, an outline of the method's main features is given, and tables and graphs of the density

  16. INEEL Advanced Radiotherapy Research Program Annual Report 2001

    International Nuclear Information System (INIS)

    Venhuizen, James R.

    2002-01-01

    This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications

  17. INEEL Advanced Radiotherapy Research Program Annual Report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, James Robert

    2002-04-01

    This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

  18. INEEL Advanced Radiotherapy Research Program Annual Report 2001

    Energy Technology Data Exchange (ETDEWEB)

    Venhuizen, James R.

    2002-04-30

    This report summarizes the major activities and accomplishments of the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Radiotherapy Research Program for calendar year 2001. Applications of supportive research and development, as well as technology deployment in the fields of chemistry, radiation physics and dosimetry, and neutron source design and demonstration are described. Contributions in the fields of physics and biophysics include development of advanced patient treatment planning software, feasibility studies of accelerator neutron source technology for Neutron Capture Therapy (NCT), and completion of major modifications to the research reactor at Washington State University to produce an epithermal-neutron beam for NCT research applications.

  19. ARIES-AT: An advanced tokamak, advanced technology fusion power plant

    International Nuclear Information System (INIS)

    Najmabadi, F.; Jardin, S.C.; Tillack, M.; Waganer, L.M.

    2001-01-01

    The ARIES-AT study was initiated to assess the potential of high-performance tokamak plasmas together with advanced technology in a fusion power plant. Several avenues were pursued in order to arrive at plasmas with a higher β and better bootstrap alignment compared to ARIES-RS that led to plasmas with higher β N and β. Advanced technologies that are examined in detail include: (1) Possible improvements to the overall system by using high-temperature superconductors, (2) Innovative SiC blankets that lead to a high thermal cycle efficiency of ∼60%; and (3) Advanced manufacturing techniques which aim at producing near-finished products directly from raw material, resulting in low-cost, and reliable components. The 1000-MWe ARIES-AT design has a major radius of 5.4 m, minor radius of 1.3 M, a toroidal β of 9.2% (β N =6.0) and an on-axis field of 5.6 T. The plasma current is 13 MA and the current drive power is 24 MW. The ARIES-AT study shows that the combination of advanced tokamak modes and advanced technology leads to attractive fusion power plant with excellent safety and environmental characteristics and with a cost of electricity (5c/kWh), which is competitive with those projected for other sources of energy. (author)

  20. Neutron detection and radiography

    International Nuclear Information System (INIS)

    Bollen, R.H.; Van Esch, R.F.

    1975-01-01

    An improved method of recording neutron images is described which comprises imagewise irradiating with neutrons an intensifying screen containing a gadolinium compound that fluoresces when struck by x-rays and subjecting the fluorescent light pattern resulting from the impact of the neutrons on the screen onto a photographic material. (auth)