WorldWideScience

Sample records for anopheles mosquito species

  1. Anopheles (Anopheles) petragnani Del Vecchio 1939-a new mosquito species for Germany.

    Science.gov (United States)

    Becker, Norbert; Pfitzner, Wolf Peter; Czajka, Christina; Kaiser, Achim; Weitzel, Thomas

    2016-07-01

    The so far known species of the Anopheles Claviger Complex, Anopheles claviger s.s. and Anopheles petragnani, can only be distinguished by partial overlapping characteristics of immature stages and by nucleotide sequence variation of the genomic ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2) region. The known distribution of An. petragnani is so far restricted to the western Mediterranean region, whereas An. claviger s.s. occurs across most of Europe, up to the Middle East and North Africa. In our study, we investigated the larval mosquito fauna in rock pools of the Murg valley (Black Forest, Germany) once a month from April to December 2015.Among other species, larvae belonging to the Anopheles Claviger Complex were found. The fourth instar larvae were morphologically identified by chaetotaxy of the head and abdomen. The results were confirmed by a multiplex PCR and additional sequencing of the amplificates.Of the 1289 collected larvae from the rock pools, seven belonged to the Anopheles Claviger Complex. Five individuals were determined morphologically as An. petragnani and two as An. claviger s.s. The associated mosquito fauna comprised of Aedes japonicus japonicus (548 individuals), Culex pipiens s.l. and Culex torrentium (493 individuals) and Culex hortensis (241 individuals).This is the first record of An. petragnani north of the Alps. Further studies will reveal whether this is an isolated population of An. petragnani and if the investigated rock pool breeding sites represent typical habitats of this species in temperate regions in Central Europe.

  2. Random amplified polymorphic DNA (RAPD) markers readily distinguish cryptic mosquito species (Diptera: Culicidae: Anopheles).

    Science.gov (United States)

    Wilkerson, R C; Parsons, T J; Albright, D G; Klein, T A; Braun, M J

    1993-01-01

    The usefulness of random amplified polymorphic DNA (RAPD) was examined as a potential tool to differentiate cryptic mosquito species. It proved to be a quick, effective means of finding genetic markers to separate two laboratory populations of morphologically indistinguishable African malaria vectors, Anopheles gambiae and An. arabiensis. In an initial screening of fifty-seven RAPD primers, 377 bands were produced, 295 of which differed between the two species. Based on criteria of interpretability, simplicity and reproducibility, thirteen primers were chosen for further screening using DNA from thirty individuals of each species. Seven primers produced diagnostic bands, five of which are described here. Some problematic characteristics of RAPD banding patterns are discussed and approaches to overcome these are suggested. PMID:8269099

  3. Parasite killing in malaria non-vector mosquito Anopheles culicifacies species B: implication of nitric oxide synthase upregulation.

    Directory of Open Access Journals (Sweden)

    Sonam Vijay

    Full Text Available BACKGROUND: Anopheles culicifacies, the main vector of human malaria in rural India, is a complex of five sibling species. Despite being phylogenetically related, a naturally selected subgroup species B of this sibling species complex is found to be a poor vector of malaria. We have attempted to understand the differences between vector and non-vector Anopheles culicifacies mosquitoes in terms of transcriptionally activated nitric oxide synthase (AcNOS physiologies to elucidate the mechanism of refractoriness. Identification of the differences between genes and gene products that may impart refractory phenotype can facilitate development of novel malaria transmission blocking strategies. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a study on phylogenetically related susceptible (species A and refractory (species B sibling species of An. culicifacies mosquitoes to characterize biochemical and molecular differences in AcNOS gene and gene elements and their ability to inhibit oocyst growth. We demonstrate that in species B, AcNOS specific activity and nitrite/nitrates in mid-guts and haemolymph were higher as compared to species A after invasion of the mid-gut by P. vivax at the beginning and during the course of blood feeding. Semiquantitative RT-PCR and real time PCR data of AcNOS concluded that this gene is more abundantly expressed in midgut of species B than in species A and is transcriptionally upregulated post blood meals. Dietary feeding of L-NAME along with blood meals significantly inhibited midgut AcNOS activity leading to an increase in oocyst production in An. culicifacies species B. CONCLUSIONS/SIGNIFICANCE: We hypothesize that upregulation of mosquito innate cytotoxicity due to NOS in refractory strain to Plasmodium vivax infection may contribute to natural refractoriness in An. culicifacies mosquito population. This innate capacity of refractory mosquitoes could represent the ancestral function of the mosquito immune system against

  4. Mosquitoes of Anopheles hyrcanus (Diptera, Culicidae) Group: Species Diagnostic and Phylogenetic Relationships.

    Science.gov (United States)

    Khrabrova, Natalia V; Andreeva, Yulia V; Sibataev, Anuarbek K; Alekseeva, Svetlana S; Esenbekova, Perizat A

    2015-09-01

    Herein, we report the results of study of Anopheles species in Primorsk and Khabarovsk regions of Russia. Three species of the Anopheles hyrcanus group: An. kleini, An. pullus, and An. lesteri were identified by molecular taxonomic diagnostics for the first time in Russia. Surprisingly, An. sinensis, which earlier was considered the only species of Anopheles in Russian Far East, was not observed. We analyzed nucleotide variation in the 610-bp fragment of the 5' end of the cytochrome c oxidase subunit I (COI) region. All species possessed a distinctive set of COI sequences. A maximum likelihood phylogenetic tree was constructed for members of the hyrcanus group. The examined Anopheles hyrcanus group members could be divided into two major subgroups: subgroup 1 (An. hyrcanus and An. pullus) and subgroup 2 (An. sinensis, An. kleini, and An. lesteri), which were found to be monophyletic.

  5. Role of Culex and Anopheles mosquito species as potential vectors of rift valley fever virus in Sudan outbreak, 2007

    Directory of Open Access Journals (Sweden)

    Galal Fatma H

    2010-03-01

    Full Text Available Abstract Background Rift Valley fever (RVF is an acute febrile arthropod-borne viral disease of man and animals caused by a member of the Phlebovirus genus, one of the five genera in the family Bunyaviridae. RVF virus (RVFV is transmitted between animals and human by mosquitoes, particularly those belonging to the Culex, Anopheles and Aedes genera. Methods Experiments were designed during RVF outbreak, 2007 in Sudan to provide an answer about many raised questions about the estimated role of vector in RVFV epidemiology. During this study, adult and immature mosquito species were collected from Khartoum and White Nile states, identified and species abundance was calculated. All samples were frozen individually for further virus detection. Total RNA was extracted from individual insects and RVF virus was detected from Culex, Anopheles and Aedes species using RT-PCR. In addition, data were collected about human cases up to November 24th, 2007 to asses the situation of the disease in affected states. Furthermore, a historical background of the RVF outbreaks was discussed in relation to global climatic anomalies and incriminated vector species. Results A total of 978 mosquitoes, belonging to 3 genera and 7 species, were collected during Sudan outbreak, 2007. Anopheles gambiae arabiensis was the most frequent species (80.7% in White Nile state. Meanwhile, Cx. pipiens complex was the most abundant species (91.2% in Khartoum state. RT-PCR was used and successfully amplified 551 bp within the M segment of the tripartite negative-sense single stranded RNA genome of RVFV. The virus was detected in female, male and larval stages of Culex and Anopheles species. The most affected human age interval was 15-29 years old followed by ≥ 45 years old, 30-44 years old, and then 5-14 years old. Regarding to the profession, housewives followed by farmers, students, shepherd, workers and the free were more vulnerable to the infection. Furthermore, connection between

  6. Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae

    OpenAIRE

    DeJong, Randall J.; Miller, Lisa M; Molina-Cruz, Alvaro; Gupta, Lalita; Kumar, Sanjeev; Barillas-Mury, Carolina

    2007-01-01

    The mosquito Anopheles gambiae is a primary vector of Plasmodium parasites in Africa. The effect of aging on reproductive output in A. gambiae females from three strains that differ in their ability to melanize Plasmodium and in their systemic levels of hydrogen peroxide (H2O2), a reactive oxygen species (ROS), was analyzed. The number of eggs oviposited after the first blood meal decreases with age in all strains; however, this decline was much more pronounced in the G3 (unselected) and R (r...

  7. Biting behavior of Anopheles mosquitoes in Costa Marques, Rondonia, Brazil

    Directory of Open Access Journals (Sweden)

    Terry A. Klein

    1991-03-01

    Full Text Available Mosquito collections were made in and near Costa Marques, Rondonia, Brazil, to determine anopheline anthropophilic/zoophilic behavior. Collections from a non-illuminated, bovine-baited trap and indoor and outdoor human-bait collections were compared. Anopheles darlingi and Anopheles deaneorum were more anthropophilic than the other anophelines collected. The remainder of the Anopheles species were collected much morefrequently in bovine-baited traps than in human-bait collections. Anopheles darlingi and An. deaneorum were more frequently collected inside houses than the other anopheline species. But, when collections were made in a house with numerous openings in the walls, there were few differences in the percentages of each species biting man indoors versus outdoors. Anopheles darlingi was the predominant mosquito collected, both inside and outside houses, and had the strongest anthropophilic feeding behavior of the anophelines present.Para determinar o comportamento antropofilico e zoofilico dos anofelinos, foram capturados mosquitos na periferia e na zona urbana de Costa Marques, Rondônia, Brasil. Foram comparadas as capturas feitas à noite, com iscas bovinas e humanas, dentro efora de casa. O Anopheles darlingi e o Anopheles deaneorumforam mais antropojilicos do que os outros anofelinos capturados. O restante das espécies anofelinas foi capturado mais freqüentemente nas iscas bovinas do que nas humanas. Anopheles darlingi e Anopheles deaneorumforam capturados dentro de casa com mais freqüência do que as outras espécies anofelinas. Porém, quando a captura foi feita em casas com muitas aberturas nas paredes houve pouca diferença nas porcentagens de cada espécie sugadora de humanos dentro efora de casa. Anopheles darlingi foi o mosquito capturado com mais freqüência, dentro e fora de casa, e apresentava maior antropofilia em relação aos outros anofelinos presentes.

  8. Genetic diversity in two sibling species of the Anopheles punctulatus group of mosquitoes on Guadalcanal in the Solomon Islands

    Directory of Open Access Journals (Sweden)

    Harada Masakazu

    2008-11-01

    Full Text Available Abstract Background The mosquito Anopheles irenicus, a member of the Anopheles punctulatus group, is geographically restricted to Guadalcanal in the Solomon Islands. It shows remarkable morphological similarities to one of its sibling species, An. farauti sensu stricto (An. farauti s.s., but is dissimilar in host and habitat preferences. To infer the genetic variations between these two species, we have analyzed mitochondrial cytochrome oxidase subunit II (COII and nuclear ribosomal internal transcribed spacer 2 (ITS2 sequences from Guadalcanal and from one of its nearest neighbours, Malaita, in the Solomon Islands. Results An. farauti s.s. was collected mostly from brackish water and by the human bait method on both islands, whereas An. irenicus was only collected from fresh water bodies on Guadalcanal Island. An. irenicus is distributed evenly with An. farauti s.s. (ΦSC = 0.033, 0.38% and its range overlaps in three of the seven sampling sites. However, there is a significant population genetic structure between the species (ΦCT = 0.863, P ST = 0.865, P FST = 0.878, P An. irenicus is a monophyletic species, not a hybrid, and is closely related to the An. farauti s.s. on Guadalcanal. The time estimator suggests that An. irenicus diverged from the ancestral An. farauti s.s. on Guadalcanal within 29,000 years before present (BP. An. farauti s.s. expanded much earlier on Malaita (texp = 24,600 BP than the populations on Guadalcanal (texp = 16,800 BP for An. farauti s.s. and 14,000 BP for An. irenicus. Conclusion These findings suggest that An. irenicus and An. farauti s.s. are monophyletic sister species living in sympatry, and their populations on Guadalcanal have recently expanded. Consequently, the findings further suggest that An. irenicus diverged from the ancestral An. farauti s.s. on Guadalcanal.

  9. Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae.

    Science.gov (United States)

    DeJong, Randall J; Miller, Lisa M; Molina-Cruz, Alvaro; Gupta, Lalita; Kumar, Sanjeev; Barillas-Mury, Carolina

    2007-02-13

    The mosquito Anopheles gambiae is a primary vector of Plasmodium parasites in Africa. The effect of aging on reproductive output in A. gambiae females from three strains that differ in their ability to melanize Plasmodium and in their systemic levels of hydrogen peroxide (H2O2), a reactive oxygen species (ROS), was analyzed. The number of eggs oviposited after the first blood meal decreases with age in all strains; however, this decline was much more pronounced in the G3 (unselected) and R (refractory to Plasmodium infection) strains than in the S (highly susceptible to Plasmodium) strain. Reduction of ROS levels in G3 and R females by administration of antioxidants reversed this age-related decline in fecundity. The S and G3 strains were fixed for two functionally different catalase alleles that differ at the second amino acid position (Ser2Trp). Biochemical analysis of recombinant proteins revealed that the Trp isoform has lower specific activity and higher Km than the Ser isoform, indicating that the former is a less efficient enzyme. The Trp-for-Ser substitution appears to destabilize the functional tetrameric form of the enzyme. Both alleles are present in the R strain, and Ser/Ser females had significantly higher fecundity than Trp/Trp females. Finally, a systemic reduction in catalase activity by dsRNA-mediated knockdown significantly reduced the reproductive output of mosquito females, indicating that catalase plays a central role in protecting the oocyte and early embryo from ROS damage. PMID:17284604

  10. Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae

    Science.gov (United States)

    DeJong, Randall J.; Miller, Lisa M.; Molina-Cruz, Alvaro; Gupta, Lalita; Kumar, Sanjeev; Barillas-Mury, Carolina

    2007-01-01

    The mosquito Anopheles gambiae is a primary vector of Plasmodium parasites in Africa. The effect of aging on reproductive output in A. gambiae females from three strains that differ in their ability to melanize Plasmodium and in their systemic levels of hydrogen peroxide (H2O2), a reactive oxygen species (ROS), was analyzed. The number of eggs oviposited after the first blood meal decreases with age in all strains; however, this decline was much more pronounced in the G3 (unselected) and R (refractory to Plasmodium infection) strains than in the S (highly susceptible to Plasmodium) strain. Reduction of ROS levels in G3 and R females by administration of antioxidants reversed this age-related decline in fecundity. The S and G3 strains were fixed for two functionally different catalase alleles that differ at the second amino acid position (Ser2Trp). Biochemical analysis of recombinant proteins revealed that the Trp isoform has lower specific activity and higher Km than the Ser isoform, indicating that the former is a less efficient enzyme. The Trp-for-Ser substitution appears to destabilize the functional tetrameric form of the enzyme. Both alleles are present in the R strain, and Ser/Ser females had significantly higher fecundity than Trp/Trp females. Finally, a systemic reduction in catalase activity by dsRNA-mediated knockdown significantly reduced the reproductive output of mosquito females, indicating that catalase plays a central role in protecting the oocyte and early embryo from ROS damage. PMID:17284604

  11. Highly evolvable malaria vectors : the genomes of 16 Anopheles mosquitoes

    OpenAIRE

    Neafsey, Daniel E; Waterhouse, Robert M.; Abai, Mohammad R.; Aganezov, Sergey S.; Alekseyev, Max A.; Allen, James E.; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A.; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W.; Blandin, Stephanie A.

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning similar to 100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromos...

  12. Genetic diversity in two sibling species of the Anopheles punctulatus group of mosquitoes on Guadalcanal in the Solomon Islands

    Science.gov (United States)

    2008-01-01

    Background The mosquito Anopheles irenicus, a member of the Anopheles punctulatus group, is geographically restricted to Guadalcanal in the Solomon Islands. It shows remarkable morphological similarities to one of its sibling species, An. farauti sensu stricto (An. farauti s.s.), but is dissimilar in host and habitat preferences. To infer the genetic variations between these two species, we have analyzed mitochondrial cytochrome oxidase subunit II (COII) and nuclear ribosomal internal transcribed spacer 2 (ITS2) sequences from Guadalcanal and from one of its nearest neighbours, Malaita, in the Solomon Islands. Results An. farauti s.s. was collected mostly from brackish water and by the human bait method on both islands, whereas An. irenicus was only collected from fresh water bodies on Guadalcanal Island. An. irenicus is distributed evenly with An. farauti s.s. (ΦSC = 0.033, 0.38%) and its range overlaps in three of the seven sampling sites. However, there is a significant population genetic structure between the species (ΦCT = 0.863, P < 0.01; ΦST = 0.865, P < 0.01 and FST = 0.878, P < 0.01). Phylogenetic analyses suggest that An. irenicus is a monophyletic species, not a hybrid, and is closely related to the An. farauti s.s. on Guadalcanal. The time estimator suggests that An. irenicus diverged from the ancestral An. farauti s.s. on Guadalcanal within 29,000 years before present (BP). An. farauti s.s. expanded much earlier on Malaita (texp = 24,600 BP) than the populations on Guadalcanal (texp = 16,800 BP for An. farauti s.s. and 14,000 BP for An. irenicus). Conclusion These findings suggest that An. irenicus and An. farauti s.s. are monophyletic sister species living in sympatry, and their populations on Guadalcanal have recently expanded. Consequently, the findings further suggest that An. irenicus diverged from the ancestral An. farauti s.s. on Guadalcanal. PMID:19025663

  13. Insecticidal potency of Aspergillus terreus against larvae and pupae of three mosquito species Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    Science.gov (United States)

    Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-11-01

    Microbial control agents offer alternatives to chemical pest control, as they can be more selective than chemical insecticides. The present study evaluates the mosquito larvicidal and pupicidal potential of fungus mycelia using ethyl acetate and methanol solvent extracts produced by Aspergillus terreus against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. The A. terreus mycelia were extracted after 15 days from Sabouraud dextrose broth medium. The ethyl acetate extracts showed lethal concentration that kills 50% of the exposed larvae (LC50) and lethal concentration that kills 90% of the exposed larvae (LC90) values of the first, second, third, and fourth instar larvae of An. stephensi (LC50 = 97.410, 102.551, 29.802, and 8.907; LC90 = 767.957, 552.546, 535.474, and 195.677 μg/ml), Cx. quinquefasciatus (LC50 = 89.584, 74.689, 68.265, and 67.40; LC90 = 449.091, 337.355, 518.793, and 237.347 μg/ml), and Ae. aegypti (LC50 = 83.541, 84.418, 80.407, and 95.926; LC90 = 515.464, 443.167, 387.910, and 473.998 μg/ml). Pupicidal activity of mycelium extracts was tested against An. stephensi (LC50 = 25.228, LC90 = 140.487), Cx. quinquefasciatus (LC50 = 54.525, LC90 = 145.366), and Ae. aegypti (LC50 = 10.536, LC90 = 63.762 μg/ml). At higher concentration (500 μg/ml), mortality starts within the first 6 h of exposure. One hundred percent mortality occurs at 24-h exposure. The overall result observed that effective activity against selected mosquito larvae and pupae after 24 h was a dose and time-dependent activity. These ensure that the resultant mosquito population reduction is substantial even where the larvicidal and pupicidal potential is minimal. The FTIR spectra of ethyl acetate extract reflect prominent peaks (3448.32, 3000.36, 2914.59, 2118.73, 1668.21, 1436.87, 1409.02, 954.33, 901.13, and 704.67 cm(-1)). The spectra showed a sharp absorption band at 1314.66 cm(-1) assigned to wagging vibration of

  14. Insecticidal potency of Aspergillus terreus against larvae and pupae of three mosquito species Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    Science.gov (United States)

    Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-11-01

    Microbial control agents offer alternatives to chemical pest control, as they can be more selective than chemical insecticides. The present study evaluates the mosquito larvicidal and pupicidal potential of fungus mycelia using ethyl acetate and methanol solvent extracts produced by Aspergillus terreus against Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. The A. terreus mycelia were extracted after 15 days from Sabouraud dextrose broth medium. The ethyl acetate extracts showed lethal concentration that kills 50% of the exposed larvae (LC50) and lethal concentration that kills 90% of the exposed larvae (LC90) values of the first, second, third, and fourth instar larvae of An. stephensi (LC50 = 97.410, 102.551, 29.802, and 8.907; LC90 = 767.957, 552.546, 535.474, and 195.677 μg/ml), Cx. quinquefasciatus (LC50 = 89.584, 74.689, 68.265, and 67.40; LC90 = 449.091, 337.355, 518.793, and 237.347 μg/ml), and Ae. aegypti (LC50 = 83.541, 84.418, 80.407, and 95.926; LC90 = 515.464, 443.167, 387.910, and 473.998 μg/ml). Pupicidal activity of mycelium extracts was tested against An. stephensi (LC50 = 25.228, LC90 = 140.487), Cx. quinquefasciatus (LC50 = 54.525, LC90 = 145.366), and Ae. aegypti (LC50 = 10.536, LC90 = 63.762 μg/ml). At higher concentration (500 μg/ml), mortality starts within the first 6 h of exposure. One hundred percent mortality occurs at 24-h exposure. The overall result observed that effective activity against selected mosquito larvae and pupae after 24 h was a dose and time-dependent activity. These ensure that the resultant mosquito population reduction is substantial even where the larvicidal and pupicidal potential is minimal. The FTIR spectra of ethyl acetate extract reflect prominent peaks (3448.32, 3000.36, 2914.59, 2118.73, 1668.21, 1436.87, 1409.02, 954.33, 901.13, and 704.67 cm(-1)). The spectra showed a sharp absorption band at 1314.66 cm(-1) assigned to wagging vibration of

  15. Dynamics of immature stages of Anopheles arabiensis and other mosquito species (Diptera: Culicidae) in relation to rice cropping in a rice agro-ecosystem in Kenya.

    Science.gov (United States)

    Mwangangi, Joseph; Shililu, Josephat; Muturi, Ephantus; Gu, Weidong; Mbogo, Charles; Kabiru, Ephantus; Jacob, Benjamin; Githure, John; Novak, Robert

    2006-12-01

    We determined changes in species composition and densities of immature stages of Anopheles arabiensis mosquitoes in relation to rice growth cycle in order to generate data for developing larval control strategies in rice ecosystems. Experimental rice paddies (6.3m x 3.15m) exposed to natural colonization of mosquitoes were sampled weekly for two rice growing cycles between February 2004 and March 2005. Overall, 21,325 Anopheles larvae were collected, of which 91.9% were 1st and 2nd instars and 8.1% were 3rd and 4th instars. An. arabiensis was the predominant species (84.1%) with other species, An. pharoensis (13.5%), An. funestus (2.1%), An. coustani (0.3%), and An. maculipalpis (0.1%) accounting for only a small proportion of the anophelines collected. Culex quinquefasciatus (65.7%) was the predominant species among the non-anopheline species. Others species collected included: C. annulioris (9.9%), C. poicilipes (7.3%), C. tigripes (7.2%), C. duttoni (0.6%), Aedes aegypti (5.3%), Ae. cumminsii (3.5%), and Ae. vittatus (0.7%). The densities of the major anopheline species were closely related to rice stage and condition of the rice field. An. arabiensis, the predominant species, was most abundant over a three-week period after transplanting. Low densities of larvae were collected during the late vegetative, reproductive, and ripening phases of rice. An increase in larval density ten days post-transplanting was found to correlate with the application of fertilizer (sulphate of ammonia). Culicine and aedine species densities were significantly higher during the post-harvesting period. Our results suggest that the transplanting stage is favorable for the growth of immature stages of An. arabiensis and provides a narrow window for targeted larval intervention in rice. PMID:17249341

  16. In depth annotation of the Anopheles gambiae mosquito midgut transcriptome

    OpenAIRE

    Padrón, Alejandro; Molina-Cruz, Alvaro; Quinones, Mariam; Ribeiro, José MC; Ramphul, Urvashi; Rodrigues, Janneth; Shen, Kui; Haile, Ashley; Ramirez, José Luis; Barillas-Mury, Carolina

    2014-01-01

    Background Genome sequencing of Anopheles gambiae was completed more than ten years ago and has accelerated research on malaria transmission. However, annotation needs to be refined and verified experimentally, as most predicted transcripts have been identified by comparative analysis with genomes from other species. The mosquito midgut—the first organ to interact with Plasmodium parasites—mounts effective antiplasmodial responses that limit parasite survival and disease transmission. High-th...

  17. Potential mosquito repellent compounds of Ocimum species against 3N7H and 3Q8I of Anopheles gambiae

    OpenAIRE

    Gaddaguti, Venugopal; Venkateswara Rao, Talluri; Prasada Rao, Allu

    2016-01-01

    Mosquitoes are exceptionally efficient in detecting their hosts for blood meal using odorant binding proteins, viz. 3N7H and 3Q8I and spread several dreadful diseases. DEET is a synthetic mosquito repellent widely used all over world for protection against mosquito bite. Reports reveal that, synthetic mosquito repellents may pose health problems in considerably large population. In view of the above fact, we made an attempt to discover efficient and novel natural mosquito repellent compounds ...

  18. Mosquito species geographical distribution in Iraq 2009

    Directory of Open Access Journals (Sweden)

    Haidar A. Hantosh, Hameeda M. Hassan, Bushra Ahma & Ali Al-fatlawy

    2012-03-01

    Full Text Available Background & objectives: Mosquitoes transmit diseases to >700 million people annually. Malaria kills threemillion persons every year, including one child every 30 sec. Worldwide there are >3000 mosquito species.In Iraq, 37 species have been identified in different surveys over several decades. We conducted an entomologicalsurvey to determine the mosquito species and their distribution in Iraq in 2009.Methods: Between January 20 and December 31, 2009, mosquitoes in houses in 12 Iraqi provinces werecollected and speciated. Five to 10 villages were selected randomly in each province and in each village 10houses were selected randomly to collect mosquitoes and the density of mosquitoes per room was calculated.Kits for entomological investigation were used and the collected mosquitoes were sent to the vector bornedisease section laboratory for classification using the Naval Medical Research Unit 3 standard classificationkey.Results: A total of 29,156 mosquitoes were collected, representing two genera: Anopheles (n=13,268, or 46%of the total collected and Culex (n=15,888, or 54% of the total collected. Four Anopheles (An. pulcherrimus,An. stephensi, An. superpictus, and An. sacharovi and one Culex (Cx. pipiens species were identified. Anophelespulcherrimus was found in 11 provinces, An. stephensi in 7, An. superpictus in 2 and An. sacharovi in oneprovince, while Cx. pipiens was found in all the 12 provinces. Two peaks of mosquito density were found: thefirst from April–June and the other from September–October.Interpretation & conclusion: There are clear differences in Anopheles mosquito species geographical distributionand density among Iraqi provinces, while Cx. pipiens mosquitoes are distributed all over Iraq. All mosquitogenera show clear seasonal density variation. The study highlights that the manual mosquito classification isnot enough to identify all the species of mosquitoes in Iraq

  19. Fauna and some biological characteristics of Anopheles mosquitoes (Diptera:Culicidae) in Kalaleh County, Golestan Province, northeast of lran

    Institute of Scientific and Technical Information of China (English)

    Aioub Sofizadeh; Hamideh Edalat; Mohammad Reza Abai; Ahmad Ali Hanafi-Bojd

    2016-01-01

    Objective: To determine fauna and some ecological aspects of Anopheles mosquitoes in northeast of Iran. Methods: In this descriptive study, 3 villages in Kalaleh County were selected in different geographical zones. Anopheles mosquitoes were collected biweekly from May to October using standard dipping method for larvae, and hand catch, total catch, artificial pit shelter as well as night-biting collections on human and animal baits for adults. Results: Totally 399 larvae and 2 602 adults of Anopheles mosquitoes were collected and identified as 2 species: Anopheles superpictus s.l. (An. superpictus s.l.) and Anopheles maculipennis s.l. The dominant species was An. superpictus s.l. (92.1%). Activity of these mosquitoes found to be started from middle of May and extended till September with two peaks of activity in July and August. Conclusions: An. superpictus s.l. as one of the main malaria vectors in Iran as well as some other parts of the world is the dominant species in the study area. This species has high potential for transmission and possibility of establishing a transmission cycle with low abundance. Other species, Anopheles maculipennis s.l. also has introduced as a malaria vector in northern parts of Iran. As this Anopheles is a complex species, genetic studies are recommended to determine the members of this complex in the study area.

  20. Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes

    OpenAIRE

    Hu, Xiaobang; Leming, Matthew T; Whaley, Michelle A.; O'Tousa, Joseph E.

    2014-01-01

    Differential rhodopsin gene expression within specialized R7 photoreceptor cells divides the retinas of Aedes aegypti and Anopheles gambiae mosquitoes into distinct domains. The two species express the rhodopsin orthologs Aaop8 and Agop8, respectively, in a large subset of these R7 photoreceptors that function as ultraviolet receptors. We show here that a divergent subfamily of mosquito rhodopsins, Aaop10 and Agop10, is coexpressed in these R7 photoreceptors. The properties of the A. aegypti ...

  1. A Physical Map for an Asian Malaria Mosquito, Anopheles stephensi

    OpenAIRE

    Maria V Sharakhova; Xia, Ai; Tu, Zhijian; Shouche, Yogesh S.; Unger, Maria F; Sharakhov, Igor V

    2010-01-01

    Physical mapping is a useful approach for studying genome organization and evolution as well as for genome sequence assembly. The availability of polytene chromosomes in malaria mosquitoes provides a unique opportunity to develop high-resolution physical maps. We report a 0.6-Mb-resolution physical map consisting of 422 DNA markers hybridized to 379 chromosomal sites of the Anopheles stephensi polytene chromosomes. This makes An. stephensi second only to Anopheles gambiae in density of a phys...

  2. Olfaction in the malaria mosquito Anopheles gambiae : Electrophysiology and identification of kairomones

    NARCIS (Netherlands)

    Meijerink, J.

    1999-01-01

    Female mosquitoes of the species Anopheles gambiae Giles sensu stricto are important vectors of human malaria in Africa. It is generally assumed that they locate their human host by odours. These odours are detected by olfactory receptor neurons situated within cuticular extensions on the antenna. T

  3. Pteridine fluorescence for age determination of Anopheles mosquitoes.

    Science.gov (United States)

    Wu, D; Lehane, M J

    1999-02-01

    The age structure of mosquito populations is of great relevance to understanding the dynamics of disease transmission and in monitoring the success of control operations. Unfortunately, the ovarian dissection methods currently available for determining the age of adult mosquitoes are technically difficult, slow and may be of limited value, because the proportion of diagnostic ovarioles in the ovary declines with age. By means of reversed-phase HPLC this study investigated the malaria vectors Anopheles gambiae and An. stephensi to see if changes in fluorescent pteridine pigments, which have been used in other insects to determine the age of field-caught individuals, may be useful for age determination in mosquitoes. Whole body fluorescence was inversely proportional to age (P 91%) up to 30 days postemergence, with the regression values: y = 40580-706x for An. gambiae, and y = 52896-681x for An. stephensi. In both species the main pteridines were 6-biopterin, pterin-6-carboxylic acid and an unidentified fluorescent compound. An. gambiae had only 50-70% as much fluorescence as An. stephensi, and fluorescent compounds were relatively more concentrated in the head than in the thorax (ratios 1:0.8 An. gambiae; 1:0.5 An. stephensi). The results of this laboratory study are encouraging. It seems feasible that this simpler and faster technique of fluorescence quantification could yield results of equivalent accuracy to the interpretation of ovarian dissection. A double-blind field trial comparing the accuracy of this technique to marked, released and recaptured mosquitoes is required to test the usefulness of the pteridine method in the field. PMID:10194749

  4. Bacterial diversity associated with wild caught Anopheles mosquitoes from Dak Nong Province, Vietnam using culture and DNA fingerprint.

    Directory of Open Access Journals (Sweden)

    Chung Thuy Ngo

    Full Text Available Microbiota of Anopheles midgut can modulate vector immunity and block Plasmodium development. Investigation on the bacterial biodiversity in Anopheles, and specifically on the identification of bacteria that might be used in malaria transmission blocking approaches, has been mainly conducted on malaria vectors of Africa. Vietnam is an endemic country for both malaria and Bancroftian filariasis whose parasitic agents can be transmitted by the same Anopheles species. No information on the microbiota of Anopheles mosquitoes in Vietnam was available previous to this study.The culture dependent approach, using different mediums, and culture independent (16S rRNA PCR - TTGE method were used to investigate the bacterial biodiversity in the abdomen of 5 Anopheles species collected from Dak Nong Province, central-south Vietnam. Molecular methods, sequencing and phylogenetic analysis were used to characterize the microbiota.The microbiota in wild-caught Anopheles was diverse with the presence of 47 bacterial OTUs belonging to 30 genera, including bacterial genera impacting Plasmodium development. The bacteria were affiliated with 4 phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, the latter being the dominant phylum. Four bacterial genera are newly described in Anopheles mosquitoes including Coxiella, Yersinia, Xanthomonas, and Knoellia. The bacterial diversity per specimen was low ranging from 1 to 4. The results show the importance of pairing culture and fingerprint methods to better screen the bacterial community in Anopheles mosquitoes.Sampled Anopheles species from central-south Vietnam contained a diverse bacterial microbiota that needs to be investigated further in order to develop new malaria control approaches. The combination of both culture and DNA fingerprint methods allowed a thorough and complementary screening of the bacterial community in Anopheles mosquitoes.

  5. Bacterial Diversity Associated with Wild Caught Anopheles Mosquitoes from Dak Nong Province, Vietnam Using Culture and DNA Fingerprint

    Science.gov (United States)

    Ngo, Chung Thuy; Aujoulat, Fabien; Veas, Francisco; Jumas-Bilak, Estelle; Manguin, Sylvie

    2015-01-01

    Background Microbiota of Anopheles midgut can modulate vector immunity and block Plasmodium development. Investigation on the bacterial biodiversity in Anopheles, and specifically on the identification of bacteria that might be used in malaria transmission blocking approaches, has been mainly conducted on malaria vectors of Africa. Vietnam is an endemic country for both malaria and Bancroftian filariasis whose parasitic agents can be transmitted by the same Anopheles species. No information on the microbiota of Anopheles mosquitoes in Vietnam was available previous to this study. Method The culture dependent approach, using different mediums, and culture independent (16S rRNA PCR – TTGE) method were used to investigate the bacterial biodiversity in the abdomen of 5 Anopheles species collected from Dak Nong Province, central-south Vietnam. Molecular methods, sequencing and phylogenetic analysis were used to characterize the microbiota. Results and Discussion The microbiota in wild-caught Anopheles was diverse with the presence of 47 bacterial OTUs belonging to 30 genera, including bacterial genera impacting Plasmodium development. The bacteria were affiliated with 4 phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, the latter being the dominant phylum. Four bacterial genera are newly described in Anopheles mosquitoes including Coxiella, Yersinia, Xanthomonas, and Knoellia. The bacterial diversity per specimen was low ranging from 1 to 4. The results show the importance of pairing culture and fingerprint methods to better screen the bacterial community in Anopheles mosquitoes. Conclusion Sampled Anopheles species from central-south Vietnam contained a diverse bacterial microbiota that needs to be investigated further in order to develop new malaria control approaches. The combination of both culture and DNA fingerprint methods allowed a thorough and complementary screening of the bacterial community in Anopheles mosquitoes. PMID:25747513

  6. Laser induced mortality of Anopheles stephensi mosquitoes

    Science.gov (United States)

    Keller, Matthew D.; Leahy, David J.; Norton, Bryan J.; Johanson, Threeric; Mullen, Emma R.; Marvit, Maclen; Makagon, Arty

    2016-02-01

    Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild.

  7. Combining two-dimensional gel electrophoresis and metabolomic data in support of dry-season survival in the two main species of the malarial mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Hidalgo K.

    2015-12-01

    Full Text Available In dry savannahs of West-Africa, the malarial mosquitoes of the Anopheles gambiae sensu stricto complex annually survive the harsh desiccating conditions of the dry season. However, the physiological and biochemical mechanisms underlying how these mosquitoes survive such desiccating conditions are still undefined, and controversial. In this context, we provide the first work examining both proteomic and metabolomic changes in the two molecular forms of A. gambiae s.s (M and S forms experimentally exposed to the rainy and dry season conditions as they experience in the field. Protein abundances of the mosquitoes were measured using a two-dimensional fluorescence difference gel electrophoresis (2D DIGE coupled with a matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF and tandem mass spectrometry (MS for protein identification. These assays were conducted by Applied Biomics (http://www.appliedbiomics.com, Applied Biomics, Inc. Hayward, CA, USA, and the mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org via the PRIDE partner repository with the dataset identifier PXD000294. The metabolomic analysis was conducted using both Acquity UPLC® system (for amino acid identification, and a gas-chromatography-mass spectrometry platform (for sugars identification. Metabolomic fingerprintings were assessed in the University of Rennes 1, UMR CNRS 6553 EcoBio (France. A detailed interpretation of the obtained data can be found in Hidalgo et al. (2014 [1] (Journal of Insect Physiology (2014.

  8. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton) Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae.

    OpenAIRE

    Patil, Chandrashekhar D; Hemant P Borase; Salunkhe, Rahul B; Rahul K Suryawanshi; Narkhade, Chandrakant P; Salunke, Bipinchandra K.; Satish V Patil

    2014-01-01

    Background: We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton) using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi. Methods: Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt) plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay. Results: LC50 values of water, etha...

  9. Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae)

    NARCIS (Netherlands)

    Smallegange, R.C.; Qiu, Y.T.; Loon, van J.J.A.; Takken, W.

    2005-01-01

    Host odours play a major role in the orientation and host location of blood-feeding mosquitoes. Anopheles gambiae Giles sensu stricto, which is the most important malaria vector in Africa, is a highly anthropophilic mosquito species, and the host-seeking behaviour of the females of this mosquito is

  10. Olfaction in the malaria mosquito Anopheles gambiae : Electrophysiology and identification of kairomones

    OpenAIRE

    Meijerink, J

    1999-01-01

    Female mosquitoes of the species Anopheles gambiae Giles sensu stricto are important vectors of human malaria in Africa. It is generally assumed that they locate their human host by odours. These odours are detected by olfactory receptor neurons situated within cuticular extensions on the antenna. These cuticular extensions, called sensilla, contain numerous pores through which the odours can enter the sensillum and reach the olfactory receptor neuron membrane. Despite the fact that these mos...

  11. Organization of olfactory centres in the malaria mosquito Anopheles gambiae

    Science.gov (United States)

    Riabinina, Olena; Task, Darya; Marr, Elizabeth; Lin, Chun-Chieh; Alford, Robert; O'Brochta, David A.; Potter, Christopher J.

    2016-01-01

    Mosquitoes are vectors for multiple infectious human diseases and use a variety of sensory cues (olfactory, temperature, humidity and visual) to locate a human host. A comprehensive understanding of the circuitry underlying sensory signalling in the mosquito brain is lacking. Here we used the Q-system of binary gene expression to develop transgenic lines of Anopheles gambiae in which olfactory receptor neurons expressing the odorant receptor co-receptor (Orco) gene are labelled with GFP. These neurons project from the antennae and maxillary palps to the antennal lobe (AL) and from the labella on the proboscis to the suboesophageal zone (SEZ), suggesting integration of olfactory and gustatory signals occurs in this brain region. We present detailed anatomical maps of olfactory innervations in the AL and the SEZ, identifying glomeruli that may respond to human body odours or carbon dioxide. Our results pave the way for anatomical and functional neurogenetic studies of sensory processing in mosquitoes. PMID:27694947

  12. Efficacy of essential oil from Cananga odorata (Lamk.) Hook.f. & Thomson (Annonaceae) against three mosquito species Aedes aegypti (L.), Anopheles dirus (Peyton and Harrison), and Culex quinquefasciatus (Say).

    Science.gov (United States)

    Soonwera, Mayura

    2015-12-01

    The essential oil of Cananga odorata flowers was evaluated for oviposition-deterrent, ovicidal, insecticidal, and repellent activities toward three mosquito species: Aedes aegypti, Anopheles dirus, and Culex quinquefasciatus. Oviposition deterrence of the oil was evaluated on gravid females using oviposition deterrence bioassay. The results showed that 10 % Ca. odorata exhibited high percent effective repellency against oviposition at 99.4 % to Ae. aegypti, 97.1 % to An. dirus, and 100 % to Cx. quinquefasciatus. Ca. odorata oil was tested for ovicidal activity. Regression equations revealed that the ovicidal rates were positively correlated with the concentrations of the essential oil. As the concentration of essential oil increased from 1, 5, and up to 10 % concentration, the ovicidal rate increased accordingly. Larvicidal activity of the oils was used on immature stages (third and fourth instar lavae and pupae). The maximum larval mortality was found with 10 % Ca. odorata against immature stages, and there were LC50 values ranged from 10.4 to 10.5 % (for Ae. aegypti), odorata oil had high knockdown rates against the three mosquito species at 96 % (for Ae. aegypti), 98.4 % (for An. dirus), and 100 % (for Cx. quinquefasciatus), with EC50 values of 6.2, 4.7, and 5.4 %, respectively. It gave moderate mortality rates after 24 and 48 h of exposure. Ca. odorata oil was assessed for repellency to females by using the modified K&D module. Ten percent Ca. odorata oil gave the strongest value against Ae. aegypti, An. dirus, and Cx. quinquefasciatus, with percentage repellency of 66, 92, and 90 %, respectively. This study demonstrates the potential for the essential oil of Ca. odorata essential oil to be used as a botanical insecticide against three mosquito species. PMID:26337270

  13. Efficacy of essential oil from Cananga odorata (Lamk.) Hook.f. & Thomson (Annonaceae) against three mosquito species Aedes aegypti (L.), Anopheles dirus (Peyton and Harrison), and Culex quinquefasciatus (Say).

    Science.gov (United States)

    Soonwera, Mayura

    2015-12-01

    The essential oil of Cananga odorata flowers was evaluated for oviposition-deterrent, ovicidal, insecticidal, and repellent activities toward three mosquito species: Aedes aegypti, Anopheles dirus, and Culex quinquefasciatus. Oviposition deterrence of the oil was evaluated on gravid females using oviposition deterrence bioassay. The results showed that 10 % Ca. odorata exhibited high percent effective repellency against oviposition at 99.4 % to Ae. aegypti, 97.1 % to An. dirus, and 100 % to Cx. quinquefasciatus. Ca. odorata oil was tested for ovicidal activity. Regression equations revealed that the ovicidal rates were positively correlated with the concentrations of the essential oil. As the concentration of essential oil increased from 1, 5, and up to 10 % concentration, the ovicidal rate increased accordingly. Larvicidal activity of the oils was used on immature stages (third and fourth instar lavae and pupae). The maximum larval mortality was found with 10 % Ca. odorata against immature stages, and there were LC50 values ranged from 10.4 to 10.5 % (for Ae. aegypti), <1 % (for An. dirus), and <1 % (for Cx. quinquefasciatus). Adulticidal properties were evaluated with unfed females. Ten percent Ca. odorata oil had high knockdown rates against the three mosquito species at 96 % (for Ae. aegypti), 98.4 % (for An. dirus), and 100 % (for Cx. quinquefasciatus), with EC50 values of 6.2, 4.7, and 5.4 %, respectively. It gave moderate mortality rates after 24 and 48 h of exposure. Ca. odorata oil was assessed for repellency to females by using the modified K&D module. Ten percent Ca. odorata oil gave the strongest value against Ae. aegypti, An. dirus, and Cx. quinquefasciatus, with percentage repellency of 66, 92, and 90 %, respectively. This study demonstrates the potential for the essential oil of Ca. odorata essential oil to be used as a botanical insecticide against three mosquito species.

  14. Inhibition of Anopheles gambiae odorant receptor function by mosquito repellents.

    Science.gov (United States)

    Tsitoura, Panagiota; Koussis, Konstantinos; Iatrou, Kostas

    2015-03-20

    The identification of molecular targets of insect repellents has been a challenging task, with their effects on odorant receptors (ORs) remaining a debatable issue. Here, we describe a study on the effects of selected mosquito repellents, including the widely used repellent N,N-diethyl-meta-toluamide (DEET), on the function of specific ORs of the African malaria vector Anopheles gambiae. This study, which has been based on quantitative measurements of a Ca(2+)-activated photoprotein biosensor of recombinant OR function in an insect cell-based expression platform and a sequential compound addition protocol, revealed that heteromeric OR (ORx/Orco) function was susceptible to strong inhibition by all tested mosquito repellents except DEET. Moreover, our results demonstrated that the observed inhibition was due to efficient blocking of Orco (olfactory receptor coreceptor) function. This mechanism of repellent action, which is reported for the first time, is distinct from the mode of action of other characterized insect repellents including DEET. PMID:25657000

  15. Identification of a Bacillus thuringiensis Cry11Ba toxin-binding aminopeptidase from the mosquito, Anopheles quadrimaculatus

    Directory of Open Access Journals (Sweden)

    Abdullah Mohd

    2006-05-01

    Full Text Available Abstract Background Aminopeptidase N (APN type proteins isolated from several species of lepidopteran insects have been implicated as Bacillus thuringiensis (Bt toxin-binding proteins (receptors for Cry toxins. We examined brush border membrane vesicle (BBMV proteins from the mosquito Anopheles quadrimaculatus to determine if APNs from this organism would bind mosquitocidal Cry toxins that are active to it. Results A 100-kDa protein with APN activity (APNAnq 100 was isolated from the brush border membrane of Anopheles quadrimaculatus. Native state binding analysis by surface plasmon resonance shows that APNAnq 100 forms tight binding to a mosquitocidal Bt toxin, Cry11Ba, but not to Cry2Aa, Cry4Ba or Cry11Aa. Conclusion An aminopeptidase from Anopheles quadrimaculatus mosquitoes is a specific binding protein for Bacillus thuringiensis Cry11Ba.

  16. Some strains of Plasmodium falciparum, a human malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes

    OpenAIRE

    Molina-Cruz, Alvaro; DeJong, Randall J.; Ortega, Corrie; Haile, Ashley; Abban, Ekua; Rodrigues, Janneth; Jaramillo-Gutierrez, Giovanna; Barillas-Mury, Carolina

    2012-01-01

    Plasmodium falciparum lines differ in their ability to infect mosquitoes. The Anopheles gambiae L3-5 refractory (R) line melanizes most Plasmodium species, including the Brazilian P. falciparum 7G8 line, but it is highly susceptible to some African P. falciparum strains such as 3D7, NF54, and GB4. We investigated whether these lines differ in their ability to evade the mosquito immune system. Silencing key components of the mosquito complement-like system [thioester-containing protein 1 (TEP1...

  17. Assessment of Anopheles salivary antigens as individual exposure biomarkers to species-specific malaria vector bites

    Directory of Open Access Journals (Sweden)

    Ali Zakia M I

    2012-12-01

    Full Text Available Abstract Background Malaria transmission occurs during the blood feeding of infected anopheline mosquitoes concomitant with a saliva injection into the vertebrate host. In sub-Saharan Africa, most malaria transmission is due to Anopheles funestus s.s and to Anopheles gambiae s.l. (mainly Anopheles gambiae s.s. and Anopheles arabiensis. Several studies have demonstrated that the immune response against salivary antigens could be used to evaluate individual exposure to mosquito bites. The aim of this study was to assess the use of secreted salivary proteins as specific biomarkers of exposure to An. gambiae and/or An. funestus bites. Methods For this purpose, salivary gland proteins 6 (SG6 and 5′nucleotidases (5′nuc from An. gambiae (gSG6 and g-5′nuc and An. funestus (fSG6 and f-5′nuc were selected and produced in recombinant form. The specificity of the IgG response against these salivary proteins was tested using an ELISA with sera from individuals living in three Senegalese villages (NDiop, n = 50; Dielmo, n = 38; and Diama, n = 46 that had been exposed to distinct densities and proportions of the Anopheles species. Individuals who had not been exposed to these tropical mosquitoes were used as controls (Marseille, n = 45. Results The IgG responses against SG6 recombinant proteins from these two Anopheles species and against g-5′nucleotidase from An. gambiae, were significantly higher in Senegalese individuals compared with controls who were not exposed to specific Anopheles species. Conversely, an association was observed between the level of An. funestus exposure and the serological immune response levels against the f-5′nucleotidase protein. Conclusion This study revealed an Anopheles salivary antigenic protein that could be considered to be a promising antigenic marker to distinguish malaria vector exposure at the species level. The epidemiological interest of such species-specific antigenic markers is discussed.

  18. Using a near-infrared spectrometer to estimate the age of anopheles mosquitoes exposed to pyrethroids.

    Directory of Open Access Journals (Sweden)

    Maggy T Sikulu

    Full Text Available We report on the accuracy of using near-infrared spectroscopy (NIRS to predict the age of Anopheles mosquitoes reared from wild larvae and a mixed age-wild adult population collected from pit traps after exposure to pyrethroids. The mosquitoes reared from wild larvae were estimated as <7 or ≥7 d old with an overall accuracy of 79%. The age categories of Anopheles mosquitoes that were not exposed to the insecticide papers were predicted with 78% accuracy whereas the age categories of resistant, susceptible and mosquitoes exposed to control papers were predicted with 82%, 78% and 79% accuracy, respectively. The ages of 85% of the wild-collected mixed-age Anopheles were predicted by NIRS as ≤8 d for both susceptible and resistant groups. The age structure of wild-collected mosquitoes was not significantly different for the pyrethroid-susceptible and pyrethroid-resistant mosquitoes (P = 0.210. Based on these findings, NIRS chronological age estimation technique for Anopheles mosquitoes may be independent of insecticide exposure and the environmental conditions to which the mosquitoes are exposed.

  19. Genotyping of chloroquine resistant Plasmodium falciparum in wild caught Anopheles minimus mosquitoes in a malaria endemic area of Assam, India.

    Science.gov (United States)

    Sarma, D K; Mohapatra, P K; Bhattacharyya, D R; Mahanta, J; Prakash, A

    2014-09-01

    We validated the feasibility of using Plasmodium falciparum, the human malaria parasite, DNA present in wild caught vector mosquitoes for the characterization of chloroquine resistance status. House frequenting mosquitoes belonging to Anopheles minimus complex were collected from human dwellings in a malaria endemic area of Assam, Northeast India and DNA was extracted from the head-thorax region of individual mosquitoes. Anopheles minimus complex mosquitoes were identified to species level and screened for the presence of Plasmodium sp. using molecular tools. Nested PCR-RFLP method was used for genotyping of P. falciparum based on K76T mutation in the chloroquine resistance transporter (pfcrt) gene. Three of the 27 wild caught An. minimus mosquitoes were harbouring P. falciparum sporozoites (positivity 11.1%) and all 3 were had 76T mutation in the pfcrt gene, indicating chloroquine resistance. The approach of characterizing antimalarial resistance of malaria parasite in vector mosquitoes can potentially be used as a surveillance tool for monitoring transmission of antimalarial drug resistant parasite strains in the community.

  20. Feeding and indoor resting behaviour of the mosquito Anopheles longipalpis in an area of hyperendemic malaria transmission in southern Zambia

    OpenAIRE

    Kent, R.J.; Coetzee, M.; Mharakurwa, S.; Norris, D. E.

    2006-01-01

    Anopheles longipalpis (Theobald) (Diptera: Culicidae) is a predominantly zoophilic mosquito that has not been implicated in malaria transmission. However, this species was collected indoors with An. funestus s.l. in southern Zambia, where transmission of Plasmodium falciparum is hyperendemic, and we initially misidentified it morphologically and molecularly as An. funestus s.l. The indoor resting density and blood-feeding behaviour of An. longipalpis were investigated during the 2004 – 05 and...

  1. Molecular identification of a myosuppressin receptor from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Schöller, Susanne; Belmont, Martin; Cazzamali, Giuseppe;

    2005-01-01

    The insect myosuppressins (X1DVX2HX3FLRFamide) are neuropeptides that generally block insect muscle activities. We have used the genomic sequence information from the malaria mosquito Anopheles gambiae Genome Project to clone a G protein-coupled receptor that was closely related to the two...... previously cloned and characterized myosuppressin receptors from Drosophila [Proc. Natl. Acad. Sci. USA 100 (2003) 9808]. The mosquito receptor cDNA was expressed in Chinese hamster ovary cells and was found to be activated by low concentrations of Anopheles myosuppressin (TDVDHVFLRFamide; EC50, 1.6 x 10...... identification of a mosquito neuropeptide receptor....

  2. Species-specific chemosensory gene expression in the olfactory organs of the malaria vector Anopheles gambiae

    NARCIS (Netherlands)

    Hodges, Theresa K.; Cosme, Luciano V.; Athrey, Giridhar; Pathikonda, Sharmila; Takken, Willem; Slotman, Michel A.

    2014-01-01

    Background: The malaria mosquito Anopheles gambiae has a high preference for human hosts, a characteristic that contributes greatly to its capacity for transmitting human malaria. A sibling species, An. quadriannulatus, has a quite different host preference and feeds mostly on bovids. For this re

  3. A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae

    OpenAIRE

    Ramirez, Jose Luis; de Almeida Oliveira, Giselle; Calvo, Eric; Dalli, Jesmond; Colas, Romain A.; Serhan, Charles N.; Ribeiro, Jose M.; Barillas-Mury, Carolina

    2015-01-01

    Exposure of Anopheles gambiae mosquitoes to Plasmodium infection enhances the ability of their immune system to respond to subsequent infections. However, the molecular mechanism that allows the insect innate immune system to ‘remember' a previous encounter with a pathogen has not been established. Challenged mosquitoes constitutively release a soluble haemocyte differentiation factor into their haemolymph that, when transferred into Naive mosquitoes, also induces priming. Here we show that t...

  4. Mosquito repellent action of Blumea lacera (Asteraceae) against Anopheles stephensi and Culex quinquefasciatus.

    OpenAIRE

    Singh, S.P.; MITTAL, P.K.

    2014-01-01

    Petroleum ether extract of Blumea lacera was screened under laboratory conditions for repellent activity against mosquito vector Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). The repellent activity of Blumea lacera extract was tested against mosquitoes in comparison with the DEET, which was used as a positive control. Results obtained from the laboratory experiment showed that the extract was effective against mosquito vectors even at a low dose. A direct rel...

  5. Infection of the malaria mosquito, Anopheles gambiae, with two species of entomopathogenic fungi: effects of concentration, co-formulation, exposure time and persistence

    NARCIS (Netherlands)

    Mnyone, L.L.; Kirby, M.J.; Lwetoijera, D.W.; Mpingwa, M.W.; Knols, B.G.J.; Takken, W.; Russell, T.L.

    2009-01-01

    Background - Entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana isolates have been shown to infect and reduce the survival of mosquito vectors. Methods - Here four different bioassays were conducted to study the effect of conidia concentration, co-formulation, exposure time and per

  6. The role of cow urine in the oviposition site preference of culicine and Anopheles mosquitoes

    Directory of Open Access Journals (Sweden)

    Kweka Eliningaya J

    2011-09-01

    Full Text Available Abstract Background Chemical and behavioural ecology of mosquitoes plays an important role in the development of chemical cue based vector control. To date, studies available have focused on evaluating mosquito attractants and repellents of synthetic and human origins. This study, however, was aimed at seasonal evaluation of the efficiency of cow urine in producing oviposition cues to Anopheles gambiae s.l. and Culex quinquefasciatus in both laboratory and field conditions. Methods Oviposition response evaluation in laboratory conditions was carried out in mosquito rearing cages. The oviposition substrates were located in parallel or in diagonal positions inside the cage. Urine evaluation against gravid females of An. arabiensis and Cx. quinquefasciatus was carried out at Day 1, Day 3 and Day 7. Five millilitres (mls of cow urine was added to oviposition substrate while de-chlorinated water was used as a control. In field experiments, 500 mls of cow urine was added in artificial habitats with 2500 mls of de-chlorinated water and 2 kgs of soil. The experiment was monitored for thirty consecutive days, eggs were collected daily from the habitats at 7.00 hrs. Data analysis was performed using parametric and non-parametric tests for treatments and controls while attraction of the oviposition substrate in each species was presented using Oviposition Activity Index (OAI. Results The OAI was positive with ageing of cattle urine in culicine species in both laboratory and field experiments. The OAI for anopheline species was positive with fresh urine. The OAI during the rainy season was positive for all species tested while in the dry season the OAI for culicine spp and Anopheles gambiae s.l., changed with time from positive to negative values. Based on linear model analysis, seasons and treatments had a significant effect on the number of eggs laid in habitats, even though the number of days had no effect. Conclusion Oviposition substrates treated with

  7. Bioinformatics-Based Identification of Chemosensory Proteins in African Malaria Mosquito, Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    Zhengxi Li; Zuorui Shen; Jingjiang Zhou; Lin Field

    2003-01-01

    Chemosensory proteins (CSPs) are identifiable by four spatially conserved Cysteine residues in their primary structure or by two disulfide bridges in their tertiary structure according to the previously identified olfactory specific-D related proteins. A genomics- and bioinformatics-based approach is taken in the present study to identify the putative CSPs in the malaria-carrying mosquito, Anopheles gambiae. The results show that five out of the nine annotated candidates are the most possible Anopheles CSPs of A. gambiae. This study lays the foundation for further functional identification of Anopheles CSPs, though all of these candidates need additional experimental verification.

  8. Identification of one capa and two pyrokinin receptors from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Olsen, Stine S; Cazzamali, Giuseppe; Williamson, Michael;

    2007-01-01

    We cloned the cDNA of three evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae and functionally expressed them in Chinese hamster ovary cells. One receptor, Ang-Capa-R, was only activated by the two Anopheles capa neuropeptides Ang-capa-1 (GPTVGLFAFPRVa......We cloned the cDNA of three evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae and functionally expressed them in Chinese hamster ovary cells. One receptor, Ang-Capa-R, was only activated by the two Anopheles capa neuropeptides Ang-capa-1...... (GPTVGLFAFPRVamide) and Ang-capa-2 (pQGLVPFPRVamide) with EC(50) values of 8.6x10(-9)M and 3.3x10(-9)M, respectively, but not by any other known mosquito neuropeptide. The second receptor, Ang-PK-1-R, was selectively activated by the Anopheles pyrokinin-1 peptides Ang-PK-1-1 (AGGTGANSAMWFGPRLamide) and Ang-PK-1......-2 (AAAMWFGPRLamide) with EC(50) values of 3.3x10(-8)M and 2.5x10(-8)M, respectively, but not by mosquito capa or pyrokinin-2 peptides. For the third receptor, Ang-PK-2-R, the most potent ligands were the pyrokinin-2 peptides Ang-PK-2-1 (DSVGENHQRPPFAPRLamide) and Ang-PK-2-2 (NLPFSPRLamide) with EC(50) values of 5.2x...

  9. Mitochondrial Reactive Oxygen Species Modulate Mosquito Susceptibility to Plasmodium Infection

    OpenAIRE

    Gonçalves, Renata L. S.; Oliveira, Jose Henrique M.; Oliveira, Giselle A.; Andersen, John F.; Oliveira, Marcus F.; Pedro L Oliveira; Barillas-Mury, Carolina

    2012-01-01

    Background Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism. Methodology/Principal Findings We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses ...

  10. Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae

    OpenAIRE

    Rund, Samuel SC; James E. Gentile; Duffield, Giles E.

    2013-01-01

    Background Mosquitoes exhibit 24 hr rhythms in flight activity, feeding, reproduction and development. To better understand the molecular basis for these rhythms in the nocturnal malaria vector Anopheles gambiae, we have utilized microarray analysis on time-of-day specific collections of mosquitoes over 48 hr to explore the coregulation of gene expression rhythms by the circadian clock and light, and compare these with the 24 hr rhythmic gene expression in the diurnal Aedes aegypti dengue vec...

  11. Development of sporogonic cycle of Plasmodium vivax in experimentally infected Anopheles albimanus mosquitoes

    OpenAIRE

    Martha L. Salas; Romero, Jackeline F.; Yesid Solarte; Victor Olano; Myriam A. Herrera; Sócrates Herrera

    1994-01-01

    The sporogonic cycle of Plasmodium vivax was established and maintained under laboratory conditions in two different strains of Anopheles albimanus mosquitoes using as a parasite source blood from human patients or from Aotus monkeys infected with the VCC-2 P.vivax colombian isolate. Both the Tecojate strain isolate from Guatemala and the Cartagena strain from the colombian Pacific coast were susceptible to infections with P.vivax. A higher percentage of Cartagena mosquitoes was infected per ...

  12. The role of cow urine in the oviposition site preference of culicine and Anopheles mosquitoes

    OpenAIRE

    Kweka Eliningaya J; Owino Eunice A; Mwang'onde Beda J; Mahande Aneth M; Nyindo Mramba; Mosha Franklin

    2011-01-01

    Abstract Background Chemical and behavioural ecology of mosquitoes plays an important role in the development of chemical cue based vector control. To date, studies available have focused on evaluating mosquito attractants and repellents of synthetic and human origins. This study, however, was aimed at seasonal evaluation of the efficiency of cow urine in producing oviposition cues to Anopheles gambiae s.l. and Culex quinquefasciatus in both laboratory and field conditions. Methods Ovipositio...

  13. [Malaria mosquitoes (Diptera, Culicidae, Anopheles) of North Tajikistan, their ecology, and role in the transmission of malaria pathogens].

    Science.gov (United States)

    Kadamov, D S; Zvantseva, A B; Karimov, S S; Gordeev, M I; Goriacheva, I I; Ezhov, M N; Tadzhiboev, A

    2012-01-01

    Five species of malaria mosquitoes: An. artemievi, An. claviger, An. hyrcanus, An. superpictus, and An. pulcherrimus were found in North Tajikistan in 2006 - 2007. Species affiliation was identified according to the morphological signs of their larvae and imagoes, and by using the polymerase chain reaction-restriction fragment length polymorphism analysis. There was a larger number of An. hyrcanus (34%), An. artemievi (29%), and An. pulcherrimus (24%) and a smaller number of An. superpictus (11%); and An. claviger was few (2%). The hatching sites of the above species and the preferred types of their day refuges were found. The intensity of attack of different Anopheles species on humans and animals was studied. Among the North Tajikistan malaria mosquitoes, An. pulcherrimus and An. superpictus are of the greatest epidemiological importance as vehicles for transmission of malaria pathogens. An. artemievi and An. hyrcanus are minor vehicles. At present, An. claviger is of no epidemiological significance in transmitting malaria in North Tajikistan.

  14. Spermless males elicit large-scale female responses to mating in the malaria mosquito Anopheles gambiae

    Science.gov (United States)

    Thailayil, Janis; Magnusson, Kalle; Godfray, H. Charles J.; Crisanti, Andrea; Catteruccia, Flaminia

    2011-01-01

    Anopheles gambiae sensu stricto is the major vector of malaria, a disease with devastating consequences for human health. Given the constant spread of the disease, alternative approaches to the use of insecticides are urgently needed to control vector populations. Females of this species undergo large behavioral changes after mating, which include a life-long refractoriness to further insemination and the induction of egg laying in blood-fed individuals. Genetic control strategies aimed at impacting Anopheles fertility through the release of sterile males are being advocated to reduce the size of mosquito field populations. Such strategies depend on the ability of the released sterile males to mate successfully with wild females and to switch off the female receptivity to further copulation. Here we evaluate the role of sperm in regulating female behavioral responses after mating in An. gambiae. We developed spermless males by RNAi silencing of a germ cell differentiation gene. These males mated successfully and preserved standard accessory gland functions. Females mated to spermless males exhibited normal postcopulatory responses, which included laying large numbers of eggs upon blood feeding and becoming refractory to subsequent insemination. Moreover, spermless males induced transcriptional changes in female reproductive genes comparable to those elicited by fertile males. Our data demonstrate that, in contrast to Drosophila, targeting sperm in An. gambiae preserves normal male and female reproductive behavior for the traits and time frame analyzed and validate the use of approaches based on incapacitation or elimination of sperm for genetic control of vector populations to block malaria transmission. PMID:21825136

  15. The nicotinic acetylcholine receptor gene family of the malaria mosquito, Anopheles gambiae.

    Science.gov (United States)

    Jones, Andrew K; Grauso, Marta; Sattelle, David B

    2005-02-01

    Nicotinic acetylcholine receptors (nAChRs) mediate fast cholinergic synaptic transmission in the insect nervous system and are targets of widely selling insecticides. We have identified the nAChR gene family from the genome of the malaria mosquito vector, Anopheles gambiae, to be the second complete insect nAChR gene family described following that of Drosophila melanogaster. Like Drosophila, Anopheles possesses 10 nAChR subunits with orthologous relationships evident between the two insects. Interestingly, the Anopheles orthologues of Dbeta2 and Dbeta3 possess the vicinal cysteines that define alpha subunits. As with Dalpha4 and Dalpha6, the Anopheles orthologues are alternatively spliced at equivalent exons. Reverse transcription-polymerase chain reaction analysis shows that RNA A-to-I editing sites conserved between Dalpha6 of Drosophila and alpha7-2 of the tobacco budworm, Heliothis virescens, are not shared with the equivalent nAChR subunit of Anopheles. Indeed, RNA-editing sites identified in functionally significant regions of Dbeta1, Dalpha5, and Dalpha6 are not conserved in the mosquito orthologues, indicating considerable divergence of RNA molecules targeted for editing within the insect order Diptera. These findings shed further light on the diversity of nAChR subunits and may present a useful basis for the development of improved malaria control agents by enhancing our understanding of a validated mosquito insecticide target.

  16. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission.

    Directory of Open Access Journals (Sweden)

    Lindsay M Beck-Johnson

    Full Text Available The parasites that cause malaria depend on Anopheles mosquitoes for transmission; because of this, mosquito population dynamics are a key determinant of malaria risk. Development and survival rates of both the Anopheles mosquitoes and the Plasmodium parasites that cause malaria depend on temperature, making this a potential driver of mosquito population dynamics and malaria transmission. We developed a temperature-dependent, stage-structured delayed differential equation model to better understand how climate determines risk. Including the full mosquito life cycle in the model reveals that the mosquito population abundance is more sensitive to temperature than previously thought because it is strongly influenced by the dynamics of the juvenile mosquito stages whose vital rates are also temperature-dependent. Additionally, the model predicts a peak in abundance of mosquitoes old enough to vector malaria at more accurate temperatures than previous models. Our results point to the importance of incorporating detailed vector biology into models for predicting the risk for vector borne diseases.

  17. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection

    Science.gov (United States)

    Angleró-Rodríguez, Yesseinia I.; Blumberg, Benjamin J.; Dong, Yuemei; Sandiford, Simone L.; Pike, Andrew; Clayton, April M.; Dimopoulos, George

    2016-01-01

    Whereas studies have extensively examined the ability of bacteria to influence Plasmodium infection in the mosquito, the tripartite interactions between non-entomopathogenic fungi, mosquitoes, and Plasmodium parasites remain largely uncharacterized. Here we report the isolation of a common mosquito-associated ascomycete fungus, Penicillium chrysogenum, from the midgut of field-caught Anopheles mosquitoes. Although the presence of Pe. chrysogenum in the Anopheles gambiae midgut does not affect mosquito survival, it renders the mosquito significantly more susceptible to Plasmodium infection through a secreted heat-stable factor. We further provide evidence that the mechanism of the fungus-mediated modulation of mosquito susceptibility to Plasmodium involves an upregulation of the insect’s ornithine decarboxylase gene, which sequesters arginine for polyamine biosynthesis. Arginine plays an important role in the mosquito’s anti-Plasmodium defense as a substrate of nitric oxide production, and its availability therefore has a direct impact on the mosquito’s susceptibility to the parasite. While this type of immunomodulatory mechanism has already been demonstrated in other host-pathogen interaction systems, this is the first report of a mosquito-associated fungus that can suppress the mosquito’s innate immune system in a way that would favor Plasmodium infection and possibly malaria transmission. PMID:27678168

  18. Control of pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes with chlorfenapyr in Benin

    NARCIS (Netherlands)

    N'Guessan, R.; Boko, P.; Odjo, A.; Knols, B.G.J.; Akogbeto, M.; Rowland, M.

    2009-01-01

    Objective To compare the efficacy of chlorfenapyr applied on mosquito nets and as an indoor residual spray against populations of Anopheles gambiae and Culex quinquefasciatus in an area of Benin that shows problematic levels of pyrethroid resistance. Method Eight-week trial conducted in experimental

  19. Effect of larval crowding on mating competitiveness of Anopheles gambiae mosquitoes

    NARCIS (Netherlands)

    Ng'habi, K.R.; John, B.; Nkwengulila, G.; Knols, B.G.J.; Killeen, G.F.; Ferguson, H.M.

    2005-01-01

    Background: The success of sterile or transgenic Anopheles for malaria control depends on their mating competitiveness within wild populations. Current evidence suggests that transgenic mosquitoes have reduced fitness. One means of compensating for this fitness deficit would be to identify environme

  20. Effects of Anti-Mosquito Salivary Glands and Deglycosylated Midgut Antibodies of Anopheles stephensi on Fecundity and Longevity

    Directory of Open Access Journals (Sweden)

    H Mohammadzadeh Hajipirloo

    2005-09-01

    Full Text Available With the aim of controlling malaria by reducing vector population, the effects of antibodies produced against salivary glands and deglycosylated midgut antigens of Anopheles stephensi mosquitoes on fecundity and longevity of the same species were tested. Three deglycosylated preparations of midgut and two preparations of salivary glands were produced, conjugated with aluminum hydroxide gel, and subcutaneously injected to shoulders of TO (Turner Out-bred mice. After 4 immunizations and assurance of enough antibody production against utilized antigenic suspensions, effects of blood feeding on immunized and control mice were assayed. Insoluble preparation of midgut showed the strongest effect with 23.5% reduction in egg laying, and increasing death rate of vectors in third day after feeding. No significant reduction in fecundity or survivorship was seen with other preparations. Anopheles midgut insoluble antigens are potential candidates for designing vaccines against malaria vectors and further investigations need to be done to find effective antigens and the best way of their use.

  1. Screening of selected ethnomedicinal plants from South Africa for larvicidal activity against the mosquito Anopheles arabiensis

    Directory of Open Access Journals (Sweden)

    Maharaj Rajendra

    2012-09-01

    Full Text Available Abstract Background This study was initiated to establish whether any South African ethnomedicinal plants (indigenous or exotic, that have been reported to be used traditionally to repel or kill mosquitoes, exhibit effective mosquito larvicidal properties. Methods Extracts of a selection of plant taxa sourced in South Africa were tested for larvicidal properties in an applicable assay. Thirty 3rd instar Anopheles arabiensis larvae were exposed to various extract types (dichloromethane, dichloromethane/methanol (1:1, methanol and purified water of each species investigated. Mortality was evaluated relative to the positive control Temephos (Mostop; Agrivo, an effective emulsifiable concentrate larvicide. Results Preliminary screening of crude extracts revealed substantial variation in toxicity with 24 of the 381 samples displaying 100% larval mortality within the seven day exposure period. Four of the high activity plants were selected and subjected to bioassay guided fractionation. The results of the testing of the fractions generated identified one fraction of the plant, Toddalia asiatica as being very potent against the An. arabiensis larvae. Conclusion The present study has successfully identified a plant with superior larvicidal activity at both the crude and semi pure fractions generated through bio-assay guided fractionation. These results have initiated further research into isolating the active compound and developing a malaria vector control tool.

  2. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    Directory of Open Access Journals (Sweden)

    Rider Mark A

    2012-06-01

    Full Text Available Abstract Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR. Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically

  3. A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae.

    Science.gov (United States)

    Ramirez, Jose Luis; de Almeida Oliveira, Giselle; Calvo, Eric; Dalli, Jesmond; Colas, Romain A; Serhan, Charles N; Ribeiro, Jose M; Barillas-Mury, Carolina

    2015-01-01

    Exposure of Anopheles gambiae mosquitoes to Plasmodium infection enhances the ability of their immune system to respond to subsequent infections. However, the molecular mechanism that allows the insect innate immune system to 'remember' a previous encounter with a pathogen has not been established. Challenged mosquitoes constitutively release a soluble haemocyte differentiation factor into their haemolymph that, when transferred into Naive mosquitoes, also induces priming. Here we show that this factor consists of a Lipoxin/Lipocalin complex. We demonstrate that innate immune priming in mosquitoes involves a persistent increase in expression of Evokin (a lipid carrier of the lipocalin family), and in their ability to convert arachidonic acid to lipoxins, predominantly Lipoxin A4. Plasmodium ookinete midgut invasion triggers immune priming by inducing the release of a mosquito lipoxin/lipocalin complex. PMID:26100162

  4. A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae

    Science.gov (United States)

    Ramirez, Jose Luis; de Almeida Oliveira, Giselle; Calvo, Eric; Dalli, Jesmond; Colas, Romain A.; Serhan, Charles N.; Ribeiro, Jose M.; Barillas-Mury, Carolina

    2015-01-01

    Exposure of Anopheles gambiae mosquitoes to Plasmodium infection enhances the ability of their immune system to respond to subsequent infections. However, the molecular mechanism that allows the insect innate immune system to ‘remember' a previous encounter with a pathogen has not been established. Challenged mosquitoes constitutively release a soluble haemocyte differentiation factor into their haemolymph that, when transferred into Naive mosquitoes, also induces priming. Here we show that this factor consists of a Lipoxin/Lipocalin complex. We demonstrate that innate immune priming in mosquitoes involves a persistent increase in expression of Evokin (a lipid carrier of the lipocalin family), and in their ability to convert arachidonic acid to lipoxins, predominantly Lipoxin A4. Plasmodium ookinete midgut invasion triggers immune priming by inducing the release of a mosquito lipoxin/lipocalin complex. PMID:26100162

  5. West African Anopheles gambiae mosquitoes harbor a taxonomically diverse virome including new insect-specific flaviviruses, mononegaviruses, and totiviruses.

    Science.gov (United States)

    Fauver, Joseph R; Grubaugh, Nathan D; Krajacich, Benjamin J; Weger-Lucarelli, James; Lakin, Steven M; Fakoli, Lawrence S; Bolay, Fatorma K; Diclaro, Joseph W; Dabiré, Kounbobr Roch; Foy, Brian D; Brackney, Doug E; Ebel, Gregory D; Stenglein, Mark D

    2016-11-01

    Anopheles gambiae are a major vector of malaria in sub-Saharan Africa. Viruses that naturally infect these mosquitoes may impact their physiology and ability to transmit pathogens. We therefore used metagenomics sequencing to search for viruses in adult Anopheles mosquitoes collected from Liberia, Senegal, and Burkina Faso. We identified a number of virus and virus-like sequences from mosquito midgut contents, including 14 coding-complete genome segments and 26 partial sequences. The coding-complete sequences define new viruses in the order Mononegavirales, and the families Flaviviridae, and Totiviridae. The identification of a flavivirus infecting Anopheles mosquitoes broadens our understanding of the evolution and host range of this virus family. This study increases our understanding of virus diversity in general, begins to define the virome of a medically important vector in its natural setting, and lays groundwork for future studies examining the potential impact of these viruses on anopheles biology and disease transmission. PMID:27639161

  6. Identification and expression profiling of putative odorant-binding proteins in the malaria mosquitoes, Anopheles gambiae and A.arabiensis

    Institute of Scientific and Technical Information of China (English)

    LI Zhengxi; Jing-Jiang ZHOU; SHEN Zuorui; Lin FIELD

    2004-01-01

    Olfaction plays a major role in host-seeking behaviour of mosquitoes. An informatics-based genome-wide analysis of odorant-binding protein (OBP) homologues is undertaken,and 32 putative OBP genes in total in the whole genome sequences of Anopheles gambiae are identified. Tissue-specific expression patterns of all A. gambiae OBP candidates are determined by semi-quantitative Reverse Transcription (RT)-PCR using mosquito actin gene as internal expression control standard. The results showed that 20 OBP candidates had strong expression in mosquito olfactory tissues (female antennae), which indicate that OBPs may play an important role in regulating mosquito olfactory behaviours. Species-specific expression patterns of all putative anopheline OBPs are also studied in two of the most important malaria vectors in A. gambiae complex, i.e.A. gambiae and A. arabiensis, which found 12 of the putative OBP genes examined displayed species-differential expression patterns. The cumulative relative expression intensity of the OBPs in A. arabiensis antennae was higher than that in A. gambiae (the ratio is 1441.45:1314.12), which might be due to their different host preference behaviour. While A.gambiae is a highly anthropophilic mosquito, A. arabiensis is more opportunistic (varying from anthropophilic to zoophilic). So the latter should need more OBPs to support its host selection preference. Identification of mosquito OBPs and verification of their tissue- and species-specific expression patterns represent the first step towards further molecular analysis of mosquito olfactory mechanism, such as recombinant expression and ligand identification.

  7. Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Spitzen Jeroen

    2010-10-01

    Full Text Available Abstract Background Carbon dioxide (CO2 plays an important role in the host-seeking process of opportunistic, zoophilic and anthropophilic mosquito species and is, therefore, commonly added to mosquito sampling tools. The African malaria vector Anopheles gambiae sensu stricto is attracted to human volatiles augmented by CO2. This study investigated whether CO2, usually supplied from gas cylinders acquired from commercial industry, could be replaced by CO2 derived from fermenting yeast (yeast-produced CO2. Methods Trapping experiments were conducted in the laboratory, semi-field and field, with An. gambiae s.s. as the target species. MM-X traps were baited with volatiles produced by mixtures of yeast, sugar and water, prepared in 1.5, 5 or 25 L bottles. Catches were compared with traps baited with industrial CO2. The additional effect of human odours was also examined. In the laboratory and semi-field facility dual-choice experiments were conducted. The effect of traps baited with yeast-produced CO2 on the number of mosquitoes entering an African house was studied in the MalariaSphere. Carbon dioxide baited traps, placed outside human dwellings, were also tested in an African village setting. The laboratory and semi-field data were analysed by a χ2-test, the field data by GLM. In addition, CO2 concentrations produced by yeast-sugar solutions were measured over time. Results Traps baited with yeast-produced CO2 caught significantly more mosquitoes than unbaited traps (up to 34 h post mixing the ingredients and also significantly more than traps baited with industrial CO2, both in the laboratory and semi-field. Adding yeast-produced CO2 to traps baited with human odour significantly increased trap catches. In the MalariaSphere, outdoor traps baited with yeast-produced or industrial CO2 + human odour reduced house entry of mosquitoes with a human host sleeping under a bed net indoors. Anopheles gambiae s.s. was not caught during the field trials

  8. A Possible Mechanism for the Suppression of Plasmodium berghei Development in the Mosquito Anopheles gambiae by the Microsporidian Vavraia culicis

    OpenAIRE

    Bargielowski, Irka; Koella, Jacob C

    2009-01-01

    Background Microsporidian parasites of mosquitoes offer a possible way of controlling malaria, as they impede the development of Plasmodium parasites within the mosquito. The mechanism involved in this interference process is unknown. Methodology We evaluated the possibility that larval infection by a microsporidian primes the immune system of adult mosquitoes in a way that enables a more effective anti-Plasmodium response. To do so, we infected 2-day old larvae of the mosquito Anopheles gamb...

  9. Some strains of Plasmodium falciparum, a human malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes.

    Science.gov (United States)

    Molina-Cruz, Alvaro; DeJong, Randall J; Ortega, Corrie; Haile, Ashley; Abban, Ekua; Rodrigues, Janneth; Jaramillo-Gutierrez, Giovanna; Barillas-Mury, Carolina

    2012-07-10

    Plasmodium falciparum lines differ in their ability to infect mosquitoes. The Anopheles gambiae L3-5 refractory (R) line melanizes most Plasmodium species, including the Brazilian P. falciparum 7G8 line, but it is highly susceptible to some African P. falciparum strains such as 3D7, NF54, and GB4. We investigated whether these lines differ in their ability to evade the mosquito immune system. Silencing key components of the mosquito complement-like system [thioester-containing protein 1 (TEP1), leucine-rich repeat protein 1, and Anopheles Plasmodium-responsive leucine-rich repeat protein 1] prevented melanization of 7G8 parasites, reverting the refractory phenotype. In contrast, it had no effect on the intensity of infection with NF54, suggesting that this line is able to evade TEP1-mediated lysis. When R females were coinfected with a line that is melanized (7G8) and a line that survives (3D7), the coinfection resulted in mixed infections with both live and encapsulated parasites on individual midguts. This finding shows that survival of individual parasites is parasite-specific and not systemic in nature, because parasites can evade TEP1-mediated lysis even when other parasites are melanized in the same midgut. When females from an extensive genetic cross between R and susceptible A. gambiae (G3) mosquitoes were infected with P. berghei, encapsulation was strongly correlated with the TEP1-R1 allele. However, P. falciparum 7G8 parasites were no longer encapsulated by females from this cross, indicating that the TEP1-R1 allele is not sufficient to melanize this line. Evasion of the A. gambiae immune system by P. falciparum may be the result of parasite adaptation to sympatric mosquito vectors and may be an important factor driving malaria transmission. PMID:22623529

  10. Molecular species identification, host preference and detection of myxoma virus in the Anopheles maculipennis complex (Diptera: Culicidae) in southern England, UK.

    OpenAIRE

    Brugman, VA; Hernández-Triana, LM; Prosser, SW; Weland, C; Westcott, DG; Fooks, AR; Johnson, N

    2015-01-01

    Background Determining the host feeding patterns of mosquitoes by identifying the origin of their blood-meals is an important part of understanding the role of vector species in current and future disease transmission cycles. Collecting large numbers of blood-fed mosquitoes from the field is difficult, therefore it is important to maximise the information obtained from each specimen. This study aimed to use mosquito genome sequence to identify the species within Anopheles maculipennis sensu l...

  11. Mosquito species geographical distribution in Iraq 2009

    OpenAIRE

    Haidar A. Hantosh, Hameeda M. Hassan, Bushra Ahma & Ali Al-fatlawy

    2012-01-01

    Background & objectives: Mosquitoes transmit diseases to >700 million people annually. Malaria kills threemillion persons every year, including one child every 30 sec. Worldwide there are >3000 mosquito species.In Iraq, 37 species have been identified in different surveys over several decades. We conducted an entomologicalsurvey to determine the mosquito species and their distribution in Iraq in 2009.Methods: Between January 20 and December 31, 2009, mosquitoes in houses in 12 Iraqi...

  12. An updated checklist of mosquito species (Diptera: Culicidae) from Madagascar.

    Science.gov (United States)

    Tantely, Michaël Luciano; Le Goff, Gilbert; Boyer, Sébastien; Fontenille, Didier

    2016-01-01

    An updated checklist of 235 mosquito species from Madagascar is presented. The number of species has increased considerably compared to previous checklists, particularly the last published in 2003 (178 species). This annotated checklist provides concise information on endemism, taxonomic position, developmental stages, larval habitats, distribution, behavior, and vector-borne diseases potentially transmitted. The 235 species belong to 14 genera: Aedeomyia (3 species), Aedes (35 species), Anopheles (26 species), Coquillettidia (3 species), Culex (at least 50 species), Eretmapodites (4 species), Ficalbia (2 species), Hodgesia (at least one species), Lutzia (one species), Mansonia (2 species), Mimomyia (22 species), Orthopodomyia (8 species), Toxorhynchites (6 species), and Uranotaenia (73 species). Due to non-deciphered species complexes, several species remain undescribed. The main remarkable characteristic of Malagasy mosquito fauna is the high biodiversity with 138 endemic species (59%). Presence and abundance of species, and their association, in a given location could be a bio-indicator of environmental particularities such as urban, rural, forested, deforested, and mountainous habitats. Finally, taking into account that Malagasy culicidian fauna includes 64 species (27%) with a known medical or veterinary interest in the world, knowledge of their biology and host preference summarized in this paper improves understanding of their involvement in pathogen transmission in Madagascar.

  13. An updated checklist of mosquito species (Diptera: Culicidae from Madagascar

    Directory of Open Access Journals (Sweden)

    Tantely Michaël Luciano

    2016-01-01

    Full Text Available An updated checklist of 235 mosquito species from Madagascar is presented. The number of species has increased considerably compared to previous checklists, particularly the last published in 2003 (178 species. This annotated checklist provides concise information on endemism, taxonomic position, developmental stages, larval habitats, distribution, behavior, and vector-borne diseases potentially transmitted. The 235 species belong to 14 genera: Aedeomyia (3 species, Aedes (35 species, Anopheles (26 species, Coquillettidia (3 species, Culex (at least 50 species, Eretmapodites (4 species, Ficalbia (2 species, Hodgesia (at least one species, Lutzia (one species, Mansonia (2 species, Mimomyia (22 species, Orthopodomyia (8 species, Toxorhynchites (6 species, and Uranotaenia (73 species. Due to non-deciphered species complexes, several species remain undescribed. The main remarkable characteristic of Malagasy mosquito fauna is the high biodiversity with 138 endemic species (59%. Presence and abundance of species, and their association, in a given location could be a bio-indicator of environmental particularities such as urban, rural, forested, deforested, and mountainous habitats. Finally, taking into account that Malagasy culicidian fauna includes 64 species (27% with a known medical or veterinary interest in the world, knowledge of their biology and host preference summarized in this paper improves understanding of their involvement in pathogen transmission in Madagascar.

  14. Evaluation of selected South African ethnomedicinal plants as mosquito repellents against the Anopheles arabiensis mosquito in a rodent model

    Directory of Open Access Journals (Sweden)

    Folb Peter I

    2010-10-01

    Full Text Available Abstract Background This study was initiated to establish whether any South African ethnomedicinal plants (indigenous or exotic, that have been reported to be used traditionally to repel or kill mosquitoes, exhibit effective mosquito repellent properties. Methods Extracts of a selection of South African taxa were tested for repellency properties in an applicable mosquito feeding-probing assay using unfed female Anopheles arabiensis. Results Although a water extract of the roots of Chenopodium opulifolium was found to be 97% as effective as DEET after 2 mins, time lag studies revealed a substantial reduction in efficacy (to 30% within two hours. Conclusions None of the plant extracts investigated exhibited residual repellencies >60% after three hours.

  15. Potential Test of Papaya Leaf and Seed Extract (Carica Papaya) as Larvicides against Anopheles Mosquito Larvae Mortality. SP IN Jayapura, Papua Indonesia

    OpenAIRE

    Arsunan

    2015-01-01

    Anopheles mosquitoes, sp is the main vector of malaria disease that is widespread in many parts of the world including in Papua Province. There are four speciesof Anopheles mosquitoes, sp, in Papua namely: An.farauti, An.koliensis, An. subpictus, and An.punctulatus. Larviciding synthetic cause resistance. This study aims to analyze the potential of papaya leaf and seeds extracts (Carica papaya) as larvicides against the mosquitoes Anopheles sp. The experiment was conducted at the Laboratory o...

  16. Mosquito repellent action of Blumea lacera (Asteraceae against Anopheles stephensi and Culex quinquefasciatus.

    Directory of Open Access Journals (Sweden)

    S.P. Singh

    2014-03-01

    Full Text Available Petroleum ether extract of Blumea lacera was screened under laboratory conditions for repellent activity against mosquito vector Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae. The repellent activity of Blumea lacera extract was tested against mosquitoes in comparison with the DEET, which was used as a positive control. Results obtained from the laboratory experiment showed that the extract was effective against mosquito vectors even at a low dose. A direct relationship was observed with concentrations of Blumea lacera extract and the repellent activity. Percent repellency obtained at 6% concentration of theextract against An. stephensi and Cx. quinquefasciatus were 97and 98% at 0 hour and 78.8 and 76.2% after 6 hrs. DEET-2% however showed 100% repellency against An. stephensi and against Cx. quinquefasciatus up to 4 hours and 1 hour, respectively. These results show that Blumea lacera extract has the potential as an effective mosquito repellent.

  17. Identification and analysis of Single Nucleotide Polymorphisms (SNPs in the mosquito Anopheles funestus, malaria vector

    Directory of Open Access Journals (Sweden)

    Hemingway Janet

    2007-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most common source of genetic variation in eukaryotic species and have become an important marker for genetic studies. The mosquito Anopheles funestus is one of the major malaria vectors in Africa and yet, prior to this study, no SNPs have been described for this species. Here we report a genome-wide set of SNP markers for use in genetic studies on this important human disease vector. Results DNA fragments from 50 genes were amplified and sequenced from 21 specimens of An. funestus. A third of specimens were field collected in Malawi, a third from a colony of Mozambican origin and a third form a colony of Angolan origin. A total of 494 SNPs including 303 within the coding regions of genes and 5 indels were identified. The physical positions of these SNPs in the genome are known. There were on average 7 SNPs per kilobase similar to that observed in An. gambiae and Drosophila melanogaster. Transitions outnumbered transversions, at a ratio of 2:1. The increased frequency of transition substitutions in coding regions is likely due to the structure of the genetic code and selective constraints. Synonymous sites within coding regions showed a higher polymorphism rate than non-coding introns or 3' and 5'flanking DNA with most of the substitutions in coding regions being observed at the 3rd codon position. A positive correlation in the level of polymorphism was observed between coding and non-coding regions within a gene. By genotyping a subset of 30 SNPs, we confirmed the validity of the SNPs identified during this study. Conclusion This set of SNP markers represents a useful tool for genetic studies in An. funestus, and will be useful in identifying candidate genes that affect diverse ranges of phenotypes that impact on vector control, such as resistance insecticide, mosquito behavior and vector competence.

  18. Anopheles gambiae mosquito isolated neurons : a new biological model for optimizing insecticide/repellent efficacy

    OpenAIRE

    Lavialle-Defaix, C.; Apaire-Marchais, V; Legros, C.; Pennetier, Cédric; Mohamed, A; P. Licznar; Corbel, Vincent; Lapied, B

    2011-01-01

    To understand better the mode of action of insecticides and repellents used in vector-borne diseases control, we developed a new biological model based on mosquito neurons isolated from adults Anopheles gambiae heads. This cellular model is well adapted to multidisciplinary approaches: electrophysiology, pharmacology, molecular biology and biochemical assays. Using RT-PCR, we demonstrated that isolated neurons express the nicotinic acetylcholine receptor subunit alpha 1 (Ag alpha 1 nAchR), tw...

  19. Mosquito repellent potential of Pithecellobium dulce leaf and seed against malaria vector Anopheles stephensi (Diptera: Culicidae)

    OpenAIRE

    Mohan Rajeswary; Marimuthu Govindarajan

    2016-01-01

    Objective: To determine the repellent properties of hexane, benzene, ethyl acetate, chloroform and methanol extract of Pithecellobium dulce (P. dulce) leaf and seed against Anopheles stephensi (An. stephensi). Methods: Repellent activity assay was carried out in a net cage (45 cm × 30 cm × 25 cm) containing 100 blood starved female mosquitoes of An. stephensi. This assay was carried out in the laboratory conditions according to the WHO 2009 protocol. Plant crude extracts of P. ...

  20. Biochemical Characterization of Anopheles gambiae SRPN6, a Malaria Parasite Invasion Marker in Mosquitoes

    OpenAIRE

    Chunju An; Yasuaki Hiromasa; Xin Zhang; Scott Lovell; Michal Zolkiewski; John M Tomich; Kristin Michel

    2012-01-01

    Serine proteinase inhibitors of the serpin family are well known as negative regulators of hemostasis, thrombolysis and innate immune responses. Additionally, non-inhibitory serpins serve functions as chaperones, hormone transporters, or anti-angiogenic factors. In the African malaria mosquito, Anopheles gambiae s.s., at least three serpins (SRPNs) are implicated in the innate immune response against malaria parasites. Based on reverse genetic and cell biological analyses, AgSRPN6 limits para...

  1. The STAT pathway mediates late phase immunity against Plasmodium in the mosquito Anopheles gambiae

    OpenAIRE

    Gupta, Lalita; Molina-Cruz, Alvaro; Kumar, Sanjeev; Rodrigues, Janneth; Dixit, Rajnikant; Zamora, Rodolfo E.; Barillas-Mury, Carolina

    2009-01-01

    The STAT family of transcription factors activate expression of immune system genes in vertebrates. The ancestral STAT gene (AgSTAT-A) appears to have duplicated in the mosquito Anopheles gambiae, giving rise to a second intronless STAT gene (AgSTAT-B), which we show regulates AgSTAT-A expression in adult females. AgSTAT-A participates in the transcriptional activation of nitric oxide synthase (NOS) in response to bacterial and plasmodial infection. Activation of this pathway, however, is not...

  2. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes.

    Science.gov (United States)

    Rodrigues, Janneth; Brayner, Fábio André; Alves, Luiz Carlos; Dixit, Rajnikant; Barillas-Mury, Carolina

    2010-09-10

    Mosquito midgut invasion by ookinetes of the malaria parasite Plasmodium disrupts the barriers that normally prevent the gut microbiota from coming in direct contact with epithelial cells. This triggers a long-lived response characterized by increased abundance of granulocytes, a subpopulation of hemocytes that circulates in the insect's hemocoel, and enhanced immunity to bacteria that indirectly reduces survival of Plasmodium parasites upon reinfection. In mosquitoes, differentiation of hemocytes was necessary and sufficient to confer innate immune memory. PMID:20829487

  3. Hemocyte Differentiation Mediates Innate Immune Memory in Anopheles gambiae Mosquitoes

    OpenAIRE

    Rodrigues, Janneth; Brayner, Fábio André; Alves, Luiz Carlos; Dixit, Rajnikant; Barillas-Mury, Carolina

    2010-01-01

    Mosquito midgut invasion by ookinetes of the malaria parasite Plasmodium disrupts the barriers that normally prevent the gut microbiota from coming in direct contact with epithelial cells. This triggers a long-lived response characterized by increased abundance of granulocytes, a subpopulation of hemocytes, circulating in the insect’s hemocoel, and enhanced immunity to bacteria that indirectly reduces survival of Plasmodium parasites upon reinfection. In mosquitoes, differentiation of hemocyt...

  4. Hemocyte Differentiation Mediates Innate Immune Memory in Anopheles gambiae Mosquitoes

    Science.gov (United States)

    Rodrigues, Janneth; Brayner, Fábio André; Alves, Luiz Carlos; Dixit, Rajnikant; Barillas-Mury, Carolina

    2012-01-01

    Mosquito midgut invasion by ookinetes of the malaria parasite Plasmodium disrupts the barriers that normally prevent the gut microbiota from coming in direct contact with epithelial cells. This triggers a long-lived response characterized by increased abundance of granulocytes, a subpopulation of hemocytes, circulating in the insect’s hemocoel, and enhanced immunity to bacteria that indirectly reduces survival of Plasmodium parasites upon reinfection. In mosquitoes, differentiation of hemocytes was necessary and sufficient to confer innate immune memory. PMID:20829487

  5. Evaluation of selected South African ethnomedicinal plants as mosquito repellents against the Anopheles arabiensis mosquito in a rodent model

    OpenAIRE

    Folb Peter I; Bhagwandin Niresh; Newmarch Marion; Crouch Neil R; Maharaj Vinesh; Maharaj Rajendra; Pillay Pamisha; Gayaram Reshma

    2010-01-01

    Abstract Background This study was initiated to establish whether any South African ethnomedicinal plants (indigenous or exotic), that have been reported to be used traditionally to repel or kill mosquitoes, exhibit effective mosquito repellent properties. Methods Extracts of a selection of South African taxa were tested for repellency properties in an applicable mosquito feeding-probing assay using unfed female Anopheles arabiensis. Results Although a water extract of the roots of Chenopodiu...

  6. Repellent, irritant and toxic effects of 20 plant extracts on adults of the malaria vector Anopheles gambiae mosquito.

    Directory of Open Access Journals (Sweden)

    Emilie Deletre

    Full Text Available Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mosquitoes or to prevent mosquito contact with humans, therefore arises. In laboratory conditions, the effects (i.e., repellent, irritant and toxic of 20 plant extracts, mainly essential oils, were assessed on adults of Anopheles gambiae, a primary vector of malaria. Their effects were compared to those of DEET and permethrin, used as positive controls. Most plant extracts had irritant, repellent and/or toxic effects on An. gambiae adults. The most promising extracts, i.e. those combining the three types of effects, were from Cymbopogon winterianus, Cinnamomum zeylanicum and Thymus vulgaris. The irritant, repellent and toxic effects occurred apparently independently of each other, and the behavioural response of adult An. gambiae was significantly influenced by the concentration of the plant extracts. Mechanisms underlying repellency might, therefore, differ from those underlying irritancy and toxicity. The utility of the efficient plant extracts for vector control as an alternative to pyrethroids may thus be envisaged.

  7. Salivary Gland Proteome during Adult Development and after Blood Feeding of Female Anopheles dissidens Mosquitoes (Diptera: Culicidae)

    Science.gov (United States)

    Phattanawiboon, Benjarat; Jariyapan, Narissara; Mano, Chonlada; Roytrakul, Sittiruk; Paemanee, Atchara; Sor-Suwan, Sriwatapron; Sriwichai, Patchara; Saeung, Atiporn; Bates, Paul A.

    2016-01-01

    Understanding changes in mosquito salivary proteins during the time that sporozoite maturation occurs and after blood feeding may give information regarding the roles of salivary proteins during the malarial transmission. Anopheles dissidens (formerly Anopheles barbirostris species A1) is a potential vector of Plasmodium vivax in Thailand. In this study, analyses of the proteomic profiles of female An. dissidens salivary glands during adult development and after blood feeding were carried out using two-dimensional gel electrophoresis coupled with nano-liquid chromatography-mass spectrometry. Results showed at least 17 major salivary gland proteins present from day one to day 21 post emergence at 8 different time points sampled. Although there was variation observed, the patterns of protein expression could be placed into one of four groups. Fifteen protein spots showed significant depletion after blood feeding with the percentages of the amount of depletion ranging from 8.5% to 68.11%. The overall results identified various proteins, including a putative mucin-like protein, an anti-platelet protein, a long form D7 salivary protein, a putative gVAG protein precursor, a D7-related 3.2 protein, gSG7 salivary proteins, and a gSG6 protein. These results allow better understanding of the changes of the salivary proteins during the adult mosquito development. They also provide candidate proteins to investigate any possible link or not between sporozoite maturation, or survival of skin stage sporozoites, and salivary proteins. PMID:27669021

  8. Description of Anopheles gabonensis, a new species potentially involved in rodent malaria transmission in Gabon, Central Africa.

    Science.gov (United States)

    Rahola, Nil; Makanga, Boris; Yangari, Patrick; Jiolle, Davy; Fontenille, Didier; Renaud, François; Ollomo, Benjamin; Ayala, Diego; Prugnolle, Franck; Paupy, Christophe

    2014-12-01

    The genus Anopheles includes mosquito vectors of human malaria and arboviruses. In sub-Saharan Africa, the anopheline fauna is rich of nearly 150 species, few of which are anthropophilic and capable of transmitting pathogens to humans. Some of the remaining species are found in forests far from human environments and are vectors of wildlife pathogens. The diversity and the biology of these species have yet to be fully described. As a contribution to furthering knowledge of sylvan Anophelinae, using morphological and molecular tools we describe a new Anopheles species collected in Gabon (Central Africa), which we have named Anopheles gabonensis n. sp. We also molecularly screened this species to detect infections by Plasmodium parasites. The results showed the species to have been infected by Plasmodium vinckei, a rodent parasite. We discuss the role of An. gabonensis n. sp. in the transmission of P. vinckei in the rainforest areas of Central Africa and its potential to transfer pathogens to humans.

  9. Pathogenicity Tests on Nine Mosquito Species and Several Non-target Organisms with Strelkovimermis spiculatus (Nemata Mermithidae)

    OpenAIRE

    BECNEL, JAMES J.; Johnson, Margaret A

    1998-01-01

    Nine species of mosquitoes and several species of non-target aquatic organisms were tested for susceptibility to the mernaithid nematode, Strelkovimermis spiculatus. All species of Anopheles, Aedes, Culex, and Toxorhynchites exposed to S. spiculatus were susceptible. Of the nine mosquito species tested, C. pipiens quinquefasciatus had the greatest tolerance to initial invasion and the highest percent infection of those that survived. High levels of infection were also achieved with Aedes taen...

  10. An Epithelial Serine Protease, AgESP, Is Required for Plasmodium Invasion in the Mosquito Anopheles gambiae

    OpenAIRE

    Rodrigues, Janneth; Oliveira, Giselle A.; Kotsyfakis, Michalis; Dixit, Rajnikant; Molina-Cruz, Alvaro; Jochim, Ryan; Barillas-Mury, Carolina

    2012-01-01

    Background Plasmodium parasites need to cross the midgut and salivary gland epithelia to complete their life cycle in the mosquito. However, our understanding of the molecular mechanism and the mosquito genes that participate in this process is still very limited. Methodology/Principal Findings We identified an Anopheles gambiae epithelial serine protease (AgESP) that is constitutively expressed in the submicrovillar region of mosquito midgut epithelial cells and in the basal side of the sali...

  11. Limited usefulness of microsatellite markers from the malaria vector Anopheles gambiae when applied to the closely related species Anopheles melas.

    Science.gov (United States)

    Deitz, Kevin C; Reddy, Vamsi P; Reddy, Michael R; Satyanarayanah, Neha; Lindsey, Michael W; Overgaard, Hans J; Jawara, Musa; Caccone, Adalgisa; Slotman, Michel A

    2012-07-01

    Anopheles melas is a brackish water mosquito found in coastal West Africa where it is a dominant malaria vector locally. In order to facilitate genetic studies of this species, 45 microsatellite loci originally developed for Anopheles gambiae were sequenced in An. melas. Those that were suitable based on repeat number and flanking regions were examined in 2 natural populations from Equatorial Guinea. Only 15 loci were eventually deemed suitable as polymorphic markers in An. melas populations. These loci were screened in 4 populations from a wider geographic range. Heterozygosity estimates ranged from 0.18 to 0.79, and 2.5-15 average alleles were observed per locus, yielding 13 highly polymorphic markers and 2 loci with lower variability. To examine the usefulness of microsatellite markers when applied in a sibling species, the original An. gambiae specific markers were used to amplify 5 loci in An. melas. Null alleles were found for 1 An. gambiae marker. We discuss the pitfalls of using microsatellite loci across closely related species and conclude that in addition to the problem of null alleles associated with this practice, many loci may prove to be of very limited use as polymorphic markers even when used in a sibling species. PMID:22593601

  12. Identification of four evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Belmont, Martin; Cazzamali, Giuseppe; Williamson, Michael;

    2006-01-01

    The mosquito Anopheles gambiae is an important vector for malaria, which is one of the most serious human parasitic diseases in the world, causing up to 2.7 million deaths yearly. To contribute to our understanding of A. gambiae and to the transmission of malaria, we have now cloned four evolutio......The mosquito Anopheles gambiae is an important vector for malaria, which is one of the most serious human parasitic diseases in the world, causing up to 2.7 million deaths yearly. To contribute to our understanding of A. gambiae and to the transmission of malaria, we have now cloned four...... evolutionarily related G protein-coupled receptors (GPCRs) from this mosquito and expressed them in Chinese hamster ovary cells. After screening of a library of thirty-three insect or other invertebrate neuropeptides and eight biogenic amines, we could identify (de-orphanize) three of these GPCRs as...... relationship to the A. gambiae and other insect AKH receptors suggested that it is a receptor for an AKH-like peptide. This is the first published report on evolutionarily related AKH, corazonin, and CCAP receptors in mosquitoes....

  13. Effect of Novaluron (Rimon 10 EC) on the mosquitoes Anopheles albimanus, Anopheles pseudopunctipennis, Aedes aegypti, Aedes albopictus and Culex quinquefasciatus from Chiapas, Mexico.

    Science.gov (United States)

    Arredondo-Jiménez, J I; Valdez-Delgado, K M

    2006-12-01

    Dengue fever is a serious problem in Mexico and vector control has not been effective enough at preventing outbreaks. Malaria is largely under control, but it is important that new control measures continue to be developed. Novaluron, a novel host-specific insect growth regulator and chitin synthesis inhibitor, has proved to be effective against agricultural pests, but its efficacy against larval mosquito vectors under field conditions remains unknown. In accordance with the World Health Organization Pesticide Evaluation Scheme, phase I, II and III studies were conducted to evaluate the efficacy and residual effect of Novaluron (Rimon 10 EC, Makhteshim, Beer-Sheva, Israel) on the malaria vectors Anopheles albimanus Wiedemann (Diptera: Culicidae) and Anopheles pseudopunctipennis Theobald, the dengue vectors Aedes aegypti (L) and Aedes albopictus Skuse and the nuisance mosquito Culex quinquefasciatus Say. Laboratory susceptibility tests yielded diagnostic concentrations for all five target species. Field trials to identify the optimum field dosage of Novaluron against Anopheles mosquitoes were carried out under semi-natural conditions in artificial plots and in vessels with wild mosquitoes. Efficacy was measured by monitoring mortality of larvae and pupae and the percentage of inhibition of emergence from floating cages. Dosages of Novaluron for field tests were based on pupal LC(99) (lethal concentration 99%) of An. pseudopunctipennis (0.166 mg/L) in plots and average pupal LC(99) of Ae. aegypti and Ae. albopictus (0.55 mg/L). At all dosages tested, Novaluron significantly reduced larval populations of An. albimanus, Culex coronator Dyar & Knab, Ae. albopictus and Cx. quinquefasciatus by approximately 90%, inhibited adult emergence of An. albimanus and An. pseudopunctipennis by approximately 97% for almost 4 months in experimental plots, and inhibited adult emergence of Ae. aegypti and Ae. albopictus by approximately 97% for up to 14 weeks. Recommended dosages of

  14. Mitochondrial reactive oxygen species modulate mosquito susceptibility to Plasmodium infection.

    Directory of Open Access Journals (Sweden)

    Renata L S Gonçalves

    Full Text Available BACKGROUND: Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS that modulate redox metabolism. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1, is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses to Plasmodium infection. AgMC1 silencing reduces mitochondrial membrane potential, resulting in increased proton-leak and uncoupling of oxidative phosphorylation. These metabolic changes reduce midgut ROS generation and increase A. gambiae susceptibility to Plasmodium infection. CONCLUSION: We provide direct experimental evidence indicating that ROS derived from mitochondria can modulate mosquito epithelial responses to Plasmodium infection.

  15. Mitochondrial Reactive Oxygen Species Modulate Mosquito Susceptibility to Plasmodium Infection

    Science.gov (United States)

    Oliveira, Giselle A.; Andersen, John F.; Oliveira, Marcus F.; Oliveira, Pedro L.; Barillas-Mury, Carolina

    2012-01-01

    Background Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism. Methodology/Principal Findings We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses to Plasmodium infection. AgMC1 silencing reduces mitochondrial membrane potential, resulting in increased proton-leak and uncoupling of oxidative phosphorylation. These metabolic changes reduce midgut ROS generation and increase A. gambiae susceptibility to Plasmodium infection. Conclusion We provide direct experimental evidence indicating that ROS derived from mitochondria can modulate mosquito epithelial responses to Plasmodium infection. PMID:22815925

  16. Molecular evolution of immune genes in the malaria mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Tovi Lehmann

    Full Text Available BACKGROUND: As pathogens that circumvent the host immune response are favoured by selection, so are host alleles that reduce parasite load. Such evolutionary processes leave their signature on the genes involved. Deciphering modes of selection operating on immune genes might reveal the nature of host-pathogen interactions and factors that govern susceptibility in host populations. Such understanding would have important public health implications. METHODOLOGY/FINDINGS: We analyzed polymorphisms in four mosquito immune genes (SP14D1, GNBP, defensin, and gambicin to decipher selection effects, presumably mediated by pathogens. Using samples of Anopheles arabiensis, An. quadriannulatus and four An. gambiae populations, as well as published sequences from other Culicidae, we contrasted patterns of polymorphisms between different functional units of the same gene within and between populations. Our results revealed selection signatures operating on different time scales. At the most recent time scale, within-population diversity revealed purifying selection. Between populations and between species variation revealed reduced differentiation (GNBP and gambicin at coding vs. noncoding- regions, consistent with balancing selection. McDonald-Kreitman tests between An. quadriannulatus and both sibling species revealed higher fixation rate of synonymous than nonsynonymous substitutions (GNBP in accordance with frequency dependent balancing selection. At the longest time scale (>100 my, PAML analysis using distant Culicid taxa revealed positive selection at one codon in gambicin. Patterns of genetic variation were independent of exposure to human pathogens. SIGNIFICANCE AND CONCLUSIONS: Purifying selection is the most common form of selection operating on immune genes as it was detected on a contemporary time scale on all genes. Selection for "hypervariability" was not detected, but negative balancing selection, detected at a recent evolutionary time scale

  17. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae.

    Science.gov (United States)

    Kumar, Sanjeev; Christophides, George K; Cantera, Rafael; Charles, Bradley; Han, Yeon Soo; Meister, Stephan; Dimopoulos, George; Kafatos, Fotis C; Barillas-Mury, Carolina

    2003-11-25

    Malaria transmission depends on the competence of some Anopheles mosquitoes to sustain Plasmodium development (susceptibility). A genetically selected refractory strain of Anopheles gambiae blocks Plasmodium development, melanizing, and encapsulating the parasite in a reaction that begins with tyrosine oxidation, and involves three quantitative trait loci. Morphological and microarray mRNA expression analysis suggest that the refractory and susceptible strains have broad physiological differences, which are related to the production and detoxification of reactive oxygen species. Physiological studies corroborate that the refractory strain is in a chronic state of oxidative stress, which is exacerbated by blood feeding, resulting in increased steady-state levels of reactive oxygen species, which favor melanization of parasites as well as Sephadex beads. PMID:14623973

  18. Field study site selection, species abundance and monthly distribution of anopheline mosquitoes in the northern Kruger National Park, South Africa

    Science.gov (United States)

    2014-01-01

    Background Knowledge of the ecology and behaviour of a target species is a prerequisite for the successful development of any vector control strategy. Before the implementation of any strategy it is essential to have comprehensive information on the bionomics of species in the targeted area. The aims of this study were to conduct regular entomological surveillance and to determine the relative abundance of anopheline species in the northern Kruger National Park. In addition to this, the impact of weather conditions on an Anopheles arabiensis population were evaluated and a range of mosquito collection methods were assessed. Methods A survey of Anopheles species was made between July 2010 and December 2012. Mosquitoes were collected from five sites in the northern Kruger National Park, using carbon dioxide-baited traps, human landing and larval collections. Specimens were identified morphologically and polymerase chain reaction assays were subsequently used where appropriate. Results A total of 3,311 specimens belonging to nine different taxa was collected. Species collected were: Anopheles arabiensis (n = 1,352), Anopheles quadriannulatus (n = 870), Anopheles coustani (n = 395), Anopheles merus (n = 349), Anopheles pretoriensis (n = 35), Anopheles maculipalpis (n = 28), Anopheles rivulorum (n = 19), Anopheles squamosus (n = 3) and Anopheles rufipes (n = 2). Members of the Anopheles gambiae species complex were the most abundant and widely distributed, occurring across all collection sites. The highest number of mosquitoes was collected using CO2 baited net traps (58.2%) followed by human landing catches (24.8%). Larval collections (17%) provided an additional method to increase sample size. Mosquito sampling productivity was influenced by prevailing weather conditions and overall population densities fluctuated with seasons. Conclusion Several anopheline species occur in the northern Kruger National Park and their densities

  19. Unassisted isolated-pair mating of Anopheles gambiae (Diptera: Culicidae) mosquitoes.

    Science.gov (United States)

    Benedict, Mark Q; Rafferty, Cristina S

    2002-11-01

    Female Anopheles mosquitoes usually mate only once, but mating is seldom seen in small containers containing only one female and male. Therefore, matings are often performed among many adults in large cages or by forced copulation. Isolated-pair mating of Anopheles gambiae G3 strain-derived mosquitoes without forced copulation in small vials is described. We observed that the experimental variables eye color and male number were significant factors in the mating frequency. Females mated more frequently when three males were present over only one male. White-eyed females were more likely to be mated than wild-eyed females, but wild males mated more frequently than did white-eyed males. Experiments were also conducted to determine when mating was occurring by using wild-eye-color mosquitoes in isolated pairs. Almost no matings were observed before day 6 rather than the frequencies typically observed after 1-2 d in standard large-cage matings among large numbers of adults.

  20. Disección de mosquitos anopheles (resumen de resultados)

    OpenAIRE

    Cadena, M. A.

    2012-01-01

    Hago a continuación un resumen de los resultados obtenidos con la disección de hembras de anofelinos llevada a cabo en varios sitios del Rio Magdalena y en dos Municipios del Departamento del Valle del Cauca, en los años de 1932 a 1937, figurando en él, el número de disecciones hechas en cada lugar, las especies de anofelinos y lo que en los estómagos y las glándulas salivales de los mosquitos se encontró.

  1. Using Stable Isotopes of Carbon and Nitrogen to Mark Wild Populations of Anopheles and Aedes Mosquitoes in South-Eastern Tanzania

    Science.gov (United States)

    Opiyo, Mercy A.; Hamer, Gabriel L.; Lwetoijera, Dickson W.; Auckland, Lisa D.; Majambere, Silas; Okumu, Fredros O.

    2016-01-01

    isotopic ratios between mosquito species. Conclusion Enrichment of semi-natural mosquito larval habitats with stable isotopes of nitrogen and carbon resulted in effective marking of Anopheles and Aedes mosquitoes colonizing these habitats. This approach can significantly enhance studies on mosquito eco-physiology, dispersal, pathogen transmission and responses to control measures. PMID:27392083

  2. Mosquito larvicidal and biting deterrency activity of bud of Polianthes tuberosa plants extract against Anopheles stephensi and Culex quinquefasciatus.

    Science.gov (United States)

    Anjali, Rawani; Atanu, Banerjee; Goutam, Chandra

    2012-06-01

    Mosquito control by phytochemicals is an alternative method to synthetic insecticides, as it is biodegradable and non resistant to vector mosquito. Polianthes tuberosa is a perennial plant distributed in many parts of India. The present study was undertaken to scientifically evaluate the larvicide and biting deterrency activity of bud of Polianthes tuberosa against Culex quinquefasciatus and Anopheles stephensi. Crude and solvent extract [ethyl acetate, chloroform: methanol (1:1, v/v), acetone] of fresh, mature, bud of P. tuberosa was tested against (ex. quinquefasciatus and An. stephensi. The repellent activity tested by chloroform: methanol (1:1, v/v) solvent extract against both mosquito species. The appropriate lethal concentrations at 24h for chloroform: methanol (1:1, v/v) extract was also studied on non target organisms such as Toxorhynchites larvae, Diplonychus annulatum and Chironomus circumdatus. In a 72 hour bioassay experiment, 0.5% crude extract showed the highest mortality and chloroform: methanol (1:1, v/v) solvent extract showed the highest mortality, the maximum (p larvicide agent. There is no changes in the activity non-target organism so, it is safe to use.

  3. The bionomics of the malaria mosquito Anopheles gambiae sensu lato in Southeast Tanzania.

    NARCIS (Netherlands)

    Lyimo, E.O.K.

    1993-01-01

    Size of adult mosquitoes is known to affect both population dynamics as well as disease transmission. Studies devoted to this topic have given different results for different species. For example in some mosquito species, large size was found to be associated with high fecundity and longer survival

  4. Comprehensive genetic dissection of the hemocyte immune response in the malaria mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Fabrizio Lombardo

    2013-01-01

    Full Text Available Reverse genetics in the mosquito Anopheles gambiae by RNAi mediated gene silencing has led in recent years to an advanced understanding of the mosquito immune response against infections with bacteria and malaria parasites. We developed RNAi screens in An. gambiae hemocyte-like cells using a library of double-stranded RNAs targeting 109 genes expressed highly or specifically in mosquito hemocytes to identify novel regulators of the hemocyte immune response. Assays included phagocytosis of bacterial bioparticles, expression of the antimicrobial peptide CEC1, and basal and induced expression of the mosquito complement factor LRIM1. A cell viability screen was also carried out to assess dsRNA cytotoxicity and to identify genes involved in cell growth and survival. Our results identify 22 novel immune regulators, including proteins putatively involved in phagosome assembly and maturation (Ca²⁺ channel, v-ATPase and cyclin-dependent protein kinase, pattern recognition (fibrinogen-domain lectins and Nimrod, immune modulation (peptidase and serine protease homolog, immune signaling (Eiger and LPS-induced factor, cell adhesion and communication (Laminin B1 and Ninjurin and immune homeostasis (Lipophorin receptor. The development of robust functional cell-based assays paves the way for genome-wide functional screens to study the mosquito immune response to infections with human pathogens.

  5. Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Hogan James R

    2005-01-01

    Full Text Available Abstract Background Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of the blood meal and compared their expression to transcript levels in mosquitoes with access only to a sugar solution. Results In blood-fed mosquitoes, 413 unique transcripts, approximately 25% of the total, were expressed at least two-fold above or below their levels in the sugar-fed mosquitoes, at one or more time points. These differentially expressed gene products were clustered using k-means clustering into Early Genes, Middle Genes, and Late Genes, containing 144, 130, and 139 unique transcripts, respectively. Several genes from each group were analyzed by quantitative real-time PCR in order to validate the microarray results. Conclusion The expression patterns and annotation of the genes in these three groups (Early, Middle, and Late genes are discussed in the context of female mosquitoes' physiological responses to blood feeding, including blood digestion, peritrophic matrix formation, egg development, and immunity.

  6. Mosaic genome architecture of the Anopheles gambiae species complex.

    Directory of Open Access Journals (Sweden)

    Rui Wang-Sattler

    Full Text Available BACKGROUND: Attempts over the last three decades to reconstruct the phylogenetic history of the Anopheles gambiae species complex have been important for developing better strategies to control malaria transmission. METHODOLOGY: We used fingerprint genotyping data from 414 field-collected female mosquitoes at 42 microsatellite loci to infer the evolutionary relationships of four species in the A. gambiae complex, the two major malaria vectors A. gambiae sensu stricto (A. gambiae s.s. and A. arabiensis, as well as two minor vectors, A. merus and A. melas. PRINCIPAL FINDINGS: We identify six taxonomic units, including a clear separation of West and East Africa A. gambiae s.s. S molecular forms. We show that the phylogenetic relationships vary widely between different genomic regions, thus demonstrating the mosaic nature of the genome of these species. The two major malaria vectors are closely related and closer to A. merus than to A. melas at the genome-wide level, which is also true if only autosomes are considered. However, within the Xag inversion region of the X chromosome, the M and two S molecular forms are most similar to A. merus. Near the X centromere, outside the Xag region, the two S forms are highly dissimilar to the other taxa. Furthermore, our data suggest that the centromeric region of chromosome 3 is a strong discriminator between the major and minor malaria vectors. CONCLUSIONS: Although further studies are needed to elucidate the basis of the phylogenetic variation among the different regions of the genome, the preponderance of sympatric admixtures among taxa strongly favor introgression of different genomic regions between species, rather than lineage sorting of ancestral polymorphism, as a possible mechanism.

  7. Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae

    OpenAIRE

    Hogan James R; Lobo Neil F; Harker Brent W; Hillenmeyer Maureen E; Kern Marcia K; Hong Young S; Dana Ali N; Romans Patricia; Collins Frank H

    2005-01-01

    Abstract Background Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of t...

  8. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools.

    Science.gov (United States)

    Lobo, Neil F; St Laurent, Brandyce; Sikaala, Chadwick H; Hamainza, Busiku; Chanda, Javan; Chinula, Dingani; Krishnankutty, Sindhu M; Mueller, Jonathan D; Deason, Nicholas A; Hoang, Quynh T; Boldt, Heather L; Thumloup, Julie; Stevenson, Jennifer; Seyoum, Aklilu; Collins, Frank H

    2015-12-09

    The understanding of malaria vector species in association with their bionomic traits is vital for targeting malaria interventions and measuring effectiveness. Many entomological studies rely on morphological identification of mosquitoes, limiting recognition to visually distinct species/species groups. Anopheles species assignments based on ribosomal DNA ITS2 and mitochondrial DNA COI were compared to morphological identifications from Luangwa and Nyimba districts in Zambia. The comparison of morphological and molecular identifications determined that interpretations of species compositions, insecticide resistance assays, host preference studies, trap efficacy, and Plasmodium infections were incorrect when using morphological identification alone. Morphological identifications recognized eight Anopheles species while 18 distinct sequence groups or species were identified from molecular analyses. Of these 18, seven could not be identified through comparison to published sequences. Twelve of 18 molecularly identified species (including unidentifiable species and species not thought to be vectors) were found by PCR to carry Plasmodium sporozoites - compared to four of eight morphological species. Up to 15% of morphologically identified Anopheles funestus mosquitoes in insecticide resistance tests were found to be other species molecularly. The comprehension of primary and secondary malaria vectors and bionomic characteristics that impact malaria transmission and intervention effectiveness are fundamental in achieving malaria elimination.

  9. Mosquito larvicidal activity of some common spices and vegetable waste onCulex quinquefasciatus andAnopheles stephensi

    Institute of Scientific and Technical Information of China (English)

    Someshwar Singha; Goutam Chandra

    2011-01-01

    Objective:To investigate the larvicidal activities of crude and chloroform: methanol (1:1 v/v) extracts of some common spices (Cuminum cyminum, Allium sativum, Zingiber offinale, Curcuma longa) and vegetable waste (Solanum tuberosum germinated tuber) againstAnopheles stephensiandCulex quinquefasciatus mosquito larvae.Methods:Larval mortality of above mosquito species were observed after 24, 48 and72 h of exposure to five concentrations of aqueous extract (0.1%, 0.2%, 0.3%, 0.4% and0.5%) and four concentrations (25, 50, 75 ppm) of chloroform: methanol (1:1 v/v) extract. The lethal concentration of individual spices or vegetable waste was determined by log-probit analysis (at95%confidence level) and effect of crude and chloroform: methanol (1:1 v/v) extracts were recorded on non target organisms.Results:Relative mortality rate of both larval mosquito species were recorded in the following sequences:Cuminum cyminum>Allium sativum>Zingiber offinale, Curcuma longa > Solanum tuberosum germinated tuber for crude extract, and efficacy of chloroform: methanol (1:1 v/v) extract were as follows:Curcuma longa > Zingiber offinale > Solanum tuberosum germinated tuber >Cuminum cyminum>Allium sativum.Conclusions: Crude and chloroform: methanol (1:1 v/v) extract of Cuminum cyminum, Allium sativum, Zingiber offinale, Curcuma longa andSolanum tuberosum germinated tuber can be recommended effectively in mosquito control programmes at very low concentrations. No mortality and other abnormalities were noticed on non target organisms and further studies are needed to investigate the chemical structure of active principal which are responsible for larvicidal activity.

  10. Biochemical characterization of chitin synthase activity and inhibition in the African malaria mosquito, Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang; Kun Yan Zhu

    2013-01-01

    Chitin synthase (CHS) is an important enzyme catalyzing the formation of chitin polymers in all chitin containing organisms and a potential target site for insect pest control.However,our understanding of biochemical properties of insect CHSs has been very limited.We here report enzymatic and inhibitory properties of CHS prepared from the African malaria mosquito,Anopheles gambiae.Our study,which represents the first time to use a nonradioactive method to assay CHS activity in an insect species,determined the optimal conditions for measuring the enzyme activity,including pH,temperature,and concentrations of the substrate uridine diphosphate N-acetyl-D-glucosamine (UDPGlcNAc) and Mg++.The optimal pH was about 6.5-7.0,and the highest activity was detected at temperatures between 37℃ and 44℃.Dithithreitol is required to prevent melanization of the enzyme extract.CHS activity was enhanced at low concentration of GlcNAc,but inhibited at high concentrations.Proteolytic activation of the activity is significant both in the 500×g supernatant and the 40 000×g pellet.Our study revealed only slight in vitro inhibition ofA.gambiae CHS activity by diflubenzuron and nikkomycin Z at the highest concentration (2.5μmol/L) examined.There was no in vitro inhibition by polyoxin D at any concentration examined.Furthermore,we did not observe any in vivo inhibition of CHS activity by any of these chemicals at any concentration examined.Our results suggest that the inhibition of chitin synthesis by these chemicals is not due to direct inhibition of CHS in A.gambiae.

  11. Development of sporogonic cycle of Plasmodium vivax in experimentally infected Anopheles albimanus mosquitoes

    Directory of Open Access Journals (Sweden)

    Martha L. Salas

    1994-01-01

    Full Text Available The sporogonic cycle of Plasmodium vivax was established and maintained under laboratory conditions in two different strains of Anopheles albimanus mosquitoes using as a parasite source blood from human patients or from Aotus monkeys infected with the VCC-2 P.vivax colombian isolate. Both the Tecojate strain isolate from Guatemala and the Cartagena strain from the colombian Pacific coast were susceptible to infections with P.vivax. A higher percentage of Cartagena mosquitoes was infected per trial, however the Tecojate strain developed higher sporozoite loads. Intravenous inoculation of Aotus monkeys with sporozoites obtained from both anopheline strains resulted in successful blood infections. Animals infected with sporozoites from the Tecojate strain presented a patent period of 21-32 days whereas parasitemia appeared between days 19-53 in monkeys infected with sporozites from Cartagena strain.

  12. Development of sporogonic cycle of Plasmodium vivax in experimentally infected Anopheles albimanus mosquitoes.

    Science.gov (United States)

    Salas, M L; Romero, J F; Solarte, Y; Olano, V; Herrera, M A; Herrera, S

    1994-01-01

    The sporogonic cycle of Plasmodium vivax was established and maintained under laboratory conditions in two different strains of Anopheles albimanus mosquitoes using as a parasite source blood from human patients or from Aotus monkeys infected with the VCC-2 P.vivax colombian isolate. Both the Tecojate strain isolate from Guatemala and the Cartagena strain from the colombian Pacific coast were susceptible to infections with P.vivax. A higher percentage of Cartagena mosquitoes was infected per trial, however the Tecojate strain developed higher sporozoite loads. Intravenous inoculation of Aotus monkeys with sporozoites obtained from both anopheline strains resulted in successful blood infections. Animals infected with sporozoites from the Tecojate strain presented a patent period of 21-32 days whereas parasitemia appeared between days 19-53 in monkeys infected with sporozites from Cartagena strain. PMID:7565121

  13. Larvicidal and repellent properties of Adansonia digitata against medically important human malarial vector mosquito Anopheles stephensi (Diptera: Culicidae)

    OpenAIRE

    K. Krishnappa , K. Elumalai , S. Dhanasekaran & J. Gokulakrishnan

    2012-01-01

    Background & objectives: Development of plant-based alternative compounds for mosquito control has gainedimportance now-a-days, in view of increasing resistance in mosquito vectors to existing insecticides. The larvicidaland repellent activities of benzene, chloroform, hexane and methanol leaf extracts of Indian medicinal plant,Adansonia digitata were investigated against malarial vector, Anopheles stephensi.Methods: In all, 25 III instar larvae of An. stephensi were exposed to various concen...

  14. Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes

    OpenAIRE

    Han, Yeon Soo; Thompson, Joanne; Kafatos, Fotis C.; Barillas-Mury, Carolina

    2000-01-01

    We present a detailed analysis of the interactions between Anopheles stephensi midgut epithelial cells and Plasmodium berghei ookinetes during invasion of the mosquito by the parasite. In this mosquito, P.berghei ookinetes invade polarized columnar epithelial cells with microvilli, which do not express high levels of vesicular ATPase. The invaded cells are damaged, protrude towards the midgut lumen and suffer other characteristic changes, including induction of nitric oxide synthase (NOS) exp...

  15. On the conspecificity of Anopheles fluviatilis species S with Anopheles minimus species C

    Indian Academy of Sciences (India)

    O P Singh; D Chandra; N Nanda; S K Sharma; Pe Than Htun; T Adak; S K Subbarao; A P Dash

    2006-12-01

    Anopheles fluviatilis and An. minimus complexes, each comprising of at least three sibling species, are closely related and important malaria vectors in Oriental Region. Recently An. fluviatilis species S, which is a highly efficient malaria vector in India, has been made conspecific with An. minimus species C (senior synonym) on the basis of homology in 335 base pair nucleotide sequence of D3 domain of 28S ribosomal DNA (rDNA). We examined the conspecificity of these two nominal species by obtaining and analysing the DNA sequences of nuclear ribosomal loci internal transcribed spacer 2 (ITS2) and D2-D3 domain of 28S rDNA (28S-D2/D3) from those of An. fluviatilis S and An. minimus C. We found that the sequences of An. fluviatilis S are appreciably different from those of An. minimus C with pair-wise distance (Kimura-2-parametre model) of 3.6 and 0.7% for loci ITS2 and 28S-D2/D3, respectively. Pair-wise distance and phylogenetic analyses using ITS2 sequences of members of Minimus and Fluviatilis Complexes revealed that An. fluviatilis S is distantly related to An. minimus C as compared to any other members of the Fluviatilis Complex. These findings suggest that the two nominal species, An. fluviatilis S and An. minimus C, do not merit synonymy. The study also confirms that the reported species An. fluviatilis X is synonym with species S.

  16. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae

    OpenAIRE

    Kumar, Sanjeev; Christophides, George K.; Cantera, Rafael; Charles, Bradley; Han, Yeon Soo; Meister, Stephan; Dimopoulos, George; Kafatos, Fotis C.; Barillas-Mury, Carolina

    2003-01-01

    Malaria transmission depends on the competence of some Anopheles mosquitoes to sustain Plasmodium development (susceptibility). A genetically selected refractory strain of Anopheles gambiae blocks Plasmodium development, melanizing, and encapsulating the parasite in a reaction that begins with tyrosine oxidation, and involves three quantitative trait loci. Morphological and microarray mRNA expression analysis suggest that the refractory and susceptible strains have broad physiological differe...

  17. Direct PCR of indigenous and invasive mosquito species: a time- and cost-effective technique of mosquito barcoding.

    Science.gov (United States)

    Werblow, A; Flechl, E; Klimpel, S; Zittra, C; Lebl, K; Kieser, K; Laciny, A; Silbermayr, K; Melaun, C; Fuehrer, H-P

    2016-03-01

    Millions of people die each year as a result of pathogens transmitted by mosquitoes. However, the morphological identification of mosquito species can be difficult even for experts. The identification of morphologically indistinguishable species, such as members of the Anopheles maculipennis complex (Diptera: Culicidae), and possible hybrids, such as Culex pipiens pipiens/Culex pipiens molestus (Diptera: Culicidae), presents a major problem. In addition, the detection and discrimination of newly introduced species can be challenging, particularly to researchers without previous experience. Because of their medical importance, the clear identification of all relevant mosquito species is essential. Using the direct polymerase chain reaction (PCR) method described here, DNA amplification without prior DNA extraction is possible and thus species identification after sequencing can be achieved. Different amounts of tissue (leg, head; larvae or adult) as well as different storage conditions (dry, ethanol, -20 and -80 °C) and storage times were successfully applied and showed positive results after amplification and gel electrophoresis. Overall, 28 different indigenous and non-indigenous mosquito species were analysed using a gene fragment of the COX1 gene for species differentiation and identification by sequencing this 658-bp fragment. Compared with standard PCR, this method is time- and cost-effective and could thus improve existing surveillance and control programmes. PMID:26663040

  18. The bionomics of the malaria mosquito Anopheles gambiae sensu lato in Southeast Tanzania.

    OpenAIRE

    Lyimo, E.O.K.

    1993-01-01

    Size of adult mosquitoes is known to affect both population dynamics as well as disease transmission. Studies devoted to this topic have given different results for different species. For example in some mosquito species, large size was found to be associated with high fecundity and longer survival (Steinwascher, 1982; Nasci, 1986a; 1986b; 1987) but in others large size did not result in longer survival (Walker et al ., 1987; Landry et al ., 1988; Pumpuni & Walker, 1989). Similar data were fo...

  19. Efficacy of leaves extract of Calotropis procera Ait. (Asclepiadaceae) in controlling Anopheles arabiensis and Culex quinquefasciatus mosquitoes.

    Science.gov (United States)

    Elimam, Abdalla M; Elmalik, Khitma H; Ali, Faysal S

    2009-10-01

    The present study aimed to investigate, the larvicidal, adult emergence inhibition and oviposition deterrent activity of aqueous leaves extract of Calotropis procera against Anopheles arabiensis and Culex quinquefasciatus as natural mosquito larvicide. The larvicidal activity was monitored against 2nd, 3rd and 4th instar larvae of each mosquito species 24 h post-treatment. Adult emergence inhibition activity was tested by exposing 3rd instar larvae of each mosquito species to different concentrations of extracts (200, 400, 600, 800 and 1000 ppm for An. arabiensis and 100, 200, 300, 400, 500 and 600 ppm for Cx. quinquefasciatus). Probit analysis was used to analyze data from bioassay experiments. The oviposition deterrent activity was tested by using three different concentrations of extracts (1000, 500 and 200 for An. arabiensis, and 1000, 500 and 100 for Cx. quinquefasciatus) that caused high, moderate and low larval mortality in the larvicidal experiment against 3rd instar larvae. It was found that, LC50-LC90 values calculated were 273.53-783.43, 366.44-1018.59 and 454.99-1224.62 ppm for 2nd, 3rd and 4th larval instars, respectively, of An. arabiensis and 187.93-433.51, 218.27-538.27 and 264.85-769.13 ppm for 2nd, 3rd and 4th larval instars, respectively, of Cx. quinquefasciatus. Fifty percent of adult emergence inhibition (EI50) was shown at 277.90 and 183.65 ppm for An. arabiensis and Cx. quinquefasciatus, respectively. The pupal stage was not affected till a concentration of 5000 ppm. The extract showed oviposition deterrence and effective repellence against both mosquito species at different concentrations, with the observation on that maximal eggs were laid in low concentration of extract. These results suggest that the leaves extract of C. procera possess remarkable larvicidal, adult emergence inhibitor, repellent and oviposition deterrent effect against both An. arabiensis and Cx. quinquefasciatus, and might be used as natural biocides for mosquito

  20. Mosquito larvicidal properties ofOrthosiphon thymiflorus(Roth) Sleesen. (Family:Labiatae) against mosquito vectors,Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    K Kovendan; K Murugan; S Vincent; Donald R Barnard

    2012-01-01

    ABSTRACT Objective:To determine the mosquito larvicidal activities of hexane, chloroform, ethyl acetate, acetone and methanol leaf extract ofOrthosiphon thymiflorus (O. thymiflorus) againstAnopheles stephensi (An. stephensi), Culex quinquefasciatus (Cx. quinquefasciatus) andAedes aegypti (Ae. aegypti).Methods: The larvicidal activity was assayed against three mosquito species at various concentrations ranging from (50-450 ppm) under the laboratory conditions. TheLC50and LC90value of theO. thymiflorus leaf extract was determined by Probit analysis.Results: The LC50values of hexane, chloroform, ethyl acetate, acetone and methanol extract ofO. thymiflorus third instar larvae ofAn. stephensiwereLC50= 201.39, 178.76, 158.06, 139.22 and118.74 ppm;Cx. quinquefasciatus were LC50=228.13, 209.72, 183.35, 163.55 and149.96 ppm andAe. aegyptiwere LC50=215.65, 197.91, 175.05, 154.80 and137.26 ppm, respectively. Maximum larvicidal activity was observed in the methanolic extract followed by acetone, ethyl acetate chloroform and hexane extract. The larval mortality was observed after24h exposure. No mortality was observed in control.Conclusions:The present results suggest that the effective plant crude extracts have potential to be used as an ideal eco-friendly approach for the control of mosquito vectors. This study provides the first report on the larvicidal activity of this plant crude solvent extract of againstAn. stephensi, Cx. quinquefasciatus andAe. aegyptimosquitoes.

  1. Analysis of two novel midgut-specific promoters driving transgene expression in Anopheles stephensi mosquitoes.

    Directory of Open Access Journals (Sweden)

    Tony Nolan

    Full Text Available BACKGROUND: Tissue-specific promoters controlling the expression of transgenes in Anopheles mosquitoes represent a valuable tool both for studying the interaction between these malaria vectors and the Plasmodium parasites they transmit and for novel malaria control strategies based on developing Plasmodium-refractory mosquitoes by expressing anti-parasitic genes. With this aim we have studied the promoter regions of two genes from the most important malaria vector, Anopheles gambiae, whose expression is strongly induced upon blood feeding. RESULTS: We analysed the A. gambiae Antryp1 and G12 genes, which we have shown to be midgut-specific and maximally expressed at 24 hours post-bloodmeal (PBM. Antryp1, required for bloodmeal digestion, encodes one member of a family of 7 trypsin genes. The G12 gene, of unknown function, was previously identified in our laboratory in a screen for genes induced in response to a bloodmeal. We fused 1.1 kb of the upstream regions containing the putative promoter of these genes to reporter genes and transformed these into the Indian malaria vector A. stephensi to see if we could recapitulate the expression pattern of the endogenous genes. Both the Antryp1 and G12 upstream regions were able to drive female-predominant, midgut-specific expression in transgenic mosquitoes. Expression of the Antryp1-driven reporter in transgenic A. stephensi lines was low, undetectable by northern blot analysis, and failed to fully match the induction kinetics of the endogenous Antryp1 gene in A. gambiae. This incomplete conservation of expression suggests either subtle differences in the transcriptional machinery between A. stephensi and A. gambiae or that the upstream region chosen lacked all the control elements. In contrast, the G12 upstream region was able to faithfully reproduce the expression profile of the endogenous A. gambiae gene, showing female midgut specificity in the adult mosquito and massive induction PBM, peaking at 24

  2. The role of proboscis of the malaria vector mosquito Anopheles stephensi in host-seeking behavior

    Directory of Open Access Journals (Sweden)

    Yoshimura Aya

    2011-01-01

    Full Text Available Abstract Background The proboscis is an essential head appendage in insects that processes gustatory code during food intake, particularly useful considering that blood-sucking arthropods routinely reach vessels under the host skin using this proboscis as a probe. Results Here, using an automated device able to quantify CO2-activated thermo (35°C-sensing behavior of the malaria vector Anopheles stephensi, we uncovered that the protruding proboscis of mosquitoes contributes unexpectedly to host identification from a distance. Ablation experiments indicated that not only antennae and maxillary palps, but also proboscis were required for the identification of pseudo-thermo targets. Furthermore, the function of the proboscis during this behavior can be segregated from CO2 detection required to evoke mosquito activation, suggesting that the proboscis of mosquitoes divide the proboscis into a "thermo-antenna" in addition to a "thermo-probe". Conclusions Our findings support an emerging view with a possible role of proboscis as important equipment during host-seeking, and give us an insight into how these appendages likely evolved from a common origin in order to function as antenna organs.

  3. Maternal environment shapes the life history and susceptibility to malaria of Anopheles gambiae mosquitoes

    Directory of Open Access Journals (Sweden)

    Lorenz Lena M

    2011-12-01

    Full Text Available Abstract Background It is becoming generally recognized that an individual's phenotype can be shaped not only by its own genotype and environmental experience, but also by its mother's environment and condition. Maternal environmental factors can influence mosquitoes' population dynamics and susceptibility to malaria, and therefore directly and indirectly the epidemiology of malaria. Methods In a full factorial experiment, the effects of two environmental stressors - food availability and infection with the microsporidian parasite Vavraia culicis - of female mosquitoes (Anopheles gambiae sensu stricto on their offspring's development, survival and susceptibility to malaria were studied. Results The offspring of A. gambiae s.s. mothers infected with V. culicis developed into adults more slowly than those of uninfected mothers. This effect was exacerbated when mothers were reared on low food. Maternal food availability had no effect on the survival of their offspring up to emergence, and microsporidian infection decreased survival only slightly. Low food availability for mothers increased and V. culicis-infection of mothers decreased the likelihood that the offspring fed on malaria-infected blood harboured malaria parasites (but neither maternal treatment influenced their survival up to dissection. Conclusions Resource availability and infection with V. culicis of A. gambiae s.s. mosquitoes not only acted as direct environmental stimuli for changes in the success of one generation, but could also lead to maternal effects. Maternal V. culicis infection could make offspring more resistant and less likely to transmit malaria, thus enhancing the efficacy of the microsporidian for the biological control of malaria.

  4. Mosquito repellent potential of Pithecellobium dulce leaf and seed against malaria vector Anopheles stephensi (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Mohan Rajeswary

    2016-03-01

    Full Text Available Objective: To determine the repellent properties of hexane, benzene, ethyl acetate, chloroform and methanol extract of Pithecellobium dulce (P. dulce leaf and seed against Anopheles stephensi (An. stephensi. Methods: Repellent activity assay was carried out in a net cage (45 cm × 30 cm × 25 cm containing 100 blood starved female mosquitoes of An. stephensi. This assay was carried out in the laboratory conditions according to the WHO 2009 protocol. Plant crude extracts of P. dulce were applied at 1.0, 2.5, and 5.0 mg/cm2 separately in the exposed fore arm of study subjects. Ethanol was used as the sole control. Results: In this study, the applied plant crude extracts were observed to protect against mosquito bites. There were no allergic reactions experienced by the study subjects. The repellent activity of the extract was dependent on the concentration of the extract. Among the tested solvents, the leaf and seed methanol extract showed the maximum efficacy. The highest concentration of 5.0 mg/cm2 leaf and seed methanol extract of P. dulce provided over 180 min and 150 min protection, respectively. Conclusions: Crude extracts of P. dulce exhibit the potential for controlling malaria vector mosquito An. stephensi.

  5. The STAT pathway mediates late phase immunity against Plasmodium in the mosquito Anopheles gambiae

    Science.gov (United States)

    Gupta, Lalita; Molina-Cruz, Alvaro; Kumar, Sanjeev; Rodrigues, Janneth; Dixit, Rajnikant; Zamora, Rodolfo E.; Barillas-Mury, Carolina

    2009-01-01

    The STAT family of transcription factors activate expression of immune system genes in vertebrates. The ancestral STAT gene (AgSTAT-A) appears to have duplicated in the mosquito Anopheles gambiae, giving rise to a second intronless STAT gene (AgSTAT-B), which we show regulates AgSTAT-A expression in adult females. AgSTAT-A participates in the transcriptional activation of nitric oxide synthase (NOS) in response to bacterial and plasmodial infection. Activation of this pathway, however, is not essential for mosquitoes to survive a bacterial challenge. AgSTAT-A silencing reduces the number of early Plasmodium oocysts in the midgut, but nevertheless enhances the overall infection by increasing oocyst survival. Silencing of SOCS, a STAT suppressor, has the opposite effect, reducing Plasmodium infection by increasing NOS expression. Chemical inhibition of mosquito NOS activity after oocyte formation increases oocyte survival. Thus, the AgSTAT-A pathway mediates a late phase anti-plasmodial response that reduces oocyst survival in An. gambiae. PMID:19454353

  6. The STAT pathway mediates late-phase immunity against Plasmodium in the mosquito Anopheles gambiae.

    Science.gov (United States)

    Gupta, Lalita; Molina-Cruz, Alvaro; Kumar, Sanjeev; Rodrigues, Janneth; Dixit, Rajnikant; Zamora, Rodolfo E; Barillas-Mury, Carolina

    2009-05-01

    The STAT family of transcription factors activates expression of immune system genes in vertebrates. The ancestral STAT gene (AgSTAT-A) appears to have duplicated in the mosquito Anopheles gambiae, giving rise to a second intronless STAT gene (AgSTAT-B), which we show regulates AgSTAT-A expression in adult females. AgSTAT-A participates in the transcriptional activation of nitric oxide synthase (NOS) in response to bacterial and plasmodial infection. Activation of this pathway, however, is not essential for mosquitoes to survive a bacterial challenge. AgSTAT-A silencing reduces the number of early Plasmodium oocysts in the midgut, but nevertheless enhances the overall infection by increasing oocyst survival. Silencing of SOCS, a STAT suppressor, has the opposite effect, reducing Plasmodium infection by increasing NOS expression. Chemical inhibition of mosquito NOS activity after oocyte formation increases oocyte survival. Thus, the AgSTAT-A pathway mediates a late-phase antiplasmodial response that reduces oocyst survival in A. gambiae. PMID:19454353

  7. A Study of the Essential Oils of Four Sudanese Accessions of Basil (Ocimum basilicum L. Against Anopheles Mosquito Larvae

    Directory of Open Access Journals (Sweden)

    Azhari H. Nour

    2009-01-01

    Full Text Available Problem statement: Certain basil essential oils were claimed to have a larvicidal activity towards mosquito's larvae. To test this claim the essential oils of four accessions of basil grown in Sudan were selected and tested for Anopheles larvae. Malaria is the major health problem in the Sudan and the whole country is now considered endemic, with varying degrees, about 35,000 deaths every year due to malaria. Anopheles mosquito is the major vector of malaria disease in Sudan. Search for larvicidal active compound(s is one of several attempts to fine effective and affordable ways to control this mosquito. To determine the toxic effects of basil essential oils extracted by steam distillation against Anopheles larvae. Approach: For the larvicidal bioassay, three concentrations (100, 300, 500 ppm of essential oil solutions of four basil accessions were prepared; 1 mL of ethanol was used to solubilize the oil in water (999 mL. In each concentration of oil solution were inserted 20 larvae (third instars. A set of controls using 0.1% ethanol and untreated sets of larvae in (tap water, were also run for comparison. Data were evaluated through regression analysis, from the regression line; the LC50 values were read. The active ingredients were separated and/ or identified by TLC, IR and GC-MS. Results: Larvicidal activity of the essential oils is varied, lasted for about 9 h and thereafter decreased, LC50 values ranging from 190-300 ppm. Linalool, geraniol and eugenol are active components of basil essential oil against Anopheles larvae. Two accessions were caused 100% mortality at a concentration range 300-500 ppm for 3 h. Conclusion: These results indicated that basil essential oils have larvicidal activity towards Anopheles larvae. Therefore, could be affordable way to control this mosquito.

  8. Energy metabolism affects susceptibility of Anopheles gambiae mosquitoes to Plasmodium infection.

    Science.gov (United States)

    Oliveira, Jose Henrique M; Gonçalves, Renata L S; Oliveira, Giselle A; Oliveira, Pedro L; Oliveira, Marcus F; Barillas-Mury, Carolina

    2011-06-01

    Previous studies showed that Anopheles gambiae L3-5 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial state-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when state-3 respiration was reduced in S females by silencing expression of the adenine nucleotide translocator (ANT), hydrogen peroxide generation was higher and the mRNA levels of lactate dehydrogenase increased in the midgut, while the prevalence and intensity of Plasmodium berghei infection were significantly reduced. We conclude that there are broad metabolic differences between R and S An. gambiae mosquitoes that influence their susceptibility to Plasmodium infection. PMID:21320598

  9. Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2006-05-01

    Full Text Available Abstract Background In the context of the Sterile Insect Technique (SIT, radiation-induced sterility in the malaria mosquito Anopheles arabiensis Patton (Diptera: Culicidae was studied. Male mosquitoes were exposed to gamma rays in the pupal or adult stage and dose-sterility curves were determined. Methods Pupae were irradiated shortly before emergence (at 22–26 hrs of age, and adults Results Irradiation of pupae, for all doses tested, had no effect on adult emergence. Survival curves of males irradiated as pupae or adults were similar or even slightly higher than non-irradiated males. Overall, adults appeared to be slightly more susceptible to irradiation, although no significant differences for individual doses were observed. In the pupal stage, a significant negative correlation was found between insemination and dose, but the correlation-coefficient was associated with less than 25% of the total variation. A review of the literature indicated that An. arabiensis is more radiation resistant than other anopheline mosquitoes. Conclusion The optimal dose for male insects to be released in an SIT programme depends on their level of sterility and competitiveness. The use of semi-sterilizing doses to produce more competitive insects is discussed. The most convenient developmental stage for mosquito irradiation on a mass-scale are pupae, but pupal irradiation resulted in a lower insemination rate at the highest dose compared to adult irradiation. On the basis of this study, a suitable dose range that includes semi-sterilizing doses is identified to initiate competitiveness experiments for males irradiated at both developmental stages.

  10. Mosquito Larvicidal Potential of Gossypium hirsutum (Bt cotton Leaves Extracts against Aedes aegypti and Anopheles stephensi larvae.

    Directory of Open Access Journals (Sweden)

    Chandrashekhar D Patil

    2014-06-01

    Full Text Available We aimed to extract the ingredients from leaves of Gossypium hirsutum (Bt cotton using different solvents and evaluate for potential use to control different larval stages of mosquito species, Aedes aegypti and Anopheles stephensi.Qualitative and quantitative estimation of ingredients from Go. hirsutum (Bt plant extract was carried out and their inhibitory action against mosquito larvae was determined using mosquito larvicidal assay.LC50 values of water, ethanol, ethyl acetate and hexane extracts for Ae. aegypti were 211.73±21.49, 241.64±19.92, 358.07±32.43, 401.03±36.19 and 232.56±26.00, 298.54±21.78, 366.50±30.59, 387.19±31.82 for 4(th instar of An. stephensi, respectively. The water extract displayed lowest LC50 value followed by ethanol, ethyl acetate and hexane. Owing to the comparatively better activity of water extract, its efficacy was further evaluated for mosquito larvicidal activity, which exhibited LC50 values of 133.95±12.79, 167.65±11.34 against 2(nd and 3(rd instars of Ae. aegypti and 145.48±11.76, 188.10±12.92 against 2(nd and 3(rd instars of An. stephensi, respectively. Crude protein from the water extract was precipitated using acetone and tested against 2(nd, 3(rd and 4(th instars of Ae. aegypti and An. stephensi. It revealed further decrease in LC50 values as 105.72±25.84, 138.23±23.18, 126.19±25.65, 134.04±04 and 137.88±17.59, 154.25±16.98 for 2(nd, 3(rd and 4(th instars of Ae. aegypti and An. stephensi, respectively.Leaves extracts of Go. hirsutum (Bt is potential mosquito larvicide and can be used as a potent alternative to chemical insecticides in integrated pest management.

  11. Laser dosimetry for disabling anopheles stephensi mosquitoes in-flight (Conference Presentation)

    Science.gov (United States)

    Keller, Matthew D.; Norton, Bryan J.; Rutschman, Phil; Farrar, David J.; Marvit, Maclen; Makagon, Artyom

    2016-03-01

    The Photonic Fence is a system designed to detect mosquitoes and other pestilent flying insects in an active region and to apply lethal doses of laser light to them. Previously, we determined lethal fluence levels for a variety of lasers and pulse conditions on anesthetized Anopheles stephensi mosquitoes. In this work, similar studies were performed while the bugs were freely flying within transparent cages. Dose-response curves were created for various beam diameter, pulse width, and power conditions at 455 nm, 532 nm, 1064nm, and 1540 nm wavelengths. Besides mortality outcomes, the flight behavior of the bugs and the performance of the tracking system were monitored for consistency and to ensure that they had no impact on the mortality outcomes. As in anesthetized experiments, the visible wavelengths required significantly less fluence than near infrared wavelengths to reliably disable bugs. For the visible wavelengths, lethal fluence values were generally equivalent to those found in anesthetized dosing, while near infrared wavelengths required approximately twice the fluence compared with anesthetized experiments. The performance of the optical tracking system remained highly stable throughout the experiments, and it was found not to influence mortality results for pulse widths up to 25 ms. In general, keeping energy constant while decreasing power and increasing pulse width reduced mortality levels. The results of this study further affirm the practicality of using optical approaches to protect people and crops from flying insects.

  12. Comparative mosquito repellency of essential oils against Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say)

    Institute of Scientific and Technical Information of China (English)

    Siriporn Phasomkusolsil; Mayura Soonwera

    2011-01-01

    Objective: To assess the repellency to female Aedes aegypti (Ae. aegypti), Anopheles dirus (An. dirus) and Culex quinquefasciatus (Cx. quinquefasciatus) of seven essential oils using two treatment methods. Methods: Topical applications of three dose concentrations (0.02, 0.10 and 0.21 mg/cm2) were made on the forearms of volunteers. Dose-response study and protection time study were employed in the experiment. Results: In the dose-response test, Cymbopogon citratus (C. citratus), Cymbopogon nardus (C. nardus), Syzygium aromaticum (S. aromaticum) and Ocimum basilicum (O. basilicum) exhibited a high repellency against Ae. aegypti with ED50 at < 0.045 mg/cm2, whereas C. citratus, C. nardus and S. aromaticum showed repellency against An. dirus with ED50 at <0.068 mg/cm2. Furthermore, the essential oils of C. citratus, C. nardus, S. aromaticum, O.basilicum and Cananga odorata gave strong effective dose (ED 50) values at <0.003 mg/cm2 when tested against Cx. quinquefasciatus. For testing by arm in cage method, at 0.21 mg/cm2, protection time of C. citratus gave the longest lasting period against three mosquito species, 72 min for Ae. aegypti, 132 min for An. dirus and 84 min for Cx. quinquefasciatus. In addition, the two essential oils exhibited moderate repellency against Ae. aegypti, An. dirus and Cx. quinquefasciatus, at 60, 90 and 78 min with C. nardus, and 54, 96 and 72 min with S. aromaticum, respectively. Conclusions: The percentage repellency increased when the concentration of essential oils increased. In contrast, biting rates decreased when the concentration of essential oils increased.C. citratus exhibited high efficiency for the protection time and the percentage of biting deterrent against all of 3 mosquito species.

  13. A possible mechanism for the suppression of Plasmodium berghei development in the mosquito Anopheles gambiae by the microsporidian Vavraia culicis.

    Directory of Open Access Journals (Sweden)

    Irka Bargielowski

    Full Text Available BACKGROUND: Microsporidian parasites of mosquitoes offer a possible way of controlling malaria, as they impede the development of Plasmodium parasites within the mosquito. The mechanism involved in this interference process is unknown. METHODOLOGY: We evaluated the possibility that larval infection by a microsporidian primes the immune system of adult mosquitoes in a way that enables a more effective anti-Plasmodium response. To do so, we infected 2-day old larvae of the mosquito Anopheles gambiae with one of 4 isolates of the microsporidian Vavraia culicis and reared one group as an uninfected control. Within each treatment, we fed half the adult females on a mix of P. berghei ookinetes and blood and inoculated the other half with a negatively charged CM-25 Sephadex bead to evaluate the mosquitoes' melanisation response. CONCLUSIONS: The microsporidian-infected mosquitoes were less likely to harbour oocysts (58.5% vs. 81.8%, harboured fewer oocysts (8.9 oocysts vs. 20.7 oocysts if the malaria parasite did develop and melanised the Sephadex bead to a greater degree (73% vs. 35% than the controls. While the isolates differed in the number of oocysts and in the melanisation response, the stimulation of the immune response was not correlated with either measure of malaria development. Nevertheless, the consistent difference between microsporidian-infected and -uninfected mosquitoes--more effective melanisation and less successful infection by malaria--suggests that microsporidians impede the development of malaria by priming the mosquito's immune system.

  14. Shift in species composition in the Anopheles gambiae complex after implementation of long-lasting insecticidal nets in Dielmo, Senegal.

    Science.gov (United States)

    Sougoufara, S; Harry, M; Doucouré, S; Sembène, P M; Sokhna, C

    2016-09-01

    Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of malaria vector control. However, the effectiveness of these control tools depends on vector ecology and behaviour, which also largely determine the efficacy of certain Anopheles mosquitoes (Diptera: Culicidae) as vectors. Malaria vectors in sub-Saharan Africa are primarily species of the Anopheles gambiae complex, which present intraspecific differences in behaviour that affect how they respond to vector control tools. The focus of this study is the change in species composition in the An. gambiae complex after the implementation of LLINs in Dielmo, Senegal. The main findings referred to dramatic decreases in the proportions of Anopheles coluzzii and An. gambiae after the introduction of LLINs, and an increase in the proportion of Anopheles arabiensis. Two years after LLINs were first introduced, An. arabiensis remained the most prevalent species and An. gambiae had begun to rebound. This indicated a need to develop additional vector control tools that can target the full range of malaria vectors. PMID:27058993

  15. Effects of blood-feeding on olfactory sensitivity of the malaria mosquito Anopheles gambiae: application of mixed linear models to account for repeated measurements

    NARCIS (Netherlands)

    Qiu, Y.T.; Gort, G.; Torricelli, A.; Takken, W.; Loon, van J.J.A.

    2013-01-01

    Olfaction plays an important role in the host-seeking behavior of the malaria mosquito Anopheles gambiae. After a complete blood meal, female mosquitoes will not engage in host-seeking behavior until oviposition has occurred. We investigated if peripheral olfactory sensitivity changed after a blood

  16. Life-table analysis of Anopheles malaria vectors: generational mortality as tool in mosquito vector abundance and control studies

    Directory of Open Access Journals (Sweden)

    Godwin Ray Anugboba Okogun

    2005-06-01

    Full Text Available Background & objectives: Vector control will for sometime remain a primary weapon in the waragainst vector borne diseases. Malaria is of paramount importance in this with its associated highmorbidity and mortality especially in sub-Saharan Africa. This study on generational mortality associatedfactors in Anopheles mosquitoes life-table analysis was designed to investigate the fecundity,levels of mortality and mortality associated factors at the aquatic stages of anopheline malaria vectors.Methods: Mortality associated factors were investigated at the eggs, I and II instar larval, III and IVinstar larval and pupal stages of two anopheline species— Anopheles pseudopunctipennis (Theobaldand An. gambiae life-cycles in screen cages. Adult male and female mosquitoes were membrane filterfedand algae in culture medium formed the bulk of food substances for the larval stage. Environmentaltemperature of culture media, pH and some associated physio-chemical factors were also determined.Results: Results showed significant mortality rates at various aquatic stages. Infertility, cannibalismand environmental factors were the major factors responsible for mortality at the egg, larval and pupalstages respectively.Interpretation & conclusion: The aquatic stages of Anopheles mosquito mortality factor K and themortality factors at the various stages investigated k1, k2, k3 and k4 are discussed. Our recommendationsinclude further studies on the possible genetic modification of predacious An. pseudopunctipennislarvae and/or its modification for the production of sterile/infertile eggs as possible alternativesin the reduction and control of anopheline malaria burden.

  17. Sequencing and analysis of the complete mitochondrial genome in Anopheles culicifacies species B (Diptera: Culicidae).

    Science.gov (United States)

    Hua, Ya-Qiong; Yan, Zhen-Tian; Fu, Wen-Bo; He, Qi-Yi; Zhou, Yong; Chen, Bin

    2016-07-01

    The complete mitochondrial genome sequence of Anopheles culicifacial species B was sequenced in this study. The length of the mitochondrial genome is 15 330 bp, which contains 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a non-coding control region. The gene order and the gene composition are consistent with those previously reported for other mosquito species. The initiation codon of the PCGs complies with the ATN rule except for COI using TCG and ND5 using GTG as a start codon, and the termination codon is TAA or imcomplete, an only T. The total base composition is 40.4% A, 38.1% T, 12.4% C, and 9.1% G. The phylogenetic tree based on the sequences of 13 protein-coding genes showed that these species were classified into two clades, corresponding to the subgenus Cellia and subgenus Nyssorhynchus. An. culicifacies species B of Myzomyia Series was clustered with An. gambiae of Pyretophorus Series with a high bootstrap value of 100%. The complete mitogenome data can provide a basis for molecular identification and phylogenetic studies of mosquito species. PMID:26114319

  18. Deep sequencing revealed molecular signature of horizontal gene transfer of plant like transcripts in the mosquito Anopheles culicifacies: an evolutionary puzzle [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Punita Sharma

    2015-12-01

    Full Text Available In prokaryotes, horizontal gene transfer (HGT has been regarded as an important evolutionary drive to acquire and retain beneficial genes for their survival in diverse ecologies. However, in eukaryotes, the functional role of HGTs remains questionable, although current genomic tools are providing increased evidence of acquisition of novel traits within non-mating metazoan species. Here, we provide another transcriptomic evidence for the acquisition of massive plant genes in the mosquito, Anopheles culicifacies. Our multiple experimental validations including genomic PCR, RT-PCR, real-time PCR, immuno-blotting and immuno-florescence microscopy, confirmed that plant like transcripts (PLTs are of mosquito origin and may encode functional proteins. A comprehensive molecular analysis of the PLTs and ongoing metagenomic analysis of salivary microbiome provide initial clues that mosquitoes may have survival benefits through the acquisition of nuclear as well as chloroplast encoded plant genes. Our findings of PLTs further support the similar questionable observation of HGTs in other higher organisms, which is still a controversial and debatable issue in the community of evolutionists. We believe future understanding of the underlying mechanism of the feeding associated molecular responses may shed new insights in the functional role of PLTs in the mosquito.

  19. Attractiveness of volatiles from different body parts to the malaria mosquito Anopheles coluzzii is affected by deodorant compounds.

    Science.gov (United States)

    Verhulst, Niels O; Weldegergis, Berhane T; Menger, David; Takken, Willem

    2016-01-01

    Mosquitoes display biting preferences among different sites of the human body. In addition to height or convection currents, body odour may play a role in the selection of these biting sites. Previous studies have shown that skin emanations are important host-finding cues for mosquitoes. In this study, skin emanations were collected from armpits, hands and feet; the volatile profiles were analysed and tested for their attractiveness to the malaria mosquito Anopheles coluzzii. Skin emanations collected from armpits were less attractive to An. coluzzii compared to hands or/and feet. The difference may have been caused by deodorant residues, which were found in the armpit samples and not in those of hands and feet. In a subsequent experiment, volunteers were asked to avoid using skincare products for five days, and thereafter, no differences in attractiveness of the body parts to mosquitoes were found. The detected deodorant compound isopropyl tetradecanoate inhibited mosquito landings in a repellent bioassay. It is concluded that the volatiles emanated from different body parts induced comparable levels of attraction in mosquitoes, and that skincare products may reduce a person's attractiveness to mosquitoes. PMID:27251017

  20. Attractiveness of volatiles from different body parts to the malaria mosquito Anopheles coluzzii is affected by deodorant compounds.

    Science.gov (United States)

    Verhulst, Niels O; Weldegergis, Berhane T; Menger, David; Takken, Willem

    2016-06-01

    Mosquitoes display biting preferences among different sites of the human body. In addition to height or convection currents, body odour may play a role in the selection of these biting sites. Previous studies have shown that skin emanations are important host-finding cues for mosquitoes. In this study, skin emanations were collected from armpits, hands and feet; the volatile profiles were analysed and tested for their attractiveness to the malaria mosquito Anopheles coluzzii. Skin emanations collected from armpits were less attractive to An. coluzzii compared to hands or/and feet. The difference may have been caused by deodorant residues, which were found in the armpit samples and not in those of hands and feet. In a subsequent experiment, volunteers were asked to avoid using skincare products for five days, and thereafter, no differences in attractiveness of the body parts to mosquitoes were found. The detected deodorant compound isopropyl tetradecanoate inhibited mosquito landings in a repellent bioassay. It is concluded that the volatiles emanated from different body parts induced comparable levels of attraction in mosquitoes, and that skincare products may reduce a person's attractiveness to mosquitoes.

  1. Mosquito adulticidal and repellent activities of botanical extracts against malarial vector,Anopheles stephensi Liston (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    Marimuthu Govindarajan; Rajamohan Sivakumar

    2011-01-01

    Objective:To determine the adulticidal and repellent activities of different solvent leaf extracts ofEclipta alba (E. alba) andAndrographis paniculata (A. paniculata)against malarial vector, Anopheles stephensi (An. stephensi).Methods:Adulticidal efficacy of the crude leaf extracts ofE. alba andA. paniculata with five different solvents like benzene, hexane, ethyl acetate, methanol and chloroform was tested against the five to six day old adult female mosquitoes of An. stephensi. The adult mortality was observed after24 h under the laboratory conditions. The repellent efficacy was determined againstAn. stephensimosquito species at three concentrations viz.,1.0, 2.5 and 5.0 mg/cm2 under laboratory conditions.Results: Among the tested solvents the maximum efficacy was observed in the methanol extract. TheLC50 andLC90 values ofE. alba andA. paniculata against adults ofAn. stephensiwere150.36, 130.19 ppm and285.22, 244.16ppm, respectively. No mortality was observed in controls. Thechi-square values were significant at P<0.05 level. Methanol extract of E. alba andA. paniculata was produce maximum repellency againstAn. stephensi.Conclusions:From the results it can be concluded the crude extract ofE. alba andA. paniculatawas an excellent potential for controllingAn. stephensimosquitoes.

  2. Biochemical characterization of Anopheles gambiae SRPN6, a malaria parasite invasion marker in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Chunju An

    Full Text Available Serine proteinase inhibitors of the serpin family are well known as negative regulators of hemostasis, thrombolysis and innate immune responses. Additionally, non-inhibitory serpins serve functions as chaperones, hormone transporters, or anti-angiogenic factors. In the African malaria mosquito, Anopheles gambiae s.s., at least three serpins (SRPNs are implicated in the innate immune response against malaria parasites. Based on reverse genetic and cell biological analyses, AgSRPN6 limits parasite numbers and transmission and has been postulated to control melanization and complement function in mosquitoes. This study aimed to characterize AgSRPN6 biophysically and determine its biochemical mode of action. The structure model of AgSRPN6, as predicted by I-Tasser showed the protein in the native serpin fold, with three central β-sheets, nine surrounding α-helices, and a protruding reactive center loop. This structure is in agreement with biophysical and functional data obtained from recombinant (r AgSRPN6, produced in Escherichia coli. The physical properties of purified rAgSRPN6 were investigated by means of analytical ultracentrifugation, circular dichroism, and differential scanning calorimetry tools. The recombinant protein exists predominantly as a monomer in solution, is composed of a mixture of α-helices and β-sheets, and has a mid-point unfolding temperature of 56°C. Recombinant AgSRPN6 strongly inhibited porcine pancreatic kallikrein and to a lesser extent bovine pancreatic trypsin in vitro. Furthermore, rAgSRPN6 formed inhibitory, SDS-stable, higher molecular weight complexes with prophenoloxidase-activating proteinase (PAP1, PAP3, and Hemolymph protein (HP6, which are required for melanization in the lepidopteran model organism, Manduca sexta. Taken together, our results strongly suggest that AgSRPN6 takes on a native serpin fold and is an inhibitor of trypsin-like serine proteinases.

  3. Biochemical characterization of Anopheles gambiae SRPN6, a malaria parasite invasion marker in mosquitoes.

    Science.gov (United States)

    An, Chunju; Hiromasa, Yasuaki; Zhang, Xin; Lovell, Scott; Zolkiewski, Michal; Tomich, John M; Michel, Kristin

    2012-01-01

    Serine proteinase inhibitors of the serpin family are well known as negative regulators of hemostasis, thrombolysis and innate immune responses. Additionally, non-inhibitory serpins serve functions as chaperones, hormone transporters, or anti-angiogenic factors. In the African malaria mosquito, Anopheles gambiae s.s., at least three serpins (SRPNs) are implicated in the innate immune response against malaria parasites. Based on reverse genetic and cell biological analyses, AgSRPN6 limits parasite numbers and transmission and has been postulated to control melanization and complement function in mosquitoes. This study aimed to characterize AgSRPN6 biophysically and determine its biochemical mode of action. The structure model of AgSRPN6, as predicted by I-Tasser showed the protein in the native serpin fold, with three central β-sheets, nine surrounding α-helices, and a protruding reactive center loop. This structure is in agreement with biophysical and functional data obtained from recombinant (r) AgSRPN6, produced in Escherichia coli. The physical properties of purified rAgSRPN6 were investigated by means of analytical ultracentrifugation, circular dichroism, and differential scanning calorimetry tools. The recombinant protein exists predominantly as a monomer in solution, is composed of a mixture of α-helices and β-sheets, and has a mid-point unfolding temperature of 56°C. Recombinant AgSRPN6 strongly inhibited porcine pancreatic kallikrein and to a lesser extent bovine pancreatic trypsin in vitro. Furthermore, rAgSRPN6 formed inhibitory, SDS-stable, higher molecular weight complexes with prophenoloxidase-activating proteinase (PAP)1, PAP3, and Hemolymph protein (HP)6, which are required for melanization in the lepidopteran model organism, Manduca sexta. Taken together, our results strongly suggest that AgSRPN6 takes on a native serpin fold and is an inhibitor of trypsin-like serine proteinases. PMID:23152794

  4. Evaluation of organophosphorus and synthetic pyrethroid insecticides against six vector mosquitoe species

    Directory of Open Access Journals (Sweden)

    Domingo Montada Dorta

    1993-12-01

    Full Text Available Three organophosphorus compounds- malathion, folithion and temephos- and two synthetic pyrethroids- alphamethrin and deltamethrin- were used for monitoring the susceptibility status of larvae and adults of six vector mosquitoe species: Culex quinquefasciatus (Filariasis and Aedes albopictus (Dengue (both laboratory and field strains; laboratory strains of Aedes aegypti (Dengue, Anopheles slephensi and Anopheles culicifacies (Malaria, and Culex tritaeniorhynchus (Japanese encephalitis in India. From the LC50 values obtained for these insecticides, it was found that all mosquito species including the field strains of Cx. quinquefasciatus and Ae. albopictus were highly susceptible Except for Cx. quinquefasciatus (field strain against malathion, 100% mortality was observed at the discriminating dosages recommended by World Health Organization. The residual effect of alphamethrin, deltamethrin, malathion and folithion at 25 mg (ai/m² on different surfaces against six species of vector mosquitoes showed that alphamethrin was the most effective on all four treated surfaces (mud, plywood, cement and thatch. Nevertheless, residual efficacy lasted longer on thatch than on the other surfaces. Therefore, synthetic pyrethroids such as alphamethrin can be effectively employed in integrated vector control operations.

  5. Evaluation of organophosphorus and synthetic pyrethroid insecticides against six vector mosquitoe species

    Directory of Open Access Journals (Sweden)

    Montada Dorta Domingo

    1993-01-01

    Full Text Available Three organophosphorus compounds- malathion, folithion and temephos- and two synthetic pyrethroids- alphamethrin and deltamethrin- were used for monitoring the susceptibility status of larvae and adults of six vector mosquitoe species: Culex quinquefasciatus (Filariasis and Aedes albopictus (Dengue (both laboratory and field strains; laboratory strains of Aedes aegypti (Dengue, Anopheles slephensi and Anopheles culicifacies (Malaria, and Culex tritaeniorhynchus (Japanese encephalitis in India. From the LC50 values obtained for these insecticides, it was found that all mosquito species including the field strains of Cx. quinquefasciatus and Ae. albopictus were highly susceptible Except for Cx. quinquefasciatus (field strain against malathion, 100% mortality was observed at the discriminating dosages recommended by World Health Organization. The residual effect of alphamethrin, deltamethrin, malathion and folithion at 25 mg (ai/m² on different surfaces against six species of vector mosquitoes showed that alphamethrin was the most effective on all four treated surfaces (mud, plywood, cement and thatch. Nevertheless, residual efficacy lasted longer on thatch than on the other surfaces. Therefore, synthetic pyrethroids such as alphamethrin can be effectively employed in integrated vector control operations.

  6. Suboptimal Larval Habitats Modulate Oviposition of the Malaria Vector Mosquito Anopheles coluzzii.

    Directory of Open Access Journals (Sweden)

    Eunho Suh

    Full Text Available Selection of oviposition sites by gravid females is a critical behavioral step in the reproductive cycle of Anopheles coluzzii, which is one of the principal Afrotropical malaria vector mosquitoes. Several studies suggest this decision is mediated by semiochemicals associated with potential oviposition sites. To better understand the chemosensory basis of this behavior and identify compounds that can modulate oviposition, we examined the generally held hypothesis that suboptimal larval habitats give rise to semiochemicals that negatively influence the oviposition preference of gravid females. Dual-choice bioassays indicated that oviposition sites conditioned in this manner do indeed foster significant and concentration dependent aversive effects on the oviposition site selection of gravid females. Headspace analyses derived from aversive habitats consistently noted the presence of dimethyl disulfide (DMDS, dimethyl trisulfide (DMTS and 6-methyl-5-hepten-2-one (sulcatone each of which unitarily affected An. coluzzii oviposition preference. Electrophysiological assays across the antennae, maxillary palp, and labellum of gravid An. coluzzii revealed differential responses to these semiochemicals. Taken together, these findings validate the hypothesis in question and suggest that suboptimal environments for An. coluzzii larval development results in the release of DMDS, DMTS and sulcatone that impact the response valence of gravid females.

  7. Swarming and mating activity of Anopheles gambiae mosquitoes in semi-field enclosures.

    Science.gov (United States)

    Achinko, D; Thailayil, J; Paton, D; Mireji, P O; Talesa, V; Masiga, D; Catteruccia, F

    2016-03-01

    Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is the major Afro-tropical vector of malaria. Novel strategies proposed for the elimination and eradication of this mosquito vector are based on the use of genetic approaches, such as the sterile insect technique (SIT). These approaches rely on the ability of released males to mate with wild females, and depend on the application of effective protocols to assess the swarming and mating behaviours of laboratory-reared insects prior to their release. The present study evaluated whether large semi-field enclosures can be utilized to study the ability of males from a laboratory colony to respond to natural environmental stimuli and initiate normal mating behaviour. Laboratory-reared males exhibited spatiotemporally consistent swarming behaviour within the study enclosures. Swarm initiation, peak and termination time closely tracked sunset. Comparable insemination rates were observed in females captured in copula in the semi-field cages relative to females in small laboratory cages. Oviposition rates after blood feeding were also similar to those observed in laboratory settings. The data suggest that outdoor enclosures are suitable for studying swarming and mating in laboratory-bred males in field-like settings, providing an important reference for future studies aimed at assessing the comparative mating ability of strains for SIT and other vector control strategies. PMID:26508420

  8. Modeling of Anopheles minimus Mosquito NADPH-Cytochrome P450 Oxidoreductase (CYPOR and Mutagenesis Analysis

    Directory of Open Access Journals (Sweden)

    Pornpimol Rongnoparut

    2013-01-01

    Full Text Available Malaria is one of the most dangerous mosquito-borne diseases in many tropical countries, including Thailand. Studies in a deltamethrin resistant strain of Anopheles minimus mosquito, suggest cytochrome P450 enzymes contribute to the detoxification of pyrethroid insecticides. Purified A. minimus CYPOR enzyme (AnCYPOR, which is the redox partner of cytochrome P450s, loses flavin-adenosine di-nucleotide (FAD and FLAVIN mono-nucleotide (FMN cofactors that affect its enzyme activity. Replacement of leucine residues at positions 86 and 219 with phenylalanines in FMN binding domain increases FMN binding, enzyme stability, and cytochrome c reduction activity. Membrane-Bound L86F/L219F-AnCYPOR increases A. minimus P450-mediated pyrethroid metabolism in vitro. In this study, we constructed a comparative model structure of AnCYPOR using a rat CYPOR structure as a template. Overall model structure is similar to rat CYPOR, with some prominent differences. Based on primary sequence and structural analysis of rat and A. minimus CYPOR, C427R, W678A, and W678H mutations were generated together with L86F/L219F resulting in three soluble Δ55 triple mutants. The C427R triple AnCYPOR mutant retained a higher amount of FAD binding and increased cytochrome c reduction activity compared to wild-type and L86F/L219F-Δ55AnCYPOR double mutant. However W678A and W678H mutations did not increase FAD and NAD(PH bindings. The L86F/L219F double and C427R triple membrane-bound AnCYPOR mutants supported benzyloxyresorufin O-deakylation (BROD mediated by mosquito CYP6AA3 with a two- to three-fold increase in efficiency over wild-type AnCYPOR. The use of rat CYPOR in place of AnCYPOR most efficiently supported CYP6AA3-mediated BROD compared to all AnCYPORs.

  9. Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium.

    Science.gov (United States)

    Molina-Cruz, Alvaro; DeJong, Randall J; Charles, Bradley; Gupta, Lalita; Kumar, Sanjeev; Jaramillo-Gutierrez, Giovanna; Barillas-Mury, Carolina

    2008-02-01

    The involvement of reactive oxygen species (ROS) in mosquito immunity against bacteria and Plasmodium was investigated in the malaria vector Anopheles gambiae. Strains of An. gambiae with higher systemic levels of ROS survive a bacterial challenge better, whereas reduction of ROS by dietary administration of antioxidants significantly decreases survival, indicating that ROS are required to mount effective antibacterial responses. Expression of several ROS detoxification enzymes increases in the midgut and fat body after a blood meal. Furthermore, expression of several of these enzymes increases to even higher levels when mosquitoes are fed a Plasmodium berghei-infected meal, indicating that the oxidative stress after a blood meal is exacerbated by Plasmodium infection. Paradoxically, a complete lack of induction of catalase mRNA and lower catalase activity were observed in P. berghei-infected midguts. This suppression of midgut catalase expression is a specific response to ookinete midgut invasion and is expected to lead to higher local levels of hydrogen peroxide. Further reduction of catalase expression by double-stranded RNA-mediated gene silencing promoted parasite clearance by a lytic mechanism and reduced infection significantly. High mosquito mortality is often observed after P. berghei infection. Death appears to result in part from excess production of ROS, as mortality can be decreased by oral administration of uric acid, a strong antioxidant. We conclude that ROS modulate An. gambiae immunity and that the mosquito response to P. berghei involves a local reduction of detoxification of hydrogen peroxide in the midgut that contributes to limit Plasmodium infection through a lytic mechanism. PMID:18065421

  10. The suitability of restriction fragment length polymorphism markers for evaluating genetic diversity among and synteny between mosquito species.

    Science.gov (United States)

    Severson, D W; Mori, A; Zhang, Y; Christensen, B M

    1994-04-01

    Restriction fragment length polymorphism (RFLP) markers derived from the yellow fever mosquito, Aedes aegypti, were used in hybridizations to genomic DNA of the following mosquito species: Ae. albopictus, Ae. togoi, Armigeres subalbatus, Culex pipiens, and Anopheles gambiae. Interspecific hybridization with Ae. aegypti probes varied from 50% (An. gambiae) to 100% (Ae. albopictus) under high stringency conditions. We demonstrated the usefulness of using RFLP profiles to examine genetic diversity between mosquito populations; Ae. aegypti RFLP markers were used to examine genetic relatedness between 10 laboratory strains of Ae. aegypti as well as between nine populations representing four Cx. pipiens subspecies. These results indicate that many Ae. aegypti RFLP markers should have direct applicability in gaining a better understanding of genome structure in other mosquito species, including RFLP linkage mapping and determinations of genetic relatedness among field populations. PMID:7909414

  11. Plasmodium falciparum malaria challenge by the bite of aseptic Anopheles stephensi mosquitoes: results of a randomized infectivity trial.

    Directory of Open Access Journals (Sweden)

    Kirsten E Lyke

    Full Text Available BACKGROUND: Experimental infection of malaria-naïve volunteers by the bite of Plasmodium falciparum-infected mosquitoes is a preferred means to test the protective effect of malaria vaccines and drugs. The standard model relies on the bite of five infected mosquitoes to induce malaria. We examined the efficacy of malaria transmission using mosquitoes raised aseptically in compliance with current Good Manufacturing Practices (cGMPs. METHODS AND FINDINGS: Eighteen adults aged 18-40 years were randomized to receive 1, 3 or 5 bites of Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of P. falciparum. Seventeen participants developed malaria; fourteen occurring on Day 11. The mean prepatent period was 10.9 days (9-12 days. The geometric mean parasitemia was 15.7 parasites/µL (range: 4-70 by microscopy. Polymerase chain reaction (PCR detected parasites 3.1 (range: 0-4 days prior to microscopy. The geometric mean sporozoite load was 16,753 sporozoites per infected mosquito (range: 1,000-57,500. A 1-bite participant withdrew from the study on Day 13 post-challenge and was PCR and smear negative. CONCLUSIONS: The use of aseptic, cGMP-compliant P. falciparum-infected mosquitoes is safe, is associated with a precise prepatent period compared to the standard model and appears more efficient than the standard approach, as it led to infection in 100% (6/6 of volunteers exposed to three mosquito bites and 83% (5/6 of volunteers exposed to one mosquito bite. TRIAL REGISTRATION: ClinicalTrials.gov NCT00744133.

  12. Comparative genomic analysis of chitinase and chitinase-like genes in the African malaria mosquito (Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Jianzhen Zhang

    Full Text Available Chitinase is an important enzyme responsible for chitin metabolism in a wide range of organisms including bacteria, yeasts and other fungi, nematodes and arthropods. However, current knowledge on chitinolytic enzymes, especially their structures, functions and regulation is very limited. In this study we have identified 20 chitinase and chitinase-like genes in the African malaria mosquito, Anopheles gambiae, through genome-wide searching and transcript profiling. We assigned these genes into eight different chitinase groupings (groups I-VIII. Domain analysis of their predicted proteins showed that all contained at least one catalytic domain. However, only seven (AgCht4, AgCht5-1, AgCht6, AgCht7, AgCht8, AgCht10 and AgCht23 displayed one or more chitin-binding domains. Analyses of stage- and tissue-specific gene expression revealed that most of these genes were expressed in larval stages. However, AgCht8 was mainly expressed in the pupal and adult stages. AgCht2 and AgCht12 were specifically expressed in the foregut, whereas AgCht13 was only expressed in the midgut. The high diversity and complexity of An. gambiae chitinase and chitinase-like genes suggest their diverse functions during different developmental stages and in different tissues of the insect. A comparative genomic analysis of these genes along with those present in Drosophila melanogaster, Tribolium castaneum and several other insect species led to a uniform classification and nomenclature of these genes. Our investigation also provided important information for conducting future studies on the functions of chitinase and chitinase-like genes in this important malaria vector and other species of arthropods.

  13. Synergy in efficacy of fungal entomopathogens and permethrin against West African insecticide-resistant Anopheles gambiae mosquitoes.

    Directory of Open Access Journals (Sweden)

    Marit Farenhorst

    Full Text Available BACKGROUND: Increasing incidences of insecticide resistance in malaria vectors are threatening the sustainable use of contemporary chemical vector control measures. Fungal entomopathogens provide a possible additional tool for the control of insecticide-resistant malaria mosquitoes. This study investigated the compatibility of the pyrethroid insecticide permethrin and two mosquito-pathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, against a laboratory colony and field population of West African insecticide-resistant Anopheles gambiae s.s. mosquitoes. METHODOLOGY/FINDINGS: A range of fungus-insecticide combinations was used to test effects of timing and sequence of exposure. Both the laboratory-reared and field-collected mosquitoes were highly resistant to permethrin but susceptible to B. bassiana and M. anisopliae infection, inducing 100% mortality within nine days. Combinations of insecticide and fungus showed synergistic effects on mosquito survival. Fungal infection increased permethrin-induced mortality rates in wild An. gambiae s.s. mosquitoes and reciprocally, exposure to permethrin increased subsequent fungal-induced mortality rates in both colonies. Simultaneous co-exposure induced the highest mortality; up to 70.3+/-2% for a combined Beauveria and permethrin exposure within a time range of one gonotrophic cycle (4 days. CONCLUSIONS/SIGNIFICANCE: Combining fungi and permethrin induced a higher impact on mosquito survival than the use of these control agents alone. The observed synergism in efficacy shows the potential for integrated fungus-insecticide control measures to dramatically reduce malaria transmission and enable control at more moderate levels of coverage even in areas where insecticide resistance has rendered pyrethroids essentially ineffective.

  14. Evaluation of some aromatic plant extracts for mosquito larvicidal potential against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi.

    Science.gov (United States)

    Jayaraman, M; Senthilkumar, A; Venkatesalu, V

    2015-04-01

    In the present investigation, larvicidal potential of hexane, choloroform, ethyl acetate, acetone, and methanol extracts of seven aromatic plants, viz., Blumea mollis, Chloroxylon swietenia, Clausena anisata, Feronia limnonia, Lantana camera, Plectranthus amboinicus, and Tagetes erecta were screened against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. The larval mortality was observed after 12 and 24 h of exposure period. The results revealed that all the extracts showed varied levels of larvicidal activity against the mosquito species tested. However, the ethyl acetate extract of Chloroxylon swietenia showed the remarkable larvicidal activity against C. quinquefasciatus, Ae. aegypti, and An. stephensi. After 12 h of exposure period, the larvicidal activity was LC50 = 194.22 and LC90 = 458.83 ppm (C. quinquefasciatus), LC50 = 173.04 and LC90 = 442.73 ppm (Ae. aegypti), and LC50 = 167.28 and LC90 = 433.07 ppm (An. stephensi), and the larvicidal activity after 24-h exposure period was LC50 = 94.12 and LC90 = 249.83 ppm (C. quinquefasciatus), LC50 = 80.58 and LC90 = 200.96 ppm (Ae. aegypti), and LC50 = 76.24 and LC90 = 194.51 ppm (An. stephensi). The larvicidal potential of other plant extracts were in order of ethyl acetate extract of Clausena anisata > methanol extract of P. amboinicus > acetone extract of F. limonia > methanol extract of T. erecta > methanol extract of B. mollis > and methanol extract of L. camera. The results of the present study offer a possible way for further investigations to find out the active molecule responsible for the activity. PMID:25630696

  15. Resistance Status of the Malaria Vector Mosquitoes, Anopheles stephensi and Anopheles subpictus Towards Adulticides and Larvicides in Arid and Semi-Arid Areas of India

    OpenAIRE

    Tikar, S. N.; M J Mendki; Sharma, A K; D. Sukumaran; Veer, Vijay; Prakash, Shri; Parashar, B. D.

    2011-01-01

    Susceptibility studies of malaria vectors Anopheles stephensi Liston (Diptera: Culicidae) and An. subpictus Grassi collected during 2004–2007 from various locations of Arid and Semi-Arid Zone of India were conducted by adulticide bioassay of DDT, malathion, deltamethrin and larvicide bioassay of fenthion, temephos, chlorpyriphos and malathion using diagnostic doses. Both species from all locations exhibited variable resistance to DDT and malathion from majority of location. Adults of both the...

  16. Determination of nitric oxide metabolites, nitrate and nitrite, in Anopheles culicifacies mosquito midgut and haemolymph by anion exchange high-performance liquid chromatography: plausible mechanism of refractoriness

    OpenAIRE

    Adak Tridibesh; Raghavendra Kamaraju; Sharma Arun; Dash Aditya P

    2008-01-01

    Abstract Background The diverse physiological and pathological role of nitric oxide in innate immune defenses against many intra and extracellular pathogens, have led to the development of various methods for determining nitric oxide (NO) synthesis. NO metabolites, nitrite (NO2-) and nitrate (NO3-) are produced by the action of an inducible Anopheles culicifacies NO synthase (AcNOS) in mosquito mid-guts and may be central to anti-parasitic arsenal of these mosquitoes. Method While exploring a...

  17. Bitter-sensitive gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus

    Science.gov (United States)

    Sparks, Jackson T.; Dickens, Joseph C.

    2016-06-01

    Female mosquitoes feed on blood from animal hosts to obtain nutritional resources used for egg production. These contacts facilitate the spread of harmful human diseases. Chemical repellents are used to disrupt mosquito host-seeking and blood-feeding behaviors; however, little is known about the gustatory sensitivity of mosquitoes to known repellents. Here, we recorded electrical responses from gustatory receptor neurons (GRNs) housed within the labellar sensilla of female Anopheles quadrimaculatus to N,N-diethyl-3-methylbenzamide (DEET), picaridin, IR3535, 2-undecanone, p-menthane-3,8-diol, geraniol, trans-2-hexen-1-ol, quinine, and quinidine. A bitter-sensitive GRN responded to all tested repellents and quinine, a known feeding deterrent. Responses of the bitter-sensitive neuron to quinine and an isomer, quinidine, did not differ. Delayed bursts of electrical activity were observed in response to continuous stimulation with synthetic repellents at high concentrations. Electrophysiological recordings from bitter-sensitive GRNs associated with mosquito gustatory sensilla represent a convenient model to evaluate candidate repellents.

  18. Larval Habitats Diversity and Distribution of the Mosquito (Diptera: Culicidae) Species in the Republic of Moldova.

    Science.gov (United States)

    Sulesco, Tatiana M; Toderas, Lidia G; Uspenskaia, Inga G; Toderas, I K

    2015-11-01

    A countrywide field survey of immature mosquitoes was conducted in Moldova with the aim to evaluate the Culicidae species composition in different larval habitats and their distribution in the country. In total, 259 potential larval habitats were sampled in the 53 localities, resulting in 9,456 specimens. Twenty species belonging to the genera Anopheles, Aedes, Culex, Culiseta, and Uranotaenia were collected. Mean species richness in aquatic habitats ranged from 1.00 to 4.00, and, for example, was higher in swamps, flood plains, ditches, and large ground pools and lower in rivers, streams, tree-holes, and containers. Six mosquito species were identified only in a single type of aquatic habitat. Anopheles maculipennis s.l., Culex pipiens pipiens L., and Culex modestus Ficalbi were the most abundant and distributed species representing over 80% of the identified specimens. Three, four, and five associated species were recorded from 23.5% of mosquito-positive aquatic habitats. Our findings demonstrate the co-occurrence of Cx. p. pipiens and Culex torrentium Martini in natural and rural environments. It is concluded that the study area has undergone a dramatic ecological change since the previous studies in the 1950s, causing the near extinction of Culex theileri Theobald from Moldova. An. maculipennis s.l. larval abundance, reduced by the DDT control of the adults in the 1950s, had returned to those of the 1940s. Restoration of An. maculipennis s.l. abundance in combination with imported malaria cases constitute a risk of the reintroduction of malaria transmission in Moldova.

  19. The effect of aliphatic carboxylic acids on olfaction-based host-seeking of the malaria mosquito Anopheles gambiae sensu stricto

    NARCIS (Netherlands)

    Smallegange, R.C.; Qiu, Y.T.; Bukovinszkine-Kiss, G.; Loon, van J.J.A.; Takken, W.

    2009-01-01

    The role of aliphatic carboxylic acids in host-seeking response of the malaria mosquito Anopheles gambiae sensu stricto was examined both in a dual-choice olfactometer and with indoor traps. A basic attractive blend of ammonia + lactic acid served as internal standard odor. Single carboxylic acids w

  20. Combined effect of seaweed (Sargassum wightii) and Bacillus thuringiensis var. israelensis on the coastal mosquito,Anopheles sundaicus, in Tamil Nadu, India

    Science.gov (United States)

    Studies were made of the extract of Sargassum wightii combined with Bacillus thuringiensis var. israelensis (Bti) for control of the malaria vector Anopheles sundaicus. Treatment of mosquito larvae with 0.001% S. wightii extract indicated median lethal concentrations (LC50) of 88, 73, 134, 156, and...

  1. The influence of late-stage pupal irradiation and increased irradiated:un-irradiated male ratio on mating competitiveness of the malaria mosquito Anopheles arabiensis Patton

    NARCIS (Netherlands)

    Helinski, M.; Knols, B.G.J.

    2009-01-01

    Competitiveness of released males in genetic control programmes is of critical importance. In this paper, we explored two scenarios to compensate for the loss of mating competitiveness after pupal stage irradiation in males of the malaria mosquito Anopheles arabiensis. First, competition experiments

  2. Comparative susceptibility to permethrin of two Anopheles gambiae s.l. populations from Southern Benin, regarding mosquito sex, physiological status, and mosquito age

    Institute of Scientific and Technical Information of China (English)

    Nazaire Azoun; Rock Akpon; Roseric Azondekon; Alex Asidi; Martin Akogbto

    2014-01-01

    Objective: To investigate what kind of mosquito sample is necessary for the determination of insecticide susceptibility in malaria vectors. Methods:Larvae and pupae of Anopheles gambiae s.l. (An. gambiae) mosquitoes were collected from the breeding sites in Littoral and Oueme departments. The Centers for Disease Control and Prevention (CDC) susceptibility tests were conducted on unfed male and female mosquitoes aged 2-5 days old. CDC susceptibility tests were also conducted on unfed, blood fed and gravid female mosquitoes aged 2-5 days old. These susceptibility tests were also conducted on unfed and blood fed female mosquitoes aged 2-5 days old and 20 days old. CDC biochemical assay using synergist was also carried out to detect any increase in the activity of enzyme typically involved in insecticide metabolism. Results:Female An. gambiae Ladji and Sekandji populations were more susceptible than the males when they were unfed and aged 2-5 days old. The mortality rates of blood fed female An. gambiae Ladji and Sekandji populations aged 2-5 days old were lower than those obtained when females were unfed. In addition, the mortality rates of gravid female An. gambiae Ladji and Sekandji populations aged 2-5 days old were lower than those obtained when they were unfed. The mortality rate obtained when female An. gambiae Sekandji populations were unfed and aged 20 days old was higher than the one obtained when these populations were unfed and aged 2-5 days old. The results obtained after effects of synergist penicillin in beeswax on F1 progeny of An. gambiae Ladji populations resistant to permethrin showed that mono-oxygenases were involved in permethrin resistant F1 progeny from Ladji. Conclusions: The resistance is a hereditary and dynamic phenomenon which can be due to metabolic mechanisms like overproduction of detoxifying enzymes activity. Many factors influence vector susceptibility to insecticide. Among these factors, there are mosquito sex, mosquito age, its

  3. Comparison of the functional features of the pump organs of Anopheles sinensis and Aedes togoi

    OpenAIRE

    Young-Ran Ha; Seung-Chul Lee; Seung-Jun Seo; Jeongeun Ryu; Dong-Kyu Lee; Sang-Joon Lee

    2015-01-01

    Mosquitoes act as vectors for severe tropical diseases. Mosquito-borne diseases are affected by various factors such as environmental conditions, host body susceptibility, and mosquito feeding behavior. Among these factors, feeding behavior is affected by the feeding pump system located inside the mosquito head and also depends on the species of mosquito. Therefore, the 3D morphological structures of the feeding pumps of Aedes togoi and Anopheles sinensis were comparatively investigated using...

  4. Successful human infection with P. falciparum using three aseptic Anopheles stephensi mosquitoes: a new model for controlled human malaria infection.

    Directory of Open Access Journals (Sweden)

    Matthew B Laurens

    Full Text Available Controlled human malaria infection (CHMI is a powerful method for assessing the efficacy of anti-malaria vaccines and drugs targeting pre-erythrocytic and erythrocytic stages of the parasite. CHMI has heretofore required the bites of 5 Plasmodium falciparum (Pf sporozoite (SPZ-infected mosquitoes to reliably induce Pf malaria. We reported that CHMI using the bites of 3 PfSPZ-infected mosquitoes reared aseptically in compliance with current good manufacturing practices (cGMP was successful in 6 participants. Here, we report results from a subsequent CHMI study using 3 PfSPZ-infected mosquitoes reared aseptically to validate the initial clinical trial. We also compare results of safety, tolerability, and transmission dynamics in participants undergoing CHMI using 3 PfSPZ-infected mosquitoes reared aseptically to published studies of CHMI using 5 mosquitoes. Nineteen adults aged 18-40 years were bitten by 3 Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of Pf. All 19 participants developed malaria (100%; 12 of 19 (63% on Day 11. The mean pre-patent period was 258.3 hours (range 210.5-333.8. The geometric mean parasitemia at first diagnosis by microscopy was 9.5 parasites/µL (range 2-44. Quantitative polymerase chain reaction (qPCR detected parasites an average of 79.8 hours (range 43.8-116.7 before microscopy. The mosquitoes had a geometric mean of 37,894 PfSPZ/mosquito (range 3,500-152,200. Exposure to the bites of 3 aseptically-raised, PfSPZ-infected mosquitoes is a safe, effective procedure for CHMI in malaria-naïve adults. The aseptic model should be considered as a new standard for CHMI trials in non-endemic areas. Microscopy is the gold standard used for the diagnosis of Pf malaria after CHMI, but qPCR identifies parasites earlier. If qPCR continues to be shown to be highly specific, and can be made to be practical, rapid, and standardized, it should be considered as an alternative for diagnosis

  5. Cuticular hydrocarbon discrimination/variation among strains of the mosquito, Anopheles (Cellia) stephensi Liston.

    Science.gov (United States)

    Anyanwu, G I; Davies, D H; Molyneux, D H; Phillips, A; Milligan, P J

    1993-06-01

    Cuticular lipids were removed from adult female Anopheles stephensi Liston and the hydrocarbons present were separated and quantified by gas chromatography. Comparison was made between the hydrocarbons of four An. stephensi strains: Russ, sensitive to DDT and malathion and originally isolated in the former U.S.S.R.; Beech, a DDT-resistant Indian strain with high sensitivity to Plasmodium species; St Mal, a strain from Pakistan shown to be resistant to malathion; and Iraq, a DDT-susceptible strain from Iraq. Discriminant analysis indicated that the four groups were distinct and that, on average, 78% of the population could be separated on the basis of the quantities of some of the cuticular hydrocarbons. The profiles of Beech and Russ or Russ and St Mal could be separated in 98% of the cases. There was reduced segregation between the profiles of St. Mal and Iraq, suggesting greater similarity in the hydrocarbons of these two strains. The usefulness of cuticular hydrocarbon in determining species relationships is discussed. PMID:8257238

  6. The Anopheles gambiae oxidation resistance 1 (OXR1 gene regulates expression of enzymes that detoxify reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Giovanna Jaramillo-Gutierrez

    Full Text Available BACKGROUND: OXR1 is an ancient gene, present in all eukaryotes examined so far that confers protection from oxidative stress by an unknown mechanism. The most highly conserved region of the gene is the carboxyl-terminal TLDc domain, which has been shown to be sufficient to prevent oxidative damage. METHODOLOGY/PRINCIPAL FINDINGS: OXR1 has a complex genomic structure in the mosquito A. gambiae, and we confirm that multiple splice forms are expressed in adult females. Our studies revealed that OXR1 regulates the basal levels of catalase (CAT and glutathione peroxidase (Gpx expression, two enzymes involved in detoxification of hydrogen peroxide, giving new insight into the mechanism of action of OXR1. Gene silencing experiments indicate that the Jun Kinase (JNK gene acts upstream of OXR1 and also regulates expression of CAT and GPx. Both OXR1 and JNK genes are required for adult female mosquitoes to survive chronic oxidative stress. OXR1 silencing decreases P. berghei oocyst formation. Unexpectedly, JNK silencing has the opposite effect and enhances Plasmodium infection in the mosquito, suggesting that JNK may also mediate some, yet to be defined, antiparasitic response. CONCLUSION: The JNK pathway regulates OXR1 expression and OXR1, in turn, regulates expression of enzymes that detoxify reactive oxygen species (ROS in Anopheles gambiae. OXR1 silencing decreases Plasmodium infection in the mosquito, while JNK silencing has the opposite effect and enhances infection.

  7. The Anopheles gambiae Oxidation Resistance 1 (OXR1) Gene Regulates Expression of Enzymes That Detoxify Reactive Oxygen Species

    Science.gov (United States)

    Jaramillo-Gutierrez, Giovanna; Molina-Cruz, Alvaro; Kumar, Sanjeev; Barillas-Mury, Carolina

    2010-01-01

    Background OXR1 is an ancient gene, present in all eukaryotes examined so far that confers protection from oxidative stress by an unknown mechanism. The most highly conserved region of the gene is the carboxyl-terminal TLDc domain, which has been shown to be sufficient to prevent oxidative damage. Methodology/Principal Findings OXR1 has a complex genomic structure in the mosquito A. gambiae, and we confirm that multiple splice forms are expressed in adult females. Our studies revealed that OXR1 regulates the basal levels of catalase (CAT) and glutathione peroxidase (Gpx) expression, two enzymes involved in detoxification of hydrogen peroxide, giving new insight into the mechanism of action of OXR1. Gene silencing experiments indicate that the Jun Kinase (JNK) gene acts upstream of OXR1 and also regulates expression of CAT and GPx. Both OXR1 and JNK genes are required for adult female mosquitoes to survive chronic oxidative stress. OXR1 silencing decreases P. berghei oocyst formation. Unexpectedly, JNK silencing has the opposite effect and enhances Plasmodium infection in the mosquito, suggesting that JNK may also mediate some, yet to be defined, antiparasitic response. Conclusion The JNK pathway regulates OXR1 expression and OXR1, in turn, regulates expression of enzymes that detoxify reactive oxygen species (ROS) in Anopheles gambiae. OXR1 silencing decreases Plasmodium infection in the mosquito, while JNK silencing has the opposite effect and enhances infection. PMID:20567517

  8. Molasses as a source of carbon dioxide for attracting the malaria mosquitoes Anopheles gambiae and Anopheles funestus

    OpenAIRE

    Mweresa, C. K.; Omusula, P.; Otieno, B.; Loon, van, R.R.; Takken, W.; Mukabana, W.R.

    2014-01-01

    Background. Most odour baits for haematophagous arthropods contain carbon dioxide (CO2). The CO2 is sourced artificially from the fermentation of refined sugar (sucrose), dry ice, pressurized gas cylinders or propane. These sources of CO2 are neither cost-effective nor sustainable for use in remote areas of sub-Saharan Africa. In this study, molasses was evaluated as a potential substrate for producing CO2 used as bait for malaria mosquitoes. Methods. The attraction of laboratory-reared and w...

  9. Salivary gland proteome analysis reveals modulation of anopheline unique proteins in insensitive acetylcholinesterase resistant Anopheles gambiae mosquitoes.

    Directory of Open Access Journals (Sweden)

    Sylvie Cornelie

    Full Text Available Insensitive acetylcholinesterase resistance due to a mutation in the acetylcholinesterase (ace encoding ace-1 gene confers cross-resistance to organophosphate and carbamate insecticides in Anopheles gambiae populations from Central and West Africa. This mutation is associated with a strong genetic cost revealed through alterations of some life history traits but little is known about the physiological and behavioural changes in insects bearing the ace-1(R allele. Comparative analysis of the salivary gland contents between An. gambiae susceptible and ace-1(R resistant strains was carried out to charaterize factors that could be involved in modifications of blood meal process, trophic behaviour or pathogen interaction in the insecticide-resistant mosquitoes. Differential analysis of the salivary gland protein profiles revealed differences in abundance for several proteins, two of them showing major differences between the two strains. These two proteins identified as saglin and TRIO are salivary gland-1 related proteins, a family unique to anopheline mosquitoes, one of them playing a crucial role in salivary gland invasion by Plasmodium falciparum sporozoites. Differential expression of two other proteins previously identified in the Anopheles sialome was also observed. The differentially regulated proteins are involved in pathogen invasion, blood feeding process, and protection against oxidation, relevant steps in the outcome of malaria infection. Further functional studies and insect behaviour experiments would confirm the impact of the modification of the sialome composition on blood feeding and pathogen transmission abilities of the resistant mosquitoes. The data supports the hypothesis of alterations linked to insecticide resistance in the biology of the primary vector of human malaria in Africa.

  10. Mosquito larvicidal properties of volatile oil from salt marsh mangrove plant of Sesuvium portulacastrum against Anopheles stephensi and Aedes aegypti

    Institute of Scientific and Technical Information of China (English)

    Mohamed Yacoob Syed Ali; Venkatraman Anuradha; SyedAbudhair Sirajudeen; Prathasarathy Vijaya; Nagarajan Yogananth; Ramachandran Rajan; Peer Mohamed Kalitha Parveen

    2013-01-01

    Objective: To identify the larvicidal activity of the volatile oil from Sesuvium portulacastrum (S.portulacastrum ) against Anopheles stephensi and Aedes aegypti. Methods: Volatile oil extract of S. portulacastrum was prepared in a graded series of concentration. The test for the larvicidal effect of volatile oil against mosquitos larvae was conducted in accordance with the WHO standard method. Batches of 25 early 4th instar larvae of two mosquitoes were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts. Each experiment was conducted with triplicate with concurrent a control group.Results:Volatile oil extract of S. portulacastrum showed toxicity against 4th instar larvae of Aedes aegypti and Anopheles stephensi with equivalent LC50 value [(63±7.8) µL/mL, LCL-UCL=55.2-64.0] and LC90 value [(94.2±3.9) µL/mL)] in maximum activity with minimum concentration (200 µL/mL) of volatile oil and followed by maximum activity of 250 µL concentration showed LC50 value=(68.0±8.2) µL/mL, LCL-UCL=66.26-69.2 and LC50 value of (55.2±2.8) µL/mL, LCL-UCL=53.7-56.9, LC90=(95.2±1.25) µL/mL and followed by 250 µL of oil extract against 4th instar larvae of Aedes aegypti respectively.Conclusions:It is inferred from the present study that, the extracts from salt marsh mangrove plan of S. portulacastum are identified as a potential source of safe and efficacious mosquito control agents for the management of vector borne diseases of malaria and dengue.

  11. Heterosis Increases Fertility, Fecundity, and Survival of Laboratory-Produced F1 Hybrid Males of the Malaria Mosquito Anopheles coluzzii

    Science.gov (United States)

    Ekechukwu, Nkiru E.; Baeshen, Rowida; Traorè, Sékou F.; Coulibaly, Mamadou; Diabate, Abdoulaye; Catteruccia, Flaminia; Tripet, Frédéric

    2015-01-01

    The success of vector control strategies aiming to decrease disease transmission via the release of sterile or genetically-modified male mosquitoes critically depends on mating between laboratory-reared males and wild females. Unfortunately, mosquito colonization, laboratory rearing, and genetic manipulations can all negatively affect male competitiveness. Heterosis is commonly used to produce domestic animals with enhanced vigor and homogenous genetic background and could therefore potentially improve the mating performance of mass-reared male mosquitoes. Here, we produced enhanced hybrid males of the malaria mosquito Anopheles coluzzii by crossing two strains colonized >35 and 8 years ago. We compared the amount of sperm and mating plug proteins they transferred to females, as well as their insemination rate, reproductive success and longevity under various experimental conditions. Across experiments, widespread adaptations to laboratory mating were detected in the older strain. In large-group mating experiments, no overall hybrid advantage in insemination rates and the amount of sperm and accessory gland proteins transferred to females was detected. Despite higher sperm activity, hybrid males did not appear more fecund. However, individual-male mating and laboratory-swarm experiments revealed that hybrid males, while inseminating fewer females than older inbred males, were significantly more fertile, producing larger mating plugs and drastically increasing female fecundity. Heterotic males also showed increased longevity. These results validate the use of heterosis for creating hybrid males with improved fitness from long-established inbred laboratory strains. Therefore, this simple approach could facilitate disease control strategies based on male mosquito releases with important ultimate benefits to human health. PMID:26497140

  12. An epithelial serine protease, AgESP, is required for Plasmodium invasion in the mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Janneth Rodrigues

    Full Text Available BACKGROUND: Plasmodium parasites need to cross the midgut and salivary gland epithelia to complete their life cycle in the mosquito. However, our understanding of the molecular mechanism and the mosquito genes that participate in this process is still very limited. METHODOLOGY/PRINCIPAL FINDINGS: We identified an Anopheles gambiae epithelial serine protease (AgESP that is constitutively expressed in the submicrovillar region of mosquito midgut epithelial cells and in the basal side of the salivary glands that is critical for Plasmodium parasites to cross these two epithelial barriers. AgESP silencing greatly reduces Plasmodium berghei and Plasmodium falciparum midgut invasion and prevents the transcriptional activation of gelsolin, a key regulator of actin remodeling and a reported Plasmodium agonist. AgESP expression is highly induced in midgut cells invaded by Plasmodium, suggesting that this protease also participates in the apoptotic response to invasion. In salivary gland epithelial cells, AgESP is localized on the basal side--the surface with which sporozoites interact. AgESP expression in the salivary gland is also induced in response to P. berghei and P. falciparum sporozoite invasion, and AgESP silencing significantly reduces the number of sporozoites that invade this organ. CONCLUSION: Our findings indicate that AgESP is required for Plasmodium parasites to effectively traverse the midgut and salivary gland epithelial barriers. Plasmodium parasites need to modify the actin cytoskeleton of mosquito epithelial cells to successfully complete their life cycle in the mosquito and AgESP appears to be a major player in the regulation of this process.

  13. An Epithelial Serine Protease, AgESP, Is Required for Plasmodium Invasion in the Mosquito Anopheles gambiae

    Science.gov (United States)

    Rodrigues, Janneth; Oliveira, Giselle A.; Kotsyfakis, Michalis; Dixit, Rajnikant; Molina-Cruz, Alvaro; Jochim, Ryan; Barillas-Mury, Carolina

    2012-01-01

    Background Plasmodium parasites need to cross the midgut and salivary gland epithelia to complete their life cycle in the mosquito. However, our understanding of the molecular mechanism and the mosquito genes that participate in this process is still very limited. Methodology/Principal Findings We identified an Anopheles gambiae epithelial serine protease (AgESP) that is constitutively expressed in the submicrovillar region of mosquito midgut epithelial cells and in the basal side of the salivary glands that is critical for Plasmodium parasites to cross these two epithelial barriers. AgESP silencing greatly reduces Plasmodium berghei and Plasmodium falciparum midgut invasion and prevents the transcriptional activation of gelsolin, a key regulator of actin remodeling and a reported Plasmodium agonist. AgESP expression is highly induced in midgut cells invaded by Plasmodium, suggesting that this protease also participates in the apoptotic response to invasion. In salivary gland epithelial cells, AgESP is localized on the basal side–the surface with which sporozoites interact. AgESP expression in the salivary gland is also induced in response to P. berghei and P. falciparum sporozoite invasion, and AgESP silencing significantly reduces the number of sporozoites that invade this organ. Conclusion Our findings indicate that AgESP is required for Plasmodium parasites to effectively traverse the midgut and salivary gland epithelial barriers. Plasmodium parasites need to modify the actin cytoskeleton of mosquito epithelial cells to successfully complete their life cycle in the mosquito and AgESP appears to be a major player in the regulation of this process. PMID:22509400

  14. Susceptibility of Anopheles stephensi to Plasmodium gallinaceum: a trait of the mosquito, the parasite, and the environment.

    Directory of Open Access Journals (Sweden)

    Jen C C Hume

    Full Text Available BACKGROUND: Vector susceptibility to Plasmodium infection is treated primarily as a vector trait, although it is a composite trait expressing the joint occurrence of the parasite and the vector with genetic contributions of both. A comprehensive approach to assess the specific contribution of genetic and environmental variation on "vector susceptibility" is lacking. Here we developed and implemented a simple scheme to assess the specific contributions of the vector, the parasite, and the environment to "vector susceptibility." To the best of our knowledge this is the first study that employs such an approach. METHODOLOGY/PRINCIPAL FINDINGS: We conducted selection experiments on the vector (while holding the parasite "constant" and on the parasite (while holding the vector "constant" to estimate the genetic contributions of the mosquito and the parasite to the susceptibility of Anopheles stephensi to Plasmodium gallinaceum. We separately estimated the realized heritability of (i susceptibility to parasite infection by the mosquito vector and (ii parasite compatibility (transmissibility with the vector while controlling the other. The heritabilities of vector and the parasite were higher for the prevalence, i.e., fraction of infected mosquitoes, than the corresponding heritabilities of parasite load, i.e., the number of oocysts per mosquito. CONCLUSIONS: The vector's genetics (heritability comprised 67% of "vector susceptibility" measured by the prevalence of mosquitoes infected with P. gallinaceum oocysts, whereas the specific contribution of parasite genetics (heritability to this trait was only 5%. Our parasite source might possess minimal genetic diversity, which could explain its low heritability (and the high value of the vector. Notably, the environment contributed 28%. These estimates are relevant only to the particular system under study, but this experimental design could be useful for other parasite-host systems. The prospects and

  15. Expression Profiles and RNAi Silencing of Inhibitor of Apoptosis Transcripts in Aedes, Anopheles, and Culex Mosquitoes (Diptera: Culicidae).

    Science.gov (United States)

    Puglise, Jason M; Estep, Alden S; Becnel, James J

    2016-03-01

    Effective mosquito control is vital to curtail the devastating health effects of many vectored diseases. RNA interference (RNAi)-mediated control of mosquitoes is an attractive alternative to conventional chemical pesticides. Previous studies have suggested that transcripts for inhibitors of apoptosis (IAPs) may be good RNAi targets. To revisit and extend previous reports, we examined the expression of Aedes aegypti (L.) IAPs (AaeIAPs) 1, 2, 5, 6, 9, and a viral IAP-associated factor (vIAF) as well as Anopheles quadrimaculatus Say and Culex quinquefasciatus Say IAP1 homologs (AquIAP1 and CquIAP1) in adult females. Expression profiles of IAPs suggested that some older female mosquitoes had significantly higher IAP mRNA levels when compared to the youngest ones. Minor differences in expression of AaeIAPs were observed in mosquitoes that imbibed a bloodmeal, but the majority of the time points (up to 48 h) were not significantly different. Although in vitro experiments with the Ae. aegypti Aag-2 cell line demonstrated that the various AaeIAPs could be effectively knocked down within one day after dsRNA treatment, only Aag-2 cells treated with dsIAP1 displayed apoptotic morphology. Gene silencing and mortality were also evaluated after topical application and microinjection of the same dsRNAs into female Ae. aegypti. In contrast to previous reports, topical administration of dsRNA against AaeIAP1 did not yield a significant reduction in gene expression or increased mortality. Knockdown of IAP1 and other IAPs by microinjection did not result in significant mortality. In toto, our findings suggest that IAPs may not be suitable RNAi targets for controlling adult mosquito populations.

  16. Bionomics of Anopheles spp. (Diptera: Culicidae) in a malaria endemic region of Sukabumi, West Java, Indonesia.

    Science.gov (United States)

    Stoops, Craig A; Rusmiarto, Saptoro; Susapto, Dwiko; Munif, Amurl; Andris, Heri; Barbara, Kathryn A; Sukowati, Supratman

    2009-12-01

    A 15-month bionomic study of Anopheles species was conducted in two ecologically distinct villages (coastal and upland) of Sukabumi District, West Java, Indonesia from June 2006 to September 2007. Mosquitoes were captured using human-landing collections at both sites. During the study, a total of 17,100 Anopheles mosquitoes comprising 13 Anopheles species were caught: 9,151 at the coastal site and 7,949 at the upland site. Anopheles barbirostris, Anopheles maculatus, and Anopheles vagus were the predominant species caught at the coastal site, and Anopheles aconitus, Anopheles barbirostris, and An. maculatus predominated in the upland site. Overall, species were exophagic at both sites, but there was variation between species. Anopheles aconitus was endophagic at the coastal site, exophagic at the upland site, collected most often in April 2007 and had a peak landing time between 22:00 and 23:00. Anopheles sundaicus was only collected at the coastal site, exophagic, collected most often in October 2006, and had a peak landing time between 19:00 and 20:00. Potential malaria vector species such An. aconitus, An. maculatus, and An. sundaicus were present throughout the year. None of the 7,770 Anopheles tested using CSP-ELISA were positive for malaria, although the risk for malaria outbreaks in Sukabumi district remains high.

  17. The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Francesco Baldini

    2013-10-01

    Full Text Available Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male-female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria.

  18. The Interaction between a Sexually Transferred Steroid Hormone and a Female Protein Regulates Oogenesis in the Malaria Mosquito Anopheles gambiae

    Science.gov (United States)

    Baldini, Francesco; Gabrieli, Paolo; South, Adam; Valim, Clarissa; Mancini, Francesca; Catteruccia, Flaminia

    2013-01-01

    Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male–female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria. PMID:24204210

  19. Habitat characterization and mapping of Anopheles maculatus (Theobald) mosquito larvae in malaria endemic areas in Kuala Lipis, Pahang, Malaysia.

    Science.gov (United States)

    Rohani, A; Wan Najdah, W M A; Zamree, I; Azahari, A H; Mohd Noor, I; Rahimi, H; Lee, H L

    2010-07-01

    In Peninsular Malaysia, a large proportion of malaria cases occur in the central mountainous and forested parts of the country. As part of a study to assess remote sensing data as a tool for vector mapping, we conducted entomological surveys to determine the type of mosquitoes, their characteristics and the abundance of habitats of the vector Anopheles maculatus in malaria endemic areas in Pos Senderot. An. maculatus mosquitoes were collected from 49 breeding sites in Pos Senderot. An. maculatus preferred to breed in water pockets formed on the bank of rivers and waterfalls. The most common larval habitats were shallow pools 5.0-15.0 cm deep with clear water, mud substrate and plants or floatage. The mosquito also preferred open or partially shaded habitats. Breeding habitats were generally located at 100-400 m from the nearest human settlement. Changes in breeding characteristics were also observed. Instead of breeding in slow flowing streams, most larvae bred in small water pockets along the river margin. PMID:21073056

  20. Mosquito repellent potential ofPithecellobium dulce leaf and seed against malaria vectorAnopheles stephensi (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    Mohan Rajeswary; Marimuthu Govindarajan

    2016-01-01

    Objective:To determine the repellent properties of hexane, benzene, ethyl acetate, chloroform and methanol extract ofPithecellobium dulce (P. dulce) leaf and seed against Anopheles stephensi(An. stephensi). Methods:Repellent activity assay was carried out in a net cage (45 cmí30 cmí25 cm) containing 100 blood starved female mosquitoes ofAn. stephensi. This assay was carried out in the laboratory conditions according to theWHO 2009 protocol. Plant crude extracts ofP. dulce were applied at 1.0, 2.5, and 5.0 mg/cm2 separately in the exposed fore arm of study subjects. Ethanol was used as the sole control. Results: In this study, the applied plant crude extracts were observed to protect against mosquito bites. There were no allergic reactions experienced by the study subjects. The repellent activity of the extract was dependent on the concentration of the extract. Among the tested solvents, the leaf and seed methanol extract showed the maximum efficacy. The highest concentration of 5.0 mg/cm2 leaf and seed methanol extract ofP. dulceprovided over 180 min and 150 min protection, respectively. Conclusions: Crude extracts ofP. dulceexhibit the potential for controlling malaria vector mosquitoAn. stephensi.

  1. Mosquito larvicidal potential of silver nanoparticles synthesized using Chomelia asiatica (Rubiaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae).

    Science.gov (United States)

    Muthukumaran, Udaiyan; Govindarajan, Marimuthu; Rajeswary, Mohan

    2015-03-01

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. Mosquito control is to enhance the health and quality of life of county residents and visitors through the reduction of mosquito populations. Mosquito control is a serious concern in developing countries like India due to the lack of general awareness, development of resistance, and socioeconomic reasons. Today, nanotechnology is a promising research domain which has a wide ranging application in vector control programs. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. In the present study, larvicidal activity of aqueous leaf extract and silver nanoparticles (AgNPs) synthesized using C. asiatica plant leaves against late third instar larvae of Anopheles stephensi, Aedes aegypti, and Cx. quinquefasciatus. The range of varying concentrations of synthesized AgNPs (8, 16, 24, 32, and 40 μg/mL) and aqueous leaf extract (40, 80, 120, 160, and 200 μg/mL) were tested against the larvae of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus. The synthesized AgNPs from C. asiatica were highly toxic than crude leaf aqueous extract in three important vector mosquito species. The results were recorded from UV-Vis spectrum, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis (EDX). Considerable mortality was evident after the treatment of C. asiatica for all three important vector mosquitoes. The LC50 and LC90 values of C. asiatica aqueous leaf extract appeared to be effective against An. stephensi (LC50, 90.17 μg/mL; LC90, 165.18 μg/mL) followed by Ae. aegypti (LC50, 96.59 μg/mL; LC90, 173.83 μg/mL) and Cx. quinquefasciatus (LC50, 103.08 μg/mL; LC90, 183.16 μg/mL). Synthesized AgNPs against the vector mosquitoes of An. stephensi, Ae. aegypti, and Cx. quinquefasciatus had the following LC50 and LC90

  2. Mosquito nets treated with a mixture of chlorfenapyr and alphacypermethrin control pyrethroid resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes in West Africa.

    Directory of Open Access Journals (Sweden)

    Raphael N'Guessan

    Full Text Available BACKGROUND: The effectiveness of insecticide treated nets is under threat across Africa south of the Sahara from the selection of pyrethroid resistance in Anopheles gambiae mosquitoes. To maintain progress against malaria it is necessary to identify alternative residual insecticides for mosquito nets. Mixtures of pyrethroid and insecticides with novel mode of action provide scope for both improved control and management of resistance through concurrent exposure to unrelated insecticides. METHODS: The pyrrole chlorfenapyr and the pyrethroid alphacypermethrin were tested individually and as a mixture on mosquito nets in an experimental hut trial in southern Benin against pyrethroid resistant An gambiae and Culex quinquefasciatus mosquitoes. The nets were deliberately holed to simulate the effect of wear and tear. RESULTS: The nets treated with the mixture of chlorfenapyr 200 mg/m² and alphacypermethrin 25 mg/m² killed a proportion of An gambiae (77%, 95%CI: 66-86% significantly greater than nets treated with alphacypermethrin 25 mg/m(2 (30%, 95%CI: 21-41% but not significantly different from nets treated with chlorfenapyr 200 mg/m² (69%, 95%CI: 57-78%. The nets treated with the mixtures procured personal protection against An gambiae biting(58-62% by a greater margin than the alphacypermethrin treated net (39%, whereas the chlorfenapyr treated net was not protective. A similar trend in mortality and blood feeding inhibition between treatments was observed in Cx quinquefasciatus to that seen in An. gambiae, although the effects were lower. A mixture of alphacypermethrin with chlorfenapyr applied at 100 mg/m² had an effect similar to the mixture with chlorfenapyr at 200 mg/m². CONCLUSION: The effectiveness of ITNs against pyrethroid resistant mosquitoes was restored by the mixture: the alphacypermethrin component reduced human-vector contact while the chlorfenapyr controlled pyrethroid-resistant mosquitoes. The complementary action of these

  3. Barrier screens: a method to sample blood-fed and host-seeking exophilic mosquitoes

    Directory of Open Access Journals (Sweden)

    Burkot Thomas R

    2013-02-01

    Full Text Available Abstract Background Determining the proportion of blood meals on humans by outdoor-feeding and resting mosquitoes is challenging. This is largely due to the difficulty of finding an adequate and unbiased sample of resting, engorged mosquitoes to enable the identification of host blood meal sources. This is particularly difficult in the south-west Pacific countries of Indonesia, the Solomon Islands and Papua New Guinea where thick vegetation constitutes the primary resting sites for the exophilic mosquitoes that are the primary malaria and filariasis vectors. Methods Barrier screens of shade-cloth netting attached to bamboo poles were constructed between villages and likely areas where mosquitoes might seek blood meals or rest. Flying mosquitoes, obstructed by the barrier screens, would temporarily stop and could then be captured by aspiration at hourly intervals throughout the night. Results In the three countries where this method was evaluated, blood-fed females of Anopheles farauti, Anopheles bancroftii, Anopheles longirostris, Anopheles sundaicus, Anopheles vagus, Anopheles kochi, Anopheles annularis, Anopheles tessellatus, Culex vishnui, Culex quinquefasciatus and Mansonia spp were collected while resting on the barrier screens. In addition, female Anopheles punctulatus and Armigeres spp as well as male An. farauti, Cx. vishnui, Cx. quinquefasciatus and Aedes species were similarly captured. Conclusions Building barrier screens as temporary resting sites in areas where mosquitoes were likely to fly was an extremely time-effective method for collecting an unbiased representative sample of engorged mosquitoes for determining the human blood index.

  4. Distribution and occurrence of mosquito species in the municipal areas of Imo State, Nigeria

    Directory of Open Access Journals (Sweden)

    Ifeyinwa Celestina MGBEMENA

    2012-05-01

    Full Text Available A study of the ecology of drainage - breeding mosquito vectors was conducted in the three urban centers (Owerri, Orlu and Okigwe of Imo State, Nigeria. Four drainage sites located around markets, residential, stream and hotel premises were selected in each urban centre. Dipping method of sampling was employed and a total of 8,820 mosquitoes comprising eight species namely; Aedes aegypti, Aedes vittatus, Culex quinquefasciatus, Culex tigripes, Culex horridus, Culex cinereus, Culex annuliorus and Anopheles gambiae were encountered; in Owerri and Orlu with Cx. cinereus being completely absent in Okigwe. Cx. quinquefasciatus was predominantly present in all drainage sites with the highest occurrence of 4,474(50.74% followed by Aedes aegypti 1814 (20.57%, An .gambiae 945(10.71%, Cx. tigripes 484 (5.48% Ae. vittatus 420 (4.76%, Cx. horridus 264 (02.99%, Cx. cinereus 261 (2.96%, Cx. annuliorus 159 (1.88%. Of all sites sampled, market drainages had the highest abundance of mosquitoes which was significantly higher than (ANOVA, P≤ 0.05 those found in the residential, streams and hotel premises. Residential drainages recorded the second highest density followed by stream/vegetation drainages and hotel drainages which had the least. The abundance and distribution of mosquitoes in Owerri (130.06 the State Capital was significantly higher (ANOVA, P≤ 0.05 than those for Orlu (93.44 and Okigwe (52.13. The mosquito species identified in this study are of public health importance and there is an urgent need to desilt and clean up these drainages for free flow of water. This will not only rid these species of breeding sites but also free the State of the diseases associated with these organisms.

  5. Alstonia boonei De Wild oil extract in the management of mosquito (Anopheles gambiae, a vector of malaria disease

    Directory of Open Access Journals (Sweden)

    Kayode David Ileke

    2015-07-01

    Full Text Available Objective: To evaluate the insecticidal potential of Alstonia boonei (A. boonei oils and derivatives against different life stages of a malaria vector, Anopheles gambiae. Methods: The leaf, stem bark and root bark of A. boonei were collected from an open field and air dried before being blended to fine powder. Oils from this plant were extracted by cold extraction and were prepared at different concentrations. Contact toxicity of A. boonei was tested against the larvae and pupae of the insect while smoke toxicity of the plant materials in form of mosquito coil was tested against the adult insect. Results: Alstodine recorded the highest insect mortality rate and the order of susceptibility of the life stages of the insect to the plant was pupae alstonine > stem bark extract > leaf extract > root bark extract.

  6. Alstonia booneiDe Wildoil extract in the management of mosquito (Anopheles gambiae), a vector of malaria disease

    Institute of Scientific and Technical Information of China (English)

    Kayode David Ileke; Olaniyi Charles Ogungbite

    2015-01-01

    Objective:To evaluate the insecticidal potential ofAlstonia boonei(A. boonei)oils and derivatives against different life stages of a malaria vector,Anopheles gambiae. Methods:The leaf, stem bark and root bark ofA. boonei were collected from an open field and air dried before being blended to fine powder. Oils from this plant were extracted by cold extraction and were prepared at different concentrations. Contact toxicity ofA. boonei was tested against the larvae and pupae of the insect while smoke toxicity of the plant materials in form of mosquito coil was tested against the adult insect. Results: Alstodine recorded the highest insect mortality rate and the order of susceptibility of the life stages of the insect to the plant was pupae alstonine > stem bark extract > leaf extract > root bark extract.

  7. Repellent, irritant and toxic effects of 20 plant extracts on adults of the malaria vector Anopheles gambiae mosquito

    OpenAIRE

    Emilie Deletre; Thibaud Martin; Pascal Campagne; Denis Bourguet; Andy Cadin; Chantal Menut; Romain Bonafos; Fabrice Chandre

    2013-01-01

    Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mos...

  8. Mitochondrial NAD+-dependent malic enzyme from Anopheles stephensi: a possible novel target for malaria mosquito control

    Directory of Open Access Journals (Sweden)

    Pon Jennifer

    2011-10-01

    Full Text Available Abstract Background Anopheles stephensi mitochondrial malic enzyme (ME emerged as having a relevant role in the provision of pyruvate for the Krebs' cycle because inhibition of this enzyme results in the complete abrogation of oxygen uptake by mitochondria. Therefore, the identification of ME in mitochondria from immortalized A. stephensi (ASE cells and the investigation of the stereoselectivity of malate analogues are relevant in understanding the physiological role of ME in cells of this important malaria parasite vector and its potential as a possible novel target for insecticide development. Methods To characterize the mitochondrial ME from immortalized ASE cells (Mos. 43; ASE, mass spectrometry analyses of trypsin fragments of ME, genomic sequence analysis and biochemical assays were performed to identify the enzyme and evaluate its activity in terms of cofactor dependency and inhibitor preference. Results The encoding gene sequence and primary sequences of several peptides from mitochondrial ME were found to be highly homologous to the mitochondrial ME from Anopheles gambiae (98% and 59% homologous to the mitochondrial NADP+-dependent ME isoform from Homo sapiens. Measurements of ME activity in mosquito mitochondria isolated from ASE cells showed that (i Vmax with NAD+ was 3-fold higher than that with NADP+, (ii addition of Mg2+ or Mn2+ increased the Vmax by 9- to 21-fold, with Mn2+ 2.3-fold more effective than Mg2+, (iii succinate and fumarate increased the activity by 2- and 5-fold, respectively, at sub-saturating concentrations of malate, (iv among the analogs of L-malate tested as inhibitors of the NAD+-dependent ME catalyzed reaction, small (2- to 3-carbons organic diacids carrying a 2-hydroxyl/keto group behaved as the most potent inhibitors of ME activity (e.g., oxaloacetate, tartronic acid and oxalate. Conclusions The biochemical characterization of Anopheles stephensi ME is of critical relevance given its important role in

  9. Hemocyte differentiation mediates the mosquito late-phase immune response against Plasmodium in Anopheles gambiae

    OpenAIRE

    Smith, Ryan C.; Barillas-Mury, Carolina; Jacobs-Lorena, Marcelo

    2015-01-01

    The innate immune response is a major determinant of malaria parasite success in its mosquito host. Previous experiments have implicated LPS-induced TNFα transcription factor (LITAF)-like 3 (LL3) as an integral component of the mosquito immune response to the malaria parasite. This study reports that LL3 influences oocyst survival and demonstrates its role in mosquito blood cell (hemocyte) differentiation in response to parasite infection. Integrating previous data, we provide evidence that h...

  10. Hydric stress-dependent effects of Plasmodium falciparum infection on the survival of wild-caught Anopheles gambiae female mosquitoes

    Directory of Open Access Journals (Sweden)

    Aboagye-Antwi Fred

    2010-08-01

    Full Text Available Abstract Background Whether Plasmodium falciparum, the agent of human malaria responsible for over a million deaths per year, causes fitness costs in its mosquito vectors is a burning question that has not yet been adequately resolved. Understanding the evolutionary forces responsible for the maintenance of susceptibility and refractory alleles in natural mosquito populations is critical for understanding malaria transmission dynamics. Methods In natural mosquito populations, Plasmodium fitness costs may only be expressed in combination with other environmental stress factors hence this hypothesis was tested experimentally. Wild-caught blood-fed Anopheles gambiae s.s. females of the M and S molecular form from an area endemic for malaria in Mali, West Africa, were brought to the laboratory and submitted to a 7-day period of mild hydric stress or kept with water ad-libitum. At the end of this experiment all females were submitted to intense desiccation until death. The survival of all females throughout both stress episodes, as well as their body size and infection status was recorded. The importance of stress, body size and molecular form on infection prevalence and female survival was investigated using Logistic Regression and Proportional-Hazard analysis. Results Females subjected to mild stress exhibited patterns of survival and prevalence of infection compatible with increased parasite-induced mortality compared to non-stressed females. Fitness costs seemed to be linked to ookinetes and early oocyst development but not the presence of sporozoites. In addition, when females were subjected to intense desiccation stress, those carrying oocysts exhibited drastically reduced survival but those carrying sporozoites were unaffected. No significant differences in prevalence of infection and infection-induced mortality were found between the M and S molecular forms of Anopheles gambiae. Conclusions Because these results suggest that infected

  11. Larvicidal and repellent properties of Adansonia digitata against medically important human malarial vector mosquito Anopheles stephensi (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    K. Krishnappa , K. Elumalai , S. Dhanasekaran & J. Gokulakrishnan

    2012-06-01

    Full Text Available Background & objectives: Development of plant-based alternative compounds for mosquito control has gainedimportance now-a-days, in view of increasing resistance in mosquito vectors to existing insecticides. The larvicidaland repellent activities of benzene, chloroform, hexane and methanol leaf extracts of Indian medicinal plant,Adansonia digitata were investigated against malarial vector, Anopheles stephensi.Methods: In all, 25 III instar larvae of An. stephensi were exposed to various concentrations (30–180 mg/l in thelaboratory by using the standard protocol described by WHO (2005. The larvae were exposed for 24 h andmortalities were subjected to log-probit analysis. Repellent activity of crude leaf extract at the dosages of 2, 4and 6 mg/cm2 was evaluated in a net cage (45 × 30 × 45 cm containing 100 blood starved female mosquitoes ofAn. stephensi using the protocol of WHO (1996.Results: Preliminary phytochemical analysis of A. digitata showed the presence of triterpenoids and saponins.The LC50 and LC90 values of hexane, benzene, chloroform, and methanol extracts of A. digitata against An.stephensi larvae in 24 h were 111.32, 97.13, 88.55, 78.18 and 178.63, 176.19, 168.14, 155.42 mg/l, respectively.The repellent activity of methanol extract was found to be most effective and at higher concentration of 6mg/cm2 benzene, chloroform hexane and methanol extracts provided 100% protection up to 150, 180, 120 and210 min against An. stephensi, respectively.Conclusion: The preliminary study indicated that A. digitata showed larvicidal and repellent activities againstAn. stephensi and could be used for controlling mosquitoes. Further studies are indicated to purify the activecompounds from these plants for developing larvicide and repellents.

  12. A 15N stable isotope semen label to detect mating in the malaria mosquito Anopheles arabiensis Patton

    Directory of Open Access Journals (Sweden)

    Gludovacz Doris

    2008-07-01

    Full Text Available Abstract In previous studies it was determined that the stable isotope 13-carbon can be used as a semen label to detect mating events in the malaria mosquito Anopheles arabiensis. In this paper we describe the use of an additional stable isotope, 15-nitrogen (15N, for that same purpose. Both stable isotopes can be analysed simultaneously in a mass spectrometer, offering the possibility to detect both labels in one sample in order to study complex and difficult-to-detect mating events, such as multiple mating. 15N-glycine was added to larval rearing water and the target enrichment was 5 atom% 15N. Males from these trays were mated with unlabelled virgin females, and spiked spermathecae were analysed for isotopic composition after mating using mass spectrometry. Results showed that spermathecae positive for semen could be distinguished from uninseminated or control samples using the raw δ15N‰ values. The label persisted in spermathecae for up to 5 days after insemination, and males aged 10 days transferred similar amounts of label as males aged 4 days. There were no negative effects of the label on larval survival and male longevity. Enrichment of teneral mosquitoes after emergence was 4.85 ± 0.10 atom% 15N. A threshold value defined as 3 standard deviations above the mean of virgin (i.e. uninseminated spermathecae samples was successful in classifying a large proportion of samples correctly (i.e. on average 95%. We conclude that alongside 13C, 15N can be used to detect mating in Anopheles and the suitability of both labels is briefly discussed.

  13. [Cytogenetic Analysis of the Species Composition and Inversion Structure of Populations of Malarial Mosquitoes in the Astrakhan Region].

    Science.gov (United States)

    Perevozkin, V P; Bondarchuk, S S; Minich, A S

    2015-08-01

    A cytogenetic analysis of Anopheles mosquitoes in the Astrakhan region was carried out. Three species of Anopheles were identified. An. messeae lives everywhere and prevails in all of the areas of research, An. hyrcanus is found in the southwest of the region, and An. maculipennis in the northern part of the region. The populations of An. messeae show a high level of inversion polymorphism for the sex chromosome and the third autosome. A clear clinal trend of an increase in chromosomal rearrangements XL1, 3R1, and 3L1 and a decrease in the frequency of evolutionary source alternatives was revealed in laraval hemipopulations of the species from south to north. PMID:26601492

  14. Determination of nitric oxide metabolites, nitrate and nitrite, in Anopheles culicifacies mosquito midgut and haemolymph by anion exchange high-performance liquid chromatography: plausible mechanism of refractoriness

    Directory of Open Access Journals (Sweden)

    Adak Tridibesh

    2008-04-01

    Full Text Available Abstract Background The diverse physiological and pathological role of nitric oxide in innate immune defenses against many intra and extracellular pathogens, have led to the development of various methods for determining nitric oxide (NO synthesis. NO metabolites, nitrite (NO2- and nitrate (NO3- are produced by the action of an inducible Anopheles culicifacies NO synthase (AcNOS in mosquito mid-guts and may be central to anti-parasitic arsenal of these mosquitoes. Method While exploring a plausible mechanism of refractoriness based on nitric oxide synthase physiology among the sibling species of An. culicifacies, a sensitive, specific and cost effective high performance liquid chromatography (HPLC method was developed, which is not influenced by the presence of biogenic amines, for the determination of NO2- and NO3- from mosquito mid-guts and haemolymph. Results This method is based on extraction, efficiency, assay reproducibility and contaminant minimization. It entails de-proteinization by centrifugal ultra filtration through ultracel 3 K filter and analysis by high performance anion exchange liquid chromatography (Sphereclone, 5 μ SAX column with UV detection at 214 nm. The lower detection limit of the assay procedure is 50 pmoles in all midgut and haemolymph samples. Retention times for NO2- and NO3- in standards and in mid-gut samples were 3.42 and 4.53 min. respectively. Assay linearity for standards ranged between 50 nM and 1 mM. Recoveries of NO2- and NO3- from spiked samples (1–100 μM and from the extracted standards (1–100 μM were calculated to be 100%. Intra-assay and inter assay variations and relative standard deviations (RSDs for NO2- and NO3- in spiked and un-spiked midgut samples were 5.7% or less. Increased levels NO2- and NO3- in midguts and haemolymph of An. culicifacies sibling species B in comparison to species A reflect towards a mechanism of refractoriness based on AcNOS physiology. Conclusion HPLC is a sensitive

  15. Production of a Transgenic Mosquito Expressing Circumsporozoite Protein, a Malarial Protein, in the Salivary Gland of Anopheles stephensi (Diptera:Culicidae

    Directory of Open Access Journals (Sweden)

    Matsuoka,Hiroyuki

    2010-08-01

    Full Text Available We are producing a transgenic mosquito, a flying syringe, to deliver a vaccine protein to human beings via the saliva the mosquito deposits in the skin while biting. The mosquito produces a vaccine protein in the salivary gland (SG and deposits the protein into the host's skin when it takes the host's blood. We chose circumsporozoite protein (CSP, currently the most promising malaria vaccine candidate, to be expressed in the SG of Anopheles stephensi. To transform the mosquitoes, plasmid containing the CSP gene under the promoter of female SG-specific gene, as well as the green fluorescent protein (GFP gene under the promoter of 3xP3 as a selection marker in the eyes, was injected into more than 400 eggs. As a result, five strains of GFP-expressing mosquitoes were established, and successful CSP expression in the SG was confirmed in one strain. The estimated amount of CSP in the SG of the strain was 40ng per mosquito. We allowed the CSP-expressing mosquitoes to feed on mice to induce the production of anti-CSP antibody. However, the mice did not develop anti-CSP antibody even after transgenic mosquitoes had bitten them several times. We consider that CSP in the SG was not secreted properly into the saliva. Further techniques and trials are required in order to realize vaccine-delivering mosquitoes.

  16. Species Diversity, Abundance, and Host Preferences of Mosquitoes (Diptera: Culicidae) in Two Different Ecotypes of Madagascar With Recent RVFV Transmission.

    Science.gov (United States)

    Jean Jose Nepomichene, Thiery Nirina; Elissa, Nohal; Cardinale, Eric; Boyer, Sebastien

    2015-09-01

    Mosquito diversity and abundance were examined in six Madagascan villages in either arid (Toliary II district) or humid (Mampikony district) ecotypes, each with a history of Rift Valley fever virus transmission. Centers for Disease Control and Prevention light traps without CO2 (LT) placed near ruminant parks and animal-baited net trap (NT) baited with either zebu or sheep/goat were used to sample mosquitoes, on two occasions between March 2011 and October 2011. Culex tritaeniorhynchus (Giles) was the most abundant species, followed by Culex antennatus (Becker) and Anopheles squamosus/cydippis (Theobald/de Meillon). These three species comprised more than half of all mosquitoes collected. The NT captured more mosquitoes in diversity and in abundance than the LT, and also caught more individuals of each species, except for An. squamosus/cydippis. Highest diversity and abundance were observed in the humid and warm district of Mampikony. No host preference was highlighted, except for Cx. tritaeniorhynchus presenting a blood preference for zebu baits. The description of species diversity, abundance, and host preference described herein can inform the development of control measures to reduce the risk of mosquito-borne diseases in Madagascar.

  17. Species Diversity, Abundance, and Host Preferences of Mosquitoes (Diptera: Culicidae) in Two Different Ecotypes of Madagascar With Recent RVFV Transmission.

    Science.gov (United States)

    Jean Jose Nepomichene, Thiery Nirina; Elissa, Nohal; Cardinale, Eric; Boyer, Sebastien

    2015-09-01

    Mosquito diversity and abundance were examined in six Madagascan villages in either arid (Toliary II district) or humid (Mampikony district) ecotypes, each with a history of Rift Valley fever virus transmission. Centers for Disease Control and Prevention light traps without CO2 (LT) placed near ruminant parks and animal-baited net trap (NT) baited with either zebu or sheep/goat were used to sample mosquitoes, on two occasions between March 2011 and October 2011. Culex tritaeniorhynchus (Giles) was the most abundant species, followed by Culex antennatus (Becker) and Anopheles squamosus/cydippis (Theobald/de Meillon). These three species comprised more than half of all mosquitoes collected. The NT captured more mosquitoes in diversity and in abundance than the LT, and also caught more individuals of each species, except for An. squamosus/cydippis. Highest diversity and abundance were observed in the humid and warm district of Mampikony. No host preference was highlighted, except for Cx. tritaeniorhynchus presenting a blood preference for zebu baits. The description of species diversity, abundance, and host preference described herein can inform the development of control measures to reduce the risk of mosquito-borne diseases in Madagascar. PMID:26336259

  18. Gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus

    Science.gov (United States)

    Female mosquitoes feed on blood from animal hosts to obtain nutritional resources used for egg production. These contacts facilitate the spread of harmful human diseases. Chemical repellents are used to disrupt mosquito host seeking and blood feeding behaviors; however, little is known about the g...

  19. Hemocyte differentiation mediates the mosquito late-phase immune response against Plasmodium in Anopheles gambiae.

    Science.gov (United States)

    Smith, Ryan C; Barillas-Mury, Carolina; Jacobs-Lorena, Marcelo

    2015-06-30

    Plasmodium parasites must complete development in the mosquito vector for transmission to occur. The mosquito innate immune response is remarkably efficient in limiting parasite numbers. Previous work has identified a LPS-induced TNFα transcription factor (LITAF)-like transcription factor, LITAF-like 3 (LL3), which significantly influences parasite numbers. Here, we demonstrate that LL3 does not influence invasion of the mosquito midgut epithelium or ookinete-to-oocyst differentiation but mediates a late-phase immune response that decreases oocyst survival. LL3 expression in the midgut and hemocytes is activated by ookinete midgut invasion and is independent of the mosquito microbiota, suggesting that LL3 may be a component of a wound-healing response. LL3 silencing abrogates the ability of mosquito hemocytes to differentiate and respond to parasite infection, implicating hemocytes as critical modulators of the late-phase immune response. PMID:26080400

  20. Hemocyte differentiation mediates the mosquito late-phase immune response against Plasmodium in Anopheles gambiae

    Science.gov (United States)

    Smith, Ryan C.; Barillas-Mury, Carolina; Jacobs-Lorena, Marcelo

    2015-01-01

    Plasmodium parasites must complete development in the mosquito vector for transmission to occur. The mosquito innate immune response is remarkably efficient in limiting parasite numbers. Previous work has identified a LPS-induced TNFα transcription factor (LITAF)-like transcription factor, LITAF-like 3 (LL3), which significantly influences parasite numbers. Here, we demonstrate that LL3 does not influence invasion of the mosquito midgut epithelium or ookinete-to-oocyst differentiation but mediates a late-phase immune response that decreases oocyst survival. LL3 expression in the midgut and hemocytes is activated by ookinete midgut invasion and is independent of the mosquito microbiota, suggesting that LL3 may be a component of a wound-healing response. LL3 silencing abrogates the ability of mosquito hemocytes to differentiate and respond to parasite infection, implicating hemocytes as critical modulators of the late-phase immune response. PMID:26080400

  1. The susceptibility of five African Anopheles species to Anabaena PCC 7120 expressing Bacillus thuringiensis subsp. israelensis mosquitocidal cry genes

    Directory of Open Access Journals (Sweden)

    Ketseoglou Irene

    2012-10-01

    Full Text Available Abstract Background Malaria, one of the leading causes of death in Africa, is transmitted by the bite of an infected female Anopheles mosquito. Problems associated with the development of resistance to chemical insecticides and concerns about the non-target effects and persistence of chemical insecticides have prompted the development of environmentally friendly mosquito control agents. The aim of this study was to evaluate the larvicidal activity of a genetically engineered cyanobacterium, Anabaena PCC 7120#11, against five African Anopheles species in laboratory bioassays. Findings There were significant differences in the susceptibility of the anopheline species to PCC 7120#11. The ranking of the larvicidal activity of PCC 7120#11 against species in the An. gambiae complex was: An. merus An. arabiensis An. gambiae An. quadriannulatus, where 50. The LC50 of PCC 7120#11 against the important malaria vectors An. gambiae and An. arabiensis was 12.3 × 105 cells/ml and 8.10 × 105 cells/ml, respectively. PCC 7120#11 was not effective against An. funestus, with less than 50% mortality obtained at concentrations as high as 3.20 × 107 cells/ml. Conclusions PCC 7120#11 exhibited good larvicidal activity against larvae of the An. gambiae complex, but relatively weak larvicidal activity against An. funestus. The study has highlighted the importance of evaluating a novel mosquitocidal agent against a range of malaria vectors so as to obtain a clear understanding of the agent’s spectrum of activity and potential as a vector control agent.

  2. Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes.

    Science.gov (United States)

    Han, Y S; Thompson, J; Kafatos, F C; Barillas-Mury, C

    2000-11-15

    We present a detailed analysis of the interactions between Anopheles stephensi midgut epithelial cells and Plasmodium berghei ookinetes during invasion of the mosquito by the parasite. In this mosquito, P. berghei ookinetes invade polarized columnar epithelial cells with microvilli, which do not express high levels of vesicular ATPase. The invaded cells are damaged, protrude towards the midgut lumen and suffer other characteristic changes, including induction of nitric oxide synthase (NOS) expression, a substantial loss of microvilli and genomic DNA fragmentation. Our results indicate that the parasite inflicts extensive damage leading to subsequent death of the invaded cell. Ookinetes were found to be remarkably plastic, to secrete a subtilisin-like serine protease and the GPI-anchored surface protein Pbs21 into the cytoplasm of invaded cells, and to be capable of extensive lateral movement between cells. The epithelial damage inflicted is repaired efficiently by an actin purse-string-mediated restitution mechanism, which allows the epithelium to 'bud off' the damaged cells without losing its integrity. A new model, the time bomb theory of ookinete invasion, is proposed and its implications are discussed. PMID:11080150

  3. Mermithid nematodes found in adult Anopheles from southeastern Senegal

    Directory of Open Access Journals (Sweden)

    Kobylinski Kevin C

    2012-06-01

    Full Text Available Abstract Background Over two dozen mermithid nematodes have been described parasitizing mosquitoes worldwide, however, only two species were found in Africa. Mermithid nematodes kill their mosquito host upon emergence, which suggests that they could be developed as biological control agents of mosquitoes. Both Romanomermis culicivorax and Romanomermis iyengari have been reared for mass release to control numerous Anopheles species vector populations, and in one instance this may have led to reduced malaria prevalence in a human population. Methods Anopheles mosquitoes were collected during a malaria study in southeastern Senegal. Two different adult blood fed mosquitoes had a single mermithid nematode emerge from their anus while they were being held post-capture. Primers from the 18 S rDNA were developed to sequence nematode DNA and screen mosquitoes for mermithid DNA. 18 S rDNA from the Senegalese mermithid and other mermithid entries in GenBank were used to create a Maximum Parsimony tree of the Mermithidae family. Results The mermithid was present in 1.8% (10/551 of the sampled adult Anopheles species in our study area. The mermithid was found in An. gambiae s.s., An. funestus, and An. rufipes from the villages of Ndebou, Boundoucondi, and Damboucoye. Maximum parsimony analysis confirmed that the nematode parasites found in Anopheles were indeed mermithid parasites, and of the mermithid sequences available in GenBank, they are most closely related to Strelkovimermis spiculatus. Conclusions To our knowledge, this is the first report of mermithids from adult Anopheles mosquitoes in Senegal. The mermithid appears to infect Anopheles mosquitoes that develop in diverse larval habitats. Although maximum parsimony analysis determined the mermithid was closely related to Strelkovimermis spiculatus, several characteristics of the mermithid were more similar to the Empidomermis genus. Future mermithid isolations will hopefully allow: formal

  4. Effect of anti-mosquito hemolymph antibodies on fecundity and on the infectivity of malarial parasite Plasmodium vivax to Anopheles stephensi (Diptera:Insecta).

    Science.gov (United States)

    Gulia, Monika; Suneja, Amita; Gakhar, Surendra K

    2002-06-01

    Rabbit antibodies to hemolymph antigens (102.5, 101, 100, 96, 88, 80, 64, 55, 43, 29, and 23 kDa) of Anopheles stephensi reduced fecundity as well as viability in An. stephensi. However, ingestion of these antibodies was not associated with a marked effect on the engorgement of mosquitoes but egg laying was significantly delayed. Antisera raised against hemolymph proteins were also used to identify cross reactive antigens/epitopes present in other tissues by Western blotting, as well as by in vivo ELISA. In addition, a significant reduction in oocyst development was also observed in An. stephensi mosquitoes that ingested anti-hemolymph antibodies along with Plasmodium vivax. The results confirmed the feasibility of targeting mosquito antigens as a novel anti-mosquito strategy, as well as confirmed the usefulness of such antigens for the development of a transmission-blocking vaccine. PMID:12195047

  5. Molecular characterisation and chromosomal mapping of transcripts having tissue-specific expression in the malaria mosquito Anopheles gambiae: possible involvement in visual or olfactory processes.

    Science.gov (United States)

    Ricci, Irene; Santolamazza, Federica; Costantini, Carlo; Favia, Guido

    2002-01-01

    We have compared the transcriptional activity of heads, antennae + palps, and carcasses in the mosquito Anopheles gambiae by means of differential display PCR (DD-PCR). Three transcripts specifically or preferentially expressed in the heads and in the antennae + palps have been selected. All are very similar to genes related to visual and olfactory mechanisms of several different organisms. They have been named Ag arrestin, Ag rLDL, and Ag dynamin. The potential of the DD-PCR technique in identifying genes involved in mosquito behaviour and the usefulness of the molecular characterisation of these transcripts are discussed. PMID:11822731

  6. Species Composition and Relative Abundance of Mosquitoes in Swat, Pakistan

    Directory of Open Access Journals (Sweden)

    Ikram Ilahi

    2013-04-01

    Full Text Available A comprehensive survey of mosquitoes (Diptera: Culicidae was conducted in Swat Pakistan, from April to September during 2000. The survey involved the sampling of both, adult and immature stages of mosquitoes, and recovered a total of 21 species in five genera. Sampling of adult mosquitoes involved Pyrethrum spray collections, Man-biting collections, and Animal-biting collection. Immature stages of mosquitoes were collected from variety of habitats including springs, irrigation channels, rice fields, marshes, temporary pools, construction pools, agriculture pools, river margins, ditches, waste water drains, wells and tree holes. During the study most of the species built up their populations in June, July and August, while a few increased their populations in September. During the survey of immature stages, from a total of 138 samples taken, Cx. quinquefasciatus showed maximum frequency of occurrence (recovered from 48 samples followed by An. maculatus (17 samples, Cx. pseudovishnui (14 samples, An. annularis and An. stephensi (13 samples each, Cx. bitaeniorhynchus (11 samples, An. splendidus (5 samples and Cx. theileri (4 samples. The rest of the species occurred infrequently. The observations on habitat specificity of different species of mosquitoes showed the rice fields as the most favorable site for mosquito breeding (harboring 12 species followed by river margins (five species and temporary pools and springs (four species each. During this study Ae. aegypti was recovered from tyres in Mingora; it was not reported earlier from Swat.

  7. Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: Irradiation, transportation, and field cage experimentation

    Directory of Open Access Journals (Sweden)

    Malcolm Colin A

    2008-04-01

    Full Text Available Abstract Background The work described in this article forms part of a study to suppress a population of the malaria vector Anopheles arabiensis in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described. Methods Mosquitoes were irradiated in Khartoum and transported as adults by air to the field site earmarked for future releases (400 km from the laboratory. The field cage was prepared for experiments by creating resting sites with favourable conditions. The mating and survival of (irradiated laboratory males and field-collected males was studied in the field cage, and two small-scale competition experiments were performed. Results Minor problems were experienced with the irradiation of insects, mostly associated with the absence of a rearing facility in close proximity to the irradiation source. The small-scale transportation of adult mosquitoes to the release site resulted in minimal mortality ( Conclusion It is concluded that although conditions are challenging, there are no major obstacles associated with the small-scale irradiation and transportation of insects in the current setting. The field cage is suitable for experiments and studies to test the competitiveness of irradiated males can be pursued. The scaling up of procedures to accommodate much larger numbers of insects needed for a release is the next challenge and recommendations to further implementation of this genetic control strategy are presented.

  8. A molecular phylogeny of Anopheles annulipes (Diptera: Culicidae) sensu lato: the most species-rich anopheline complex.

    Science.gov (United States)

    Foley, D H; Wilkerson, R C; Cooper, R D; Volovsek, M E; Bryan, J H

    2007-04-01

    The Australasian Annulipes Complex is the most species-rich among Anopheles mosquitoes, with at least 15 sibling species suspected. Members of this complex are the most likely vectors of malaria in the past in southern Australia and are involved in the spread of myxomatosis among rabbits. In this, the first comprehensive molecular study of the Annulipes Complex, 23 ITS2 rDNA variants were detected from collections throughout Australia and Papua New Guinea, including diagnostic variants for the previously identified An. annulipes species A-G. Specimens of each ITS2 variant were sequenced for portions of the mitochondrial COI, COII and nuclear EF-1alpha genes. Partitioned Bayesian and Maximum Parsimony analyses confirmed the monophyly of the Annulipes Complex and revealed at least 17 clades that we designate species A-Q. These species belong to two major clades, one in the north and one mainly in the south, suggesting that climate was a driver of species radiation. We found that 65% (11) of the 17 sibling species recorded here had unique COI sequences, suggesting that DNA barcoding will be useful for diagnosing species within the Annulipes Complex. A comparison of the taxa revealed morphological characters that may be diagnostic for some species. Our results substantially increase the size of the subgenus Cellia in Australasia, and will assist species-level studies of the Annulipes Complex. PMID:17126567

  9. Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: Irradiation, transportation, and field cage experimentation

    OpenAIRE

    Malcolm Colin A; El-Motasim Waleed M; Hassan Mo'awia M; Helinski Michelle EH; Knols Bart GJ; El-Sayed Badria

    2008-01-01

    Abstract Background The work described in this article forms part of a study to suppress a population of the malaria vector Anopheles arabiensis in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described. Methods Mosqui...

  10. Effects of bed net use, female size, and plant abundance on the first meal choice (blood vs sugar) of the malaria mosquito Anopheles gambiae

    OpenAIRE

    Stone Chris M; Jackson Bryan T; Foster Woodbridge A

    2012-01-01

    Abstract Background The purpose of this study was to determine whether the sugar-or-blood meal choice of Anopheles gambiae females one day after emergence is influenced by blood-host presence and accessibility, nectariferous plant abundance, and female size. This tested the hypothesis that the initial meal of female An. gambiae is sugar, even when a blood host is available throughout the night, and, if not, whether the use of a bed net diverts mosquitoes to sugar sources. Methods Females and ...

  11. Toxicity of essential oil from Indian borage on the larvae of the African malaria vector mosquito, Anopheles gambiae

    OpenAIRE

    Kweka Eliningaya J; Senthilkumar Annadurai; Venkatesalu Venugopalan

    2012-01-01

    Abstract Background Essential oils are currently studied for the control of different disease vectors, because of their efficacy on targeted organisms. In the present investigation, the larvicidal potential of essential oil extracted from Indian borage (Plectranthus amboinicus) was studied against the African anthropophagic malaria vector mosquito, Anopheles gambiae. The larvae of An. gambiae s.s laboratory colony and An. gambiae s.l of wild populations were assayed and the larval mortality w...

  12. Differential gene expression in abdomens of the malaria vector mosquito, Anopheles gambiae, after sugar feeding, blood feeding and Plasmodium berghei infection

    OpenAIRE

    Romans Patricia A; Kern Marcia K; Hillenmeyer Maureen E; Lobo Neil F; Dana Ali N; Collins Frank H

    2006-01-01

    Abstract Background Large scale sequencing of cDNA libraries can provide profiles of genes expressed in an organism under defined biological and environmental circumstances. We have analyzed sequences of 4541 Expressed Sequence Tags (ESTs) from 3 different cDNA libraries created from abdomens from Plasmodium infection-susceptible adult female Anopheles gambiae. These libraries were made from sugar fed (S), rat blood fed (RB), and P. berghei-infected (IRB) mosquitoes at 30 hours after the bloo...

  13. DNA barcoding: complementing morphological identification of mosquito species in Singapore

    OpenAIRE

    Chan, Abigail; Chiang, Lee-Pei; Hapuarachchi, Hapuarachchige C; Tan, Cheong-Huat; Pang, Sook-Cheng; Lee, Ruth; Lee, Kim-Sung; Ng, Lee-Ching; Lam-Phua, Sai-Gek

    2014-01-01

    Background Taxonomy that utilizes morphological characteristics has been the gold standard method to identify mosquito species. However, morphological identification is challenging when the expertise is limited and external characters are damaged because of improper specimen handling. Therefore, we explored the applicability of mitochondrial cytochrome C oxidase subunit 1 (COI) gene-based DNA barcoding as an alternative tool to identify mosquito species. In the present study, we compared the ...

  14. Relationships between anopheline mosquitoes and topography in West Timor and Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Ndoen Ermi

    2010-08-01

    Full Text Available Abstract Background Malaria is a serious health issue in Indonesia. Mosquito control is one aspect of an integrated malaria management programme. To focus resources on priority areas, information is needed about the vectors and their habitats. This research aimed to identify the relationship between anopheline mosquitoes and topography in West Timor and Java. Methods Study areas were selected in three topographic types in West Timor and Java. These were: coastal plain, hilly (rice field and highland. Adult mosquitoes were captured landing on humans identified to species level and counted. Results Eleven species were recorded, four of which were significant for malaria transmission: Anopheles aconitus, Anopheles barbirostris, Anopheles subpictus and Anopheles sundaicus. Each species occupied different topographies, but only five were significantly associated: Anopheles annularis, Anopheles vagus and Anopheles subpictus (Java only with hilly rice fields; Anopheles barbirostris, Anopheles maculatus and Anopheles subpictus (West Timor only with coastal areas. Conclusion Information on significant malaria vectors associated with specific topography is useful for planning the mosquito control aspect of malaria management.

  15. Diversity and distribution of tree hole mosquitoes in Puducherry Union Territory, India

    Institute of Scientific and Technical Information of China (English)

    Periyasamy Senthamarai Selvan; Arulsamy Jebanesan; Chinnusamy Makesh Kumar

    2015-01-01

    Objective:To study diversity and distribution of tree hole mosquitoes at Puducherry Union Territory. Methods:Random collections were carried out in tree holes at collection sites by using suction tube. Mosquitoes are identified by standard entomological procedures. Results: A total of 235 mosquitoes were collected from tree holes, comprising 3 genera and 12 species. They are,Aedes aegypti, Aedes albopictus, Aedes stokesi, Aedes simpsoni, Anopheles subpictus, Anopheles stephensi, Anopheles culiciformis, Anopheles maculatus, Culex quinquefasciatus, Culex pseudovishnui, Culex tritaeniorhynchus, and Culex decens. The results reveal thatAedes species is the dominant species in tree holes. Simpson’s dominance index and Shanon-Wiener diversity index of 0.182 7 and 0.833 6 were respectively recorded for all tree hole mosquitoes. Conclusions:The diversity studies of tree hole mosquitoes in the study area are necessary for the implementation of appropriate control strategies.

  16. Mathematical evaluation of community level impact of combining bed nets and indoor residual spraying upon malaria transmission in areas where the main vectors are Anopheles arabiensis mosquitoes

    Directory of Open Access Journals (Sweden)

    Okumu Fredros O

    2013-01-01

    Full Text Available Abstract Background Indoor residual insecticide spraying (IRS and long-lasting insecticide treated nets (LLINs are commonly used together even though evidence that such combinations confer greater protection against malaria than either method alone is inconsistent. Methods A deterministic model of mosquito life cycle processes was adapted to allow parameterization with results from experimental hut trials of various combinations of untreated nets or LLINs (Olyset®, PermaNet 2.0®, Icon Life® nets with IRS (pirimiphos methyl, lambda cyhalothrin, DDT, in a setting where vector populations are dominated by Anopheles arabiensis, so that community level impact upon malaria transmission at high coverage could be predicted. Results Intact untreated nets alone provide equivalent personal protection to all three LLINs. Relative to IRS plus untreated nets, community level protection is slightly higher when Olyset® or PermaNet 2.0® nets are added onto IRS with pirimiphos methyl or lambda cyhalothrin but not DDT, and when Icon Life® nets supplement any of the IRS insecticides. Adding IRS onto any net modestly enhances communal protection when pirimiphos methyl is sprayed, while spraying lambda cyhalothrin enhances protection for untreated nets but not LLINs. Addition of DDT reduces communal protection when added to LLINs. Conclusions Where transmission is mediated primarily by An. arabiensis, adding IRS to high LLIN coverage provides only modest incremental benefit (e.g. when an organophosphate like pirimiphos methyl is used, but can be redundant (e.g. when a pyrethroid like lambda cyhalothin is used or even regressive (e.g. when DDT is used for the IRS. Relative to IRS plus untreated nets, supplementing IRS with LLINs will only modestly improve community protection. Beyond the physical protection that intact nets provide, additional protection against transmission by An. arabiensis conferred by insecticides will be remarkably small, regardless of

  17. A list of mosquito species of the Brazilian State of Pernambuco, including the first report of Haemagogus janthinomys (Diptera: Culicidae, yellow fever vector and 14 other species (Diptera: Culicidae Lista de espécies de mosquitos do Estado de Pernambuco e primeiro relato de Haemagogus janthinomys (Diptera: Culicidae vetor de febre amarela silvestre e outras 14 espécies (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Nádia Consuelo Aragão

    2010-08-01

    Full Text Available INTRODUCTION: Besides mosquito species adapted to urban environments (Culex quinquefasciatus, Aedes aegypti and Aedes albopictus, only 15 species of Anopheles had been recorded in the State of Pernambuco. METHODS: Human-landing mosquitoes were collected in Dois Irmãos Park, in Recife. RESULTS: The first report for the state of Haemagogus janthinomys, an important vector of yellow fever virus, and 14 other species, including Trichoprosopon lampropus, a first reported for Brazil. CONCLUSIONS: The mosquito fauna in the area is diversified and has potential medical and veterinary importance.INTRODUÇÃO: Além de mosquitos adaptados ao ambiente urbano (Culex quinquefasciatus, Aedes aegypti e Ae. albopictus, apenas 15 espécies de Anopheles haviam sido relatadas no Estado de Pernambuco. MÉTODOS: Mosquitos que pousavam em humanos no Parque Dois Irmãos, em Recife foram coletados. RESULTADOS: Haemagogus janthinomys, importante vetor de vírus de febre amarela, e outras 14 espécies são relatadas pela primeira vez no estado, incluindo Trichoprosopon lampropus, relatado pela primeira vez no Brasil. CONCLUSÕES: A fauna de mosquitos na área é muito diversificada e tem potencial importância médica e veterinária.

  18. Biting patterns and host preference of Anopheles epiroticus in Chang Island, Trat Province, Eastern Thailand

    OpenAIRE

    Ritthison, W.; Tainchum, K.; Manguin, Sylvie; Bangs, M.J.; Chareonviriyaphap, T.

    2014-01-01

    A study of species diversity of Anopheles mosquitoes, biting patterns, and seasonal abundance of important mosquito vectors was conducted in two villages of Chang Island, Trat Province, in eastern Thailand, one located along the coast and the other in the low hills of the central interior of the island. Of 5,399 captured female anophelines, 70.25% belong to the subgenus Cellia and remaining specimens to the subgenus Anopheles. Five important putative malaria vectors were molecularly identifie...

  19. Reticulate evolutionary history and extensive introgression in mosquito species revealed by phylogenetic network analysis.

    Science.gov (United States)

    Wen, Dingqiao; Yu, Yun; Hahn, Matthew W; Nakhleh, Luay

    2016-06-01

    The role of hybridization and subsequent introgression has been demonstrated in an increasing number of species. Recently, Fontaine et al. (Science, 347, 2015, 1258524) conducted a phylogenomic analysis of six members of the Anopheles gambiae species complex. Their analysis revealed a reticulate evolutionary history and pointed to extensive introgression on all four autosomal arms. The study further highlighted the complex evolutionary signals that the co-occurrence of incomplete lineage sorting (ILS) and introgression can give rise to in phylogenomic analyses. While tree-based methodologies were used in the study, phylogenetic networks provide a more natural model to capture reticulate evolutionary histories. In this work, we reanalyse the Anopheles data using a recently devised framework that combines the multispecies coalescent with phylogenetic networks. This framework allows us to capture ILS and introgression simultaneously, and forms the basis for statistical methods for inferring reticulate evolutionary histories. The new analysis reveals a phylogenetic network with multiple hybridization events, some of which differ from those reported in the original study. To elucidate the extent and patterns of introgression across the genome, we devise a new method that quantifies the use of reticulation branches in the phylogenetic network by each genomic region. Applying the method to the mosquito data set reveals the evolutionary history of all the chromosomes. This study highlights the utility of 'network thinking' and the new insights it can uncover, in particular in phylogenomic analyses of large data sets with extensive gene tree incongruence. PMID:26808290

  20. The ultrastructure of the foregut and its influence on bancroftian microfilariae ingestion in three Egyptian mosquito species.

    Science.gov (United States)

    Shoukry, A; Soliman, B A

    1995-08-01

    Laboratory observations on the uptake of bancroftian microfilariae (mf.) by three Egyptian mosquito species revealed that microfilariae ingested by some tested species were badly damaged during ingestion. The foregut structures in Culex pipiens, Aedes caspius and Anopheles multicolor were investigated by light and scanning microscope techniques. In Ae. caspius which have well developed pharyngeal armatures, and An multicolor which have well developed cibarial armatures, high proportion of microfilariae were scored and damaged. Vice virsa, Cx. pipiens, considered as the main vector of bancroftian filariaris have neither developed pharyngeal nor cibarial pumps, the percentage of damaged mf was very small. The relationship between the injury of mf. in mosquito midgut and the presence of the foregut armatures was discussed.

  1. Larvicidal activity and GC-MS analysis of flavonoids of Vitex negundo and Andrographis paniculata against two vector mosquitoes Anopheles stephensi and Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Keerti Gautam

    2013-08-01

    Full Text Available Background & objectives: Development of insect resistance to synthetic pesticides, high operational cost and environmental pollution have created the need for developing alternative approaches to control vector-borne diseases. In the present study, larvicidal activity of flavonoid extracts of different parts of Vitex negundo (Linnaeus and Andrographis paniculata (Nees have been studied against the late III or early IV instar larvae of Aedes aegypti and Anopheles stephensi (Liston. Methods: Flavonoids were extracted from different parts of the selected plants using standard method. Bioassay test was carried out by WHO method for determination of larvicidal activity against mosquitoes. Different compounds of the most active extract were identified by the gas chromatography-mass spectrometry (GC-MS analysis. Results: Flavonoid extract of whole aerial part of A. paniculata was found to be inactive against the selected larvae of Ae. aegypti even at the concentration of 600 ppm, whereas it caused 70% mortality in An. stephensi at the concentration of 200 ppm. Flavonoid extract of flower-buds produced highest mortality (100% at the concentration of 600 ppm for the late III or early IV instar larvae of Ae. aegypti and at the concentration of 200 ppm for the larvae of An. stephensi. GC-MS analysis of the most active flavonoid extract from flower-buds of Vitex showed 81 peaks. Phenol (26.83% area, naphthalene (4.95% area, 2,3-dihydrobenzofuran (6.79% area, Phenol-2,4-Bis (1,1-dimethyl (4.49% area, flavones 4'-OH,5-OH,7-di-O-glucoside (0.25% area and 5-hydroxy- 3,6,7,3',4'-pentamethoxy flavones (0.80% area were present in major amount. Conclusion: Flavonoid extracts from different parts of two selected plants possess larvicidal activity against two selected mosquito species, hence, could be utilized for developing flavonoid-based, ecofriendly insecticide as an alternative to synthetic insecticides.

  2. Isoenzymatic variability among five Anopheles species belonging to the Nyssorhynchus and Anopheles subgenera of the Amazon region, Brazil

    Directory of Open Access Journals (Sweden)

    Joselita Maria Mendes dos Santos

    2003-03-01

    Full Text Available An isoenzymatic comparative analysis of the variability and genetics differentiation among Anopheles species was done in populations of An. (Nys. intermedius and An. (Ano. mattogrossensis of the Anopheles subgenus, and of An. darlingi, An. albitarsis and An. triannulatus of the Nyssorhynchus subgenus, with the aim of detecting differences between both subgenera and of estimating the degree of genetic intere specific divergence. Samples from Macapá, State of Amapá and Janauari Lake, near Manaus, State of Amazonas, were analyzed for eight isoenzymatic loci. Analysis revealed differences in the average number of alleles per locus (1.6-2.3 and heterozygosity (0.060-0.284. However, the proportion of polymorphic loci was the same for An. (Nys. darlingi, An. (Nys. triannulatus and An. (Ano. mattogrossensis (50%, but differed for An. (Nys. albitarsis (62.5% and An. (Ano. intermedius (25%. Only the IDH1 (P > 0.5 locus in all species studied was in Hardy-Weinberg equilibrium. The fixation index demonstrated elevated genetic structuring among species, based on values of Fst = 0.644 and genetic distance (0.344-0.989. Genetic difference was higher between An. (Nys. triannulatus and An. (Ano. intermedius (0.989 and smaller between An. (Nys. albitarsis sensu lato and An. (Nys. darlingi (0.344. The data show interspecific genetic divergence which differs from the phylogenetic hypothesis based on morphological characters.

  3. Apolipophorin-III Mediates Antiplasmodial Epithelial Responses in Anopheles gambiae (G3) Mosquitoes

    OpenAIRE

    Gupta, Lalita; Noh, Ju Young; Jo, Yong Hun; Oh, Seung Han; Kumar, Sanjeev; Noh, Mi Young; Lee, Yong Seok; Cha, Sung-Jae; Seo, Sook Jae; Kim, Iksoo; Han, Yeon Soo; Barillas-Mury, Carolina

    2010-01-01

    Background Apolipophorin-III (ApoLp-III) is known to play an important role in lipid transport and innate immunity in lepidopteran insects. However, there is no evidence of involvement of ApoLp-IIIs in the immune responses of dipteran insects such as Drosophila and mosquitoes. Methodology/Principal Findings We report the molecular and functional characterization of An. gambiae apolipophorin-III (AgApoLp-III). Mosquito ApoLp-IIIs have diverged extensively from those of lepidopteran insects; ho...

  4. Expression of trypsin modulating oostatic factor (TMOF in an entomopathogenic fungus increases its virulence towards Anopheles gambiae and reduces fecundity in the target mosquito

    Directory of Open Access Journals (Sweden)

    Kamareddine Layla

    2013-01-01

    Full Text Available Abstract Background Adult and larval mosquitoes regulate food digestion in their gut with trypsin modulating oostatic factor (TMOF, a decapeptide hormone synthesized by the ovaries and the neuroendocrine system. TMOF is currently being developed as a mosquitocide, however, delivery of the peptide to the mosquito remains a significant challenge. Entomopathogenic fungi offer a means for targeting mosquitoes with TMOF. Findings The efficacy of wild type and transgenic Beauveria bassiana strains expressing Aedes aegypti TMOF (Bb-Aa1 were evaluated against larvae and sugar- and blood-fed adult Anopheles gambiae mosquitoes using insect bioassays. Bb-Aa1 displayed increased virulence against larvae, and sugar and blood fed adult A. gambiae when compared to the wild type parent strain. Median lethal dose (LD50 values decreased by ~20% for larvae, and ~40% for both sugar and blood-fed mosquitoes using Bb-Aa1 relative to the wild type parent. Median lethal time (LT50 values were lower for blood-fed compared to sugar-fed mosquitoes in infections with both wild type and Bb-Aa1. However, infection using Bb-Aa1 resulted in 15% to 25% reduction in LT50 values for sugar- and blood fed mosquitoes, and ~27% for larvae, respectively, relative to the wild type parent. In addition, infection with Bb-Aa1 resulted in a dramatic reduction in fecundity of the target mosquitoes. Conclusions B. bassiana expressing Ae. aegypti TMOF exhibited increased virulence against A. gambiae compared to the wild type strain. These data expand the range and utility of entomopathogenic fungi expressing mosquito-specific molecules to improve their biological control activities against mosquito vectors of disease.

  5. Experimental hut evaluation of bednets treated with an organophosphate (chlorpyrifos-methyl or a pyrethroid (lambdacyhalothrin alone and in combination against insecticide-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes

    Directory of Open Access Journals (Sweden)

    Corbel Vincent

    2005-05-01

    Full Text Available Abstract Background Pyrethroid resistant mosquitoes are becoming increasingly common in parts of Africa. It is important to identify alternative insecticides which, if necessary, could be used to replace or supplement the pyrethroids for use on treated nets. Certain compounds of an earlier generation of insecticides, the organophosphates may have potential as net treatments. Methods Comparative studies of chlorpyrifos-methyl (CM, an organophosphate with low mammalian toxicity, and lambdacyhalothrin (L, a pyrethroid, were conducted in experimental huts in Côte d'Ivoire, West Africa. Anopheles gambiae and Culex quinquefasciatus mosquitoes from the area are resistant to pyrethroids and organophosphates (kdr and insensitive acetylcholinesterase Ace.1R. Several treatments and application rates on intact or holed nets were evaluated, including single treatments, mixtures, and differential wall/ceiling treatments. Results and Conclusion All of the treatments were effective in reducing blood feeding from sleepers under the nets and in killing both species of mosquito, despite the presence of the kdr and Ace.1R genes at high frequency. In most cases, the effects of the various treatments did not differ significantly. Five washes of the nets in soap solution did not reduce the impact of the insecticides on A. gambiae mortality, but did lead to an increase in blood feeding. The three combinations performed no differently from the single insecticide treatments, but the low dose mixture performed encouragingly well indicating that such combinations might be used for controlling insecticide resistant mosquitoes. Mortality of mosquitoes that carried both Ace.1R and Ace.1S genes did not differ significantly from mosquitoes that carried only Ace.1S genes on any of the treated nets, indicating that the Ace.1R allele does not confer effective resistance to chlorpyrifos-methyl under the realistic conditions of an experimental hut.

  6. Breeding of Anopheles mosquitoes in irrigated areas of South Punjab, Pakistan

    DEFF Research Database (Denmark)

    Herrel, N; Amerasinghe, F P; Ensink, J;

    2001-01-01

    As part of investigations on potential linkages between irrigation and malaria transmission, all surface water bodies in and around three villages along an irrigation distributary in South Punjab, Pakistan, were surveyed for anopheline mosquito larvae (Diptera: Culicidae) from April 1999 to March...

  7. Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.) (Family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae).

    Science.gov (United States)

    Govindarajan, Marimuthu; Sivakumar, Rajamohan

    2014-04-01

    Several diseases are associated to the mosquito-human interaction. Mosquitoes are the carriers of severe and well-known illnesses such as malaria, arboviral encephalitis, dengue fever, chikungunya fever, West Nile virus and yellow fever. These diseases produce significant morbidity and mortality in humans and livestock around the world. The present investigation was undertaken to study the ovicidal, larvicidal and adulticidal activities of crude hexane, ethyl acetate, benzene, chloroform and methanol extracts of root of Asparagus racemosus were assayed for their toxicity against three important vector mosquitoes, viz., Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). The mean percent hatchability of the eggs was observed after 48 h post-treatment. The percent hatchability was inversely proportional to the concentration of extract and directly proportional to the eggs. All the five solvent extracts showed moderate ovicidal activity; however, the methanol extract showed the highest ovicidal activity. The methanol extract of Asparagus racemosus against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi exerted 100% mortality (zero hatchability) at 375, 300 and 225 ppm, respectively. Control eggs showed 99-100% hatchability. The larval mortality was observed after 24 h of exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in methanol extract of root of Asparagus racemosus against the larvae of Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi with the LC50 and LC90 values were 115.13, 97.71 and 90.97 ppm and 210.96, 179.92, and 168.82 ppm, respectively. The adult mortality was observed after 24 h recovery period. The plant crude extracts showed dose-dependent mortality. At higher concentrations, the adult showed restless movement for some times with abnormal wagging and then died. Among the extracts tested, the highest adulticidal activity was observed in

  8. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.

    Science.gov (United States)

    Gantz, Valentino M; Jasinskiene, Nijole; Tatarenkova, Olga; Fazekas, Aniko; Macias, Vanessa M; Bier, Ethan; James, Anthony A

    2015-12-01

    Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼ 17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼ 99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda. PMID:26598698

  9. Reduction of malaria transmission to Anopheles mosquitoes with a six-dose regimen of co-artemether.

    Directory of Open Access Journals (Sweden)

    Colin J Sutherland

    2005-04-01

    Full Text Available BACKGROUND: Resistance of malaria parasites to chloroquine (CQ and sulphadoxine-pyrimethamine (SP is increasing in prevalence in Africa. Combination therapy can both improve treatment and provide important public health benefits if it curbs the spread of parasites harbouring resistance genes. Thus, drug combinations must be identified which minimise gametocyte emergence in treated cases, and so prevent selective transmission of parasites resistant to any of the partner drugs. METHODS AND FINDINGS: In a randomised controlled trial, 497 children with uncomplicated falciparum malaria were treated with CQ and SP (three doses and one dose respectively; n = 91, or six doses of artemether in fixed combination with lumefantrine (co-artemether [Coartem, Riamet] (n = 406. Carriage rates of Plasmodium falciparum gametocytes and trophozoites were measured 7, 14, and 28 d after treatment. The infectiousness of venous blood from 29 children carrying P. falciparum gametocytes 7 d after treatment was tested by membrane-feeding of Anopheles mosquitoes. Children treated with co-artemether were significantly less likely to carry gametocytes within the 4 weeks following treatment than those receiving CQ/SP (30 of 378 [7.94%] versus 42 of 86 [48.8%]; p < 0.0001. Carriers in the co-artemether group harboured gametocytes at significantly lower densities, for shorter periods (0.3 d versus 4.2 d; p < 0.0001 and were less infectious to mosquitoes at day 7 (p < 0.001 than carriers who had received CQ/SP. CONCLUSIONS: Co-artemether is highly effective at preventing post-treatment transmission of P. falciparum. Our results suggest that co-artemether has specific activity against immature sequestered gametocytes, and has the capacity to minimise transmission of drug-resistant parasites.

  10. Chemical composition and larvicidal activity of Blumea densiflora essential oils against Anopheles anthropophagus: a malarial vector mosquito.

    Science.gov (United States)

    Zhu, Liang; Tian, Yingjuan

    2011-11-01

    Blumea densiflora, an edible and medicinal plant, is chiefly distributed in Southeast Asia and South Asia. Essential oils extracted by steam distillation from B. densiflora were investigated for their chemical composition and larvicidal activity against Anopheles anthropophagus, the primary vector of malaria in China and other East Asian countries. Totally, 46 compounds were identified by gas chromatography and mass spectroscopy. The major chemical compounds identified were borneol (11.43%), germacrene D (8.66%), β-caryophyllene (6.68%), γ-terpinene (4.35%), sabinene (4.34%), and β-bisabolene (4.24%). A series of concentrations of essential oil (that ranged from 6.25 to 150 ppm) were tested against A. anthropophagus fourth-instar larvae according to WHO recommendation. In general, larval mortality increased as concentration and exposure time increased, indicating a dose-dependent effect, and high insecticidal activity showed that 100% mortality occurred within 6 h at 150 ppm, 10 h at 100 ppm, 30 h at 50 ppm, and 30 h at 25 ppm essential oil concentration. The LC(50) values were 22.32 (after 12 h) and 10.55 ppm (after 24 h), and the LC(90) values were 54.04 (after 12 h) and 33.56 ppm (after 24 h). Pylarvex, the reference standard, had better larvicidal activity, causing 100% mortality within 2 h at 150 ppm and within 6 h at 6.25 ppm. The results clearly reveal that the essential oil of B. densiflora served as a potential, eco-friendly mosquito larvicide against the malarial vector mosquito A. anthropophagus.

  11. Toxicity of essential oil from Indian borage on the larvae of the African malaria vector mosquito, Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Kweka Eliningaya J

    2012-12-01

    Full Text Available Abstract Background Essential oils are currently studied for the control of different disease vectors, because of their efficacy on targeted organisms. In the present investigation, the larvicidal potential of essential oil extracted from Indian borage (Plectranthus amboinicus was studied against the African anthropophagic malaria vector mosquito, Anopheles gambiae. The larvae of An. gambiae s.s laboratory colony and An. gambiae s.l of wild populations were assayed and the larval mortality was observed at 12, 24 and 48 h after exposure period with the concentrations of 3.125, 6.25, 12.5, 25, 50 and 100 ppm. Findings Larval mortality rates of the essential oil was entirely time and dose dependent. The LC50 values of the laboratory colony were 98.56 (after 12h 55.20 (after 24 h and 32.41 ppm (after 48 h and the LC90 values were 147.40 (after 12h, 99.09 (after 24 h and 98.84 ppm (after 48 h. The LC50 and LC90 values of the wild population were 119.52, 179.85 (after 12h 67.53, 107.60 (after 24 h and 25.51, 111.17 ppm (after 48 h respectively. The oil showed good larvicidal potential after 48 h of exposure period against An. gambiae. The essential oil of Indian borage is a renowned natural source of larvicides for the control of the African malaria vector mosquito, An. gambiae. Conclusion The larvicidal efficacy shown by plant extracts against An. gambiae should be tested in semi field and small scale trials for effective compounds to supplement the existing larval control tools.

  12. Select small core structure carbamates exhibit high contact toxicity to "carbamate-resistant" strain malaria mosquitoes, Anopheles gambiae (Akron.

    Directory of Open Access Journals (Sweden)

    Dawn M Wong

    Full Text Available Acetylcholinesterase (AChE is a proven target for control of the malaria mosquito (Anopheles gambiae. Unfortunately, a single amino acid mutation (G119S in An. gambiae AChE-1 (AgAChE confers resistance to the AChE inhibitors currently approved by the World Health Organization for indoor residual spraying. In this report, we describe several carbamate inhibitors that potently inhibit G119S AgAChE and that are contact-toxic to carbamate-resistant An. gambiae. PCR-RFLP analysis was used to confirm that carbamate-susceptible G3 and carbamate-resistant Akron strains of An. gambiae carry wild-type (WT and G119S AChE, respectively. G119S AgAChE was expressed and purified for the first time, and was shown to have only 3% of the turnover number (k(cat of the WT enzyme. Twelve carbamates were then assayed for inhibition of these enzymes. High resistance ratios (>2,500-fold were observed for carbamates bearing a benzene ring core, consistent with the carbamate-resistant phenotype of the G119S enzyme. Interestingly, resistance ratios for two oxime methylcarbamates, and for five pyrazol-4-yl methylcarbamates were found to be much lower (4- to 65-fold. The toxicities of these carbamates to live G3 and Akron strain An. gambiae were determined. As expected from the enzyme resistance ratios, carbamates bearing a benzene ring core showed low toxicity to Akron strain An. gambiae (LC(50>5,000 μg/mL. However, one oxime methylcarbamate (aldicarb and five pyrazol-4-yl methylcarbamates (4a-e showed good to excellent toxicity to the Akron strain (LC(50 = 32-650 μg/mL. These results suggest that appropriately functionalized "small-core" carbamates could function as a resistance-breaking anticholinesterase insecticides against the malaria mosquito.

  13. Evaluation of organophosphorus and synthetic pyrethroid insecticides against six vector mosquitoe species Avaliação de inseticidas organofosforados e piretroides sintéticos contra seis mosquitos vetores

    Directory of Open Access Journals (Sweden)

    Domingo Montada Dorta

    1993-12-01

    Full Text Available Three organophosphorus compounds- malathion, folithion and temephos- and two synthetic pyrethroids- alphamethrin and deltamethrin- were used for monitoring the susceptibility status of larvae and adults of six vector mosquitoe species: Culex quinquefasciatus (Filariasis and Aedes albopictus (Dengue (both laboratory and field strains; laboratory strains of Aedes aegypti (Dengue, Anopheles slephensi and Anopheles culicifacies (Malaria, and Culex tritaeniorhynchus (Japanese encephalitis in India. From the LC50 values obtained for these insecticides, it was found that all mosquito species including the field strains of Cx. quinquefasciatus and Ae. albopictus were highly susceptible Except for Cx. quinquefasciatus (field strain against malathion, 100% mortality was observed at the discriminating dosages recommended by World Health Organization. The residual effect of alphamethrin, deltamethrin, malathion and folithion at 25 mg (ai/m² on different surfaces against six species of vector mosquitoes showed that alphamethrin was the most effective on all four treated surfaces (mud, plywood, cement and thatch. Nevertheless, residual efficacy lasted longer on thatch than on the other surfaces. Therefore, synthetic pyrethroids such as alphamethrin can be effectively employed in integrated vector control operations.Três compostos organo-fosforados - malation, folition e temefos -e dois piretroides sintéticos - alfametrina e deltametrina - foram usados para controlar o estado da susceptibilidade das larvas e adultos de seis mosquitos vetores na Índia. Foram utilizadas cepas de laboratório e área de Culex quinquefasciatus (filariasis e Aedes albopictus (Dengue e cepas de laboratório de Aedes aegypti (Dengue, Anopheles stephensi e Anopheles culicifacies (Malária e Culex tritaenorhynchus (encefalite japonesa. Os valores de C1(50 obtidos para esses inseticidas mostram que todas as espécies incluindo as cepas de área foram muito susceptíveis. Nos

  14. A stable isotope dual-labelling approach to detect multiple insemination in un-irradiated and irradiated Anopheles arabiensis mosquitoes

    Directory of Open Access Journals (Sweden)

    Hood Rebecca C

    2008-04-01

    Full Text Available Abstract Background In the context of a Sterile Insect Technique programme, the occurrence of multiple insemination in the malaria mosquito Anopheles arabiensis Patton was studied using a novel labelling system with the stable isotopes 15N and 13C. The incidence of multiple insemination in the absence of radiation, and when males were irradiated in the pupal stage and competed against un-irradiated males were assessed. Males used in the experiments were labelled with either 15N or 13C and the label was applied to the larval rearing water. Males with either label and virgin females were caged at a 1:1:1 ratio. Males used in the radiation treatments were irradiated in the pupal stage with a partially or fully-sterilizing dose of 70 or 120 Gy, respectively. After mating, females were dissected and inseminated spermathecae analysed using mass spectrometry. Results The data indicate that about 25% of inseminated females had been inseminated multiply. The presence of irradiated males in the experiments did not affect the incidence of multiple insemination. In line with previous research, irradiated males were generally less competitive than un-irradiated males. Conclusion The implications of these findings for the Sterile Insect Technique are discussed, and further experiments recommended. The dual-labelling system used to determine paternity gave good results for 13C, however, for 15N it is recommended to increase the amount of label in future studies.

  15. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae.

    Science.gov (United States)

    Hammond, Andrew; Galizi, Roberto; Kyrou, Kyros; Simoni, Alekos; Siniscalchi, Carla; Katsanos, Dimitris; Gribble, Matthew; Baker, Dean; Marois, Eric; Russell, Steven; Burt, Austin; Windbichler, Nikolai; Crisanti, Andrea; Nolan, Tony

    2016-01-01

    Gene drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years. We describe CRISPR-Cas9 endonuclease constructs that function as gene drive systems in Anopheles gambiae, the main vector for malaria. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female-sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene drive constructs designed to target and edit each gene. For each targeted locus we observed a strong gene drive at the molecular level, with transmission rates to progeny of 91.4 to 99.6%. Population modeling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to suppress mosquito populations to levels that do not support malaria transmission. PMID:26641531

  16. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae.

    Science.gov (United States)

    Hammond, Andrew; Galizi, Roberto; Kyrou, Kyros; Simoni, Alekos; Siniscalchi, Carla; Katsanos, Dimitris; Gribble, Matthew; Baker, Dean; Marois, Eric; Russell, Steven; Burt, Austin; Windbichler, Nikolai; Crisanti, Andrea; Nolan, Tony

    2016-01-01

    Gene drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years. We describe CRISPR-Cas9 endonuclease constructs that function as gene drive systems in Anopheles gambiae, the main vector for malaria. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female-sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene drive constructs designed to target and edit each gene. For each targeted locus we observed a strong gene drive at the molecular level, with transmission rates to progeny of 91.4 to 99.6%. Population modeling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to suppress mosquito populations to levels that do not support malaria transmission.

  17. Mosquito larvicidal properties of Impatiens balsamina (Balsaminaceae) against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    Marimuthu Govindarajan; Mohan Rajeswary

    2014-01-01

    Objective: To assess the larvicidal potential of the crude benzene, chloroform, ethyl acetate and methanol solvent extracts of the medicinal plant Impatiens balsamina against Anopheles stephensi(An. stephensi), Aedes aegypti (Ae. aegypti) and Culex quinquefasciatus (Cx. quinquefasciatus). Methods: Twenty five third instar larvae of An. stephensi, Ae. aegypti and Cx. quinquefasciatus were exposed to various concentrations and were assayed in the laboratory by using the protocol recommended by WHO. The larval mortality was observed after 24 h of treatment. Results: Among extracts tested, the highest larvicidal activity was observed in leaf methanol extract of Impatiens balsamina against An. stephensi, Ae. aegypti and Cx. quinquefasciatus with the LC50 and LC90 values 98.04, 119.68, 125.06 and 172.93, 210.14, 220.60 mg/L, respectively. Conclusions:From the results it can be concluded that the larvicidal effect of Impatiens balsamina against An. stephensi, Ae. aegypti and Cx. quinquefasciatus make this plant product promising as an alternative to synthetic insecticide in mosquito control programs.

  18. Thermal limits of wild and laboratory strains of two African malaria vector species, Anopheles arabiensis and Anopheles funestus

    Directory of Open Access Journals (Sweden)

    Lyons Candice L

    2012-07-01

    Full Text Available Abstract Background Malaria affects large parts of the developing world and is responsible for almost 800,000 deaths annually. As climates change, concerns have arisen as to how this vector-borne disease will be impacted by changing rainfall patterns and warming temperatures. Despite the importance and controversy surrounding the impact of climate change on the potential spread of this disease, little information exists on the tolerances of several of the vector species themselves. Methods Using a ramping protocol (to assess critical thermal limits - CT and plunge protocol (to assess lethal temperature limits - LT information on the thermal tolerance of two of Africa’s important malaria vectors, Anopheles arabiensis and Anopheles funestus was collected. The effects of age, thermal acclimation treatment, sex and strain (laboratory versus wild adults were investigated for CT determinations for each species. The effects of age and sex for adults and life stage (larvae, pupae, adults were investigated for LT determinations. Results In both species, females are more tolerant to low and high temperatures than males; larvae and pupae have higher upper lethal limits than do adults. Thermal acclimation of adults has large effects in some instances but small effects in others. Younger adults tend to be more tolerant of low or high temperatures than older age groups. Long-standing laboratory colonies are sufficiently similar in thermal tolerance to field-collected animals to provide reasonable surrogates when making inferences about wild population responses. Differences between these two vectors in their thermal tolerances, especially in larvae and pupae, are plausibly a consequence of different habitat utilization. Conclusions Limited plasticity is characteristic of the adults of these vector species relative to others examined to date, suggesting limited scope for within-generation change in thermal tolerance. These findings and the greater tolerance

  19. Mecanismos de invasión del esporozoíto de Plasmodium en el mosquito vector Anopheles

    Directory of Open Access Journals (Sweden)

    Lilian M. Spencer

    2016-09-01

    Full Text Available La Malaria o Paludismo es una de las enfermedades tropicales considerada un problema de salud pública a nivel mundial por la OMS. Plasmodium es un protozoario cuyo vector es la hembra del mosquito Anopheles. En este vector se cumplen dos procesos fundamentales en el ciclo de vida del parásito, como son la reproducción sexual, con la formación de un cigoto móvil llamado ooquineto como producto de la fertilización entre los gametos; y la invasión del epitelio del estómago y formación del ooquiste. El estadio producto de esta esporogonia son los esporozoítos (reproducción asexual que se dirigen a las glándulas salivales; y es el infectivo para el mamífero. El esporozoíto es el responsable de establecer la enfermedad en su hospedador vertebrado y por lo tanto los procesos de invasión de este a las glándulas salivales del mosquito es uno de los puntos fundamentales de estudio. Nosotros presentamos una revisión acerca de los mecanismos de invasión del parásito dentro del vector mosquito y las proteínas más importantes que median este proceso. Uno de los aspectos más estudiados en las investigaciones en malaria ha sido determinar la antigenicidad de dichas proteínas en esta parte del ciclo con el fin de ser usadas en el diseño de vacunas. Entre ellas, algunas de las más estudiadas son: P230, P48/45, P28, P25, CTRP, CS, TRAP, WARP y SOAP las cuales han sido consideradas en las estrategias para inhibir el desarrollo del parásito, mejor conocidas como vacunas de bloqueo de trasmisión por el vector. Por lo tanto, presentamos algunas de las estrategias en el diseño de vacunas, basado en las proteínas implicadas en los estadios desarrollados dentro del vector.

  20. Genetic Study of Propoxur Resistance—A Carbamate Insecticide in the Malaria Mosquito, Anopheles stephensi Liston

    Directory of Open Access Journals (Sweden)

    D. Sanil

    2010-01-01

    Full Text Available Anopheles stephensi Liston (Diptera: Culicidae is the urban vector of malaria in the Indian subcontinent and several countries of the Middle East. The genetics of propoxur resistance (pr in An. stephensi larvae was studied to determine its mode of inheritance. A diagnostic dose of 0.01 mg/L as recommended by WHO was used to establish homozygous resistant and susceptible strains. Reciprocal crosses between the resistant and susceptible strains showed an F1 generation of incomplete dominance. The progenies of backcrosses to susceptible parents were in 1 : 1 ratio of the same phenotypes as the parents and hybrids involved. The dosage mortality (d-m lines were constructed for each one of the crosses, and the degree of dominance was calculated. It is concluded that propoxur resistance in An. stephensi larvae is due to monofactorial inheritance with incomplete dominance and is autosomal in nature.

  1. Apolipophorin-III mediates antiplasmodial epithelial responses in Anopheles gambiae (G3 mosquitoes.

    Directory of Open Access Journals (Sweden)

    Lalita Gupta

    Full Text Available BACKGROUND: Apolipophorin-III (ApoLp-III is known to play an important role in lipid transport and innate immunity in lepidopteran insects. However, there is no evidence of involvement of ApoLp-IIIs in the immune responses of dipteran insects such as Drosophila and mosquitoes. METHODOLOGY/PRINCIPAL FINDINGS: We report the molecular and functional characterization of An. gambiae apolipophorin-III (AgApoLp-III. Mosquito ApoLp-IIIs have diverged extensively from those of lepidopteran insects; however, the predicted tertiary structure of AgApoLp-III is similar to that of Manduca sexta (tobacco hornworm. We found that AgApoLp-III mRNA expression is strongly induced in the midgut of An. gambiae (G3 strain mosquitoes in response to Plasmodium berghei infection. Furthermore, immunofluorescence stainings revealed that high levels of AgApoLp-III protein accumulate in the cytoplasm of Plasmodium-invaded cells and AgApoLp-III silencing increases the intensity of P. berghei infection by five fold. CONCLUSION: There are broad differences in the midgut epithelial responses to Plasmodium invasion between An. gambiae strains. In the G3 strain of An. gambiae AgApoLp-III participates in midgut epithelial defense responses that limit Plasmodium infection.

  2. Apolipophorin-III Mediates Antiplasmodial Epithelial Responses in Anopheles gambiae (G3) Mosquitoes

    Science.gov (United States)

    Jo, Yong Hun; Oh, Seung Han; Kumar, Sanjeev; Noh, Mi Young; Lee, Yong Seok; Cha, Sung-Jae; Seo, Sook Jae; Kim, Iksoo; Han, Yeon Soo; Barillas-Mury, Carolina

    2010-01-01

    Background Apolipophorin-III (ApoLp-III) is known to play an important role in lipid transport and innate immunity in lepidopteran insects. However, there is no evidence of involvement of ApoLp-IIIs in the immune responses of dipteran insects such as Drosophila and mosquitoes. Methodology/Principal Findings We report the molecular and functional characterization of An. gambiae apolipophorin-III (AgApoLp-III). Mosquito ApoLp-IIIs have diverged extensively from those of lepidopteran insects; however, the predicted tertiary structure of AgApoLp-III is similar to that of Manduca sexta (tobacco hornworm). We found that AgApoLp-III mRNA expression is strongly induced in the midgut of An. gambiae (G3 strain) mosquitoes in response to Plasmodium berghei infection. Furthermore, immunofluorescence stainings revealed that high levels of AgApoLp-III protein accumulate in the cytoplasm of Plasmodium-invaded cells and AgApoLp-III silencing increases the intensity of P. berghei infection by five fold. Conclusion There are broad differences in the midgut epithelial responses to Plasmodium invasion between An. gambiae strains. In the G3 strain of An. gambiae AgApoLp-III participates in midgut epithelial defense responses that limit Plasmodium infection. PMID:21072214

  3. Anopheles salivary gland proteomes from major malaria vectors

    Directory of Open Access Journals (Sweden)

    Fontaine Albin

    2012-11-01

    Full Text Available Abstract Background Antibody responses against Anopheles salivary proteins can indicate individual exposure to bites of malaria vectors. The extent to which these salivary proteins are species-specific is not entirely resolved. Thus, a better knowledge of the diversity among salivary protein repertoires from various malaria vector species is necessary to select relevant genus-, subgenus- and/or species-specific salivary antigens. Such antigens could be used for quantitative (mosquito density and qualitative (mosquito species immunological evaluation of malaria vectors/host contact. In this study, salivary gland protein repertoires (sialomes from several Anopheles species were compared using in silico analysis and proteomics. The antigenic diversity of salivary gland proteins among different Anopheles species was also examined. Results In silico analysis of secreted salivary gland protein sequences retrieved from an NCBInr database of six Anopheles species belonging to the Cellia subgenus (An. gambiae, An. arabiensis, An. stephensi and An. funestus and Nyssorhynchus subgenus (An. albimanus and An. darlingi displayed a higher degree of similarity compared to salivary proteins from closely related Anopheles species. Additionally, computational hierarchical clustering allowed identification of genus-, subgenus- and species-specific salivary proteins. Proteomic and immunoblot analyses performed on salivary gland extracts from four Anopheles species (An. gambiae, An. arabiensis, An. stephensi and An. albimanus indicated that heterogeneity of the salivary proteome and antigenic proteins was lower among closely related anopheline species and increased with phylogenetic distance. Conclusion This is the first report on the diversity of the salivary protein repertoire among species from the Anopheles genus at the protein level. This work demonstrates that a molecular diversity is exhibited among salivary proteins from closely related species despite their

  4. Screening of ten plant species for metaphase chromosome preparation in adult mosquitoes (Diptera: Culicidae) using an inoculation technique.

    Science.gov (United States)

    Jitpakdi, A; Choochote, W; Insun, D; Tippawangkosol, P; Keha, P; Pitasawat, B

    1999-11-01

    The screening of 10 plant species (Aloe barbadensis Mill., Asparagus officinalis L., As. plumosus Bak., As. racemosus Willd., As. sprengeri Regel, Codyline fruticosa Goppert, Dracaena loureiri Gagnep., Gloriosa superba L., Hemerocallis flava L., and Sansevieria cylindrica Bojer) for colchicine-like substance(s) using a mosquito cytogenetic assay revealed that a 1% solution of dried Gl. superba rhizome extracted in 0.85% sodium chloride solution could be used instead of a 1% colchicine in Hanks' balanced salt solution. The metaphase rates and average number of metaphase chromosomes per positive mosquito of Aedes aegypti (L.) after intrathoracic inoculation with 1% Gl. superba-extracted solution were 100% and 29.80 in females, and 90% and 25.78 in males, whereas the inoculation with 1% colchicine solution yielded 100 and 90% metaphase rates, and 20.90 and 12.22 average number of metaphase chromosomes per positive mosquito in females and males, respectively. The application of Gl. superba-extracted solution for metaphase chromosome preparation in other mosquito genera and species [e.g., Culex quinquefasciatus Say, Toxorhynchites splendens (Wiedemann), and Anopheles vagus (Döenitz)] also has yielded the satisfactory results. PMID:10593098

  5. Spatial repellency of transfluthrin-treated hessian strips against laboratory-reared Anopheles arabiensis mosquitoes in a semi-field tunnel cage

    Directory of Open Access Journals (Sweden)

    Ogoma Sheila B

    2012-03-01

    Full Text Available Abstract Background Vapour phase spatial repellents deter mosquitoes from attacking one or more humans in a protected space. Simulation models indicate that high coverage of spatial repellents can enhance the impact of long - lasting insecticide nets (LLINs and indoor residual spraying (IRS where mosquito vectors commonly bite humans outdoors. Here we report a preliminary evaluation of an effective, user-friendly prototype product for delivering spatial repellents to protect against malaria vector mosquitoes. Findings Protective efficacy of a 4.0 × 0.3 m strip of hessian sacking treated with 10 ml of transfluthrin was evaluated in a 60 m × 2 m ×2.5 m netting tunnel with malaria-free insectary-reared Anopheles arabiensis Patton mosquitoes. Personal protection, in terms of proportional reduction of exposure to bites, was measured by comparing human landing catches of volunteers with treated and untreated strips. A freshly treated hessian strip reduced mosquito attack rate on human volunteers by > 99% and consistently conferred > 90% protective efficacy for a period of 6 months. Over the entire study period, only 22 out of 1400 released mosquitoes bit volunteers using the treated sacking strip while 894 out of 1400 mosquitoes released into cages containing volunteers using an untreated strip fed upon them. Conclusion Locally available natural fibers may be promising absorbent substrates for delivering spatial repellents, such as transfluthrin, to protect against mosquitoes in tropical settings. However, these observations relate to a single prototype specimen of this particular device, therefore, much more detailed, well replicated studies are essential to establish long-term efficacy, effectiveness, practicability and affordability.

  6. Repeated landmass reformation limits diversification in the widespread littoral zone mosquito Anopheles sundaicus sensu lato in the Indo-Oriental Region.

    Science.gov (United States)

    Zarowiecki, Magdalena; Linton, Yvonne-Marie; Post, Rory J; Bangs, Michael J; Htun, Pe Than; Hlaing, Thaung; Seng, Chang Moh; Baimai, Visut; Ding, Trung Ho; Sochantha, Tho; Walton, Catherine

    2014-05-01

    Southeast Asia harbours abundant biodiversity, hypothesized to have been generated by Pliocene and Pleistocene climatic and environmental change. Vicariance between the island of Borneo, the remaining Indonesian archipelago and mainland Southeast Asia caused by elevated sea levels during interglacial periods has been proposed to lead to diversification in the littoral zone mosquito Anopheles (Cellia) sundaicus (Rodenwaldt) sensu lato. To test this biogeographical hypothesis, we inferred the population history and assessed gene flow of A. sundaicus s.l. sampled from 18 populations across its pan-Asian species range, using sequences from mitochondrial cytochrome c oxidase subunit 1 (CO1), the internal transcribed spacer 2 (ITS2) and the mannose phosphate isomerase (Mpi) gene. A hypothesis of ecological speciation for A. sundaicus involving divergent adaptation to brackish and freshwater larval habitats was also previously proposed, based on a deficiency of heterozygotes for Mpi allozyme alleles in sympatry. This hypothesis was not supported by Mpi sequence data, which exhibited no fixed differences between brackish and freshwater larval habitats. Mpi and CO1 supported the presence of up to eight genetically distinct population groupings. Counter to the hypothesis of three allopatric species, divergence was often no greater between Borneo, Sumatra/Java and the Southeast Asian mainland than it was between genetic groupings within these landmasses. An isolation-with-migration (IM) model indicates recurrent gene flow between the current major landmasses. Such gene flow would have been possible during glacial periods when the current landmasses merged, presenting opportunities for dispersal along expanding and contracting coastlines. Consequently, Pleistocene climatic variation has proved a homogenizing, rather than diversifying, force for A. sundaicus diversity. PMID:24750501

  7. Ammonium sulphate fertiliser increases larval populations of Anopheles arabiensis and culicine mosquitoes in rice fields

    DEFF Research Database (Denmark)

    Mutero, C M; Ng'ang'a, P N; Wekoyela, P;

    2004-01-01

    Field experiments were conducted in central Kenya, to study the effect of ammonium sulphate fertiliser ((NH(4))(2)SO(4)) on mosquito larval populations in rice fields. The experiments used a complete randomised block design having four blocks with two experimental ponds per block, and the fertili......Field experiments were conducted in central Kenya, to study the effect of ammonium sulphate fertiliser ((NH(4))(2)SO(4)) on mosquito larval populations in rice fields. The experiments used a complete randomised block design having four blocks with two experimental ponds per block......, and the fertiliser and control treatments allocated randomly among the ponds. Student's two-sample unpaired t-test was used to test for the significance of differences between the relative counts of larvae in fertiliser and control treatments. The results showed a significant overall increase in the larval...... populations of An. arabiensis (Pfertiliser. Significantly more fourth instar larvae of An. arabiensis were collected in fertiliser than control plots (Pfertiliser application had...

  8. Larvicidal activity of Saraca indica, Nyctanthes arbor-tristis, and Clitoria ternatea extracts against three mosquito vector species.

    Science.gov (United States)

    Mathew, Nisha; Anitha, M G; Bala, T S L; Sivakumar, S M; Narmadha, R; Kalyanasundaram, M

    2009-04-01

    Screening of natural products for mosquito larvicidal activity against three major mosquito vectors Aedes aegypti, Culex quinquefasciatus, and Anopheles stephensi resulted in the identification of three potential plant extracts viz., Saraca indica/asoca, Nyctanthes arbor-tristis, and Clitoria ternatea for mosquito larval control. In the case of S. indica/asoca, the petroleum ether extract of the leaves and the chloroform extract of the bark were effective against the larvae of C. quinquefasciatus with respective LC(50) values 228.9 and 291.5 ppm. The LC(50) values of chloroform extract of N. arbor-tristis leaves were 303.2, 518.2, and 420.2 ppm against A. aegypti, A. stephensi, and C. quinquefasciatus, respectively. The methanol and chloroform extracts of flowers of N. arbor-tristis showed larvicidal activity against larvae of A. stephensi with the respective LC(50) values of 244.4 and 747.7 ppm. Among the methanol extracts of C. ternatea leaves, roots, flowers, and seeds, the seed extract was effective against the larvae of all the three species with LC(50) values 65.2, 154.5, and 54.4 ppm, respectively, for A. stephensi, A. aegypti, and C. quinquefasciatus. Among the three plant species studied for mosquito larvicidal activity, C. ternatea was showing the most promising mosquito larvicidal activity. The phytochemical analysis of the promising methanolic extract of the seed extract was positive for carbohydrates, saponins, terpenoids, tannins, and proteins. In conclusion, bioassay-guided fractionation of effective extracts may result in identification of a useful molecule for the control of mosquito vectors. PMID:19039604

  9. Life on the edge: African malaria mosquito (Anopheles gambiae s. l.) larvae are amphibious

    Science.gov (United States)

    Miller, James R.; Huang, Juan; Vulule, John; Walker, Edward D.

    2007-03-01

    Anopheles gambiae s.l. is the main vector of malaria in Sub-Saharan Africa. Here, an estimated 1 million people die every year from this disease. Despite considerable research on An. gambiae that increasingly explores sub-organismal phenomena, important facets of the field biology of this deadly insect are yet being discovered. In the current study, we used simple observational tools to reveal that the habitat of larval An. gambiae is not limited within the boundaries of temporary mud puddles, as has been the accepted generalization. Thus, control tactics aimed at immatures must consider zones larger than puddles per se. In fact, eggs are more likely to be found outside than inside puddles. Eggs can develop and larvae can emerge on mud. Larvae are then capable of three distinct modes of terrestrial displacement (two active and one passive), whereby, they can reach standing water. On mud bearing a film of water, larvae actively displace backwards by sinusoidal undulations shown to be only a slight variation of the swimming motor program. On drying mud, larvae switch to a slower and forward form of active locomotion resembling that of a crawling caterpillar. During rains, small larvae may be passively displaced by flowing rainwater so as to be deposited into puddles. These capabilities for being amphibious, along with very rapid growth and development, help explain how An. gambiae thrives in a highly uncertain and often hostile larval environment.

  10. Chromosomal inversions among insecticide-resistant strains of Anopheles stephensi Liston, a malaria mosquito.

    Science.gov (United States)

    Shetty, N J; Hariprasad, T P N; Sanil, D; Zin, T

    2013-11-01

    Polytene chromosomes were prepared from the ovarian nurse cells of semi-gravid females of ten insecticide-resistant strains of Anopheles stephensi. Altogether, 16 heterozygous paracentric inversions, namely b/+ (11D-16C) in alphamethrin; i/+ (14B-18A) and h/+ (27B-28A) in DDT; j/+ (14A-16B) in chlorpyrifos; k/+ (11D-16B) in cyfluthrin; l/+ (11A-16C) in deltamethrin; m/+ (14B-15C) and e/+ (32A-33B) in bifenthrin; n/+ (12D-14B), f/+ (33A-36A) and g/+ (33C-34A) in propoxur; o/+ (11A-12D), h/+ (37A-37C) and i/+ (31C-32C) in temephos; d/+ (33D-35C) in carbofuran and a/+ (41C-43B) in neem strains, were reported. No inversions were observed in X chromosome so far. The frequency of inversions in different insecticides was found to be highest in the 2R arm, followed by the 3R arm. Such inversions were not reported in the corresponding susceptible strains or in the parental stocks. PMID:23982309

  11. Evidence of carbamate resistance in urban populations of Anopheles gambiae s.s. mosquitoes resistant to DDT and deltamethrin insecticides in Lagos, South-Western Nigeria

    Directory of Open Access Journals (Sweden)

    Oduola Adedayo O

    2012-06-01

    Full Text Available Abstract Background Resistance monitoring is essential in ensuring the success of insecticide based vector control programmes. This study was carried out to assess the susceptibility status of urban populations of Anopheles gambiae to carbamate insecticide being considered for vector control in mosquito populations previously reported to be resistant to DDT and permethrin. Methods Two – three day old adult female Anopheles mosquitoes reared from larval collections in 11 study sites from Local Government Areas of Lagos were exposed to test papers impregnated with DDT 4%, deltamethrin 0.05% and propoxur 0.1% insecticides. Additional tests were carried out to determine the susceptibility status of the Anopheles gambiae population to bendiocarb insecticide. Members of the A. gambiae complex, the molecular forms, were identified by PCR assays. The involvement of metabolic enzymes in carbamate resistance was assessed using Piperonyl butoxide (PBO synergist assays. The presence of kdr-w/e and ace-1R point mutations responsible for DDT-pyrethroid and carbamate resistance mechanisms was also investigated by PCR. Results Propoxur resistance was found in 10 out of the 11 study sites. Resistance to three classes of insecticides was observed in five urban localities. Mortality rates in mosquitoes exposed to deltamethrin and propoxur did not show any significant difference (P > 0.05 but was significantly higher (P A. gambiae s.s (M form. The kdr -w point mutation at allelic frequencies between 45%-77% was identified as one of the resistant mechanisms responsible for DDT and pyrethroid resistance. Ace-1R point mutation was absent in the carbamate resistant population. However, the possible involvement of metabolic resistance was confirmed by synergistic assays conducted. Conclusion Evidence of carbamate resistance in A. gambiae populations already harbouring resistance to DDT and permethrin is a clear indication that calls for the implementation of

  12. Next-generation site-directed transgenesis in the malaria vector mosquito Anopheles gambiae: self-docking strains expressing germline-specific phiC31 integrase.

    Directory of Open Access Journals (Sweden)

    Janet M Meredith

    Full Text Available Diseases transmitted by mosquitoes have a devastating impact on global health and the situation is complicated due to difficulties with both existing control measures and the impact of climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. The Streptomyces phage phiC31 integrase system has been successfully adapted for site-directed transgene integration in a range of insects, thus overcoming many limitations due to size constraints and random integration associated with transposon-mediated transformation. Using this technology, we previously published the first site-directed transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 docking site at a defined genomic location. A second phase of genetic modification then achieved site-directed integration of an anti-malarial effector gene. In the current publication we report improved efficiency and utility of the phiC31 integrase system following the generation of Anopheles gambiae self-docking strains. Four independent strains, with docking sites at known locations on three different chromosome arms, were engineered to express integrase under control of the regulatory regions of the nanos gene from Anopheles gambiae. The resulting protein accumulates in the posterior oocyte to provide integrase activity at the site of germline development. Two self-docking strains, exhibiting significantly different levels of integrase expression, were assessed for site-directed transgene integration and found to demonstrate greatly improved survival and efficiency of transformation. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters to regulate their expression, enabling those offering maximum effect with minimum fitness

  13. Factors influencing the spatial distribution of Anopheles larvae in Coimbatore District, Tamil Nadu, India.

    Science.gov (United States)

    Arjunan, Naresh Kumar; Kadarkarai, Murugan; Kumar, Shobana; Pari, Madhiyazhagan; Thiyagarajan, Nataraj; Vincent, C Thomas; Barnard, Donald R

    2015-12-01

    Malaria causes extensive morbidity and mortality in humans and results in significant economic losses in India. The distribution of immature malaria-transmitting Anopheles mosquitoes was studied in 17 villages in Coimbatore District as a prelude to the development and implementation of vector control strategies that are intended to reduce the risk of human exposure to potentially infectious mosquitoes. Eight Anopheles species were recorded. The most numerous species were Anopheles vagus, Anopheles subpictus, and Anopheles hyrcanus. The location of mosquito development sites and the density of larvae in each village was evaluated for correlation with selected demographic, biologic, and land use parameters using remote sensing and geographic information systems (GIS) technology. We found the number of mosquito development sites in a village and the density of larvae in such sites to be positively correlated with human population density but not the surface area (km(2)) of the village. The number of mosquito development sites and the density of larvae in each site were not correlated. Data from this study are being used to construct a GIS-based mapping system that will enable the location of aquatic habitats with Anopheles larvae in the Coimbatore District, Tamil Nadu, India as target sites for the application of vector control. PMID:26364718

  14. rDNA-ITS2 based species-diagnostic polymerase chain reaction assay for identification of sibling species of Anopheles fluviatilis in Iran.

    Science.gov (United States)

    Dezfouli, S R Naddaf; Oshaghi, M A; Vatandoost, H; Assmar, M

    2003-01-01

    A species-specific polymerase chain reaction (PCR) assay using primers already designed, based on differences in the nucleotides of the second internal transcribed spacer (ITS2), was used to identify the species composition of the Anopheles fluviatilis complex in Iran. All the amplified DNA samples obtained from specimens collected from different areas using different collection methods yielded to a fragment of 450 bp size, a PCR product corresponding to the species denoted as Y. Some 21 ITS2 region of Iranian specimens were sequenced and compared with the already published sequence data of species Y from India. The sequence data of the Iranian specimens were 100% identical to that of the Indian specimens, and hence confirmed the PCR assay results. Species Y is presumably species T in India, which has no role in the transmission of malaria, whereas mosquitos of An. fluviatilis are known as a secondary vector in Iran. This conflict will remain to be solved by further biological and molecular studies.

  15. Mosquitoes (Diptera: Culicidae) of metropolitan Hamburg, Germany.

    Science.gov (United States)

    Krüger, A; Börstler, J; Badusche, M; Lühken, R; Garms, R; Tannich, E

    2014-08-01

    In Europe, mosquito-related public health concerns are growing due to the increasing spread of invasive mosquito species and the recent emergence of mosquito-borne arboviruses. A vital backbone in the assessment of these issues is detailed knowledge of the mosquito fauna, i.e. regional mosquito inventories. It was therefore decided to intensify nationwide investigations on the occurrence and distribution of mosquitoes in Germany in order to update old records and to detect possible faunal changes. This paper is focussing on a densely populated metropolitan region, the federal state of Hamburg and its adjacent environs, taking two historical baseline inventories into consideration, spanning almost 100 years of mosquito research in Hamburg. In the period between 2010 and 2014, more than 10,000 juvenile, neonate and adult mosquito specimens were sampled and trapped at 105 sites in Hamburg and its environs, of which about 60% have been identified to species level, resulting in a total of 33 recorded species. Of these, Anopheles algeriensis, Culex modestus, Ochlerotatus caspius, Ochlerotatus nigrinus and Ochlerotatus sticticus are new to the area. The most common species in Hamburg are Culex pipiens/torrentium and Ochlerotatus annulipes/cantans. In contrast, two previously common species, Anopheles atroparvus and Ochlerotatus excrucians, were not detected. Despite substantial environmental changes due to reconstruction, urbanisation and renaturation in the Hamburg metropolitan region in recent decades, there has been remarkably little change within the mosquito fauna during the last century. PMID:24870250

  16. Chromosome inversions, genomic differentiation and speciation in the African malaria mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Yoosook Lee

    Full Text Available The African malaria vector, Anopheles gambiae, is characterized by multiple polymorphic chromosomal inversions and has become widely studied as a system for exploring models of speciation. Near complete reproductive isolation between different inversion types, known as chromosomal forms, has led to the suggestion that A. gambiae is in early stages of speciation, with divergence evolving in the face of considerable gene flow. We compared the standard chromosomal arrangement (Savanna form with genomes homozygous for j, b, c, and u inversions (Bamako form in order to identify regions of genomic divergence with respect to inversion polymorphism. We found levels of divergence between the two sub-taxa within some of these inversions (2Rj and 2Rb, but at a level lower than expected and confined near the inversion breakpoints, consistent with a gene flux model. Unexpectedly, we found that the majority of diverged regions were located on the X chromosome, which contained half of all significantly diverged regions, with much of this divergence located within exons. This is surprising given that the Bamako and Savanna chromosomal forms are both within the S molecular form that is defined by a locus near centromere of X chromosome. Two X-linked genes (a heat shock protein and P450 encoding genes involved in reproductive isolation between the M and S molecular forms of A. gambiae were also significantly diverged between the two chromosomal forms. These results suggest that genes mediating reproductive isolation are likely located on the X chromosome, as is thought to be the case for the M and S molecular forms. We conclude that genes located on the sex chromosome may be the major force driving speciation between these chromosomal forms of A. gambiae.

  17. Mosquito larvicidal and pupicidal activity of Euphorbia hirta Linn. (Family:Euphorbiaceae) andBacillus sphaericus against Anopheles stephensiListon. (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    C Panneerselvam; K Murugan; K Kovendan; P Mahesh Kumar; J Subramaniam

    2013-01-01

    Objective:To explore the larvicidal and pupicidal activity ofEuphorbia hirta (E. hirta)leaf extract andBacillus sphaericus (B. sphaericus) against the malarial vector,Anopheles stephensi (An. stephensi).Methods:The larvicidal and pupicidal activity was assayed againstAn. stephensiat various concentrations ranging from (75-375 ppm) under the laboratory as well as field conditions. TheLC50 andLC90value of theE. hirta leaf extract was determined by probit analysis.Results:The plant extract showed larvicidal effects after24 h of exposure; however, the highest larval mortality was found in the methanol extract ofE. hirta against the first to fourth instars larvae and pupae of valuesLC50=137.40,172.65,217.81,269.37 and332.39 ppm;B. sphaericusagainst the first to fourth instars larvae and pupae of valuesLC50=44.29,55.83,68.51,82.19 and95.55 ppm, respectively. Moreover, combined treatment of values ofLC50=79.13,80.42,86.01,93.00 and98.12 ppm, respectively. No mortality was observed in the control.Conclusions:These results suggest methanol leaf extracts ofE. hirta andB. sphaericus have potential to be used as an ideal eco-friendly approach for the control of the malarial vector,An. stephensi as target species of vector control programs. This study provides the first report on the combined mosquito larvicidal and pupicidal activity of this plant crude extract and bacterial toxin againstAn. stephensimosquitoes.

  18. Tissue-specific differences in the spatial interposition of X-chromosome and 3R chromosome regions in the malaria mosquito Anopheles messeae Fall.

    Directory of Open Access Journals (Sweden)

    Gleb Artemov

    Full Text Available Spatial organization of a chromosome in a nucleus is very important in biology but many aspects of it are still generally unresolved. We focused on tissue-specific features of chromosome architecture in closely related malaria mosquitoes, which have essential inter-specific differences in polytene chromosome attachments in nurse cells. We showed that the region responsible for X-chromosome attachment interacts with nuclear lamina stronger in nurse cells, then in salivary glands cells in Anopheles messeae Fall. The inter-tissue differences were demonstrated more convincingly in an experiment of two distinct chromosomes interposition in the nucleus space of cells from four tissues. Microdissected DNA-probes from nurse cells X-chromosome (2BC and 3R chromosomes (32D attachment regions were hybridized with intact nuclei of nurse cells, salivary gland cells, follicle epithelium cells and imaginal disсs cells in 3D-FISH experiments. We showed that only salivary gland cells and follicle epithelium cells have no statistical differences in the interposition of 2BC and 32D. Generally, the X-chromosome and 3R chromosome are located closer to each other in cells of the somatic system in comparison with nurse cells on average. The imaginal disсs cell nuclei have an intermediate arrangement of chromosome interposition, similar to other somatic cells and nurse cells. In spite of species-specific chromosome attachments there are no differences in interposition of nurse cells chromosomes in An. messeae and An. atroparvus Thiel. Nurse cells have an unusual chromosome arrangement without a chromocenter, which could be due to the special mission of generative system cells in ontogenesis and evolution.

  19. Suppressor of hairy-wing, modifier of mdg4 and centrosomal protein of 190 gene orthologues of the gypsy insulator complex in the malaria mosquito, Anopheles stephensi.

    Science.gov (United States)

    Carballar-Lejarazú, R; Brennock, P; James, A A

    2016-08-01

    DNA insulators organize independent gene regulatory domains and can regulate interactions amongst promoter and enhancer elements. They have the potential to be important in genome enhancing and editing technologies because they can mitigate chromosomal position effects on transgenes. The orthologous genes of the Anopheles stephensi putative gypsy-like insulator protein complex were identified and expression characteristics studied. These genes encode polypeptides with all the expected protein domains (Cysteine 2 Histidine 2 (C2H2) zinc fingers and/or a bric-a-brac/poxvirus and zinc finger). The mosquito gypsy transcripts are expressed constitutively and are upregulated in ovaries of blood-fed females. We have uncovered significant experimental evidence that the gypsy insulator protein complex is widespread in vector mosquitoes.

  20. Suppressor of hairy-wing, modifier of mdg4 and centrosomal protein of 190 gene orthologues of the gypsy insulator complex in the malaria mosquito, Anopheles stephensi.

    Science.gov (United States)

    Carballar-Lejarazú, R; Brennock, P; James, A A

    2016-08-01

    DNA insulators organize independent gene regulatory domains and can regulate interactions amongst promoter and enhancer elements. They have the potential to be important in genome enhancing and editing technologies because they can mitigate chromosomal position effects on transgenes. The orthologous genes of the Anopheles stephensi putative gypsy-like insulator protein complex were identified and expression characteristics studied. These genes encode polypeptides with all the expected protein domains (Cysteine 2 Histidine 2 (C2H2) zinc fingers and/or a bric-a-brac/poxvirus and zinc finger). The mosquito gypsy transcripts are expressed constitutively and are upregulated in ovaries of blood-fed females. We have uncovered significant experimental evidence that the gypsy insulator protein complex is widespread in vector mosquitoes. PMID:27110891

  1. Sequence analysis of the rDNA internal transcribed spacer 2 of five species of South American human malaria mosquitoes.

    Science.gov (United States)

    Fritz, G N

    1998-03-01

    The rDNA internal transcribed spacer 2 (ITS2) was sequenced for 5 species of mosquitoes that may be important vectors of human malaria in certain regions of South America and are difficult to distinguish by morphology: Anopheles evansae, An. nuneztovari, An. rangeli, An. strodei and An. trinkae. ITS2 sequences from samples collected in Ecuador, Bolivia, Venezuela and Brazil were aligned and compared in order to determine the usefulness of this spacer for the elaboration of species specific primers and DNA probes. The ITS2 was found to be different in size (ranging from 333 to 397 bp) and sequence between all pairs of species. Highly variable regions were found primarily at the 3' end of the spacer and were interspersed with relatively conserved sites. Instraspecific sequence variation was limited to a single transversion between specimens of An. rangeli from distant geographic locations suggesting concerted evolution and homogenization of the ITS2. PMID:10520449

  2. 传疟按蚊抗药性研究进展%Research advance on insecticide resistance of malaria vector mosquito Anopheles

    Institute of Scientific and Technical Information of China (English)

    秦茜; 闫桂云; 陈晓光

    2014-01-01

    In May 2010,the Ministry of Health and Chinese Government issued Action Plan of China Malaria Elimination (2010-2020),aiming at complete elimination of malaria in P.R.China by 2020.Vector control is a fundamental element of the existing global strategy to fight malaria.Anopheles is the main malaria vector mosquito.However,rapidly increasing insecticide resistance of mosquitoes threatens current malaria vector control efforts.In order to understand current status of mosquito resistance to insecticide and resistance mechanisms of the malaria vector,the current status of insecticide resistance in malaria vector mosquito Anopheles,the resistance mechanisms and the detection methods on resistance were reviewed in this paper.%我国卫生部于2010年5月印发《中国消除疟疾行动计划(2010-2020年)》,提出在2020年,将全面彻底消除疟疾.控制及消除疟疾的关键在于传播媒介的控制,而按蚊为疟疾主要传播媒介,传疟媒介对杀虫剂的抗药性直接导致了疟疾发病的死灰复燃.为了全面了解疟疾蚊媒的抗药性现状和产生机制,该文对国内外传疟按蚊抗药性现状、产生机制和检测方法进行综述.

  3. Potential topical natural repellent against Ae. aegypti, Culex sp. and Anopheles sp. mosquitoes

    Directory of Open Access Journals (Sweden)

    Dewi Nur Hodijah

    2014-08-01

    Full Text Available AbstrakLatar belakang:Minyak atsiri daun sirih diketahui mempunyai daya proteksi. Dibuatkan losion berdasarkan pengantar sediaan farmasi yang ditambahkan minyak atsiri daun nilam. Sediaan losion dipilih agar dapat menempel lebih lama di permukaan kulit. Tujuan penelitian ini untuk membandingkan daya proteksi antara losion dengan penambahan minyak nilam dan losion tanpa penambahan minyak nilam dibandingkan daya proteksi dengan DEET. Metode: Penelitian ini merupakan penelitian eksperimental laboratorium. Semua nyamuk uji berasal dari insektarium laboratorium penelitian kesehatan Loka litbang P2B2 Ciamis. Konsentrasi minyak atsiri daun sirih dalam losion adalah 4%; konsentrasi minyak nilam sebagai zat pengikat adalah 0,4%. Formula yang digunakan yaitu formula dasar yang ada pada pengantar sediaan farmasi. Uji repelensi dilakukan dengan menggunakan metoda yang direkomendasikan oleh Komisi pestisida.Hasil: Dihasilkan formulasi losion yang stabil dan masih memenuhi standar formulasi sediaan. Berdasarkan hasil, diperoleh data bahwa DEET dan losion hasil modifikasi memiliki rata-rata daya proteksi di atas 90% selama 6 jam terhadap nyamuk Ae.aegypti dan Culex sp. Kesimpulan: Penambahan minyak nilam pada losion sirih dapat meningkatkan daya proteksi terhadap hinggapan nyamuk Ae. aegypti dan Culex sp. (Health Science Indones 2014;1:44-8Kata kunci:repelen alamiah, minyak atsiri, daun sirih, daun nilam, Ae. aegypti, Culex sp.AbstractBackground: Betel leaf essential oil lotion has been known to have insect repellent properties. A lotion was made based on a pharmaceutical formula from a monograph where patchouli leaf essential oil was added. A lotion preparation was intended to enhance adherence of the formula on the surface of the skin. The purpose of this study was to compare protection percentage of lotion with patchouli oil and without patchouli oil lotion compared to DEET.Methods: This study is an experimental laboratory-based research. All mosquitoes

  4. Mosquito species diversity and abundance in relation to riceland agroecosystem and filarial infection in Kafr El-Sheikh Governorate, Egypt

    Directory of Open Access Journals (Sweden)

    TAREK M.Y. EL-SHEIKH , *KOTB M. HAMMAD AND **WALAA A. MOSELHI

    2010-06-01

    Full Text Available The present work studied the mosquitoes abundance, identification, distribution and density in three villages (rural area and one city (urban area in Kafr El-Sheikh Governorate namely; Kebreet, Minyat Al-Ashraaf, El-Salmia and Fowa city, respectively during the rice cultivation season in relation to filaria from June to Oct. 2009. A total of 11381 mosquitoes larvae belonging to four genera and 8 species were collected. Of which 3525 (31.0% in Minyat Al-Ashraaf followed by 3339 (29.3% in Kebreet, 3331 (29.3% in El-Salmia villages compared with 1186 (10.4% in Fowa city. The five most common species collected during this study were Culex pipiens (39.2%, Cx. antennatus (27.3%, Cx. univittatus (15.8%, Anopheles pharoensis (10.4%, and An. coustani (3.8%. The mosquito species diversity (H and evenness (EH in the (rice cultivated areas Minyat Al-Ashraf, Kebreet and El-Salmia villages (H = 1.286, EH = 0.829; H = 1.227, EH = 0.742; H = 1.110, EH = 0.882; respectively were much higher than in the Fowa city (non rice cultivated area (H = 0.718, EH = 0.608. On the other hand, the highest diversity and density of adult mosquitoes species obtained from Minyat Al-Ashraaf were 5 species and (33.8%, followed by Kebreet 5 species and (31.6%, El-Salmia 4 species and (24.5%, respectively compared with 3 species and (10.1% in Fowa city. C. pipiens adults were the predominant species, in all filarial indicator areas (68.1, 53.4, 40.8 and 20.8 mosquitoes/room in Minyat Al-Ashraaf, Kebreet, El-Salmia villages and Fowa city, respectively. Cx. pipiens was the only species to carry infective larvae as well as other stages, while Cx. antennatus carried immature stages only (not infective. Filarial larvae in Cx. pipiens and Cx. antennatus were found only in Minyat Al-Ashraaf and Kebreet villages. It is inferred from the data that different levels of habitat with regard to rice cultivation have different effects on mosquito diversity and abundance. Also, our study revealed

  5. Insecticidal potential of Ocimum canum plant extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus larval and adult mosquitoes (Diptera: Culicidae).

    Science.gov (United States)

    Murugan, Jimmantiyur Madhappan; Ramkumar, Govindaraju; Shivakumar, Muthugoundar Subramanian

    2016-01-01

    Mosquitoes have developed resistance to various synthetic insecticides, making their control increasingly difficult. Insecticides of botanical origin may serve as suitable natural control. This study evaluates the toxic potential of Ocimum canum (Sims) leaf extract and powder against Anopheles stephensi (Liston), Aedes aegypti (Lin) and Culex quinquefasciatus (Say) larval and adult mosquitoes. Larval mortality was observed after 24 h recovery period and adult smoke toxicity observed for 40 min duration at 10 min interval. Methanol extract of O. canum showed highest larval mortality against the larvae of C. quinquefasciatus LC50 = 28.3225, LC90 = 44.1150; Ae. aegypti LC50 = 43.327, LC90 = 61.249; and An. stephensi LC50 = 30.2001, LC90 = 48.2866 ppm. The smoke toxicities were 93% mortality in C. quinquefasciatus, 74% in Ae. aegypti and 79% in An. stephensi adults, respectively, whereas 100% mortality was recorded in the commercial mosquito control. Our results suggest that O. canum leaf extract and powder are natural insecticide, and ideal eco friendly approach for mosquito control.

  6. The vasa regulatory region mediates germline expression and maternal transmission of proteins in the malaria mosquito Anopheles gambiae: a versatile tool for genetic control strategies

    Directory of Open Access Journals (Sweden)

    Burt Austin

    2009-07-01

    Full Text Available Abstract Background Germline specific promoters are an essential component of potential vector control strategies which function by genetic drive, however suitable promoters are not currently available for the main human malaria vector Anopheles gambiae. Results We have identified the Anopheles gambiae vasa-like gene and found its expression to be specifically localized to both the male and female gonads in adult mosquitoes. We have functionally characterised using transgenic reporter lines the regulatory regions required for driving transgene expression in a pattern mirroring that of the endogenous vasa locus. Two reporter constructs indicate the existence of distinct vasa regulatory elements within the 5' untranslated regions responsible not only for the spatial and temporal but also for the sex specific germline expression. vasa driven eGFP expression in the ovary of heterozygous mosquitoes resulted in the progressive accumulation of maternal protein and transcript in developing oocytes that were then detectable in all embryos and neonatal larvae. Conclusion We have characterized the vasa regulatory regions that are not only suited to drive transgenes in the early germline of both sexes but could also be utilized to manipulate the zygotic genome of developing embryos via maternal deposition of active molecules. We have used computational models to show that a homing endonuclease-based gene drive system can function in the presence of maternal deposition and describe a novel non-invasive control strategy based on early vasa driven homing endonuclease expression.

  7. The evolution of the Anopheles 16 genomes project

    NARCIS (Netherlands)

    Neafsey, Daniel E.; Christophides, George K.; Collins, Frank H.; Emrich, Scott J.; Fontaine, Michael C.; Gelbart, William; Hahn, Matthew W.; Howell, Paul I.; Kafatos, Fotis C.; Lawson, Daniel; Muskavitch, Marc A. T.; Waterhouse, Robert M.; Williams, Louise J.; Besansky, Nora J.

    2013-01-01

    We report the imminent completion of a set of reference genome assemblies for 16 species of Anopheles mosquitoes. In addition to providing a generally useful resource for comparative genomic analyses, these genome sequences will greatly facilitate exploration of the capacity exhibited by some Anophe

  8. Importance of waste stabilization ponds and wastewater irrigation in the generation of vector mosquitoes in Pakistan

    DEFF Research Database (Denmark)

    Mukhtar, Muhammad; Ensink, Jeroen; Van der Hoek, Wim;

    2006-01-01

    The objective of the current study was to investigate the role of waste stabilization ponds (WSP) and wastewater-irrigated sites for the production of mosquitoes of medical importance. Mosquito larvae were collected fortnightly from July 2001 to June 2002 in Faisalabad, Pakistan. In total, 3......,132 water samples from WSP and irrigated areas yielded 606,053 Culex larvae of five species. In addition, 107,113 anophelines, representing eight species were collected. Anopheles subpictus (Grassi) and Culex mosquitoes, especially Culex quinquefasciatus (Say) and Culex tritaeniorhynchus (Giles), showed...... an overwhelming preference for anaerobic ponds, which receive untreated wastewater. Facultative ponds generated lower numbers of both Anopheles and Culex mosquitoes, whereas the last ponds in the series, the maturation ponds, were the least productive for both mosquito genera. An. subpictus and Anopheles...

  9. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its Larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    Science.gov (United States)

    Santhosh, Shanthi Bhupathi; Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-12-01

    Mosquitoes transmit various diseases which mainly affect the human beings and every year cause millions of deaths globally. Currently available chemical and synthetic mosquitocidal agents pose severe side effects, pollute the environment vigorously, and become resistance. There is an urgent need to identify and develop the cost effective, compatible and eco-friendly product for mosquito control. The present study was aimed to find out the larvicidal potential of aqueous crude extract and green synthesized silver nanoparticles (AgNPs) from Annona muricata leaves were tested against fourth instar larvae of three important mosquitoes i.e. Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti using different concentrations of AgNPs (10, 20, 30, 40 and 50 ppm) and the aqueous leaf extract (100, 200, 300, 400, and 500 ppm) for 24 and 48 h. The maximum mortality was noticed in AgNPs than aqueous leaf extract of A. muricata against tested mosquitoes with least LC50 values of 37.70, 31.29, and 20.65 ppm (24h) and 546.7, 516.2, and 618.4 ppm (48 h), respectively. All tested concentrations of AgNps exhibited 100% mortality in A. aegypti larvae at 48 hour observation. In addition, the plant mediated AgNPs were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy, particle size analyser, X-ray diffraction, high resonance transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis for confirmation of nanoparticle synthesis. Based on the findings of the study suggests that the use of A. muricata plant mediated AgNPs can act as an alternate insecticidal agents for controlling target mosquitoes. PMID:26410042

  10. Spectral and HRTEM analyses of Annona muricata leaf extract mediated silver nanoparticles and its Larvicidal efficacy against three mosquito vectors Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti.

    Science.gov (United States)

    Santhosh, Shanthi Bhupathi; Ragavendran, Chinnasamy; Natarajan, Devarajan

    2015-12-01

    Mosquitoes transmit various diseases which mainly affect the human beings and every year cause millions of deaths globally. Currently available chemical and synthetic mosquitocidal agents pose severe side effects, pollute the environment vigorously, and become resistance. There is an urgent need to identify and develop the cost effective, compatible and eco-friendly product for mosquito control. The present study was aimed to find out the larvicidal potential of aqueous crude extract and green synthesized silver nanoparticles (AgNPs) from Annona muricata leaves were tested against fourth instar larvae of three important mosquitoes i.e. Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti using different concentrations of AgNPs (10, 20, 30, 40 and 50 ppm) and the aqueous leaf extract (100, 200, 300, 400, and 500 ppm) for 24 and 48 h. The maximum mortality was noticed in AgNPs than aqueous leaf extract of A. muricata against tested mosquitoes with least LC50 values of 37.70, 31.29, and 20.65 ppm (24h) and 546.7, 516.2, and 618.4 ppm (48 h), respectively. All tested concentrations of AgNps exhibited 100% mortality in A. aegypti larvae at 48 hour observation. In addition, the plant mediated AgNPs were characterized by UV-vis spectrum, Fourier transform infrared spectroscopy, particle size analyser, X-ray diffraction, high resonance transmission electron microscopy, and energy-dispersive X-ray spectroscopy analysis for confirmation of nanoparticle synthesis. Based on the findings of the study suggests that the use of A. muricata plant mediated AgNPs can act as an alternate insecticidal agents for controlling target mosquitoes.

  11. The genetics of green thorax, a new larval colour mutant, non-linked with ruby-eye locus in the malaria mosquito, Anopheles stephensi Liston

    OpenAIRE

    Sanil, D.; N. J. Shetty

    2009-01-01

    Background & objectives: Anopheles stephensi, an important vector of malaria continues to be distributed widely in the Indian subcontinent. The natural vigour of the species combined with its new tolerance, indeed resistance to insecticides has made it obligatory that we look for control methods involving genetic manipulation. Hence, there is an immediate need for greater understanding of the genetics of this vector species. One of the requirements for such genetic studies is the establishmen...

  12. Laboratory and field trial of developing medicinal local Thai plant products against four species of mosquito vectors.

    Science.gov (United States)

    Trongtokit, Yuwadee; Rongsriyam, Yupha; Komalamisra, Narumon; Krisadaphong, Panvipa; Apiwathnasorn, Chamnarn

    2004-06-01

    Oils of Syzygium aromaticum (clove) and Zanthoxylum limonella (makaen), widely used essential oils for dental caries or flavoring of food in Thailand, were prepared as 10 experimental repellent products in gel or cream form against Aedes aegypti, Culex quinquefasciatus, and Anopheles dirus under laboratory conditions, using the human-arm-in-cage method. Two products that gave the longest-lasting complete protection were selected to examine their repellency against a variety of mosquito species under field conditions. In laboratory tests, 0.1 g of each product was applied to 3x10 cm of exposed area on a volunteer's forearm, while in field trials, 1.0 g was applied to each volunteer's leg (from knee to ankle). In the laboratory, the gel dosage form contained 20% clove oil (Gel B) or 10% clove plus 10% makaen oil mixture (Gel E) were promising plant-based repellents against three mosquito species and gave significantly longer complete protection times of 4-5 hours than all other developing products. Therefore, their efficacy in the field was evaluated. Under field conditions, Gel E showed complete protection for 4 hours and gave 95.7% repellency after 5 hours application, whereas Gel B and 20% deet (di-methyl benzamide) provided only 86.8 and 82.7% repellency after treatment, respectively against Ae. aegypti, daytime-biting mosquitos. For nighttime-biting, the 3 repellents under development yielded equally excellent (average 97.1%) repellency for 5 hours against the predominant Cx. quinquefasciatus and Mansonia uniformis, but they gave 89.0% repellency against Cx. tritaeniorhynchus and Cx. gelidus. This finding demonstrated the effectiveness of Gel B and Gel E products for possible use by low-income rural communities against various mosquito species. PMID:15691131

  13. Taxonomy Icon Data: Anopheles stephensi [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Anopheles stephensi Anopheles stephensi Arthropoda Anopheles_stephensi_L.png Anopheles_stephen...si_NL.png Anopheles_stephensi_S.png Anopheles_stephensi_NS.png http://biosciencedbc.jp/taxonomy_i...con/icon.cgi?i=Anopheles+stephensi&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anopheles+stephensi&...t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anopheles+stephensi&t=S htt...p://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Anopheles+stephensi&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=149 ...

  14. An analysis of diet quality, how it controls fatty acid profiles, isotope signatures and stoichiometry in the malaria mosquito Anopheles arabiensis.

    Directory of Open Access Journals (Sweden)

    Rebecca Hood-Nowotny

    controlled teneral mosquito size and that teneral CN ratio is a sex- and species-specific fixed parameter. This finding has significant implications for overall mosquito competitiveness and environmental management.

  15. Unravelling the Evolution of the Allatostatin-Type A, KISS and Galanin Peptide-Receptor Gene Families in Bilaterians: Insights from Anopheles Mosquitoes.

    Directory of Open Access Journals (Sweden)

    Rute C Felix

    Full Text Available Allatostatin type A receptors (AST-ARs are a group of G-protein coupled receptors activated by members of the FGL-amide (AST-A peptide family that inhibit food intake and development in arthropods. Despite their physiological importance the evolution of the AST-A system is poorly described and relatively few receptors have been isolated and functionally characterised in insects. The present study provides a comprehensive analysis of the origin and comparative evolution of the AST-A system. To determine how evolution and feeding modified the function of AST-AR the duplicate receptors in Anopheles mosquitoes, were characterised. Phylogeny and gene synteny suggested that invertebrate AST-A receptors and peptide genes shared a common evolutionary origin with KISS/GAL receptors and ligands. AST-ARs and KISSR emerged from a common gene ancestor after the divergence of GALRs in the bilaterian genome. In arthropods, the AST-A system evolved through lineage-specific events and the maintenance of two receptors in the flies and mosquitoes (Diptera was the result of a gene duplication event. Speciation of Anopheles mosquitoes affected receptor gene organisation and characterisation of AST-AR duplicates (GPRALS1 and 2 revealed that in common with other insects, the mosquito receptors were activated by insect AST-A peptides and the iCa2+-signalling pathway was stimulated. GPRALS1 and 2 were expressed mainly in mosquito midgut and ovaries and transcript abundance of both receptors was modified by feeding. A blood meal strongly up-regulated expression of both GPRALS in the midgut (p < 0.05 compared to glucose fed females. Based on the results we hypothesise that the AST-A system in insects shared a common origin with the vertebrate KISS system and may also share a common function as an integrator of metabolism and reproduction.AST-A and KISS/GAL receptors and ligands shared common ancestry prior to the protostome-deuterostome divergence. Phylogeny and gene

  16. Chemical composition and larvicidal activity of the essential oil of Plectranthus amboinicus (Lour.) Spreng against Anopheles stephensi: a malarial vector mosquito.

    Science.gov (United States)

    Senthilkumar, Annadurai; Venkatesalu, Venugopalan

    2010-10-01

    Essential oil of Plectranthus amboinicus was studied for its chemical composition and larvicidal potential against the malarial vector mosquito Anopheles stephensi. Totally 26 compounds were identified by GC and GC-MS. The major chemical compounds were carvacrol (28.65%) followed by thymol (21.66%), α-humulene (9.67%), undecanal (8.29%), γ-terpinene (7.76%), ρ-cymene (6.46%), caryophyllene oxide (5.85%), α-terpineol (3.28%) and β-selinene (2.01%). The larvicidal assay was conducted to record the LC(50) and LC(90) values and the larval mortality was observed after 12 and 24 h of exposure period. The LC(50) values of the oil were 33.54 (after 12 h) and 28.37 ppm (after 24 h). The LC(90) values of the oil were 70.27 (after 12 h) and 59.38 ppm (after 24 h). The results of the present study showed that the essential oil of P. amboinicus is one of the inexpensive and eco-friendly sources of natural mosquito larvicidal agent to control/reduce the population of malarial vector mosquito. PMID:20668876

  17. 3-Oxoisoxazole-2(3H)-carboxamides and isoxazol-3-yl carbamates: Resistance-breaking acetylcholinesterase inhibitors targeting the malaria mosquito, Anopheles gambiae

    Science.gov (United States)

    Verma, Astha; Wong, Dawn M.; Islam, Rafique; Tong, Fan; Ghavami, Maryam; Mutunga, James M.; Slebodnick, Carla; Li, Jianyong; Viayna, Elisabet; Lam, Polo C.-H.; Totrov, Maxim M.; Bloomquist, Jeffrey R.; Carlier, Paul R.

    2015-01-01

    To identify potential selective and resistance-breaking mosquitocides against the African malaria vector Anopheles gambiae, we investigated the acetylcholinesterase (AChE) inhibitory and mosquitocidal properties of isoxazol-3-yl dimethylcarbamates (15), and the corresponding 3-oxoisoxazole-2(3H)-dimethylcarboxamide isomers (14). In both series, compounds were found with excellent contact toxicity to wild-type susceptible (G3) strain and multiply resistant (Akron) strain mosquitoes that carry the G119S resistance mutation of AChE. Compounds possessing good to excellent toxicity to Akron strain mosquitoes inhibit the G119S mutant of An. gambiae AChE (AgAChE) with ki values at least 10- to 600-fold higher than that of propoxur, a compound that does not kill Akron mosquitoes at the highest concentration tested. On average, inactivation of WT AgAChE by dimethylcarboxamides 14 was 10-20 fold faster than that of the corresponding isoxazol-3-yl dimethylcarbamates 15. X-ray crystallography of dimethylcarboxamide 14d provided insight into that reactivity, a finding that may explain the inhibitory power of structurally-related inhibitors of hormone-sensitive lipase. Finally, human/An. gambiae AChE inhibition selectivities of these compounds were low, suggesting the need for additional structural modification. PMID:25684426

  18. Characteristics and Efficacy of Three Commercial Handheld Thermal Foggers with Pyrethroid Insecticides Against Three Species of Mosquitoes.

    Science.gov (United States)

    Fulcher, Ali; Farooq, Muhammad; Richardson, Alec G; Smith, Michael L; Scott, Jodi M; Gaines, Marcia K; Xue, Rui-De

    2016-03-01

    The field study's objectives were to compare the physical characteristics as well as efficacy with multiple insecticides for Bonide(®) Fog Rx Insect Fogger, Black Flag(®) Propane Insect Fogger, and Burgess(®) Outdoor Propane Insect Fogger. Evaluations were conducted with 7 machine chemical combinations, 3 depths of spray, and 3 species of laboratory-reared mosquitoes, Anopheles quadrimaculatus, Culex quinquefasciatus, and Aedes aegypti. Combinations of these factors were analyzed in conjunction with environmental parameters. Data showed statistical significance between all machines. The Bonide machine maintained integrity and durability for the longest period of time compared with the other 2 machines. When evaluating the 3 machines with DUET™, mortality was highest with the Bonide and lowest with the Burgess machine. PMID:27105215

  19. Characteristics and Efficacy of Three Commercial Handheld Thermal Foggers with Pyrethroid Insecticides Against Three Species of Mosquitoes.

    Science.gov (United States)

    Fulcher, Ali; Farooq, Muhammad; Richardson, Alec G; Smith, Michael L; Scott, Jodi M; Gaines, Marcia K; Xue, Rui-De

    2016-03-01

    The field study's objectives were to compare the physical characteristics as well as efficacy with multiple insecticides for Bonide(®) Fog Rx Insect Fogger, Black Flag(®) Propane Insect Fogger, and Burgess(®) Outdoor Propane Insect Fogger. Evaluations were conducted with 7 machine chemical combinations, 3 depths of spray, and 3 species of laboratory-reared mosquitoes, Anopheles quadrimaculatus, Culex quinquefasciatus, and Aedes aegypti. Combinations of these factors were analyzed in conjunction with environmental parameters. Data showed statistical significance between all machines. The Bonide machine maintained integrity and durability for the longest period of time compared with the other 2 machines. When evaluating the 3 machines with DUET™, mortality was highest with the Bonide and lowest with the Burgess machine.

  20. Fine pathogen discrimination within the APL1 gene family protects Anopheles gambiae against human and rodent malaria species.

    Directory of Open Access Journals (Sweden)

    Christian Mitri

    2009-09-01

    Full Text Available Genetically controlled resistance of Anopheles gambiae mosquitoes to Plasmodium falciparum is a common trait in the natural population, and a cluster of natural resistance loci were mapped to the Plasmodium-Resistance Island (PRI of the A. gambiae genome. The APL1 family of leucine-rich repeat (LRR proteins was highlighted by candidate gene studies in the PRI, and is comprised of paralogs APL1A, APL1B and APL1C that share > or =50% amino acid identity. Here, we present a functional analysis of the joint response of APL1 family members during mosquito infection with human and rodent Plasmodium species. Only paralog APL1A protected A. gambiae against infection with the human malaria parasite P. falciparum from both the field population and in vitro culture. In contrast, only paralog APL1C protected against the rodent malaria parasites P. berghei and P. yoelii. We show that anti-P. falciparum protection is mediated by the Imd/Rel2 pathway, while protection against P. berghei infection was shown to require Toll/Rel1 signaling. Further, only the short Rel2-S isoform and not the long Rel2-F isoform of Rel2 confers protection against P. falciparum. Protection correlates with the transcriptional regulation of APL1A by Rel2-S but not Rel2-F, suggesting that the Rel2-S anti-parasite phenotype results at least in part from its transcriptional control over APL1A. These results indicate that distinct members of the APL1 gene family display a mutually exclusive protective effect against different classes of Plasmodium parasites. It appears that a gene-for-pathogen-class system orients the appropriate host defenses against distinct categories of similar pathogens. It is known that insect innate immune pathways can distinguish between grossly different microbes such as Gram-positive bacteria, Gram-negative bacteria, or fungi, but the function of the APL1 paralogs reveals that mosquito innate immunity possesses a more fine-grained capacity to distinguish between

  1. Entomological indices of Anopheles gambiae sensu lato at a rural community in south-west Nigeria

    OpenAIRE

    M.A.E. Noutcha; C.I. Anumdu

    2009-01-01

    Background & objectives: Investigations were conducted to obtain key entomological indices of Anopheles gambiae s.l. at Igbo-Ora, a rural community in south-west Nigeria. Methods: Mosquitoes were caught daily for a week from rooms where tenants had slept the previous night in each of the four months June, July (2001), and August, September (2002). Anopheles gambiae s.l. sibling species were PCR-identified, the blood meal origin was determined by direct ELISA, and the circumsporozoite antigen ...

  2. Estudo da influência da flora intestinal do mosquito Anopheles sp. no estabelecimento da infecção por Plasmodium Berghei

    OpenAIRE

    Gomes, Joana da Graça

    2013-01-01

    A malária é uma doença infecciosa com um efeito devastador nas áreas afectadas. É provocada pelo protozoário Plasmodium e transmitida pelo insecto vector do género Anopheles. As fêmeas hematófagas ao alimentar-se de um hospedeiro infectado vão dar continuidade ao ciclo de vida do parasita e transmiti-lo a um novo hospedeiro na próxima refeição sanguínea. O intestino médio dos mosquitos é um órgão imunocompetente, onde a presença de microrganismos vai activar o sistema imunitário, determinando...

  3. Inducible immune factors of the vector mosquito Anopheles gambiae: biochemical purification of a defensin antibacterial peptide and molecular cloning of preprodefensin cDNA.

    Science.gov (United States)

    Richman, A M; Bulet, P; Hetru, C; Barillas-Mury, C; Hoffmann, J A; Kafalos, F C

    1996-08-01

    Larvae of the mosquito vector of human malaria, Anopheles gambiae, were inoculated with bacteria and extracts were biochemically fractionated by reverse-phase HPLC. Multiple induced polypeptides and antibacterial activities were observed following bacterial infection, including a member of the insect defensin family of antibacterial proteins. A cDNA encoding An. gambiae preprodefensin was isolated using PCR primers based on phylogenetically conserved sequences. The mature peptide is highly conserved, but the signal and propeptide segments are not, relative to corresponding defensin sequences of other insects. Defensin expression is induced in response to bacterial infection, in both adult and larval stages. In contrast, pupae express defensin mRNA constitutively. Defensin expression may prove a valuable molecular marker to monitor the An. gambiae host response to infection by parasitic protozoa of medical importance. PMID:8799739

  4. Comparative susceptibility to permethrin of two Anopheles gambiae s.l. populations from Southern Benin, regarding mosquito sex, physiological status, and mosquito age

    Directory of Open Access Journals (Sweden)

    Nazaire Aïzoun

    2014-04-01

    Conclusions: The resistance is a hereditary and dynamic phenomenon which can be due to metabolic mechanisms like overproduction of detoxifying enzymes activity. Many factors influence vector susceptibility to insecticide. Among these factors, there are mosquito sex, mosquito age, its physiological status. Therefore, it is useful to respect the World Health Organization criteria in the assessment of insecticide susceptibility tests in malaria vectors. Otherwise, susceptibility testing is conducted using unfed female mosquitoes aged 3-5 days old. Tests should also be carried out at (25±2 °C and (80±10% relative humidity.

  5. [Mosquitoes (Diptera, Culicidae) of Smir marshes (northwest of Morocco): inventory and biotypology].

    Science.gov (United States)

    El Joubari, M; Louah, A; Himmi, O

    2014-02-01

    The Smir marshes are a favorable environment for the growth of many mosquitoes (Diptera, Culicidae). The inventory of Culicidae species reveals 14 species, is 33% of the species of Morocco, distributed in four genera: Culex, Culiseta, Ochlerotatus and Anopheles (with 5, 2, 5 and 2 species respectively) which Anopheles labranchiae, vector of the agent of the malaria in Morocco until 2004. In this study, we investigated the spatiotemporal mesological affinities and we tried to explain the biotypology of mosquito populations of the site. These analyzes revealed several groups of stations and species according to various parameters, especially salinity.

  6. Attractiveness of volatiles from different body parts to the malaria mosquito Anopheles coluzzii is affected by deodorant compounds

    NARCIS (Netherlands)

    Verhulst, Niels O.; Weldegergis, Berhane T.; Menger, David; Takken, Willem

    2016-01-01

    Mosquitoes display biting preferences among different sites of the human body. In addition to height or convection currents, body odour may play a role in the selection of these biting sites. Previous studies have shown that skin emanations are important host-finding cues for mosquitoes. In this

  7. Updated checklist of the mosquitoes (Diptera: Culicidae) of Belgium.

    Science.gov (United States)

    Boukraa, Slimane; Dekoninck, Wouter; Versteirt, Veerle; Schaffner, Francis; Coosemans, Marc; Haubruge, Eric; Francis, Frederic

    2015-12-01

    Most information about the systematics and bioecology of Belgian mosquitoes dates back from before 1950, and only scattered information was produced during the last decades. In this paper we review and update the list of mosquito species recorded in Belgium, from first report (1908) to 2015. Six genera and 31 species were recorded so far, including 28 autochthonous species and three invasive alien species recently recorded in Belgium: Aedes albopictus (Skuse 1894), Ae. japonicus japonicus (Theobald 1901), and Ae. koreicus (Edwards 1917). The six genera are Anopheles (five species), Aedes (sixteen species), Coquillettidia (one species), Culex (four species), Culiseta (four species), and Orthopodomyia (one species).

  8. Electrophysiological responses of gustatory receptor neurons on the labella of the common malaria mosquito Anopheles quadrimaculatus Say (Diptera: Culicidae)

    Science.gov (United States)

    We recorded electrical responses from sensory cells associated with gustatory sensilla on the labella of female Anopheles quadrimaculatus to salt, sucrose, quinine (a feeding deterrent) and the insect repellent, N,N-diethyl-3-methylbenzamide (DEET). A salt-sensitive cell responded to increasing con...

  9. Modified mosquito landing boxes dispensing transfluthrin provide effective protection against Anopheles arabiensis mosquitoes under simulated outdoor conditions in a semi-field system.

    OpenAIRE

    Andrés, Marta; Lorenz, Lena M; Mbeleya, Edgar; Moore, Sarah J.

    2015-01-01

    Abstract Background Efforts to control malaria vectors have primarily focused on scaling-up of long-lasting insecticidal nets (LLINs) and indoor residual spraying. Although highly efficient against indoor-biting and indoor-resting vectors, these interventions have lower impact on outdoor-biting mosquitoes. Innovative vector control tools are required to prevent outdoor human–mosquito contacts. In this work, the potential of spatial repellents, delivered in an active system that requires minim...

  10. Mosquito larvicidal and ovicidal properties of Pemphis acidula Frost. (Lythraceae) against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    K. Samidurai

    2012-01-01

    Objective: This study was undertaken to assess the larvicidal and ovicidal potential of the crude methanol, benzene and acetone solvent extracts from the medicinal plant Pemphis acidula (Pe. acidula) against the medically important mosquito vectors, Culex tritaeniorhynchus (Cx. tritaeniorhynchus) and Anopheles subpictus (An. subpictus) were exposed to various concentrations and (Diptera: Culicidae). Methods: Twenty five late third instar of Cx. tritaeniorhynchus and An. subpictus were exposed to various concentrations and were assayed in the laboratory by using the protocol of WHO 2005. The larval mortality was observed 24 h of treatment. Hundred eggs of Cx. tritaeniorhynchus and An. subpictus were exposed to various concentrations and were assayed in the laboratory by using the protocol of Su and Mulla 1998. The ovicidal activity was observed 48 h of treatment. Results: The LC50 and LC90 values being 10.81and 20.64 and 22.10 and 43.71 ppm and hundred percent of egg mortality was observed at 350 and 400 ppm methanol extract of Pe. acidula against Cx. tritaeniorhynchus and An. subpictus, respectively. Conclusion: These results suggest that the leaf extracts have the potential to be used as an ideal ecofriendly approach for the control of mosquitoes.

  11. Incomplete concerted evolution and reproductive isolation at the rDNA locus uncovers nine cryptic species within Anopheles longirostris from Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Cooper Robert D

    2010-12-01

    Full Text Available Abstract Background Nuclear ribosomal DNA (rDNA genes and transcribed spacers are highly utilized as taxonomic markers in metazoans despite the lack of a cohesive understanding of their evolution. Here we follow the evolution of the rDNA second internal transcribed spacer (ITS2 and the mitochondrial DNA cytochrome oxidase I subunit in the malaria mosquito Anopheles longirostris from Papua New Guinea (PNG. This morphospecies inhabits a variety of ecological environments indicating that it may comprise a complex of morphologically indistinguishable species. Using collections from over 70 sites in PNG, the mtDNA was assessed via direct DNA sequencing while the ITS2 was assessed at three levels - crude sequence variation through restriction digest, intragenomic copy variant organisation (homogenisation through heteroduplex analysis and DNA sequencing via cloning. Results Genetic evaluation of over 300 individuals revealed that A. longirostris comprises eight ITS2 PCR-RFLP genotypes and nine ITS2 heteroduplex genotypes showing distinct copy variant organization profiles after PCR amplification. Seven of these nine genotypes were found to be sympatric with other genotypes. Phylogenetic analysis of cloned ITS2 PCR products and mtDNA COI confirmed all nine clades with evidence of reproductive isolation at the rDNA locus. Compensatory base changes in the ITS2 secondary structure or in pseudoknots were absent when closely related species were assessed. Individuals from each ITS2 genotype showed the same copy variant heteroduplex profile suggesting that the rDNA array is fixed within each genotype. Conclusion The centromere-proximal position of the rDNA array in Anopheles mosquitoes has probably reduced interchromosomal recombination leaving intrachromosomal events responsible for the observed pattern of concerted evolution we see in these mosquitoes. The stability of these intragenomic ITS2 copy variants within individuals and interbreeding populations

  12. Observations on sporozoite detection in naturally infected sibling species of the Anopheles culicifacies complex and variant of Anopheles stephensi in India

    Indian Academy of Sciences (India)

    Susanta Kumar Ghosh; Satyanarayan Tiwari; Kamaraju Raghavendra; Tiruchinapalli Sundaraj; Aditya Prasad Dash

    2008-09-01

    Sporozoites were detected in naturally infected sibling species of the primary rural vector Anopheles culicifacies complex in two primary health centres (PHCs) and a variant of the urban vector Anopheles stephensi in Mangalore city, Karnataka, south India while carrying out malaria outbreak investigations from 1998–2006. Sibling species of An. culicifacies were identified based on the banding patterns on ovarian polytene chromosomes, and variants of An. stephensi were identified based on the number of ridges on the egg floats. Sporozoites were detected in the salivary glands by the dissection method. Of the total 334 salivary glands of An. culicifacies dissected, 17 (5.08%) were found to be positive for sporozoites. Of the 17 positive samples, 11 were suitable for sibling species analysis; 10 were species A (an efficient vector) and 1 was species B (a poor vector). Out of 46 An. stephensi dissected, one was sporozoite positive and belonged to the type form (an efficient vector). In malaria epidemiology this observation is useful for planning an effective vector control programme, because each sibling species/variant differs in host specificity, susceptibility to malarial parasites, breeding habitats and response to insecticides.

  13. Investigation on species and seasonal change of mosquitoes in Lanzhou city%兰州市蚊虫种类与季节消长调查研究

    Institute of Scientific and Technical Information of China (English)

    王芸; 李国太; 陈晓林; 谭玉林; 火照宏

    2011-01-01

    目的 调查了解兰州市蚊虫种类与季节消长.方法 采用人帐诱、畜诱、诱蚊灯诱和挥网法.结果 兰州市蚊虫有3属28种,其中:按蚊属3种、伊蚊属9种、库蚊属16种.从生态观察点捕获的4种计1 145只蚊虫构成看,淡色库蚊为优势种,占捕获总数的99.13%,雌雄比例为1:2.28.平均密度为3.89只/(灯·h),不同环境蚊密度为公园>居民区>医院>牲畜棚.密度呈单峰曲线,7月密度最高,达到10.13只/(灯·h).结论 初步掌握了兰州市蚊虫的种类与季节消长,为防治工作提供了科学依据.%Objective To investigate the species and seasonal fluctuation of mosquitoes in Lanzhou city in Gansu Province. Methods Trapping with tent and person, luring with livestock and lamp, capturing with net were applied. Results There were 3 genera and a total of 28 species in Lanzhou city. They were 3 species of Genus A-nopheles ,9 species of Genus Aedes and 16 species of Genus Culex. A total of 1 145 mosquitoes were captured. Identification results showed that the mosquitoes were in 4 species,2 genera. Culex pipiens pollens was the dominant species, accounted for 99. 13% . The ratio of male and female was 1: 2. 28. Mosquitoes density index was 3. 89 pieces per lamp for every hour, and the habitats in descending order of the mosquito density were parks, residential areas, hospitals and pig tents. The seasonal fluctuation curve of mosquito density appeared single peak, and the peak was in July. The density index was 10. 13 pieces per lamp for every hour. Conclusion The study provides scientific gist for preventing and controlling mosquitoes and makes the species and seasonal fluctuation of mosquitoes in Lanzhou city to be known.

  14. Field evaluation of deet against Anopheles farauti at Ndendo (Santa Cruz) Island, Solomon Islands.

    Science.gov (United States)

    Frances, S P; Bugoro, H; Butafa, C; Cooper, R D

    2010-09-01

    Field efficacy studies comparing two formulations of deet (N,N-diethyl-3-methylbenzamide) against mosquitoes were conducted on Ndendo Island, Solomon Islands. The repellent study was conducted at Pala village in November 2008, and the only mosquito species collected was Anopheles farauti Laveran. A formulation containing 35% deet in a gel provided >95% protection for 2 h, whereas a formulation containing 40% deet in ethanol in a spray applicator provided >95% for only 1 h. This field study demonstrated again that repellents containing deet provide a relatively short period of complete protection against Anopheles spp. PMID:20939380

  15. Synthesis, Polymorphism, and Insecticidal Activity of Methyl 4-(4-chlorophenyl)-8-iodo-2-methyl-6-oxo-1,6-dihydro-4H-pyrimido[2,1-b]quinazoline-3-Carboxylate Against Anopheles arabiensis Mosquito.

    Science.gov (United States)

    Venugopala, Katharigatta N; Nayak, Susanta K; Gleiser, Raquel M; Sanchez-Borzone, Mariela E; Garcia, Daniel A; Odhav, Bharti

    2016-07-01

    Mosquitoes are the major vectors of pathogens and parasites including those causing malaria, the most deadly vector-borne disease. The negative environmental effects of most synthetic compounds combined with widespread development of insecticide resistance encourage an interest in finding and developing alternative products against mosquitoes. In this study, pyrimido[2,1-b]quinazoline derivative DHPM3 has been synthesized by three-step chemical reaction and screened for larvicide, adulticide, and repellent properties against Anopheles arabiensis, one of the dominant vectors of malaria in Africa. The title compound emerged as potential larvicide agent for further research and development, because it exerted 100% mortality, while adulticide activity was considered moderate.

  16. Sampling of adult mosquito vectors with Mosquito Magnet Pro in Panaji, Goa, India.

    Science.gov (United States)

    Korgaonkar, Nandini S; Kumar, Ashwani; Yadav, Rajpal S; Kabadi, Dipak; Dash, Aditya P

    2008-12-01

    For mosquito vector population monitoring, a new commercial trap, Mosquito Magnet Pro (MM-PRO), was tested for its usefulness in Goa, India. Anopheles stephensi was tested for the presence of Plasmodium sporozoite infection in the salivary glands. Using the MM-PRO 24 h a day for 34 days, 2,329 mosquitoes belonging to 16 species were collected. These included 6 species each of the genera Anopheles and Culex, 2 species of Aedes, and 1 each of Mansonia and Armigeres. Most (91%) of the mosquitoes caught were females. Among these the number and percentage of each species were Anopheles stephensi 59 (2.78%), Culex quinquefasciatus 1013 (47.78%), Culex vishnui 551 (26.0%), Mansonia uniformis 216 (10.19%), and Aedes albopictus 1 (0.04%). Of the 54 An. stephensi females tested for the presence of circumsporozoite protein (CSP) by an ELISA technique, 1 was found to be Plasmodium falciparum CSP positive. The MM-PRO device was found useful for mosquito population sampling in the urban setting of Goa. PMID:19181075

  17. Cytogenetic evidence for a species complex within Anopheles pseudopunctipennis theobald (Diptera: Culicidae).

    Science.gov (United States)

    Coetzee, M; Estrada-Franco, J G; Wunderlich, C A; Hunt, R H

    1999-04-01

    Anopheles pseudopunctipennis was collected from Acapulco, Mexico and Sallee River, Grenada, West Indies and used in cross-mating experiments. Larvae from the cross, Mexico female X Grenada male, died in the third instar. However, adult progeny were obtained from the reciprocal cross Grenada female x Mexico male. These hybrid males had testes with apparently normal appearance but some without viable sperm. Polytene chromosomes obtained from hybrid females exhibited extensive asynapsis of the X chromosomes. Previously undescribed fixed inversion differences between the two populations were noted on the X chromosome. It is concluded that the two populations belong to different species. The Grenada population is designated An. pseudopunctipennis species C, since it is the third taxon recognized in this species complex.

  18. Sequence analysis of mitochondrial 16S ribosomal RNA gene fragment from seven mosquito species

    Indian Academy of Sciences (India)

    Yogesh S Shouche; Milind S Patole

    2000-12-01

    Mosquitoes are vectors for the transmission of many human pathogens that include viruses, nematodes and protozoa. For the understanding of their vectorial capacity, identification of disease carrying and refractory strains is essential. Recently, molecular taxonomic techniques have been utilized for this purpose. Sequence analysis of the mitochondrial 16S rRNA gene has been used for molecular taxonomy in many insects. In this paper, we have analysed a 450 bp hypervariable region of the mitochondrial 16S rRNA gene in three major genera of mosquitoes, Aedes, Anopheles and Culex. The sequence was found to be unusually A + T rich and in substitutions the rate of transversions was higher than the transition rate. A phylogenetic tree was constructed with these sequences. An interesting feature of the sequences was a stretch of Ts that distinguished between Aedes and Culex on the one hand, and Anopheles on the other. This is the first report of mitochondrial rRNA sequences from these medically important genera of mosquitoes.

  19. [BLOODSUCKING MOSQUITOES (DIPTERA: CULICIDAE) IN, THE TULA REGION ARE POTENTIAL VECTORS OF DIROFILARIAS].

    Science.gov (United States)

    Bogacheva, A S; Ganushkina, L A; Lopatina, Yu V

    2015-01-01

    Bloodsucking mosquitoes were collected in Tula and its Region in May to August 2013-2014. The fauna included 17 species from 5 genera in the subfamily Culicinae and Anopheles maculipennis complex in the subsystem Anophelinae. Ochlerotatus cantans was a dominant species in the collections. The dominant species also included Aedes einereus, Ae. vexans, Ae. geniculatus, Och. diantaeus, Och. intrudens, Och. Cataphylla, and Culex pipiens. The possible value of different mosquito species Dirofilaria repens and D. immitis as vectors of dirofilarasis was discussed.

  20. Morphometric Wing Characters as a Tool for Mosquito Identification

    Science.gov (United States)

    Christe, Rafael de Oliveira; Multini, Laura Cristina; Vidal, Paloma Oliveira; Wilk-da-Silva, Ramon; de Carvalho, Gabriela Cristina; Marrelli, Mauro Toledo

    2016-01-01

    Mosquitoes are responsible for the transmission of important infectious diseases, causing millions of deaths every year and endangering approximately 3 billion people around the world. As such, precise identification of mosquito species is crucial for an understanding of epidemiological patterns of disease transmission. Currently, the most common method of mosquito identification relies on morphological taxonomic keys, which do not always distinguish cryptic species. However, wing geometric morphometrics is a promising tool for the identification of vector mosquitoes, sibling and cryptic species included. This study therefore sought to accurately identify mosquito species from the three most epidemiologically important mosquito genera using wing morphometrics. Twelve mosquito species from three epidemiologically important genera (Aedes, Anopheles and Culex) were collected and identified by taxonomic keys. Next, the right wing of each adult female mosquito was removed and photographed, and the coordinates of eighteen digitized landmarks at the intersections of wing veins were collected. The allometric influence was assessed, and canonical variate analysis and thin-plate splines were used for species identification. Cross-validated reclassification tests were performed for each individual, and a Neighbor Joining tree was constructed to illustrate species segregation patterns. The analyses were carried out and the graphs plotted with TpsUtil 1.29, TpsRelw 1.39, MorphoJ 1.02 and Past 2.17c. Canonical variate analysis for Aedes, Anopheles and Culex genera showed three clear clusters in morphospace, correctly distinguishing the three mosquito genera, and pairwise cross-validated reclassification resulted in at least 99% accuracy; subgenera were also identified correctly with a mean accuracy of 96%, and in 88 of the 132 possible comparisons, species were identified with 100% accuracy after the data was subjected to reclassification. Our results showed that Aedes, Culex

  1. Morphometric Wing Characters as a Tool for Mosquito Identification.

    Science.gov (United States)

    Wilke, André Barretto Bruno; Christe, Rafael de Oliveira; Multini, Laura Cristina; Vidal, Paloma Oliveira; Wilk-da-Silva, Ramon; de Carvalho, Gabriela Cristina; Marrelli, Mauro Toledo

    2016-01-01

    Mosquitoes are responsible for the transmission of important infectious diseases, causing millions of deaths every year and endangering approximately 3 billion people around the world. As such, precise identification of mosquito species is crucial for an understanding of epidemiological patterns of disease transmission. Currently, the most common method of mosquito identification relies on morphological taxonomic keys, which do not always distinguish cryptic species. However, wing geometric morphometrics is a promising tool for the identification of vector mosquitoes, sibling and cryptic species included. This study therefore sought to accurately identify mosquito species from the three most epidemiologically important mosquito genera using wing morphometrics. Twelve mosquito species from three epidemiologically important genera (Aedes, Anopheles and Culex) were collected and identified by taxonomic keys. Next, the right wing of each adult female mosquito was removed and photographed, and the coordinates of eighteen digitized landmarks at the intersections of wing veins were collected. The allometric influence was assessed, and canonical variate analysis and thin-plate splines were used for species identification. Cross-validated reclassification tests were performed for each individual, and a Neighbor Joining tree was constructed to illustrate species segregation patterns. The analyses were carried out and the graphs plotted with TpsUtil 1.29, TpsRelw 1.39, MorphoJ 1.02 and Past 2.17c. Canonical variate analysis for Aedes, Anopheles and Culex genera showed three clear clusters in morphospace, correctly distinguishing the three mosquito genera, and pairwise cross-validated reclassification resulted in at least 99% accuracy; subgenera were also identified correctly with a mean accuracy of 96%, and in 88 of the 132 possible comparisons, species were identified with 100% accuracy after the data was subjected to reclassification. Our results showed that Aedes, Culex

  2. The abundance and host-seeking behavior of culicine species (Diptera: Culicidae) and Anopheles sinensis in Yongcheng city, people's Republic of China

    Science.gov (United States)

    2011-01-01

    Background The knowledge of mosquito species diversity and the level of anthropophily exhibited by each species in a region are of great importance to the integrated vector control. Culicine species are the primary vectors of Japanese encephalitis (JE) virus and filariasis in China. Anopheles sinensis plays a major role in the maintenance of Plasmodium vivax malaria transmission in China. The goal of this study was to compare the abundance and host-seeking behavior of culicine species and An. sinensis in Yongcheng city, a representative region of P. vivax malaria. Specifically, we wished to determine the relative attractiveness of different animal baits versus human bait to culicine species and An. sinensis. Results Culex tritaeniorhynchus was the most prevalent mosquito species and An. sinensis was the sole potential vector of P. vivax malaria in Yongcheng city. There were significant differences (P < 0.01) in the abundance of both An. sinensis and Cx. tritaeniorhynchus collected in distinct baited traps. The relative attractiveness of animal versus human bait was similar towards both An. sinensis and Cx. tritaeniorhynchus. The ranking derived from the mean number of mosquitoes per bait indicated that pigs, goats and calves frequently attracted more mosquitoes than the other hosts tested (dogs, humans, and chickens). These trends were similar across all capture nights at three distinct villages. The human blood index (HBI) of female An. sinensis was 2.94% when computed with mixed meals while 3.70% computed with only the single meal. 19:00~21:00 was the primary peak of host-seeking female An. sinensis while 4:00~5:00 was the smaller peak at night. There was significant correlation between the density of female An. sinensis and the average relative humidity (P < 0.05) in Wangshanzhuang village. Conclusions Pigs, goats and calves were more attractive to An. sinensis and Cx. tritaeniorhynchus than dogs, humans, and chickens. Female An. sinensis host-seeking activity

  3. The abundance and host-seeking behavior of culicine species (Diptera: Culicidae and Anopheles sinensis in Yongcheng city, people's Republic of China

    Directory of Open Access Journals (Sweden)

    Liu Xiao-Bo

    2011-11-01

    Full Text Available Abstract Background The knowledge of mosquito species diversity and the level of anthropophily exhibited by each species in a region are of great importance to the integrated vector control. Culicine species are the primary vectors of Japanese encephalitis (JE virus and filariasis in China. Anopheles sinensis plays a major role in the maintenance of Plasmodium vivax malaria transmission in China. The goal of this study was to compare the abundance and host-seeking behavior of culicine species and An. sinensis in Yongcheng city, a representative region of P. vivax malaria. Specifically, we wished to determine the relative attractiveness of different animal baits versus human bait to culicine species and An. sinensis. Results Culex tritaeniorhynchus was the most prevalent mosquito species and An. sinensis was the sole potential vector of P. vivax malaria in Yongcheng city. There were significant differences (P An. sinensis and Cx. tritaeniorhynchus collected in distinct baited traps. The relative attractiveness of animal versus human bait was similar towards both An. sinensis and Cx. tritaeniorhynchus. The ranking derived from the mean number of mosquitoes per bait indicated that pigs, goats and calves frequently attracted more mosquitoes than the other hosts tested (dogs, humans, and chickens. These trends were similar across all capture nights at three distinct villages. The human blood index (HBI of female An. sinensis was 2.94% when computed with mixed meals while 3.70% computed with only the single meal. 19:00~21:00 was the primary peak of host-seeking female An. sinensis while 4:00~5:00 was the smaller peak at night. There was significant correlation between the density of female An. sinensis and the average relative humidity (P Conclusions Pigs, goats and calves were more attractive to An. sinensis and Cx. tritaeniorhynchus than dogs, humans, and chickens. Female An. sinensis host-seeking activity mainly occurred from 19:00 to 21:00. Thus

  4. Studies on mosquitoes (Diptera: Culicidae and anthropic environment: 1- Parity of blood seeking Anopheles (Kerteszia in South-Eastern Brazil Estudos sobre mosquitos (Diptera: Culicidae e ambiente antrópico: 1- Paridade de Anopheles (Kerteszia em atividade hematófaga, na região sudeste do Brasil

    Directory of Open Access Journals (Sweden)

    Oswaldo Paulo Forattini

    1993-02-01

    Full Text Available Populations of Anopheles (Kerteszia were sampled fortnightly over a one-year period (August 1991 to July 1992 at Ribeira Valley, S. Paulo State, Brazil. Indoor and outdoor collections were made on human bait at evening crepuscular period. The Polovodova technique for age grading was applied to 3,501 females of Anopheles cruzii and to 416 females of An. bellator. That sample represented 34.4% of the total number of mosquitoes collected. The most abundant species found was An. cruzii. However, An. bellator showed an endophagy that was almost three times greater than that of An. cruzii. The overall parous rate was 25.4% and uniparity was practically dominant one. A proportion of 26.9% of An. cruzii and 12.0% of An. bellator were found to be uniparous. Only three outdoor females of the former species (0.1% showed biparity. Parity of An. cruzii was higher in females caught outdoors than in those caught indoors. Nevertheless, 497 nulliparous females examined (417 cruzii and 80 bellator had ovaries that had advanced to Christophers and Mer stages III to V. These results imply that these females had already practised hematophagy. Relating these results to those from the parous females, a high statistical significance was found, leading to the conclusion that gonothophic discordance is a common pattern among these anophelines. Further, these results obtained with human bait catches strongly suggest that nearly 38.0% of these host-seeking females had already taken at least one previous blood-meal. So it is possible that enough time could thus be available for the plasmodian development in the vectors.Relata-se os resultados obtidos em coletas regulares de Anopheles cruzii e An. bellator, mediante o emprego de isca humana e por ocasião do crepúsculo vespertino. Objetivou-se, precipuamente, conhecer a paridade de populações dessas espécies, quando em plena tentativa hematófaga, tanto no ambiente intra como peridomiciliar. As coletas foram levadas a

  5. Annotated checklist of the mosquitoes of the Republic of Moldova.

    Science.gov (United States)

    Sulesco, Tatiana M; Toderas, Ion K; Toderas, Lidia G

    2013-06-01

    The mosquito fauna of the Republic of Moldova is poorly known. In an effort to understand the Culicidae fauna better, mosquito collections have been conducted between early April and middle November from 2008 to 2012. A total of 10,923 larval specimens and 8,246 adults were collected from 20 regions of Moldova. Altogether 36 species have been recorded during the recent study, bringing the total Moldovan mosquito fauna to 40 species in 9 genera and 11 subgenera. New state records include the following 7 species: Anopheles pseudopictus, An. melanoon, Aedes geminus, Culex torrentium, Culiseta longiareolata, Coquillettidia buxtoni, and Uranotaenia unguiculata.

  6. A simplified high-throughput method for pyrethroid knock-down resistance (kdr) detection in Anopheles gambiae

    OpenAIRE

    Walker Edward D; Black William C; Randle Nadine P; McCall P J; Ranson Hilary; Lynd Amy; Donnelly Martin J

    2005-01-01

    Abstract Background A single base pair mutation in the sodium channel confers knock-down resistance to pyrethroids in many insect species. Its occurrence in Anopheles mosquitoes may have important implications for malaria vector control especially considering the current trend for large scale pyrethroid-treated bednet programmes. Screening Anopheles gambiae populations for the kdr mutation has become one of the mainstays of programmes that monitor the development of insecticide resistance. Th...

  7. 华龙区2011~2012年成蚊监测结果分析%Analysis on the Density of Harvest Mosquito and the Constitution of Mosquito Species 2011~2012

    Institute of Scientific and Technical Information of China (English)

    杨凤起

    2014-01-01

    The purpose is to strengthen the monitoring of media mosquito. Methods The trap lured method and the people lured stop-falling method. Results Major mosquito species in Hualong District are Culex pipiens pal ens and Aedes albopictus, Culex pipiens mosquitoes accounted for 84.05%, 11,38% of Aedes albopictus, encephalitis three zones the Culex that spread Japanese accounted for 2,99%, Anopheles sinensis that spread malaria accounted for 1.77%. Conclusion According to the surveillance results we can eliminate malaria in 2020.%目的加强对媒介蚊虫的监测。方法利用帐诱法和人诱停落法。结果华龙区主要蚊种为淡色库蚊和白纹伊蚊,淡色库蚊占84.05%,白纹伊蚊占11.38%,传播乙脑的三带库蚊占2.99%,传播疟疾的中华按蚊占1.77%。结论根据监测结果,能在2014年消除疟疾发生。

  8. Analysis on the Density of Harvest Mosquito and the Constitution of Mosquito Species 2011~2012%华龙区2011~2012年成蚊监测结果分析

    Institute of Scientific and Technical Information of China (English)

    杨凤起

    2014-01-01

    目的加强对媒介蚊虫的监测。方法利用帐诱法和人诱停落法。结果华龙区主要蚊种为淡色库蚊和白纹伊蚊,淡色库蚊占84.05%,白纹伊蚊占11.38%,传播乙脑的三带库蚊占2.99%,传播疟疾的中华按蚊占1.77%。结论根据监测结果,能在2014年消除疟疾发生。%The purpose is to strengthen the monitoring of media mosquito. Methods The trap lured method and the people lured stop-falling method. Results Major mosquito species in Hualong District are Culex pipiens pal ens and Aedes albopictus, Culex pipiens mosquitoes accounted for 84.05%, 11,38% of Aedes albopictus, encephalitis three zones the Culex that spread Japanese accounted for 2,99%, Anopheles sinensis that spread malaria accounted for 1.77%. Conclusion According to the surveillance results we can eliminate malaria in 2020.

  9. Diversity and transmission competence in lymphatic filariasis vectors in West Africa, and the implications for accelerated elimination of Anopheles-transmitted filariasis

    OpenAIRE

    de Souza Dziedzom K; Koudou Benjamin; Kelly-Hope Louise A; Wilson Michael D; Bockarie Moses J; Boakye Daniel A

    2012-01-01

    Abstract Lymphatic Filariasis (LF) is targeted for elimination by the Global Programme for the Elimination of Lymphatic Filariasis (GPELF). The strategy adopted is based on the density dependent phenomenon of Facilitation, which hypothesizes that in an area where the vector species transmitting Wuchereria bancrofti are Anopheles mosquitoes, it is feasible to eliminate LF using Mass Drug Administration (MDA) because of the inability of Anopheles species to transmit low-density microfilaraemia....

  10. Molecular comparison of topotypic specimens confirms Anopheles (Nyssorhynchus dunhami Causey (Diptera: Culicidae in the Colombian Amazon

    Directory of Open Access Journals (Sweden)

    Freddy Ruiz

    2010-11-01

    Full Text Available The presence of Anopheles (Nyssorhynchus dunhami Causey in Colombia (Department of Amazonas is confirmed for the first time through direct comparison of mtDNA cytochrome c oxidase I (COI barcodes and nuclear rDNA second internal transcribed spacer (ITS2 sequences with topotypic specimens of An. dunhami from Tefé, Brazil. An. dunhami was identified through retrospective correlation of DNA sequences following misidentification as Anopheles nuneztovari s.l. using available morphological keys for Colombian mosquitoes. That An. dunhami occurs in Colombia and also possibly throughout the Amazon Basin, is of importance to vector control programs, as this non-vector species is morphologically similar to known malaria vectors including An. nuneztovari, Anopheles oswaldoi and Anopheles trinkae. Species identification of An. dunhami and differentiation from these closely related species are highly robust using either DNA ITS2 sequences or COI DNA barcode. DNA methods are advocated for future differentiation of these often sympatric taxa in South America.

  11. Effect of CO2 and 1-octen-3-ol attractants for estimating species richness and the abundance of diurnal mosquitoes in the southeastern Atlantic forest, Brazil

    Directory of Open Access Journals (Sweden)

    Gabriel Z Laporta

    2011-05-01

    Full Text Available Studies have shown that both carbon dioxide (CO2 and octenol (1-octen-3-ol are effective attractants for mosquitoes. The objective of the present study was to evaluate the attractiveness of 1-octen-3-ol and CO2 for diurnal mosquitoes in the southeastern Atlantic forest. A Latin square experimental design was employed with four treatments: CDC-light trap (CDC-LT, CDC-LT and 1-octen-3-ol, CDC-LT and CO2 and CDC-LT with 1-octen-3-ol and CO2. Results demonstrated that both CDC-CO2 and CDC-CO2-1-octen-3-ol captured a greater number of mosquito species and specimens compared to CDC-1-octen-3-ol; CDC-LT was used as the control. Interestingly, Anopheles (Kerteszia sp. was generally attracted to 1-octen-3-ol, whereas Aedes serratus was the most abundant species in all Latin square collections. This species was recently shown to be competent to transmit the yellow fever virus and may therefore play a role as a disease vector in rural areas of Brazil.

  12. A CRISPR-Cas9 Gene Drive System Targeting Female Reproduction in the Malaria Mosquito vector Anopheles gambiae

    OpenAIRE

    Hammond, Andrew; Galizi, Roberto; Kyrou, Kyros; Simoni, Alekos; Siniscalchi, Carla; Katsanos, Dimitris; Gribble, Matthew; Baker, Dean; Marois, Eric; Russell, Steven; Burt, Austin; Windbichler, Nikolai; Crisanti, Andrea; Nolan, Tony

    2015-01-01

    Gene-drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years [AU please provide a real estimate, this seems vague]. We describe CRISPR-Cas9 endonuclease constructs that function as gene-drive systems in Anopheles gambiae, the main vector for malaria [AU:OK?]. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female sterility phenotype upon disruption, and insert...

  13. Identification, characterisation, and function of adipokinetic hormones and receptor in the African malaria mosquito, "Anopheles Gambiae" (Diptera)

    OpenAIRE

    Kaufmann, Christian; Betschart, Bruno

    2007-01-01

    En utilisant la bioinformatique et la biologie moléculaire, nous avons pu identifier chez le principal vecteur africain de la malaria, le moustique, Anopheles gambiae deux hormones adipokinétiques (AKHs): l'octapeptide, Anoga-AKH-I (pQLTFTPAWa) et le décapeptide, Anoga-AKH-II, (pQVTFSRDWNAa). La fonction principale des AKHs est d’induire une hyperlipémie (effet d’adipokinétique), ainsi qu’une hypertrehalosémie et une hyperprolinémie. En tant que membres de la famille des AKH, les deux neurope...

  14. Chemical composition and biological activity of four salvia essential oils and individual compounds against two species of mosquitoes.

    Science.gov (United States)

    Ali, Abbas; Tabanca, Nurhayat; Demirci, Betul; Blythe, Eugene K; Ali, Zulfiqar; Baser, K Husnu Can; Khan, Ikhlas A

    2015-01-21

    The chemical compositions of essential oils obtained from four species of genus Salvia were analyzed by gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The main compounds identified from Salvia species essential oils were as follows: 1,8-cineole (71.7%), α-pinene (5.1%), camphor (4.4%), and β-pinene (3.8%) in Salvia apiana; borneol (17.4%), β-eudesmol (10.4%), bornyl acetate (5%), and guaiol (4.8%) in Salvia elegans; bornyl acetate (11.4%), β-caryophyllene (6.5%), caryophyllene oxide (13.5%), and spathulenol (7.0%) in Salvia leucantha; α-thujene (25.8%), viridiflorol (20.4%), β-thujene (5.7%), and camphor (6.4%) in Salvia officinalis. In biting-deterrent bioassays, essential oils of S. leucantha and S. elegans at 10 μg/cm(2) showed activity similar to that of DEET (97%, N, N-diethyl-m-toluamide) in two species of mosquitoes, whereas the activities of S. officinalis and S. apiana essential oils were lower than those of the other oils or DEET. Pure compounds β-eudesmol and guaiol showed biting-deterrent activity similar to DEET at 25 nmol/cm(2), whereas the activity of 13-epi-manool, caryophyllene oxide, borneol, bornyl acetate, and β-caryophyllene was significantly lower than that of β-eudesmol, guaiol, or DEET. All essential oils showed larvicidal activity except that of S. apiana, which was inactive at the highest dose of 125 ppm against both mosquito species. On the basis of 95% CIs, all of the essential oils showed higher toxicity in Anopheles quadrimaculatus than in Aedes aegypti. The essential oil of S. leucantha with an LC50 value of 6.2 ppm showed highest toxicity in An. quadrimaculatus.

  15. Anopheles gambiae odorant binding protein crystal complex with the synthetic repellent DEET: implications for structure-based design of novel mosquito repellents.

    Science.gov (United States)

    Tsitsanou, K E; Thireou, T; Drakou, C E; Koussis, K; Keramioti, M V; Leonidas, D D; Eliopoulos, E; Iatrou, K; Zographos, S E

    2012-01-01

    Insect odorant binding proteins (OBPs) are the first components of the olfactory system to encounter and bind attractant and repellent odors emanating from various sources for presentation to olfactory receptors, which trigger relevant signal transduction cascades culminating in specific physiological and behavioral responses. For disease vectors, particularly hematophagous mosquitoes, repellents represent important defenses against parasitic diseases because they effect a reduction in the rate of contact between the vectors and humans. OBPs are targets for structure-based rational approaches for the discovery of new repellent or other olfaction inhibitory compounds with desirable features. Thus, a study was conducted to characterize the high resolution crystal structure of an OBP of Anopheles gambiae, the African malaria mosquito vector, in complex with N,N-diethyl-m-toluamide (DEET), one of the most effective repellents that has been in worldwide use for six decades. We found that DEET binds at the edge of a long hydrophobic tunnel by exploiting numerous non-polar interactions and one hydrogen bond, which is perceived to be critical for DEET's recognition. Based on the experimentally determined affinity of AgamOBP1 for DEET (K (d) of 31.3 μΜ) and our structural data, we modeled the interactions for this protein with 29 promising leads reported in the literature to have significant repellent activities, and carried out fluorescence binding studies with four highly ranked ligands. Our experimental results confirmed the modeling predictions indicating that structure-based modeling could facilitate the design of novel repellents with enhanced binding affinity and selectivity. PMID:21671117

  16. Mosquito species and their habitats in Zhangzhou, Fujian%福建省漳州地区蚊媒种类及孳生环境调查

    Institute of Scientific and Technical Information of China (English)

    陈朱云; 方义亮; 谢汉国; 杨发柱; 徐保海

    2015-01-01

    Objective To investigate the mosquito species and breeding environment in Zhangzhou of Fujian, and to provide basis for prevention and control of mosquitoes and mosquito?borne diseases. Methods A series of combined larvae investigation methods, human bait method and ox?trap method were used. The mosquitoes were collected mainly in the residential area, mountain area and the port of six counties. Then they were classified and identified after larvae developing into adult. Results The mosquitoes were identified to 40 species, 9 genus and 3 subfamilies. They were 4 species of Anopheles, 12 Aedes, 14 Culex and 10 other mosquito genera. Uranotaenia koli Peyton et Klein was first reported in Fujian. Different mosquito species were captured in different parts. The largest number of mosquito species were in Nanjing and Pinghe, there were both 27 species. Eight types of mosquito breeding habitats were investigated. There were 15 species breeding in bamboo tube, 11 species from the pits formed by ravine streams water, 11 species in stone caves, and few from other breeding habitats. Conclusion There are many kinds of mosquitoes related to mosquito?borne diseases in Zhangzhou. The monitoring of mosquitoes for Dengue should be strengthened, and comprehensive management measures should be combined with breeding environment.%目的 掌握福建省漳州地区蚊虫种类以及孳生环境,为福建省蚊媒病的预防与控制提供依据.方法 采用幼虫调查法,结合人诱法、牛诱法,调查福建省漳州地区6个县,主要在居民区、山区和港口采集幼虫,饲养为成蚊后鉴定.结果 此次调查蚊种经鉴定隶属于3亚科9属40种,其中按蚊属4种,伊蚊属12种,库蚊属14种,其他蚊属10种,首次在福建地区报道捕获蓝带蚊属的科利蓝带蚊;不同地区捕获的蚊种不同,南靖和平和县捕获的蚊种数量最多,有27种;调查蚊媒8种孳生环境,其中竹筒孳生蚊虫有15种,山沟溪涧积水形

  17. Using green fluorescent malaria parasites to screen for permissive vector mosquitoes

    Directory of Open Access Journals (Sweden)

    Martin Beatrice

    2006-03-01

    Full Text Available Abstract Background The Plasmodium species that infect rodents, particularly Plasmodium berghei and Plasmodium yoelii, are useful to investigate host-parasite interactions. The mosquito species that act as vectors of human plasmodia in South East Asia, Africa and South America show different susceptibilities to infection by rodent Plasmodium species. P. berghei and P. yoelii infect both Anopheles gambiae and Anopheles stephensi, which are found mainly in Africa and Asia, respectively. However, it was reported that P. yoelii can infect the South American mosquito, Anopheles albimanus, while P. berghei cannot. Methods P. berghei lines that express the green fluorescent protein were used to screen for mosquitoes that are susceptible to infection by P. berghei. Live mosquitoes were examined and screened for the presence of a fluorescent signal in the abdomen. Infected mosquitoes were then examined by time-lapse microscopy to reveal the dynamic behaviour of sporozoites in haemolymph and extracted salivary glands. Results A single fluorescent oocyst can be detected in live mosquitoes and P. berghei can infect A. albimanus. As in other mosquitoes, P. berghei sporozoites can float through the haemolymph and invade A. albimanus salivary glands and they are infectious in mice after subcutaneous injection. Conclusion Fluorescent Plasmodium parasites can be used to rapidly screen susceptible mosquitoes. These results open the way to develop a laboratory model in countries where importation of A. gambiae and A. stephensi is not allowed.

  18. Species Interactions Among Larval Mosquitoes: Context Dependence Across Habitat Gradients

    OpenAIRE

    Juliano, Steven A.

    2009-01-01

    Biotic interactions involving mosquito larvae are context dependent, with effects of interactions on populations altered by ecological conditions. Relative impacts of competition and predation change across a gradient of habitat size and permanence. Asymmetrical competition is common and ecological context changes competitive advantage, potentially facilitating landscape-level coexistence of competitors. Predator effects on mosquito populations sometimes depend on habitat structure and on eme...

  19. Effect of leaf essential oil ofCoccinia indica on egg hatchability and different larval instars of malarial mosquito Anopheles stephensi

    Institute of Scientific and Technical Information of China (English)

    Sankaran Rajkumar; Arulsamy Jebanesan; Rajarathinavelu Nagarajan

    2011-01-01

    Objective:To assess the larvicidal and egg hatching inhibition property of the leaf essential oil ofCoccinia indica (C. indica) againstAnopheles stephensi (An. stephensi).Methods:The larvicidal potential ofC.indica leaf essential oil was evaluated against 1st,2nd,3rd and4th instars larvae ofAn. stephensi usingWHOprotocol. The24hLC50 andLC90values of the essential oil were determined following probit analysis. The egg hatching inhibition activity was also tested at10, 20, 40, and60 mg/L. TheIC50 value of essential oil was determined against eggs ofAn. stephensi.Results: The essential oil extracted fromC. indica possessed excellent larvicidal and egg hatching inhibition activity against An. stephensi. The bioassays showedLC50-LC90 of54.3-140.3,65.5-155.6, 86.8-180.7 and95.3-192.6 for 1st,2nd,3rd, and 4th larval instars, respectively. The50% egg hatching inhibition concentration(IC50) was noted at16.5mg/L.Conclusions: The present finding suggest that theC. indica leaf essential oil provided an excellent potential for controllingAn. stephensi mosquito at earlier stage of their life cycle.

  20. Mosquito larvicidal properties ofFicus benghalensis L. (Family:Moraceae) againstCulex tritaeniorhynchus Giles andAnopheles subpictus Grassi (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    M Govindarajan; R Sivakumar; A Amsath; S Niraimathi

    2011-01-01

    Objective:To determine the larvicidal efficacy of different solvent leaf extract ofFicus benghalensis (F. benghalensis) against Culex tritaeniorhynchus (Cx. tritaeniorhynchus)and Anopheles subpictus (An. subpictus).Methods: Twenty five early third instar larvae ofCx. tritaeniorhynchusandAn. subpictus were exposed to various concentrations and were assayed in the laboratory by using the protocol ofWHO 2005. The larval mortality was observed after24 h of treatment.Results: Among three solvent extracts tested the maximum efficacy was observed in the methanol extract. TheLC50 andLC90 values ofF. benghalensis against early third instar of Cx. tritaeniorhynchus andAn. subpictus were100.88, 159.76 ppm and56.66, 85.84 ppm, respectively. No mortality was observed in controls. Thechi-square values were significant atP<0.05 level. Conclusions: From the results it can be concluded the crude extract ofF. benghalensis was an excellent potential for controllingCx. tritaeniorhynchusandAn. subpictus mosquito larvae.

  1. Screening for adulticidal activity against Anopheles arabiensis in ten plants used as mosquito repellent in South Africa

    OpenAIRE

    Mavundza, Edison J; Maharaj, Rajendra; Chukwujekwu, Jude C; Finnie, Jeffrey F; Staden, Johannes Van

    2014-01-01

    Background Due to the development of resistance to synthetic insecticides, adverse effects to human health, non-target organisms and the environment, there is an urgent need to develop new insecticides, which are effective, safe, biodegrable and target-specific. This study was undertaken to evaluate the adulticidal activity of 10 plants used traditionally as mosquito repellents in South Africa. Methods The dried plant materials were extracted with dichloromethane (DCM) and ethanol (EtOH). The...

  2. Constituents of the Essential Oil of Suregada Zanzibariensis Leaves are Repellent to the Mosquito, Anopheles Gambiae s.s.

    OpenAIRE

    Innocent, Ester; Cosam C. Joseph; Gikonyo, Nicholas K; Nkunya, Mayunga H.H.; Hassanali, Ahmed

    2010-01-01

    In traditional African communities, repellent volatiles from certain plants generated by direct burning or by thermal expulsion have played an important role in protecting households against vectors of malaria and other diseases. Previous research on volatile constituents of plants has shown that some are good sources of potent mosquito repellents. In this bioprospecting initiative, the essential oil of leaves of the tree, Suregada zanzibariensis Verdc. (Angiospermae: Euphobiaceae) was tested...

  3. MosquitoMap and the Mal-area calculator: new web tools to relate mosquito species distribution with vector borne disease

    Directory of Open Access Journals (Sweden)

    Christensen Jamie

    2010-02-01

    Full Text Available Abstract Background Mosquitoes are important vectors of diseases but, in spite of various mosquito faunistic surveys globally, there is a need for a spatial online database of mosquito collection data and distribution summaries. Such a resource could provide entomologists with the results of previous mosquito surveys, and vector disease control workers, preventative medicine practitioners, and health planners with information relating mosquito distribution to vector-borne disease risk. Results A web application called MosquitoMap was constructed comprising mosquito collection point data stored in an ArcGIS 9.3 Server/SQL geodatabase that includes administrative area and vector species x country lookup tables. In addition to the layer containing mosquito collection points, other map layers were made available including environmental, and vector and pathogen/disease distribution layers. An application within MosquitoMap called the Mal-area calculator (MAC was constructed to quantify the area of overlap, for any area of interest, of vector, human, and disease distribution models. Data standards for mosquito records were developed for MosquitoMap. Conclusion MosquitoMap is a public domain web resource that maps and compares georeferenced mosquito collection points to other spatial information, in a geographical information system setting. The MAC quantifies the Mal-area, i.e. the area where it is theoretically possible for vector-borne disease transmission to occur, thus providing a useful decision tool where other disease information is limited. The Mal-area approach emphasizes the independent but cumulative contribution to disease risk of the vector species predicted present. MosquitoMap adds value to, and makes accessible, the results of past collecting efforts, as well as providing a template for other arthropod spatial databases.

  4. Investigations on anopheline mosquitoes close to the nest sites of chimpanzees subject to malaria infection in Ugandan Highlands

    Directory of Open Access Journals (Sweden)

    Krief Sabrina

    2012-04-01

    Full Text Available Abstract Background Malaria parasites (Plasmodium sp., including new species, have recently been discovered as low grade mixed infections in three wild chimpanzees (Pan troglodytes schweinfurthii sampled randomly in Kibale National Park, Uganda. This suggested a high prevalence of malaria infection in this community. The clinical course of malaria in chimpanzees and the species of the vectors that transmit their parasites are not known. The fact that these apes display a specific behaviour in which they consume plant parts of low nutritional value but that contain compounds with anti-malarial properties suggests that the apes health might be affected by the parasite. The avoidance of the night-biting anopheline mosquitoes is another potential behavioural adaptation that would lead to a decrease in the number of infectious bites and consequently malaria. Methods Mosquitoes were collected over two years using suction-light traps and yeast-generated CO2 traps at the nesting and the feeding sites of two chimpanzee communities in Kibale National Park. The species of the female Anopheles caught were then determined and the presence of Plasmodium was sought in these insects by PCR amplification. Results The mosquito catches yielded a total of 309 female Anopheles specimens, the only known vectors of malaria parasites of mammalians. These specimens belonged to 10 species, of which Anopheles implexus, Anopheles vinckei and Anopheles demeilloni dominated. Sensitive DNA amplification techniques failed to detect any Plasmodium-positive Anopheles specimens. Humidity and trap height influenced the Anopheles capture success, and there was a negative correlation between nest numbers and mosquito abundance. The anopheline mosquitoes were also less diverse and numerous in sites where chimpanzees were nesting as compared to those where they were feeding. Conclusions These observations suggest that the sites where chimpanzees build their nests every night might be

  5. Comparative susceptibility to Plasmodium falciparum of the molecular forms M and S of Anopheles gambiae and Anopheles arabiensis

    Directory of Open Access Journals (Sweden)

    Boudin Christian

    2011-09-01

    Full Text Available Abstract Background The different taxa belonging to Anopheles gambiae complex display phenotypic differences that may impact their contribution to malaria transmission. More specifically, their susceptibility to infection, resulting from a co-evolution between parasite and vector, might be different. The aim of this study was to compare the susceptibility of M and S molecular forms of Anopheles gambiae and Anopheles arabiensis to infection by Plasmodium falciparum. Methods F3 progenies of Anopheles gambiae s.l. collected in Senegal were infected, using direct membrane feeding, with P. falciparum gametocyte-containing blood sampled on volunteer patients. The presence of oocysts was determined by light microscopy after 7 days, and the presence of sporozoite by ELISA after 14 days. Mosquito species and molecular forms were identified by PCR. Results The oocyst rate was significantly higher in the molecular S form (79.07% than in the M form (57.81%, Fisher's exact test p Anopheles arabiensis (55.38%, Fisher's exact test vs. S group p An. gambiae S form (1.72 ± 0.26 than in the An. gambiae M form (0.64 ± 0.04, p An. arabiensis group (0.58 ± 0.04, vs. S group, p Anopheles arabiensis 50.85%, Fisher's exact test vs. S group p Conclusion Infected in the same experimental conditions, the molecular form S of An. gambiae is more susceptible to infection by P. falciparum than the molecular form M of An. gambiae and An. arabiensis.

  6. Increase in susceptibility to insecticides with aging of wild Anopheles gambiae mosquitoes from Côte d’Ivoire

    Directory of Open Access Journals (Sweden)

    Chouaibou Mouhamadou S

    2012-09-01

    Full Text Available Abstract Background Appropriate monitoring of vector insecticide susceptibility is required to provide the rationale for optimal insecticide selection in vector control programs. Methods In order to assess the influence of mosquito age on susceptibility to various insecticides, field-collected larvae of An. gambiae s.l. from Tiassalé were reared to adults. Females aged 1, 2, 3, 5 and 10 days were exposed to 5 insecticides (deltamethrin, permethrin, DDT, malathion and propoxur using WHO susceptibility test kits. Outcome measures included the LT50 (exposure time required to achieve 50% knockdown, the RR (resistance ratio, i.e. a calculation of how much more resistant the wild population is compared with a standard susceptible strain and the mortality rate following 1 hour exposure, for each insecticide and each mosquito age group. Results There was a positive correlation between the rate of knockdown and mortality for all the age groups and for all insecticides tested. For deltamethrin, the RR50 was highest for 2 day old and lowest for 10 day old individuals. Overall, mortality was lowest for 2 and 3 day old individuals and significantly higher for 10 day old individuals (P 50 was highest for 1 to 3 day old individuals and lowest for 10 day old individuals and mortality was lowest for 1 to 3 day old individuals, intermediate for 5 day old and highest for 10 day old individuals. DDT did not display any knockdown effect and mortality was low for all mosquito age groups (50 was low (1.54 - 2.77 and mortality was high (>93% for all age groups. With propoxur, no knockdown effect was observed for 1, 2 and 3 day old individuals and a very low level of mortality was observed ( Conclusion Results indicate that for An. gambiae s.l. adults derived from wild-collected larvae, there was an influence of age on insecticide susceptibility status, with younger individuals (1 to 3 days old more resistant than older mosquitoes. This

  7. Species and fauna distribution of mosquitoes in three provinces of Northeast China%东北三省蚊虫种类和区系分布研究

    Institute of Scientific and Technical Information of China (English)

    刘国平; 任清明; 邢安辉; 王峰; 王旭

    2012-01-01

    目的 调查研究东北三省蚊虫种类和区系分布.方法 采用人帐诱、诱虫灯诱、动物诱和网捕采集蚊虫.结果 东北三省的蚊类现知6属60种,其中黑龙江省4属40种,35县市有分布;吉林省6属38种,27县市有分布;辽宁省5属36种,50县市有分布.区系分布研究结果表明,东北区分布58种,其中大兴安岭亚区分布25种,长白山亚区分布57种,松辽平原亚区分布38种,蒙新区东部草原亚区分布20种.广布种有6种:中华按蚊、背点伊蚊、刺扰伊蚊、凶小库蚊、淡色库蚊、迷走库蚊.结论 为东北三省蚊类的区系分布、媒介种群监测和防治研究提供了科学依据.%Objective To study species and fauna distribution of mosquitoes in three provinces of Northeast Chi-na. Methods Using human-baited nel trap, light trap,animal-baited trap, and insect net to collect mosquitoes;collecting the data of mosquitoes about species distribution in three provinces of Northeast China. Results There were 60 species and 6 genera mosquitoes in three provinces of Northeast China,of which 40 species and 4 genera in Heilongjiang province,distributed in 35 counties and cities;38 species and 6 genera were known in Jilin province,dis-tributed in 27 counties and cities;36 species and 5 genera in Manning Province,distributed in 50 counties and cities. Investigations of fauna distribution showed that 58 species were in Northeastern district,of which 26 species were in Daxinganling sublerritoy ,57 species in Changbaishan sublerrtoy, and 38 species in Songliao-plains 9ubterrtoy. 28 spe-cies were in Eastern-grasslands suhterrtny of Mongolia-xingjiang district. The mosquito species of extensive distribu-tion were Anopheles simnsis ,Aedes dorsalis, Ae. vexans, Culex modeslus, Cx. pipiens pallens, Cx. lagans. Conclusion The investigation provides the base for further study in three provinces of Northeast China.

  8. Composition, abundance and aspects of temporal variation in the distribution of Anopheles species in an area of Eastern Amazonia

    Directory of Open Access Journals (Sweden)

    Ledayane Mayana Costa Barbosa

    2014-06-01

    Full Text Available Introduction The diverse and complex environmental conditions of the Amazon Basin favor the breeding and development of Anopheles species. This study aimed to describe the composition, abundance and temporal frequency of Anopheles species and to correlate these factors with precipitation, temperature and relative humidity. Methods The study was conducted in the District of Coração, State of Amapá, Brazil. Samples were collected monthly during three consecutive nights, from 6:00 PM to 10:00 PM, from December 2010 to November 2011. In addition, four 12-hour collections (i.e., 6:00 PM to 6:00 AM were performed during this period. Results A total of 1,230 Anopheles specimens were collected. In the monthly collections, Anopheles darlingi was the predominant species, followed by An. braziliensis and An. albitarsis s.l., whereas An. darlingi, An. peryassui and An. braziliensis were the most frequent species collected in the 12-hour collections. The greatest number of anophelines was collected in September (the dry season. The highest frequency of anophelines was observed for An. darlingi during September, when there were the least rainfalls of the year, along with lower relative humidity and higher temperatures. There was little variation in the abundance of this species in other months, with the exception of slight increases in February, July and August. Conclusions The major malaria vectors, An. darlingi and An. albitarsis s.l. (likely An. marajoara, were the most abundant species collected in the study area. Consequently, prevention and control measures should be taken to prevent malaria outbreaks in the District of Coração.

  9. Molecular Marker Confirmation for Member of Anopheles barbirostris Van Der Wulp 1884 in Different Localities

    Directory of Open Access Journals (Sweden)

    Tri Baskoro Tunggul Satoto

    2015-11-01

    Full Text Available Vector and non-vector forms of Anopheles barbirostris have been recognized in Indonesia. However, because of their similarity in morphology, they were considered to be a single species. This information has led to the hypothesis that Anopheles barbirostris is a complex of species, which are morphologically indistinguishable from each other by ordinary methods. Objectives of the research was to identify the member of Anopheles barbirostris by PCR Assay. Samples were taken from two localities in Java, two in Sulawesi, two in Flores Indonesia, one from Thailand, one from China. The study was to develop a PCR-based technique of rDNA ITS2 region. Results showed that there are at least four species within the Anopheles barbirostris population studied, namely Anopheles barbirostris species DW, DX, DY and DZ. The length of the sequence amplified for species W, species X, species Y, and species Z were 339bps, 247bps, 165bps. and 157bps, respectively. Verification of the method was carried out with 270 mosquitoes from eight different field-collection sites using various sampling methods. Samples collected from Singaraja-Flores were identified as species W and X. All specimens collected from human bite outdoors were identified as species X; this species showed to be predominant among indoor light trap, indoor human bite and indoor resting collections Samples from Reo-Flores were identified as species W and X. All specimens from Manado and Palopo in Sulawesiwere identified as species Z. Similarly only species Y was found in samples from Thailand, while specimens from Salaman and Jambu in Java were identified as species W or species X. These species-specific molecular markers for the Anopheles barbirostris, complex appear to be reliable over a wide geographical area. However, larger number of samples is still needed from throughout the range of this species.Key words: Anopheles barbirostris, ITS2, PCR, Specific primer diagnostic

  10. Nigeria Anopheles vector database: an overview of 100 years' research.

    Directory of Open Access Journals (Sweden)

    Patricia Nkem Okorie

    Full Text Available Anopheles mosquitoes are important vectors of malaria and lymphatic filariasis (LF, which are major public health diseases in Nigeria. Malaria is caused by infection with a protozoan parasite of the genus Plasmodium and LF by the parasitic worm Wuchereria bancrofti. Updating our knowledge of the Anopheles species is vital in planning and implementing evidence based vector control programs. To present a comprehensive report on the spatial distribution and composition of these vectors, all published data available were collated into a database. Details recorded for each source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, morphological and molecular species identification methods, insecticide resistance status, including evidence of the kdr allele, and P. falciparum sporozoite rate and W. bancrofti microfilaria prevalence. This collation resulted in a total of 110 publications, encompassing 484,747 Anopheles mosquitoes in 632 spatially unique descriptions at 142 georeferenced locations being identified across Nigeria from 1900 to 2010. Overall, the highest number of vector species reported included An. gambiae complex (65.2%, An. funestus complex (17.3%, An. gambiae s.s. (6.5%. An. arabiensis (5.0% and An. funestus s.s. (2.5%, with the molecular forms An. gambiae M and S identified at 120 locations. A variety of sampling/collection and species identification methods were used with an increase in molecular techniques in recent decades. Insecticide resistance to pyrethroids and organochlorines was found in the main Anopheles species across 45 locations. Presence of P. falciparum and W. bancrofti varied between species with the highest sporozoite rates found in An. gambiae s.s, An. funestus s.s. and An. moucheti, and the highest microfilaria prevalence in An. gambiae s.l., An. arabiensis, and An. gambiae s.s. This comprehensive geo-referenced database provides an essential baseline on

  11. Allethrin-Based Mosquito Control Device Causing Knockdown, Morbidity, and Mortality in Four Species of Field-Caught Mosquitoes (Diptera: Culicidae).

    Science.gov (United States)

    Bibbs, Christopher S; Fulcher, Ali; Xue, Rui-De

    2015-07-01

    A mosquito control device marketed for spatial repellency, the ThermaCELL Mosquito Repellent Appliance, was evaluated in semifield trials against multiple field-caught species of mosquito. Using paper and mesh cages, mosquito test groups of at least 30 mosquitoes were suspended in a 2,337 cubic foot outdoor space while two ThermaCELL repellent devices were active. After 30 min of treatment, cages were moved to the laboratory to observe knockdown, morbidity, and mortality for 24 h. Species tested included Aedes atlanticus Dyar and Knab (98% average mortality), Psorophora ferox Humboldt (97% average mortality), Psorophora columbiae Dyar and Knab (96% average mortality), and Aedes taeniorhynchus Wiedemann (84% average mortality). The repellent devices showed effectiveness with high knockdown and mortality across all species tested. Mosquito control devices like the ThermaCELL Mosquito Repellent Appliance may have further practical applications to help combat viral exposures by limiting host mosquitoes. Such devices may provide a functional alternative to DEET dependence in the current state of mosquito management.

  12. Man-biting activity of Anopheles (Nyssorhynchus albimanus and An. (Kerteszia neivai (Diptera: Culicidae in the Pacific Lowlands of Colombia

    Directory of Open Access Journals (Sweden)

    Yezid Solarte

    1996-04-01

    Full Text Available The daily man-biting activity of Anopheles (Nyssorhynchus albimanus and An. (Kerteszia neivai was determined in four ecologically distinct settlements of the Naya River, Department of Valle, Colombia. Differences were found among the settlements with respect to the mosquito species present, intradomiciliary and extradomiciliary biting activity and population densities.

  13. Larvicidal and pupicidal activity of synthesized silver nanoparticles using Leucas aspera leaf extract against mosquito vectors, Aedes aegypti and Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    S. Sivapriyajothi

    2014-08-01

    Full Text Available Mosquitoes are one of the most medically significant groups of vectors, having an ability to transmit parasites and pathogens that can have devastating impacts on humans. The development of reliable and ecofriendly processes for the synthesis of metallic nanoparticles is an important step in the field of application of nanotechnology. In this study, we address the biosynthesis of silver nanoparticles (AgNPs using Leucas aspera leaf extract, and evaluate its lethal concentration (LC50 and LC90 values against first to fourth instar larvae and pupae of the mosquito vectors, Aedes aegypti and Anopheles stephensi. The nanoparticles were characterized by UV-Vis spectrum, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transformed infrared spectroscopy analysis. Larvae and pupae were exposed to varying concentrations of aqueous extracts of synthesized AgNPs for 24 h. The maximum mortality was observed from synthesized AgNPs, with LC50 values for I-IV instars and pupae ranging from 13.06 to 25.54, and LC90 values ranging from 24.11 to 47.34 for A. aegypti; for A. stephensi, the corresponding LC50 values ranged from 12.45 to 22.26, and the LC90 values ranged from 23.50 to 42.95. With methanol leaf extract of L. aspera against A. aegypti, the LC50 values ranged from 174.89 to 462.96 and the LC90 values ranged from 488.16 to 963.74; for A. stephensi, the corresponding LC50 values ranged from 148.93 to 417.07 and the LC90 values ranged from 449.72 to 912.94. The study suggests that nanoparticles could be a preferred alternative to the most hazardous existing chemical pesticides, contributing to a more healthy environment by providing an ideal ecological and user-friendly vector control strategy for managing malaria and dengue, and contributing to their eventual elimination in the near future.

  14. Prolonged Colonisation, Irradiation, and Transportation do not Impede Mating Vigour and Competitiveness of Male Anopheles arabiensis Mosquitoes under Semifield Conditions in Northern Sudan

    International Nuclear Information System (INIS)

    Background. In Sudan, the Sterile Insect Technique (SIT) is being developed to suppress populations of Anopheles arabiensis. The present study was carried out to evaluate the impact of long-term colonisation, irradiation, and transportation on male vigour and mating competitiveness under controlled semi-field conditions. Materials and Methods. Male mosquitoes were irradiated in Khartoum as pupae and transported 400 km to the field site in Dongola. Wild males and females were collected as immature stages (larvae and pupae) from the field site and sexed immediately after adult emergence. Competition experiments were carried out to test the mating competitiveness and vigour of colonised males (non-irradiated or irradiated) against wild conspecifics in the semi-field system. Results. Mortality resulting from packaging and transportation from Khartoum to Dongola was low for adults (1.1% for irradiated and 1.3% for non-irradiated males). In contrast, all irradiated pupae died on their way to the field site. On average, 54.9% females were inseminated after one night. There were no differences between the number of females inseminated by colony males and those inseminated by wild males. Only a slightly significant difference between the numbers of females inseminated by irradiated males (14.0±1.7) or by wild males (19.7±1.7) was observed. However, the competitive index (CI) for irradiated and colony males when competed with wild males were 0.71 and 0.81 respectively. Conclusions. Packing and transportation methods for pupae need to be improved. Prolonged colonisation (68 generations), irradiation and transportation of adult males did not affect their ability to locate virgin females and compete against wild conspecifics. Irradiation, in contrast to many reports, only had a marginal effect on released males during the first night after their release. These findings support the feasibility of staging an SIT campaign against this malaria vector. (author)

  15. Electrophysiological, flight orientation and oviposition responses of three species of mosquito vectors to hexadecyl pentanoate: residual oviposition repellent activity.

    Science.gov (United States)

    Seenivasagan, T; Sharma, Kavita R; Ganesan, K; Prakash, Shri

    2010-05-01

    Understanding on the chemical ecology of mosquito behavior is of paramount importance in developing control programs employing attractants and repellents. Several workers focused on topical repellents and oviposition attractants of mosquitoes, however, only limited work has been accomplished on mosquito oviposition repellents. The present systematic investigation provides evidence on the effectiveness of a C21 fatty acid ester- hexadecyl pentanoate, to stimulate antennal olfactory receptors of Aedes aegypti (L.), Ae. albopictus (Skuse), and Anopheles stephensi (Liston) that mediate their long-range olfaction guided flight orientation behavior by repelling the gravid females of these mosquito vectors in the olfactometer. The compound loaded onto an effervescent tablet retained its repellent property in the treated substrates for up to 1 wk at 10 mg/L. In places, where the mosquito breeding habitats are near to human habitations, could be treated with hexadecyl pentanoate to repel the ovipositing gravid females as a component of the integrated approach for mosquito management by disrupting the mosquito life cycle and population growth.

  16. Laboratory studies on the olfactory behaviour of Anopheles quadriannulatus

    NARCIS (Netherlands)

    Pates, H.V.; Takken, W.; Curtis, C.F.

    2005-01-01

    The host preference of Anopheles quadriannulatus Theobald (Diptera: Culicidae), the zoophilic member of the malaria mosquito complex Anopheles gambiae Giles, was investigated in a dual-choice olfactometer. Naïve female mosquitoes were exposed to CO2, acetone, 1-octen-3-ol, and skin emanations from c

  17. Geographic distribution of wolbachial infections in mosquitoes from Thailand.

    Science.gov (United States)

    Wiwatanaratanabutr, Itsanun

    2013-11-01

    Members of the genus Wolbachia are inherited intracellular bacterial endosymbionts that infect a diverse range of arthropods. Here I report the results of a survey of these endosymbionts in different mosquito species from six geographic regions of Northern, Northeastern, Western, Central, Eastern and Southern Thailand. Using gene amplification assays with wsp and groE gene primers, wolbachiae were detected in 999 mosquitoes representing 28 species of 1622 specimens collected representing 74 species of wild-caught mosquitoes from all regions of Thailand. Results using wsp primers were similar to those using groE primers in all cases. Wolbachiae had not been reported previously from five of the species tested, namely, Aedes lineatopennis, Aedes vexans, Aedes vittatus, Culex pallidothorax and Culex whitmorei. Infections were found in all major disease vector genera except Anopheles. These results indicate that wolbachial infections are distributed throughout many mosquito species in Thailand. PMID:23660513

  18. Annotated checklist of the mosquito species encountered during arboviral studies in Iquitos, Peru (Diptera: Culicidae).

    Science.gov (United States)

    Pecor, J E; Jones, J; Turell, M J; Fernandez, R; Carbajal, F; O'Guinn, M; Sardalis, M; Watts, D; Zyzak, M; Calampa, C; Klein, T A

    2000-09-01

    A checklist of the mosquito fauna encountered during arboviral studies in Iquitos, Peru, is presented. A total of 16 genera, 30 subgenera, and 96 species were identified, including 24 species reported from Peru for the 1st time. Notations on the taxonomy and biology for 28 species are also provided.

  19. Synthesis, Polymorphism, and Insecticidal Activity of Methyl 4-(4-chlorophenyl)-8-iodo-2-methyl-6-oxo-1,6-dihydro-4H-pyrimido[2,1-b]quinazoline-3-Carboxylate Against Anopheles arabiensis Mosquito.

    Science.gov (United States)

    Venugopala, Katharigatta N; Nayak, Susanta K; Gleiser, Raquel M; Sanchez-Borzone, Mariela E; Garcia, Daniel A; Odhav, Bharti

    2016-07-01

    Mosquitoes are the major vectors of pathogens and parasites including those causing malaria, the most deadly vector-borne disease. The negative environmental effects of most synthetic compounds combined with widespread development of insecticide resistance encourage an interest in finding and developing alternative products against mosquitoes. In this study, pyrimido[2,1-b]quinazoline derivative DHPM3 has been synthesized by three-step chemical reaction and screened for larvicide, adulticide, and repellent properties against Anopheles arabiensis, one of the dominant vectors of malaria in Africa. The title compound emerged as potential larvicide agent for further research and development, because it exerted 100% mortality, while adulticide activity was considered moderate. PMID:26841246

  20. The relationship between wing length, blood meal volume, and fecundity for seven colonies of Anopheles species housed at the Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand.

    Science.gov (United States)

    Phasomkusolsil, Siriporn; Pantuwattana, Kanchana; Tawong, Jaruwan; Khongtak, Weeraphan; Kertmanee, Yossasin; Monkanna, Nantaporn; Klein, Terry A; Kim, Heung-Chul; McCardle, Patrick W

    2015-12-01

    Established colonies of Anopheles campestris, Anopheles cracens, Anopheles dirus, Anopheles kleini, Anopheles minimus, Anopheles sawadwongporni, and Anopheles sinensis are maintained at the Armed Forces Research Institute of Medical Sciences (AFRIMS). Females were provided blood meals on human blood containing citrate as an anticoagulant using an artificial membrane feeder. The mean wing length, used as an estimate of body size, for each species was compared to blood-feeding duration (time), blood meal volume, and numbers of eggs oviposited. Except for An. campestris and An. cracens, there were significant interspecies differences in wing length. The mean blood meal volumes (mm(3)) of An. kleini and An. sinensis were significantly higher than the other 5 species. For all species, the ratios of unfed females weights/blood meal volumes were similar (range: 0.76-0.88), except for An. kleini (1.08) and An. cracens (0.52), that were significantly higher and lower, respectively. Adult females were allowed to feed undisturbed for 1, 3, and 5min intervals before blood feeding was interrupted. Except for An. campestris and An. sawadwongporni, the number of eggs oviposited were significantly higher for females that fed for 3min when compared to those that only fed for 1min. This information is critical to better understand the biology of colonized Anopheles spp. and their role in the transmission of malaria parasites as they relate to the relative size of adult females, mean volumes of blood of engorged females for each of the anopheline species, and the effect of blood feeding duration on specific blood meal volumes and fecundity.

  1. Immatures of Lutzia fuscanus (Wiedemann,1820)(Dipter-a:Culicidae)in ricefields:implications for biological con-trol of vector mosquitoes

    Institute of Scientific and Technical Information of China (English)

    Mihir Kumar Pramanik; Gautam Aditya

    2009-01-01

    Objective:Rice fields are dynamic mosquito larval habitats with assemblage of different predator taxa,inclu-ding the larva of the mosquitoes Lutzia.Entomological surveillance in the ricefields is essential to evaluate the potential of these predators as biological resource to regulate vector mosquito population.In view of this,a sur-vey of ricefields for immatures of different mosquito species including Lutzia was conducted.Methods:Survey of selected ricefields was carried out to evaluate the species composition of mosquitoes.Laboratory evaluation of the immatures of Lutzia mosquitoes was carried out to assess its predation potential using mosquitoes and chi-ronomid as preys.Results:The survey revealed the presence of five mosquito species belonging to the genera Anopheles and Culex and the predatory immatures of the mosquito Lutzia fuscana (Wiedemann,1820).The ra-tio of prey and predatory larva ranged between 1.46 and 4.78 during the study period,with a significant corre-lation on the relative abundance of the larval stages of Lt.fuscanus and Anopheles and Culex larvae.Under la-boratory conditions,a single IV instar larvae of Lt.fuscanus was found to consume on an average 5 to 15 equiv-alent instars of Anopheles sp.and Culex sp.larvae per day depending on its age.The prey consumption re-duced with the larval stage approaching pupation.When provided with equal numbers of chironomid and A-nopheles or Culex larvae,larva of Lt.fuscanus consumed mosquito larvae significantly more compared to chi-ronomids.Conclusion:The survey results and the preliminary study on predation are suggestive of the role of Lt.fuscanus in the regulation of vector mosquito populations naturally in the ricefields.Since Lt.fuscanus is common in many Asian countries,further studies on bioecology will be helpful to justify their use in mosquito control programme.

  2. Feeding stage, species, body part and sex-specific activity of glutathione S-transferase in mosquito.

    Science.gov (United States)

    Tripathy, A; Kar, S K

    2015-03-01

    In the present study, the feeding stage, body parts, development and sex specific activity of Glutathione S-transferases (GSTs) were observed in different mosquito species (Aedes aegypti, Culex quinquefasciatus, Anopheles stephensi, An. culicifacies, An. annularis, An. subpictus, An. vagus). GST activity was assayed spectrophotometrically at 23°C, using a UV Max microplate Reader, to measure the rate of conjugation of GSH to CDNB. A significant species-specific difference in the activity of GST was noticed, highest being in unfed Ae. aegypti (41.2 nmol/min/mg) followed by unfed Cx. quinquefasciatus (7.9 nmol/min/mg) and the least in unfed An. stephensi (5.8 nmol/min/mg). In all the species the GST activity was found to be significantly higher in fully fed and gravid stages compared with the unfed, while the enzyme activity was reduced after egg laying either to the level of unfed animals or well below its level in all the experimental species. The GST activity was found to be higher in the abdominal region of all the experimental species in comparison with the other body parts (head and thorax). The GST activity of An. stephensi increased gradually through the larval stages and reached the maximum level in the pupae and remained at that level in the newly emerged adults. However, its activity declined markedly (10 fold) with ageing from 5 to 40 days. A significant sex-related difference in the specific activity of GST was found in An. stephensi where approximately 3.5 fold lower activity was observed in males compared with its females, whereas no significant variation was noticed in Ae. aegypti and Cx. quinquefasciatus. The study corroborates the fact that GSTs are differentially regulated by multiple mechanisms in response to xenobiotics modulation in situation-specific manner such as species, sex, feeding and developmental stage. The knowledge of situation-specific modulation of GST will provide a better understanding of GST based insecticide resistance

  3. "Use of Random Amplified Polymorphic DNA Polymerase Chain Reaction (RAPD-PCR and ITS2 PCR assays for differentiation of populations and putative sibling species of Anopheles fluviatilis (Diptera: Culicidae in Iran"

    Directory of Open Access Journals (Sweden)

    SR Naddaf Dezfouli

    2002-09-01

    Full Text Available Anopheles fluviatilis complex is known to be a vector of malaria in Iran. Since mosquitoes of this species cover a wide geographical range in Iran, they might have evolved into different separated populations. Random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR assay was used to differentiate geographic populations of this species. DNA was extracted from individual mosquitoes from 8 localities in 4 south and southeast provinces and amplified in PCR reactions using 18 single primers of arbitrary nucleotide sequence. Results of RAPD-PCR showed that Kazeroun populations could simply be differentiated from other populations using a diagnostic fragment amplified with primer UBC-306. But other populations could not be differentiated either visually or by means of statistical analysis. Moreover ITS2 fragments of some selected specimens were amplified using a pair of universal primer and sequenced as a key standard for detection of putative sibling species. Sequence analysis of the ITS2 fragments revealed a very high (100% homology among the populations. These findings are crucial in epidemiological studies concerning relatedness of geographic populations and vector movement in the region. Results of RAPD-PCR and ITS2 analysis suggest that this taxon in Iran comprises of only one species with a low genetic variation among geographic populations.

  4. Distribution and occurrence of mosquito species in the municipal areas of Imo State, Nigeria

    OpenAIRE

    Ifeyinwa Celestina MGBEMENA; Tochi EBE

    2012-01-01

    A study of the ecology of drainage - breeding mosquito vectors was conducted in the three urban centers (Owerri, Orlu and Okigwe) of Imo State, Nigeria. Four drainage sites located around markets, residential, stream and hotel premises were selected in each urban centre. Dipping method of sampling was employed and a total of 8,820 mosquitoes comprising eight species namely; Aedes aegypti, Aedes vittatus, Culex quinquefasciatus, Culex tigripes, Culex horridus, Culex cinereus, Culex annuliorus ...

  5. The complete mitochondrial genome of Anopheles minimus (Diptera: Culicidae) and the phylogenetics of known Anopheles mitogenomes.

    Science.gov (United States)

    Hua, Ya-Qiong; Ding, Yi-Ran; Yan, Zhen-Tian; Si, Feng-Ling; Luo, Qian-Chun; Chen, Bin

    2016-06-01

    Anopheles minimus is an important vector of human malaria in southern China and Southeast Asia. The phylogenetics of mosquitoes has not been well resolved, and the mitochondrial genome (mtgenome) has proven to be an important marker in the study of evolutionary biology. In this study, the complete mtgenome of An. minimus was sequenced for the first time. It is 15 395 bp long and encodes 37 genes, including 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), two ribosomal RNAs (rRNAs) and a non-coding region. The gene organization is consistent with those of known Anopheles mtgenomes. The mtgenome performs a clear bias in nucleotide composition with a positive AT-skew and a negative GC-skew. All 13 PCGs prefer to use the codon UUA (Leu), ATN as initiation codon but cytochrome-oxidase subunit 1 (COI) and ND5, with TCG and GTG, and TAA as termination codon, but COI, COII, COIII and ND4, all with the incomplete T. tRNAs have the typical clover-leaf structure, but tRNA(Ser(AGN)) is consistent with known Anopheles mtgenomes. The control region includes a conserved T-stretch and a (TA)n stretch, and has the highest A+T content at 93.1%. The phylogenetics of An. minimus with 18 other Anopheles species was constructed by maximum likelihood and Bayesian inference, based on concatenated PCG sequences. The subgenera, Cellia and Anopheles, and Nyssorhynchus and Kerteszia have mutually close relationships, respectively. The Punctulatus group and Leucosphyrus group of Neomyzomyia Series, and the Albitarsis group of Albitarsis Series were suggested to be monophyletic. The monophyletic status of the subgenera, Cellia, Anopheles, Nyssorhynchus and Kerteszia need to be further elucidated. PMID:26852698

  6. Robust and regulatory expression of defensin A gene driven by vitellogenin promoter in transgenic Anopheles stephensi

    Institute of Scientific and Technical Information of China (English)

    CHEN XiaoGuang; ZHANG YaJing; ZHENG XueLi; WANG ChunMei

    2007-01-01

    The use of genetically modified mosquitoes to reduce or replace field populations is a new strategy to control mosquito-borne diseases. The precondition of the implementation of this strategy is the ability to manipulate the genome of mosquitoes and to induce specific expression of the effector molecules driven by a suitable promoter. The objective of this study is to evaluate the expression of defensin A gene of Anopheles sinensis under the control of a vitellogenin promoter in transgenic Anopheles stephensi. The regulatory region of Anopheles gambiae vitellogenin was cloned and subcloned into transfer vector pSLFa consisting of an expression cassette with defensin A coding sequence. Then, the expression cassette was transferred into transformation vector pBac[3xP3-DsRedafm] using Asc I digestion. The recombinant plasmid DNA of pBac[3xP3DsRed-AgVgT2-DefA] and helper plasmid DNA of phsp-pBac were micro-injected into embryos of An. stephensi. The positive transgenic mosquitoes were screened by observing specific red fluorescence in the eyes of G1 larvae. Southern blot analysis showed that a single-copy transgene integrated into the genome of An. stephensi. RT-PCR analysis showed that the defensin A gene expressed specifically in fat bodies of female mosquitoes after a blood meal. Interestingly, the mRNA of defensin A is more stable compared with that of the endogenous vitellogenin gene. After multiple blood meals, the expression of defensin A appeared as a reducible and non-cycling type, a crucial feature for its anti-pathogen effect. From data above, we concluded that the regulatory function of the Vg promoter and the expression of defensin A gene were relatively conserved in different species of anopheles mosquitoes. These molecules could be used as candidates in the development of genetically modified mosquitoes.

  7. When genetic distance matters: Measuring genetic differentiation at microsatellite loci in whole-genome scans of recent and incipient mosquito species

    Science.gov (United States)

    Wang, Rui; Zheng, Liangbiao; Touré, Yeya T.; Dandekar, Thomas; Kafatos, Fotis C.

    2001-01-01

    Genetic distance measurements are an important tool to differentiate field populations of disease vectors such as the mosquito vectors of malaria. Here, we have measured the genetic differentiation between Anopheles arabiensis and Anopheles gambiae, as well as between proposed emerging species of the latter taxon, in whole genome scans by using 23–25 microsatellite loci. In doing so, we have reviewed and evaluated the advantages and disadvantages of standard parameters of genetic distance, FST, RST, (δμ)2, and D. Further, we have introduced new parameters, D′ and DK, which have well defined statistical significance tests and complement the standard parameters to advantage. D′ is a modification of D, whereas DK is a measure of covariance based on Pearson's correlation coefficient. We find that A. gambiae and A. arabiensis are closely related at most autosomal loci but appear to be distantly related on the basis of X-linked chromosomal loci within the chromosomal Xag inversion. The M and S molecular forms of A. gambiae are practically indistinguishable but differ significantly at two microsatellite loci from the proximal region of the X, outside the Xag inversion. At one of these loci, both M and S molecular forms differ significantly from A. arabiensis, but remarkably, at the other locus, A. arabiensis is indistinguishable from the M molecular form of A. gambiae. These data support the recent proposal of genetically differentiated M and S molecular forms of A. gambiae. PMID:11553812

  8. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India.

    Science.gov (United States)

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (puseful to ensure their role in malaria transmission. PMID:27010649

  9. Mosquito immune responses and compatibility between Plasmodium parasites and anopheline mosquitoes

    OpenAIRE

    Molina-Cruz Alvaro; Povelones Michael; Ndikuyeze Georges; Rodrigues Janneth; Jaramillo-Gutierrez Giovanna; Barillas-Mury Carolina

    2009-01-01

    Abstract Background Functional screens based on dsRNA-mediated gene silencing identified several Anopheles gambiae genes that limit Plasmodium berghei infection. However, some of the genes identified in these screens have no effect on the human malaria parasite Plasmodium falciparum; raising the question of whether different mosquito effector genes mediate anti-parasitic responses to different Plasmodium species. Results Four new An. gambiae (G3) genes were identified that, when silenced, hav...

  10. Species diversity of mosquito breeding in rubber plantations of Kerala, India.

    Science.gov (United States)

    Sumodan, P K

    2012-06-01

    During south-west monsoon season, rubber plantations in Kerala have been found to provide ideal conditions for the proliferation of mosquitoes. In a study conducted from June 2005 to September 2010 in Kannur, Wayanad, and Kozhikode districts, 12 species of mosquitoes in 6 genera--Aedes, Armigeres, Culex, Heizmannia, Toxorhynchites, and Verrallina--were found to breed in rain water-filled cups used for collecting rubber latex. The only vector species found was Aedes albopictus, known for its ability to transmit dengue and chikungunya. The combinations of species found associated in the latex cups is also presented. PMID:22894122

  11. Identifying the main mosquito species in China based on DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Gang Wang

    Full Text Available Mosquitoes are insects of the Diptera, Nematocera, and Culicidae families, some species of which are important disease vectors. Identifying mosquito species based on morphological characteristics is difficult, particularly the identification of specimens collected in the field as part of disease surveillance programs. Because of this difficulty, we constructed DNA barcodes of the cytochrome c oxidase subunit 1, the COI gene, for the more common mosquito species in China, including the major disease vectors. A total of 404 mosquito specimens were collected and assigned to 15 genera and 122 species and subspecies on the basis of morphological characteristics. Individuals of the same species grouped closely together in a Neighborhood-Joining tree based on COI sequence similarity, regardless of collection site. COI gene sequence divergence was approximately 30 times higher for species in the same genus than for members of the same species. Divergence in over 98% of congeneric species ranged from 2.3% to 21.8%, whereas divergence in conspecific individuals ranged from 0% to 1.67%. Cryptic species may be common and a few pseudogenes were detected.

  12. INSECTICIDAL ACTIVITIES OF ESSENTIAL OILS EXTRACTED FROM THREE SPECIES OF POACEAE ON ANOPHELES GAMBIAE SPP, MAJOR VECTOR OF MALARIA

    Directory of Open Access Journals (Sweden)

    Dominique C. K. Sohounhloué

    2010-12-01

    Full Text Available In this paper, the insecticidal activities on Anopheles gambiae spp of the essential oils (EO extracted from the dry leaves of some species collected in Benin were studied. The essential oil yields are 2.8, 1.7 and 1.4�0respectively for Cymbopogon schoanenthus (L. Spreng (CS, Cymbopogon citratus Stapf. (CC and Cymbopogon giganteus (Hochst. Chiov (CG. The GC/MS analysis showed that the EO of CS had a larger proportion in oxygenated monoterpenes (86.3�20whereas those of the sheets of CC and CG are relatively close proportions (85.5�0and 82.7�0respectively with. The piperitone (68.5�  2-carene (11.5� and -eudesmol (4.6�20are the major components of the EO of CS while trans para-mentha-1(7,8-dien-2-ol (31.9� trans para-mentha-2,8-dien-1-ol (19.6� cis para-mentha-2,8-dien-1-ol (7.2� trans piperitol (6.3�20and limonene (6.3�20prevailed in the EO of CG. The EO of CC revealed a rich composition in geranial (41.3� neral (33� myrcene (10.4� and geraniol (6.6� The biological tests have shown that these three EO induced 100�0mortality of Anopheles gambiae to 1.1, 586.58 and 1549 µg•cm-2 respectively for CC, CS and CG. These effects are also illustrated by weak lethal concentration for 50�0anopheles population (CC: 0.306; CS: 152.453 and CG: 568.327 µg•cm-2 in the same order of reactivity. The EO of CC appeared most active on two stocks (sensitive and resistant of Anopheles gambiae.

  13. Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.)Hook. f. exBenth (Rutaceae) against three mosquito species

    Institute of Scientific and Technical Information of China (English)

    Marimuthu Govindarajan

    2010-01-01

    Objective:To determine the mosquito larvicidal activity of leaf essential oil and their chemical constituents fromClausena anisata(C. anisata) (Willd.) Hook. f. ex Benth. against Culex quinquefasciatus, Aedes aegypti andAnopheles Stephensi.Methods:Essential oil was obtained by hydro-distillation and the chemical composition of the leaf essential oil was analyzed using gas chromatography-mass spectrometry. The mosquitoes were reared in the vector control laboratory and twenty late III instar larvae of three mosquito species were exposed to based on the wide range and narrow range tests, essential oil was tested at50, 100, 150, 200 and 250 ppm and each compound was tested at various concentration (5-75 ppm) and were assayed in the laboratory by using the protocol ofWHO 2005; the 24 hLC50 values of theC. anisata leaf essential oil and their major compounds were determined following Probit analysis.Results:The oil contained were mainly β-pinene (32.8%), sabinene(28.3%), germacrene-D (12.7%), estragole (6.4%) and linalool(5.9%). The essential oil from the leaves ofC. anisataexhibited significant larvicidal activity, with24 hLC50 values of140.96, 130.19 and119.59ppm, respectively. The five pure constituents extracted from theC. anisata leaf essential oil were also tested individually against three mosquito larvae. The LC50values of β-pinene, sabinene, germacrene-D, estragole and linalool appeared to be most effective againstAnopheles stephensi(LC50-23.17, 19.67, 16.95, 11.01, 35.17ppm) followed byAedes aegypti (LC50-27.69, 21.20,18.76, 12.70, 38.64 ppm) and Culex quinquefasciatus(LC50-32.23, 25.01, 21.28, 14.01, 42.28).Conclusions:The essential oil of C. anisata contains five major compounds and has remarkable larvicidal properties, which may be considered as a potent source for the production of natural larvicides.

  14. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles)

    OpenAIRE

    Bossou, Annick; Mangelinckx, Sven; Yedomonhan, Hounnankpon; Boko, Pelagie M; Akogbeto, Martin C; De Kimpe, Norbert; Avlessi, Felicien; Sohounhloue, Dominique CK

    2013-01-01

    Background Insecticide resistance in sub-Saharan Africa and especially in Benin is a major public health issue hindering the control of the malaria vectors. Each Anopheles species has developed a resistance to one or several classes of the insecticides currently in use in the field. Therefore, it is urgent to find alternative compounds to conquer the vector. In this study, the efficacies of essential oils of nine plant species, which are traditionally used to avoid mosquito bites in Benin, we...

  15. Spatio-temporal dynamics of mosquitoes in stream pools of a biosphere reserve of Southern Western Ghats, India.

    Science.gov (United States)

    Anbalagan, S; Arunprasanna, V; Kannan, M; Dinakaran, S; Krishnan, M

    2015-12-01

    The spatial and temporal dynamics of mosquitoes in stream pools were examined in a biosphere reserve of the Southern Western Ghats, India. The immature mosquitoes in stream pools were collected from stream substrates of bedrock pool, boulder cavity and sand puddle. The collected larvae and pupae were reared and identified. In total, 16 species from four genera of mosquitoes were collected. The mosquito species from Culex and Anopheles were predominantly occurred. The bedrock pool had the highest diversity and abundance of mosquitoes. The statistical analyses showed that the substrate specificity and the seasons were positively related to the distribution of mosquitoes rather than spatial pattern. This study described the spatial and temporal pattern of mosquitoes in stream pools of the Southern Western Ghats. This information would be helpful to National Vector borne disease control program for surveillance and control.

  16. Physiological correlates of ecological divergence along an urbanization gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Tene Fossog Billy

    2013-01-01

    Full Text Available Abstract Background Limitations in the ability of organisms to tolerate environmental stressors affect their fundamental ecological niche and constrain their distribution to specific habitats. Evolution of tolerance, therefore, can engender ecological niche dynamics. Forest populations of the afro-tropical malaria mosquito Anopheles gambiae have been shown to adapt to historically unsuitable larval habitats polluted with decaying organic matter that are found in densely populated urban agglomerates of Cameroon. This process has resulted in niche expansion from rural to urban environments that is associated with cryptic speciation and ecological divergence of two evolutionarily significant units within this taxon, the molecular forms M and S, among which reproductive isolation is significant but still incomplete. Habitat segregation between the two forms results in a mosaic distribution of clinally parapatric patches, with the M form predominating in the centre of urban agglomerates and the S form in the surrounding rural localities. We hypothesized that development of tolerance to nitrogenous pollutants derived from the decomposition of organic matter, among which ammonia is the most toxic to aquatic organisms, may affect this pattern of distribution and process of niche expansion by the M form. Results Acute toxicity bioassays indicated that populations of the two molecular forms occurring at the extremes of an urbanization gradient in Yaounde, the capital of Cameroon, differed in their response to ammonia. The regression lines best describing the dose-mortality profile differed in the scale of the explanatory variable (ammonia concentration log-transformed for the S form and linear for the M form, and in slope (steeper for the S form and shallower for the M form. These features reflected differences in the frequency distribution of individual tolerance thresholds in the two populations as assessed by probit analysis, with the M form exhibiting

  17. Paratransgenesis: a promising new strategy for mosquito vector control.

    Science.gov (United States)

    Wilke, André Barretto Bruno; Marrelli, Mauro Toledo

    2015-01-01

    The three main mosquito genera, Anopheles, Aedes and Culex, transmit respectively malaria, dengue and lymphatic filariasis. Current mosquito control strategies have proved unsuccessful, and there still is a substantial number of morbidity and mortality from these diseases. Genetic control methods have now arisen as promising alternative strategies, based on two approaches: the replacement of a vector population by disease-refractory mosquitoes and the release of mosquitoes carrying a lethal gene to suppress target populations. However, substantial hurdles and limitations need to be overcome if these methods are to be used successfully, the most significant being that a transgenic mosquito strain is required for every target species, making genetically modified mosquito strategies inviable when there are multiple vector mosquitoes in the same area. Genetically modified bacteria capable of colonizing a wide range of mosquito species may be a solution to this problem and another option for the control of these diseases. In the paratransgenic approach, symbiotic bacteria are genetically modified and reintroduced in mosquitoes, where they express effector molecules. For this approach to be used in practice, however, requires a better understanding of mosquito microbiota and that symbiotic bacteria and effector molecules be identified. Paratransgenesis could prove very useful in mosquito species that are inherently difficult to transform or in sibling species complexes. In this approach, a genetic modified bacteria can act by: (a) causing pathogenic effects in the host; (b) interfering with the host's reproduction; (c) reducing the vector's competence; and (d) interfering with oogenesis and embryogenesis. It is a much more flexible and adaptable approach than the use of genetically modified mosquitoes because effector molecules and symbiotic bacteria can be replaced if they do not achieve the desired result. Paratransgenesis may therefore become an important integrated

  18. Aromatic plant-derived essential oil: an alternative larvicide for mosquito control.

    Science.gov (United States)

    Pitasawat, B; Champakaew, D; Choochote, W; Jitpakdi, A; Chaithong, U; Kanjanapothi, D; Rattanachanpichai, E; Tippawangkosol, P; Riyong, D; Tuetun, B; Chaiyasit, D

    2007-04-01

    Five aromatic plants, Carum carvi (caraway), Apium graveolens (celery), Foeniculum vulgare (fennel), Zanthoxylum limonella (mullilam) and Curcuma zedoaria (zedoary) were selected for investigating larvicidal potential against mosquito vectors. Two laboratory-reared mosquito species, Anopheles dirus, the major malaria vector in Thailand, and Aedes aegypti, the main vector of dengue and dengue hemorrhagic fever in urban areas, were used. All of the volatile oils exerted significant larvicidal activity against the two mosquito species after 24-h exposure. Essential oil from mullilam was the most effective against the larvae of A. aegypti, while A. dirus larvae showed the highest susceptibility to zedoary oil.

  19. Sibling species of the Anopheles funestus group, and their infection with malaria and lymphatic filarial parasites, in archived and newly collected specimens from northeastern Tanzania

    DEFF Research Database (Denmark)

    Derua, Yahya A; Alifrangis, Michael; Magesa, Stephen M;

    2015-01-01

    , and Anopheles leesoni, with the first being by far the most common (overall 94.4%). When comparing archived specimens from 2005-2007 to those from 2008-2012, a small but statistically significant decrease in proportion of An. funestus s.s. was noted, but otherwise observed temporal changes in sibling species......BACKGROUND: Studies on the East African coast have shown a recent dramatic decline in malaria vector density and change in composition of sibling species of the Anopheles gambiae complex, paralleled by a major decline in malaria incidence. In order to better understand the ongoing changes in vector......-parasite dynamics in the area, and to allow for appropriate adjustment of control activities, the present study examined the composition, and malaria and lymphatic filarial infection, of sibling species of the Anopheles funestus group. Similar to the An. gambiae complex, the An. funestus group contains important...

  20. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India

    Science.gov (United States)

    Dhiman, Sunil; Yadav, Kavita; Rabha, Bipul; Goswami, Diganta; Hazarika, S.; Tyagi, Varun

    2016-01-01

    During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC) and Balipara primary health centre (BPHC) areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (pp = 0.0), and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004). Minimum infection rate (MIR) of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission. PMID:27010649

  1. Evaluation of Insecticides Susceptibility and Malaria Vector Potential of Anopheles annularis s.l. and Anopheles vagus in Assam, India.

    Directory of Open Access Journals (Sweden)

    Sunil Dhiman

    Full Text Available During the recent past, development of DDT resistance and reduction to pyrethroid susceptibility among the malaria vectors has posed a serious challenge in many Southeast Asian countries including India. Current study presents the insecticide susceptibility and knock-down data of field collected Anopheles annularis sensu lato and An. vagus mosquito species from endemic areas of Assam in northeast India. Anopheles annularis s.l. and An. vagus adult females were collected from four randomly selected sentinel sites in Orang primary health centre (OPHC and Balipara primary health centre (BPHC areas, and used for testing susceptibility to DDT, malathion, deltamethrin and lambda-cyhalothrin. After insecticide susceptibility tests, mosquitoes were subjected to VectorTest™ assay kits to detect the presence of malaria sporozoite in the mosquitoes. An. annularis s.l. was completely susceptible to deltamethrin, lambda-cyhalothrin and malathion in both the study areas. An. vagus was highly susceptible to deltamethrin in both the areas, but exhibited reduced susceptibility to lambda-cyhalothrin in BPHC. Both the species were resistant to DDT and showed very high KDT50 and KDT99 values for DDT. Probit model used to calculate the KDT50 and KDT99 values did not display normal distribution of percent knock-down with time for malathion in both the mosquito species in OPHC (p<0.05 and An. vagus in BPHC (χ2 = 25.3; p = 0.0, and also for deltamethrin to An. vagus in BPHC area (χ2 = 15.4; p = 0.004. Minimum infection rate (MIR of Plasmodium sporozoite for An. vagus was 0.56 in OPHC and 0.13 in BPHC, while for An. annularis MIR was found to be 0.22 in OPHC. Resistance management strategies should be identified to delay the expansion of resistance. Testing of field caught Anopheles vectors from different endemic areas for the presence of malaria sporozoite may be useful to ensure their role in malaria transmission.

  2. Wyeomyia exallos, a new species of sylvatic mosquito (Diptera: Culicidae) from Brazil.

    Science.gov (United States)

    Rocha, Glauber Pereira; Lourenço-de-Oliveira, Ricardo; Motta, Monique de Albuquerque

    2012-11-01

    Wyeomyia exallos, a new mosquito species from Atlantic Forest of southeastern Brazil, is described based on morphological characters of the adult female, male, male genitalia, pupa and fourth-instar larva. The morphological characters of Wy. exallos sp. nov. are compared with those of different subgenera of Wyeomyia as well as of species without subgeneric position. It is proposed that the new species should be placed in genus Wyeomyia Theobald without subgeneric assignment.

  3. Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Takken Willem

    2010-01-01

    Full Text Available Abstract Background Entomopathogenic fungi have shown great potential for the control of adult malaria vectors. However, their ability to control aquatic stages of anopheline vectors remains largely unexplored. Therefore, how larval characteristics (Anopheles species, age and larval density, fungus (species and concentration and environmental effects (exposure duration and food availability influence larval mortality caused by fungus, was studied. Methods Laboratory bioassays were performed on the larval stages of Anopheles gambiae and Anopheles stephensi with spores of two fungus species, Metarhizium anisopliae and Beauveria bassiana. For various larval and fungal characteristics and environmental effects the time to death was determined and survival curves established. These curves were compared by Kaplan Meier and Cox regression analyses. Results Beauveria bassiana and Metarhizium anisopliae caused high mortality of An. gambiae and An. stephensi larvae. However, Beauveria bassiana was less effective (Hazard ratio (HR Metarhizium anisopliae. Anopheles stephensi and An. gambiae were equally susceptible to each fungus. Older larvae were less likely to die than young larvae (HR Conclusions This study shows that both fungus species have potential to kill mosquitoes in the larval stage, and that mortality rate depends on fungus species itself, larval stage targeted, larval density and amount of nutrients available to the larvae. Increasing the concentration of fungal spores or reducing the exposure time to spores did not show a proportional increase and decrease in mortality rate, respectively, because the spores clumped together. As a result spores did not provide uniform coverage over space and time. It is, therefore, necessary to develop a formulation that allows the spores to spread over the water surface. Apart from formulation appropriate delivery methods are also necessary to avoid exposing non-target organisms to fungus.

  4. Mosquito species (Diptera, Culicidae) in three ecosystems from the Colombian Andes: identification through DNA barcoding and adult morphology.

    Science.gov (United States)

    Rozo-Lopez, Paula; Mengual, Ximo

    2015-01-01

    Colombia, one of the world's megadiverse countries, has a highly diverse mosquito fauna and a high prevalence of mosquito-borne diseases. In order to provide relevant information about the diversity and taxonomy of mosquito species in Colombia and to test the usefulness of DNA barcodes, mosquito species collected at different elevations in the departments of Antioquia and Caldas were identified combining adult morphology and barcode sequences. A total of 22 mosquito species from eight genera were identified using these combined techniques. We generated 77 barcode sequences with 16 species submitted as new country records for public databases. We examined the usefulness of DNA barcodes to discriminate mosquito species from the Neotropics by compiling 1,292 sequences from a total of 133 species and using the tree-based methods of neighbor-joining and maximum likelihood. Both methodologies provided similar results by resolving 105 species of mosquitoes separated into distinct clusters. This study shows the importance of combining classic morphological methodologies with molecular tools to accurately identify mosquitoes from Colombia. PMID:26257568

  5. Mosquito species (Diptera, Culicidae in three ecosystems from the Colombian Andes: identification through DNA barcoding and adult morphology

    Directory of Open Access Journals (Sweden)

    Paula Rozo-Lopez

    2015-07-01

    Full Text Available Colombia, one of the world’s megadiverse countries, has a highly diverse mosquito fauna and a high prevalence of mosquito-borne diseases. In order to provide relevant information about the diversity and taxonomy of mosquito species in Colombia and to test the usefulness of DNA barcodes, mosquito species collected at different elevations in the departments of Antioquia and Caldas were identified combining adult morphology and barcode sequences. A total of 22 mosquito species from eight genera were identified using these combined techniques. We generated 77 barcode sequences with 16 species submitted as new country records for public databases. We examined the usefulness of DNA barcodes to discriminate mosquito species from the Neotropics by compiling 1,292 sequences from a total of 133 species and using the tree-based methods of neighbor-joining and maximum likelihood. Both methodologies provided similar results by resolving 105 species of mosquitoes separated into distinct clusters. This study shows the importance of combining classic morphological methodologies with molecular tools to accurately identify mosquitoes from Colombia.

  6. Seasonal abundance and potential of Japanese encephalitis virus infection in mosquitoes at the nesting colony of ardeid birds, Thailand

    Institute of Scientific and Technical Information of China (English)

    Tanasak Changbunjong; Thekhawet Weluwanarak; Namaoy Taowan; Parut Suksai; Tatiyanuch Chamsai; Poonyapat Sedwisai

    2013-01-01

    Objective:To investigate the abundance and seasonal dynamics of mosquitoes, and to detect Japanese encephalitis virus (JEV) in these mosquitoes at the nesting colony of ardeid birds. Methods: Mosquitoes were collected bimonthly from July 2009 to May 2010 by Centers for Disease Control. Light traps and dry ice, as a source of CO2, were employed to attract mosquitoes. Mosquitoes were first identified, pooled into groups of upto 50 mosquitoes by species, and tested for JEV infection by viral isolation and reverse transcriptase polymerase chain reaction. Results:A total of 20 370 mosquitoes comprising 14 species in five genera were collected. The five most abundant mosquito species collected were Culex tritaeniorhynchus (95.46%), Culex vishnui (2.68%), Culex gelidus (0.72%), Anopheles peditaeniatus (0.58%) and Culex quinquefasciatus (0.22%). Mosquito peak densities were observed in July. All of 416 mosquito pools were negative for JEV. Conclusions: This study provides new information about mosquito species and status of JEV infection in mosquitoes in Thailand. Further study should be done to continue a close survey for the presence of this virus in the ardeid birds.

  7. Variations in susceptibility to common insecticides and resistance mechanisms among morphologically identified sibling species of the malaria vector Anopheles subpictus in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Surendran Sinnathamby N

    2012-02-01

    Full Text Available Abstract Background Anopheles subpictus s.l., an important malaria vector in Sri Lanka, is a complex of four morphologically identified sibling species A-D. Species A-D reportedly differ in bio-ecological traits that are important for vector control. We investigated possible variations that had not been reported previously, in the susceptibility to common insecticides and resistance mechanisms among the An. subpictus sibling species. Methods Adult An. subpictus were collected from localities in four administrative districts in the dry zone of Sri Lanka. Single female isoprogeny lines were established and sibling species status determined according to reported egg morphology. World Health Organization's standard protocols were used for insecticide bioassays and biochemical assays to determine insecticide susceptibility and resistance mechanisms. Susceptibility of mosquitoes was tested against DDT (5%, malathion (4%, deltamethrin (0.05% and λ-cyhalothrin (0.05%. Biochemical basis for resistance was determined through assaying for esterase, glutathione-S-transferase and monooxygenase activities and the insensitivity of acetycholinesterase (AChE to propoxur inhibition. Results All sibling species were highly resistant to DDT. However there were significant differences among the sibling species in their susceptibility to the other tested insecticides. Few species A could be collected for testing, and where testing was possible, species A tended to behave more similarly to species C and D than to B. Species B was more susceptible to all the tested insecticides than the other sibling species. This difference may be attributed to the predominance of species B in coastal areas where selection pressure due to indoor residual spraying of insecticides (IRS was lower. However there were significant differences between the more inland species C and D mainly towards pyrethroids. Higher GST activities in species C and D might have contributed to their greater

  8. [Biological factors influencing infectious diseases transmitted by invasive species of mosquitoes].

    Science.gov (United States)

    Boštíková, Vanda; Pasdiorová, Markéta; Marek, Jan; Prášil, Petr; Salavec, Miloslav; Sleha, Radek; Střtítecká, Hana; Blažek, Pavel; Hanovcová, Irena; Šošovičková, Renáta; Špliňo, Milan; Smetana, Jan; Chlíbek, Roman; Hytych, Václav; Kuča, Kamil; Boštík, Pavel

    2016-06-01

    Studies focused on arbovirus diseases transmitted by invasive species of mosquitoes have become increasingly significant in recent years, due to the fact that these vectors have successfully migrated to Europe and become established in the region. Mosquitoes, represented by more than 3 200 species, occur naturally worldwide, except in Antarctica. They feed on the blood of warm-blooded animals and by this route, they are capable of transmitting dangerous diseases. Some species can travel a distance of 10 km per night and can fly continuously for up to 4 hours at a speed of 1-2 km/h. Most species are active at night, in the evening or morning. It usually takes a mosquito female about 50 seconds to penetrate the skin of mammals and the subsequent blood meal usually takes about 2.5 minutes. Mosquitoes live for several weeks or months, depending on the environmental conditions. The VectorNet project is a European network of information exchange and sharing of data relating to the geographical distribution of arthropod vectors and transmission of infectious agents between human populations and animals. It aims at the development of strategic plans and vaccination policies which are the main tasks of this time, as well as the development and application of new disinfectants to control vector populations.

  9. [Biological factors influencing infectious diseases transmitted by invasive species of mosquitoes].

    Science.gov (United States)

    Boštíková, Vanda; Pasdiorová, Markéta; Marek, Jan; Prášil, Petr; Salavec, Miloslav; Sleha, Radek; Střtítecká, Hana; Blažek, Pavel; Hanovcová, Irena; Šošovičková, Renáta; Špliňo, Milan; Smetana, Jan; Chlíbek, Roman; Hytych, Václav; Kuča, Kamil; Boštík, Pavel

    2016-06-01

    Studies focused on arbovirus diseases transmitted by invasive species of mosquitoes have become increasingly significant in recent years, due to the fact that these vectors have successfully migrated to Europe and become established in the region. Mosquitoes, represented by more than 3 200 species, occur naturally worldwide, except in Antarctica. They feed on the blood of warm-blooded animals and by this route, they are capable of transmitting dangerous diseases. Some species can travel a distance of 10 km per night and can fly continuously for up to 4 hours at a speed of 1-2 km/h. Most species are active at night, in the evening or morning. It usually takes a mosquito female about 50 seconds to penetrate the skin of mammals and the subsequent blood meal usually takes about 2.5 minutes. Mosquitoes live for several weeks or months, depending on the environmental conditions. The VectorNet project is a European network of information exchange and sharing of data relating to the geographical distribution of arthropod vectors and transmission of infectious agents between human populations and animals. It aims at the development of strategic plans and vaccination policies which are the main tasks of this time, as well as the development and application of new disinfectants to control vector populations. PMID:27450526

  10. Vector species composition and malaria infectivity rates in Mkuzi, Muheza District, north-eastern Tanzania

    DEFF Research Database (Denmark)

    Kweka, E J; Mahande, A M; Nkya, W M M;

    2008-01-01

    Entomological surveys were conducted in Mkuzi village in Muheza District, north-east Tanzania from April to September 2003. The objectives were to determine the species composition and infectivity rates of mosquitoes in Mkuzi village. Mosquito collection was done using CDC light trap and pyrethrum...... spray catch (PSC) techniques. The light trap: spray catch ratio was 2.2:1. A total of 2157 mosquitoes were collected (light trap = 1483; PSC = 674). Anopheles gambiae s.s. accounted for 56.7% (N = 1224) of all mosquitoes collected. Other species were An. funestus complex (19.2%) and Culex...... quinquefasciatus (24.1%).The mosquito density per room was 74.15 and 33.7 for light trap and PSC techniques, respectively. A total of 1637 Anopheles mosquitoes were tested for circumsporozoite protein by Enzyme linked Immunosobent Assay (ELISA). The overall infectivity rate for circumsporozoite protein for P...

  11. [The recurring necessity of mosquito surveillance and research].

    Science.gov (United States)

    Kampen, Helge; Werner, Doreen

    2015-10-01

    Hematophagous arthropods and the diseases associated with them represent a growing threat to human and animal health in Europe. After the eradication of endemic malaria from Europe in the middle of the last century, there has been a resurgence of mosquitoes as significant vectors of disease agents under the influence of continuing globalisation, as exotic species and mosquito-borne pathogens are being introduced with increasing frequency. At present, southern Europe is particularly affected by disease outbreaks and cases, but invasive mosquito species, including efficient vectors, have also emerged in Germany. While there is considerable knowledge on the vector potential of many tropical and subtropical mosquito species, corresponding data on the indigenous mosquito species are scarce. Exceptions are the Anopheles species, which were already vectors of malaria parasites in historic Europe. It must be assumed, however, that many further indigenous species are able to transmit pathogens under certain conditions and will by all means gain vector competence under a scenario of climate warming. Thus, the permanent surveillance of mosquitoes and mosquito-borne disease agents is paramount for the purposes of conducting risk analyses and modelling, in addition to research work addressing the conditions of the spread of vectors and pathogens and of pathogen transmission. Only ample data can facilitate taking appropriate prophylactic action and designing control strategies. International health organizations have realised this and started to promote data collection on mosquitoes and mosquito-borne diseases in the EU. At a national levels, authorities are more reluctant, although, similar to other fields of health, it has been shown for mosquito-borne diseases that preventive measures are more cost-saving than disease case management and the coverage of follow-up costs. The present article is intended to illustrate the necessity of the re-intensification of mosquito

  12. Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species.

    Science.gov (United States)

    Govindarajan, M; Sivakumar, R; Rajeswari, M; Yogalakshmi, K

    2012-05-01

    Mosquitoes are blood-feeding insects and serve as the most important vectors for spreading human diseases such as malaria, yellow fever, dengue fever, and filariasis. The continued use of synthetic insecticides has resulted in resistance in mosquitoes. Synthetic insecticides are toxic and affect the environment by contaminating soil, water, and air, and then natural products may be an alternative to synthetic insecticides because they are effective, biodegradable, eco-friendly, and safe to environment. Botanical origin may serve as suitable alternative biocontrol techniques in the future. Mentha spicata, an edible and medicinal plant, is chiefly distributed in Southeast Asia and South Asia. In the present study, the toxicity of mosquito larvicidal activity of leaf essential oil (EO) and their major chemical constituents from Mentha spicata against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. The chemical composition of the leaf EO was analyzed using gas chromatography-mass spectroscopy (GC-MS). GC-MS revealed that the EO of M. spicata contained 18 compounds. The major chemical components identified were carvone (48.60%), cis-carveol (21.30%), and limonene (11.30%). The EO had a significant toxic effect against early third-stage larvae of C. quinquefasciatus, A. aegypti, and A. stephensi with LC(50) values of 62.62, 56.08, and 49.71 ppm and LC(90) values of 118.70, 110.28, and 100.99 ppm, respectively. The three major pure constituents extracted from the M. spicata leaf EO were also tested individually against three mosquito larvae. The LC(50) values of carvone, cis-carveol, and limonene appeared to be most effective against A. stephensi (LC(50) 19.33, 28.50, and 8.83 ppm) followed by A. aegypti (LC(50) 23.69, 32.88, and 12.01 ppm), and C. quinquefasciatus (LC(50) 25.47, 35.20, and 14.07 ppm). The results could be useful in search for newer, safer, and more effective natural larvicidal agents against C. quinquefasciatus, A. aegypti, and A

  13. Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species.

    Science.gov (United States)

    Govindarajan, M; Sivakumar, R; Rajeswari, M; Yogalakshmi, K

    2012-05-01

    Mosquitoes are blood-feeding insects and serve as the most important vectors for spreading human diseases such as malaria, yellow fever, dengue fever, and filariasis. The continued use of synthetic insecticides has resulted in resistance in mosquitoes. Synthetic insecticides are toxic and affect the environment by contaminating soil, water, and air, and then natural products may be an alternative to synthetic insecticides because they are effective, biodegradable, eco-friendly, and safe to environment. Botanical origin may serve as suitable alternative biocontrol techniques in the future. Mentha spicata, an edible and medicinal plant, is chiefly distributed in Southeast Asia and South Asia. In the present study, the toxicity of mosquito larvicidal activity of leaf essential oil (EO) and their major chemical constituents from Mentha spicata against Culex quinquefasciatus, Aedes aegypti, and Anopheles stephensi. The chemical composition of the leaf EO was analyzed using gas chromatography-mass spectroscopy (GC-MS). GC-MS revealed that the EO of M. spicata contained 18 compounds. The major chemical components identified were carvone (48.60%), cis-carveol (21.30%), and limonene (11.30%). The EO had a significant toxic effect against early third-stage larvae of C. quinquefasciatus, A. aegypti, and A. stephensi with LC(50) values of 62.62, 56.08, and 49.71 ppm and LC(90) values of 118.70, 110.28, and 100.99 ppm, respectively. The three major pure constituents extracted from the M. spicata leaf EO were also tested individually against three mosquito larvae. The LC(50) values of carvone, cis-carveol, and limonene appeared to be most effective against A. stephensi (LC(50) 19.33, 28.50, and 8.83 ppm) followed by A. aegypti (LC(50) 23.69, 32.88, and 12.01 ppm), and C. quinquefasciatus (LC(50) 25.47, 35.20, and 14.07 ppm). The results could be useful in search for newer, safer, and more effective natural larvicidal agents against C. quinquefasciatus, A. aegypti, and A

  14. Variação da densidade anofélica com o uso de mosquiteiros impregnados com deltametrina em uma área endêmica de malária na Amazônia Brasileira Variation of anopheles density with deltamethrin-impregnated mosquito nets in an endemic malaria area of the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    João Barberino Santos

    1999-04-01

    Full Text Available Em 1992, foi realizado um ensaio de campo com mosquiteiros impregnados com deltametrina, em uma área endêmica de malária no Município de Costa Marques, Rondônia. No período de baixa transmissão, os mosquiteiros impregnados (MI diminuíram a densidade vetorial no intradomicílio, de modo semelhante, porém, aos mosquiteiros não impregnados (NI na maioria das avaliações-controle. Por outro lado, na época de alta transmissão, os MI provocaram diminuição significante da média horária de anofelinos capturados, ao passo que, nas casas com NI, verificou-se aumento do número de mosquitos capturados. No peridomicílio, em geral, não houve diferença do número de anofelinos capturados entre MI e NI. No grupo MI, a espécie mais capturada foi o An. darlingi (63,2%, mais freqüente no peridomicílio, seguida pelo An. deaneorum (35,3%, mais freqüente no intradomicílio. Os MI diminuíram a densidade vetorial no intradomicílio pelo efeito excito-repelente, sem diminuí-la, contudo, no peridomicílio.In 1992 a survey on the use of deltamethrin-impregnated mosquito nets was conducted in the municipality of Costa Marques, Rondonia. In the intradomicile, impregnated nets decreased the vector density at rates similar to those for non-impregnated nets during low-transmission periods; during high anopheline density periods, they led to a significant reduction in vector density, while in the non-impregnated net group there was an increase in the number of anophelines captured. There was no change in vector density in the peridomicile. In the impregnated net group, the most frequently captured species was Anopheles darlingi (63.2%, found mostly in the peridomicile, while Anopheles deaneorum (35.3% was most frequent indoors. The impregnated mosquito nets' excitatory-repellent effect decreased the intradomiciliary vector density but did not alter density in the peridomicile.

  15. Detection of Brugia malayi infected mosquitoes with a species specific DNA probe

    International Nuclear Information System (INIS)

    A species specific DNA probe (pβm15) was used in a field area where two filarial infections coexist: Brugia malayi in man and Brugia pahangi in cats. In our laboratory at Jakarta, this DNA probe proved to be sensitive enough to detect 500 pg of purified Brugia malayi microfilarial DNA. One to two infective larvae of Brugia malayi could be detected with ease. This DNA probe did not react with infective larvae of Brugia pahangi, Wuchereria bancrofti and Dirofilaria spp. Mosquitoes, which are vectors in Riau, were collected and fed on microfilaremic patients of Riau. The set of mosquitoes were tested in parallel with mosquitoes infected with Brugia pahangi from cats. All fed mosquitoes were tested after 10-12 days. Only mosquitoes infected with Brugia malayi reacted with the assay. This study shows that we have succeeded in applying the DNA probe technique in Jakarta. Further application in the field should be encouraged, with some modification of the DNA probing techniques for cheaper and easier implementation. 6 refs, 3 figs, 1 tab

  16. Ecology of mosquitoes of Midwestern Nigeria

    Directory of Open Access Journals (Sweden)

    Godwin R.A. Okogun, Jude C. Anosike, Anthony N. Okere & Bethran E.B. Nwoke

    2005-03-01

    Full Text Available Background & objectives: The ecology and distribution of various mosquito species is important inthe determination of mosquito vector abundance and associated diseases prevalence. The distributionof various mosquito genera in natural and artificial habitats and their relative species abundancewas studied between August 2002 and July 2003 in three foci (Uromi, Ekpoma and Auchi comprisingthe Esan and Etsako regions of Midwestern Nigeria.Methods: Sampling was carried out by the method of Hopkins (1952 by dipping using a pipette orladle depending on container types. Pooled contents of smaller containers were sampled with a pondnet. All breeding sources of mosquito larvae were grouped into five (5 depending on their nature,constitution and the physiochemical properties. Artificial mosquito cultures were also carried out infour different container types; plastics, metal cans, earthenware pots and bamboo strips, in parts oftwo different macro habitats subdivided into area of high human activities (AHHA and areas ofderived/secondary vegetation (ADSV. Environmental temperatures, rainfall and relative humiditywere monitored during the study.Results: The present study revealed 17 mosquito species belonging to three genera (Anopheles,Culex and Aedes which are potential vectors of four human diseases in the areas surveyed. A total of736 mosquito larvae were encountered in artificial sources and 568 larvae were harvested from naturalsources. Pools, plastics and metal cans were the predominant artificial sources of mosquito larvae.Conclusion: The contribution of human activities and increasing environmental modification to thebreeding of human disease vector mosquitoes is of importance and selective vector control measuresincluding larviciding are recommended particularly before onset of rainy season

  17. Asymmetric Mating Interference between Two Related Mosquito Species: Aedes (Stegomyia albopictus and Aedes (Stegomyia cretinus.

    Directory of Open Access Journals (Sweden)

    Athanassios Giatropoulos

    Full Text Available Aedes (Stegomyia albopictus (Skuse and Aedes (Stegomyia cretinus Edwards are closely related mosquito species with common morphological features and bio-ecological similarities. Recent mosquito surveillance in Athens, Greece, showed that they are sympatric mosquito species, with Ae. albopictus [corrected] developing quite higher population densities than Ae. cretinus [corrected] . The potential of mating interference between these species was investigated by reciprocal and homologous mating experiments in cages under laboratory conditions. In non-choice interspecific crosses (groups of males and females females of both species produced sterile eggs. Insemination rate was 58% for Ae. cretinus females and only 1% for Ae. albopictus [corrected] females. Aedes albopictus males were sexually aggressive and inseminated Ae. cretinus females (31% in choice experiments, where males of one species had access to mate with females of both species. Whereas, interspecific mating of Ae. albopictus [corrected] females with Ae. cretinus males in the co-occurrence of Ae. cretinus females was weaker (4%. Aedes cretinus females from non-choice crossing with Ae. albopictus [corrected] or Ae. cretinus males were paired individually with conspecific males. The percentage of fertile Ae. cretinus females was 17.5% when had encaged before with Ae. albopictus [corrected] males, compared to 100% when Ae. cretinus [corrected] females were encaged with conspecific males only. Probable ecological consequences of asymmetric mating between these ecologically homologous species in nature are discussed.

  18. Monitoring population and environmental parameters of invasive mosquito species in Europe.

    Science.gov (United States)

    Petrić, Dušan; Bellini, Romeo; Scholte, Ernst-Jan; Rakotoarivony, Laurence Marrama; Schaffner, Francis

    2014-01-01

    To enable a better understanding of the overwhelming alterations in the invasive mosquito species (IMS), methodical insight into the population and environmental factors that govern the IMS and pathogen adaptations are essential. There are numerous ways of estimating mosquito populations, and usually these describe developmental and life-history parameters. The key population parameters that should be considered during the surveillance of invasive mosquito species are: (1) population size and dynamics during the season, (2) longevity, (3) biting behaviour, and (4) dispersal capacity. Knowledge of these parameters coupled with vector competence may help to determine the vectorial capacity of IMS and basic disease reproduction number (R0) to support mosquito borne disease (MBD) risk assessment. Similarly, environmental factors include availability and type of larval breeding containers, climate change, environmental change, human population density, increased human travel and goods transport, changes in living, agricultural and farming habits (e.g. land use), and reduction of resources in the life cycle of mosquitoes by interventions (e.g. source reduction of aquatic habitats). Human population distributions, urbanisation, and human population movement are the key behavioural factors in most IMS-transmitted diseases. Anthropogenic issues are related to the global spread of MBD such as the introduction, reintroduction, circulation of IMS and increased exposure to humans from infected mosquito bites. This review addresses the population and environmental factors underlying the growing changes in IMS populations in Europe and confers the parameters selected by criteria of their applicability. In addition, overview of the commonly used and newly developed tools for their monitoring is provided. PMID:24739334

  19. Invasion of Wolbachia into Anopheles and Other Insect Germlines in an Ex vivo Organ Culture System

    OpenAIRE

    Hughes, Grant L.; Andrew D Pike; Ping Xue; Jason L Rasgon

    2012-01-01

    The common bacterial endosymbiont Wolbachia manipulates its host's reproduction to promote its own maternal transmission, and can interfere with pathogen development in many insects making it an attractive agent for the control of arthropod-borne disease. However, many important species, including Anopheles mosquitoes, are uninfected. Wolbachia can be artificially transferred between insects in the laboratory but this can be a laborious and sometimes fruitless process. We used a simple ex viv...

  20. Molecular Perspectives on the Genetics of Mosquitoes

    International Nuclear Information System (INIS)

    Mosquitoes have been a focus of scientific study since the turn of the century, when they were first linked with human diseases. This review concentrates on the three most intensely studied genera, Anopheles, Culex, and Aedes. These genera include the principal vectors of three major groups of human pathogens: malaria parasites of the genus Plasmodium, filarial worms of the genera Wuchereria and Brugia, and numerous arboviruses. Anophelines are the only mosquitoes known to transmit human malaria parasites, a group of organisms that may be responsible for more morbidity and mortality worldwide than any other human pathogen. Anophelines also transmit filarial worms, as do Culex and Aedes species. Among the 14 or more different mosquito genera known to harbor arboviruses (Mattingly, 1973), the most important are Culex and Aedes, which include the principal vectors of yellow fever, dengue, and most encephalitis-causing arboviruses.

  1. Mosquito surveillance revealed lagged effects of mosquito abundance on mosquito-borne disease transmission: a retrospective study in Zhejiang, China.

    Science.gov (United States)

    Guo, Song; Ling, Feng; Hou, Juan; Wang, Jinna; Fu, Guiming; Gong, Zhenyu

    2014-01-01

    Mosquito-borne diseases (MBDs) are still threats to public health in Zhejiang. In this study, the associations between the time-lagged mosquito capture data and MBDs incidence over five years were used to examine the potential effects of mosquito abundance on patterns of MBDs epidemiology in Zhejiang during 2008-2012. Light traps were used to collect adult mosquitoes at 11 cities. Correlation tests with and without time lag were performed to investigate the correlations between MBDs incidence rates and mosquito abundance by month. Selected MBDs consisted of Japanese encephalitis (JE), dengue fever (DF) and malaria. A Poisson regression analysis was performed by using a generalized estimating equations (GEE) approach, and the most parsimonious model was selected based on the quasi-likelihood based information criterion (QICu). We identified five mosquito species and the constituent ratio of Culex pipiens pallens, Culex tritaeniorhynchus, Aedes albopictus, Anopheles sinensis and Armigeres subalbatus was 66.73%, 21.47%, 6.72%, 2.83% and 2.25%, respectively. The correlation analysis without and with time lag showed that Culex mosquito abundance at a lag of 0 or 1 month was positively correlated with JE incidence during 2008-2012, Ae. albopictus abundance at a lag of 1 month was positively correlated with DF incidence in 2009, and An. sinensis abundance at a lag of 0-2 months was positively correlated with malaria incidence during 2008-2010. The Poisson regression analysis showed each 0.1 rise of monthly mosquito abundance corresponded to a positive increase of MBD cases for the period of 2008-2012. The rise of mosquito abundance with a lag of 0-2 months increased the risk of human MBDs infection in Zhejiang. Our study provides evidence that mosquito monitoring could be a useful early warning tool for the occurrence and transmission of MBDs. PMID:25393834

  2. Mosquito surveillance revealed lagged effects of mosquito abundance on mosquito-borne disease transmission: a retrospective study in Zhejiang, China.

    Directory of Open Access Journals (Sweden)

    Song Guo

    Full Text Available Mosquito-borne diseases (MBDs are still threats to public health in Zhejiang. In this study, the associations between the time-lagged mosquito capture data and MBDs incidence over five years were used to examine the potential effects of mosquito abundance on patterns of MBDs epidemiology in Zhejiang during 2008-2012. Light traps were used to collect adult mosquitoes at 11 cities. Correlation tests with and without time lag were performed to investigate the correlations between MBDs incidence rates and mosquito abundance by month. Selected MBDs consisted of Japanese encephalitis (JE, dengue fever (DF and malaria. A Poisson regression analysis was performed by using a generalized estimating equations (GEE approach, and the most parsimonious model was selected based on the quasi-likelihood based information criterion (QICu. We identified five mosquito species and the constituent ratio of Culex pipiens pallens, Culex tritaeniorhynchus, Aedes albopictus, Anopheles sinensis and Armigeres subalbatus was 66.73%, 21.47%, 6.72%, 2.83% and 2.25%, respectively. The correlation analysis without and with time lag showed that Culex mosquito abundance at a lag of 0 or 1 month was positively correlated with JE incidence during 2008-2012, Ae. albopictus abundance at a lag of 1 month was positively correlated with DF incidence in 2009, and An. sinensis abundance at a lag of 0-2 months was positively correlated with malaria incidence during 2008-2010. The Poisson regression analysis showed each 0.1 rise of monthly mosquito abundance corresponded to a positive increase of MBD cases for the period of 2008-2012. The rise of mosquito abundance with a lag of 0-2 months increased the risk of human MBDs infection in Zhejiang. Our study provides evidence that mosquito monitoring could be a useful early warning tool for the occurrence and transmission of MBDs.

  3. An invasive mosquito species Aedes albopictus found in the Czech Republic, 2012.

    Science.gov (United States)

    Šebesta, O; Rudolf, I; Betášová, L; Peško, J; Hubálek, Z

    2012-01-01

    Between July and September 2012, seventeen larvae of the invasive mosquito species Aedes (Stegomyia) albopictus (Skuse) were discovered using 60 ovitraps at four study sites alongside two main road exits in South Moravia, Czech Republic. This is the first report of imported Ae. albopictus in the Czech Republic. The findings highlight the need for a regular surveillance programme to monitor this invasive species throughout western and central Europe. PMID:23137465

  4. Mosquitocidal activity of Polygala arvensis Willd against Aedes aegypti (Linn., Anopheles stephensi (Liston. and Culex quinquefasciatus (Say. (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    M. Deepa

    2014-12-01

    Full Text Available To determine the larvicidal, ovicidal and repellent activities of benzene and methanol extract of Polygala arvensis against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus Twenty five 3rd instar larvae of selected mosquitoes species were exposed to various concentrations (60-300 ppm and were assayed in the laboratory by using the protocol of WHO 2005; the 24 h LC50 values of the P. Arvensis leaf extract was determined following Probit analysis. The ovicidal activity was determined against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus exposed to variousconcentrations were tested under laboratory conditions and the hatch rates were assessed 120hrs post treatment. The repellent efficacy was determined against selected mosquitoes at three concentrations viz., 1.0, 2.0 and 3.0 mg/cm2 under the laboratory conditions. The LC50 and LC90 values of benzene and methanol extract of P. arvensis against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus larvae in 24 h were 75.32, 88.26, 82.46, 58.21, 46.37, 42.68 and 260.48, 275.26, 251.39, 208.45, 189.82 and 130.44 ppm, respectively. It has been noticed that the higher concentrations of P. arvensis extractspossesses strong ovicidal activity at 200 ppm concentration against Ae. aegypti, An. stephensi and C. quinquefasciatus, no egg hatchability was recorded. In the same way, methanol extracts showed maximum ovicidal activity followed by benzene extract against selected vector mosquitoes. In repellent activity, among two extracts tested P. arvensis methanol extract had strong repellent action against selected mosquitoes as it provided 100% protection against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus for 280min. From the results it can be concluded the P. arvensis extract was an excellent potential for controlling Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus mosquitoes.

  5. Mosquito biodiversity patterns around urban environments in South-central okinawa island, Japan.

    Science.gov (United States)

    Hoshi, Tomonori; Imanishi, Nozomi; Higa, Yukiko; Chaves, Luis Fernando

    2014-12-01

    Okinawa is the largest, most urbanized, and densely populated island in the Ryukyus Archipelago, where mosquito species diversity has been thoroughly studied. However, the south-central Okinawa mosquito fauna has been relatively poorly studied. Here, we present results from a mosquito faunal survey in urban environments of Nishihara city, south-central Okinawa. Mosquitoes were sampled biweekly, from April 2007 to March 2008, at 3 different environments: a forest preserve, an animal farm, and a water reservoir. We employed 4 mosquito collection methods: 1) oviposition traps; 2) light traps; 3) sweep nets; and 4) larval surveys of tree holes, leaf axils, and artificial water containers. We collected a total of 568 adults and 10,270 larvae belonging to 6 genera and 13 species, including 6 species of medical importance: Aedes albopictus, Armigeres subalbatus, Anopheles Hyrcanus group, Culex bitaeniorhynchus, Cx. quinquefasciatus, and Cx. tritaeniorhynchus. Mosquito species composition was similar to data from previous studies in Okinawa Island. The flattening of the species accumulation curve suggests that our diversity sampling was exhaustive with light and oviposition traps, as well as the coincidence between the species richness we found in the field and estimates from the Chao2 index, a theoretical estimator of species richness based on species abundance. This study highlights the importance of combining several sampling techniques to properly characterize regional mosquito fauna and to monitor changes in the presence of mosquito species.

  6. Short report : Development of a molecular assay to detect predation on Anopheles gambiae complex larval stages

    OpenAIRE

    Schielke, E.; Costantini, Carlo; Carchini, G.; Sagnon, N.; J. Powell; Caccone, A

    2007-01-01

    We developed a molecular assay to detect predation on Anopheles gambiae sensu lato (s.l.) mosquitoes. This intergenic spacer ribosomal DNA polymerase chain reaction assay and restriction enzyme analysis uses An. gambiae-specific primers to detect mosquito DNA in the DNA extracts from whole invertebrate predators, which enables identification of species (An. gambiae s.s. versus An. arabiensis) and molecular forms (M versus S in An. gambiae s.s.). We show that An. gambiae s.l. DNA can be detect...

  7. Susceptibility of Aedes flavopictus miyarai and Aedes galloisi mosquito species in Japan to dengue type 2 virus

    Institute of Scientific and Technical Information of China (English)

    Raweewan Srisawat; Ikuo Takashima; Tomohiko Takasaki; Ichiro Kurae; Narihiro Narita; Takashi Kobayashi; Yuki Eshita; Thipruethai Phanitchat; Narumon Komalamisra; Naoki Tamori; Lucky Runtuwene; Kaori Noguchi; Kyoko Hayashida; Shinya Hidano; Naganori Kamiyama

    2016-01-01

    Objective: To evaluate the potential of local mosquitoes to act as vectors for dengue transmission in Japan. Methods: Serotype 2 ThNH28/93 was used to test the dengue susceptibility profiles of Aedes flavopictus miyarai (Ae. f. miyarai), Aedes galloisi (Ae. galloisi) and Aedes albopictus (Ae. albopictus), which were collected in Japan. We used Aedes aegypti from Thailand as a positive control. The mosquitoes were infected with the virus intrathoracically or orally. At 10 or 14 days post infection, the mosquitoes were dissected and total RNA was extracted from their abdomens, thoraxes, heads and legs. Mosquito susceptibility to dengue virus was evaluated using RT-PCR with dengue virus-specific primers. Differences in the infection and mortality rates of the different mosquito species were tested using Fisher's exact probability test. Results: The infection rates for dengue virus administered intrathoracically to Ae. f. miyarai, Ae. galloisi and Aedes aegypti mosquitoes were identical by RT-PCR on Day 10 post infection. All of the body parts we tested were RT-PCR-positive for dengue virus. For the orally admin-istered virus, the infection rates in the different body parts of the Ae. f. miyarai mosquitoes were slightly higher than those of Ae. albopictus mosquitoes, but were similar to the control mosquitoes (P>0.05). The mortality rates for Ae. f. miyarai and Ae. albopictus mosquitoes were similar (P=0.19). Our data indicated that dengue virus was able to replicate and disseminate to secondary infection sites in all of the four mosquito species (Japanese and Thai). Conclusions: Ae. albopictus is a well-known candidate for dengue transmission in Japan. However, our data suggest that Ae. f. miyarai from Ishigaki Island (near Okinawa Island) and Ae. galloisi from Hokkaido (Northern Japan) should also be regarded as potential vectors for dengue transmission in these regions. Further studies on these mosquitoes should be conducted.

  8. Effects of a botanical larvicide derived from Azadirachta indica (the neem tree) on oviposition behaviour in Anopheles gambiae s.s. mosquitoes

    NARCIS (Netherlands)

    Howard, A.F.V.; Adongo, E.A.; Vulule, J.; Githure, J.

    2011-01-01

    More focus is given to mosquito larval control due to the necessity to use several control techniques together in integrated vector management programmes. Botanical products are thought to be able to provide effective, sustainable and cheap mosquito larval control tools. However, bio-larvicides like

  9. Incorporating the effects of humidity in a mechanistic model of Anopheles gambiae mosquito population dynamics in the Sahel region of Africa

    OpenAIRE

    Yamana, Teresa K.; Eltahir, Elfatih A B

    2013-01-01

    Background: Low levels of relative humidity are known to decrease the lifespan of mosquitoes. However, most current models of malaria transmission do not account for the effects of relative humidity on mosquito survival. In the Sahel, where relative humidity drops to levels

  10. Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis

    Science.gov (United States)

    Lee, Sang Joon; Kang, Dooho; Lee, Seung Chul; Ha, Young-Ran

    2016-02-01

    Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases.

  11. Identification of candidate volatiles that affect the behavioural response of the malaria mosquito Anopheles gambiae sensu stricto to an active kairomone blend: laboratory and semi-field assays

    NARCIS (Netherlands)

    Smallegange, R.C.; Bukovinszkine Kiss, G.; Otieno, B.; Mbadi, P.A.; Takken, W.; Mukabana, W.R.; Loon, van J.J.A.

    2012-01-01

    Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is the most important vector of human malaria in sub-Saharan Africa, affecting the lives of millions of people. Existing tools such as insecticide-treated nets and indoor-residual sprays are not only effective, but also have limitations as a

  12. Mating competitiveness of male Anopheles arabiensis mosquitoes irradiated with a partially or fully sterilizing dose in small and large laboratory cages

    NARCIS (Netherlands)

    Helinski, M.; Knols, B.G.J.

    2008-01-01

    Male mating competitiveness is a crucial parameter in many genetic control programs including the sterile insect technique (SIT). We evaluated competitiveness of male Anopheles arabiensis Patton as a function of three experimental variables: (1) small or large cages for mating, (2) the effects of ei

  13. Challenges in undertaking mosquito surveillance at UK seaports and airports to prevent the entry and establishment of invasive vector species.

    Science.gov (United States)

    Murphy, Gai; Vaux, Alex; Medlock, Jolyon

    2013-01-01

    Port health authorities have played an important role in the control of infectious diseases worldwide. The International Health Regulations (2005) further clarifies this role and provides a legal statutory instrument that aims to assist the international community to prevent and respond to global public health risks. Eleven UK sea and airports participated in a pilot, investigating the challenges ports could face in attempting to monitor for mosquitoes. The study also examined the types of habitat that could support mosquitoes. There is a concern that exotic vector species, such as Aedes albopictus, could invade and become established in the UK. Environments in and around the ports differed, and this was reflected in the species of mosquitoes caught. Ports used different methods to collect mosquitoes and developed a range of techniques for surveying, which suited the conditions at their port. This paper discusses the implications of invasive mosquito surveillance to UK port health authorities.

  14. Some characteristics of the larval breeding sites of Anopheles culicifacies species B and E in Sri Lanka

    Directory of Open Access Journals (Sweden)

    S.N. Surendran & R. Ramasamy

    2005-06-01

    Full Text Available Background & objectives : Anopheles culicifacies Giles, the major malaria vector in Sri Lanka, existsas a species complex comprising two sympatric sibling species— species B and E. Species E is reportedto be the major vector of Plasmodium vivax and P. falciparum parasites in Sri Lanka, whilst speciesB is a poor or nonvector as in India. Knowledge of the breeding habits of the two sibling species canhelp in designing optimal vector control strategies. Hence, a survey was conducted in Sri Lanka tostudy the preferential breeding habitats of An. culicifacies species B and E.Methods: Immature forms of An. culicifacies were collected from identified breeding sites in malariousdistricts. Collected larvae were typed for their sibling species status based on mitotic Y-chromosomestructure. Data was analysed using Statistical Package for Social Science version 10.0.Results: An. culicifacies immature forms were found in 23 collection sites. Among these samples19 were found to have species E and four to have species B. All species B larvae were collected fromTonigala village in the Puttalam district. None of the 23 sites was found to have both species B and E.Species E, the major vector of malaria, appears to breed in variety of breeding sites which can be of anindication of its adaptive variation to exploit breeding sites with varying limnological characteristics.Interpretation & conclusion: The present findings have to be taken into account when formulatingmore effective larval control measures. They also show the need for a detailed study of possibledifferent preferences for larval breeding sites between species B and E.

  15. The genetics of green thorax, a new larval colour mutant, non-linked with ruby-eye locus in the malaria mosquito, Anopheles stephensi Liston

    Directory of Open Access Journals (Sweden)

    D. Sanil

    2009-06-01

    Full Text Available Background & objectives: Anopheles stephensi, an important vector of malaria continues to be distributed widely in the Indian subcontinent. The natural vigour of the species combined with its new tolerance, indeed resistance to insecticides has made it obligatory that we look for control methods involving genetic manipulation. Hence, there is an immediate need for greater understanding of the genetics of this vector species. One of the requirements for such genetic studies is the establishment of naturally occurring mutants, establishment of the genetic basis for the same and use of such mutants in the genetic transformation studies and other genetic control programme(s. This paper describes the isolation and genetic studies of a larval colour mutant, green thorax (gt, and linkage studies involving another autosomal recessive mutant ruby-eye (ru in An. stephensi. Methods: After the initial discovery, the mutant green thorax was crossed inter se and pure homozygous stock of the mutant was established. The stock of the mutant ruby-eye, which has been maintained as a pure stock in the laboratory. Crosses were made between the wild type and mutant, green thorax to determine the mode of inheritance of green thorax. For linkage studies, crosses were made between the mutant green thorax and another autosomal recessive mutant ruby-eye. The percentage cross-over was calculated for the genes linkage relationship for gt and gt ru. Results: Results of crosses between mutant and wild type showed that the inheritance of green thorax (gt in An. stephensi is monofactorial in nature. The gt allele is recessive to wild type and is autosomal. The linkage studies showed no linkage between ru and gt. Interpretation & conclusion: The mutant gt represents an excellent marker for An. stephensi as it is expressed in late III instar stage of larvae and is prominent in IV instar and pupal stages with complete penetrance and high viability. The said mutant could be easily

  16. A GEOSPATIAL STUDY OF THE POTENTIAL OF TWO EXOTIC SPECIES OF MOSQUITOES TO IMPACT THE EPIDEMIOLOGY OF WEST NITLE VIRUS IN MARYLAND

    Science.gov (United States)

    Geospatial techniques were used to study the potential impact of two exotic mosquitoes, the Asian tiger mosquito, Aedes albopictus (Skuse) and Ochlerotatus japonicus japonicus (Theobald), on the epidemiology of West Nile virus in Maryland. These two species have established p...

  17. Web mapping GIS: GPS under the GIS umbrella for Aedes species dengue and chikungunya vector mosquito surveillance and control

    Directory of Open Access Journals (Sweden)

    M. Palaniyandi

    2014-09-01

    Full Text Available The mosquito nuisance and the mosquito borne diseases have become major important challenging public health problems in India especially in the fast developing city like Pondicherry urban agglomeration. The Pondicherry government has been implemented full-fledged mosquito control measures, however, dengue and chikungunya epidemics was accelerating trend in Pondicherry for the recent years, and therefore, the directorate of public health, Pondicherry was requested vector control research centre (VCRC, to conduct a mosquito control evaluation survey. A team of field staff of VCRC headed by the author, Pondicherry, have conducted a detailed reconnaissance survey for collecting the site specifications of houses and the streetwise mosquito data for analyzing the density of vector mosquitoes in the wards / blocks and delineating the areas vulnerable to disease epidemics in the urban areas. The GPS GARMIN 12 XL was used to collect the field data. The ARC GIS 10.0 software was used to map the site locations (houses with mosquito’s data. The digital map of block boundary of Pondicherry was used for mapping purpose. A systematic grid sampling was applied to conduct a rapid survey for mapping Aedes species mosquito genic condition in the urban areas and the coordinates of sites of house information with breeding habitats positive in the grid sectors was collected using GPS, and the mean value of positive habitats was analyzed by quintiles method for mapping. The four blocks were selected for Aedes mosquito survey where the mosquito problem was identified as comparatively high, four numbers of wards were selected from each block, and the 40 number of houses was selected with 100 meter interval distance for mosquito breeding survey in the domestic and peripheral domestic areas in each wards. The problematic areas were identified, highlighted and recommended for web mapping GIS for Aedes mosquito surveillance continuously for monitoring the mosquito control

  18. Laboratory observations on the larvicidal efficacy of three plant species against mosquito vectors of malaria, dengue/dengue hemorrhagic fever (DF/DHF) and lymphatic filariasis in the semi-arid desert.

    Science.gov (United States)

    Bansal, S K; Singh, Karam V; Sharma, Sapna; Sherwani, M R K

    2012-05-01

    Comparative larvicidal efficacy of aqueous and organic solvent extracts from seeds, leaves and flowers of three desert plants viz. Calotropis procera (Aiton), Tephrosia purpurea (L.) Pers. and Prosopis juliflora (Sw.) DC. was evaluated against Anopheles stephensi (Liston), Aedes aegypti (Linnaeus) and Culex quinquefasciatus (Say). For this purpose larvae of all the three mosquito species were reared in the laboratory and studies carried out on late 3rd or early 4th instars using standard WHO technique. Based on concentration mortality data 24 and 48 hr LC50and LC90 values along with their 95% fiducial limits, regression equation, chi-square (chi2)/ heterogeneity of the response were determined by log probit regression analysis. Experiments were carried out with different solvent extracts of seeds of C. procera which revealed that methanol (24 hr LC50: 127.2, 194.8, 361.0) and acetone (229.9, 368.1,193.0 mg l(-1)) extracts were more effective with the three mosquito species, respectively. Petroleum ether extract was effective only on An. stephensi while aqueous extracts were not effective at all with any of the mosquito species (mortality seeds of T. purpurea and leaves of P. juliflora were 74.9, 63.2 and 47.0 and 96.2,128.1 and 118.8 mg l(-1) for the above three mosquito species, respectively. Experiments carried out up to 500 mg l-(1) with leaves (T. purpurea) and seeds (P. juliflora) extracts show only up to 10-30% mortality indicating that active larvicidal principle may be present only in the seeds of Tephrosia and leaves of Prosopis. In general, anophelines were found more susceptible than the culicines to the plant derived derivatives. More studies are being carried outon some other desert plants found in this arid region. The study would be of great importance while formulating vector control strategy based on alternative plant based insecticides in this semi-arid region.

  19. Mosquito species and outdoor breeding places in residential areas in Malaysia.

    Science.gov (United States)

    Saleeza, S N R; Norma-Rashid, Y; Azirun, M Sofian

    2013-11-01

    We conducted mosquito surveillance at outdoor breeding habitat in 459 households at 7 urban locations in Putrajaya, Malaysia from January to December 2010 to determine the predominant species and breeding locations. The most common species found at all locations was Aedes albopictus. Gardening utensils were the most common breeding sites. Of the 1,885 mosquito larvae specimens found, 1,774 (94.1%) were Ae. albopictus larvae, 84 (4%) were Ae. aegypti larvae and 27 (1%) were Culex quinquefasciatus larvae. The Aedes index for each of the locations was higher than the goal set by the Ministry of Health for Malaysia. However, the container index at each of the locations was within the goal. The Breateau index was above the goal set by the Ministry of Health at Precinct 9B1 but the other locations were within the goal. PMID:24450233

  20. DNA Barcodes indicate members of the Anopheles fluviatilis (Diptera: Culicidae) species complex to be conspecific in India.

    Science.gov (United States)

    Pradeep Kumar, N; Krishnamoorthy, N; Sahu, S S; Rajavel, A R; Sabesan, S; Jambulingam, P

    2013-05-01

    Anopheles fluviatilis, a major vector of malaria in India has been described as a complex of three sibling species members, named as S, T and U, based on variations in chromosomal inversions. Also, ribosomal DNA markers (repetitive Internal Transcribed Spacer 2 (ITS2) and 28S D3 region) were described to differentiate these three sibling species members. However, controversies prevail on the genetic isolation status of these cryptic species. Hence, we evaluated this taxonomic incongruence employing DNA barcoding, the well established methodology for species identification, using 60 An. fluviatilis sensu lato specimens, collected from two malaria endemic eastern states of India. These specimens were also subjected to sibling species characterization by ITS2 and D3 DNA markers. The former marker identified 31 specimens among these as An. fluviatilis S and 21 as An. fluviatilis T. Eight specimens amplified DNA fragments specific for both S and T. The D3 marker characterized 39 specimens belonging to species S and 21 to species T. Neither marker identified species U. Neighbor Joining analysis of mitochondrial cytochrome c oxidase gene 1 sequences (the DNA barcode) categorized all the 60 specimens into a single operational taxonomic unit, their Kimura 2 parameter (K2P) genetic variability being only 0.8%. The genetic differentiation (FST ) and gene flow (Nm ) estimates were 0.00799 and 62.07, respectively, indicating these two 'species' (S & T) as genetically con-specific intermixing populations with negligible genetic differentiation. Earlier investigations have refuted the existence of species U. Also, this study demonstrated that An. fluviatilis and the closely related An. minimus could be taxonomically differentiated by the DNA Barcode approach (K2P = 5.0%). PMID:23398631

  1. Mosquitocidal Effect of Glycosmis pentaphylla Leaf Extracts against Three Mosquito Species (Diptera: Culicidae)

    Science.gov (United States)

    Ramkumar, Govindaraju; Karthi, Sengodan; Muthusamy, Ranganathan; Suganya, Ponnusamy; Natarajan, Devarajan; Kweka, Eliningaya J.; Shivakumar, Muthugounder S.

    2016-01-01

    Background The resistance status of malaria vectors to different classes of insecticides used for public health has raised concern for vector control programmes. Alternative compounds to supplement the existing tools are important to be searched to overcome the existing resistance and persistence of pesticides in vectors and the environment respectively. The mosquitocidal effects of Glycosmis pentaphylla using different solvents of acetone, methanol, chloroform and ethyl acetate extracts against three medically important mosquito vectors was conducted. Methods Glycosmis pentaphylla plant leaves were collected from Kolli Hills, India. The WHO test procedures for larval and adult bioassays were used to evaluate extracts against mosquito vectors, and the chemical composition of extracts identified using GC-MS analysis. Results The larvicidal and adulticidal activity of G. pentaphylla plant extracts clearly impacted the three species of major mosquitoes vectors. Acetone extracts had the highest larvicidal effect against An. stephensi, Cx. quinquefasciatus and Ae. aegypti with the LC50 and LC90 values of 0.0004, 138.54; 0.2669, 73.7413 and 0.0585, 303.746 mg/ml, respectively. The LC50 and LC90 adulticide values of G. pentaphylla leaf extracts in acetone, methanol, chloroform and ethyl acetate, solvents were as follows for Cx. quinquefasciatus, An. stephensi and Ae. Aegypti: 2.957, 5.458, 2.708, and 4.777, 3.449, 6.676 mg/ml respectively. The chemical composition of G. pentaphylla leaf extract has been found in 20 active compounds. Conclusions The plant leaf extracts of G. pentaphylla bioactive molecules which are effective and can be developed as an eco-friendly approach for larvicides and adulticidal mosquitoes vector control. Detailed identification and characterization of mosquitocidal effect of individual bioactive molecules ingredient may result into biodegradable effective tools for the control of mosquito vectors. PMID:27391146

  2. Mosquitocidal Effect of Glycosmis pentaphylla Leaf Extracts against Three Mosquito Species (Diptera: Culicidae.

    Directory of Open Access Journals (Sweden)

    Govindaraju Ramkumar

    Full Text Available The resistance status of malaria vectors to different classes of insecticides used for public health has raised concern for vector control programmes. Alternative compounds to supplement the existing tools are important to be searched to overcome the existing resistance and persistence of pesticides in vectors and the environment respectively. The mosquitocidal effects of Glycosmis pentaphylla using different solvents of acetone, methanol, chloroform and ethyl acetate extracts against three medically important mosquito vectors was conducted.Glycosmis pentaphylla plant leaves were collected from Kolli Hills, India. The WHO test procedures for larval and adult bioassays were used to evaluate extracts against mosquito vectors, and the chemical composition of extracts identified using GC-MS analysis.The larvicidal and adulticidal activity of G. pentaphylla plant extracts clearly impacted the three species of major mosquitoes vectors. Acetone extracts had the highest larvicidal effect against An. stephensi, Cx. quinquefasciatus and Ae. aegypti with the LC50 and LC90 values of 0.0004, 138.54; 0.2669, 73.7413 and 0.0585, 303.746 mg/ml, respectively. The LC50 and LC90 adulticide values of G. pentaphylla leaf extracts in acetone, methanol, chloroform and ethyl acetate, solvents were as follows for Cx. quinquefasciatus, An. stephensi and Ae. Aegypti: 2.957, 5.458, 2.708, and 4.777, 3.449, 6.676 mg/ml respectively. The chemical composition of G. pentaphylla leaf extract has been found in 20 active compounds.The plant leaf extracts of G. pentaphylla bioactive molecules which are effective and can be developed as an eco-friendly approach for larvicides and adulticidal mosquitoes vector control. Detailed identification and characterization of mosquitocidal effect of individual bioactive molecules ingredient may result into biodegradable effective tools for the control of mosquito vectors.

  3. Seasonal changes of microfilarial infection and infectivity rates in mosquito populations within Makurdi, Benue State, Nigeria

    Directory of Open Access Journals (Sweden)

    Manyi, M. M

    2014-12-01

    Full Text Available Studies on the infection and infectivity rates of Wuchereria bancrofti in mosquito populations in Makurdi, Nigeria were carried out over a 12 month period in four localities. Adult female mosquitoes (4,320 were morphologically identified and dissected following standard keys and procedures. 1,040 (24.1% were Anopheles gambiae s.l.; 641 (14.8% were Anopheles funestus Giles and 2,418 (56.0% were Culex quinquefasciatus Say while 221 (5.1% were tagged ‘unidentified’ Anopheles species. The overall microfilarial infection and infectivity rates were 10.1% and 4.8% respectively. The microfilarial infection and infectivity rates differed significantly (ANOVA; χ2 test p<0.05across vector species, study months and the localities surveyed. The findings indicate that Makurdi is endemic for lymphatic filariasis, and that Anopheles gambiae s.l. and Anopheles funestus were potential vectors of lymphatic filariasis in Makurdi while Culex quinquefasciatus was the major vector. This work may provide an entomological baseline data required for evaluation and implementation of vector control interventions in the study area.

  4. Molecular taxonomy provides new insights into anopheles species of the neotropical arribalzagia series.

    Directory of Open Access Journals (Sweden)

    Giovan F Gómez

    Full Text Available Phylogenetic analysis of partial mitochondrial cytochrome oxidase c subunit I (COI and nuclear internal transcribed spacer 2 (ITS2 sequences were used to evaluate initial identification and to investigate phylogenetic relationships of seven Anopheles morphospecies of the Arribalzagia Series from Colombia. Phylogenetic trees recovered highly supported clades for An. punctimaculas.s., An. calderoni, An. malefactor s.l., An. neomaculipalpus, An. apicimacula s.l., An. mattogrossensis and An. peryassui. This study provides the first molecular confirmation of An. malefactorfrom Colombia and discovered conflicting patterns of divergence for the molecular markers among specimens from northeast and northern Colombia suggesting the presence of two previously unrecognized Molecular Operational Taxonomic Units (MOTUs. Furthermore, two highly differentiated An. apicimacula MOTUs previously found in Panama were detected. Overall, the combined molecular dataset facilitated the detection of known and new Colombian evolutionary lineages, and constitutes the baseline for future research on their bionomics, ecology and potential role as malaria vectors.

  5. Suppressor of hairy‐wing, modifier of mdg4 and centrosomal protein of 190 gene orthologues of the gypsy insulator complex in the malaria mosquito, Anopheles stephensi

    OpenAIRE

    Carballar‐Lejarazú, R.; Brennock, P; James, A. A.

    2016-01-01

    Abstract DNA insulators organize independent gene regulatory domains and can regulate interactions amongst promoter and enhancer elements. They have the potential to be important in genome enhancing and editing technologies because they can mitigate chromosomal position effects on transgenes. The orthologous genes of the Anopheles stephensi putative gypsy‐like insulator protein complex were identified and expression characteristics studied. These genes encode polypeptides with all the expecte...

  6. Studies on mosquitoes (Diptera: Culicidae and anthropicenvironment: 5- Breeding of Anopheles albitarsis in flooded rice fields in South-Eastern Brazil

    Directory of Open Access Journals (Sweden)

    Forattini Oswaldo Paulo

    1994-01-01

    Full Text Available Studies on breeding Anopheles albitarsis and association with rice growth in irrigated paddy fields were carried out during the rice cultivation cycle from December 1993 to March 1994. This period corresponded to the length of time of permanent paddy flooding. Breeding occurred in the early stage up until five weeks after transplantation when rice plant height was small. That inverse correlation may give potential direction to control measures.

  7. Studies on mosquitoes (Diptera: Culicidae and anthropicenvironment: 5- Breeding of Anopheles albitarsis in flooded rice fields in South-Eastern Brazil

    Directory of Open Access Journals (Sweden)

    Oswaldo Paulo Forattini

    1994-10-01

    Full Text Available Studies on breeding Anopheles albitarsis and association with rice growth in irrigated paddy fields were carried out during the rice cultivation cycle from December 1993 to March 1994. This period corresponded to the length of time of permanent paddy flooding. Breeding occurred in the early stage up until five weeks after transplantation when rice plant height was small. That inverse correlation may give potential direction to control measures.

  8. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control

    OpenAIRE

    Malcolm Colin A; Benedict Mark Q; Knols Bart GJ; Hassan M'oawia M; Cox Jonathan; Ageep Tellal B; Babiker Ahmed; El Sayed Badria B

    2009-01-01

    Abstract Background Malaria is an important public health problem in northern Sudan, but little is known about the dynamics of its transmission. Given the characteristic low densities of Anopheles arabiensis and the difficult terrain in this area, future vector control strategies are likely to be based on area-wide integrated pest management (AW-IPM) that may include the sterile insect technique (SIT). To support the planning and implementation of future AW-IPM activities, larval surveys were...

  9. Predation on Mosquito Larvae by Mesocyclops thermocyclopoides (Copepoda: Cyclopoida) in the Presence of Alternate Prey

    Science.gov (United States)

    Kumar, Ram; Ramakrishna Rao, T.

    2003-11-01

    The cyclopoid copepod Mesocyclops thermocyclopoides, a dominant invertebrate predator in many shallow ponds and temporary water bodies in northern India, feeds on cladocerans, rotifers, ciliates and when present, on mosquito larvae also. We studied in the laboratory the prey consumption rates of the copepod on first and fourth instar larvae of two species of mosquito (Anopheles stephensi and Culex quinquefasciatus) in relation to their density. We also studied its prey selectivity with mosquito larvae in the presence of an alternate prey (the cladocerans-either Moina macrocopa or Ceriodaphnia cornuta) in different proportions. With either mosquito species, the copepod actively selected Instar-I larvae, avoiding the Instar-IV larvae, and with either instar, selected Anopheles stephensi over Culex quinquefasciatus. When prey choice included the cladoceran as an alternate prey, the copepod selected the cladoceran only when the other prey was Instar-IV mosquito larvae. Our results point to the potential and promise of M. thermocyclopoides as a biological agent for controlling larval populations of vectorially important mosquito species.

  10. Population genetics of Plasmodium resistance genes in Anopheles gambiae: no evidence for strong selection.

    Science.gov (United States)

    Obbard, D J; Linton, Y-M; Jiggins, F M; Yan, G; Little, T J

    2007-08-01

    Anopheles mosquitoes are the primary vectors for malaria in Africa, transmitting the disease to more than 100 million people annually. Recent functional studies have revealed mosquito genes that are crucial for Plasmodium development, but there is presently little understanding of which genes mediate vector competence in the wild, or evolve in response to parasite-mediated selection. Here, we use population genetic approaches to study the strength and mode of natural selection on a suite of mosquito immune system genes, CTL4, CTLMA2, LRIM1, and APL2 (LRRD7), which have been shown to affect Plasmodium development in functional studies. We sampled these genes from two African populations of An. gambiae s.s., along with several closely related species, and conclude that there is no evidence for either strong directional or balancing selection on these genes. We highlight a number of challenges that need to be met in order to apply population genetic tests for selection in Anopheles mosquitoes; in particular the dearth of suitable outgroup species and the potential difficulties that arise when working within a closely-related species complex. PMID:17688548

  11. Medically important mosquitoes in the rubber plantation belt of central Kerala, India.

    Science.gov (United States)

    Jomon K V; Valamparampil T T

    2014-07-01

    Entomological surveys were carried out in the rubber plantation belt of Kerala to record mosquito fauna. Samples were collected from 23 randomly selected localities using standard methods for a period of three years, from Feb- ruary 2008 to January 2011. Thirty-two species belonging to nine genera: Aedes, Anopheles, Armigeres, Coquillettidia, Culex, Heizmannia, Mansonia, Toxorhynchites, and Uranotaenia were recorded. Many of the recorded species were medically im- portant as potential vectors of dengue fever, chikungunya, Japanese encephalitis, malaria and filariasis. PMID:25507596

  12. A Genome-Scale Investigation of Incongruence in Culicidae Mosquitoes.

    Science.gov (United States)

    Wang, Yuyu; Zhou, Xiaofan; Yang, Ding; Rokas, Antonis

    2015-12-01

    Comparison of individual gene trees in several recent phylogenomic studies from diverse lineages has revealed a surprising amount of topological conflict or incongruence, but we still know relatively little about its distribution across the tree of life. To further our understanding of incongruence, the factors that contribute to it and how it can be ameliorated, we examined its distribution in a clade of 20 Culicidae mosquito species through the reconstruction and analysis of the phylogenetic histories of 2,007 groups of orthologous genes. Levels of incongruence were generally low, the three exceptions being the internodes concerned with the branching of Anopheles christyi, with the branching of the subgenus Anopheles as well as the already reported incongruence within the Anopheles gambiae species complex. Two of these incongruence events (A. gambiae species complex and A. christyi) are likely due to biological factors, whereas the third (subgenus Anopheles) is likely due to analytical factors. Similar to previous studies, the use of genes or internodes with high bootstrap support or internode certainty values, both of which were positively correlated with gene alignment length, substantially reduced the observed incongruence. However, the clade support values of the internodes concerned with the branching of the subgenus Anopheles as well as within the A. gambiae species complex remained very low. Based on these results, we infer that the prevalence of incongruence in Culicidae mosquitoes is generally low, that it likely stems from both analytical and biological factors, and that it can be ameliorated through the selection of genes with strong phylogenetic signal. More generally, selection of genes with strong phylogenetic signal may be a general empirical solution for reducing incongruence and increasing the robustness of inference in phylogenomic studies.

  13. Wolbachia surface protein induces innate immune responses in mosquito cells

    Directory of Open Access Journals (Sweden)

    Pinto Sofia B

    2012-01-01

    Full Text Available Abstract Background Wolbachia endosymbiotic bacteria are capable of inducing chronic upregulation of insect immune genes in some situations and this phenotype may influence the transmission of important insect-borne pathogens. However the molecules involved in these interactions have not been characterized. Results Here we show that recombinant Wolbachia Surface Protein (WSP stimulates increased transcription of immune genes in mosquito cells derived from the mosquito Anopheles gambiae, which is naturally uninfected with Wolbachia; at least two of the upregulated genes, TEP1 and APL1, are known to be important in Plasmodium killing in this species. When cells from Aedes albopictus, which is naturally Wolbachia-infected, were challenged with WSP lower levels of upregulation were observed than for the An. gambiae cells. Conclusions We have found that WSP is a strong immune elicitor in a naturally Wolbachia-uninfected mosquito species (Anopheles gambiae while a milder elicitor in a naturally-infected species (Aedes albopictus. Since the WSP of a mosquito non-native (nematode Wolbachia strain was used, these data suggest that there is a generalized tolerance to WSP in Ae. albopictus.

  14. 澜沧江下游地区蚊虫种类、分布及其孳生习性调查%Investigation of mosquito species,distributions and larva breeding habits in the low treaches of Lancangjiang River in Yunnan

    Institute of Scientific and Technical Information of China (English)

    王丕玉; 周红宁; 吴超; 郭晓芳; 顾云安; 董利民

    2011-01-01

    Aim To investigate the mosquito species, distributions and their larva breeding habits in the losw reaches of Lancangjiang River. Methods Adult mosquitoes were collected by lamp-traps,cower shed catches and human landing catches in the daytime, and mosquito larvae were collected from different breeding sites. Results Totally of 26 754 mosquitoes of 33 species in 7 genera were collected from 2 counties in the low reaches of Lancangjiang River by using Lamp-traps. Totally of 10 494 mosquitoes of 24 species in 5 genera were caught from Simao County and 409 mosquitoes of 14 species in 5 genera were gotten from the ocunties of Mengla,Menghai and Menglian. There 6 051 mosquito larvae of 40 species in 10 genera were collected. Conclusion There are polenty of mosquito species in the low reaches of Lancangjian River,and different mosquito species prefer different breeding habits. The predominant mosquito species are Culex tritaenorhynchus,followed by Anopheles sinensis and Aedes albopictos, that are widely distributed.%目的 弄清澜沧江下游地区蚊虫种类、分布及其幼虫孳生习性.方法 蚊虫成蚊采用牛圈诱蚊灯诱捕法、人工牛圈捕捉和人饵白天诱捕方法.采集幼虫采用勺和吸管等方法在各类蚊虫孳生地捕捞幼虫.结果 调查澜沧江下游地区2个县,用诱蚊灯捕获蚊虫26 754只,隶属7属33种,在思茅共捕获咸蚊10 494只,隶属5属24种,在勐腊、勐海和孟连县调查,共捕获蚊虫409只,隶属5属14种;幼虫调查,共捕获蚊虫6 051只,隶属3亚科,10属40种.结论 澜沧江下游地区蚊虫种类繁多,不同的蚊种有不同的孳生习性,优势蚊种为三带喙库蚊,中华按蚊、白纹伊蚊属次优势蚊种,以上3种蚊虫种群密度高,分布较广.

  15. DETECTION OF BRUGIA MALAYI INFECTED MOSQUITOES WITH SPECIES SPECIFIC DNA PROBE pBm 15, IN RIAU, INDONESIA

    Directory of Open Access Journals (Sweden)

    L. Kurniawan

    2012-09-01

    Full Text Available A species specific DNA probe (pBm15 was used in a field area where 2 filarial infections coexist: B.malayi in man and B.pahangi in cats. In our laboratory in Jakarta, this DNA probe proved to be sensitive enough to detect 500 ng DNA. One to two infective larvae of B.malayi could be detected with ease. This DNA probe did not react with infective larvae of wuchereria bancrofti, B.pahangi, and Dirofilaria spp. Non specific binding caused by undefined mosquito components was overcome with proteinase K and chitinase treatment. This additional step, made it possible for whole body mosquitoes to be squashed directly onto nitrocellulose paper. A comparative study of experimental infections of laboratory bred mosquitoes infected with B.malayi, showed no difference in infection rate between the group examined by dissection or by DNA probing. Mosquitoes which are vectors in Riau were collected and fed on microfilaremic patients of Riau. The set of mosquitoes were tested in parallel with mosquitoes infected with B.pahangi from cats. All fed mosquitoes were tested after 10-12 days. Only mosquitoes infected with B.malayi reacted in the assay. This study shows a success in applying the DNA probe technique in Jakarta. Further application in the field should be encouraged, with some modification of the DNA probing technique, for cheaper and easier implementation.

  16. The role of hemocytes in Anopheles gambiae antiplasmodial immunity.

    Science.gov (United States)

    Ramirez, Jose Luis; Garver, Lindsey S; Brayner, Fábio André; Alves, Luiz Carlos; Rodrigues, Janneth; Molina-Cruz, Alvaro; Barillas-Mury, Carolina

    2014-01-01

    Hemocytes synthesize key components of the mosquito complement-like system, but their role in the activation of antiplasmodial responses has not been established. The effect of activating Toll signaling in hemocytes on Plasmodium survival was investigated by transferring hemocytes or cell-free hemolymph from donor mosquitoes in which the suppressor cactus was silenced. These transfers greatly enhanced antiplasmodial immunity, indicating that hemocytes are active players in the activation of the complement-like system, through an effector/effectors regulated by the Toll pathway. A comparative analysis of hemocyte populations between susceptible G3 and the refractory L3-5 Anopheles gambiae mosquito strains did not reveal significant differences under basal conditions or in response to Plasmodium berghei infection. The response of susceptible mosquitoes to different Plasmodium species revealed similar kinetics following infection with P. berghei,P. yoelii or P. falciparum, but the strength of the priming response was stronger in less compatible mosquito-parasite pairs. The Toll, Imd,STAT or JNK signaling cascades were not essential for the production of the hemocyte differentiation factor (HDF) in response to P. berghei infection, but disruption of Toll, STAT or JNK abolished hemocyte differentiation in response to HDF. We conclude that hemocytes are key mediators of A. gambiae antiplasmodial responses. PMID:23886925

  17. Paridade de Anopheles cruzii em Floresta Ombrófila Densa no Sul do Brasil Anopheles cruzii parity in dense rain forest in Southern Brazil

    Directory of Open Access Journals (Sweden)

    Ana Caroline Dalla Bona

    2006-12-01

    Full Text Available OBJETIVO: Conhecer a paridade e desenvolvimento ovariano da espécie Anopheles cruzii, durante os períodos estacionais. MÉTODOS: As capturas foram realizadas quinzenalmente, no período matutino, de abril/2004 a abril/2005, no Parque Estadual do Palmito, município de Paranaguá litoral do Estado do Paraná. Mosquitos adultos foram capturados usando a técnica pouso homem. As dissecções foram feitas utilizando-se a técnica de Detinova e de Polovodova e a avaliação do desenvolvimento folicular, segundo os critérios de Christophers e Mer. RESULTADOS: Foram dissecadas 208 fêmeas de Anopheles cruzii. A maioria das fêmeas dissecadas nas estações eram nulíparas. Sendo que 14,4% eram nulíparas com folículo além do estádio II de Christophers & Mer, o que evidencia o exercício da hematofagia previamente à primeira oviposição. Observou-se que as populações de Anopheles cruzii são constituídas de indivíduos jovens, talvez em razão da alta mortalidade de fêmeas paridas. CONCLUSÕES: A provável discordância gonotrófica das fêmeas dissecadas é importante do ponto de vista epidemiológico, considerando que a fêmea pode procurar mais de um hospedeiro para completar a maturação dos seus ovos.OBJECTIVE: To determine the parity and ovarian development of Anopheles cruzii species during the seasons. METHODS: Collections were carried out fortnightly in the morning in the Palmito State Park in the municipality of Paranaguá, Southern Brazil, between April 2004 and April 2005. Adult mosquitoes were captured using human landing rate. Dissections were performed using Detinova's and Polovodova's methods and follicular development was assessed following Christophers and Mer's criteria. RESULTS: A total of 208 specimens of Anopheles cruzii were dissected. Most females dissected were nulliparous in the seasons; 14.4% of them were found to be nulliparous above Christophers and Mer's stage II, which shows previous blood meal prior to the

  18. Efficacy of Mosquito Traps for Collecting Potential West Nile Mosquito Vectors in a Natural Mediterranean Wetland

    DEFF Research Database (Denmark)

    Roiz, David; Roussel, Marion; Muñoz, Joaquin;

    2012-01-01

    Surveillance, research, and control of mosquito-borne diseases such asWest Nile virus require efficient methods for sampling mosquitoes. We compared the efficacy of BG-Sentinel and Centers for Disease Control and Prevention (CDC)-CO2 traps in terms of the abundances of host-seeking and blood......-fed female mosquitoes and the origin of mosquito bloodmeals. Our results indicate that BG-Sentinel traps that use CO2 and attractants are as effective as CDC-CO2 traps for Culex mosquito species, Ochlerotatus caspius, and they are also highly efficient at capturing Anopheles atroparvus host-seeking and blood......-fed females with or without CO2. The CDC-CO2 trap is the least efficient method for capturing blood-fed females. BG-Sentinel traps with attractants and CO2 were significantly better at capturing mosquitoes that had fed on mammals than the unbaited BG-Sentinel and CDC-CO2 traps in the cases of An. atroparvus...

  19. Cladistic analysis of the subgenus Anopheles (Anopheles) Meigen (Diptera: Culicidae) based on morphological characters.

    Science.gov (United States)

    Collucci, Eliana; Sallum, Maria Anice Mureb

    2007-06-01

    In the present study, we used morphological characters to estimate phylogenetic relationships among members of the subgenus Anopheles Meigen. Phylogenetic analyses were carried out for 36 species of Anopheles (Anopheles). An. (Stethomyia) kompi Edwards, An. (Lophopodomyia) gilesi (Peryassú), Bironella hollandi Taylor, An. (Nyssorhynchus) oswaldoi (Peryassú) and An. (Cellia) maculatus Theobald were employed as outgroups. One hundred one characters of the external morphology of the adult male, adult female, fourth-instar larva, and pupa were scored and analyzed under the parsimony criterion in PAUP. Phylogenetic relationships among the series and several species informal groups of Anopheles (Anopheles) were hypothesized. The results suggest that Anopheles (Anopheles) is monophyletic. Additionally, most species groups included in the analysis were demonstrated to be monophyletic.

  20. Cladistic analysis of the subgenus Anopheles (Anopheles Meigen (Diptera: Culicidae based on morphological characters

    Directory of Open Access Journals (Sweden)

    Eliana Collucci

    2007-06-01

    Full Text Available In the present study, we used morphological characters to estimate phylogenetic relationships among members of the subgenus Anopheles Meigen. Phylogenetic analyses were carried out for 36 species of Anopheles (Anopheles. An. (Stethomyia kompi Edwards, An. (Lophopodomyia gilesi (Peryassú, Bironella hollandi Taylor, An. (Nyssorhynchus oswaldoi (Peryassú and An. (Cellia maculatus Theobald were employed as outgroups. One hundred one characters of the external morphology of the adult male, adult female, fourth-instar larva, and pupa were scored and analyzed under the parsimony criterion in PAUP. Phylogenetic relationships among the series and several species informal groups of Anopheles (Anopheles were hypothesized. The results suggest that Anopheles (Anopheles is monophyletic. Additionally, most species groups included in the analysis were demonstrated to be monophyletic.

  1. Systematics of mosquito disease vectors (Diptera, Culicidae): impact of molecular biology and cladistic analysis.

    Science.gov (United States)

    Munstermann, L E; Conn, J E

    1997-01-01

    The field of medical entomology, by nature of its association with problems of human health, has been conservative in its application of molecular and computer technologies to systematic research. Recently, however, these methods have opened new interpretations for systematics of disease vectors. Medically important insects, particularly mosquitoes, are among those more thoroughly described by conventional taxonomy, and thereby provide a secure framework for testing congruencies with molecular data. In turn, molecular investigations have provided a stimulus to vector systematics in the discovery and delineation of cryptic species complexes, as well as providing new perspectives on relationships at higher taxonomic divisions. In this review, examples involving cladistic analysis, cytogenetics--in situ hybridization, isoenzymes, DNA sequencing, and restriction fragment polymorphism are drawn from the following taxa: Aedes communis; Aedes (Ochlerotatus) group G; Aedes (Stegomyia) species including A. aegypti, A. albopictus, and A. scutellaris group; Anopheles albitarsis, Anopheles dirus, Anopheles gambiae, Anopheles nuneztovari, Anopheles pseudopunctipennis, and Anopheles punctulatus groups; Culex pipiens and the Culex subgenus Melanoconion; and the tribe Sabethini.

  2. CONTROL DEMONSTRATION OF THE RICEFIELD BREEDING MOSQUITO ANOPHELES ACONITUS DONITZ IN CENTRAL JAVA, USING POECILIA RETICULATA THROUGH COMMUNITY PARTICIPATION : 3. FIELD TRIAL AND EVALUATION

    Directory of Open Access Journals (Sweden)

    Sustriayu Nalim

    2012-09-01

    Full Text Available Suatu penelitian dilakukan untuk menjajagi kemungkinan menggunakan minapadi sebagai cara pemberantasan nyamuk Anopheles aconitus. Minapadi dilakukan dengan ikan Cyprinus carpio. Dengan tersedianya air di sawah untuk ikan, ikan pemakan jentik Poecilia Reticulata yang ditebarkan dapat hidup pula. Penebaran dilakukan oleh masyarakat. Hasil Penelitian ini menunjukkan bahwa melalui minapadi yaitu dengan penebaran, ikan P. reticulata pada kepadatan 2 ekor /m2, populasi An. aconitus selama 5 tahun dapat diturunkan sebanyak 99,7% dan S.P.R. malaria sebanyak 98.8%. [1] Regency Health Service, Banjarnegara Regency, Central Java.

  3. Analyzing mosquito (Diptera: culicidae diversity in Pakistan by DNA barcoding.

    Directory of Open Access Journals (Sweden)

    Muhammad Ashfaq

    Full Text Available BACKGROUND: Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications. METHODOLOGY/PRINCIPAL FINDINGS: Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010-2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection. The genus Aedes (Stegomyia comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0-2.4%, while congeneric species showed from 2.3-17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments. CONCLUSIONS: As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations.

  4. Anopheles gambiae odorant binding protein crystal complex with the synthetic repellent DEET: implications for structure-based design of novel mosquito repellents

    OpenAIRE

    Tsitsanou, K. E.; Thireou, T.; Drakou, C. E.; Koussis, K.; Keramioti, M. V.; Leonidas, D. D.; Eliopoulos, E.; Iatrou, K.; Zographos, S. E.

    2012-01-01

    Insect odorant binding proteins (OBPs) are the first components of the olfactory system to encounter and bind attractant and repellent odors emanating from various sources for presentation to olfactory receptors, which trigger relevant signal transduction cascades culminating in specific physiological and behavioral responses. For disease vectors, particularly hematophagous mosquitoes, repellents represent important defenses against parasitic diseases because they effect a reduction in the ra...

  5. Evaluation préliminaire de l'activité larvicide des extraits aqueux des feuilles du ricin (Ricinus communis L.) et du bois de thuya (Tetraclinis articulata (Vahl) Mast.) sur les larves de quatre moustiques culicidés : Culex pipiens (Linné), Aedes caspius (Pallas), Culiseta longiareolata (Aitken) et Anopheles maculipennis (Meigen)

    OpenAIRE

    Mahari S.; Mellouki F.; Oufara S.; Aouinty B.

    2006-01-01

    Preliminary evaluation of larvicidal activity of aqueous extracts from leaves of Ricinus communis L. and from wood of Tetraclinis articulata (Vahl) Mast. on the larvae of four mosquito species: Culex pipiens (Linné), Aedes caspius (Pallas), Culiseta longiareolata (Aitken) and Anopheles maculipennis (Meigen). Aqueous extracts of Ricinus communis leaves and Tetraclinis articulata wood showed strong toxic activity against larvae of several mosquitoes. In this study, insecticide effects of these ...

  6. Novel acetylcholinesterase target site for malaria mosquito control.

    Directory of Open Access Journals (Sweden)

    Yuan-Ping Pang

    Full Text Available Current anticholinesterase pesticides were developed during World War II and are toxic to mammals because they target a catalytic serine residue of acetylcholinesterases (AChEs in insects and in mammals. A sequence analysis of AChEs from 73 species and a three-dimensional model of a malaria-carrying mosquito (Anopheles gambiae AChE (AgAChE reported here show that C286 and R339 of AgAChE are conserved at the opening of the active site of AChEs in 17 invertebrate and four insect species, respectively. Both residues are absent in the active site of AChEs of human, monkey, dog, cat, cattle, rabbit, rat, and mouse. The 17 invertebrates include house mosquito, Japanese encephalitis mosquito, African malaria mosquito, German cockroach, Florida lancelet, rice leaf beetle, African bollworm, beet armyworm, codling moth, diamondback moth, domestic silkworm, honey bee, oat or wheat aphid, the greenbug, melon or cotton aphid, green peach aphid, and English grain aphid. The four insects are house mosquito, Japanese encephalitis mosquito, African malaria mosquito, and German cockroach. The discovery of the two invertebrate-specific residues enables the development of effective and safer pesticides that target the residues present only in mosquito AChEs rather than the ubiquitous serine residue, thus potentially offering an effective control of mosquito-borne malaria. Anti-AgAChE pesticides can be designed to interact with R339 and subsequently covalently bond to C286. Such pesticides would be toxic to mosquitoes but not to mammals.

  7. Avian malaria parasites in the last supper: identifying encounters between parasites and the invasive Asian mosquito tiger and native mosquito species in Italy

    OpenAIRE

    Martínez de la Puente, Josué; Muñoz, Joaquín; Capelli, Gioia; Montarsi, Frabrizio; Ramón C Soriguer; Arnoldi, Daniele; Rizzoli, Annapaola; Figuerola, Jordi

    2015-01-01

    Background The invasive Asian tiger mosquito Aedes albopictus has dramatically expanded its distribution range, being catalogued as one of the world’s 100 worst invasive alien species. As vectors of pathogens, Ae. albopictus may create novel epidemiological scenarios in the invaded areas. Methods Here, the frequency of encounters of Ae. albopictus with the avian malaria parasite Plasmodium and the related Haemoproteus was studied in an area with established populations in northeaste...

  8. Dusk to dawn activity patterns of anopheline mosquitoes in West Timor and Java, Indonesia.

    Science.gov (United States)

    Ndoen, Ermi; Wild, Clyde; Dale, Pat; Sipe, Neil; Dale, Mike

    2011-05-01

    Malaria is a serious health issue in Indonesia. We investigated the dusk to dawn anopheline mosquito activity patterns, host-seeking and resting locations in coastal plain, hilly and highland areas in West Timor and Java. Adult mosquitoes were captured landing on humans or resting in houses or animal barns. Data analyzed were: mosquito night-time activities; period of peak activity; night-time activity in specific periods of time and for mosquito resting locations. Eleven species were recorded; data were sparse for some species therefore detailed analyses were performed for four species only. In Java Anopheles vagus was common, with a bimodal pattern of high activity. In West Timor, its activity peaked around midnight. Other species with peak activity around the middle of the night were An. barbirostris and An. subpictus. Most species showed no biting and resting preference for indoors or outdoors, although An. barbirostris preferred indoors in West Timor, but outdoors in Java. An. aconitus and An. annularis preferred resting in human dwellings; An. subpictus and An. vagus preferred resting in animal barns. An. barbirostris preferred resting in human dwellings in West Timor and in animal barns in Java. The information is useful for planning the mosquito control aspect of malaria management. For example, where mosquito species have peak activity at night indoors, bednets and indoor residual spraying should reduce malaria risk, but where mosquitoes are most active outdoors, other options may be more effective.

  9. Molecular Characterization of Mosquitoes (Diptera: Culicidae) in Northwestern Iran by Using rDNA-ITS2.

    Science.gov (United States)

    Khoshdel-Nezamiha, Farahnaz; Vatandoost, Hassan; Oshaghi, Mohammad Ali; Azari-Hamidian, Shahyad; Mianroodi, Reza Arabi; Dabiri, Farrokh; Bagheri, Masoomeh; Terenius, Olle; Chavshin, Ali Reza

    2016-07-22

    Several mosquito species are vectors of disease; however, to understand their role in disease transmission, accurate species identification is of particular importance. Morphological identification is the main method used, but molecular techniques have emerged as a tool for the identification of closely related species. In this study, mosquitoes from the West Azerbaijan Province in northwestern Iran were characterized on the basis of their rDNA-ITS2 sequences. Nine populations of 6 species of mosquitoes belonging to the genera Anopheles, Culex, Culiseta, and Ochlerotatus were studied. To the best of our knowledge, ITS2 sequences of Culiseta longiareolata and Culex hortensis have been reported for the first time. In addition, ITS2 sequences of Culex theileri and Ochlerotatus caspius have been reported for the first time in Iran. Phylogenetic analysis based on ITS2 showed that subfamilies Anophelinae and Culicinae of the family Culicidae could be differentiated successfully and subgenera Anopheles and Cellia of the genus Anopheles were separated. The analysis showed that the genera Culex, Culiseta, and Ochlerotatus have diverged separately.

  10. Filarial worms reduce Plasmodium infectivity in mosquitoes.

    Directory of Open Access Journals (Sweden)

    Matthew T Aliota

    Full Text Available BACKGROUND: Co-occurrence of malaria and filarial worm parasites has been reported, but little is known about the interaction between filarial worm and malaria parasites with the same Anopheles vector. Herein, we present data evaluating the interaction between Wuchereria bancrofti and Anopheles punctulatus in Papua New Guinea (PNG. Our field studies in PNG demonstrated that An. punctulatus utilizes the melanization immune response as a natural mechanism of filarial worm resistance against invading W. bancrofti microfilariae. We then conducted laboratory studies utilizing the mosquitoes Armigeres subalbatus and Aedes aegypti and the parasites Brugia malayi, Brugia pahangi, Dirofilaria immitis, and Plasmodium gallinaceum to evaluate the hypothesis that immune activation and/or development by filarial worms negatively impact Plasmodium development in co-infected mosquitoes. Ar. subalbatus used in this study are natural vectors of P. gallinaceum and B. pahangi and they are naturally refractory to B. malayi (melanization-based refractoriness. METHODOLOGY/PRINCIPAL FINDINGS: Mosquitoes were dissected and Plasmodium development was analyzed six days after blood feeding on either P. gallinaceum alone or after taking a bloodmeal containing both P. gallinaceum and B. malayi or a bloodmeal containing both P. gallinaceum and B. pahangi. There was a significant reduction in the prevalence and mean intensity of Plasmodium infections in two species of mosquito that had dual infections as compared to those mosquitoes that were infected with Plasmodium alone, and was independent of whether the mosquito had a melanization immune response to the filarial worm or not. However, there was no reduction in Plasmodium development when filarial worms were present in the bloodmeal (D. immitis but midgut penetration was absent, suggesting that factors associated with penetration of the midgut by filarial worms likely are responsible for the observed reduction in malaria

  11. Morphology of the larvae, male genitalia and DNA sequences of Anopheles (Kerteszia pholidotus (Diptera: Culicidae from Colombia

    Directory of Open Access Journals (Sweden)

    Jesús Eduardo Escovar

    2014-07-01

    Full Text Available Since 1984, Anopheles (Kerteszia lepidotus has been considered a mosquito species that is involved in the transmission of malaria in Colombia, after having been incriminated as such with epidemiological evidence from a malaria outbreak in Cunday-Villarrica, Tolima. Subsequent morphological analyses of females captured in the same place and at the time of the outbreak showed that the species responsible for the transmission was not An. lepidotus, but rather Anopheles pholidotus. However, the associated morphological stages and DNA sequences of An. pholidotus from the foci of Cunday-Villarrica had not been analysed. Using samples that were caught recently from the outbreak region, the purpose of this study was to provide updated and additional information by analysing the morphology of female mosquitoes, the genitalia of male mosquitoes and fourth instar larvae of An. pholidotus, which was confirmed with DNA sequences of cytochrome oxidase I and rDNA internal transcribed spacer. A total of 1,596 adult females were collected in addition to 37 larval collections in bromeliads. Furthermore, 141 adult females, which were captured from the same area in the years 1981-1982, were analysed morphologically. Ninety-five DNA sequences were analysed for this study. Morphological and molecular analyses showed that the species present in this region corresponds to An. pholidotus. Given the absence of An. lepidotus, even in recent years, we consider that the species of mosquitoes that was previously incriminated as the malaria vector during the outbreak was indeed An. pholidotus, thus ending the controversy.

  12. An Updated Checklist of the Mosquitoes of Oklahoma Including New State Records and West Nile Virus Vectors, 2003-06.

    Science.gov (United States)

    Noden, Bruce H; Coburn, Lisa; Wright, Russell; Bradley, Kristy

    2015-12-01

    The mosquito fauna of Oklahoma has not been evaluated since 1965 and no report has been published concerning species associated with urban areas in the state. Mosquito collections were conducted as part of the West Nile virus (WNV) surveillance program between April and November from 2003 to 2006, using standard collection methods. A total of 74,756 adults were collected in 26 urban centers in 16 counties of Oklahoma. Altogether, 40 species were recorded during this study period, bringing the total mosquito species recorded in Oklahoma to 62 species in 9 different genera and 18 subgenera. An updated checklist of Oklahoma mosquito fauna is included with a comparison to historical records. New state records include 3 species: Aedes muelleri, Anopheles perplexens, and Culex coronator. In addition to updating the checklist, 12 species of mosquitoes were tested for WNV. Pools of Culex pipiens complex represented the highest proportion testing positive for WNV (134/766, 17.5%), followed by Cx. tarsalis (13/192, 6.8%) and Aedes albopictus (5/215, 2.3%). West Nile virus-positive mosquitoes were detected earliest in June 2005 and latest in November 2004. Infected Cx. pipiens complex testing positive for WNV were more prevalent in the eastern and central areas of Oklahoma, whereas positive Cx. tarsalis were found mainly in the western areas of the state. This distinct geographical difference needs to be monitored and followed up to ensure optimal mosquito control efforts in Oklahoma communities with mosquito control capabilities.

  13. Survey of the mosquitoes (Diptera: Culicidae of Mayotte.

    Directory of Open Access Journals (Sweden)

    Gilbert Le Goff

    Full Text Available A transversal survey of immature mosquitoes was conducted on Mayotte Island (France in the Comoros Archipelago, western Indian Ocean, with the aim to inventory the Culicidae and to document inter-species relationships in different habitats. In total 420 habitats were sampled for larvae and/or pupae mosquitoes, resulting in more than 6,000 specimens. Forty species belonging to 15 genera were collected, with eight taxa integrated for the first time to the Mayotte mosquito list. The most frequently recorded species were Stegomyia aegypti, St. albopicta, Anopheles gambiae and Eretmapodites subsimplicipes, the first three species being known vectors of viruses and parasites transmitted to humans. Mean species richness in habitats ranged from 1.00 to 3.29, with notable differences between habitats. For example, water-filled axils of banana leaves, tree-holes and crab-holes had low species richness, while cut bamboo, water pools, abandoned tires and marsh and swamp water had notably higher species richness. Twenty-seven mosquito species belonging to 12 genera were routinely collected (in ≥20% of at least one type of larval habitat suggesting that multiple species play a role in the biocenosis of these aquatic habitats. Multispecies association was observed in 52% of the habitats. The co-occurrence of up to six species belonging to five genera was recorded in a single habitat. The mosquitoes of Mayotte show notable biogeographical affinities to those of Madagascar, as compared to the African continent. These two potential source areas are nearly equidistant from Mayotte, which in turn indicates biased dispersal from east to west. Our findings suggest that with relatively short-term intensive sampling in different habitats, it is possible to approach exhaustive species inventories based on collection of larvae. Mayotte, with its modest elevation range and land surface, has a notable species richness of mosquitoes with 45 well-documented species

  14. Survey of the mosquitoes (Diptera: Culicidae) of Mayotte.

    Science.gov (United States)

    Le Goff, Gilbert; Goodman, Steven M; Elguero, Eric; Robert, Vincent

    2014-01-01

    A transversal survey of immature mosquitoes was conducted on Mayotte Island (France) in the Comoros Archipelago, western Indian Ocean, with the aim to inventory the Culicidae and to document inter-species relationships in different habitats. In total 420 habitats were sampled for larvae and/or pupae mosquitoes, resulting in more than 6,000 specimens. Forty species belonging to 15 genera were collected, with eight taxa integrated for the first time to the Mayotte mosquito list. The most frequently recorded species were Stegomyia aegypti, St. albopicta, Anopheles gambiae and Eretmapodites subsimplicipes, the first three species being known vectors of viruses and parasites transmitted to humans. Mean species richness in habitats ranged from 1.00 to 3.29, with notable differences between habitats. For example, water-filled axils of banana leaves, tree-holes and crab-holes had low species richness, while cut bamboo, water pools, abandoned tires and marsh and swamp water had notably higher species richness. Twenty-seven mosquito species belonging to 12 genera were routinely collected (in ≥20% of at least one type of larval habitat) suggesting that multiple species play a role in the biocenosis of these aquatic habitats. Multispecies association was observed in 52% of the habitats. The co-occurrence of up to six species belonging to five genera was recorded in a single habitat. The mosquitoes of Mayotte show notable biogeographical affinities to those of Madagascar, as compared to the African continent. These two potential source areas are nearly equidistant from Mayotte, which in turn indicates biased dispersal from east to west. Our findings suggest that with relatively short-term intensive sampling in different habitats, it is possible to approach exhaustive species inventories based on collection of larvae. Mayotte, with its modest elevation range and land surface, has a notable species richness of mosquitoes with 45 well-documented species belonging to 15 genera

  15. Survey of the mosquitoes (Diptera: Culicidae) of Mayotte.

    Science.gov (United States)

    Le Goff, Gilbert; Goodman, Steven M; Elguero, Eric; Robert, Vincent

    2014-01-01

    A transversal survey of immature mosquitoes was conducted on Mayotte Island (France) in the Comoros Archipelago, western Indian Ocean, with the aim to inventory the Culicidae and to document inter-species relationships in different habitats. In total 420 habitats were sampled for larvae and/or pupae mosquitoes, resulting in more than 6,000 specimens. Forty species belonging to 15 genera were collected, with eight taxa integrated for the first time to the Mayotte mosquito list. The most frequently recorded species were Stegomyia aegypti, St. albopicta, Anopheles gambiae and Eretmapodites subsimplicipes, the first three species being known vectors of viruses and parasites transmitted to humans. Mean species richness in habitats ranged from 1.00 to 3.29, with notable differences between habitats. For example, water-filled axils of banana leaves, tree-holes and crab-holes had low species richness, while cut bamboo, water pools, abandoned tires and marsh and swamp water had notably higher species richness. Twenty-seven mosquito species belonging to 12 genera were routinely collected (in ≥20% of at least one type of larval habitat) suggesting that multiple species play a role in the biocenosis of these aquatic habitats. Multispecies association was observed in 52% of the habitats. The co-occurrence of up to six species belonging to five genera was recorded in a single habitat. The mosquitoes of Mayotte show notable biogeographical affinities to those of Madagascar, as compared to the African continent. These two potential source areas are nearly equidistant from Mayotte, which in turn indicates biased dispersal from east to west. Our findings suggest that with relatively short-term intensive sampling in different habitats, it is possible to approach exhaustive species inventories based on collection of larvae. Mayotte, with its modest elevation range and land surface, has a notable species richness of mosquitoes with 45 well-documented species belonging to 15 genera.

  16. Genomic Dark Matter Illuminated: Anopheles Y Chromosomes.

    Science.gov (United States)

    Redmond, Seth N; Neafsey, Daniel E

    2016-08-01

    Hall et al. have strategically used long-read sequencing technology to characterize the structure and highly repetitive content of the Y chromosome in Anopheles malaria mosquitoes. Their work confirms that this important but elusive heterochromatic sex chromosome is evolving extremely rapidly and harbors a remarkably small number of genes.

  17. Genomic Dark Matter Illuminated: Anopheles Y Chromosomes.

    Science.gov (United States)

    Redmond, Seth N; Neafsey, Daniel E

    2016-08-01

    Hall et al. have strategically used long-read sequencing technology to characterize the structure and highly repetitive content of the Y chromosome in Anopheles malaria mosquitoes. Their work confirms that this important but elusive heterochromatic sex chromosome is evolving extremely rapidly and harbors a remarkably small number of genes. PMID:27263828

  18. Anopheles barbirostris Confirmation as Malaria Vector in Waikabubak through the Detection of Circumsporozoit Protein

    Directory of Open Access Journals (Sweden)

    Yuneu Yuliasih

    2012-06-01

    Full Text Available Anopheline species confirmed as malaria vector if the salivary gland contained sporozoites. One of the method to confirmed it was through an Enzyme-Linked Immunosorbent Assay (ELISA. The aim of this study was to investigate the presence of circum sporozoite protein (CSP in the mosquito of Anopheles barbirostris with ELISA method. The study was conducted in malaria endemic area named Modu Waimaringu Village, Waikabubak District, Sumba Barat Regency in March 2011. The study design was cross-sectional study, mosquito for the ELISA test were collected only from animal bait. ELISA method examination used on An. barbirostris body parts (i.e. the head-thorax where sporozoites of P. falciparum or P. Vivax possibly be found. The results showed that 40 samples of An. barbirostris mosquitoes which acquired from the mosquite bait in Modu Waimaringu Village was negative (100%. It means that there was no CSP found and An. barbirostris was not a malaria vector in the area

  19. Experimental hut evaluation of linalool spatial repellent agar gel against Anopheles gambiae sensu stricto mosquitoes in a semi-field system in Bagamoyo, Tanzania

    OpenAIRE

    Tambwe, Mgeni; Mbeyela, Edgar; Massinda, Brian; Moore, Sarah; Maia, Marta

    2014-01-01

    Background Malaria vector control is in need of new tools to face its current challenges such as the spread of pyrethroid-resistance and the increase of outdoor feeding mosquitoes. New strategies such as spatial repellents need to be evaluated as supplemental tools to existing control measures such as insecticide treated bed nets and indoor residual spraying. Linalool is a naturally occurring terpene alcohol commonly found in flowers and spices with reportedly repellent properties. Methods Fo...

  20. Biorational insecticides for control of mosquitoes and black flies in Sinaloa

    OpenAIRE

    Cipriano García Gutiérrez; Rosa Luz Gómez Peraza; Claudia E. López Aguilar; Arturo León Váldez

    2012-01-01

    In Sinaloa Mexico the presence of mosquitoes is a important health problem, and each spring-summer season appear several species which include: Aedes aegypti (Linneus), Anopheles albimanus (Wiedemann), Culex quinquefasciatus (Say) and black flies of the Simulidae family. The control of larvae and adults of these insects are usually performed with chemical insecticides, so the use of biorational insecticides for control of these insects is novel, due to that have low environment impact. The ob...

  1. Impact of climate change on invasive mosquito species in S.E. Europe

    Science.gov (United States)

    -Eleni Sotiropoulou, Rafaella; Tagaris, Efthimios; Sotiropoulos, Andreas; Spanos, Ioannis; Milonas, Panagiotis; Michaelakis, Antonis

    2014-05-01

    Globalization of trade and travel in recent decades has facilitated the invasion of several non-native mosquito species in many countries globally, causing serious environmental, economic and health problems. A combination of climatic and environmental factors such as temperature, precipitation, number of premises per hectare, green covering, and composition of microhabitats influences the survival range and seasonal activity of invasive mosquito species (IMS) and determines the regions that are suitable for their establishment. Using the state-of-the-art GISS ModelE global climate model (GCM), in the framework of the EU co-funded LIFE CONOPS (LIFE12 ENV/GR/000466) project, we investigate the change in the frequency with which IMS find favorable climatic conditions in S.E. Europe, specifically, Greece and Italy, for the establishment of permanent populations by simulating the current and future climate. Given that the outputs of the GCM are relatively course for applications in regional and local scales, here we adapt the technique of dynamical regional downscaling in order to increase their spatial resolution. This is done using the mesoscale meteorological model Weather Research and Forecasting (WRF). Results are presented for the years 2009 and 2059. The findings of the current study suggest that climate change modifies the meteorological conditions, locally, affecting the establishment and growth of IMS.

  2. Composition of human skin microbiota affects attractiveness to malaria mosquitoes.

    Directory of Open Access Journals (Sweden)

    Niels O Verhulst

    Full Text Available The African malaria mosquito Anopheles gambiae sensu stricto continues to play an important role in malaria transmission, which is aggravated by its high degree of anthropophily, making it among the foremost vectors of this disease. In the current study we set out to unravel the strong association between this mosquito species and human beings, as it is determined by odorant cues derived from the human skin. Microbial communities on the skin play key roles in the production of human body odour. We demonstrate that the composition of the skin microbiota affects the degree of attractiveness of human beings to this mosquito species. Bacterial plate counts and 16S rRNA sequencing revealed that individuals that are highly attractive to An. gambiae s.s. have a significantly higher abundance, but lower diversity of bacteria on their skin than individuals that are poorly attractive. Bacterial genera that are correlated with the relative degree of attractiveness to mosquitoes were identified. The discovery of the connection between skin microbial populations and attractiveness to mosquitoes may lead to the development of new mosquito attractants and personalized methods for protection against vectors of malaria and other infectious diseases.

  3. Diversity and transmission competence in lymphatic filariasis vectors in West Africa, and the implications for accelerated elimination of Anopheles-transmitted filariasis

    Directory of Open Access Journals (Sweden)

    de Souza Dziedzom K

    2012-11-01

    Full Text Available Abstract Lymphatic Filariasis (LF is targeted for elimination by the Global Programme for the Elimination of Lymphatic Filariasis (GPELF. The strategy adopted is based on the density dependent phenomenon of Facilitation, which hypothesizes that in an area where the vector species transmitting Wuchereria bancrofti are Anopheles mosquitoes, it is feasible to eliminate LF using Mass Drug Administration (MDA because of the inability of Anopheles species to transmit low-density microfilaraemia. Even though earlier studies have shown Anopheles species can exhibit the process of Facilitation in West Africa, observations point towards the process of Limitation in certain areas, in which case vector control is recommended. Studies on Anopheles species in West Africa have also shown genetic differentiation, cryptic taxa and speciation, insecticide resistance and the existence of molecular and chromosomal forms, all of which could influence the vectorial capacity of the mosquitoes and ultimately the elimination goal. This paper outlines the uniqueness of LF vectors in West Africa and the challenges it poses to the 2020 elimination goal, based on the current MDA strategies.

  4. Wash resistance and repellent properties of Africa University mosquito blankets against mosquitoes

    OpenAIRE

    Lukwa, N; A. Makuwaza; T. Chiwade; S.L. Mutambu; M. Zimba; P. Munosiyei

    2013-01-01

    The effect of permethrin-treated Africa University (AU) mosquito blankets on susceptible female Anopheles gambiae sensu lato mosquitoes was studied under laboratory conditions at Africa University Campus in Mutare, Zimbabwe. Wash resistance (ability to retain an effective dose that kills ≥80% of mosquitoes after a number of washes) and repellence (ability to prevent ≥80% of mosquito bites) properties were studied. The AU blankets were wash resistant when 100% mortality was recorded up t...

  5. Confirmation of Anopheles (Anopheles calderoni Wilkerson, 1991 (Diptera: Culicidae in Colombia and Ecuador through molecular and morphological correlation with topotypic material

    Directory of Open Access Journals (Sweden)

    Ranulfo González

    2010-12-01

    Full Text Available The morphologically similar taxa Anopheles calderoni, Anopheles punctimacula, Anopheles malefactor and Anopheles guarao are commonly misidentified. Isofamilies collected in Valle de Cauca, Colombia, showed morphological characters most similar to An. calderoni, a species which has never previously been reported in Colombia. Although discontinuity of the postsubcostal pale spots on the costa (C and first radial (R1 wing veins is purportedly diagnostic for An. calderoni, the degree of overlap of the distal postsubcostal spot on C and R1 were variable in Colombian specimens (0.003-0.024. In addition, in 98.2% of larvae, seta 1-X was located off the saddle and seta 3-C had 4-7 branches in 86.7% of specimens examined. Correlation of DNA sequences of the second internal transcribed spacer and mtDNA cytochrome c oxidase subunit I gene (COI barcodes (658 bp of the COI gene generated from Colombian progeny material and wild-caught mosquitoes from Ecuador with those from the Peruvian type series of An. calderoni confirmed new country records. DNA barcodes generated for the closely related taxa, An. malefactor and An. punctimacula are also presented for the first time. Examination of museum specimens at the University of the Valle, Colombia, revealed the presence of An. calderoni in inland localities across Colombia and at elevations up to 1113 m.

  6. Larvicidal efficacy of Cleistanthus collinus (Roxb.) (Euphorbiaceae) leaf extracts against vector mosquitoes (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    Arivoli S; Samuel T

    2011-01-01

    Objective:To determine the larvicidal activity of Cleistanthus collinus (C. collinus) leaf extracts against Aedes aegypti, Anopheles stephensi (An. stephensi) and Culex quinquefasciatus. Methods:The larvicidal activity was determined against three vector mosquito species at concentrations of 250, 500, 750 and 1000 ppm. Larval mortality was assessed after 24 hours. Results:The leaf extracts of C. collinus was found to exhibit a larvicidal activity against the larvae of An. stephensi with a LC50 value of 399.72 ppm. Conclusions:The results indicate moderate level of larvicidal activity against vector mosquitoes.

  7. Anopheles darlingi and Anopheles marajoara (Diptera: Culicidae susceptibility to pyrethroids in an endemic area of the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Allan Kardec Ribeiro Galardo

    2015-12-01

    Full Text Available Abstract: INTRODUCTION: This study aimed to evaluate the susceptibility of Anopheles darlingi Root (1926 and Anopheles marajoara Galvão & Damasceno (1942 to pyrethroids used by the National Malaria Control Program in Brazil. METHODS: Mosquitoes from Amapá, Brazilian Amazon, were assessed for resistance to cypermethrin, deltamethrin, and alpha-cypermethrin. Insecticide-impregnated bottles were used as suggested by the CDC/Atlanta. RESULTS: Diagnostic dose for Anopheles darlingi was 12.5µg/bottle during 30 min of exposure. Concentrations for Anopheles marajoara were 20µg/bottle of cypermethrin and deltamethrin and 12.5µg/bottle of alpha-cypermethrin. CONCLUSIONS : No resistance was recorded for Anopheles darlingi , but Anopheles marajoara requires attention.

  8. British container breeding mosquitoes: the impact of urbanisation and climate change on community composition and phenology.

    Science.gov (United States)

    Townroe, Susannah; Callaghan, Amanda

    2014-01-01

    The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3) per container than those in rural containers (77.7±15.1). Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV]) and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector). Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK. PMID:24759617

  9. British container breeding mosquitoes: the impact of urbanisation and climate change on community composition and phenology.

    Directory of Open Access Journals (Sweden)

    Susannah Townroe

    Full Text Available The proliferation of artificial container habitats in urban areas has benefitted urban adaptable mosquito species globally. In areas where mosquitoes transmit viruses and parasites, it can promote vector population productivity and fuel mosquito-borne disease outbreaks. In Britain, storage of water in garden water butts is increasing, potentially expanding mosquito larval habitats and influencing population dynamics and mosquito-human contact. Here we show that the community composition, abundance and phenology of mosquitoes breeding in experimental water butt containers were influenced by urbanisation. Mosquitoes in urban containers were less species-rich but present in significantly higher densities (100.4±21.3 per container than those in rural containers (77.7±15.1. Urban containers were dominated by Culex pipiens (a potential vector of West Nile Virus [WNV] and appear to be increasingly exploited by Anopheles plumbeus (a human-biting potential WNV and malaria vector. Culex phenology was influenced by urban land use type, with peaks in larval abundances occurring earlier in urban than rural containers. Among other factors, this was associated with an urban heat island effect which raised urban air and water temperatures by 0.9°C and 1.2°C respectively. Further increases in domestic water storage, particularly in urban areas, in combination with climate changes will likely alter mosquito population dynamics in the UK.

  10. Plasmodium evasion of mosquito immunity and global malaria transmission: The lock-and-key theory.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Canepa, Gaspar E; Kamath, Nitin; Pavlovic, Noelle V; Mu, Jianbing; Ramphul, Urvashi N; Ramirez, Jose Luis; Barillas-Mury, Carolina

    2015-12-01

    Plasmodium falciparum malaria originated in Africa and became global as humans migrated to other continents. During this journey, parasites encountered new mosquito species, some of them evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mosquito immune system of Anopheles gambiae mosquitoes. Here, we investigated the role of Pfs47-mediated immune evasion in the adaptation of P. falciparum to evolutionarily distant mosquito species. We found that P. falciparum isolates from Africa, Asia, or the Americas have low compatibility to malaria vectors from a different continent, an effect that is mediated by the mosquito immune system. We identified 42 different haplotypes of Pfs47 that have a strong geographic population structure and much lower haplotype diversity outside Africa. Replacement of the Pfs47 haplotypes in a P. falciparum isolate is sufficient to make it compatible to a different mosquito species. Those parasites that express a Pfs47 haplotype compatible with a given vector evade antiplasmodial immunity and survive. We propose that Pfs47-mediated immune evasion has been critical for the globalization of P. falciparum malaria as parasites adapted to new vector species. Our findings predict that this ongoing selective force by the mosquito immune system could influence the dispersal of Plasmodium genetic traits and point to Pfs47 as a potential target to block malaria transmission. A new model, the "lock-and-key theory" of P. falciparum globalization, is proposed, and its implications are discussed. PMID:26598665

  11. Plasmodium evasion of mosquito immunity and global malaria transmission: The lock-and-key theory

    Science.gov (United States)

    Molina-Cruz, Alvaro; Canepa, Gaspar E.; Kamath, Nitin; Pavlovic, Noelle V.; Mu, Jianbing; Ramphul, Urvashi N.; Ramirez, Jose Luis; Barillas-Mury, Carolina

    2015-01-01

    Plasmodium falciparum malaria originated in Africa and became global as humans migrated to other continents. During this journey, parasites encountered new mosquito species, some of them evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mosquito immune system of Anopheles gambiae mosquitoes. Here, we investigated the role of Pfs47-mediated immune evasion in the adaptation of P. falciparum to evolutionarily distant mosquito species. We found that P. falciparum isolates from Africa, Asia, or the Americas have low compatibility to malaria vectors from a different continent, an effect that is mediated by the mosquito immune system. We identified 42 different haplotypes of Pfs47 that have a strong geographic population structure and much lower haplotype diversity outside Africa. Replacement of the Pfs47 haplotypes in a P. falciparum isolate is sufficient to make it compatible to a different mosquito species. Those parasites that express a Pfs47 haplotype compatible with a given vector evade antiplasmodial immunity and survive. We propose that Pfs47-mediated immune evasion has been critical for the globalization of P. falciparum malaria as parasites adapted to new vector species. Our findings predict that this ongoing selective force by the mosquito immune system could influence the dispersal of Plasmodium genetic traits and point to Pfs47 as a potential target to block malaria transmission. A new model, the “lock-and-key theory” of P. falciparum globalization, is proposed, and its implications are discussed. PMID:26598665

  12. Characterization of larval habitats for anopheline mosquitoes in a malarious area under elimination program in the southeast of Iran

    Institute of Scientific and Technical Information of China (English)

    Moussa Soleimani-Ahmadi; Hassan Vatandoost; Mehdi Zare

    2014-01-01

    Objective: To determine the effects of environmental characteristics of larval habitats on distribution and abundance of anopheline mosquitoes in Bashagard county, a malarious area in southeast of Iran. Methods: Larvae were collected monthly using the standard dipping method and identified using a morphological-based key. Environmental characteristics of the larval habitats were recorded. Water samples were taken from habitats during larval collection for physico-chemical characterization. Statistical analyses were performed. Results: In total 5150 anopheline larvae from 36 larval habitats were collected and identified. They comprised of six species: Anopheles culicifacies (29.36%), Anopheles moghulensis (25.20%),Anopheles dthali stephensi (5.01%). (18.02%), Anopheles superpictus (17.24%), Anopheles turkhudi (5.17%) and Anopheles The most common larval habitats were natural and clear water bodies such as riverbeds with sandy substrates and still water. Furthermore, the anopheline larvae were abundant in permanent and full sunlight habitats without vegetation and algae. Larval density was positively correlated with water temperature. Chemical characteristics including conductivity, total alkalinity, sulphate and chloride had significant effects on distribution and abundance of anopheline species.Conclusions:The result of this study indicates a correlation between some environmental characteristics and anopheline larvae abundance which can be considered for effective planning and implementing malaria elimination program in Iran.

  13. Frequency tuning of individual auditory receptors in female mosquitoes (Diptera, Culicidae).

    Science.gov (United States)

    Lapshin, D N; Vorontsov, D D

    2013-08-01

    The acoustic sensory organs in mosquitoes (Johnston organs) have been thoroughly studied; yet, to date, no data are available on the individual tuning properties of the numerous receptors that convert sound-induced vibrations into electrical signals. All previous measurements of frequency tuning in mosquitoes have been based on the acoustically evoked field potentials recorded from the entire Johnston organ. Here, we present evidence that individual receptors have various frequency tunings and that differently tuned receptors are unequally represented within the Johnston organ. We devised a positive feedback stimulation paradigm as a new and effective approach to test individual receptor properties. Alongside the glass microelectrode technique, the positive feedback stimulation paradigm has allowed us to obtain data on receptor tuning in females from three mosquito species: Anopheles messeae, Aedes excrucians and Culex pipiens pipiens. The existence of individually tuned auditory receptors implies that frequency analysis in mosquitoes may be possible.

  14. High malaria transmission in a forested malaria focus in French Guiana: How can exophagic Anopheles darlingi thwart vector control and prevention measures?

    Science.gov (United States)

    Vezenegho, Samuel B; Adde, Antoine; de Santi, Vincent Pommier; Issaly, Jean; Carinci, Romuald; Gaborit, Pascal; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien

    2016-01-01

    In French Guiana, malaria vector control and prevention relies on indoor residual spraying and distribution of long lasting insecticidal nets. These measures are based on solid epidemiological evidence but reveal a poor understanding of the vector. The current study investigated the behaviour of both vectors and humans in relation to the ongoing prevention strategies. In 2012 and 2013, Anopheles mosquitoes were sampled outdoors at different seasons and in various time slots. The collected mosquitoes were identified and screened for Plasmodium infection. Data on human behaviour and malaria episodes were obtained from an interview. A total of 3,135 Anopheles mosquitoes were collected, of which Anopheles darlingi was the predominant species (96.2%). For the December 2012-February 2013 period, the Plasmodium vivax infection rate for An. darlingi was 7.8%, and the entomological inoculation rate was 35.7 infective bites per person per three-month span. In spite of high bednet usage (95.7%) in 2012 and 2013, 52.2% and 37.0% of the participants, respectively, had at least one malaria episode. An. darlingi displayed heterogeneous biting behaviour that peaked between 20:30 and 22:30; however, 27.6% of the inhabitants were not yet protected by bednets by 21:30. The use of additional individual and collective protective measures is required to limit exposure to infective mosquito bites and reduce vector densities. PMID:27653361

  15. High malaria transmission in a forested malaria focus in French Guiana: How can exophagic Anopheles darlingi thwart vector control and prevention measures?

    Science.gov (United States)

    Vezenegho, Samuel B; Adde, Antoine; Pommier de Santi, Vincent; Issaly, Jean; Carinci, Romuald; Gaborit, Pascal; Dusfour, Isabelle; Girod, Romain; Briolant, Sébastien

    2016-09-01

    In French Guiana, malaria vector control and prevention relies on indoor residual spraying and distribution of long lasting insecticidal nets. These measures are based on solid epidemiological evidence but reveal a poor understanding of the vector. The current study investigated the behaviour of both vectors and humans in relation to the ongoing prevention strategies. In 2012 and 2013, Anopheles mosquitoes were sampled outdoors at different seasons and in various time slots. The collected mosquitoes were identified and screened for Plasmodium infection. Data on human behaviour and malaria episodes were obtained from an interview. A total of 3,135 Anopheles mosquitoes were collected, of which Anopheles darlingi was the predominant species (96.2%). For the December 2012-February 2013 period, the Plasmodium vivax infection rate for An. darlingi was 7.8%, and the entomological inoculation rate was 35.7 infective bites per person per three-month span. In spite of high bednet usage (95.7%) in 2012 and 2013, 52.2% and 37.0% of the participants, respectively, had at least one malaria episode. An. darlingi displayed heterogeneous biting behaviour that peaked between 20:30 and 22:30; however, 27.6% of the inhabitants were not yet protected by bednets by 21:30. The use of additional individual and collective protective measures is required to limit exposure to infective mosquito bites and reduce vector densities.

  16. Geometric morphometric analysis of Colombian Anopheles albimanus (Diptera: Culicidae) reveals significant effect of environmental factors on wing traits and presence of a metapopulation

    OpenAIRE

    Giovan F Gómez; Márquez, Edna J.; Gutiérrez, Lina A.; Conn, Jan E.; Correa, Margarita M.

    2014-01-01

    Anopheles albimanus is a major malaria mosquito vector in Colombia. In the present study, wing variability (size and shape) in An. albimanus populations from Colombian Maracaibo and Chocó bio-geographical eco-regions and the relationship of these phenotypic traits with environmental factors were evaluated. Microsatellite and morphometric data facilitated a comparison of the genetic and phenetic structure of this species. Wing size was influenced by elevation and relative humidity, whereas win...

  17. Neem by-products in the fight against mosquito-borne diseases:Biotoxicity of neem cake fractions towards the rural malaria vector Anopheles culicifacies (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    Balamurugan Chandramohan; Marcello Nicoletti; Angelo Canale; Giovanni Benelli; Kadarkarai Murugan; Pari Madhiyazhagan; Kalimuthu Kovendan; Palanisamy Mahesh Kumar; Chellasamy Panneerselvam; Devakumar Dinesh; Jayapal Subramaniam; Rajapandian Rajaganesh

    2016-01-01

    Objective: To evaluate the ovicidal, larvicidal and adulticidal potential of neem cake fractions of different polarity against the rural malaria vector Anopheles culicifacies (An. culicifacies). Methods: Neem cake fractions' total methanol extract (NTMeOH), total ethyl acetate extract (NTAcOEt), ethyl acetate fraction after repartition with NTMeOH (NRAcOEt), butanol fraction after repartition with NTMeOH (NRBuOH), and aqueous fraction after repartition of NTMeOH (NRH2O) were tested against An. culicifacies eggs, fourth instar larvae and adults. Results: In larvicidal experiments, NTMeOH, NTAcOEt, NRAcOEt, NRBuOH and NRH2O achieved LC50 values of 1.32, 1.50, 1.81, 1.95 and 2.54 mg/L, respectively. All fractions tested at 150 mg/L were able to reduce egg hatchability of more than 50%, with the exception of NTAcOEt and NRAcOEt. In adulticidal assays, NTMeOH, NTAcOEt, NRAcOEt, NRBuOH and NRH2O achieved LC50 values of 3.01, 2.95, 3.23, 3.63 and 3.00 mg/L, respectively. Conclusions: Overall, this study suggests that the methanolic fractions of neem cake may be considered as a new and cheap source of highly effective compounds against the rural malaria vector An. culicifacies.

  18. Mosquito, egg raft (image)

    Science.gov (United States)

    Mosquitoes of the Culex species lay their eggs in the form of egg rafts that float in ... feed on micro-organisms before developing into flying mosquitoes. (Image courtesy of the Centers for Disease Control ...

  19. Regular production of infective sporozoites of Plasmodium falciparum and P. vivax in laboratory-bred Anopheles albimanus.

    Science.gov (United States)

    Hurtado, S; Salas, M L; Romero, J F; Zapata, J C; Ortiz, H; Arevalo-Herrera, M; Herrera, S

    1997-01-01

    One of the major constraints for studies on the sporogonic cycle of the parasites causing human malaria, and on the protective efficacy of pre-erythrocytic vaccines, is the scarcity of laboratory-reared Anopheles mosquitoes as a source of infective sporozoites. The aim of the present study was to reproduce the life-cycles of Plasmodium falciparum and P. vivax in the laboratory and so develop the ability to produce infective sporozoites of these two species regularly under laboratory conditions. Colonized Anopheles albimanus, of Buenaventura and Tecojate strains, were infected by feeding either on Plasmodium-infected blood, from human patients or experimentally inoculated Aotus monkeys, or on gametocytes of the P. falciparum NF-54 isolate grown in vitro. The monkeys were infected with the blood stages of a Colombian P. vivax isolate and then, after recovery, with the Santa Lucia strain of P. falciparum from El Salvador. Although both of the mosquito strains used were successfully infected with both parasite species, the Buenaventura strain of mosquito was generally more susceptible to infection than the Tecojate strain, and particularly to infection with the parasites from the patients, who lived where this strain of mosquitoes was originally isolated. Monkeys injected intravenously with the P. vivax sporozoites produced in the mosquitoes developed patent sexual and asexual parasitaemias; the gametocytes that developed could then be used to infect mosquitoes, allowing the development of more sporozoites. However, experimental infections failed to establish after the P. falciparum sporozoites were used to inoculate monkeys. The ability to reproduce the complete life cycle of P. vivax in the laboratory, from human to mosquito and then to monkey, should greatly facilitate many studies on vivax malaria and on the efficacy of candidate malaria vaccines. The availability of the sporogonic cycles of P. falciparum from three different sources should also permit a variety of

  20. Effect of discriminative plant-sugar feeding on the survival and fecundity of Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Jackson Robert R

    2007-08-01

    Full Text Available Abstract Background A previous study showed for Anopheles gambiae s.s. a gradation of feeding preference on common plant species growing in a malaria holoendemic area in western Kenya. The present follow-up study determines whether there is a relationship between the mosquito's preferences and its survival and fecundity. Methods Groups of mosquitoes were separately given ad libitum opportunity to feed on five of the more preferred plant species (Hamelia patens, Parthenium hysterophorus, Ricinus communis, Senna didymobotrya, and Tecoma stans and one of the less preferred species (Lantana camara. The mosquitoes were monitored daily for survival. Sugar solution (glucose 6% and water were used as controls. In addition, the fecundity of mosquitoes on each plant after (i only one blood meal (number of eggs oviposited, and (ii after three consecutive blood meals (proportion of females ovipositing, number of eggs oviposited and hatchability of eggs, was determined. The composition and concentration of sugar in the fed-on parts of each plant species were determined using gas chromatography. Using SAS statistical package, tests for significant difference of the fitness values between mosquitoes exposed to different plant species were conducted. Results and Conclusion Anopheles gambiae that had fed on four of the five more preferred plant species (T. stans, S. didymobotrya, R. communis and H. patens, but not P. hysterophorus lived longer and laid more eggs after one blood meal, when compared with An. gambiae that had fed on the least preferred plant species L. camara. When given three consecutive blood-meals, the percentage of females that oviposited, but not the number of eggs laid, was significantly higher for mosquitoes that had previously fed on the four more preferred plant species. Total sugar concentration in the preferred plant parts was significantly correlated with survival and with the proportion of females that laid eggs. This effect was

  1. MosquitoMap and the Mal-area calculator: new web tools to relate mosquito species distribution with vector borne disease

    OpenAIRE

    Christensen Jamie; Harrison Stanley; Birney Ian; Wilkerson Richard C; Foley Desmond H; Rueda Leopoldo M

    2010-01-01

    Abstract Background Mosquitoes are important vectors of diseases but, in spite of various mosquito faunistic surveys globally, there is a need for a spatial online database of mosquito collection data and distribution summaries. Such a resource could provide entomologists with the results of previous mosquito surveys, and vector disease control workers, preventative medicine practitioners, and health planners with information relating mosquito distribution to vector-borne disease risk. Result...

  2. Historical applications of induced sterilisation in field populations of mosquitoes

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2009-11-01

    Full Text Available Abstract Research on sterile mosquito technology from 1955 to the 1980s provided a substantial body of knowledge on propagation and release of sterile mosquitoes. Radiation sterilisation and chemosterilisation have been used effectively to induce dominant lethality and thereby sterilise important mosquito vectors in the laboratory. Experimental releases of chemosterilised males provided complete control of Anopheles albimanus in a small breeding population (14-15 sq km in El Salvador. Releases of radiation sterilised males failed to control either Aedes aegypti or Anopheles quadrimaculatus in the USA. Releases of radiation-sterilised and chemosterilised male Culex quinquefasciatus in the USA and India were successful in some instances. Development of genetic sexing systems for Anopheles and improved physical separation methods for Culex have made it possible to rear and release males almost exclusively (> 99% minimizing the release of potential vectors, the females. Factors that affected efficacy in some field programmes included reduction of competitiveness by radiation, immigration of fertilized females from outside the release zones, and inability of laboratory-bred males to perform in the wild. Despite significant progress, institutional commitments to carry the process further were generally lacking in the late 1970s and until recently. Now, with renewed interest and support for further assessment of this technology, this paper summarizes the current knowledge base, prioritizes some areas of investigation, and challenges scientists and administrators to maintain an awareness of progress, remain realistic about the interpretation of new findings, and make decisions about the sterile insect technique on the basis of informed scientific documentation. Areas recommended for priority research status include the establishment of genetic sexing mechanisms that can be transferred to other mosquito species, re-examination of radiation sterilisation

  3. Comparative genomic analysis of Drosophila melanogaster and vector mosquito developmental genes.

    Directory of Open Access Journals (Sweden)

    Susanta K Behura

    Full Text Available Genome sequencing projects have presented the opportunity for analysis of developmental genes in three vector mosquito species: Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. A comparative genomic analysis of developmental genes in Drosophila melanogaster and these three important vectors of human disease was performed in this investigation. While the study was comprehensive, special emphasis centered on genes that 1 are components of developmental signaling pathways, 2 regulate fundamental developmental processes, 3 are critical for the development of tissues of vector importance, 4 function in developmental processes known to have diverged within insects, and 5 encode microRNAs (miRNAs that regulate developmental transcripts in Drosophila. While most fruit fly developmental genes are conserved in the three vector mosquito species, several genes known to be critical for Drosophila development were not identified in one or more mosquito genomes. In other cases, mosquito lineage-specific gene gains with respect to D. melanogaster were noted. Sequence analyses also revealed that numerous repetitive sequences are a common structural feature of Drosophila and mosquito developmental genes. Finally, analysis of predicted miRNA binding sites in fruit fly and mosquito developmental genes suggests that the repertoire of developmental genes targeted by miRNAs is species-specific. The results of this study provide insight into the evolution of developmental genes and processes in dipterans and other arthropods, serve as a resource for those pursuing analysis of mosquito development, and will promote the design and refinement of functional analysis experiments.

  4. Molecular epidemiology of Japanese encephalitis virus in mosquitoes in Taiwan during 2005-2012.

    Directory of Open Access Journals (Sweden)

    Chien-Ling Su

    2014-10-01

    Full Text Available Japanese encephalitis (JE is a mosquito-borne zoonotic disease caused by the Japanese encephalitis virus (JEV. Pigs and water birds are the main amplifying and maintenance hosts of the virus. In this study, we conducted a JEV survey in mosquitoes captured in pig farms and water bird wetland habitats in Taiwan during 2005 to 2012. A total of 102,633 mosquitoes were collected. Culex tritaeniorhynchus was the most common mosquito species found in the pig farms and wetlands. Among the 26 mosquito species collected, 11 tested positive for JEV by RT-PCR, including Cx. tritaeniorhynchus, Cx. annulus, Anopheles sinensis, Armigeres subalbatus, and Cx. fuscocephala. Among those testing positive, Cx. tritaeniorhynchus was the predominant vector species for the transmission of JEV genotypes I and III in Taiwan. The JEV infection rate was significantly higher in the mosquitoes from the pig farms than those from the wetlands. A phylogenetic analysis of the JEV envelope gene sequences isolated from the captured mosquitoes demonstrated that the predominant JEV genotype has shifted from genotype III to genotype I (GI, providing evidence for transmission cycle maintenance and multiple introductions of the GI strains in Taiwan during 2008 to 2012. This study demonstrates the intense JEV transmission activity in Taiwan, highlights the importance of JE vaccination for controlling the epidemic, and provides valuable information for the assessment of the vaccine's efficacy.

  5. Comparative morphology of the pyloric armature of adult mosquitoes (Diptera: Culicidae).

    Science.gov (United States)

    Tuten, H C; Bridges, W C; Adler, P H

    2012-09-01

    The structure of the pyloric armature, hypothesized to aid in blood-meal digestion or parasite resistance, was compared quantitatively among the following 8 species in 5 genera of adult mosquitoes from the southeastern United States: Aedes albopictus, Aedes japonicus, Aedes triseriatus, Anopheles punctipennis, Culex pipiens s.l., Culex restuans, Orthopodomyia signifera, and Toxorhynchites rutilus. Females differed significantly among species in the structure of spines composing the armature, with Aedes spp. forming one general group, Culex spp. another, and An. punctipennis and Or. signifera a third. Relationships of species based on structural characters of the armature were consistent with recent culicid phylogenies. Although pyloric armature has been noted in mosquitoes and other insects, this is the first quantitative investigation of the mosquito pyloric armature.

  6. Comparative biology and reproductive behaviour of a laboratory-adapted Redco strain of Anopheles Gambiae Giles (Diptera; culicidae and wild populations of the same species

    International Nuclear Information System (INIS)

    The sterile insect technique involves mass rearing of male insects for sterility purpose. This heavily relies on male fitness and genetic compatibility of laboratory-adapted male insects and the wild to ensure successful competition with their male counterpart in the wild. Uniform environment in the laboratory as compared to the wild conditions might lead to genetic drift which might lead to reduced sexual competitiveness, fitness, morphological changes or changes in the sexual behaviour of mosquitoes. This work investigated the sexual compatibility, morphometry and sexual behaviour of laboratory-adapted strain and wild strain of Anopheles gambiae under laboratory conditions. These measurements were done by observing swarm formation, genitalia rotation, percentage insemination, fecundity, fertility, wing length, wing width, thoracic width, body length, body size index and wing size index. Morphometric studies of laboratory-adapted and wild strain of Anopheles gambiae were carried out by observing the wing length, body length and thoracic length under Lecia 4D stereoscope in order to find out variations in the body size between the two strains. The results showed significant difference between thoracic width and wing length between the laboratory-adapted strain and wild strain. Indices such as body size index and wing length index also showed significant difference between the two strains; laboratory-adapted REDCO strain (BSI 4.45 ± 0.10, p = 0.010 ; WSI 1.92 ± 0.07, p = 0.026) and wild REDCO strain ( 4.08 ± 0.10, p = 0.010 ; WSI 1.73 ± 0.04, p = 0.026 ). Body length of laboratory-adapted male mosquitoes (4.24 ± 0.05, p = 0.462) was not significantly different from its thoracic width, wing length, and wing width. The wild strain on the other hand had significant difference between its body length (4.19 ± 0.04, p = 0.462), thoracic width (0.096 ± 0.02, p = 0.002 ) and wing length (2.99 ± 0.03, p = 0.050 ). In the mating experiment, egg production in each of

  7. Male motion coordination in swarming Anopheles gambiae and Anopheles coluzzii

    Science.gov (United States)

    The Anopheles gambiae species complex comprises the primary vectors of malaria in much of sub-Saharan Africa; most of the mating in these species occurs in swarms composed almost entirely of males. Intermittent, parallel flight patterns in such swarms have been observed, but a detailed description o...

  8. Seasonal mosquito larval abundance and composition in Kibwezi, lower eastern Kenya

    Directory of Open Access Journals (Sweden)

    Joseph M. Mwangangi

    2009-02-01

    Full Text Available Background & objectives: Changes in weather patterns especially rainfall affects the distribution and densities of mosquitoes. The objective of this study was to describe mosquito aquatic habitats, to determine larval abundance, species composition, and habitat types found in Kasayani village of Kibwezi division.Methods: A cross-sectional survey of mosquito larval habitats was conducted in Kasayani village in Kibwezi division to determine species composition, larval abundance, and habitat types found in this village. This survey was conducted during the rainy season in November and December 2006 and during the dry season in February and March 2007. Larvae were collected using the standard dipping technique and a total of 24 habitats were sampled. The primary habitats identified were water reservoir tanks, puddles, temporary pools, and tyre tracks. Results: A total of 2660 mosquito larvae were collected of which 2140 (80.45% were culicines, 503 (18.91% were Anopheles and 17 (0.64% were pupae. For culicines, 1787 (83.5% were categorized as early instars and 353 (16.5% were as late instars while in the Anopheles, 425 (84.49% were classified as early instars and 78 (15.51% were late instars. Morphological identification of the III and IV instar larvae by use of microscopy yielded 16.24% (n = 70 Anopheles gambiae complex, 1.16% (n = 5 An. funestus, 0.70% (n = 3 An. coustani, 42.46% (n = 183 Culex quinquefasciatus, 6.26% (n = 27 Cx. duttoni, and 33.18% (n = 143 Ae. aegypti. Puddles, tyre tracks and pools had highly turbid water while water reservoir tanks had clear water. Anopheles gambiae and Cx. quinquefasciatus were found in all habitat categories while Ae. aegypti were found only in water storage tanks. Interpretation & conclusion: The mosquito larval densities indicate that the inhabitants of this village are at risk of mosquito-borne diseases including malaria, which is one of the greatest causes of morbidity and mortality in this area

  9. The effects of plant essential oils on escape response and mortality rate of Aedes aegypti and Anopheles minimus.

    Science.gov (United States)

    Sathantriphop, Sunaiyana; Achee, Nicole L; Sanguanpong, Unchalee; Chareonviriyaphap, Theeraphap

    2015-12-01

    The High Throughput Screening System (HITSS) has been applied in insecticide behavioral response studies with various mosquito species. In general, chemical or natural compounds can produce a range of insect responses: contact irritancy, spatial repellency, knock-down, and toxicity. This study characterized these actions in essential oils derived from citronella, hairy basil, catnip, and vetiver in comparison to DEET and picaridin against Aedes aegypti and Anopheles minimus mosquito populations. Results indicated the two mosquito species exhibited significantly different (P0.05) against Ae. aegypti. Spatial repellency responses were elicited in both mosquito species when exposed to all compounds, but the strength of the repellent response was dependent on compound and concentration. Data show that higher test concentrations had greatest toxic effects on both mosquito populations, but vetiver had no toxic effect on Ae. aegypti and picaridin did not elicit toxicity in either Ae. aegypti or An. minimus at any test concentration. Ultimately, this study demonstrates the ability of the HITSS assay to guide selection of effective plant essential oils for repelling, irritating, and killing mosquitoes. PMID:26611967

  10. The effects of plant essential oils on escape response and mortality rate of Aedes aegypti and Anopheles minimus.

    Science.gov (United States)

    Sathantriphop, Sunaiyana; Achee, Nicole L; Sanguanpong, Unchalee; Chareonviriyaphap, Theeraphap

    2015-12-01

    The High Throughput Screening System (HITSS) has been applied in insecticide behavioral response studies with various mosquito species. In general, chemical or natural compounds can produce a range of insect responses: contact irritancy, spatial repellency, knock-down, and toxicity. This study characterized these actions in essential oils derived from citronella, hairy basil, catnip, and vetiver in comparison to DEET and picaridin against Aedes aegypti and Anopheles minimus mosquito populations. Results indicated the two mosquito species exhibited significantly different (P0.05) against Ae. aegypti. Spatial repellency responses were elicited in both mosquito species when exposed to all compounds, but the strength of the repellent response was dependent on compound and concentration. Data show that higher test concentrations had greatest toxic effects on both mosquito populations, but vetiver had no toxic effect on Ae. aegypti and picaridin did not elicit toxicity in either Ae. aegypti or An. minimus at any test concentration. Ultimately, this study demonstrates the ability of the HITSS assay to guide selection of effective plant essential oils for repelling, irritating, and killing mosquitoes.

  11. Larvicidal and repellent activities ofSida acuta Burm. F. (Family:Malvaceae) against three important vector mosquitoes

    Institute of Scientific and Technical Information of China (English)

    Marimuthu Govindarajan

    2010-01-01

    Objective:To determine the larvicidal and repellent activities ofSida acuta Burm. F. (Family: Malvaceae)extract against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi. Methods: Twenty five late III instar larve of three mosquito species were exposed to various concentrations (15-90 mg/L) and were assayed in the laboratory by using the protocol ofWHO 2005; the24 h LC50 values of theSida acuta leaf extract was determined following Probit analysis. The repellent efficacy was determined against three mosquito species at three concentrations viz.,1.0, 2.5 and5.0mg/cm2 under the laboratory conditions.Results:Results showed varying degree of larvicidal activity of crude extract of Sida acuta against three important mosquitoes withLC50values ranging between38 to48 mg/L. The crude extract had strong repellent action against three species of mosquitoes as it provided100%protection againstAnopheles stephensi for 180min followed byAedes aegypti (150 min) andCulex quinquefasciatus (120 min).Conclusions:From the results it can be concluded the crude extract ofSida acuta was an excellent potential for controllingCulex quinquefasciatus, Aedes aegypti andAnopleles stephensi mosquitoes.

  12. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence.

    Science.gov (United States)

    Tabachnick, Walter J

    2013-01-11

    Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses). Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature) and environmental (nurture) factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission.

  13. Nature, Nurture and Evolution of Intra-Species Variation in Mosquito Arbovirus Transmission Competence

    Directory of Open Access Journals (Sweden)

    Walter J. Tabachnick

    2013-01-01

    Full Text Available Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses. Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature and environmental (nurture factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission.

  14. Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control

    Directory of Open Access Journals (Sweden)

    Malcolm Colin A

    2009-06-01

    Full Text Available Abstract Background Malaria is an important public health problem in northern Sudan, but little is known about the dynamics of its transmission. Given the characteristic low densities of Anopheles arabiensis and the difficult terrain in this area, future vector control strategies are likely to be based on area-wide integrated pest management (AW-IPM that may include the sterile insect technique (SIT. To support the planning and implementation of future AW-IPM activities, larval surveys were carried out to provide key data on spatial and seasonal dynamics of local vector populations. Methods Monthly cross-sectional larval surveys were carried out between March 2005 and May 2007 in two localities (Dongola and Merowe adjacent to the river Nile. A stratified random sampling strategy based on the use of Remote Sensing (RS, Geographical Information Systems (GIS and the Global Positioning System (GPS was used to select survey locations. Breeding sites were mapped using GPS and data on larval density and breeding site characteristics were recorded using handheld computers. Bivariate and multivariate logistic regression models were used to identify breeding site characteristics associated with increased risk of presence of larvae. Seasonal patterns in the proportion of breeding sites positive for larvae were compared visually to contemporaneous data on climate and river height. Results Of a total of 3,349 aquatic habitats sampled, 321 (9.6% contained An. arabiensis larvae. The frequency with which larvae were found varied markedly by habitat type. Although most positive sites were associated with temporary standing water around the margins of the main Nile channel, larvae were also found at brickworks and in areas of leaking pipes and canals – often far from the river. Close to the Nile channel, a distinct seasonal pattern in larval populations was evident and appeared to be linked to the rise and fall of the river level. These patterns were not

  15. Malaria mosquitoes host-locate and feed upon caterpillars.

    Directory of Open Access Journals (Sweden)

    Justin George

    Full Text Available Adult female mosquitoes need blood to develop their eggs and both sexes use nectar and honeydew as carbohydrate resources for flight, survival and to enhance reproduction. However, there are also a few reports in the literature of mosquitoes feeding on haemolymph of soft-bodied insects such as caterpillars. The frequency and significance of this entomophagous behavior is not well understood, but is thought to be a vestige of ancestral feeding behavior or an opportunistic behavior that has evolved over time. In our current paper we investigated the extent to which the malaria mosquito, Anopheles stephensi, is attracted to, and can successfully feed on, larvae of two common moth species, Manduca sexta and Heliothis subflexa. Using y-tube olfactometer assays we found that female An. stephensi readily flew upwind to and landed on the caterpillars of both moth species. The nature of the volatile cues used in host location remains unclear but respirometer studies suggest a possible role of CO2. Laboratory cage assays further showed that the female mosquitoes were able to actively feed on moth larvae and gain sufficient nutritional benefit to influence survival. The extent to which such an opportunistic behavior occurs in the field has yet to be explored but our results suggest that this haemolymph feeding behavior could play a role in malaria mosquito life history and could provide a novel mechanism for horizontal transmission of pathogens and other micro-organisms between hosts.

  16. “Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes”

    Science.gov (United States)

    Neafsey, Daniel E.; Waterhouse, Robert M.; Abai, Mohammad R.; Aganezov, Sergey S.; Alekseyev, Max A.; Allen, James E.; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A.; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W.; Blandin, Stephanie A.; Brockman, Andrew I.; Burkot, Thomas R.; Burt, Austin; Chan, Clara S.; Chauve, Cedric; Chiu, Joanna C.; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L.M.; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B.; Guelbeogo, Wamdaogo M.; Hall, Andrew B.; Han, Mira V.; Hlaing, Thaung; Hughes, Daniel S.T.; Jenkins, Adam M.; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G.; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C.; Kirmitzoglou, Ioannis K.; Koekemoer, Lizette L.; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K.N.; Lirakis, Manolis; Lobo, Neil F.; Lowy, Ernesto; MacCallum, Robert M.; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N.; Moore, Wendy; Murphy, Katherine A.; Naumenko, Anastasia N.; Nolan, Tony; Novoa, Eva M.; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A.; Pakpour, Nazzy; Papathanos, Philippos A.; Peery, Ashley N.; Povelones, Michael; Prakash, Anil; Price, David P.; Rajaraman, Ashok; Reimer, Lisa J.; Rinker, David C.; Rokas, Antonis; Russell, Tanya L.; Sagnon, N'Fale; Sharakhova, Maria V.; Shea, Terrance; Simão, Felipe A.; Simard, Frederic; Slotman, Michel A.; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J.; Thomas, Gregg W.C.; Tojo, Marta; Topalis, Pantelis; Tubio, José M.C.; Unger, Maria F.; Vontas, John; Walton, Catherine; Wilding, Craig S.; Willis, Judith H.; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M.; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K.; Collins, Frank H.; Cornman, Robert S.; Crisanti, Andrea; Donnelly, Martin J.; Emrich, Scott J.; Fontaine, Michael C.; Gelbart, William; Hahn, Matthew W.; Hansen, Immo A.; Howell, Paul I.; Kafatos, Fotis C.; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A.T.; Ribeiro, José M.; Riehle, Michael A.; Sharakhov, Igor V.; Tu, Zhijian; Zwiebel, Laurence J.; Besansky, Nora J.

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover, but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. PMID:25554792

  17. Fauna and Larval Habitats of Mosquitoes (Diptera: Culicidae of West Azerbaijan Province, Northwestern Iran.

    Directory of Open Access Journals (Sweden)

    Farahnaz Khoshdel-Nezamiha

    2014-12-01

    Full Text Available Several important diseases are transmitted by mosquitoes. Despite of the potential of the occurrence of some mosquito-borne diseases such as West Nile, dirofilariasis and malaria in the region, there is no recent study of mosquitoes in West Azerbaijan Province. The aim of this investigation was to study the fauna, composition and distribution of mosquitoes and the characteristics of their larval habitats in this province.Larvae and adult collections were carried out from different habitats using the standard methods in twenty five localities of seven counties across West Azerbaijan Province.Overall, 1569 mosquitoes including 1336 larvae and 233 adults were collected from 25 localities. The details of geographical properties were recorded. Five genera along with 12 species were collected and identified including: Anopheles claviger, An. maculipennis s.l., An. superpictus, Culex pipiens, Cx. theileri, Cx. modestus, Cx. hortensis, Cx. mimeticus, Culiseta Longiareolata, Ochlerotatus caspius s.l., Oc. geniculatus and Uranotaenia unguiculata. This is the first record of Oc. geniculatus in the province.Due to the geographical location of the West Azerbaijan Province, it comprises different climatic condition which provides suitable environment for the establishment of various species of mosquitoes. The solidarity geographical, cultural and territorial exchanges complicate the situation of the province and its vectors as a threat for future and probable epidemics of mosquito-borne diseases.