Sample records for anorthosites

  1. Anorthosite belts, continental drift, and the anorthosite event. (United States)

    Herz, N


    Most anorthosites lie in two principal belts when plotted on a predrift continental reconstruction. Anorthosite ages in the belts cluster around 1300 +/- 200 million years and range from 1100 to 1700 million years. This suggests that anorthosites are the product of a unique cataclysmic event or a thermal event that was normal only during the earth's early history.

  2. Anorthosites: Classification, mythology, trivia, and a simple unified theory (United States)

    Ashwal, Lewis D.


    An overview was presented of anorthosites. They were classified into six types: (1) Archean megacrystic, (2) Proterozoic massif-type, (3) stratiform, (4) oceanic, (5) inclusions, and (6) extraterrestrial. Some of the anorthosite mythology was discussed, such as the existence of a distinct, catastrophic anorthosite event in the late Proterozoic, the misconception that anorthosite is a major constituent of the lower continental crust, and the misconception that Archean anorthosites represent metamorphosed equivalents of mafic layered intrusions such as Bushveld or Stillwater. A general statement was offered about the origin of all anorthosites: They are cumulates of plagioclase from mantle-derived basaltic magmas.

  3. Pristine moon rocks - Apollo 17 anorthosites (United States)

    Warren, P. H.; Jerde, E. A.; Kallemeyn, G. W.


    New chemical analyses and petrographic descriptions for 10 previously unanalyzed Apollo 17 rock samples are provided. Attention is focused on several that appear to be pristine. All samples were analyzed in INAA using a procedure based on that of Kallemeyn et al. (1989). One sample was found to be unambiguously pristine, and is the first pristine ferroan-anorthositic suite (FAS) sample from Apollo 17. It exhibits extremely low-mg(asterisk) mafic silicates, coupled with relatively sodic plagioclase. It has an unusually high augite/low-Ca pyroxene ratio and contains incompatible trace elements at levels unprecedentedly high compared to FAS anorthosites from the Apollo 14, 15, 16 sites. It is inferred that 74114.5, and Apollo 17 anorthosites in general, formed at a relatively late stage in the evolution of the primordial magmasphere.

  4. Shock experiments on maskelynite-bearing anorthosite (United States)

    Lambert, P.; Grieve, R. A. F.


    A series of shock recovery experiments over 9.9-60.4 GPa have been carried out on naturally shocked anorthosite from the Mistastin impact structure in Labrador consisting primarily of diaplectic plagioclase glass or maskelynite, An(50), and pyroxene. Petrographic observations of the experimental products indicate that the component minerals and diaplectic glasses generally retained their initial character throughout, the only exception being the increase in fracturing which occurred in the 9.9 GPa shot. Reshocking at pressures higher than the initial shock tends to lower the refractive index of maskelynite. The increase in refractive index of maskelynite reshocked to pressures lower than the initial pressure is interpreted as due to shock densification of the diaplectic glass above the Hugoniot elastic limit and below the mixed phase regime. The data suggest that the low-high-low density transition of maskelynite occurs about 8 GPa below that of the crystal of corresponding composition.

  5. A Comparison of Anorthositic Lunar Lithologies: Variation on the FAN Theme (United States)

    Nyquist, L. E.; Shih, C-Y.; Yamaguchi, A.; Mittlefehldt, D. W.; Peng, Z. X.; Park, J.; Herzog, G. F.; Shirai, N.


    Certain anorthositic rocks that are rare in the returned lunar samples have been identified among lunar meteorites. The variety of anorthosites in the Apollo collection also is more varied than is widely recognized. James eta. identified three lithologies in a composite clast o ferroan anorthosite (FAN)-suite rocks in lunar breccia 64435. They further divided all FANs into four subgroups: anorthositic ferroan (AF), mafic magnesian (MM), mafic ferroan (MF), and anorthositic sodic (AS, absent in the 64435 clast). Here we report Sm-Nd isotopic studies of the lithologies present in the 64435 composite clast and compare the new data to our previous data for lunar anorthosites incuding lunar anorthositic meteorites. Mineralogy-petrography, in situ trace element studies, Sr-isotope studies, and Ar-Ar chronology are included, but only the Nd-isotopic studies are currently complete.

  6. The Distribution and Modes of Occurrence of Anorthosite on the Moon (United States)

    Hawke, B. R.; Spudis, P. D.; Taylor, G. J.; Lucey, P. G.; Peterson, C. A.


    Introduction: A major unresolved question is whether there is an enrichment in plagioclase in the lunar crust. If a magma ocean once existed on the Moon, an anorthositic crust should have been formed by plagioclase floatation. Therefore, it is important to determine the distribution and modes of occurrence of anorthosite on the lunar surface. We have been conducting remote sensing studies of impact deposits to investigate the composition and stratigraphy of the lunar crust [1-4]. Numerous deposits of pure anorthosite (plagioclase >90%) have been identified, and an interesting pattern has emerged. Distribution and Modes of Occurrence: Orientale Basin region. With the exception of the Inner Rook massifs, all the highlands units associated with the Orientale basin appear to be composed of either noritic anorthosite or anorthositic norite. Our spectral data indicate that the Inner Rook ring of the Orientale basin is a mountain range composed of pure anorthosite [1,2]. Grimaldi Basin region. Spectra obtained for the inner ring of Grimaldi indicate that this feature is composed, at least in part, of pure anorthosite [2]. Another anorthosite deposit has been identified just inside the outer Grimaldi ring. This material was excavated from beneath the basin floor material by subsequent impacts. Humorum Basin region. At least a portion of the mare-bounding ring of Humorum is composed of anorthosite [2,4]. However, the entire ring is not composed of anorthosite, and to date, no anorthosites have been identified on the outer Humorum rings. Nectaris Basin region. While noritic anorthosites and anorthositic norites are the dominant rock types in the region, anorthosite deposits have been identified [3]. Anorthosite occurs in two areas on the east wall of Kant crater, which is located on a platform massif of the main Nectaris basin ring, in two areas within Cyrillus A and in Bohnenberger F. In addition, Pieters [5] found additional anorthosite deposits in the central peaks of

  7. Multiphase inclusions in plagioclase from anorthosites in the Stillwater Complex, Montana: implications for the origin of the anorthosites (United States)

    Loferski, P.J.; Arculus, R.J.


    Multiphase inclusions, consisting of clinopyroxene+ilmenite+apatite, occur within cumulus plagioclase grains from anorthosites in the Stillwater Complex, Montana, and in other rocks from the Middle Banded series of the intrusion. The textures and constant modal mineralogy of the inclusions indicate that they were incorporated in the plagioclase as liquid droplets that later crystallized rather than as solid aggregates. Their unusual assemblage, including a distinctive manganiferous ilmenite and the presence of baddeleyite (ZrO2), indicates formation from an unusual liquid. A process involving silicater liquid immiscibility is proposed, whereby small globules of a liquid enriched in Mg, Fe, Ca, Ti, P, REE, Zr and Mn exsolved from the main liquid that gave rise to the anorthosites, became trapped in the plagioclase, and later crystallized to form the inclusions. The immiscibility could have occurred locally within compositional boundaries around crystallizing plagioclase grains or it could have occurred pervasively throughout the liquid. It is proposed that the two immiscible liquids were analogous, n terms of their melt structures, to immiscible liquid pairs reported in the literature both in experiments and in natural basalts. For the previously reported pairs, immiscibility is between a highly polymerized liquid, typically granitic in composition, and a depolymerized liquid, typically ferrobasaltic in composition. In the case of the anorthosites, the depolymerized liquid is represented by the inclusions, and the other liquid was a highly polymerized aluminosilicate melt with a high normative plagioclase content from which the bulk of the anorthosites crystallized. Crystallization of the anorthosites from this highly polymerized liquid accounts for various distinctive textural and chemical features of the anorthosites compared to other rocks in the Stillwater Complex. A lack of correlation between P contents and chondrite-normalized rare earth element (REE) ratios

  8. Alteration and alterability of the anorthosite from Angola


    Simão, J.; Silva, Z. C. G.


    Siliceous rocks are widely used as dimension stone but the last decades have registered an increase rate of their alteration when exposed to polluted environments. Anorthosites were treated by acidified solutions of HCl, HN03 and H2S04 simulating acid rain and the response was recorded through different experiments such as on the surface of the polished rock and on the surface of uncovered thin sections. The main components, plagioclase and olivine, both responded in similar ways to each acid...

  9. Are Ferroan Anorthosites Direct Products of the Lunar Magma Ocean? (United States)

    Neal, C. R.; Draper, D. S.


    According to Lunar Magma Ocean (LMO) theory, lunar samples that fall into the ferroan anorthosite (FAN) category represent the only samples we have of of the primordial crust of the Moon. Modeling indicates that plagioclase crystallizes after >70% LMO crystallization and formed a flotation crust, depending upon starting composition. The FAN group of highlands materials has been subdivided into mafic-magnesian, mafic-ferroan, anorthositic- sodic, and anorthositic-ferroan, although it is not clear how these subgroups are related. Recent radiogenic isotope work has suggested the range in FAN ages and isotopic systematics are inconsistent with formation of all FANs from the LMO. While an insulating lid could have theoretically extend the life of the LMO to explain the range of the published ages, are the FAN compositions consistent with crystallization from the LMO? As part of a funded Emerging Worlds proposal (NNX15AH76G), we examine this question through analysis of FAN samples. We compare the results with various LMO crystallization models, including those that incorporate the influence of garnet.

  10. Sm-Nd Ages of Two Meta-Anorthosite Complexes Around ...

    Indian Academy of Sciences (India)

    Whole-rock Sm-Nd isochron ages are reported for two stratiform meta-anorthosite complexes emplaced into the Archean supracrustal-gneiss association in the amphibolite facies terrain around Holenarsipur, in the Dharwar carton, South India. While these metaperidotite-pyroxenite-gabbro-anorthosite complexes are ...

  11. Shock-induced melting in anorthositic rock 60015 and a fragment of anorthositic breccia from the 'picking pot' /70052/. [meteoritic impacts on moon (United States)

    Sclar, C. B.; Bauer, J. F.


    Microscopic and chemical evidence are presented to support the contention that shock-generated incipient grain-boundary melting of plagioclase occurred in an anorthositic lunar rock and that shock-generated plagioclase liquid was present along grain boundaries during post-shock adiabatic expansion in a fragment of anorthositic breccia. The first contention is supported by microtextural relationships in the rock, the composition of its metal particles (most iron with some cobalt and less nickel), and glass inclusions with vapor bubbles. The second contention is supported by angular irregular voids in the fragment as well as the occurrence of oriented glass filaments in some of the voids. It is shown that shock-generation of 'cataclastic anorthosite' and high-temperature plagioclase liquids can explain the exceptionally young lead and argon ages of the anorthositic rock. The results of the breccia study indicate that shock lithification of plagioclase-rich particulate material from the highland regolith is due to grain-boundary melting of plagioclase.

  12. Origin of rhythmic anorthositic-pyroxenitic layering in the Damiao anorthosite complex, China: Implications for late-stage fractional crystallization and genesis of Fe-Ti oxide ores (United States)

    Li, Li-Xing; Li, Hou-Min; Li, Yong-Zhan; Yao, Tong; Yang, Xiu-Qing; Chen, Jing


    The ∼1.7 Ga Damiao anorthosite complex (DAC) in the North China Craton contains abundant Ti-magnetite-dominated ore deposits. Both the Fe-Ti-P-rich silicate rocks and massive Fe-Ti-(P) ores occur as discordant late-stage dikes cross-cutting early-stage anorthosites with irregular but sharp boundaries. Field and petrographic observations indicate that some late-stage dikes are composed of unique oxide-apatite gabbronorites (OAGNs), whereas others comprise well-developed alternating late-stage anorthosites and Fe-Ti-P-rich pyroxenites defining rhythmic layers. Massive Fe-Ti-(P) ores are closely related to the Fe-Ti-P-rich pyroxenites. Plagioclase and whole-rock compositions of different rock types were analyzed to constrain the late-stage magma evolution and genesis of the Fe-Ti oxide ores. The similar mineralogical assemblages, REE and HFSE patterns suggest that the different rock types formed by differentiation from a common parental magma. Early-stage anorthosites are characterized by positive Eu anomalies and low REE contents, whereas the late-stage dike-like rocks display no significant Eu anomalies and high REE contents. Plagioclase compositions in the late-stage rocks show a decrease of An contents when compared to that of the early-stage rocks. Based on field relations, petrography and well-defined linear compositional trends, the sequence of crystallization is inferred as: early-stage anorthosites + leuconorites + norites, OAGNs, late-stage anorthosites + Fe-Ti-P-rich pyroxenites + massive Fe-Ti-(P) ores, and massive Fe-Ti-(P) ores. The OAGNs which underwent relatively rapid crystallization represent an early phase during the residual magma evolution after anorthosite separation, whereas the rhythmic layers formed by slow but extensive fractional crystallization of interstitial melt. High solubility of phosphorous played an important role in the formation of rhythmic layering. Massive Fe-Ti-(P) ores crystallized and segregated directly from the magma of Fe

  13. Are the Clast Lithologies Contained in Lunar Breccia 64435 Mixtures of Anorthositic Magmas (United States)

    Simon, J. I.; Mittlefehldt, D. W.; Peng, Z. X.; Nyquist, L. E.; Shih, C.-Y.; Yamaguchi, A.


    The anorthositic crust of the Moon is often used as the archtypical example of a primary planetary crust. The abundance and purity of anorthosite in the Apollo sample collection and remote sensing data are generally attributed to an early global magma ocean which produced widespread floating plagioclase cumulates (the ferroan anorthosites; FANs. Recent geochronology studies report evidence of young (less than 4.4 Ga) FAN ages, which suggest that either some may not be directly produced from the magma ocean or that the final solidification age of the magma ocean was younger than previous estimates. A greater diversity of anorthositic rocks have been identified among lunar meteorites as compared to returned lunar samples. Granted that these lithologies are often based on small clasts in lunar breccias and therefore may not represent their actual whole rock composition. Nevertheless, as suggested by the abundance of anorthositic clasts with Mg# [Mg/(Mg+Fe)] less than 0.80 and the difficulty of producing the extremely high plagioclase contents observed in Apollo samples and the remote sensing data, modification of the standard Lunar Magma Ocean (LMO) model may be in order. To ground truth mission science and to further test the LMO and other hypotheses for the formation of the lunar crust, additional coordinated petrology and geochronology studies of lunar anorthosites would be informative. Here we report new mineral chemistry and trace element geochemistry studies of thick sections of a composite of FAN-suite igneous clasts contained in the lunar breccia 64435 in order to assess the significance of this type of sample for petrogenetic studies of the Moon. This work follows recent isotopic studies of the lithologies in 64435 focusing on the same sample materials and expands on previous petrology studies who identified three lithologies in this sample and worked on thin sections.

  14. Formation of anorthosite on the Moon through magma ocean fractional crystallization

    Directory of Open Access Journals (Sweden)

    Tatsuyuki Arai


    Full Text Available Lunar anorthosite is a major rock of the lunar highlands, which formed as a result of plagioclase-floatation in the lunar magma ocean (LMO. Constraints on the sufficient conditions that resulted in the formation of a thick pure anorthosite (mode of plagioclase >95 vol.% is a key to reveal the early magmatic evolution of the terrestrial planets. To form the pure lunar anorthosite, plagioclase should have separated from the magma ocean with low crystal fraction. Crystal networks of plagioclase and mafic minerals develop when the crystal fraction in the magma (φ is higher than ca. 40–60 vol.%, which inhibit the formation of pure anorthosite. In contrast, when φ is small, the magma ocean is highly turbulent, and plagioclase is likely to become entrained in the turbulent magma rather than separated from the melt. To determine the necessary conditions in which anorthosite forms from the LMO, this study adopted the energy criterion formulated by Solomatov. The composition of melt, temperature, and pressure when plagioclase crystallizes are constrained by using MELTS/pMELTS to calculate the density and viscosity of the melt. When plagioclase starts to crystallize, the Mg# of melt becomes 0.59 at 1291 °C. The density of the melt is smaller than that of plagioclase for P > 2.1 kbar (ca. 50 km deep, and the critical diameter of plagioclase to separate from the melt becomes larger than the typical crystal diameter of plagioclase (1.8–3 cm. This suggests that plagioclase is likely entrained in the LMO just after the plagioclase starts to crystallize. When the Mg# of melt becomes 0.54 at 1263 °C, the density of melt becomes larger than that of plagioclase even for 0 kbar. When the Mg# of melt decreases down to 0.46 at 1218 °C, the critical diameter of plagioclase to separate from the melt becomes 1.5–2.5 cm, which is nearly equal to the typical plagioclase of the lunar anorthosite. This suggests that plagioclase could separate from the

  15. Space-Weathered Anorthosite as Spectral D-Type Material on the Martian Satellites (United States)

    Yamamoto, S.; Watanabe, S.; Matsunaga, T.


    Spectral D-type asteroids are characterized by dark, red-sloped, and featureless spectra at visible and near-infrared wavelengths and are thought to be composed of rocks rich in organic compounds. The Martian satellites, Phobos and Deimos, spectrally resemble D-type asteroids, suggesting that they are captured D-type asteroids from outside the Martian system. Here we show that the spectral features of lunar space-weathered anorthosite are consistent with D-type spectra, including those of Phobos and Deimos. This can also explain the distinct spectral features on Phobos, the red and blue units, as arising from different degrees of space weathering. Thus, D-type spectra of the Martian satellites can be explained by space-weathered anorthosite, indicating that D-type spectra do not necessarily support the existence of organic compounds, which would be strong evidence for the capture scenario.

  16. Fragments of ancient lunar crust: Ferroan noritic anorthosites from the descartes region of the Moon (United States)

    Norman, M. D.; Alibert, C.; Mcculloch, M. T.


    Noritic anorthosite clasts from breccia 67016 have bulk compositions similar to that of the upper crust of the Moon and petrogenetic affinities with pristine ferroan anorthosites. Rb-Sr and Sm-Nd isotopic compositions of mineral separates from one of these clasts suggest very old (greater than or = 4.4 Ga) ages, but interpretation of these data is complicated by the multi-stage history of the clasts which involved magmatic crystallization, brecciation, subsolidus recrystallization, and sulfide metasomatism. These clasts record some of the earliest events on the Moon, including early crust formation, accretionary bombardment, and degassing of the lunar interior. Modal analyses of these clasts show they are now composed of about 70 percent plagioclase, 28 percent pyroxene, 2 percent troilite, and minor amounts of ilmenite and chromite. No metallic iron, phosphates, or other trace phases were observed. Olivine is very rare, occurring only as relicts within secondary troilite+pyroxene intergrowths which may reflect reaction of olivine with sulfurous vapors. PIXE proton microprobe analyses of the sulfides show that the metasomatism was accompanied by enrichments of Cu, Zn, Ni, Se, and Sb. The clasts have been only mildly shocked since the observed texture was established. Major and minor element mineral compositions are very homogeneous and strikingly similar to those of pristine ferroan anorthosites. Pyroxene compositions indicate equilibration temperatures of 850-900 C. Except for the sulfide and chalcophile element metasomatism, these clasts appear to be essentially monomict and probably represent a noritic member of the ferroan anorthosite suite. Their low Ni contents and Ni/Co ratios are consistent with the interpretation of these clasts as igneous rocks which have escaped mixing with meteoritic material.

  17. Pristine moon rocks - A 'large' felsite and a metal-rich ferroan anorthosite (United States)

    Warren, Paul H.; Jerde, Eric A.; Kallemeyn, Gregory W.


    Results of elemental analyses, performed either by instrumental neutron activation analysis (NAA) or radiochemical NAA, of 19 lunar rock samples obtained by the Apollo 15, 17, and 12 missions are presented. Two of the samples are most extraordinary: 'large' (1 g) felsite from Apollo 12 and a pristine ferroan anorthosite from Apollo 15. The felsite is mainly a graphic intergrowth of K-feldspar and a silica phase, with about 6 pct plagioclase and 1 pct each of ferroaugite, ilmenite, and fayalitic olivine. The Fe-metal content of ferroan anorthosite is 1.2 wt pct in the thin section studied (but, based on mass balance for Co and Ni, must have been lower in the chip used for bulk-rock analysis); the measured bulk-rock concentrations of siderophile elements Re, Os, and Ir are far higher than previously observed among pristine lunar anorthosites. These results underscore the uncertainty associated with any attempt to estimate the overall siderophile element contents of the moon's crust.

  18. Mineralogy of Apollo 15415 ?genesis rock' - Source of anorthosite on moon. (United States)

    Steele, I. M.; Smith, J. V.


    Results of electron microprobe analyses of plagioclase points and pyroxene grains of Apollo 15415 ?genesis rock.' It is pointed out that no evidence of cumulate textures has yet appeared to support suggestions of extensive crystal-liquid differentiation producing an anorthositic crust or a lunar crust composed of a mixture of plagioclase-rich rock, basalts and minor ultramafic material, which require that plagioclase crystals float in a basaltic liquid. The plagioclase in 15415 does not show cumulate texture either. It is noted that it remains to be seen whether rock 15415 is correctly named the ?genesis rock.'

  19. Stepwise heating of lunar anorthosites 60025, 60215, 65315 possibly reveals an indigenous noble gas component on the Moon (United States)

    Bekaert, David V.; Avice, Guillaume; Marty, Bernard; Henderson, Bryana; Gudipati, Murthy S.


    Despite extensive effort during the last four decades, no clear signature of a lunar indigenous noble gas component has been found. In order to further investigate the possible occurrence of indigenous volatiles in the Moon, we have re-analyzed the noble gas and nitrogen isotopic compositions in three anorthosite samples. Lunar anorthosites 60025, 60215 and 65315 have the lowest exposure duration (∼2 Ma) among Apollo samples and consequently contain only limited cosmogenic (e.g. 124,126Xe) and solar wind (SW) noble gases. Furthermore, anorthosites have negligible contributions of fissiogenic Xe isotopes because of their very low Pu and U contents. As observed in previous studies (Lightner and Marti, 1974; Leich and Niemeyer, 1975), lunar anorthosite Xe presents an isotopic composition very close to that of terrestrial atmospheric Xe, previously attributed to ;anomalous adsorption; of terrestrial Xe after sample return. The presumed atmospheric Xe contamination can only be removed by heating the samples at medium to high temperatures under vacuum, and is therefore different from common adsorption. To test this hypothesis, we monitored the adsorption of Xe onto lunar anorthositic powder using infrared reflectance spectroscopy. A clear shift in the anorthosite IR absorbance peaks is detected when comparing the IR absorbance spectra of the lunar anorthositic powder before and after exposure to a neutral Xe-rich atmosphere. This observation accounts for the chemical bonding (chemisorption) of Xe onto anorthosite, which is stronger than the common physical bonding (physisorption) and could account for the anomalous adsorption of Xe onto lunar samples. Our high precision Xe isotope analyses show slight mass fractionation patterns across 128-136Xe isotopes with systematic deficits in the heavy Xe isotopes (mostly 136Xe and marginally 134Xe) that have not previously been observed. This composition could be the result of mixing between an irreversibly adsorbed terrestrial

  20. A potpourri of pristine moon rocks, including a VHK mare basalt and a unique, augite-rich Apollo 17 anorthosite (United States)

    Warren, P. H.; Shirley, D. N.; Kallemeyn, G. W.


    The anorthosite fragment, 76504,18, the first of the Apollo 17's pristine anorthosites, was found to have: (1) a higher ratio of high-Ca pyroxine to low-Ca pyroxene, (2) higher Na in its plagioclase, (3) higher contents of incompatible elements, and (4) a higher Eu/Al ratio in comparison to ferroan anorthosites. With a parent melt having a negative Eu anomaly, 76504,18 closely resembles a typical mare basalt. This anorthosite was among the latest to be formed by plagioclase flotation above a primordial magmasphere; typical mare basalt regions accumulated at about the same time or even earlier. Another fragment 14181c, a very high potassium basalt, was studied and found to be similar to typical Apollo 14 mare basalt though it has a K/La ratio of 1050. It is suggested that this lithology formed after a normal Apollo 14 mare basaltic melt partially assimilated granite. New data for siderphile elements in Apollo 12 mare basalts indicate that only the lowest of earlier data are trustworthy as being free of laboratory contamination.

  1. Cogenetic Rock Fragments from a Lunar Soil: Evidence of a Ferroan Noritic-Anorthosite Pluton on the Moon (United States)

    Jolliff, B. L.; Haskin, L. A.


    The impact that produced North Ray Crater, Apollo 16 landing site, exhumed rocks that include relatively mafic members of the lunar ferroan anorthositic suite. Bulk and mineral compositions indicate that a majority of 2-4 mm lithic fragments from sample 67513, including impact breccias and monomict igneous rocks, are related to a common noritic-anorthosite precursor. Compositions and geochemical trends of these lithic fragments and of related samples collected along the rim of North Ray Crater suggest that these rocks derived from a single igneous body. This body developed as an orthocumulate from a mixture of cumulus plagioclase and mafic intercumulus melt, after the plagioclase had separated from any cogenetic mafic minerals and had become concentrated into a crystal mush (approximately 70 wt% plagioclase, 30 wt% intercumulus melt). We present a model for the crystallization of the igneous system wherein "system" is defined as cumulus plagioclase and intercumulus melt. The initial accumulation of plagioclase is analogous to the formation of thick anorthosites of the terrestrial Stillwater Complex; however, a second stage of formation is indicated, involving migration of the cumulus-plagioclase-intercumulus-melt system to a higher crustal level, analogous to the emplacement of terrestrial massif anorthosites. Compositional variations of the lithic fragments from sample 67513 are consistent with dominantly equilibrium crystallization of intercumulus melt. The highly calcic nature of orthocumulus pyroxene and plagioclase suggests some reaction between the intercumulus melt and cumulus plagioclase, perhaps facilitated by some recrystallization of cumulus plagioclase. Bulk compositions and mineral assemblages of individual rock fragments also require that most of the mafic minerals fortned in close contact with cumulus plagioclase, not as separate layers. The distribution of compositions (and by inference, modes) has a narrow peak at anorthosite and a broader, larger

  2. The human impact on natural rock reserves using basalt, anorthosite, and carbonates as raw materials in insulation products

    DEFF Research Database (Denmark)

    Dahl, Tais Wittchen; Clausen, Anders U.; Hansen, Peter B.


    , and carbonates are widespread on all continents. Although basaltic rocks cover most of the ocean floor, these reserves are hidden below several kilometres of water and therefore are regarded as inaccessible. Instead, large igneous provinces on land constitute major basaltic reserves useful for human rock...... of these rock types are so large that they could supply current human demand for millions of years. The natural degradation of surface rocks occurs by physical and chemical weathering creating sediment that is transported along rivers and deposited in the ocean. Sediments are either obducted with continental......% basalt, 20 wt% anorthosite, and 40 wt% cement-bonded renewable materials. This study provides an overview of the natural cycle of these resources, including their abundances in nature, and sets the consumption by the stone wool industry and other human activities in perspective. Basalt, anorthosite...

  3. Geotectonic setting of the Suwałki Anorthosite Massif (NE-Poland) - constraints for 3D geological modelling (United States)

    Wiszniewska, Janina; Petecki, Zdzislaw; Rosowiecka, Olga; Krzemińska, Ewa


    Suwałki Anorthosite Massif (SAM) is located within 200 km long Mesoproterozoic magmatic terrane called Mazury Complex (NE Poland) (Wiszniewska et al. 2002). This is a belt of granitoids and associated mafic and intermediate igneous rocks followed an E-W trending lineament extending from the Baltic Sea through northern Poland and southern Lithuania to western Belarus. Crystalline basement of the Suwałki region is covered by a thick pile (550-1300m) of Phanerozoic sedimentary rocks, which are dipping towards the SW East European Craton`s border. SAM is a complex structure composed primarily of magmatic massif type anorthosites, surrounded by a rim of norite-gabbronorite and diorite rocks. SAM is characterized by magnetic and gravimetric negative anomalies. The gravimetric one is related to anorthosite massif. It is surrounded by a few positive anomalies, which reflect occurrences of denser rocks such as granite, monzodiorite and granodiorite. The large magnetic anomaly is supposed to reflect an effect of an negative inclination of remanent magnetization of anorthosite rocks. This hypothesis was confirmed by magnetic modelling along DSS POLONAISE'97 profile P4 (Petecki, 2006). Existing measurements however do not show prevailing negative inclinations, even though they prove very high remanent magnetization of anorthosites. A pronounced residual magnetic anomalies of Udryń and Krzemianka are related to Fe-Ti-(V) ore deposits recognized by deep boreholes. Based on potential field data it was suggested that anorthosite bottom reaches 2,5-4,5 km depth. Thus it is evident that the geological architecture of SAM and its surrounding area is not fully recognized. The problem is supposed to be resolved using modern methods of geophysical transformations and 3D modelling using GeoModeller software. The final result of the research will be to recognize spatial structure of the SAM and its surrounding. Petrological, mineralogical, geochronological (U-Pb SHRIMP method on

  4. Pristine moon rocks - An alkali anorthosite with coarse augite exsolution from plagioclase, a magnesian harzburgite, and other oddities (United States)

    Warren, P. H.; Jerde, E. A.; Kallemeyn, G. W.


    Results are presented on the analyses of 18 samples of pristine rocks obtained from the primarily mare Apollo 12 site and from the primarily highland Apollo 14 site, as well as samples from the nonmare Apollo 15 site. It was found that, while two of anorthosites from Apollo 12 were similar in composition to most other anorthosites from the west-central near region, the texture of an alkali anorthosite featured a long and narrow crystal of augite surrounded by a single crystal of plagioclase, clearly suggesting that the augite formed by exsolution out of the plagioclase. Another Apollo 12 rocklet was an unusual magnesian harzburite, with subequal amounts of enstatite and olivine, traces of Cr-Fe spinel, and FeNi metal, but no plagioclase; the bulk composition was found to be remarkably Ir-rich (53 percent) for a pristine rock, and the texture was also unusual. Apollo 14 samples included several uncommonly Al-rich and REE-poor impact melt breccias.

  5. Understanding Magmatic Timescales and Magma Dynamics in Proterozoic Anorthosites: a Geochronological Investigation of the Kunene Complex (Angola) (United States)

    Brower, A. M.; Corfu, F.; Bybee, G. M.; Lehmann, J.; Owen-Smith, T.


    The Kunene Anorthosite Complex, located in south west Angola, is one of the largest massif-type anorthosite intrusions on Earth, with an areal extent of at least 18 000 km2. Previous studies considered the Complex to consist of a series of coalesced plutons. However, the ages and relative emplacement sequence of these plutons are unknown. Understanding the relative timing of the pluton emplacement is crucial for understanding how these enigmatic magmas form and how they rise through the crust. Here we present new high precision U-Pb ID-TIMS ages (n=10) on zircons and baddeleyites for many of the coalesced plutons across the 300-km-long anorthositic complex. These new geochronological results reveal subtle variations in crystallization age between the coalesced plutons. There is no gradual age progression between plutons, but distinct groupings of ages (Fig.1). Age clusters of 1379.8 ± 2 Ma (n=5) occur north of the Red Granite NE-SW-striking intrusions, whereas in the south there is an older age grouping of 1390.4 ± 2.3 (n=3). Two additional ages of 1400.5 ± 1.3 in the centre and 1438.4 ± 1.1 Ma in the south east have been obtained. These results indicate that the Kunene anorthosites were emplaced over 60 Ma and may suggest long-lived magmatic systems and/or slowly ascending plutons. We also find a link between pluton composition and age. In general, leuconoritic domains are older than the leucotroctolitic domains. This may imply that the first pulses of magma received a greater degree of contamination, forcing the broadly basaltic magma to produce orthopyroxene as the main mafic phase. The later pulses receive less contamination as they ascend through the already partially melted crust, producing olivine as the mafic phase and deforming the older domains. This study reiterates the multiphase petrogenesis of Proterozoic anorthosites and sheds light on the assembly of crystal-rich magmas as they ascend through the crust.

  6. Geology and geochemistry of the Redrock Granite and anorthosite xenoliths (Proterozoic in the northern Burro Mountains, Grant County, New Mexico, USA

    Directory of Open Access Journals (Sweden)

    Virginia T. McLemore


    Full Text Available Mineral ages from the A-type granites and anorthosite xenoliths in the Redrock area in the northwestern Burro Mountains in southwestern New Mexico cluster around ~1220–1225 Ma and provide yet another example of bimodal igneous activity during this time period in the southwestern United States. The metaluminous to peraluminous, marginally alkaline to subalkaline Redrock Granite exhibits the textural, mineralogical, and geochemical features of A-type granitethat was emplaced at a relatively high crustal level. Field relationships, whole rock and mineral geochemical and isotopic trends suggest that the four phases of the Redrock Granite are genetically related, with the miarolitic biotite/alkali feldspar granite being the youngest phase. Spatial relationships and geochemical data suggest that the anorthosite xenoliths were coeval with the RedrockGranite, which is consistent with the anorthosite being derived from the upper mantle, possibly due to deep mantle upwellings, and the Redrock Granite from the lower crust. The process involved melting in the upper mantle, emplacement of anorthosite in the crust resulting in partial crustal melting and thinning, and, finally, intrusion of shallow silicic plutons, the Redrock Granite. The Redrock Granite and anorthosite were presumably derived from sources characterized by subtle, long-term LREE depletion, with εNd (at 1220 Ma values on theorder of +1 to +2.

  7. Rare earth element abundances in rocks and minerals from the Fiskenaesset Complex, West Greenland. [comparison with lunar anorthosites (United States)

    Henderson, P.; Fishlock, S. J.; Laul, J. C.; Cooper, T. D.; Conard, R. L.; Boynton, W. V.; Schmitt, R. A.


    The paper reports activation-analysis determinations of rare-earth-element (REE) and other trace-element concentrations in selected rocks, plagioclase, and mafic separates from the Fiskenaesset Complex. The REE abundances are found to be very low and atypical in comparison with other terrestrial anorthosites. The plagioclases are shown to be characterized by a deficiency in heavy RE elements relative to light ones and a positive Eu anomaly, while the mafic separates are enriched in heavy rare earths and have no Eu anomaly, except in one sample. It is found that the bulk and trace-element abundances of the plagioclases are similar to those observed in some lunar anorthosites, but the degree of Eu anomaly is less in the plagioclases. The data are taken as confirmation of the idea that fractionation processes were involved in the origin of the Complex, and it is concluded that the Complex may have been produced from a magma generated by partial melting of a garnet-bearing source.

  8. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites (United States)

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.


    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V). The origin of these typically discordant ore deposits remains as enigmatic as the magmatic evolution of their host rocks. The deposits clearly have a magmatic origin, hosted by an age-constrained unique suite of rocks that likely are the consequence of a particular combination of tectonic circumstances, rather than any a priori temporal control. Principal ore minerals are ilmenite and hemo-ilmenite (ilmenite with extensive hematite exsolution lamellae); occurrences of titanomagnetite, magnetite, and apatite that are related to this deposit type are currently of less economic importance. Ore-mineral paragenesis is somewhat obscured by complicated solid solution and oxidation behavior within the Fe-Ti-oxide system. Anorthosite suites hosting these deposits require an extensive history of voluminous plagioclase crystallization to develop plagioclase-melt diapirs with entrained Fe-Ti-rich melt rising from the base of the lithosphere to mid- and upper-crustal levels. Timing and style of oxide mineralization are related to magmatic and dynamic evolution of these diapiric systems and to development and movement of oxide cumulates and related melts. Active mines have developed large open pits with extensive waste-rock piles, but

  9. Rare earth element variations resulting from inversion of pigeonite and subsolidus reequilibration in lunar ferroan anorthosites (United States)

    James, O.B.; Floss, C.; McGee, J.J.


    We present results of a secondary ion mass spectrometry study of the rare earth elements (REEs) in the minerals of two samples of lunar ferroan anorthosite, and the results are applicable to studies of REEs in all igneous rocks, no matter what their planet of origin. Our pyroxene analyses are used to determine solid-solid REE distribution coefficients (D = CREE in low-Ca pyroxene/CREE in augite) in orthopyroxene-augite pairs derived by inversion of pigeonite. Our data and predictions from crystal-chemical considerations indicate that as primary pigeonite inverts to orthopyroxene plus augite and subsolidus reequilibration proceeds, the solid-solid Ds for orthopyroxene-augite pairs progressively decrease for all REEs; the decrease is greatest for the LREEs. The REE pattern of solid-solid Ds for inversion-derived pyroxene pairs is close to a straight line for Sm-Lu and turns upward for REEs lighter than Sm; the shape of this pattern is predicted by the shapes of the REE patterns for the individual minerals. Equilibrium liquids calculated for one sample from the compositions of primary phases, using measured or experimentally determined solid-liquid Ds, have chondrite-normalized REE patterns that are very slightly enriched in LREEs. The plagioclase equilibrium liquid is overall less rich in REEs than pyroxene equilibrium liquids, and the discrepancy probably arises because the calculated plagioclase equilibrium liquid represents a liquid earlier in the fractionation sequence than the pyroxene equilibrium liquids. "Equilibrium" liquids calculated from the compositions of inversion-derived pyroxenes or orthopyroxene derived by reaction of olivine are LREE depleted (in some cases substantially) in comparison with equilibrium liquids calculated from the compositions of primary phases. These discrepancies arise because the inversion-derived and reaction-derived pyroxenes did not crystallize directly from liquid, and the use of solid-liquid Ds is inappropriate. The LREE

  10. Tectonothermal and palaeogeographic significance of orthopyroxene-plagioclase bi-phase corona around garnet in the Proterozoic anorthosite complex, Eastern Ghats Province, India (United States)

    Nasipuri, Pritam


    Development of structural elements and subsequent metamorphic reactions are evidences of tectono-thermal events that continuously change the mutual positions of the cratonic blocks in the Earth. In the Proterozoic era, the structural evolution of the crust is governed by the assembly and disintegration of two supercontinent: a) Columbia and b) Rodinia. The assembly and breakup of these two supercontinent is marked by the extremely high heat flow and emplacement of massif type anorthosite. Although, the palaeo-position of the continents in the northern hemisphere is well constrained to explain the anorthosite magmatism, even after five decades of research ambiguity still exists on the origin of anorthosite in the Gondwana supercontinent. Central to the controversy of Gondwana reconstruction is the position of proto-India in the Proterozoic time. In this contribution, the interrelationship between structural elements and the metamorphic reaction is discussed. At Bolangir, Eastern Ghats Province, massif type anorthosite is characterized by a margin parallel foliation defined by recrystallized biotite and magmatic orthopyroxene. The margin parallel foliation is parallel to the parallel alignment of magmatic plagioclase. At the margin of the pluton, 2-3 mm long garnet porphyroblasts are observed. The garnet porphyroblasts are mantled by bi-phase corona of orthopyroxene and plagioclase and overgrow the orthopyroxene- defined margin parallel foliation. In a core to rim traverse, the garnet shows a decrease in the Ca content. In the bi-phase corona, the plagioclase shows a strong zonation of anorthite component that gradually decrease away from the bi-phase corona. The metamorphic orthopyroxene don't show any compositional variation. Classical thermo barometry obtained from the compositions of the garnet-plagioclase-orthopyroxene indicates a decompression path from 750 °C, 10 Kbar to 650 °C, 6.5 kbar for the origin of bi-phase corona. Available radiometric ages and

  11. A deposit model for magmatic iron-titanium-oxide deposits related to Proterozoic massif anorthosite plutonic suites: Chapter K in Mineral Deposit Models for Resource Assessment (United States)

    Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.


    This descriptive model for magmatic iron-titanium-oxide (Fe-Ti-oxide) deposits hosted by Proterozoic age massif-type anorthosite and related rock types presents their geological, mineralogical, geochemical, and geoenvironmental attributes. Although these Proterozoic rocks are found worldwide, the majority of known deposits are found within exposed rocks of the Grenville Province, stretching from southwestern United States through eastern Canada; its extension into Norway is termed the Rogaland Anorthosite Province. This type of Fe-Ti-oxide deposit dominated by ilmenite rarely contains more than 300 million tons of ore, with between 10- to 45-percent titanium dioxide (TiO2), 32- to 45-percent iron oxide (FeO), and less than 0.2-percent vanadium (V).

  12. Anorthosite assimilation and the origin of the Mg/Fe-related bimodality of pristine moon rocks - Support for the magmasphere hypothesis (United States)

    Warren, P. H.


    The geochemical bimodality of pristine rocks led to proposals that a major fraction of the crust (the Mg rich suite) formed in cumulates in numerous intrusions slightly younger than the magmasphere. It is suggested that assimilation helped to engender the bimodal patterns. Mass/energy balance calculations indicate that large proportions of plagioclase were probably assimilated from the older (Magmasphere-generated) ferroan anorthosite crust by most of the Mg-rich intrusive melts. The magmasphere, in the absence of assimilation probably did not yield appreciable plagioclase until fractional crystallization of mafic silicates had diminished the melt mg ratio to about 0.42. However, assuming identical melt composition, an Mg-rich intrusion assimilating ferroan anorthosite would have reached plagioclase saturation at a much higher mg, about 0.66. It is suggested that the current version of the magmasphere hypothesis (ferroan anorthosites = magmasphere flotation cumulates; Mg-rich rocks = products of younger, localized intrusions) is the only plausable mechanism for engendering the Mg/Fe-relate bimodality.

  13. Investigating Magmatic Processes in the Lower Levels of Mantle-derived Magmatic Systems: The Age & Emplacement of the Kunene Anorthosite Complex (SW Angola) (United States)

    Hayes, B.; Bybee, G. M.; Owen-Smith, T.; Lehmann, J.; Brower, A. M.; Ashwal, L. D.; Hill, C. M.


    Our understanding of mantle-derived magmatic systems has shifted from a notion of upper crustal, melt-dominated magma chambers that feed short-lived volcanic eruptions, to a view of more long-lived trans-crustal, mush-dominated systems. Proterozoic massif-type anorthosite systems are voluminous, plagioclase-dominated plutonic suites with ubiquitous intermediate compositions (An 50 ± 10) that represent mantle-derived magmas initially ponded at Moho depths and crystallized polybarically until emplacement at mid-crustal levels. Thus, these systems provide unique insight into magma storage and processing in the lower reaches of the magma mush column, where such interpretation has previously relied on cumulate xenoliths in lavas, geophysical data and experimental/numerical modeling. We present new CA-ID-TIMS ages and a series of detailed field observations from the largest Proterozoic anorthosite massif on Earth, the Kunene Anorthosite Complex (KAC) of SW Angola. Field structures indicate that (i) the bulk of the material was emplaced in the form of crystal mushes, as both plutons and sheet-like intrusions; (ii) prolonged magmatism led to cumulate disaggregation (block structure development) and remobilization, producing considerable textural heterogeneity; (iii) crystal-rich magmatic flow induced localized recrystallization and the development of protoclastic (mortar) textures; and (iv) late residual melts were able to migrate locally prior to complete solidification. Dating of pegmatitic pods entrained from cumulate zones at the base of the crust (1500 ± 13 Ma) and their host anorthosites (1375-1438 Ma) reveals time periods in the range of 60-120 Myr between the earliest products of the system and the final mushes emplaced at higher crustal levels. Therefore, the KAC represents a complex, mushy magmatic system that developed over a long period of time. Not only do these observations help in refining our understanding of Proterozoic anorthosite petrogenesis, they

  14. CO2 sequestration using waste concrete and anorthosite tailings by direct mineral carbonation in gas-solid-liquid and gas-solid routes. (United States)

    Ben Ghacham, Alia; Cecchi, Emmanuelle; Pasquier, Louis-César; Blais, Jean-François; Mercier, Guy


    Mineral carbonation (MC) represents a promising alternative for sequestering CO2. In this work, the CO2 sequestration capacity of the available calcium-bearing materials waste concrete and anorthosite tailings is assessed in gas-solid-liquid and gas-solid routes using 18.2% flue CO2 gas. The objective is to screen for a better potential residue and phase route and as the ultimate purpose to develop a cost-effective process. The results indicate the possibility of removing 66% from inlet CO2 using waste concrete for the aqueous route. However, the results that were obtained with the carbonation of anorthosite were less significant, with 34% as the maximal percentage of CO2 removal. The difference in terms of reactivity could be explained by the accessibility to calcium. In fact, anorthosite presents a framework structure wherein the calcium is trapped, which could slow the calcium dissolution into the aqueous phase compared to the concrete sample, where calcium can more easily leach. In the other part of the study concerning gas-solid carbonation, the results of CO2 removal did not exceed 15%, which is not economically interesting for scaling up the process. The results obtained with waste concrete samples in aqueous phase are interesting. In fact, 34.6% of the introduced CO2 is converted into carbonate after 15 min of contact with the gas without chemical additives and at a relatively low gas pressure. Research on the optimization of the aqueous process using waste concrete should be performed to enhance the reaction rate and to develop a cost-effective process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. An example of post-collisional mafic magmatism: the gabbro-anorthosite layered complex from the Tin Zebane area (western Hoggar, Algeria) (United States)

    Aı̈t-Djafer, Saı̈da; Ouzegane, Khadidja; Paul-Liégeois, Jean; Kienast, Jean Robert


    The Tin Zebane gabbro-anorthosite layered mafic intrusion represented by plagioclase-rich cumulates forms a set of small lenticular to round-shaped mainly undeformed bodies intruding the Pan-African high-pressure metamorphic rocks from western Hoggar (Tuareg shield, southwest Algeria). The coarse-grained anorthosites are mainly made of slightly zoned bytownite (An 86-74) with the higher anorthite content at the cores. Anorthosites are interlayered with leucogabbros and gabbros that show preserved magmatic structures and with olivine gabbros characterised by coronitic textures. The primary assemblage in gabbros includes plagioclase (An 93-70), olivine (Fo 77-70), zoned clinopyroxene (En 43-48Fs 05-13Wo 41-49 with Al 2O 3 up to 4.3 wt.%) and rare orthopyroxene (En 73-78). Pyroxenes and olivine are commonly surrounded by Ca-amphibole. The olivine-plagioclase contact is usually marked by a fine orthopyroxene-Cr-spinel-amphibole symplectite. A magnesian pigeonite (En 70-75Fs 19-20Wo 6-10) is also involved in corona. The coronitic minerals have equilibrated with the primary mineral rims at P- T- aH2O conditions of 797 ± 42 °C for aH2O=0.5 and 808 ± 44 °C for aH2O=0.6 at 6.2 ± 1.4 kbar. The Tin Zebane gabbroic rocks are depleted in REE with a positive Eu anomaly, high Sr (>10 ∗ chondrite) and Al 2O 3 concentrations (17-33%) that support plagioclase accumulation with the extreme case represented by the anorthosites. The REE patterns can be modelised using plagioclase, clinopyroxene and orthopyroxene REE signature, without any role played by accessory minerals. High MgO content points to olivine as a major cumulate phase. Anorthositic gabbros Sr and Nd isotopic initial ratios are typical of a depleted mantle source (Sr i=0.70257-0.70278; ɛNd=+5.9 to +7.8). This isotopic signature is identical to that of the 10-km wide 592 Ma old dyke complex composed of alkaline to peralkaline granites and tholeiitic gabbros and one single bimodal complex can be inferred. The source

  16. New data for paleoprotherozoic PGE-bearing anorthosite of Kandalaksha massif (Baltic shield): U-Pb and Sm-Nd ages (United States)

    Steshenko, Ekaterina; Bayanova, Tamara; Serov, Pavel


    The aims of this researches were to study the isotope U-Pb age of zircon and rutile and Sm-Nd (rock forming and sulphide minerals) on Kandalaksha anorthosite massif due to study of polimetamorphic history. In marginal zone firstly have been obtained the presence of sulphide mineralization with PGE (Chashchin, Petrov , 2013). Kandalaksha massif is located in the N-E part of Baltic shield and consists of three parts. Marginal zone (mesocratic metanorite) lies at the base of the massif. Main zone is composed of leucocratic metagabbro. The upper zone is alteration of mataanorthosite and leucocratic metagabbro. All rocks were subjected to granulate polymetamorphism. Two fractions of single grains from anorthosite of the massif gave precise U-Pb age, which is equal to 2450± 3 Ma. Leucocratic gabbro-norite were dated by U-Pb method, with age up to 2230 ± 10 Ma. This age reflects the time of granulite metamorphism according to data of (Mitrofanov, Nirovich, 2003). Two fractions of rutile have been analyzed by U-Pb method and reflect age of 1700 ± 10 Ma. It is known that the closure temperature of U-Pb system rutile is 400-450 ° C (Mezger, 1989), thus cooling processes of massif rocks to these temperatures was about 1.7 Ga. These data reflect one of the stages of metamorphic alteration of the massif. Three stages of metamorphism are distinguished by Sm-Nd method. Isotope Sm-Nd dating on Cpx-WR line gives the age of 2311 Ma which suggested of high pressure granulite metamorphism. Moreover Cpx-Pl line reflect the age 1908 Ma of low pressure granulite metamorphism. Also two-points (Grt-Rt) Sm-Nd isochrone yield the age 1687 Ma of the last metamorphic alterations in Kandalaksha anorthosite massif. Model Sm-Nd age of the leucocratic gabbro-norite is 2796 Ma with positive ɛNd (+0.32). It means that the source of gabbro-norite was mantle reservoir. All investigations are devoted to memory of academician PAS F. MItrofanov which was a leader of scientific school for

  17. Adakite-gabbro-anorthosite magmatism at the final (576-546 Ma) development stage of the Neoproterozoic active margin in the south-west of the Siberian craton (United States)

    Vernikovskaya, A. E.; Vernikovsky, V. A.; Matushkin, N. Yu.; Kadilnikov, P. I.; Romanova, I. V.; Larionov, A. N.


    In the late Neoproterozoic a prolonged active continental margin mode dominated the southwestern margin of the Siberian craton. Based on results of geological, petrological-geochemical, U-Th-Pb and Sm-Nd, Rb-Sr isotope investigations, for the first time we established that on the final evolution stage of this margin 576-546 Ma, intrusions of adakites and gabbro-anorthosites of the Zimoveyniy massif were emplaced in the South Yenisei Ridge. These new data indicate genetic relationships of the studied adakites and host NEB-metabasites. The formation of adakites could have been due to a crustal or a mantle-crustal source in a setting of transform sliding of lithospheric plates after the subduction stopped.

  18. How Rich is Rich? Placing Constraints on the Abundance of Spinel in the Pink Spinel Anorthosite Lithology on the Moon Through Space Weathering (United States)

    Gross, J.; Gillis-Davis, J.; Isaacson, P. J.; Le, L.


    previously unknown lunar rock was recently recognized in the Moon Mineralogy Mapper (M(sup 3)) visible to near-infrared (VNIR) reflectance spectra. The rock type is rich in Mg-Al spinel (approximately 30%) and plagioclase and contains less than 5% mafic silicate minerals (olivine and pyroxene). The identification of this pink spinel anorthosite (PSA) at the Moscoviense basin has sparked new interest in lunar spinel. Pieters et al. suggested that these PSA deposits might be an important component of the lunar crust. However, Mg-Al spinel is rare in the Apollo and meteorite sample collections (only up to a few wt%), and occurs mostly in troctolites and troctolitic cataclastites. In this study, we are conducting a series of experiments (petrologic and space weathering) to investigate whether deposits of spinel identified by remote sensing are in high concentration (e.g. 30%) or whether the concentrations of spinel in these deposits are more like lunar samples, which contain only a few wt%. To examine the possibility of an impact-melt origin for PSA, conducted 1-bar crystallization experiments on rock compositions similar to pink spinel troctolite 65785. The VNIR spectral reflectance analyses of the low-temperature experiments yield absorption features similar to those of the PSA lithology detected at Moscoviense Basin. The experimental run products at these temperatures contain approximately 5 wt% spinel, which suggests that the spinel-rich deposits detected by M(sup 3) might not be as spinel-rich as previously thought. However, the effect of space weathering on spinel is unknown and could significantly alter its spectral properties including potential weakening of its diagnostic 2-micrometers absorption feature. Thus, weathered lunar rocks could contain more spinel than a comparison with the unweathered experimental charges would suggest. In this study, we have initiated space weathering experiments on 1) pure pink spinel, 2) spinel-anorthite mixtures, and 3) the low

  19. The global distribution of pure anorthosite on the Moon. (United States)

    Ohtake, Makiko; Matsunaga, Tsuneo; Haruyama, Junichi; Yokota, Yasuhiro; Morota, Tomokatsu; Honda, Chikatoshi; Ogawa, Yoshiko; Torii, Masaya; Miyamoto, Hideaki; Arai, Tomoko; Hirata, Naru; Iwasaki, Akira; Nakamura, Ryosuke; Hiroi, Takahiro; Sugihara, Takamitsu; Takeda, Hiroshi; Otake, Hisashi; Pieters, Carle M; Saiki, Kazuto; Kitazato, Kohei; Abe, Masanao; Asada, Noriaki; Demura, Hirohide; Yamaguchi, Yasushi; Sasaki, Sho; Kodama, Shinsuke; Terazono, Junya; Shirao, Motomaro; Yamaji, Atsushi; Minami, Shigeyuki; Akiyama, Hiroaki; Josset, Jean-Luc


    It has been thought that the lunar highland crust was formed by the crystallization and floatation of plagioclase from a global magma ocean, although the actual generation mechanisms are still debated. The composition of the lunar highland crust is therefore important for understanding the formation of such a magma ocean and the subsequent evolution of the Moon. The Multiband Imager on the Selenological and Engineering Explorer (SELENE) has a high spatial resolution of optimized spectral coverage, which should allow a clear view of the composition of the lunar crust. Here we report the global distribution of rocks of high plagioclase abundance (approaching 100 vol.%), using an unambiguous plagioclase absorption band recorded by the SELENE Multiband Imager. If the upper crust indeed consists of nearly 100 vol.% plagioclase, this is significantly higher than previous estimates of 82-92 vol.% (refs 2, 6, 7), providing a valuable constraint on models of lunar magma ocean evolution.

  20. Metamorphic reactions, deformation localization and rheological evolution of gabbro to eclogite transformation: A case study from Lofoten Anorthosite Complex, Norway (United States)

    Nasipuri, P.; Stunitz, H.; Menegon, L.; Ravna, E. J.; Kullerud, K.; Berger, A.


    Eclogitization of lower crustal rocks during subduction processes and subsequent retrogression during exhumation will produce a range of mineral assemblages over widely spaced P-T conditions affecting the rheological behavior of the rock significantly. In this contribution, we describe the formation of syn-kinematic mineral assemblages which promotes development of centimeter- to meter-scale shear zones in undeformed leucogabbro from Lofoten, Norway. Plagioclase (Pl0), olivine (Ol0) and orthopyroxene (Opx0) form the igneous texture in the leucogabbro. Opx1 and Grt1 corona indicate the onset of metamorphism (M1) during subduction processes. Cm- wide alternating bands of a mixture of Pl-Amphibole(Amph) ± Spl and GrtI(M1) - Opx -Omph (M2A) phase mixtures characterize prograde metamorphic shear zones in the leucogabbro. Elongated Omph overgrow deformed Opx grains (D1). Relicts of Opx grains are surrounded by recrystallized opx indicating that the Opx grains survived in the Omph stability field. Grt- Cpx - Pl symplectite (M2B) rim the Omph± Opx porphyroblasts. GrtII(M3) occurs along the contact of deformed Opx± Omph and Pl. Amph ± Spl (M4) overgrow the finer grained pyroxene. Conventional thermobarometry indicate that metamorphism (M1) starts at 7000C at 1 GPa pressure. The peak PT-condition (650-7500C, > 1.8 GPa) was attained during the formation of Omph. The retrograde PT-path is represented by Cpx-Pl symplectite (600-6500C, 1 GPa) and Grt corona (6000C, 0.8 GPa). Replacement of fine-grained Cpx by Amph represents the last stage of metamorphism. Crystal orientation of Opx relicts is different from the CPO of the newly formed Opx (10 - 15 μm in size) indicating that Opx did not recrystallize by progressive subgrain rotation. The dramatic grain size reduction without significant change in chemical composition is probably caused by cracking of Opx at the onset of deformation. Small new grains may nucleate from fragments. In the fine grained Pl+ Amph± Spl aggregates, the random CPO of Pl suggests dominant diffusion creep deformation. The CPO of Amph suggests that Amph re-orients by rigid body rotation during deformation forming aligned (100) planes with the shear plane. Mineral chemistry and EBSD analysis shows that shear zone formation in the gabbro is associated with initial stage of cracking and grain size reduction under water deficient conditions. The cracking of Opx at lower crustal conditions (700 OC, 1 GPa) requires high differential stresses which indicate a higher strength of leuco-gabbro at the onset of subduction. Absence of newly formed Opx in the Omph corona suggests that cracking and recrystallization of Opx begins before peak PT-conditions. During exhumation, Omph is replaced by fine grained Cpx+Pl. The drastic change in grain size due to breakdown of Omph and replacement of Cpx by Amph facilitates diffusion creep deformation that may accommodate large strains during deformation. This study demonstrates the change in deformation mechanism from initial cracking of orthopyroxene to grain size sensitive diffusion creep due to high-pressure metamorphism and fluid infiltration.

  1. New age (ca. 2970 Ma), mantle source composition and geodynamic constraints on the Archean Fiskenæsset anorthosite complex, SW Greenland

    DEFF Research Database (Denmark)

    Polat, A; Frei, Robert; Scherstén, Anders


    –2650 Ma ages are attributed to metamorphic overgrowth and recrystallization in response to multiple tectonothermal events that affected the Fiskenæsset region. On the basis of recently published trace element data, and new Nd and Pb isotope and U–Pb zircon age data, a three-stage geodynamic model...... rocks collectively yield an Sm–Nd errorchron age of 2973 ± 28 Ma (MSWD = 33), with an average initial eNd = + 3.3 ± 0.7, consistent with a long-term depleted mantle source. Regression of Pb isotope data define an age of 2945 ± 36 Ma (MSWD = 44); and the regression line intersects the average growth...... curve at 3036 Ma. Slightly lower Pb–Pb errorchron age is interpreted as reflecting partial disturbance of the U–Pb system in gabbros, leucogabbros and ultramafic rocks during intrusion of TTGs. Complex internal structures in zircons from orthogneisses reveal several episodes of zircon growth...

  2. Interplay between water infiltration, metamorphic reactions and strain localization during subduction of gabbro from the basement rocks of the Lofoten anorthosite complex (United States)

    Nasipuri, P.; Stunitz, H.; Menegon, L.; Berger, A.


    Eclogitization of lower crustal rocks occurs during subduction processes. During the prograde segment of subduction cycle and subsequent exhumation, ranges of mineral assemblages are produced under different P-T conditions. In this contribution, we describe the role of water and formation of syn-kinematic mineral assemblages in the ductile shear zone within leucogabbro and in the retrograde equivalent (characterized by alternate bands of mafic and felsic layers) that are separated by a distance of 100-150 meter. In the undeformed gabbro, Plagioclase (Pl0), olivine (Ol0) and orthopyroxene (Opx0) form the igneous texture. The onset of metamorphism (M1, 700 0C, 1GPa) during subduction processes is indicated by growth of metamorphic Opx1 and Grt1 corona around Pl0 and Ol0. Cm- wide alternating bands of a mixture of Pl-amphibole (Amph) ± Spl and GrtI(M1) - Opx -Omph - Grt II (M2A, 650-750 0C, > 1.8 GPa) phase mixtures characterize shear zones. Omph overgrow deformed Opx grains (D1). Clinopyroxene (Cpx) -Pl symplectite (M2B, 600-650 0C, 1 GPa) occur at the outer rim the Omph. Breakdown of Grt I/IIto Amph ± Pl (An rich) ± Spl with increased water activity form during M3 metamorphism. In the retrograde eclogite, the mafic layer is composed of Cpx, sodic Pl and Qtz (grain size 50 μm). Coarse-grained calcic Pl (grain size 50-75 μm) forms the felsic layer. Grt porphyrolcast (eq. Grt I/II) with inclusions of Pl and Qtz occur within the mafic layer. A thin layer of amphibole and clinozoisite layer overgrows at the contact between the mafic and felsic layer (6000C, 0.6-0.8 GPa). In the ductile shear zone, crystallographic data of recrystallized Opx0 (grain size 20-30 μm) and the relict Opx0, chemical similarity and the grain size reduction indicate that Opx deformed by at the onset of subduction. The deformed Opx grains show sinistral sense of shear. Although, the fine-grained Pl is expected to show random CPO characteristics of diffusion creep, the strong CPO of Pl is indicative of inheritance of crystallographic preferred orientation from D1 deformation. The CPO of amphibole suggests that amphibole re-orients by rigid body rotation during deformation, forming aligned (100) planes with opposite shear sense with the Opx0 defined fabric. In the retrograde variety, the CPO data of Cpx from the mixed phase layers is consistent with the (010) [001] dominant slip system. However, the CPO data of Cpx is interpreted as oriented growth fabric during diffusion creep. Crystallographic data of recrystallized plagioclase in the mono-mineralic felsic layers indicate (010) [100] as dominant slip system during dislocation creep. This study indicates that the deformation of the Opx0in the ductile shear zone occurredat the amphibolite-granulite facies condition with the influx of water. After the static growth of Omph, increase in the water activity promotes the growth of Amph and the deformation after the post eclogite stage (M3). However, in the retrograde eclogite, the coarser grain size of the minerals (Cpx, Pl) is achieved probably due to water-saturated condition and promotes diffusion creep accommodated deformation.

  3. An overview on geochemistry of Proterozoic massif-type ...

    Indian Academy of Sciences (India)

    J. Petrol. 39(6) 1169–1195. Bose M K 1979 On the Eastern Ghats Precambrian granu- lite belt and associated anorthosites; Indian J. Earth Sci. 6(2) 200–219. Buddington A F 1969 Adirondack anorthosite series;. In: Origin of anorthosites and related rocks: Albany, New. York (ed.) Isachsen W Y, New York State Museum and.

  4. An overview on geochemistry of Proterozoic massif-type ...

    Indian Academy of Sciences (India)

    A critical study of 311 published WR chemical analyses, isotopic and mineral chemistry of anorthosites and associated rocks from eight Proterozoic massif anorthosite complexes of India,. North America and Norway indicates marked similarities in mineralogy and chemistry among similar rock types. The anorthosite and ...

  5. U-Pb zircon geochronology and evolution of some Adirondack meta-igneous rocks (United States)

    Mclelland, J. M.


    An update was presented of the recent U-Pb isotope geochronology and models for evolution of some of the meta-igneous rocks of the Adirondacks, New York. Uranium-lead zircon data from charnockites and mangerites and on baddeleyite from anorthosite suggest that the emplacement of these rocks into a stable crust took place in the range 1160 to 1130 Ma. Granulite facies metamorphism was approximately 1050 Ma as indicated by metamorphic zircon and sphene ages of the anorthosite and by development of magmatitic alaskitic gneiss. The concentric isotherms that are observed in this area are due to later doming. However, an older contact metamorphic aureole associated with anorthosite intrusion is observed where wollastonite develops in metacarbonates. Zenoliths found in the anorthosite indicate a metamorphic event prior to anorthosite emplacement. The most probable mechanism for anorthosite genesis is thought to be ponding of gabbroic magmas at the Moho. The emplacement of the anorogenic anorthosite-mangerite-charnockite suite was apparently bracketed by compressional orogenies.

  6. Partially molten magma ocean model

    International Nuclear Information System (INIS)

    Shirley, D.N.


    The properties of the lunar crust and upper mantle can be explained if the outer 300-400 km of the moon was initially only partially molten rather than fully molten. The top of the partially molten region contained about 20% melt and decreased to 0% at 300-400 km depth. Nuclei of anorthositic crust formed over localized bodies of magma segregated from the partial melt, then grew peripherally until they coverd the moon. Throughout most of its growth period the anorthosite crust floated on a layer of magma a few km thick. The thickness of this layer is regulated by the opposing forces of loss of material by fractional crystallization and addition of magma from the partial melt below. Concentrations of Sr, Eu, and Sm in pristine ferroan anorthosites are found to be consistent with this model, as are trends for the ferroan anorthosites and Mg-rich suites on a diagram of An in plagioclase vs. mg in mafics. Clustering of Eu, Sr, and mg values found among pristine ferroan anorthosites are predicted by this model

  7. Lunar highland rocks - Element partitioning among minerals. II - Electron microprobe analyses of Al, P, Ca, Ti, Cr, Mn and Fe in olivine (United States)

    Smith, J. V.; Hansen, E. C.; Steele, I. M.


    Lunar olivines from anorthosites, granulitic impactites, and rocks in the Mg-rich plutonic trend were subjected to electron probe measurements for Al, P, Ca, Ti, Cr and Mn, which show that the FeO/MnO ratio for lunar olivines lies between 80 and 110 with little difference among the rock types. The low values of Ca in lunar olivines indicate slow cooling to subsolidus temperatures, with blocking temperatures of about 750 C for 67667 and 1000 C for 60255,73-alpha determined by the Finnerty and Boyd (1978) experiments. An important paradox is noted in the low Ti content of Fe-rich olivines from anorthosites, although both Ti and Fe tend to become enriched in liquid during fractional distillation. Except for Ca and Mn, olivine from anorthosites has lower minor element values than other rock types. Formation from a chemically distinct system is therefore implied.

  8. Pristine rocks (8th Foray) - 'Plagiophile' element ratios, crustal genesis, and the bulk composition of the moon (United States)

    Warren, P. H.; Kallemeyn, G. W.


    Eu/Al, Sr/Al, Eu/Sr, and similar ratios among pristine lunar nonmare lithologies with implications for nonmare petrogenesis and for the bulk composition of the moon are examined. On a plot of Eu/Al versus mg, ferroan anorthosites are separated from all other pristine nonmare rocks by a considerable gap. A nonrandom process must be invoked to account for the gap in the spectrum of ratios. A single magma probably cannot account for even the Mg-rich pristine rocks subset, based on diversity of plagiophile ratios among samples with similar mg ratios. Plagiophile ratios also constrain the bulk composition of the moon. Plagiophile ratios among ferroan anorthosites exactly match those expected under a model in which ferroan anorthosites formed by flotation of plagioclase cumulates over a primordial 'magmasphere'. Ratios among nonvolatile elements confirm that the moon formed out of materials akin to chondritic meteorites.

  9. Comparison of lunar ultraviolet reflectivity with that of terrestrial rock samples

    International Nuclear Information System (INIS)

    Carver, J.H.; Horton, B.H.; McCoy, D.G.; O'Brien, R.S.; Sandercock, E.R.


    The ultraviolet and visible albedos of a number of terrestrial basalts, gabbros and anorthosites have been investigated over the wavelength range 800 A to 8000 A and compared with previously reported measurements of the lunar albedo. For most of the terrestrial samples the albedo changed only slightly between visible and middle ultraviolet wavelengths in striking contrast to the Moon where the ultraviolet albedo is about a factor of five or ten less than it is in the visible. Some of the lighter coloured terrestrial anorthositic samples were however found to have albedo curves that fairly closely approximate the ultraviolet darkening of the Moon. The general shape of the lunar ultraviolet albedo may be caused by a layer of anorthositic fragments on the Moon such as have been found to be a very abundant component of the Apollo 'coarse-fines'. (Auth.)

  10. Pristine rocks (8th Foray) - Plagiophile element ratios, crustal genesis, and the bulk composition of the moon

    International Nuclear Information System (INIS)

    Warren, P.H.; Kallemeyn, G.W.


    Eu/Al, Sr/Al, Eu/Sr, and similar ratios among pristine lunar nonmare lithologies with implications for nonmare petrogenesis and for the bulk composition of the moon are examined. On a plot of Eu/Al versus mg, ferroan anorthosites are separated from all other pristine nonmare rocks by a considerable gap. A nonrandom process must be invoked to account for the gap in the spectrum of ratios. A single magma probably cannot account for even the Mg-rich pristine rocks subset, based on diversity of plagiophile ratios among samples with similar mg ratios. Plagiophile ratios also constrain the bulk composition of the moon. Plagiophile ratios among ferroan anorthosites exactly match those expected under a model in which ferroan anorthosites formed by flotation of plagioclase cumulates over a primordial magmasphere. Ratios among nonvolatile elements confirm that the moon formed out of materials akin to chondritic meteorites

  11. Microbial community in a precursory scenario of growing Tagetes patula in a lunar greenhouse (United States)

    Kozyrovska, N. O.; Korniichuk, O. S.; Voznyuk, T. M.; Kovalchuk, M. V.; Lytvynenko, T. L.; Rogutskyy, I. S.; Mytrokhyn, O. V.; Estrella-Liopis, V. R.; Borodinova, T. I.; Mashkovska, S. P.; Foing, B. H.; Kordyum, V. A.

    A confined prototype plant-microbial system is elaborated for demonstration of growing pioneer plants in a lunar greenhouse. A precursory scenario of growing Tagetes patula L. in a substrate anorthosite which is similar mineralogically and chemically to lunar silicate rocks includes the use of a microbial community. Microorganisms served for preventive substrate colonization to avoid infection by deleterious microorganisms as well as for bioleaching and delivering of nutritional elements from anorthosite to plants. A model consortium of a siliceous bacterium, biocontrol agents, and arbuscular mycorrhizal fungi provided an acceptable growth and blossoming of Tagetes patula L. under growth limiting factors in terrestrial conditions.

  12. Mafic Materials in Scott Crater? A Test for Lunar Reconnaissance Orbiter (United States)

    Cooper, Bonnie L.


    Clementine 750 nm and multispectral ratio data, along with Lunar Orbiter and radar data, were used to study the crater Scott in the lunar south polar region. The multispectral data provide evidence for mafic materials, impact melts, anorthositic materials, and a small pyroclastic deposit. High-resolution radar data and Lunar Orbiter photography for this area show differences in color and surface texture that correspond with the locations of the hypothesized mafic and anorthositic areas on the crater floor. This region provides a test case for the upcoming Lunar Reconnaissance Orbiter. Verification of the existence of a mafic deposit at this location is relevant to future lunar resource utilization planning.

  13. Crystallization Age and Impact Resetting of Ancient Lunar Crust from the Descartes Terrane (United States)

    Norman, M. D.; Borg, L. E.; Nyquist, L. E.; Bogard, D. D.


    Lunar ferroan anorthosites (FANs) are relics of an ancient, primary feldspathic crust that is widely believed to have crystallized from a global magma ocean. Compositions and ages of FANs provide fundamental information about the origin and magmatic evolution of the Moon, while the petrology and thermal history of lunar FANs illustrate the structure and impact history of the lunar crust. Here we report petrologic, geochemical, and isotopic (Nd-Sr-Ar) studies of a ferroan noritic anorthosite clast from lunar breccia 67215 to improve our understanding of the composition, age, and thermal history of the Moon.

  14. Apollo 16 exploration of Descartes - A geologic summary. (United States)


    The Cayley Plains at the Apollo 16 landing site consist of crudely stratified breccias to a depth of at least 200 meters, overlain by a regolith 10 to 15 meters thick. Samples, photographs, and observations by the astronauts indicate that most of the rocks are impact breccias derived from an anorthosite-gabbro complex. The least brecciated members of the suite include coarse-grained anorthosite and finer-grained, more mafic rocks, some with igneous and some with metamorphic textures. Much of the transverse area is covered by ejecta from North Ray and South Ray craters, but the abundance of rock fragments increases to the south toward the younger South Ray crater.

  15. Geochemistry and petrography of the MacAlpine Hills lunar meteorites (United States)

    Lindstrom, Marilyn M.; Mckay, David S.; Wentworth, Susan J.; Martinez, Rene R.; Mittlefehldt, David W.; Wang, Ming-Sheng; Lipschutz, Michael E.


    MacAlpine Hills 88104 and 88105, anorthositic lunar meteorites recovered form the same area in Antartica, are characterized. Petrographic studies show that MAC88104/5 is a polymict breccia dominated by impact melt clasts. It is better classified as a fragmental breccia than a regolith breccia. The bulk composition is ferroan and highly aluminous (Al2O3-28 percent).

  16. Geochemistry and petrogenesis of Proterozoic granitic rocks from ...

    Indian Academy of Sciences (India)

    This study presents the geochemical characteristics of granitic rocks located on the northern margin of Chotanagpur Gneissic Complex (CGC), exposed in parts of Gaya district, Bihar and discusses thepossible petrogenetic process and source characteristics. These granites are associated with BarabarAnorthosite Complex ...

  17. Petrogenetic and geodynamic origin of the Neoarchean Doré Lake Complex, Abitibi subprovince, Superior Province, Canada

    DEFF Research Database (Denmark)

    Polat, Ali; Frei, Robert; Longstaffe, Fred J.


    Group, which is composed of two cycles of tholeiitic-to-calc-alkaline volcanic and volcaniclastic rocks, siliciclastic and chemical sedimentary rocks, and layered mafic-to-ultramafic sills. In this study, we report major and trace element results, and Nd, Sr, Pb and O isotope data for anorthosites...

  18. U-Pb age of the Diana Complex and Adirondack granulite ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    tinental geothermal gradient (e.g. Ganguly et al. 1995). The Adirondack Mountains of New York have been an important area for the study of massif- type anorthosites and associated granulites for formulating and testing many of the ideas of petrologic, thermal-barometric, geochronological, isotopic, and geochemical ...

  19. U-Pb age of the Diana Complex and Adirondack granulite ...

    Indian Academy of Sciences (India)

    Granulites; geochronology; petrogenesis; Adirondacks; zircon age. ... The 1118 Ma age for the Diana Complex, some 35 Ma younger than previously believed, is now approximately synchronous with the main Adirondack anorthosite intrusion, ... U.S. Geological Survey, MS 963, Federal Center, Denver, CO 80225,USA.

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    While these metaperidotite-pyroxenite-gabbro-anorthosite complexes are petrologically and geochemically similar, they differ in the intensity of tectonic fabric developed during the late Archean (c.2.5Ga) deformation. They also differ in their whole-rock Sm-Nd isochron ages and initial Nd isotopic compositions: 3.285 ± 0.17 ...

  1. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. R Srinivasan. Articles written in Journal of Earth System Science. Volume 109 Issue 1 March 2000 pp 57-65. Sm-Nd Ages of Two Meta-Anorthosite Complexes Around Holenarsipur: Constraints on the Antiquity of Archean Supracrustal Rocks of the Dharwar Craton.

  2. U-Pb age of the Diana Complex and Adirondack granulite ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    the Adirondack dome (figure 1a) exposes a sec- tion of the ... land et al 1988; McLelland and Chiarenzelli 1989,. 1990 .... lands. The Diana pyroxene syenites may belong to the charnockitic or mangeritic rock series sur- rounding the main anorthosite massifs in the high- lands as suggested by DeWaard (1969), although.

  3. Tantalo-Niobate from the Apollo-17 Regolith (United States)

    Mokhov, A. V.; Kartashov, P. M.; Rybchuk, A. P.; Gornostaeva, T. A.; Bogatikov, O. A.


    Particles of tantalo-niobate of the ferrotantalite-manganotantalite series are discovered for the first time in two lunar regolith fragments delivered by the Apollo-17 mission. Allochtonous and autochtonous mineralization that accompanies tantalo-niobate in the regolith is described. An attempt is made to explain the formation of tantalite in anorthosites of the continental region of the Moon.

  4. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    This study presents the geochemical characteristics of granitic rocks located on the northern margin of Chotanagpur Gneissic Complex (CGC), exposed in parts of Gaya district, Bihar and discusses thepossible petrogenetic process and source characteristics. These granites are associated with BarabarAnorthosite Complex ...

  5. Apollo 16 geochemical X-ray fluorescence experiment: Preliminary report (United States)

    Adler, I.; Trombka, J.; Gerard, J.; Lowman, P.; Schmadebeck, R.; Blodgett, H.; Eller, E.; Yin, L.; Lamothe, R.; Osswald, G.


    The lunar surface was mapped with respect to Mg, Al, and Si, as Al/Si and Mg/Si ratios along the projected ground tracks swept out by the orbiting Apollo 16 spacecraft. The results confirm the observations made during the Apollo 15 flight and provide data for a number of features not covered before. The data are consistent with the idea that the moon has a widespread differentiated crust (the highlands). The Al/Si and Mg/Si chemical ratios correspond to that for anorthositic gabbro through gabbroic anorthosites or feldspathic basalts. The X-ray results suggest the occurrence of this premare crust or material similar to it as the Descartes landing site.

  6. Geochemistry of lunar crustal rocks from breccia 67016 and the composition of the moon (United States)

    Norman, Marc D.; Taylor, Stuart R.


    The geochemistry of anorthositic clasts from an Apollo 16 breccia 67016 is studied in order to investigate the role of these rock types in lunar crustal evolution. The samples have aluminous, alkali-poor compositions and varied FeO and MgO contents. Three compositional groups are recognized. One group is poor in mafic constituents with low abundances of lithophile trace elements typical of lunar anorthosites, while the other two groups are more mafic and are distinguished from each other by FeO/MgO ratios greater than one in the case of ferroan noritic and less than one in the case of magnesian troctolitic. These mafic-enriched varieties have considerably higher lithophile element concentrations, at levels similar to that of the bulk lunar crust. The ferroan noritic clasts may represent a fundamental type of igneous rock in the lunar crust which has not been widely recognized.

  7. Yoshiokaite, a new Ca,Al-silicate mineral from the Moon

    International Nuclear Information System (INIS)

    Vaniman, D.T.; Bish, D.L.


    Yoshiokaite (Ca 8-(x/2) □ (x/2) Al 16-x Si x O 32 ) is hexagonal with a nepheline-like structure. It is a metastable phase formed by devitrification of glass at ∼950-1,200C in regions of the system CaO-Al 2 O 3 SiO 2 where corundum or hibonite are the stable liquidus phases. Yoshiokaite occurs as shocked crystal fragments and in devitrified glasses from one part of a rare Apollo 14 regolith breccia. Chemical systematics of yoshiokaite support an origin by volatilization of silica in impact melts from an almost pure anorthositic lunar highlands terrain. The severe impact conditions for formation, the requirement of an anorthositic impact target, and indirect evidence of great age make yoshiokaite a mineral characteristic of the ancient lunar highlands

  8. Laser /39/Ar-/40/Ar dating of two clasts from consortium breccia 73215 (United States)

    Eichhorn, G.; Schaeffer, O. A.; James, O. B.; Mueller, H. W.


    A laser Ar-39-Ar-40 study of the components of an ANT-suite anorthositic gabbro and a black aphanite from a consortium breccia is reported. A wide range of K-Ar ages is found for the plagioclase in the anorthositic gabbro; at the centers of the largest grains is material showing the greatest age (older than 4.11 billion years) while the youngest material (3.81-3.88 billion years) is found near the grain margins. Partial outgassing of the clasts upon incorporation into the breccia could account for the age patterns. The black aphanite clast appears to be cogenetic with the aphanite that forms the breccia matrix. The time of crystallization of a lunar granite has also been measured by the laser technique.

  9. Apollo 16 - Impact melt sheets, contrasting nature of the Cayley plains and Descartes mountains, and geologic history (United States)

    Mckinley, J. P.; Taylor, G. J.; Keil, K.; Ma, M.-S.; Schmitt, R. A.


    Apollo 16 stations four and five rake samples have been examined petrographically and by electron microprobe and INAA. Lithologic abundances support the idea (Korontev, 1981) that the variation of soil composition at Apollo 16 results from mixing between a component represented by station five and components much like either the dimict breccias or feldspathic fragmental breccias in composition. Pyroxene, olivine, and coexisting plagioclase compositions from within the anorthosite portions of dimict breccias bridge the gap between the Mg-rich and ferroan anorthosite fields. Analyses from associated cumulate and granulitic clasts indicate that they are the source of the intermediate material. Dimict breccias formed about 3.92 b.y. ago, the nectaris event occurred 3.84-3.92 b.y. ago, and the Cayley plains were deposited as a result of the Imbrium event sometime later than 3.84 b.y.

  10. Alkali gabbronorite, ultra-KREEPy melt rock and the diverse suite of clasts in North Ray crater feldspathic fragmental breccia 67975

    International Nuclear Information System (INIS)

    Lindstrom, M.M.


    Lunar breccia 67975 is a feldspathic fragmental breccia from North Ray crater, Apollo 16. It contains clasts of alkali gabbronorite and ultra-KREEPy mafic fragment-laden melt breccias, which are unique among Apollo 16 samples. Both are alkali- and iron-rich rocks with moderate to high REE concentrations. They more strongly resemble Apollo 14 gabbronorites and alkali anorthosites and KREEP-rich rocks than they do other Apollo 16 samples. The other clasts in 67975 are the ferroan anorthosites, feldspathic melt rocks, and magnesian granulites, which are typical of other feldspathic fragmental breccias. Examination of bulk and mineral compositions of other breccias and melt rocks suggests that alkali gabbronorite may be a minor component in other North Ray crater breccias and feldspathic melt rocks. This implies that alkali gabbronorite was a fairly early (4.0 b.y.) crustal component in the North Ray crater region

  11. High-Luminance Road Surfaces, (United States)


    condition was changed with the decreased use of snow chains and increasing use of studded tires. The studded tires wear down the road surface in a...region, white anorthosite of a uniform and unweathered type is usable as an additive to asphalt con- crete and wear surfacing for asphalt gravel...CLASSIFICATION Of THIS PAGE(W/em Daateoo 20. Abstract (cont’d) resistance to weathering, and the degree of luminosity. Quartzites have the best wear

  12. Petrography and Geochemistry of Lunar Meteorite Miller Range 13317 (United States)

    Zeigler, R. A.; Korotev, R. L.


    Miller Range (MIL) 13317 is a 32-g lunar meteorite collected during the 2013-2014 ANSMET (Antarctic Search for Meteorites) field season. It was initially described as having 25% black fusion crust covering a light- to dark-grey matrix, with numerous clasts ranging in size up to 1 cm; it was tenta-tively classified as a lunar anorthositic breccia. Here we present the petrography and geochemistry of MIL 13317, and examine possible pairing relationships with previously described lunar meteorites.

  13. Re-Evaluation of Ar-39 - Ar-40 Ages for Apollo Lunar Rocks 15415 and 60015 (United States)

    Park, J.; Nyquist, L. E.; Bogard, D. D.; Garrison, D. H.; Shih, C.-Y.


    We re-analyzed 39Ar-40Ar ages of Apollo lunar highland samples 15415 and 60015, two ferroan anorthosites analyzed previously in the 1970 s, with a more detailed approach and with revised decay constants. From these samples we carefully prepared 100-200 mesh mineral separates for analysis at the Noble Gas Laboratory at NASA-Johnson Space Center. The Ar-39-Ar-40 age spectra for 15415 yielded an age of 3851 +/- 38 Ma with 33-99% of Ar39 release, roughly in agreement with previously reported Ar-Ar ages. For 60015, we obtained an age of 3584 +/- 152 Ma in 23-98% of Ar39 release, also in agreement with previously reported Ar-Ar ages of approximately 3.5 Ga. Highland anorthosites like these are believed by many to be the original crust of the moon, formed by plagioclase floatation atop a magma ocean, however the Ar-Ar ages of 15415 and 60015 are considerably younger than lunar crust formation. By contrast, recently recovered lunar anorthosites such as Dhofar 489, Dhofar 908, and Yamato 86032 yield older Ar-Ar ages, up to 4.35 Ga, much closer to time of formation of the lunar crust. It follows that the Ar-Ar ages of the Apollo samples must have been reset by secondary heating, and that this heating affected highland anorthosites at both the Apollo 15 and Apollo 16 landing sites but did not affect lunar highland meteorites. One obvious consideration is that while the Apollo samples were collected from the near side of the moon, these lunar meteorites are thought to have originated from the lunar far side

  14. New isotope data from the Koperberg Suite and some associated rocks, Okiep district, Namaqualand, South Africa

    International Nuclear Information System (INIS)

    Clifford, T.N.; Barton, E.S.; Retief, E.A.; Rex, D.C.


    The Koperberg Suite is an anorthosite-charnockite kindred and 1500 bodies of these rocks have been recognised in the Okiep district and 30 of them have been mined for copper since 1852. The suite is intrusive into country rocks. New isotope data presented includes U-Pb zircon and whole-rock Pb-Pb, Rb-Sr, Sm-Nd and Ar-Ar analyses. 10 refs

  15. Extensive volatile loss during formation and differentiation of the Moon


    Kato, Chizu; Moynier, Frederic; Valdes, Maria C.; Dhaliwal, Jasmeet K.; Day, James M.D.


    Low estimated lunar volatile contents, compared with Earth, are a fundamental observation for Earth?Moon system formation and lunar evolution. Here we present zinc isotope and abundance data for lunar crustal rocks to constrain the abundance of volatiles during the final stages of lunar differentiation. We find that ferroan anorthosites are isotopically heterogeneous, with some samples exhibiting high ?66Zn, along with alkali and magnesian suite samples. Since the plutonic samples were formed...

  16. Clementine observations of the aristarchus region of the moon. (United States)

    McEwen, A S; Robinson, M S; Eliason, E M; Lucey, P G; Duxbury, T C; Spudis, P D


    Multispectral and topographic data acquired by the Clementine spacecraft provide information on the composition and geologic history of the Aristarchus region of the moon. Altimetry profiles show the Aristarchus plateau dipping about 1 degrees to the north-northwest and rising about 2 kilometers above the surrounding lavas of Oceanus Procellarum to the south. Dark, reddish pyroclastic glass covers the plateau to average depths of 10 to 30 meters, as determined from the estimated excavation depths of 100- to 1000-meter-diameter craters that have exposed materials below the pyroclastics. These craters and the walls of sinuous rilles also show that mare basalts underlie the pyroclastics across much of the plateau. Near-infrared images of Aristarchus crater reveal olivine-rich materials and two kilometer-sized outcrops of anorthosite in the central peaks. The anorthosite could be either a derivative of local magnesium-suite magmatism or a remnant of the ferroan anorthosite crust that formed over the primordial magma ocean.

  17. Early differentiation of the moon - Evidence from trace elements in plagioclase

    International Nuclear Information System (INIS)

    Palme, H.; Spettel, B.


    Bulk samples and plagioclase mineral grains from lunar cataclastic ferroan anorthosites were analyzed for trace elements by instrumental neutron activation analysis. Some pure plagioclase crystals have lower concentrations of Cr, Co, Sc, and heavy REEs than previous analyses indicated. Concentrations of Sr, Eu, Na, Ga, and the REEs in plagioclases from different anorthosites vary in a systematic way, and the trace element patterns of plagioclases from pristine norites and troctolites are very different from the plagioclase pattern of anorthosites. The following model is suggested to account for these observations: (1) melting of a large fraction of the moon, formation of a magma ocean, precipitation of olivine and later pyroxene, followed by flotation of cumulus plagioclase; (2) mixing of KREEP with a mafic component enriched in Mg, Cr, and Co; (3) precipitation of noritic and troctolitic cumulates and metallic iron from this magma; and (4) eruption of these KREEP and Mg-rich lavas and/or distribution of these materials over the front-side of the moon by basin-forming impacts 3.9-4.0 b.y. ago

  18. Reappraising the P–T evolution of the Rogaland–Vest Agder Sector, southwestern Norway

    Directory of Open Access Journals (Sweden)

    Eleanore Blereau


    Full Text Available The Rogaland–Vest Agder Sector of southwestern Norway comprises high-grade metamorphic rocks intruded by voluminous plutonic bodies that include the ∼1000 km2 Rogaland Igneous Complex (RIC. New petrographic observations and thermodynamic phase equilibria modelling of three metapelitic samples collected at various distances (30 km, 10 km and ∼10 m from one of the main bodies of RIC anorthosite were undertaken to assess two alternative P–T–t models for the metamorphic evolution of the area. The results are consistent with a revised two-phase evolution. Regional metamorphism followed a clockwise P–T path reaching peak conditions of ∼850–950 °C and ∼7–8 kbar at ∼1035 Ma followed by high-temperature decompression to ∼5 kbar at ∼950 Ma, and resulted in extensive anatexis and melt loss to produce highly residual rocks. Subsequent emplacement of the RIC at ∼930 Ma caused regional-scale contact metamorphism that affected country rocks 10 km or more from their contact with the anorthosite. This thermal overprint is expressed in the sample proximal to the anorthosite by replacement of sillimanite by coarse intergrowths of cordierite plus spinel and growth of a second generation of garnet, and in the intermediate (10 km sample by replacement of sapphirine by coarse intergrowths of cordierite, spinel and biotite. The formation of late biotite in the intermediate sample may suggest the rocks retained small quantities of melt produced by regional metamorphism and remained at temperatures above the solidus for up to 100 Ma. Our results are more consistent with an accretionary rather than a collisional model for the Sveconorwegian Orogen.

  19. Sims Analysis of Water Abundance and Hydrogen Isotope in Lunar Highland Plagioclase (United States)

    Hui, Hejiu; Guan, Yunbin; Chen, Yang; Peslier, Anne H.; Zhang, Youxue; Liu, Yang; Rossman, George R.; Eiler, John M.; Neal, Clive R.


    The detection of indigenous water in mare basaltic glass beads has challenged the view established since the Apollo era of a "dry" Moon. Since this discovery, measurements of water in lunar apatite, olivine-hosted melt inclusions, agglutinates, and nominally anhydrous minerals have confirmed that lunar igneous materials contain water, implying that some parts of lunar mantle may have as much water as Earth's upper mantle. The interpretation of hydrogen (H) isotopes in lunar samples, however, is controversial. The large variation of H isotope ratios in lunar apatite (delta Deuterium = -202 to +1010 per mille) has been taken as evidence that water in the lunar interior comes from the lunar mantle, solar wind protons, and/or comets. The very low deuterium/H ratios in lunar agglutinates indicate that solar wind protons have contributed to their hydrogen content. Conversely, H isotopes in lunar volcanic glass beads and olivine-hosted melt inclusions being similar to those of common terrestrial igneous rocks, suggest a common origin for water in both Earth and Moon. Lunar water could be inherited from carbonaceous chondrites, consistent with the model of late accretion of chondrite-type materials to the Moon as proposed by. One complication about the sources of lunar water, is that geologic processes (e.g., late accretion and magmatic degassing) may have modified the H isotope signatures of lunar materials. Recent FTIR analyses have shown that plagioclases in lunar ferroan anorthosite contain approximately 6 ppm H2O. So far, ferroan anorthosite is the only available lithology that is believed to be a primary product of the lunar magma ocean (LMO). A possible consequence is that the LMO could have contained up to approximately 320 ppm H2O. Here we examine the possible sources of water in the LMO through measurements of water abundances and H isotopes in plagioclase of two ferroan anorthosites and one troctolite from lunar highlands.

  20. Complexity, depth, and rapidity of processes that formed the lunar crust

    International Nuclear Information System (INIS)

    Ryder, G.; Dasch, J.


    From its birth the moon had a large-scale, complex magma system. The evidence is the massive differentiation of the moon that was partially preserved. The system might be a magma ocean or a magmasphere; even in the former case it was superposed by smaller but also very complex magma systems. The main episode produced a plagioclase-rich crust including genuine anorthosites; it was over by about 4.35 b.y. ago, although magmatism continues. The processes of crust-building remain in serious dispute. Lunar crusts; massive differentiation; crustal material composition; processes which produced crustal materials; and differences from earth are briefly discussed

  1. Isotope U-Pb age on single zircon and REE distribution in rocks and zircon from paleoproterozoic Kandalaksha-Kolvitsa complex Baltic shield (United States)

    Steshenko, Ekaterina; Bayanova, Tamara; Drogobuzhskaya, Svetlana; Lyalina, Ludmila; Serov, Pavel; Chashchin, Viktor; Elizarov, Dmitriy


    Kandalaksha-Kolvitsa paleoproterozoic complex located in the N-E part of Baltic shield and consists of three zones. Marginal zone (mesocratic metanorite) lies at the base of the massif. Main zone is composed of leucocratic metagabbro. The upper zone is alteration of mataanorthosite and leucocratic metagabbro. All rocks were subjected to granulate and anorthositic metamorphism. Age of magmatic crystallization of the massif was determined for the first time, using the U-Pb isotope method for single zircon grains. Three fractions of single zircons from anorthosite of the Kandalaksha massif gave precise U-Pb age of 2435.5 ± 4.8 Ma. For the first time REE concentration (WR) was determined using a quadrupole mass spectrometer (Agilent 7500 ce ICP-MS) in the main varieties of rocks of the Kandalaksha-Kolvitsa paleoproterozoic complex. Anorthosite and leucocratic metagabbros (main zone) are characterized by a flat spectrum distribution of HREE, which were normalized by [1]. The REE pattern is characterized by significant positive anomalies of Eu ((Eu / Eu *)n = 3.72-3.91) in anorthosite and leucogabbros and 7.26 - in ortoamfibolitah. General content of individual elements that are common for this type of rocks: Cen = 5.82-8.54, Ybn = 1.54-1.58, which indicates that the process of crystallization of the rock occurred with predominant accumulation of plagioclase. According to geochemical and Nd-Sr isotopic data (ISr=0.702 - 0.706, ɛNd(T) = +1 - (-3)) Kandalaksha Kolvitsa complex, appear to have a general plume source with Paleoproterozoic layered intrusions of the Baltic Shield [2] Distribution of REE (ELAN-9000 ICP-MS) in zircon have a typical magmatic species: a positive Ce, negative Eu anomaly and HREE flat spectrum. Titanium content in zircons were measured for the calculation of their crystallization temperature with 8350C. These data are evidence of magmatic origin of zircon [3]. The scientific researches are supported by RFBR (projects № 15-35-20501, № 16

  2. Volatile elements in Apollo 16 samples - Possible evidence for outgassing of the moon. (United States)

    Krahenbuhl, U.; Ganapathy, R.; Morgan, J. W.; Anders, E.


    Several Apollo 16 breccias, including one containing goethite, are strikingly enriched in volatile elements such as bromine, cadmium, germanium, antimony, thallium, and zinc. Similar but smaller enrichments are found in all highland soils. It appears that volcanic processes took place in the lunar highlands, involving the release of volatiles including water. The lunar thallium/uranium ratio is .0002 of the cosmic ratio, which suggests that the moon's original water content could not have exceeded the equivalent of a layer 22 meters deep. The cataclastic anorthosites at the Apollo 16 site may represent deep ejecta from the Nectaris basin.

  3. The granulite-eclogite facies transition as developed in the Bergen Arcs, with focus on the minerals scapolite and spinel


    Warnecke, Niels


    The Precambrian granulites (T~850°C and p<1.0 GPa) of the Lindås nappe, Bergen Arcs are transformed to Caledonian eclogites (T~670°C and p~1.8 GPa) in shear zones and along fluid pathways. This transition has been studied in numerous papers, but two important minerals have escaped attention. The minerals scapolite and spinel, with 10 and 5 modal% respectively, occur in anorthositic granulites of the Lindås Nappe in the Bergen Arcs. Field relationships, textural analyses...

  4. Fluid induced metamorphism and strength of the middle to lower continental crust - field and textural examples from Bergen Arcs, Western Norway (United States)

    Austrheim, H.; Putnis, A.; Putnis, C. V.


    Fluids may change the rheology of the lithosphere both by changing the deformation mechanism of minerals and by inducing metamorphic reactions. In the present account the influence of fluid-induced metamorphic reactions on the mineralogical and structural evolution of a thickened continental crust is described from anorthositic granulites in the Lindås Nappe, Bergen Arcs, Norway, where the Grenvillian age (~930 My) granulites (T 800°C, P≤10kbar) are transformed to Caledonian age (~420My) eclogite (~650°C and ≤ 20kbar) and amphibolite facies assemblages. The anorthosite complex ranges in composition from pure anorthosite via gabbroic anorthosite to gabbro with lenses of peridotite and pyroxenites which allow us to study the mineral reactions and assess relative rock strength in a wide range of compositions. The complex is locally banded with up to meter thick garnet-pyroxene rich layers alternating with plagioclase rich layers. In other localities the granulite facies structure is defined by oriented disc-shaped corona textures in a plagioclase rich matrix. The eclogites (garnet, omphacite, amphibole, kyanite, white micas ± plagioclase) and amphibolites (plagioclase, hornblende, kyanite, and white micas) are formed along fluid pathways such as fractures and shear zones. Breccias, where rotated blocks of granulites are surrounded by anastamosing eclogite- and amphibolite facies shear zones, outcrop over areas of km2. Pseudotachylytes are developed in the granulites while the hydrated rocks in the shear zone respond by ductile deformation. A hierachy of rock strength can be inferred from these field observations. Notably the relict granulites form rotated angular blocks within the shear zones suggesting that granulites, independent of composition, are stronger than hydrous eclogitites and amphibolites. The garnet pyroxenite layer forms rigid blocks in eclogites suggesting that the mafic parts of the granulite complex must have been stronger than the

  5. Natural radioactivity of the moon and planets

    International Nuclear Information System (INIS)

    Surkov, Iu.A.


    In this report the main results of the study of natural radioactivity of the solar system bodies are considered. The radioactivity of the moon and planets was measured from orbiters and landers. The radioactivity of the returned lunar samples was studied with laboratory equipment. Analysis of the radioactivity data shows the bimodal structure of surfaces of the moon, Venus, Mars (ancient crust and young volcanic formations). Volcanic formations on all bodies, probably, consist of basaltic rocks. The compositions of ancient crusts are different (gabbro-anorthositic on the moon and maybe on Mars, granite-metamorphic on the earth and maybe on Venus)

  6. Workshop on Pristine Highlands Rocks and the early History of the Moon (United States)

    Longhi, J. (Editor); Ryder, G. (Editor)


    Oxide composition of the Moon, evidence for an initially totally molten Moon, geophysical contraints on lunar composition, random sampling of a layered intrusion, lunar highland rocks, early evolution of the Moon, mineralogy and petrology of the pristine rocks, relationship of the pristine nonmore rocks to the highlands soils and breccias, ferroan anorthositic norite, early lunar igneous history, compositional variation in ferroan anosthosites, a lunar magma ocean, deposits of lunar pristine rocks, lunar and planetary compositions and early fractionation in the solar nebula, Moon composition models, petrogenesis in a Moon with a chondritic refractory lithophile pattern, a terrestrial analog of lunar ilmenite bearing camulates, and the lunar magma ocean are summarized.

  7. Workshop on Moon in Transition: Apollo 14, KREEP, and Evolved Lunar Rocks (United States)

    Taylor, G. J. (Editor); Warren, P. H. (Editor)


    Lunar rocks provide material for analyzing lunar history and now new evaluation procedures are available for discovering new information from the Fra Mauro highlands rocks, which are different from any other lunar samples. These and other topics were discussed at this workshop, including a new evaluation of the nature and history of KREEP, granite, and other evolved lunar rock types, and ultimately a fresh evaluation of the transition of the moon from its early anorthosite-forming period to its later stages of KREEPy, granitic, and mare magmatism. The summary of presentations and discussion is based on notes taken by the respective summarizers during the workshop.

  8. Detection of adsorbed water and hydroxyl on the Moon. (United States)

    Clark, Roger N


    Data from the Visual and Infrared Mapping Spectrometer (VIMS) on Cassini during its flyby of the Moon in 1999 show a broad absorption at 3 micrometers due to adsorbed water and near 2.8 micrometers attributed to hydroxyl in the sunlit surface on the Moon. The amounts of water indicated in the spectra depend on the type of mixing and the grain sizes in the rocks and soils but could be 10 to 1000 parts per million and locally higher. Water in the polar regions may be water that has migrated to the colder environments there. Trace hydroxyl is observed in the anorthositic highlands at lower latitudes.

  9. Processes involved in the formation of magnesian-suite plutonic rocks from the highlands of the Earth's Moon (United States)

    Snyder, Gregory A.; Neal, Clive R.; Taylor, Lawrence A.; Halliday, Alex N.


    The earliest evolution of the Moon likely included the formation of a magma ocean and the subsequent development of anorthositic flotation cumulates. This primary anorthositic crust was then intruded by mafic magmas which crystallized to form the lunar highlands magnesian suite. The present study is a compilation of petrologic, mineral-chemical, and geochemical information on all pristine magnesian-suite plutonic rocks and the interpretation of this data in light of 18 'new' samples. Of these 18 clasts taken from Apollo 14 breccias, 12 are probably pristine and include four dunites, two norites, four troctolites, and two anorthosites. Radiogenic isotopic whole rock data also are reported for one of the 'probably pristine' anorthositic troctolites, sample 14303,347. The relatively low Rb content and high Sm and Nd abundances of 14303,347 suggest that this cumulate rock was derived from a parental magma which had these chemical characteristics. Trace element, isotopic, and mineral-chemical data are used to interpret the total highlands magnesian suite as crustal precipitates of a primitive KREEP (possessing a K-, rare earth element (REE)-, and P-enriched chemical signature) basalt magma. This KREEP basalt was created by the mixing of ascending ultramafic melts from the lunar interior with urKREEP (the late, K-, REE-, and P-enriched residuum of the lunar magma ocean). A few samples of the magnesian suite with extremely elevated large-ion lithophile elements (5-10x other magnesian-suite rocks) cannot be explained by this model or any other model of autometasomatism, equilibrium crystallization, or 'local melt-pocket equilibrium' without recourse to an extremely large-ion lithophile element-enriched parent liquid. It is difficult to generate parental liquids which are 2-4 x higher in the REE than average lunar KREEP, unless the liquids are the basic complement of a liquid-liquid pair, i.e., the so-called 'REEP-fraction,' from the silicate liquid immiscibility of ur

  10. National Bureau of Standards coal flyash (SRM 1633a) as a multielement standard for instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Korotev, R.L.


    The U.S. National Bureau of Standards standard reference material 1633a (coal flyash) was standardized for the concentrations of 29 elements against chemical standards by instrumental neutron activation analysis. United States Geological Survey basalt standard BCR-1 was analyzed concurrently as a check. SRM 1633a is a good multielement comparator standard for geochemical analysis for 25 of the elements analyzed and is a better standard than rock-powder SRMs commonly used. Analytical data for USGS DTS-1, PCC-1, GSP-1, BIR-1, DNC-1, and W-2; NBS SRMs 278 and 688; and GIT-IWG (French) anorthosite AN-G are also presented. (author)

  11. Possible Mafic Patches in Scott Crater Highlight the Need for Resource Exploration on the Lunar South Polar Region (United States)

    Cooper, Bonnie L.


    Possible areas of mafic material on the rim and floor of Scott crater (82.1 deg S, 48.5 deg E) are suggested by analysis of shadow-masked Clementine false-color-ratio images. Mafic materials common in mare and pyroclastic materials can produce more oxygen than can highlands materials, and mafic materials close to the south pole may be important for propellant production for a future lunar mission. If the dark patches are confirmed as mafic materials, this finding would suggest that other mafic patches may exist, even closer to the poles, which were originally mapped as purely anorthositic.

  12. The Rooiwater complex and associated rocks, Murchison granitoid-greenstone terrane, Kaapvaal Craton

    International Nuclear Information System (INIS)

    Vearncombe, J.R.; Walsh, K.L.


    The greater than 2625 Ma Rooiwater Complex is a thick, on-end differentiated basic igneous body exposed along the northern margin of the Murchison schist belt. It is metamorphosed to amphibolite facies and regionally retrograded and hydrothermally altered. Metamorphosed anorthosite, gabbro, pyroxenite, sulphide-bearing gabbros, thick magnetite layers, and granites are compatible with the hypothesis that the Complex is a layered intrusion, tectonically rotated and intruded by younger, genetically unrelated granites. Increasing TiO 2 and decreasing V 2 O 3 contents southwards in the magnetites layers combined with a general southern disposition of differentiated hornblende granite suggest that the Rooiwater Complex faces south. Although the Rubbervale Formation is pervasively deformed and metamorphosed at the greenschist facies, field relations and isotopic and rare earth element data tentatively suggest that a genetic relationship exists, the Rubbervale Formation being a possible roof to the Rooiwater intrusion, being derived from the same or a similar undepleted magmatic source. A paucity of ultramafic cumulates and up to 1,5 km of hornblende granites may relate to a source magma more felsic than that of other layered intrusions. In order to determine model ages for the Eden pluton, the Free State hornblende granite, the Quagga quartz amphibolite, the Rubbervale formation, and the Novengilla gabbro-anorthosite series. Rb-Sr and Pb isotopic analyses were undertaken

  13. A Low Viscosity Lunar Magma Ocean Forms a Stratified Anorthitic Flotation Crust With Mafic Poor and Rich Units: Lunar Magma Ocean Viscosity

    Energy Technology Data Exchange (ETDEWEB)

    Dygert, Nick [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Planetary Geosciences Institute, Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, Knoxville TN USA; Lin, Jung-Fu [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Marshall, Edward W. [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin TX USA; Kono, Yoshio [HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, Argonne IL USA; Gardner, James E. [Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin TX USA


    Much of the lunar crust is monomineralic, comprising >98% plagioclase. The prevailing model argues the crust accumulated as plagioclase floated to the surface of a solidifying lunar magma ocean (LMO). Whether >98% pure anorthosites can form in a flotation scenario is debated. An important determinant of the efficiency of plagioclase fractionation is the viscosity of the LMO liquid, which was unconstrained. Here we present results from new experiments conducted on a late LMO-relevant ferrobasaltic melt. The liquid has an exceptionally low viscosity of 0.22 $+0.11\\atop{-0.19}$to 1.45 $+0.46\\atop{-0.82}$ Pa s at experimental conditions (1,300–1,600°C; 0.1–4.4 GPa) and can be modeled by an Arrhenius relation. Extrapolating to LMO-relevant temperatures, our analysis suggests a low viscosity LMO would form a stratified flotation crust, with the oldest units containing a mafic component and with very pure younger units. Old, impure crust may have been buried by lower crustal diapirs of pure anorthosite in a serial magmatism scenario.

  14. Gallium isotopic evidence for extensive volatile loss from the Moon during its formation. (United States)

    Kato, Chizu; Moynier, Frédéric


    The distribution and isotopic composition of volatile elements in planetary materials holds a key to the characterization of the early solar system and the Moon's formation. The Moon and Earth are chemically and isotopically very similar. However, the Moon is highly depleted in volatile elements and the origin of this depletion is still debated. We present gallium isotopic and elemental measurements in a large set of lunar samples to constrain the origin of this volatile depletion. We show that while Ga has a geochemical behavior different from zinc, both elements show a systematic enrichment in the heavier isotopes in lunar mare basalts and Mg-suite rocks compared to the silicate Earth, pointing to a global-scale depletion event. On the other hand, the ferroan anorthosites are isotopically heterogeneous, suggesting a secondary distribution of Ga at the surface of the Moon by volatilization and condensation. The isotopic difference of Ga between Earth and the Moon and the isotopic heterogeneity of the crustal ferroan anorthosites suggest that the volatile depletion occurred following the giant impact and during the lunar magma ocean phase. These results point toward a Moon that has lost its volatile elements during a whole-scale evaporation event and that is now relatively dry compared to Earth.

  15. A survey of lunar rock types and comparison of the crusts of earth and moon (United States)

    Wood, J. A.


    The principal known types of lunar rocks are briefly reviewed, and their chemical relationships discussed. In the suite of low-KREEP highland rocks, Fe/(Fe + Mg) in the normative mafic minerals increases and the albite content of normative plagio-clase decreases as the total amount of normative plagioclase increases, the opposite of the trend predicted by the Bowen reaction principle. The distribution of compositions of rocks from terrestrial layered mafic intrusives is substantially different: here the analyses fall in several discrete clusters (anorthositic rocks, norites, granophyres and ferrogabbros, ultramafics), and the chemical trends noted above are not reproduced. It is suggested that the observed trends in lunar highland rocks could be produced by crystal fractionation in a deep global surface magma system if (1) plagiociase tended to float, upon crystallization, and (2) the magma was kept agitated and well mixed (probably by thermal convection) until crystallization was far advanced and relatively little residual liquid was left. After the crustal system solidified, but before extensive cooling had developed a thick, strong lithosphere, mantle convection was able to draw portions of the lunar anorthositic crust down into the mantle.

  16. Subduction of the primordial crust into the deep mantle

    Directory of Open Access Journals (Sweden)

    Hiroki Ichikawa


    Full Text Available The primordial crust on the Earth formed from the crystallization of the surface magma ocean during the Hadean. However, geological surveys have found no evidence of rocks dating back to more than 4 Ga on the Earth's surface, suggesting the Hadean crust was lost due to some processes. We investigated the subduction of one of the possible candidates for the primordial crust, anorthosite and KREEP crust similar to the Moon, which is also considered to have formed from the crystallization of the magma ocean. Similar to the present Earth, the subduction of primordial crust by subduction erosion is expected to be an effective way of eliminating primordial crust from the surface. In this study, the subduction rate of the primordial crust via subduction channels is evaluated by numerical simulations. The subduction channels are located between the subducting slab and the mantle wedge and are comprised of primordial crust materials supplied mainly by subduction erosion. We have found that primordial anorthosite and KREEP crust of up to ∼50 km thick at the Earth's surface was able to be conveyed to the deep mantle within 0.1-2 Gy by that mechanism.

  17. Descartes Mountains and Cayley Plains - Composition and provenance (United States)

    Drake, M. J.; Taylor, G. J.; Goles, G. G.


    Trace element compositions of petrographically characterized 2-4 mm lithic fragments from Apollo 16 soil samples are used to calculate initial REE concentrations in liquids in equilibrium with lunar anorthosites and to discuss the provenance of the Cayley Formation. Lithic fragments may be subdivided into four groups: (1) ANT rocks, (2) K- and SiO2-rich mesostasis-bearing rocks, (3) poikiloblastic rocks, and (4) (spinel) troctolites. Model liquids in equilibrium with essentially monominerallic anorthosites have initial REE concentrations 5-8 times those of chondrites. The REE contents of K- and SiO2-rich mesostasis-bearing rocks and poikiloblastic rocks are dominated by the mesostasis phases. ANT rocks appear to be more abundant in the Descartes Mountains, while poikiloblastic rocks appear to be more abundant in the Cayley Plains. Poikiloblastic rocks have intermediate to high LIL-element concentrations yet the low gamma-ray activity of Mare Orientale implies low LIL-element concentrations. Consequently, it is unlikely that the Cayley Formation is Orientale ejecta. A local origin as ejecta from smaller impacts is a more plausible model for the deposition of the Cayley Formation.

  18. Breccia 66055 and related clastic materials from the Descartes region, Apollo 16 (United States)

    Fruchter, J. S.; Kridelbaugh, S. J.; Robyn, M. A.; Goles, G. G.


    Trace and major element contents obtained by instrumental neutron activation are reported for a number of Apollo 16 soil samples and miscellaneous breccia fragments. In addition, data obtained by instrumental neutron activation and electron microprobe techniques along with petrographic descriptions are presented for selected subsamples of breccia 66055. The compositions of our soil samples can be modeled by mixtures of various amounts of anorthosite, anorthositic gabbro and low-K Fra Mauro basalt components. These mixtures are typical of those found in a number of petrographic surveys of the fines. Breccia 66055 is a complex regolith breccia which consists of at least four distinct types of microbreccias. No systematic relation with respect to stratigraphic age among the various microbreccia types was observed. Compositionally and texturally, the clasts which compose breccia 66055 are similar to a number of previously reported rock types from the Apollo 16 area. The entire breccia appears to have undergone a complex history of thermal metamorphism. We conclude from the study of these samples that the Cayley Formation is probably homogeneous in its gross compositional and petrographic aspects.

  19. Active moon: evidences from Chandrayaan-1 and the proposed Indian missions (United States)

    Bhandari, Narendra; Srivastava, Neeraj


    Chandrayaan-1, the polar Lunar orbiter mission of Indian Space Research Organization, successfully carried out study of Moon's environment and surface processes for a period of about nine months during 2008-2009. The results obtained by the mission established (i) A tenuous but active hydrosphere (ii) Volcanically active and geologically dynamic Moon and (iii) Global melting of Moon's surface regions and formation of magma ocean early in the history of Moon. Chandrayaan-1 was equipped with a dozen instruments, including an impact probe, which housed three additional instruments. The results obtained by four instruments viz. Chandra's Altitudinal Composition Explorer, Moon Mineral Mapper (M3), Solar Wind Monitor and Synthetic Aperture Radar gave an insight into an active hydrosphere, with several complex processes operating between lunar surface and its environment. These inferences are based on identification of H, OH, H2O, CO2, Ar etc. in the lunar atmosphere. There are indications that several young (~2 to100 Ma) volcanic regions are present on the Moon as shown by integrated studies using Terrain Mapping Camera and M3 of Chandrayaan-1 and data from other contemporary missions i.e. Kaguya and Lunar Reconnaissance Orbiter. These data establish that Moon has a dynamic and probably still active interior, in contrast to the generally accepted concept of dormant and quiet Moon. Discovery of Mg spinel anorthosites and finding of kilometer sized crystalline anorthosite exposures by M3 support the formation of global magma ocean on Moon and differentiation early in its evolutionary history. Furthermore, X-ray Spectrometer data showed anorthositic terrain with composition, high in Al, poor in Ca and low in Mg, Fe and Ti in a nearside southern highland region. This mission provided excellent opportunity for multilateral international cooperation and collaboration in instrumentation and observation in which a dozen countries participated and contributed to the success of

  20. Constraints on formation and evolution of the lunar crust from feldspathic granulitic breccias NWA 3163 and 4881 (United States)

    McLeod, Claire L.; Brandon, Alan D.; Fernandes, Vera A.; Peslier, Anne H.; Fritz, Jörg; Lapen, Thomas; Shafer, John T.; Butcher, Alan R.; Irving, Anthony J.


    Lunar granulitic meteorites provide new constraints on the composition and evolution of the lunar crust as they are potentially derived from outside the Apollo and Luna landing sites. Northwest Africa (NWA) 3163, the focus of this study, and its paired stones NWA 4881 and NWA 4483, are shocked granulitic noritic anorthosites. They are petrographically and compositionally distinct from the Apollo granulites and noritic anorthosites. Northwest Africa 3163 is REE-depleted by an order of magnitude compared to Apollo granulites and is one of the most trace element depleted lunar samples studied to date. New in-situ mineral compositional data and Rb-Sr, Ar-Ar isotopic systematics are used to evaluate the petrogenetic history of NWA 3163 (and its paired stones) within the context of early lunar evolution and the bulk composition of the lunar highlands crust. The NWA 3163 protolith was the likely product of reworked lunar crust with a previous history of heavy REE depletion. The bulk feldspathic and pyroxene-rich fragments have 87Sr/86Sr that are indistinguishable and average 0.699282 ± 0.000007 (2σ). A calculated source model Sr TRD age of 4.340 ± 0.057 Ga is consistent with (1) the recently determined young FAS (Ferroan Anorthosite) age of 4.360 ± 0.003 Ga for FAS 60025, (2) 142Nd model ages for the closure of the Sm-Nd system for the mantle source reservoirs of the Apollo mare basalts (4.355-4.314 Ga) and (3) a prominent age peak in the Apollo lunar zircon record (c. 4.345 Ga). These ages are ∼100 Myr younger than predicted timescales for complete LMO crystallization (∼10 Myrs after Moon formation, Elkins-Tanton et al., 2011). This supports a later, major event during lunar evolution associated with crustal reworking due to magma ocean cumulate overturn, serial magmatism, or a large impact event leading to localized or global crustal melting and/or exhumation. The Ar-Ar isotopic systematics on aliquots of paired stone NWA 4881 are consistent with an impact event

  1. Composition of the crust in the Grenville and Appalachian Provinces of North America inferred from VP/VS ratios (United States)

    Musacchio, G.; Mooney, W.D.; Luetgert, J.H.; Christensen, N.I.


    We use the ratios between P and S wave velocities (VP/VS), derived from seismic refraction data, to infer the composition of the crust in the Grenville and the Appalachian Provinces of North America. The crust exhibits VP/VS increasing with depth from 1.64 to 1.84; there is a clear distinction between the Grenville Province (average VP/VS=1.81) and the Appalachian Province (average VP/VS=1.73) which persists at all depths. The boundary between these provinces is east dipping extending for 100 km east of the Champlain thrust. In the Appalachian Province the increase in VP/VS ratios with depth from 1.67 to 1.74 ?? 0.02 may reflect a normal decrease of silica content in the continental crust. In the Grenville Province beneath the Central Granulite Terrane, an anomalous VP/VS ratio of 1.82 ?? 0.02 is observed extending to a depth of 10 km; this correlates with the abundance of Ca-plagioclase in the Marcy Anorthosite. At greater depth (15-20 km), where seismic lamination and high electrical conductivity is observed, VP/VS is 1-84 ?? 0.02 and correlates with the Tahawus Complex, a layered mafic intrusion. Within the 25-km-thick lower crust of the Grenville Province the VP/VS is 1-84 ?? 0.02 and P-velocity is 7.0 ?? 0.1 km/s, which are typical for plagioclase-bearing rocks (gabbro-norite). The high VP/VS ratio in the Grenville Province has not been reported in crust of any other age. Since the Grenville Province contains 75% of the world's known anorthosites, high VP/VS ratio is related to high plagioclase. We suggest that the composition of the Grenville lower crust was significantly modified by the emplacement of the anorthosites in the mid-Proterozoic. Copyright 1997 by the American Geophysical Union.

  2. Mesoarchean Gabbroanorthosite Magmatism of the Kola Region (United States)

    Kudryashov, N.; Mokrushin, A.


    The Kola peninsula is the region marked with development of anorthosite magmatism in the NE Baltic Shield. The Archaean gabbroanorthosites intrusions - Tsaginsky, Achinsky and Medvezhe-Schucheozersky - have the age of 2.7-2.6 Ga (Bayanova, 2004). The Patchemvarek and Severny gabbroanorthosites intrusions are located in the junction zone of the Kolmozero-Voronja greenstone belt and the Murmansk domain. Age data for sedimentaryvolcanogenic rocks of the Kolmozero-Voronja belt and Murmansk domain granitoids are 2.8-2.7 Ga. The gabbroanorthosites intrusions have more calcic composition (70-85% An) of normative plagioclase, and low contents of TiO2, FeO, and Fe2O3. In terms of chemical composition, the gabbroanorthosites of the studied massifs are close to the rocks of the Fiskenesset Complex (Greenland) and to the anorthosites of the Vermillion Lake Complex (Canada). U-Pb zircon dating established Mesoarchean ages of 29257 and 29358 Ma for the gabbroanorthosites of the Patchemvarek and Severny massifs, respectively. It was shown that the gabbroanorthosites of the studied massifs have fairly low REE contents (Cen = 2.2-4.2, Ybn = 1.6-2.6) and distinct positive Eu anomaly. Comagmatic ultrabasic differentiates have practically unfractionated REE pattern, low total REE contents (Cen = 1.2, Ybn = 1.1, La/Ybn = 1.32), and no Eu anomaly. The studied samples of the Archean gabbroanorthosites are characterized by positive "Nd= + 2.68 for the gabbroanorthosites of the Severny Massif and from + 2.77 to + 1.66 for the Patchemvarek Massif. The rocks of the Severny and Patchemvarek massifs has 87Sr/86Sri = 0.702048 and 87Sr/86Sri = 0.70258_8, respectively. The oldest U-Pb zircon ages for the gabbroanorthosites of the Patchemvarek and Severny massifs marking the Mesoarchean stage in the evolution of region. The differences in the initial 143Nd/144Nd ratios between the Neoarchean and the Mesoarchean gabbroanorthosites suggest the existence of two mantle sources. One of them produced

  3. Some thoughts on the origin of lunar ANT-KREEP and mare basalts (United States)

    Wakita, H.; Laul, J. C.; Schmitt, R. A.


    It is suggested that a series of ANT (anorthosite-norite-troctolite)-KREEP type rocks and the source material for mare basalts sampled by Apollo 11, 12, 15, and 17 may have been derived from a common magmatic differentiation. This differentiation is studied on the basis of a model which proposes that, in the early history of the moon, extensive melting occurred in the outer lunar shell and a magma layer of 100-200 km was formed. The presence of a residual liquid which has not yet been sampled is suspected between high-K KREEP and the Apollo 11 basalt materials. This residual liquid would have a FeO/MgO ratio greater than one and would be significantly enriched in apatite, zircon, K-feldspar, and ilmenite minerals.

  4. Lead isotope evidence for a young formation age of the Earth–Moon system

    DEFF Research Database (Denmark)

    Connelly, James; Bizzarro, Martin


    A model of a giant impact between two planetary bodies is widely accepted to account for the Earth–Moon system. Despite the importance of this event for understanding early Earth evolution and the inventory of Earth's volatiles critical to life, the timing of the impact is poorly constrained. We...... is ∼100 Myr younger than most current estimates for the age of the Moon but fully consistent with recent ages for lunar ferroan anorthosite and the timing of Earth's first crust inferred from the terrestrial zircon record. The estimated loss of ∼98% of terrestrial Pb relative to the Solar System bulk...... composition by the end of the Moon-forming process implies that the current inventory of Earth's most volatile elements, including water, arrived during post-impact veneering by volatile-rich bodies....

  5. Element distribution and noble gas isotopic abundances in lunar meteorite Allan Hills A81005 (United States)

    Kraehenbuehl, U.; Eugster, O.; Niedermann, S.


    Antarctic meteorite ALLAN HILLS A81005, an anorthositic breccia, is recognized to be of lunar origin. The noble gases in this meteorite were analyzed and found to be solar-wind implanted gases, whose absolute and relative concentrations are quite similar to those in lunar regolith samples. A sample of this meteorite was obtained for the analysis of the noble gas isotopes, including Kr(81), and for the determination of the elemental abundances. In order to better determine the volume derived from the surface correlated gases, grain size fractions were prepared. The results of the instrumental measurements of the gamma radiation are listed. From the amounts of cosmic ray produced noble gases and respective production rates, the lunar surface residence times were calculated. It was concluded that the lunar surface time is about half a billion years.

  6. Quantitative analysis of planetary reflectance spectra with principal components analysis (United States)

    Johnson, P. E.; Smith, M. O.; Adams, J. B.


    A technique is presented for quantitative analysis of planetary reflectance spectra as mixtures of particles on microscopic and macroscopic scales using principal components analysis. This technique allows for determination of the endmembers being mixed, their abundance, and the scale of mixing, as well as other physical parameters. Eighteen lunar telescopic reflectance spectra of the Copernicus crater region, from 600 nm to 1800 nm in wavelength, are modeled in terms of five likely endmembers: mare basalt, mature mare soil, anorthosite, mature highland soil, and clinopyroxene. These endmembers were chosen from a similar analysis of 92 lunar soil and rock samples. The models fit the data to within 2 percent rms. It is found that the goodness of fit is marginally better for intimate mixing over macroscopic mixing.

  7. Electron microscopic observations on the morphological and mineralogical changes in feldspar during the weathering process

    International Nuclear Information System (INIS)

    Khan, A.M.


    The Plagioclase feldspar in anorthositic rocks of Suryun area Korea, occurs predominantly as labradorite and show alteration into clay minerals under a distinct alteration sequence related to the degree of weathering. Under optical microscope, the feldspar shows that the alteration process was initiated by dissolution along microcracks, cleavage and twinning planes. Scanning electron microscopy (SEM) displays the morphological changes in feldspar during various stages of weathering. In the initial stage, selective etching has resulted in the formation of etch pits which on increased weathering have developed into stacks or sheaf structures. This on further weathering transformed into intermixed tubular and platy structures forming halloysite and kaolinite minerals respectively. Transmission electron microscopy (TEM) also shows occurrence of tubular and platey shape minerals with variable dimensions. EPMA analysis and EDS patterns exhibit consistency with the morphological and mineralogical changes during alteration process of feldspar under weathering conditions. (author)

  8. The Effect of Thermal Cycling on Crystal-Liquid Separation During Lunar Magma Ocean Differentiation (United States)

    Mills, Ryan D.


    Differentiation of magma oceans likely involves a mixture of fractional and equilibrium crystallization [1]. The existence of: 1) large volumes of anorthosite in the lunar highlands and 2) the incompatible- rich (KREEP) reservoir suggests that fractional crystallization may have dominated during differentiation of the Moon. For this to have occurred, crystal fractionation must have been remarkably efficient. Several authors [e.g. 2, 3] have hypothesized that equilibrium crystallization would have dominated early in differentiation of magma oceans because of crystal entrainment during turbulent convection. However, recent numerical modeling [4] suggests that crystal settling could have occurred throughout the entire solidification history of the lunar magma ocean if crystals were large and crystal fraction was low. These results indicate that the crystal size distribution could have played an important role in differentiation of the lunar magma ocean. Here, I suggest that thermal cycling from tidal heating during lunar magma ocean crystallization caused crystals to coarsen, leading to efficient crystal-liquid separation.

  9. The naked planet Earth: Most essential pre-requisite for the origin and evolution of life

    Directory of Open Access Journals (Sweden)

    S. Maruyama


    To satisfy the tight conditions to make the Earth habitable, the formation mechanism of primordial Earth is an important factor. At first, a ‘dry Earth’ must be made through giant impact, followed by magma ocean to float nutrient-enriched primordial continents (anorthosite + KREEP. Late bombardment from asteroid belt supplied water to make 3–5 km thick ocean, and not from icy meteorites from Kuiper belt beyond cool Jupiter. It was essential to meet the above conditions that enabled the Earth as a habitable planet with evolved life forms. The tight constraints that we evaluate for birth and evolution of life on Earth would provide important guidelines for planetary scientists hunting for life in the exo-solar planets.

  10. A zircon vs titanite geochronometres by SHRIMP IIe as a tool in multistage magmatic intrusion problems (United States)

    Wiszniewska, Janina; Krzemińska, Ewa


    Most of crystalline basement area of NE Poland is represented by late Svecofennian (1.84-1.80 Ga) orogenic granitoids and supracrustal succession. These early rock assemblages were intruded by plutons of the Mezoproterozoic AMCG suite, which occupies most of W-E trending belt of the so called Mazury Complex. This suite is dominated by A-type granitoids of rapakivi-like texture. The subsequent important components are gabbro-norite, anorthosite and locally mangerite and charnockite rock variations. Anorthosite occurs at three autonomic massifs Sejny, Suwałki(SAM) and Ketrzyn. The basic geochronological investigation was carried out previously using mainly the U-Pb-Th system of zircon and monazite geochronometers. The AMCG suite yielded ages mainly in the range between 1548 to 1500 Ma. The isotopic work also reveals sporadic ages recorded on titanite (1526±11 Ma), considered as the crystallization age of the titanites under subsolidus conditions (Dörr et al.,2002). The geochemical and isotopic whole rock investigation suggests that formation of the AMCG suite was a complex process with multiple magma batches sequentially differentiating, and probably undergoing mixing and crustal assimilation. In this study, we report sensitive high-resolution ion microprobe (SHRIMP) U-Pb zircon and titanite single grain age data from upper part of drill section (Krasnopol 6, depth 1003m) located within easternmost vicinity of the SAM. Both of mineral phases have been selected from the contact between A-type granitoid with Pb-Pb TIMS age of 1525±5 Ma (op cit) and mafic chilled margin interpreted as next magma input. Dating of 20 single zircons from the contact zone yielded concordia ages of 1510±10 Ma for most of grains defined as emplacement age with inheritance at 1850±10 Ma. It evidenced a younger dose of the melt on the top of plutonic body and some input of older crustal material, detected also by whole rock isotopic signatures. Single titanite grains from the same zone

  11. Composition of bulk samples and a possible pristine clast from Allan Hills A81005 (United States)

    Boynton, W. V.; Hill, D. H.


    Abundances of thirty-five elements were determined in two bulk samples and a white clast in the Allan Hills A81005 meteorite. High siderophile element content indicates that the sample is a regolith breccia. An Fe/Mn ratio of 77 in this meteorite eliminates parent bodies of known differentiated meteorites as the source of ALHA 81005. The incompatible elements are very similar to those found in most lunar highlands rocks, and provide very strong evidence that the sample is lunar in origin. The clast sample has the trace element pattern of a lunar anorthosite and is very low in KREEP and siderophile elements. It may be a fragment of a pristine lunar rock.

  12. Chronology of early lunar crust

    International Nuclear Information System (INIS)

    Dasch, E.J.; Nyquist, L.E.; Ryder, G.


    The chronology of lunar rocks is summarized. The oldest pristine (i.e., lacking meteoritic contamination of admixed components) lunar rock, recently dated with Sm-Nd by Lugmair, is a ferroan anorthosite, with an age of 4.44 + 0.02 Ga. Ages of Mg-suite rocks (4.1 to 4.5 Ga) have large uncertainties, so that age differences between lunar plutonic rock suites cannot yet be resolved. Most mare basalts crystallized between 3.1 and 3.9 Ga. The vast bulk of the lunar crust, therefore, formed before the oldest preserved terrestrial rocks. If the Moon accreted at 4.56 Ga, then 120 Ma may have elapsed before lunar crust was formed

  13. Identification of a New Spinel-Rich Lunar Rock Type by the Moon Mineralogy Mapper (M (sup 3)) (United States)

    Pieters, C. M.; Boardman, J.; Buratti, B.; Clark, R.; Combe, J. P.; Green, R.; Goswami, J. N.; Head, J. W., III; Hicks, M.; Isaacson, P.; hide


    The canonical characterization of the lunar crust is based principally on available Apollo, Luna, and meteorite samples. The crust is described as an anorthosite-rich cumulate produced by the lunar magma ocean that has been infused with a mix of Mgsuite components. These have been mixed and redistributed during the late heavy bombardment and basin forming events. We report a new rock-type detected on the farside of the Moon by the Moon Mineralogy Mapper (M3) on Chandrayaan-1 that does not easily fit with current crustal evolution models. The rock-type is dominated by Mg-spinel with no detectible pyroxene or olivine present (<5%). It occurs along the western inner ring of Moscoviense Basin as one of several discrete areas that exhibit unusual compositions relative to their surroundings but without morphological evidence for separate processes leading to exposure.

  14. Some aspects of the minor element chemistry of lunar mare basalts

    International Nuclear Information System (INIS)

    Ringwood, A.E.


    The principal minor element (including Ti) characteristics of mare basalts which must be explained by an acceptable theory of petrogenesis are reviewed. Recent hypotheses have proposed that mare basalts formed by equilibrium partial melting of pyroxene-rich cumulates which underlay and were complementary to the anorthositic crust. These hypotheses are examined in detail and are rejected on several grounds. A new hypothesis based upon partial melting under conditions of surface or local equilibrium is proposed. It is assumed that the moon accreted from material which had ultimately formed by fractional condensation from a gas phase of appropriate composition. A disequilibrium mineral assemblage with a bulk composition similar to that of the pyroxenite source region of mare basalts as derived from experimental petrological considerations was formed. It is considered that this model is capable of explaining the principal minor element characteristics of mare basalts and is consistent with interpretations of the major element chemistry of their source region based upon experimental petrology. (Auth.)

  15. Trace elements in 59 mostly highland moon rocks (United States)

    Ebihara, Mitsuru; Wolf, Rainer; Warren, Paul H.; Anders, Edward


    New chemical analyses for up to 26 trace elements, including seldom-determined highly siderophile elements Ir, Os, Re, Au, Pd, and Ge, for 59 lunar samples are reported. Most of these samples are polymict breccias from Apollo 16. Remarkably few have Group 7 (extremely low Au/Ir) meteoritic components. Several samples have uncommonly high Au/(Ir + Re) ratios, even higher than group 1L. Volatile-element enrichments are found in several fragments from rusty rock 66095. A matrix sample from fragmental breccia 60639 shows Cd and In enrichments, also observed previously in samples of anorthosite and mare basalt from the same breccia. Evidently, for these highly labile elements, chemical exchange has affected clasts that for most other elements are pristine.

  16. Archean crustal evolution in the central Minto block, northern Quebec

    International Nuclear Information System (INIS)

    Skulski, T.; Percival, J.A.; Stern, R.A.


    The central Minto block contains three volcano-sedimentary successions. Near Lake Qalluviartuuq, an isotopically primitive ( 2.83 Ga ε Nd +3.8 to +2.3) 2.83 Ga volcano-plutonic sequence comprises depleted tholeiitic basalts, anorthositic gabbro, and diorite-granodiorite that is unconformably overlain by 2.76 Ga ε Nd +1.8) calc-alkaline sequence of pillow basalts, andesites, and peridotite cut by 2.73 Ga diorite. To the west, and in inferred tectonic contact, the sediment-dominated Kogaluc sequence includes both isotopically evolved calc-alkaline rocks ( 2.76 Ga ε Nd +1.6 to -0.1) including 2.78Ga ε Nd Nd 2.725Ga ε Nd - 1. 6). (author). 19 refs., 4 tabs., 5 figs

  17. Relationship between the Layered Series and the overlying evolved rocks in the Bjerkreim-Sokndal Intrusion, southern Norway

    DEFF Research Database (Denmark)

    Wilson, James Richard; Overgaard, Gitte


    The Bjerkreim-Sokndal layered intrusion (BKSK) consists of a >7000 m-thick Layered Series comprising anorthosites, leuconorites, troctolites, norites, gabbronorites and jotunites (hypersthene monzodiorites), overlain by an unknown thickness of massive, evolved rocks: mangerites (hypersthene...... are essentially constant in the upper part of the MG-unit and in the QMG (An21-13; Fo6-4; Mg#opx17-13; Mg#cpx25-20). The amount of interstitial quartz and the amount of normative orthoclase, however, both increase systematically upwards through the QMG-unit, implying that these rocks are cumulates....... There is no evidence of a compositional break in the MG-QMG sequence that could reflect influx of relatively primitive magma. Two types of QMG/CH are known in the uppermost part of BKSK. Olivine-bearing types are comagmatic with the underlying Layered Series; the studied stratigraphic sequence belongs to this suite...

  18. Geochemical studies of the White Breccia Boulders at North Ray Crater, Descartes region of the lunar highlands (United States)

    Lindstrom, M. M.; Lindstrom, D. J.; Lum, R. K. L.; Schuhmann, P. J.; Nava, D. F.; Schuhmann, S.; Philpotts, J. A.; Winzer, S. R.


    The samples of the White Breccia Boulders obtained during the Apollo 16 mission and investigated in the reported study include an anorthositic breccia (67415), a dark matrix breccia (67435), a light matrix breccia (67455), and a large clast of dark matrix breccia (67475) taken from the 67455 boulder. The chemical analyses of bulk samples of the samples are listed in a table. A graph shows the lithophile trace element abundances. Another graph indicates the variation of Sm with Al2O3 content for samples from the White Breccia Boulders. The North Ray Crater breccias are found to be in general slightly more aluminous than breccias from the other stations at the Apollo 16 site. Analyses of eight Apollo 16 breccias cited in the literature range from 25% to 35% Al2O3. However, the North Ray Crater breccias are more clearly distinct from the other Apollo 16 breccias in their contents of lithophile trace elements.

  19. Experimental petrology and origin of rocks from the Descartes Highlands (United States)

    Walker, D.; Longhi, J.; Grove, T. L.; Stolper, E.; Hays, J. F.


    Petrographic studies of Apollo 16 samples indicate that rocks 62295 and 68415 are crystallization products of highly aluminous melts. 60025 is a shocked, crushed and partially annealed plagioclase cumulate. 60315 is a recrystallized noritic breccia of disputed origin. 60335 is a feldspathic basalt filled with xenoliths and xenocrysts of anorthosite, breccia, and anorthite. The Fe/(Fe+Mg) of plagioclase appears to be a relative crystallization index. Low pressure melting experiments with controlled Po2 indicate that the igneous samples crystallized at oxygen fugacities well below the Fe/FeO buffer. Crystallization experiments at various pressures suggest that the 62295 and 68415 compositions were produced by partial or complete melting of lunar crustal materials, and not by partial melting of the deep lunar interior.

  20. Petrology, geochemistry, and geochronology of the Chah-Bazargan gabbroic intrusions in the south Sanandaj-Sirjan zone, Neyriz, Iran (United States)

    Fazlnia, Abdolnaser; Schenk, Volker; Appel, Peter; Alizade, Abouzar


    The Chah-Bazargan gabbroic intrusions are located in the south of Sanandaj-Sirjan zone. Precise U-Pb zircon SHRIMP ages of the intrusions show magmatic ages of 170.5 ± 1.9 Ma. These intrusions consist primarily of gabbros, interspersed with lenticular bodies of anorthosite, troctolite, clinopyroxenite, and wehrlite. The lenticular bodies show gradational or sharp boundaries with the gabbros. In the gradational boundaries, gabbros are mineralogically transformed into anorthosites, wehrlites, and/or clinopyroxenites. On the other hand, where the boundaries are sharp, the mineral assemblages change abruptly. There is no obvious deformation in the intrusions. Hence, the changes in mineral compositions are interpreted as the result of crystallization processes, such as fractionation in the magma chamber. Rock types with sharp boundaries show abrupt chemical changes, but the changes exhibit the same patterns of increasing and decreasing elements, especially of rare earth elements, as the gradational boundaries. Therefore, it is possible that all parts of the intrusions were formed from the same parental magma. Parts showing signs of nonequilibrium crystallization, such as cumulate features and sub-solidification, underwent fracturing and were interspersed throughout the magma chamber by late injection pulses or mechanical movements under mush conditions. The geological and age data show that the intrusions were formed from an Al-, Sr-, Fe-enriched and K-, Nb-depleted tholeiitic magma. The magma resulted from the partial melting of a metasomatized spinel demonstrated by negative Nb, P, Hf, and Ti, and positive Ba, Sr, and U anomalies typical of subduction-related magmas.

  1. Rodinia: Supercontinent's poster child or problem child? (United States)

    Cawood, Peter; Hawkesworth, Chris


    Earth's rock record extending from 1.7 to 0.75 Ga, that period encompassing the entire Rodinian supercontinent cycle and the latter part of Nuna cycle, and corresponding with Earth's Middle Age, is characterized by environmental, evolutionary and lithospheric stability that contrasts with the dramatic changes in preceding and succeeding eras. The period is marked by a paucity of passive margins, an absence of a significant Sr anomaly in the paleoseawater record or in the epsilon Hf(t) in detrital zircon, a lack of orogenic gold and volcanic-hosted massive sulfide deposits, and an absence of glacial deposits and of iron formations. In contrast, anorthosites and kindred bodies are well developed and major pulses of Mo and Cu mineralization, including the world's largest examples of these deposits, are features of this period. These trends are attributed to the combined effects of lithospheric behavior related to secular cooling of the mantle and a relatively stable continental assemblage that was initiated during assembly of the Nuna supercontinent by ~1.7 Ga and continued until breakup of its closely related successor, Rodinia, around 0.75 Ga. The overall low abundance of passive margins within this timeframe is consistent with a stable continental configuration, which also provided a framework for environmental and evolutionary stability. A series of convergent margin accretionary orogens developed along the margin of the supercontinent as evidenced by rock sequences preserved in dispersed fragments in Australia, Antarctica, Amazonia, Baltica and Laurentia. Abundant anorthosites and related rocks developed inboard of the plate margin. Their temporal distribution appears to link with the secular cooling of the mantle in which the overlying continental lithosphere was then strong enough to be thickened, during either low angle subduction or post-subduction collision, and to support the emplacement of large plutons into the crust, yet the underlying mantle was still

  2. Age and isotopic fingerprints of some plutonic rocks in the Wiborg rapakivi granite batholith with special reference to the dark wiborgite of the Ristisaari Island

    Directory of Open Access Journals (Sweden)

    Rämö, O.T.


    Full Text Available The mid-Proterozoic, locus classicus Wiborg rapakivi granite batholith of southeastern Finland and adjacent Russia comprises a varying, bimodal (silicic-basic sequence of plutonic, subvolcanic, and volcanic rocks. At the current level of erosion silicic rocks are dominant, the most prominent of which are wiborgites and dark wiborgites (that have been considered to mark the main build-up stage of the batholith and pyterlites. New observations and optical microscopy data from the dark wiborgite-dominated Ristisaari Island in the southern, off-shore part of the Wiborg batholith show that dark plagioclase megacrysts in dark wiborgite are calcic xenocrysts. They were probably incorporated into wiborgite magma from consanguineous massiftype anorthosite magmas in the course of the evolution of the bimodal magmatic system. Our new ID-TIMS U-Pb zircon age of the Ristisaari Island dark wiborgite, 1627±3 Ma, is the youngest isotopic age so far determined for the plutonic rocks of the Wiborg batholith. This, combined with preexisting U-Pb zircon data, implies a minimum duration of 12 m.y. (1642–1630 Ma for the emplacement of the plutonic rocks of the batholith. Combined with data on highlevel dike rocks, a window of at least 20 m.y. (1642–1622 Ma is implied. Furthermore, as the batholith grew, the overall locus of magmatism may have shifted southwards. New whole-rock Nd isotope data on the dark wiborgite of the Ristisaari Island and three further granites of the batholith, as well as Nd (whole-rock and Sr (whole-rock, plagioclase isotope data on a spectrolite massif-type anorthosite from the east-central part of the batholith, are also presented. These data suggest that the lithosphere across the Wiborg batholith area in the southeastern part of the Svecofennian orogen may vary slightly in overall mantle separation age.

  3. Hadean Earth and primordial continents: The cradle of prebiotic life

    Directory of Open Access Journals (Sweden)

    M. Santosh


    Full Text Available The Hadean history of Earth is shrouded in mystery and it is considered that the planet was born dry with no water or atmosphere. The Earth-Moon system had many features in common during the birth stage. Solidification of the dry magma ocean at 4.53 Ga generated primordial continents with komatiite. We speculate that the upper crust was composed of fractionated gabbros and the middle felsic crust by anorthosite at ca. 21 km depth boundary, underlain by meta-anorthosite (grossular + kyanite + quartz down to 50–60 km in depth. The thickness of the mafic KREEP basalt in the lower crust, separating it from the underlying upper mantle is not well-constrained and might have been up to ca. 100–200 km depending on the degree of fractionation and gravitational stability versus surrounding mantle density. The primordial continents must have been composed of the final residue of dry magma ocean and enriched in several critical elements including Ca, Mg, Fe, Mn, P, K, and Cl which were exposed on the surface of the dry Earth. Around 190 million years after the solidification of the magma ocean, “ABEL bombardment” delivered volatiles including H2O, CO2, N2 as well as silicate components through the addition of icy asteroids. This event continued for 200 Myr with subordinate bombardments until 3.9 Ga, preparing the Earth for the prebiotic chemical evolution and as the cradle of first life. Due to vigorous convection arising from high mantle potential temperatures, the primordial continents disintegrated and were dragged down to the deep mantle, marking the onset of Hadean plate tectonics.

  4. Lunar Magma Ocean Crystallization: Constraints from Fractional Crystallization Experiments (United States)

    Rapp, J. F.; Draper, D. S.


    The currently accepted paradigm of lunar formation is that of accretion from the ejecta of a giant impact, followed by crystallization of a global scale magma ocean. This model accounts for the formation of the anorthosite highlands crust, which is globally distributed and old, and the formation of the younger mare basalts which are derived from a source region that has experienced plagioclase extraction. Several attempts at modelling the crystallization of such a lunar magma ocean (LMO) have been made, but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. Geodynamic models of lunar accretion suggest that shortly following accretion the bulk of the lunar mass was hot, likely at least above the solidus]. Models of LMO crystallization that assume a deep magma ocean are therefore geodynamically favorable, but they have been difficult to reconcile with a thick plagioclase-rich crust. A refractory element enriched bulk composition, a shallow magma ocean, or a combination of the two have been suggested as a way to produce enough plagioclase to account for the assumed thickness of the crust. Recently however, geophysical data from the GRAIL mission have indicated that the lunar anorthositic crust is not as thick as was initially estimated, which allows for both a deeper magma ocean and a bulk composition more similar to the terrestrial upper mantle. We report on experimental simulations of the fractional crystallization of a deep (approximately 100km) LMO with a terrestrial upper mantle-like (LPUM) bulk composition. Our experimental results will help to define the composition of the lunar crust and mantle cumulates, and allow us to consider important questions such as source regions of the mare basalts and Mg-suite, the role of mantle overturn after magma ocean crystallization and the nature of KREEP

  5. Thermal Properties of Lunar Regolith Simulants (United States)

    Street, Kenneth W., Jr.; Ray, Chandra; Rickman, Doug; Scheiman, Daniel A.


    Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH-, the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the Moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Thermo-Gravimetric Analysis (TGA) with Fourier Transform Infrared (FTIR) analysis provides information on evolved gas species and their evolution temperature profiles. The DTA and TGA studies included JSC-1A fine (Johnson Space Center Mare Type 1A simulant), NU-LHT-2M (National Aeronautics and Space Administration (NASA)-- United States Geological Survey (USGS)--Lunar Highlands Type 2M simulant) and its proposed feedstocks: anorthosite; dunite; high quality (HQ) glass and the norite from which HQ glass is produced. As an example, the DTA and TGA profiles for anorthosite follow. The DTA indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water is lost accounting for approximately 0.1 percent mass loss. Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals along with other volatile oxides. Limited TGA-FTIR data is available at the time of this writing. For JSC-1A fine, the TGA-FTIR indicates at least two kinds of water are evolved in the 100 to 500 and the 700 to 900 C ranges. Evolution of carbon dioxide types occurs in the 250 to 545, 545 to 705, and 705 to 985 C ranges. Geologically, the results are consistent with the evolution of "water" in its several forms, CO2 from break down of secondary carbonates and magmatic, dissolved gas and glass

  6. Connecting Lunar Meteorites to Source Terrains on the Moon (United States)

    Jolliff, B. L.; Carpenter, P. K.; Korotev, R. L.; North-Valencia, S. N.; Wittmann, A.; Zeigler, R. A.


    The number of named stones found on Earth that have proven to be meteorites from the Moon is approx. 180 so far. Since the Moon has been mapped globally in composition and mineralogy from orbit, it has become possible to speculate broadly on the region of origin on the basis of distinctive compositional characteristics of some of the lunar meteorites. In particular, Lunar Prospector in 1998 [1,2] mapped Fe and Th at 0.5 degree/pixel and major elements at 5 degree/pixel using gamma ray spectroscopy. Also, various multispectral datasets have been used to derive FeO and TiO2 concentrations at 100 m/pixel spatial resolution or better using UV-VIS spectral features [e.g., 3]. Using these data, several lunar meteorite bulk compositions can be related to regions of the Moon that share their distinctive compositional characteristics. We then use EPMA to characterize the petrographic characteristics, including lithic clast components of the meteorites, which typically are breccias. In this way, we can extend knowledge of the Moon's crust to regions beyond the Apollo and Luna sample-return sites, including sites on the lunar farside. Feldspathic Regolith Breccias. One of the most distinctive general characteristics of many lunar meteorites is that they have highly feldspathic compositions (Al2O3 approx. 28% wt.%, FeO <5 wt.%, Th <1 ppm). These compositions are significant because they are similar to a vast region of the Moon's farside highlands, the Feldspathic Highlands Terrane, which are characterized by low Fe and Th in remotely sensed data [4]. The meteorites provide a perspective on the lithologic makeup of this part of the Moon, specifically, how anorthositic is the surface and what, if any, are the mafic lithic components? These meteorites are mostly regolith breccias dominated by anorthositic lithic clasts and feldspathic glasses, but they do also contain a variety of more mafic clasts. On the basis of textures, we infer these clasts to have formed by large impacts

  7. Petrogenetic and geodynamic origin of the Neoarchean Doré Lake Complex, Abitibi subprovince, Superior Province, Canada (United States)

    Polat, Ali; Frei, Robert; Longstaffe, Fred J.; Woods, Ryan


    The Neoarchean (ca. 2728 Ma) anorthosite-bearing Doré Lake Complex in the northeastern Abitibi subprovince, Quebec, was emplaced into an association of intra-oceanic tholeiitic basalts and gabbros known as the Obatogamau Formation. The Obatogamau Formation constitutes the lower part of the Roy Group, which is composed of two cycles of tholeiitic-to-calc-alkaline volcanic and volcaniclastic rocks, siliciclastic and chemical sedimentary rocks, and layered mafic-to-ultramafic sills. In this study, we report major and trace element results, and Nd, Sr, Pb and O isotope data for anorthosites, leucogabbros, gabbros and mafic dykes from the Doré Lake Complex and spatially associated basalts and gabbros of the Obatogamau Formation to assess their petrogenetic origin and geodynamic setting. Field and petrographic observations indicate that the Doré Lake Complex and associated volcanic rocks underwent extensive metamorphic alteration under greenschist facies conditions, resulting in widespread epidotization (20-40%) and chloritization (10-40%) of many rock types. Plagioclase recrystallized mainly to anorthite and albite endmembers, erasing intermediate compositions. Metamorphic alteration also led to the mobilization of many elements (e.g., LILE and transition metals) and to significant disturbance of the Rb-Sr and U-Pb isotope systems, resulting in 1935 ± 150 and 3326 ± 270 Ma errorchron ages, respectively. The Sm-Nd isotope system was less disturbed, yielding an errorchron age of 2624 ± 160 Ma. On many binary major and trace element diagrams, the least altered anorthosites and leucogabbros, and the gabbros and mafic dykes of the Doré Lake Complex plot in separate fields, signifying the presence of two distinct magma types in the complex. The gabbros and mafic dykes in the Doré Lake Complex share the geochemical characteristics of tholeiitic basalts and gabbros in the Obatogamau Formation, suggesting a possible genetic link between the two rock associations. Initial

  8. The Manicouagan impact structure as a terrestrial analogue site for lunar and martian planetary science (United States)

    Spray, John G.; Thompson, Lucy M.; Biren, Marc B.; O'Connell-Cooper, Catherine


    The 90 km diameter, late Triassic Manicouagan impact structure of Québec, Canada, is a well-preserved, undeformed complex crater possessing an anorthositic central uplift and a 55 km diameter melt sheet. As such, it provides a valuable terrestrial analogue for impact structures developed on other planetary bodies, especially the Moon and Mars, which are currently the focus of exploration initiatives. The scientific value of Manicouagan has recently been enhanced due to the production, between 1994 and 2006, of ˜18 km of drill core from 38 holes by the mineral exploration industry. Three of these holes are in excess of 1.5 km deep, with the deepest reaching 1.8 km. Here we combine recent field work, sampling and the drill core data with previous knowledge to provide insight into processes occurring at Manicouagan and, by inference, within extraterrestrial impact structures. Four areas of comparative planetology are discussed: impact melt sheets, central uplifts, impact-generated hydrothermal regimes and footwall breccias. Human training and instrument testing opportunities are also considered. The drill core reveals that the impact melt and clast-bearing impact melts in the centre of the structure reach thicknesses of 1.4 km. The 1.1 km thick impact melt has undergone differentiation to yield a lower monzodiorite, a transitional quartz monzodiorite and an upper quartz monzonite sequence. This calls into question the previous citing of Manicouagan as an exemplar of a relatively large crater possessing an undifferentiated melt sheet, which was used as a rationale for assigning different composition lunar impact melts and clast-bearing impact melts to separate cratering events. The predominantly anorthositic central uplift at Manicouagan is comparable to certain lunar highlands material, with morphometric analogies to the King, Tycho, Pythagoras, Jackson, and Copernicus impact structures, which have similar diameters and uplift structure. Excellent exposure of the

  9. Thermal Properties of Lunar Regolith Simulants (United States)

    Street, Kenneth; Ray, Chandra; Rickman, Doug


    Various high temperature chemical processes have been developed to extract oxygen and metals from lunar regolith. These processes are tested using terrestrial analogues of the regolith. But all practical terrestrial analogs contain H2O and/or OH-, the presence of which has substantial impact on important system behaviors. We have undertaken studies of lunar regolith simulants to determine the limits of the simulants to validate key components for human survivability during sustained presence on the moon. Differential Thermal Analysis (DTA) yields information on phase transitions and melting temperatures. Themo-Gravimetric Analysis (TGA) with mass spectrometric (MS) determination of evolved gas species yields chemical information on various oxygenated volatiles (water, carbon dioxide, sulfur oxides, nitrogen oxides and phosphorus oxides) and their evolution temperature profiles. The DTA and TGAMS studies included JSC-1A fine, NU-LHT-2M and its proposed feed stocks: anorthosite; dunite; HQ (high quality) glass and the norite from which HQ glass is produced. Fig 1 is a data profile for anorthosite. The DTA (Fig 1a) indicates exothermic transitions at 355 and 490 C and endothermic transitions at 970 and 1235 C. Below the 355 C transition, water (Molecular Weight, MW, 18 in Fig 1c) is lost accounting for approximately 0.1% mass loss due to water removal (Fig 1b). Just above 490 C a second type of water is lost, presumably bound in lattices of secondary minerals. Between 490 and the 970 transition other volatile oxides are lost including those of hydrogen (third water type), carbon (MW = 44), sulfur (MW = 64 and 80), nitrogen (MW 30 and 46) and possibly phosphorus (MW = 79, 95 or 142). Peaks at MW = 35 and 19 may be attributable to loss of chlorine and fluorine respectively. Negative peaks in the NO (MW = 30) and oxygen (MW = 32) MS profiles may indicate the production of NO2 (MW = 46). Because so many compounds are volatilized in this temperature range quantification of

  10. Late Precambrian Balkan-Carpathian ophiolite — a slice of the Pan-African ocean crust?: geochemical and tectonic insights from the Tcherni Vrah and Deli Jovan massifs, Bulgaria and Serbia (United States)

    Savov, Ivan; Ryan, Jeff; Haydoutov, Ivan; Schijf, Johan


    The Balkan-Carpathian ophiolite (BCO), which outcrops in Bulgaria, Serbia and Romania, is a Late Precambrian (563 Ma) mafic/ultramafic complex unique in that it has not been strongly deformed or metamorphosed, as have most other basement sequences in Alpine Europe. Samples collected for study from the Tcherni Vrah and Deli Jovan segments of BCO include cumulate dunites, troctolites, wehrlites and plagioclase wehrlites; olivine and amphibole-bearing gabbros; anorthosites; diabases and microgabbros; and basalts representing massive flows, dikes, and pillow lavas, as well as hyaloclastites and umbers (preserved sedimentary cover). Relict Ol, Cpx and Hbl in cumulate peridotites indicate original orthocumulate textures. Plagioclase in troctolites and anorthosites range from An60 to An70. Cumulate gabbro textures range from ophitic to poikilitic, with an inferred crystallization order of Ol-(Plag+Cpx)-Hbl. The extrusive rocks exhibit poikilitic, ophitic and intersertal textures, with Cpx and/or Plag (Oligoclase-Andesine) phenocrysts. The major opaques are Ti-Magnetite and Ilmenite. The metamorphic paragenesis in the mafic samples is Chl-Trem-Ep, whereas the ultramafic rocks show variable degrees of serpentinization, with lizardite and antigorite as dominant phases. Our samples are compositionally and geochemically similar to modern oceanic crust. Major element, trace element and rare earth element (REE) signatures in BCO basalts are comparable to those of MORB. In terms of basalt and dike composition, the BCO is a 'high-Ti' or 'oceanic' ophiolite, based on the classification scheme of Serri [Earth Planet. Sci. Lett. 52 (1981) 203]. Our petrologic and geochemical results, combined with the tectonic position of the BCO massifs (overlain by and in contact with Late Cambrian island arc and back-arc sequences), suggest that the BCO may have formed in a mid-ocean ridge setting. If the BCO records the existence of a Precambrian ocean basin, then there may be a relationship

  11. Structure from Motion Photogrammetry and Micro X-Ray Computed Tomography 3-D Reconstruction Data Fusion for Non-Destructive Conservation Documentation of Lunar Samples (United States)

    Beaulieu, K. R.; Blumenfeld, E. H.; Liddle, D. A.; Oshel, E. R.; Evans, C. A.; Zeigler, R. A.; Righter, K.; Hanna, R. D.; Ketcham, R. A.


    Our team is developing a modern, cross-disciplinary approach to documentation and preservation of astromaterials, specifically lunar and meteorite samples stored at the Johnson Space Center (JSC) Lunar Sample Laboratory Facility. Apollo Lunar Sample 60639, collected as part of rake sample 60610 during the 3rd Extra-Vehicular Activity of the Apollo 16 mission in 1972, served as the first NASA-preserved lunar sample to be examined by our team in the development of a novel approach to internal and external sample visualization. Apollo Sample 60639 is classified as a breccia with a glass-coated side and pristine mare basalt and anorthosite clasts. The aim was to accurately register a 3-dimensional Micro X-Ray Computed Tomography (XCT)-derived internal composition data set and a Structure-From-Motion (SFM) Photogrammetry-derived high-fidelity, textured external polygonal model of Apollo Sample 60639. The developed process provided the means for accurate, comprehensive, non-destructive visualization of NASA's heritage lunar samples. The data products, to be ultimately served via an end-user web interface, will allow researchers and the public to interact with the unique heritage samples, providing a platform to "slice through" a photo-realistic rendering of a sample to analyze both its external visual and internal composition simultaneously.

  12. Lunar and Meteorite Sample Disk for Educators (United States)

    Foxworth, Suzanne; Luckey, M.; McInturff, B.; Allen, J.; Kascak, A.


    NASA Johnson Space Center (JSC) has the unique responsibility to curate NASA's extraterrestrial samples from past and future missions. Curation includes documentation, preservation, preparation and distribution of samples for research, education and public outreach. Between 1969 and 1972 six Apollo missions brought back 382 kilograms of lunar rocks, core and regolith samples, from the lunar surface. JSC also curates meteorites collected from a US cooperative effort among NASA, the National Science Foundation (NSF) and the Smithsonian Institution that funds expeditions to Antarctica. The meteorites that are collected include rocks from Moon, Mars, and many asteroids including Vesta. The sample disks for educational use include these different samples. Active relevant learning has always been important to teachers and the Lunar and Meteorite Sample Disk Program provides this active style of learning for students and the general public. The Lunar and Meteorite Sample Disks permit students to conduct investigations comparable to actual scientists. The Lunar Sample Disk contains 6 samples; Basalt, Breccia, Highland Regolith, Anorthosite, Mare Regolith and Orange Soil. The Meteorite Sample Disk contains 6 samples; Chondrite L3, Chondrite H5, Carbonaceous Chondrite, Basaltic Achondrite, Iron and Stony-Iron. Teachers are given different activities that adhere to their standards with the disks. During a Sample Disk Certification Workshop, teachers participate in the activities as students gain insight into the history, formation and geologic processes of the moon, asteroids and meteorites.

  13. Lead isotope evidence for a young formation age of the Earth-Moon system (United States)

    Connelly, J. N.; Bizzarro, M.


    A model of a giant impact between two planetary bodies is widely accepted to account for the Earth-Moon system. Despite the importance of this event for understanding early Earth evolution and the inventory of Earth's volatiles critical to life, the timing of the impact is poorly constrained. We explore a data-based, two-stage Pb isotope evolution model in which the timing of the loss of volatile Pb relative to refractory U in the aftermath of the giant impact is faithfully recorded in the Pb isotopes of bulk silicate Earth. Constraining the first stage Pb isotopic evolution permits calculating an age range of 4.426-4.417 Ga for the inflection in the U/Pb ratio related to the giant impact. This model is supported by Pb isotope data for angrite meteorites that we use to demonstrate volatility-driven, planetary-scale Pb loss was an efficient process during the early Solar System. The revised age is ∼100 Myr younger than most current estimates for the age of the Moon but fully consistent with recent ages for lunar ferroan anorthosite and the timing of Earth's first crust inferred from the terrestrial zircon record. The estimated loss of ∼98% of terrestrial Pb relative to the Solar System bulk composition by the end of the Moon-forming process implies that the current inventory of Earth's most volatile elements, including water, arrived during post-impact veneering by volatile-rich bodies.

  14. The Influence of Pre-Existing Deformation and Alteration Textures on Rock Strength, Failure Modes and Shear Strength Parameters

    Directory of Open Access Journals (Sweden)

    Tamara J. Everall


    Full Text Available This study uses the uniaxial compressive strength (UCS, the indirect tensile strength (ITS and the point load tests (PLT to determine the strength and deformation behavior of previously deformed and altered tonalite and anorthosite. In general, veined samples show higher strength because the vein material has both cohesive and adhesive properties while fractures have no cohesion, only frictional resistance. This implies that each rock category has to be treated independently and absolute strength predictions are inaccurate. Thus, the conversion factor k is a sample specific parameter and does not have a universal value. The ratio of UCS/ITS appears to be related to the rock strength and can be used to classify rocks based on their strength. The shear strength parameters, the friction angle and the cohesion, cannot be calculated for rocks with pre-existing planes of weakness. Reactivation is favoured only for planes oriented less than 20° to the maximum stress. For planes oriented between 20° and 50° to the maximum stress, failure occurs by a combination of reactivation and newly formed fractures, while for orientations above 50°, new shear fractures are favoured. This suggest that the Byerlee’s law of reactivation operates exclusively for planes oriented ≤10° to the maximum stress.

  15. PGE distribution in the Chromite bearing mafic-ultramafic Kondapalli Layered Complex, Krishna district, Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    Meshram Tushar M.


    Full Text Available The Kondapalli Layered Complex (KLC is a dismembered mafic-ultramafic layered intrusion, mainly composed of gabbroic and anorthositic rocks with subordinate ultramafics and chromitite. Chromitite occurs as lenses, pods, bands and disseminations. Platinum group of minerals (PGMs occur as inclusions within chromite and silicates. The study indicates an inhomogeneous distribution of PGMs and distinct dominance of IPGEs over the PPGEs. The average ΣPGE content of chromite of KLC varies from 64 ppb to 576 ppb with Pt ranging from 5 to 495 ppb, Pd 5 to 191 ppb, Ir 3 to 106 ppb, Ru 3 to 376 ppb and Rh 3 to 135 ppb. The PGMs identified in the KLC indicate primary deposition of the IPGE, preceding chromite, indicating its orthomagmatic nature. Most of the PGM grains are usually below 10 μm. The identified PGMs are Laurite (RuS2, irarsite (Ir, As, S, iridosmine (Os, Ir, undetermined Os-Ir sulphide and Ru-Os-Ir-Zn alloys. Chromite also contains inclusions of pentlandite, millerite, chalcopyrite and pyrite. Study indicating that the KLC have orthomagmatic origin for PGE which are dominated by IPGE group and formed under surpa-subduction zone peridotite setting.

  16. Petrology and comparative thermal and mechanical histories of clasts in breccia 62236

    International Nuclear Information System (INIS)

    Nord, G.L. Jr.; Wandless, M.


    Lunar breccia 62236 contains large lithic fragments of troctolite, norite, and anorthosite. The mafic phases, olivine, inverted pigeonite, and augite, fill interstitial areas between larger plagioclases and appear to be cumulate phases with extensive adcumulus growth. Pyroxene compositional homogeneity indicates that cation exchange during cooling was limited to an area of about 1 mm. Primary augite and pigeonite both contain 30 μm-wide lamellae of the other along '001'. Pigeonite inverted to orthopyroxene without retaining any crystallographic orientation and subsequently exsolved fine lamellae of augite on (100). Profiles across orthopyroxene-augite interfaces obtained in the analytical transmission electron microscope show an increase of approx.5% wollastonite in augite within 0.5 μm of the interface, suggesting that short-range cation exchange continued to temperatures below 500 0 C. The entire sample has undergone heterogeneous shock deformation. Shock melting of the troctolitic clast suggests pressures of 200-300 kb and well-developed basal twinning in augite from the norite clasts suggest pressures of 50-300 kbars. The present evidence indicates that 62236 contains parts of a slowly cooled microlayered accumulate that has been heterogeneously shocked several times and combined into the present breccia

  17. Petrology and comparative thermal and mechanical histories of clasts in breccia 62236. (United States)

    Nord, G.L.; Wandless, M.-V.


    This breccia contains large lithic fragments of troctolite, norite and anorthosite. The mafic phases olivine, inverted pigeonite and augite fill interstitial areas between large plagioclases and appear to be cumulate phases with extensive adcumulus growth. Pyroxene homogeneity indicates that cation exchange during cooling was limited to approx 1 mm. Primary augite and pigeonite both contain 30 mu m-wide lamellae of the other along '001'. Pigeonite inverted to orthopyroxene without retaining any crystallographic orientation and subsequently exsolved fine lamellae of augite of (100). TEM profiles show an increase of approx 5% wollastonite in augite within 0.5 mu m of the interface, suggesting that short- range cation exchange continued to T = or clast suggests P of 200-300 kbar, and basal twinning in augite from the norite clasts suggests P of 50-300 kbar. The present evidence indicates that 62236 contains parts of a slowly cooled microlayered adcumulate that has been heterogeneously shocked several times and combined into breccia.-P.Br.

  18. Radiogenic age and isotopic studies

    International Nuclear Information System (INIS)

    Parrish, R.R.


    This is one of an annual collection of reports presenting data from the Geochronology Section of the Continental Geoscience Division of the Geological Survey of Canada (GSC). The main purpose of this collection is to make geochronological and other radiogenic isotope data produced by the section available promptly to the geological community. Reports make full presentation of the data, relate these to field settings and make comparatively short interpretations. Other geochronological and isotope data produced in the laboratory but published in outside journals or separate GSC publications are summarized at the end of this report. Reports in this issue cover methods for Rb-Sr and Sm-Nd isotopic analyses; 40 Ar- 39 Ar ages for the New Quebec Crater and for basaltic rocks; U-Pb ages for a differentiated mafic sill in the Ogilvie Mountains, plutonic rocks in the Contwoyto-Nose Lakes are, zircons from the Anton Complex, the Clinton-Colden gabbro-anorthosite intrusion, the Himag plutonic suite, the Campbell granite, the Central Gneiss Belt, Silurian granites, a metarhyolite, plagiogranite and gabbro, and the Wage shear zone; Rb-Sr ages for granitic rocks; K-Ar and Rb-Sr geochronology of granites; a compilation of K-Ar ages; ages of archean and proterozoic mylonites and pre-Misi granitoid domes; and reconnaissance geochronology of Baffin Island

  19. Geochemistry of Lunar Highland Meteorites Mil, 090034, 090036 AND 090070 (United States)

    Shirai, N.aoki; Ebihara, M.; Sekimoto, S.; Yamaguchi, A.; Nyquist, L.; Shih, C.-Y.; Park, J.; Nagao, K.


    Apollo and Luna samples were collected from a restricted area on the near side of the Moon, while the source craters of the lunar meteorites are randomly distributed. For example, Takeda et al. [1] and Yamaguchi et al. [2] found a variety of lithic clasts in Dho 489 and Y 86032 which were not represented by Apollo samples, and some of these clasts have lower rare earth elements (REE) and FeO abundances than Apollo anorthosites, respectively. Takeda et al. [1] and Yamaguchi et al. [2] concluded that Dho 489 and Y 86032 originated from the lunar farside. Therefore, lunar meteorites provide an opportunity to study lunar surface rocks from areas not sampled by Apollo and Luna missions. Three lunar anorthitic breccias (MIL 090034, 090036 and 090070) were found on the Miller Range Ice Field in Antarctica during the 2009-2010 ANSMET season [3]. In this study, we determined elemental abudnances for MIL 090034, 090036 and 090070 by using INAA and aimed to characterize these meteorites in chemical compositions in comparison with those for other lunar meteorites and Apollo samples.

  20. Timing of Crystallisation of the Lunar Magma Ocean Constrained by the Oldest Zircon (United States)

    Nemchin, A.; Timms, N.; Pidgeon, R.; Geisler, T.; Reddy, S.; Meyer, C.


    The presently favoured concept for the early evolution of the Moon involves consolidation of debris from a giant impact of a Mars sized body with Earth forming a primitive Moon with a thick global layer of melt referred to as the Lunar Magma Ocean1 . It is widely accepted that many significant features observed on the Moon today are the result of crystallisation of this magma ocean. However, controversy exists over the precise timing and duration of the crystallisation process. Resolution of this problem depends on the establishment of precise and robust key crystallisation time points. We report a 4417 6 Myr old zircon in lunar breccia sample 72215,195, which provides a precisely determined younger limit for the solidification of the Lunar Magma Ocean. A model based on these data, together with the age of the Moon forming giant impact, defines an exponential time frame for crystallisation and suggests formation of anorthositic crust after about 80-85% of the magma ocean was solidified. In combination with other zircon ages the 4417 +/- 6 Myr age also suggests that the very small (less than a few per cent) residual portion of the magma ocean continued to solidify during the following 300-500 m.y.

  1. Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data (United States)

    Martinot, M.; Besse, S.; Flahaut, J.; Quantin-Nataf, C.; Lozac'h, L.; van Westrenen, W.


    Moon Mineralogy Mapper (M3) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M3 data, using a custom-made method for M3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.

  2. Rock magnetic properties

    International Nuclear Information System (INIS)

    Hearst, R.B.; Morris, W.A.


    In 1978 the Nuclear Fuel Waste Management Program began the long task of site selection and evaluation for nuclear waste disposal. The Canadian Nuclear Fuel Waste Management Program, administered by Atomic Energy of Canada Limited, Research Company has provided the geophysicist with the unique opportunity to evaluate many modes of geophysical investigation in conjunction with detailed geologic mapping at a number of research areas. Of particular interest is research area RA-7, East Bull Lake, Algoma District, Ontario. Geophysical survey methods applied to the study of this included detailed gravity, ground magnetics, VLF, an airborne magnetic gradiometer survey and an airborne helicopter magnetic and EM survey. A comprehensive suite of rock property studies was also undertaken providing information on rock densities and magnetic rock properties. Preliminary modeling of the magnetic data sets assuming only induced magnetization illustrated the difficulty of arriving at a magnetic source geometry consistent with the mapped surficial and borehole geology. Integration of the magnetic rock properties observations and industry standard magnetic modelling techniques provides a source model geometry that is consistent with other geophysical/geological data sets, e.g. gravity and observed geology. The genesis of individual magnetic signatures in the East Bull Lake gabbro-anorthosite record the intrusion, metamorphism and fracture alteration of the pluton. As shown by this paper, only by understanding the rock magnetic signatures associated with each of these events is it possible to obtain geologically meaningful interpretative models

  3. Evidence for stratification of basic, silicic, and hybrid magmas in the Newark Island layered intrusion, Main, Labrador (United States)

    Wiebe, R. A.


    The Newark Island layered intrusion (NILI), located in the Nain anorthosite complex of Labrador, developed through a complex sequence of fractional crystallization, periodic replenishment of both basic and silicic magmas, and magma mixing. It is subdivided into a lower layered series and an upper hybrid series. Three large transgressive trough structures cut these cumulate rocks at different levels. Each trough is lined by granitic rocks and filled mainly by chilled mafic pillows that grade inward to massive olivine gabbro. Each of these troughs originated as a large feeder dike of granitic magma into the NILI chamber when it was floored by basic magma. This resident basic magma collapsed downward into the granitic feeder and formed chilled pillows. These pillows preserve the compositions of basic magma existing in the chamber at the time of granite replenishment. Pillows in the lowest trough show a wide compositional range and provide a direct record of compositional stratification of a magma chamber related to a layered intrusion. Note: Additional material for this article is Supplementary Data 8717, available on request from the GSA Documents Secretary (see footnote 1).

  4. Electrical Conductivity of Rocks and Dominant Charge Carriers. Part 1; Thermally Activated Positive Holes (United States)

    Freund, Friedemann T.; Freund, Minoru M.


    The prevailing view in the geophysics community is that the electrical conductivity structure of the Earth's continental crust over the 5-35 km depth range can best be understood by assuming the presence of intergranular fluids and/or of intragranular carbon films. Based on single crystal studies of melt-grown MgO, magma-derived sanidine and anorthosite feldspars and upper mantle olivine, we present evidence for the presence of electronic charge carriers, which derive from peroxy defects that are introduced during cooling, under non-equilibrium conditions, through a redox conversion of pairs of solute hydroxyl arising from dissolution of H2O.The peroxy defects become thermally activated in a 2-step process, leading to the release of defect electrons in the oxygen anion sublattice. Known as positive holes and symbolized by h(dot), these electronic charge carriers are highly mobile. Chemically equivalent to O(-) in a matrix of O(2-) they are highly oxidizing. Being metastable they can exist in the matrix of minerals, which crystallized in highly reduced environments. The h(dot) are highly mobile. They appear to control the electrical conductivity of crustal rocks in much of the 5-35 km depth range.

  5. The Apollo 15 X-ray fluorescence experiment (United States)

    Adler, I.; Trombka, J.; Gerard, J.; Schmadebeck, R.; Lowman, P.; Blodgett, H.; Yin, L.; Eller, E.; Lamothe, R.; Gorenstein, P.


    The CSM spectrometric data on the lunar surface with respect to its chemical composition are presented for Al, Mg, and Si as Al/Si and Mg/Si ratios for the various features overflow by the spacecraft. The lunar surface measurements involved observations of the intensity and characteristic energy distribution of the secondary or fluorescent X-rays produced by the interaction of solar X-rays with the lunar surface. The results showed that the highlands and maria are chemically different, with the highlands having considerably more Al and less Mg than the maria. The mare-highland contact is quite sharp and puts a limit on the amount of horizontal transport of material. The X-ray data suggest that the dominant rock type of the lunar highlands is a plagioclase-rich pyroxene bearing rock, probably anorthositic gabbro or feldspathic basalt. Thus the moon appears to have a widespread differentiated crust (the highlands) systematically richer in Al and lower in Mg than the maria. This crust is pre-mare and may represent the first major internal differentiation of the moon.

  6. Primordial magmaspheres and their lasting consequences

    International Nuclear Information System (INIS)

    Warren, P.H.


    The lunar magmasphere is a useful but potentially misleading analog for the earliest evolution of other planetary objects. A significant fraction of the lunar magmasphere became a crust rich in buoyant cumulus plagioclase. Another significant fraction became a series of ultramafic cumulates (the mare basalt sources) complementary to the anorthosite. These events predetermined all subsequent lunar evolution. Empirically, the Moon was big enough to produce a magmasphere. Beyond a depth limit of roughly 200 km, nearly independent of the size of the planet, the remainder of the magmasphere will probably at all times be a single convective, and therefore essentially non-differentiating layer. The fraction of the mantle contained in the outer 200 km is of course inversely related to planet size. Compared to the Moon the Earth's mantle comprises a volume of 40 x greater and a pressure range 30 x greater. Steeper dP/dZ, favoring garnets and pyroxenes, also works to dampen differentiation in larger planets. One long term consequence of the Earth's magmasphere was probably a depletion of H2O in much of the mantle. Because water is a flux for mantle convection, anhydrous parts of the mantle probably had anomalously thick lithospheres and hot asthenospheres

  7. Extensive volatile loss during formation and differentiation of the Moon. (United States)

    Kato, Chizu; Moynier, Frederic; Valdes, Maria C; Dhaliwal, Jasmeet K; Day, James M D


    Low estimated lunar volatile contents, compared with Earth, are a fundamental observation for Earth-Moon system formation and lunar evolution. Here we present zinc isotope and abundance data for lunar crustal rocks to constrain the abundance of volatiles during the final stages of lunar differentiation. We find that ferroan anorthosites are isotopically heterogeneous, with some samples exhibiting high δ(66)Zn, along with alkali and magnesian suite samples. Since the plutonic samples were formed in the lunar crust, they were not subjected to degassing into vacuum. Instead, their compositions are consistent with enrichment of the silicate portions of the Moon in the heavier Zn isotopes. Because of the difference in δ(66)Zn between bulk silicate Earth and lunar basalts and crustal rocks, the volatile loss likely occurred in two stages: during the proto-lunar disk stage, where a fraction of lunar volatiles accreted onto Earth, and from degassing of a differentiating lunar magma ocean, implying the possibility of isolated, volatile-rich regions in the Moon's interior.

  8. Chronological evidence that the Moon is either young or did not have a global magma ocean. (United States)

    Borg, Lars E; Connelly, James N; Boyet, Maud; Carlson, Richard W


    Chemical evolution of planetary bodies, ranging from asteroids to the large rocky planets, is thought to begin with differentiation through solidification of magma oceans many hundreds of kilometres in depth. The Earth's Moon is the archetypical example of this type of differentiation. Evidence for a lunar magma ocean is derived largely from the widespread distribution, compositional and mineralogical characteristics, and ancient ages inferred for the ferroan anorthosite (FAN) suite of lunar crustal rocks. The FANs are considered to be primary lunar flotation-cumulate crust that crystallized in the latter stages of magma ocean solidification. According to this theory, FANs represent the oldest lunar crustal rock type. Attempts to date this rock suite have yielded ambiguous results, however, because individual isochron measurements are typically incompatible with the geochemical make-up of the samples, and have not been confirmed by additional isotopic systems. By making improvements to the standard isotopic techniques, we report here the age of crystallization of FAN 60025 using the (207)Pb-(206)Pb, (147)Sm-(143)Nd and (146)Sm-(142)Nd isotopic systems to be 4,360 ± 3 million years. This extraordinarily young age requires that either the Moon solidified significantly later than most previous estimates or the long-held assumption that FANs are flotation cumulates of a primordial magma ocean is incorrect. If the latter is correct, then much of the lunar crust may have been produced by non-magma-ocean processes, such as serial magmatism.

  9. Petrogenesis of the western highlands of the moon - Evidence from a diverse group of whitlockite-rich rocks from the Fra Mauro formation (United States)

    Snyder, Gregory A.; Taylor, Lawrence A.; Liu, Yun-Gang; Schmitt, Roman A.


    A group of KREEPy basalts has been discovered in Apollo 14 soils. These samples exhibit similarities to both HA and VHK basalts, albeit with much higher REE abundances, and contain up to 2 vol pct whitlockite and can be explained by assimilation of a K-, REE- and P-rich fluids by an original HA or VHK basalt. This KREEP component could have been produced late in the evolution of the lunar magma ocean and is similar in composition to QMD at Apollo 14. Two rocks have trace element compositions that are representative of actual KREEP. One of the samples appears to be petrographically pristine and could represent an actual KREEP basalt rock. Five subophitic high-Al basalts represent sampling of either a slowly cooled impact melt sheet or, more likely, the same basalt flow. Two 'quasi-pristine' highland rocks confirm the postulate of a connection between KREEP and the alkali suite. A newly discovered alkali anorthosite is a plagioclase cumulate with about 15 percent trapped KREEPy liquid.

  10. Prolonged magmatic activity on Mars inferred from the detection of felsic rocks (United States)

    Wray, James J.; Hansen, Sarah T.; Dufek, Josef; Swayze, Scott L.; Murchie, Scott L.; Seelos, Frank P.; Skok, John R.; Irwin, Rossman P.; Ghiorso, Mark S.


    Rocks dominated by the silicate minerals quartz and feldspar are abundant in Earth’s upper continental crust. Yet felsic rocks have not been widely identified on Mars, a planet that seems to lack plate tectonics and the associated magmatic processes that can produce evolved siliceous melts on Earth. If Mars once had a feldspar-rich crust that crystallized from an early magma ocean such as that on the Moon, erosion, sedimentation and volcanism have erased any clear surface evidence for widespread felsic materials. Here we report near-infrared spectral evidence from the Compact Reconnaissance Imaging Spectrometer for Mars onboard the Mars Reconnaissance Orbiter for felsic rocks in three geographically disparate locations on Mars. Spectral characteristics resemble those of feldspar-rich lunar anorthosites, but are accompanied by secondary alteration products (clay minerals). Thermodynamic phase equilibrium calculations demonstrate that fractional crystallization of magma compositionally similar to volcanic flows near one of the detection sites can yield residual melts with compositions consistent with our observations. In addition to an origin by significant magma evolution, the presence of felsic materials could also be explained by feldspar enrichment by fluvial weathering processes. Our finding of felsic materials in several locations on Mars suggests that similar observations by the Curiosity rover in Gale crater may be more widely applicable across the planet.

  11. Geology and geochronology of the granitic batholithic complex, Sinaloa, Mexico

    International Nuclear Information System (INIS)

    Henry, C.D.


    Geologic mapping shows that a large portion of the state of Sinaloa, Mexico is underlain by a granitic batholithic complex. It is predominantly granodiorite, though ranging in composition from gabbro to quartz monzonite. Pre-batholithic rocks include metamorphosed eugeosynclinal sedimentary rocks (Early Cretaceous or older), a mafic igneous complex of gabbro, pyroxenite, and anorthosite, and a quartz diorite orthogneiss. Relative age relationships among these rock types are uncertain. The pre-batholithic rocks are restricted to a belt along the Pacific coast. Comparisons of biotite and hornblende K--Ar ages and zircon U--Pb ages from identical samples reveal that concordant biotite-hornblende K--Ar ages (ages that agree within analytical precision) measure a time during cooling of a granitic rock that closely followed emplacement and crystallization. Cooling of a small (3 km diameter) pluton emplaced in a relatively cold environment was rapid, and K--Ar and U--Pb ages agree within approximately 1 million years. Two larger plutons (30 to 40 km in diameter) that were studied in detail were emplaced into hot environments. They cooled more slowly, such that the K--Ar ages of biotite and hornblende are 3 to 4 million years lower than the U--Pb ages of zircon

  12. Lithium and halogens in lunar samples

    International Nuclear Information System (INIS)

    Dreibus, G.; Spettel, B.; Waenke, H.


    Lithium and the halogen elements, F, Cl, Br and I have been measured in soils, breccias and rock samples from all Apollo missions. With the exception of the anorthosites, the fluorine content of the lunar samples is in the same range as for C1 chondrites. Contrary to fluorine the other halogen concentrations show large variations. The lowest concentrations are found in the mare basalts of Apollo 15 and 17, the highest in some highland breccias. Lithium correlates well with some of the incompatible elements in both mare basalts and 'KREEP'-containing highland soils and breccias. From the observed ratios it is evident that in the bulk composition of the Moon Li is neither enriched nor depleted; it belongs to the group of non-refractory elements. From the correlation of Li with some refractory elements (Be, La, etc.) a value of 50:50 for the refractory to non-refractory portion of the Moon is inferred without any further assumption, thus confirming previous estimates of other workers. (author)

  13. Regional chemical setting of the Apollo 16 landing site and the importance of the Kant Plateau (United States)

    Andre, C. G.; El-Baz, F.


    Orbital X-ray data from the Apollo 16 region indicate that physiographic units identified before the lunar mission can be classified as chemical units as well. The Descartes Mountains, however, appear to be an extension of the Kant Plateau composition that is unusually anorthositic and resembles farside terra. The Cayley Plains have closer affinities to basaltic materials than terra materials, physically, spectrally and chemically. The Theophilus impact, 330 km east of the landing site, excavated magnesium-rich basalts from below less-magnesian flows in Mare Nectaris; but, mafic ejecta was substantially blocked from the Apollo 16 site by the Kant Plateau that rises 5 km above the level of the mare. Apollo 16 soil samples from stations selected to collect either Descartes Mountains material or Cayley Plains material were surprisingly similar. However, they do, indeed, show the chemical trends indicative of the two units as defined by the orbiting geochemistry detectors. The Kant Plateau and Descartes Mountains material may be among the rare nearside examples of a plagioclase-rich cumulate of the primordial magma ocean.

  14. Chemical rings of lunar basins from orbital X-ray data (United States)

    Andre, C. G.


    Chemical patterns related to basin structure have been observed in digital maps of Mg/Al, Mg/Si and Al/Si variations on the nearside lunar surface. A large part of the inner topographic ring of the Smythii basin is distinguishable chemically in the orbital X-ray data because it is more anorthositic than the surrounding soil. The correlations between the chemistry and morphology of the Symthii basin, supported by X-ray data at Langrenus crater, indicate that: (1) the chemical record of basin-formation in pre-Nectarian times persists in lunar soils despite continuous meteorite bombardment of the moon; (2) strata of contrasting chemistry were excavated on the western side of the Smythii basin, whereas the lithology east of the basin is homogeneous to the depths sampled; (3) the geochemical boundary between the provinces of the eastern near side and far side may represent only surficial differences; and (4) the extent of primary ejecta from the younger Crisium basin was insufficient to mask the chemical features created by the Smythii impact approximately one Crisium-basin diameter away.

  15. New data for the lunar 20 core and a survey of published chemical data (United States)

    Hubbard, N. J.; Vinogradov, A. P.; Ramendik, G. I.; Chupakhin, M. S.


    Lunar core samples were analyzed using a spark source mass spectrometer. The analytical results for the four zones of the Lunar 20 core suggest that the core is nonuniform with depth. The higher concentrations of Ce, Sc, Sc, Ba, La, Co, Sr, and Zr in zone 2001 may be connected with the presence in this zone of a basaltic rock type seldom seen in the other zones. That is, about half of the basaltic fragments in the large size fractions in zone 2001 are of a specific porphyritic breccia-like type. Anorthositic fragments containing a notable amount of metallic iron are basically limited to zone 2004 and probably explain the lower concentrations of Ce, Rb, Ba, La, and perhaps Co in this zone. The high concentrations of Ag and Ce found previously are confirmed. Although Ag is at nearly the same concentration in all four zones of the core, Cd in the core is the result of local enrichment. In particular, in zone 2004 the concentration of Cd may be as high as 10 ppm in a sample size of 0.01 mg.

  16. Main types of rare-metal mineralization in Karelia (United States)

    Ivashchenko, V. I.


    Rare-metal mineralization in Karelia is represented by V, Be, U deposits and In, Re, Nb, Ta, Li, Ce, La, and Y occurrences, which are combined into 17 types of magmatic, pegmatite, albitite-greisen, hydrothermal-metasomatic, sedimentary, and epigenetic groups. The main vanadium resources are localized in the Onega ore district. These are deposits of the Padma group (556 kt) and the Pudozhgorsky complex (1.5 Mt). The REE occurrences are primarily characterized by Ce-La specialization. The perspective of HREE is related to the Eletozero-Tiksheozero alkaline and Salmi anorthosite-rapakivi granite complexes. Rare-metal pegmatites bear complex mineralization with insignificant low-grade resources. The Lobash and Jalonvaara porphyry Cu-Mo deposits are potential sources of rhenium: Re contents in molybdenite are 20-70 and 50-246 ppm and hypothetical resources are 12 and 7.5 t, respectively. The high-grade (˜100 ppm) and metallogenic potential of indium (˜2400 t) make the deposits of the Pitkäranta ore district leading in the category of Russian ore objects most prospective for indium. Despite the diverse rare-metal mineralization known in Karelia, the current state of this kind of mineral commodities at the world market leaves real metallogenic perspective only for V, U, Re, In, and Nb.

  17. Geochronology of the Archaean Kolmozero-Voron'ya Greenstone Belt: U-Pb dating of zircon, titanite, tourmaline and tantalite (Kola Region, North-Eastern BAltic Shield) (United States)

    Kudryashov, N.; Gavrilenko, B.; Apanasevich, E.


    The Archaean Kolmozero-Voron’ya greenstone belt is one of the most ancient geological structures of the Kola Peninsula. It is located between Upper Archaean terrains: Murmansk, Central Kola and Keivy. Within the Kolmozero-Voron'ya greenstone belt there are rare metal (Li, Cs with accessory Nb, Ta, and Be), Cu, Mo, and Au deposits. All rocks were metamorphosed under amphibolite facies conditions and intruded by granodiorites, plagiomicrocline and tourmaline granites and pegmatite veins. Four suites are distinguished within the belt: lower terrigenous formation, komatiite-tholeite, basalt-andesite-dacite and upper terrigenous formation. The U-Pb age of 2925±6 Ma on magmatic zircon was obtained for leucogabbro of differentiated gabbro-anorthosite massif Patchemvarak, situated at the boundary between volcanic-sedimentary units and granitoids of the Murmansk block. This age is the oldest for gabbro-anorthosites of the Kola Peninsula. Sm-Nd age of komatiites is ca. 2.87 Ga (Vrevsky, 1996). U-Pb age of zircon from biotite schist, which belongs to acid volcanites is 2865+/-5 Ma. Quartz porphyries, which are considered to be an intrusive vein analogous of acid volcanites has an age of 2828+/-8 Ma, that marks the final stage of the belt development. Dating of titanite from ovoid plagioamphibolites yielded an U-Pb age of 2595+/-20 Ma that probably is connected with the closure of the U-Pb isotopic titanite system during the regional metamorphism. The Porosozero granodioritic complex with an age of 2733+/-6 Ma is located between granites of the Murmansk domain, migmatites and gneisses of the Central Kola terrain and the Keivy alkaline granites. Tourmaline granites are found all over the Kolmozero-Voron’ya belt occurring among volcanogenic-sedimentary rocks of the belt. Their Pb-Pb age of 2520+/-70 Ma appears to denote the tourmaline crystallization at a post-magmatic stage of the complex formation. U-Pb zircon age from rare metal pegmatites is 1.9-1.8 Ga. Zircons from

  18. Recent Flexural Slip and Rift-Branch Propagation Into the Bushveld Complex, South Africa (United States)

    Haschke, M. R.; Jacobson, L.; van der Westhuizen, W.; Steenekamp, J.


    Recent flexural slip in anorthosite and pyroxenite layers of the 2.06 Ga old Bushveld Complex of South Africa challenges earlier concepts on the thermal and isostatic equilibrium of layered intrusions and neotectonic activity of stable cratons. Flexural slip in Earth's largest, 9 km thick and 350 km wide Bushveld mafic intrusive complex was interpreted by earlier workers as syn-intrusive mechanism. Paleomagnetic evidence indicates that the layers were originally emplaced horizontally and the presently observed centripetal dips are attributed to the effect of crustal flexure in response to the load of the igneous layers and associated granites on the lithosphere beneath. Syn-emplacement flexural slip can accomodate differential thermal contraction of individual igneous layers during cooling and crystallization, and explains the dish-shape of the intrusive complex, but it is difficult to envisage continued thermal contraction for the more than 2,000 Ma old Bushveld Complex which is assumed to be completely cooled and thermally and isostatically equilibrated. A recently discovered shallow (18 deg.) north-dipping, layer-parallel thrust fault in an opencast platinum mine shows Bushveld anorthosites overthrusting feldspathic pyroxenites. Much of the undulated thrust surface is subparallel to the gently north-dipping (10-20 deg.) igneous layers, but the thrust tip impinges an unconsolidated alluvial conglomerate and clay layer indicating recent fault slip of up to 60 cm, probably linked to seismicity. More spectacular evidence of recent fault movement comes from an archeological artifact within the unconsolidated conglomerate layer which was identified as Archeulean (1.5-0.3 Ma, lower Pleistocene), early Stone Age handaxe. Neotectonic activity and seismicity in cratonic lithosphere are generally considered sparse phenomena since the Kaapvaal craton in southern Africa is thought tectonically stable and isostatically equilibrated for hundreds to thousands of million years

  19. Exploration: New Treasures in the Old World (United States)

    Pieters, C. M.; Donaldson Hanna, K. L.; Dhingra, D.; Cheek, L.; Prissel, T. C.; Jackson, C.; Parman, S. W.; Taylor, L. A.


    The last decade has seen a renewed effort in the exploration of the Moon by modern spacecraft sent from Japan, China, India, and the US. These missions have resulted in remarkable discoveries and have inspired a new understanding of the early solar system shared by the Earth and the Moon. Although invaluable samples were brought to Earth from the Apollo and Luna landing sites more than four decades ago, the modern orbital measurements have demonstrated that key components of crustal compositions were missed. Small exposures of one lithology in particular, a Mg-rich 'pink' spinel anorthosite (PSA) has been confirmed at several sites around the globe, implying that its origin is linked to wide-spread crustal-evolution processes. We now believe this new lithology is deep-seated in origin [1] and possibly associated with early (Mg-suite) magma interactions with the primordial anorthositic crust [2]. In addition to the higher water (and sulfur) contents now recognized for the lunar interior [3], the recognition of PSA reopens a question as to whether ancient lunar processes may have concentrated valuable minerals/resources in small zones of the crust, as often occurs for layered magmatic complexes on Earth. We ask the question 'Where on the Moon should humans/robots go to obtain samples to address such wide-ranging science/exploration issues?' We focus on four areas with discrete outcrops of Mg-spinel lithology exposed from depth, and rank them in terms of science/exploration potential (1 - 4), and in terms of ease of access (A - D). THOMSON CRATER in SPA (1D): Multiple Mg-spinel exposures are found around Thomson (diameter 117 km); pure crystalline plagioclase and norite occur nearby. Thomson is within Ingenii (diameter 318 km), both of which are mare filled, facilitating access to the crater walls. Ingenii also contains enigmatic ';swirls' and magnetic anomalies, as well as a small mascon. Stratigraphic relations imply deep crust from the inner ring of SPA basin at

  20. Mush Column Magma Chambers (United States)

    Marsh, B. D.


    of the system, coupled with these processes, define the fundamental compositional and dynamic diversity of the Mush Column. In some ways it functions like a complex musical instrument. Entrainment, transport, and sorting of cumulate crystals as a function of repose time and the local flux intensity also contribute to the basic compositional diversity of the system. In the Ferrar dolerite system, about 104 km3 of dolerite is distributed throughout a fir-tree like stack of 4 or 5 extensive 300-750 m thick sills. The lowest sill contains a vast tongue of entrained orthopyroxene (opx) cumulates emplaced with the sill itself. The bulk sill composition varies from 20 pc MgO in the tongue center to 7 pc in the leading tip and margins of the sill, which itself defines the compositional spectrum of the whole complex and is remarkably similar to that exhibited by Hawaii. Relative sorting of large (1-50 mm) opx and small (1-3 mm) plagioclase due to kinetic sieving in the tongue produces pervasive anorthosite stringers. Through local ponding this has culminated in the formation of a small, well-formed layered intrusion consisting of alternating layers of orthopyroxenite and anorthosite. Upwards in the system the sills become progressively depleted in MgO and temporally and spatially contiguous flood basalts are low MgO tholeiites with no sign of opx cumulates. The size, extent, number of sills, and the internal structure of individual sills suggest a rhythm of injection similar to that of volcanic episodes. The continued horizontal stretching of a system of this type would lead to processes as recorded by ophiolites, and the repeated injection into a single reservoir would undoubtedly lead to a massive layered intrusion or to a series of high-level nested plutons.

  1. Caulins brasileiros: alguns aspectos da geologia e da mineralogia Brazilian kaolins: some aspects of the geology and mineralogy

    Directory of Open Access Journals (Sweden)

    Ian Richard Wilson


    , kaolin derived from pegmatite, from granitic rocks, from volcanic rocks and kaolin derived from anorthosite. The sedimentary clays are mainly found in the Amazon basin and those adjacent to the Jari River are being exploited commercially for export as a paper coating clay. Amazon kaolin is characterised by high iron and titania (lattice-held with low levels of alkali and exhibiting euhedral kaolinite crystals. The South-eastern pegmatite, when not iron stained, are extremely low in iron and titania and a mixture of kaolinite 7Å/10Å-halloysite occurs in all deposits. The North-eastern pegmatite produces kaolin constituted only by euhedral kaolinites with an absence of halloysite. Kaolin from granites generally has higher iron levels when compared with pegmatite and deposits constituted only by kaolinite are rare, a mixture of kaolinite/7Å-halloysite being common. Both the pegmatite and granite derived kaolin are utilised as a paper filler and in general ceramics. Volcanic rocks on alteration produce a fine siliceous clay with titania levels higher than other types and are generally mixtures of kaolinite-7Å. Volcanic derived clays are utilized locally in ceramics. Kaolins derived from anorthosite are similar in iron and titania levels to those from granitic kaolins. Assemblages of kaolinite and small quantities of 7Å-halloysite are found. These clays are used in both whiteware ceramics and paper filler.


    Directory of Open Access Journals (Sweden)

    M. V. Mints


    the high-pressure amphibolite facies near Allochthon Boundary Thrust showing an inverted metamorphic zoning. High-pressure granulite-facies metamorphism is characteristic of Sveconorwegian sector; and high-temperature eclogites are observed locally at the base of the allochthonous complexes and within the paraautochthonous complexes. A distinctive feature of GNSO is the abundant occurrence of specific intrusive magmatism. Massifs of anorthosite-mangerite-charnockite-granite (AMCG and anorthosite-rapakivi granite (ARG complexes formed 1.8–1.5 Ga ago frame the orogen as a wide arc. In the internal region of GSNO, these complexes were formed successively at 1.16–1.13, 1.09–1.05, 0.99–0.96, and 0.93–0.92 Ga. Later on, after the intrusion, the massifs unevenly underwent granulite-facies metamorphism. The high-temperature magmatism and metamorphism, numerous repeated thermal pulses and enormous crustal body that underwent high-temperature transformation point to a mantle plume as the most adequate source of thermal energy. The model of intracontinental development of GSNO comes into conflict with popular ideas, which assume origination of this orogen as a result of the collision and welding of the formerly distant continents (Laurentia, Baltica and Amazonia, which, as suggested, completed the assembly of Rodinia supercontinent. A conclusion is drawn that the concept of tectonic position and geodynamic evolution of GSNO, which is not a counterpart of the Tibet-Himalayan Orogen, should be revised.


    Directory of Open Access Journals (Sweden)

    V. V. Chashchin


    Full Text Available The article provides data on the structure of the Paleoproterozoic intercontinental Imandra-Varzuga rifting structure (IVS and compositions of intrusive formations typical of the early stage of the IVS development and associated mineral resources. IVS is located in the central part of the Kola region. Its length is about 350 km, and its width varies from 10 km at the flanks to 50 km in the central part. IVS contains an association of the sedimentary-volcanic, intrusive and dyke complexes. It is a part of a large igneous Paleoproterozoic province of the Fennoscandian Shield spreading for a huge area (about 1 million km2, which probably reflects the settings of the head part of the mantle plume. Two age groups of layered intrusions were associated with the initial stage of the IVS development. The layered intrusions of the Fedorovo-Pansky and Monchegorsk complexes (about 2.50 Ga are confined to the northern flank and the western closure of IVS, while intrusions of the Imandra complex (about 2.45 Ga are located at the southern flank of IVS. Intrusions of older complexes are composed of rock series from dunite to gabbro and anorthosites (Monchegorsk complex and from orthopyroxenite to gabbro and anorthosites (Fedorovo-Pansky complex. Some intrusions of this complexes reveal features of multiphase ones. The younger Imandra complex intrusions (about 2.45 Ga are stratified from orthopyroxenite to ferrogabbro. Their important feature is comagmatical connection with volcanites. All the intrusive complexes have the boninite-like mantle origin enriched by lithophyle components. Rocks of these two complexеs with different age have specific geochemical characteristics. In the rocks of the Monchegorsk and Fedorovo-Pansky complexes, the accumulation of REE clearly depends on the basicity of the rocks, the spectrum of REE is non-fractionated and ‘flat’, and the Eu positive anomaly is slightly manifested. In the rocks of the Imandra complex, the level of

  4. Occurrence and Magnitude of High Reflectance Materials on the Moon (United States)

    Nuno, R. G.; Boyd, A. K.; Robinson, M. S.


    We utilize a Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) 643 nm photometrically normalized (30°, 0°, 30°; i, e, g) reflectance map to investigate the occurrence and origin of high reflectance materials on the Moon. Compositional differences (mainly iron and titanium content) and maturity state (e.g. Copernican crater rays and swirls) are the predominant factors affecting reflectance variations observed on the Moon. Therefore, comparing reflectance values of different regions yields insight into the composition and relative exposure age of lunar materials. But an accurate comparison requires precise reflectance values normalized across every region being investigated. The WAC [1] obtains monthly near-global ground coverage, each month's observations acquired with different lighting conditions. Boyd et al. [2] utilized a geologically homogeneous subset [0°N to 90°N, 146°E to 148°E] of the WAC observations to determine an equation that describes how viewing and lighting angles affect reflectance values. A normalized global reflectance map was generated by applying the local empirical solution globally, with photometric angles derived from the WAC Global Lunar Digital Terrain Model (DTM)(GLD100) [3]. The GLD100 enables accurate correction of reflectance differences caused by local topographic undulations at the scale of 300 meters. We compare reflectance values across the Moon within 80°S to 80°N latitude. The features with the highest reflectance are steep crater walls within Copernican aged craters, such as the walls of Giordano Bruno, which have normalized reflectance values up to 0.35. Near-impact ejecta of some craters have high reflectance values, such as Virtanen (0.22). There are also broad relatively flat features with high reflectance, such as the 900-km Thales-Compton region (0.24) and the 600-km extent of Anaxagoras (Copernican age) ejecta (0.20). Since the interior of Anaxagoras contains occurrences of pure anorthosite [4], the high

  5. Petrography of isotopically-dated clasts in the Kapoeta howardite and petrologic constraints on the evolution of its parent body

    International Nuclear Information System (INIS)

    Dymek, R.F.; Albee, A.L.; Chodos, A.A.; Wasserburg, G.J.


    Detailed mineralogic and petrographic data are presented for four isotopically-dated basaltic rock fragments separated from the howardite Kapoeta. Clasts C and rho have been dated at approximately 4.55 AE and approximately 4.60 AE respectively, and Clast rho contains 244 Pu and 129 I decay products. These are both igneous rocks that preserve all the features of their original crystallization from a melt. They thus provide good evidence that the Kapoeta parent body produced basaltic magmas shortly after its formation ( 40 Ar/ 39 Ar age. This sample is extensively recrystallized, and the ages are interpreted as a time of recrystallization, and not the time of original crystallization from a melt. Clast B has yielded a Rb-Sr age of approximately 3.63 AE, and an 40 Ar/ 39 Ar age of > approximately 4.50 AE. This sample is moderately recrystallized, and the Rb-Sr age probably indicates a time of recrystallization, whereas the 40 Ar/ 39 Ar age more closely approaches the time of crystallization from a melt. Thus, there is no clearcut evidence for 'young' magmatism on the Kapeota parent body. The FeO and MnO contents of all pyroxenes in Kapeota fall near a line with FeO/MnO approximately 35, suggesting that the source rocks are fundamentally related. The FeO/MnO value in lunar pyroxenes (approximately 60) is distinct from that of the pyroxenes in Kapoeta. Anorthositic rocks were not observed in Kapoeta, suggesting that plagioclase was not important in the evolution of the Kapoeta parent body, in contrast to the Moon. Both objects appear to have originated in chemically-distinct portions of the solar system, and to have undergone differentiation on different time scales involving differing materials. (author)

  6. Effect of bulk chemistry in the spectral variability of igneous rocks in VIS-NIR region: Implications to remote compositional mapping (United States)

    Nair, Archana M.; Mathew, George


    In the present study, a range of igneous rocks with weight percentage of silica ranging from 45% to 70% were used to generate reflectance spectra in the VIS-NIR region. The laboratory generated reflectance spectra of these rocks were used to study the effect of chemical composition and mineralogy on the spectral properties. The characteristic spectral features were evaluated based on the mineralogical and chemical characteristics of the rocks. The main spectral features in the VIS-NIR region are the 0.7 μm absorption band due to the inter valance charge transfer between Fe2+ and Fe3+ termed as Band F, the 1 μm broad absorption band from Fe2+ at the octahedral sites in pyroxene termed as Band I, the 1.9 μm and 2.3 μm narrow absorption bands due to H2O or OH functional group in hydrated minerals. The 2 μm absorption feature (Band II; Cloutis and Gaffey, 1991) is observed as a weak feature in all the mafic rocks. The analysis of Band I with the bulk chemistry and mineralogy, we observed a positive correlation to the bulk Ca abundance. Rocks with high bulk calcic content exemplify Band I as a prominent spectral feature towards longer wavelength. Consequently, basalt, gabbro and anorthositic rocks show Band I as a strong feature. However, rocks with low bulk Calcic content show Band I as weak absorption feature observed towards shorter wavelength. Thus, igneous rocks of alkaline affinity have subdued Band I feature that appears towards shorter wavelength. The analysis of Band F with the bulk chemistry and mineralogy showed a positive correlation to the bulk Fe abundance. The results of the present study have implications towards remote compositional mapping and lithological discrimination for Planetary Studies.

  7. Characterization of crystalline rocks in the Lake Superior region, USA: implications for nuclear waste isolation. [Wisconsin, Upper Peninsula of Michigan and Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Sood, M.K.; Flower, M.F.J.; Edgar, D.E.


    The Lake Superior region (Wisconsin, the Upper Peninsula of Michigan, and Minnesota) contains 41 Precambrian crystalline rock complexes comprising 64 individual but related rock bodies with known surface exposures. Each complex has a map area greater than 78 km/sup 2/. About 54% of the rock complexes have areas of up to 500 km/sup 2/, 15% fall between 500 km/sup 2/ and 1000 km/sup 2/, 19% lie between 1000 km/sup 2/ and 2500 km/sup 2/, and 12% are over 2500 km/sup 2/. Crystalline rocks of the region vary widely in composition, but they are predominantly granitic. Repeated thermo-tectonic events have produced early Archean gneisses, migmatites, and amphibolites with highly tectonized fabrics that impart a heterogeneous and anisotropic character to the rocks. Late Archean rocks are usually but not invariably gneissose and migmatitic. Proterozoic rocks of the region include synorogenic (foliated) granitic rocks, anorogenic (non-foliated) granites, and the layered gabbro-anorthosite-troctolite intrusives of the rift-related Keweenawan igneous activity. Compared with the Archean rocks of the region, the Proterozoic bodies generally lack highly tectonized fabrics and have more definable contacts where visible. Anorogenic intrusions are relatively homogeneous and isotropic. On the basis of observed geologic characteristics, postorogenic and anorogenic crystalline rock bodies located away from recognized tectonic systems have attributes that make them relatively more desirable as a possible site for a nuclear waste repository in the region. This study was conducted at Argonne National Laboratory under the sponsorship of the US Department of Energy through the Office of Crystalline Repository Development at Battelle Memorial Institute, Columbus, Ohio. 84 references, 4 figures, 3 tables.

  8. Titanium (United States)

    Woodruff, Laurel G.; Bedinger, George M.; Piatak, Nadine M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.


    Titanium is a mineral commodity that is essential to the smooth functioning of modern industrial economies. Most of the titanium produced is refined into titanium dioxide, which has a high refractive index and is thus able to impart a durable white color to paint, paper, plastic, rubber, and wallboard. Because of their high strength-to-weight ratio and corrosion resistance, titanium metal and titanium metal alloys are used in the aerospace industry as well as for welding rod coatings, biological implants, and consumer goods.Ilmenite and rutile are currently the principal titanium-bearing ore minerals, although other minerals, including anatase, perovskite, and titanomagnetite, could have economic importance in the future. Ilmenite is currently being mined from two large magmatic deposits hosted in rocks of Proterozoic-age anorthosite plutonic suites. Most rutile and nearly one-half of the ilmenite produced are from heavy-mineral alluvial, fluvial, and eolian deposits. Titanium-bearing minerals occur in diverse geologic settings, but many of the known deposits are currently subeconomic for titanium because of complications related to the mineralogy or because of the presence of trace contaminants that can compromise the pigment production process.Global production of titanium minerals is currently dominated by Australia, Canada, Norway, and South Africa; additional amounts are produced in Brazil, India, Madagascar, Mozambique, Sierra Leone, and Sri Lanka. The United States accounts for about 4 percent of the total world production of titanium minerals and is heavily dependent on imports of titanium mineral concentrates to meet its domestic needs.Titanium occurs only in silicate or oxide minerals and never in sulfide minerals. Environmental considerations for titanium mining are related to waste rock disposal and the impact of trace constituents on water quality. Because titanium is generally inert in the environment, human health risks from titanium and titanium

  9. Precambrian crustal evolution and Cretaceous–Palaeogene faulting in West Greenland: Evolution of Neoarchaean supracrustal belts at the northern margin of the North Atlantic Craton, West Greenland

    Directory of Open Access Journals (Sweden)

    Stensgaard, Bo Møller


    Full Text Available The Archaean North Atlantic Craton of West Greenland collided at c. 1.9 Ga with a lesser-known Archaean craton to the north, to form the Nagssugtoqidian orogen. The Palaeoproterozoic metamorphic grade and strain intensity decrease northward through the orogen, allowing investigation of the reworked Archaean components in its northern part. Two Archaean supracrustal belts in this region – the Ikamiut and Kangilinaaq belts – are investigated here using field mapping, aeromagnetic data, zircon geochronology, and geochemistry. Both belts comprise quartzo-feldspathic and pelitic metasedimentary rocks, amphibolite, and minor calc-silicate rocks, anorthosite and ultramafic rocks. Pb-Pb and U-Pb dating of detrital zircons and host orthogneisses suggest deposition at c. 2800 Ma (Kangilinaaq belt and after 2740 Ma (Ikamiut belt; both belts have zircons with Neoarchaean metamorphic rims. Metasedimentary rocks and orthogneisses at Ikamiut share similar steep REE signatures with strong LREE enrichment, consistent with local derivation of the sediment and deposition directly onto or proximal to the regional orthogneiss precursors. Zircon age data from Kangilinaaq indicate both local and distal sources for the sediment there. Geochemical data for Kangilinaaq amphibolites indicate bimodal, mixed felsic–mafic source rocks with island-arc basaltic affinities, consistent with a shelf or arc setting. Both belts experienced a similar tectono-metamorphic history involving Neoarchaean amphibolite facies peak metamorphism at c. 2740–2700 Ma, possibly due to continued emplacement of tonalitic and granodioritic magmas. Nagssugtoqidian lower amphibolite facies metamorphism at c. 1850 Ma was associated with development of the large-scale F2 folds and shear zones that control the present outcrop pattern. The observed differences in the sources of the Kangilinaaq and Ikamiut belts and their shared post-Archaean history suggest they were formed in different

  10. Mineral potential for nickel, copper, platinum group elements(PGE), and chromium deposits hosted in ultramafic rocks in the Islamic Republic of Mauritania (phase V, deliverable 67): Chapter G in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II) (United States)

    Taylor, Cliff D.; Marsh, Erin; Anderson, Eric D.


    PRISM-I summary documents mention the presence of mafic-ultramafic igneous intrusive rocks in several areas of Mauritania and a number of chromium (Cr) and copper-nickel (Cu-Ni (±Co, Au)) occurrences associated with them. Permissive geologic settings generally include greenstone belts of any age, layered mafic-ultramafic and unlayered gabbro-anorthosite intrusive complexes in cratonic settings, ophiolite complexes, flood basalt provinces, and fluid-rich shear zones cutting accumulations of mafic-ultramafic rocks. Regions of Mauritania having these characteristics that are discussed in PRISM-I texts include the Mesoarchean greenstone belts of the TasiastTijirit terrane in the southwestern Rgueïbat Shield, two separate layered ultramafic complexes in the Amsaga Complex west of Atar, serpentinized metadunites in Mesoarchean rocks of the Rgueïbat Shield in the Zednes map sheet, several lateritized annular mafic-ultramafic complexes in the Paleoproterozoic northwestern portion of the Rgueïbat Shield, and the serpentinized ophiolitic segments of the Gorgol Noir Complex in the axial portion of the southern Mauritanides. Bureau de Recherches Géologiques et Minières (BRGM) work in the “Extreme Sud” zone also suggests that small copper occurrences associated with the extensive Jurassic microgabbroic intrusive rocks in the Taoudeni Basin of southeastern Mauritania could have potential for magmatic Cu-Ni (PGE, Co, Au) sulfide mineralization. Similarly, Jurassic mafic intrusive rocks in the northeastern Taoudeni Basin may be permissive. Known magmatic Cu-Ni deposits of these types in Mauritania are few in number and some uncertainty exists as to the nature of several of the more important ones.

  11. Characterization of crystalline rocks in the Lake Superior region, USA: implications for nuclear waste isolation

    International Nuclear Information System (INIS)

    Sood, M.K.; Flower, M.F.J.; Edgar, D.E.


    The Lake Superior region (Wisconsin, the Upper Peninsula of Michigan, and Minnesota) contains 41 Precambrian crystalline rock complexes comprising 64 individual but related rock bodies with known surface exposures. Each complex has a map area greater than 78 km 2 . About 54% of the rock complexes have areas of up to 500 km 2 , 15% fall between 500 km 2 and 1000 km 2 , 19% lie between 1000 km 2 and 2500 km 2 , and 12% are over 2500 km 2 . Crystalline rocks of the region vary widely in composition, but they are predominantly granitic. Repeated thermo-tectonic events have produced early Archean gneisses, migmatites, and amphibolites with highly tectonized fabrics that impart a heterogeneous and anisotropic character to the rocks. Late Archean rocks are usually but not invariably gneissose and migmatitic. Proterozoic rocks of the region include synorogenic (foliated) granitic rocks, anorogenic (non-foliated) granites, and the layered gabbro-anorthosite-troctolite intrusives of the rift-related Keweenawan igneous activity. Compared with the Archean rocks of the region, the Proterozoic bodies generally lack highly tectonized fabrics and have more definable contacts where visible. Anorogenic intrusions are relatively homogeneous and isotropic. On the basis of observed geologic characteristics, postorogenic and anorogenic crystalline rock bodies located away from recognized tectonic systems have attributes that make them relatively more desirable as a possible site for a nuclear waste repository in the region. This study was conducted at Argonne National Laboratory under the sponsorship of the US Department of Energy through the Office of Crystalline Repository Development at Battelle Memorial Institute, Columbus, Ohio. 84 references, 4 figures, 3 tables

  12. Occurrence of chromian, hercynitic spinel ("pleonaste") in Apollo-14 samples and its petrologic implications (United States)

    Roedder, E.; Weiblen, P.W.


    Many isolated grains of a reddish pleonaste-type spinel occur in fines and metabreccia samples, particularly 14 319. Electron microprobe analyses (104) of spinels and their associated phases include 58 of pleonaste which show Mg/(Mg + Fe) 0.44-0.62 and Cr/(Cr + Al) 0.017-0.134 (atomic), plus minor amounts of other ions, and differ greatly from almost all previously recorded lunar spinels; almost no spinels of intermediate composition were found. Two types of compositional zoning exist: a diffuse primary one with cores lower in Ti, and a narrow secondary one from reaction with matrix yielding rims higher in Cr, Ti, and Mn. At contacts with breccia matrix there is a narrow corona of almost pure plagioclase (An80-An94), free of opaque minerals and pyroxene. Two types of solid inclusions found in the pleonaste are calcic plagioclase, and tiny spherical masses of nickel-rich sulfide. Similar pleonaste occurs in crystalline rock clasts, mainly with plagioclase; one clast (A) consists only of coarse olivine, plagioclase, and pleonaste, with granulated grain boundaries suggestive of deformation. From composition and texture, this clast is one possible candidate for the mafic cumulate counterpart of the "anorthositic" crust. Another clast (B), also made solely of olivine, plagioclase and pleonaste, is itself a breccia. These data suggest a two-stage brecciation process: 1) disruption (probably pre-Imbrian) of a deep-seated pleonaste-bearing source rock like A and reconsolidation to form a breccia without addition of pyroxene, ilmenite or other minerals; and 2) disruption of this breccia to yield breccia clast B which was then incorporated into the Fra Mauro formation. ?? 1972.

  13. Mineral chemistry as a tool for understanding the petrogenesis of Cryogenian (arc-related)-Ediacaran (post-collisional) gabbros in the western Arabian Shield of Saudi Arabia (United States)

    Surour, Adel A.; Ahmed, Ahmed H.; Harbi, Hesham M.


    Metagabbros and gabbros in the Ablah-Shuwas belt (western Saudi Arabia) represent part of significant mafic magmatism in the Neoproterozoic Arabian Shield. The metagabbros are Cryogenian, occasionally stratified and bear calcic amphiboles (hornblende, magnesio-hornblende and actinolite) typical of calc-alkaline complexes. These amphiboles suggest low pressure ( 1-3 kbar), high f_{{{{O}}2 }} and crystallization temperature up to 727 °C, whereas it is 247-275 °C in the case of retrograde chlorite. Rutile and titanite in metagabbros are Fe-rich and replace Mn-bearing ilmenite precursors at high f_{{{{O}}2 }}. On the other hand, younger gabbros are fresh, layered and comprised of olivine gabbro and olivine-hornblende gabbro with an uppermost layer of anorthositic gabbro. The fresh gabbros are biotite-bearing. They are characterized by secondary magnetite-orthopyroxene symplectitic intergrowth at the outer peripheries of olivine. The symplectite forms by deuteric alteration from residual pore fluids moving along olivine grain boundaries in the sub-solidus state. In fresh gabbros, ortho- and clinopyroxenes indicate crystallization at 1300-900 and 800-600 °C, respectively. Geochemically, the Cryogenian metagabbros ( 850-780 Ma) are tholeiitic to calc-alkaline in composition and interpreted as arc-related. Younger, fresh gabbros are calc-alkaline and post-collisional ( 620-590 Ma, i.e., Ediacaran), forming during the late stages of arc amalgamation in the southern Arabian Shield. The calc-alkaline metagabbros are related to a lithospheric mantle source previously modified by subduction. Younger, fresh gabbros were probably produced by partial melting of an enriched mantle source (e.g., garnet lherzolite).

  14. Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation. (United States)

    Carlson, Richard W; Borg, Lars E; Gaffney, Amy M; Boyet, Maud


    New Rb-Sr, (146,147)Sm-(142,143)Nd and Lu-Hf isotopic analyses of Mg-suite lunar crustal rocks 67667, 76335, 77215 and 78238, including an internal isochron for norite 77215, were undertaken to better define the time and duration of lunar crust formation and the history of the source materials of the Mg-suite. Isochron ages determined in this study for 77215 are: Rb-Sr=4450±270 Ma, (147)Sm-(143)Nd=4283±23 Ma and Lu-Hf=4421±68 Ma. The data define an initial (146)Sm/(144)Sm ratio of 0.00193±0.00092 corresponding to ages between 4348 and 4413 Ma depending on the half-life and initial abundance used for (146)Sm. The initial Nd and Hf isotopic compositions of all samples indicate a source region with slight enrichment in the incompatible elements in accord with previous suggestions that the Mg-suite crustal rocks contain a component of KREEP. The Sm/Nd-(142)Nd/(144)Nd correlation shown by both ferroan anorthosite and Mg-suite rocks is coincident with the trend defined by mare and KREEP basalts, the slope of which corresponds to ages between 4.35 and 4.45 Ga. These data, along with similar ages for various early Earth differentiation events, are in accord with the model of lunar formation via giant impact into Earth at ca 4.4 Ga. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  15. Comprehensive Pb-Sr-Nd-Hf isotopic, trace element, and mineralogical characterization of mafic to ultramafic rock reference materials (United States)

    Fourny, Anaïs.; Weis, Dominique; Scoates, James S.


    Controlling the accuracy and precision of geochemical analyses requires the use of characterized reference materials with matrices similar to those of the unknown samples being analyzed. We report a comprehensive Pb-Sr-Nd-Hf isotopic and trace element concentration data set, combined with quantitative phase analysis by XRD Rietveld refinement, for a wide range of mafic to ultramafic rock reference materials analyzed at the Pacific Centre for Isotopic and Geochemical Research, University of British Columbia. The samples include a pyroxenite (NIM-P), five basalts (BHVO-2, BIR-1a, JB-3, BE-N, GSR-3), a diabase (W-2), a dolerite (DNC-1), a norite (NIM-N), and an anorthosite (AN-G); results from a leucogabbro (Stillwater) are also reported. Individual isotopic ratios determined by MC-ICP-MS and TIMS, and multielement analyses by HR-ICP-MS are reported with 4-12 complete analytical duplicates for each sample. The basaltic reference materials have coherent Sr and Nd isotopic ratios with external precision below 50 ppm (2SD) and below 100 ppm for Hf isotopes (except BIR-1a). For Pb isotopic reproducibility, several of the basalts (JB-3, BHVO-2) require acid leaching prior to dissolution. The plutonic reference materials also have coherent Sr and Nd isotopic ratios (<50 ppm), however, obtaining good reproducibility for Pb and Hf isotopic ratios is more challenging for NIM-P, NIM-N, and AN-G due to a variety of factors, including postcrystallization Pb mobility and the presence of accessory zircon. Collectively, these results form a comprehensive new database that can be used by the geochemical community for evaluating the radiogenic isotope and trace element compositions of volcanic and plutonic mafic-ultramafic rocks.

  16. Textural and chemical evolution of pyroxene during hydration and deformation: A consequence of retrograde metamorphism (United States)

    Centrella, Stephen; Putnis, Andrew; Lanari, Pierre; Austrheim, Håkon


    Centimetre-sized grains of Al-rich clinopyroxene within the granulitic anorthosites of the Bergen Arcs, W-Norway undergo deformation by faults and micro-shear zones (kinks) along which fluid has been introduced. The clinopyroxene (11 wt% Al2O3) reacts to the deformation and hydration in two different ways: reaction to garnet (Alm41Prp32Grs21) plus a less aluminous pyroxene (3 wt% Al2O3) along kinks and the replacement of the Al-rich clinopyroxene by chlorite along cleavage planes. These reactions only take place in the hydrated part of a hand specimen that is separated from dry, unreacted granulite by a sharp interface that defines the limit of hydration. We use electron probe microanalysis (EPMA) and X-Ray mapping together with electron backscatter diffraction (EBSD) mapping to investigate the spatial and possible temporal relationships between these two parageneses. Gresens' analysis (Gresens, 1967) has been used to determine the mass balance and the local volume changes associated with the two reactions. The reaction to garnet + low-Al clinopyroxene induces a loss in volume of the solid phases whereas the chlorite formation gains volume. Strain variations result in local variation in undulose extinction in the parent clinopyroxene. EBSD results suggest that the density-increasing reaction to garnet + low-Al clinopyroxene takes place where the strain is highest whereas the density-decreasing reaction to chlorite forms away from shear zones where EBSD shows no significant strain. Modelling of phase equilibria suggest that the thermodynamic pressure of the assemblage within the shear zones is > 6 kbar higher than the pressure conditions for the whole rock for the same range of temperature ( 650 °C). This result suggests that the stress redistribution within a rock may play a role in determining the reactions that take place during retrograde metamorphism.

  17. Alternative additives; Alternative additiver

    Energy Technology Data Exchange (ETDEWEB)


    In this project a number of industrial and agricultural waste products have been characterised and evaluated in terms of alkali-getter performance. The intended use is for biomass-fired power stations aiming at reducing corrosion or slagging related problems. The following products have been obtained, characterised and evaluated: 1) Brewery draff 2) Danish de-gassed manure 3) Paper sludge 4) Moulding sand 5) Spent bleaching earth 6) Anorthosite 7) Sand 8) Clay-sludge. Most of the above alternative additive candidates are deemed unsuitable due to insufficient chemical effect and/or expensive requirements for pre-treatment (such as drying and transportation). 3 products were selected for full-scale testing: de-gassed manure, spent bleaching earth and clay slugde. The full scale tests were undertaken at the biomass-fired power stations in Koege, Slagelse and Ensted. Spent bleaching earth (SBE) and clay sludge were the only tested additive candidates that had a proven ability to react with KCl, to thereby reduce Cl-concentrations in deposits, and reduce the deposit flux to superheater tubes. Their performance was shown to nearly as good as commercial additives. De-gassed manure, however, did not evaluate positively due to inhibiting effects of Ca in the manure. Furthermore, de-gassed manure has a high concentration of heavy metals, which imposes a financial burden with regard to proper disposal of the ash by-products. Clay-sludge is a wet clay slurring, and drying and transportation of this product entails substantial costs. Spent bleaching does not require much pre-treatment and is therefore the most promising alternative additive. On the other hand, bleaching earth contains residual plant oil which means that a range of legislation relating to waste combustion comes into play. Not least a waste combustion fee of 330 DKK/tonne. For all alternative (and commercial) additives disposal costs of the increase ash by-products represents a significant cost. This is

  18. Micro-analysis of sulfur-isotope ratios and zonation by laser microprobe (United States)

    Crowe, Douglas E.; Valley, John W.; Baker, Kevin L.


    The University of Wisconsin laser microprobe/mass spectrometer system combines high spatial resolution with precise, accurate, and rapid analysis of sulfur-isotope ratios. Spot sizes of 100-200 μm are routine and much higher spatial resolution may be possible. Analytical precision ranges from 1 σ = ±0.15%. (pyrite, pyrrhotite, sphalerite) to 1 σ = ±0.43%.. (galena, chalcopyrite). Comparison of laser microprobe and conventional combustion analyses indicates that laser δ34S values are approximately equal to or lower than combustion values for these minerals, and an empirical correction of -0.1‰ (sphalerite) to +1.4%. (pyrrhotite) is required. Variations in δ18O of SO 2, laser power density, and burn duration affect the magnitude of this correction; thus, consistent technique is critical. Natural samples were analyzed by laser microprobe to evaluate the extent of sulfur-isotope ratio zonation. Coexisting sulfide mineral pairs from the Rua Cove Mine, Alaska, show that isotopic equilibrium exists in the stockwork feeder zone, while disequilibrium characterizes coexisting pairs from the overlying, more rapidly cooled massive sulfide blanket. Conventional sulfur isotope extraction data on these samples are not valid due to the fine-grained, intergrown nature of the sulfide phases, which precludes satisfactory mineral separation. Isotopically homogeneous sphalerite and pyrite crystals were found in samples from the amphibolite facies Balmat Mine, while isotopically heterogeneous pyrite crystals were found in a sample from the upper greenschist facies Sullivan Mine. Sulfur-isotope zonation up to 2.9%. in 200 μm was found in banded sphalerite blacksmoker chimney material from the Bayda Mine (Oman). Retrograde sulfides from the Marcy Anorthosite Massif vary by 4.2%. over <1 cm, and finely disseminated sulfides from an amphibolite-granulite facies transition zone sample, southern India, are in disequilibrium across the 25 cm facies transition. These results show that

  19. The Mafic Lower Crust of Neoproterozoic age beneath Western Arabia: Implications for Understanding African Lower Crust (United States)

    Stern, R. J.; Mooney, W. D.


    We review evidence that the lower crust of Arabia - and by implication, that beneath much of Africa was formed at the same time as the upper crust, rather than being a product of Cenozoic magmatic underplating. Arabia is a recent orphan of Africa, separated by opening of the Red Sea ~20 Ma, so our understanding of its lower crust provides insights into that of Africa. Arabian Shield (exposed in W. Arabia) is mostly Neoproterozoic (880-540 Ma) reflecting a 300-million year process of continental crustal growth due to amalgamated juvenile magmatic arcs welded together by granitoid intrusions that make up as much as 50% of the Shield's surface. Seismic refraction studies of SW Arabia (Mooney et al., 1985) reveal two layers, each ~20 km thick, separated by a well-defined Conrad discontinuity. The upper crust has average Vp ~6.3 km/sec whereas the lower crust has average Vp ~7.0 km/sec, corresponding to a granitic upper crust and gabbroic lower crust. Neogene (Yemen to Syria. Many of these lavas contain xenoliths, providing a remarkable glimpse of the lower-crustal and upper-mantle lithosphere beneath W. Arabia. Lower crustal xenoliths brought up in 8 harrats in Saudi Arabia, Jordan, and Syria are mostly 2-pyroxene granulites of igneous (gabbroic, anorthositic, and dioritic) origin. They contain plagioclase, orthopyroxene, and clinopyroxene, and a few contain garnet and rare amphibole and yield mineral-equilibrium temperatures of 700-900°C. Pyroxene-rich and plagioclase-rich suites have mean Al2O3 contents of 13% and 19%, respectively: otherwise the two groups have similar elemental compositions, with ~50% SiO2 and ~1% TiO2, with low K2O (time. Lower crust of Arabia clearly formed during Neoproterozoic time, about the same time as its upper crust complement; a similar origin for the lower crust beneath the broad expanses of Neoproterozoic crust in N and E Africa is likely. There is no evidence that any of the mafic lower crust of Arabia formed due to underplating by

  20. The Petrology and Geochemistry of Feldspathic Granulitic Breccia NWA 3163: Implications for the Lunar Crust (United States)

    McLeod, C. L.; Brandon, A. D.; Lapen, T. J.; Shafer, J. T.; Peslier, A. H.; Irvine, A. J.


    Lunar meteorites are crucial to understand the Moon s geological history because, being samples of the lunar crust that have been ejected by random impact events, they potentially originate from areas outside the small regions of the lunar surface sampled by the Apollo and Luna missions. The Apollo and Luna sample sites are contained within the Procellarum KREEP Terrain (PKT, Jolliff et al., 2000), where KREEP refers to potassium, rare earth element, and phosphorus-rich lithologies. The KREEP-rich rocks in the PKT are thought to be derived from late-stage residual liquids after approx.95-99% crystallization of a lunar magma ocean (LMO). These are understood to represent late-stage liquids which were enriched in incompatible trace elements (ITE) relative to older rocks (Snyder et al., 1992). As a consequence, the PKT is a significant reservoir for Th and KREEP. However, the majority of the lunar surface is likely to be significantly more depleted in ITE (84%, Jolliff et al., 2000). Lunar meteorites that are low in KREEP and Th may thus sample regions distinct from the PKT and are therefore a valuable source of information regarding the composition of KREEP-poor lunar crust. Northwest Africa (NWA) 3163 is a thermally metamorphosed ferroan, feldspathic, granulitic breccia composed of igneous clasts with a bulk anorthositic, noritic bulk composition. It is relatively mafic (approx.5.8 wt.% FeO; approx.5 wt.% MgO) and has some of the lowest concentrations of ITEs (17ppm Ba) compared to the feldspathic lunar meteorite (FLM) and Apollo sample suites (Hudgins et al., 2011). Localized plagioclase melting and incipient melting of mafic minerals require localized peak shock pressures in excess of 45 GPa (Chen and El Goresy, 2000; Hiesinger and Head, 2006). NWA 3163, and paired samples NWA 4481 and 4883, have previously been interpreted to represent an annealed micro-breccia which was produced by burial metamorphism at depth in the ancient lunar crust (Fernandes et al., 2009

  1. Metasedimentary, granitoid, and gabbroic rocks from central Stewart Island, New Zealand

    International Nuclear Information System (INIS)

    Allibone, A.H.; Tulloch, A.J.


    A NNE-NE trending strip, 3-8 km wide, extending from the Freshwater valley across Mt Rakeahua Table Hill, and Mt Allen to the northern end or the Tin Range was mapped at a scale of 1:12,500 to locate and investigate the boundary between the Median Tectonic Zone (MTZ) and Western Province on Stewart Island. A NNE-trending fault, herein termed the Escarpment Fault, separates predominantly ductily deformed rocks on its south side from essentially undeformed rocks to the north. North of the Escarpment Fault, a small (2-3 km 2 ) pluton of alkali-feldspar granite (Freds Camp) intruded gabbroic rocks tentatively considered to be associated with gabbro/anorthosite/diorite of the Rakeahua pluton, centred on Mt Rakeahua. Both units were subsequently intruded by I-type biotite granite of the South West Arm pluton. South of the Escarpment Fault the oldest intrusions are biotite tonalite-granite orthogneisses (Ridge and Table Hill plutons) intercalated with the sillimanite-cordierite-bearing Pegasus Group metasedimentary rocks, considered to represent the Western Province. They contain titanite, allanite, and magmatic epidote-bearing assemblages, implying affinities with I-type granitoids. These older granitoids have been affected by at least three phases of ductile deformation. Immediately south of the Escarpment Fault, the Escarpment pluton (hornblende, biotite, quartz, monzonite-quartz monzodiorite) only exhibit effects of the third phase of deformation. Minor gabbroic intrusives concordant with the S 3 fabric intrude the Pegasus Group and intercalated orthogneisses. Plutons of two-mica, garnet ±cordierite granite (Blaikies and Knob) and younger biotite-titanite-magmatic epidote granite (Campsite) cut fabrics associated with the third phase of ductile deformation. Preliminary U-Pb dating indicate Devonian-Carboniferous, Jurassic, and Early Cretaceous emplacement ages for Ridge Orthogneiss, Freds Camp pluton, South West Arm pluton, and Blaikies pluton, respectively. South

  2. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries (United States)

    Allen, J. S.


    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and

  3. Lower crustal section of the Oman Ophiolite drilled in Hole GT1A, ICDP Oman Drilling Project (United States)

    Umino, S.; Kelemen, P. B.; Matter, J. M.; Coggon, J. A.; Takazawa, E.; Michibayashi, K.; Teagle, D. A. H.


    Hole GT1A (22° 53.535'N, 58° 30.904'E) was drilled by the Oman Drilling Project (OmDP) into GT1A of the Samail ophiolite, Oman. OmDP is an international collaboration supported by the International Continental Scientific Drilling Program, the Deep Carbon Observatory, NSF, IODP, JAMSTEC, and the European, Japanese, German and Swiss Science Foundations, with in-kind support in Oman from the Ministry of Regional Municipalities and Water Resources, Public Authority of Mining, Sultan Qaboos University, and the German University of Technology. Hole GT1A was diamond cored in 22 Jan to 08 Feb 2017 to a total depth of 403.05 m. The outer surfaces of the cores were imaged and described on site before being curated, boxed and shipped to the IODP drill ship Chikyu, where they underwent comprehensive visual and instrumental analysis. Hole GT1A drilled the lower crustal section in the southern Oman Ophiolite and recovered 401.52 m of total cores (99.6% recovery). The main lithology is dominated by olivine gabbro (65.9%), followed in abundance by olivine-bearing gabbro (21.5%) and olivine melagabbro (3.9%). Minor rock types are orthopyroxene-bearing olivine gabbro (2.4%), oxide-bearing olivine gabbro (1.5%), gabbro (1.1%), anorthositic gabbro (1%), troctolitic gabbro (0.8%); orthopyroxene-bearing gabbro (0.5%), gabbronorite (0.3%); and dunite (0.3%). These rocks are divided into Lithologic Unit I to VII at 26.62 m, 88.16 m, 104.72 m, 154.04 m, 215.22 m, 306.94 m in Chikyu Curated Depth in descending order; Unit I and II consist of medium-grained olivine gabbro with lower olivine abundance in Unit II. Unit III is medium-grained olivine melagabbros, marked by an increase in olivine. Unit IV is relatively homogenous medium-grained olivine gabbros with granular textures. Unit V is identified by the appearance of fine-grained gabbros, but the major rocktypes are medium grained olivine gabbros. Unit VI is medium-grained olivine gabbro, marked by appearance of orthopyroxene. Unit VII

  4. Rehydration reactions and microstructure development in lower crustal granulites from the Bergen Arcs, Norway (United States)

    Erickson, Timmons; Reddy, Steven; Clark, Chris; Hand, Martin; Bhowany, Kamini; Prent, Alex


    An investigation of the feedbacks generated between lower crust-derived fluids and deformation microstructures formed within retrogressed granulites from the Bergen Arcs on the west coast of Norway will be presented. We hope to assess the role of deformation microstructures in assisting fluid infiltration into nominally impermeable lower crustal rocks, the role of fluids in driving mineral reactions and thus weakening the rock strength, and the interplay between these mechanisms. Granulite wall-rock adjacent to an amphibolite facies shear zone near Isdal, Norway has been sectioned, texturally mapped using electron backscatter diffraction (EBSD) and chemically mapped using energy dispersive x-ray spectrometry (EDS). The granuilte protolith is made up of a Precambrian anorthosite - gabbro assemblage of plagioclase and coronas of garnet around clinopyroxene. Local alteration of the granulite to eclogite and amphibolite occurred during the Caledonian orogen and has been attributed to the infiltration of fluids during the high strain event (Mukai et al., 2014). In thin section a thin ( 75 µm) rim of pargasite amphibole can be seen between the garnet and plagioclase, while the rim of amphibole is thicker (600 µm) when between the clinopyroxene and plagioclase. Plagioclase is coarse grained (mms in diameter) and displays prominent growth twins within the undeformed regions of the granulite. However, within a sheared domain of the granulite the grain size has been significantly reduced (max diameter = 74 µm) as has the growth twinning. The plagioclase from the sheared domain also displays a crystallographic preferred orientation (CPO) which does not appear to be inherited from the 'parent' grains. Within the strained domain there is also an increase in the reaction of garnet to pargasite, which also displays a strong CPO. These textural relationships offer the opportunity to study the active mechanisms during hydration of the lower crust and evaluate the relationships

  5. Thermomagmatic evolution of Mesoproterozoic crust in the Blue Ridge of SW Virginia and NW North Carolina: Evidence from U-Pb geochronology and zircon geothermometry (United States)

    Tollo, Richard P.; Aleinikoff, John N.; Wooden, Joseph L.; Mazdab, Frank K.; Southworth, Scott; Fanning, Mark C.


    New geologic mapping, petrology, and U-Pb geochronology indicate that Mesoproterozoic crust near Mount Rogers consists of felsic to mafic meta-igneous rocks emplaced over 260 m.y. The oldest rocks are compositionally diverse and migmatitic, whereas younger granitoids are porphyritic to porphyroclastic. Cathodoluminescence imaging indicates that zircon from four representative units preserves textural evidence of multiple episodes of growth, including domains of igneous, metamorphic, and inherited origin. Sensitive high-resolution ion microprobe (SHRIMP) trace-element analyses indicate that metamorphic zircon is characterized by lower Th/U, higher Yb/Gd, and lower overall rare earth element (REE) concentrations than igneous zircon. SHRIMP U-Pb isotopic analyses of zircon define three episodes of magmatism: 1327 ± 7 Ma, 1180–1155 Ma, and 1061 ± 5 Ma. Crustal recycling is recorded by inherited igneous cores of 1.33–1.29 Ga age in 1161 ± 7 Ma meta-monzogranite. Overlapping ages of igneous and metamorphic crystallization indicate that plutons of ca. 1170 and 1060 Ma age were emplaced during episodes of regional heating. Local development of hornblende + plagioclase + quartz ± clinopyroxene indicates that prograde metamorphism at 1170–1145 Ma and 1060–1020 Ma reached upper-amphibolite-facies conditions, with temperatures estimated using Ti-in-zircon geothermometry at ~740 ± 40 °C during both episodes. The chemical composition of 1327 ± 7 Ma orthogranofels from migmatite preserves the first evidence of arc-generated rocks in the Blue Ridge, indicating a subduction-related environment that may have been comparable to similar-age systems in inliers of the Northern Appalachians and the Composite Arc belt of Canada. Granitic magmatism at 1180–1155 Ma and ca. 1060 Ma near Mount Rogers was contemporaneous with anorthosite-mangerite-charnockite-granite (AMCG) plutonism in the Northern Appalachian inliers and Canadian Grenville Province. Metamorphism at ca. 1160

  6. Origin of KREEP

    International Nuclear Information System (INIS)

    Warren, P.H.; Wasson, J.T.


    Most KREEPy samples are polymict breccias. Most model of KREEP petrogenesis base on partial melting of a variety of sources fail to explain the veritable absence of variations in incompatible element patterns over the sampled potion of the moon. e have defined a KREEP component based on the average composition of Apollo 14 breccias having extremely high concentrations of incompatible elements. Normalization of accurate incompatible data for KREEPy samples from Apollo sites to this component virtually always shows no resolvable fractionation (e.g., <10% variation in La/Lu ratio), whereas partial melting models typically produce larger fractionations ( +- 20-25% in La/Lu) from a factor of 2 difference in degree of partial melting. The anorthositic crust of the moon is commonly attributed to the flotation of plagioclase on a deep, moon-wide magma ocean. Fractional crystallization of this magma ocean would have produced large enrichments of incompatibles in a residual liquid. No other plausible major source of incompatibles has been proposed. We designate this residual liquid 'urKREEP. We propose that all KREEPy rocks originated by dilution of urKREEP with crustal or mantle materials during assimilation, or zone-refining (pristine samples), or impact-induced brecciation (breccias and melt rocks). The formation of urKREEP cannot be dated precisely. Correction of breccia Rb-Sr model ages for Rb loss or gain during the early intense bombardments yields ages that cluster in the range 4.4--4.5 Gy. This implies that crystallization of the magma ocean was essentially complete at this time. Assuming that the moon had the composition of an H-group chondrite depleted in Fe-Ni and FeS and that half the incompatibles fractionated into materials other than urKREEP, the thickness of a moon-wide urKREEP layer was <2 km. Th concentrations determined by gamma ray spectroscopy indicate that about 4% of the incompatibles in an H chondritic moon are now in the outermost kilometer

  7. Osmium isotope and highly siderophile element systematics of the lunar crust (United States)

    Day, J.M.D.; Walker, R.J.; James, O.B.; Puchtel, I.S.


    Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ?? 0.3 pg g- 1 Os, 1.5 ?? 0.6 pg g- 1 Ir, 6.8 ?? 2.7 pg g- 1 Ru, 16 ?? 15 pg g- 1 Pt, 33 ?? 30 pg g- 1 Pd and 0.29 ?? 0.10 pg g- 1 Re (??? 0.00002 ?? CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (??? 0.00007 ?? CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle-crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments. If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust-mantle concentration ratios (D-values) must be ??? 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust-mantle HSE partitioning for the Earth and Moon are somewhat

  8. Late Paleoproterozoic-Neoproterozoic multi-rifting events in the North China Craton and their geological significance: A study advance and review (United States)

    Zhai, Mingguo; Hu, Bo; Zhao, Taiping; Peng, Peng; Meng, Qingren


    An important Paleoproterozoic mobile belt event took place in the North China Craton (NCC), termed the Hutuo Movement. This event has been interpreted to represent cratonic reworking characterized by rifting-subduction-collision processes. The NCC then evolved into a stable platform or para-platform tectonic setting in Earth's middle age period more than ~ 1.0 Ga. Thick Late Paleoproterozoic-Neoproterozoic sedimentary sequences were extensively deposited on the early metamorphic basement. The major sedimentary basins include the Xiong'er aulacogen system in the south-central NCC, the Yan-Liao aulacogen system in the north-central NCC, the Northern marginal rift system in the northwestern NCC and the Eastern marginal rift system in the eastern NCC. The following four stages of magmatic activity are recognized in the Late Paleoproterozoic to Neoproterozoic interval: (1) ~ 1800 to 1780 Ma Xiong'er igneous province (XIP), (2) ~ 1720 to 1620 Ma anorogenic magmatic association, (3) ~ 1350 to 1320 Ma diabase sill swarms, and (4) ~ 900 Ma mafic dyke swarms. These four magmatic events suggest that the NCC was situated in an intra-plate setting for a long time from ~ 1.8 Ga to ~ 0.7 Ga or even younger, and the magmatic events were associated with multi-stage rifting activities. We document that the NCC was in a long-term extensional tectonic setting during Late Paleoproterozoic-Neoproterozoic era. The main ore deposits in this period are magmatic type iron deposits related to anorthosite-gabbro bodies, REE-Nb-Fe and Pb-Zn-Cu-Fe deposits related to Mesoproterozoic-Neoproterozoic rifts. Orogenic metal deposits are absent. There is no evidence indicating that the Grenville or other orogenic events affected the NCC. The reason for the absence of Grenvillian aged events in the NCC is probably because it was far from the edge of the Nuna supercontinent, if such a supercontinent did exist. There is another possibility that the Earth's middle age represented a particular tectonic

  9. Giordano Bruno crater on the Moon: Detection and Mapping of Hydration Features of Endogenic and/or Exogenic Nature (United States)

    Saran Bhiravarasu, Sriram; Bhattacharya, Satadru; Chauhan, Prakash


    We analyze high resolution spectral and spatial data from the recent lunar missions and report the presence of strong hydration features within the inner flank, hummocky floor, ejecta and impact melt deposits of crater Giordano Bruno. Hydroxyl-bearing lithologies at Giordano Bruno are characterized primarily by a prominent absorption feature near 2800 nm, the band minima of which goes beyond 3000 nm. The hydration features are found to be associated with low-Ca pyroxene-bearing noritic lithologies along the inner crater flanks, whereas similar features are also seen within the hummocky crater floor in association with shocked plagioclase-bearing anorthositic lithology. Interestingly, the ejecta blanket is characterized by sharp, narrow features centered near 2800 nm similar to the features previously reported from Compton-Belkovich volcanic complex and central peak of crater Theophilus. The low-Ca pyroxene-bearing rock exposures within the crater inner flanks are characterized by both presence and absence of the hydration features. Enhanced hydration is also seen within the ejecta blanket covering the nearby Harkhebi K and J craters. We also analyze the impact melts and ejecta using radar images at regions interior and exterior to the Giordano Bruno crater rim.Anomalous behaviors of hydration feature associated with low-Ca pyroxene-rich exposures, its nature and occurrences within the impact melt sheets inside the crater along with the ejecta blankets could possibly indicate endogenic and/or exogenic nature of the observed hydration feature. Initial results indicate the presence of strongest hydration feature in the partially shadowed pole-facing slopes (with low-Ca pyroxene-bearing exposures) and its complete absence in the equator-facing sun-lit slopes. This hints at a possible exogenic origin, whereas the same feature occurring (with same mineral) under both sun-lit and shadowed conditions suggest it to be of magmatic origin. We propose that the heterogeneous

  10. The Neoproterozoic Abu Dahr ophiolite, South Eastern Desert, Egypt: petrological characteristics and tectonomagmatic evolution (United States)

    Gahlan, Hisham A.; Azer, Mokhles K.; Khalil, Ahmed E. S.


    The Neoproterozoic Abu Dahr ophiolite, South Eastern Desert, Egypt, is one of the best preserved and least dismembered ophiolite successions in the Arabian-Nubian Shield. It contains a Penrose-type ophiolite sequence from mantle section below mafic crust upward to oceanic sedimentary cover overlying mafic volcanics, although the original magmatic (stratigraphic) contact between the mantle and crustal sections is disrupted by tectonism. The Abu Dahr ophiolite is metamorphosed under greenschist facies conditions, and low-temperature alteration is widespread. Petrography reveals that: (i) the mantle is homogenous, serpentinized, and dominated by harzburgite and less abundant dunite; (ii) the cumulate ultramafics are represented by wehrlite and pyroxenite; and (iii) the crustal section is represented by metagabbros, meta-anorthosites and metabasalts. The Abu Dahr serpentinized peridotites show high Mg# (0.92-0.93), with enrichment of Ni, Cr and Co, and depletion of Al2O3 and CaO, and nearly flat and unfractionated REE chondrite-normalized pattern. Major and trace element characteristics of the Abu Dahr metagabbro and metabasalt (crustal section) indicate a tholeiitic to calc-alkaline affinity. Units of the crustal section have low-Nb and Zr concentrations, low Dy/Yb and relatively elevated La/Yb ratios, high U/Yb and Th/Yb ratios, and LREE enriched chondrite-normalized pattern. All of the Abu Dahr ophiolite units have trace-element signatures characterized by enrichment of LILE over HFSE. Rare and trace element patterns indicate a genetic link between the Abu Dahr mantle, cumulate ultramafics, and crust. Chromian spinel has survived metamorphism and is used as a petrogenetic indicator in the Abu Dahr serpentinized peridotites. The spinel is homogeneous with a limited composition, and shows high-Cr# (>0.6) combined with low-TiO2 character (mostly <0.1 wt.%). The Abu Dahr ophiolite is interpreted as a fragment of depleted oceanic lithosphere that experienced high degrees

  11. Extended HFSE systematics of Apollo samples - wrenching further Secrets from the Lunar Mantle (United States)

    Thiemens, M. M.; Sprung, P.; Munker, C.


    As Earth's intimate companion, the Moon provides a close extraterrestrial view on planetary differentiation. In turn, investigating chemical and isotopic compositions of lunar rocks for traces of a putative crystallizing Lunar Magma Ocean (LMO) provides a better understanding of the evolution and differentiation of infant planetary bodies.We expand on high-precision extended High Field Strength Element (HFSE) observations of Münker [1]. In detail, we investigate if the HFSE systematics of low- and high- Ti basalts, KREEPy basalts and breccias, soils, and ferroan anorthosites (FAN) are consistent with their formation from the LMO (FAN, KREEP) or mantle sources comprising mixtures of primary LMO products [2] (mare basalts). Of particular interest is the recently discovered dependence of HFSE partitioning on the Ti-concentration of co-existing melts [3] and that of W partitioning on oxygen fugacity [3,4].Our data form a positively correlated array in Zr/Hf vs. Nb/Ta space, similar to previous high-precision [1] but unlike lower-precision data. The HFSE systematics of different rock types from the Apollo missions mostly form distinct groups. High-Ti and some Apollo 12 low-Ti mare basalts form the lower end of the array, KREEPy samples its upper end. Low Zr/Nb in most high-Ti mare basalts and the globally highest Hf/W confirm involvement of Ti-rich-oxide-bearing cumulates in high-Ti formation [e.g., 1,2]. No global lunar trends exist for Hf/W vs. Zr/Nb. Overall, the composition of KREEPy samples agrees reasonably well with model KREEP-compositions assuming a LMO below IW-1 [1,4].Clearly distinct groupings observed for the various rock types and the lack of a global trend in Hf/W vs. Zr/Nb calls for melting of distinct ultramafic sources [1]. The HFSE systematics of Apollo rocks tend to support a LMO scenario, setting the stage for more detailed petrogenetic modeling. Initial modeling suggests that the lunar mantle must possess residual metal to reconcile the HFSE

  12. Mineralogy and Iron Content of the Lunar Polar Regions Using the Kaguya Spectral Profiler and the Lunar Orbiter Laser Altimeter (United States)

    Lemelin, M.; Lucey, P. G.; Trang, D.; Jha, K.


    The lunar polar regions are of high scientific interest, but the extreme lighting conditions have made quantitative analyses using reflectance spectra difficult; some regions are in permanent shadow, and flat surfaces are difficult to correct photometrically due to the extreme grazing incidence and low signal available. Thus, most mineral maps derived from visible and near infrared reflectance spectra have been constrained to within 50° in latitude. The mineralogy of the polar regions, or 44% of the lunar surface, is almost entirely unknown. A few studies have provided compositional analysis based on the spectral shape (where strong absorption bands were present) of lithologies dominated by one or two minerals. In this study, we take a novel approach and use strong signal and well-calibrated reflectance acquired by two different instruments, the Kaguya Spectra Profiler (SP) and the Lunar Orbiter Laser Altimeter (LOLA), in order to derive the first FeO and mineral maps of the polar regions at a spatial resolution of 1 km per pixel. We use reflectance ratios from SP and calibrated reflectance data from LOLA to derive the first polar maps of FeO, which are within 2 wt.% of the FeO measured by the Lunar Prospector Gamma-Ray spectrometer up to 85° in latitude. We then use the reflectance data from SP and Hapke radiative transfer model to compute the abundance of olivine, low-calcium pyroxene, high-calcium pyroxene and plagioclase, using FeO as a constraint. The radiative transfer model yields an error in mineral abundances of 9 wt.%. We use the mineral maps to study the composition of 27 central peaks and 5 basin rings in the polar regions, and relate their composition to their depth of origin in the lunar crust. We find that the central peaks and basin rings in Feldspathic Highlands Terrane are mostly anorthositic in composition, with modal plagioclase content ranging between 66 and 92 wt.%. The central peaks and basin rings in the South Pole-Aitken basin are noritic

  13. Late Mesoproterozoic to Early Paleozoic history of metamorphic basement from the southeastern Chiapas Massif Complex, Mexico, and implications for the evolution of NW Gondwana (United States)

    Weber, Bodo; González-Guzmán, Reneé; Manjarrez-Juárez, Román; Cisneros de León, Alejandro; Martens, Uwe; Solari, Luigi; Hecht, Lutz; Valencia, Victor


    In this paper, U-Pb zircon geochronology, Lu-Hf and Sm-Nd isotope systematics, geochemistry and geothermobarometry of metaigneous basement rocks exposed in the southeastern Chiapas Massif Complex are presented. Geologic mapping of the newly defined "El Triunfo Complex" located at the southeastern edge of the Chiapas Massif reveals (1) partial melting of a metamorphic basement mainly constituted by mafic metaigneous rocks (Candelaria unit), (2) an Ediacaran metasedimentary sequence (Jocote unit), and (3) occurrence of massif-type anorthosite. All these units are intruded by undeformed Ordovician plutonic rocks of the Motozintla suite. Pressure and temperature estimates using Ca-amphiboles, plagioclase and phengite revealed prograde metamorphism that reached peak conditions at 650 °C and 6 kbar, sufficient for partial melting under water saturated conditions. Relict rutile in titanite and clinopyroxene in amphibolite further indicate a previous metamorphic event at higher P-T conditions. U-Pb zircon ages from felsic orthogneiss boudins hosted in deformed amphibolite and migmatite yield crystallization ages of 1.0 Ga, indicating that dry granitic protoliths represent remnants of Rodinia-type basement. Additionally, a mid-Tonian ( 920 Ma) metamorphic overprint is suggested by recrystallized zircon from a banded gneiss. Zircon from folded amphibolite samples yield mainly Ordovician ages ranging from 457 to 444 Ma that are indistinguishable from the age of the undeformed Motozintla plutonic suite. Similar ages between igneous- and metamorphic- zircon suggest a coeval formation during a high-grade metamorphic event, in which textural discrepancies are explained in terms of differing zircon formation mechanisms such as sub-solidus recrystallization and precipitation from anatectic melts. In addition, some amphibolite samples contain inherited zircon yielding Stenian-Tonian ages around 1.0 Ga. Lu-Hf and Sm-Nd isotopes and geochemical data indicate that the protoliths of

  14. The Dovyren Intrusive Complex (Southern Siberia, Russia): Insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu-Ni-PGE fertility (United States)

    Ariskin, Alexey; Danyushevsky, Leonid; Nikolaev, Georgy; Kislov, Evgeny; Fiorentini, Marco; McNeill, Andrew; Kostitsyn, Yuri; Goemann, Karsten; Feig, Sandrin T.; Malyshev, Alexey


    The Dovyren Intrusive Complex (DIC, Northern Baikal region, 728 Ma) includes the layered dunite-troctolite-gabbronorite Yoko-Dovyren massif (YDM), associated mafic-ultramafic sills, and dykes of olivine-rich to olivine-free gabbronorite. Major rock types of the DIC are presented, including a diversity of olivine orthocumulates to olivine-plagioclase and gabbroic adcumulates, carbonate-contaminated ultramafics and Cu-Ni-PGE mineralisation. Detailed comparisons of complete cross-sections of the YDM in its centre and at the NE and SW margins demonstrate differences in the cumulate succession, mineral chemistry, and geochemical structure that likely reflect variations in parental magma compositions. Combining petrochemical reconstructions for most primitive rocks and calculations using the COMAGMAT-5 model, it is shown that the central and peripheral parts of the intrusion formed by olivine-laden parental magmas ranged in their temperatures by 100 °C, approximately from 1290 °C ( 11 wt% MgO, olivine Fo88) to 1190 °C ( 8 wt% MgO, olivine Fo86). Thermodynamic modelling suggests that the most primitive high-Mg magma was S-undersaturated, whereas its derivatives became S-saturated at T temperatures, producing Cu-rich sulphide precursors, which gave rise to the 'platinum group mineral' (PGM-containing) troctolite and low-mineralised PGE-rich anorthosite in the Main Reef. The geochemical structure of the YDM demonstrates C-shaped distributions of TiO2, K2O, P2O5, and incompatible trace elements, which are 3-5 fold depleted in the cumulate rocks from the inner horizons of the intrusion with respect to the relatively thin lower and upper contact zones. In addition, a marked misbalance between estimates of the average composition of the YDM and that of the proposed olivine-laden parental magmas is established. This misbalance reflects a significant deficit of the YDM in incompatible elements, which argues that 60-70% of basaltic melts had to have been expelled from the

  15. Asteroid Moon Micro-imager Experiment (amie) For Smart-1 Mission, Science Objectives and Devel- Opment Status. (United States)

    Josset, J.-L.; Heather, D.; Dunkin, S.; Roussel, F.; Beauvivre, S.; Kraenhenbuehl, D.; Plancke, P.; Lange-Vin, Y.; Pinet, P.; Chevrel, S.; Cerroni, P.; de Sanctis, M.-C.; Dillelis, A.; Sodnik, Z.; Koschny, D.; Barucci, A.; Hofmann, B.; Josset, M.; Muinonen, K.; Pironnen, J.; Ehrenfreud, P.; Shkuratov, Y.; Shevchenko, V.

    The Asteroid Moon micro-Imager Experiment (AMIE), which will be on board the first ESA SMART-1 mission to the Moon (launch foreseen late 2002), is an imaging sys- tem with scientific, technical and public outreach oriented objectives. The science objectives are to imagine the Lunar South Pole (Aitken basin), permanent shadow areas (ice deposit), eternal light (crater rims), ancient Lunar Non- mare volcanism, local spectro-photometry and physical state of the lunar surface, and to map high latitudes regions (south) mainly at far side (Fig. 1). The technical objectives are to perform a laser-link experiment (detection of laser beam emitted by ESA Tenerife ground station), flight demonstration of new technologies, navigation aid (feasi- bility study), and on-board autonomy investigations. Figure 3: AMIE camera (light source and a photodiode to verify the stability of the incident flux. The optical system is com- posed of a lens to insure good focusing on the samples (focus with the camera is at distance > 100m) and a mirror to image downwards. The samples used were anorthosite from northern Finland, basalt from Antarctis, meteorites and other lunar analog materials. A spectralon panel has also been used to have flat fields references. The samples were imaged with dif- Figure 1: SMART-1 camera imaging the Moon (simulated view) ferent phase angles. Figure 4 shows images obtained with In order to have spectral information of the surface of the basalt and olivine samples, with different integration times Moon, the camera is equipped with a set of filters (Fig. 2), in order to have information in all areas. introduced between the CCD and the teleobjective. Bandpass-filter No Filter, 750 nm (1) AR coating (3) Bandpass-filter 915 nm (2) Longpass-filter 960 nm (4) Band- Band- Figure 4: Basalt and Olivine sample ­ entire image (left) and passfilter passfilter 915 nm 750 nm visible part () (6) (7) Bandpass- More than 150 images were acquired during this validation filter 847

  16. Geochronological U-PB zircon dating of two ore-bearing magma pulses: stratifrom and non-stratiform bodies in the Fedorov deposit (Kola Peninsula). (United States)

    Nitkina, E.


    The Kola Peninsula is one of the unique geological provinces both in Russia and in the world, where platinum and palladium deposits have been discovered. The highest level of noble metal concentration has been found in the ore of the Fedorov-Pana massif. Presently, the several deposits within the Fedorov block contain first hundreds of tons of estimated platinum metal resources, allowing us to ascribe the intrusion to the class of large deposits (Mitrofanov, 2005). The Fedorov-Pana massif is situated in the central part of the Kola Peninsula and is one of 14 major Early Proterozoic layered massifs of the Northern belt occurring at the border between Early Proterozoic volcano-sedimentary rift sequences and Achean basement gneisses (Zagorodny, Radchenko, 1983; Bayanova, 2004). The isotope-geochronological data corroborate the geological-petrological conclusions made on the basis of prospecting works on the polyphase history of the Fedorov-Pana massif. At present, the following ages have been defined for the different stages of the massif evolution: 2526 - 2516 Ma (Nitkina, 2006) - pyroxenite and gabbro of the Fedorov magma chamber; 2501 - 2496- 2485 Ma (Bayanova, 2004; Nitkina, 2006) - gabbro-norite and gabbro of the main phase of the West-Pana block magma chamber and early disseminated platinum-metal mineralization and relatively rich Cu-Ni sulphide mineralization in the basal part of the massif; ca. 2470 Ma (Bayanova, 2004) - pegmatoid gabbro-anothosite and, probably, fluid-associated rich platinum-metal ores of the Lower Layered Horizon (Malaya Pana deposit); ca. 2450 Ma (Bayanova, 2004) - anorthositic injections and, probably, local lens-like rich Pt-Pd accumulations of the Upper layered Horizon. The Fedorov deposit represents the western part of the massif with the exposed area of about 45 km2 and occurs as a lopolith-like body (Shissel et al., 2002; Mitrofanov, 2005; Mitrofanov et al., 2005). The stratigraphy of the deposit consists of the following zones: 50

  17. Secular trends in the geologic record and the supercontinent cycle (United States)

    Bradley, Dwight C.


    to form Rodinia. Rodinia broke up in stages from ca. 1000 to ca. 520 Ma. Before Rodinia had completely come apart, some of its pieces had already been reassembled in a new configuration, Gondwana, which was completed by 530 Ma. Gondwana later collided with Laurentia, Baltica, and Siberia to form Pangea by about 300 Ma. Breakup of Pangea began at about 180 Ma (Early Jurassic) and continues today. In the suggested scenario, no supercontinent cycle in Earth history corresponded to the ideal, in which all the continents were gathered together, then broke apart, then reassembled in a new configuration. Nuna and Gondwana ended their tenures not by breakup but by collision and name change; Rodinia's assembly overlapped in time with its disassembly; and Pangea spalled Tethyan microcontinents throughout much of its tenure. Many other secular trends show a weak or uneven imprint of the supercontinent cycle, no imprint at all. Instead, these secular trends together reveal aspects of the shifting background against which the supercontinents came and went, making each cycle unique. Global heat production declined; plate tectonics sped up through the Proterozoic and slowed down through the Phanerozoic; the atmosphere and oceans became oxidized; life emerged as a major geochemical agent; some rock types went extinct or nearly so (BIF, massif-type anorthosite, komatiite); and other rock types came into existence or became common (blueschists, bioclastic limestone, coal).

  18. Osmium isotope and highly siderophile element constraints on ages and nature of meteoritic components in ancient lunar impact rocks (United States)

    Fischer-Gödde, Mario; Becker, Harry


    The concentrations of highly siderophile elements (HSE: Re, Os, Ir, Ru, Pt, Rh, Pd, Au) and 187Os/188Os isotope compositions have been determined for 67 subsamples of six lunar impact rocks from the Apollo 14, 16 and 17 landing sites, and the lunar meteorite Dar al Gani (DaG) 400 using inductively coupled plasma mass spectrometry (ICP-MS) and negative thermal ionization mass spectrometry (N-TIMS). We report the first Re-Os isochron age on a lunar impact melt rock. 187Re-187Os isotope systematics for Apollo 16 sample 67935 define an isochron age of 4.21 ± 0.13 Ga (MSWD = 1.5), which is interpreted to reflect localized partitioning processes between solid metal-liquid metal as this rock melted. The new age adds further constraints on the significance of pre-4.0 Ga basin forming impacts on the Moon and possible mixing of ancient impactor compositions in lunar impact rocks. Linear correlations displayed by subsamples of a given impact rock in plots of HSE versus Ir concentrations are explained by dilution processes through essentially HSE-free anorthositic lunar crustal target rocks or binary mixing between a high HSE meteoritic end-member and a low HSE end-member composition. Slope-derived HSE ratios and 187Os/188Os of the meteoritic component in granulitic impactites 67915, 67955 and 79215 are similar to slightly volatile element depleted carbonaceous chondrites. Suprachondritic ratios of Ru/Ir, Pt/Ir, Rh/Ir, and Pd/Ir for Apollo 14 impact melt rock 14310 are similar to ratios observed for other Apollo 14 samples and Apollo 17 poikilitic impact melt rocks. Apollo 16 poikilitic and subophitic impact melt rocks 60315 and 67935 show slightly subchondritic Os/Ir and suprachondritic ratios of 187Os/188Os, Ru/Ir, Pt/Ir, Rh/Ir, Pd/Ir and Au/Ir. Their strongly fractionated HSE compositions are similar to some members of the IVA iron meteorite group and provide further evidence for an iron meteorite impactor component in Apollo 16 impact melt rocks. The range of chondritic

  19. Volatile element loss during planetary magma ocean phases (United States)

    Dhaliwal, Jasmeet K.; Day, James M. D.; Moynier, Frédéric


    Moderately volatile elements (MVE) are key tracers of volatile depletion in planetary bodies. Zinc is an especially useful MVE because of its generally elevated abundances in planetary basalts, relative to other MVE, and limited evidence for mass-dependent isotopic fractionation under high-temperature igneous processes. Compared with terrestrial basalts, which have δ66Zn values (per mille deviation of the 66Zn/64Zn ratio from the JMC-Lyon standard) similar to some chondrite meteorites (∼+0.3‰), lunar mare basalts yield a mean δ66Zn value of +1.4 ± 0.5‰ (2 st. dev.). Furthermore, mare basalts have average Zn concentrations ∼50 times lower than in typical terrestrial basaltic rocks. Late-stage lunar magmatic products, including ferroan anorthosite, Mg- and Alkali-suite rocks have even higher δ66Zn values (+3 to +6‰). Differences in Zn abundance and isotopic compositions between lunar and terrestrial rocks have previously been interpreted to reflect evaporative loss of Zn, either during the Earth-Moon forming Giant Impact, or in a lunar magma ocean (LMO) phase. To explore the mechanisms and processes under which volatile element loss may have occurred during a LMO phase, we developed models of Zn isotopic fractionation that are generally applicable to planetary magma oceans. Our objective was to identify conditions that would yield a δ66Zn signature of ∼+1.4‰ within the lunar mantle. For the sake of simplicity, we neglect possible Zn isotopic fractionation during the Giant Impact, and assumed a starting composition equal to the composition of the present-day terrestrial mantle, assuming both the Earth and Moon had zinc 'consanguinity' following their formation. We developed two models: the first simulates evaporative fractionation of Zn only prior to LMO mixing and crystallization; the second simulates continued evaporative fractionation of Zn that persists until ∼75% LMO crystallization. The first model yields a relatively homogenous bulk solid

  20. Groundwater quality in an abandoned metal extraction site: the case study of Campello Monti (NW Italy) (United States)

    Mehta, Neha; Lasagna, Manuela; Antonella Dino, Giovanna; De Luca, Domenico Antonio


    Extractive activities present threat to natural water systems and their effects are observed even after the cessation of activities. The harmful effects of extractive activities such as deterioration of water sources by low quality waters or by allowing leaching of metals into groundwater makes it necessary to carry out careful, scientific and comprehensive studies on this subject. Consequently, the same problem statement was chosen as part of a PhD research Project. The PhD research is part of REMEDIATE project (A Marie Sklodowska-Curie Action Initial Training Network for Improved decision making in contaminated land site investigation and risk assessment, Grant Agreement No. 643087). The current work thus points out on the contamination of groundwater sources due to past mining activities in the area. Contaminated groundwater may act as possible contamination source to surface water also. The impacts on water systems connected to mining activities depend on the ore type, metal being extracted, exploitation method, ore processing, pollution control efforts, geochemical and hydrogeochemical conditions of water and surroundings. To evaluate the effects posed by past metal extracting activities the study was carried out at an abandoned site used for extracting nickel in Campello Monti (Valstrona municipality, Piedmont region, Italy). Campello Monti is located in basement of Southern Italian Alps in the Ivrea Verbano Zone. The area is composed of mafic rocks intruded by mantle periodite. The mafic formation consists of peridotites, pyroxenites, gabbros, anorthosites, gabbro-norite, gabbro-diorite and diorite. Mines were used for nickel exploitation from 9th Century and continued until 1940s. The long history of nickel extraction has left the waste contaminated with Ni and Co in the mountains alongwith tunnels used for carrying out metal extracting activities. The area around the site is used for housing, shows the presence of domestic animals and has Strona creek

  1. Identification of New Lithic Clasts in Lunar Breccia 14305 by Micro-CT and Micro-XRF Analysis (United States)

    Zeigler, Ryan A.; Carpenter, Paul K.; Jolliff, Bradley L.


    From 1969 to 1972, Apollo astronauts collected 382 kg of rocks, soils, and core samples from six locations on the surface of the Moon. The samples were initially characterized, largely by binocular examination, in a custom-built facility at Johnson Space Center (JSC), and the samples have been curated at JSC ever since. Despite over 40 years of study, demand for samples remains high (500 subsamples per year are allocated to scientists around the world), particularly for plutonic (e.g., anorthosites, norites, etc.) and evolved (e.g., granites, KREEP basalts) lithologies. The reason for the prolonged interest is that as new scientists and new techniques examine the samples, our understanding of how the Moon, Earth, and other inner Solar System bodies formed and evolved continues to grow. Scientists continually clamor for new samples to test their emerging hypotheses. Although all of the large Apollo samples that are igneous rocks have been classified, many Apollo samples are complex polymict breccias that have previously yielded large (cm-sized) igneous clasts. In this work we present the initial efforts to use the non-destructive techniques of micro-computed tomography (micro-CT) and micro x-ray fluorescence (micro-XRF) to identify large lithic clasts in Apollo 14 polymict breccia sample 14305. The sample in this study is 14305,483, a 150 g slab of regolith breccia 14305 measuring 10x6x2 cm (Figure 1a). The sample was scanned at the University of Texas High-Resolution X-ray CT Facility on an Xradia MicroXCT scanner. Two adjacent overlapping volumes were acquired at 49.2 micrometer resolution and stitched together, resulting in 1766 slices. Each volume was acquired at 100 kV accelerating voltage and 98 mA beam current with a 1 mm CaF2 filter, with 2161 views gathered over 360deg at 3 seconds acquisition time per view. Micro-XRF analyses were done at Washington University in St. Louis, Missouri on an EDAX Orbis PC micro-XRF instrument. Multiple scans were made at 40 k

  2. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries (United States)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.


    NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the

  3. Petrogenesis and metallogenesis of the Wajilitag and Puchang Fe-Ti oxide-rich intrusive complexes, northwestern Tarim Large Igneous Province (United States)

    Zhang, Dongyang; Zhang, Zhaochong; Huang, He; Cheng, Zhiguo; Charlier, Bernard


    The Wajilitag and Puchang intrusive complexes of the Tarim large igneous province (TLIP) are associated with significant resources of Fe-Ti oxide ores. These two mafic-ultramafic intrusions show differences in lithology and mineral chemistry. Clinopyroxenite and melagabbro are the dominant rock types in the Wajilitag complex, whereas the Puchang complex is generally gabbroic and anorthositic in composition with minor plagioclase-bearing clinopyroxenites in the marginal zone. Disseminated Fe-Ti oxide ores are found in the Wajilitag complex and closely associated with clinopyroxenites, whereas the Puchang complex hosts massive to disseminated Fe-Ti oxide ores mainly within its gabbroic rocks. The Wajilitag intrusive rocks are characterized by a restricted range of initial 87Sr/86Sr ratios (0.7038-0.7048) and positive εNd(t) (+0.04 - +3.01), indicating insignificant involvement of continental crustal contamination. The slightly higher initial 87Sr/86Sr ratios (0.7039-0.7059) and lower εNd(t) values (-1.05 - +2.35) of the Puchang intrusive rocks also suggest that the isotopic characteristics was controlled primarily by their mantle source, rather than by crustal contamination. Both complexes have Sr-Nd isotopic compositions close the neighboring kimberlitic rocks and their hosted mantle xenoliths in the TLIP. This indicates that the ferrobasaltic parental magmas were most probably originated from partial melting of a metasomatized subcontinental lithospheric mantle, modified recently with subduction-related materials by the impingement of the ascending mantle plume. The recycled subduction-related materials preserved in the lithospheric mantle could play a key role in the formation of the parental Fe-rich magmas in the context of an overall LIP system. The distinct variations in mineral assemblage for each complex and modeled results indicated that the Wajilitag and Puchang complexes experienced different crystallization path. Fe-Ti oxides in Wajilitag joined the

  4. Carbonate-silicate melt immiscibility, REE mineralising fluids, and the evolution of the Lofdal Intrusive Suite, Namibia (United States)

    Bodeving, Sarah; Williams-Jones, Anthony E.; Swinden, Scott


    ). Note: ANO = anorthosite, SAN = sanidine, OLI = oligoclase, AND = andesine, LAB = labradorite, BYT = bytownite. 3. Composition of the Lofdal mica plotted on the biotite classification diagram of Rieder et al. (1998). 4. Clinopyroxene composition in nepheline syenite and calcio-carbonatite phenocrysts illustrated on the classification ternary for sodic pyroxenes (after Morimoto; 1989). Quad (Q) represents wollastonite, enstatite and ferrosilite of the Mg-Ca-Fe group of pyroxenes. 5. The range of carbonatite compositions illustrated on the carbonatite classification diagram of Gittins and Harmer (1997). 6. Composition of the Lofdal nepheline syenite on the plutonic Total-Alkali-Silica diagram of Wilson (1989). 7. a. A binary plot showing the concentration of Y versus that of Ho in bulk rock samples of the phono-tephrites, phonolites, nepheline syenites and carbonatites. The trend-line represents the mantle value of approximately 27.7 (Sun and McDonough, 1989). b. A binary plot showing the concentration of Nb versus that of Ta in bulk rock samples of the phono-tephrites, phonolites, nepheline syenites and carbonatites. The trend-line represents the mantle value of approximately 17.4 (Sun and McDonough, 1989). c. A binary plot showing the concentration of Zr versus that of Hf in bulk rock samples of the phono-tephrites, phonolites, nepheline syenites and carbonatites. The trend-line represents the mantle value of approximately 36.2 (Sun and McDonough, 1989). 8. A binary plot showing the concentration of K2O versus Na2O in nepheline syenite and fenite.

  5. Classification, U-Pb (TIMS) age and sources of the Kolmozero-Keivy rare-element pegmatites (NE Baltic Shield) (United States)

    Kudryashov, Nikolay; Zozulya, Dmitry; Lyalina, Ludmila; Mokrushin, Artem; Steshenko, Ekaterina; Kunakkuzin, Evgeniy


    Kolmozero-Keivy zone, NE Baltic shield, is composed mainly from basic-intermediate-acid metavolcanic suites of 2.83-2.87 Ga age and metamorphosed at amphibolitic facies during 1.8-1.7 Ga. Younger igneous events are represented by voluminous intrusions of 2.73 Ga plagio-microcline granites and of 2.65 Ga peralkaline A-type granites, and small stocks of 2.52 Ga tourmaline granites. Four pegmatite fields with total amount of more than 100 bodies are confined to Kolmozero subzone. The pegmatites intrude amphibolites and rarely associated gabbro-anorthosite and are of 50-700m long and of 10-35m thickness. The Kolmozero pegmatites are of complex type, spodumene subtype with Li, Cs, Be, Ta, Sn geochemical signature and belong to LCT family by classification of Cerny and Ercit [1]. They crystallized at relatively high pressure (3-4 kbar) with peralumunious S-type granite as the source magma. The Vasin Myl'k pegmatite field with the lepidolite-albite-microcline-spodumene-pollucite association is located among amphibolites in the northwestern part of the Kolmozero zone. The minerals of the columbite-tantalite group from Vasin Myl'k field include microlite, simpsonite, and torolite, and are the earliest within the rare-element mineral sequence. Microlite from the pegmatite taken from the dump of a prospecting drill hole was used for U-Pb (TIMS) age determination. The discordia constructed for seven measured microlite samples is characterized by upper intercept with concordia at 2454±8 Ma, which probably reflects the time of rare-element pegmatite crystallization, coeval with the age of tourmaline granites. Several tens of pegmatite bodies from Keivy subzone are confined to inner and outer apical parts of peralkaline granite intrusions. They are of few tens meters long and of several meters thickness, sometimes are of oval and irregular shape (so-called quartzolites). Keivy pegmatites are subdivided on quartz-microcline, quartz-feldspar-astrophylite and quartz


    Directory of Open Access Journals (Sweden)

    O. B. Gintov


    -subduction option, and one of them is Moho.Spreading of the Western and Eastern microplates of USh began at the turn of 2.05–2.10 billion years, as evidenced by the available tectonophysical data on fields of latitudinal extension of the crust. During spreading 2.1–2.05 billion years ago, emanations and solutions were able to ascend into the upper crust and thus stimulate palingenesis (Novoukrainsky and Kirovogradsky granites, and during repeated spreading 1.75 billion years ago, magma of the basic and acid composition (Pluto gabbro-anorthosite and rapakivi intruded into the upper crust. The spreading zone coincided with the former collisional suture and became the site wherein the inter-regional Kherson-Smolensk suture was formed; it stretches submeridionally across the East European platform. 

  7. The Chineysky layered massif (Siberia, Russia) and Upper Zone of the Bushveld Complex: resemblance and difference features (United States)

    Gongalskiy, B.; Krivolutskaya, N.


    magnetite or plagioclase. It is worth mentioning the early appearance of Ol-Mt and Ol-Pl on the liquidus and the cotectic crystallization of these minerals in the rocks of the Chineysky massif and in the gabbroids of the Udokan Dike, which highlights genetic links between them. The crystallization sequences of the minerals demonstrate that olivine was in reaction relations with the melt, completely dissolved due to a peritectic reaction at temperatures T = 1110-1150°C, and was replaced (completely or partly) by pyroxenes and magnetite. These data testify that the initial melts were saturated or slightly oversaturated with SiO2 and that the intercumulus systems had elevated SiO2 concentrations. They were close to the proposed parental magma to Upper Zone of the Bushveld [3 ] in term of SiO2, CaO, Na2O but enriched in FeO and TiO2 and depleted in Al2O3 and MgO. This study was supported by RFBR (project № 07-05-01007). References 1. Bogatikov O. A., Kovalenko V. I., Sharkov E. V. and Yarmolyuk V. V. Magmatism and Geodynamics. Terrestrial Magmatism throughout the Earth's History (Gordon and Breach Science Publishers, Amsterdam), 2000. 2. Gongalsky B. I., Krivolutskaya N. A., Ariskin A. A. and Nikolaev G. S. Inner Structure, Composition, and Genesis of the Chineiskii Anorthosite Gabbronorite Massif, Northern Transbaikalia. Geochemistry International, 2008, Vol. 46, No. 7, pp. 637-665. 3. Eales H. V. and Cawthorn R. G. The Bushveld Complex in Layered Intrusions. Ed. by R. G. Cawthorn (Elsevier, Amsterdam), 1996, pp. 181-230.

  8. Longhi Games, Internal Reservoirs, and Cumulate Porosity (United States)

    Morse, S. A.


    Fe in plagioclase at an early age, T-rollers (or not) on the Di-Trid boundary in Fo-Di-Sil, the mantle solidus, origins of anorthosites, esoteric uses of Schreinemakers rules and many more topics are all fresh and pleasant memories of John Longhi's prolific and creative work. The Fram-Longhi experimental effect of pressure on plagioclase partitioning with liquid in mafic rocks became essential to an understanding of multiphase Rayleigh fractionation of plagioclase in big layered intrusions. Only by using the pressure effect could I find a good equation through the data for the Kiglapait intrusion, and that result among others required the existence with probability 1.0 of an internal reservoir (Morse, JPet 2008). Knowledge of cumulate porosity is a crucial key to the understanding of layered igneous rocks. We seek both the initial (inverse packing fraction) and residual porosity to find the time and process path from sedimentation to solidification. In the Kiglapait Lower Zone we have a robust estimate of mean residual porosity from the modes of the excluded phases augite, oxides, sulfide, and apatite. To this we apply the maximum variance of plagioclase composition (the An range) to find an algorithm that extends through the Upper Zone and to other intrusions. Of great importance is that all these measurements were made in grain mounts concentrated from typically about 200 g of core or hand specimen, hence the represented sample volume is thousands of times greater than for a thin section. The resulting distribution and scatter of the An range is novel and remarkable. It is V-shaped in the logarithmic representation of stratigraphic height, running from about 20 mole % at both ends (base to top of the Layered Series) to near-zero at 99 PCS. The intercept of the porosity-An range relation gives An range = 3.5 % at zero residual porosity. Petrographic analysis reveals that for PCS less than 95 and greater than 99.9, the An range is intrinsic, i.e. pre-cumulus, for

  9. Chandrayaan-2: India's First Soft-landing Mission to Moon (United States)

    Mylswamy, Annadurai; Krishnan, A.; Alex, T. K.; Rama Murali, G. K.


    The first Indian planetary mission to moon, Chandrayaan-1, launched on 22nd October, 2008 with a suite of Indian and International payloads on board, collected very significant data over its mission duration of close to one year. Important new findings from this mission include, discovery of hydroxyl and water molecule in sunlit lunar surface region around the poles, exposure of large anorthositic blocks confirming the global lunar magma hypothesis, signature of sub surface ice layers in permanently shadowed regions near the lunar north pole, evidence for a new refractory rock type, mapping of reflected lunar neutral atoms and identification of mini-magnetosphere, possible signature of water molecule in lunar exosphere, preserved lava tube that may provide site for future human habitation and radiation dose en-route and around the moon. Chandrayaan-2:, The success of Chandrayaan-1 orbiter mission provided impetus to implement the second approved Indian mission to moon, Chandrayaan-2, with an Orbiter-Lander-Rover configuration. The enhanced capabilities will enable addressing some of the questions raised by the results obtained from the Chandrayaan-1 and other recent lunar missions and also to enhance our understanding of origin and evolution of the moon. The orbiter that will carry payloads to further probe the morphological, mineralogical and chemical properties of the lunar surface material through remote sensing observations in X-ray, visible, infra-red and microwave regions. The Lander-Rover system will enable in-depth studies of a specific lunar location and probe various physical properties of the moon. The Chandrayaan-2 mission will be collaboration between Indian Space Research Organization (ISRO) and the Federal Space Agency of Russia. ISRO will be responsible for the Launch Vehicle, the Orbiter and the Rover while the Lander will be provided by Russia. Initial work to realize the different elements of the mission is currently in progress in both countries

  10. Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and observations) (United States)

    Head, James W.; Wilson, Lionel


    We utilize a theoretical analysis of the generation, ascent, intrusion and eruption of basaltic magma on the Moon to develop new insights into magma source depths, supply processes, transport and emplacement mechanisms via dike intrusions, and effusive and explosive eruptions. We make predictions about the intrusion and eruption processes and compare these with the range of observed styles of mare volcanism, and related features and deposits. Density contrasts between the bulk mantle and regions with a greater abundance of heat sources will cause larger heated regions to rise as buoyant melt-rich diapirs that generate partial melts that can undergo collection into magma source regions; diapirs rise to the base of the anorthositic crustal density trap (when the crust is thicker than the elastic lithosphere) or, later in history, to the base of the lithospheric rheological trap (when the thickening lithosphere exceeds the thickness of the crust). Residual diapiric buoyancy, and continued production and arrival of diapiric material, enhances melt volume and overpressurizes the source regions, producing sufficient stress to cause brittle deformation of the elastic part of the overlying lithosphere; a magma-filled crack initiates and propagates toward the surface as a convex upward, blade-shaped dike. The volume of magma released in a single event is likely to lie in the range 102 km3 to 103 km3, corresponding to dikes with widths of 40-100 m and both vertical and horizontal extents of 60-100 km, favoring eruption on the lunar nearside. Shallower magma sources produce dikes that are continuous from the source region to the surface, but deeper sources will propagate dikes that detach from the source region and ascend as discrete penny-shaped structures. As the Moon cools with time, the lithosphere thickens, source regions become less abundant, and rheological traps become increasingly deep; the state of stress in the lithosphere becomes increasingly contractional