WorldWideScience

Sample records for anopheles gambiae mosquitoes

  1. In depth annotation of the Anopheles gambiae mosquito midgut transcriptome

    OpenAIRE

    Padrón, Alejandro; Molina-Cruz, Alvaro; Quinones, Mariam; Ribeiro, José MC; Ramphul, Urvashi; Rodrigues, Janneth; Shen, Kui; Haile, Ashley; Ramirez, José Luis; Barillas-Mury, Carolina

    2014-01-01

    Background Genome sequencing of Anopheles gambiae was completed more than ten years ago and has accelerated research on malaria transmission. However, annotation needs to be refined and verified experimentally, as most predicted transcripts have been identified by comparative analysis with genomes from other species. The mosquito midgut—the first organ to interact with Plasmodium parasites—mounts effective antiplasmodial responses that limit parasite survival and disease transmission. High-th...

  2. Insecticide susceptibility of Anopheles coluzzii and Anopheles gambiae mosquitoes in Ibadan, South-West Nigeria

    OpenAIRE

    Okorie, Patricia N.; Ademowo, George O.; Irving, Helen; Kelly-Hope, Louise A; Wondji, Charles S

    2014-01-01

    The emergence of insecticide resistance in Anopheles mosquitoes has great implications for malaria control in Nigeria. This study aimed to determine the dynamics of insecticide susceptibility levels and frequency of knockdown resistance (kdr) mutations (L1014F) in wild Anopheles coluzzii Coetzee & Wilkerson sp. n. and An. gambiae Giles ( (Diptera: Culicidae) from Ojoo and Bodija areas of Ibadan, South-West, Nigeria. Insecticide susceptibility to pyrethroids, organophosphates, carbamates and o...

  3. A maleness gene in the malaria mosquito Anopheles gambiae.

    Science.gov (United States)

    Krzywinska, Elzbieta; Dennison, Nathan J; Lycett, Gareth J; Krzywinski, Jaroslaw

    2016-07-01

    The molecular pathways controlling gender are highly variable and have been identified in only a few nonmammalian model species. In many insects, maleness is conferred by a Y chromosome-linked M factor of unknown nature. We have isolated and characterized a gene, Yob, for the M factor in the malaria mosquito Anopheles gambiae Yob, activated at the beginning of zygotic transcription and expressed throughout a male's life, controls male-specific splicing of the doublesex gene. Silencing embryonic Yob expression is male-lethal, whereas ectopic embryonic delivery of Yob transcripts yields male-only broods. This female-killing property may be an invaluable tool for creation of conditional male-only transgenic Anopheles strains for malaria control programs. PMID:27365445

  4. Inhibition of Anopheles gambiae odorant receptor function by mosquito repellents.

    Science.gov (United States)

    Tsitoura, Panagiota; Koussis, Konstantinos; Iatrou, Kostas

    2015-03-20

    The identification of molecular targets of insect repellents has been a challenging task, with their effects on odorant receptors (ORs) remaining a debatable issue. Here, we describe a study on the effects of selected mosquito repellents, including the widely used repellent N,N-diethyl-meta-toluamide (DEET), on the function of specific ORs of the African malaria vector Anopheles gambiae. This study, which has been based on quantitative measurements of a Ca(2+)-activated photoprotein biosensor of recombinant OR function in an insect cell-based expression platform and a sequential compound addition protocol, revealed that heteromeric OR (ORx/Orco) function was susceptible to strong inhibition by all tested mosquito repellents except DEET. Moreover, our results demonstrated that the observed inhibition was due to efficient blocking of Orco (olfactory receptor coreceptor) function. This mechanism of repellent action, which is reported for the first time, is distinct from the mode of action of other characterized insect repellents including DEET. PMID:25657000

  5. Inhibition of Anopheles gambiae Odorant Receptor Function by Mosquito Repellents*

    Science.gov (United States)

    Tsitoura, Panagiota; Koussis, Konstantinos; Iatrou, Kostas

    2015-01-01

    The identification of molecular targets of insect repellents has been a challenging task, with their effects on odorant receptors (ORs) remaining a debatable issue. Here, we describe a study on the effects of selected mosquito repellents, including the widely used repellent N,N-diethyl-meta-toluamide (DEET), on the function of specific ORs of the African malaria vector Anopheles gambiae. This study, which has been based on quantitative measurements of a Ca2+-activated photoprotein biosensor of recombinant OR function in an insect cell-based expression platform and a sequential compound addition protocol, revealed that heteromeric OR (ORx/Orco) function was susceptible to strong inhibition by all tested mosquito repellents except DEET. Moreover, our results demonstrated that the observed inhibition was due to efficient blocking of Orco (olfactory receptor coreceptor) function. This mechanism of repellent action, which is reported for the first time, is distinct from the mode of action of other characterized insect repellents including DEET. PMID:25657000

  6. Deforestation and Vectorial Capacity of Anopheles gambiae Giles Mosquitoes in Malaria Transmission, Kenya

    OpenAIRE

    Afrane, Yaw A; Little, Tom J.; Lawson, Bernard W; Githeko, Andrew K; Yan, Guiyun

    2008-01-01

    We investigated the effects of deforestation on microclimates and sporogonic development of Plasmodium falciparum parasites in Anopheles gambiae mosquitoes in an area of the western Kenyan highland prone to malaria epidemics. An. gambiae mosquitoes were fed with P. falciparum–infected blood through membrane feeders. Fed mosquitoes were placed in houses in forested and deforested areas in a highland area (1,500 m above sea level) and monitored for parasite development. Deforested sites had hig...

  7. Identification of four evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Belmont, Martin; Cazzamali, Giuseppe; Williamson, Michael;

    2006-01-01

    The mosquito Anopheles gambiae is an important vector for malaria, which is one of the most serious human parasitic diseases in the world, causing up to 2.7 million deaths yearly. To contribute to our understanding of A. gambiae and to the transmission of malaria, we have now cloned four...

  8. Bioinformatics-Based Identification of Chemosensory Proteins in African Malaria Mosquito, Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    Zhengxi Li; Zuorui Shen; Jingjiang Zhou; Lin Field

    2003-01-01

    Chemosensory proteins (CSPs) are identifiable by four spatially conserved Cysteine residues in their primary structure or by two disulfide bridges in their tertiary structure according to the previously identified olfactory specific-D related proteins. A genomics- and bioinformatics-based approach is taken in the present study to identify the putative CSPs in the malaria-carrying mosquito, Anopheles gambiae. The results show that five out of the nine annotated candidates are the most possible Anopheles CSPs of A. gambiae. This study lays the foundation for further functional identification of Anopheles CSPs, though all of these candidates need additional experimental verification.

  9. A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae

    OpenAIRE

    Ramirez, Jose Luis; de Almeida Oliveira, Giselle; Calvo, Eric; Dalli, Jesmond; Colas, Romain A.; Serhan, Charles N.; Ribeiro, Jose M.; Barillas-Mury, Carolina

    2015-01-01

    Exposure of Anopheles gambiae mosquitoes to Plasmodium infection enhances the ability of their immune system to respond to subsequent infections. However, the molecular mechanism that allows the insect innate immune system to ‘remember' a previous encounter with a pathogen has not been established. Challenged mosquitoes constitutively release a soluble haemocyte differentiation factor into their haemolymph that, when transferred into Naive mosquitoes, also induces priming. Here we show that t...

  10. Control of pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes with chlorfenapyr in Benin

    NARCIS (Netherlands)

    N'Guessan, R.; Boko, P.; Odjo, A.; Knols, B.G.J.; Akogbeto, M.; Rowland, M.

    2009-01-01

    Objective To compare the efficacy of chlorfenapyr applied on mosquito nets and as an indoor residual spray against populations of Anopheles gambiae and Culex quinquefasciatus in an area of Benin that shows problematic levels of pyrethroid resistance. Method Eight-week trial conducted in experimental

  11. Olfaction in the malaria mosquito Anopheles gambiae : Electrophysiology and identification of kairomones

    NARCIS (Netherlands)

    Meijerink, J.

    1999-01-01

    Female mosquitoes of the species Anopheles gambiae Giles sensu stricto are important vectors of human malaria in Africa. It is generally assumed that they locate their human host by odours. These odours are detected by olfactory receptor neurons situated within cuticular extensions on the antenna. T

  12. Identification and Characterization of Two Novel RNA Viruses from Anopheles gambiae Species Complex Mosquitoes

    Science.gov (United States)

    Carissimo, Guillaume; Eiglmeier, Karin; Reveillaud, Julie; Holm, Inge; Diallo, Mawlouth; Diallo, Diawo; Vantaux, Amélie; Kim, Saorin; Ménard, Didier; Siv, Sovannaroth; Belda, Eugeni; Bischoff, Emmanuel; Antoniewski, Christophe; Vernick, Kenneth D.

    2016-01-01

    Mosquitoes of the Anopheles gambiae complex display strong preference for human bloodmeals and are major malaria vectors in Africa. However, their interaction with viruses or role in arbovirus transmission during epidemics has been little examined, with the exception of O’nyong-nyong virus, closely related to Chikungunya virus. Deep-sequencing has revealed different RNA viruses in natural insect viromes, but none have been previously described in the Anopheles gambiae species complex. Here, we describe two novel insect RNA viruses, a Dicistrovirus and a Cypovirus, found in laboratory colonies of An. gambiae taxa using small-RNA deep sequencing. Sequence analysis was done with Metavisitor, an open-source bioinformatic pipeline for virus discovery and de novo genome assembly. Wild-collected Anopheles from Senegal and Cambodia were positive for the Dicistrovirus and Cypovirus, displaying high sequence identity to the laboratory-derived virus. Thus, the Dicistrovirus (Anopheles C virus, AnCV) and Cypovirus (Anopheles Cypovirus, AnCPV) are components of the natural virome of at least some anopheline species. Their possible influence on mosquito immunity or transmission of other pathogens is unknown. These natural viruses could be developed as models for the study of Anopheles-RNA virus interactions in low security laboratory settings, in an analogous manner to the use of rodent malaria parasites for studies of mosquito anti-parasite immunity. PMID:27138938

  13. Rhodopsin coexpression in UV photoreceptors of Aedes aegypti and Anopheles gambiae mosquitoes

    OpenAIRE

    Hu, Xiaobang; Leming, Matthew T; Whaley, Michelle A.; O'Tousa, Joseph E.

    2014-01-01

    Differential rhodopsin gene expression within specialized R7 photoreceptor cells divides the retinas of Aedes aegypti and Anopheles gambiae mosquitoes into distinct domains. The two species express the rhodopsin orthologs Aaop8 and Agop8, respectively, in a large subset of these R7 photoreceptors that function as ultraviolet receptors. We show here that a divergent subfamily of mosquito rhodopsins, Aaop10 and Agop10, is coexpressed in these R7 photoreceptors. The properties of the A. aegypti ...

  14. Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae

    OpenAIRE

    Rund, Samuel SC; James E. Gentile; Duffield, Giles E.

    2013-01-01

    Background Mosquitoes exhibit 24 hr rhythms in flight activity, feeding, reproduction and development. To better understand the molecular basis for these rhythms in the nocturnal malaria vector Anopheles gambiae, we have utilized microarray analysis on time-of-day specific collections of mosquitoes over 48 hr to explore the coregulation of gene expression rhythms by the circadian clock and light, and compare these with the 24 hr rhythmic gene expression in the diurnal Aedes aegypti dengue vec...

  15. Identification of one capa and two pyrokinin receptors from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Olsen, Stine S; Cazzamali, Giuseppe; Williamson, Michael;

    2007-01-01

    We cloned the cDNA of three evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae and functionally expressed them in Chinese hamster ovary cells. One receptor, Ang-Capa-R, was only activated by the two Anopheles capa neuropeptides Ang-capa-1 (GPTVGLFAFPRVa......We cloned the cDNA of three evolutionarily related G protein-coupled receptors from the malaria mosquito Anopheles gambiae and functionally expressed them in Chinese hamster ovary cells. One receptor, Ang-Capa-R, was only activated by the two Anopheles capa neuropeptides Ang-capa-1...... (GPTVGLFAFPRVamide) and Ang-capa-2 (pQGLVPFPRVamide) with EC(50) values of 8.6x10(-9)M and 3.3x10(-9)M, respectively, but not by any other known mosquito neuropeptide. The second receptor, Ang-PK-1-R, was selectively activated by the Anopheles pyrokinin-1 peptides Ang-PK-1-1 (AGGTGANSAMWFGPRLamide) and Ang-PK-1......-2 (AAAMWFGPRLamide) with EC(50) values of 3.3x10(-8)M and 2.5x10(-8)M, respectively, but not by mosquito capa or pyrokinin-2 peptides. For the third receptor, Ang-PK-2-R, the most potent ligands were the pyrokinin-2 peptides Ang-PK-2-1 (DSVGENHQRPPFAPRLamide) and Ang-PK-2-2 (NLPFSPRLamide) with EC(50) values of 5.2x...

  16. Anopheles gambiae mosquito isolated neurons : a new biological model for optimizing insecticide/repellent efficacy

    OpenAIRE

    Lavialle-Defaix, C.; Apaire-Marchais, V; Legros, C.; Pennetier, Cédric; Mohamed, A; P. Licznar; Corbel, Vincent; Lapied, B

    2011-01-01

    To understand better the mode of action of insecticides and repellents used in vector-borne diseases control, we developed a new biological model based on mosquito neurons isolated from adults Anopheles gambiae heads. This cellular model is well adapted to multidisciplinary approaches: electrophysiology, pharmacology, molecular biology and biochemical assays. Using RT-PCR, we demonstrated that isolated neurons express the nicotinic acetylcholine receptor subunit alpha 1 (Ag alpha 1 nAchR), tw...

  17. Olfaction in the malaria mosquito Anopheles gambiae : Electrophysiology and identification of kairomones

    OpenAIRE

    Meijerink, J

    1999-01-01

    Female mosquitoes of the species Anopheles gambiae Giles sensu stricto are important vectors of human malaria in Africa. It is generally assumed that they locate their human host by odours. These odours are detected by olfactory receptor neurons situated within cuticular extensions on the antenna. These cuticular extensions, called sensilla, contain numerous pores through which the odours can enter the sensillum and reach the olfactory receptor neuron membrane. Despite the fact that these mos...

  18. A behavioral mechanism underlying ecological divergence in the malaria mosquito Anopheles gambiae

    OpenAIRE

    Gimonneau, Geoffrey; Bouyer, Jérémy; Morand, Serge; Besansky, Nora J.; Diabate, Abdoulaye; Simard, Frédéric

    2010-01-01

    Disruptive selection mediated by predation on aquatic immature stages has been proposed as a major force driving ecological divergence and fostering speciation between the M and S molecular forms of the African malaria mosquito, Anopheles gambiae. In the dry savannahs of West Africa where both molecular forms co-occur, the S form thrives in temporary pools filled with rainwater, whereas the M form preferentially breeds in permanent freshwater habitats where predator pressure is higher. Here, ...

  19. The STAT pathway mediates late phase immunity against Plasmodium in the mosquito Anopheles gambiae

    OpenAIRE

    Gupta, Lalita; Molina-Cruz, Alvaro; Kumar, Sanjeev; Rodrigues, Janneth; Dixit, Rajnikant; Zamora, Rodolfo E.; Barillas-Mury, Carolina

    2009-01-01

    The STAT family of transcription factors activate expression of immune system genes in vertebrates. The ancestral STAT gene (AgSTAT-A) appears to have duplicated in the mosquito Anopheles gambiae, giving rise to a second intronless STAT gene (AgSTAT-B), which we show regulates AgSTAT-A expression in adult females. AgSTAT-A participates in the transcriptional activation of nitric oxide synthase (NOS) in response to bacterial and plasmodial infection. Activation of this pathway, however, is not...

  20. A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae.

    Science.gov (United States)

    Ramirez, Jose Luis; de Almeida Oliveira, Giselle; Calvo, Eric; Dalli, Jesmond; Colas, Romain A; Serhan, Charles N; Ribeiro, Jose M; Barillas-Mury, Carolina

    2015-01-01

    Exposure of Anopheles gambiae mosquitoes to Plasmodium infection enhances the ability of their immune system to respond to subsequent infections. However, the molecular mechanism that allows the insect innate immune system to 'remember' a previous encounter with a pathogen has not been established. Challenged mosquitoes constitutively release a soluble haemocyte differentiation factor into their haemolymph that, when transferred into Naive mosquitoes, also induces priming. Here we show that this factor consists of a Lipoxin/Lipocalin complex. We demonstrate that innate immune priming in mosquitoes involves a persistent increase in expression of Evokin (a lipid carrier of the lipocalin family), and in their ability to convert arachidonic acid to lipoxins, predominantly Lipoxin A4. Plasmodium ookinete midgut invasion triggers immune priming by inducing the release of a mosquito lipoxin/lipocalin complex. PMID:26100162

  1. A mosquito lipoxin/lipocalin complex mediates innate immune priming in Anopheles gambiae

    Science.gov (United States)

    Ramirez, Jose Luis; de Almeida Oliveira, Giselle; Calvo, Eric; Dalli, Jesmond; Colas, Romain A.; Serhan, Charles N.; Ribeiro, Jose M.; Barillas-Mury, Carolina

    2015-01-01

    Exposure of Anopheles gambiae mosquitoes to Plasmodium infection enhances the ability of their immune system to respond to subsequent infections. However, the molecular mechanism that allows the insect innate immune system to ‘remember' a previous encounter with a pathogen has not been established. Challenged mosquitoes constitutively release a soluble haemocyte differentiation factor into their haemolymph that, when transferred into Naive mosquitoes, also induces priming. Here we show that this factor consists of a Lipoxin/Lipocalin complex. We demonstrate that innate immune priming in mosquitoes involves a persistent increase in expression of Evokin (a lipid carrier of the lipocalin family), and in their ability to convert arachidonic acid to lipoxins, predominantly Lipoxin A4. Plasmodium ookinete midgut invasion triggers immune priming by inducing the release of a mosquito lipoxin/lipocalin complex. PMID:26100162

  2. Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae

    OpenAIRE

    Hogan James R; Lobo Neil F; Harker Brent W; Hillenmeyer Maureen E; Kern Marcia K; Hong Young S; Dana Ali N; Romans Patricia; Collins Frank H

    2005-01-01

    Abstract Background Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of t...

  3. Molecular identification of a myosuppressin receptor from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Schöller, Susanne; Belmont, Martin; Cazzamali, Giuseppe;

    2005-01-01

    The insect myosuppressins (X1DVX2HX3FLRFamide) are neuropeptides that generally block insect muscle activities. We have used the genomic sequence information from the malaria mosquito Anopheles gambiae Genome Project to clone a G protein-coupled receptor that was closely related to the two......, showing that the receptor was quite selective for myosuppressin. These results also showed that the myosuppressin receptor needs a much larger portion than the C-terminal FLRFamide sequence for its activation. The insect myosuppressins are often grouped together with the insect FMRFamides under the name...

  4. An Epithelial Serine Protease, AgESP, Is Required for Plasmodium Invasion in the Mosquito Anopheles gambiae

    OpenAIRE

    Rodrigues, Janneth; Oliveira, Giselle A.; Kotsyfakis, Michalis; Dixit, Rajnikant; Molina-Cruz, Alvaro; Jochim, Ryan; Barillas-Mury, Carolina

    2012-01-01

    Background Plasmodium parasites need to cross the midgut and salivary gland epithelia to complete their life cycle in the mosquito. However, our understanding of the molecular mechanism and the mosquito genes that participate in this process is still very limited. Methodology/Principal Findings We identified an Anopheles gambiae epithelial serine protease (AgESP) that is constitutively expressed in the submicrovillar region of mosquito midgut epithelial cells and in the basal side of the sali...

  5. Comprehensive genetic dissection of the hemocyte immune response in the malaria mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Fabrizio Lombardo

    2013-01-01

    Full Text Available Reverse genetics in the mosquito Anopheles gambiae by RNAi mediated gene silencing has led in recent years to an advanced understanding of the mosquito immune response against infections with bacteria and malaria parasites. We developed RNAi screens in An. gambiae hemocyte-like cells using a library of double-stranded RNAs targeting 109 genes expressed highly or specifically in mosquito hemocytes to identify novel regulators of the hemocyte immune response. Assays included phagocytosis of bacterial bioparticles, expression of the antimicrobial peptide CEC1, and basal and induced expression of the mosquito complement factor LRIM1. A cell viability screen was also carried out to assess dsRNA cytotoxicity and to identify genes involved in cell growth and survival. Our results identify 22 novel immune regulators, including proteins putatively involved in phagosome assembly and maturation (Ca²⁺ channel, v-ATPase and cyclin-dependent protein kinase, pattern recognition (fibrinogen-domain lectins and Nimrod, immune modulation (peptidase and serine protease homolog, immune signaling (Eiger and LPS-induced factor, cell adhesion and communication (Laminin B1 and Ninjurin and immune homeostasis (Lipophorin receptor. The development of robust functional cell-based assays paves the way for genome-wide functional screens to study the mosquito immune response to infections with human pathogens.

  6. Maternal environment shapes the life history and susceptibility to malaria of Anopheles gambiae mosquitoes

    Directory of Open Access Journals (Sweden)

    Lorenz Lena M

    2011-12-01

    Full Text Available Abstract Background It is becoming generally recognized that an individual's phenotype can be shaped not only by its own genotype and environmental experience, but also by its mother's environment and condition. Maternal environmental factors can influence mosquitoes' population dynamics and susceptibility to malaria, and therefore directly and indirectly the epidemiology of malaria. Methods In a full factorial experiment, the effects of two environmental stressors - food availability and infection with the microsporidian parasite Vavraia culicis - of female mosquitoes (Anopheles gambiae sensu stricto on their offspring's development, survival and susceptibility to malaria were studied. Results The offspring of A. gambiae s.s. mothers infected with V. culicis developed into adults more slowly than those of uninfected mothers. This effect was exacerbated when mothers were reared on low food. Maternal food availability had no effect on the survival of their offspring up to emergence, and microsporidian infection decreased survival only slightly. Low food availability for mothers increased and V. culicis-infection of mothers decreased the likelihood that the offspring fed on malaria-infected blood harboured malaria parasites (but neither maternal treatment influenced their survival up to dissection. Conclusions Resource availability and infection with V. culicis of A. gambiae s.s. mosquitoes not only acted as direct environmental stimuli for changes in the success of one generation, but could also lead to maternal effects. Maternal V. culicis infection could make offspring more resistant and less likely to transmit malaria, thus enhancing the efficacy of the microsporidian for the biological control of malaria.

  7. Energy metabolism affects susceptibility of Anopheles gambiae mosquitoes to Plasmodium infection.

    Science.gov (United States)

    Oliveira, Jose Henrique M; Gonçalves, Renata L S; Oliveira, Giselle A; Oliveira, Pedro L; Oliveira, Marcus F; Barillas-Mury, Carolina

    2011-06-01

    Previous studies showed that Anopheles gambiae L3-5 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial state-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when state-3 respiration was reduced in S females by silencing expression of the adenine nucleotide translocator (ANT), hydrogen peroxide generation was higher and the mRNA levels of lactate dehydrogenase increased in the midgut, while the prevalence and intensity of Plasmodium berghei infection were significantly reduced. We conclude that there are broad metabolic differences between R and S An. gambiae mosquitoes that influence their susceptibility to Plasmodium infection. PMID:21320598

  8. Hemocyte differentiation mediates innate immune memory in Anopheles gambiae mosquitoes.

    Science.gov (United States)

    Rodrigues, Janneth; Brayner, Fábio André; Alves, Luiz Carlos; Dixit, Rajnikant; Barillas-Mury, Carolina

    2010-09-10

    Mosquito midgut invasion by ookinetes of the malaria parasite Plasmodium disrupts the barriers that normally prevent the gut microbiota from coming in direct contact with epithelial cells. This triggers a long-lived response characterized by increased abundance of granulocytes, a subpopulation of hemocytes that circulates in the insect's hemocoel, and enhanced immunity to bacteria that indirectly reduces survival of Plasmodium parasites upon reinfection. In mosquitoes, differentiation of hemocytes was necessary and sufficient to confer innate immune memory. PMID:20829487

  9. Hemocyte Differentiation Mediates Innate Immune Memory in Anopheles gambiae Mosquitoes

    OpenAIRE

    Rodrigues, Janneth; Brayner, Fábio André; Alves, Luiz Carlos; Dixit, Rajnikant; Barillas-Mury, Carolina

    2010-01-01

    Mosquito midgut invasion by ookinetes of the malaria parasite Plasmodium disrupts the barriers that normally prevent the gut microbiota from coming in direct contact with epithelial cells. This triggers a long-lived response characterized by increased abundance of granulocytes, a subpopulation of hemocytes, circulating in the insect’s hemocoel, and enhanced immunity to bacteria that indirectly reduces survival of Plasmodium parasites upon reinfection. In mosquitoes, differentiation of hemocyt...

  10. Hemocyte Differentiation Mediates Innate Immune Memory in Anopheles gambiae Mosquitoes

    Science.gov (United States)

    Rodrigues, Janneth; Brayner, Fábio André; Alves, Luiz Carlos; Dixit, Rajnikant; Barillas-Mury, Carolina

    2012-01-01

    Mosquito midgut invasion by ookinetes of the malaria parasite Plasmodium disrupts the barriers that normally prevent the gut microbiota from coming in direct contact with epithelial cells. This triggers a long-lived response characterized by increased abundance of granulocytes, a subpopulation of hemocytes, circulating in the insect’s hemocoel, and enhanced immunity to bacteria that indirectly reduces survival of Plasmodium parasites upon reinfection. In mosquitoes, differentiation of hemocytes was necessary and sufficient to confer innate immune memory. PMID:20829487

  11. The STAT pathway mediates late phase immunity against Plasmodium in the mosquito Anopheles gambiae

    Science.gov (United States)

    Gupta, Lalita; Molina-Cruz, Alvaro; Kumar, Sanjeev; Rodrigues, Janneth; Dixit, Rajnikant; Zamora, Rodolfo E.; Barillas-Mury, Carolina

    2009-01-01

    The STAT family of transcription factors activate expression of immune system genes in vertebrates. The ancestral STAT gene (AgSTAT-A) appears to have duplicated in the mosquito Anopheles gambiae, giving rise to a second intronless STAT gene (AgSTAT-B), which we show regulates AgSTAT-A expression in adult females. AgSTAT-A participates in the transcriptional activation of nitric oxide synthase (NOS) in response to bacterial and plasmodial infection. Activation of this pathway, however, is not essential for mosquitoes to survive a bacterial challenge. AgSTAT-A silencing reduces the number of early Plasmodium oocysts in the midgut, but nevertheless enhances the overall infection by increasing oocyst survival. Silencing of SOCS, a STAT suppressor, has the opposite effect, reducing Plasmodium infection by increasing NOS expression. Chemical inhibition of mosquito NOS activity after oocyte formation increases oocyte survival. Thus, the AgSTAT-A pathway mediates a late phase anti-plasmodial response that reduces oocyst survival in An. gambiae. PMID:19454353

  12. The STAT pathway mediates late-phase immunity against Plasmodium in the mosquito Anopheles gambiae.

    Science.gov (United States)

    Gupta, Lalita; Molina-Cruz, Alvaro; Kumar, Sanjeev; Rodrigues, Janneth; Dixit, Rajnikant; Zamora, Rodolfo E; Barillas-Mury, Carolina

    2009-05-01

    The STAT family of transcription factors activates expression of immune system genes in vertebrates. The ancestral STAT gene (AgSTAT-A) appears to have duplicated in the mosquito Anopheles gambiae, giving rise to a second intronless STAT gene (AgSTAT-B), which we show regulates AgSTAT-A expression in adult females. AgSTAT-A participates in the transcriptional activation of nitric oxide synthase (NOS) in response to bacterial and plasmodial infection. Activation of this pathway, however, is not essential for mosquitoes to survive a bacterial challenge. AgSTAT-A silencing reduces the number of early Plasmodium oocysts in the midgut, but nevertheless enhances the overall infection by increasing oocyst survival. Silencing of SOCS, a STAT suppressor, has the opposite effect, reducing Plasmodium infection by increasing NOS expression. Chemical inhibition of mosquito NOS activity after oocyte formation increases oocyte survival. Thus, the AgSTAT-A pathway mediates a late-phase antiplasmodial response that reduces oocyst survival in A. gambiae. PMID:19454353

  13. Variation in susceptibility of African Plasmodium falciparum malaria parasites to TEP1 mediated killing in Anopheles gambiae mosquitoes

    OpenAIRE

    Maarten Eldering; Isabelle Morlais; Geert-Jan van Gemert; Marga van de Vegte-Bolmer; Wouter Graumans; Rianne Siebelink-Stoter; Martijn Vos; Luc Abate; Will Roeffen; Teun Bousema; Levashina, Elena A.; Sauerwein, Robert W.

    2016-01-01

    Anopheles gambiae s.s. mosquitoes are efficient vectors for Plasmodium falciparum, although variation exists in their susceptibility to infection. This variation depends partly on the thioester-containing protein 1 (TEP1) and TEP depletion results in significantly elevated numbers of oocysts in susceptible and resistant mosquitoes. Polymorphism in the Plasmodium gene coding for the surface protein Pfs47 modulates resistance of some parasite laboratory strains to TEP1-mediated killing. Here, w...

  14. Gene expression patterns associated with blood-feeding in the malaria mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Hogan James R

    2005-01-01

    Full Text Available Abstract Background Blood feeding, or hematophagy, is a behavior exhibited by female mosquitoes required both for reproduction and for transmission of pathogens. We determined the expression patterns of 3,068 ESTs, representing ~2,000 unique gene transcripts using cDNA microarrays in adult female Anopheles gambiae at selected times during the first two days following blood ingestion, at 5 and 30 min during a 40 minute blood meal and at 0, 1, 3, 5, 12, 16, 24 and 48 hours after completion of the blood meal and compared their expression to transcript levels in mosquitoes with access only to a sugar solution. Results In blood-fed mosquitoes, 413 unique transcripts, approximately 25% of the total, were expressed at least two-fold above or below their levels in the sugar-fed mosquitoes, at one or more time points. These differentially expressed gene products were clustered using k-means clustering into Early Genes, Middle Genes, and Late Genes, containing 144, 130, and 139 unique transcripts, respectively. Several genes from each group were analyzed by quantitative real-time PCR in order to validate the microarray results. Conclusion The expression patterns and annotation of the genes in these three groups (Early, Middle, and Late genes are discussed in the context of female mosquitoes' physiological responses to blood feeding, including blood digestion, peritrophic matrix formation, egg development, and immunity.

  15. Some strains of Plasmodium falciparum, a human malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes

    OpenAIRE

    Molina-Cruz, Alvaro; DeJong, Randall J.; Ortega, Corrie; Haile, Ashley; Abban, Ekua; Rodrigues, Janneth; Jaramillo-Gutierrez, Giovanna; Barillas-Mury, Carolina

    2012-01-01

    Plasmodium falciparum lines differ in their ability to infect mosquitoes. The Anopheles gambiae L3-5 refractory (R) line melanizes most Plasmodium species, including the Brazilian P. falciparum 7G8 line, but it is highly susceptible to some African P. falciparum strains such as 3D7, NF54, and GB4. We investigated whether these lines differ in their ability to evade the mosquito immune system. Silencing key components of the mosquito complement-like system [thioester-containing protein 1 (TEP1...

  16. Synergism between ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: Culicidae)

    NARCIS (Netherlands)

    Smallegange, R.C.; Qiu, Y.T.; Loon, van J.J.A.; Takken, W.

    2005-01-01

    Host odours play a major role in the orientation and host location of blood-feeding mosquitoes. Anopheles gambiae Giles sensu stricto, which is the most important malaria vector in Africa, is a highly anthropophilic mosquito species, and the host-seeking behaviour of the females of this mosquito is

  17. An Epithelial Serine Protease, AgESP, Is Required for Plasmodium Invasion in the Mosquito Anopheles gambiae

    Czech Academy of Sciences Publication Activity Database

    Rodrigues, J.; Oliveira, G. A.; Kotsyfakis, Michalis; Dixit, R.; Molina-Cruz, A.; Jochim, R.; Barillas-Mury, C.

    2012-01-01

    Roč. 7, č. 4 (2012), e35210. E-ISSN 1932-6203 Institutional support: RVO:60077344 Keywords : malaria * mosquito * serine protease * sporozoites * ookinetes * gene silencing * midgut * salivary glands * Plasmodium falciparum * Anopheles gambiae Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0035210

  18. Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae

    OpenAIRE

    DeJong, Randall J.; Miller, Lisa M; Molina-Cruz, Alvaro; Gupta, Lalita; Kumar, Sanjeev; Barillas-Mury, Carolina

    2007-01-01

    The mosquito Anopheles gambiae is a primary vector of Plasmodium parasites in Africa. The effect of aging on reproductive output in A. gambiae females from three strains that differ in their ability to melanize Plasmodium and in their systemic levels of hydrogen peroxide (H2O2), a reactive oxygen species (ROS), was analyzed. The number of eggs oviposited after the first blood meal decreases with age in all strains; however, this decline was much more pronounced in the G3 (unselected) and R (r...

  19. Identification and expression profiling of putative odorant-binding proteins in the malaria mosquitoes, Anopheles gambiae and A.arabiensis

    Institute of Scientific and Technical Information of China (English)

    LI; Zhengxi; Jing-Jiang; ZHOU; SHEN; Zuorui; Lin; FIELD

    2004-01-01

    Olfaction plays a major role in host-seeking behaviour of mosquitoes. An informatics-based genome-wide analysis of odorant-binding protein (OBP) homologues is undertaken,and 32 putative OBP genes in total in the whole genome sequences of Anopheles gambiae are identified. Tissue-specific expression patterns of all A. gambiae OBP candidates are determined by semi-quantitative Reverse Transcription (RT)-PCR using mosquito actin gene as internal expression control standard. The results showed that 20 OBP candidates had strong expression in mosquito olfactory tissues (female antennae), which indicate that OBPs may play an important role in regulating mosquito olfactory behaviours. Species-specific expression patterns of all putative anopheline OBPs are also studied in two of the most important malaria vectors in A. gambiae complex, i.e.A. gambiae and A. arabiensis, which found 12 of the putative OBP genes examined displayed species-differential expression patterns. The cumulative relative expression intensity of the OBPs in A. arabiensis antennae was higher than that in A. gambiae (the ratio is 1441.45:1314.12), which might be due to their different host preference behaviour. While A.gambiae is a highly anthropophilic mosquito, A. arabiensis is more opportunistic (varying from anthropophilic to zoophilic). So the latter should need more OBPs to support its host selection preference. Identification of mosquito OBPs and verification of their tissue- and species-specific expression patterns represent the first step towards further molecular analysis of mosquito olfactory mechanism, such as recombinant expression and ligand identification.

  20. Biochemical characterization of chitin synthase activity and inhibition in the African malaria mosquito, Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    Xin Zhang; Kun Yan Zhu

    2013-01-01

    Chitin synthase (CHS) is an important enzyme catalyzing the formation of chitin polymers in all chitin containing organisms and a potential target site for insect pest control.However,our understanding of biochemical properties of insect CHSs has been very limited.We here report enzymatic and inhibitory properties of CHS prepared from the African malaria mosquito,Anopheles gambiae.Our study,which represents the first time to use a nonradioactive method to assay CHS activity in an insect species,determined the optimal conditions for measuring the enzyme activity,including pH,temperature,and concentrations of the substrate uridine diphosphate N-acetyl-D-glucosamine (UDPGlcNAc) and Mg++.The optimal pH was about 6.5-7.0,and the highest activity was detected at temperatures between 37℃ and 44℃.Dithithreitol is required to prevent melanization of the enzyme extract.CHS activity was enhanced at low concentration of GlcNAc,but inhibited at high concentrations.Proteolytic activation of the activity is significant both in the 500×g supernatant and the 40 000×g pellet.Our study revealed only slight in vitro inhibition ofA.gambiae CHS activity by diflubenzuron and nikkomycin Z at the highest concentration (2.5μmol/L) examined.There was no in vitro inhibition by polyoxin D at any concentration examined.Furthermore,we did not observe any in vivo inhibition of CHS activity by any of these chemicals at any concentration examined.Our results suggest that the inhibition of chitin synthesis by these chemicals is not due to direct inhibition of CHS in A.gambiae.

  1. Toxicity of essential oil from Indian borage on the larvae of the African malaria vector mosquito, Anopheles gambiae

    OpenAIRE

    Kweka Eliningaya J; Senthilkumar Annadurai; Venkatesalu Venugopalan

    2012-01-01

    Abstract Background Essential oils are currently studied for the control of different disease vectors, because of their efficacy on targeted organisms. In the present investigation, the larvicidal potential of essential oil extracted from Indian borage (Plectranthus amboinicus) was studied against the African anthropophagic malaria vector mosquito, Anopheles gambiae. The larvae of An. gambiae s.s laboratory colony and An. gambiae s.l of wild populations were assayed and the larval mortality w...

  2. Swarming and mating activity of Anopheles gambiae mosquitoes in semi-field enclosures.

    Science.gov (United States)

    Achinko, D; Thailayil, J; Paton, D; Mireji, P O; Talesa, V; Masiga, D; Catteruccia, F

    2016-03-01

    Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is the major Afro-tropical vector of malaria. Novel strategies proposed for the elimination and eradication of this mosquito vector are based on the use of genetic approaches, such as the sterile insect technique (SIT). These approaches rely on the ability of released males to mate with wild females, and depend on the application of effective protocols to assess the swarming and mating behaviours of laboratory-reared insects prior to their release. The present study evaluated whether large semi-field enclosures can be utilized to study the ability of males from a laboratory colony to respond to natural environmental stimuli and initiate normal mating behaviour. Laboratory-reared males exhibited spatiotemporally consistent swarming behaviour within the study enclosures. Swarm initiation, peak and termination time closely tracked sunset. Comparable insemination rates were observed in females captured in copula in the semi-field cages relative to females in small laboratory cages. Oviposition rates after blood feeding were also similar to those observed in laboratory settings. The data suggest that outdoor enclosures are suitable for studying swarming and mating in laboratory-bred males in field-like settings, providing an important reference for future studies aimed at assessing the comparative mating ability of strains for SIT and other vector control strategies. PMID:26508420

  3. Repellent, irritant and toxic effects of 20 plant extracts on adults of the malaria vector Anopheles gambiae mosquito.

    Directory of Open Access Journals (Sweden)

    Emilie Deletre

    Full Text Available Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mosquitoes or to prevent mosquito contact with humans, therefore arises. In laboratory conditions, the effects (i.e., repellent, irritant and toxic of 20 plant extracts, mainly essential oils, were assessed on adults of Anopheles gambiae, a primary vector of malaria. Their effects were compared to those of DEET and permethrin, used as positive controls. Most plant extracts had irritant, repellent and/or toxic effects on An. gambiae adults. The most promising extracts, i.e. those combining the three types of effects, were from Cymbopogon winterianus, Cinnamomum zeylanicum and Thymus vulgaris. The irritant, repellent and toxic effects occurred apparently independently of each other, and the behavioural response of adult An. gambiae was significantly influenced by the concentration of the plant extracts. Mechanisms underlying repellency might, therefore, differ from those underlying irritancy and toxicity. The utility of the efficient plant extracts for vector control as an alternative to pyrethroids may thus be envisaged.

  4. Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea

    Directory of Open Access Journals (Sweden)

    Reddy Vamsi P

    2011-07-01

    Full Text Available Abstract Background Indoor-based anti-vector interventions remain the preferred means of reducing risk of malaria transmission in malaria endemic areas around the world. Despite demonstrated success in reducing human-mosquito interactions, these methods are effective solely against endophilic vectors. It may be that outdoor locations serve as an important venue of host seeking by Anopheles gambiae sensu lato (s.l. mosquitoes where indoor vector suppression measures are employed. This paper describes the host seeking activity of anopheline mosquito vectors in the Punta Europa region of Bioko Island, Equatorial Guinea. In this area, An. gambiae sensu stricto (s.s. is the primary malaria vector. The goal of the paper is to evaluate the importance of An gambiae s.l. outdoor host seeking behaviour and discuss its implications for anti-vector interventions. Methods The venue and temporal characteristics of host seeking by anopheline vectors in a hyperendemic setting was evaluated using human landing collections conducted inside and outside homes in three villages during both the wet and dry seasons in 2007 and 2008. Additionally, five bi-monthly human landing collections were conducted throughout 2009. Collections were segregated hourly to provide a time distribution of host-seeking behaviour. Results Surprisingly high levels of outdoor biting by An. gambiae senso stricto and An. melas vectors were observed throughout the night, including during the early evening and morning hours when human hosts are often outdoors. As reported previously, An. gambiae s.s. is the primary malaria vector in the Punta Europa region, where it seeks hosts outdoors at least as much as it does indoors. Further, approximately 40% of An. gambiae s.l. are feeding at times when people are often outdoors, where they are not protected by IRS or LLINs. Repeated sampling over two consecutive dry-wet season cycles indicates that this result is independent of seasonality. Conclusions

  5. Some strains of Plasmodium falciparum, a human malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes.

    Science.gov (United States)

    Molina-Cruz, Alvaro; DeJong, Randall J; Ortega, Corrie; Haile, Ashley; Abban, Ekua; Rodrigues, Janneth; Jaramillo-Gutierrez, Giovanna; Barillas-Mury, Carolina

    2012-07-10

    Plasmodium falciparum lines differ in their ability to infect mosquitoes. The Anopheles gambiae L3-5 refractory (R) line melanizes most Plasmodium species, including the Brazilian P. falciparum 7G8 line, but it is highly susceptible to some African P. falciparum strains such as 3D7, NF54, and GB4. We investigated whether these lines differ in their ability to evade the mosquito immune system. Silencing key components of the mosquito complement-like system [thioester-containing protein 1 (TEP1), leucine-rich repeat protein 1, and Anopheles Plasmodium-responsive leucine-rich repeat protein 1] prevented melanization of 7G8 parasites, reverting the refractory phenotype. In contrast, it had no effect on the intensity of infection with NF54, suggesting that this line is able to evade TEP1-mediated lysis. When R females were coinfected with a line that is melanized (7G8) and a line that survives (3D7), the coinfection resulted in mixed infections with both live and encapsulated parasites on individual midguts. This finding shows that survival of individual parasites is parasite-specific and not systemic in nature, because parasites can evade TEP1-mediated lysis even when other parasites are melanized in the same midgut. When females from an extensive genetic cross between R and susceptible A. gambiae (G3) mosquitoes were infected with P. berghei, encapsulation was strongly correlated with the TEP1-R1 allele. However, P. falciparum 7G8 parasites were no longer encapsulated by females from this cross, indicating that the TEP1-R1 allele is not sufficient to melanize this line. Evasion of the A. gambiae immune system by P. falciparum may be the result of parasite adaptation to sympatric mosquito vectors and may be an important factor driving malaria transmission. PMID:22623529

  6. Sugar-fermenting yeast as an organic source of carbon dioxide to attract the malaria mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Spitzen Jeroen

    2010-10-01

    Full Text Available Abstract Background Carbon dioxide (CO2 plays an important role in the host-seeking process of opportunistic, zoophilic and anthropophilic mosquito species and is, therefore, commonly added to mosquito sampling tools. The African malaria vector Anopheles gambiae sensu stricto is attracted to human volatiles augmented by CO2. This study investigated whether CO2, usually supplied from gas cylinders acquired from commercial industry, could be replaced by CO2 derived from fermenting yeast (yeast-produced CO2. Methods Trapping experiments were conducted in the laboratory, semi-field and field, with An. gambiae s.s. as the target species. MM-X traps were baited with volatiles produced by mixtures of yeast, sugar and water, prepared in 1.5, 5 or 25 L bottles. Catches were compared with traps baited with industrial CO2. The additional effect of human odours was also examined. In the laboratory and semi-field facility dual-choice experiments were conducted. The effect of traps baited with yeast-produced CO2 on the number of mosquitoes entering an African house was studied in the MalariaSphere. Carbon dioxide baited traps, placed outside human dwellings, were also tested in an African village setting. The laboratory and semi-field data were analysed by a χ2-test, the field data by GLM. In addition, CO2 concentrations produced by yeast-sugar solutions were measured over time. Results Traps baited with yeast-produced CO2 caught significantly more mosquitoes than unbaited traps (up to 34 h post mixing the ingredients and also significantly more than traps baited with industrial CO2, both in the laboratory and semi-field. Adding yeast-produced CO2 to traps baited with human odour significantly increased trap catches. In the MalariaSphere, outdoor traps baited with yeast-produced or industrial CO2 + human odour reduced house entry of mosquitoes with a human host sleeping under a bed net indoors. Anopheles gambiae s.s. was not caught during the field trials

  7. Variation in susceptibility of African Plasmodium falciparum malaria parasites to TEP1 mediated killing in Anopheles gambiae mosquitoes.

    Science.gov (United States)

    Eldering, Maarten; Morlais, Isabelle; van Gemert, Geert-Jan; van de Vegte-Bolmer, Marga; Graumans, Wouter; Siebelink-Stoter, Rianne; Vos, Martijn; Abate, Luc; Roeffen, Will; Bousema, Teun; Levashina, Elena A; Sauerwein, Robert W

    2016-01-01

    Anopheles gambiae s.s. mosquitoes are efficient vectors for Plasmodium falciparum, although variation exists in their susceptibility to infection. This variation depends partly on the thioester-containing protein 1 (TEP1) and TEP depletion results in significantly elevated numbers of oocysts in susceptible and resistant mosquitoes. Polymorphism in the Plasmodium gene coding for the surface protein Pfs47 modulates resistance of some parasite laboratory strains to TEP1-mediated killing. Here, we examined resistance of P. falciparum isolates of African origin (NF54, NF165 and NF166) to TEP1-mediated killing in a susceptible Ngousso and a refractory L3-5 strain of A. gambiae. All parasite clones successfully developed in susceptible mosquitoes with limited evidence for an impact of TEP1 on transmission efficiency. In contrast, NF166 and NF165 oocyst densities were strongly reduced in refractory mosquitoes and TEP1 silencing significantly increased oocyst densities. Our results reveal differences between African P. falciparum strains in their capacity to evade TEP1-mediated killing in resistant mosquitoes. There was no significant correlation between Pfs47 genotype and resistance of a given P. falciparum isolate for TEP1 killing. These data suggest that polymorphisms in this locus are not the sole mediators of immune evasion of African malaria parasites. PMID:26861587

  8. Select small core structure carbamates exhibit high contact toxicity to "carbamate-resistant" strain malaria mosquitoes, Anopheles gambiae (Akron.

    Directory of Open Access Journals (Sweden)

    Dawn M Wong

    Full Text Available Acetylcholinesterase (AChE is a proven target for control of the malaria mosquito (Anopheles gambiae. Unfortunately, a single amino acid mutation (G119S in An. gambiae AChE-1 (AgAChE confers resistance to the AChE inhibitors currently approved by the World Health Organization for indoor residual spraying. In this report, we describe several carbamate inhibitors that potently inhibit G119S AgAChE and that are contact-toxic to carbamate-resistant An. gambiae. PCR-RFLP analysis was used to confirm that carbamate-susceptible G3 and carbamate-resistant Akron strains of An. gambiae carry wild-type (WT and G119S AChE, respectively. G119S AgAChE was expressed and purified for the first time, and was shown to have only 3% of the turnover number (k(cat of the WT enzyme. Twelve carbamates were then assayed for inhibition of these enzymes. High resistance ratios (>2,500-fold were observed for carbamates bearing a benzene ring core, consistent with the carbamate-resistant phenotype of the G119S enzyme. Interestingly, resistance ratios for two oxime methylcarbamates, and for five pyrazol-4-yl methylcarbamates were found to be much lower (4- to 65-fold. The toxicities of these carbamates to live G3 and Akron strain An. gambiae were determined. As expected from the enzyme resistance ratios, carbamates bearing a benzene ring core showed low toxicity to Akron strain An. gambiae (LC(50>5,000 μg/mL. However, one oxime methylcarbamate (aldicarb and five pyrazol-4-yl methylcarbamates (4a-e showed good to excellent toxicity to the Akron strain (LC(50 = 32-650 μg/mL. These results suggest that appropriately functionalized "small-core" carbamates could function as a resistance-breaking anticholinesterase insecticides against the malaria mosquito.

  9. Toxicity of essential oil from Indian borage on the larvae of the African malaria vector mosquito, Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Kweka Eliningaya J

    2012-12-01

    Full Text Available Abstract Background Essential oils are currently studied for the control of different disease vectors, because of their efficacy on targeted organisms. In the present investigation, the larvicidal potential of essential oil extracted from Indian borage (Plectranthus amboinicus was studied against the African anthropophagic malaria vector mosquito, Anopheles gambiae. The larvae of An. gambiae s.s laboratory colony and An. gambiae s.l of wild populations were assayed and the larval mortality was observed at 12, 24 and 48 h after exposure period with the concentrations of 3.125, 6.25, 12.5, 25, 50 and 100 ppm. Findings Larval mortality rates of the essential oil was entirely time and dose dependent. The LC50 values of the laboratory colony were 98.56 (after 12h 55.20 (after 24 h and 32.41 ppm (after 48 h and the LC90 values were 147.40 (after 12h, 99.09 (after 24 h and 98.84 ppm (after 48 h. The LC50 and LC90 values of the wild population were 119.52, 179.85 (after 12h 67.53, 107.60 (after 24 h and 25.51, 111.17 ppm (after 48 h respectively. The oil showed good larvicidal potential after 48 h of exposure period against An. gambiae. The essential oil of Indian borage is a renowned natural source of larvicides for the control of the African malaria vector mosquito, An. gambiae. Conclusion The larvicidal efficacy shown by plant extracts against An. gambiae should be tested in semi field and small scale trials for effective compounds to supplement the existing larval control tools.

  10. Multiple Origins of Knockdown Resistance Mutations in the Afrotropical Mosquito Vector Anopheles gambiae

    OpenAIRE

    Pinto, Joao; Lynd, Amy; Vicente, José L; Santolamazza, Federica; Randle, Nadine P.; Gentile, Gabriele; Moreno, Marta; Simard, Frédéric; Charlwood, Jaques Derek; Rosário, Virgilio E do; Caccone, Adalgisa; Torre, Alessandra della; Donelly, Martin J.

    2007-01-01

    How often insecticide resistance mutations arise in natural insect populations is a fundamental question for understanding the evolution of resistance and also for modeling its spread. Moreover, the development of resistance is regarded as a favored model to study the molecular evolution of adaptive traits. In the malaria vector Anopheles gambiae two point mutations (L1014F and L1014S) in the voltage-gated sodium channel gene, that confer knockdown resistance (kdr) to DDT and pyrethroid insec...

  11. A possible mechanism for the suppression of Plasmodium berghei development in the mosquito Anopheles gambiae by the microsporidian Vavraia culicis.

    Directory of Open Access Journals (Sweden)

    Irka Bargielowski

    Full Text Available BACKGROUND: Microsporidian parasites of mosquitoes offer a possible way of controlling malaria, as they impede the development of Plasmodium parasites within the mosquito. The mechanism involved in this interference process is unknown. METHODOLOGY: We evaluated the possibility that larval infection by a microsporidian primes the immune system of adult mosquitoes in a way that enables a more effective anti-Plasmodium response. To do so, we infected 2-day old larvae of the mosquito Anopheles gambiae with one of 4 isolates of the microsporidian Vavraia culicis and reared one group as an uninfected control. Within each treatment, we fed half the adult females on a mix of P. berghei ookinetes and blood and inoculated the other half with a negatively charged CM-25 Sephadex bead to evaluate the mosquitoes' melanisation response. CONCLUSIONS: The microsporidian-infected mosquitoes were less likely to harbour oocysts (58.5% vs. 81.8%, harboured fewer oocysts (8.9 oocysts vs. 20.7 oocysts if the malaria parasite did develop and melanised the Sephadex bead to a greater degree (73% vs. 35% than the controls. While the isolates differed in the number of oocysts and in the melanisation response, the stimulation of the immune response was not correlated with either measure of malaria development. Nevertheless, the consistent difference between microsporidian-infected and -uninfected mosquitoes--more effective melanisation and less successful infection by malaria--suggests that microsporidians impede the development of malaria by priming the mosquito's immune system.

  12. Rodent malaria-resistant strains of the mosquito, Anopheles gambiae, have slower population growth than -susceptible strains

    Directory of Open Access Journals (Sweden)

    Taylor Pam J

    2009-04-01

    Full Text Available Abstract Background Trade-offs between anti-parasite defence mechanisms and other life history traits limit the evolution of host resistance to parasites and have important implications for understanding diseases such as malaria. Mosquitoes have not evolved complete resistance to malaria parasites and one hypothesis is that anti-malaria defence mechanisms are costly. Results We used matrix population models to compare the population growth rates among lines of Anopheles gambiae that had been selected for resistance or high susceptibility to the rodent malaria parasite, Plasmodium yoelii nigeriensis. The population growth rate of the resistant line was significantly lower than that of the highly susceptible and the unselected control lines, regardless of whether mosquitoes were infected with Plasmodium or not. The lower population growth of malaria-resistant mosquitoes was caused by reduced post blood-feeding survival of females and poor egg hatching. Conclusion With respect to eradicating malaria, the strategy of releasing Plasmodium-resistant Anopheles mosquitoes is unlikely to be successful if the costs of Plasmodium-resistance in the field are as great as the ones measured in this study. High densities of malaria-resistant mosquitoes would have to be maintained by continuous release from captive breeding facilities.

  13. Comparative transcriptome analyses of deltamethrin-resistant and -susceptible Anopheles gambiae mosquitoes from Kenya by RNA-Seq.

    Directory of Open Access Journals (Sweden)

    Mariangela Bonizzoni

    Full Text Available Malaria causes more than 300 million clinical cases and 665,000 deaths each year, and the majority of the mortality and morbidity occurs in sub-Saharan Africa. Due to the lack of effective vaccines and wide-spread resistance to antimalarial drugs, mosquito control is the primary method of malaria prevention and control. Currently, malaria vector control relies on the use of insecticides, primarily pyrethroids. The extensive use of insecticides has imposed strong selection pressures for resistance in the mosquito populations. Consequently, resistance to pyrethroids in Anopheles gambiae, the main malaria vector in sub-Saharan Africa, has become a major obstacle for malaria control. A key element of resistance management is the identification of resistance mechanisms and subsequent development of reliable resistance monitoring tools. Field-derived An. gambiae from Western Kenya were phenotyped as deltamethrin-resistant or -susceptible by the standard WHO tube test, and their expression profile compared by RNA-seq. Based on the current annotation of the An. gambiae genome, a total of 1,093 transcripts were detected as significantly differentially accumulated between deltamethrin-resistant and -susceptible mosquitoes. These transcripts are distributed over the entire genome, with a large number mapping in QTLs previously linked to pyrethorid resistance, and correspond to heat-shock proteins, metabolic and transport functions, signal transduction activities, cytoskeleton and others. The detected differences in transcript accumulation levels between resistant and susceptible mosquitoes reflect transcripts directly or indirectly correlated with pyrethroid resistance. RNA-seq data also were used to perform a de-novo Cufflinks assembly of the An. gambiae genome.

  14. Comparative transcriptome analyses of deltamethrin-resistant and -susceptible Anopheles gambiae mosquitoes from Kenya by RNA-Seq.

    Science.gov (United States)

    Bonizzoni, Mariangela; Afrane, Yaw; Dunn, William Augustine; Atieli, Francis K; Zhou, Goufa; Zhong, Daibin; Li, Jun; Githeko, Andrew; Yan, Guiyun

    2012-01-01

    Malaria causes more than 300 million clinical cases and 665,000 deaths each year, and the majority of the mortality and morbidity occurs in sub-Saharan Africa. Due to the lack of effective vaccines and wide-spread resistance to antimalarial drugs, mosquito control is the primary method of malaria prevention and control. Currently, malaria vector control relies on the use of insecticides, primarily pyrethroids. The extensive use of insecticides has imposed strong selection pressures for resistance in the mosquito populations. Consequently, resistance to pyrethroids in Anopheles gambiae, the main malaria vector in sub-Saharan Africa, has become a major obstacle for malaria control. A key element of resistance management is the identification of resistance mechanisms and subsequent development of reliable resistance monitoring tools. Field-derived An. gambiae from Western Kenya were phenotyped as deltamethrin-resistant or -susceptible by the standard WHO tube test, and their expression profile compared by RNA-seq. Based on the current annotation of the An. gambiae genome, a total of 1,093 transcripts were detected as significantly differentially accumulated between deltamethrin-resistant and -susceptible mosquitoes. These transcripts are distributed over the entire genome, with a large number mapping in QTLs previously linked to pyrethorid resistance, and correspond to heat-shock proteins, metabolic and transport functions, signal transduction activities, cytoskeleton and others. The detected differences in transcript accumulation levels between resistant and susceptible mosquitoes reflect transcripts directly or indirectly correlated with pyrethroid resistance. RNA-seq data also were used to perform a de-novo Cufflinks assembly of the An. gambiae genome. PMID:22970263

  15. Effects of bed net use, female size, and plant abundance on the first meal choice (blood vs sugar) of the malaria mosquito Anopheles gambiae

    OpenAIRE

    Stone Chris M; Jackson Bryan T; Foster Woodbridge A

    2012-01-01

    Abstract Background The purpose of this study was to determine whether the sugar-or-blood meal choice of Anopheles gambiae females one day after emergence is influenced by blood-host presence and accessibility, nectariferous plant abundance, and female size. This tested the hypothesis that the initial meal of female An. gambiae is sugar, even when a blood host is available throughout the night, and, if not, whether the use of a bed net diverts mosquitoes to sugar sources. Methods Females and ...

  16. Apolipophorin-III mediates antiplasmodial epithelial responses in Anopheles gambiae (G3 mosquitoes.

    Directory of Open Access Journals (Sweden)

    Lalita Gupta

    Full Text Available BACKGROUND: Apolipophorin-III (ApoLp-III is known to play an important role in lipid transport and innate immunity in lepidopteran insects. However, there is no evidence of involvement of ApoLp-IIIs in the immune responses of dipteran insects such as Drosophila and mosquitoes. METHODOLOGY/PRINCIPAL FINDINGS: We report the molecular and functional characterization of An. gambiae apolipophorin-III (AgApoLp-III. Mosquito ApoLp-IIIs have diverged extensively from those of lepidopteran insects; however, the predicted tertiary structure of AgApoLp-III is similar to that of Manduca sexta (tobacco hornworm. We found that AgApoLp-III mRNA expression is strongly induced in the midgut of An. gambiae (G3 strain mosquitoes in response to Plasmodium berghei infection. Furthermore, immunofluorescence stainings revealed that high levels of AgApoLp-III protein accumulate in the cytoplasm of Plasmodium-invaded cells and AgApoLp-III silencing increases the intensity of P. berghei infection by five fold. CONCLUSION: There are broad differences in the midgut epithelial responses to Plasmodium invasion between An. gambiae strains. In the G3 strain of An. gambiae AgApoLp-III participates in midgut epithelial defense responses that limit Plasmodium infection.

  17. Apolipophorin-III Mediates Antiplasmodial Epithelial Responses in Anopheles gambiae (G3) Mosquitoes

    Science.gov (United States)

    Jo, Yong Hun; Oh, Seung Han; Kumar, Sanjeev; Noh, Mi Young; Lee, Yong Seok; Cha, Sung-Jae; Seo, Sook Jae; Kim, Iksoo; Han, Yeon Soo; Barillas-Mury, Carolina

    2010-01-01

    Background Apolipophorin-III (ApoLp-III) is known to play an important role in lipid transport and innate immunity in lepidopteran insects. However, there is no evidence of involvement of ApoLp-IIIs in the immune responses of dipteran insects such as Drosophila and mosquitoes. Methodology/Principal Findings We report the molecular and functional characterization of An. gambiae apolipophorin-III (AgApoLp-III). Mosquito ApoLp-IIIs have diverged extensively from those of lepidopteran insects; however, the predicted tertiary structure of AgApoLp-III is similar to that of Manduca sexta (tobacco hornworm). We found that AgApoLp-III mRNA expression is strongly induced in the midgut of An. gambiae (G3 strain) mosquitoes in response to Plasmodium berghei infection. Furthermore, immunofluorescence stainings revealed that high levels of AgApoLp-III protein accumulate in the cytoplasm of Plasmodium-invaded cells and AgApoLp-III silencing increases the intensity of P. berghei infection by five fold. Conclusion There are broad differences in the midgut epithelial responses to Plasmodium invasion between An. gambiae strains. In the G3 strain of An. gambiae AgApoLp-III participates in midgut epithelial defense responses that limit Plasmodium infection. PMID:21072214

  18. The effect of aliphatic carboxylic acids on olfaction-based host-seeking of the malaria mosquito Anopheles gambiae sensu stricto

    NARCIS (Netherlands)

    Smallegange, R.C.; Qiu, Y.T.; Bukovinszkine-Kiss, G.; Loon, van J.J.A.; Takken, W.

    2009-01-01

    The role of aliphatic carboxylic acids in host-seeking response of the malaria mosquito Anopheles gambiae sensu stricto was examined both in a dual-choice olfactometer and with indoor traps. A basic attractive blend of ammonia + lactic acid served as internal standard odor. Single carboxylic acids w

  19. Comparative susceptibility to permethrin of two Anopheles gambiae s.l. populations from Southern Benin, regarding mosquito sex, physiological status, and mosquito age

    Institute of Scientific and Technical Information of China (English)

    Nazaire Azoun; Rock Akpon; Roseric Azondekon; Alex Asidi; Martin Akogbto

    2014-01-01

    Objective: To investigate what kind of mosquito sample is necessary for the determination of insecticide susceptibility in malaria vectors. Methods:Larvae and pupae of Anopheles gambiae s.l. (An. gambiae) mosquitoes were collected from the breeding sites in Littoral and Oueme departments. The Centers for Disease Control and Prevention (CDC) susceptibility tests were conducted on unfed male and female mosquitoes aged 2-5 days old. CDC susceptibility tests were also conducted on unfed, blood fed and gravid female mosquitoes aged 2-5 days old. These susceptibility tests were also conducted on unfed and blood fed female mosquitoes aged 2-5 days old and 20 days old. CDC biochemical assay using synergist was also carried out to detect any increase in the activity of enzyme typically involved in insecticide metabolism. Results:Female An. gambiae Ladji and Sekandji populations were more susceptible than the males when they were unfed and aged 2-5 days old. The mortality rates of blood fed female An. gambiae Ladji and Sekandji populations aged 2-5 days old were lower than those obtained when females were unfed. In addition, the mortality rates of gravid female An. gambiae Ladji and Sekandji populations aged 2-5 days old were lower than those obtained when they were unfed. The mortality rate obtained when female An. gambiae Sekandji populations were unfed and aged 20 days old was higher than the one obtained when these populations were unfed and aged 2-5 days old. The results obtained after effects of synergist penicillin in beeswax on F1 progeny of An. gambiae Ladji populations resistant to permethrin showed that mono-oxygenases were involved in permethrin resistant F1 progeny from Ladji. Conclusions: The resistance is a hereditary and dynamic phenomenon which can be due to metabolic mechanisms like overproduction of detoxifying enzymes activity. Many factors influence vector susceptibility to insecticide. Among these factors, there are mosquito sex, mosquito age, its

  20. Apolipophorin-III Mediates Antiplasmodial Epithelial Responses in Anopheles gambiae (G3) Mosquitoes

    OpenAIRE

    Gupta, Lalita; Noh, Ju Young; Jo, Yong Hun; Oh, Seung Han; Kumar, Sanjeev; Noh, Mi Young; Lee, Yong Seok; Cha, Sung-Jae; Seo, Sook Jae; Kim, Iksoo; Han, Yeon Soo; Barillas-Mury, Carolina

    2010-01-01

    Background Apolipophorin-III (ApoLp-III) is known to play an important role in lipid transport and innate immunity in lepidopteran insects. However, there is no evidence of involvement of ApoLp-IIIs in the immune responses of dipteran insects such as Drosophila and mosquitoes. Methodology/Principal Findings We report the molecular and functional characterization of An. gambiae apolipophorin-III (AgApoLp-III). Mosquito ApoLp-IIIs have diverged extensively from those of lepidopteran insects; ho...

  1. Salivary gland proteome analysis reveals modulation of anopheline unique proteins in insensitive acetylcholinesterase resistant Anopheles gambiae mosquitoes.

    Directory of Open Access Journals (Sweden)

    Sylvie Cornelie

    Full Text Available Insensitive acetylcholinesterase resistance due to a mutation in the acetylcholinesterase (ace encoding ace-1 gene confers cross-resistance to organophosphate and carbamate insecticides in Anopheles gambiae populations from Central and West Africa. This mutation is associated with a strong genetic cost revealed through alterations of some life history traits but little is known about the physiological and behavioural changes in insects bearing the ace-1(R allele. Comparative analysis of the salivary gland contents between An. gambiae susceptible and ace-1(R resistant strains was carried out to charaterize factors that could be involved in modifications of blood meal process, trophic behaviour or pathogen interaction in the insecticide-resistant mosquitoes. Differential analysis of the salivary gland protein profiles revealed differences in abundance for several proteins, two of them showing major differences between the two strains. These two proteins identified as saglin and TRIO are salivary gland-1 related proteins, a family unique to anopheline mosquitoes, one of them playing a crucial role in salivary gland invasion by Plasmodium falciparum sporozoites. Differential expression of two other proteins previously identified in the Anopheles sialome was also observed. The differentially regulated proteins are involved in pathogen invasion, blood feeding process, and protection against oxidation, relevant steps in the outcome of malaria infection. Further functional studies and insect behaviour experiments would confirm the impact of the modification of the sialome composition on blood feeding and pathogen transmission abilities of the resistant mosquitoes. The data supports the hypothesis of alterations linked to insecticide resistance in the biology of the primary vector of human malaria in Africa.

  2. Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae.

    Science.gov (United States)

    DeJong, Randall J; Miller, Lisa M; Molina-Cruz, Alvaro; Gupta, Lalita; Kumar, Sanjeev; Barillas-Mury, Carolina

    2007-02-13

    The mosquito Anopheles gambiae is a primary vector of Plasmodium parasites in Africa. The effect of aging on reproductive output in A. gambiae females from three strains that differ in their ability to melanize Plasmodium and in their systemic levels of hydrogen peroxide (H2O2), a reactive oxygen species (ROS), was analyzed. The number of eggs oviposited after the first blood meal decreases with age in all strains; however, this decline was much more pronounced in the G3 (unselected) and R (refractory to Plasmodium infection) strains than in the S (highly susceptible to Plasmodium) strain. Reduction of ROS levels in G3 and R females by administration of antioxidants reversed this age-related decline in fecundity. The S and G3 strains were fixed for two functionally different catalase alleles that differ at the second amino acid position (Ser2Trp). Biochemical analysis of recombinant proteins revealed that the Trp isoform has lower specific activity and higher Km than the Ser isoform, indicating that the former is a less efficient enzyme. The Trp-for-Ser substitution appears to destabilize the functional tetrameric form of the enzyme. Both alleles are present in the R strain, and Ser/Ser females had significantly higher fecundity than Trp/Trp females. Finally, a systemic reduction in catalase activity by dsRNA-mediated knockdown significantly reduced the reproductive output of mosquito females, indicating that catalase plays a central role in protecting the oocyte and early embryo from ROS damage. PMID:17284604

  3. Reactive oxygen species detoxification by catalase is a major determinant of fecundity in the mosquito Anopheles gambiae

    Science.gov (United States)

    DeJong, Randall J.; Miller, Lisa M.; Molina-Cruz, Alvaro; Gupta, Lalita; Kumar, Sanjeev; Barillas-Mury, Carolina

    2007-01-01

    The mosquito Anopheles gambiae is a primary vector of Plasmodium parasites in Africa. The effect of aging on reproductive output in A. gambiae females from three strains that differ in their ability to melanize Plasmodium and in their systemic levels of hydrogen peroxide (H2O2), a reactive oxygen species (ROS), was analyzed. The number of eggs oviposited after the first blood meal decreases with age in all strains; however, this decline was much more pronounced in the G3 (unselected) and R (refractory to Plasmodium infection) strains than in the S (highly susceptible to Plasmodium) strain. Reduction of ROS levels in G3 and R females by administration of antioxidants reversed this age-related decline in fecundity. The S and G3 strains were fixed for two functionally different catalase alleles that differ at the second amino acid position (Ser2Trp). Biochemical analysis of recombinant proteins revealed that the Trp isoform has lower specific activity and higher Km than the Ser isoform, indicating that the former is a less efficient enzyme. The Trp-for-Ser substitution appears to destabilize the functional tetrameric form of the enzyme. Both alleles are present in the R strain, and Ser/Ser females had significantly higher fecundity than Trp/Trp females. Finally, a systemic reduction in catalase activity by dsRNA-mediated knockdown significantly reduced the reproductive output of mosquito females, indicating that catalase plays a central role in protecting the oocyte and early embryo from ROS damage. PMID:17284604

  4. Chromosome Inversions, Genomic Differentiation and Speciation in the African Malaria Mosquito Anopheles gambiae

    Science.gov (United States)

    Lee, Yoosook; Collier, Travis C.; Sanford, Michelle R.; Marsden, Clare D.; Fofana, Abdrahamane; Cornel, Anthony J.; Lanzaro, Gregory C.

    2013-01-01

    The African malaria vector, Anopheles gambiae, is characterized by multiple polymorphic chromosomal inversions and has become widely studied as a system for exploring models of speciation. Near complete reproductive isolation between different inversion types, known as chromosomal forms, has led to the suggestion that A. gambiae is in early stages of speciation, with divergence evolving in the face of considerable gene flow. We compared the standard chromosomal arrangement (Savanna form) with genomes homozygous for j, b, c, and u inversions (Bamako form) in order to identify regions of genomic divergence with respect to inversion polymorphism. We found levels of divergence between the two sub-taxa within some of these inversions (2Rj and 2Rb), but at a level lower than expected and confined near the inversion breakpoints, consistent with a gene flux model. Unexpectedly, we found that the majority of diverged regions were located on the X chromosome, which contained half of all significantly diverged regions, with much of this divergence located within exons. This is surprising given that the Bamako and Savanna chromosomal forms are both within the S molecular form that is defined by a locus near centromere of X chromosome. Two X-linked genes (a heat shock protein and P450 encoding genes) involved in reproductive isolation between the M and S molecular forms of A. gambiae were also significantly diverged between the two chromosomal forms. These results suggest that genes mediating reproductive isolation are likely located on the X chromosome, as is thought to be the case for the M and S molecular forms. We conclude that genes located on the sex chromosome may be the major force driving speciation between these chromosomal forms of A. gambiae. PMID:23526957

  5. Chromosome inversions, genomic differentiation and speciation in the African malaria mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Yoosook Lee

    Full Text Available The African malaria vector, Anopheles gambiae, is characterized by multiple polymorphic chromosomal inversions and has become widely studied as a system for exploring models of speciation. Near complete reproductive isolation between different inversion types, known as chromosomal forms, has led to the suggestion that A. gambiae is in early stages of speciation, with divergence evolving in the face of considerable gene flow. We compared the standard chromosomal arrangement (Savanna form with genomes homozygous for j, b, c, and u inversions (Bamako form in order to identify regions of genomic divergence with respect to inversion polymorphism. We found levels of divergence between the two sub-taxa within some of these inversions (2Rj and 2Rb, but at a level lower than expected and confined near the inversion breakpoints, consistent with a gene flux model. Unexpectedly, we found that the majority of diverged regions were located on the X chromosome, which contained half of all significantly diverged regions, with much of this divergence located within exons. This is surprising given that the Bamako and Savanna chromosomal forms are both within the S molecular form that is defined by a locus near centromere of X chromosome. Two X-linked genes (a heat shock protein and P450 encoding genes involved in reproductive isolation between the M and S molecular forms of A. gambiae were also significantly diverged between the two chromosomal forms. These results suggest that genes mediating reproductive isolation are likely located on the X chromosome, as is thought to be the case for the M and S molecular forms. We conclude that genes located on the sex chromosome may be the major force driving speciation between these chromosomal forms of A. gambiae.

  6. Alstonia boonei De Wild oil extract in the management of mosquito (Anopheles gambiae, a vector of malaria disease

    Directory of Open Access Journals (Sweden)

    Kayode David Ileke

    2015-07-01

    Full Text Available Objective: To evaluate the insecticidal potential of Alstonia boonei (A. boonei oils and derivatives against different life stages of a malaria vector, Anopheles gambiae. Methods: The leaf, stem bark and root bark of A. boonei were collected from an open field and air dried before being blended to fine powder. Oils from this plant were extracted by cold extraction and were prepared at different concentrations. Contact toxicity of A. boonei was tested against the larvae and pupae of the insect while smoke toxicity of the plant materials in form of mosquito coil was tested against the adult insect. Results: Alstodine recorded the highest insect mortality rate and the order of susceptibility of the life stages of the insect to the plant was pupae alstonine > stem bark extract > leaf extract > root bark extract.

  7. Alstonia booneiDe Wildoil extract in the management of mosquito (Anopheles gambiae), a vector of malaria disease

    Institute of Scientific and Technical Information of China (English)

    Kayode David Ileke; Olaniyi Charles Ogungbite

    2015-01-01

    Objective:To evaluate the insecticidal potential ofAlstonia boonei(A. boonei)oils and derivatives against different life stages of a malaria vector,Anopheles gambiae. Methods:The leaf, stem bark and root bark ofA. boonei were collected from an open field and air dried before being blended to fine powder. Oils from this plant were extracted by cold extraction and were prepared at different concentrations. Contact toxicity ofA. boonei was tested against the larvae and pupae of the insect while smoke toxicity of the plant materials in form of mosquito coil was tested against the adult insect. Results: Alstodine recorded the highest insect mortality rate and the order of susceptibility of the life stages of the insect to the plant was pupae alstonine > stem bark extract > leaf extract > root bark extract.

  8. Hydric stress-dependent effects of Plasmodium falciparum infection on the survival of wild-caught Anopheles gambiae female mosquitoes

    Directory of Open Access Journals (Sweden)

    Aboagye-Antwi Fred

    2010-08-01

    Full Text Available Abstract Background Whether Plasmodium falciparum, the agent of human malaria responsible for over a million deaths per year, causes fitness costs in its mosquito vectors is a burning question that has not yet been adequately resolved. Understanding the evolutionary forces responsible for the maintenance of susceptibility and refractory alleles in natural mosquito populations is critical for understanding malaria transmission dynamics. Methods In natural mosquito populations, Plasmodium fitness costs may only be expressed in combination with other environmental stress factors hence this hypothesis was tested experimentally. Wild-caught blood-fed Anopheles gambiae s.s. females of the M and S molecular form from an area endemic for malaria in Mali, West Africa, were brought to the laboratory and submitted to a 7-day period of mild hydric stress or kept with water ad-libitum. At the end of this experiment all females were submitted to intense desiccation until death. The survival of all females throughout both stress episodes, as well as their body size and infection status was recorded. The importance of stress, body size and molecular form on infection prevalence and female survival was investigated using Logistic Regression and Proportional-Hazard analysis. Results Females subjected to mild stress exhibited patterns of survival and prevalence of infection compatible with increased parasite-induced mortality compared to non-stressed females. Fitness costs seemed to be linked to ookinetes and early oocyst development but not the presence of sporozoites. In addition, when females were subjected to intense desiccation stress, those carrying oocysts exhibited drastically reduced survival but those carrying sporozoites were unaffected. No significant differences in prevalence of infection and infection-induced mortality were found between the M and S molecular forms of Anopheles gambiae. Conclusions Because these results suggest that infected

  9. Differential gene expression in abdomens of the malaria vector mosquito, Anopheles gambiae, after sugar feeding, blood feeding and Plasmodium berghei infection

    OpenAIRE

    Romans Patricia A; Kern Marcia K; Hillenmeyer Maureen E; Lobo Neil F; Dana Ali N; Collins Frank H

    2006-01-01

    Abstract Background Large scale sequencing of cDNA libraries can provide profiles of genes expressed in an organism under defined biological and environmental circumstances. We have analyzed sequences of 4541 Expressed Sequence Tags (ESTs) from 3 different cDNA libraries created from abdomens from Plasmodium infection-susceptible adult female Anopheles gambiae. These libraries were made from sugar fed (S), rat blood fed (RB), and P. berghei-infected (IRB) mosquitoes at 30 hours after the bloo...

  10. The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae

    OpenAIRE

    K. P. Paaijmans; Takken, W.; Githeko, A.K.; Jacobs, A. F. G.

    2008-01-01

    Water temperature is an important determinant in many aquatic biological processes, including the growth and development of malaria mosquito (Anopheles arabiensis and A. gambiae) immatures. Water turbidity affects water temperature, as suspended particles in a water column absorb and scatter sunlight and hence determine the extinction of solar radiation. To get a better understanding of the relationship between water turbidity and water temperature, a series of semi-natural larval habitats (d...

  11. An epithelial serine protease, AgESP, is required for Plasmodium invasion in the mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Janneth Rodrigues

    Full Text Available BACKGROUND: Plasmodium parasites need to cross the midgut and salivary gland epithelia to complete their life cycle in the mosquito. However, our understanding of the molecular mechanism and the mosquito genes that participate in this process is still very limited. METHODOLOGY/PRINCIPAL FINDINGS: We identified an Anopheles gambiae epithelial serine protease (AgESP that is constitutively expressed in the submicrovillar region of mosquito midgut epithelial cells and in the basal side of the salivary glands that is critical for Plasmodium parasites to cross these two epithelial barriers. AgESP silencing greatly reduces Plasmodium berghei and Plasmodium falciparum midgut invasion and prevents the transcriptional activation of gelsolin, a key regulator of actin remodeling and a reported Plasmodium agonist. AgESP expression is highly induced in midgut cells invaded by Plasmodium, suggesting that this protease also participates in the apoptotic response to invasion. In salivary gland epithelial cells, AgESP is localized on the basal side--the surface with which sporozoites interact. AgESP expression in the salivary gland is also induced in response to P. berghei and P. falciparum sporozoite invasion, and AgESP silencing significantly reduces the number of sporozoites that invade this organ. CONCLUSION: Our findings indicate that AgESP is required for Plasmodium parasites to effectively traverse the midgut and salivary gland epithelial barriers. Plasmodium parasites need to modify the actin cytoskeleton of mosquito epithelial cells to successfully complete their life cycle in the mosquito and AgESP appears to be a major player in the regulation of this process.

  12. An Epithelial Serine Protease, AgESP, Is Required for Plasmodium Invasion in the Mosquito Anopheles gambiae

    Science.gov (United States)

    Rodrigues, Janneth; Oliveira, Giselle A.; Kotsyfakis, Michalis; Dixit, Rajnikant; Molina-Cruz, Alvaro; Jochim, Ryan; Barillas-Mury, Carolina

    2012-01-01

    Background Plasmodium parasites need to cross the midgut and salivary gland epithelia to complete their life cycle in the mosquito. However, our understanding of the molecular mechanism and the mosquito genes that participate in this process is still very limited. Methodology/Principal Findings We identified an Anopheles gambiae epithelial serine protease (AgESP) that is constitutively expressed in the submicrovillar region of mosquito midgut epithelial cells and in the basal side of the salivary glands that is critical for Plasmodium parasites to cross these two epithelial barriers. AgESP silencing greatly reduces Plasmodium berghei and Plasmodium falciparum midgut invasion and prevents the transcriptional activation of gelsolin, a key regulator of actin remodeling and a reported Plasmodium agonist. AgESP expression is highly induced in midgut cells invaded by Plasmodium, suggesting that this protease also participates in the apoptotic response to invasion. In salivary gland epithelial cells, AgESP is localized on the basal side–the surface with which sporozoites interact. AgESP expression in the salivary gland is also induced in response to P. berghei and P. falciparum sporozoite invasion, and AgESP silencing significantly reduces the number of sporozoites that invade this organ. Conclusion Our findings indicate that AgESP is required for Plasmodium parasites to effectively traverse the midgut and salivary gland epithelial barriers. Plasmodium parasites need to modify the actin cytoskeleton of mosquito epithelial cells to successfully complete their life cycle in the mosquito and AgESP appears to be a major player in the regulation of this process. PMID:22509400

  13. Evidence of carbamate resistance in urban populations of Anopheles gambiae s.s. mosquitoes resistant to DDT and deltamethrin insecticides in Lagos, South-Western Nigeria

    Directory of Open Access Journals (Sweden)

    Oduola Adedayo O

    2012-06-01

    Full Text Available Abstract Background Resistance monitoring is essential in ensuring the success of insecticide based vector control programmes. This study was carried out to assess the susceptibility status of urban populations of Anopheles gambiae to carbamate insecticide being considered for vector control in mosquito populations previously reported to be resistant to DDT and permethrin. Methods Two – three day old adult female Anopheles mosquitoes reared from larval collections in 11 study sites from Local Government Areas of Lagos were exposed to test papers impregnated with DDT 4%, deltamethrin 0.05% and propoxur 0.1% insecticides. Additional tests were carried out to determine the susceptibility status of the Anopheles gambiae population to bendiocarb insecticide. Members of the A. gambiae complex, the molecular forms, were identified by PCR assays. The involvement of metabolic enzymes in carbamate resistance was assessed using Piperonyl butoxide (PBO synergist assays. The presence of kdr-w/e and ace-1R point mutations responsible for DDT-pyrethroid and carbamate resistance mechanisms was also investigated by PCR. Results Propoxur resistance was found in 10 out of the 11 study sites. Resistance to three classes of insecticides was observed in five urban localities. Mortality rates in mosquitoes exposed to deltamethrin and propoxur did not show any significant difference (P > 0.05 but was significantly higher (P A. gambiae s.s (M form. The kdr -w point mutation at allelic frequencies between 45%-77% was identified as one of the resistant mechanisms responsible for DDT and pyrethroid resistance. Ace-1R point mutation was absent in the carbamate resistant population. However, the possible involvement of metabolic resistance was confirmed by synergistic assays conducted. Conclusion Evidence of carbamate resistance in A. gambiae populations already harbouring resistance to DDT and permethrin is a clear indication that calls for the implementation of

  14. Molecular characterisation and chromosomal mapping of transcripts having tissue-specific expression in the malaria mosquito Anopheles gambiae: possible involvement in visual or olfactory processes.

    Science.gov (United States)

    Ricci, Irene; Santolamazza, Federica; Costantini, Carlo; Favia, Guido

    2002-01-01

    We have compared the transcriptional activity of heads, antennae + palps, and carcasses in the mosquito Anopheles gambiae by means of differential display PCR (DD-PCR). Three transcripts specifically or preferentially expressed in the heads and in the antennae + palps have been selected. All are very similar to genes related to visual and olfactory mechanisms of several different organisms. They have been named Ag arrestin, Ag rLDL, and Ag dynamin. The potential of the DD-PCR technique in identifying genes involved in mosquito behaviour and the usefulness of the molecular characterisation of these transcripts are discussed. PMID:11822731

  15. Inducible immune factors of the vector mosquito Anopheles gambiae: biochemical purification of a defensin antibacterial peptide and molecular cloning of preprodefensin cDNA.

    Science.gov (United States)

    Richman, A M; Bulet, P; Hetru, C; Barillas-Mury, C; Hoffmann, J A; Kafalos, F C

    1996-08-01

    Larvae of the mosquito vector of human malaria, Anopheles gambiae, were inoculated with bacteria and extracts were biochemically fractionated by reverse-phase HPLC. Multiple induced polypeptides and antibacterial activities were observed following bacterial infection, including a member of the insect defensin family of antibacterial proteins. A cDNA encoding An. gambiae preprodefensin was isolated using PCR primers based on phylogenetically conserved sequences. The mature peptide is highly conserved, but the signal and propeptide segments are not, relative to corresponding defensin sequences of other insects. Defensin expression is induced in response to bacterial infection, in both adult and larval stages. In contrast, pupae express defensin mRNA constitutively. Defensin expression may prove a valuable molecular marker to monitor the An. gambiae host response to infection by parasitic protozoa of medical importance. PMID:8799739

  16. A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae.

    Science.gov (United States)

    Hammond, Andrew; Galizi, Roberto; Kyrou, Kyros; Simoni, Alekos; Siniscalchi, Carla; Katsanos, Dimitris; Gribble, Matthew; Baker, Dean; Marois, Eric; Russell, Steven; Burt, Austin; Windbichler, Nikolai; Crisanti, Andrea; Nolan, Tony

    2016-01-01

    Gene drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years. We describe CRISPR-Cas9 endonuclease constructs that function as gene drive systems in Anopheles gambiae, the main vector for malaria. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female-sterility phenotype upon disruption, and inserted into each locus CRISPR-Cas9 gene drive constructs designed to target and edit each gene. For each targeted locus we observed a strong gene drive at the molecular level, with transmission rates to progeny of 91.4 to 99.6%. Population modeling and cage experiments indicate that a CRISPR-Cas9 construct targeting one of these loci, AGAP007280, meets the minimum requirement for a gene drive targeting female reproduction in an insect population. These findings could expedite the development of gene drives to suppress mosquito populations to levels that do not support malaria transmission. PMID:26641531

  17. A Possible Mechanism for the Suppression of Plasmodium berghei Development in the Mosquito Anopheles gambiae by the Microsporidian Vavraia culicis

    OpenAIRE

    Bargielowski, Irka; Koella, Jacob C

    2009-01-01

    Background Microsporidian parasites of mosquitoes offer a possible way of controlling malaria, as they impede the development of Plasmodium parasites within the mosquito. The mechanism involved in this interference process is unknown. Methodology We evaluated the possibility that larval infection by a microsporidian primes the immune system of adult mosquitoes in a way that enables a more effective anti-Plasmodium response. To do so, we infected 2-day old larvae of the mosquito Anopheles gamb...

  18. Ultrastructure of a microsporidium brachiola gambiae n.sp.parasitising a mosquito anopheles gamblae, a malaria vector

    Czech Academy of Sciences Publication Activity Database

    Weiser, Jaroslav; Žižka, Zdeněk

    - (2003), s. 35-36. ISSN 1214-021X. [Conference on Cell Biology /5./. České Budějovice, 08.09.2003-10.09.2003] Institutional research plan: CEZ:AV0Z5020903 Keywords : anopheles gambiae * malaria * vector Subject RIV: EE - Microbiology, Virology

  19. Next-generation site-directed transgenesis in the malaria vector mosquito Anopheles gambiae: self-docking strains expressing germline-specific phiC31 integrase.

    Directory of Open Access Journals (Sweden)

    Janet M Meredith

    Full Text Available Diseases transmitted by mosquitoes have a devastating impact on global health and the situation is complicated due to difficulties with both existing control measures and the impact of climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. The Streptomyces phage phiC31 integrase system has been successfully adapted for site-directed transgene integration in a range of insects, thus overcoming many limitations due to size constraints and random integration associated with transposon-mediated transformation. Using this technology, we previously published the first site-directed transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 docking site at a defined genomic location. A second phase of genetic modification then achieved site-directed integration of an anti-malarial effector gene. In the current publication we report improved efficiency and utility of the phiC31 integrase system following the generation of Anopheles gambiae self-docking strains. Four independent strains, with docking sites at known locations on three different chromosome arms, were engineered to express integrase under control of the regulatory regions of the nanos gene from Anopheles gambiae. The resulting protein accumulates in the posterior oocyte to provide integrase activity at the site of germline development. Two self-docking strains, exhibiting significantly different levels of integrase expression, were assessed for site-directed transgene integration and found to demonstrate greatly improved survival and efficiency of transformation. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters to regulate their expression, enabling those offering maximum effect with minimum fitness

  20. Hemocyte differentiation mediates the mosquito late-phase immune response against Plasmodium in Anopheles gambiae

    OpenAIRE

    Smith, Ryan C.; Barillas-Mury, Carolina; Jacobs-Lorena, Marcelo

    2015-01-01

    The innate immune response is a major determinant of malaria parasite success in its mosquito host. Previous experiments have implicated LPS-induced TNFα transcription factor (LITAF)-like 3 (LL3) as an integral component of the mosquito immune response to the malaria parasite. This study reports that LL3 influences oocyst survival and demonstrates its role in mosquito blood cell (hemocyte) differentiation in response to parasite infection. Integrating previous data, we provide evidence that h...

  1. A New Role of the Mosquito Complement-like Cascade in Male Fertility in Anopheles gambiae

    OpenAIRE

    Pompon, Julien; Levashina, Elena A.

    2015-01-01

    Thioester-containing protein 1 (TEP1) is a key immune factor that determines mosquito resistance to a wide range of pathogens, including malaria parasites. Here we report a new allele-specific function of TEP1 in male fertility. We demonstrate that during spermatogenesis TEP1 binds to and removes damaged cells through the same complement-like cascade that kills malaria parasites in the mosquito midgut. Further, higher fertility rates are mediated by an allele that renders the mosquito suscept...

  2. The bionomics of the malaria mosquito Anopheles gambiae sensu lato in Southeast Tanzania.

    NARCIS (Netherlands)

    Lyimo, E.O.K.

    1993-01-01

    Size of adult mosquitoes is known to affect both population dynamics as well as disease transmission. Studies devoted to this topic have given different results for different species. For example in some mosquito species, large size was found to be associated with high fecundity and longer survival

  3. Hemocyte differentiation mediates the mosquito late-phase immune response against Plasmodium in Anopheles gambiae.

    Science.gov (United States)

    Smith, Ryan C; Barillas-Mury, Carolina; Jacobs-Lorena, Marcelo

    2015-06-30

    Plasmodium parasites must complete development in the mosquito vector for transmission to occur. The mosquito innate immune response is remarkably efficient in limiting parasite numbers. Previous work has identified a LPS-induced TNFα transcription factor (LITAF)-like transcription factor, LITAF-like 3 (LL3), which significantly influences parasite numbers. Here, we demonstrate that LL3 does not influence invasion of the mosquito midgut epithelium or ookinete-to-oocyst differentiation but mediates a late-phase immune response that decreases oocyst survival. LL3 expression in the midgut and hemocytes is activated by ookinete midgut invasion and is independent of the mosquito microbiota, suggesting that LL3 may be a component of a wound-healing response. LL3 silencing abrogates the ability of mosquito hemocytes to differentiate and respond to parasite infection, implicating hemocytes as critical modulators of the late-phase immune response. PMID:26080400

  4. Hemocyte differentiation mediates the mosquito late-phase immune response against Plasmodium in Anopheles gambiae

    Science.gov (United States)

    Smith, Ryan C.; Barillas-Mury, Carolina; Jacobs-Lorena, Marcelo

    2015-01-01

    Plasmodium parasites must complete development in the mosquito vector for transmission to occur. The mosquito innate immune response is remarkably efficient in limiting parasite numbers. Previous work has identified a LPS-induced TNFα transcription factor (LITAF)-like transcription factor, LITAF-like 3 (LL3), which significantly influences parasite numbers. Here, we demonstrate that LL3 does not influence invasion of the mosquito midgut epithelium or ookinete-to-oocyst differentiation but mediates a late-phase immune response that decreases oocyst survival. LL3 expression in the midgut and hemocytes is activated by ookinete midgut invasion and is independent of the mosquito microbiota, suggesting that LL3 may be a component of a wound-healing response. LL3 silencing abrogates the ability of mosquito hemocytes to differentiate and respond to parasite infection, implicating hemocytes as critical modulators of the late-phase immune response. PMID:26080400

  5. Identification and characterization of the fibrinogen-like domain of fibrinogen-related proteins in the mosquito, Anopheles gambiae, and the fruitfly, Drosophila melanogaster, genomes

    Directory of Open Access Journals (Sweden)

    Zhao Qin

    2005-09-01

    Full Text Available Abstract Background The fibrinogen-like (FBG domain, which consists of approximately 200 amino acid residues, has high sequence similarity to the C-terminal halves of fibrinogen β and γ chains. Fibrinogen-related proteins (FREPs, which contain FBG domains in their C-terminal region, are found universally in vertebrates and invertebrates. In invertebrates, FREPs are involved in immune responses and other aspects of physiology. To understand the complexity of this family in insects, we analyzed FREPs in the mosquito genome and made comparisons to FREPs in the fruitfly genome. Results By using the genome data of the mosquito, Anopheles gambiae, 53 FREPs were identified, whereas only 20 members were found in the Drosophila melanogaster genome. Using sequence profile analysis, we found that FBG domains have high sequence similarity and are highly conserved throughout the FBG domain region. By secondary structure analysis and comparison, the FBG domains of FREPs are predicted to function in recognition of carbohydrates and their derivatives on the surface of microorganisms in innate immunity. Conclusion Detailed sequence and structural analysis discloses that the FREP family contains FBG domains that have high sequence similarity in the A. gambiae genome. Expansion of the FREP family in mosquitoes during evolutionary history is mainly accounted for by a major expansion of the FBG domain architecture. The characterization of the FBG domains in the FREP family is likely to aid in the experimental analysis of the ability of mosquitoes to recognize parasites in innate immunity and physiologies associated with blood feeding.

  6. The bionomics of the malaria mosquito Anopheles gambiae sensu lato in Southeast Tanzania.

    OpenAIRE

    Lyimo, E.O.K.

    1993-01-01

    Size of adult mosquitoes is known to affect both population dynamics as well as disease transmission. Studies devoted to this topic have given different results for different species. For example in some mosquito species, large size was found to be associated with high fecundity and longer survival (Steinwascher, 1982; Nasci, 1986a; 1986b; 1987) but in others large size did not result in longer survival (Walker et al ., 1987; Landry et al ., 1988; Pumpuni & Walker, 1989). Similar data were fo...

  7. Molecular characterization of DDT resistance in Anopheles gambiae from Benin

    OpenAIRE

    Djègbè, Innocent; Agossa, Fiacre R; Jones, Christopher M.; Poupardin, Rodolphe; Cornelie, Sylvie; Akogbéto, Martin; Ranson, Hilary; Corbel, Vincent

    2014-01-01

    Background Insecticide resistance in the mosquito vector is the one of the main obstacles against effective malaria control. In order to implement insecticide resistance management strategies, it is important to understand the genetic factors involved. In this context, we investigated the molecular basis of DDT resistance in the main malaria vector from Benin. Methods Anopheles gambiae mosquitoes were collected from four sites across Benin and identified to species/molecular form. Mosquitoes ...

  8. Molecular characterization of DDT resistance in Anopheles gambiae from Benin

    OpenAIRE

    Djegbe, I.; Agossa, F. R.; Jones, C. M.; Poupardin, R; Cornélie, Sylvie; Akogbeto, M; Ranson, H.; Corbel, Vincent

    2014-01-01

    Background: Insecticide resistance in the mosquito vector is the one of the main obstacles against effective malaria control. In order to implement insecticide resistance management strategies, it is important to understand the genetic factors involved. In this context, we investigated the molecular basis of DDT resistance in the main malaria vector from Benin. Methods: Anopheles gambiae mosquitoes were collected from four sites across Benin and identified to species/molecular form. Mosquitoe...

  9. Combining two-dimensional gel electrophoresis and metabolomic data in support of dry-season survival in the two main species of the malarial mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Hidalgo K.

    2015-12-01

    Full Text Available In dry savannahs of West-Africa, the malarial mosquitoes of the Anopheles gambiae sensu stricto complex annually survive the harsh desiccating conditions of the dry season. However, the physiological and biochemical mechanisms underlying how these mosquitoes survive such desiccating conditions are still undefined, and controversial. In this context, we provide the first work examining both proteomic and metabolomic changes in the two molecular forms of A. gambiae s.s (M and S forms experimentally exposed to the rainy and dry season conditions as they experience in the field. Protein abundances of the mosquitoes were measured using a two-dimensional fluorescence difference gel electrophoresis (2D DIGE coupled with a matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF and tandem mass spectrometry (MS for protein identification. These assays were conducted by Applied Biomics (http://www.appliedbiomics.com, Applied Biomics, Inc. Hayward, CA, USA, and the mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org via the PRIDE partner repository with the dataset identifier PXD000294. The metabolomic analysis was conducted using both Acquity UPLC® system (for amino acid identification, and a gas-chromatography-mass spectrometry platform (for sugars identification. Metabolomic fingerprintings were assessed in the University of Rennes 1, UMR CNRS 6553 EcoBio (France. A detailed interpretation of the obtained data can be found in Hidalgo et al. (2014 [1] (Journal of Insect Physiology (2014.

  10. Identification, characterisation, and function of adipokinetic hormones and receptor in the African malaria mosquito, "Anopheles Gambiae" (Diptera)

    OpenAIRE

    Kaufmann, Christian; Betschart, Bruno

    2007-01-01

    En utilisant la bioinformatique et la biologie moléculaire, nous avons pu identifier chez le principal vecteur africain de la malaria, le moustique, Anopheles gambiae deux hormones adipokinétiques (AKHs): l'octapeptide, Anoga-AKH-I (pQLTFTPAWa) et le décapeptide, Anoga-AKH-II, (pQVTFSRDWNAa). La fonction principale des AKHs est d’induire une hyperlipémie (effet d’adipokinétique), ainsi qu’une hypertrehalosémie et une hyperprolinémie. En tant que membres de la famille des AKH, les deux neurope...

  11. A CRISPR-Cas9 Gene Drive System Targeting Female Reproduction in the Malaria Mosquito vector Anopheles gambiae

    OpenAIRE

    Hammond, Andrew; Galizi, Roberto; Kyrou, Kyros; Simoni, Alekos; Siniscalchi, Carla; Katsanos, Dimitris; Gribble, Matthew; Baker, Dean; Marois, Eric; Russell, Steven; Burt, Austin; Windbichler, Nikolai; Crisanti, Andrea; Nolan, Tony

    2015-01-01

    Gene-drive systems that enable super-Mendelian inheritance of a transgene have the potential to modify insect populations over a timeframe of a few years [AU please provide a real estimate, this seems vague]. We describe CRISPR-Cas9 endonuclease constructs that function as gene-drive systems in Anopheles gambiae, the main vector for malaria [AU:OK?]. We identified three genes (AGAP005958, AGAP011377 and AGAP007280) that confer a recessive female sterility phenotype upon disruption, and insert...

  12. Molasses as a source of carbon dioxide for attracting the malaria mosquitoes Anopheles gambiae and Anopheles funestus

    OpenAIRE

    Mweresa, C. K.; Omusula, P.; Otieno, B.; Loon, van, R.R.; Takken, W.; Mukabana, W.R.

    2014-01-01

    Background. Most odour baits for haematophagous arthropods contain carbon dioxide (CO2). The CO2 is sourced artificially from the fermentation of refined sugar (sucrose), dry ice, pressurized gas cylinders or propane. These sources of CO2 are neither cost-effective nor sustainable for use in remote areas of sub-Saharan Africa. In this study, molasses was evaluated as a potential substrate for producing CO2 used as bait for malaria mosquitoes. Methods. The attraction of laboratory-reared and w...

  13. Short report : Development of a molecular assay to detect predation on Anopheles gambiae complex larval stages

    OpenAIRE

    Schielke, E.; Costantini, Carlo; Carchini, G.; Sagnon, N.; J. Powell; Caccone, A

    2007-01-01

    We developed a molecular assay to detect predation on Anopheles gambiae sensu lato (s.l.) mosquitoes. This intergenic spacer ribosomal DNA polymerase chain reaction assay and restriction enzyme analysis uses An. gambiae-specific primers to detect mosquito DNA in the DNA extracts from whole invertebrate predators, which enables identification of species (An. gambiae s.s. versus An. arabiensis) and molecular forms (M versus S in An. gambiae s.s.). We show that An. gambiae s.l. DNA can be detect...

  14. Spatiotemporal dynamics of gene flow and hybrid fitness between the M and S forms of the malaria mosquito, Anopheles gambiae.

    Science.gov (United States)

    Lee, Yoosook; Marsden, Clare D; Norris, Laura C; Collier, Travis C; Main, Bradley J; Fofana, Abdrahamane; Cornel, Anthony J; Lanzaro, Gregory C

    2013-12-01

    The M and S forms of Anopheles gambiae have been the focus of intense study by malaria researchers and evolutionary biologists interested in ecological speciation. Divergence occurs at three discrete islands in genomes that are otherwise nearly identical. An "islands of speciation" model proposes that diverged regions contain genes that are maintained by selection in the face of gene flow. An alternative "incidental island" model maintains that gene flow between M and S is effectively zero and that divergence islands are unrelated to speciation. A "divergence island SNP" assay was used to explore the spatial and temporal distributions of hybrid genotypes. Results revealed that hybrid individuals occur at frequencies ranging between 5% and 97% in every population examined. A temporal analysis revealed that assortative mating is unstable and periodically breaks down, resulting in extensive hybridization. Results suggest that hybrids suffer a fitness disadvantage, but at least some hybrid genotypes are viable. Stable introgression of the 2L speciation island occurred at one site following a hybridization event. PMID:24248386

  15. Gene expression-based biomarkers for Anopheles gambiae age grading.

    Science.gov (United States)

    Wang, Mei-Hui; Marinotti, Osvaldo; Zhong, Daibin; James, Anthony A; Walker, Edward; Guda, Tom; Kweka, Eliningaya J; Githure, John; Yan, Guiyun

    2013-01-01

    Information on population age structure of mosquitoes under natural conditions is fundamental to the understanding of vectorial capacity and crucial for assessing the impact of vector control measures on malaria transmission. Transcriptional profiling has been proposed as a method for predicting mosquito age for Aedes and Anopheles mosquitoes, however, whether this new method is adequate for natural conditions is unknown. This study tests the applicability of transcriptional profiling for age-grading of Anopheles gambiae, the most important malaria vector in Africa. The transcript abundance of two An. gambiae genes, AGAP009551 and AGAP011615, was measured during aging under laboratory and field conditions in three mosquito strains. Age-dependent monotonic changes in transcript levels were observed in all strains evaluated. These genes were validated as age-grading biomarkers using the mark, release and recapture (MRR) method. The MRR method determined a good correspondence between actual and predicted age, and thus demonstrated the value of age classifications derived from the transcriptional profiling of these two genes. The technique was used to establish the age structure of mosquito populations from two malaria-endemic areas in western Kenya. The population age structure determined by the transcriptional profiling method was consistent with that based on mosquito parity. This study demonstrates that the transcription profiling method based on two genes is valuable for age determination of natural mosquitoes, providing a new approach for determining a key life history trait of malaria vectors. PMID:23936017

  16. Gene expression-based biomarkers for Anopheles gambiae age grading.

    Directory of Open Access Journals (Sweden)

    Mei-Hui Wang

    Full Text Available Information on population age structure of mosquitoes under natural conditions is fundamental to the understanding of vectorial capacity and crucial for assessing the impact of vector control measures on malaria transmission. Transcriptional profiling has been proposed as a method for predicting mosquito age for Aedes and Anopheles mosquitoes, however, whether this new method is adequate for natural conditions is unknown. This study tests the applicability of transcriptional profiling for age-grading of Anopheles gambiae, the most important malaria vector in Africa. The transcript abundance of two An. gambiae genes, AGAP009551 and AGAP011615, was measured during aging under laboratory and field conditions in three mosquito strains. Age-dependent monotonic changes in transcript levels were observed in all strains evaluated. These genes were validated as age-grading biomarkers using the mark, release and recapture (MRR method. The MRR method determined a good correspondence between actual and predicted age, and thus demonstrated the value of age classifications derived from the transcriptional profiling of these two genes. The technique was used to establish the age structure of mosquito populations from two malaria-endemic areas in western Kenya. The population age structure determined by the transcriptional profiling method was consistent with that based on mosquito parity. This study demonstrates that the transcription profiling method based on two genes is valuable for age determination of natural mosquitoes, providing a new approach for determining a key life history trait of malaria vectors.

  17. Entomological indices of Anopheles gambiae sensu lato at a rural community in south-west Nigeria

    OpenAIRE

    M.A.E. Noutcha; C.I. Anumdu

    2009-01-01

    Background & objectives: Investigations were conducted to obtain key entomological indices of Anopheles gambiae s.l. at Igbo-Ora, a rural community in south-west Nigeria. Methods: Mosquitoes were caught daily for a week from rooms where tenants had slept the previous night in each of the four months June, July (2001), and August, September (2002). Anopheles gambiae s.l. sibling species were PCR-identified, the blood meal origin was determined by direct ELISA, and the circumsporozoite antigen ...

  18. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae

    OpenAIRE

    Kumar, Sanjeev; Christophides, George K.; Cantera, Rafael; Charles, Bradley; Han, Yeon Soo; Meister, Stephan; Dimopoulos, George; Kafatos, Fotis C.; Barillas-Mury, Carolina

    2003-01-01

    Malaria transmission depends on the competence of some Anopheles mosquitoes to sustain Plasmodium development (susceptibility). A genetically selected refractory strain of Anopheles gambiae blocks Plasmodium development, melanizing, and encapsulating the parasite in a reaction that begins with tyrosine oxidation, and involves three quantitative trait loci. Morphological and microarray mRNA expression analysis suggest that the refractory and susceptible strains have broad physiological differe...

  19. An expression map for Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    MacCallum Robert M

    2011-12-01

    Full Text Available Abstract Background Quantitative transcriptome data for the malaria-transmitting mosquito Anopheles gambiae covers a broad range of biological and experimental conditions, including development, blood feeding and infection. Web-based summaries of differential expression for individual genes with respect to these conditions are a useful tool for the biologist, but they lack the context that a visualisation of all genes with respect to all conditions would give. For most organisms, including A. gambiae, such a systems-level view of gene expression is not yet available. Results We have clustered microarray-based gene-averaged expression values, available from VectorBase, for 10194 genes over 93 experimental conditions using a self-organizing map. Map regions corresponding to known biological events, such as egg production, are revealed. Many individual gene clusters (nodes on the map are highly enriched in biological and molecular functions, such as protein synthesis, protein degradation and DNA replication. Gene families, such as odorant binding proteins, can be classified into distinct functional groups based on their expression and evolutionary history. Immunity-related genes are non-randomly distributed in several distinct regions on the map, and are generally distant from genes with house-keeping roles. Each immunity-rich region appears to represent a distinct biological context for pathogen recognition and clearance (e.g. the humoral and gut epithelial responses. Several immunity gene families, such as peptidoglycan recognition proteins (PGRPs and defensins, appear to be specialised for these distinct roles, while three genes with physically interacting protein products (LRIM1/APL1C/TEP1 are found in close proximity. Conclusions The map provides the first genome-scale, multi-experiment overview of gene expression in A. gambiae and should also be useful at the gene-level for investigating potential interactions. A web interface is available

  20. Identification of candidate volatiles that affect the behavioural response of the malaria mosquito Anopheles gambiae sensu stricto to an active kairomone blend: laboratory and semi-field assays

    NARCIS (Netherlands)

    Smallegange, R.C.; Bukovinszkine Kiss, G.; Otieno, B.; Mbadi, P.A.; Takken, W.; Mukabana, W.R.; Loon, van J.J.A.

    2012-01-01

    Anopheles gambiae Giles sensu stricto (Diptera: Culicidae) is the most important vector of human malaria in sub-Saharan Africa, affecting the lives of millions of people. Existing tools such as insecticide-treated nets and indoor-residual sprays are not only effective, but also have limitations as a

  1. Comparative susceptibility to Plasmodium falciparum of the molecular forms M and S of Anopheles gambiae and Anopheles arabiensis

    Directory of Open Access Journals (Sweden)

    Boudin Christian

    2011-09-01

    Full Text Available Abstract Background The different taxa belonging to Anopheles gambiae complex display phenotypic differences that may impact their contribution to malaria transmission. More specifically, their susceptibility to infection, resulting from a co-evolution between parasite and vector, might be different. The aim of this study was to compare the susceptibility of M and S molecular forms of Anopheles gambiae and Anopheles arabiensis to infection by Plasmodium falciparum. Methods F3 progenies of Anopheles gambiae s.l. collected in Senegal were infected, using direct membrane feeding, with P. falciparum gametocyte-containing blood sampled on volunteer patients. The presence of oocysts was determined by light microscopy after 7 days, and the presence of sporozoite by ELISA after 14 days. Mosquito species and molecular forms were identified by PCR. Results The oocyst rate was significantly higher in the molecular S form (79.07% than in the M form (57.81%, Fisher's exact test p Anopheles arabiensis (55.38%, Fisher's exact test vs. S group p An. gambiae S form (1.72 ± 0.26 than in the An. gambiae M form (0.64 ± 0.04, p An. arabiensis group (0.58 ± 0.04, vs. S group, p Anopheles arabiensis 50.85%, Fisher's exact test vs. S group p Conclusion Infected in the same experimental conditions, the molecular form S of An. gambiae is more susceptible to infection by P. falciparum than the molecular form M of An. gambiae and An. arabiensis.

  2. Anopheles gambiae odorant binding protein crystal complex with the synthetic repellent DEET: implications for structure-based design of novel mosquito repellents.

    Science.gov (United States)

    Tsitsanou, K E; Thireou, T; Drakou, C E; Koussis, K; Keramioti, M V; Leonidas, D D; Eliopoulos, E; Iatrou, K; Zographos, S E

    2012-01-01

    Insect odorant binding proteins (OBPs) are the first components of the olfactory system to encounter and bind attractant and repellent odors emanating from various sources for presentation to olfactory receptors, which trigger relevant signal transduction cascades culminating in specific physiological and behavioral responses. For disease vectors, particularly hematophagous mosquitoes, repellents represent important defenses against parasitic diseases because they effect a reduction in the rate of contact between the vectors and humans. OBPs are targets for structure-based rational approaches for the discovery of new repellent or other olfaction inhibitory compounds with desirable features. Thus, a study was conducted to characterize the high resolution crystal structure of an OBP of Anopheles gambiae, the African malaria mosquito vector, in complex with N,N-diethyl-m-toluamide (DEET), one of the most effective repellents that has been in worldwide use for six decades. We found that DEET binds at the edge of a long hydrophobic tunnel by exploiting numerous non-polar interactions and one hydrogen bond, which is perceived to be critical for DEET's recognition. Based on the experimentally determined affinity of AgamOBP1 for DEET (K (d) of 31.3 μΜ) and our structural data, we modeled the interactions for this protein with 29 promising leads reported in the literature to have significant repellent activities, and carried out fluorescence binding studies with four highly ranked ligands. Our experimental results confirmed the modeling predictions indicating that structure-based modeling could facilitate the design of novel repellents with enhanced binding affinity and selectivity. PMID:21671117

  3. Potential mosquito repellent compounds of Ocimum species against 3N7H and 3Q8I of Anopheles gambiae

    OpenAIRE

    Gaddaguti, Venugopal; Venkateswara Rao, Talluri; Prasada Rao, Allu

    2016-01-01

    Mosquitoes are exceptionally efficient in detecting their hosts for blood meal using odorant binding proteins, viz. 3N7H and 3Q8I and spread several dreadful diseases. DEET is a synthetic mosquito repellent widely used all over world for protection against mosquito bite. Reports reveal that, synthetic mosquito repellents may pose health problems in considerably large population. In view of the above fact, we made an attempt to discover efficient and novel natural mosquito repellent compounds ...

  4. Genomic islands of speciation in Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available The African malaria mosquito, Anopheles gambiae sensu stricto (A. gambiae, provides a unique opportunity to study the evolution of reproductive isolation because it is divided into two sympatric, partially isolated subtaxa known as M form and S form. With the annotated genome of this species now available, high-throughput techniques can be applied to locate and characterize the genomic regions contributing to reproductive isolation. In order to quantify patterns of differentiation within A. gambiae, we hybridized population samples of genomic DNA from each form to Affymetrix GeneChip microarrays. We found that three regions, together encompassing less than 2.8 Mb, are the only locations where the M and S forms are significantly differentiated. Two of these regions are adjacent to centromeres, on Chromosomes 2L and X, and contain 50 and 12 predicted genes, respectively. Sequenced loci in these regions contain fixed differences between forms and no shared polymorphisms, while no fixed differences were found at nearby control loci. The third region, on Chromosome 2R, contains only five predicted genes; fixed differences in this region were also verified by direct sequencing. These "speciation islands" remain differentiated despite considerable gene flow, and are therefore expected to contain the genes responsible for reproductive isolation. Much effort has recently been applied to locating the genes and genetic changes responsible for reproductive isolation between species. Though much can be inferred about speciation by studying taxa that have diverged for millions of years, studying differentiation between taxa that are in the early stages of isolation will lead to a clearer view of the number and size of regions involved in the genetics of speciation. Despite appreciable levels of gene flow between the M and S forms of A. gambiae, we were able to isolate three small regions of differentiation where genes responsible for ecological and behavioral

  5. A Physical Map for an Asian Malaria Mosquito, Anopheles stephensi

    OpenAIRE

    Maria V Sharakhova; Xia, Ai; Tu, Zhijian; Shouche, Yogesh S.; Unger, Maria F; Sharakhov, Igor V

    2010-01-01

    Physical mapping is a useful approach for studying genome organization and evolution as well as for genome sequence assembly. The availability of polytene chromosomes in malaria mosquitoes provides a unique opportunity to develop high-resolution physical maps. We report a 0.6-Mb-resolution physical map consisting of 422 DNA markers hybridized to 379 chromosomal sites of the Anopheles stephensi polytene chromosomes. This makes An. stephensi second only to Anopheles gambiae in density of a phys...

  6. Repellent, irritant and toxic effects of 20 plant extracts on adults of the malaria vector Anopheles gambiae mosquito

    OpenAIRE

    Emilie Deletre; Thibaud Martin; Pascal Campagne; Denis Bourguet; Andy Cadin; Chantal Menut; Romain Bonafos; Fabrice Chandre

    2013-01-01

    Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mos...

  7. Repellent, Irritant and Toxic Effects of 20 Plant Extracts on Adults of the Malaria Vector Anopheles gambiae Mosquito

    OpenAIRE

    Martin, Thibaud; Campagne, Pascal; Bourguet, Denis; Cadin, Andy; Menut, Chantal; Bonafos, Romain; Chandre, Fabrice

    2013-01-01

    Pyrethroid insecticides induce an excito-repellent effect that reduces contact between humans and mosquitoes. Insecticide use is expected to lower the risk of pathogen transmission, particularly when impregnated on long-lasting treated bednets. When applied at low doses, pyrethroids have a toxic effect, however the development of pyrethroid resistance in several mosquito species may jeopardize these beneficial effects. The need to find additional compounds, either to kill disease-carrying mos...

  8. Chloroquine mediated modulation of Anopheles gambiae gene expression.

    Directory of Open Access Journals (Sweden)

    Patrícia Abrantes

    Full Text Available BACKGROUND: Plasmodium development in the mosquito is crucial for malaria transmission and depends on the parasite's interaction with a variety of cell types and specific mosquito factors that have both positive and negative effects on infection. Whereas the defensive response of the mosquito contributes to a decrease in parasite numbers during these stages, some components of the blood meal are known to favor infection, potentiating the risk of increased transmission. The presence of the antimalarial drug chloroquine in the mosquito's blood meal has been associated with an increase in Plasmodium infectivity for the mosquito, which is possibly caused by chloroquine interfering with the capacity of the mosquito to defend against the infection. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we report a detailed survey of the Anopheles gambiae genes that are differentially regulated by the presence of chloroquine in the blood meal, using an A. gambiae cDNA microarray. The effect of chloroquine on transcript abundance was evaluated separately for non-infected and Plasmodium berghei-infected mosquitoes. Chloroquine was found to affect the abundance of transcripts that encode proteins involved in a variety of processes, including immunity, apoptosis, cytoskeleton and the response to oxidative stress. This pattern of differential gene expression may explain the weakened mosquito defense response which accounts for the increased infectivity observed in chloroquine-treated mosquitoes. CONCLUSIONS/SIGNIFICANCE: The results of the present study suggest that chloroquine can interfere with several putative mosquito mechanisms of defense against Plasmodium at the level of gene expression and highlight the need for a better understanding of the impacts of antimalarial agents on parasite transmission.

  9. The role of hemocytes in Anopheles gambiae antiplasmodial immunity.

    Science.gov (United States)

    Ramirez, Jose Luis; Garver, Lindsey S; Brayner, Fábio André; Alves, Luiz Carlos; Rodrigues, Janneth; Molina-Cruz, Alvaro; Barillas-Mury, Carolina

    2014-01-01

    Hemocytes synthesize key components of the mosquito complement-like system, but their role in the activation of antiplasmodial responses has not been established. The effect of activating Toll signaling in hemocytes on Plasmodium survival was investigated by transferring hemocytes or cell-free hemolymph from donor mosquitoes in which the suppressor cactus was silenced. These transfers greatly enhanced antiplasmodial immunity, indicating that hemocytes are active players in the activation of the complement-like system, through an effector/effectors regulated by the Toll pathway. A comparative analysis of hemocyte populations between susceptible G3 and the refractory L3-5 Anopheles gambiae mosquito strains did not reveal significant differences under basal conditions or in response to Plasmodium berghei infection. The response of susceptible mosquitoes to different Plasmodium species revealed similar kinetics following infection with P. berghei,P. yoelii or P. falciparum, but the strength of the priming response was stronger in less compatible mosquito-parasite pairs. The Toll, Imd,STAT or JNK signaling cascades were not essential for the production of the hemocyte differentiation factor (HDF) in response to P. berghei infection, but disruption of Toll, STAT or JNK abolished hemocyte differentiation in response to HDF. We conclude that hemocytes are key mediators of A. gambiae antiplasmodial responses. PMID:23886925

  10. Demasculinization of the Anopheles gambiae X chromosome

    Directory of Open Access Journals (Sweden)

    Magnusson Kalle

    2012-05-01

    Full Text Available Abstract Background In a number of organisms sex-biased genes are non-randomly distributed between autosomes and the shared sex chromosome X (or Z. Studies on Anopheles gambiae have produced conflicting results regarding the underrepresentation of male-biased genes on the X chromosome and it is unclear to what extent sexual antagonism, dosage compensation or X-inactivation in the male germline, the evolutionary forces that have been suggested to affect the chromosomal distribution of sex-biased genes, are operational in Anopheles. Results We performed a meta-analysis of sex-biased gene expression in Anopheles gambiae which provides evidence for a general underrepresentation of male-biased genes on the X-chromosome that increased in significance with the observed degree of sex-bias. A phylogenomic comparison between Drosophila melanogaster, Aedes aegypti and Culex quinquefasciatus also indicates that the Anopheles X chromosome strongly disfavours the evolutionary conservation of male-biased expression and that novel male-biased genes are more likely to arise on autosomes. Finally, we demonstrate experimentally that transgenes situated on the Anopheles gambiae X chromosome are transcriptionally silenced in the male germline. Conclusion The data presented here support the hypothesis that the observed demasculinization of the Anopheles X chromosome is driven by X-chromosome inactivation in the male germline and by sexual antagonism. The demasculinization appears to be the consequence of a loss of male-biased expression, rather than a failure in the establishment or the extinction of male-biased genes.

  11. The Population Genomics of Trans-Specific Inversion Polymorphisms in Anopheles gambiae

    OpenAIRE

    White, Bradley J.; Cheng, Changde; Sangaré, Djibril; Lobo, Neil F.; Collins, Frank H.; Besansky, Nora J

    2009-01-01

    In the malaria mosquito Anopheles gambiae polymorphic chromosomal inversions may play an important role in adaptation to environmental variation. Recently, we used microarray-based divergence mapping combined with targeted resequencing to map nucleotide differentiation between alternative arrangements of the 2La inversion. Here, we applied the same technique to four different polymorphic inversions on the 2R chromosome of An. gambiae. Surprisingly, divergence was much lower between alternativ...

  12. Physiological correlates of ecological divergence along an urbanization gradient: differential tolerance to ammonia among molecular forms of the malaria mosquito Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Tene Fossog Billy

    2013-01-01

    Full Text Available Abstract Background Limitations in the ability of organisms to tolerate environmental stressors affect their fundamental ecological niche and constrain their distribution to specific habitats. Evolution of tolerance, therefore, can engender ecological niche dynamics. Forest populations of the afro-tropical malaria mosquito Anopheles gambiae have been shown to adapt to historically unsuitable larval habitats polluted with decaying organic matter that are found in densely populated urban agglomerates of Cameroon. This process has resulted in niche expansion from rural to urban environments that is associated with cryptic speciation and ecological divergence of two evolutionarily significant units within this taxon, the molecular forms M and S, among which reproductive isolation is significant but still incomplete. Habitat segregation between the two forms results in a mosaic distribution of clinally parapatric patches, with the M form predominating in the centre of urban agglomerates and the S form in the surrounding rural localities. We hypothesized that development of tolerance to nitrogenous pollutants derived from the decomposition of organic matter, among which ammonia is the most toxic to aquatic organisms, may affect this pattern of distribution and process of niche expansion by the M form. Results Acute toxicity bioassays indicated that populations of the two molecular forms occurring at the extremes of an urbanization gradient in Yaounde, the capital of Cameroon, differed in their response to ammonia. The regression lines best describing the dose-mortality profile differed in the scale of the explanatory variable (ammonia concentration log-transformed for the S form and linear for the M form, and in slope (steeper for the S form and shallower for the M form. These features reflected differences in the frequency distribution of individual tolerance thresholds in the two populations as assessed by probit analysis, with the M form exhibiting

  13. Experimental hut evaluation of bednets treated with an organophosphate (chlorpyrifos-methyl or a pyrethroid (lambdacyhalothrin alone and in combination against insecticide-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes

    Directory of Open Access Journals (Sweden)

    Corbel Vincent

    2005-05-01

    Full Text Available Abstract Background Pyrethroid resistant mosquitoes are becoming increasingly common in parts of Africa. It is important to identify alternative insecticides which, if necessary, could be used to replace or supplement the pyrethroids for use on treated nets. Certain compounds of an earlier generation of insecticides, the organophosphates may have potential as net treatments. Methods Comparative studies of chlorpyrifos-methyl (CM, an organophosphate with low mammalian toxicity, and lambdacyhalothrin (L, a pyrethroid, were conducted in experimental huts in Côte d'Ivoire, West Africa. Anopheles gambiae and Culex quinquefasciatus mosquitoes from the area are resistant to pyrethroids and organophosphates (kdr and insensitive acetylcholinesterase Ace.1R. Several treatments and application rates on intact or holed nets were evaluated, including single treatments, mixtures, and differential wall/ceiling treatments. Results and Conclusion All of the treatments were effective in reducing blood feeding from sleepers under the nets and in killing both species of mosquito, despite the presence of the kdr and Ace.1R genes at high frequency. In most cases, the effects of the various treatments did not differ significantly. Five washes of the nets in soap solution did not reduce the impact of the insecticides on A. gambiae mortality, but did lead to an increase in blood feeding. The three combinations performed no differently from the single insecticide treatments, but the low dose mixture performed encouragingly well indicating that such combinations might be used for controlling insecticide resistant mosquitoes. Mortality of mosquitoes that carried both Ace.1R and Ace.1S genes did not differ significantly from mosquitoes that carried only Ace.1S genes on any of the treated nets, indicating that the Ace.1R allele does not confer effective resistance to chlorpyrifos-methyl under the realistic conditions of an experimental hut.

  14. Constituents of the Essential Oil of Suregada Zanzibariensis Leaves are Repellent to the Mosquito, Anopheles Gambiae s.s.

    OpenAIRE

    Innocent, Ester; Cosam C. Joseph; Gikonyo, Nicholas K; Nkunya, Mayunga H.H.; Hassanali, Ahmed

    2010-01-01

    In traditional African communities, repellent volatiles from certain plants generated by direct burning or by thermal expulsion have played an important role in protecting households against vectors of malaria and other diseases. Previous research on volatile constituents of plants has shown that some are good sources of potent mosquito repellents. In this bioprospecting initiative, the essential oil of leaves of the tree, Suregada zanzibariensis Verdc. (Angiospermae: Euphobiaceae) was tested...

  15. Comparative Transcriptome Analyses of Deltamethrin-Resistant and -Susceptible Anopheles gambiae Mosquitoes from Kenya by RNA-Seq

    OpenAIRE

    Bonizzoni, Mariangela; Afrane, Yaw; Dunn, William Augustine; Francis K Atieli; Zhou, Goufa; Zhong, Daibin; Li, Jun; Githeko, Andrew; Yan, Guiyun

    2012-01-01

    Malaria causes more than 300 million clinical cases and 665,000 deaths each year, and the majority of the mortality and morbidity occurs in sub-Saharan Africa. Due to the lack of effective vaccines and wide-spread resistance to antimalarial drugs, mosquito control is the primary method of malaria prevention and control. Currently, malaria vector control relies on the use of insecticides, primarily pyrethroids. The extensive use of insecticides has imposed strong selection pressures for resist...

  16. A reliable morphological method to assess the age of male Anopheles gambiae

    OpenAIRE

    Killeen Gerry F; Ng'habi Kija R; Huho Bernadette J; Nkwengulila Gamba; Knols Bart GJ; Ferguson Heather M

    2006-01-01

    Abstract Background Release of genetically-modified (GM) or sterile male mosquitoes for malaria control is hampered by inability to assess the age and mating history of free-living male Anopheles. Methods Age and mating-related changes in the reproductive system of male Anopheles gambiae were quantified and used to fit predictive statistical models. These models, based on numbers of spermatocysts, relative size of sperm reservoir and presence/absence of a clear area around the accessory gland...

  17. A reliable morphological method to assess the age of male Anopheles gambiae

    OpenAIRE

    Huho, B J; Ng'habi, K.R.; Kileen, G.F.; Nkwengulila, G.; Knols, B.G.J.; Ferguson, H.M.

    2006-01-01

    Background Release of genetically-modified (GM) or sterile male mosquitoes for malaria control is hampered by inability to assess the age and mating history of free-living male Anopheles. Methods Age and mating-related changes in the reproductive system of male Anopheles gambiae were quantified and used to fit predictive statistical models. These models, based on numbers of spermatocysts, relative size of sperm reservoir and presence/absence of a clear area around the accessory gla...

  18. Development of a molecular assay to detect predation on Anopheles gambiae complex larval stages.

    Science.gov (United States)

    Schielke, Erika; Costantini, Carlo; Carchini, Gianmaria; Sagnon, N'falé; Powell, Jeffrey; Caccone, Adalgisa

    2007-09-01

    We developed a molecular assay to detect predation on Anopheles gambiae sensu lato (s.l.) mosquitoes. This intergenic spacer ribosomal DNA polymerase chain reaction assay and restriction enzyme analysis uses An. gambiae-specific primers to detect mosquito DNA in the DNA extracts from whole invertebrate predators, which enables identification of species (An. gambiae s.s. versus An. arabiensis) and molecular forms (M versus S in An. gambiae s.s.). We show that An. gambiae s.l. DNA can be detected after ingestion by members of the families Lestidae (order Odonata) after four hours, Libellulidae (order Odonata) after six hours, and Notonectidae (order Hemiptera) after 24 hours. This method is an improvement over previously published methods because of ease of execution and increased time of detection after ingestion. PMID:17827361

  19. A proteomic investigation of soluble olfactory proteins in Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Guido Mastrobuoni

    Full Text Available Odorant-binding proteins (OBPs and chemosensory proteins (CSPs are small soluble polypeptides that bind semiochemicals in the lymph of insect chemosensilla. In the genome of Anopheles gambiae, 66 genes encode OBPs and 8 encode CSPs. Here we monitored their expression through classical proteomics (2D gel-MS analysis and a shotgun approach. The latter method proved much more sensitive and therefore more suitable for tiny biological samples as mosquitoes antennae and eggs. Females express a larger number and higher quantities of OBPs in their antennae than males (24 vs 19. OBP9 is the most abundant in the antennae of both sexes, as well as in larvae, pupae and eggs. Of the 8 CSPs, 4 were detected in antennae, while SAP3 was the only one expressed in larvae. Our proteomic results are in fairly good agreement with data of RNA expression reported in the literature, except for OBP4 and OBP5, that we could not identify in our analysis, nor could we detect in Western Blot experiments. The relatively limited number of soluble olfactory proteins expressed at relatively high levels in mosquitoes makes further studies on the coding of chemical messages at the OBP level more accessible, providing for few specific targets. Identification of such proteins in Anopheles gambiae might facilitate future studies on host finding behavior in this important disease vector.

  20. Cloning and molecular characterization of two invertebrate-type lysozymes from Anopheles gambiae

    OpenAIRE

    Paskewitz, S M; Li, B.; Kajla, M. K.

    2008-01-01

    We sequenced and characterized two novel invertebrate-type lysozymes from the mosquito Anopheles gambiae. Alignment and phylogenetic analysis of these and a number of related insect proteins identified through bioinformatics strategies showed a high degree of conservation of this protein family throughout the Class Insecta. Expression profiles were examined for the two mosquito genes through semiquantitative and real-time PCR analysis. Lys i-1 transcripts were found in adult females in the fa...

  1. Factors affecting the vectorial competence of Anopheles gambiae: a question of scale

    OpenAIRE

    Takken, W; Lindsay, S. W.

    2003-01-01

    Malaria transmission in Africa is without doubt governed by the existence of a group of highly efficient vectors, of which Anopheles gambiae Giles sensu stricto is predominant. The endophilic and anthropophagic behaviours of this mosquito create an intimate association between the human reservoir and insect vectors of malaria. In this paper several mosquito-related and environmental factors that modulate the transmission intensity of malaria in Africa are discussed, in order to illustrate the...

  2. Brachiola gambiae sp n. the microsporidian parasite of Anopheles gambiae and A-melas in Liberia

    Czech Academy of Sciences Publication Activity Database

    Weiser, Jaroslav; Žižka, Zdeněk

    2004-01-01

    Roč. 43, č. 1 (2004), s. 73-80. ISSN 0065-1583 Institutional research plan: CEZ:AV0Z5007907 Keywords : Anopheles gambiae * Anopheles melas * Brachiola gambiae Subject RIV: EG - Zoology Impact factor: 0.986, year: 2004

  3. Comparative susceptibility to permethrin of two Anopheles gambiae s.l. populations from Southern Benin, regarding mosquito sex, physiological status, and mosquito age

    Directory of Open Access Journals (Sweden)

    Nazaire Aïzoun

    2014-04-01

    Conclusions: The resistance is a hereditary and dynamic phenomenon which can be due to metabolic mechanisms like overproduction of detoxifying enzymes activity. Many factors influence vector susceptibility to insecticide. Among these factors, there are mosquito sex, mosquito age, its physiological status. Therefore, it is useful to respect the World Health Organization criteria in the assessment of insecticide susceptibility tests in malaria vectors. Otherwise, susceptibility testing is conducted using unfed female mosquitoes aged 3-5 days old. Tests should also be carried out at (25±2 °C and (80±10% relative humidity.

  4. Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Takken Willem

    2010-01-01

    Full Text Available Abstract Background Entomopathogenic fungi have shown great potential for the control of adult malaria vectors. However, their ability to control aquatic stages of anopheline vectors remains largely unexplored. Therefore, how larval characteristics (Anopheles species, age and larval density, fungus (species and concentration and environmental effects (exposure duration and food availability influence larval mortality caused by fungus, was studied. Methods Laboratory bioassays were performed on the larval stages of Anopheles gambiae and Anopheles stephensi with spores of two fungus species, Metarhizium anisopliae and Beauveria bassiana. For various larval and fungal characteristics and environmental effects the time to death was determined and survival curves established. These curves were compared by Kaplan Meier and Cox regression analyses. Results Beauveria bassiana and Metarhizium anisopliae caused high mortality of An. gambiae and An. stephensi larvae. However, Beauveria bassiana was less effective (Hazard ratio (HR Metarhizium anisopliae. Anopheles stephensi and An. gambiae were equally susceptible to each fungus. Older larvae were less likely to die than young larvae (HR Conclusions This study shows that both fungus species have potential to kill mosquitoes in the larval stage, and that mortality rate depends on fungus species itself, larval stage targeted, larval density and amount of nutrients available to the larvae. Increasing the concentration of fungal spores or reducing the exposure time to spores did not show a proportional increase and decrease in mortality rate, respectively, because the spores clumped together. As a result spores did not provide uniform coverage over space and time. It is, therefore, necessary to develop a formulation that allows the spores to spread over the water surface. Apart from formulation appropriate delivery methods are also necessary to avoid exposing non-target organisms to fungus.

  5. Evaluation of PermaNet 3.0 a deltamethrin-PBO combination net against Anopheles gambiae and pyrethroid resistant Culex quinquefasciatus mosquitoes: an experimental hut trial in Tanzania

    Directory of Open Access Journals (Sweden)

    Malima Robert

    2010-01-01

    Full Text Available Abstract Background Combination mosquito nets incorporating two unrelated insecticides or insecticide plus synergist are designed to control insecticide resistant mosquitoes. PermaNet 3.0 is a long-lasting combination net incorporating deltamethrin on the side panels and a mixture of deltamethrin and synergist piperonyl butoxide (PBO on the top panel. PBO is an inhibitor of mixed function oxidases implicated in pyrethroid resistance. Method An experimental hut trial comparing PermaNet 3.0, PermaNet 2.0 and a conventional deltamethrin-treated net was conducted in NE Tanzania using standard WHOPES procedures. The PermaNet arms included unwashed nets and nets washed 20 times. PermaNet 2.0 is a long-lasting insecticidal net incorporating deltamethrin as a single active. Results Against pyrethroid susceptible Anopheles gambiae the unwashed PermaNet 3.0 showed no difference to unwashed PermaNet 2.0 in terms of mortality (95% killed, but showed differences in blood-feeding rate (3% blood-fed with PermaNet 3.0 versus 10% with PermaNet 2.0. After 20 washes the two products showed no difference in feeding rate (10% with 3.0 and 9% with 2.0 but showed small differences in mortality (95% with 3.0 and 87% with 2.0. Against pyrethroid resistant Culex quinquefasciatus, mediated by elevated oxidase and kdr mechanisms, the unwashed PermaNet 3.0 killed 48% and PermaNet 2.0 killed 32% but after 20 washes there was no significant difference in mortality between the two products (32% killed by 3.0 and 30% by 2.0. For protecting against Culex PermaNet 3.0 showed no difference to PermaNet 2.0 when either unwashed or after 20 washes; both products were highly protective against biting. Laboratory tunnel bioassays confirmed the loss of biological activity of the PBO/deltamethrin-treated panel after washing. Conclusion Both PermaNet products were highly effective against susceptible Anopheles gambiae. As a long-lasting net to control or protect against pyrethroid

  6. Integrated genetic map of Anopheles gambiae: use of RAPD polymorphisms for genetic, cytogenetic and STS landmarks.

    Science.gov (United States)

    Dimopoulos, G; Zheng, L; Kumar, V; della Torre, A; Kafatos, F C; Louis, C

    1996-06-01

    Randomly amplified polymorphic DNA (RAPD) markers have been integrated in the genetic and cytogenetic maps of the malaria vector mosquito, Anopheles gambiae. Fifteen of these markers were mapped by recombination, relative to microsatellite markers that had been mapped previously. Thirty-four gel-purified RAPD bands were cloned and sequenced, generating sequence tagged sites (STSs) that can be used as entry points to the A. gambiae genome. Thirty one of these STSs were localized on nurse cell polytene chromosomes through their unique hybridization signal in in situ hybridization experiments. Five STSs map close to the breakpoints of polymorphic inversions, which are notable features of the Anopheles genome. The usefulness and limitations of this integrated mosquito map are discussed. PMID:8725241

  7. Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya

    Directory of Open Access Journals (Sweden)

    Hemingway Janet

    2009-11-01

    Full Text Available Abstract Background The Anopheles gambiae and Anopheles funestus mosquito species complexes are the primary vectors of Plasmodium falciparum malaria in sub-Saharan Africa. To better understand the environmental factors influencing these species, the abundance, distribution and transmission data from a south-eastern Kenyan study were retrospectively analysed, and the climate, vegetation and elevation data in key locations compared. Methods Thirty villages in Malindi, Kilifi and Kwale Districts with data on An. gambiae sensu strict, Anopheles arabiensis and An. funestus entomological inoculation rates (EIRs, were used as focal points for spatial and environmental analyses. Transmission patterns were examined for spatial autocorrelation using the Moran's I statistic, and for the clustering of high or low EIR values using the Getis-Ord Gi* statistic. Environmental data were derived from remote-sensed satellite sources of precipitation, temperature, specific humidity, Normalized Difference Vegetation Index (NDVI, and elevation. The relationship between transmission and environmental measures was examined using bivariate correlations, and by comparing environmental means between locations of high and low clustering using the Mann-Whitney U test. Results Spatial analyses indicated positive autocorrelation of An. arabiensis and An. funestus transmission, but not of An. gambiae s.s., which was found to be widespread across the study region. The spatial clustering of high EIR values for An. arabiensis was confined to the lowland areas of Malindi, and for An. funestus to the southern districts of Kilifi and Kwale. Overall, An. gambiae s.s. and An. arabiensis had similar spatial and environmental trends, with higher transmission associated with higher precipitation, but lower temperature, humidity and NDVI measures than those locations with lower transmission by these species and/or in locations where transmission by An. funestus was high. Statistical

  8. Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya

    OpenAIRE

    Hemingway Janet; Kelly-Hope Louise A; McKenzie F Ellis

    2009-01-01

    Abstract Background The Anopheles gambiae and Anopheles funestus mosquito species complexes are the primary vectors of Plasmodium falciparum malaria in sub-Saharan Africa. To better understand the environmental factors influencing these species, the abundance, distribution and transmission data from a south-eastern Kenyan study were retrospectively analysed, and the climate, vegetation and elevation data in key locations compared. Methods Thirty villages in Malindi, Kilifi and Kwale Districts...

  9. The distribution of insecticide resistance in Anopheles gambiae s.l. populations from Cameroon: an update

    OpenAIRE

    Ndjemai, H. N. M.; Patchoke, S.; Atangana, J.; Etang, J.; Simard, Frédéric; Bilong, C. F. B.; Reimer, L.; Cornel, A.; Lanzaro, G.C.; Fondjo, E

    2009-01-01

    Insecticides are a key component of vector-based malaria control programmes in Cameroon. As part of ongoing resistance surveillance efforts, Anopheles gambiae s.l. female mosquitoes were exposed to organochlorine (DDT), a carbamate (bendiocarb), an organophosphate (malathion), and three pyrethroids (deltamethrin, lambda-cyhalothrin and permethrin) in WHO bioassay test kits. Results indicated a higher level of resistance (reduced mortality and knockdown effect) to DDT and pyrethroids in popula...

  10. Energy-state dependent responses of Anopheles gambiae to an unobtainable host

    OpenAIRE

    Zappia, Simon Pierre William

    2011-01-01

    Understanding how blood-seeking behavior changes with different energy levels in the malaria mosquito Anopheles gambiae (Diptera: Culicidae), when confronted with an unobtainable blood-host, is of interest for vector control strategies. I used a straight-tube olfactometer to mimic a domicile containing (i) a simulated blood-host (human foot smell) protected by either a plain bednet or a DEET impregnated net and (ii) a sugar source (honey scent) some distance away. I manipulated the mosquito’s...

  11. The JNK Pathway Is a Key Mediator of Anopheles gambiae Antiplasmodial Immunity

    OpenAIRE

    Garver, Lindsey S.; de Almeida Oliveira, Giselle; Barillas-Mury, Carolina

    2013-01-01

    The innate immune system of Anopheles gambiae mosquitoes limits Plasmodium infection through multiple molecular mechanisms. For example, midgut invasion by the parasite triggers an epithelial nitration response that promotes activation of the complement-like system. We found that suppression of the JNK pathway, by silencing either Hep, JNK, Jun or Fos expression, greatly enhanced Plasmodium infection; while overactivating this cascade, by silencing the suppressor Puckered, had the opposite ef...

  12. A Peroxidase/Dual Oxidase System Modulates Midgut Epithelial Immunity in Anopheles gambiae

    OpenAIRE

    Kumar, Sanjeev; Molina-Cruz, Alvaro; Gupta, Lalita; Rodrigues, Janneth; Barillas-Mury, Carolina

    2010-01-01

    Extracellular matrices in diverse biological systems are crosslinked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that the Immunomodulatory Peroxidase (IMPer), an enzyme secreted by the mosquito Anopheles gambiae midgut, and dual oxidase (Duox) form a dityrosine network that decreases gut permeability to immune elicitors and protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites...

  13. Genome expression analysis of Anopheles gambiae: Responses to injury, bacterial challenge, and malaria infection

    OpenAIRE

    Dimopoulos, George; Christophides, George K.; Meister, Stephan; SCHULTZ, JÖRG; White, Kevin P.; Barillas-Mury, Carolina; Kafatos, Fotis C.

    2002-01-01

    The complex gene expression responses of Anopheles gambiae to microbial and malaria challenges, injury, and oxidative stress (in the mosquito and/or a cultured cell line) were surveyed by using cDNA microarrays constructed from an EST-clone collection. The expression profiles were broadly subdivided into induced and down-regulated gene clusters. Gram+ and Gram− bacteria and microbial elicitors up-regulated a diverse set of genes, many belonging to the immunity class, and the response to malar...

  14. Ecological Genomics of Anopheles gambiae Along a Latitudinal Cline: A Population-Resequencing Approach

    OpenAIRE

    Cheng, Changde; White, Bradley J.; Kamdem, Colince; Mockaitis, Keithanne; Costantini, Carlo; Matthew W Hahn; Besansky, Nora J

    2012-01-01

    The association between fitness-related phenotypic traits and an environmental gradient offers one of the best opportunities to study the interplay between natural selection and migration. In cases in which specific genetic variants also show such clinal patterns, it may be possible to uncover the mutations responsible for local adaptation. The malaria vector, Anopheles gambiae, is associated with a latitudinal cline in aridity in Cameroon; a large inversion on chromosome 2L of this mosquito ...

  15. The distribution of insecticide resistance in Anopheles gambiae s.l. populations from Cameroon: an update.

    Science.gov (United States)

    Ndjemaï, Hamadou N M; Patchoké, Salomon; Atangana, Jean; Etang, Josiane; Simard, Fréderic; Bilong, Charles F Bilong; Reimer, Lisa; Cornel, Anthony; Lanzaro, Gregory C; Fondjo, Etienne

    2009-11-01

    Insecticides are a key component of vector-based malaria control programmes in Cameroon. As part of ongoing resistance surveillance efforts, Anopheles gambiae s.l. female mosquitoes were exposed to organochlorine (DDT), a carbamate (bendiocarb), an organophosphate (malathion), and three pyrethroids (deltamethrin, lambda-cyhalothrin and permethrin) in WHO bioassay test kits. Results indicated a higher level of resistance (reduced mortality and knockdown effect) to DDT and pyrethroids in populations of A. gambiae s.s. than in A. arabiensis. The West and East African knockdown resistance (kdr) mutations were found in both species but at much higher frequencies in A. gambiae s.s. The West Africa kdr mutant was also more frequent in the A. gambiae S form than in the M form. No resistance to bendiocarb and malathion was found. Carbamate and organophosphorous compounds could thus be used as alternatives in locations in Cameroon where pyrethroid-resistant populations are found. PMID:19155034

  16. Control of pyrethroid and DDT-resistant Anopheles gambiae by application of indoor residual spraying or mosquito nets treated with a long-lasting organophosphate insecticide, chlorpyrifos-methyl

    Directory of Open Access Journals (Sweden)

    Chabi Joseph

    2010-02-01

    Full Text Available Abstract Background Scaling up of long-lasting insecticidal nets (LLINs and indoor residual spraying (IRS with support from the Global Fund and President's Malaria Initiative is providing increased opportunities for malaria control in Africa. The most cost-effective and longest-lasting residual insecticide DDT is also the most environmentally persistent. Alternative residual insecticides exist, but are too short-lived or too expensive to sustain. Dow Agrosciences have developed a microencapsulated formulation (CS of the organophosphate chlorpyrifos methyl as a cost-effective, long-lasting alternative to DDT. Methods Chlorpyrifos methyl CS was tested as an IRS or ITN treatment in experimental huts in an area of Benin where Anopheles gambiae and Culex quinquefasiactus are resistant to pyrethroids, but susceptible to organophosphates. Efficacy and residual activity was compared to that of DDT and the pyrethroid lambdacyalothrin. Results IRS with chlorpyrifos methyl killed 95% of An. gambiae that entered the hut as compared to 31% with lambdacyhalothrin and 50% with DDT. Control of Cx. quinquefasciatus showed a similar trend; although the level of mortality with chlorpyrifos methyl was lower (66% it was still much higher than for DDT (14% or pyrethroid (15% treatments. Nets impregnated with lambdacyhalothrin were compromized by resistance, killing only 30% of An. gambiae and 8% of Cx. quinquefasciatus. Nets impregnated with chlorpyrifos methyl killed more (45% of An gambiae and 15% of Cx. quinquefasciatus, but its activity on netting was of short duration. Contact bioassays on the sprayed cement-sand walls over the nine months of monitoring showed no loss of activity of chlorpyrifos methyl, whereas lambdacyhalothrin and DDT lost activity within a few months of spraying. Conclusion As an IRS treatment against pyrethroid resistant mosquitoes chlorpyrifos methyl CS outperformed DDT and lambdacyhalothrin. In IRS campaigns, chlorpyrifos methyl CS should

  17. A simplified high-throughput method for pyrethroid knock-down resistance (kdr) detection in Anopheles gambiae

    OpenAIRE

    Walker Edward D; Black William C; Randle Nadine P; McCall P J; Ranson Hilary; Lynd Amy; Donnelly Martin J

    2005-01-01

    Abstract Background A single base pair mutation in the sodium channel confers knock-down resistance to pyrethroids in many insect species. Its occurrence in Anopheles mosquitoes may have important implications for malaria vector control especially considering the current trend for large scale pyrethroid-treated bednet programmes. Screening Anopheles gambiae populations for the kdr mutation has become one of the mainstays of programmes that monitor the development of insecticide resistance. Th...

  18. First report of Metarhizium anisopliae IP 46 pathogenicity in adult Anopheles gambiae s.s. and An. arabiensis (Diptera; Culicidae)

    NARCIS (Netherlands)

    Mnyone, L.L.; Russell, T.L.; Lyimo, I.N.; Lwetoijera, D.W.; Kirby, M.J.; Luz, C.

    2009-01-01

    The entomopathogenic fungus Metarhizium anisopliae isolate IP 46, originating from a soil sample collected in 2001 in the Cerrado of Central Brazil, was tested for its ability to reduce the survival of adult male and female Anopheles gambiae s.s. and An. arabiensis mosquitoes. A 6-h exposure to the

  19. Predators of Anopheles gambiae sensu lato (Diptera: Culicidae) larvae in wetlands, western Kenya: confirmation by polymerase chain reaction method.

    Science.gov (United States)

    Ohba, Shin-Ya; Kawada, Hitoshi; Dida, Gabriel O; Juma, Duncan; Sonye, Gorge; Minakawa, Noboru; Takagi, Masahiro

    2010-09-01

    Polymerase chain reaction analysis was performed to determine whether mosquito predators in wetland habitats feed on Anopheles gambiae sensu lato (s.l.) larvae. Aquatic mosquito predators were collected from six wetlands near Lake Victoria in Mbita, Western Kenya. This study revealed that the whole positive rate of An. gambiae s.l. from 330 predators was 54.2%. The order of positive rate was the highest in Odonata (70.2%), followed by Hemiptera (62.8%), Amphibia (41.7%), and Coleoptera (18%). This study demonstrates that the polymerase chain reaction method can determine whether aquatic mosquito predators feed on An. gambiae s.l. larvae if the predators have undigested An. gambiae s.l. in their midgut or stomach. PMID:20939371

  20. Unexpected high losses of Anopheles gambiae larvae due to rainfall.

    Directory of Open Access Journals (Sweden)

    Krijn P Paaijmans

    Full Text Available BACKGROUND: Immature stages of the malaria mosquito Anopheles gambiae experience high mortality, but its cause is poorly understood. Here we study the impact of rainfall, one of the abiotic factors to which the immatures are frequently exposed, on their mortality. METHODOLOGY/PRINCIPAL FINDINGS: We show that rainfall significantly affected larval mosquitoes by flushing them out of their aquatic habitat and killing them. Outdoor experiments under natural conditions in Kenya revealed that the additional nightly loss of larvae caused by rainfall was on average 17.5% for the youngest (L1 larvae and 4.8% for the oldest (L4 larvae; an additional 10.5% (increase from 0.9 to 11.4% of the L1 larvae and 3.3% (from 0.1 to 3.4% of the L4 larvae were flushed away and larval mortality increased by 6.9% (from 4.6 to 11.5% and 1.5% (from 4.1 to 5.6% for L1 and L4 larvae, respectively, compared to nights without rain. On rainy nights, 1.3% and 0.7% of L1 and L4 larvae, respectively, were lost due to ejection from the breeding site. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that immature populations of malaria mosquitoes suffer high losses during rainfall events. As these populations are likely to experience several rain showers during their lifespan, rainfall will have a profound effect on the productivity of mosquito breeding sites and, as a result, on the transmission of malaria. These findings are discussed in the light of malaria risk and changing rainfall patterns in response to climate change.

  1. Mapping the Anopheles gambiae Odorant Binding Protein 1 (AgamOBP1) using modeling techniques, site directed mutagenesis, circular dichroism and ligand binding assays

    OpenAIRE

    Rusconi, B.; Maranhao, A.C.; Fuhrer, J P; Krotee, P.; Choi, S. H.; Grun, F; Thireou, T; Dimitratos, S.D.; Woods, D F; Marinotti, O.; Walter, M.F.; Eliopoulos, E.

    2012-01-01

    The major malaria vector in Sub-Saharan Africa is the Anopheles gambiae mosquito. This species is a key target of malaria control measures. Mosquitoes find humans primarily through olfaction, yet the molecular mechanisms associated with host-seeking behavior remain largely unknown. To further understand the functionality of A. gambiae odorant binding protein 1 (AgamOBP1), we combined in silico protein structure modeling and site-directed mutagenesis to generate 16 AgamOBP1 protein analogues c...

  2. Entomological indices of Anopheles gambiae sensu lato at a rural community in south-west Nigeria

    Directory of Open Access Journals (Sweden)

    M.A.E. Noutcha

    2009-02-01

    Full Text Available Background & objectives: Investigations were conducted to obtain key entomological indices of Anopheles gambiae s.l. at Igbo-Ora, a rural community in south-west Nigeria. Methods: Mosquitoes were caught daily for a week from rooms where tenants had slept the previous night in each of the four months June, July (2001, and August, September (2002. Anopheles gambiae s.l. sibling species were PCR-identified, the blood meal origin was determined by direct ELISA, and the circumsporozoite antigen by sandwich ELISA. Mean weekly rates were calculated. Results: The mean human biting rates were 0.90 and 1.6 in 2001 and 2002 respectively. The mean weekly anthropophilic rates for An. gambiae s.l. were 82 and 86% in 2001 and 2002 respectively; they were high in An. gambiae s.s., An. arabiensis and non-identified species in the complex. The mean weekly circumsporozoite rates were 6.70% in 2001 and 6.30% in 2002. The mean weekly entomological inoculation rates (EIR were 4.95 and 5.05 in 2001 and 2002 respectively; the seasonal (6-month rates were high: 128.7 in 2001 and 131.3 in 2002, compared to data from other rural communities on the continent. Interpretation & conclusion: The implications of these findings on the role of An. gambiae s.l. in the holoendemicity of malaria at Igbo-Ora are discussed.

  3. Predators of Anopheles gambiae sensu lato (Diptera: Culicidae) Larvae in Wetlands, Western Kenya: Confirmation by Polymerase Chain Reaction Method

    OpenAIRE

    Ohba, Shin-ya; Kawada, Hitoshi; Dida, Gabriel O; Juma, Duncan; SONYE, GORGE; Minakawa, Noboru; Takagi, Masahiro

    2010-01-01

    Polymerase chain reaction analysis was performed to determine whether mosquito predators in wetland habitats feed on Anopheles gambiae sensu lato (s.l.) larvae. Aquatic mosquito predators were collected from six wetlands near Lake Victoria in Mbita, Western Kenya. This study revealed that the whole positive rate of An. gambiae s.l. from 330 predators was 54.2%. The order of positive rate was the highest in Odonata (70.2%), followed by Hemiptera (62.8%), Amphibia (41.7%), and Coleoptera (18%)....

  4. Predators of Anopheles gambiae sensu lato (Diptera: Culicidae) larvae in Wetlands, Western Kenya: Confirmation by polymerase chain reaction method

    OpenAIRE

    Ohba, Shin-ya; Kawada, Hitoshi; Dida, Gabriel O; Juma, Duncan; SONYE, GORGE; Minakawa, Noboru; Takagi, Masahiro

    2010-01-01

    Polymerase chain reaction analysis was performed to determine whether mosquito predators in wetland habitats feed on Anopheles gambiae sensu lato (s.l.) larvae. Aquatic mosquito predators were collected from six wetlands near Lake Victoria in Mbita, Western Kenya. This study revealed that the whole positive rate of An. gambiae s.l. from 330 predators was 54.2%. The order of positive rate was the highest in Odonata (70.2%), followed by Hemiptera (62.8%), Amphibia (41.7%), and Coleoptera (18%)....

  5. CLIP proteases and Plasmodium melanization in Anopheles gambiae.

    Science.gov (United States)

    Barillas-Mury, Carolina

    2007-07-01

    Melanization is a potent immune response mediated by phenoloxidase (PO). Multiple Clip-domain serine proteases (CLIP) regulate PO activation as part of a complex cascade of proteases that are cleaved sequentially. The role of several CLIP as key activators or suppressors of the melanization responses of Anopheles gambiae to Plasmodium berghei (murine malaria) has been established recently using a genome-wide reverse genetics approach. Important differences in regulation of PO activation between An. gambiae strains were also identified. This review summarizes these findings and discusses our current understanding of the An. gambiae melanization responses to Plasmodium. PMID:17512801

  6. Multiple insecticide resistance in Anopheles gambiae s.l. populations from Burkina Faso, West Africa.

    Directory of Open Access Journals (Sweden)

    Moussa Namountougou

    Full Text Available Malaria control programs are being jeopardized by the spread of insecticide resistance in mosquito vector populations. The situation in Burkina Faso is emblematic with Anopheles gambiae populations showing high levels of resistance to most available compounds. Although the frequency of insecticide target-site mutations including knockdown resistance (kdr and insensitive acetylcholinesterase (Ace-1(R alleles has been regularly monitored in the area, it is not known whether detoxifying enzymes contribute to the diversity of resistance phenotypes observed in the field. Here, we propose an update on the phenotypic diversity of insecticide resistance in An. gambiae populations sampled from 10 sites in Burkina Faso in 2010. Susceptibility to deltamethrin, permethrin, DDT, bendiocarb and fenithrotion was assessed. Test specimens (N = 30 per locality were identified to species and molecular form and their genotype at the kdr and Ace-1 loci was determined. Detoxifying enzymes activities including non-specific esterases (NSEs, oxydases (cytochrome P450 and Glutathione S-Transferases (GSTs were measured on single mosquitoes (N = 50 from each test locality and compared with the An. gambiae Kisumu susceptible reference strain. In all sites, mosquitoes demonstrated multiple resistance phenotypes, showing reduced mortality to several insecticidal compounds at the same time, although with considerable site-to-site variation. Both the kdr 1014L and Ace-1(R 119S resistant alleles were detected in the M and the S forms of An. gambiae, and were found together in specimens of the S form. Variation in detoxifying enzyme activities was observed within and between vector populations. Elevated levels of NSEs and GSTs were widespread, suggesting multiple resistance mechanisms segregate within An. gambiae populations from this country. By documenting the extent and diversity of insecticide resistance phenotypes and the putative combination of their underlying

  7. Pteridine fluorescence for age determination of Anopheles mosquitoes.

    Science.gov (United States)

    Wu, D; Lehane, M J

    1999-02-01

    The age structure of mosquito populations is of great relevance to understanding the dynamics of disease transmission and in monitoring the success of control operations. Unfortunately, the ovarian dissection methods currently available for determining the age of adult mosquitoes are technically difficult, slow and may be of limited value, because the proportion of diagnostic ovarioles in the ovary declines with age. By means of reversed-phase HPLC this study investigated the malaria vectors Anopheles gambiae and An. stephensi to see if changes in fluorescent pteridine pigments, which have been used in other insects to determine the age of field-caught individuals, may be useful for age determination in mosquitoes. Whole body fluorescence was inversely proportional to age (P 91%) up to 30 days postemergence, with the regression values: y = 40580-706x for An. gambiae, and y = 52896-681x for An. stephensi. In both species the main pteridines were 6-biopterin, pterin-6-carboxylic acid and an unidentified fluorescent compound. An. gambiae had only 50-70% as much fluorescence as An. stephensi, and fluorescent compounds were relatively more concentrated in the head than in the thorax (ratios 1:0.8 An. gambiae; 1:0.5 An. stephensi). The results of this laboratory study are encouraging. It seems feasible that this simpler and faster technique of fluorescence quantification could yield results of equivalent accuracy to the interpretation of ovarian dissection. A double-blind field trial comparing the accuracy of this technique to marked, released and recaptured mosquitoes is required to test the usefulness of the pteridine method in the field. PMID:10194749

  8. Innate immunity against malaria parasites in Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    Yang Chenand; Zhi-Hui Weng; Liangbiao Zheng

    2008-01-01

    Malaria continues to exert a huge toll in the world today, causing approximately 400 million cases and killing between 1-2 million people annually. Most of the malaria burden is borne by countries in Africa. For this reason, the major vector for malaria in this continent, Anopheles gambiae, is under intense study. With the completion of the draft sequence of this important vector, efforts are underway to develop novel control strategies.One promising area is to harness the power of the innate immunity of this mosquito species to block the transmission of the malaria parasites. Recent studies have demonstrated that Toll and Imd signaling pathways and other immunity-related genes (encoding proteins possibly function in recognition or as effector molecules) play significant roles in two different arms of innate immunity: level of infection intensity and melanization of Plasmodium oocysts.The challenges in the future are to understand how the functions of these different genes are coordinated in defense against malaria parasites, and if different arms of innate immunity are cross-regulated or coordinated.

  9. Anopheles gambiae Purine Nucleoside Phosphorylase: Catalysis, Structure, and Inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Taylor,E.; Rinaldo-Matthis, A.; Li, L.; Ghanem, M.; Hazleton, K.; Cassera, M.; Almo, S.; Schramm, V.

    2007-01-01

    The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 107, and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 Angstroms to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP{center_dot}DADMe-ImmH{center_dot}PO4 complex than in HsPNP{center_dot}DADMe-ImmH{center_dot}SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.

  10. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana

    Science.gov (United States)

    Gendrin, Mathilde; Pels, Nana Adjoa P.; Yeboah-Manu, Dorothy; Christophides, George K.; Wilson, Michael D.

    2016-01-01

    Symbiotic bacteria can have important implications in the development and competence of disease vectors. In Anopheles mosquitoes, the composition of the midgut microbiota is largely influenced by the larval breeding site, but the exact factors shaping this composition are currently unknown. Here, we examined whether the proximity to urban areas and seasons have an impact on the midgut microbial community of the two major malaria vectors in Africa, An. coluzzii and An. gambiae. Larvae and pupae were collected from selected habitats in two districts of Ghana during the dry and rainy season periods. The midgut microbiota of adults that emerged from these collections was determined by 454-pyrosequencing of the 16S ribosomal DNA. We show that in both mosquito species, Shewanellaceae constituted on average of 54% and 73% of the midgut microbiota from each site in the dry and rainy season, respectively. Enterobacteriaceae was found in comparatively low abundance below 1% in 22/30 samples in the dry season, and in 25/38 samples in the rainy season. Our data indicate that seasonality and locality significantly affect both the diversity of microbiota and the relative abundance of bacterial families with a positive impact of dry season and peri-urban settings. PMID:27322614

  11. Insecticide resistance in Anopheles gambiae from south-western Chad, Central Africa

    Directory of Open Access Journals (Sweden)

    Etang Josiane

    2008-09-01

    Full Text Available Abstract Background Indoor residual spraying and insecticide-treated nets (ITN are essential components of malaria vector control in Africa. Pyrethroids are the only recommended compounds for nets treatment because they are fast-acting insecticides with low mammalian toxicity. However, there is growing concern that pyrethroid resistance may threaten the sustainability of ITN scaling-up programmes. Here, insecticide susceptibility was investigated in Anopheles gambiae sensu lato from an area of large scale ITN distribution programme in south-western Chad. Methods Susceptibility to 4% DDT, 0.05% deltamethrin, 0.75% permethrin, 0.1% bendiocarb and 5% malathion was assessed using the WHO standard procedures for adult mosquitoes. Tests were carried out with two to four days-old, non-engorged female mosquitoes. The An. gambiae Kisumu strain was used as a reference. Knockdown effect was recorded every 5 min and mortality scored 24 h after exposure. Mosquitoes were identified to species and molecular form by PCR-RFLP and genotypes at the kdr locus were determined in surviving specimens by Hot Oligonucleotide Ligation Assay (HOLA. Results During this survey, full susceptibility to malathion was recorded in all samples. Reduced susceptibility to bendiocarb (mortality rate of 96.1% was found in one sample out of nine assayed. Increased tolerance to pyrethroids was detected in most samples (8/9 with mortality rates ranging from 70.2 to 96.6% for deltamethrin and from 26.7 to 96.3% for permethrin. Pyrethroid tolerance was not associated with a significant increase of knock-down times. Anopheles arabiensis was the predominant species of the An. gambiae complex in the study area, representing 75 to 100% of the samples. Screening for kdr mutations detected the L1014F mutation in 88.6% (N = 35 of surviving An. gambiae sensu stricto S form mosquitoes. All surviving An. arabiensis (N = 49 and M form An. gambiae s.s. (N = 1 carried the susceptible allele

  12. Following in Soper's footsteps: northeast Brazil 63 years after eradication of Anopheles gambiae.

    Science.gov (United States)

    Killeen, Gerry F

    2003-10-01

    Sub-Saharan Africa has long suffered under the yoke of the Anopheles gambiae mosquito, but for northeast Brazil (figure 1) its arrival over 60 years ago was a new and horrifying experience. This African mosquito is an exceptionally effective malaria vector because it is well adapted to feeding upon people and to exploiting aquatic habitats associated with our daily activities. Anopheles gambiae sensu lato probably accounts for most of the world's malaria deaths and socioeconomic burden. Fortunately, the Brazilian experience had a happy ending. The prospect of A gambiae spreading across much of the Americas motivated a ruthlessly effective response that deserves a special and heroic place in the annals of public health. Building on the successes and infrastructure of the Yellow Fever Service for Aedes aegypti elimination, the Rockefeller Foundation and Brazilian government collaborated to form a new Malaria Service of the Northeast. This new entity rolled the invader back into oblivion with an aggressive eradication campaign, focusing primarily upon larviciding of all potential habitats. The driving force of this endeavour was an enigmatic man called Fred Soper whose sheer will and determination was a key element in this success, and a source of inspiration today (see Killeen GF, et al. Eradication of Anopheles gambiae from Brazil: lessons for malaria control in Africa? Lancet Infect Dis 2002; 2: 618-27). I recently took an opportunity to fulfil a long-held dream and follow in some of Soper's footsteps. Tired of gazing at yellowing maps like figure 1, I went to see the northeast of Brazil for myself. PMID:14522266

  13. Limited usefulness of microsatellite markers from the malaria vector Anopheles gambiae when applied to the closely related species Anopheles melas.

    Science.gov (United States)

    Deitz, Kevin C; Reddy, Vamsi P; Reddy, Michael R; Satyanarayanah, Neha; Lindsey, Michael W; Overgaard, Hans J; Jawara, Musa; Caccone, Adalgisa; Slotman, Michel A

    2012-07-01

    Anopheles melas is a brackish water mosquito found in coastal West Africa where it is a dominant malaria vector locally. In order to facilitate genetic studies of this species, 45 microsatellite loci originally developed for Anopheles gambiae were sequenced in An. melas. Those that were suitable based on repeat number and flanking regions were examined in 2 natural populations from Equatorial Guinea. Only 15 loci were eventually deemed suitable as polymorphic markers in An. melas populations. These loci were screened in 4 populations from a wider geographic range. Heterozygosity estimates ranged from 0.18 to 0.79, and 2.5-15 average alleles were observed per locus, yielding 13 highly polymorphic markers and 2 loci with lower variability. To examine the usefulness of microsatellite markers when applied in a sibling species, the original An. gambiae specific markers were used to amplify 5 loci in An. melas. Null alleles were found for 1 An. gambiae marker. We discuss the pitfalls of using microsatellite loci across closely related species and conclude that in addition to the problem of null alleles associated with this practice, many loci may prove to be of very limited use as polymorphic markers even when used in a sibling species. PMID:22593601

  14. Population genetic structure of Anopheles arabiensis and Anopheles gambiae in a malaria endemic region of southern Tanzania

    Directory of Open Access Journals (Sweden)

    Ferguson Heather M

    2011-10-01

    Full Text Available Abstract Background Genetic diversity is a key factor that enables adaptation and persistence of natural populations towards environmental conditions. It is influenced by the interaction of a natural population's dynamics and the environment it inhabits. Anopheles gambiae s.s. and Anopheles arabiensis are the two major and widespread malaria vectors in sub-Saharan Africa. Several studies have examined the ecology and population dynamics of these vectors. Ecological conditions along the Kilombero valley in Tanzania influence the distribution and population density of these two vector species. It remains unclear whether the ecological diversity within the Kilombero valley has affected the population structure of An. gambiae s.l. populations. The goal of this study was to characterise the genetic structure of sympatric An. gambiae s.s and An. arabiensis populations along the Kilombero valley. Methodology Mosquitoes were collected from seven locations in Tanzania: six from the Kilombero valley and one outside the valley (~700 km away as an out-group. To archive a genome-wide coverage, 13 microsatellite markers from chromosomes X, 2 and 3 were used. Results High levels of genetic differentiation among An. arabiensis populations was observed, as opposed to An. gambiae s.s., which was genetically undifferentiated across the 6,650 km2 of the Kilombero valley landscape. It appears that genetic differentiation is not attributed to physical barriers or distance, but possibly by ecological diversification within the Kilombero valley. Genetic divergence among An. arabiensis populations (FST = 0.066 was higher than that of the well-known M and S forms of An. gambiae s. s. in West and Central Africa (FST = 0.035, suggesting that these populations are maintained by some level of reproductive isolation. Conclusion It was hypothesized that ecological diversification across the valley may be a driving force for observed An. arabiensis genetic divergence. The

  15. Incorporating the effects of humidity in a mechanistic model of Anopheles gambiae mosquito population dynamics in the Sahel region of Africa

    OpenAIRE

    Yamana, Teresa K.; Eltahir, Elfatih A B

    2013-01-01

    Background: Low levels of relative humidity are known to decrease the lifespan of mosquitoes. However, most current models of malaria transmission do not account for the effects of relative humidity on mosquito survival. In the Sahel, where relative humidity drops to levels

  16. Effects of a botanical larvicide derived from Azadirachta indica (the neem tree) on oviposition behaviour in Anopheles gambiae s.s. mosquitoes

    NARCIS (Netherlands)

    Howard, A.F.V.; Adongo, E.A.; Vulule, J.; Githure, J.

    2011-01-01

    More focus is given to mosquito larval control due to the necessity to use several control techniques together in integrated vector management programmes. Botanical products are thought to be able to provide effective, sustainable and cheap mosquito larval control tools. However, bio-larvicides like

  17. Multiple insecticide resistance mechanisms in Anopheles gambiae s.l. populations from Cameroon, Central Africa

    Directory of Open Access Journals (Sweden)

    Nwane Philippe

    2013-02-01

    Full Text Available Abstract Background Increasing incidence of DDT and pyrethroid resistance in Anopheles mosquitoes is seen as a limiting factor for malaria vector control. The current study aimed at an in-depth characterization of An. gambiae s.l. resistance to insecticides in Cameroon, in order to guide malaria vector control interventions. Methods Anopheles gambiae s.l. mosquitoes were collected as larvae and pupae from six localities spread throughout the four main biogeographical domains of Cameroon and reared to adults in insectaries. Standard WHO insecticide susceptibility tests were carried out with 4% DDT, 0.75% permethrin and 0.05% deltamethrin. Mortality rates and knockdown times (kdt50 and kdt95 were determined and the effect of pre-exposure to the synergists DEF, DEM and PBO was assessed. Tested mosquitoes were identified to species and molecular forms (M or S using PCR-RFLP. The hot ligation method was used to depict kdr mutations and biochemical assays were conducted to assess detoxifying enzyme activities. Results The An. arabiensis population from Pitoa was fully susceptible to DDT and permethrin (mortality rates > 98% and showed reduced susceptibility to deltamethrin. Resistance to DDT was widespread in An. gambiae s.s. populations and heterogeneous levels of susceptibility to permethrin and deltamethrin were observed. In many cases, prior exposure to synergists partially restored insecticide knockdown effect and increased mortality rates, suggesting a role of detoxifying enzymes in increasing mosquito survival upon challenge by pyrethroids and, to a lower extent DDT. The distribution of kdr alleles suggested a major role of kdr-based resistance in the S form of An. gambiae. In biochemical tests, all but one mosquito population overexpressed P450 activity, whereas baseline GST activity was low and similar in all field mosquito populations and in the control. Conclusion In Cameroon, multiple resistance mechanisms segregate in the S form of An

  18. The spatial distribution of Anopheles gambiae sensu stricto and An. arabiensis (Diptera: Culicidae in Mali

    Directory of Open Access Journals (Sweden)

    N. Sogoba

    2007-05-01

    Full Text Available Variations in the biology and ecology and the high level of genetic polymorphism of malaria vectors in Africa highlight the value of mapping their spatial distribution to enhance successful implementation of integrated vector management. The objective of this study was to collate data on the relative frequencies of Anopheles gambiae s.s. and An. arabiensis mosquitoes in Mali, to assess their association with climate and environmental covariates, and to produce maps of their spatial distribution. Bayesian geostatistical logistic regression models were fitted to identify environmental determinants of the relative frequencies of An. gambiae s.s. and An. arabiensis species and to produce smooth maps of their geographical distribution. The frequency of An. arabiensis was positively associated with the normalized difference vegetation index, the soil water storage index, the maximum temperature and the distance to water bodies. It was negatively associated with the minimum temperature and rainfall. The predicted map suggests that, in West Africa, An. arabiensis is concentrated in the drier savannah areas, while An. gambiae s.s. prefers the southern savannah and land along the rivers, particularly the inner delta of Niger. Because the insecticide knockdown resistance (kdr gene is reported only in An. gambiae s.s. in Mali, the maps provide valuable information for vector control. They may also be useful for planning future implementation of malaria control by genetically manipulated mosquitoes.

  19. Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors

    OpenAIRE

    Little Tom J; Welch John J; Obbard Darren J

    2009-01-01

    Abstract Background Mosquitoes of the Anopheles gambiae species complex are the primary vectors of human malaria in sub-Saharan Africa. Many host genes have been shown to affect Plasmodium development in the mosquito, and so are expected to engage in an evolutionary arms race with the pathogen. However, there is little conclusive evidence that any of these mosquito genes evolve rapidly, or show other signatures of adaptive evolution. Methods Three serine protease inhibitors have previously be...

  20. Larvicidal activity of extracts from three Plumbago spp against Anopheles gambiae

    OpenAIRE

    Barasa M Maniafu; Lwande Wilber; Ndiege, Isaiah O.; Cornelius C Wanjala; Teresa Ayuko Akenga

    2009-01-01

    Three Plumbago spp have been tested for mosquito larvicidal activity. The crude extracts exhibiting the highest larvicidal activity against Anopheles gambiae were hexane (LC50 = 6.4 μg/mL) and chloroform (LC50 = 6.7 μg/mL) extracts from Plumbago zeylanica Linn, chloroform (LC50 = 6.7 ug/mL) extract from Plumbago stenophylla Bull and ethyl acetate (LC50 = 4.1 μg/mL) extract from Plumbago dawei Rolfe. These LC50 values were within 95% confidence limits. 5-hydroxy-2-methyl-1,4-nap...

  1. A Peroxidase/Dual Oxidase System Modulates Midgut Epithelial Immunity in Anopheles gambiae

    Science.gov (United States)

    Kumar, Sanjeev; Molina-Cruz, Alvaro; Gupta, Lalita; Rodrigues, Janneth; Barillas-Mury, Carolina

    2012-01-01

    Extracellular matrices in diverse biological systems are crosslinked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that the Immunomodulatory Peroxidase (IMPer), an enzyme secreted by the mosquito Anopheles gambiae midgut, and dual oxidase (Duox) form a dityrosine network that decreases gut permeability to immune elicitors and protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites to develop within the midgut lumen without inducing nitric oxide synthase expression. Disruption of this barrier results in strong and effective pathogen-specific immune responses. PMID:20223948

  2. The interplay between tubulins and P450 cytochromes during Plasmodium berghei invasion of Anopheles gambiae midgut.

    Directory of Open Access Journals (Sweden)

    Rute C Félix

    Full Text Available BACKGROUND: Plasmodium infection increases the oxidative stress inside the mosquito, leading to a significant alteration on transcription of Anopheles gambiae detoxification genes. Among these detoxification genes several P450 cytochromes and tubulins were differently expressed, suggesting their involvement in the mosquito's response to parasite invasion. P450 cytochromes are usually involved in the metabolism and detoxification of several compounds, but are also regulated by several pathogens, including malaria parasite. Tubulins are extremely important as components of the cytoskeleton, which rearrangement functions as a response to malaria parasite invasion. METHODOLOGY/PRINCIPAL FINDINGS: Gene silencing methods were used to uncover the effects of cytochrome P450 reductase, tubulinA and tubulinB silencing on the A. gambiae response to Plasmodium berghei invasion. The role of tubulins in counter infection processes was also investigated by inhibiting their effect. Colchicine, vinblastine and paclitaxel, three different tubulin inhibitors were injected into A. gambiae mosquitoes. Twenty-four hours post injection these mosquitoes were infected with P. berghei through a blood meal from infected CD1 mice. Cytochrome P450 gene expression was measured using RT-qPCR to detect differences in cytochrome expression between silenced, inhibited and control mosquitoes. Results showed that cytochrome P450 reductase silencing, as well as tubulin (A and B silencing and inhibition affected the efficiency of Plasmodium infection. Silencing and inhibition also affected the expression levels of cytochromes P450. CONCLUSIONS: Our results suggest the existence of a relationship between tubulins and P450 cytochromes during A. gambiae immune response to P. berghei invasion. One of the P450 cytochromes in this study, CYP6Z2, stands out as the potential link in this association. Further work is needed to fully understand the role of tubulin genes in the response to

  3. Gene Expression-Based Biomarkers for Anopheles gambiae Age Grading

    OpenAIRE

    Wang, Mei-Hui; Marinotti, Osvaldo; Zhong, Daibin; JAMES, ANTHONY A.; Walker, Edward; Guda, Tom; Kweka, Eliningaya J.; Githure, John; Yan, Guiyun

    2013-01-01

    Information on population age structure of mosquitoes under natural conditions is fundamental to the understanding of vectorial capacity and crucial for assessing the impact of vector control measures on malaria transmission. Transcriptional profiling has been proposed as a method for predicting mosquito age for Aedes and Anopheles mosquitoes, however, whether this new method is adequate for natural conditions is unknown. This study tests the applicability of transcriptional profiling for age...

  4. Spatial and sex-specific dissection of the Anopheles gambiae midgut transcriptome

    Directory of Open Access Journals (Sweden)

    Mahairaki Vassiliki

    2007-01-01

    Full Text Available Abstract Background The midgut of hematophagous insects, such as disease transmitting mosquitoes, carries out a variety of essential functions that mostly relate to blood feeding. The midgut of the female malaria vector mosquito Anopheles gambiae is a major site of interactions between the parasite and the vector. Distinct compartments and cell types of the midgut tissue carry out specific functions and vector borne pathogens interact and infect different parts of the midgut. Results A microarray based global gene expression approach was used to compare transcript abundance in the four major female midgut compartments (cardia, anterior, anterior part of posterior and posterior part of posterior midgut and between the male and female Anopheles gambiae midgut. Major differences between the female and male midgut gene expression relate to digestive processes and immunity. Each compartment has a distinct gene function profile with the posterior midgut expressing digestive enzyme genes and the cardia and anterior midgut expressing high levels of antimicrobial peptide and other immune gene transcripts. Interestingly, the cardia expressed several known anti-Plasmodium factors. A parallel peptidomic analysis of the cardia identified known mosquito antimicrobial peptides as well as several putative short secreted peptides that are likely to represent novel antimicrobial factors. Conclusion The A. gambiae sex specific midgut and female midgut compartment specific transcriptomes correlates with their known functions. The significantly greater functional diversity of the female midgut relate to hematophagy that is associated with digestion and nutrition uptake as well as exposes it to a variety of pathogens, and promotes growth of its endogenous microbial flora. The strikingly high proportion of immunity related factors in the cardia tissue most likely serves the function to increase sterility of ingested sugar and blood. A detailed characterization of the

  5. Genome-wide transcriptional analysis of genes associated with acute desiccation stress in Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Mei-Hui Wang

    Full Text Available Malaria transmission in sub-Saharan Africa varies seasonally in intensity. Outbreaks of malaria occur after the beginning of the rainy season, whereas, during the dry season, reports of the disease are less frequent. Anopheles gambiae mosquitoes, the main malaria vector, are observed all year long but their densities are low during the dry season that generally lasts several months. Aestivation, seasonal migration, and local adaptation have been suggested as mechanisms that enable mosquito populations to persist through the dry season. Studies of chromosomal inversions have shown that inversions 2La, 2Rb, 2Rc, 2Rd, and 2Ru are associated with various physiological changes that confer aridity resistance. However, little is known about how phenotypic plasticity responds to seasonally dry conditions. This study examined the effects of desiccation stress on transcriptional regulation in An. gambiae. We exposed female An. gambiae G3 mosquitoes to acute desiccation and conducted a genome-wide analysis of their transcriptomes using the Affymetrix Plasmodium/Anopheles Genome Array. The transcription of 248 genes (1.7% of all transcripts was significantly affected in all experimental conditions, including 96 with increased expression and 152 with decreased expression. In general, the data indicate a reduction in the metabolic rate of mosquitoes exposed to desiccation. Transcripts accumulated at higher levels during desiccation are associated with oxygen radical detoxification, DNA repair and stress responses. The proportion of transcripts within 2La and 2Rs (2Rb, 2Rc, 2Rd, and 2Ru (67/248, or 27% is similar to the percentage of transcripts located within these inversions (31%. These data may be useful in efforts to elucidate the role of chromosomal inversions in aridity tolerance. The scope of application of the anopheline genome demonstrates that examining transcriptional activity in relation to genotypic adaptations greatly expands the number of

  6. The JNK pathway is a key mediator of Anopheles gambiae antiplasmodial immunity.

    Directory of Open Access Journals (Sweden)

    Lindsey S Garver

    Full Text Available The innate immune system of Anopheles gambiae mosquitoes limits Plasmodium infection through multiple molecular mechanisms. For example, midgut invasion by the parasite triggers an epithelial nitration response that promotes activation of the complement-like system. We found that suppression of the JNK pathway, by silencing either Hep, JNK, Jun or Fos expression, greatly enhanced Plasmodium infection; while overactivating this cascade, by silencing the suppressor Puckered, had the opposite effect. The JNK pathway limits infection via two coordinated responses. It induces the expression of two enzymes (HPx2 and NOX5 that potentiate midgut epithelial nitration in response to Plasmodium infection and regulates expression of two key hemocyte-derived immune effectors (TEP1 and FBN9. Furthermore, the An. gambiae L3-5 strain that has been genetically selected to be refractory (R to Plasmodium infection exhibits constitutive overexpression of genes from the JNK pathway, as well as midgut and hemocyte effector genes. Silencing experiments confirmed that this cascade mediates, to a large extent, the drastic parasite elimination phenotype characteristic of this mosquito strain. In sum, these studies revealed the JNK pathway as a key regulator of the ability of An. gambiae mosquitoes to limit Plasmodium infection and identified several effector genes mediating these responses.

  7. The JNK pathway is a key mediator of Anopheles gambiae antiplasmodial immunity.

    Science.gov (United States)

    Garver, Lindsey S; de Almeida Oliveira, Giselle; Barillas-Mury, Carolina

    2013-01-01

    The innate immune system of Anopheles gambiae mosquitoes limits Plasmodium infection through multiple molecular mechanisms. For example, midgut invasion by the parasite triggers an epithelial nitration response that promotes activation of the complement-like system. We found that suppression of the JNK pathway, by silencing either Hep, JNK, Jun or Fos expression, greatly enhanced Plasmodium infection; while overactivating this cascade, by silencing the suppressor Puckered, had the opposite effect. The JNK pathway limits infection via two coordinated responses. It induces the expression of two enzymes (HPx2 and NOX5) that potentiate midgut epithelial nitration in response to Plasmodium infection and regulates expression of two key hemocyte-derived immune effectors (TEP1 and FBN9). Furthermore, the An. gambiae L3-5 strain that has been genetically selected to be refractory (R) to Plasmodium infection exhibits constitutive overexpression of genes from the JNK pathway, as well as midgut and hemocyte effector genes. Silencing experiments confirmed that this cascade mediates, to a large extent, the drastic parasite elimination phenotype characteristic of this mosquito strain. In sum, these studies revealed the JNK pathway as a key regulator of the ability of An. gambiae mosquitoes to limit Plasmodium infection and identified several effector genes mediating these responses. PMID:24039583

  8. The JNK Pathway Is a Key Mediator of Anopheles gambiae Antiplasmodial Immunity

    Science.gov (United States)

    Garver, Lindsey S.; de Almeida Oliveira, Giselle; Barillas-Mury, Carolina

    2013-01-01

    The innate immune system of Anopheles gambiae mosquitoes limits Plasmodium infection through multiple molecular mechanisms. For example, midgut invasion by the parasite triggers an epithelial nitration response that promotes activation of the complement-like system. We found that suppression of the JNK pathway, by silencing either Hep, JNK, Jun or Fos expression, greatly enhanced Plasmodium infection; while overactivating this cascade, by silencing the suppressor Puckered, had the opposite effect. The JNK pathway limits infection via two coordinated responses. It induces the expression of two enzymes (HPx2 and NOX5) that potentiate midgut epithelial nitration in response to Plasmodium infection and regulates expression of two key hemocyte-derived immune effectors (TEP1 and FBN9). Furthermore, the An. gambiae L3–5 strain that has been genetically selected to be refractory (R) to Plasmodium infection exhibits constitutive overexpression of genes from the JNK pathway, as well as midgut and hemocyte effector genes. Silencing experiments confirmed that this cascade mediates, to a large extent, the drastic parasite elimination phenotype characteristic of this mosquito strain. In sum, these studies revealed the JNK pathway as a key regulator of the ability of An. gambiae mosquitoes to limit Plasmodium infection and identified several effector genes mediating these responses. PMID:24039583

  9. Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Nyindo Mramba

    2011-07-01

    Full Text Available Abstract Background The current status of insecticide resistance in mosquitoes and the effects of insecticides on non-target insect species have raised the need for alternative control methods for malaria vectors. Predation has been suggested as one of the important regulation mechanisms for malaria vectors in long-lasting aquatic habitats, but the predation efficiency of the potential predators is largely unknown in the highlands of western Kenya. In the current study, we examined the predation efficiency of five predators on Anopheles gambiae s.s larvae in 24 hour and semi- field evaluations. Methods Predators were collected from natural habitats and starved for 12 hours prior to starting experiments. Preliminary experiments were conducted to ascertain the larval stage most predated by each predator species. When each larval instar was subjected to predation, third instar larvae were predated at the highest rate. Third instar larvae of An. gambiae were introduced into artificial habitats with and without refugia at various larval densities. The numbers of surviving larvae were counted after 24 hours in 24. In semi-field experiments, the larvae were counted daily until they were all either consumed or had developed to the pupal stage. Polymerase chain reaction was used to confirm the presence of An. gambiae DNA in predator guts. Results Experiments found that habitat type (P P P P An. gambiae DNA was found in at least three out of ten midguts for all predator species. Gambusia affins was the most efficient, being three times more efficient than tadpoles. Conclusion These experiments provide insight into the efficiency of specific natural predators against mosquito larvae. These naturally occurring predators may be useful in biocontrol strategies for aquatic stage An. gambiae mosquitoes. Further investigations should be done in complex natural habitats for these predators.

  10. A major genetic locus controlling natural Plasmodium falciparum infection is shared by East and West African Anopheles gambiae

    OpenAIRE

    Koella Jacob C; Sharakhov Igor; Xia Ai; Lambrechts Louis; Markianos Kyriacos; Riehle Michelle M; Vernick Kenneth D

    2007-01-01

    Abstract Background Genetic linkage mapping identified a region of chromosome 2L in the Anopheles gambiae genome that exerts major control over natural infection by Plasmodium falciparum. This 2L Plasmodium-resistance interval was mapped in mosquitoes from a natural population in Mali, West Africa, and controls the numbers of P. falciparum oocysts that develop on the vector midgut. An important question is whether genetic variation with respect to Plasmodium-resistance exists across Africa, a...

  11. A comprehensive transcriptomic view of renal function in the malaria vector, Anopheles gambiae

    DEFF Research Database (Denmark)

    Overend, Gayle; Cabrero, Pablo; Halberg, Kenneth Agerlin;

    2015-01-01

    Renal function is essential to maintain homeostasis. This is particularly significant for insects that undergo complete metamorphosis; larval mosquitoes must survive a freshwater habitat whereas adults are terrestrial, and mature females must maintain ion and fluid homeostasis after blood feeding....... To investigate the physiological adaptations required for successful development to adulthood, we studied the Malpighian tubule transcriptome of Anopheles gambiae using Affymetrix arrays. We assessed transcription under several conditions; as third instar larvae, as adult males fed on sugar, as adult...

  12. Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae

    OpenAIRE

    Costantini Carlo; Ayala Diego; Guelbeogo Wamdaogo M; Pombi Marco; Some Corentin Y; Bassole Imael HN; Ose Kenji; Fotsing Jean-Marie; Sagnon N'Falé; Fontenille Didier; Besansky Nora J; Simard Frédéric

    2009-01-01

    Abstract Background Ongoing lineage splitting within the African malaria mosquito Anopheles gambiae is compatible with ecological speciation, the evolution of reproductive isolation by divergent natural selection acting on two populations exploiting alternative resources. Divergence between two molecular forms (M and S) identified by fixed differences in rDNA, and characterized by marked, although incomplete, reproductive isolation is occurring in West and Central Africa. To elucidate the rol...

  13. A Serine Protease Homolog Negatively Regulates TEP1 Consumption in Systemic Infections of the Malaria Vector Anopheles gambiae

    OpenAIRE

    Yassine, Hassan; Kamareddine, Layla; Chamat, Soulaima; Christophides, George K.; Osta, Mike A.

    2014-01-01

    Clip domain serine protease homologs are widely distributed in insect genomes and play important roles in regulating insect immune responses, yet their exact functions remain poorly understood. Here, we show that CLIPA2, a clip domain serine protease homolog of Anopheles gambiae, regulates the consumption of the mosquito complement-like protein TEP1 during systemic bacterial infections. We provide evidence that CLIPA2 localizes to microbial surfaces in a TEP1-dependent manner whereby it negat...

  14. Multimodal pyrethroid resistance in malaria vectors, Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. in western Kenya.

    Science.gov (United States)

    Kawada, Hitoshi; Dida, Gabriel O; Ohashi, Kazunori; Komagata, Osamu; Kasai, Shinji; Tomita, Takashi; Sonye, George; Maekawa, Yoshihide; Mwatele, Cassian; Njenga, Sammy M; Mwandawiro, Charles; Minakawa, Noboru; Takagi, Masahiro

    2011-01-01

    Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus s.s. are the most important species for malaria transmission. Pyrethroid resistance of these vector mosquitoes is one of the main obstacles against effective vector control. The objective of the present study was to monitor the pyrethroid susceptibility in the 3 major malaria vectors in a highly malaria endemic area in western Kenya and to elucidate the mechanisms of pyrethroid resistance in these species. Gembe East and West, Mbita Division, and 4 main western islands in the Suba district of the Nyanza province in western Kenya were used as the study area. Larval and adult collection and bioassay were conducted, as well as the detection of point mutation in the voltage-gated sodium channel (1014L) by using direct DNA sequencing. A high level of pyrethroid resistance caused by the high frequency of point mutations (L1014S) was detected in An. gambiae s.s. In contrast, P450-related pyrethroid resistance seemed to be widespread in both An. arabiensis and An. funestus s.s. Not a single L1014S mutation was detected in these 2 species. A lack of cross-resistance between DDT and permethrin was also found in An. arabiensis and An. funestus s.s., while An. gambiae s.s. was resistant to both insecticides. It is noteworthy that the above species in the same area are found to be resistant to pyrethroids by their unique resistance mechanisms. Furthermore, it is interesting that 2 different resistance mechanisms have developed in the 2 sibling species in the same area individually. The cross resistance between permethrin and DDT in An. gambiae s.s. may be attributed to the high frequency of kdr mutation, which might be selected by the frequent exposure to ITNs. Similarly, the metabolic pyrethroid resistance in An. arabiensis and An. funestus s.s. is thought to develop without strong selection by DDT. PMID:21853038

  15. Shift in species composition in the Anopheles gambiae complex after implementation of long-lasting insecticidal nets in Dielmo, Senegal.

    Science.gov (United States)

    Sougoufara, S; Harry, M; Doucouré, S; Sembène, P M; Sokhna, C

    2016-09-01

    Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the cornerstones of malaria vector control. However, the effectiveness of these control tools depends on vector ecology and behaviour, which also largely determine the efficacy of certain Anopheles mosquitoes (Diptera: Culicidae) as vectors. Malaria vectors in sub-Saharan Africa are primarily species of the Anopheles gambiae complex, which present intraspecific differences in behaviour that affect how they respond to vector control tools. The focus of this study is the change in species composition in the An. gambiae complex after the implementation of LLINs in Dielmo, Senegal. The main findings referred to dramatic decreases in the proportions of Anopheles coluzzii and An. gambiae after the introduction of LLINs, and an increase in the proportion of Anopheles arabiensis. Two years after LLINs were first introduced, An. arabiensis remained the most prevalent species and An. gambiae had begun to rebound. This indicated a need to develop additional vector control tools that can target the full range of malaria vectors. PMID:27058993

  16. Anopheles gambiae eicosanoids modulate Plasmodium berghei survival from oocyst to salivary gland invasion

    Directory of Open Access Journals (Sweden)

    Susana Ramos

    2014-08-01

    Full Text Available Eicosanoids affect the immunity of several pathogen/insect models, but their role on the Anopheles gambiae response to Plasmodium is still unknown. Plasmodium berghei-infected mosquitoes were injected with an eicosanoid biosynthesis inhibitor, indomethacin (IN, or a substrate, arachidonic acid (AA, at day 7 or day 12 post-infection (p.i.. Salivary gland invasion was evaluated by sporozoite counts at day 21 p.i. IN promoted infection upon sporozoite release from oocysts, but inhibited infection when sporozoites were still maturing within the oocysts, as observed by a reduction in the number of sporozoites reaching the salivary glands. AA treatment had the opposite effect. We show for the first time that An. gambiae can modulate parasite survival through eicosanoids by exerting an antagonistic or agonistic effect on the parasite, depending on its stage of development.

  17. A High-Affinity Adenosine Kinase from Anopheles Gambiae

    Energy Technology Data Exchange (ETDEWEB)

    M Cassera; M Ho; E Merino; E Burgos; A Rinaldo-Matthis; S Almo; V Schramm

    2011-12-31

    Genome analysis revealed a mosquito orthologue of adenosine kinase in Anopheles gambiae (AgAK; the most important vector for the transmission of Plasmodium falciparum in Africa). P. falciparum are purine auxotrophs and do not express an adenosine kinase but rely on their hosts for purines. AgAK was kinetically characterized and found to have the highest affinity for adenosine (K{sub m} = 8.1 nM) of any known adenosine kinase. AgAK is specific for adenosine at the nucleoside site, but several nucleotide triphosphate phosphoryl donors are tolerated. The AgAK crystal structure with a bound bisubstrate analogue Ap{sub 4}A (2.0 {angstrom} resolution) reveals interactions for adenosine and ATP and the geometry for phosphoryl transfer. The polyphosphate charge is partly neutralized by a bound Mg{sup 2+} ion and an ion pair to a catalytic site Arg. The AgAK structure consists of a large catalytic core in a three-layer {alpha}/{beta}/{alpha} sandwich, and a small cap domain in contact with adenosine. The specificity and tight binding for adenosine arise from hydrogen bond interactions of Asn14, Leu16, Leu40, Leu133, Leu168, Phe168, and Thr171 and the backbone of Ile39 and Phe168 with the adenine ring as well as through hydrogen bond interactions between Asp18, Gly64, and Asn68 and the ribosyl 2'- and 3'-hydroxyl groups. The structure is more similar to that of human adenosine kinase (48% identical) than to that of AK from Toxoplasma gondii (31% identical). With this extraordinary affinity for AgAK, adenosine is efficiently captured and converted to AMP at near the diffusion limit, suggesting an important role for this enzyme in the maintenance of the adenine nucleotide pool. mRNA analysis verifies that AgAK transcripts are produced in the adult insects.

  18. Anopheles gambiae odorant binding protein crystal complex with the synthetic repellent DEET: implications for structure-based design of novel mosquito repellents

    OpenAIRE

    Tsitsanou, K. E.; Thireou, T.; Drakou, C. E.; Koussis, K.; Keramioti, M. V.; Leonidas, D. D.; Eliopoulos, E.; Iatrou, K.; Zographos, S. E.

    2012-01-01

    Insect odorant binding proteins (OBPs) are the first components of the olfactory system to encounter and bind attractant and repellent odors emanating from various sources for presentation to olfactory receptors, which trigger relevant signal transduction cascades culminating in specific physiological and behavioral responses. For disease vectors, particularly hematophagous mosquitoes, repellents represent important defenses against parasitic diseases because they effect a reduction in the ra...

  19. Bendiocarb, a potential alternative against pyrethroid resistant Anopheles gambiae in Benin, West Africa

    Directory of Open Access Journals (Sweden)

    Irish Seth

    2010-07-01

    Full Text Available Abstract Background Anopheles gambiae, the main malaria vector in Benin has developed high level of resistance to pyrethroid insecticides, which is a serious concern to the future use of long-lasting insecticidal nets (LLIN and indoor residual spraying (IRS. In this context, one of the pathways available for malaria vector control would be to investigate alternative classes of insecticides with different mode of action than that of pyrethroids. The goal of this study was to evaluate under field conditions the efficacy of a carbamate (bendiocarb and an organophosphate (fenitrothion against pyrethroid-resistant An. gambiae s.s. Methods Wild populations and females from laboratory colonies of five days old An. gambiae were bio-assayed during this study. Two pyrethroids (deltamethrin and alphacypermethrin, an organophosphate (fenitrothion, a carbamate (bendiocarb and a mixture of an organophosphate (chlorpyriphos + a pyrethroid deltamethrin were compared in experimental huts as IRS treatments. Insecticides were applied in the huts using a hand-operated compression sprayer. The deterrency, exophily, blood feeding rate and mortality induced by these insecticides against An. gambiae were compared to the untreated control huts. Results Deltamethrin, alphacypermethrin and bendiocarb treatment significantly reduced mosquito entry into the huts (p An. gambiae (in the first month and 77.8% (in the fourth month. Bendiocarb and the mixture chlorpyriphos/deltamethrin mortality rates ranged from 97.9 to 100% the first month and 77.7-88% the third month respectively. Conclusion After four months, fenitrothion, bendiocarb and the mixture chlorpyriphos/deltamethrin performed effectively against pyrethroid-resistant Anopheles. These results showed that bendiocarb could be recommended as an effective insecticide for use in IRS operations in Benin, particularly as the mixture chlorpyriphos/deltamethrin does not have WHOPES authorization and complaints were mentioned

  20. Electroantennogram and behavioural responses of the malaria vector Anopheles gambiae to human-specific sweat components.

    Science.gov (United States)

    Costantini, C; Birkett, M A; Gibson, G; Ziesmann, J; Sagnon, N F; Mohammed, H A; Coluzzi, M; Pickett, J A

    2001-09-01

    Afrotropical malaria vectors of the Anopheles gambiae complex (Diptera: Culicidae), particularly An. gambiae sensu stricto, are attracted mainly to human hosts. A major source of human volatile emissions is sweat, from which key human-specific components are the carboxylic acids (E)- and (Z)-3-methyl-2-hexenoic acid and 7-octenoic acid. Electrophysiological studies on the antennae of An. gambiae s.s. showed selective sensitivity to these compounds, with a threshold at 10(-6) g comparable to that of known olfactory stimulants 1-octen-3-ol, p-cresol, isovaleric acid, and lower than threshold sensitivity to L-lactic acid and the synthetic mosquito repellent N,N-diethyltoluamide (DEET). A combination of the acids released at concentrations > 10(-5) g in wind tunnel bioassays significantly reduced the response to CO2, the major attractant released by human hosts, for strains of An. gambiae s.s. originating from East and West Africa. Field trials with odour-baited entry traps (OBETs) in Burkina Faso showed that 7-octenoic acid significantly increased (by 1.7-fold) the catch of females of An. gambiae sensu lato (comprising two sibling species: An. arabiensis Patton and An. gambiae s.s.) in OBETs baited with CO2, whereas combinations of the acids significantly reduced the catch in CO2-baited traps (by 2.1-fold) and in whole human odour-baited traps (by 1.5-fold). The pure (E) and (Z) geometric isomers of 3-methyl-2-hexenoic acid gave comparable results to the (EIZ) isomer mixture. These results provide the first experimental evidence that human-specific compounds affect the behaviour of highly anthropophilic An. gambiae s.l. mosquitoes. The compounds appear to inhibit the upwind flight' response to known long-range attractants, and may serve either to mask' the attractants present or, more probably, to 'arrest' upwind flight when mosquitoes arrive at a host under natural conditions. In the final approach to hosts, vectors are known to reduce their flight speed and increase

  1. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae.

    Science.gov (United States)

    Kumar, Sanjeev; Christophides, George K; Cantera, Rafael; Charles, Bradley; Han, Yeon Soo; Meister, Stephan; Dimopoulos, George; Kafatos, Fotis C; Barillas-Mury, Carolina

    2003-11-25

    Malaria transmission depends on the competence of some Anopheles mosquitoes to sustain Plasmodium development (susceptibility). A genetically selected refractory strain of Anopheles gambiae blocks Plasmodium development, melanizing, and encapsulating the parasite in a reaction that begins with tyrosine oxidation, and involves three quantitative trait loci. Morphological and microarray mRNA expression analysis suggest that the refractory and susceptible strains have broad physiological differences, which are related to the production and detoxification of reactive oxygen species. Physiological studies corroborate that the refractory strain is in a chronic state of oxidative stress, which is exacerbated by blood feeding, resulting in increased steady-state levels of reactive oxygen species, which favor melanization of parasites as well as Sephadex beads. PMID:14623973

  2. Experimental hut evaluation of linalool spatial repellent agar gel against Anopheles gambiae sensu stricto mosquitoes in a semi-field system in Bagamoyo, Tanzania

    OpenAIRE

    Tambwe, Mgeni; Mbeyela, Edgar; Massinda, Brian; Moore, Sarah; Maia, Marta

    2014-01-01

    Background Malaria vector control is in need of new tools to face its current challenges such as the spread of pyrethroid-resistance and the increase of outdoor feeding mosquitoes. New strategies such as spatial repellents need to be evaluated as supplemental tools to existing control measures such as insecticide treated bed nets and indoor residual spraying. Linalool is a naturally occurring terpene alcohol commonly found in flowers and spices with reportedly repellent properties. Methods Fo...

  3. Comparative evaluation of systemic drugs for their effects against Anopheles gambiae.

    Science.gov (United States)

    Butters, Matthew P; Kobylinski, Kevin C; Deus, Kelsey M; da Silva, Ines Marques; Gray, Meg; Sylla, Massamba; Foy, Brian D

    2012-01-01

    Laboratory and field studies have shown that ivermectin, a drug that targets invertebrate ligand-gated ion channels (LGICs), is potently active against Anopheles spp. mosquitoes at concentrations present in human blood after standard drug administrations; thus ivermectin holds promise as a mass human-administered endectocide that could help suppress malaria parasite transmission. We evaluated other systemic LGIC-targeting drugs for their activities against the African malaria vector Anopheles gambiae using in vitro blood feeding assays. Eprinomectin, selamectin, moxidectin, and N-tert-butyl nodulisporamide were evaluated as potentially systemic drugs having similar modes of action to ivermectin; all primarily are agonists of invertebrate glutamate-gated chloride ion channels. Additionally, nitenpyram and spinosad were evaluated as systemic drugs that primarily work as agonists of nicotinic acetylcholine receptor channels. Only eprinomectin killed An. gambiae at concentrations that were comparable to ivermectin. At sub-lethal doses, nitenpyram and moxidectin marginally affected mosquito re-blood feeding ability. The macrocyclic lactones, particularly eprinomectin, caused significantly increased knockdown and significantly inhibited recovery in blood fed females. These data are a first step in evaluating drugs that might be eventually combined with, or substituted for ivermectin for future malaria parasite transmission control. PMID:22019935

  4. A reliable morphological method to assess the age of male Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Killeen Gerry F

    2006-07-01

    Full Text Available Abstract Background Release of genetically-modified (GM or sterile male mosquitoes for malaria control is hampered by inability to assess the age and mating history of free-living male Anopheles. Methods Age and mating-related changes in the reproductive system of male Anopheles gambiae were quantified and used to fit predictive statistical models. These models, based on numbers of spermatocysts, relative size of sperm reservoir and presence/absence of a clear area around the accessory gland, were evaluated using an independent sample of mosquitoes whose status was blinded during the experiment. Results The number of spermatocysts in male testes decreased with age, and the relative size of their sperm reservoir increased. The presence of a clear area around accessory glands was also linked to age and mating status. A quantitative model was able to categorize males from the blind trial into age groups of young (≤ 4 days and old (> 4 days with an overall efficiency of 89%. Using the parameters of this model, a simple table was compiled that can be used to predict male age. In contrast, mating history could not be reliably assessed as virgins could not be distinguished from mated males. Conclusion Simple assessment of a few morphological traits which are easily collected in the field allows accurate age-grading of male An. gambiae. This simple, yet robust, model enables evaluation of demographic patterns and mortality in wild and released males in populations targeted by GM or sterile male-based control programmes.

  5. First report of Metarhizium anisopliae IP 46 pathogenicity in adult Anopheles gambiae s.s. and An. arabiensis (Diptera; Culicidae

    Directory of Open Access Journals (Sweden)

    Lyimo Issa N

    2009-12-01

    Full Text Available Abstract The entomopathogenic fungus Metarhizium anisopliae isolate IP 46, originating from a soil sample collected in 2001 in the Cerrado of Central Brazil, was tested for its ability to reduce the survival of adult male and female Anopheles gambiae s.s. and An. arabiensis mosquitoes. A 6-h exposure to the fungus coated on test paper at a concentration of 3.3 × 106 conidia cm-2 reduced the daily survival of both mosquito species (HR = 3.14, p An. gambiae s.s relative to An. arabiensis (HR = 1.38, p 95% of mosquito cadavers in the treatment groups. The results indicate that M. anisopliae IP 46 has the potential to be a bio-control agent for African malaria vector species, and is a suitable candidate for further research and development.

  6. Population genetics of Plasmodium resistance genes in Anopheles gambiae: no evidence for strong selection.

    Science.gov (United States)

    Obbard, D J; Linton, Y-M; Jiggins, F M; Yan, G; Little, T J

    2007-08-01

    Anopheles mosquitoes are the primary vectors for malaria in Africa, transmitting the disease to more than 100 million people annually. Recent functional studies have revealed mosquito genes that are crucial for Plasmodium development, but there is presently little understanding of which genes mediate vector competence in the wild, or evolve in response to parasite-mediated selection. Here, we use population genetic approaches to study the strength and mode of natural selection on a suite of mosquito immune system genes, CTL4, CTLMA2, LRIM1, and APL2 (LRRD7), which have been shown to affect Plasmodium development in functional studies. We sampled these genes from two African populations of An. gambiae s.s., along with several closely related species, and conclude that there is no evidence for either strong directional or balancing selection on these genes. We highlight a number of challenges that need to be met in order to apply population genetic tests for selection in Anopheles mosquitoes; in particular the dearth of suitable outgroup species and the potential difficulties that arise when working within a closely-related species complex. PMID:17688548

  7. Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival.

    Science.gov (United States)

    Christiansen-Jucht, Céline; Erguler, Kamil; Shek, Chee Yan; Basáñez, María-Gloria; Parham, Paul E

    2015-06-01

    Climate change and global warming are emerging as important threats to human health, particularly through the potential increase in vector- and water-borne diseases. Environmental variables are known to affect substantially the population dynamics and abundance of the poikilothermic vectors of disease, but the exact extent of this sensitivity is not well established. Focusing on malaria and its main vector in Africa, Anopheles gambiae sensu stricto, we present a set of novel mathematical models of climate-driven mosquito population dynamics motivated by experimental data suggesting that in An. gambiae, mortality is temperature and age dependent. We compared the performance of these models to that of a "standard" model ignoring age dependence. We used a longitudinal dataset of vector abundance over 36 months in sub-Saharan Africa for comparison between models that incorporate age dependence and one that does not, and observe that age-dependent models consistently fitted the data better than the reference model. This highlights that including age dependence in the vector component of mosquito-borne disease models may be important to predict more reliably disease transmission dynamics. Further data and studies are needed to enable improved fitting, leading to more accurate and informative model predictions for the An. gambiae malaria vector as well as for other disease vectors. PMID:26030468

  8. Modelling Anopheles gambiae s.s. Population Dynamics with Temperature- and Age-Dependent Survival

    Science.gov (United States)

    Christiansen-Jucht, Céline; Erguler, Kamil; Shek, Chee Yan; Basáñez, María-Gloria; Parham, Paul E.

    2015-01-01

    Climate change and global warming are emerging as important threats to human health, particularly through the potential increase in vector- and water-borne diseases. Environmental variables are known to affect substantially the population dynamics and abundance of the poikilothermic vectors of disease, but the exact extent of this sensitivity is not well established. Focusing on malaria and its main vector in Africa, Anopheles gambiae sensu stricto, we present a set of novel mathematical models of climate-driven mosquito population dynamics motivated by experimental data suggesting that in An. gambiae, mortality is temperature and age dependent. We compared the performance of these models to that of a “standard” model ignoring age dependence. We used a longitudinal dataset of vector abundance over 36 months in sub-Saharan Africa for comparison between models that incorporate age dependence and one that does not, and observe that age-dependent models consistently fitted the data better than the reference model. This highlights that including age dependence in the vector component of mosquito-borne disease models may be important to predict more reliably disease transmission dynamics. Further data and studies are needed to enable improved fitting, leading to more accurate and informative model predictions for the An. gambiae malaria vector as well as for other disease vectors. PMID:26030468

  9. Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto

    Directory of Open Access Journals (Sweden)

    Chilaka Nora

    2012-01-01

    Full Text Available Abstract Background Memory and learning are critical aspects of the ecology of insect vectors of human pathogens because of their potential effects on contacts between vectors and their hosts. Despite this epidemiological importance, there have been only a limited number of studies investigating associative learning in insect vector species and none on Anopheline mosquitoes. Methods A simple behavioural assays was developed to study visual and olfactory associative learning in Anopheles gambiae, the main vector of malaria in Africa. Two contrasted membrane qualities or levels of blood palatability were used as reinforcing stimuli for bi-directional conditioning during blood feeding. Results Under such experimental conditions An. gambiae females learned very rapidly to associate visual (chequered and white patterns and olfactory cues (presence and absence of cheese or Citronella smell with the reinforcing stimuli (bloodmeal quality and remembered the association for up to three days. Associative learning significantly increased with the strength of the conditioning stimuli used. Importantly, learning sometimes occurred faster when a positive reinforcing stimulus (palatable blood was associated with an innately preferred cue (such as a darker visual pattern. However, the use of too attractive a cue (e.g. Shropshire cheese smell was counter-productive and decreased learning success. Conclusions The results address an important knowledge gap in mosquito ecology and emphasize the role of associative memory for An. gambiae's host finding and blood-feeding behaviour with important potential implications for vector control.

  10. Effect of discriminative plant-sugar feeding on the survival and fecundity of Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Jackson Robert R

    2007-08-01

    Full Text Available Abstract Background A previous study showed for Anopheles gambiae s.s. a gradation of feeding preference on common plant species growing in a malaria holoendemic area in western Kenya. The present follow-up study determines whether there is a relationship between the mosquito's preferences and its survival and fecundity. Methods Groups of mosquitoes were separately given ad libitum opportunity to feed on five of the more preferred plant species (Hamelia patens, Parthenium hysterophorus, Ricinus communis, Senna didymobotrya, and Tecoma stans and one of the less preferred species (Lantana camara. The mosquitoes were monitored daily for survival. Sugar solution (glucose 6% and water were used as controls. In addition, the fecundity of mosquitoes on each plant after (i only one blood meal (number of eggs oviposited, and (ii after three consecutive blood meals (proportion of females ovipositing, number of eggs oviposited and hatchability of eggs, was determined. The composition and concentration of sugar in the fed-on parts of each plant species were determined using gas chromatography. Using SAS statistical package, tests for significant difference of the fitness values between mosquitoes exposed to different plant species were conducted. Results and Conclusion Anopheles gambiae that had fed on four of the five more preferred plant species (T. stans, S. didymobotrya, R. communis and H. patens, but not P. hysterophorus lived longer and laid more eggs after one blood meal, when compared with An. gambiae that had fed on the least preferred plant species L. camara. When given three consecutive blood-meals, the percentage of females that oviposited, but not the number of eggs laid, was significantly higher for mosquitoes that had previously fed on the four more preferred plant species. Total sugar concentration in the preferred plant parts was significantly correlated with survival and with the proportion of females that laid eggs. This effect was

  11. Reactive oxygen species modulate Anopheles gambiae immunity against bacteria and Plasmodium.

    Science.gov (United States)

    Molina-Cruz, Alvaro; DeJong, Randall J; Charles, Bradley; Gupta, Lalita; Kumar, Sanjeev; Jaramillo-Gutierrez, Giovanna; Barillas-Mury, Carolina

    2008-02-01

    The involvement of reactive oxygen species (ROS) in mosquito immunity against bacteria and Plasmodium was investigated in the malaria vector Anopheles gambiae. Strains of An. gambiae with higher systemic levels of ROS survive a bacterial challenge better, whereas reduction of ROS by dietary administration of antioxidants significantly decreases survival, indicating that ROS are required to mount effective antibacterial responses. Expression of several ROS detoxification enzymes increases in the midgut and fat body after a blood meal. Furthermore, expression of several of these enzymes increases to even higher levels when mosquitoes are fed a Plasmodium berghei-infected meal, indicating that the oxidative stress after a blood meal is exacerbated by Plasmodium infection. Paradoxically, a complete lack of induction of catalase mRNA and lower catalase activity were observed in P. berghei-infected midguts. This suppression of midgut catalase expression is a specific response to ookinete midgut invasion and is expected to lead to higher local levels of hydrogen peroxide. Further reduction of catalase expression by double-stranded RNA-mediated gene silencing promoted parasite clearance by a lytic mechanism and reduced infection significantly. High mosquito mortality is often observed after P. berghei infection. Death appears to result in part from excess production of ROS, as mortality can be decreased by oral administration of uric acid, a strong antioxidant. We conclude that ROS modulate An. gambiae immunity and that the mosquito response to P. berghei involves a local reduction of detoxification of hydrogen peroxide in the midgut that contributes to limit Plasmodium infection through a lytic mechanism. PMID:18065421

  12. Development of a Gravid Trap for Collecting Live Malaria Vectors Anopheles gambiae s.l.

    Science.gov (United States)

    Dugassa, Sisay; Lindh, Jenny M.; Oyieke, Florence; Mukabana, Wolfgang R.; Lindsay, Steven W.; Fillinger, Ulrike

    2013-01-01

    Background Effective malaria vector control targeting indoor host-seeking mosquitoes has resulted in fewer vectors entering houses in many areas of sub-Saharan Africa, with the proportion of vectors outdoors becoming more important in the transmission of this disease. This study aimed to develop a gravid trap for the outdoor collection of the malaria vector Anopheles gambiae s.l. based on evaluation and modification of commercially available gravid traps. Methods Experiments were implemented in an 80 m2 semi-field system where 200 gravid Anopheles gambiae s.s. were released nightly. The efficacy of the Box, CDC and Frommer updraft gravid traps was compared. The Box gravid trap was tested to determine if the presence of the trap over water and the trap’s sound affected catch size. Mosquitoes approaching the treatment were evaluated using electrocuting nets or detergents added to the water in the trap. Based on the results, a new gravid trap (OviART trap) that provided an open, unobstructed oviposition site was developed and evaluated. Results Box and CDC gravid traps collected similar numbers (relative rate (RR) 0.8, 95% confidence interval (CI) 0.6–1.2; p = 0.284), whereas the Frommer trap caught 70% fewer mosquitoes (RR 0.3, 95% CI 0.2–0.5; p < 0.001). The number of mosquitoes approaching the Box trap was significantly reduced when the trap was positioned over a water-filled basin compared to an open pond (RR 0.7 95% CI 0.6–0.7; p < 0.001). This effect was not due to the sound of the trap. Catch size increased by 60% (RR 1.6, 1.2–2.2; p = 0.001) with the new OviART trap. Conclusion Gravid An. Gambiae s.s. females were visually deterred by the presence of the trapping device directly over the oviposition medium. Based on these investigations, an effective gravid trap was developed that provides open landing space for egg-laying Anopheles. PMID:23861952

  13. Development of a gravid trap for collecting live malaria vectors Anopheles gambiae s.l.

    Directory of Open Access Journals (Sweden)

    Sisay Dugassa

    Full Text Available BACKGROUND: Effective malaria vector control targeting indoor host-seeking mosquitoes has resulted in fewer vectors entering houses in many areas of sub-Saharan Africa, with the proportion of vectors outdoors becoming more important in the transmission of this disease. This study aimed to develop a gravid trap for the outdoor collection of the malaria vector Anopheles gambiae s.l. based on evaluation and modification of commercially available gravid traps. METHODS: Experiments were implemented in an 80 m(2 semi-field system where 200 gravid Anopheles gambiae s.s. were released nightly. The efficacy of the Box, CDC and Frommer updraft gravid traps was compared. The Box gravid trap was tested to determine if the presence of the trap over water and the trap's sound affected catch size. Mosquitoes approaching the treatment were evaluated using electrocuting nets or detergents added to the water in the trap. Based on the results, a new gravid trap (OviART trap that provided an open, unobstructed oviposition site was developed and evaluated. RESULTS: Box and CDC gravid traps collected similar numbers (relative rate (RR 0.8, 95% confidence interval (CI 0.6-1.2; p = 0.284, whereas the Frommer trap caught 70% fewer mosquitoes (RR 0.3, 95% CI 0.2-0.5; p < 0.001. The number of mosquitoes approaching the Box trap was significantly reduced when the trap was positioned over a water-filled basin compared to an open pond (RR 0.7 95% CI 0.6-0.7; p < 0.001. This effect was not due to the sound of the trap. Catch size increased by 60% (RR 1.6, 1.2-2.2; p = 0.001 with the new OviART trap. CONCLUSION: Gravid An. Gambiae s.s. females were visually deterred by the presence of the trapping device directly over the oviposition medium. Based on these investigations, an effective gravid trap was developed that provides open landing space for egg-laying Anopheles.

  14. Polymorphisms in Anopheles gambiae immune genes associated with natural resistance to Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Caroline Harris

    Full Text Available Many genes involved in the immune response of Anopheles gambiae, the main malaria vector in Africa, have been identified, but whether naturally occurring polymorphisms in these genes underlie variation in resistance to the human malaria parasite, Plasmodium falciparum, is currently unknown. Here we carried out a candidate gene association study to identify single nucleotide polymorphisms (SNPs associated with natural resistance to P. falciparum. A. gambiae M form mosquitoes from Cameroon were experimentally challenged with three local wild P. falciparum isolates. Statistical associations were assessed between 157 SNPs selected from a set of 67 A. gambiae immune-related genes and the level of infection. Isolate-specific associations were accounted for by including the effect of the isolate in the analysis. Five SNPs were significantly associated to the infection phenotype, located within or upstream of AgMDL1, CEC1, Sp PPO activate, Sp SNAKElike, and TOLL6. Low overall and local linkage disequilibrium indicated high specificity in the loci found. Association between infection phenotype and two SNPs was isolate-specific, providing the first evidence of vector genotype by parasite isolate interactions at the molecular level. Four SNPs were associated to either oocyst presence or load, indicating that the genetic basis of infection prevalence and intensity may differ. The validity of the approach was verified by confirming the functional role of Sp SNAKElike in gene silencing assays. These results strongly support the role of genetic variation within or near these five A. gambiae immune genes, in concert with other genes, in natural resistance to P. falciparum. They emphasize the need to distinguish between infection prevalence and intensity and to account for the genetic specificity of vector-parasite interactions in dissecting the genetic basis of Anopheles resistance to human malaria.

  15. Immunity-related genes and gene families in Anopheles gambiae.

    Science.gov (United States)

    Christophides, George K; Zdobnov, Evgeny; Barillas-Mury, Carolina; Birney, Ewan; Blandin, Stephanie; Blass, Claudia; Brey, Paul T; Collins, Frank H; Danielli, Alberto; Dimopoulos, George; Hetru, Charles; Hoa, Ngo T; Hoffmann, Jules A; Kanzok, Stefan M; Letunic, Ivica; Levashina, Elena A; Loukeris, Thanasis G; Lycett, Gareth; Meister, Stephan; Michel, Kristin; Moita, Luis F; Müller, Hans-Michael; Osta, Mike A; Paskewitz, Susan M; Reichhart, Jean-Marc; Rzhetsky, Andrey; Troxler, Laurent; Vernick, Kenneth D; Vlachou, Dina; Volz, Jennifer; von Mering, Christian; Xu, Jiannong; Zheng, Liangbiao; Bork, Peer; Kafatos, Fotis C

    2002-10-01

    We have identified 242 Anopheles gambiae genes from 18 gene families implicated in innate immunity and have detected marked diversification relative to Drosophila melanogaster. Immune-related gene families involved in recognition, signal modulation, and effector systems show a marked deficit of orthologs and excessive gene expansions, possibly reflecting selection pressures from different pathogens encountered in these insects' very different life-styles. In contrast, the multifunctional Toll signal transduction pathway is substantially conserved, presumably because of counterselection for developmental stability. Representative expression profiles confirm that sequence diversification is accompanied by specific responses to different immune challenges. Alternative RNA splicing may also contribute to expansion of the immune repertoire. PMID:12364793

  16. Observation of granulations in the basal body of ovarioles and follicular dilatations for the determination of physiological age ofAnopheles gambiaes.s.

    Institute of Scientific and Technical Information of China (English)

    Rodrigue Anagonou; Virgile Gnanguenon; Fiacre Agossa; Bruno Akinro; Armand Akpo; Martial Gbegbo; Albert Salako; Martin Akogbto

    2015-01-01

    Objective:To explore ovariole basal body granulations and follicular dilatations for determining physiological age inAnopheles gambiaes.s.(An. gambiaes.s.). Methods: Mosquitoes were collected by using window trap catch and identified morphologically. For the first lot ofmosquitoes, they were dissected, and ovary was left in distilled water for reading ovarian tracheoles and the second was cut and transferred to another blade in a physiological liquid for verification of ovariole basal body granulations. The same approach was followed with the second lot of mosquitoes where follicular dilatations were found after classic dilaceration of ovaries were transferred into physiological liquid. The other body parts of mosquitoes were used to identify the species of theAn. gambiaes.s. complex by PCR. Results:Among the 123An. gambiae s.s. of the first lot, the method of Detinova determined the age of 89 mosquitoes versus 114 for the observation of granulations (P > 0.05). Among the 112An. gambiae s.s. of the second lot, the method of Detinova determined the age of 84 mosquitoes versus 93 for the observation of follicular dilatations (P > 0.05). Unlike the method of Detinova, observation of follicular dilatations and basal body granulations of ovarioles were possible beyond the stage II Christophers. Conclusions: Overall, the observation of follicular dilatations and ovariole basal body granulations are reliable for the determination of the physiological age inAn. gambiaes.s. Furthermore, these two methods can be used beyond the stage II.

  17. Remote sensing and environment in the study of the malaria vector Anopheles gambiae in Mali

    Science.gov (United States)

    Rian, Sigrid Katrine Eivindsdatter

    The malaria mosquito Anopheles gambiae is the most important vector for the most devastating form of human malaria, the parasite Plasmodium falciparum. In-depth knowledge of the vector's history and environmental preferences is essential in the pursuit of new malaria mitigation strategies. Research was conducted in Mali across a range of habitats occupied by the vector, focusing on three identified chromosomal forms in the mosquito complex. The development of a 500-m landcover classification map was carried out using MODIS satellite imagery and extensive ground survey. The resulting product has the highest resolution and is the most up-to-date and most extensively ground-surveyed among land-cover maps for the study region. The new landcover classification product is a useful tool in the mapping of the varying ecological preferences of the different An. gambiae chromosomal forms. Climate and vegetation characteristics and their relationship to chromosomal forms were investigated further along a Southwest-Northeast moisture gradient in Mali. This research demonstrates particular ecological preferences of each chromosomal form, and gives a detailed examination of particular vegetation structural and climatological patterns across the study region. A key issue in current research into the population structure of An. gambiae is speciation and evolution in the complex, as an understanding of the mechanisms of change can help in the development of new mitigation strategies. A historical review of the paleoecology, archaeology, and other historical sources intended to shed light on the evolutionary history of the vector is presented. The generally held assumption that the current breed of An. gambiae emerged in the rainforest is called into question and discussed within the framework of paleoenvironment and human expansions in sub-Saharan West Africa.

  18. Transcription regulation of sex-biased genes during ontogeny in the malaria vector Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Kalle Magnusson

    Full Text Available In Anopheles gambiae, sex-regulated genes are responsible for controlling gender dimorphism and are therefore crucial in determining the ability of female mosquitoes to transmit human malaria. The identification and functional characterization of these genes will shed light on the sexual development and maturation of mosquitoes and provide useful targets for genetic control measures aimed at reducing mosquito fertility and/or distorting the sex ratio.We conducted a genome wide transcriptional analysis of sex-regulated genes from early developmental stages through adulthood combined with functional screening of novel gonadal genes. Our results demonstrate that the male-biased genes undergo a major transcription turnover starting from larval stages to adulthood. The male biased genes at the adult stage include a significant high number of unique sequences compared to the rest of the genome. This is in contrast to female-biased genes that are much more conserved and are mainly activated during late developmental stages.The high frequency of unique sequences would indicate that male-biased genes evolve more rapidly than the rest of the genome. This finding is particularly intriguing because A. gambiae is a strictly female monogamous species suggesting that driving forces in addition to sperm competition must account for the rapid evolution of male-biased genes. We have also identified and functionally characterized a number of previously unknown A. gambiae testis- and ovary-specific genes. Two of these genes, zero population growth and a suppressor of defective silencing 3 domain of the histone deacetylase co-repressor complex, were shown to play a key role in gonad development.

  19. The population genomics of trans-specific inversion polymorphisms in Anopheles gambiae.

    Science.gov (United States)

    White, Bradley J; Cheng, Changde; Sangaré, Djibril; Lobo, Neil F; Collins, Frank H; Besansky, Nora J

    2009-09-01

    In the malaria mosquito Anopheles gambiae polymorphic chromosomal inversions may play an important role in adaptation to environmental variation. Recently, we used microarray-based divergence mapping combined with targeted resequencing to map nucleotide differentiation between alternative arrangements of the 2La inversion. Here, we applied the same technique to four different polymorphic inversions on the 2R chromosome of An. gambiae. Surprisingly, divergence was much lower between alternative arrangements for all 2R inversions when compared to the 2La inversion. For one of the rearrangements, 2Ru, we successfully mapped a very small region (approximately 100 kb) of elevated divergence. For the other three rearrangements, we did not identify any regions of significantly high divergence, despite ample independent evidence from natural populations of geographic clines and seasonal cycling, and stable heterotic polymorphisms in laboratory populations. If these inversions are the targets of selection as hypothesized, we suggest that divergence between rearrangements may have escaped detection due to retained ancestral polymorphism in the case of the youngest 2R rearrangements and to extensive gene flux in the older 2R inversion systems that segregate in both An. gambiae and its sibling species An. arabiensis. PMID:19581444

  20. Low linkage disequilibrium in wild Anopheles gambiae s.l. populations

    Directory of Open Access Journals (Sweden)

    Harris Caroline

    2010-09-01

    Full Text Available Abstract Background In the malaria vector Anopheles gambiae, understanding diversity in natural populations and genetic components of important phenotypes such as resistance to malaria infection is crucial for developing new malaria transmission blocking strategies. The design and interpretation of many studies here depends critically on Linkage disequilibrium (LD. For example in association studies, LD determines the density of Single Nucleotide Polymorphisms (SNPs to be genotyped to represent the majority of the genomic information. Here, we aim to determine LD in wild An. gambiae s.l. populations in 4 genes potentially involved in mosquito immune responses against pathogens (Gambicin, NOS, REL2 and FBN9 using previously published and newly generated sequences. Results The level of LD between SNP pairs in cloned sequences of each gene was determined for 7 species (or incipient species of the An. gambiae complex. In all tested genes and species, LD between SNPs was low: even at short distances (2 2 ranged from 0.073 to 0.766. In most genes and species LD decayed very rapidly with increasing inter-marker distance. Conclusions These results are of great interest for the development of large scale polymorphism studies, as LD generally falls below any useful limit. It indicates that very fine scale SNP detection will be required to give an overall view of genome-wide polymorphism. Perhaps a more feasible approach to genome wide association studies is to use targeted approaches using candidate gene selection to detect association to phenotypes of interest.

  1. Immune factor Gambif1, a new rel family member from the human malaria vector, Anopheles gambiae.

    Science.gov (United States)

    Barillas-Mury, C; Charlesworth, A; Gross, I; Richman, A; Hoffmann, J A; Kafatos, F C

    1996-09-01

    A novel rel family member, Gambif1 (gambiae immune factor 1), has been cloned from the human malaria vector, Anopheles gambiae, and shown to be most similar to Drosophila Dorsal and Dif. Gambif1 protein is translocated to the nucleus in fat body cells in response to bacterial challenge, although the mRNA is present at low levels at all developmental stages and is not induced by infection. DNA binding activity to the kappaB-like sites in the A.gambiae Defensin and the Drosophila Diptericin and Cecropin promoters is also induced in larval nuclear extracts following infection. Gambif1 has the ability to bind to kappaB-like sites in vitro. Co-transfection assays in Drosophila mbn-2 cells show that Gambif1 can activate transcription by interacting with the Drosophila Diptericin regulatory elements, but is not functionally equivalent to Dorsal in this assay. Gambif1 protein translocation to the nucleus and the appearance of kappaB-like DNA binding activity can serve as molecular markers of activation of the immune system and open up the possibility of studying the role of defence reactions in determining mosquito susceptibility/refractoriness to malaria infection. PMID:8887560

  2. Three years of insecticide resistance monitoring in Anopheles gambiae in Burkina Faso: resistance on the rise?

    Directory of Open Access Journals (Sweden)

    Badolo Athanase

    2012-07-01

    Full Text Available Abstract Background and methods A longitudinal Anopheles gambiae s.l. insecticide-resistance monitoring programme was established in four sentinel sites in Burkina Faso. For three years, between 2008 and 2010, WHO diagnostic dose assays were used to measure the prevalence of resistance to all the major classes of insecticides at the beginning and end of the malaria transmission season. Species identification and genotyping for target site mutations was also performed and the sporozoite rate in adults determined. Results At the onset of the study, resistance to DDT and pyrethroids was already prevalent in An. gambiae s.l. from the south-west of the country but mosquitoes from the two sites in central Burkina Faso were largely susceptible. Within three years, DDT and permethrin resistance was established in all four sites. Carbamate and organophosphate resistance remains relatively rare and largely confined to the south-western areas although a small number of bendiocarb survivors were found in all sites by the final round of monitoring. The ace-1R target site resistance allele was present in all localities and its frequency exceeded 20% in 2010 in two of the sites. The frequency of the 1014F kdr mutation increased throughout the three years and by 2010, the frequency of 1014F in all sites combined was 0.02 in Anopheles arabiensis, 0.56 in An. gambiae M form and 0.96 in An. gambiae S form. This frequency did not differ significantly between the sites. The 1014S kdr allele was only found in An. arabiensis but its frequency increased significantly throughout the study (P = 0.0003 and in 2010 the 1014S allele frequency was 0.08 in An. arabiensis. Maximum sporozoite rates (12% were observed in Soumousso in 2009 and the difference between sites is significant for each year. Conclusion Pyrethroid and DDT resistance is now established in An. gambiae s.l. throughout Burkina Faso. Results from diagnostic dose assays are highly variable within and

  3. Morphological Differentiation May Mediate Mate-Choice between Incipient Species of Anopheles gambiae s.s.

    Science.gov (United States)

    Sanford, Michelle R.; Demirci, Berna; Marsden, Clare D.; Lee, Yoosook; Cornel, Anthony J.; Lanzaro, Gregory C.

    2011-01-01

    The M and S molecular forms of Anopheles gambiae s.s. have been considered incipient species for more than ten years, yet the mechanism underlying assortative mating of these incipient species has remained elusive. The discovery of the importance of harmonic convergence of wing beat frequency in mosquito mating and its relation to wing size have laid the foundation for exploring phenotypic divergence in wing size of wild populations of the two forms. In this study, wings from field collected mosquitoes were measured for wing length and wing width from two parts of the sympatric distribution, which differ with respect to the strength of assortative mating. In Mali, where assortative mating is strong, as evidenced by low rates of hybridization, mean wing lengths and wing widths were significantly larger than those from Guinea-Bissau. In addition, mean wing widths in Mali were significantly different between molecular forms. In Guinea-Bissau, assortative mating appears comparatively reduced and wing lengths and widths did not differ significantly between molecular forms. The data presented in this study support the hypothesis that wing beat frequency may mediate assortative mating in the incipient species of A. gambiae and represent the first documentation of a morphological difference between the M and S molecular forms. PMID:22132169

  4. Multiple insecticide resistance in Anopheles gambiae (Diptera: Culicidae) from Pointe Noire, Republic of the Congo.

    Science.gov (United States)

    Koekemoer, Lizette L; Spillings, Belinda L; Christian, Riann N; Lo, Te-Chang M; Kaiser, Maria L; Norton, Ryan A I; Oliver, Shune V; Choi, Kwang S; Brooke, Basil D; Hunt, Richard H; Coetzee, Maureen

    2011-08-01

    Successful implementation of an integrated vector control program will rely on availability of accurate vector information in the specific location. However, such information can be limited in some countries. The aim of this study was to obtain baseline vector information from Pointe Noire on the Congo coast (Republic of the Congo). Field sampling was conducted during April 2009 in the village of Boutoto and its surrounds, close to the city of Pointe Noire. Anopheles gambiae sensu lato mosquitoes were collected resting indoors. Samples were analyzed for insecticide susceptibility, species identification, and Plasmodium sporozoite infection. Molecular and biochemical assays were conducted to characterize insecticide resistance mechanisms. The malaria vector A. gambiae S-form was the only mosquito species identified, and it had a high Plasmodium falciparum infection rate (9.6%). Multiple insecticide resistance was detected in this population with full susceptibility to only one insecticide class, the organophosphates. Dieldrin and DDT resistance was mainly attributed to target-site resistance (the Rdl and L1014F/L1014S kdr mutations respectively), whereas pyrethroid resistance was mainly attributed to P450 metabolic enzyme-mediated detoxification in addition to kdr. The role of various insecticide resistance mechanisms revealed a complex association between metabolic detoxification and reduced target-site sensitivity. PMID:21417925

  5. Larvicidal activity of extracts from three Plumbago spp against Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Barasa M Maniafu

    2009-09-01

    Full Text Available Three Plumbago spp have been tested for mosquito larvicidal activity. The crude extracts exhibiting the highest larvicidal activity against Anopheles gambiae were hexane (LC50 = 6.4 μg/mL and chloroform (LC50 = 6.7 μg/mL extracts from Plumbago zeylanica Linn, chloroform (LC50 = 6.7 ug/mL extract from Plumbago stenophylla Bull and ethyl acetate (LC50 = 4.1 μg/mL extract from Plumbago dawei Rolfe. These LC50 values were within 95% confidence limits. 5-hydroxy-2-methyl-1,4-naphthoquinone (plumbagin 1 (LC50 = 1.9 μg/mL and β-sitosterol 2 were characterised from ethyl acetate extract of root bark of P. dawei, a native medicinal plant growing in Kenya, based on spectral analysis and comparisons with data in literature.

  6. Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection.

    Science.gov (United States)

    Dimopoulos, George; Christophides, George K; Meister, Stephan; Schultz, Jörg; White, Kevin P; Barillas-Mury, Carolina; Kafatos, Fotis C

    2002-06-25

    The complex gene expression responses of Anopheles gambiae to microbial and malaria challenges, injury, and oxidative stress (in the mosquito and/or a cultured cell line) were surveyed by using cDNA microarrays constructed from an EST-clone collection. The expression profiles were broadly subdivided into induced and down-regulated gene clusters. Gram+ and Gram- bacteria and microbial elicitors up-regulated a diverse set of genes, many belonging to the immunity class, and the response to malaria partially overlapped with this response. Oxidative stress activated a distinctive set of genes, mainly implicated in oxidoreductive processes. Injury up- and down-regulated gene clusters also were distinctive, prominently implicating glycolysis-related genes and citric acid cycle/oxidative phosphorylation/redox-mitochondrial functions, respectively. Cross-comparison of in vivo and in vitro responses indicated the existence of tightly coregulated gene groups that may correspond to gene pathways. PMID:12077297

  7. Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana

    Directory of Open Access Journals (Sweden)

    Donnelly Martin J

    2007-01-01

    Full Text Available Abstract Background Mosquito resistance to the pyrethroid insecticides used to treat bednets threatens the sustainability of malaria control in sub-Saharan Africa. While the impact of target site insensitivity alleles is being widely discussed the implications of insecticide detoxification – though equally important – remains elusive. The successful development of new tools for malaria intervention and management requires a comprehensive understanding of insecticide resistance, including metabolic resistance mechanisms. Although three enzyme families (cytochrome P450s, glutathione S-transferases and carboxylesterases have been widely associated with insecticide detoxification the role of individual enzymes is largely unknown. Results Here, constitutive expression patterns of genes putatively involved in conferring pyrethroid resistance was investigated in a recently colonised pyrethroid resistant Anopheles gambiae strain from Odumasy, Southern Ghana. RNA from the resistant strain and a standard laboratory susceptible strain, of both sexes was extracted, reverse transcribed and labelled with either Cy3- or Cy5-dye. Labelled cDNA was co-hybridised to the detox chip, a custom-made microarray containing over 230 A. gambiae gene fragments predominantly from enzyme families associated with insecticide resistance. After hybridisation, Cy3- and Cy5-signal intensities were measured and compared gene by gene. In both females and males of the resistant strain the cytochrome P450s CYP6Z2 and CYP6M2 are highly over-expressed along with a member of the superoxide dismutase (SOD gene family. Conclusion These genes differ from those found up-regulated in East African strains of pyrethroid resistant A. gambiae and constitute a novel set of candidate genes implicated in insecticide detoxification. These data suggest that metabolic resistance may have multiple origins in A. gambiae, which has strong implications for the management of resistance.

  8. Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota

    NARCIS (Netherlands)

    Verhulst, N.O.; Mbadi, P.A.; Bukovinszkine-Kiss, G.; Mukabana, W.R.; Loon, van J.J.A.; Takken, W.; Smallegange, R.C.

    2011-01-01

    Background - Anopheles gambiae sensu stricto is considered to be highly anthropophilic and volatiles of human origin provide essential cues during its host-seeking behaviour. A synthetic blend of three human-derived volatiles, ammonia, lactic acid and tetradecanoic acid, attracts A. gambiae. In addi

  9. Behavioural response of the malaria vector Anopheles gambiae to host plant volatiles and synthetic blends

    Science.gov (United States)

    Sugar feeding is critical for survival of malaria vectors and, although discriminative plant feeding previously has been shown to occur in Anopheles gambiae s.s., little is known about the cues mediating attraction to these plants. In this study, we investigated the role of olfaction in An. gambiae ...

  10. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles)

    Science.gov (United States)

    2013-01-01

    Background Insecticide resistance in sub-Saharan Africa and especially in Benin is a major public health issue hindering the control of the malaria vectors. Each Anopheles species has developed a resistance to one or several classes of the insecticides currently in use in the field. Therefore, it is urgent to find alternative compounds to conquer the vector. In this study, the efficacies of essential oils of nine plant species, which are traditionally used to avoid mosquito bites in Benin, were investigated. Methods Essential oils of nine plant species were extracted by hydrodistillation, and their chemical compositions were identified by GC-MS. These oils were tested on susceptible “kisumu” and resistant “ladji-Cotonou” strains of Anopheles gambiae, following WHO test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Results Different chemical compositions were obtained from the essential oils of the plant species. The major constituents identified were as follows: neral and geranial for Cymbopogon citratus, Z-carveol, E-p-mentha-1(7),8-dien-2-ol and E-p-mentha-2,8-dienol for Cymbopogon giganteus, piperitone for Cymbopogon schoenanthus, citronellal and citronellol for Eucalyptus citriodora, p-cymene, caryophyllene oxide and spathulenol for Eucalyptus tereticornis, 3-tetradecanone for Cochlospermum tinctorium and Cochlospermum planchonii, methyl salicylate for Securidaca longepedunculata and ascaridole for Chenopodium ambrosioides. The diagnostic dose was 0.77% for C. citratus, 2.80% for E. tereticornis, 3.37% for E. citriodora, 4.26% for C. ambrosioides, 5.48% for C. schoenanthus and 7.36% for C. giganteus. The highest diagnostic doses were obtained with S. longepedunculata (9.84%), C. tinctorium (11.56%) and C. planchonii (15.22%), compared to permethrin 0.75%. A. gambiae cotonou, which is resistant to pyrethroids, showed significant tolerance to essential oils from C. tinctorium and S. longepedunculata as expected but was

  11. Acetylcholinesterases from the Disease Vectors Aedes aegypti and Anopheles gambiae: Functional Characterization and Comparisons with Vertebrate Orthologues.

    Science.gov (United States)

    Engdahl, Cecilia; Knutsson, Sofie; Fredriksson, Sten-Åke; Linusson, Anna; Bucht, Göran; Ekström, Fredrik

    2015-01-01

    Mosquitoes of the Anopheles (An.) and Aedes (Ae.) genus are principal vectors of human diseases including malaria, dengue and yellow fever. Insecticide-based vector control is an established and important way of preventing transmission of such infections. Currently used insecticides can efficiently control mosquito populations, but there are growing concerns about emerging resistance, off-target toxicity and their ability to alter ecosystems. A potential target for the development of insecticides with reduced off-target toxicity is the cholinergic enzyme acetylcholinesterase (AChE). Herein, we report cloning, baculoviral expression and functional characterization of the wild-type AChE genes (ace-1) from An. gambiae and Ae. aegypti, including a naturally occurring insecticide-resistant (G119S) mutant of An. gambiae. Using enzymatic digestion and liquid chromatography-tandem mass spectrometry we found that the secreted proteins were post-translationally modified. The Michaelis-Menten constants and turnover numbers of the mosquito enzymes were lower than those of the orthologous AChEs from Mus musculus and Homo sapiens. We also found that the G119S substitution reduced the turnover rate of substrates and the potency of selected covalent inhibitors. Furthermore, non-covalent inhibitors were less sensitive to the G119S substitution and differentiate the mosquito enzymes from corresponding vertebrate enzymes. Our findings indicate that it may be possible to develop selective non-covalent inhibitors that effectively target both the wild-type and insecticide resistant mutants of mosquito AChE. PMID:26447952

  12. Acetylcholinesterases from the Disease Vectors Aedes aegypti and Anopheles gambiae: Functional Characterization and Comparisons with Vertebrate Orthologues.

    Directory of Open Access Journals (Sweden)

    Cecilia Engdahl

    Full Text Available Mosquitoes of the Anopheles (An. and Aedes (Ae. genus are principal vectors of human diseases including malaria, dengue and yellow fever. Insecticide-based vector control is an established and important way of preventing transmission of such infections. Currently used insecticides can efficiently control mosquito populations, but there are growing concerns about emerging resistance, off-target toxicity and their ability to alter ecosystems. A potential target for the development of insecticides with reduced off-target toxicity is the cholinergic enzyme acetylcholinesterase (AChE. Herein, we report cloning, baculoviral expression and functional characterization of the wild-type AChE genes (ace-1 from An. gambiae and Ae. aegypti, including a naturally occurring insecticide-resistant (G119S mutant of An. gambiae. Using enzymatic digestion and liquid chromatography-tandem mass spectrometry we found that the secreted proteins were post-translationally modified. The Michaelis-Menten constants and turnover numbers of the mosquito enzymes were lower than those of the orthologous AChEs from Mus musculus and Homo sapiens. We also found that the G119S substitution reduced the turnover rate of substrates and the potency of selected covalent inhibitors. Furthermore, non-covalent inhibitors were less sensitive to the G119S substitution and differentiate the mosquito enzymes from corresponding vertebrate enzymes. Our findings indicate that it may be possible to develop selective non-covalent inhibitors that effectively target both the wild-type and insecticide resistant mutants of mosquito AChE.

  13. Evidence of increasing L1014F kdr mutation frequency in Anopheles gambiae s.l. pyrethroid resistant following a nationwide distribution of LLINs by the Beninese National Malaria Control Programme

    Institute of Scientific and Technical Information of China (English)

    Nazaire Azoun; Rock Akpon; Martin Akogbto

    2014-01-01

    Objective:To determine the susceptibility status to pyrethroid in Anopheles gambiae s.l. (An. gambiae), the distribution of kdr“Leu-Phe”mutation in malaria vectors in Benin and to compare the current frequency of kdr“Leu-Phe”mutation to the previous frequency after long-lasting insecticide treated nets implementation. Methods: Larvae and pupae of An. gambiae s.l. mosquitoes were collected from the breeding sites in Littoral, Zou, Borgou and Alibori provinces. CDC susceptibility tests were conducted on unfed females mosquitoes aged 2-5 d old. An. gambiae mosquitoes were identified to species using PCR techniques. Molecular assays were also carried out to identify kdr mutations in individual mosquitoes. Results: The results showed that An. gambiae Malanville and Suru-lere populations were resistant to deltamethrin. Regarding An. gambiae Parakou and Bohicon populations, they were resistant to permethrin. PCR revealed 100%of mosquitoes tested were An. gambiae s.s. The L1014F kdr mutation was found in An. gambiae s.s. Malanville and Parakou at various allelic frequencies. The increase of kdr allelic frequency was positively correlated with CDC bioassays data. Conclusions: Pyrethroid resistance is widespread in malaria vector in Benin and kdr mutation is the main resistance mechanism involved. More attention may be paid for the future success of malaria control programmes based on LLINs with pyrethroids in the country.

  14. Preliminary field testing of a long-lasting insecticide-treated hammock against Anopheles gambiae and Mansonia spp. (Diptera : Culicidae) in West Africa

    OpenAIRE

    Hougard, Jean-Marc; Martin, Thibaud; Guillet, Pierre; Coosemans, M.; ITOH, T.; Akogbéto, M.; Chandre, Fabrice

    2007-01-01

    The efficacy of an experimental long-lasting insecticide-treated ham mock (LLIH) with a long-lasting treated net used as a blanket and made of the same fabric (polyethylene) was tested in a concrete block experimental hut, against the malaria vector Anopheles gambiae s.l. and the arbovirus vectors and nuisance mosquitoes Mansonia africana (Theobald) and Alansonia uniformis (Theobald). The LLIH was treated with the pyrethroid insecticide permethrin. It was evaluated concurrently with ignited m...

  15. Polymorphism of intron-1 in the voltage-gated sodium channel gene of Anopheles gambiae s.s. populations from Cameroon with emphasis on insecticide knockdown resistance mutations

    OpenAIRE

    Etang, J; Vicente, J. L.; Nwane, P.; Chouaibou, M.; Morlais, Isabelle; Do Rosario, V. E.; Simard, Frédéric; Awono Ambéné, P.; Toto, J. C.; Pinto, J

    2009-01-01

    Sequence variation at the intron-1 of the voltage-gated sodium channel gene in Anopheles gambiae M- and S-forms from Cameroon was assessed to explore the number of mutational events originating knockdown resistance (kdr) alleles. Mosquitoes were sampled between December 2005 and June 2006 from three geographical areas: (i) Magba in the western region; (ii) Loum, Tiko, Douala, Kribi, and Campo along the Atlantic coast; and (iii) Bertoua, in the eastern continental plateau. Both 1014S and 1014F...

  16. Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors

    Directory of Open Access Journals (Sweden)

    Little Tom J

    2009-06-01

    Full Text Available Abstract Background Mosquitoes of the Anopheles gambiae species complex are the primary vectors of human malaria in sub-Saharan Africa. Many host genes have been shown to affect Plasmodium development in the mosquito, and so are expected to engage in an evolutionary arms race with the pathogen. However, there is little conclusive evidence that any of these mosquito genes evolve rapidly, or show other signatures of adaptive evolution. Methods Three serine protease inhibitors have previously been identified as candidate immune system genes mediating mosquito-Plasmodium interaction, and serine protease inhibitors have been identified as hot-spots of adaptive evolution in other taxa. Population-genetic tests for selection, including a recent multi-gene extension of the McDonald-Kreitman test, were applied to 16 serine protease inhibitors and 16 other genes sampled from the An. gambiae species complex in both East and West Africa. Results Serine protease inhibitors were found to show a marginally significant trend towards higher levels of amino acid diversity than other genes, and display extensive genetic structuring associated with the 2La chromosomal inversion. However, although serpins are candidate targets for strong parasite-mediated selection, no evidence was found for rapid adaptive evolution in these genes. Conclusion It is well known that phylogenetic and population history in the An. gambiae complex can present special problems for the application of standard population-genetic tests for selection, and this may explain the failure of this study to detect selection acting on serine protease inhibitors. The pitfalls of uncritically applying these tests in this species complex are highlighted, and the future prospects for detecting selection acting on the An. gambiae genome are discussed.

  17. Bacteria- and IMD pathway-independent immune defenses against Plasmodium falciparum in Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Benjamin J Blumberg

    Full Text Available The mosquito Anopheles gambiae uses its innate immune system to control bacterial and Plasmodium infection of its midgut tissue. The activation of potent IMD pathway-mediated anti-Plasmodium falciparum defenses is dependent on the presence of the midgut microbiota, which activate this defense system upon parasite infection through a peptidoglycan recognition protein, PGRPLC. We employed transcriptomic and reverse genetic analyses to compare the P. falciparum infection-responsive transcriptomes of septic and aseptic mosquitoes and to determine whether bacteria-independent anti-Plasmodium defenses exist. Antibiotic treated aseptic mosquitoes mounted molecular immune responses representing a variety of immune functions upon P. falciparum infection. Among other immune factors, our analysis uncovered a serine protease inhibitor (SRPN7 and Clip-domain serine protease (CLIPC2 that were transcriptionally induced in the midgut upon P. falciparum infection, independent of bacteria. We also showed that SRPN7 negatively and CLIPC2 positively regulate the anti-Plasmodium defense, independently of the midgut-associated bacteria. Co-silencing assays suggested that these two genes may function together in a signaling cascade. Neither gene was regulated, nor modulated, by infection with the rodent malaria parasite Plasmodium berghei, suggesting that SRPN7 and CLIPC2 are components of a defense system with preferential activity towards P. falciparum. Further analysis using RNA interference determined that these genes do not regulate the anti-Plasmodium defense mediated by the IMD pathway, and both factors act as agonists of the endogenous midgut microbiota, further demonstrating the lack of functional relatedness between these genes and the bacteria-dependent activation of the IMD pathway. This is the first study confirming the existence of a bacteria-independent, anti-P. falciparum defense. Further exploration of this anti-Plasmodium defense will help clarify

  18. Indirect evidence that agricultural pesticides select for insecticide resistance in the malaria vector Anopheles gambiae.

    Science.gov (United States)

    Luc, Djogbénou S; Benoit, Assogba; Laurette, Djossou; Michel, Makoutode

    2016-06-01

    We investigated the possible relationship between the agricultural use of insecticides and the emergence of insecticide resistance. Bioassays were conducted using simulated mosquito larval habitats and well known Anopheles gambiae strains. Soil samples were collected from vegetable production areas in Benin, including one site with insecticide use, one site where insecticides had not been used for two months, and a third where insecticides had not been used. Pupation and emergence rates were very low in pyrethroid-susceptible strains when exposed to soil that had been recently exposed to insecticides. Pupation and emergence rates in strains with the kdr mutation alone or both the kdr and Ace-1 mutations were much higher. Overall, strains with the kdr mutation survived at higher rates compared to that without kdr mutation. Although this study is observational, we provide indirect evidence indicating that soils from agricultural areas contain insecticide residues that can play a role in the emergence of insecticide resistance in Anopheles. This aspect should be taken into account to better utilize the insecticide in the context of integrated pest management programs. PMID:27232122

  19. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria

    OpenAIRE

    Ranson Hilary; Akogbeto Martin C; Coulibaly Ousmane N; Bakare Adekunle A; Djouaka Rousseau F; Hemingway Janet; Strode Clare

    2008-01-01

    Abstract Background Insecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. This is particularly true in Benin where pyrethroid resistance has been linked to the failure of insecticide treated bed nets. The role of mutations in the insecticide target sites in conferring resistance has been clearly established. In this study, the contribution of other potential resistance mechanisms was investigated in Anopheles gambiae s.s. from a number of loc...

  20. Population genetic structure of Anopheles arabiensis and Anopheles gambiae in a malaria endemic region of southern Tanzania

    OpenAIRE

    Ferguson Heather M; Lee Yoosook; Knols Bart GJ; Ng'habi Kija R; Lanzaro Gregory C

    2011-01-01

    Abstract Background Genetic diversity is a key factor that enables adaptation and persistence of natural populations towards environmental conditions. It is influenced by the interaction of a natural population's dynamics and the environment it inhabits. Anopheles gambiae s.s. and Anopheles arabiensis are the two major and widespread malaria vectors in sub-Saharan Africa. Several studies have examined the ecology and population dynamics of these vectors. Ecological conditions along the Kilomb...

  1. The Anopheles gambiae Oxidation Resistance 1 (OXR1) Gene Regulates Expression of Enzymes That Detoxify Reactive Oxygen Species

    Science.gov (United States)

    Jaramillo-Gutierrez, Giovanna; Molina-Cruz, Alvaro; Kumar, Sanjeev; Barillas-Mury, Carolina

    2010-01-01

    Background OXR1 is an ancient gene, present in all eukaryotes examined so far that confers protection from oxidative stress by an unknown mechanism. The most highly conserved region of the gene is the carboxyl-terminal TLDc domain, which has been shown to be sufficient to prevent oxidative damage. Methodology/Principal Findings OXR1 has a complex genomic structure in the mosquito A. gambiae, and we confirm that multiple splice forms are expressed in adult females. Our studies revealed that OXR1 regulates the basal levels of catalase (CAT) and glutathione peroxidase (Gpx) expression, two enzymes involved in detoxification of hydrogen peroxide, giving new insight into the mechanism of action of OXR1. Gene silencing experiments indicate that the Jun Kinase (JNK) gene acts upstream of OXR1 and also regulates expression of CAT and GPx. Both OXR1 and JNK genes are required for adult female mosquitoes to survive chronic oxidative stress. OXR1 silencing decreases P. berghei oocyst formation. Unexpectedly, JNK silencing has the opposite effect and enhances Plasmodium infection in the mosquito, suggesting that JNK may also mediate some, yet to be defined, antiparasitic response. Conclusion The JNK pathway regulates OXR1 expression and OXR1, in turn, regulates expression of enzymes that detoxify reactive oxygen species (ROS) in Anopheles gambiae. OXR1 silencing decreases Plasmodium infection in the mosquito, while JNK silencing has the opposite effect and enhances infection. PMID:20567517

  2. The Anopheles gambiae oxidation resistance 1 (OXR1 gene regulates expression of enzymes that detoxify reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Giovanna Jaramillo-Gutierrez

    Full Text Available BACKGROUND: OXR1 is an ancient gene, present in all eukaryotes examined so far that confers protection from oxidative stress by an unknown mechanism. The most highly conserved region of the gene is the carboxyl-terminal TLDc domain, which has been shown to be sufficient to prevent oxidative damage. METHODOLOGY/PRINCIPAL FINDINGS: OXR1 has a complex genomic structure in the mosquito A. gambiae, and we confirm that multiple splice forms are expressed in adult females. Our studies revealed that OXR1 regulates the basal levels of catalase (CAT and glutathione peroxidase (Gpx expression, two enzymes involved in detoxification of hydrogen peroxide, giving new insight into the mechanism of action of OXR1. Gene silencing experiments indicate that the Jun Kinase (JNK gene acts upstream of OXR1 and also regulates expression of CAT and GPx. Both OXR1 and JNK genes are required for adult female mosquitoes to survive chronic oxidative stress. OXR1 silencing decreases P. berghei oocyst formation. Unexpectedly, JNK silencing has the opposite effect and enhances Plasmodium infection in the mosquito, suggesting that JNK may also mediate some, yet to be defined, antiparasitic response. CONCLUSION: The JNK pathway regulates OXR1 expression and OXR1, in turn, regulates expression of enzymes that detoxify reactive oxygen species (ROS in Anopheles gambiae. OXR1 silencing decreases Plasmodium infection in the mosquito, while JNK silencing has the opposite effect and enhances infection.

  3. Observation of granulations in the basal body of ovarioles and follicular dilatations for the determination of physiological age of Anopheles gambiae s.s.

    Directory of Open Access Journals (Sweden)

    Rodrigue Anagonou

    2015-07-01

    Full Text Available Objective: To explore ovariole basal body granulations and follicular dilatations for determining physiological age in Anopheles gambiae s.s. (An. gambiae s.s.. Methods: Mosquitoes were collected by using window trap catch and identified morphologically. For the first lot of mosquitoes, they were dissected, and ovary was left in distilled water for reading ovarian tracheoles and the second was cut and transferred to another blade in a physiological liquid for verification of ovariole basal body granulations. The same approach was followed with the second lot of mosquitoes where follicular dilatations were found after classic dilaceration of ovaries were transferred into physiological liquid. The other body parts of mosquitoes were used to identify the species of the An. gambiae s.s. complex by PCR. Results: Among the 123 An. gambiae s.s. of the first lot, the method of Detinova determined the age of 89 mosquitoes versus 114 for the observation of granulations (P > 0.05. Among the 112 An. gambiae s.s. of the second lot, the method of Detinova determined the age of 84 mosquitoes versus 93 for the observation of follicular dilatations (P > 0.05. Unlike the method of Detinova, observation of follicular dilatations and basal body granulations of ovarioles were possible beyond the stage II Christophers. Conclusions: Overall, the observation of follicular dilatations and ovariole basal body granulations are reliable for the determination of the physiological age in An. gambiae s.s. Furthermore, these two methods can be used beyond the stage II.

  4. Authentication scheme for routine verification of genetically similar laboratory colonies: a trial with Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Sutcliffe Alice C

    2009-10-01

    Full Text Available Abstract Background When rearing morphologically indistinguishable laboratory strains concurrently, the threat of unintentional genetic contamination is constant. Avoidance of accidental mixing of strains is difficult due to the use of common equipment, technician error, or the possibility of self relocation by adult mosquitoes ("free fliers". In many cases, laboratory strains are difficult to distinguish because of morphological and genetic similarity, especially when laboratory colonies are isolates of certain traits from the same parental strain, such as eye color mutants, individuals with certain chromosomal arrangements or high levels of insecticide resistance. Thus, proving genetic integrity could seem incredibly time-consuming or impossible. On the other hand, lacking proof of genetically isolated laboratory strains could question the validity of research results. Results We present a method for establishing authentication matrices to routinely distinguish and confirm that laboratory strains have not become physically or genetically mixed through contamination events in the laboratory. We show a specific example with application to Anopheles gambiae sensu stricto strains at the Malaria Research and Reference Reagent Resource Center. This authentication matrix is essentially a series of tests yielding a strain-specific combination of results. Conclusion These matrix-based methodologies are useful for several mosquito and insect populations but must be specifically tailored and altered for each laboratory based on the potential contaminants available at any given time. The desired resulting authentication plan would utilize the least amount of routine effort possible while ensuring the integrity of the strains.

  5. Laser induced mortality of Anopheles stephensi mosquitoes

    Science.gov (United States)

    Keller, Matthew D.; Leahy, David J.; Norton, Bryan J.; Johanson, Threeric; Mullen, Emma R.; Marvit, Maclen; Makagon, Arty

    2016-02-01

    Small, flying insects continue to pose great risks to both human health and agricultural production throughout the world, so there remains a compelling need to develop new vector and pest control approaches. Here, we examined the use of short (<25 ms) laser pulses to kill or disable anesthetized female Anopheles stephensi mosquitoes, which were chosen as a representative species. The mortality of mosquitoes exposed to laser pulses of various wavelength, power, pulse duration, and spot size combinations was assessed 24 hours after exposure. For otherwise comparable conditions, green and far-infrared wavelengths were found to be more effective than near- and mid-infrared wavelengths. Pulses with larger laser spot sizes required lower lethal energy densities, or fluence, but more pulse energy than for smaller spot sizes with greater fluence. Pulse duration had to be reduced by several orders of magnitude to significantly lower the lethal pulse energy or fluence required. These results identified the most promising candidates for the lethal laser component in a system being designed to identify, track, and shoot down flying insects in the wild.

  6. Cloning, characterization, and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    Tu Zhijian

    2008-05-01

    Full Text Available Abstract Background microRNAs (miRNAs are non-coding RNAs that are now recognized as a major class of gene-regulating molecules widely distributed in metozoans and plants. miRNAs have been found to play important roles in apoptosis, cancer, development, differentiation, inflammation, longevity, and viral infection. There are a few reports describing miRNAs in the African malaria mosquito, Anopheles gambiae, on the basis of similarity to known miRNAs from other species. An. stephensi is the most important malaria vector in Asia and it is becoming a model Anopheline species for physiological and genetics studies. Results We report the cloning and characterization of 27 distinct miRNAs from 17-day old An. stephensi female mosquitoes. Seventeen of the 27 miRNAs matched previously predicted An. gambiae miRNAs, offering the first experimental verification of miRNAs from mosquito species. Ten of the 27 are miRNAs previously unknown to mosquitoes, four of which did not match any known miRNAs in any organism. Twenty-five of the 27 Anopheles miRNAs had conserved sequences in the genome of a divergent relative, the yellow fever mosquito Aedes aegypti. Two clusters of miRNAs were found within introns of orthologous genes in An. gambiae, Ae. aegypti, and Drosophila melanogaster. Mature miRNAs were detected in An. stephensi for all of the nine selected miRNAs, including the four novel miRNAs (miR-x1- miR-x4, either by northern blot or by Ribonuclease Protection Assay. Expression profile analysis of eight of these miRNAs revealed distinct expression patterns from early embryo to adult stages in An. stephensi. In both An. stephensi and Ae. aegypti, the expression of miR-x2 was restricted to adult females and predominantly in the ovaries. A significant reduction of miR-x2 level was observed 72 hrs after a blood meal. Thus miR-x2 is likely involved in female reproduction and its function may be conserved among divergent mosquitoes. A mosquito homolog of miR-14, a

  7. Structure-Function Analysis of the Anopheles gambiae LRIM1/APL1C Complex and its Interaction with Complement C3-Like Protein TEP1

    OpenAIRE

    Povelones, Michael; Upton, Leanna M.; Sala, Katarzyna A.; Christophides, George K.

    2011-01-01

    Malaria threatens half the world's population and exacts a devastating human toll. The principal malaria vector in Africa, the mosquito Anopheles gambiae, encodes 24 members of a recently identified family of leucine-rich repeat proteins named LRIMs. Two members of this family, LRIM1 and APL1C, are crucial components of the mosquito complement-like pathway that is important for immune defense against Plasmodium parasites. LRIM1 and APL1C circulate in the hemolymph exclusively as a disulfide-b...

  8. Structure-function analysis of the Anopheles gambiae LRIM1/APL1C complex and its interaction with complement C3-like protein TEP1.

    OpenAIRE

    Michael Povelones; Upton, Leanna M.; Sala, Katarzyna A.; Christophides, George K.

    2011-01-01

    Malaria threatens half the world's population and exacts a devastating human toll. The principal malaria vector in Africa, the mosquito Anopheles gambiae, encodes 24 members of a recently identified family of leucine-rich repeat proteins named LRIMs. Two members of this family, LRIM1 and APL1C, are crucial components of the mosquito complement-like pathway that is important for immune defense against Plasmodium parasites. LRIM1 and APL1C circulate in the hemolymph exclusively as a disulfide-b...

  9. Anopheles gambiae exploits the treehole ecosystem in western Kenya: a new urban malaria risk?

    Science.gov (United States)

    Omlin, Francois X; Carlson, John C; Ogbunugafor, C Brandon; Hassanali, Ahmed

    2007-12-01

    At six sites in western Kenya, we explored the presence of Anopheles immature stages in treeholes. An. gambiae larvae were found in 19 species, 13 of which are exotic. The most common exotic species were Delonix regia, Jacaranda mimosipholia, and Eucalyptus citrodora. In Kisumu city, longitudinal assessments of 10 Flamboyant trees showed repeated presence of An. gambiae s.s. in treeholes with water. Production of Anopheles larvae did not correlate with habitat volume but with habitat height, showing a strong but statistically insignificant negative correlation. During a dry season, eggs recovered by rinsing dry treeholes hatched into 2.5 +/- 3.06 An. gambiae and 7.9 +/- 8.2 Aedes larvae. In cage experiments, An. gambiae s.s. laid more eggs in water originating from treeholes than in distilled or lake water, implying preference for ovipositing in this habitat. Our findings indicate that treeholes represent a hitherto unrecognized habitat for malaria vectors, which needs further studies. PMID:18165501

  10. Orientation of Anopheles gambiae (Diptera: Culicidae) to Plant-Host Volatiles in a Novel Diffusion-Cage Olfactometer.

    Science.gov (United States)

    Otienoburu, Philip E; Nikbakhtzadeh, Mahmood R; Foster, Woodbridge A

    2016-01-01

    A novel diffusion-cage olfactometer tested the responses of Anopheles gambiae Giles to plant volatiles. Green-leaf volatiles are often released from cut or injured plant tissue and may alter the headspace of plants used in olfactometer assays. The diffusion-cage olfactometer is designed for use with whole, intact plants, hence giving a more realistic behavioral assay. Its simple plastic construction, ease of assembly, and accommodation to whole plants makes it a useful tool for measuring mosquito orientation to plant volatiles within large enclosures. We compared its performance to that of the more commonly used T-tube wind-tunnel olfactometer, by testing the orientation of mosquitoes to volatiles of a few prevalent plants of eastern Africa reportedly utilized by An. gambiae for sugar: Parthenium hysterophorus (Asteraceae), Ricinus communis (Euphorbiaceae), Lantana camara (Verbenaceae), and Senna occidentalis (Fabaceae). Results indicate that the diffusion-cage olfactometer is an effective alternative to conventional wind-tunnel olfactometers, to test mosquito orientation to plant volatiles under seminatural conditions. PMID:26502752

  11. Effects of adult body size on fecundity and the pre-gravid rate of Anopheles gambiae females in Tanzania.

    Science.gov (United States)

    Lyimo, E O; Takken, W

    1993-10-01

    The influence of adult body size on the pre-gravid state and fecundity was studied in Anopheles gambiae Giles females hand-caught inside houses and virgin females collected as pupae in Tanzania. Blood-fed mosquitoes were kept for 2-3 days before dissection and examination for insemination and ovarian condition. Those females which did not develop eggs were classified as pre-gravid. The number of mature eggs in those mosquitoes which became gravid was counted. Virgin females were fed and kept for egg maturation in the laboratory. Wing-length of females was measured as an index of mosquito size. The overall pre-gravid rate in the resting An.gambiae population was found to be 21% and, of these, 66% had been inseminated. In the virgin females the pre-gravid rate was 92.6%. The mean wing-length of wild females which became gravid was significantly larger than those which remained pre-gravid. There was a positive correlation between fecundity and wing-length. Smaller females tended to require two or three bloodmeals to facilitate completion of the first gonotrophic cycle. The critical size permitting oviposition from the first blood-meal was a wing-length of 3 mm. PMID:8268486

  12. Studies on the behaviour of peridomestic and endophagic M form Anopheles gambiae from a rice growing area of Ghana.

    Science.gov (United States)

    Charlwood, J D; Tomás, E V E; Salgueiro, P; Egyir-Yawson, A; Pitts, R J; Pinto, J

    2011-10-01

    The 'paddy paradox', the occurrence of large populations of vectors but low amounts of malaria transmission where irrigated rice is grown, was investigated in a village in Ghana where M form Anopheles gambiae are common. Peridomestic and indoor host-seeking mosquitoes were collected in tent traps and light traps over 21 consecutive nights at the start of the rainy season in June 2009 when the population increased exponentially from less than 100 per night to over 1000. Infection rates in the overall mosquito population were 0.3% and in the estimated parous population were 1.9%. Numbers of An. gambiae in the tent trap peaked between midnight and 02:40 am. The majority of insects were taking their first blood meal, as virgins or shortly after mating. More than expected were collected in the light trap during a rainstorm at the start of the rains but overall numbers were not affected. Fewer than expected were collected after a subsequent storm. Recruitment to the adult population decreased over the following days. It is hypothesised that the 'paddy paradox' is due to young pre-gravid insects dispersing more widely than gravid ones, not necessarily to low survival in the mosquito. PMID:21401973

  13. Larvicidal Effects of a Neem (Azadirachta indica) Oil Formulation on the Malaria Vector Anopheles Gambiae.

    OpenAIRE

    Knols Bart GJ; Okumu Fredros O; Fillinger Ulrike

    2007-01-01

    Abstract Background Larviciding is a key strategy used in many vector control programmes around the world. Costs could be reduced if larvicides could be manufactured locally. The potential of natural products as larvicides against the main African malaria vector, Anopheles gambiae s.s was evaluated. Methods To assess the larvicidal efficacy of a neem (Azadirachta indica) oil formulation (azadirachtin content of 0.03% w/v) on An. gambiae s.s., larvae were exposed as third and fourth instars to...

  14. Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water.

    Science.gov (United States)

    Lindh, J M; Borg-Karlson, A-K; Faye, I

    2008-09-01

    In a paratransgenic approach, genetically modified bacteria are utilized to kill the parasite in the vector gut. A critical component for paratransgenics against malaria is how transgenic bacteria can be introduced and then kept in a mosquito population. Here, we investigated transstadial and horizontal transfer of bacteria within an Anopheles gambiae mosquito colony with the focus on spiked breeding sites as a possible means of introducing bacteria to mosquitoes. A Pantoea stewartii strain, previously isolated from An. gambiae, marked with a green fluorescent protein (GFP), was introduced to mosquitoes in different life stages. The following life stages or older mosquitoes in the case of adults were screened for bacteria in their guts. In addition to P. stewartii other bacteria were isolated from the guts: these were identified by 16S rRNA sequence analysis and temporal temperature gradient gel electrophoresis (TTGE). Bacteria were transferred from larvae to pupae but not from pupae to adults. The mosquitoes were able to take up bacteria from the water they emerged from and transfer the same bacteria to the water they laid eggs in. Elizabethkingia meningoseptica was more often isolated from adult mosquitoes than P. stewartii. A bioassay was used to examine An. gambiae oviposition responses towards bacteria-containing solutions. The volatiles emitted from the solutions were sampled by headspace-solid phase microextraction (SPME) and identified by gas chromatography and mass spectrometry (GC-MS) analysis. P. stewartii but not E. meningoseptica mediated a positive oviposition response. The volatiles emitted by P. stewartii include indole and 3-methyl-1-butanol, which previously have been shown to affect An. gambiae mosquito behaviour. E. meningoseptica emitted indole but not 3-methyl-1-butanol, when suspended in saline. Taken together, this indicates that it may be possible to create attractive breeding sites for distribution of genetically modified bacteria in the

  15. Immune factor Gambif1, a new rel family member from the human malaria vector, Anopheles gambiae.

    OpenAIRE

    Barillas-Mury, C; Charlesworth, A.; Gross, I; Richman, A; Hoffmann, J A; Kafatos, F C

    1996-01-01

    A novel rel family member, Gambif1 (gambiae immune factor 1), has been cloned from the human malaria vector, Anopheles gambiae, and shown to be most similar to Drosophila Dorsal and Dif. Gambif1 protein is translocated to the nucleus in fat body cells in response to bacterial challenge, although the mRNA is present at low levels at all developmental stages and is not induced by infection. DNA binding activity to the kappaB-like sites in the A.gambiae Defensin and the Drosophila Diptericin and...

  16. Dynamics of knockdown pyrethroid insecticide resistance alleles in a field population of Anopheles gambiae s.s. in southwestern Nigeria

    Directory of Open Access Journals (Sweden)

    T.S. Awolola, A.O. Oduola, I.O. Oyewole, J.B. Obansa, C.N. Amajoh

    2007-09-01

    Full Text Available Background & objectives: Pyrethroid insecticide resistance in the malaria vector Anopheles gambiaeGiles is mainly associated with reduced target site sensitivity arising from a single point mutation inthe sodium channel gene, often referred to as knockdown resistance (kdr. This resistance mechanismis widespread in West Africa and was reported for the first time in Nigeria in 2002. Here we presentchanges in the susceptibility/resistance status of the molecular ‘M’ and ‘S’ forms of An. gambiae andthe frequency of the kdr alleles from 2002–05.Methods: Adult anophelines were sampled quarterly inside human dwellings from January 2002 toDecember 2005 and adults reared from wild larvae were identified using morphological keys. Samplesbelonging to the An. gambiae complex were subjected to PCR assays for species identification anddetection of molecular ‘M’ and ‘S’ forms. Insecticide susceptibility tests were carried out usingstandard WHO procedures and test kits only on 2–3 days old adult An. gambiae s.s. reared fromlarval collections. The kdr genotypes were determined in both live and dead specimens of An. gambiaes.s. using alleles-specific polymerase chain reaction diagnostic tests.Results: The overall collection showed that the molecular ‘S’ form was predominant (>60% but theproportions of both forms in the mosquito populations from 2002–05 were not statistically different.Both forms also occurred throughout the period without apparent relationship to wet or dry season.Insecticide susceptibility tests did not show any significant increase in the resistance status recordedfor either Permethrin or DDT from 2002–05, rather, an improvement in the susceptibility status ofthe mosquitoes to these insecticides was observed from 2004–05 relative to the tests performed in2002–03.Conclusion: The proportion of the molecular ‘M’ and ‘S’ form of An. gambiae and the kdr frequencieshave not increased significantly from 2002

  17. Behavioural responses of Anopheles gambiae sensu stricto M and S molecular form larvae to an aquatic predator in Burkina Faso

    Directory of Open Access Journals (Sweden)

    Gimonneau Geoffrey

    2012-03-01

    Full Text Available Abstract Background Predation of aquatic immature stages has been identified as a major evolutionary force driving habitat segregation and niche partitioning in the malaria mosquito Anopheles gambiae sensu stricto in the humid savannahs of Burkina Faso, West Africa. Here, we explored behavioural responses to the presence of a predator in wild populations of the M and S molecular forms of An. gambiae that typically breed in permanent (e.g., rice field paddies and temporary (e.g., road ruts water collections. Methods Larvae used in these experiments were obtained from eggs laid by wild female An. gambiae collected from two localities in south-western Burkina Faso during the 2008 rainy season. Single larvae were observed in an experimental arena, and behavioural traits were recorded and quantified a in the absence of a predator and b in the presence of a widespread mosquito predator, the backswimmer Anisops jaczewskii. Differences in the proportion of time allocated to each behaviour were assessed using Principal Component Analysis and Multivariate Analysis of Variance. Results The behaviour of M and S form larvae was found to differ significantly; although both forms mainly foraged at the water surface, spending 60-90% of their time filtering water at the surface or along the wall of the container, M form larvae spent on average significantly more time browsing at the bottom of the container than S form larvae (4.5 vs. 1.3% of their overall time, respectively; P P P P Conclusions Behavioural differences between larvae of the M and S form of An. gambiae in response to an acute predation risk is likely to be a reflection of different trade-offs between foraging and predator vigilance that might be of adaptive value in contrasting aquatic ecosystems. Future studies should explore the relevance of these findings under the wide range of natural settings where both forms co-exist in Africa.

  18. Genetic variation of male reproductive success in a laboratory population of Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Voordouw Maarten J

    2007-07-01

    Full Text Available Abstract Background For Anopheline mosquitoes, the vectors of human malaria, genetic variation in male reproductive success can have important consequences for any control strategy based on the release of transgenic or sterile males. Methods A quantitative genetics approach was used to test whether there was a genetic component to variation in male reproductive success in a laboratory population of Anopheles gambiae. Swarms of full sibling brothers were mated with a fixed number of females and their reproductive success was measured as (1 proportion of ovipositing females, (2 proportion of ovipositing females that produced larvae, (3 proportion of females that produced larvae, (4 number of eggs laid per female, (5 number of larvae per ovipositing female and (6 number of larvae per female. Results The proportion of ovipositing females (trait 1 and the proportion of ovipositing females that produced larvae (trait 2 differed among full sib families, suggesting a genetic basis of mating success. In contrast, the other measures of male reproductive success showed little variation due to the full sib families, as their variation are probably mostly due to differences among females. While age at emergence and wing length of the males were also heritable, they were not associated with reproductive success. Larger females produced more eggs, but males did not prefer such partners. Conclusion The first study to quantify genetic variation for male reproductive success in A. gambiae found that while the initial stages of male reproduction (i.e. the proportion of ovipositing females and the proportion of ovipositing females that produced larvae had a genetic basis, the overall reproductive success (i.e. the mean number of larvae per female did not.

  19. IMP PCR primers detect single nucleotide polymorphisms for Anopheles gambiae species identification, Mopti and Savanna rDNA types, and resistance to dieldrin in Anopheles arabiensis

    Directory of Open Access Journals (Sweden)

    Howell Paul I

    2006-12-01

    Full Text Available Abstract Background Polymerase chain reactions to distinguish single-nucleotide polymorphisms are commonly used for mosquito identification and identifying insecticide resistance alleles. However, the existing methods used for primer design often result in analyses that are not robust or require additional steps. Methods Utilizing oligonucleotides that are unique in having an intentional mismatch to both templates three bases from the SNP at the 3-prime end, three new PCR assays that distinguish SNP targets using standard gel electrophoresis of undigested DNA fragments were developed and tested. These were applied to: (1 an alternative ribosomal DNA PCR assay to distinguish five members of the Anopheles gambiae complex; (2 detection of the Mopti and Savanna rDNA types; and (3 an assay to distinguish resistance to dieldrin (Rdl alleles in Anopheles arabiensis. Results Reproducible specific amplification of the target alleles was observed in all three assays. The results were consistent with existing analyses but proved simpler and the results more distinct in our hands. Conclusion The simplicity and effectiveness of the method should be utilized in these and other PCR analyses to increase their specificity and simplicity. These results have the potential to be extended not only to mosquito analyses but also to parasite and human polymorphisms.

  20. Comparison of the Insecticidal Characteristics of Commercially Available Plant Essential Oils Against Aedes aegypti and Anopheles gambiae (Diptera: Culicidae).

    Science.gov (United States)

    Norris, Edmund J; Gross, Aaron D; Dunphy, Brendan M; Bessette, Steven; Bartholomay, Lyric; Coats, Joel R

    2015-09-01

    Aedes aegypti and Anopheles gambiae are two mosquito species that represent significant threats to global public health as vectors of Dengue virus and malaria parasites, respectively. Although mosquito populations have been effectively controlled through the use of synthetic insecticides, the emergence of widespread insecticide-resistance in wild mosquito populations is a strong motivation to explore new insecticidal chemistries. For these studies, Ae. aegypti and An. gambiae were treated with commercially available plant essential oils via topical application. The relative toxicity of each essential oil was determined, as measured by the 24-h LD(50) and percentage knockdown at 1 h, as compared with a variety of synthetic pyrethroids. For Ae. aegypti, the most toxic essential oil (patchouli oil) was ∼1,700-times less toxic than the least toxic synthetic pyrethroid, bifenthrin. For An. gambiae, the most toxic essential oil (patchouli oil) was ∼685-times less toxic than the least toxic synthetic pyrethroid. A wide variety of toxicities were observed among the essential oils screened. Also, plant essential oils were analyzed via gas chromatography/mass spectrometry (GC/MS) to identify the major components in each of the samples screened in this study. While the toxicities of these plant essential oils were demonstrated to be lower than those of the synthetic pyrethroids tested, the large amount of GC/MS data and bioactivity data for each essential oil presented in this study will serve as a valuable resource for future studies exploring the insecticidal quality of plant essential oils. PMID:26336230

  1. The Cry4B toxin of Bacillus thuringiensis subsp. israelensis kills Permethrin-resistant Anopheles gambiae, the principal vector of malaria.

    Science.gov (United States)

    Ibrahim, Mohamed A; Griko, Natalya B; Bulla, Lee A

    2013-04-01

    Resurgence of malaria has been attributed, in part, to the development of resistance by Anopheles gambiae, a principal vector of the disease, to various insecticidal compounds such as Permethrin. Permethrin, a neurotoxicant, is widely used to impregnate mosquito nets. An alternative strategy to control mosquitoes is the use of Bacillus thuringiensis subsp. israelensis (Bti) because there is no observable resistance in the field to the bacterium. Bti kills mosquitoes by targeting cadherin molecules residing in the midgut epithelium of larvae of the insect. Cry proteins (Cry4A, Cry4B, Cry10A and Cry11A) produced by the bacterium during the sporulation phase of its life cycle bind to the cadherin molecules, which serve as receptors for the proteins. These Cry proteins have variable specificity to a variety of mosquitoes, including Culex and Aedes as well as Anopheles. Importantly, selective mosquitocidal action is occasioned by binding of the respective Cry toxins to cadherins distinctive to individual mosquito species. Differential fractionation of the four Cry proteins from a novel Bti isolate (M1) and cloning and expression of their genes in Escherichia coli revealed that Cry4B is the only Cry protein that exerts insecticidal action against An. gambiae. Indeed, it does so against a Permethrin-resistant strain of the mosquito. The other three Cry proteins are ineffective. Multiple sequence alignments of the four Cry proteins revealed a divergent sequence motif in the Cry4B toxin, which most likely determines binding of the toxin to its cognate receptor, BT-R3, in An. gambiae and to its specific toxicity. A model showing Cry4B toxin binding to BT-R3 is presented. PMID:23760000

  2. Role of Testis-Specific Gene Expression in Sex-Chromosome Evolution of Anopheles gambiae

    Science.gov (United States)

    Baker, Dean A.; Russell, Steven

    2011-01-01

    Gene expression in Anopheles gambiae shows a deficiency of testis-expressed genes on the X chromosome associated with an excessive movement of retrogene duplication. We suggest that the degeneration of sex chromosomes in this monandrous species is likely the result of pressures from X inactivation, dosage compensation, and sexual antagonism. PMID:21890740

  3. Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae

    NARCIS (Netherlands)

    Okumu, F.O.; Knols, B.G.J.; Fillinger, U.

    2007-01-01

    Background - Larviciding is a key strategy used in many vector control programmes around the world. Costs could be reduced if larvicides could be manufactured locally. The potential of natural products as larvicides against the main African malaria vector, Anopheles gambiae s.s was evaluated. Method

  4. The mode of action of spatial repellents and their impact on vectorial capacity of Anopheles gambiae sensu stricto.

    Directory of Open Access Journals (Sweden)

    Sheila B Ogoma

    Full Text Available Malaria vector control relies on toxicity of insecticides used in long lasting insecticide treated nets and indoor residual spraying. This is despite evidence that sub-lethal insecticides reduce human-vector contact and malaria transmission. The impact of sub-lethal insecticides on host seeking and blood feeding of mosquitoes was measured. Taxis boxes distinguished between repellency and attraction inhibition of mosquitoes by measuring response of mosquitoes towards or away from Transfluthrin coils and humans. Protective effective distance of coils and long-term effects on blood feeding were measured in the semi-field tunnel and in a Peet Grady chamber. Laboratory reared pyrethroid susceptible Anopheles gambiae sensu stricto mosquitoes were used. In the taxis boxes, a higher proportion of mosquitoes (67%-82% were activated and flew towards the human in the presence of Transfluthrin coils. Coils did not hinder attraction of mosquitoes to the human. In the semi-field Tunnel, coils placed 0.3 m from the human reduced feeding by 86% (95% CI [0.66; 0.95] when used as a "bubble" compared to 65% (95% CI [0.51; 0.76] when used as a "point source". Mosquitoes exposed to coils inside a Peet Grady chamber were delayed from feeding normally for 12 hours but there was no effect on free flying and caged mosquitoes exposed in the semi-field tunnel. These findings indicate that airborne pyrethroids minimize human-vector contact through reduced and delayed blood feeding. This information is useful for the development of target product profiles of spatial repellent products that can be used to complement mainstream malaria vector control tools.

  5. Insecticidal Activities of Bark, Leaf and Seed Extracts of Zanthoxylum heitzii against the African Malaria Vector Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Hans J. Overgaard

    2014-12-01

    Full Text Available The olon tree, Zanthoxylum heitzii (syn. Fagara heitzii is commonly found in the central-west African forests. In the Republic of Congo (Congo-Brazzaville its bark is anecdotally reported to provide human protection against fleas. Here we assess the insecticidal activities of Z. heitzii stem bark, seed and leaf extracts against Anopheles gambiae s.s, the main malaria vector in Africa. Extracts were obtained by Accelerated Solvent Extraction (ASE using solvents of different polarity and by classical Soxhlet extraction using hexane as solvent. The insecticidal effects of the crude extracts were evaluated using topical applications of insecticides on mosquitoes of a susceptible reference strain (Kisumu [Kis], a strain homozygous for the L1014F kdr mutation (kdrKis, and a strain homozygous for the G119S Ace1R allele (AcerKis. The insecticidal activities were measured using LD50 and LD95 and active extracts were characterized by NMR spectroscopy and HPLC chromatography. Results show that the ASE hexane stem bark extract was the most effective compound against An. gambiae (LD50 = 102 ng/mg female, but was not as effective as common synthetic insecticides. Overall, there was no significant difference between the responses of the three mosquito strains to Z. heitzii extracts, indicating no cross resistance with conventional pesticides.

  6. Insecticidal activities of bark, leaf and seed extracts of Zanthoxylum heitzii against the African malaria vector Anopheles gambiae.

    Science.gov (United States)

    Overgaard, Hans J; Sirisopa, Patcharawan; Mikolo, Bertin; Malterud, Karl E; Wangensteen, Helle; Zou, Yuan-Feng; Paulsen, Berit S; Massamba, Daniel; Duchon, Stephane; Corbel, Vincent; Chandre, Fabrice

    2014-01-01

    The olon tree, Zanthoxylum heitzii (syn. Fagara heitzii) is commonly found in the central-west African forests. In the Republic of Congo (Congo-Brazzaville) its bark is anecdotally reported to provide human protection against fleas. Here we assess the insecticidal activities of Z. heitzii stem bark, seed and leaf extracts against Anopheles gambiae s.s, the main malaria vector in Africa. Extracts were obtained by Accelerated Solvent Extraction (ASE) using solvents of different polarity and by classical Soxhlet extraction using hexane as solvent. The insecticidal effects of the crude extracts were evaluated using topical applications of insecticides on mosquitoes of a susceptible reference strain (Kisumu [Kis]), a strain homozygous for the L1014F kdr mutation (kdrKis), and a strain homozygous for the G119S Ace1R allele (AcerKis). The insecticidal activities were measured using LD50 and LD95 and active extracts were characterized by NMR spectroscopy and HPLC chromatography. Results show that the ASE hexane stem bark extract was the most effective compound against An. gambiae (LD50 = 102 ng/mg female), but was not as effective as common synthetic insecticides. Overall, there was no significant difference between the responses of the three mosquito strains to Z. heitzii extracts, indicating no cross resistance with conventional pesticides. PMID:25525826

  7. African water storage pots for the delivery of the Entomopathogenic fungus Metarhizium anisopliae to the Malaria vectors Anopheles gambiae s.s. and Anopheles funestus

    NARCIS (Netherlands)

    Farenhorst, M.; Farina, D.; Scholte, E.J.; Takken, W.; Hunt, R.H.; Coetzee, M.; Knols, B.G.J.

    2008-01-01

    We studied the use of African water storage pots for point source application of Metarhizium anisopliae against the malaria vectors Anopheles gambiae s.s. and An. funestus. Clay pots were shown to be attractive resting sites for male and female An. gambiae s.s. and were not repellent after impregnat

  8. Identification of field caught Anopheles gambiae s.s. and Anopheles arabiensis by TaqMan single nucleotide polymorphism genotyping

    Directory of Open Access Journals (Sweden)

    Bayoh Nabie M

    2007-02-01

    Full Text Available Abstract Background Identification of Anopheles gambiae s.s. and Anopheles arabiensis from field-collected Anopheles gambiae s.l. is often necessary in basic and applied research, and in operational control programmes. The currently accepted method involves use of standard polymerase chain reaction amplification of ribosomal DNA (rDNA from the 3' 28S to 5' intergenic spacer region of the genome, and visual confirmation of amplicons of predicted size on agarose gels, after electrophoresis. This report describes development and evaluation of an automated, quantitative PCR method based upon TaqMan™ single nucleotide polymorphism (SNP genotyping. Methods Standard PCR, and TaqMan SNP genotyping with newly designed primers and fluorophore-labeled probes hybridizing to sequences of complementary rDNA specific for either An. gambiae s.s. or An. arabiensis, were conducted in three experiments involving field-collected An. gambiae s.l. from western Kenya, and defined laboratory strains. DNA extraction was from a single leg, sonicated for five minutes in buffer in wells of 96-well PCR plates. Results TaqMan SNP genotyping showed a reaction success rate, sensitivity, and species specificity comparable to that of standard PCR. In an extensive field study, only 29 of 3,041 (0.95% were determined to be hybrids by TaqMan (i.e., having rDNA sequences from both species, however, all but one were An. arabiensis by standard PCR, suggesting an acceptably low (ca. 1% error rate for TaqMan genotyping in mistakenly identifying species hybrids. Conclusion TaqMan SNP genotyping proved to be a sensitive and rapid method for identification of An. gambiae s.l. and An. arabiensis, with a high success rate, specific results, and congruence with the standard PCR method.

  9. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2010-06-01

    Full Text Available Abstract Background Entomopathogenic fungi are being investigated as a new mosquito control tool because insecticide resistance is preventing successful mosquito control in many countries, and new methods are required that can target insecticide-resistant malaria vectors. Although laboratory studies have previously examined the effects of entomopathogenic fungi against adult mosquitoes, most application methods used cannot be readily deployed in the field. Because the fungi are biological organisms it is important to test potential field application methods that will not adversely affect them. The two objectives of this study were to investigate any differences in fungal susceptibility between an insecticide-resistant and insecticide-susceptible strain of Anopheles gambiae sensu stricto, and to test a potential field application method with respect to the viability and virulence of two fungal species Methods Pieces of white polyester netting were dipped in Metarhizium anisopliae ICIPE-30 or Beauveria bassiana IMI391510 mineral oil suspensions. These were kept at 27 ± 1°C, 80 ± 10% RH and the viability of the fungal conidia was recorded at different time points. Tube bioassays were used to infect insecticide-resistant (VKPER and insecticide-susceptible (SKK strains of An. gambiae s.s., and survival analysis was used to determine effects of mosquito strain, fungus species or time since fungal treatment of the net. Results The resistant VKPER strain was significantly more susceptible to fungal infection than the insecticide-susceptible SKK strain. Furthermore, B. bassiana was significantly more virulent than M. anisopliae for both mosquito strains, although this may be linked to the different viabilities of these fungal species. The viability of both fungal species decreased significantly one day after application onto polyester netting when compared to the viability of conidia remaining in suspension. Conclusions The insecticide

  10. Anopheles gambiae collagen IV genes: cloning, phylogeny and midgut expression associated with blood feeding and Plasmodium infection.

    Science.gov (United States)

    Gare, D C; Piertney, S B; Billingsley, P F

    2003-07-01

    A prerequisite for understanding the role that mosquito midgut extracellular matrix molecules play in malaria parasite development is proper isolation and characterisation of the genes coding for components of the basal lamina. Here we have identified genes coding for alpha1 and alpha2 chains of collagen IV from the major malaria vector, Anopheles gambiae. Conserved sequences in the terminal NC1 domain were used to obtain partial gene sequences of this functional region, and full sequence was isolated from a pupal cDNA library. In a DNA-derived phylogeny, the alpha1 and alpha2 chains cluster with dipteran orthologs, and the alpha2 is ancestral. The expression of collagen alpha1(IV) peaked during the pupal stage of mosquito development, and was expressed continuously in the adult female following a blood meal with a further rise detected in older mosquitoes. Collagen alpha1(IV) is also upregulated when the early oocyst of Plasmodium yoelii was developing within the mosquito midgut and may contribute to a larger wound healing response. A model describing the expression of basal lamina proteins during oocyst development is presented, and we hypothesise that the development of new basal lamina between the oocyst and midgut epithelium is akin to a wound healing process. PMID:12814648

  11. Multicopper oxidase-3 is a laccase associated with the peritrophic matrix of Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Minglin Lang

    Full Text Available The multicopper oxidase (MCO family of enzymes includes laccases, which oxidize a broad range of substrates including polyphenols and phenylendiamines; ferroxidases, which oxidize ferrous iron; and several other oxidases with specific substrates such as ascorbate, bilirubin or copper. The genome of Anopheles gambiae, a species of mosquito, encodes five putative multicopper oxidases. Of these five, only AgMCO2 has known enzymatic and physiological functions: it is a highly conserved laccase that functions in cuticle pigmentation and tanning by oxidizing dopamine and dopamine derivatives. AgMCO3 is a mosquito-specific gene that is expressed predominantly in adult midguts and Malpighian tubules. To determine its enzymatic function, we purified recombinant AgMCO3 and analyzed its activity. AgMCO3 oxidized hydroquinone (a p-diphenol, the five o-diphenols tested, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid (ABTS, and p-phenylenediamine, but not ferrous iron. The catalytic efficiencies of AgMCO3 were similar to those of cuticular laccases (MCO2 orthologs, except that AgMCO3 oxidized all of the phenolic substrates with similar efficiencies whereas the MCO2 isoforms were less efficient at oxidizing catechol or dopa. These results demonstrate that AgMCO3 can be classified as a laccase and suggest that AgMCO3 has a somewhat broader substrate specificity than MCO2 orthologs. In addition, we observed AgMCO3 immunoreactivity in the peritrophic matrix, which functions as a selective barrier between the blood meal and midgut epithelial cells, protecting the midgut from mechanical damage, pathogens, and toxic molecules. We propose that AgMCO3 may oxidize toxic molecules in the blood meal leading to detoxification or to cross-linking of the molecules to the peritrophic matrix, thus targeting them for excretion.

  12. Highly evolvable malaria vectors : the genomes of 16 Anopheles mosquitoes

    OpenAIRE

    Neafsey, Daniel E; Waterhouse, Robert M.; Abai, Mohammad R.; Aganezov, Sergey S.; Alekseyev, Max A.; Allen, James E.; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A.; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W.; Blandin, Stephanie A.

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning similar to 100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromos...

  13. Development of vegetable farming: a cause of the emergence of insecticide resistance in populations of Anopheles gambiae in urban areas of Benin

    Directory of Open Access Journals (Sweden)

    Braïma James

    2009-05-01

    Full Text Available Abstract Background A fast development of urban agriculture has recently taken place in many areas in the Republic of Benin. This study aims to assess the rapid expansion of urban agriculture especially, its contribution to the emergence of insecticide resistance in populations of Anopheles gambiae. Methods The protocol was based on the collection of sociological data by interviewing vegetable farmers regarding various agricultural practices and the types of pesticides used. Bioassay tests were performed to assess the susceptibility of malaria vectors to various agricultural insecticides and biochemical analysis were done to characterize molecular status of population of An. gambiae. Results This research showed that: (1 The rapid development of urban agriculture is related to unemployment observed in cities, rural exodus and the search for a balanced diet by urban populations; (2 Urban agriculture increases the farmers' household income and their living standard; (3 At a molecular level, PCR revealed the presence of three sub-species of An. gambiae (An. gambiae s.s., Anopheles melas and Anopheles arabiensis and two molecular forms (M and S. The kdr west mutation recorded in samples from the three sites and more specifically on the M forms seems to be one of the major resistance mechanisms found in An. gambiae from agricultural areas. Insecticide susceptibility tests conducted during this research revealed a clear pattern of resistance to permethrin (76% mortality rate at Parakou; 23.5% at Porto-Novo and 17% at Cotonou. Conclusion This study confirmed an increase activity of the vegetable farming in urban areas of Benin. This has led to the use of insecticide in an improper manner to control vegetable pests, thus exerting a huge selection pressure on mosquito larval population, which resulted to the emergence of insecticide resistance in malaria vectors.

  14. Susceptibility of Anopheles gambiae sensu lato (Diptera:Culicidae to permethrin, deltamethrin and bendiocarb in Ibadan city, Southwest Nigeria

    Directory of Open Access Journals (Sweden)

    Kolade Tahiru Ibrahim

    2013-01-01

    Full Text Available This study was carried out to assess the resistance/susceptibility level of An.gambiae s.l, a major malaria vector in Ibadan metropolis, south west Nigeria, to two classes of insecticides approved by World Health Organization (WHO for vector control. Anopheles larvae were collected from two communities (Ojoo and Bodija within the metropolis and reared to adults. Two to three-day old, non-engorged female mosquitoes were exposed to discriminating dosages of 0.05% deltamethrin, 0.75% permethrin and 0.1% bendiocarb using WHO protocols and susceptibility test kits. Knockdown effect was recorded every 10 min and mortality scored 24 h after exposure. Species identification was by morphological characteristics only. The study revealed that the major malaria vector in Nigeria, An.gambiae s.l,An.gambiae s.l, were susceptible (mortality rate of 98.8% to deltamethrin in Ojoo community, while Bodija recorded marginal susceptibility (87.5%. Both sites showed reduced susceptibility to permethrin and resistance to bendiocarb with 24 h post exposure mortalities ranging from 83.5% to 87.7% and 70.0% and 52.5%, respectively. The median knockdown time (KDT50 from 22-44.2 min for the pyrethroids (permethrin and deltamethrin, while that of carbamates (bendiocarb range from 35.2 to 49.5 min. Resistance recorded in the field populations of An.gambiae s.l in Ibadan to bendiocarb was not observed in same population exposed to the pyrethroids (deltamethrin and permethrin but with differential susceptibility. Therefore Bendiocarb may not be suitable as alternatives to mitigate pyrethroid resistance. A rationalised use of these insecticides coupled with regular monitoring of resistance status is essential to improve and evaluate the efficacy of the current vector control tools (ITN and IRS.

  15. Sampling of An.gambiae s.s mosquitoes using Limburger cheese, heat and moisture as baits in a homemade trap

    Science.gov (United States)

    2011-01-01

    Background Ample evidence has shown that odour baited traps are likely to provide an objective monitoring tool for the host-seeking fraction of mosquito vectors of diseases like malaria and bancroftian filariasis. Such traps could eventually become part of primary healthcare systems used to study the vector biology and epidemiology of mosquito-borne diseases. I hereby, report a study that sampled Anopheles gambiae sensu stricto mosquitoes in a screen house using a homemade trap baited with a combination of Limburger cheese and moisture, Limburger cheese and heat, or Limburger cheese, moisture and heat. Findings Tests on the efficacy of the developed trap to sample An. gambiae s.s, mosquitoes using Limburger cheese, moisture and heat as baits were carried out in a screen house measuring 11.4 × 7.1 × 2.8 m. The studies were done in three phases. In the first phase the efficacy of the trap to sample An. gambiae s.s. using odour and moisture was tested. The second phase was to test the efficacy of the trap to sample An. gambiae s.s. using Limburger cheese and heat. In the third phase a combination of Limburger cheese, moisture and heat was tested. Tests were carried out for 27 consecutive nights. The designed trap collected a total of 59 An. gambiae s.s. in three trials. The trap baited with Limburger cheese and moisture collected 7 An. gambiae s.s in 7 days. The mean catch per day was 1. The trap baited with Limburger cheese and heat collected zero An. gambiae s.s in 11 days. The mean catch per day was therefore 0. The trap baited with Limburger cheese, moisture and heat collected 52 mosquitoes in 27 days and the mean catch was 1.93. Conclusions This study indicates that a non-electric fan driven trap baited with a combination of Limburger cheese, heat and moisture has a potential as an effective sampling tool for the malaria vector, Anopheles gambiae s.s. However, further optimization studies would be necessary. PMID:21835032

  16. Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in Northern Benin

    Directory of Open Access Journals (Sweden)

    Yadouleton Anges

    2011-04-01

    Full Text Available Abstract Background Pyrethroid insecticides, carbamate and organophosphate are the classes of insecticides commonly used in agriculture for crop protection in Benin. Pyrethroids remain the only class of insecticides recommended by the WHO for impregnation of bed nets. Unfortunately, the high level of pyrethroid resistance in Anopheles gambiae s.l., threatens to undermine the success of pyrethroid treated nets. This study focuses on the investigation of agricultural practices in cotton growing areas, and their direct impact on larval populations of An. gambiae in surrounding breeding sites. Methods The protocol was based on the collection of agro-sociological data where farmers were subjected to semi-structured questionnaires based on the strategies used for crop protection. This was complemented by bioassay tests to assess the susceptibility of malaria vectors to various insecticides. Molecular analysis was performed to characterize the resistance genes and the molecular forms of An. gambiae. Insecticide residues in soil samples from breeding sites were investigated to determine major factors that can inhibit the normal growth of mosquito larvae by exposing susceptible and resistant laboratory strains. Results There is a common use by local farmers of mineral fertilizer NPK at 200 kg/ha and urea at 50 kg/hectare following insecticide treatments in both the Calendar Control Program (CCP and the Targeted Intermittent Control Program (TICP. By contrast, no chemicals are involved in Biological Program (BP where farmers use organic and natural fertilizers which include animal excreta. Susceptibility test results confirmed a high resistance to DDT. Mean mortality of An. gambiae collected from the farms practicing CCP, TICP and BP methods were 33%, 42% and 65% respectively. An. gambiae populations from areas using the CCP and TICP programs showed resistance to permethrin with mortality of 50% and 58% respectively. By contrast, bioassay test results of

  17. Random amplified polymorphic DNA (RAPD) markers readily distinguish cryptic mosquito species (Diptera: Culicidae: Anopheles).

    Science.gov (United States)

    Wilkerson, R C; Parsons, T J; Albright, D G; Klein, T A; Braun, M J

    1993-01-01

    The usefulness of random amplified polymorphic DNA (RAPD) was examined as a potential tool to differentiate cryptic mosquito species. It proved to be a quick, effective means of finding genetic markers to separate two laboratory populations of morphologically indistinguishable African malaria vectors, Anopheles gambiae and An. arabiensis. In an initial screening of fifty-seven RAPD primers, 377 bands were produced, 295 of which differed between the two species. Based on criteria of interpretability, simplicity and reproducibility, thirteen primers were chosen for further screening using DNA from thirty individuals of each species. Seven primers produced diagnostic bands, five of which are described here. Some problematic characteristics of RAPD banding patterns are discussed and approaches to overcome these are suggested. PMID:8269099

  18. Site-specific integration and expression of an anti-malarial gene in transgenic Anopheles gambiae significantly reduces Plasmodium infections.

    Directory of Open Access Journals (Sweden)

    Janet M Meredith

    Full Text Available Diseases transmitted by mosquitoes have a devastating impact on global health and this is worsening due to difficulties with existing control measures and climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. Historically the genetic modification of insects has relied upon transposable elements which have many limitations despite their successful use. To circumvent these limitations the Streptomyces phage phiC31 integrase system has been successfully adapted for site-specific transgene integration in insects. Here, we present the first site-specific transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 targeting site at a defined genomic location. A second phase of genetic modification then achieved site-specific integration of Vida3, a synthetic anti-malarial gene. Expression of Vida3, specifically in the midgut of bloodfed females, offered consistent and significant protection against Plasmodium yoelii nigeriensis, reducing average parasite intensity by 85%. Similar protection was observed against Plasmodium falciparum in some experiments, although protection was inconsistent. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters for their expression, enabling those offering maximum effect with minimum fitness cost to be identified. In the future, this technology will allow effective comparisons and informed choices to be made, potentially leading to complete transmission blockade.

  19. Larvicidal potential of some plants from West Africa against Culex quinquefasciatus (Say and Anopheles gambiae Giles (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Alain Azokou

    2013-04-01

    Full Text Available Background & objectives: Mosquitoes increased resistance to insecticides, and environmental concerns about the use of insecticides, pose a major challenge in the search for new molecules to deplete and incapacitate mosquito populations. Plants are the valuable source as practices consisting in exploiting plant materials as repellents, and are still in wide use throughout developing countries. The aim of the present study was to screen plants from Cτte d'Ivoire for larvicidal activity against mosquitoes. Methods: Resistant and sensitive larvae (III and IV instar of Anopheles gambiae and Culex quinquefasciatus were exposed to crude ethanol extracts (90% of 45 plants and viability observed after 30 min, 6, 12 and 24 h postincubation. After partition of active extracts, each fraction (hexane and chloroform washed with NaCl 1%, tannins and aqueous was tested using the same protocol at various concentrations (1000– 31.2 ppm. Results: Of 49 extracts tested, 7 exhibited high potential (LC50 = 80 to 370 ppm against resistant and sensitive III and IV instar larvae of An. gambiae and Cx. quinquefasciatus. These extracts were from Cissus populnea, Cochlospermum planchonii, Heliotropium indicum, Phyllanthus amarus, Vitex grandifolia and Alchornea cordifolia. However, three most active plant species (LC50 = 80– 180 ppm were Cs. populnea, Cm. planchonii and P. amarus Their hexane and chloroform fractions showed high larvicidal activity. Conclusion: This study demonstrated that plants from Cτte d'Ivoire have a real potential for malaria, yellow fever, filarial and dengue vector control. Those could be used as sources or provide lead compounds for the development of safe plant-based biocides.

  20. Synergy between repellents and non-pyrethroid insecticides strongly extends the efficacy of treated nets against Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    N'Guessan Raphaël

    2007-03-01

    Full Text Available Abstract Background To manage the kdr pyrethroid-resistance in Anopheline malaria vectors, new compounds or new strategies are urgently needed. Recently, mixing repellents (DEET and a non-pyrethroid insecticide (propoxur was shown to be as effective as deltamethrin, a standard pyrethroid, under laboratory conditions, because of a strong synergy between the two compounds. In the present study, the interactions between two repellents (DEET and KBR 3023 and a non-pyrethroid insecticide (pyrimiphos methyl or PM on netting were investigated. The residual efficacy and the inhibition of blood feeding conferred by these mixtures were assessed against Anopheles gambiae mosquitoes. Methods DEET and KBR 3023 were mixed with pyrimiphos methyl (PM, a organophosphate (OP insecticide. The performance of mono- and bi-impregnated nets against adult mosquitoes was assessed using a miniaturized, experimental hut system (laboratory tunnel tests that allows expression of behavioural responses to insecticide, particularly the mortality and blood feeding effects. Results Both mixtures (PM+DEET and PM+KBR3023 induced 95% mortality for more than two months compared with less than one week for each compound used alone, then reflecting a strong synergy between the repellents and PM. A similar trend was observed with the blood feeding rates, which were significantly lower for the mixtures than for each component alone. Conclusion Synergistic interactions between organophosphates and repellents may be of great interest for vector control as they may contribute to increase the residual life of impregnated materials and improve the control of pyrethroid-resistance mosquitoes. These results prompt the need to evaluate the efficacy of repellent/non-pyrethroid insecticide mixtures against field populations of An. gambiae showing high level of resistance to Ops and pyrethroids.

  1. Odorant-Binding Proteins of the Malaria Mosquito Anopheles funestus sensu stricto

    Science.gov (United States)

    Xu, Wei; Cornel, Anthony J.; Leal, Walter S.

    2010-01-01

    Background The mosquito Anopheles funestus is one of the major malaria vector species in sub-Saharan Africa. Olfaction is essential in guiding mosquito behaviors. Odorant-binding proteins (OBPs) are highly expressed in insect olfactory tissues and involved in the first step of odorant reception. An improved understanding of the function of malaria mosquito OBPs may contribute to identifying new attractants/repellents and assist in the development of more efficient and environmentally friendly mosquito controlling strategies. Methodology In this study, a large screening of over 50 ecologically significant odorant compounds led to the identification of 12 ligands that elicit significant electroantennographic (EAG) responses from An. funestus female antennae. To compare the absolute efficiency/potency of these chemicals, corrections were made for differences in volatility by determining the exact amount in a stimulus puff. Fourteen AfunOBP genes were cloned and their expression patterns were analyzed. AfunOBP1, 3, 7, 20 and 66 showed olfactory tissue specificity by reverse transcriptase PCR (RT-PCR). Quantitative real-time PCR (qRT-PCR) analysis showed that among olfactory-specific OBPs, AfunOBP1 and 3 are the most enriched OBPs in female antennae. Binding assay experiments showed that at pH 7, AfunOBP1 significantly binds to 2-undecanone, nonyl acetate, octyl acetate and 1-octen-3-ol but AfunOBP3, which shares 68% identify with AfunOBP1 at amino acid level, showed nearly no binding activity to the selected 12 EAG-active odorant compounds. Conclusion This work presents for the first time a study on the odorants and OBPs of the malaria vector mosquito An. funestus, which may provide insight into the An. funestus olfactory research, assist in a comparative study between major malaria mosquitoes An. gambiae and An. funestus olfactory system, and help developing new mosquito control strategies to reduce malaria transmission. PMID:21042539

  2. Transcriptional mediators Kto and Skd are involved in the regulation of the IMD pathway and anti-Plasmodium defense in Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Yang Chen

    Full Text Available The malarial parasite Plasmodium must complete a complex lifecycle in its Anopheles mosquito host, the main vector for Plasmodium. The mosquito resists infection with the human malarial parasite P. falciparum by engaging the NF-κB immune signaling pathway, IMD. Here we show that the conserved transcriptional mediators Kto and Skd are involved in the regulation of the mosquito IMD pathway. RNAi-mediated depletion of Kto and Skd in the Anopheles gambiae cell line L5-3 resulted in a decrease in the transcript abundance of Cec1, which is controlled by the IMD pathway. Silencing the two genes also resulted in an increased susceptibility of the mosquito to bacterial and Plasmodium falciparum infection, but not to infection with the rodent malaria parasite P. berghei. We also showed that Kto and Skd are not transcriptional co-activators of Rel2 or other key factors of the IMD pathway; however, they participate in the regulation of the IMD pathway, which is crucial for the mosquito's defense against P. falciparum.

  3. A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Crisanti Andrea

    2011-06-01

    Full Text Available Abstract Background The mosquito, Anopheles gambiae, is the primary vector of human malaria, a disease responsible for millions of deaths each year. To improve strategies for controlling transmission of the causative parasite, Plasmodium falciparum, we require a thorough understanding of the developmental mechanisms, physiological processes and evolutionary pressures affecting life-history traits in the mosquito. Identifying genes expressed in particular tissues or involved in specific biological processes is an essential part of this process. Results In this study, we present transcription profiles for ~82% of annotated Anopheles genes in dissected adult male and female tissues. The sensitivity afforded by examining dissected tissues found gene activity in an additional 20% of the genome that is undetected when using whole-animal samples. The somatic and reproductive tissues we examined each displayed patterns of sexually dimorphic and tissue-specific expression. By comparing expression profiles with Drosophila melanogaster we also assessed which genes are well conserved within the Diptera versus those that are more recently evolved. Conclusions Our expression atlas and associated publicly available database, the MozAtlas (http://www.tissue-atlas.org, provides information on the relative strength and specificity of gene expression in several somatic and reproductive tissues, isolated from a single strain grown under uniform conditions. The data will serve as a reference for other mosquito researchers by providing a simple method for identifying where genes are expressed in the adult, however, in addition our resource will also provide insights into the evolutionary diversity associated with gene expression levels among species.

  4. The molecular evolution of four anti-malarial immune genes in the Anopheles gambiae species complex

    Directory of Open Access Journals (Sweden)

    Simard Frederic

    2008-03-01

    Full Text Available Abstract Background If the insect innate immune system is to be used as a potential blocking step in transmission of malaria, then it will require targeting one or a few genes with highest relevance and ease of manipulation. The problem is to identify and manipulate those of most importance to malaria infection without the risk of decreasing the mosquito's ability to stave off infections by microbes in general. Molecular evolution methodologies and concepts can help identify such genes. Within the setting of a comparative molecular population genetic and phylogenetic framework, involving six species of the Anopheles gambiae complex, we investigated whether a set of four pre-selected immunity genes (gambicin, NOS, Rel2 and FBN9 might have evolved under selection pressure imposed by the malaria parasite. Results We document varying levels of polymorphism within and divergence between the species, in all four genes. Introgression and the sharing of ancestral polymorphisms, two processes that have been documented in the past, were verified in this study in all four studied genes. These processes appear to affect each gene in different ways and to different degrees. However, there is no evidence of positive selection acting on these genes. Conclusion Considering the results presented here in concert with previous studies, genes that interact directly with the Plasmodium parasite, and play little or no role in defense against other microbes, are probably the most likely candidates for a specific adaptive response against P. falciparum. Furthermore, since it is hard to establish direct evidence linking the adaptation of any candidate gene to P. falciparum infection, a comparative framework allowing at least an indirect link should be provided. Such a framework could be achieved, if a similar approach like the one involved here, was applied to all other anopheline complexes that transmit P. falciparum malaria.

  5. Laboratory studies on the olfactory behaviour of Anopheles quadriannulatus

    NARCIS (Netherlands)

    Pates, H.V.; Takken, W.; Curtis, C.F.

    2005-01-01

    The host preference of Anopheles quadriannulatus Theobald (Diptera: Culicidae), the zoophilic member of the malaria mosquito complex Anopheles gambiae Giles, was investigated in a dual-choice olfactometer. Naïve female mosquitoes were exposed to CO2, acetone, 1-octen-3-ol, and skin emanations from c

  6. Comparative evaluation of systemic drugs for their effects against Anopheles gambiae

    OpenAIRE

    Butters, Matthew P.; Kobylinski, Kevin C.; Deus, Kelsey M.; da Silva, Ines Marques; GRAY, MEG; sylla, massamba; Foy, Brian D.

    2011-01-01

    Laboratory and field studies have shown that ivermectin, a drug that targets invertebrate ligand-gated ion channels (LGICs), is potently active against Anopheles spp. mosquitoes at concentrations present in human blood after standard drug administrations; thus ivermectin holds promise as a mass human-administered endectocide that could help suppress malaria parasite transmission. We evaluated other systemic LGIC-targeting drugs for their activities against the African malaria vector Anopheles...

  7. Allomonal effect of breath contributes to differential attractiveness of humans to the African malaria vector Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Takken Willem

    2004-01-01

    Full Text Available Abstract Background Removal of exhaled air from total body emanations or artificially standardising carbon dioxide (CO2 outputs has previously been shown to eliminate differential attractiveness of humans to certain blackfly (Simuliidae and mosquito (Culicidae species. Whether or not breath contributes to between-person differences in relative attractiveness to the highly anthropophilic malaria vector Anopheles gambiae sensu stricto remains unknown and was the focus of the present study. Methods The contribution to and possible interaction of breath (BR and body odours (BO in the attraction of An. gambiae s.s. to humans was investigated by conducting dual choice tests using a recently developed olfactometer. Either one or two human subjects were used as bait. The single person experiments compared the attractiveness of a person's BR versus that person's BO or a control (empty tent with no odour. His BO and total emanations (TE = BR+BO were also compared with a control. The two-person experiments compared the relative attractiveness of their TE, BO or BR, and the TE of each person against the BO of the other. Results Experiments with one human subject (P1 as bait found that his BO and TE collected more mosquitoes than the control (P = 0.005 and P 1 attracted more mosquitoes than that of another person designated P8 (P 8 attracted more mosquitoes than the BR of P1 (P = 0.001. The attractiveness of the BO of P1 versus the BO of P8 did not differ (P = 0.346. The BO from either individual was consistently more attractive than the TE from the other (P Conclusions We demonstrated for the first time that human breath, although known to contain semiochemicals that elicit behavioural and/or electrophysiological responses (CO2, ammonia, fatty acids in An. gambiae also contains one or more constituents with allomonal (~repellent properties, which inhibit attraction and may serve as an important contributor to between-person differences in the relative

  8. Insecticide susceptibility of natural populations of Anopheles coluzzii and Anopheles gambiae (sensu stricto) from Okyereko irrigation site, Ghana, West Africa

    OpenAIRE

    Chabi, Joseph; Baidoo, Philip K.; Datsomor, Alex K.; Okyere, Dora; Ablorde, Aikins; Iddrisu, Alidu; Wilson, Michael D; Dadzie, Samuel K.; Jamet, Helen P.; Diclaro, Joseph W.

    2016-01-01

    Background The increasing spread of insecticide resistance in malaria vectors has been well documented across sub-Saharan Africa countries. The influence of irrigation on increasing vector resistance is poorly understood, and is critical to successful and ethical implementation of food security policies. This study investigated the insecticide resistance status of An. gambiae (s.l.) mosquitoes collected from the irrigated rice area of Okyereko, a village containing about 42 hectares of irriga...

  9. Wide cross-reactivity between Anopheles gambiae and Anopheles funestus SG6 salivary proteins supports exploitation of gSG6 as a marker of human exposure to major malaria vectors in tropical Africa

    Directory of Open Access Journals (Sweden)

    Petrarca Vincenzo

    2011-07-01

    Full Text Available Abstract Background The Anopheles gambiae gSG6 is an anopheline-specific salivary protein which helps female mosquitoes to efficiently feed on blood. Besides its role in haematophagy, gSG6 is immunogenic and elicits in exposed individuals an IgG response, which may be used as indicator of exposure to the main African malaria vector A. gambiae. However, malaria transmission in tropical Africa is sustained by three main vectors (A. gambiae, Anopheles arabiensis and Anopheles funestus and a general marker, reflecting exposure to at least these three species, would be especially valuable. The SG6 protein is highly conserved within the A. gambiae species complex whereas the A. funestus homologue, fSG6, is more divergent (80% identity with gSG6. The aim of this study was to evaluate cross-reactivity of human sera to gSG6 and fSG6. Methods The A. funestus SG6 protein was expressed/purified and the humoral response to gSG6, fSG6 and a combination of the two antigens was compared in a population from a malaria hyperendemic area of Burkina Faso where both vectors were present, although with a large A. gambiae prevalence (>75%. Sera collected at the beginning and at the end of the high transmission/rainy season, as well as during the following low transmission/dry season, were analysed. Results According to previous observations, both anti-SG6 IgG level and prevalence decreased during the low transmission/dry season and showed a typical age-dependent pattern. No significant difference in the response to the two antigens was found, although their combined use yielded in most cases higher IgG level. Conclusions Comparative analysis of gSG6 and fSG6 immunogenicity to humans suggests the occurrence of a wide cross-reactivity, even though the two proteins carry species-specific epitopes. This study supports the use of gSG6 as reliable indicator of exposure to the three main African malaria vectors, a marker which may be useful to monitor malaria transmission

  10. Life-table analysis of Anopheles malaria vectors: generational mortality as tool in mosquito vector abundance and control studies

    Directory of Open Access Journals (Sweden)

    Godwin Ray Anugboba Okogun

    2005-06-01

    Full Text Available Background & objectives: Vector control will for sometime remain a primary weapon in the waragainst vector borne diseases. Malaria is of paramount importance in this with its associated highmorbidity and mortality especially in sub-Saharan Africa. This study on generational mortality associatedfactors in Anopheles mosquitoes life-table analysis was designed to investigate the fecundity,levels of mortality and mortality associated factors at the aquatic stages of anopheline malaria vectors.Methods: Mortality associated factors were investigated at the eggs, I and II instar larval, III and IVinstar larval and pupal stages of two anopheline species— Anopheles pseudopunctipennis (Theobaldand An. gambiae life-cycles in screen cages. Adult male and female mosquitoes were membrane filterfedand algae in culture medium formed the bulk of food substances for the larval stage. Environmentaltemperature of culture media, pH and some associated physio-chemical factors were also determined.Results: Results showed significant mortality rates at various aquatic stages. Infertility, cannibalismand environmental factors were the major factors responsible for mortality at the egg, larval and pupalstages respectively.Interpretation & conclusion: The aquatic stages of Anopheles mosquito mortality factor K and themortality factors at the various stages investigated k1, k2, k3 and k4 are discussed. Our recommendationsinclude further studies on the possible genetic modification of predacious An. pseudopunctipennislarvae and/or its modification for the production of sterile/infertile eggs as possible alternativesin the reduction and control of anopheline malaria burden.

  11. New selenoproteins identified in silico from the genome of Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    JIANG Liang; LIU Qiong; CHEN Ping; GAO ZhongHong; XU HuiBi

    2007-01-01

    Selenoprotein is biosynthesized by the incorporation of selenocysteine into proteins, where the TGA codon in the open reading frame does not act as a stop signal but is translated into selenocysteine. The dual functions of TGA result in mis-annotation or lack of selenoproteins in the sequenced genomes of many species. Available computational tools fail to correctly predict selenoproteins. Thus, we developed a new method to identify selenoproteins from the genome of Anopheles gambiae computationally.Based on released genomic information, several programs were edited with PERL language to identify selenocysteine insertion sequence (SECIS) element, the coding potential of TGA codons, and cysteine-containing homologs of selenoprotein genes. Our results showed that 11365 genes were terminated with TGA codons, 918 of which contained SECIS elements. Similarity search revealed that 58genes contained Sec/Cys pairs and similar flanking regions around in-frame TGA codons. Finally, 7genes were found to fully meet requirements for selenoproteins, although they have not been annotated as selenoproteins in NCBI databases. Deduced from their basic properties, the newly found selenoproteins in the genome of Anopheles gambiae are possibly related to in vivo oxidation tolerance and protein regulation in order to interfere with anopheles' vectorial capacity of Plasmodium. This study may also provide theoretical bases for the prevention of malaria from anopheles transmission.

  12. Experimental hut evaluation of bednets treated with an organophosphate (chlorpyrifos-methyl) or a pyrethroid (lambdacyhalothrin) alone and in combination against insecticide-resistant Anopheles gambiae and Culex quinquefasciatus mosquitoes.

    OpenAIRE

    Corbel Vincent; Chandre Fabrice; Hougard Jean-Marc; Curtis Christopher F; Koffi Alphonsine A; N'Guessan Raphael; Asidi Alex N; Darriet Frédéric; Zaim Morteza; Rowland Mark W

    2005-01-01

    Abstract Background Pyrethroid resistant mosquitoes are becoming increasingly common in parts of Africa. It is important to identify alternative insecticides which, if necessary, could be used to replace or supplement the pyrethroids for use on treated nets. Certain compounds of an earlier generation of insecticides, the organophosphates may have potential as net treatments. Methods Comparative studies of chlorpyrifos-methyl (CM), an organophosphate with low mammalian toxicity, and lambdacyha...

  13. The role of cow urine in the oviposition site preference of culicine and Anopheles mosquitoes

    Directory of Open Access Journals (Sweden)

    Kweka Eliningaya J

    2011-09-01

    Full Text Available Abstract Background Chemical and behavioural ecology of mosquitoes plays an important role in the development of chemical cue based vector control. To date, studies available have focused on evaluating mosquito attractants and repellents of synthetic and human origins. This study, however, was aimed at seasonal evaluation of the efficiency of cow urine in producing oviposition cues to Anopheles gambiae s.l. and Culex quinquefasciatus in both laboratory and field conditions. Methods Oviposition response evaluation in laboratory conditions was carried out in mosquito rearing cages. The oviposition substrates were located in parallel or in diagonal positions inside the cage. Urine evaluation against gravid females of An. arabiensis and Cx. quinquefasciatus was carried out at Day 1, Day 3 and Day 7. Five millilitres (mls of cow urine was added to oviposition substrate while de-chlorinated water was used as a control. In field experiments, 500 mls of cow urine was added in artificial habitats with 2500 mls of de-chlorinated water and 2 kgs of soil. The experiment was monitored for thirty consecutive days, eggs were collected daily from the habitats at 7.00 hrs. Data analysis was performed using parametric and non-parametric tests for treatments and controls while attraction of the oviposition substrate in each species was presented using Oviposition Activity Index (OAI. Results The OAI was positive with ageing of cattle urine in culicine species in both laboratory and field experiments. The OAI for anopheline species was positive with fresh urine. The OAI during the rainy season was positive for all species tested while in the dry season the OAI for culicine spp and Anopheles gambiae s.l., changed with time from positive to negative values. Based on linear model analysis, seasons and treatments had a significant effect on the number of eggs laid in habitats, even though the number of days had no effect. Conclusion Oviposition substrates treated with

  14. Influence of Land-use on the Fitness of Anopheles gambiae, the Principal Vector of Malaria in Nigeria

    Directory of Open Access Journals (Sweden)

    Israel Kayode Olayemi

    2009-02-01

    Full Text Available Background: Urbanization often results in profound environmental alterations that may promote the transmission of malaria. Though, land-use practices in urban areas have been linked with proliferations of suitable larval breeding habitats of malaria vectors, no attempt has been made to systematically investigate the influence of land-use practices on malaria transmission in Nigeria. Objectives: To elucidate the influence of land-use practices on larval development and adult body size of Anopheles gambiae (Diptera: Culicidae mosquitoes in Minna, Nigeria. Materials and Methods: Newly-hatched larvae of An. gmbiae mosquitoes were reared in semi-natural habitats stationed in five different sites, each representing the major land-use types in the area. The larvae were monitored daily for Duration of Immature Development (DID and Immature Survival Rate (ISR; while Wing Length (WL was used as an index of adult body size. Results: DID, ISR and WL varied significantly (P < 0.05 among the land-use categories; with lager numbers of bigger mosquitoes produced at a faster rate in the artificial than natural land-use sites. Water temperature for larval development was best in the Refuse Dump (RD site (mean = 28.11 ± 2.50oC and consequently the shortest DID (mean = 9.70 ± 0.74 days, as well as, the largest mosquitoes (mean WL = 3.10 ± 0.90 mm, were recorded in this land-use category. However, while ISR was highest (mean = 96.30 ± 2.78% in Farm Land (FL, the mosquitoes that emerged from this site were the smallest (mean WL = 1.96 ± 0.51mm. The Natural Vegetation (NV land-use category was the least productive, as the larvae took the longest time (13.29 ± 1.69 days to develop, and survived least (42.94 ± 7.50% in this site. Conclusion: The land-use practices in Minna enhanced the fitness of An. gambiae, and may increase the vectorial capacity of the species for malaria transmission in the area. Targeted larviciding interventions will greatly contribute to

  15. Islands and Stepping-Stones: Comparative Population Structure of Anopheles gambiae sensu stricto and Anopheles arabiensis in Tanzania and Implications for the Spread of Insecticide Resistance.

    OpenAIRE

    Deodatus Maliti; Hilary Ranson; Stephen Magesa; William Kisinza; Juma Mcha; Khamis Haji; Gerald Killeen; David Weetman

    2014-01-01

    Population genetic structures of the two major malaria vectors Anopheles gambiae s.s. and An. arabiensis, differ markedly across Sub-Saharan Africa, which could reflect differences in historical demographies or in contemporary gene flow. Elucidation of the degree and cause of population structure is important for predicting the spread of genetic traits such as insecticide resistance genes or artificially engineered genes. Here the population genetics of An. gambiae s.s. and An. arabiensis in ...

  16. Fine pathogen discrimination within the APL1 gene family protects Anopheles gambiae against human and rodent malaria species.

    Directory of Open Access Journals (Sweden)

    Christian Mitri

    2009-09-01

    Full Text Available Genetically controlled resistance of Anopheles gambiae mosquitoes to Plasmodium falciparum is a common trait in the natural population, and a cluster of natural resistance loci were mapped to the Plasmodium-Resistance Island (PRI of the A. gambiae genome. The APL1 family of leucine-rich repeat (LRR proteins was highlighted by candidate gene studies in the PRI, and is comprised of paralogs APL1A, APL1B and APL1C that share > or =50% amino acid identity. Here, we present a functional analysis of the joint response of APL1 family members during mosquito infection with human and rodent Plasmodium species. Only paralog APL1A protected A. gambiae against infection with the human malaria parasite P. falciparum from both the field population and in vitro culture. In contrast, only paralog APL1C protected against the rodent malaria parasites P. berghei and P. yoelii. We show that anti-P. falciparum protection is mediated by the Imd/Rel2 pathway, while protection against P. berghei infection was shown to require Toll/Rel1 signaling. Further, only the short Rel2-S isoform and not the long Rel2-F isoform of Rel2 confers protection against P. falciparum. Protection correlates with the transcriptional regulation of APL1A by Rel2-S but not Rel2-F, suggesting that the Rel2-S anti-parasite phenotype results at least in part from its transcriptional control over APL1A. These results indicate that distinct members of the APL1 gene family display a mutually exclusive protective effect against different classes of Plasmodium parasites. It appears that a gene-for-pathogen-class system orients the appropriate host defenses against distinct categories of similar pathogens. It is known that insect innate immune pathways can distinguish between grossly different microbes such as Gram-positive bacteria, Gram-negative bacteria, or fungi, but the function of the APL1 paralogs reveals that mosquito innate immunity possesses a more fine-grained capacity to distinguish between

  17. Effect of three larval diets on larval development and male sexual performance of Anopheles gambiae s.s.

    Science.gov (United States)

    Yahouédo, Gildas A; Djogbénou, Luc; Saïzonou, Jacques; Assogba, Bénoît S; Makoutodé, Michel; Gilles, Jeremie R L; Maïga, Hamidou; Mouline, Karine; Soukou, Bhonna K; Simard, Frédéric

    2014-04-01

    Population replacement/elimination strategies based on mass-release of sterile or otherwise genetically modified (male) mosquitoes are being considered in order to expand the malaria vector control arsenal on the way to eradication. A challenge in this context, is to produce male mosquitoes that will be able to compete and mate with wild females more efficiently than their wild counterparts, i.e. high fitness males. This study explored the effect of three larval food diets developed by the International Atomic Energy Agency on the overall fitness and mating performance of male Anopheles gambiae s.s. mosquitoes (Kisumu strain). Larval development (pupation and emergence rate, development time) was monitored, and adult wing length and energy reserves at emergence (i.e. lipids, sugars, glycogen and proteins) were measured. Male sexual performance was assessed through an insemination test whereby one male and 10 virgin females were maintained together in the same cage in order to record the number of inseminated females per 24h. Our results show that males reared on Diets 2 and 3 performed best during larval development. Males provided with treatment 2.2 had a shorter development time and performed best in insemination tests. However, these males had the lowest overall lifespan, suggesting a trade-off between longevity and sexual performances which needs to be taken into consideration when planning release. The results from this work were discussed in the context of sterile insect techniques or genetic control methods which is today one of the strategy in the overall mosquito control and elimination efforts. PMID:24291460

  18. Remarkable diversity of intron-1 of the para voltage-gated sodium channel gene in an Anopheles gambiae/Anopheles coluzzii hybrid zone.

    OpenAIRE

    Santolamazza, F.; Caputo, B.; Nwakanma, DC; Fanello, C.; Petrarca, V.; Conway, DJ; Weetman, D; J. Pinto; Mancini, E.; della Torre, A.

    2015-01-01

    Background Genomic differentiation between Anopheles gambiae and Anopheles coluzzii - the major malaria vectors in sub-Saharan Africa - is localized into large “islands” toward the centromeres of chromosome-X and the two autosomes. Linkage disequilibrium between these genomic islands was first detected between species-specific polymorphisms within ribosomal DNA genes (IGS-rDNA) on the X-chromosome and a single variant at position 702 of intron 1 (Int-1702) of the para Voltage-Gated Sodium Cha...

  19. Successful field trial of attractive toxic sugar bait (ATSB plant-spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa

    Directory of Open Access Journals (Sweden)

    Doumbia Seydou

    2010-07-01

    Full Text Available Abstract Background Based on highly successful demonstrations in Israel that attractive toxic sugar bait (ATSB methods can decimate local populations of mosquitoes, this study determined the effectiveness of ATSB methods for malaria vector control in the semi-arid Bandiagara District of Mali, West Africa. Methods Control and treatment sites, selected along a road that connects villages, contained man-made ponds that were the primary larval habitats of Anopheles gambiae and Anopheles arabiensis. Guava and honey melons, two local fruits shown to be attractive to An. gambiae s.l., were used to prepare solutions of Attractive Sugar Bait (ASB and ATSB that additionally contained boric acid as an oral insecticide. Both included a color dye marker to facilitate determination of mosquitoes feeding on the solutions. The trial was conducted over a 38-day period, using CDC light traps to monitor mosquito populations. On day 8, ASB solution in the control site and ATSB solution in the treatment site were sprayed using a hand-pump on patches of vegetation. Samples of female mosquitoes were age-graded to determine the impact of ATSB treatment on vector longevity. Results Immediately after spraying ATSB in the treatment site, the relative abundance of female and male An. gambiae s.l. declined about 90% from pre-treatment levels and remained low. In the treatment site, most females remaining after ATSB treatment had not completed a single gonotrophic cycle, and only 6% had completed three or more gonotrophic cycles compared with 37% pre-treatment. In the control site sprayed with ASB (without toxin, the proportion of females completing three or more gonotrophic cycles increased from 28.5% pre-treatment to 47.5% post-treatment. In the control site, detection of dye marker in over half of the females and males provided direct evidence that the mosquitoes were feeding on the sprayed solutions. Conclusion This study in Mali shows that even a single application of

  20. A simplified high-throughput method for pyrethroid knock-down resistance (kdr detection in Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Walker Edward D

    2005-03-01

    Full Text Available Abstract Background A single base pair mutation in the sodium channel confers knock-down resistance to pyrethroids in many insect species. Its occurrence in Anopheles mosquitoes may have important implications for malaria vector control especially considering the current trend for large scale pyrethroid-treated bednet programmes. Screening Anopheles gambiae populations for the kdr mutation has become one of the mainstays of programmes that monitor the development of insecticide resistance. The screening is commonly performed using a multiplex Polymerase Chain Reaction (PCR which, since it is reliant on a single nucleotide polymorphism, can be unreliable. Here we present a reliable and potentially high throughput method for screening An. gambiae for the kdr mutation. Methods A Hot Ligation Oligonucleotide Assay (HOLA was developed to detect both the East and West African kdr alleles in the homozygous and heterozygous states, and was optimized for use in low-tech developing world laboratories. Results from the HOLA were compared to results from the multiplex PCR for field and laboratory mosquito specimens to provide verification of the robustness and sensitivity of the technique. Results and Discussion The HOLA assay, developed for detection of the kdr mutation, gives a bright blue colouration for a positive result whilst negative reactions remain colourless. The results are apparent within a few minutes of adding the final substrate and can be scored by eye. Heterozygotes are scored when a sample gives a positive reaction to the susceptible probe and the kdr probe. The technique uses only basic laboratory equipment and skills and can be carried out by anyone familiar with the Enzyme-linked immunosorbent assay (ELISA technique. A comparison to the multiplex PCR method showed that the HOLA assay was more reliable, and scoring of the plates was less ambiguous. Conclusion The method is capable of detecting both the East and West African kdr alleles

  1. Anopheles (Anopheles) petragnani Del Vecchio 1939-a new mosquito species for Germany.

    Science.gov (United States)

    Becker, Norbert; Pfitzner, Wolf Peter; Czajka, Christina; Kaiser, Achim; Weitzel, Thomas

    2016-07-01

    The so far known species of the Anopheles Claviger Complex, Anopheles claviger s.s. and Anopheles petragnani, can only be distinguished by partial overlapping characteristics of immature stages and by nucleotide sequence variation of the genomic ribosomal DNA (rDNA) internal transcribed spacer 2 (ITS2) region. The known distribution of An. petragnani is so far restricted to the western Mediterranean region, whereas An. claviger s.s. occurs across most of Europe, up to the Middle East and North Africa. In our study, we investigated the larval mosquito fauna in rock pools of the Murg valley (Black Forest, Germany) once a month from April to December 2015.Among other species, larvae belonging to the Anopheles Claviger Complex were found. The fourth instar larvae were morphologically identified by chaetotaxy of the head and abdomen. The results were confirmed by a multiplex PCR and additional sequencing of the amplificates.Of the 1289 collected larvae from the rock pools, seven belonged to the Anopheles Claviger Complex. Five individuals were determined morphologically as An. petragnani and two as An. claviger s.s. The associated mosquito fauna comprised of Aedes japonicus japonicus (548 individuals), Culex pipiens s.l. and Culex torrentium (493 individuals) and Culex hortensis (241 individuals).This is the first record of An. petragnani north of the Alps. Further studies will reveal whether this is an isolated population of An. petragnani and if the investigated rock pool breeding sites represent typical habitats of this species in temperate regions in Central Europe. PMID:27003404

  2. Anopheles gambiae heat shock protein cognate 70B impedes o'nyong-nyong virus replication

    OpenAIRE

    Higgs Stephen; Vanlandingham Dana L; Tsetsarkin Konstantin A; Hong Young S; Sim Cheolho; Collins Frank H

    2007-01-01

    Abstract Background Phylogenetic and functional analysis was conducted on an Anopheles gambiae gene, ENSANGG00000017398. Based on phylogenetic analysis, this gene belongs to the same lineage as Heat shock protein cognate 70-4 (Hsc70-4) in Drosophila. Accordingly, we propose to name this gene Heat shock protein cognate 70B (HSC70B). We previously reported that expression of HSC70B and other genes including elongation factor-1α (EF-1α) and the agglutinin attachment subunit (agglutinin) were up-...

  3. A peroxidase/dual oxidase system modulates midgut epithelial immunity in Anopheles gambiae.

    Science.gov (United States)

    Kumar, Sanjeev; Molina-Cruz, Alvaro; Gupta, Lalita; Rodrigues, Janneth; Barillas-Mury, Carolina

    2010-03-26

    Extracellular matrices in diverse biological systems are cross-linked by dityrosine covalent bonds catalyzed by the peroxidase/oxidase system. We show that a peroxidase, secreted by the Anopheles gambiae midgut, and dual oxidase form a dityrosine network that decreases gut permeability to immune elicitors. This network protects the microbiota by preventing activation of epithelial immunity. It also provides a suitable environment for malaria parasites to develop within the midgut lumen without inducing nitric oxide synthase expression. Disruption of this barrier results in strong and effective pathogen-specific immune responses. PMID:20223948

  4. GENETIC ISOLATION WITHIN THE MALARIA MOSQUITO ANOPHELES MELAS

    Science.gov (United States)

    Deitz, Kevin C; Athrey, Giri; Reddy, Michael R; Overgaard, Hans J; Matias, Abrahan; Jawara, Musa; della Torre, Alessandra; Petrarca, Vincenzo; Pinto, Joao; Kiszewski, Anthony; Kengne, Pierre; Costantini, Carlo; Caccone, Adalgisa; Slotman, Michel A

    2014-01-01

    Anopheles melas is a brackish water-breeding member of the An. gambiae complex that is distributed along the coast of West Africa and is a major malaria vector within its range. Because little is known about the population structure of this species, we analyzed 15 microsatellite markers and 1,161 bp of mtDNA in 11 An. melas populations collected throughout its range. Compared to its sibling species An. gambiae, An. melas populations have a high level of genetic differentiation between them, representing its patchy distribution due to its fragmented larval habitat which is associated with mangroves and salt marsh grass. Populations clustered into three distinct groups representing Western Africa, Southern Africa, and Bioko Island populations that appear to be mostly isolated. Fixed differences in the mtDNA are present between all three clusters, and a Bayesian clustering analysis of the microsatellite data found no evidence for migration from mainland to Bioko Island populations, and little migration was evident between the Southern to the Western cluster. Surprisingly, mtDNA divergence between the three An. melas clusters is on par with levels of divergence between other species of the An. gambiae complex, and no support for monophyly was observed in a maximum likelihood phylogenetic analysis. Finally, an Approximate Bayesian Analysis of microsatellite data indicates that Bioko Island An. melas populations were connected to the mainland populations in the past, but became isolated, presumably when sea levels rose after the last glaciation period (≥10,000-11,000 years ago). This study has exposed species level genetic divergence within An. melas, and also has implications for control of this malaria vector. PMID:22882458

  5. Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi

    NARCIS (Netherlands)

    Bukhari, S.T.; Middelman, A.; Koenraadt, C.J.M.; Takken, W.; Knols, B.G.J.

    2010-01-01

    Background Entomopathogenic fungi have shown great potential for the control of adult malaria vectors. However, their ability to control aquatic stages of anopheline vectors remains largely unexplored. Therefore, how larval characteristics (Anopheles species, age and larval density), fungus (species

  6. Crystal and Solution Studies of the “Plus-C” Odorant-binding Protein 48 from Anopheles gambiae

    Science.gov (United States)

    Tsitsanou, Katerina E.; Drakou, Christina E.; Thireou, Trias; Vitlin Gruber, Anna; Kythreoti, Georgia; Azem, Abdussalam; Fessas, Dimitrios; Eliopoulos, Elias; Iatrou, Kostas; Zographos, Spyros E.

    2013-01-01

    Much physiological and behavioral evidence has been provided suggesting that insect odorant-binding proteins (OBPs) are indispensable for odorant recognition and thus are appealing targets for structure-based discovery and design of novel host-seeking disruptors. Despite the fact that more than 60 putative OBP-encoding genes have been identified in the malaria vector Anopheles gambiae, the crystal structures of only six of them are known. It is therefore clear that OBP structure determination constitutes the bottleneck for structure-based approaches to mosquito repellent/attractant discovery. Here, we describe the three-dimensional structure of an A. gambiae “Plus-C” group OBP (AgamOBP48), which exhibits the second highest expression levels in female antennae. This structure represents the first example of a three-dimensional domain-swapped dimer in dipteran species. A combined binding site is formed at the dimer interface by equal contribution of each monomer. Structural comparisons with the monomeric AgamOBP47 revealed that the major structural difference between the two Plus-C proteins localizes in their N- and C-terminal regions, and their concerted conformational change may account for monomer-swapped dimer conversion and furthermore the formation of novel binding pockets. Using a combination of gel filtration chromatography, differential scanning calorimetry, and analytical ultracentrifugation, we demonstrate the AgamOBP48 dimerization in solution. Eventually, molecular modeling calculations were used to predict the binding mode of the most potent synthetic ligand of AgamOBP48 known so far, discovered by ligand- and structure-based virtual screening. The structure-aided identification of multiple OBP binders represents a powerful tool to be employed in the effort to control transmission of the vector-borne diseases. PMID:24097978

  7. Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto

    Directory of Open Access Journals (Sweden)

    Parham Paul E

    2012-08-01

    Full Text Available Abstract Background The impact of weather and climate on malaria transmission has attracted considerable attention in recent years, yet uncertainties around future disease trends under climate change remain. Mathematical models provide powerful tools for addressing such questions and understanding the implications for interventions and eradication strategies, but these require realistic modeling of the vector population dynamics and its response to environmental variables. Methods Published and unpublished field and experimental data are used to develop new formulations for modeling the relationships between key aspects of vector ecology and environmental variables. These relationships are integrated within a validated deterministic model of Anopheles gambiae s.s. population dynamics to provide a valuable tool for understanding vector response to biotic and abiotic variables. Results A novel, parsimonious framework for assessing the effects of rainfall, cloudiness, wind speed, desiccation, temperature, relative humidity and density-dependence on vector abundance is developed, allowing ease of construction, analysis, and integration into malaria transmission models. Model validation shows good agreement with longitudinal vector abundance data from Tanzania, suggesting that recent malaria reductions in certain areas of Africa could be due to changing environmental conditions affecting vector populations. Conclusions Mathematical models provide a powerful, explanatory means of understanding the role of environmental variables on mosquito populations and hence for predicting future malaria transmission under global change. The framework developed provides a valuable advance in this respect, but also highlights key research gaps that need to be resolved if we are to better understand future malaria risk in vulnerable communities.

  8. Differential attractiveness of humans to the African malaria vector Anopheles gambiae Giles - Effects of host characteristics and parasite infection

    NARCIS (Netherlands)

    Mukabana, W.R.

    2002-01-01

    The results of a series of studies designed to understand the principal factors that determine the differential attractiveness of humans to the malaria vector Anopheles gambiae are described in this thesis. Specific

  9. Chemical composition and insecticidal activity of plant essential oils from Benin against Anopheles gambiae (Giles)

    OpenAIRE

    Bossou, Annick; Mangelinckx, Sven; Yedomonhan, Hounnankpon; Boko, Pelagie M; Akogbeto, Martin C; De Kimpe, Norbert; Avlessi, Felicien; Sohounhloue, Dominique CK

    2013-01-01

    Background Insecticide resistance in sub-Saharan Africa and especially in Benin is a major public health issue hindering the control of the malaria vectors. Each Anopheles species has developed a resistance to one or several classes of the insecticides currently in use in the field. Therefore, it is urgent to find alternative compounds to conquer the vector. In this study, the efficacies of essential oils of nine plant species, which are traditionally used to avoid mosquito bites in Benin, we...

  10. Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto

    OpenAIRE

    Chilaka Nora; Perkins Elisabeth; Tripet Frédéric

    2012-01-01

    Abstract Background Memory and learning are critical aspects of the ecology of insect vectors of human pathogens because of their potential effects on contacts between vectors and their hosts. Despite this epidemiological importance, there have been only a limited number of studies investigating associative learning in insect vector species and none on Anopheline mosquitoes. Methods A simple behavioural assays was developed to study visual and olfactory associative learning in Anopheles gambi...

  11. The evolution of TEP1, an exceptionally polymorphic immunity gene in Anopheles gambiae

    OpenAIRE

    Yan Guiyun; Soares Dinesh C; Jiggins Francis M; Callister Deborah M; Obbard Darren J; Little Tom J

    2008-01-01

    Abstract Background Host-parasite coevolution can result in balancing selection, which maintains genetic variation in the susceptibility of hosts to parasites. It has been suggested that variation in a thioester-containing protein called TEP1 (AGAP010815) may alter the ability of Anopheles mosquitoes to transmit Plasmodium parasites, and high divergence between alleles of this gene suggests the possible action of long-term balancing selection. We studied whether TEP1 is a case of an ancient b...

  12. Segmental duplication implicated in the genesis of inversion 2Rj of Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Mamadou B Coulibaly

    Full Text Available The malaria vector Anopheles gambiae maintains high levels of inversion polymorphism that facilitate its exploitation of diverse ecological settings across tropical Africa. Molecular characterization of inversion breakpoints is a first step toward understanding the processes that generate and maintain inversions. Here we focused on inversion 2Rj because of its association with the assortatively mating Bamako chromosomal form of An. gambiae, whose distinctive breeding sites are rock pools beside the Niger River in Mali and Guinea. Sequence and computational analysis of 2Rj revealed the same 14.6 kb insertion between both breakpoints, which occurred near but not within predicted genes. Each insertion consists of 5.3 kb terminal inverted repeat arms separated by a 4 kb spacer. The insertions lack coding capacity, and are comprised of degraded remnants of repetitive sequences including class I and II transposable elements. Because of their large size and patchwork composition, and as no other instances of these insertions were identified in the An. gambiae genome, they do not appear to be transposable elements. The 14.6 kb modules inserted at both 2Rj breakpoint junctions represent low copy repeats (LCRs, also called segmental duplications that are strongly implicated in the recent (approximately 0.4N(e generations origin of 2Rj. The LCRs contribute to further genome instability, as demonstrated by an imprecise excision event at the proximal breakpoint of 2Rj in field isolates.

  13. Larvicidal effects of a neem (Azadirachta indica oil formulation on the malaria vector Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2007-05-01

    Full Text Available Abstract Background Larviciding is a key strategy used in many vector control programmes around the world. Costs could be reduced if larvicides could be manufactured locally. The potential of natural products as larvicides against the main African malaria vector, Anopheles gambiae s.s was evaluated. Methods To assess the larvicidal efficacy of a neem (Azadirachta indica oil formulation (azadirachtin content of 0.03% w/v on An. gambiae s.s., larvae were exposed as third and fourth instars to a normal diet supplemented with the neem oil formulations in different concentrations. A control group of larvae was exposed to a corn oil formulation in similar concentrations. Results Neem oil had an LC50 value of 11 ppm after 8 days, which was nearly five times more toxic than the corn oil formulation. Adult emergence was inhibited by 50% at a concentration of 6 ppm. Significant reductions on growth indices and pupation, besides prolonged larval periods, were observed at neem oil concentrations above 8 ppm. The corn oil formulation, in contrast, produced no growth disruption within the tested range of concentrations. Conclusion Neem oil has good larvicidal properties for An. gambiae s.s. and suppresses successful adult emergence at very low concentrations. Considering the wide distribution and availability of this tree and its products along the East African coast, this may prove a readily available and cheap alternative to conventional larvicides.

  14. A splice variant of PGRP-LC required for expression of antimicrobial peptides in Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    HUI LIN; LINGMIN ZHANG; CORALIA LUNA; NGO T.HOA; LIANGBIAO ZHENG

    2007-01-01

    Members of the peptidoglycan recognition protein (PGRP) family play essential roles in different manifestations of immune responses in insects. PGRP-LC, one of seven members of this family in the malaria vector Anopheles gambiae produced several spliced variants. Here we show that PGRP-LC, and not other members of the PGRP family nor the six members of the Gram-negative binding protein families, is required for the expression of antimicrobial peptide genes (such as CEC1 and GAM1) under the control of the Imd-Rel2 pathway in an A. gambiae cell line, 4a3A. PGRP-LC produces many splice variants that can be classified into three sub-groups (LC1, LC2 and LC3), based on the carboxyl terminal sequences. RNA interference against one LC1 sub-group resulted in dramatic reduction of CEC1 and GAM1. Over-expression of LC1 a and to a lesser extent LC3a (a member of the LC1 and LC3 sub-group, respectively) in the 4a3A cell line enhances the expression of CEC1 and GAM1. These results demonstrate that the LC1-subgroup splice variants are essential for the expression of CEC1 and GAM1 in A. gambiae cell line.

  15. Retrogenes Reveal the Direction of Sex-Chromosome Evolution in Mosquitoes

    Science.gov (United States)

    Toups, Melissa A.; Hahn, Matthew W.

    2010-01-01

    The mosquito Anopheles gambiae has heteromorphic sex chromosomes, while the mosquito Aedes aegypti has homomorphic sex chromosomes. We use retrotransposed gene duplicates to show an excess of movement off the An. gambiae X chromosome only after the split with Ae. aegypti, suggesting that their ancestor had homomorphic sex chromosomes. PMID:20660646

  16. Living at the edge: biogeographic patterns of habitat segregation conform to speciation by niche expansion in Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Costantini Carlo

    2009-05-01

    Full Text Available Abstract Background Ongoing lineage splitting within the African malaria mosquito Anopheles gambiae is compatible with ecological speciation, the evolution of reproductive isolation by divergent natural selection acting on two populations exploiting alternative resources. Divergence between two molecular forms (M and S identified by fixed differences in rDNA, and characterized by marked, although incomplete, reproductive isolation is occurring in West and Central Africa. To elucidate the role that ecology and geography play in speciation, we carried out a countrywide analysis of An. gambiae M and S habitat requirements, and that of their chromosomal variants, across Burkina Faso. Results Maps of relative abundance by geostatistical interpolators produced a distinct pattern of distribution: the M-form dominated in the northernmost arid zones, the S-form in the more humid southern regions. Maps of habitat suitability, quantified by Ecological Niche Factor Analysis based on 15 eco-geographical variables revealed less contrast among forms. M was peculiar as it occurred proportionally more in habitat of marginal quality. Measures of ecological niche breadth and overlap confirmed the mismatch between the fundamental and realized patterns of habitat occupation: forms segregated more than expected from the extent of divergence of their environmental envelope – a signature of niche expansion. Classification of chromosomal arm 2R karyotypes by multilocus genetic clustering identified two clusters loosely corresponding to molecular forms, with 'mismatches' representing admixed individuals due to shared ancestral polymorphism and/or residual hybridization. In multivariate ordination space, these karyotypes plotted in habitat of more marginal quality compared to non-admixed, 'typical', karyotypes. The distribution of 'typical' karyotypes along the main eco-climatic gradient followed a consistent pattern within and between forms, indicating an adaptive role

  17. Target-site resistance mutations (kdr and RDL), but not metabolic resistance, negatively impact male mating competiveness in the malaria vector Anopheles gambiae.

    Science.gov (United States)

    Platt, N; Kwiatkowska, R M; Irving, H; Diabaté, A; Dabire, R; Wondji, C S

    2015-09-01

    The implementation of successful insecticide resistance management strategies for malaria control is currently hampered by poor understanding of the fitness cost of resistance on mosquito populations, including their mating competiveness. To fill this knowledge gap, coupled and uncoupled Anopheles gambiae s.l. males (all M form (Anopheles coluzzii)) were collected from mating swarms in Burkina Faso. This multiple insecticide resistant population exhibited high 1014F kdr(R) allele frequencies (>60%) and RDL(R) (>80%) in contrast to the Ace-1(R) allele (RDL(R)/RDL(S) were also more likely to mate than homozygote-resistant males (OR=2.58; P=0.007). Furthermore, an additive mating disadvantage was detected in male homozygotes for both kdr/RDL-resistant alleles. In contrast, no fitness difference was observed for the Ace-1 mutation. Comparative microarray-based genome-wide transcription analysis revealed that metabolic resistance did not significantly alter the mating competitiveness of male An. coluzzii mosquitoes. Indeed, no significant difference of expression levels was observed for the main metabolic resistance genes, suggesting that metabolic resistance has a limited impact on male mating competiveness. In addition, specific gene classes/GO terms associated with mating process were detected including sensory perception and peroxidase activity. The detrimental impact of insecticide resistance on mating competiveness observed here suggests that resistance management strategies such as insecticide rotation could help reverse the resistance, if implemented early. PMID:25899013

  18. Trends in DDT and pyrethroid resistance in Anopheles gambiae s.s. populations from urban and agro-industrial settings in southern Cameroon

    Directory of Open Access Journals (Sweden)

    Kerah-Hinzoumbé Clément

    2009-09-01

    Full Text Available Abstract Background Pyrethroid insecticides are widely used for insect pest control in Cameroon. In certain insect species, particularly the malaria vector Anopheles gambiae, resistance to this class of insecticides is a source of great concern and needs to be monitored in order to sustain the efficacy of vector control operations in the fields. This study highlights trends in DDT and pyrethroid resistance in wild An. gambiae populations from South Cameroon. Methods Mosquitoes were collected between 2001 and 2007 in four sites in South Cameroon, where insecticides are used for agricultural or personal protection purposes. Insecticide use was documented in each site by interviewing residents. Batches of 2-4 days old adult female mosquitoes reared from larval collections were tested for susceptibility to DDT, permethrin and deltamethrin using standard WHO procedures. Control, dead and survivors mosquitoes from bioassays were identified by PCR-RFLP and characterized for the kdr mutations using either the AS-PCR or the HOLA method. Results Four chemical insecticide groups were cited in the study sites: organochlorines, organophosphates, carbamates and pyrethroids. These chemicals were used for personal, crop or wood protection. In the four An. gambiae populations tested, significant variation in resistance levels, molecular forms composition and kdr frequencies were recorded in the time span of the study. Increases in DDT and pyrethroid resistance, as observed in most areas, were generally associated with an increase in the relative frequency of the S molecular form carrying the kdr mutations at higher frequencies. In Mangoum, however, where only the S form was present, a significant increase in the frequency of kdr alleles between 2003 to 2007 diverged with a decrease of the level of resistance to DDT and pyrethroids. Analyses of the kdr frequencies in dead and surviving mosquitoes showed partial correlation between the kdr genotypes and resistance

  19. Activité larvicide sur Anopheles gambiae Giles et composition chimique des huiles essentielles extraites de quatre plantes cultivées au Cameroun

    OpenAIRE

    Tchoumbougnang F.; Dongmo PMJ.; Sameza ML.; Mbanjo EGN.; Fotso GBT.; Zollo PHA.; Menut C.

    2009-01-01

    Larvicidal activity against Anopheles gambiae Giles and chemical composition of essential oils from four plants cultivated in Cameroon. The chemical composition of the essential oils obtained by hydrodistillation of dry leaves from Cymbopogon citrates (DC.) Stapf, Ocimum canum Sims, Ocimum gratissimum L. var 'gratissimum' L. and Thymus vulgaris L. cultivated in Cameroon were analyzed and their larvicidal activity against fourth instar larvae of Anopheles gambiae Giles were determined. The yie...

  20. Expression of the cytochrome P450s, CYP6P3 and CYP6M2 are significantly elevated in multiple pyrethroid resistant populations of Anopheles gambiae s.s. from Southern Benin and Nigeria

    Directory of Open Access Journals (Sweden)

    Ranson Hilary

    2008-11-01

    Full Text Available Abstract Background Insecticide resistance in Anopheles mosquitoes is threatening the success of malaria control programmes. This is particularly true in Benin where pyrethroid resistance has been linked to the failure of insecticide treated bed nets. The role of mutations in the insecticide target sites in conferring resistance has been clearly established. In this study, the contribution of other potential resistance mechanisms was investigated in Anopheles gambiae s.s. from a number of localities in Southern Benin and Nigeria. The mosquitoes were sampled from a variety of breeding sites in a preliminary attempt to investigate the role of contamination of mosquito breeding sites in selecting for resistance in adult mosquitoes. Results All mosquitoes sampled belonged to the M form of An. gambiae s.s. There were high levels of permethrin resistance in an agricultural area (Akron and an urban area (Gbedjromede, low levels of resistance in mosquito samples from an oil contaminated site (Ojoo and complete susceptibility in the rural Orogun location. The target site mutation kdrW was detected at high levels in two of the populations (Akron f = 0.86 and Gbedjromede f = 0.84 but was not detected in Ojoo or Orogun. Microarray analysis using the Anopheles gambiae detox chip identified two P450s, CYP6P3 and CYP6M2 up regulated in all three populations, the former was expressed at particularly high levels in the Akron (12.4-fold and Ojoo (7.4-fold populations compared to the susceptible population. Additional detoxification and redox genes were also over expressed in one or more populations including two cuticular pre-cursor genes which were elevated in two of the three resistant populations. Conclusion Multiple resistance mechanisms incurred in the different breeding sites contribute to resistance to permethrin in Benin. The cytochrome P450 genes, CYP6P3 and CYP6M2 are upregulated in all three resistant populations analysed. Several additional potential

  1. Role of fish as predators of mosquito larvae on the floodplain of the Gambia River.

    Science.gov (United States)

    Louca, Vasilis; Lucas, Martyn C; Green, Clare; Majambere, Silas; Fillinger, Ulrike; Lindsay, Steve W

    2009-05-01

    We examined the potential of using native fish species in regulating mosquitoes in the floodplain of the Gambia River, the major source of mosquitoes in rural parts of The Gambia. Fishes and mosquito larvae were sampled along two 2.3-km-long transects, from the landward edge of the floodplain to the river from May to November 2005 to 2007. A semifield trial was used to test the predatory capacity of fish on mosquito larvae and the influence of fish chemical cues on oviposition. In the field, there was less chance of finding culicine larvae where Tilapia guineensis, the most common floodplain fish, were present; however, the presence of anophelines was not related to the presence or absence of any fish species. In semifield trials, both T. guineensis and Epiplatys spilargyreius were effective predators, removing all late-stage culicine and anopheline larvae within 1 d. Fewer culicines oviposited in sites with fish, suggesting that ovipositing culicine females avoid water with fish. In contrast, oviposition by anophelines was unaffected by fish. Our studies show that T. guineensis is a potential candidate for controlling mosquitoes in The Gambia. PMID:19496426

  2. Identification and analysis of Single Nucleotide Polymorphisms (SNPs in the mosquito Anopheles funestus, malaria vector

    Directory of Open Access Journals (Sweden)

    Hemingway Janet

    2007-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the most common source of genetic variation in eukaryotic species and have become an important marker for genetic studies. The mosquito Anopheles funestus is one of the major malaria vectors in Africa and yet, prior to this study, no SNPs have been described for this species. Here we report a genome-wide set of SNP markers for use in genetic studies on this important human disease vector. Results DNA fragments from 50 genes were amplified and sequenced from 21 specimens of An. funestus. A third of specimens were field collected in Malawi, a third from a colony of Mozambican origin and a third form a colony of Angolan origin. A total of 494 SNPs including 303 within the coding regions of genes and 5 indels were identified. The physical positions of these SNPs in the genome are known. There were on average 7 SNPs per kilobase similar to that observed in An. gambiae and Drosophila melanogaster. Transitions outnumbered transversions, at a ratio of 2:1. The increased frequency of transition substitutions in coding regions is likely due to the structure of the genetic code and selective constraints. Synonymous sites within coding regions showed a higher polymorphism rate than non-coding introns or 3' and 5'flanking DNA with most of the substitutions in coding regions being observed at the 3rd codon position. A positive correlation in the level of polymorphism was observed between coding and non-coding regions within a gene. By genotyping a subset of 30 SNPs, we confirmed the validity of the SNPs identified during this study. Conclusion This set of SNP markers represents a useful tool for genetic studies in An. funestus, and will be useful in identifying candidate genes that affect diverse ranges of phenotypes that impact on vector control, such as resistance insecticide, mosquito behavior and vector competence.

  3. Role of Culex and Anopheles mosquito species as potential vectors of rift valley fever virus in Sudan outbreak, 2007

    Directory of Open Access Journals (Sweden)

    Galal Fatma H

    2010-03-01

    Full Text Available Abstract Background Rift Valley fever (RVF is an acute febrile arthropod-borne viral disease of man and animals caused by a member of the Phlebovirus genus, one of the five genera in the family Bunyaviridae. RVF virus (RVFV is transmitted between animals and human by mosquitoes, particularly those belonging to the Culex, Anopheles and Aedes genera. Methods Experiments were designed during RVF outbreak, 2007 in Sudan to provide an answer about many raised questions about the estimated role of vector in RVFV epidemiology. During this study, adult and immature mosquito species were collected from Khartoum and White Nile states, identified and species abundance was calculated. All samples were frozen individually for further virus detection. Total RNA was extracted from individual insects and RVF virus was detected from Culex, Anopheles and Aedes species using RT-PCR. In addition, data were collected about human cases up to November 24th, 2007 to asses the situation of the disease in affected states. Furthermore, a historical background of the RVF outbreaks was discussed in relation to global climatic anomalies and incriminated vector species. Results A total of 978 mosquitoes, belonging to 3 genera and 7 species, were collected during Sudan outbreak, 2007. Anopheles gambiae arabiensis was the most frequent species (80.7% in White Nile state. Meanwhile, Cx. pipiens complex was the most abundant species (91.2% in Khartoum state. RT-PCR was used and successfully amplified 551 bp within the M segment of the tripartite negative-sense single stranded RNA genome of RVFV. The virus was detected in female, male and larval stages of Culex and Anopheles species. The most affected human age interval was 15-29 years old followed by ≥ 45 years old, 30-44 years old, and then 5-14 years old. Regarding to the profession, housewives followed by farmers, students, shepherd, workers and the free were more vulnerable to the infection. Furthermore, connection between

  4. Distribution of ace-1R and resistance to carbamates and organophosphates in Anopheles gambiae s.s. populations from Côte d'Ivoire

    Directory of Open Access Journals (Sweden)

    Ahoua Alou Ludovic P

    2010-06-01

    Full Text Available Abstract Background The spread of pyrethroid resistance in Anopheles gambiae s.s. is a critical issue for malaria vector control based on the use of insecticide-treated nets. Carbamates and organophosphates insecticides are regarded as alternatives or supplements to pyrethroids used in nets treatment. It is, therefore, essential to investigate on the susceptibility of pyrethroid resistant populations of An. gambiae s.s. to these alternative products. Methods In September 2004, a cross sectional survey was conducted in six localities in Côte d'Ivoire: Toumbokro, Yamoussoukro, Toumodi in the Southern Guinea savannah, Tiassalé in semi-deciduous forest, then Nieky and Abidjan in evergreen forest area. An. gambiae populations from these localities were previously reported to be highly resistant to pyrethroids insecticides. Anopheline larvae were collected from the field and reared to adults. Resistance/susceptibility to carbamates (0.4% carbosulfan, 0.1% propoxur and organophosphates (0.4% chlorpyrifos-methyl, 1% fenitrothion was assessed using WHO bioassay test kits for adult mosquitoes. Then, PCR assays were run to determine the molecular forms (M and (S, as well as phenotypes for insensitive acetylcholinesterase (AChE1 due to G119S mutation. Results Bioassays showed carbamates (carbosulfan and propoxur resistance in all tested populations of An. gambiae s.s. In addition, two out of the six tested populations (Toumodi and Tiassalé were also resistant to organophosphates (mortality rates ranged from 29.5% to 93.3%. The M-form was predominant in tested samples (91.8%. M and S molecular forms were sympatric at two localities but no M/S hybrids were detected. The highest proportion of S-form (7.9% of An. gambiae identified was in sample from Toumbokro, in the southern Guinea savannah. The G119S mutation was found in both M and S molecular forms with frequency from 30.9 to 35.2%. Conclusion This study revealed a wide distribution of insensitive

  5. Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes.

    Science.gov (United States)

    Neafsey, Daniel E; Waterhouse, Robert M; Abai, Mohammad R; Aganezov, Sergey S; Alekseyev, Max A; Allen, James E; Amon, James; Arcà, Bruno; Arensburger, Peter; Artemov, Gleb; Assour, Lauren A; Basseri, Hamidreza; Berlin, Aaron; Birren, Bruce W; Blandin, Stephanie A; Brockman, Andrew I; Burkot, Thomas R; Burt, Austin; Chan, Clara S; Chauve, Cedric; Chiu, Joanna C; Christensen, Mikkel; Costantini, Carlo; Davidson, Victoria L M; Deligianni, Elena; Dottorini, Tania; Dritsou, Vicky; Gabriel, Stacey B; Guelbeogo, Wamdaogo M; Hall, Andrew B; Han, Mira V; Hlaing, Thaung; Hughes, Daniel S T; Jenkins, Adam M; Jiang, Xiaofang; Jungreis, Irwin; Kakani, Evdoxia G; Kamali, Maryam; Kemppainen, Petri; Kennedy, Ryan C; Kirmitzoglou, Ioannis K; Koekemoer, Lizette L; Laban, Njoroge; Langridge, Nicholas; Lawniczak, Mara K N; Lirakis, Manolis; Lobo, Neil F; Lowy, Ernesto; MacCallum, Robert M; Mao, Chunhong; Maslen, Gareth; Mbogo, Charles; McCarthy, Jenny; Michel, Kristin; Mitchell, Sara N; Moore, Wendy; Murphy, Katherine A; Naumenko, Anastasia N; Nolan, Tony; Novoa, Eva M; O'Loughlin, Samantha; Oringanje, Chioma; Oshaghi, Mohammad A; Pakpour, Nazzy; Papathanos, Philippos A; Peery, Ashley N; Povelones, Michael; Prakash, Anil; Price, David P; Rajaraman, Ashok; Reimer, Lisa J; Rinker, David C; Rokas, Antonis; Russell, Tanya L; Sagnon, N'Fale; Sharakhova, Maria V; Shea, Terrance; Simão, Felipe A; Simard, Frederic; Slotman, Michel A; Somboon, Pradya; Stegniy, Vladimir; Struchiner, Claudio J; Thomas, Gregg W C; Tojo, Marta; Topalis, Pantelis; Tubio, José M C; Unger, Maria F; Vontas, John; Walton, Catherine; Wilding, Craig S; Willis, Judith H; Wu, Yi-Chieh; Yan, Guiyun; Zdobnov, Evgeny M; Zhou, Xiaofan; Catteruccia, Flaminia; Christophides, George K; Collins, Frank H; Cornman, Robert S; Crisanti, Andrea; Donnelly, Martin J; Emrich, Scott J; Fontaine, Michael C; Gelbart, William; Hahn, Matthew W; Hansen, Immo A; Howell, Paul I; Kafatos, Fotis C; Kellis, Manolis; Lawson, Daniel; Louis, Christos; Luckhart, Shirley; Muskavitch, Marc A T; Ribeiro, José M; Riehle, Michael A; Sharakhov, Igor V; Tu, Zhijian; Zwiebel, Laurence J; Besansky, Nora J

    2015-01-01

    Variation in vectorial capacity for human malaria among Anopheles mosquito species is determined by many factors, including behavior, immunity, and life history. To investigate the genomic basis of vectorial capacity and explore new avenues for vector control, we sequenced the genomes of 16 anopheline mosquito species from diverse locations spanning ~100 million years of evolution. Comparative analyses show faster rates of gene gain and loss, elevated gene shuffling on the X chromosome, and more intron losses, relative to Drosophila. Some determinants of vectorial capacity, such as chemosensory genes, do not show elevated turnover but instead diversify through protein-sequence changes. This dynamism of anopheline genes and genomes may contribute to their flexible capacity to take advantage of new ecological niches, including adapting to humans as primary hosts. PMID:25554792

  6. Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis

    OpenAIRE

    Knols Bart GJ; Parker Andrew G; Helinski Michelle EH

    2006-01-01

    Abstract Background In the context of the Sterile Insect Technique (SIT), radiation-induced sterility in the malaria mosquito Anopheles arabiensis Patton (Diptera: Culicidae) was studied. Male mosquitoes were exposed to gamma rays in the pupal or adult stage and dose-sterility curves were determined. Methods Pupae were irradiated shortly before emergence (at 22–26 hrs of age), and adults

  7. Using a near-infrared spectrometer to estimate the age of anopheles mosquitoes exposed to pyrethroids.

    Directory of Open Access Journals (Sweden)

    Maggy T Sikulu

    Full Text Available We report on the accuracy of using near-infrared spectroscopy (NIRS to predict the age of Anopheles mosquitoes reared from wild larvae and a mixed age-wild adult population collected from pit traps after exposure to pyrethroids. The mosquitoes reared from wild larvae were estimated as <7 or ≥7 d old with an overall accuracy of 79%. The age categories of Anopheles mosquitoes that were not exposed to the insecticide papers were predicted with 78% accuracy whereas the age categories of resistant, susceptible and mosquitoes exposed to control papers were predicted with 82%, 78% and 79% accuracy, respectively. The ages of 85% of the wild-collected mixed-age Anopheles were predicted by NIRS as ≤8 d for both susceptible and resistant groups. The age structure of wild-collected mosquitoes was not significantly different for the pyrethroid-susceptible and pyrethroid-resistant mosquitoes (P = 0.210. Based on these findings, NIRS chronological age estimation technique for Anopheles mosquitoes may be independent of insecticide exposure and the environmental conditions to which the mosquitoes are exposed.

  8. Effects of co-habitation between Anopheles gambiae s.s. and Culex quinquefasciatus aquatic stages on life history traits

    OpenAIRE

    Kweka Eliningaya J; Zhou Goufa; Beilhe Leila B; Dixit Amruta; Afrane Yaw; Gilbreath Thomas M; Munga Stephen; Nyindo Mramba; Githeko Andrew K; Yan Guiyun

    2012-01-01

    Abstract Background The effective measures for the control of malaria and filariasis vectors can be achieved by targeting immature stages of anopheline and culicine mosquitoes in productive habitat. To design this strategy, the mechanisms (like biotic interactions with conspecifc and heterospecific larvae) regulating mosquito aquatic stages survivorship, development time and the size of emerging adults should be understood. This study explored the effect of co-habitation between An. gambiae s...

  9. Sensitivity of Anopheles gambiae population dynamics to meteo-hydrological variability: a mechanistic approach

    Directory of Open Access Journals (Sweden)

    Gilioli Gianni

    2011-10-01

    Full Text Available Abstract Background Mechanistic models play an important role in many biological disciplines, and they can effectively contribute to evaluate the spatial-temporal evolution of mosquito populations, in the light of the increasing knowledge of the crucial driving role on vector dynamics played by meteo-climatic features as well as other physical-biological characteristics of the landscape. Methods In malaria eco-epidemiology landscape components (atmosphere, water bodies, land use interact with the epidemiological system (interacting populations of vector, human, and parasite. In the background of the eco-epidemiological approach, a mosquito population model is here proposed to evaluate the sensitivity of An. gambiae s.s. population to some peculiar thermal-pluviometric scenarios. The scenarios are obtained perturbing meteorological time series data referred to four Kenyan sites (Nairobi, Nyabondo, Kibwesi, and Malindi representing four different eco-epidemiological settings. Results Simulations highlight a strong dependence of mosquito population abundance on temperature variation with well-defined site-specific patterns. The upper extreme of thermal perturbation interval (+ 3°C gives rise to an increase in adult population abundance at Nairobi (+111% and Nyabondo (+61%, and a decrease at Kibwezi (-2% and Malindi (-36%. At the lower extreme perturbation (-3°C is observed a reduction in both immature and adult mosquito population in three sites (Nairobi -74%, Nyabondo -66%, Kibwezi -39%, and an increase in Malindi (+11%. A coherent non-linear pattern of population variation emerges. The maximum rate of variation is +30% population abundance for +1°C of temperature change, but also almost null and negative values are obtained. Mosquitoes are less sensitive to rainfall and both adults and immature populations display a positive quasi-linear response pattern to rainfall variation. Conclusions The non-linear temperature-dependent response is in

  10. Intraspecific chromosomal polymorphism in the Anopheles gambiae complex as a factor affecting malaria transmission in the Kisumu area of Kenya.

    Science.gov (United States)

    Petrarca, V; Beier, J C

    1992-02-01

    The paracentric inversion polymorphisms of Anopheles gambiae and An. arabiensis populations in the Kisumu area of western Kenya were studied in relation to parameters of Plasmodium falciparum transmission. Anopheles gambiae (n = 1,387) was polymorphic for inversions b on chromosomal arm 2R and a on arm 2L, with frequencies of the inverted arrangements of 17% and 43%, respectively. Anopheles arabiensis (n = 484) was polymorphic for inversion b on chromosomal arm 2R and a on 3R, with frequencies of the inverted arrangements of 58% and 5%, respectively. Observed karyotypic frequencies did not deviate from Hardy-Weinberg equilibrium, indicating a condition of panmixia (i.e., random mating) for both species. The overall degree of intraspecific polymorphism was low, confirming findings from other zones of East Africa. No significant differences in inversion frequencies of either An. gambiae or An. arabiensis were observed, either between collecting sites or between similar sampling periods of consecutive years. At the same time, a stable, significant two-fold difference in Plasmodium infection rates was detected among An. gambiae carriers of different inversion karyotypes on chromosome 2. A significant non-uniform distribution of human- and bovid-fed specimens was also detected among the carriers of different 2Rb inversion karyotypes in indoor resting An. arabiensis. Relationships among inversion karyotypes of the two major malaria vectors in the An. gambiae complex and key factors affecting malaria transmission intensity emphasize that intraspecific variation could contribute significantly to the diversity and stability of malaria vectorial systems in Africa. PMID:1539757

  11. Physiology and development of the M and S molecular forms of Anopheles gambiae in Burkina Faso (West Africa)

    OpenAIRE

    Mouline, Karine; Mamai, W.; Agnew, P.; Tchonfienet, M.; Brengues, Cécile; Dabiré, R.; Robert, Vincent; Simard, Frédéric

    2012-01-01

    In West Africa, M and S molecular forms of Anopheles gambiae sensu stricto (Diptera: Culicidae) Giles, frequently occur together, although with different population bionomics. The S form typically breeds in rain-dependant water collections and is present during the rainy season only whereas the M form can thrive all year long in areas with permanent breeding opportunities. In the present study, we explored physiological and developmental trade-offs at play in laboratory colonies and field pop...

  12. Effect of larval environment on some life history parameters in anopheles gambiae s.s. (diptera:culicidae))

    OpenAIRE

    Jannat, Khandaker Noore

    2010-01-01

    The effects of larval density, nutrition and cannibalism risk on some life history parameters of Anopheles gambiae larvae were evaluated in the laboratory. Adult body size was inversely correlated with larval density whereas larval mortality and mean age at pupation varied across experiments. When density increased, the secondary sex ratio shifted toward female bias. Effects of different types of nutrition on larval life were compared by providing larvae with algae Chaetophora sp., fish food ...

  13. Crystal structure of a novel type of odorant binding protein from Anopheles gambiae, belonging to the C+ class

    OpenAIRE

    Lagarde, Amandine; Spinelli, Silvia; Qiao, Huili; Tegoni, Mariella; Pelosi, Paolo; Cambillau, Christian

    2011-01-01

    Anopheles gambiae (Agam) relies on its olfactory system to target human prey, leading eventually to injection of Plasmodium falciparum, the malaria vector. Odorant-binding proteins (OBPs) are the first line of proteins involved in odorant recognition. They interact with olfactory receptors and thus constitute an interesting target for insect control. We undertook a large-scale study of proteins belonging to the olfactory system of Agam with the aim of preventing insect bites by designing stro...

  14. Crystal structure of a novel type of odorant binding protein from Anopheles gambiae, belonging to the C+ class

    OpenAIRE

    2011-01-01

    Abstract Anopheles gambiae (Agam) relies on its olfactory system to target human prey, leading eventually to injection of Plasmodium falciparum, the malaria vector. Odorant-binding proteins (OBPs) are the first line of proteins involved in odorant recognition. They interact with olfactory receptors and thus constitute an interesting target for insect control. We undertook a large-scale study of proteins belonging to the olfactory system of Agam with the aim of preventing insect bit...

  15. Islands and stepping-stones: comparative population structure of Anopheles gambiae sensu stricto and Anopheles arabiensis in Tanzania and implications for the spread of insecticide resistance.

    Directory of Open Access Journals (Sweden)

    Deodatus Maliti

    Full Text Available Population genetic structures of the two major malaria vectors Anopheles gambiae s.s. and An. arabiensis, differ markedly across Sub-Saharan Africa, which could reflect differences in historical demographies or in contemporary gene flow. Elucidation of the degree and cause of population structure is important for predicting the spread of genetic traits such as insecticide resistance genes or artificially engineered genes. Here the population genetics of An. gambiae s.s. and An. arabiensis in the central, eastern and island regions of Tanzania were compared. Microsatellite markers were screened in 33 collections of female An. gambiae s.l., originating from 22 geographical locations, four of which were sampled in two or three years between 2008 and 2010. An. gambiae were sampled from six sites, An. arabiensis from 14 sites, and both species from two sites, with an additional colonised insectary sample of each species. Frequencies of the knock-down resistance (kdr alleles 1014S and 1014F were also determined. An. gambiae exhibited relatively high genetic differentiation (average pairwise FST = 0.131, significant even between nearby samples, but without clear geographical patterning. In contrast, An. arabiensis exhibited limited differentiation (average FST = 0.015, but strong isolation-by-distance (Mantel test r = 0.46, p = 0.0008. Most time-series samples of An. arabiensis were homogeneous, suggesting general temporal stability of the genetic structure. An. gambiae populations from Dar es Salaam and Bagamoyo were found to have high frequencies of kdr 1014S (around 70%, with almost 50% homozygote but was at much lower frequency on Unguja Island, with no. An. gambiae population genetic differentiation was consistent with an island model of genetic structuring with highly restricted gene flow, contrary to An. arabiensis which was consistent with a stepping-stone model of extensive, but geographically-restricted gene flow.

  16. Mosquito repellent action of Blumea lacera (Asteraceae) against Anopheles stephensi and Culex quinquefasciatus.

    OpenAIRE

    Singh, S.P.; MITTAL, P.K.

    2014-01-01

    Petroleum ether extract of Blumea lacera was screened under laboratory conditions for repellent activity against mosquito vector Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). The repellent activity of Blumea lacera extract was tested against mosquitoes in comparison with the DEET, which was used as a positive control. Results obtained from the laboratory experiment showed that the extract was effective against mosquito vectors even at a low dose. A direct rel...

  17. Odorant-Binding Proteins of the Malaria Mosquito Anopheles funestus sensu stricto

    OpenAIRE

    Xu, Wei; Cornel, Anthony J; Leal, Walter S.

    2010-01-01

    Background The mosquito Anopheles funestus is one of the major malaria vector species in sub-Saharan Africa. Olfaction is essential in guiding mosquito behaviors. Odorant-binding proteins (OBPs) are highly expressed in insect olfactory tissues and involved in the first step of odorant reception. An improved understanding of the function of malaria mosquito OBPs may contribute to identifying new attractants/repellents and assist in the development of more efficient and environmentally friendly...

  18. Ecological niche partitioning between Anopheles gambiae molecular forms in Cameroon: the ecological side of speciation

    Directory of Open Access Journals (Sweden)

    Fotsing Jean-Marie

    2009-05-01

    Full Text Available Abstract Background Speciation among members of the Anopheles gambiae complex is thought to be promoted by disruptive selection and ecological divergence acting on sets of adaptation genes protected from recombination by polymorphic paracentric chromosomal inversions. However, shared chromosomal polymorphisms between the M and S molecular forms of An. gambiae and insufficient information about their relationship with ecological divergence challenge this view. We used Geographic Information Systems, Ecological Niche Factor Analysis, and Bayesian multilocus genetic clustering to explore the nature and extent of ecological and chromosomal differentiation of M and S across all the biogeographic domains of Cameroon in Central Africa, in order to understand the role of chromosomal arrangements in ecological specialisation within and among molecular forms. Results Species distribution modelling with presence-only data revealed differences in the ecological niche of both molecular forms and the sibling species, An. arabiensis. The fundamental environmental envelope of the two molecular forms, however, overlapped to a large extent in the rainforest, where they occurred in sympatry. The S form had the greatest niche breadth of all three taxa, whereas An. arabiensis and the M form had the smallest niche overlap. Correspondence analysis of M and S karyotypes confirmed that molecular forms shared similar combinations of chromosomal inversion arrangements in response to the eco-climatic gradient defining the main biogeographic domains occurring across Cameroon. Savanna karyotypes of M and S, however, segregated along the smaller-scale environmental gradient defined by the second ordination axis. Population structure analysis identified three chromosomal clusters, each containing a mixture of M and S specimens. In both M and S, alternative karyotypes were segregating in contrasted environments, in agreement with a strong ecological adaptive value of

  19. Optimization of breeding output for larval stage of Anopheles gambiae (Diptera: Culicidae): prospects for the creation and maintenance of laboratory colony from wild isolates.

    Science.gov (United States)

    Tchuinkam, T; Mpoame, M; Make-Mveinhya, B; Simard, F; Lélé-Defo, E; Zébazé-Togouet, S; Tateng-Ngouateu, A; Awono-Ambéné, H-P; Antonio-Nkondjio, C; Njiné, T; Fontenille, D

    2011-06-01

    Domesticating anopheline species from wild isolates provides an important laboratory tool but requires detailed knowledge of their natural biology and ecology, especially the natural breeding habitats of immature stages. The aim of this study was to determine the optimal values of some parameters of Anopheles gambiae larval development, so as to design a standard rearing protocol of highland isolates, which would ensure: the biggest fourth instars, the highest pupae productivity, the shortest duration of the larval stage and the best synchronization of pupation. The density of larvae, the size of breeding water and the quantity of food supplied were tested for their effect on larval growth. Moreover, three cheap foodstuffs were selected and tested for their capability to improve the breeding yield versus TetraMin® as the standard control. The larval density was a very sensitive parameter. Its optimal value, which was found to be ≈1 cm-2 surface area, yielded a daily pupation peak of 38.7% on day 8 post-oviposition, and a global pupae productivity of 78.7% over a duration range of three days. Anopheles gambiae's larval growth, survival and developmental synchronization were density-dependent, and this species responded to overcrowding by producing smaller fourth instars and fewer pupae, over elongated immature lifetime and duration range of pupae occurrence, as a consequence of intraspecific competition. While shallow breeding waters (water pollution level (which was assessed by the biological oxygen demand (BOD) and the chemical oxygen demand (COD)) up to a limit depending on the food quality, above which a rapid increase in larval mortality was recorded. The food quality that could substitute the manufactured baby fish food was obtained with weighed mixture of 1 wheat+1 shrimp+2 fish. On establishing an anopheline mosquito colony in the laboratory, special care should be taken to design and maintain the appropriate optimal values of larval density, water

  20. Humoral response to the Anopheles gambiae salivary protein gSG6: a serological indicator of exposure to Afrotropical malaria vectors.

    Directory of Open Access Journals (Sweden)

    Cinzia Rizzo

    Full Text Available Salivary proteins injected by blood feeding arthropods into their hosts evoke a saliva-specific humoral response which can be useful to evaluate exposure to bites of disease vectors. However, saliva of hematophagous arthropods is a complex cocktail of bioactive factors and its use in immunoassays can be misleading because of potential cross-reactivity to other antigens. Toward the development of a serological marker of exposure to Afrotropical malaria vectors we expressed the Anopheles gambiae gSG6, a small anopheline-specific salivary protein, and we measured the anti-gSG6 IgG response in individuals from a malaria hyperendemic area of Burkina Faso, West Africa. The gSG6 protein was immunogenic and anti-gSG6 IgG levels and/or prevalence increased in exposed individuals during the malaria transmission/rainy season. Moreover, this response dropped during the intervening low transmission/dry season, suggesting it is sensitive enough to detect variation in vector density. Members of the Fulani ethnic group showed higher anti-gSG6 IgG response as compared to Mossi, a result consistent with the stronger immune reactivity reported in this group. Remarkably, anti-gSG6 IgG levels among responders were high in children and gradually declined with age. This unusual pattern, opposite to the one observed with Plasmodium antigens, is compatible with a progressive desensitization to mosquito saliva and may be linked to the continued exposure to bites of anopheline mosquitoes. Overall, the humoral anti-gSG6 IgG response appears a reliable serological indicator of exposure to bites of the main African malaria vectors (An. gambiae, Anopheles arabiensis and, possibly, Anopheles funestus and it may be exploited for malaria epidemiological studies, development of risk maps and evaluation of anti-vector measures. In addition, the gSG6 protein may represent a powerful model system to get a deeper understanding of molecular and cellular mechanisms underlying the

  1. Optimization of sugar and blood feeding regimen in Anopheles gambiae mass production system

    International Nuclear Information System (INIS)

    The sterile insect technique (SIT) is being developed for the control of malaria transmitting mosquitoes. Critical to the success of applying the SIT is the establishment of standardized mass production systems for the target species. As part of efforts to develop standardised mass production systems for malaria vectors, this project sought to optimize adult blood and sugar feeding in a mass production system. Different sugar types (glucose, sucrose and honey) were evaluated at 6% and 10% concentrations in water to determine the best sugar diet and concentration for feeding adult An. gambiae. Different blood feeding methods, restrained Guinea pig, anaesthetised Guinea pig and human arm feeding were evaluated. Adult survival, female insemination and egg production were used as criteria to determine optimum sugar and blood feeding. The effect of anaesthetics on blood feeding response and egg production of female An. gambiae was determined by comparing feeding response and egg production of females fed with anaesthetised Guinea pigs as against physically restrained Guinea pigs (Control). The specific effect of different anaesthetic agents on blood feeding response and egg production of female mosquitoes were was also determined by comparing the feeding response and egg production of females fed with either Ketamine/Xylazine anaesthetised Guinea pigs or Ketamine/Diazepam anaesthetised Guinea pigs. Effects due to sugar types and concentrations on percentage survival of male and female mosquitoes were observed to be significant at (p 0.05). However, human ann feeding (HAP) method and Ketamine/Xylazine (KX) anaesthetics fed for 25 minutes recorded higher percentage feeding (76.0% and 68.0% respectively) and egg production of 19.0% and 20.8% respectively. Anaesthetised Guinea pig feeding (AGF) of adults for 15 minutes followed closely with 60.0% and 15.1% blood feeding and egg production respectively whilst restrained Guinea pig feeding (RGF) method and Ketamine

  2. The effect of water physical quality and water level changes on the occurrence and density of larvae of Anopheles mosquitoes around the shoreline of the Koka reservoir, Central Ethiopia

    Directory of Open Access Journals (Sweden)

    S. Kibret

    2010-08-01

    Full Text Available Entomological studies to determine the effect of the physical characteristics of larval breeding water bodies and reservoir water level changes on the occurrence of Anopheles mosquito larvae and on the spatial and temporal formation of larval breeding habitats were conducted in two villages at Koka reservoir between August and December 2007. Of the two study villages, Ejersa is in close proximity to the reservoir, and Kuma is 5 km away from it. Data on the type, number and physical characteristics of Anopheles larval breeding habitat, species composition and densities of anopheles mosquitoes in and around the study villages were investigated and recorded. Meteorological and reservoir water level data were compared with availability of Anopheles larval breeding sites and densities. Entomological data from the weekly larval collections showed that Anopheles pharoensis Theobald, Anopheles gambiae s.l. Giles, Anopheles coustani Laveran and Anopheles squamosus Theobald were breeding in the study area. The mean larval density of A. gambiae s.l. in this study was higher in slightly turbid and shallow aquatic habitats than in turbid and relatively deep aquatic habitats (F=16.97, pF=6.03, pA. pharoensis in habitat with floating vegetation and with relatively shady conditions was significantly higher than that of less shaded aquatic habitat and greater emergent vegetation (F=15.75, pF=10.56, pAnopheles larvae with water temperature of the breeding habitat and daily minimum atmospheric temperature (r=0.541, pr=0.604, pr=0.605, pAnopheles larval count, and the density of Anopheles mosquitoes in the vicinity. The proliferation of suitable breeding habitats around the reservoir villages is strongly associated with reservoir water level changes. This is particularly important for A. pharoensis and A. arabiensis which are important vectors of malaria in the area. Further investigation on the species diversity, physical and chemical habitat characteristics and

  3. Mapping the Anopheles gambiae odorant binding protein 1 (AgamOBP1) using modeling techniques, site directed mutagenesis, circular dichroism and ligand binding assays.

    Science.gov (United States)

    Rusconi, B; Maranhao, A C; Fuhrer, J P; Krotee, P; Choi, S H; Grun, F; Thireou, T; Dimitratos, S D; Woods, D F; Marinotti, O; Walter, M F; Eliopoulos, E

    2012-08-01

    The major malaria vector in Sub-Saharan Africa is the Anopheles gambiae mosquito. This species is a key target of malaria control measures. Mosquitoes find humans primarily through olfaction, yet the molecular mechanisms associated with host-seeking behavior remain largely unknown. To further understand the functionality of A. gambiae odorant binding protein 1 (AgamOBP1), we combined in silico protein structure modeling and site-directed mutagenesis to generate 16 AgamOBP1 protein analogues containing single point mutations of interest. Circular dichroism (CD) and ligand-binding assays provided data necessary to probe the effects of the point mutations on ligand binding and the overall structure of AgamOBP1. Far-UV CD spectra of mutated AgamOBP1 variants displayed both substantial decreases to ordered α-helix structure (up to22%) and increases to disordered α-helix structure(up to 15%) with only minimal changes in random coil (unordered) structure. In mutations Y54A, Y122A and W114Q, aromatic side chain removal from the binding site significantly reduced N-phenyl-1-naphthylamine binding. Several non-aromatic mutations (L15T, L19T, L58T, L58Y, M84Q, M84K, H111A, Y122A and L124T) elicited changes to protein conformation with subsequent effects on ligand binding. This study provides empirical evidence for the in silico predicted functions of specific amino acids in AgamOBP1 folding and ligand binding characteristics. PMID:22564768

  4. Frequent blood-feeding and restrictive sugar-feeding behavior enhance the malaria vector potential of Anopheles gambiae s.l. and An. funestus (Diptera:Culicidae) in western Kenya.

    Science.gov (United States)

    Beier, J C

    1996-07-01

    Natural blood-feeding and sugar-feeding behaviors were investigated for populations of Anopheles gambiae s.l. and An. funestus Giles at 2 sites in western Kenya. During peak levels of malaria parasite transmission, > 85% of 1,569 indoor-resting females contained fresh blood meals. Findings that up to 55.4% of blood-fed resting females and 72.0% of host-seeking females had either stage IV or V oocytes provided strong evidence that females were refeeding before oviposition. Such gonotrophic discordance was common throughout the year for both An. gambiae s.l. and An. funestus. Determinations of gonotrophic cycles for freshly blood-fed mosquitoes collected inside houses indicated that only 60.0% of 1,287 An. gambiae s.l. and 60.0% of 974 An. funestus oviposited eggs after a single blood meal. The timing of oviposition was irregular as indicated by relatively high coefficients of variation for An. gambiae s.l. (44.0%) and An. funestus (35.9%). Associated with frequent blood feeding was a surprisingly low rate of sugar feeding; only 6.3% of 1,183 indoor-resting and only 14.4% of 236 host-seeking anophelines were positive for fructose. Natural patterns of frequent blood feeding, year-round gonotrophic discordance, irregular oviposition cycles, and limited sugar feeding illustrate that anopheline mosquitoes have complex behavioral and physiologic means for adapting to their environment. In western Kenya, for example, adaptations for frequent blood feeding by An. gambiae s.l. and An. funestus potentiates their ability to transmit malaria parasites, well beyond that predicted by standard measures of vectorial capacity. PMID:8699456

  5. Phylogenetic study of six species of Anopheles mosquitoes in Peninsular Malaysia based on inter-transcribed spacer region 2 (ITS2) of ribosomal DNA

    OpenAIRE

    Sum, Jia-Siang; Lee, Wenn-Chyau; Amir, Amirah; Braima, Kamil A; Jeffery, John; Abdul-Aziz, Noraishah M.; Fong, Mun-Yik; Lau, Yee-Ling

    2014-01-01

    Background Molecular techniques are invaluable for investigation on the biodiversity of Anopheles mosquitoes. This study aimed at investigating the spatial-genetic variations among Anopheles mosquitoes from different areas of Peninsular Malaysia, as well as deciphering evolutionary relationships of the local Anopheles mosquitoes with the mosquitoes from neighbouring countries using the anopheline ITS2 rDNA gene. Methods Mosquitoes were collected, identified, dissected to check infection statu...

  6. Gal4-based Enhancer-Trapping in the Malaria Mosquito Anopheles stephensi

    OpenAIRE

    O’Brochta, David A.; Pilitt, Kristina L.; Harrell, Robert A.; Aluvihare, Channa; Alford, Robert T.

    2012-01-01

    Transposon-based forward and reverse genetic technologies will contribute greatly to ongoing efforts to study mosquito functional genomics. A piggyBac transposon-based enhancer-trap system was developed that functions efficiently in the human malaria vector, Anopheles stephensi. The system consists of six transgenic lines of Anopheles stephensi, each with a single piggyBac-Gal4 element in a unique genomic location; six lines with a single piggyBac-UAStdTomato element; and two lines, each with...

  7. Anopheles gambiae distribution and insecticide resistance in the cities of Douala and Yaoundé (Cameroon: influence of urban agriculture and pollution

    Directory of Open Access Journals (Sweden)

    Awono-Ambene Parfait

    2011-06-01

    Full Text Available Abstract Background Urban malaria is becoming a major health priority across Africa. A study was undertaken to assess the importance of urban pollution and agriculture practice on the distribution and susceptibility to insecticide of malaria vectors in the two main cities in Cameroon. Methods Anopheline larval breeding sites were surveyed and water samples analysed monthly from October 2009 to December 2010. Parameters analysed included turbidity, pH, temperature, conductivity, sulfates, phosphates, nitrates, nitrites, ammonia, aluminium, alkalinity, iron, potassium, manganese, magnesium, magnesium hardness and total hardness. Characteristics of water bodies in urban areas were compared to rural areas and between urban sites. The level of susceptibility of Anopheles gambiae to 4% DDT, 0.75% permethrin, 0.05% deltamethrin, 0.1% bendiocarb and 5% malathion were compared between mosquitoes collected from polluted, non polluted and cultivated areas. Results A total of 1,546 breeding sites, 690 in Yaoundé and 856 in Douala, were sampled in the course of the study. Almost all measured parameters had a concentration of 2- to 100-fold higher in urban compare to rural breeding sites. No resistance to malathion was detected, but bendiocarb resistance was present in Yaounde. Very low mortality rates were observed following DDT or permethrin exposure, associated with high kdr frequencies. Mosquitoes collected in cultivated areas, exhibited the highest resistant levels. There was little difference in insecticide resistance or kdr allele frequency in mosquitoes collected from polluted versus non-polluted sites. Conclusion The data confirm high selection pressure on mosquitoes originating from urban areas and suggest urban agriculture rather than pollution as the major factor driving resistance to insecticide.

  8. INSECTICIDAL ACTIVITIES OF ESSENTIAL OILS EXTRACTED FROM THREE SPECIES OF POACEAE ON ANOPHELES GAMBIAE SPP, MAJOR VECTOR OF MALARIA

    Directory of Open Access Journals (Sweden)

    Dominique C. K. Sohounhloué

    2010-12-01

    Full Text Available In this paper, the insecticidal activities on Anopheles gambiae spp of the essential oils (EO extracted from the dry leaves of some species collected in Benin were studied. The essential oil yields are 2.8, 1.7 and 1.4�0respectively for Cymbopogon schoanenthus (L. Spreng (CS, Cymbopogon citratus Stapf. (CC and Cymbopogon giganteus (Hochst. Chiov (CG. The GC/MS analysis showed that the EO of CS had a larger proportion in oxygenated monoterpenes (86.3�20whereas those of the sheets of CC and CG are relatively close proportions (85.5�0and 82.7�0respectively with. The piperitone (68.5�  2-carene (11.5� and -eudesmol (4.6�20are the major components of the EO of CS while trans para-mentha-1(7,8-dien-2-ol (31.9� trans para-mentha-2,8-dien-1-ol (19.6� cis para-mentha-2,8-dien-1-ol (7.2� trans piperitol (6.3�20and limonene (6.3�20prevailed in the EO of CG. The EO of CC revealed a rich composition in geranial (41.3� neral (33� myrcene (10.4� and geraniol (6.6� The biological tests have shown that these three EO induced 100�0mortality of Anopheles gambiae to 1.1, 586.58 and 1549 µg•cm-2 respectively for CC, CS and CG. These effects are also illustrated by weak lethal concentration for 50�0anopheles population (CC: 0.306; CS: 152.453 and CG: 568.327 µg•cm-2 in the same order of reactivity. The EO of CC appeared most active on two stocks (sensitive and resistant of Anopheles gambiae.

  9. Using Stable Isotopes of Carbon and Nitrogen to Mark Wild Populations of Anopheles and Aedes Mosquitoes in South-Eastern Tanzania

    Science.gov (United States)

    Opiyo, Mercy A.; Hamer, Gabriel L.; Lwetoijera, Dickson W.; Auckland, Lisa D.; Majambere, Silas; Okumu, Fredros O.

    2016-01-01

    Background Marking wild mosquitoes is important for understanding their ecology, behaviours and role in disease transmission. Traditional insect marking techniques include using fluorescent dyes, protein labels, radioactive labels and tags, but such techniques have various limitations; notably low marker retention and inability to mark wild mosquitoes at source. Stable isotopes are gaining wide spread use for non-invasive marking of arthropods, permitting greater understanding of mosquito dispersal and responses to interventions. We describe here a simple technique for marking naturally-breeding malaria and dengue vectors using stable isotopes of nitrogen (15N) and carbon (13C), and describe potential field applications. Methods We created man-made aquatic mosquito habitats and added either 15N-labelled potassium nitrate or 13C-labelled glucose, leaving non-adulterated habitats as controls. We then allowed wild mosquitoes to lay eggs in these habitats and monitored their development in situ. Pupae were collected promptly as they appeared and kept in netting cages. Emergent adults (in pools of ~4 mosquitoes/pool) and individually stored pupae were desiccated and analysed using Isotope Ratio Mass Spectrometry (IRMS). Findings Anopheles gambiae s.l and Aedes spp. from enriched 13C and enriched 15N larval habitats had significantly higher isotopic levels than controls (P = 0.005), and both isotopes produced sufficient distinction between marked and unmarked mosquitoes. Mean δ15N for enriched females and males were 275.6±65.1 and 248.0±54.6, while mean δ15N in controls were 2.1±0.1 and 3.9±1.7 respectively. Similarly, mean δ13C for enriched females and males were 36.08±5.28 and 38.5±6.86, compared to -4.3±0.2 and -7.9±3.6 in controls respectively. Mean δ15N and δ13C was significantly higher in any pool containing at least one enriched mosquito compared to pools with all unenriched mosquitoes, P<0.001. In all cases, there were variations in standardized

  10. Effects of co-habitation between Anopheles gambiae s.s. and Culex quinquefasciatus aquatic stages on life history traits

    Directory of Open Access Journals (Sweden)

    Kweka Eliningaya J

    2012-02-01

    Full Text Available Abstract Background The effective measures for the control of malaria and filariasis vectors can be achieved by targeting immature stages of anopheline and culicine mosquitoes in productive habitat. To design this strategy, the mechanisms (like biotic interactions with conspecifc and heterospecific larvae regulating mosquito aquatic stages survivorship, development time and the size of emerging adults should be understood. This study explored the effect of co-habitation between An. gambiae s.s. and Cx. quinquefasciatus on different life history traits of both species under different densities and constant food supply in the habitats of the same size under semi-natural conditions. Methods Experiments were set up with three combinations; Cx. quinquefasciatus alone (single species treatment, An. gambiae s.s. alone (single species treatment; and An. gambiae s.s. with Cx. quiquefasciatus (co-habitation treatment in different densities in semi field situation. Results The effect of co-habitation of An. gambiae s.s. and Cx. quinquefasciatus was found to principally affect three parameters. The wing-lengths (a proxy measure of body size of An. gambiae s.s. in co-habitation treatments were significantly shorter in both females and males than in An. gambiae s.s single species treatments. In Cx. quinquefasciatus, no significant differences in wing-length were observed between the single species and co-habitation treatments. Daily survival rates were not significantly different between co-habitation and single species treatments for both An. gambiae s.s. and Cx. quinquefasciatus. Developmental time was found to be significantly different with single species treatments developing better than co-habitation treatments. Sex ratio was found to be significantly different from the proportion of 0.5 among single and co-habitation treatments species at different densities. Single species treatments had more males than females emerging while in co

  11. Wash resistance and repellent properties of Africa University mosquito blankets against mosquitoes

    OpenAIRE

    Lukwa, N; A. Makuwaza; T. Chiwade; S.L. Mutambu; M. Zimba; P. Munosiyei

    2013-01-01

    The effect of permethrin-treated Africa University (AU) mosquito blankets on susceptible female Anopheles gambiae sensu lato mosquitoes was studied under laboratory conditions at Africa University Campus in Mutare, Zimbabwe. Wash resistance (ability to retain an effective dose that kills ≥80% of mosquitoes after a number of washes) and repellence (ability to prevent ≥80% of mosquito bites) properties were studied. The AU blankets were wash resistant when 100% mortality was recorded up t...

  12. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster.

    Science.gov (United States)

    Zdobnov, Evgeny M; von Mering, Christian; Letunic, Ivica; Torrents, David; Suyama, Mikita; Copley, Richard R; Christophides, George K; Thomasova, Dana; Holt, Robert A; Subramanian, G Mani; Mueller, Hans-Michael; Dimopoulos, George; Law, John H; Wells, Michael A; Birney, Ewan; Charlab, Rosane; Halpern, Aaron L; Kokoza, Elena; Kraft, Cheryl L; Lai, Zhongwu; Lewis, Suzanna; Louis, Christos; Barillas-Mury, Carolina; Nusskern, Deborah; Rubin, Gerald M; Salzberg, Steven L; Sutton, Granger G; Topalis, Pantelis; Wides, Ron; Wincker, Patrick; Yandell, Mark; Collins, Frank H; Ribeiro, Jose; Gelbart, William M; Kafatos, Fotis C; Bork, Peer

    2002-10-01

    Comparison of the genomes and proteomes of the two diptera Anopheles gambiae and Drosophila melanogaster, which diverged about 250 million years ago, reveals considerable similarities. However, numerous differences are also observed; some of these must reflect the selection and subsequent adaptation associated with different ecologies and life strategies. Almost half of the genes in both genomes are interpreted as orthologs and show an average sequence identity of about 56%, which is slightly lower than that observed between the orthologs of the pufferfish and human (diverged about 450 million years ago). This indicates that these two insects diverged considerably faster than vertebrates. Aligned sequences reveal that orthologous genes have retained only half of their intron/exon structure, indicating that intron gains or losses have occurred at a rate of about one per gene per 125 million years. Chromosomal arms exhibit significant remnants of homology between the two species, although only 34% of the genes colocalize in small "microsyntenic" clusters, and major interarm transfers as well as intra-arm shuffling of gene order are detected. PMID:12364792

  13. Comparative biology and reproductive behaviour of a laboratory-adapted Redco strain of Anopheles Gambiae Giles (Diptera; culicidae and wild populations of the same species

    International Nuclear Information System (INIS)

    The sterile insect technique involves mass rearing of male insects for sterility purpose. This heavily relies on male fitness and genetic compatibility of laboratory-adapted male insects and the wild to ensure successful competition with their male counterpart in the wild. Uniform environment in the laboratory as compared to the wild conditions might lead to genetic drift which might lead to reduced sexual competitiveness, fitness, morphological changes or changes in the sexual behaviour of mosquitoes. This work investigated the sexual compatibility, morphometry and sexual behaviour of laboratory-adapted strain and wild strain of Anopheles gambiae under laboratory conditions. These measurements were done by observing swarm formation, genitalia rotation, percentage insemination, fecundity, fertility, wing length, wing width, thoracic width, body length, body size index and wing size index. Morphometric studies of laboratory-adapted and wild strain of Anopheles gambiae were carried out by observing the wing length, body length and thoracic length under Lecia 4D stereoscope in order to find out variations in the body size between the two strains. The results showed significant difference between thoracic width and wing length between the laboratory-adapted strain and wild strain. Indices such as body size index and wing length index also showed significant difference between the two strains; laboratory-adapted REDCO strain (BSI 4.45 ± 0.10, p = 0.010 ; WSI 1.92 ± 0.07, p = 0.026) and wild REDCO strain ( 4.08 ± 0.10, p = 0.010 ; WSI 1.73 ± 0.04, p = 0.026 ). Body length of laboratory-adapted male mosquitoes (4.24 ± 0.05, p = 0.462) was not significantly different from its thoracic width, wing length, and wing width. The wild strain on the other hand had significant difference between its body length (4.19 ± 0.04, p = 0.462), thoracic width (0.096 ± 0.02, p = 0.002 ) and wing length (2.99 ± 0.03, p = 0.050 ). In the mating experiment, egg production in each of

  14. Energy metabolism affects susceptibility of A. gambiae mosquitoes to Plasmodium infection

    Science.gov (United States)

    Oliveira, Jose Henrique M.; Gonçalves, Renata L.S.; Oliveira, Giselle A.; Oliveira, Pedro L.; Oliveira, Marcus F.; Barillas-Mury, Carolina

    2011-01-01

    Previous studies showed that A. gambiae L35 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial State-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when State-3 respiration was reduced in S females by silencing expression of the adenine nucleotide translocator (ANT), hydrogen peroxide generation was higher and the mRNA levels of lactate dehydrogenase increased in the midgut, while the prevalence and intensity of P. berghei infection were significantly reduced. We conclude that there are broad metabolic differences between R and S An. gambiae mosquitoes that influence their susceptibility to Plasmodium infection. PMID:21320598

  15. Development of sporogonic cycle of Plasmodium vivax in experimentally infected Anopheles albimanus mosquitoes

    OpenAIRE

    Martha L. Salas; Romero, Jackeline F.; Yesid Solarte; Victor Olano; Myriam A. Herrera; Sócrates Herrera

    1994-01-01

    The sporogonic cycle of Plasmodium vivax was established and maintained under laboratory conditions in two different strains of Anopheles albimanus mosquitoes using as a parasite source blood from human patients or from Aotus monkeys infected with the VCC-2 P.vivax colombian isolate. Both the Tecojate strain isolate from Guatemala and the Cartagena strain from the colombian Pacific coast were susceptible to infections with P.vivax. A higher percentage of Cartagena mosquitoes was infected per ...

  16. The Anopheles gambiae Oxidation Resistance 1 (OXR1) Gene Regulates Expression of Enzymes That Detoxify Reactive Oxygen Species

    OpenAIRE

    Jaramillo-Gutierrez, Giovanna; Molina-Cruz, Alvaro; Kumar, Sanjeev; Barillas-Mury, Carolina

    2010-01-01

    Background OXR1 is an ancient gene, present in all eukaryotes examined so far that confers protection from oxidative stress by an unknown mechanism. The most highly conserved region of the gene is the carboxyl-terminal TLDc domain, which has been shown to be sufficient to prevent oxidative damage. Methodology/Principal Findings OXR1 has a complex genomic structure in the mosquito A. gambiae, and we confirm that multiple splice forms are expressed in adult females. Our studies revealed that OX...

  17. Change in composition of the Anopheles gambiae complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania

    DEFF Research Database (Denmark)

    Derua, Yahya A; Alifrangis, Michael; Hosea, Kenneth M;

    2012-01-01

    . Both fresh and archived dried specimens were identified to sibling species of the An. gambiae s.l. complex by PCR. The same specimens were moreover examined for Plasmodium falciparum and Wuchereria bancrofti infection by PCR. RESULTS: As in earlier studies, An. gambiae s.s., Anopheles merus...... the most rare to the most common. P. falciparum infection was rarely detected in the examined specimens (and only in An. arabiensis) whereas W. bancrofti infection was prevalent and detected in all three sibling species. CONCLUSION: The study indicates that a major shift in An. gambiae s.l. sibling species...

  18. Repellent activities of stereoisomers of p-menthane-3,8-diols against Anopheles gambiae (Diptera: Culicidae).

    Science.gov (United States)

    Barasa, Stephen S; Ndiege, Isaiah O; Lwande, Wilber; Hassanali, Ahmed

    2002-09-01

    Four stereoisomers of p-menthane-3,8-diol, which make up the natural product obtained from Eucalyptus citriodora, were synthesized through stereoselective procedures. Repellency assays showed that all the four were equally active against Anopheles gambiae s.s. Racemic blends and the diastereoisomeric mixture of all the four isomers were also equally repellent. 1-alpha-terpeneol, with a single hydroxyl function at C-8 and unsaturation at C-8, and menthol, with a single hydroxyl function at C-3, were not repellent. The practical implication of these results is discussed. PMID:12349856

  19. Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection.

    OpenAIRE

    Barillas-Mury, C; Han, Y S; Seeley, D; Kafatos, F C

    1999-01-01

    A new insect member of the STAT family of transcription factors (Ag-STAT) has been cloned from the human malaria vector Anopheles gambiae. The domain involved in DNA interaction and the SH2 domain are well conserved. Ag-STAT is most similar to Drosophila D-STAT and to vertebrate STATs 5 and 6, constituting a proposed ancient class A of the STAT family. The mRNA is expressed at all developmental stages, and the protein is present in hemocytes, pericardial cells, midgut, skeletal muscle and fat...

  20. Molecular Basis for Genetic Resistance of Anopheles gambiae to Plasmodium: Structural Analysis of TEP1 Susceptible and Resistant Alleles

    OpenAIRE

    Le, Binh V.; Williams, Marni; Logarajah, Shankar; Baxter, Richard H. G.

    2012-01-01

    Thioester-containing protein 1 (TEP1) is a central component in the innate immune response of Anopheles gambiae to Plasmodium infection. Two classes of TEP1 alleles, TEP1*S and TEP1*R, are found in both laboratory strains and wild isolates, related by a greater or lesser susceptibility, respectively to both P. berghei and P. falciparum infection. We report the crystal structure of the full-length TEP1*S1 allele which, while similar to the previously determined structure of full-length TEP1*R1...

  1. The role of mosquito behaviour on parasite transmission

    OpenAIRE

    Ma, Brian Oh-Bong

    2010-01-01

    I use a combination of theory and experiments to explore the role of various aspects of mosquito behaviour on the ability of mosquitoes to transmit parasites. Special focus is given to the mosquito Anopheles gambiae s.s., the principal vector for Plasmodium falciparum, a parasite that causes human malaria. Female mosquitoes require host blood for egg production, but also use sugar from nectar sources; however, the extent of sugar use is poorly understood. Sugar can be used to fuel somatic mai...

  2. Distribution of knock-down resistance mutations in Anopheles gambiae molecular forms in west and west-central Africa

    Directory of Open Access Journals (Sweden)

    Caccone Adalgisa

    2008-04-01

    Full Text Available Abstract Background Knock-down resistance (kdr to DDT and pyrethroids in the major Afrotropical vector species, Anopheles gambiae sensu stricto, is associated with two alternative point mutations at amino acid position 1014 of the voltage-gated sodium channel gene, resulting in either a leucine-phenylalanine (L1014F, or a leucine-serine (L1014S substitution. In An. gambiae S-form populations, the former mutation appears to be widespread in west Africa and has been recently reported from Uganda, while the latter, originally recorded in Kenya, has been recently found in Gabon, Cameroon and Equatorial Guinea. In M-form populations surveyed to date, only the L1014F mutation has been found, although less widespread and at lower frequencies than in sympatric S-form populations. Methods Anopheles gambiae M- and S-form specimens from 19 sites from 11 west and west-central African countries were identified to molecular form and genotyped at the kdr locus either by Hot Oligonucleotide Ligation Assay (HOLA or allele-specific PCR (AS-PCR. Results The kdr genotype was determined for about 1,000 An. gambiae specimens. The L1014F allele was found at frequencies ranging from 6% to 100% in all S-form samples (N = 628, with the exception of two samples from Angola, where it was absent, and coexisted with the L1014S allele in samples from Cameroon, Gabon and north-western Angola. The L1014F allele was present in M-form samples (N = 354 from Benin, Nigeria, and Cameroon, where both M- and S-forms were sympatric. Conclusion The results represent the most comprehensive effort to analyse the overall distribution of the L1014F and L1014S mutations in An. gambiae molecular forms, and will serve as baseline data for resistance monitoring. The overall picture shows that the emergence and spread of kdr alleles in An. gambiae is a dynamic process and that there is marked intra- and inter-form heterogeneity in resistance allele frequencies. Further studies are needed to

  3. Crystal and solution studies of the "Plus-C" odorant-binding protein 48 from Anopheles gambiae: control of binding specificity through three-dimensional domain swapping.

    Science.gov (United States)

    Tsitsanou, Katerina E; Drakou, Christina E; Thireou, Trias; Vitlin Gruber, Anna; Kythreoti, Georgia; Azem, Abdussalam; Fessas, Dimitrios; Eliopoulos, Elias; Iatrou, Kostas; Zographos, Spyros E

    2013-11-15

    Much physiological and behavioral evidence has been provided suggesting that insect odorant-binding proteins (OBPs) are indispensable for odorant recognition and thus are appealing targets for structure-based discovery and design of novel host-seeking disruptors. Despite the fact that more than 60 putative OBP-encoding genes have been identified in the malaria vector Anopheles gambiae, the crystal structures of only six of them are known. It is therefore clear that OBP structure determination constitutes the bottleneck for structure-based approaches to mosquito repellent/attractant discovery. Here, we describe the three-dimensional structure of an A. gambiae "Plus-C" group OBP (AgamOBP48), which exhibits the second highest expression levels in female antennae. This structure represents the first example of a three-dimensional domain-swapped dimer in dipteran species. A combined binding site is formed at the dimer interface by equal contribution of each monomer. Structural comparisons with the monomeric AgamOBP47 revealed that the major structural difference between the two Plus-C proteins localizes in their N- and C-terminal regions, and their concerted conformational change may account for monomer-swapped dimer conversion and furthermore the formation of novel binding pockets. Using a combination of gel filtration chromatography, differential scanning calorimetry, and analytical ultracentrifugation, we demonstrate the AgamOBP48 dimerization in solution. Eventually, molecular modeling calculations were used to predict the binding mode of the most potent synthetic ligand of AgamOBP48 known so far, discovered by ligand- and structure-based virtual screening. The structure-aided identification of multiple OBP binders represents a powerful tool to be employed in the effort to control transmission of the vector-borne diseases. PMID:24097978

  4. Dissecting the mechanisms responsible for the multiple insecticide resistance phenotype in Anopheles gambiae s.s., M form, from Vallée du Kou, Burkina Faso.

    Science.gov (United States)

    Kwiatkowska, Rachel M; Platt, Naomi; Poupardin, Rodolphe; Irving, Helen; Dabire, Roch K; Mitchell, Sara; Jones, Christopher M; Diabaté, Abdoulaye; Ranson, Hilary; Wondji, Charles S

    2013-04-25

    With the exception of target site mutations, insecticide resistance mechanisms in the principle malaria vector Anopheles gambiae, remains largely uncharacterized in Burkina Faso. Here we detected high prevalence of resistance in Vallée du Kou (VK) to pyrethroids, DDT and dieldrin, moderate level for carbamates and full susceptibility to organophosphates. High frequencies of L1014F kdr (75%) and Rdl (87%) mutations were observed showing strong correlation with pyrethroids/DDT and dieldrin resistance. The frequency of ace1R mutation was low even in carbamate resistant mosquitoes. Microarray analysis identified genes significantly over-transcribed in VK. These include the cytochrome P450 genes, CYP6P3 and CYP6Z2, previously associated with pyrethroid resistance. Gene Ontology (GO) enrichment analysis suggested that elevated neurotransmitter activity is associated with resistance, with the over-transcription of target site resistance genes such as acetylcholinesterase and the GABA receptor. A rhodopsin receptor gene previously associated with pyrethroid resistance in Culex pipiens pallens was also over-transcribed in VK. This study highlights the complex network of mechanisms conferring multiple resistance in malaria vectors and such information should be taken into account when designing and implementing resistance control strategies. PMID:23380570

  5. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    Directory of Open Access Journals (Sweden)

    Rider Mark A

    2012-06-01

    Full Text Available Abstract Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR. Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically

  6. Field experiments of Anopheles gambiae attraction to local fruits/seedpods and flowering plants in Mali to optimize strategies for malaria vector control in Africa using attractive toxic sugar bait methods

    Directory of Open Access Journals (Sweden)

    Bah Sekou

    2010-09-01

    Full Text Available Abstract Background Based on recent studies in Israel demonstrating that attractive toxic sugar bait (ATSB methods can be used to decimate local anopheline and culicine mosquito populations, an important consideration is whether the same methods can be adapted and improved to attract and kill malaria vectors in Africa. The ATSB approach uses fruit or flower scent as an attractant, sugar solution as a feeding stimulant, and an oral toxin. The ATSB solutions are either sprayed on vegetation or suspended in simple bait stations, and the mosquitoes ingesting the toxic solutions are killed. As such, this approach targets sugar-feeding female and male mosquitoes. This study examines the attractiveness of African malaria vectors to local fruits/seedpods and flowering plants, key biological elements of the ATSB approach for mosquito control. Methods Three field experiments were conducted at sites in Mali. The attraction of Anopheles gambiae s.l. to 26 different local fruits and seedpods was determined at a site in the semi-arid Bandiagara District of Mali. Wire mesh glue traps with fruits/seedpods suspended on skewers inside were set along a seasonal lagoon. Seven replicates of each fruit/seedpod species were tested, with a water-soaked sponge and a sugar-soaked sponge as controls. The attraction of An. gambiae s.l. to 26 different types of flowering plants was determined at a site near Mopti in Mali. The flowering plants held in a water-filled buried container were tested using the same glue traps, with controls including water only and sugar solution. Six replicates of each selected plant type were tested on transects between rice paddies. Additional studies using CDC light traps were done to determine the relative densities and periodicity of An. gambiae s.l. attraction to branches of the most highly attractive flowering plant, branches without flowers, human odor, and candescent light. Results Of the 26 fruits and seedpods tested, 6 were attractive

  7. The evolution of TEP1, an exceptionally polymorphic immunity gene in Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Yan Guiyun

    2008-10-01

    Full Text Available Abstract Background Host-parasite coevolution can result in balancing selection, which maintains genetic variation in the susceptibility of hosts to parasites. It has been suggested that variation in a thioester-containing protein called TEP1 (AGAP010815 may alter the ability of Anopheles mosquitoes to transmit Plasmodium parasites, and high divergence between alleles of this gene suggests the possible action of long-term balancing selection. We studied whether TEP1 is a case of an ancient balanced polymorphism in an animal immune system. Results We found evidence that the high divergence between TEP1 alleles is the product of genetic exchange between TEP1 and other TEP loci, i.e. gene conversion. Additionally, some TEP1 alleles showed unexpectedly low variability. Conclusion The TEP1 gene appears to be a chimera produced from at least two other TEP loci, and the divergence between TEP1 alleles is probably not caused by long-term balancing selection, but is instead due to two independent gene conversion events from one of these other genes. Nevertheless, TEP1 still shows evidence of natural selection, in particular there appears to have been recent changes in the frequency of alleles that has diminished polymorphism within each allelic class. Although the selective force driving this dynamic was not identified, given that susceptibility to Plasmodium parasites is known to be associated with allelic variation in TEP1, these changes in allele frequencies could alter the vectoring capacity of populations.

  8. Structure-function analysis of the Anopheles gambiae LRIM1/APL1C complex and its interaction with complement C3-like protein TEP1.

    Science.gov (United States)

    Povelones, Michael; Upton, Leanna M; Sala, Katarzyna A; Christophides, George K

    2011-04-01

    Malaria threatens half the world's population and exacts a devastating human toll. The principal malaria vector in Africa, the mosquito Anopheles gambiae, encodes 24 members of a recently identified family of leucine-rich repeat proteins named LRIMs. Two members of this family, LRIM1 and APL1C, are crucial components of the mosquito complement-like pathway that is important for immune defense against Plasmodium parasites. LRIM1 and APL1C circulate in the hemolymph exclusively as a disulfide-bonded complex that specifically interacts with the mature form of the complement C3-like protein, TEP1. We have investigated the specificity of LRIM1/APL1C complex formation and which regions of these proteins are required for interactions with TEP1. To address these questions, we have generated a set of LRIM1 and APL1C alleles altering key conserved structural elements and assayed them in cell culture for complex formation and interaction with TEP1. Our data indicate that heterocomplex formation is an intrinsic ability of LRIM1 and APL1C and identify key homologous cysteine residues forming the intermolecular disulfide bond. We also demonstrate that the coiled-coil domain is the binding site for TEP1 but also contributes to the specificity of LRIM1/APL1C complex formation. In addition, we show that the LRIM1/APL1C complex interacts with the mature forms of three other TEP proteins, one of which, TEP3, we have characterized as a Plasmodium antagonist. We conclude that LRIM1 and APL1C contain three distinct modules: a C-terminal coiled-coil domain that can carry different TEP protein cargoes, potentially with distinct functions, a central cysteine-rich region that controls complex formation and an N-terminal leucine-rich repeat with a putative role in pathogen recognition. PMID:21533217

  9. Structure-function analysis of the Anopheles gambiae LRIM1/APL1C complex and its interaction with complement C3-like protein TEP1.

    Directory of Open Access Journals (Sweden)

    Michael Povelones

    2011-04-01

    Full Text Available Malaria threatens half the world's population and exacts a devastating human toll. The principal malaria vector in Africa, the mosquito Anopheles gambiae, encodes 24 members of a recently identified family of leucine-rich repeat proteins named LRIMs. Two members of this family, LRIM1 and APL1C, are crucial components of the mosquito complement-like pathway that is important for immune defense against Plasmodium parasites. LRIM1 and APL1C circulate in the hemolymph exclusively as a disulfide-bonded complex that specifically interacts with the mature form of the complement C3-like protein, TEP1. We have investigated the specificity of LRIM1/APL1C complex formation and which regions of these proteins are required for interactions with TEP1. To address these questions, we have generated a set of LRIM1 and APL1C alleles altering key conserved structural elements and assayed them in cell culture for complex formation and interaction with TEP1. Our data indicate that heterocomplex formation is an intrinsic ability of LRIM1 and APL1C and identify key homologous cysteine residues forming the intermolecular disulfide bond. We also demonstrate that the coiled-coil domain is the binding site for TEP1 but also contributes to the specificity of LRIM1/APL1C complex formation. In addition, we show that the LRIM1/APL1C complex interacts with the mature forms of three other TEP proteins, one of which, TEP3, we have characterized as a Plasmodium antagonist. We conclude that LRIM1 and APL1C contain three distinct modules: a C-terminal coiled-coil domain that can carry different TEP protein cargoes, potentially with distinct functions, a central cysteine-rich region that controls complex formation and an N-terminal leucine-rich repeat with a putative role in pathogen recognition.

  10. The Human Malaria Parasite Pfs47 Gene Mediates Evasion of the Mosquito Immune System

    Science.gov (United States)

    Molina-Cruz, Alvaro; Garver, Lindsey S.; Alabaster, Amy; Bangiolo, Lois; Haile, Ashley; Winikor, Jared; Ortega, Corrie; van Schaijk, Ben C. L.; Sauerwein, Robert W.; Taylor-Salmon, Emma; Barillas-Mury, Carolina

    2013-01-01

    Summary The surface protein Pfs47 mediates Plasmodium falciparum evasion of the Anopheles gambiae complement-like immune system. Plasmodium falciparum transmission by Anopheles gambiae mosquitoes is remarkably efficient, resulting in a very high prevalence of human malaria infection in sub-Saharan Africa. A combination of genetic mapping, linkage group selection, and functional genomics was used to identify Pfs47 as a P. falciparum gene that allows the parasite to infect A. gambiae without activating the mosquito immune system. Disruption of Pfs47 greatly reduced parasite survival in the mosquito and this phenotype could be reverted by genetic complementation of the parasite or by disruption of the mosquito complement-like system. Pfs47 suppresses midgut nitration responses that are critical to activate the complement-like system. We provide direct experimental evidence that immune evasion mediated by Pfs47 is critical for efficient human malaria transmission by A. gambiae. PMID:23661646

  11. Evaluation of selected South African ethnomedicinal plants as mosquito repellents against the Anopheles arabiensis mosquito in a rodent model

    Directory of Open Access Journals (Sweden)

    Folb Peter I

    2010-10-01

    Full Text Available Abstract Background This study was initiated to establish whether any South African ethnomedicinal plants (indigenous or exotic, that have been reported to be used traditionally to repel or kill mosquitoes, exhibit effective mosquito repellent properties. Methods Extracts of a selection of South African taxa were tested for repellency properties in an applicable mosquito feeding-probing assay using unfed female Anopheles arabiensis. Results Although a water extract of the roots of Chenopodium opulifolium was found to be 97% as effective as DEET after 2 mins, time lag studies revealed a substantial reduction in efficacy (to 30% within two hours. Conclusions None of the plant extracts investigated exhibited residual repellencies >60% after three hours.

  12. Potential Test of Papaya Leaf and Seed Extract (Carica Papaya) as Larvicides against Anopheles Mosquito Larvae Mortality. SP IN Jayapura, Papua Indonesia

    OpenAIRE

    Arsunan

    2015-01-01

    Anopheles mosquitoes, sp is the main vector of malaria disease that is widespread in many parts of the world including in Papua Province. There are four speciesof Anopheles mosquitoes, sp, in Papua namely: An.farauti, An.koliensis, An. subpictus, and An.punctulatus. Larviciding synthetic cause resistance. This study aims to analyze the potential of papaya leaf and seeds extracts (Carica papaya) as larvicides against the mosquitoes Anopheles sp. The experiment was conducted at the Laboratory o...

  13. Caractérisation moléculaire des moustiques du complexe Anopheles gambiae à Mayotte et à Grande Comore

    Directory of Open Access Journals (Sweden)

    Léong Pock Tsy J.M.

    2003-09-01

    Full Text Available Les moustiques du complexe Anopheles gambiae ont été caractérisés sur le plan spécifique et sub-spécifique dans deux îles de l'archipel des Comores : l'Ile de Mayotte (collectivité départementale française et l'Ile de Grande Comore (Union des Comores. Les résultats sont semblables pour les deux îles et sont présentés groupés. Seule l'espèce An. gambiae s.s. a été observée (détermination sur 149 spécimens par PCR sur un amplicon d'IGS de l'ADNr. Seule la forme moléculaire S, assimilable dans cette zone géographique à la forme chromosomique Savane, a été observée (détermination sur 123 spécimens par PCR sur un autre amplicon de l'IGS de l'ADNr. Enfin, seul le sous-type IB, rencontré en Afrique de l'Est, a été trouvé (détermination sur dix spécimens, par séquençage d'une zone amplifiée de l'ITS de l'ADNr, et observation de la position 871. En conclusion, à Mayotte et à Grande Comore, le complexe An. gambiae comprend uniquement des An. gambiae s.s. de la forme moléculaire S/type IB.

  14. Update on resistance status of Anopheles gambiae s.s. to conventional insecticides at a previous WHOPES field site, "Yaokoffikro", 6 years after the political crisis in Côte d'Ivoire

    Directory of Open Access Journals (Sweden)

    Koffi Alphonsine A

    2012-04-01

    Full Text Available Abstract Background At Yaokoffikro field site near Bouaké, in central Côte d'Ivoire, a group of experimental huts built in 1996 served over many years for the evaluation of insecticides against highly resistant mosquitoes. Breeding sites of mosquitoes and selection pressure in the area were maintained by local farming practices until a war broke out in September 2002. Six years after the crisis, we conducted bioassays and biochemical analysis to update the resistance status of Anopheles gambiae s.s. populations and detect other potential mechanisms of resistance that might have evolved. Methods An. gambiae s.s. larvae from Yaokoffikro were collected in breeding sites and reared to adults. Resistance status of this population to insecticides was assessed using WHO bioassay test kits for adult mosquitoes with seven insecticides: two pyrethroids, a pseudo-pyrethroid, an organochloride, two carbamates and an organophosphate. Molecular and biochemical assays were carried out to identify the L1014F kdr and ace-1R alleles in individual mosquitoes and to detect potential increase in mixed function oxidases (MFO, non-specific esterases (NSE and glutathione S-transferases (GST activity. Results High pyrethroids, DDT and carbamate resistance was confirmed in An. gambiae s.s. populations from Yaokoffikro. Mortality rates were less than 70% with pyrethroids and etofenprox, 12% with DDT, and less than 22% with the carbamates. Tolerance to fenitrothion was observed, with 95% mortality after 24 h. PCR analysis of samples from the site showed high allelic frequency of the L1014F kdr (0.94 and the ace-1R (0.50 as before the crisis. In addition, increased activity of NSE, GST and to a lesser extent MFO was found relative to the reference strain Kisumu. This was the first report detecting enhanced activity of these enzymes in An. gambiae s.s from Yaokoffikro, which could have serious implications in detoxification of insecticides. Their specific roles in

  15. Mosquito repellent action of Blumea lacera (Asteraceae against Anopheles stephensi and Culex quinquefasciatus.

    Directory of Open Access Journals (Sweden)

    S.P. Singh

    2014-03-01

    Full Text Available Petroleum ether extract of Blumea lacera was screened under laboratory conditions for repellent activity against mosquito vector Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae. The repellent activity of Blumea lacera extract was tested against mosquitoes in comparison with the DEET, which was used as a positive control. Results obtained from the laboratory experiment showed that the extract was effective against mosquito vectors even at a low dose. A direct relationship was observed with concentrations of Blumea lacera extract and the repellent activity. Percent repellency obtained at 6% concentration of theextract against An. stephensi and Cx. quinquefasciatus were 97and 98% at 0 hour and 78.8 and 76.2% after 6 hrs. DEET-2% however showed 100% repellency against An. stephensi and against Cx. quinquefasciatus up to 4 hours and 1 hour, respectively. These results show that Blumea lacera extract has the potential as an effective mosquito repellent.

  16. Mosquito immune responses and compatibility between Plasmodium parasites and anopheline mosquitoes

    OpenAIRE

    Molina-Cruz Alvaro; Povelones Michael; Ndikuyeze Georges; Rodrigues Janneth; Jaramillo-Gutierrez Giovanna; Barillas-Mury Carolina

    2009-01-01

    Abstract Background Functional screens based on dsRNA-mediated gene silencing identified several Anopheles gambiae genes that limit Plasmodium berghei infection. However, some of the genes identified in these screens have no effect on the human malaria parasite Plasmodium falciparum; raising the question of whether different mosquito effector genes mediate anti-parasitic responses to different Plasmodium species. Results Four new An. gambiae (G3) genes were identified that, when silenced, hav...

  17. Wash resistance and repellent properties of Africa University mosquito blankets against mosquitoes

    Directory of Open Access Journals (Sweden)

    N. Lukwa

    2013-04-01

    Full Text Available The effect of permethrin-treated Africa University (AU mosquito blankets on susceptible female Anopheles gambiae sensu lato mosquitoes was studied under laboratory conditions at Africa University Campus in Mutare, Zimbabwe. Wash resistance (ability to retain an effective dose that kills ≥80% of mosquitoes after a number of washes and repellence (ability to prevent ≥80% of mosquito bites properties were studied. The AU blankets were wash resistant when 100% mortality was recorded up to 20 washes, declining to 90% after 25 washes. Untreated AU blankets did not cause any mortality on mosquitoes. However, mosquito repellence was 96%, 94%, 97.9%, 87%, 85% and 80.7% for treated AU blankets washed 0, 5, 10, 15, 20 and 25 times, respectively. Mosquito repellence was consistently above 80% from 0-25 washes. In conclusion, AU blankets washed 25 times were effective in repelling and killing An. gambiae sl mosquitoes under laboratory conditions.

  18. Evaluation of selected South African ethnomedicinal plants as mosquito repellents against the Anopheles arabiensis mosquito in a rodent model

    OpenAIRE

    Folb Peter I; Bhagwandin Niresh; Newmarch Marion; Crouch Neil R; Maharaj Vinesh; Maharaj Rajendra; Pillay Pamisha; Gayaram Reshma

    2010-01-01

    Abstract Background This study was initiated to establish whether any South African ethnomedicinal plants (indigenous or exotic), that have been reported to be used traditionally to repel or kill mosquitoes, exhibit effective mosquito repellent properties. Methods Extracts of a selection of South African taxa were tested for repellency properties in an applicable mosquito feeding-probing assay using unfed female Anopheles arabiensis. Results Although a water extract of the roots of Chenopodiu...

  19. Mosquito repellent potential of Pithecellobium dulce leaf and seed against malaria vector Anopheles stephensi (Diptera: Culicidae)

    OpenAIRE

    Mohan Rajeswary; Marimuthu Govindarajan

    2016-01-01

    Objective: To determine the repellent properties of hexane, benzene, ethyl acetate, chloroform and methanol extract of Pithecellobium dulce (P. dulce) leaf and seed against Anopheles stephensi (An. stephensi). Methods: Repellent activity assay was carried out in a net cage (45 cm × 30 cm × 25 cm) containing 100 blood starved female mosquitoes of An. stephensi. This assay was carried out in the laboratory conditions according to the WHO 2009 protocol. Plant crude extracts of P. ...

  20. Presence of the mosquito Anopheles hyrcanus in South Moravia, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Šebesta, Oldřich; Rettich, F.; Minář, Jan; Halouzka, Jiří; Hubálek, Zdeněk; Juřicová, Zina; Rudolf, Ivo; Šikutová, Silvie; Gelbič, Ivan; Reiter, P.

    2009-01-01

    Roč. 23, č. 3 (2009), s. 284-286. ISSN 0269-283X R&D Projects: GA MŠk 2B08003 Grant ostatní: 6th Framework Programme(XE) GOCE-2003-010284 EDEN Institutional research plan: CEZ:AV0Z60930519; CEZ:AV0Z50070508 Keywords : Anopheles hyrcanus * mosquitoes * geographic range * Central Europe Subject RIV: FN - Epidemiology, Contagious Diseases ; Clinical Immunology Impact factor: 2.092, year: 2009

  1. Reconstructing the flight kinematics of swarming and mating behavior in wild mosquitoes

    Science.gov (United States)

    We describe a tracking system for reconstructing three-dimensional tracks of individual mosquitoes in wild swarms and present the results of validating the system by filming swarms and mating events of the malaria mosquito Anopheles gambiae in Mali. The tracking system is designed to address noisy, ...

  2. Bacterial Diversity Associated with Wild Caught Anopheles Mosquitoes from Dak Nong Province, Vietnam Using Culture and DNA Fingerprint

    Science.gov (United States)

    Ngo, Chung Thuy; Aujoulat, Fabien; Veas, Francisco; Jumas-Bilak, Estelle; Manguin, Sylvie

    2015-01-01

    Background Microbiota of Anopheles midgut can modulate vector immunity and block Plasmodium development. Investigation on the bacterial biodiversity in Anopheles, and specifically on the identification of bacteria that might be used in malaria transmission blocking approaches, has been mainly conducted on malaria vectors of Africa. Vietnam is an endemic country for both malaria and Bancroftian filariasis whose parasitic agents can be transmitted by the same Anopheles species. No information on the microbiota of Anopheles mosquitoes in Vietnam was available previous to this study. Method The culture dependent approach, using different mediums, and culture independent (16S rRNA PCR – TTGE) method were used to investigate the bacterial biodiversity in the abdomen of 5 Anopheles species collected from Dak Nong Province, central-south Vietnam. Molecular methods, sequencing and phylogenetic analysis were used to characterize the microbiota. Results and Discussion The microbiota in wild-caught Anopheles was diverse with the presence of 47 bacterial OTUs belonging to 30 genera, including bacterial genera impacting Plasmodium development. The bacteria were affiliated with 4 phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, the latter being the dominant phylum. Four bacterial genera are newly described in Anopheles mosquitoes including Coxiella, Yersinia, Xanthomonas, and Knoellia. The bacterial diversity per specimen was low ranging from 1 to 4. The results show the importance of pairing culture and fingerprint methods to better screen the bacterial community in Anopheles mosquitoes. Conclusion Sampled Anopheles species from central-south Vietnam contained a diverse bacterial microbiota that needs to be investigated further in order to develop new malaria control approaches. The combination of both culture and DNA fingerprint methods allowed a thorough and complementary screening of the bacterial community in Anopheles mosquitoes. PMID:25747513

  3. Bacterial diversity associated with wild caught Anopheles mosquitoes from Dak Nong Province, Vietnam using culture and DNA fingerprint.

    Directory of Open Access Journals (Sweden)

    Chung Thuy Ngo

    Full Text Available Microbiota of Anopheles midgut can modulate vector immunity and block Plasmodium development. Investigation on the bacterial biodiversity in Anopheles, and specifically on the identification of bacteria that might be used in malaria transmission blocking approaches, has been mainly conducted on malaria vectors of Africa. Vietnam is an endemic country for both malaria and Bancroftian filariasis whose parasitic agents can be transmitted by the same Anopheles species. No information on the microbiota of Anopheles mosquitoes in Vietnam was available previous to this study.The culture dependent approach, using different mediums, and culture independent (16S rRNA PCR - TTGE method were used to investigate the bacterial biodiversity in the abdomen of 5 Anopheles species collected from Dak Nong Province, central-south Vietnam. Molecular methods, sequencing and phylogenetic analysis were used to characterize the microbiota.The microbiota in wild-caught Anopheles was diverse with the presence of 47 bacterial OTUs belonging to 30 genera, including bacterial genera impacting Plasmodium development. The bacteria were affiliated with 4 phyla, Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria, the latter being the dominant phylum. Four bacterial genera are newly described in Anopheles mosquitoes including Coxiella, Yersinia, Xanthomonas, and Knoellia. The bacterial diversity per specimen was low ranging from 1 to 4. The results show the importance of pairing culture and fingerprint methods to better screen the bacterial community in Anopheles mosquitoes.Sampled Anopheles species from central-south Vietnam contained a diverse bacterial microbiota that needs to be investigated further in order to develop new malaria control approaches. The combination of both culture and DNA fingerprint methods allowed a thorough and complementary screening of the bacterial community in Anopheles mosquitoes.

  4. Clarification of anomalies in the application of a 2La molecular karyotyping method for the malaria vector Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2008-12-01

    Full Text Available Abstract Background Chromosomal inversions have been considered to be potentially important barriers to gene flow in many groups of animals through their effect on recombination suppression in heterokaryotypic individuals. Inversions can also enhance local adaptation in different groups of organisms and may often represent species-specific differences among closely related taxa. We conducted a study to characterize the 2La inversion karyotypes of An. gambiae sensu stricto mosquitoes sampled from the Kilombero Valley (Tanzania using a newly designed PCR assay. Results We frequently encountered a (687 bp fragment which was only present in the Kilombero Valley populations. Laboratory crossing between An. gambiae s.s. from Njage (Tanzania and Kisumu (Western Kenya populations resulted in F1 offspring carrying the observed fragment. Karyotype analysis did not indicate differences in 2La region chromosome morphology between individuals carrying the PCR fragments, the 207 bp fragment, or the 687 bp fragement. Conclusion The observed insertion/deletion polymorphism within the region amplified by the 2La PCR diagnostic test may confound the interpretation of this assay and should be well considered in order to maintain an acceptable level of reliability in studies using this assay to describe the distribution and frequency of the 2La inversion among natural populations of An. gambiae s.s.

  5. An Odorant Receptor from the Southern House Mosquito Culex pipiens quinquefasciatus Sensitive to Oviposition Attractants

    OpenAIRE

    Pelletier, Julien; Hughes, David T.; Luetje, Charles W.; Leal, Walter S.

    2010-01-01

    Background Insect odorant receptors (ORs) are heteromers comprised of highly variable odorant-binding subunits associated with one conserved co-receptor. They are potential molecular targets for the development of novel mosquito attractants and repellents. ORs have been identified in the malaria mosquito, Anopheles gambiae, and in the yellow fever mosquito, Aedes aegypti. However, they are still unknown in the Southern house mosquito, Culex quinquefasciatus, which transmits pathogens that cau...

  6. Genes and Odors Underlying the Recent Evolution of Mosquito Preference for Humans.

    Science.gov (United States)

    McBride, Carolyn S

    2016-01-11

    Mosquito species that specialize in biting humans are few but dangerous. They include the African malaria vectors Anopheles gambiae and Anopheles coluzzii, as well as Aedes aegypti, the cosmopolitan vector of dengue, chikungunya, and yellow fever. These mosquitoes have evolved a remarkable innate preference for human odor that helps them find and bite us. Here I review what is known about this important evolutionary adaptation, from its historical documentation to its chemical and molecular basis. PMID:26766234

  7. Advances in methods for colour marking of mosquitoes

    OpenAIRE

    2013-01-01

    Background Different techniques are available for colour marking insects and each technique may be suitable for different insect species. Mosquitoes can be marked to determine population size, distribution and flight distance or distinguish closely related species. In this study, two methods of colour marking mosquitoes were described in detail and the impact of both methods on the survival and host-seeking behaviour of the malaria mosquito Anopheles gambiae sensu stricto was investigated. Me...

  8. Development of an allele-specific, loop-mediated, isothermal amplification method (AS-LAMP to detect the L1014F kdr-w mutation in Anopheles gambiae s. l.

    Directory of Open Access Journals (Sweden)

    Badolo Athanase

    2012-07-01

    Full Text Available Abstract Background Malaria control relies heavily on treated bed nets and indoor residual spraying with pyrethroid insecticides. Unfortunately, the resistance to pyrethroid insecticides, mainly due to the kdr mutation, is spreading in the main malaria vector Anopheles gambiae s.l., decreasing the insecticides’ efficacy. To manage the insecticide resistance rapidly and flexibly, simple and effective tools for the early detection of resistant mosquitoes are needed. This study aimed to develop an allele-specific, loop-mediated, isothermal amplification (AS-LAMP method to detect the West African-type kdr mutation (kdr-w; L1014F in field-collected mosquitoes. Methods DNA fragments of the wild-type and the mutated kdr gene were used to select the primers and develop the method. The primers were designed with the mutation at the 5’ end of the backward inner primer (BIP. The AS-LAMP method was compared to the AS-PCR method using the genomic DNA of 120 field-collected mosquitoes. Results The AS-LAMP method could discriminate between the wild-type homozygote, the heterozygote, and the kdr-w homozygote within 75 min. The AS-LAMP method has the advantage of being faster and at least as sensitive and specific as the AS-PCR method. Conclusions The AS-LAMP method can be used to detect the kdr mutation for quick decision-making, even in less well-equipped laboratories.

  9. Change in composition of the Anopheles gambiae complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania

    Directory of Open Access Journals (Sweden)

    Derua Yahya A

    2012-06-01

    Full Text Available Abstract Background A dramatic decline in the incidence of malaria due to Plasmodium falciparum infection in coastal East Africa has recently been reported to be paralleled (or even preceded by an equally dramatic decline in malaria vector density, despite absence of organized vector control. As part of investigations into possible causes for the change in vector population density, the present study analysed the Anopheles gambiae s.l. sibling species composition in north-eastern Tanzania. Methods The study was in two parts. The first compared current species complex composition in freshly caught An. gambiae s.l. complex from three villages to the composition reported from previous studies carried out 2–4 decades ago in the same villages. The second took advantage of a sample of archived dried An. gambiae s.l. complex specimens collected regularly from a fourth study village since 2005. Both fresh and archived dried specimens were identified to sibling species of the An. gambiae s.l. complex by PCR. The same specimens were moreover examined for Plasmodium falciparum and Wuchereria bancrofti infection by PCR. Results As in earlier studies, An. gambiae s.s., Anopheles merus and Anopheles arabiensis were identified as sibling species found in the area. However, both study parts indicated a marked change in sibling species composition over time. From being by far the most abundant in the past An. gambiae s.s. was now the most rare, whereas An. arabiensis had changed from being the most rare to the most common. P. falciparum infection was rarely detected in the examined specimens (and only in An. arabiensis whereas W. bancrofti infection was prevalent and detected in all three sibling species. Conclusion The study indicates that a major shift in An. gambiae s.l. sibling species composition has taken place in the study area in recent years. Combined with the earlier reported decline in overall malaria vector density, the study suggests that this

  10. Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae).

    Science.gov (United States)

    Bayoh, M N; Lindsay, S W

    2003-10-01

    Global warming may affect the future pattern of many arthropod-borne diseases, yet the relationship between temperature and development has been poorly described for many key vectors. Here the development of the aquatic stages of Africa's principal malaria vector, Anopheles gambiae s.s. Giles, is described at different temperatures. Development time from egg to adult was measured under laboratory conditions at constant temperatures between 10 and 40 degrees C. Rate of development from one immature stage to the next increased at higher temperatures to a peak around 28 degrees C and then declined. Adult development rate was greatest between 28 and 32 degrees C, although adult emergence was highest between 22 and 26 degrees C. No adults emerged below 18 degrees C or above 34 degrees C. Non-linear models were used to describe the relationship between developmental rate and temperature, which could be used for developing process-based models of malaria transmission. The utility of these findings is demonstrated by showing that a map where the climate is suitable for the development of aquatic stages of A. gambiae s.s. corresponded closely with the best map of malaria risk currently available for Africa. PMID:14641976

  11. Interaction affinity of Delta and Epsilon class glutathione-s-transferases (GSTs to bind with DDT for detoxification and conferring resistance in Anopheles gambiae, a malaria vector

    Directory of Open Access Journals (Sweden)

    V. Aravindan

    2014-01-01

    Full Text Available Background & objectives: The enzyme glutathione-s-transferases (GSTs are associated with detoxification of DDT, as experimentally proved in Anopheles gambiae. Insect GSTs are classified into six classes and among them Delta and Epsilon class GSTs have been implicated in detoxification of organochlorine insecticides. Both Delta and Epsilon GSTs produce, in total, 24 transcripts that result in the production of corresponding enzyme proteins. However, the conventional assay estimates the level of total GSTs and relates to development of resistance to DDT. Hence, it would be more reliable to estimate the level of the specific class GSTs that shows higher affinity with DDT. This would also lead to design a specific molecular tool for resistance diagnosis. Methods: Of the 24 GSTs, computational models for 23 GSTs, which are available in Swiss-Prot database, were retrieved and for the remaining one, D7-2, for which no model is available in the data bank, a structural model was developed using the sequence of An. dirus B with a PDB ID of 1R5A as the template. All the models were docked with DDT in the presence of reduced glutathione. Results: The energy output showed that Delta, D6 has the highest interaction affinity with DDT. Hence, this particular GST (D6 is likely to get elevated on exposure of mosquitoes to DDT. Interpretation & conclusion: It would be, therefore, possible to design a specific molecular assay to determine the expression level of such high affinity transcript(s and to use for resistance diagnosis reliably in the vector surveillance programme.

  12. Hemocytome: deep sequencing analysis of mosquito blood cells in Indian malarial vector Anopheles stephensi.

    Science.gov (United States)

    Thomas, Tina; De, Tanwee Das; Sharma, Punita; Lata, Suman; Saraswat, Priyanka; Pandey, Kailash C; Dixit, Rajnikant

    2016-07-10

    Hemocytes are tiny circulating blood cells of insects known to play multiple roles in physiological as well as cellular immune responses. However, the molecular nature of hemocytes in blood feeding insects, especially mosquitoes which transmit several deadly diseases such as malaria, dengue etc. is still limited. Therefore, to know the basic molecular composition of naïve mosquito hemocyte encoded proteins, we sequenced RNA-Seq library and analyzed a total of 13,105,858 Illumina sequencing reads in the mosquito Anopheles stephensi, an urban malarial vector in India. Denovo assembly approach yielded a buildup of 3025 contigs, for molecular and functional annotation. A total of 1829 contigs (48%) could be mapped to the mosquito transcript database, while out of remaining 1196 unmatched contigs, at least 1108 contigs i.e. 40% of total contigs, yielded a significant match to the available draft genome. ImmunoDB analysis predicted a total of 88 putative hemocyte transcripts belonging to 11 immune family proteins. A comprehensive molecular analysis of several unique transcripts including novel LRR, Holotricin, OBP, NiFU, that are involved in immunity, chemo sensing, cell-cell communication, nitrogen fixation/metabolism etc. provides initial evidence that mosquito hemocytes carry unique ability to meet and manage cell specific diverse functions of the mosquito blood. An unexpected observation of abundant transcripts encoding hypothetical proteins with unknown functions indicated that a much of the hemocyte biology remains to be understood. PMID:26915489

  13. Development of vegetable farming: a cause of the emergence of insecticide resistance in populations of Anopheles gambiae in urban areas of Benin

    OpenAIRE

    Braïma James; Djouaka Rousseau F; Asidi Alex; Yadouleton Anges; Agossou Christian D; Akogbeto Martin C

    2009-01-01

    Abstract Background A fast development of urban agriculture has recently taken place in many areas in the Republic of Benin. This study aims to assess the rapid expansion of urban agriculture especially, its contribution to the emergence of insecticide resistance in populations of Anopheles gambiae. Methods The protocol was based on the collection of sociological data by interviewing vegetable farmers regarding various agricultural practices and the types of pesticides used. Bioassay tests we...

  14. Cotton pest management practices and the selection of pyrethroid resistance in Anopheles gambiae population in Northern Benin

    OpenAIRE

    Yadouleton Anges; Martin Thibaud; Padonou Gil; Chandre Fabrice; Asidi Alex; Djogbenou Luc; Dabiré Roch; Aïkpon Rock; Boko Michel; Glitho Isabelle; Akogbeto Martin

    2011-01-01

    Abstract Background Pyrethroid insecticides, carbamate and organophosphate are the classes of insecticides commonly used in agriculture for crop protection in Benin. Pyrethroids remain the only class of insecticides recommended by the WHO for impregnation of bed nets. Unfortunately, the high level of pyrethroid resistance in Anopheles gambiae s.l., threatens to undermine the success of pyrethroid treated nets. This study focuses on the investigation of agricultural practices in cotton growing...

  15. Optimization of breeding output for larval stage of Anopheles gambiae (Diptera: Culicidae): prospects for the creation and maintenance of laboratory colony from wild isolates

    OpenAIRE

    Tchuinkam, T.; Mpoame, M.; Make-Mveinhya, B.; Simard, Frédéric; Lélé-Defo, E.; Zebazé-Togouet, S.; Tateng-Ngouateu, A.; Awono-Ambéné, H. P.; Antonio-Nkondjio, C.; Njiné, T.; Fontenille, Didier

    2011-01-01

    Domesticating anopheline species from wild isolates provides an important laboratory tool but requires detailed knowledge of their natural biology and ecology, especially the natural breeding habitats of immature stages. The aim of this study was to determine the optimal values of some parameters of Anopheles gambiae larval development, so as to design a standard rearing protocol of highland isolates, which would ensure: the biggest fourth instars, the highest pupae productivity, the shortest...

  16. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae

    OpenAIRE

    Cirimotich, Chris M; Dong, Yuemei; Clayton, April M.; Sandiford, Simone L.; Jayme A Souza-Neto; Mulenga, Musapa; Dimopoulos, George

    2011-01-01

    Malaria parasite transmission depends on the successful transition of Plasmodium through discrete developmental stages in the lumen of the mosquito midgut. Like the human intestinal tract, the mosquito midgut contains a diverse microbial flora, which may compromise the ability of Plasmodium to establish infection. We have identified an Enterobacter bacterium isolated from wild mosquito populations in Zambia that renders the mosquito 99% resistant to infection with the human malaria parasite P...

  17. A low-cost microfluidic chip for rapid genotyping of malaria-transmitting mosquitoes.

    Directory of Open Access Journals (Sweden)

    Changchun Liu

    Full Text Available BACKGROUND: Vector control is one of the most effective measures to prevent the transmission of malaria, a disease that causes over 600,000 deaths annually. Around 30-40 Anopheles mosquito species are natural vectors of malaria parasites. Some of these species cannot be morphologically distinguished, but have behavioral and ecological differences. Emblematic of this is the Anopheles gambiae species complex. The correct identification of vector species is fundamental to the development of control strategies and epidemiological studies of disease transmission. METHODOLOGY/PRINCIPAL FINDINGS: An inexpensive, disposable, field-deployable, sample-to-answer, microfluidic chip was designed, constructed, and tested for rapid molecular identification of Anopheles gambiae and Anopheles arabiensis. The chip contains three isothermal amplification reactors. One test reactor operates with specific primers to amplify Anopheles gambiae DNA, another with specific primers for Anopheles arabiensis DNA, and the third serves as a negative control. A mosquito leg was crushed on an isolation membrane. Two discs, laden with mosquito tissue, were punched out of the membrane and inserted into the two test chambers. The isolated, disc-bound DNA served as a template in the amplification processes. The amplification products were detected with intercalating fluorescent dye that was excited with a blue light-emitting diode. The emitted light was observed by eye and recorded with a cell-phone camera. When the target consisted of Anopheles gambiae, the reactor containing primers specific to An. gambiae lit up while the other two reactors remained dark. When the target consisted of Anopheles arabiensis, the reactor containing primers specific to An. arabiensis lit up while the other two reactors remained dark. CONCLUSIONS/SIGNIFICANCE: The microfluidic chip provides a means to identify mosquito type through molecular analysis. It is suitable for field work, allowing one to

  18. Disección de mosquitos anopheles (resumen de resultados)

    OpenAIRE

    Cadena, M. A.

    2012-01-01

    Hago a continuación un resumen de los resultados obtenidos con la disección de hembras de anofelinos llevada a cabo en varios sitios del Rio Magdalena y en dos Municipios del Departamento del Valle del Cauca, en los años de 1932 a 1937, figurando en él, el número de disecciones hechas en cada lugar, las especies de anofelinos y lo que en los estómagos y las glándulas salivales de los mosquitos se encontró.

  19. Losing identity: structural diversity of transposable elements belonging to different classes in the genome of Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Fernández-Medina Rita D

    2012-06-01

    Full Text Available Abstract Background Transposable elements (TEs, both DNA transposons and retrotransposons, are genetic elements with the main characteristic of being able to mobilize and amplify their own representation within genomes, utilizing different mechanisms of transposition. An almost universal feature of TEs in eukaryotic genomes is their inability to transpose by themselves, mainly as the result of sequence degeneration (by either mutations or deletions. Most of the elements are thus either inactive or non-autonomous. Considering that the bulk of some eukaryotic genomes derive from TEs, they have been conceived as “TE graveyards.” It has been shown that once an element has been inactivated, it progressively accumulates mutations and deletions at neutral rates until completely losing its identity or being lost from the host genome; however, it has also been shown that these “neutral sequences” might serve as raw material for domestication by host genomes. Results We have analyzed the sequence structural variations, nucleotide divergence, and pattern of insertions and deletions of several superfamilies of TEs belonging to both class I (long terminal repeats [LTRs] and non-LTRs [NLTRs] and II in the genome of Anopheles gambiae, aiming at describing the landscape of deterioration of these elements in this particular genome. Our results describe a great diversity in patterns of deterioration, indicating lineage-specific differences including the presence of Solo-LTRs in the LTR lineage, 5′-deleted NLTRs, and several non-autonomous and MITEs in the class II families. Interestingly, we found fragments of NLTRs corresponding to the RT domain, which preserves high identity among them, suggesting a possible remaining genomic role for these domains. Conclusions We show here that the TEs in the An. gambiae genome deteriorate in different ways according to the class to which they belong. This diversity certainly has implications not only at the host

  20. Development of sporogonic cycle of Plasmodium vivax in experimentally infected Anopheles albimanus mosquitoes

    Directory of Open Access Journals (Sweden)

    Martha L. Salas

    1994-01-01

    Full Text Available The sporogonic cycle of Plasmodium vivax was established and maintained under laboratory conditions in two different strains of Anopheles albimanus mosquitoes using as a parasite source blood from human patients or from Aotus monkeys infected with the VCC-2 P.vivax colombian isolate. Both the Tecojate strain isolate from Guatemala and the Cartagena strain from the colombian Pacific coast were susceptible to infections with P.vivax. A higher percentage of Cartagena mosquitoes was infected per trial, however the Tecojate strain developed higher sporozoite loads. Intravenous inoculation of Aotus monkeys with sporozoites obtained from both anopheline strains resulted in successful blood infections. Animals infected with sporozoites from the Tecojate strain presented a patent period of 21-32 days whereas parasitemia appeared between days 19-53 in monkeys infected with sporozites from Cartagena strain.

  1. Development of sporogonic cycle of Plasmodium vivax in experimentally infected Anopheles albimanus mosquitoes.

    Science.gov (United States)

    Salas, M L; Romero, J F; Solarte, Y; Olano, V; Herrera, M A; Herrera, S

    1994-01-01

    The sporogonic cycle of Plasmodium vivax was established and maintained under laboratory conditions in two different strains of Anopheles albimanus mosquitoes using as a parasite source blood from human patients or from Aotus monkeys infected with the VCC-2 P.vivax colombian isolate. Both the Tecojate strain isolate from Guatemala and the Cartagena strain from the colombian Pacific coast were susceptible to infections with P.vivax. A higher percentage of Cartagena mosquitoes was infected per trial, however the Tecojate strain developed higher sporozoite loads. Intravenous inoculation of Aotus monkeys with sporozoites obtained from both anopheline strains resulted in successful blood infections. Animals infected with sporozoites from the Tecojate strain presented a patent period of 21-32 days whereas parasitemia appeared between days 19-53 in monkeys infected with sporozites from Cartagena strain. PMID:7565121

  2. Risk mapping of Anopheles gambiae s.l. densities using remotely-sensed environmental and meteorological data in an urban area: Dakar, Senegal.

    Directory of Open Access Journals (Sweden)

    Vanessa Machault

    Full Text Available INTRODUCTION: High malaria transmission heterogeneity in an urban environment is basically due to the complex distribution of Anopheles larval habitats, sources of vectors. Understanding 1 the meteorological and ecological factors associated with differential larvae spatio-temporal distribution and 2 the vectors dynamic, both may lead to improving malaria control measures with remote sensing and high resolution data as key components. In this study a robust operational methodology for entomological malaria predictive risk maps in urban settings is developed. METHODS: The Tele-epidemiology approach, i.e., 1 intensive ground measurements (Anopheles larval habitats and Human Biting Rate, or HBR, 2 selection of the most appropriate satellite data (for mapping and extracting environmental and meteorological information, and 3 use of statistical models taking into account the spatio-temporal data variability has been applied in Dakar, Senegal. RESULTS: First step was to detect all water bodies in Dakar. Secondly, environmental and meteorological conditions in the vicinity of water bodies favoring the presence of Anopheles gambiae s.l. larvae were added. Then relationship between the predicted larval production and the field measured HBR was identified, in order to generate An. gambiae s.l. HBR high resolution maps (daily, 10-m pixel in space. DISCUSSION AND CONCLUSION: A robust operational methodology for dynamic entomological malaria predictive risk maps in an urban setting includes spatio-temporal variability of An. gambiae s.l. larval habitats and An. gambiae s.l. HBR. The resulting risk maps are first examples of high resolution products which can be included in an operational warning and targeting system for the implementation of vector control measures.

  3. Larvicidal and repellent properties of Adansonia digitata against medically important human malarial vector mosquito Anopheles stephensi (Diptera: Culicidae)

    OpenAIRE

    K. Krishnappa , K. Elumalai , S. Dhanasekaran & J. Gokulakrishnan

    2012-01-01

    Background & objectives: Development of plant-based alternative compounds for mosquito control has gainedimportance now-a-days, in view of increasing resistance in mosquito vectors to existing insecticides. The larvicidaland repellent activities of benzene, chloroform, hexane and methanol leaf extracts of Indian medicinal plant,Adansonia digitata were investigated against malarial vector, Anopheles stephensi.Methods: In all, 25 III instar larvae of An. stephensi were exposed to various concen...

  4. Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes

    OpenAIRE

    Han, Yeon Soo; Thompson, Joanne; Kafatos, Fotis C.; Barillas-Mury, Carolina

    2000-01-01

    We present a detailed analysis of the interactions between Anopheles stephensi midgut epithelial cells and Plasmodium berghei ookinetes during invasion of the mosquito by the parasite. In this mosquito, P.berghei ookinetes invade polarized columnar epithelial cells with microvilli, which do not express high levels of vesicular ATPase. The invaded cells are damaged, protrude towards the midgut lumen and suffer other characteristic changes, including induction of nitric oxide synthase (NOS) exp...

  5. Annotation and analysis of a large cuticular protein family with the R&R Consensus in Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    He Ningjia

    2008-01-01

    Full Text Available Abstract Background The most abundant family of insect cuticular proteins, the CPR family, is recognized by the R&R Consensus, a domain of about 64 amino acids that binds to chitin and is present throughout arthropods. Several species have now been shown to have more than 100 CPR genes, inviting speculation as to the functional importance of this large number and diversity. Results We have identified 156 genes in Anopheles gambiae that code for putative cuticular proteins in this CPR family, over 1% of the total number of predicted genes in this species. Annotation was verified using several criteria including identification of TATA boxes, INRs, and DPEs plus support from proteomic and gene expression analyses. Two previously recognized CPR classes, RR-1 and RR-2, form separate, well-supported clades with the exception of a small set of genes with long branches whose relationships are poorly resolved. Several of these outliers have clear orthologs in other species. Although both clades are under purifying selection, the RR-1 variant of the R&R Consensus is evolving at twice the rate of the RR-2 variant and is structurally more labile. In contrast, the regions flanking the R&R Consensus have diversified in amino-acid composition to a much greater extent in RR-2 genes compared with RR-1 genes. Many genes are found in compact tandem arrays that may include similar or dissimilar genes but always include just one of the two classes. Tandem arrays of RR-2 genes frequently contain subsets of genes coding for highly similar proteins (sequence clusters. Properties of the proteins indicated that each cluster may serve a distinct function in the cuticle. Conclusion The complete annotation of this large gene family provides insight on the mechanisms of gene family evolution and clues about the need for so many CPR genes. These data also should assist annotation of other Anopheles genes.

  6. The angiotensin-converting enzyme (ACE) gene family of Anopheles gambiae.

    OpenAIRE

    Isaac R Elwyn; Lee Alison J; Smith Judith A; Burnham Susan; Shirras Alan D

    2005-01-01

    Abstract Background Members of the M2 family of peptidases, related to mammalian angiotensin converting enzyme (ACE), play important roles in regulating a number of physiological processes. As more invertebrate genomes are sequenced, there is increasing evidence of a variety of M2 peptidase genes, even within a single species. The function of these ACE-like proteins is largely unknown. Sequencing of the A. gambiae genome has revealed a number of ACE-like genes but probable errors in the Ensem...

  7. Nigeria Anopheles vector database: an overview of 100 years' research.

    Directory of Open Access Journals (Sweden)

    Patricia Nkem Okorie

    Full Text Available Anopheles mosquitoes are important vectors of malaria and lymphatic filariasis (LF, which are major public health diseases in Nigeria. Malaria is caused by infection with a protozoan parasite of the genus Plasmodium and LF by the parasitic worm Wuchereria bancrofti. Updating our knowledge of the Anopheles species is vital in planning and implementing evidence based vector control programs. To present a comprehensive report on the spatial distribution and composition of these vectors, all published data available were collated into a database. Details recorded for each source were the locality, latitude/longitude, time/period of study, species, abundance, sampling/collection methods, morphological and molecular species identification methods, insecticide resistance status, including evidence of the kdr allele, and P. falciparum sporozoite rate and W. bancrofti microfilaria prevalence. This collation resulted in a total of 110 publications, encompassing 484,747 Anopheles mosquitoes in 632 spatially unique descriptions at 142 georeferenced locations being identified across Nigeria from 1900 to 2010. Overall, the highest number of vector species reported included An. gambiae complex (65.2%, An. funestus complex (17.3%, An. gambiae s.s. (6.5%. An. arabiensis (5.0% and An. funestus s.s. (2.5%, with the molecular forms An. gambiae M and S identified at 120 locations. A variety of sampling/collection and species identification methods were used with an increase in molecular techniques in recent decades. Insecticide resistance to pyrethroids and organochlorines was found in the main Anopheles species across 45 locations. Presence of P. falciparum and W. bancrofti varied between species with the highest sporozoite rates found in An. gambiae s.s, An. funestus s.s. and An. moucheti, and the highest microfilaria prevalence in An. gambiae s.l., An. arabiensis, and An. gambiae s.s. This comprehensive geo-referenced database provides an essential baseline on

  8. Unbiased Characterization of Anopheles Mosquito Blood Meals by Targeted High-Throughput Sequencing

    Science.gov (United States)

    Logue, Kyle; Keven, John Bosco; Cannon, Matthew V.; Reimer, Lisa; Siba, Peter; Walker, Edward D.; Zimmerman, Peter A.; Serre, David

    2016-01-01

    Understanding mosquito host choice is important for assessing vector competence or identifying disease reservoirs. Unfortunately, the availability of an unbiased method for comprehensively evaluating the composition of insect blood meals is very limited, as most current molecular assays only test for the presence of a few pre-selected species. These approaches also have limited ability to identify the presence of multiple mammalian hosts in a single blood meal. Here, we describe a novel high-throughput sequencing method that enables analysis of 96 mosquitoes simultaneously and provides a comprehensive and quantitative perspective on the composition of each blood meal. We validated in silico that universal primers targeting the mammalian mitochondrial 16S ribosomal RNA genes (16S rRNA) should amplify more than 95% of the mammalian 16S rRNA sequences present in the NCBI nucleotide database. We applied this method to 442 female Anopheles punctulatus s. l. mosquitoes collected in Papua New Guinea (PNG). While human (52.9%), dog (15.8%) and pig (29.2%) were the most common hosts identified in our study, we also detected DNA from mice, one marsupial species and two bat species. Our analyses also revealed that 16.3% of the mosquitoes fed on more than one host. Analysis of the human mitochondrial hypervariable region I in 102 human blood meals showed that 5 (4.9%) of the mosquitoes unambiguously fed on more than one person. Overall, analysis of PNG mosquitoes illustrates the potential of this approach to identify unsuspected hosts and characterize mixed blood meals, and shows how this approach can be adapted to evaluate inter-individual variations among human blood meals. Furthermore, this approach can be applied to any disease-transmitting arthropod and can be easily customized to investigate non-mammalian host sources. PMID:26963245

  9. Unbiased Characterization of Anopheles Mosquito Blood Meals by Targeted High-Throughput Sequencing.

    Science.gov (United States)

    Logue, Kyle; Keven, John Bosco; Cannon, Matthew V; Reimer, Lisa; Siba, Peter; Walker, Edward D; Zimmerman, Peter A; Serre, David

    2016-03-01

    Understanding mosquito host choice is important for assessing vector competence or identifying disease reservoirs. Unfortunately, the availability of an unbiased method for comprehensively evaluating the composition of insect blood meals is very limited, as most current molecular assays only test for the presence of a few pre-selected species. These approaches also have limited ability to identify the presence of multiple mammalian hosts in a single blood meal. Here, we describe a novel high-throughput sequencing method that enables analysis of 96 mosquitoes simultaneously and provides a comprehensive and quantitative perspective on the composition of each blood meal. We validated in silico that universal primers targeting the mammalian mitochondrial 16S ribosomal RNA genes (16S rRNA) should amplify more than 95% of the mammalian 16S rRNA sequences present in the NCBI nucleotide database. We applied this method to 442 female Anopheles punctulatus s. l. mosquitoes collected in Papua New Guinea (PNG). While human (52.9%), dog (15.8%) and pig (29.2%) were the most common hosts identified in our study, we also detected DNA from mice, one marsupial species and two bat species. Our analyses also revealed that 16.3% of the mosquitoes fed on more than one host. Analysis of the human mitochondrial hypervariable region I in 102 human blood meals showed that 5 (4.9%) of the mosquitoes unambiguously fed on more than one person. Overall, analysis of PNG mosquitoes illustrates the potential of this approach to identify unsuspected hosts and characterize mixed blood meals, and shows how this approach can be adapted to evaluate inter-individual variations among human blood meals. Furthermore, this approach can be applied to any disease-transmitting arthropod and can be easily customized to investigate non-mammalian host sources. PMID:26963245

  10. Gal4-based enhancer-trapping in the malaria mosquito Anopheles stephensi.

    Science.gov (United States)

    O'Brochta, David A; Pilitt, Kristina L; Harrell, Robert A; Aluvihare, Channa; Alford, Robert T

    2012-11-01

    Transposon-based forward and reverse genetic technologies will contribute greatly to ongoing efforts to study mosquito functional genomics. A piggyBac transposon-based enhancer-trap system was developed that functions efficiently in the human malaria vector, Anopheles stephensi. The system consists of six transgenic lines of Anopheles stephensi, each with a single piggyBac-Gal4 element in a unique genomic location; six lines with a single piggyBac-UAStdTomato element; and two lines, each with a single Minos element containing the piggyBac-transposase gene under the regulatory control of the hsp70 promoter from Drosophila melanogaster. Enhancer detection depended upon the efficient remobilization of piggyBac-Gal4 transposons, which contain the yeast transcription factor gene Gal4 under the regulatory control of a basal promoter. Gal4 expression was detected through the expression of the fluorescent protein gene tdTomato under the regulatory control of a promoter with Gal4-binding UAS elements. From five genetic screens for larval- and adult-specific enhancers, 314 progeny were recovered from 24,250 total progeny (1.3%) with unique patterns of tdTomato expression arising from the influence of an enhancer. The frequency of piggyBac remobilization and enhancer detection was 2.5- to 3-fold higher in female germ lines compared with male germ lines. A small collection of enhancer-trap lines are described in which Gal4 expression occurred in adult female salivary glands, midgut, and fat body, either singly or in combination. These three tissues play critical roles during the infection of Anopheles stephensi by malaria-causing Plasmodium parasites. This system and the lines generated using it will be valuable resources to ongoing mosquito functional genomics efforts. PMID:23173082

  11. Physiology and development of the M and S molecular forms of Anopheles gambiae in Burkina Faso (West Africa).

    Science.gov (United States)

    Mouline, K; Mamai, W; Agnew, P; Tchonfienet, M; Brengues, C; Dabire, R; Robert, V; Simard, F

    2012-12-01

    In West Africa, M and S molecular forms of Anopheles gambiae sensu stricto (Diptera: Culicidae) Giles, frequently occur together, although with different population bionomics. The S form typically breeds in rain-dependant water collections and is present during the rainy season only whereas the M form can thrive all year long in areas with permanent breeding opportunities. In the present study, we explored physiological and developmental trade-offs at play in laboratory colonies and field populations of the M and S forms that originated from an area of sympatry in Burkina Faso, where M and S larvae exhibit such habitat segregation. In the laboratory, larvae of the M form developed slower than the S form (mean values 9.51 and 8.85 days, respectively, Wilcoxon's test, P < 0.001). Although wing length and dry weight at emergence showed large variations, M females were on average 8% heavier than S females of similar wing length. Higher nutritional reserves (proteins and lipids) in teneral adults explained part of this weight difference, reflecting a better ability of the M form to garner resources at the larval stage. Furthermore, a higher rate of ovarian maturation was observed in the M form after a single bloodmeal. The relevance of these findings for parasite transmission is discussed. PMID:22681446

  12. Anopheles gambiae Ag-STAT, a new insect member of the STAT family, is activated in response to bacterial infection.

    Science.gov (United States)

    Barillas-Mury, C; Han, Y S; Seeley, D; Kafatos, F C

    1999-02-15

    A new insect member of the STAT family of transcription factors (Ag-STAT) has been cloned from the human malaria vector Anopheles gambiae. The domain involved in DNA interaction and the SH2 domain are well conserved. Ag-STAT is most similar to Drosophila D-STAT and to vertebrate STATs 5 and 6, constituting a proposed ancient class A of the STAT family. The mRNA is expressed at all developmental stages, and the protein is present in hemocytes, pericardial cells, midgut, skeletal muscle and fat body cells. There is no evidence of transcriptional activation following bacterial challenge. However, bacterial challenge results in nuclear translocation of Ag-STAT protein in fat body cells and induction of DNA-binding activity that recognizes a STAT target site. In vitro treatment with pervanadate (vanadate and H2O2) translocates Ag-STAT to the nucleus in midgut epithelial cells. This is the first evidence of direct participation of the STAT pathway in immune responses in insects. PMID:10022838

  13. Modelling sterile insect technique to control the population of Anopheles gambiae

    OpenAIRE

    James E. Gentile; Rund, Samuel SC; Gregory R. Madey

    2015-01-01

    Background There is a renewed effort to develop novel malaria control strategies as even well-implemented existing malaria control tools may fail to block transmission in some regions. Currently, transgenic implementations of the sterile insect technique (SIT) such as the release of insects with a dominant lethal, homing endonuclease genes, or flightless mosquitoes are in development. These implementations involve the release of transgenic male mosquitoes whose matings with wild females produ...

  14. The accumulation of specific mRNAs following multiple blood meals in Anopheles gambiae

    OpenAIRE

    Xavier, Nirmala; Marinotti, Osvaldo; James, Anthony A

    2005-01-01

    One approach to genetic control of transmission of the parasites that cause human malaria is based on expressing effector genes in mosquitoes that disable the pathogens. Endogenous mosquito promoter and other cis-acting DNA sequences are needed to direct the optimal tissue-, stage- and sex-specific expression of the effector molecules. The mRNA accumulation profiles of eight different genes expressed specifically in the midgut, salivary glands or fat body tissues of the malaria vector, Anophe...

  15. Studies of Anopheles gambiae s.l (Diptera: Culicidae exhibiting different vectorial capacities in lymphatic filariasis transmission in the Gomoa district, Ghana

    Directory of Open Access Journals (Sweden)

    Amuzu Hilaria

    2010-09-01

    Full Text Available Abstract Background Two lymphatic filariasis endemic communities Mampong and Hwida in Ghana have been regularly monitored for impact on transmission after annual mass drug administration (MDA with albendazole and ivermectin. After six MDAs even though the ABR for Mampong was 55883/person/year and that of Hwida was 2494/person/year, they both had ATPs of 15.21 infective larvae/person/year. Interestingly the human microfilaraemia levels had reduced significantly from 14% to 0% at Mampong and 12% to 3% at Hwida. In an attempt to understand this anomaly, we collected mosquitoes over a 5-month period using human landing catches to determine the species composition, the number of cibarial teeth, the lengths and widths of the cibarium and the cibarial dome of the vector populations. Results Out of 2553 mosquitoes caught at Mampong, 42.6% were An. gambiae s.l. All 280 identified further by PCR were An. gambiae s.s (275 M and 5 S molecular forms. At Hwida, 112 mosquitoes were obtained; 67 (59.8% were An. gambiae s.l, comprised of 40 (59.7% An. melas, 24 (35.8% An. gambiae s.s (17 and 5 M and S molecular forms respectively and 3 (4.5% unidentified. The mean number of teeth for An. melas was 14.1 (median = 14, range = 12-15, An. gambiae s.s., 15.7 (median = 15, range = 13-19 M form 15.5 (median = 15 range = 13-19 and S form 16 (median = 16, range 15-17. The observed differences in teeth numbers were significantly different between An. melas and An. gambiae s.s (p = 0.004, and the M form (p = 0.032 and the S form (p = 0.002. Conclusions In this study, An. gambiae s.s was the main vector at Mampong and was found to possess significantly more cibarial teeth than An. melas, the principal vector at Hwida. We postulate that the different impact observed after 6 MDAs may be due to An. gambiae s.s exhibiting 'facilitation' at Mampong and at Hwida An. melas the main vector exhibits 'limitation'. Thus it may be necessary to compliment MDA with vector control to

  16. Differential effect of human ivermectin treatment on blood feeding Anopheles gambiae and Culex quinquefasciatus

    DEFF Research Database (Denmark)

    Derua, Yahya A.; Kisinza, William N.; Simonsen, Paul Erik

    2015-01-01

    BACKGROUND: Widespread and large scale use of ivermectin in humans and domestic animals can have unexpected effects on non-target organisms. As a search for a possible explanation for an observed longitudinal decline in density of anopheline vector mosquitoes, but not in Culex quinquefasciatus, in...... to receive either ivermectin or placebo. Twenty four hours after treatment, one volunteer from each group was concurrently exposed to 50 laboratory reared An. gambiae on one arm and 50 laboratory reared Cx. quinquefasciatus on the other arm for 15-30 minutes. Engorged mosquitoes were maintained on 10...

  17. Quantification of the efficiency of treatment of Anopheles gambiae breeding sites with petroleum products by local communities in areas of insecticide resistance in the Republic of Benin

    Directory of Open Access Journals (Sweden)

    Doannio Julien MC MC

    2007-05-01

    Full Text Available Abstract Background The emergence of Anopheles populations capable of withstanding lethal doses of insecticides has weakened the efficacy of most insecticide based strategies of vector control and, has highlighted the need for developing new insecticidal molecules or, improving the efficacy of existing insecticides or abandoning those to which resistance has emerged. The use of petroleum products (PP against mosquito larvae had an immense success during early programmes of malaria control, but these compounds were abandoned and replaced in the 1950s by synthetic insecticides probably because of the high performances given by these new products. In the current context of vector resistance, it is important to elucidate the empirical use of PP by quantifying their efficiencies on resistant strains of Anopheles. Methods Larvae of Anopheles Ladji a local resistant strain were exposed to increasing concentrations of various PP (kerosene, petrol and engine oils for 24 hours and the lethal activities recorded. The highest concentration (HiC having no lethal activity (also referred as the NOEL or no effect level and the lowest concentration (LoC100 yielding 100% mortality were rated for each PP on the Ladji strain. Prior to laboratory analysis, KAP studies were conducted in three traditional communities were insecticide resistance is clearly established to confirm the use of PP against mosquitoes. Results Laboratory analysis of petrol, kerosene and engine oils, clearly established their lethal activities on resistant strains of Anopheles larvae. Contrary to existing references, this research revealed that exposed larvae of Anopheles were mostly killed by direct contact toxicity and not by suffocation as indicated in some earlier reports. Conclusion This research could serve as scientific basis to backup the empirical utilisation of PP on mosquito larvae and to envisage possibilities of using PP in some traditional settings where Anopheles have developed

  18. Mosquito repellent potential of Pithecellobium dulce leaf and seed against malaria vector Anopheles stephensi (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Mohan Rajeswary

    2016-03-01

    Full Text Available Objective: To determine the repellent properties of hexane, benzene, ethyl acetate, chloroform and methanol extract of Pithecellobium dulce (P. dulce leaf and seed against Anopheles stephensi (An. stephensi. Methods: Repellent activity assay was carried out in a net cage (45 cm × 30 cm × 25 cm containing 100 blood starved female mosquitoes of An. stephensi. This assay was carried out in the laboratory conditions according to the WHO 2009 protocol. Plant crude extracts of P. dulce were applied at 1.0, 2.5, and 5.0 mg/cm2 separately in the exposed fore arm of study subjects. Ethanol was used as the sole control. Results: In this study, the applied plant crude extracts were observed to protect against mosquito bites. There were no allergic reactions experienced by the study subjects. The repellent activity of the extract was dependent on the concentration of the extract. Among the tested solvents, the leaf and seed methanol extract showed the maximum efficacy. The highest concentration of 5.0 mg/cm2 leaf and seed methanol extract of P. dulce provided over 180 min and 150 min protection, respectively. Conclusions: Crude extracts of P. dulce exhibit the potential for controlling malaria vector mosquito An. stephensi.

  19. The role of proboscis of the malaria vector mosquito Anopheles stephensi in host-seeking behavior

    Directory of Open Access Journals (Sweden)

    Yoshimura Aya

    2011-01-01

    Full Text Available Abstract Background The proboscis is an essential head appendage in insects that processes gustatory code during food intake, particularly useful considering that blood-sucking arthropods routinely reach vessels under the host skin using this proboscis as a probe. Results Here, using an automated device able to quantify CO2-activated thermo (35°C-sensing behavior of the malaria vector Anopheles stephensi, we uncovered that the protruding proboscis of mosquitoes contributes unexpectedly to host identification from a distance. Ablation experiments indicated that not only antennae and maxillary palps, but also proboscis were required for the identification of pseudo-thermo targets. Furthermore, the function of the proboscis during this behavior can be segregated from CO2 detection required to evoke mosquito activation, suggesting that the proboscis of mosquitoes divide the proboscis into a "thermo-antenna" in addition to a "thermo-probe". Conclusions Our findings support an emerging view with a possible role of proboscis as important equipment during host-seeking, and give us an insight into how these appendages likely evolved from a common origin in order to function as antenna organs.

  20. Plasmodium falciparum infection increases Anopheles gambiae attraction to nectar sources and sugar uptake

    Science.gov (United States)

    Plasmodium parasites are known to manipulate the behaviour of their vectors so as to enhance their transmission. However, it is unknown if this vector manipulation also affects mosquito-plant interaction and sugar uptake. Dual-choice olfactometer and probing assays were used to study plant seeking b...

  1. The angiotensin-converting enzyme (ACE gene family of Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Isaac R Elwyn

    2005-12-01

    Full Text Available Abstract Background Members of the M2 family of peptidases, related to mammalian angiotensin converting enzyme (ACE, play important roles in regulating a number of physiological processes. As more invertebrate genomes are sequenced, there is increasing evidence of a variety of M2 peptidase genes, even within a single species. The function of these ACE-like proteins is largely unknown. Sequencing of the A. gambiae genome has revealed a number of ACE-like genes but probable errors in the Ensembl annotation have left the number of ACE-like genes, and their structure, unclear. Results TBLASTN and sequence analysis of cDNAs revealed that the A. gambiae genome contains nine genes (AnoACE genes which code for proteins with similarity to mammalian ACE. Eight of these genes code for putative single domain enzymes similar to other insect ACEs described so far. AnoACE9, however, has several features in common with mammalian somatic ACE such as a two domain structure and a hydrophobic C terminus. Four of the AnoACE genes (2, 3, 7 and 9 were shown to be expressed at a variety of developmental stages. Expression of AnoACE3, AnoACE7 and AnoACE9 is induced by a blood meal, with AnoACE7 showing the largest (approximately 10-fold induction. Conclusion Genes coding for two-domain ACEs have arisen several times during the course of evolution suggesting a common selective advantage to having an ACE with two active-sites in tandem in a single protein. AnoACE7 belongs to a sub-group of insect ACEs which are likely to be membrane-bound and which have an unusual, conserved gene structure.

  2. A Study of the Essential Oils of Four Sudanese Accessions of Basil (Ocimum basilicum L. Against Anopheles Mosquito Larvae

    Directory of Open Access Journals (Sweden)

    Azhari H. Nour

    2009-01-01

    Full Text Available Problem statement: Certain basil essential oils were claimed to have a larvicidal activity towards mosquito's larvae. To test this claim the essential oils of four accessions of basil grown in Sudan were selected and tested for Anopheles larvae. Malaria is the major health problem in the Sudan and the whole country is now considered endemic, with varying degrees, about 35,000 deaths every year due to malaria. Anopheles mosquito is the major vector of malaria disease in Sudan. Search for larvicidal active compound(s is one of several attempts to fine effective and affordable ways to control this mosquito. To determine the toxic effects of basil essential oils extracted by steam distillation against Anopheles larvae. Approach: For the larvicidal bioassay, three concentrations (100, 300, 500 ppm of essential oil solutions of four basil accessions were prepared; 1 mL of ethanol was used to solubilize the oil in water (999 mL. In each concentration of oil solution were inserted 20 larvae (third instars. A set of controls using 0.1% ethanol and untreated sets of larvae in (tap water, were also run for comparison. Data were evaluated through regression analysis, from the regression line; the LC50 values were read. The active ingredients were separated and/ or identified by TLC, IR and GC-MS. Results: Larvicidal activity of the essential oils is varied, lasted for about 9 h and thereafter decreased, LC50 values ranging from 190-300 ppm. Linalool, geraniol and eugenol are active components of basil essential oil against Anopheles larvae. Two accessions were caused 100% mortality at a concentration range 300-500 ppm for 3 h. Conclusion: These results indicated that basil essential oils have larvicidal activity towards Anopheles larvae. Therefore, could be affordable way to control this mosquito.

  3. IgG1 and IgG4 antibody responses to the Anopheles gambiae salivary protein gSG6 in the sympatric ethnic groups Mossi and Fulani in a malaria hyperhendemic area of Burkina Faso.

    Directory of Open Access Journals (Sweden)

    Cinzia Rizzo

    Full Text Available Human antibody response to the Anopheles gambiae salivary protein gSG6 has recently emerged as a potentially useful tool for malaria epidemiological studies and for the evaluation of vector control interventions. However, the current understanding of the host immune response to mosquito salivary proteins and of the possible crosstalk with early response to Plasmodium parasites is still very limited. We report here the analysis of IgG1 and IgG4 subclasses among anti-gSG6 IgG responders belonging to Mossi and Fulani from Burkina Faso, two ethnic groups which are known for their differential humoral response to parasite antigens and for their different susceptibility to malaria. The IgG1 antibody response against the gSG6 protein was comparable in the two groups. On the contrary, IgG4 titers were significantly higher in the Fulani where, in addition, anti-gSG6 IgG4 antibodies appeared in younger children and the ratio IgG4/IgG1 stayed relatively stable throughout adulthood. Both gSG6-specific IgG1 and IgG4 antibodies showed a tendency to decrease with age whereas, as expected, the IgG response to the Plasmodium circumsporozoite protein (CSP exhibited an opposite trend in the same individuals. These observations are in line with the idea that the An. gambiae gSG6 salivary protein induces immune tolerance, especially after intense and prolonged exposure as is the case for the area under study, suggesting that gSG6 may trigger in exposed individuals a Th2-oriented immune response.

  4. Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2006-05-01

    Full Text Available Abstract Background In the context of the Sterile Insect Technique (SIT, radiation-induced sterility in the malaria mosquito Anopheles arabiensis Patton (Diptera: Culicidae was studied. Male mosquitoes were exposed to gamma rays in the pupal or adult stage and dose-sterility curves were determined. Methods Pupae were irradiated shortly before emergence (at 22–26 hrs of age, and adults Results Irradiation of pupae, for all doses tested, had no effect on adult emergence. Survival curves of males irradiated as pupae or adults were similar or even slightly higher than non-irradiated males. Overall, adults appeared to be slightly more susceptible to irradiation, although no significant differences for individual doses were observed. In the pupal stage, a significant negative correlation was found between insemination and dose, but the correlation-coefficient was associated with less than 25% of the total variation. A review of the literature indicated that An. arabiensis is more radiation resistant than other anopheline mosquitoes. Conclusion The optimal dose for male insects to be released in an SIT programme depends on their level of sterility and competitiveness. The use of semi-sterilizing doses to produce more competitive insects is discussed. The most convenient developmental stage for mosquito irradiation on a mass-scale are pupae, but pupal irradiation resulted in a lower insemination rate at the highest dose compared to adult irradiation. On the basis of this study, a suitable dose range that includes semi-sterilizing doses is identified to initiate competitiveness experiments for males irradiated at both developmental stages.

  5. Asymmetric introgression between the M and S forms of the malaria vector, Anopheles gambiae, maintains divergence despite extensive hybridisation

    Science.gov (United States)

    Marsden, Clare D.; Lee, Yoosook; Nieman, Catelyn C.; Sanford, Michelle R.; Dinis, Joao; Martins, Cesario; Rodrigues, Amabelia; Cornel, Anthony J.; Lanzaro, Gregory C.

    2011-01-01

    The suggestion that genetic divergence can arise and/or be maintained in the face of gene flow, has been contentious since first proposed. This controversy and a rarity of good examples has limited our understanding of this process. Partially reproductively isolated taxa have been highlighted as offering unique opportunities for identifying the mechanisms underlying divergence with gene flow. The African malaria vector, Anopheles gambiae s.s., is widely regarded as consisting of two sympatric forms, thought by many to represent incipient species, the M and S molecular forms. However, there has been much debate about the extent of reproductive isolation between M and S, with one view positing that divergence may have arisen and is being maintained in the presence of gene flow, and the other proposing a more advanced speciation process with little realised gene flow due to low hybrid fitness. These hypotheses have been difficult to address because hybrids are typically rare (<1%). Here, we assess samples from an area of high hybridisation and demonstrate that hybrids are fit and responsible for extensive introgression. Nonetheless, we show that strong divergent selection at a subset of loci combined with highly asymmetric introgression has enabled M and S to remain genetically differentiated despite extensive gene flow. We propose the extent of reproductive isolation between M and S varies across West Africa resulting in a “geographic mosaic of reproductive isolation”; a finding which adds further complexity to our understanding of divergence in this taxon and which has considerable implications for transgenic control strategies. PMID:22059383

  6. A role for heparan sulfate proteoglycans in Plasmodium falciparum sporozoite invasion of anopheline mosquito salivary glands

    NARCIS (Netherlands)

    Armistead, J.S.; Wilson, I.B.; Kuppevelt, T. van; Dinglasan, R.R.

    2011-01-01

    HS (heparan sulfate) has been shown to be an important mediator of Plasmodium sporozoite homing and invasion of the liver, but the role of this glycosaminoglycan in mosquito vector host-sporozoite interactions is unknown. We have biochemically characterized the function of AgOXT1 (Anopheles gambiae

  7. IgG responses to Anopheles gambiae salivary antigen gSG6 detect variation in exposure to malaria vectors and disease risk

    DEFF Research Database (Denmark)

    Stone, Will; Bousema, Teun; Jones, Sophie;

    2012-01-01

    .04). Additionally, IgG responses to gSG6 in individual children showed a strong positive association with household level mosquito exposure. IgG levels for all antigens except AMA-1 were associated with the frequency of malaria episodes following sampling. gSG6 seropositivity was strongly positively associated with...... subsequent malaria incidence (test for trend p¿=¿0.004), comparable to malaria antigens MSP-1 and GLURP R2. Our results show that the gSG6 assay is sensitive to micro-epidemiological variations in exposure to Anopheles mosquitoes, and provides a correlate of malaria risk that is unrelated to immune...

  8. The application of radioactive tracers to a study of the behaviour and physiology of two twin species of the complex Anopheles gambiae in a sympatric region of Madagascar

    International Nuclear Information System (INIS)

    The author studied the behaviour of species A and B of the complex Anopheles gambiæ in Madagascar. The adult mosquitoes of these two species are morphologically indistinguishable. Reared females labelled with 32P for one species and 35S for the other were released and then recaptured. The author was thereby able to bring to light considerable differences in the biting habits of each species. (author)

  9. Screening of selected ethnomedicinal plants from South Africa for larvicidal activity against the mosquito Anopheles arabiensis

    Directory of Open Access Journals (Sweden)

    Maharaj Rajendra

    2012-09-01

    Full Text Available Abstract Background This study was initiated to establish whether any South African ethnomedicinal plants (indigenous or exotic, that have been reported to be used traditionally to repel or kill mosquitoes, exhibit effective mosquito larvicidal properties. Methods Extracts of a selection of plant taxa sourced in South Africa were tested for larvicidal properties in an applicable assay. Thirty 3rd instar Anopheles arabiensis larvae were exposed to various extract types (dichloromethane, dichloromethane/methanol (1:1, methanol and purified water of each species investigated. Mortality was evaluated relative to the positive control Temephos (Mostop; Agrivo, an effective emulsifiable concentrate larvicide. Results Preliminary screening of crude extracts revealed substantial variation in toxicity with 24 of the 381 samples displaying 100% larval mortality within the seven day exposure period. Four of the high activity plants were selected and subjected to bioassay guided fractionation. The results of the testing of the fractions generated identified one fraction of the plant, Toddalia asiatica as being very potent against the An. arabiensis larvae. Conclusion The present study has successfully identified a plant with superior larvicidal activity at both the crude and semi pure fractions generated through bio-assay guided fractionation. These results have initiated further research into isolating the active compound and developing a malaria vector control tool.

  10. [Anopheles mosquitoes (Diptera, Culicidae) of the Tien Shan: morphological, cytogenetic, and molecular genetic analysis].

    Science.gov (United States)

    Gordeev, M I; Zvantsov, A B; Goriacheva, I I; Shaĭkevich, E V; Ezhov, M N; Usenbaev, N T; Shapieva, Zh Zh; Zhakhongirov, Sh M

    2008-01-01

    Morphological, cytogenetic, and molecular genetic studies of the Anopheles fauna in the valley and foothills of the Tien Shan identified 5 species of malaria mosquitoes: An. artemievi Gordeev et al., An. messeae Fall, An. claviger Meigen, An. hyrcanus Pallas, An. pulcherrimus Theobald, and superpictus Grassi. An. claviger, An. hyrcanus, and An. messeae were prevalent in the Northern Tien-Shan. An. artemievi, An. claviger, An. hyrcanus, An. messeae, and An. superpictus were detected in the Western Tien Shan. An. artemievi was first recorded in Kazakhstan. An. artemievi, An. claviger, and An. superpictus were noted in the Inferior Tien Shan. An. messeae was first observed in the Issyk Kul hollow. An. artemievi, An. claviger, and An. superpictus were habitants of the foothills of the South-Western Tien Shan. An. artemievi, An. hyrcanus, An. superpictus, and An. pulcherrimus were in the plain. An. pulcherrimus and An. superpicts mosquitoes are regarded as important vectors in the new malaria foci of the Fergana regions. The role of An. artemievi in the transmission of malaria is to be specified. PMID:18822504

  11. Ultrastructure of a microsporidium Brachiola gambiae n.sp. parasitising a mosquito Anopheles gambiae, a malaria vector

    Czech Academy of Sciences Publication Activity Database

    Weiser, Jaroslav; Žižka, Zdeněk

    2003-01-01

    Roč. 1, - (2003), s. 1-39. ISSN 1214-021X. [Cells /5./. 08.09.2003-10.09.2003, České Budějovice] Institutional research plan: CEZ:AV0Z5020903; CEZ:AV0Z5007907 Keywords : Nosema stegomyiae Subject RIV: EE - Microbiology, Virology

  12. Feeding and indoor resting behaviour of the mosquito Anopheles longipalpis in an area of hyperendemic malaria transmission in southern Zambia

    OpenAIRE

    Kent, R.J.; Coetzee, M.; Mharakurwa, S.; Norris, D. E.

    2006-01-01

    Anopheles longipalpis (Theobald) (Diptera: Culicidae) is a predominantly zoophilic mosquito that has not been implicated in malaria transmission. However, this species was collected indoors with An. funestus s.l. in southern Zambia, where transmission of Plasmodium falciparum is hyperendemic, and we initially misidentified it morphologically and molecularly as An. funestus s.l. The indoor resting density and blood-feeding behaviour of An. longipalpis were investigated during the 2004 – 05 and...

  13. Mathematical evaluation of community level impact of combining bed nets and indoor residual spraying upon malaria transmission in areas where the main vectors are Anopheles arabiensis mosquitoes

    Directory of Open Access Journals (Sweden)

    Okumu Fredros O

    2013-01-01

    Full Text Available Abstract Background Indoor residual insecticide spraying (IRS and long-lasting insecticide treated nets (LLINs are commonly used together even though evidence that such combinations confer greater protection against malaria than either method alone is inconsistent. Methods A deterministic model of mosquito life cycle processes was adapted to allow parameterization with results from experimental hut trials of various combinations of untreated nets or LLINs (Olyset®, PermaNet 2.0®, Icon Life® nets with IRS (pirimiphos methyl, lambda cyhalothrin, DDT, in a setting where vector populations are dominated by Anopheles arabiensis, so that community level impact upon malaria transmission at high coverage could be predicted. Results Intact untreated nets alone provide equivalent personal protection to all three LLINs. Relative to IRS plus untreated nets, community level protection is slightly higher when Olyset® or PermaNet 2.0® nets are added onto IRS with pirimiphos methyl or lambda cyhalothrin but not DDT, and when Icon Life® nets supplement any of the IRS insecticides. Adding IRS onto any net modestly enhances communal protection when pirimiphos methyl is sprayed, while spraying lambda cyhalothrin enhances protection for untreated nets but not LLINs. Addition of DDT reduces communal protection when added to LLINs. Conclusions Where transmission is mediated primarily by An. arabiensis, adding IRS to high LLIN coverage provides only modest incremental benefit (e.g. when an organophosphate like pirimiphos methyl is used, but can be redundant (e.g. when a pyrethroid like lambda cyhalothin is used or even regressive (e.g. when DDT is used for the IRS. Relative to IRS plus untreated nets, supplementing IRS with LLINs will only modestly improve community protection. Beyond the physical protection that intact nets provide, additional protection against transmission by An. arabiensis conferred by insecticides will be remarkably small, regardless of

  14. The Mosquito Repellent Citronellal Directly Potentiates Drosophila TRPA1, Facilitating Feeding Suppression

    OpenAIRE

    Du, Eun Jo; Ahn, Tae Jung; Choi, Min Sung; Kwon, Ilmin; Kim, Hyung-Wook; Kwon, Jae Young; Kang, KyeongJin

    2015-01-01

    Citronellal, a well-known plant-derived mosquito repellent, was previously reported to repel Drosophila melanogaster via olfactory pathways involving but not directly activating Transient Receptor Potential Ankyrin 1 (TRPA1). Here, we show that citronellal is a direct agonist for Drosophila and human TRPA1s (dTRPA1 and hTRPA1) as well as Anopheles gambiae TRPA1 (agTRPA1). Citronellal-induced activity is isoform-dependent for Drosophila and Anopheles gambiae TRPA1s. The recently identified dTR...

  15. Mermithid nematodes found in adult Anopheles from southeastern Senegal

    Directory of Open Access Journals (Sweden)

    Kobylinski Kevin C

    2012-06-01

    Full Text Available Abstract Background Over two dozen mermithid nematodes have been described parasitizing mosquitoes worldwide, however, only two species were found in Africa. Mermithid nematodes kill their mosquito host upon emergence, which suggests that they could be developed as biological control agents of mosquitoes. Both Romanomermis culicivorax and Romanomermis iyengari have been reared for mass release to control numerous Anopheles species vector populations, and in one instance this may have led to reduced malaria prevalence in a human population. Methods Anopheles mosquitoes were collected during a malaria study in southeastern Senegal. Two different adult blood fed mosquitoes had a single mermithid nematode emerge from their anus while they were being held post-capture. Primers from the 18 S rDNA were developed to sequence nematode DNA and screen mosquitoes for mermithid DNA. 18 S rDNA from the Senegalese mermithid and other mermithid entries in GenBank were used to create a Maximum Parsimony tree of the Mermithidae family. Results The mermithid was present in 1.8% (10/551 of the sampled adult Anopheles species in our study area. The mermithid was found in An. gambiae s.s., An. funestus, and An. rufipes from the villages of Ndebou, Boundoucondi, and Damboucoye. Maximum parsimony analysis confirmed that the nematode parasites found in Anopheles were indeed mermithid parasites, and of the mermithid sequences available in GenBank, they are most closely related to Strelkovimermis spiculatus. Conclusions To our knowledge, this is the first report of mermithids from adult Anopheles mosquitoes in Senegal. The mermithid appears to infect Anopheles mosquitoes that develop in diverse larval habitats. Although maximum parsimony analysis determined the mermithid was closely related to Strelkovimermis spiculatus, several characteristics of the mermithid were more similar to the Empidomermis genus. Future mermithid isolations will hopefully allow: formal

  16. Attractiveness of volatiles from different body parts to the malaria mosquito Anopheles coluzzii is affected by deodorant compounds.

    Science.gov (United States)

    Verhulst, Niels O; Weldegergis, Berhane T; Menger, David; Takken, Willem

    2016-01-01

    Mosquitoes display biting preferences among different sites of the human body. In addition to height or convection currents, body odour may play a role in the selection of these biting sites. Previous studies have shown that skin emanations are important host-finding cues for mosquitoes. In this study, skin emanations were collected from armpits, hands and feet; the volatile profiles were analysed and tested for their attractiveness to the malaria mosquito Anopheles coluzzii. Skin emanations collected from armpits were less attractive to An. coluzzii compared to hands or/and feet. The difference may have been caused by deodorant residues, which were found in the armpit samples and not in those of hands and feet. In a subsequent experiment, volunteers were asked to avoid using skincare products for five days, and thereafter, no differences in attractiveness of the body parts to mosquitoes were found. The detected deodorant compound isopropyl tetradecanoate inhibited mosquito landings in a repellent bioassay. It is concluded that the volatiles emanated from different body parts induced comparable levels of attraction in mosquitoes, and that skincare products may reduce a person's attractiveness to mosquitoes. PMID:27251017

  17. Attractiveness of volatiles from different body parts to the malaria mosquito Anopheles coluzzii is affected by deodorant compounds

    Science.gov (United States)

    Verhulst, Niels O.; Weldegergis, Berhane T.; Menger, David; Takken, Willem

    2016-01-01

    Mosquitoes display biting preferences among different sites of the human body. In addition to height or convection currents, body odour may play a role in the selection of these biting sites. Previous studies have shown that skin emanations are important host-finding cues for mosquitoes. In this study, skin emanations were collected from armpits, hands and feet; the volatile profiles were analysed and tested for their attractiveness to the malaria mosquito Anopheles coluzzii. Skin emanations collected from armpits were less attractive to An. coluzzii compared to hands or/and feet. The difference may have been caused by deodorant residues, which were found in the armpit samples and not in those of hands and feet. In a subsequent experiment, volunteers were asked to avoid using skincare products for five days, and thereafter, no differences in attractiveness of the body parts to mosquitoes were found. The detected deodorant compound isopropyl tetradecanoate inhibited mosquito landings in a repellent bioassay. It is concluded that the volatiles emanated from different body parts induced comparable levels of attraction in mosquitoes, and that skincare products may reduce a person’s attractiveness to mosquitoes. PMID:27251017

  18. Effect of sugar on male Anopheles gambiae mating performance, as modified by temperature, space, and body size

    Directory of Open Access Journals (Sweden)

    Cannon James W

    2009-04-01

    Full Text Available Abstract Background Anopheles gambiae plant-sugar feeding was thought to be rare and physiologically optional. Unlike adult females, males have no alternative source of energy and soon die with only water, yet they might be competent to inseminate all females within their brief lifespan. This study was designed to detect sugar's effect, if any, on male performance. Methods Males with and without 20% sucrose were evaluated at two body sizes and two temperatures, 23° and 27°C. Survival was recorded twice daily, and sexual behaviour was recorded each night after adult emergence. Insemination at a 2:1 male:female ratio was examined in three cage sizes, including walk-in mesocosms. Results Without sugar, males of both sizes lived longer at 23° than 27°C, and large males lived longer at each temperature. Survival of large males at low temperature averaged 3.7 days, small males at high temperature, 1.9 days. With sugar, males in all four treatments suffered minimal mortality. With sugar, in small cages, large males at 27°C matured most rapidly. A few erected fibrillae and inseminated females on night 1. On night 2, maximal proportions erected fibrillae and swarmed, and over one-third of females became inseminated. Small sugar-fed males at 23°C matured most slowly but had achieved nearly maximal levels of swarming by night 3. By night 5, small males had inseminated more than half the females, and large males had inseminated nearly all of them. Without sugar, large males progressed similarly during the first two nights. On night 3, however, the proportion erecting fibrillae and swarming declined precipitously at 27°C, and to a lesser degree at 23°C. Cumulative insemination never reached high levels. Small males never achieved high levels of fibrillar erection or swarming and inseminated few females, even at 23°C. In larger cages and under more semi-natural conditions, regardless of body size, without sugar male insemination capacity was

  19. Genetic structure of Anopheles gambiae populations on islands in northwestern Lake Victoria, Uganda

    Directory of Open Access Journals (Sweden)

    Coulibaly Mamadou B

    2005-12-01

    Full Text Available Abstract Background Alternative means of malaria control are urgently needed. Evaluating the effectiveness of measures that involve genetic manipulation of vector populations will be facilitated by identifying small, genetically isolated vector populations. The study was designed to use variation in microsatellite markers to look at genetic structure across four Lake Victoria islands and two surrounding mainland populations and for evidence of any restriction to free gene flow. Methods Four Islands (from 20–50 km apart and two surrounding mainland populations (96 km apart were studied. Samples of indoor resting adult mosquitoes, collected over two consecutive years, were genotyped at microsatellite loci distributed broadly throughout the genome and analysed for genetic structure, effective migration (Nem and effective population size (Ne. Results Ne estimates showed island populations to consist of smaller demes compared to the mainland ones. Most populations were significantly differentiated geographically, and from one year to the other. Average geographic pair-wise FST ranged from 0.014–0.105 and several pairs of populations had Ne m Conclusion These island populations are significantly genetically differentiated. Differences reoccurred over the study period, between the two mainland populations and between each other. This appears to be the product of their separation by water, dynamics of small populations and local adaptation. With further characterisation these islands could become possible sites for applying measures evaluating effectiveness of control by genetic manipulation.

  20. Molecular Evolution of Immune Genes in the Malaria Mosquito Anopheles gambiae

    OpenAIRE

    Lehmann, Tovi; Hume, Jen C. C.; Licht, Monica; Burns, Christopher S.; Wollenberg, Kurt; Simard, Fred; Ribeiro, Jose M. C.

    2009-01-01

    Background As pathogens that circumvent the host immune response are favoured by selection, so are host alleles that reduce parasite load. Such evolutionary processes leave their signature on the genes involved. Deciphering modes of selection operating on immune genes might reveal the nature of host-pathogen interactions and factors that govern susceptibility in host populations. Such understanding would have important public health implications. Methodology/Findings We analyzed polymorphisms...

  1. Mosquito has a single multisubstrate deoxyribonucleoside kinase characterized by unique substrate specificity

    DEFF Research Database (Denmark)

    Knecht, Wolfgang; Petersen, G.E.; Sandrini, Michael;

    2003-01-01

    In mammals four deoxyribonucleoside kinases, with a relatively restricted specificity, catalyze the phosphorylation of the four natural deoxyribonucleosides. When cultured mosquito cells, originating from the malaria vector Anopheles gambiae, were examined for deoxyribonucleoside kinase activities......, only a single enzyme was isolated. Subsequently, the corresponding gene was cloned and over-expressed. While the mosquito kinase (Ag-dNK) phosphorylated all four natural deoxyribonucleosides, it displayed an unexpectedly higher relative efficiency for the phosphorylation of purine versus pyrimidine...

  2. The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Garver, Lindsey S; Alabaster, Amy; Bangiolo, Lois; Haile, Ashley; Winikor, Jared; Ortega, Corrie; van Schaijk, Ben C L; Sauerwein, Robert W; Taylor-Salmon, Emma; Barillas-Mury, Carolina

    2013-05-24

    Plasmodium falciparum transmission by Anopheles gambiae mosquitoes is remarkably efficient, resulting in a very high prevalence of human malaria infection in sub-Saharan Africa. A combination of genetic mapping, linkage group selection, and functional genomics was used to identify Pfs47 as a P. falciparum gene that allows the parasite to infect A. gambiae without activating the mosquito immune system. Disruption of Pfs47 greatly reduced parasite survival in the mosquito, and this phenotype could be reverted by genetic complementation of the parasite or by disruption of the mosquito complement-like system. Pfs47 suppresses midgut nitration responses that are critical to activate the complement-like system. We provide direct experimental evidence that immune evasion mediated by Pfs47 is critical for efficient human malaria transmission by A. gambiae. PMID:23661646

  3. Absorption and transport of radioactive tracers in the midgut of the malaria mosquito, Anopheles stephensi

    International Nuclear Information System (INIS)

    Three radiolabeled substances were mixed with fresh heparinized mouse blood and fed to female Anopheles stephensi through a chicken crop membrane. Resorption and transport in the anterior (A) and posterior (P, stomach) parts of the midgut were investigated by means of electron microscopic autoradiography. Digestion products of 125I-labeled bovine serum albumin (BSA) were resorbed only in the P-part, showing a biphasic pattern with maximal values 4 and 18 hr after feeding. Uptake of 3H-labeled amino acids started immediately after feeding in both midgut parts. [14C]glucose was mainly absorbed in the P-part. Labeled carbohydrate storage deposits formed during the initial phase of digestion and were mobilized around 36 hr after feeding. After feeding the mosquitoes on 125I-BSA, oocyte protein yolk spheres and abdominal cuticle became labeled. Ingestion of 3H-labeled amino acids caused the formation of silver grains over follicles and fat body lipids. Feeding on [14C]glucose resulted in labeled fat body carbohydrates and oocyte protein yolk spheres

  4. Suboptimal Larval Habitats Modulate Oviposition of the Malaria Vector Mosquito Anopheles coluzzii.

    Directory of Open Access Journals (Sweden)

    Eunho Suh

    Full Text Available Selection of oviposition sites by gravid females is a critical behavioral step in the reproductive cycle of Anopheles coluzzii, which is one of the principal Afrotropical malaria vector mosquitoes. Several studies suggest this decision is mediated by semiochemicals associated with potential oviposition sites. To better understand the chemosensory basis of this behavior and identify compounds that can modulate oviposition, we examined the generally held hypothesis that suboptimal larval habitats give rise to semiochemicals that negatively influence the oviposition preference of gravid females. Dual-choice bioassays indicated that oviposition sites conditioned in this manner do indeed foster significant and concentration dependent aversive effects on the oviposition site selection of gravid females. Headspace analyses derived from aversive habitats consistently noted the presence of dimethyl disulfide (DMDS, dimethyl trisulfide (DMTS and 6-methyl-5-hepten-2-one (sulcatone each of which unitarily affected An. coluzzii oviposition preference. Electrophysiological assays across the antennae, maxillary palp, and labellum of gravid An. coluzzii revealed differential responses to these semiochemicals. Taken together, these findings validate the hypothesis in question and suggest that suboptimal environments for An. coluzzii larval development results in the release of DMDS, DMTS and sulcatone that impact the response valence of gravid females.

  5. Resveratrol Fails to Extend Life Span in the Mosquito Anopheles stephensi.

    Science.gov (United States)

    Johnson, Adiv A; Riehle, Michael A

    2015-10-01

    Resveratrol, a plant polyphenol present in grape skins, has been theorized to account for the "French Paradox" by explaining how red wine may decrease the health risks associated with unhealthy diets. Resveratrol has been reported to extend life span in several different species. Other studies, however, have failed to find a resveratrol-induced life span effect. A recent meta-study analyzing previously published survival data concluded that, although resveratrol reliably and reproducibly extends life span in some species, its life span effects show diminished reliability in other organisms. The data are mixed, and it remains unclear how evolutionarily conserved resveratrol's effects on life span are. To gain further insight into this controversy, we studied the effects of various concentrations (200 μM, 100 μM, 50 μM, or 0 μM) of orally fed resveratrol on the life span of the mosquito Anopheles stephensi, an important vector of human malaria, under two different feeding treatments--sugar-fed only or sugar-fed with intermittent blood meals. Each treatment was repeated three times and both survivorship and mortality rates were analyzed for each replicate. For the majority of experiments, resveratrol failed to mediate a statistically significant effect on life span. Although there was one instance where resveratrol significantly increased life span, there were five other instances where resveratrol significantly decreased life span. We conclude from these data that, under normal conditions, resveratrol does not extend life span in A. stephensi. PMID:25848933

  6. Energy metabolism affects susceptibility of A. gambiae mosquitoes to Plasmodium infection

    OpenAIRE

    Oliveira, Jose Henrique M.; Gonçalves, Renata L. S.; Oliveira, Giselle A.; Pedro L Oliveira; Oliveira, Marcus F.; Barillas-Mury, Carolina

    2011-01-01

    Previous studies showed that A. gambiae L35 females, which are refractory (R) to Plasmodium infection, express higher levels of genes involved in redox-metabolism and mitochondrial respiration than susceptible (S) G3 females. Our studies revealed that R females have reduced longevity, faster utilization of lipid reserves, impaired mitochondrial State-3 respiration, increased rate of mitochondrial electron leak and higher expression levels of several glycolytic enzyme genes. Furthermore, when ...

  7. Effects of Anti-Mosquito Salivary Glands and Deglycosylated Midgut Antibodies of Anopheles stephensi on Fecundity and Longevity

    Directory of Open Access Journals (Sweden)

    H Mohammadzadeh Hajipirloo

    2005-09-01

    Full Text Available With the aim of controlling malaria by reducing vector population, the effects of antibodies produced against salivary glands and deglycosylated midgut antigens of Anopheles stephensi mosquitoes on fecundity and longevity of the same species were tested. Three deglycosylated preparations of midgut and two preparations of salivary glands were produced, conjugated with aluminum hydroxide gel, and subcutaneously injected to shoulders of TO (Turner Out-bred mice. After 4 immunizations and assurance of enough antibody production against utilized antigenic suspensions, effects of blood feeding on immunized and control mice were assayed. Insoluble preparation of midgut showed the strongest effect with 23.5% reduction in egg laying, and increasing death rate of vectors in third day after feeding. No significant reduction in fecundity or survivorship was seen with other preparations. Anopheles midgut insoluble antigens are potential candidates for designing vaccines against malaria vectors and further investigations need to be done to find effective antigens and the best way of their use.

  8. Plasmodium falciparum malaria challenge by the bite of aseptic Anopheles stephensi mosquitoes: results of a randomized infectivity trial.

    Directory of Open Access Journals (Sweden)

    Kirsten E Lyke

    Full Text Available BACKGROUND: Experimental infection of malaria-naïve volunteers by the bite of Plasmodium falciparum-infected mosquitoes is a preferred means to test the protective effect of malaria vaccines and drugs. The standard model relies on the bite of five infected mosquitoes to induce malaria. We examined the efficacy of malaria transmission using mosquitoes raised aseptically in compliance with current Good Manufacturing Practices (cGMPs. METHODS AND FINDINGS: Eighteen adults aged 18-40 years were randomized to receive 1, 3 or 5 bites of Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of P. falciparum. Seventeen participants developed malaria; fourteen occurring on Day 11. The mean prepatent period was 10.9 days (9-12 days. The geometric mean parasitemia was 15.7 parasites/µL (range: 4-70 by microscopy. Polymerase chain reaction (PCR detected parasites 3.1 (range: 0-4 days prior to microscopy. The geometric mean sporozoite load was 16,753 sporozoites per infected mosquito (range: 1,000-57,500. A 1-bite participant withdrew from the study on Day 13 post-challenge and was PCR and smear negative. CONCLUSIONS: The use of aseptic, cGMP-compliant P. falciparum-infected mosquitoes is safe, is associated with a precise prepatent period compared to the standard model and appears more efficient than the standard approach, as it led to infection in 100% (6/6 of volunteers exposed to three mosquito bites and 83% (5/6 of volunteers exposed to one mosquito bite. TRIAL REGISTRATION: ClinicalTrials.gov NCT00744133.

  9. Using green fluorescent malaria parasites to screen for permissive vector mosquitoes

    Directory of Open Access Journals (Sweden)

    Martin Beatrice

    2006-03-01

    Full Text Available Abstract Background The Plasmodium species that infect rodents, particularly Plasmodium berghei and Plasmodium yoelii, are useful to investigate host-parasite interactions. The mosquito species that act as vectors of human plasmodia in South East Asia, Africa and South America show different susceptibilities to infection by rodent Plasmodium species. P. berghei and P. yoelii infect both Anopheles gambiae and Anopheles stephensi, which are found mainly in Africa and Asia, respectively. However, it was reported that P. yoelii can infect the South American mosquito, Anopheles albimanus, while P. berghei cannot. Methods P. berghei lines that express the green fluorescent protein were used to screen for mosquitoes that are susceptible to infection by P. berghei. Live mosquitoes were examined and screened for the presence of a fluorescent signal in the abdomen. Infected mosquitoes were then examined by time-lapse microscopy to reveal the dynamic behaviour of sporozoites in haemolymph and extracted salivary glands. Results A single fluorescent oocyst can be detected in live mosquitoes and P. berghei can infect A. albimanus. As in other mosquitoes, P. berghei sporozoites can float through the haemolymph and invade A. albimanus salivary glands and they are infectious in mice after subcutaneous injection. Conclusion Fluorescent Plasmodium parasites can be used to rapidly screen susceptible mosquitoes. These results open the way to develop a laboratory model in countries where importation of A. gambiae and A. stephensi is not allowed.

  10. Mosquito Repellent Activity and Phytochemical Characterization of Essential Oils From Striga hermonthica, Hyptis spicigera and Ocimum basilicum Leaf Extracts

    OpenAIRE

    Gabi Baba; A.O. Lawal; Hauwa B. Sharif

    2012-01-01

    The main aim of this study is to screen the phytochemicals and compare the mosquito repellent activities of essential oils from Hyptis spicigera, Striga hermonthica and Ocimum basilicum (Basil) against Anopheles gambiae and Culex quinquefasciatus under laboratory conditions. The global threat of malaria to human race and the need to control its advances is on the focus. Mosquito is the target being the primary host in the spread of malaria. Alkaloids, saponnins, steroids, tannins and terpenoi...

  11. Water quality and immatures of the M and S forms of Anopheles gambiae s.s. and An. arabiensis in a Malian village

    Directory of Open Access Journals (Sweden)

    Touré Yeya T

    2006-04-01

    Full Text Available Abstract Introduction The associations between the immatures of Anopheles gambiae s.s. (Diptera: Culicidae, its M and S forms, and Anopheles arabiensis among and within larval breeding habitats in Banambani, Mali were investigated under varying conditions of water quality and rainfall. The intent was to elucidate on niche partitioning of these taxa. Methods Immatures of An. arabiensis, An. gambiae s.s., and its M and S forms were sampled every alternate day for a month in mid-rainy season from three sampling sites in each of the larval breeding habitats (rock pools, swamp, and puddles. Water quality was characterized by alkalinity, conductivity, dissolved oxygen (D.O., nitrate, orthophosphate, pH, temperature, total dissolved solids (TDS, and turbidity. A type 3 analysis of the GENMOD model was used to examine the associations between the proportional frequencies of young (first and second instar larvae and old (third and fourth instar larvae and pupae or total immatures of species or forms among sampling sites within and among larval breeding habitats during a category of rainfall as influenced by water quality. Results Of the 4,174 immatures sampled, 1,300 were molecularly identified to species and forms. Significant association between the proportional frequencies of young larvae of An. arabiensis, An. gambiae s.s., its M and S forms was found among sampling sites within habitats but not among larval breeding habitats. The proportional frequencies of young larvae of M and S forms varied daily perhaps due to recruitment, mortality, and dispersal within habitats. Conductivity and TDS had significant effects when the proportional frequencies of young larvae of M and S forms among sampling sites within habitats were significantly associated. Alkalinity, D.O., orthophosphate, pH, nitrate, temperature and turbidity had no effects on niche partitioning of species and forms among sampling sites within habitats. Rainfall did not affect the frequencies

  12. Mitochondrial Reactive Oxygen Species Modulate Mosquito Susceptibility to Plasmodium Infection

    OpenAIRE

    Gonçalves, Renata L. S.; Oliveira, Jose Henrique M.; Oliveira, Giselle A.; Andersen, John F.; Oliveira, Marcus F.; Pedro L Oliveira; Barillas-Mury, Carolina

    2012-01-01

    Background Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism. Methodology/Principal Findings We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses ...

  13. Studies on the bionomics of male Anopheles gambiae Giles and male Anopheles funestus Giles from southern Mozambique

    DEFF Research Database (Denmark)

    Charlwood, J D

    2011-01-01

    Little is known about the fitness of wild male mosquitoes, the females of which are vectors of malaria. The problem of studying male biology has been exacerbated by difficulties associated with catching them. In southern Mozambique, however, almost the entire adult population of An. funestus and An...... strategies of sterile or genetically modified mosquitoes....

  14. Mosquito abundance, bed net coverage and other factors associated with variations in sporozoite infectivity rates in four villages of rural Tanzania

    DEFF Research Database (Denmark)

    Kweka, Eliningaya J; Nkya, Watoky M M; Mahande, Aneth M;

    2008-01-01

    . Sporozoite infectivity rates, mosquito host blood meal source, bed net coverage and mosquito abundance were assessed in this study. METHODOLOGY: A longitudinal survey was conducted in four villages in two regions of Tanzania. Malaria vectors were sampled using the CDC light trap and pyrethrum spray catch......,628 (81.8%) Anopheles arabiensis, 1,100 (15.9%) Culex quinquefasciatus, 89 (1.4%) Anopheles funestus, and 66 (0.9%) Anopheles gambiae s.s. Of the total mosquitoes collected 3,861 were captured by CDC light trap and 3,022 by the pyrethrum spray catch method. The overall light trap: spray catch ratio was 1.......3:1. Mosquito densities per room were 96.5 and 75.5 for light trap and pyrethrum spray catch respectively. Mosquito infectivity rates between villages that have high proportion of bed net owners and those without bed nets was significant (P

  15. Determination of nitric oxide metabolites, nitrate and nitrite, in Anopheles culicifacies mosquito midgut and haemolymph by anion exchange high-performance liquid chromatography: plausible mechanism of refractoriness

    OpenAIRE

    Adak Tridibesh; Raghavendra Kamaraju; Sharma Arun; Dash Aditya P

    2008-01-01

    Abstract Background The diverse physiological and pathological role of nitric oxide in innate immune defenses against many intra and extracellular pathogens, have led to the development of various methods for determining nitric oxide (NO) synthesis. NO metabolites, nitrite (NO2-) and nitrate (NO3-) are produced by the action of an inducible Anopheles culicifacies NO synthase (AcNOS) in mosquito mid-guts and may be central to anti-parasitic arsenal of these mosquitoes. Method While exploring a...

  16. Bitter-sensitive gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus

    Science.gov (United States)

    Sparks, Jackson T.; Dickens, Joseph C.

    2016-06-01

    Female mosquitoes feed on blood from animal hosts to obtain nutritional resources used for egg production. These contacts facilitate the spread of harmful human diseases. Chemical repellents are used to disrupt mosquito host-seeking and blood-feeding behaviors; however, little is known about the gustatory sensitivity of mosquitoes to known repellents. Here, we recorded electrical responses from gustatory receptor neurons (GRNs) housed within the labellar sensilla of female Anopheles quadrimaculatus to N,N-diethyl-3-methylbenzamide (DEET), picaridin, IR3535, 2-undecanone, p-menthane-3,8-diol, geraniol, trans-2-hexen-1-ol, quinine, and quinidine. A bitter-sensitive GRN responded to all tested repellents and quinine, a known feeding deterrent. Responses of the bitter-sensitive neuron to quinine and an isomer, quinidine, did not differ. Delayed bursts of electrical activity were observed in response to continuous stimulation with synthetic repellents at high concentrations. Electrophysiological recordings from bitter-sensitive GRNs associated with mosquito gustatory sensilla represent a convenient model to evaluate candidate repellents.

  17. Bitter-sensitive gustatory receptor neuron responds to chemically diverse insect repellents in the common malaria mosquito Anopheles quadrimaculatus.

    Science.gov (United States)

    Sparks, Jackson T; Dickens, Joseph C

    2016-06-01

    Female mosquitoes feed on blood from animal hosts to obtain nutritional resources used for egg production. These contacts facilitate the spread of harmful human diseases. Chemical repellents are used to disrupt mosquito host-seeking and blood-feeding behaviors; however, little is known about the gustatory sensitivity of mosquitoes to known repellents. Here, we recorded electrical responses from gustatory receptor neurons (GRNs) housed within the labellar sensilla of female Anopheles quadrimaculatus to N,N-diethyl-3-methylbenzamide (DEET), picaridin, IR3535, 2-undecanone, p-menthane-3,8-diol, geraniol, trans-2-hexen-1-ol, quinine, and quinidine. A bitter-sensitive GRN responded to all tested repellents and quinine, a known feeding deterrent. Responses of the bitter-sensitive neuron to quinine and an isomer, quinidine, did not differ. Delayed bursts of electrical activity were observed in response to continuous stimulation with synthetic repellents at high concentrations. Electrophysiological recordings from bitter-sensitive GRNs associated with mosquito gustatory sensilla represent a convenient model to evaluate candidate repellents. PMID:27108454

  18. Towards the genetic manipulation of mosquito disease vectors

    International Nuclear Information System (INIS)

    Our research is aimed at developing the technologies necessary to undertake the genetic manipulation of insect vector genomes. In the longer term, we wish to explore the potential that this technology may have for developing novel strategies for the control of vector-borne diseases. The focus of our current research has been to: i) identify and characterise endogenous transposable elements in the genomes of mosquito vectors -research has focussed on identifying both Class I and Class 11 elements and determining their structure and distribution within mosquito genomes; ii) develop and use transfection systems for mosquito cells in culture as a test bed for transformation vectors and promoters - transfection techniques, vector constructs and different promoters driving reporter genes have been utilised to optimise the transformation of both Aedes aegypti and Anopheles gambiae cells in culture; iii) identify putative promoter sequences which are induced in the female mosquito midgut when it takes a blood meal - the Anopheles gambiae trypsin gene locus has been cloned and sequenced and the intergenic regions assessed for their ability to induce reporter gene expression in mosquito gut cells. The progress we have made in each of these areas will be described and discussed in the context of our longer term aim which is to introduce genes coding for antiparasitic agents into mosquito genomes in such a way that they are expressed in the mosquito midgut and disrupt transmission of the malaria parasite. (author)

  19. Identification of a fibrinogen-related protein (FBN9 gene in neotropical anopheline mosquitoes

    Directory of Open Access Journals (Sweden)

    Brito Cristiana FA

    2011-02-01

    Full Text Available Abstract Background Malaria has a devastating impact on worldwide public health in many tropical areas. Studies on vector immunity are important for the overall understanding of the parasite-vector interaction and for the design of novel strategies to control malaria. A member of the fibrinogen-related protein family, fbn9, has been well studied in Anopheles gambiae and has been shown to be an important component of the mosquito immune system. However, little is known about this gene in neotropical anopheline species. Methods This article describes the identification and characterization of the fbn9 gene partial sequences from four species of neotropical anopheline primary and secondary vectors: Anopheles darlingi, Anopheles nuneztovari, Anopheles aquasalis, and Anopheles albitarsis (namely Anopheles marajoara. Degenerate primers were designed based on comparative analysis of publicly available Aedes aegypti and An. gambiae gene sequences and used to clone putative homologs in the neotropical species. Sequence comparisons and Bayesian phylogenetic analyses were then performed to better understand the molecular diversity of this gene in evolutionary distant anopheline species, belonging to different subgenera. Results Comparisons of the fbn9 gene sequences of the neotropical anophelines and their homologs in the An. gambiae complex (Gambiae complex showed high conservation at the nucleotide and amino acid levels, although some sites show significant differentiation (non-synonymous substitutions. Furthermore, phylogenetic analysis of fbn9 nucleotide sequences showed that neotropical anophelines and African mosquitoes form two well-supported clades, mirroring their separation into two different subgenera. Conclusions The present work adds new insights into the conserved role of fbn9 in insect immunity in a broader range of anopheline species and reinforces the possibility of manipulating mosquito immunity to design novel pathogen control strategies.

  20. Isolation of Tahyna virus (California Encephalitis Group) from Anopheles hyrcanus (Diptera, Culicidae), a mosquito species new to, and expanding in, Central Europe

    Czech Academy of Sciences Publication Activity Database

    Hubálek, Zdeněk; Šebesta, Oldřich; Peško, Juraj; Betášová, Lenka; Blažejová, Hana; Venclíková, Kristýna; Rudolf, Ivo

    2014-01-01

    Roč. 51, č. 6 (2014), s. 1264-1267. ISSN 0022-2585 EU Projects: European Commission(XE) 261504 - EDENEXT Institutional support: RVO:68081766 Keywords : Tahyna virus * Orthobunyavirus * mosquito * Anopheles hyrcanus Subject RIV: EE - Microbiology, Virology Impact factor: 1.953, year: 2014

  1. The influence of late-stage pupal irradiation and increased irradiated:un-irradiated male ratio on mating competitiveness of the malaria mosquito Anopheles arabiensis Patton

    NARCIS (Netherlands)

    Helinski, M.; Knols, B.G.J.

    2009-01-01

    Competitiveness of released males in genetic control programmes is of critical importance. In this paper, we explored two scenarios to compensate for the loss of mating competitiveness after pupal stage irradiation in males of the malaria mosquito Anopheles arabiensis. First, competition experiments

  2. Combined effect of seaweed (Sargassum wightii) and Bacillus thuringiensis var. israelensis on the coastal mosquito,Anopheles sundaicus, in Tamil Nadu, India

    Science.gov (United States)

    Studies were made of the extract of Sargassum wightii combined with Bacillus thuringiensis var. israelensis (Bti) for control of the malaria vector Anopheles sundaicus. Treatment of mosquito larvae with 0.001% S. wightii extract indicated median lethal concentrations (LC50) of 88, 73, 134, 156, and...

  3. The Mode of Action of Spatial Repellents and Their Impact on Vectorial Capacity of Anopheles gambiae sensu stricto

    OpenAIRE

    Ogoma, SB; Ngonyani, H; Simfukwe, ET; Mseka, A; Moore, J.; Maia, MF; Moore, SJ; Lorenz, LM

    2014-01-01

    Malaria vector control relies on toxicity of insecticides used in long lasting insecticide treated nets and indoor residual spraying. This is despite evidence that sub-lethal insecticides reduce human-vector contact and malaria transmission. The impact of sub-lethal insecticides on host seeking and blood feeding of mosquitoes was measured. Taxis boxes distinguished between repellency and attraction inhibition of mosquitoes by measuring response of mosquitoes towards or away from Transfluthrin...

  4. Plasmodium falciparum Infection Induces Expression of a Mosquito Salivary Protein (Agaphelin) That Targets Neutrophil Function and Inhibits Thrombosis without Impairing Hemostasis

    OpenAIRE

    Waisberg, Michael; Molina-Cruz, Alvaro; Daniella M Mizurini; Gera, Nidhi; Beatriz C Sousa; Ma, Dongying; Ana C Leal; Gomes, Tainá; Kotsyfakis, Michalis; Ribeiro, José M. C.; Lukszo, Jan; Reiter, Karine; Porcella, Stephen F.; Oliveira, Carlo J.; Monteiro, Robson Q.

    2014-01-01

    Background Invasion of mosquito salivary glands (SGs) by Plasmodium falciparum sporozoites is an essential step in the malaria life cycle. How infection modulates gene expression, and affects hematophagy remains unclear. Principal Findings Using Affimetrix chip microarray, we found that at least 43 genes are differentially expressed in the glands of Plasmodium falciparum-infected Anopheles gambiae mosquitoes. Among the upregulated genes, one codes for Agaphelin, a 58-amino acid protein contai...

  5. Plasmodium falciparum infection induces expression of a mosquito salivary protein (Agaphelin) that targets neutrophil function and inhibits thrombosis without impairing hemostasis.

    OpenAIRE

    Michael Waisberg; Alvaro Molina-Cruz; Daniella M Mizurini; Nidhi Gera; Beatriz C Sousa; Dongying Ma; Ana C Leal; Tainá Gomes; Michalis Kotsyfakis; Ribeiro, José M. C.; Jan Lukszo; Karine Reiter; Porcella, Stephen F.; Oliveira, Carlo J.; Monteiro, Robson Q.

    2014-01-01

    Invasion of mosquito salivary glands (SGs) by Plasmodium falciparum sporozoites is an essential step in the malaria life cycle. How infection modulates gene expression, and affects hematophagy remains unclear.Using Affimetrix chip microarray, we found that at least 43 genes are differentially expressed in the glands of Plasmodium falciparum-infected Anopheles gambiae mosquitoes. Among the upregulated genes, one codes for Agaphelin, a 58-amino acid protein containing a single Kazal domain with...

  6. Successful human infection with P. falciparum using three aseptic Anopheles stephensi mosquitoes: a new model for controlled human malaria infection.

    Directory of Open Access Journals (Sweden)

    Matthew B Laurens

    Full Text Available Controlled human malaria infection (CHMI is a powerful method for assessing the efficacy of anti-malaria vaccines and drugs targeting pre-erythrocytic and erythrocytic stages of the parasite. CHMI has heretofore required the bites of 5 Plasmodium falciparum (Pf sporozoite (SPZ-infected mosquitoes to reliably induce Pf malaria. We reported that CHMI using the bites of 3 PfSPZ-infected mosquitoes reared aseptically in compliance with current good manufacturing practices (cGMP was successful in 6 participants. Here, we report results from a subsequent CHMI study using 3 PfSPZ-infected mosquitoes reared aseptically to validate the initial clinical trial. We also compare results of safety, tolerability, and transmission dynamics in participants undergoing CHMI using 3 PfSPZ-infected mosquitoes reared aseptically to published studies of CHMI using 5 mosquitoes. Nineteen adults aged 18-40 years were bitten by 3 Anopheles stephensi mosquitoes infected with the chloroquine-sensitive NF54 strain of Pf. All 19 participants developed malaria (100%; 12 of 19 (63% on Day 11. The mean pre-patent period was 258.3 hours (range 210.5-333.8. The geometric mean parasitemia at first diagnosis by microscopy was 9.5 parasites/µL (range 2-44. Quantitative polymerase chain reaction (qPCR detected parasites an average of 79.8 hours (range 43.8-116.7 before microscopy. The mosquitoes had a geometric mean of 37,894 PfSPZ/mosquito (range 3,500-152,200. Exposure to the bites of 3 aseptically-raised, PfSPZ-infected mosquitoes is a safe, effective procedure for CHMI in malaria-naïve adults. The aseptic model should be considered as a new standard for CHMI trials in non-endemic areas. Microscopy is the gold standard used for the diagnosis of Pf malaria after CHMI, but qPCR identifies parasites earlier. If qPCR continues to be shown to be highly specific, and can be made to be practical, rapid, and standardized, it should be considered as an alternative for diagnosis

  7. Mosquito larvicidal properties of volatile oil from salt marsh mangrove plant of Sesuvium portulacastrum against Anopheles stephensi and Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Mohamed Yacoob Syed Ali

    2013-08-01

    Full Text Available Objective: To identify the larvicidal activity of the volatile oil from Sesuvium portulacastrum (S. portulacastrum against Anopheles stephensi and Aedes aegypti. Methods: Volatile oil extract of S. portulacastrum was prepared in a graded series of concentration. The test for the larvicidal effect of volatile oil against mosquitos larvae was conducted in accordance with the WHO standard method. Batches of 25 early 4th instar larvae of two mosquitoes were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts. Each experiment was conducted with triplicate with concurrent a control group. Results: Volatile oil extract of S. portulacastrum showed toxicity against 4th instar larvae of Aedes aegypti and Anopheles stephensi with equivalent LC50 value [(63±7.8 µL/mL, LCL-UCL=55.2-64.0] and LC90 value [(94.2±3.9 µL/mL] in maximum activity with minimum concentration (200 µL/mL of volatile oil and followed by maximum activity of 250 µL concentration showed LC50 value=(68.0±8.2 µL/mL, LCL-UCL=66.26-69.2 and LC50 value of (55.2±2.8 µL/mL, LCL-UCL=53.7-56.9, LC90=(95.2±1.25 µL/mL and followed by 250 µL of oil extract against 4th instar larvae of Aedes aegypti respectively. Conclusions: It is inferred from the present study that, the extracts from salt marsh mangrove plan of S. portulacastum are identified as a potential source of safe and efficacious mosquito control agents for the management of vector borne diseases of malaria and dengue.

  8. Mosquito larvicidal properties of volatile oil from salt marsh mangrove plant of Sesuvium portulacastrum against Anopheles stephensi and Aedes aegypti

    Institute of Scientific and Technical Information of China (English)

    Mohamed Yacoob Syed Ali; Venkatraman Anuradha; SyedAbudhair Sirajudeen; Prathasarathy Vijaya; Nagarajan Yogananth; Ramachandran Rajan; Peer Mohamed Kalitha Parveen

    2013-01-01

    Objective: To identify the larvicidal activity of the volatile oil from Sesuvium portulacastrum (S.portulacastrum ) against Anopheles stephensi and Aedes aegypti. Methods: Volatile oil extract of S. portulacastrum was prepared in a graded series of concentration. The test for the larvicidal effect of volatile oil against mosquitos larvae was conducted in accordance with the WHO standard method. Batches of 25 early 4th instar larvae of two mosquitoes were transferred to 250 mL enamel bowl containing 199 mL of distilled water and 1 mL of plant extracts. Each experiment was conducted with triplicate with concurrent a control group.Results:Volatile oil extract of S. portulacastrum showed toxicity against 4th instar larvae of Aedes aegypti and Anopheles stephensi with equivalent LC50 value [(63±7.8) µL/mL, LCL-UCL=55.2-64.0] and LC90 value [(94.2±3.9) µL/mL)] in maximum activity with minimum concentration (200 µL/mL) of volatile oil and followed by maximum activity of 250 µL concentration showed LC50 value=(68.0±8.2) µL/mL, LCL-UCL=66.26-69.2 and LC50 value of (55.2±2.8) µL/mL, LCL-UCL=53.7-56.9, LC90=(95.2±1.25) µL/mL and followed by 250 µL of oil extract against 4th instar larvae of Aedes aegypti respectively.Conclusions:It is inferred from the present study that, the extracts from salt marsh mangrove plan of S. portulacastum are identified as a potential source of safe and efficacious mosquito control agents for the management of vector borne diseases of malaria and dengue.

  9. Laboratory evaluation of traditional insect/mosquito repellent plants against Anopheles arabiensis, the predominant malaria vector in Ethiopia.

    Science.gov (United States)

    Karunamoorthi, Kaliyaperumal; Mulelam, Adane; Wassie, Fentahun

    2008-08-01

    Laboratory study was carried out to evaluate the repellent efficiency of most commonly known four traditional insect/mosquito repellent plants Wogert [vernacular name (local native language, Amharic); Silene macroserene], Kebercho [vernacular name (local native language, Amharic); Echinops sp.], Tinjut [vernacular name (local native language, Amharic); Ostostegia integrifolia], and Woira[vernacular name (local native language, Amharic); Olea europaea] against Anopheles arabiensis under the laboratory conditions. One hundred (4-5 days old) female A. arabiensis were introduced into the both 'control' and 'test' repellent chamber through the hole on top. Traditional charcoal stoves were used for direct burning. The experiment was conducted by applying the smoke into the repellent "test" mosquito cage by direct burning of 25 gm of dried plant materials (leaves and roots) until plant materials completely burned. The number of mosquitoes driving away from the "test" and "control" cage was recorded for every 5 min. In the present investigation, the results clearly revealed that the roots of S. macroserene has potent repellent efficiency (93.61%) and was the most effective. The leaves of Echinops sp. (92.47%), leaves of O. integrifolia (90.10%) and O. europaea (79.78%) were also effective. Roots of S. macroserene exhibited the highest repellent efficiency by direct burning. The present study identified these four traditional indigenous insect/mosquito repellent plant materials are very promising and can be used as safer alternative to modern synthetic chemical repellents against mosquito vectors of disease. Since people have been using these plants for some medicinal purposes, no side effects have been found. PMID:18493796

  10. Susceptibility of Anopheles stephensi to Plasmodium gallinaceum: a trait of the mosquito, the parasite, and the environment.

    Directory of Open Access Journals (Sweden)

    Jen C C Hume

    Full Text Available BACKGROUND: Vector susceptibility to Plasmodium infection is treated primarily as a vector trait, although it is a composite trait expressing the joint occurrence of the parasite and the vector with genetic contributions of both. A comprehensive approach to assess the specific contribution of genetic and environmental variation on "vector susceptibility" is lacking. Here we developed and implemented a simple scheme to assess the specific contributions of the vector, the parasite, and the environment to "vector susceptibility." To the best of our knowledge this is the first study that employs such an approach. METHODOLOGY/PRINCIPAL FINDINGS: We conducted selection experiments on the vector (while holding the parasite "constant" and on the parasite (while holding the vector "constant" to estimate the genetic contributions of the mosquito and the parasite to the susceptibility of Anopheles stephensi to Plasmodium gallinaceum. We separately estimated the realized heritability of (i susceptibility to parasite infection by the mosquito vector and (ii parasite compatibility (transmissibility with the vector while controlling the other. The heritabilities of vector and the parasite were higher for the prevalence, i.e., fraction of infected mosquitoes, than the corresponding heritabilities of parasite load, i.e., the number of oocysts per mosquito. CONCLUSIONS: The vector's genetics (heritability comprised 67% of "vector susceptibility" measured by the prevalence of mosquitoes infected with P. gallinaceum oocysts, whereas the specific contribution of parasite genetics (heritability to this trait was only 5%. Our parasite source might possess minimal genetic diversity, which could explain its low heritability (and the high value of the vector. Notably, the environment contributed 28%. These estimates are relevant only to the particular system under study, but this experimental design could be useful for other parasite-host systems. The prospects and

  11. Habitat characterization and mapping of Anopheles maculatus (Theobald) mosquito larvae in malaria endemic areas in Kuala Lipis, Pahang, Malaysia.

    Science.gov (United States)

    Rohani, A; Wan Najdah, W M A; Zamree, I; Azahari, A H; Mohd Noor, I; Rahimi, H; Lee, H L

    2010-07-01

    In Peninsular Malaysia, a large proportion of malaria cases occur in the central mountainous and forested parts of the country. As part of a study to assess remote sensing data as a tool for vector mapping, we conducted entomological surveys to determine the type of mosquitoes, their characteristics and the abundance of habitats of the vector Anopheles maculatus in malaria endemic areas in Pos Senderot. An. maculatus mosquitoes were collected from 49 breeding sites in Pos Senderot. An. maculatus preferred to breed in water pockets formed on the bank of rivers and waterfalls. The most common larval habitats were shallow pools 5.0-15.0 cm deep with clear water, mud substrate and plants or floatage. The mosquito also preferred open or partially shaded habitats. Breeding habitats were generally located at 100-400 m from the nearest human settlement. Changes in breeding characteristics were also observed. Instead of breeding in slow flowing streams, most larvae bred in small water pockets along the river margin. PMID:21073056

  12. Mosquito repellent potential ofPithecellobium dulce leaf and seed against malaria vectorAnopheles stephensi (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    Mohan Rajeswary; Marimuthu Govindarajan

    2016-01-01

    Objective:To determine the repellent properties of hexane, benzene, ethyl acetate, chloroform and methanol extract ofPithecellobium dulce (P. dulce) leaf and seed against Anopheles stephensi(An. stephensi). Methods:Repellent activity assay was carried out in a net cage (45 cmí30 cmí25 cm) containing 100 blood starved female mosquitoes ofAn. stephensi. This assay was carried out in the laboratory conditions according to theWHO 2009 protocol. Plant crude extracts ofP. dulce were applied at 1.0, 2.5, and 5.0 mg/cm2 separately in the exposed fore arm of study subjects. Ethanol was used as the sole control. Results: In this study, the applied plant crude extracts were observed to protect against mosquito bites. There were no allergic reactions experienced by the study subjects. The repellent activity of the extract was dependent on the concentration of the extract. Among the tested solvents, the leaf and seed methanol extract showed the maximum efficacy. The highest concentration of 5.0 mg/cm2 leaf and seed methanol extract ofP. dulceprovided over 180 min and 150 min protection, respectively. Conclusions: Crude extracts ofP. dulceexhibit the potential for controlling malaria vector mosquitoAn. stephensi.

  13. Larval Habitat Characteristics of the Genus Anopheles (Diptera: Culicidae and a Checklist of Mosquitoes in Guilan Province, Northern Iran

    Directory of Open Access Journals (Sweden)

    S Azari-Hamidian

    2011-06-01

    Full Text Available Background: Ecological data are important in the vector control management of mosquitoes. There is scattered pub­lished information about the larval habitat characteristics and ecology of the genus Anopheles (Diptera: Culicidae in Iran and most of available data is in relation to malaria vectors in southern Iran.Methods: This cross sectional investigation was carried out to study the mosquito fauna and ecology in Guilan Province, northern Iran, during April–December 2000. Larvae were collected using the standard dipping technique. Larval habitat characteristics were recorded according to water situation (clear or turbid, vegetation, substrate type, sunlight situation, habitat situation (transient or permanent, running or stagnant, habitat type (natural or artificial, and water temperature. Results: In total, 1547 third- and fourth-instar larvae of Anopheles from 90 habitats were collected and morphologi­cally identified. Five species; Anopheles claviger, An.’hyrcanus’, An. maculipennis s.l., An. plumbeus, and An. su­perpictus were identified and respectively comprised 6.3%, 22.4%, 54.4%, 13.0%, and 3.9% of the samples. The mean and range temperatures of the larval habitat water were 19.6oC (n=14 (16–25oC, 22.6oC (n=53 (12–33oC, 23.8oC (n=52 (10–33oC, 11.5oC (n=12 (9–21oC, and 20.4oC (n=7 (12–26oC, respectively. There was a signifi­cant difference in the mean water temperatures (11.5–23.5oC of the larval habitats of different species (P=0.000. Most of the genus larvae were collected from natural habitats (86.9% such as river bed pools (46.4% and rain pools (33.1% with transient (98.3%, stagnant (99.5% and clear (95.3% water, with vegetation (69.9%, mud (42.0% or gravel (39.7% substrate in full sunlight (69.6% or shaded (22.7% area. A checklist of the province mosquitoes including 30 species and seven genera has been provided.Conclusion: The main larval habitats of the most abundant species, An.’hyrcanus’ and An

  14. Allomonal effect of breath contributes to differential attractiveness of humans to the African malaria vector Anopheles gambiae

    NARCIS (Netherlands)

    Mukabana, W.R.; Takken, W.; Killeen, G.F.; Knols, B.G.J.

    2004-01-01

    Background - Removal of exhaled air from total body emanations or artificially standardising carbon dioxide (CO2) outputs has previously been shown to eliminate differential attractiveness of humans to certain blackfly (Simuliidae) and mosquito (Culicidae) species. Whether or not breath contributes

  15. The SNMP/CD36 gene family in Diptera, Hymenoptera and Coleoptera: Drosophila melanogaster, D. pseudoobscura, Anopheles gambiae, Aedes aegypti, Apis mellifera, and Tribolium castaneum.

    Science.gov (United States)

    Nichols, Zachary; Vogt, Richard G

    2008-04-01

    Sensory neuron membrane proteins (SNMPs) are membrane bound proteins initially identified in olfactory receptor neurons of Lepidoptera and are thought to play a role in odor detection; SNMPs belong to a larger gene family characterized by the human protein CD36. We have identified 12-14 candidate SNMP/CD36 homologs from each of the genomes of Drosophila melanogaster, D. pseudoobscura, Anopheles gambiae and Aedes aegypti (Diptera), eight candidate homologs from Apis mellifera (Hymenoptera), and 15 from Tribolium castaneum (Coleoptera). Analysis (sequence similarity and intron locations) suggests that the insect SNMP/CD36 genes fall into three major groups. Group 1 includes the previously characterized D. melanogaster emp (epithelial membrane protein). Group 2 includes the previously characterized D. melanogaster croquemort, ninaD, santa maria, and peste. Group 3 genes include the SNMPs, which fall into two subgroups referred to as SNMP1 and SNMP2. D. melanogaster SNMP1 (CG7000) shares both significant sequence similarity and five of its six intron insertion sites with the lepidopteran Bombyx mori SNMP1. The topological conservation of this gene family within the three major holometabolous lineages indicates that it predates the coleopteran and hymenoptera/dipera/lepidoptera split 300+ million years ago. The current state of knowledge of the characterized insect members of this gene family is discussed. PMID:18342246

  16. Effect of three larval diets on larval development and male sexual performance of Anopheles gambiae s.s.

    OpenAIRE

    Yahouédo, G.; Djogbénou, L.; Saïzonou, J.; Assogba, B. S.; Makoutodé, M.; Gilles, J. R. L.; Maïga, H.; Mouline, Karine; Soukou, B.K.; Simard, Frédéric

    2014-01-01

    Population replacement/elimination strategies based on mass-release of sterile or otherwise genetically modified (male) mosquitoes are being considered in order to expand the malaria vector control arsenal on the way to eradication. A challenge in this context, is to produce male mosquitoes that will be able to compete and mate with wild females more efficiently than their wild counterparts, i.e. high fitness males. This study explored the effect of three larval food diets developed by the In...

  17. Characterization and expression analysis of gene encoding heme peroxidase HPX15 in major Indian malaria vector Anopheles stephensi (Diptera: Culicidae).

    Science.gov (United States)

    Kajla, Mithilesh; Kakani, Parik; Choudhury, Tania Pal; Gupta, Kuldeep; Gupta, Lalita; Kumar, Sanjeev

    2016-06-01

    The interaction of mosquito immune system with Plasmodium is critical in determining the vector competence. Thus, blocking the crucial mosquito molecules that regulate parasite development might be effective in controlling the disease transmission. In this study, we characterized a full-length AsHPX15 gene from the major Indian malaria vector Anopheles stephensi. This gene is true ortholog of Anopheles gambiae heme peroxidase AgHPX15 (AGAP013327), which modulates midgut immunity and regulates Plasmodium falciparum development. We found that AsHPX15 is highly induced in mosquito developmental stages and blood fed midguts. In addition, this is a lineage-specific gene that has identical features and 65-99% amino acids identity with other HPX15 genes present in eighteen worldwide-distributed anophelines. We discuss that the conserved HPX15 gene might serve as a common target to manipulate mosquito immunity and arresting Plasmodium development inside the vector host. PMID:26943999

  18. Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells

    OpenAIRE

    Ramphul, Urvashi N.; Garver, Lindsey S.; Molina-Cruz, Alvaro; Canepa, Gaspar E.; Barillas-Mury, Carolina

    2014-01-01

    The Anopheles gambiae mosquito is a very effective vector of human Plasmodium falciparum malaria. We recently found that the Pfs47 gene allows the parasite to survive, by evading the mosquito immune system. In this study, we explored the mechanism of Pfs47 immune evasion. We found that Pfs47 inhibits Jun-N-terminal kinase-mediated activation of apoptosis in invaded mosquito midgut cells by preventing activation of several caspases. Furthermore, the lack of caspase-S2 activation prevents the i...

  19. Spatio-temporal variations of Anopheles coluzzii and An. gambiae and their Plasmodium infectivity rates in Lobito, Angola

    OpenAIRE

    Carnevale, Pierre; Toto, J. C.; Dos Santos, M.A.; Fortes, F; Allan, R; Manguin, Sylvie

    2015-01-01

    From 2003 to 2007, entomological surveys were conducted in Lobito town (Benguela Province, Angola) to determine which Anopheles species were present and to identify the vectors responsible for malaria transmission in areas where workers of the Sonamet Company live. Two types of surveys were conducted: (1) time and space surveys in the low and upper parts of Lobito during the rainy and dry periods; (2) a two-year longitudinal study in Sonamet workers' houses provided with long-lasting insectic...

  20. Molecular functional characterization of appetence maturation and its nutrient-dependent control in the African malaria mosquitoAnopheles gambiae”

    OpenAIRE

    Arsic, Dany; Guerin, Patrick

    2008-01-01

    Le moustique Anopheles gambiae (anophèle) est le principal vecteur du paludisme (malaria) en Afrique sub-saharienne. Les repas sanguins fréquents pris par les femelles adultes sur des êtres humains multiplient les occasions de transmission des parasites sanguins du genre Plasmodium responsables du paludisme. Une meilleure compréhension de la régulation des comportements de recherche d’hôte entrepris par les moustiques femelles, ainsi que de leurs comportements alimentaires et de leur reproduc...

  1. Mosquito biting activity on humans & detection of Plasmodium falciparum infection in Anopheles stephensi in Goa, India

    OpenAIRE

    Korgaonkar, Nandini S.; Kumar, Ashwani; Yadav, Rajpal S.; Kabadi, Dipak; Dash, Aditya P.

    2012-01-01

    Background & objectives: Knowledge of the bionomics of mosquitoes, especially of disease vectors, is essential to plan appropriate vector avoidance and control strategies. Information on biting activity of vectors during the night hours in different seasons is important for choosing personal protection measures. This study was carried out to find out the composition of mosquito fauna biting on humans and seasonal biting trends in Goa, India. Methods: Biting activities of all mosquitoes includ...

  2. Larvicidal and repellent properties of Adansonia digitata against medically important human malarial vector mosquito Anopheles stephensi (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    K. Krishnappa , K. Elumalai , S. Dhanasekaran & J. Gokulakrishnan

    2012-06-01

    Full Text Available Background & objectives: Development of plant-based alternative compounds for mosquito control has gainedimportance now-a-days, in view of increasing resistance in mosquito vectors to existing insecticides. The larvicidaland repellent activities of benzene, chloroform, hexane and methanol leaf extracts of Indian medicinal plant,Adansonia digitata were investigated against malarial vector, Anopheles stephensi.Methods: In all, 25 III instar larvae of An. stephensi were exposed to various concentrations (30–180 mg/l in thelaboratory by using the standard protocol described by WHO (2005. The larvae were exposed for 24 h andmortalities were subjected to log-probit analysis. Repellent activity of crude leaf extract at the dosages of 2, 4and 6 mg/cm2 was evaluated in a net cage (45 × 30 × 45 cm containing 100 blood starved female mosquitoes ofAn. stephensi using the protocol of WHO (1996.Results: Preliminary phytochemical analysis of A. digitata showed the presence of triterpenoids and saponins.The LC50 and LC90 values of hexane, benzene, chloroform, and methanol extracts of A. digitata against An.stephensi larvae in 24 h were 111.32, 97.13, 88.55, 78.18 and 178.63, 176.19, 168.14, 155.42 mg/l, respectively.The repellent activity of methanol extract was found to be most effective and at higher concentration of 6mg/cm2 benzene, chloroform hexane and methanol extracts provided 100% protection up to 150, 180, 120 and210 min against An. stephensi, respectively.Conclusion: The preliminary study indicated that A. digitata showed larvicidal and repellent activities againstAn. stephensi and could be used for controlling mosquitoes. Further studies are indicated to purify the activecompounds from these plants for developing larvicide and repellents.

  3. Mosquito larvicidal activity of some common spices and vegetable waste onCulex quinquefasciatus andAnopheles stephensi

    Institute of Scientific and Technical Information of China (English)

    Someshwar Singha; Goutam Chandra

    2011-01-01

    Objective:To investigate the larvicidal activities of crude and chloroform: methanol (1:1 v/v) extracts of some common spices (Cuminum cyminum, Allium sativum, Zingiber offinale, Curcuma longa) and vegetable waste (Solanum tuberosum germinated tuber) againstAnopheles stephensiandCulex quinquefasciatus mosquito larvae.Methods:Larval mortality of above mosquito species were observed after 24, 48 and72 h of exposure to five concentrations of aqueous extract (0.1%, 0.2%, 0.3%, 0.4% and0.5%) and four concentrations (25, 50, 75 ppm) of chloroform: methanol (1:1 v/v) extract. The lethal concentration of individual spices or vegetable waste was determined by log-probit analysis (at95%confidence level) and effect of crude and chloroform: methanol (1:1 v/v) extracts were recorded on non target organisms.Results:Relative mortality rate of both larval mosquito species were recorded in the following sequences:Cuminum cyminum>Allium sativum>Zingiber offinale, Curcuma longa > Solanum tuberosum germinated tuber for crude extract, and efficacy of chloroform: methanol (1:1 v/v) extract were as follows:Curcuma longa > Zingiber offinale > Solanum tuberosum germinated tuber >Cuminum cyminum>Allium sativum.Conclusions: Crude and chloroform: methanol (1:1 v/v) extract of Cuminum cyminum, Allium sativum, Zingiber offinale, Curcuma longa andSolanum tuberosum germinated tuber can be recommended effectively in mosquito control programmes at very low concentrations. No mortality and other abnormalities were noticed on non target organisms and further studies are needed to investigate the chemical structure of active principal which are responsible for larvicidal activity.

  4. Production of a Transgenic Mosquito Expressing Circumsporozoite Protein, a Malarial Protein, in the Salivary Gland of Anopheles stephensi (Diptera:Culicidae

    Directory of Open Access Journals (Sweden)

    Matsuoka,Hiroyuki

    2010-08-01

    Full Text Available We are producing a transgenic mosquito, a flying syringe, to deliver a vaccine protein to human beings via the saliva the mosquito deposits in the skin while biting. The mosquito produces a vaccine protein in the salivary gland (SG and deposits the protein into the host's skin when it takes the host's blood. We chose circumsporozoite protein (CSP, currently the most promising malaria vaccine candidate, to be expressed in the SG of Anopheles stephensi. To transform the mosquitoes, plasmid containing the CSP gene under the promoter of female SG-specific gene, as well as the green fluorescent protein (GFP gene under the promoter of 3xP3 as a selection marker in the eyes, was injected into more than 400 eggs. As a result, five strains of GFP-expressing mosquitoes were established, and successful CSP expression in the SG was confirmed in one strain. The estimated amount of CSP in the SG of the strain was 40ng per mosquito. We allowed the CSP-expressing mosquitoes to feed on mice to induce the production of anti-CSP antibody. However, the mice did not develop anti-CSP antibody even after transgenic mosquitoes had bitten them several times. We consider that CSP in the SG was not secreted properly into the saliva. Further techniques and trials are required in order to realize vaccine-delivering mosquitoes.

  5. Mosquito larvicidal properties ofOrthosiphon thymiflorus(Roth) Sleesen. (Family:Labiatae) against mosquito vectors,Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    K Kovendan; K Murugan; S Vincent; Donald R Barnard

    2012-01-01

    ABSTRACT Objective:To determine the mosquito larvicidal activities of hexane, chloroform, ethyl acetate, acetone and methanol leaf extract ofOrthosiphon thymiflorus (O. thymiflorus) againstAnopheles stephensi (An. stephensi), Culex quinquefasciatus (Cx. quinquefasciatus) andAedes aegypti (Ae. aegypti).Methods: The larvicidal activity was assayed against three mosquito species at various concentrations ranging from (50-450 ppm) under the laboratory conditions. TheLC50and LC90value of theO. thymiflorus leaf extract was determined by Probit analysis.Results: The LC50values of hexane, chloroform, ethyl acetate, acetone and methanol extract ofO. thymiflorus third instar larvae ofAn. stephensiwereLC50= 201.39, 178.76, 158.06, 139.22 and118.74 ppm;Cx. quinquefasciatus were LC50=228.13, 209.72, 183.35, 163.55 and149.96 ppm andAe. aegyptiwere LC50=215.65, 197.91, 175.05, 154.80 and137.26 ppm, respectively. Maximum larvicidal activity was observed in the methanolic extract followed by acetone, ethyl acetate chloroform and hexane extract. The larval mortality was observed after24h exposure. No mortality was observed in control.Conclusions:The present results suggest that the effective plant crude extracts have potential to be used as an ideal eco-friendly approach for the control of mosquito vectors. This study provides the first report on the larvicidal activity of this plant crude solvent extract of againstAn. stephensi, Cx. quinquefasciatus andAe. aegyptimosquitoes.

  6. Ecological limitations on aquatic mosquito predator colonization in the urban environment

    OpenAIRE

    Carlson, John; Keating, Joseph; Mbogo, Charles M; Kahindi, Samuel; Beier, John C

    2004-01-01

    Urban malaria cases are becoming common in Africa as more people move into cities and industrialization proceeds. While many species of Anopheles mosquitoes vector malaria in rural areas, only a few are found within cities. The success of anthropophilic species in cities, such as members of the An. gambiae complex, may be explained by limitations on colonization by predator species in urban environments. Habitats that are temporal or structurally simple have lower predator survivorship in a v...

  7. Epithelial Nitration by a Peroxidase/NOX5 System Mediates Mosquito Antiplasmodial Immunity

    OpenAIRE

    de Almeida Oliveira, Giselle; Lieberman, Joshua; Barillas-Mury, Carolina

    2012-01-01

    Plasmodium ookinetes traverse midgut epithelial cells before they encounter the complement system in the mosquito hemolymph. We identified a heme peroxidase (HPX2) and NADPH oxidase 5 (NOX5) as critical mediators of midgut epithelial nitration and antiplasmodial immunity that enhance nitric oxide toxicity in Anopheles gambiae. We show that the two immune mechanisms that target ookinetes—epithelial nitration and thioester-containing protein 1 (TEP1)-mediated lysis—work sequentially and propose...

  8. Evolutionary dynamics of immune-related genes and pathways in disease-vector mosquitoes

    OpenAIRE

    Waterhouse, R. M.; Kriventseva, E. V.; Meister, Stephan; Xi, Zhiyong; Alvarez, K. S.; Bartholomay, L.C.; Barillas-Mury, Carolina; Bian, Guowu; Blandin, Stephanie; Christensen, B. M.; Dong, Yuemei; Jiang, Haobo; Kanost, M. R.; Koutsos, A. C.; Levashina, E.A.

    2007-01-01

    Mosquitoes are vectors of parasitic and viral diseases of immense importance for public health. The acquisition of the genome sequence of the yellow fever and Dengue vector, Aedes aegypti (Aa), has enabled a comparative phylogenomic analysis of the insect immune repertoire: in Aa, the malaria vector Anopheles gambiae (Ag), and the fruit fly Drosophila melanogaster (Dm). Analysis of immune signaling pathways and response modules reveals both conservative and rapidly evolving features associate...

  9. Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae

    NARCIS (Netherlands)

    Scholte, E.J.; Njiru, B.N.; Smallegange, R.C.; Takken, W.; Knols, B.G.J.

    2003-01-01

    Background: Current intra-domiciliary vector control depends on the application of residual insecticides and/or repellents. Although biological control agents have been developed against aquatic mosquito stages, none are available for adults. Following successful use of an entomopathogenic fungus ag

  10. Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes.

    Science.gov (United States)

    Han, Y S; Thompson, J; Kafatos, F C; Barillas-Mury, C

    2000-11-15

    We present a detailed analysis of the interactions between Anopheles stephensi midgut epithelial cells and Plasmodium berghei ookinetes during invasion of the mosquito by the parasite. In this mosquito, P. berghei ookinetes invade polarized columnar epithelial cells with microvilli, which do not express high levels of vesicular ATPase. The invaded cells are damaged, protrude towards the midgut lumen and suffer other characteristic changes, including induction of nitric oxide synthase (NOS) expression, a substantial loss of microvilli and genomic DNA fragmentation. Our results indicate that the parasite inflicts extensive damage leading to subsequent death of the invaded cell. Ookinetes were found to be remarkably plastic, to secrete a subtilisin-like serine protease and the GPI-anchored surface protein Pbs21 into the cytoplasm of invaded cells, and to be capable of extensive lateral movement between cells. The epithelial damage inflicted is repaired efficiently by an actin purse-string-mediated restitution mechanism, which allows the epithelium to 'bud off' the damaged cells without losing its integrity. A new model, the time bomb theory of ookinete invasion, is proposed and its implications are discussed. PMID:11080150

  11. Effect of anti-mosquito hemolymph antibodies on fecundity and on the infectivity of malarial parasite Plasmodium vivax to Anopheles stephensi (Diptera:Insecta).

    Science.gov (United States)

    Gulia, Monika; Suneja, Amita; Gakhar, Surendra K

    2002-06-01

    Rabbit antibodies to hemolymph antigens (102.5, 101, 100, 96, 88, 80, 64, 55, 43, 29, and 23 kDa) of Anopheles stephensi reduced fecundity as well as viability in An. stephensi. However, ingestion of these antibodies was not associated with a marked effect on the engorgement of mosquitoes but egg laying was significantly delayed. Antisera raised against hemolymph proteins were also used to identify cross reactive antigens/epitopes present in other tissues by Western blotting, as well as by in vivo ELISA. In addition, a significant reduction in oocyst development was also observed in An. stephensi mosquitoes that ingested anti-hemolymph antibodies along with Plasmodium vivax. The results confirmed the feasibility of targeting mosquito antigens as a novel anti-mosquito strategy, as well as confirmed the usefulness of such antigens for the development of a transmission-blocking vaccine. PMID:12195047

  12. Complex genome evolution in Anopheles coluzzii associated with increased insecticide usage in Mali.

    Science.gov (United States)

    Main, Bradley J; Lee, Yoosook; Collier, Travis C; Norris, Laura C; Brisco, Katherine; Fofana, Abdrahamane; Cornel, Anthony J; Lanzaro, Gregory C

    2015-10-01

    In certain cases, a species may have access to important genetic variation present in a related species via adaptive introgression. These novel alleles may interact with their new genetic background, resulting in unexpected phenotypes. In this study, we describe a selective sweep on standing variation on the X chromosome in the mosquito Anopheles coluzzii, a principal malaria vector in West Africa. This event may have been influenced by the recent adaptive introgression of the insecticide resistance gene known as kdr from the sister species Anopheles gambiae. Individuals carrying both kdr and a nearly fixed X-linked haplotype, encompassing at least four genes including the P450 gene CYP9K1 and the cuticular protein CPR125, have rapidly increased in relative frequency. In parallel, a reproductively isolated insecticide-susceptible A. gambiae population (Bamako form) has been driven to local extinction, likely due to strong selection from increased insecticide-treated bed net usage. PMID:26359110

  13. Additional selection for insecticide resistance in urban malaria vectors: DDT resistance in Anopheles arabiensis from Bobo-Dioulasso, Burkina Faso.

    Directory of Open Access Journals (Sweden)

    Christopher M Jones

    Full Text Available In the city of Bobo-Dioulasso in Burkina Faso, Anopheles arabiensis has superseded Anopheles gambiae s.s. as the major malaria vector and the larvae are found in highly polluted habitats normally considered unsuitable for Anopheles mosquitoes. Here we show that An. gambiae s.l. adults emerging from a highly polluted site in the city centre (Dioulassoba have a high prevalence of DDT resistance (percentage mortality after exposure to diagnostic dose=65.8% in the dry season and 70.4% in the rainy season, respectively. An investigation into the mechanisms responsible found an unexpectedly high frequency of the 1014S kdr mutation (allele frequency=0.4, which is found at very low frequencies in An. arabiensis in the surrounding rural areas, and an increase in transcript levels of several detoxification genes, notably from the glutathione transferase and cytochrome P450 gene families. A number of ABC transporter genes were also expressed at elevated levels in the DDT resistant An. arabiensis. Unplanned urbanisation provides numerous breeding grounds for mosquitoes. The finding that Anopheles mosquitoes adapted to these urban breeding sites have a high prevalence of insecticide resistance has important implications for our understanding of the selective forces responsible for the rapid spread of insecticide resistant populations of malaria vectors in Africa.

  14. Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: Irradiation, transportation, and field cage experimentation

    Directory of Open Access Journals (Sweden)

    Malcolm Colin A

    2008-04-01

    Full Text Available Abstract Background The work described in this article forms part of a study to suppress a population of the malaria vector Anopheles arabiensis in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described. Methods Mosquitoes were irradiated in Khartoum and transported as adults by air to the field site earmarked for future releases (400 km from the laboratory. The field cage was prepared for experiments by creating resting sites with favourable conditions. The mating and survival of (irradiated laboratory males and field-collected males was studied in the field cage, and two small-scale competition experiments were performed. Results Minor problems were experienced with the irradiation of insects, mostly associated with the absence of a rearing facility in close proximity to the irradiation source. The small-scale transportation of adult mosquitoes to the release site resulted in minimal mortality ( Conclusion It is concluded that although conditions are challenging, there are no major obstacles associated with the small-scale irradiation and transportation of insects in the current setting. The field cage is suitable for experiments and studies to test the competitiveness of irradiated males can be pursued. The scaling up of procedures to accommodate much larger numbers of insects needed for a release is the next challenge and recommendations to further implementation of this genetic control strategy are presented.

  15. Characterization of potential larval habitats for Anopheles mosquitoes in relation to urban land-use in Malindi, Kenya

    Directory of Open Access Journals (Sweden)

    Keating Joseph

    2004-05-01

    Full Text Available Abstract Background This study characterized Anopheles mosquito larval habitats in relation to ecological attributes about the habitat and community-level drainage potential, and investigated whether agricultural activities within or around urban households increased the probability of water body occurrence. Malindi, a city on the coast of Kenya, was mapped using global positioning system (GPS technology, and a geographic information system (GIS was used to overlay a measured grid, which served as a sampling frame. Grid cells were stratified according to the level of drainage in the area, and 50 cells were randomly selected for the study. Cross-sectional household and entomological surveys were conducted during November and December 2002 within the 50 grid cells. Chi-square analysis was used to test whether water bodies differed fundamentally between well and poorly drained areas, and multi-level logistic regression was used to test whether household-level agricultural activity increased the probability of water body occurrence in the grid cell. Results Interviews were conducted with one adult in 629 households. A total of 29 water bodies were identified within the sampled areas. This study found that characteristics of water bodies were fundamentally the same in well and poorly drained areas. This study also demonstrated that household-level urban agriculture was not associated with the occurrence of water bodies in the grid cell, after controlling for potential confounders associated with distance to the city center, drainage, access to resources, and population density. Conclusions Household-level urban agricultural activity may be less important than the other types of human perturbation in terms of mosquito larval habitat creation. The fact that many larvae were coming from few sites, and few sites in general were found under relatively dry conditions suggests that mosquito habitat reduction is a reasonable and attainable goal in Malindi.

  16. Towards a sterile insect technique field release of Anopheles arabiensis mosquitoes in Sudan: Irradiation, transportation, and field cage experimentation

    OpenAIRE

    Malcolm Colin A; El-Motasim Waleed M; Hassan Mo'awia M; Helinski Michelle EH; Knols Bart GJ; El-Sayed Badria

    2008-01-01

    Abstract Background The work described in this article forms part of a study to suppress a population of the malaria vector Anopheles arabiensis in Northern State, Sudan, with the Sterile Insect Technique. No data have previously been collected on the irradiation and transportation of anopheline mosquitoes in Africa, and the first series of attempts to do this in Sudan are reported here. In addition, experiments in a large field cage under near-natural conditions are described. Methods Mosqui...

  17. Mosquito immune responses and compatibility between Plasmodium parasites and anopheline mosquitoes

    Directory of Open Access Journals (Sweden)

    Molina-Cruz Alvaro

    2009-07-01

    Full Text Available Abstract Background Functional screens based on dsRNA-mediated gene silencing identified several Anopheles gambiae genes that limit Plasmodium berghei infection. However, some of the genes identified in these screens have no effect on the human malaria parasite Plasmodium falciparum; raising the question of whether different mosquito effector genes mediate anti-parasitic responses to different Plasmodium species. Results Four new An. gambiae (G3 genes were identified that, when silenced, have a different effect on P. berghei (Anka 2.34 and P. falciparum (3D7 infections. Orthologs of these genes, as well as LRIM1 and CTL4, were also silenced in An. stephensi (Nijmegen Sda500 females infected with P. yoelii (17XNL. For five of the six genes tested, silencing had the same effect on infection in the P. falciparum-An. gambiae and P. yoelii-An. stephensi parasite-vector combinations. Although silencing LRIM1 or CTL4 has no effect in An. stephensi females infected with P. yoelii, when An. gambiae is infected with the same parasite, silencing these genes has a dramatic effect. In An. gambiae (G3, TEP1, LRIM1 or LRIM2 silencing reverts lysis and melanization of P. yoelii, while CTL4 silencing enhances melanization. Conclusion There is a broad spectrum of compatibility, the extent to which the mosquito immune system limits infection, between different Plasmodium strains and particular mosquito strains that is mediated by TEP1/LRIM1 activation. The interactions between highly compatible animal models of malaria, such as P. yoelii (17XNL-An. stephensi (Nijmegen Sda500, is more similar to that of P. falciparum (3D7-An. gambiae (G3.

  18. The suitability of restriction fragment length polymorphism markers for evaluating genetic diversity among and synteny between mosquito species.

    Science.gov (United States)

    Severson, D W; Mori, A; Zhang, Y; Christensen, B M

    1994-04-01

    Restriction fragment length polymorphism (RFLP) markers derived from the yellow fever mosquito, Aedes aegypti, were used in hybridizations to genomic DNA of the following mosquito species: Ae. albopictus, Ae. togoi, Armigeres subalbatus, Culex pipiens, and Anopheles gambiae. Interspecific hybridization with Ae. aegypti probes varied from 50% (An. gambiae) to 100% (Ae. albopictus) under high stringency conditions. We demonstrated the usefulness of using RFLP profiles to examine genetic diversity between mosquito populations; Ae. aegypti RFLP markers were used to examine genetic relatedness between 10 laboratory strains of Ae. aegypti as well as between nine populations representing four Cx. pipiens subspecies. These results indicate that many Ae. aegypti RFLP markers should have direct applicability in gaining a better understanding of genome structure in other mosquito species, including RFLP linkage mapping and determinations of genetic relatedness among field populations. PMID:7909414

  19. Genetic diversity in two sibling species of the Anopheles punctulatus group of mosquitoes on Guadalcanal in the Solomon Islands

    Directory of Open Access Journals (Sweden)

    Harada Masakazu

    2008-11-01

    Full Text Available Abstract Background The mosquito Anopheles irenicus, a member of the Anopheles punctulatus group, is geographically restricted to Guadalcanal in the Solomon Islands. It shows remarkable morphological similarities to one of its sibling species, An. farauti sensu stricto (An. farauti s.s., but is dissimilar in host and habitat preferences. To infer the genetic variations between these two species, we have analyzed mitochondrial cytochrome oxidase subunit II (COII and nuclear ribosomal internal transcribed spacer 2 (ITS2 sequences from Guadalcanal and from one of its nearest neighbours, Malaita, in the Solomon Islands. Results An. farauti s.s. was collected mostly from brackish water and by the human bait method on both islands, whereas An. irenicus was only collected from fresh water bodies on Guadalcanal Island. An. irenicus is distributed evenly with An. farauti s.s. (ΦSC = 0.033, 0.38% and its range overlaps in three of the seven sampling sites. However, there is a significant population genetic structure between the species (ΦCT = 0.863, P ST = 0.865, P FST = 0.878, P An. irenicus is a monophyletic species, not a hybrid, and is closely related to the An. farauti s.s. on Guadalcanal. The time estimator suggests that An. irenicus diverged from the ancestral An. farauti s.s. on Guadalcanal within 29,000 years before present (BP. An. farauti s.s. expanded much earlier on Malaita (texp = 24,600 BP than the populations on Guadalcanal (texp = 16,800 BP for An. farauti s.s. and 14,000 BP for An. irenicus. Conclusion These findings suggest that An. irenicus and An. farauti s.s. are monophyletic sister species living in sympatry, and their populations on Guadalcanal have recently expanded. Consequently, the findings further suggest that An. irenicus diverged from the ancestral An. farauti s.s. on Guadalcanal.

  20. Seasonal changes of microfilarial infection and infectivity rates in mosquito populations within Makurdi, Benue State, Nigeria

    Directory of Open Access Journals (Sweden)

    Manyi, M. M

    2014-12-01

    Full Text Available Studies on the infection and infectivity rates of Wuchereria bancrofti in mosquito populations in Makurdi, Nigeria were carried out over a 12 month period in four localities. Adult female mosquitoes (4,320 were morphologically identified and dissected following standard keys and procedures. 1,040 (24.1% were Anopheles gambiae s.l.; 641 (14.8% were Anopheles funestus Giles and 2,418 (56.0% were Culex quinquefasciatus Say while 221 (5.1% were tagged ‘unidentified’ Anopheles species. The overall microfilarial infection and infectivity rates were 10.1% and 4.8% respectively. The microfilarial infection and infectivity rates differed significantly (ANOVA; χ2 test p<0.05across vector species, study months and the localities surveyed. The findings indicate that Makurdi is endemic for lymphatic filariasis, and that Anopheles gambiae s.l. and Anopheles funestus were potential vectors of lymphatic filariasis in Makurdi while Culex quinquefasciatus was the major vector. This work may provide an entomological baseline data required for evaluation and implementation of vector control interventions in the study area.

  1. Mitochondrial reactive oxygen species modulate mosquito susceptibility to Plasmodium infection.

    Directory of Open Access Journals (Sweden)

    Renata L S Gonçalves

    Full Text Available BACKGROUND: Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS that modulate redox metabolism. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1, is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses to Plasmodium infection. AgMC1 silencing reduces mitochondrial membrane potential, resulting in increased proton-leak and uncoupling of oxidative phosphorylation. These metabolic changes reduce midgut ROS generation and increase A. gambiae susceptibility to Plasmodium infection. CONCLUSION: We provide direct experimental evidence indicating that ROS derived from mitochondria can modulate mosquito epithelial responses to Plasmodium infection.

  2. Mitochondrial Reactive Oxygen Species Modulate Mosquito Susceptibility to Plasmodium Infection

    Science.gov (United States)

    Oliveira, Giselle A.; Andersen, John F.; Oliveira, Marcus F.; Oliveira, Pedro L.; Barillas-Mury, Carolina

    2012-01-01

    Background Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism. Methodology/Principal Findings We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses to Plasmodium infection. AgMC1 silencing reduces mitochondrial membrane potential, resulting in increased proton-leak and uncoupling of oxidative phosphorylation. These metabolic changes reduce midgut ROS generation and increase A. gambiae susceptibility to Plasmodium infection. Conclusion We provide direct experimental evidence indicating that ROS derived from mitochondria can modulate mosquito epithelial responses to Plasmodium infection. PMID:22815925

  3. Mosquito Repellent Activity and Phytochemical Characterization of Essential Oils From Striga hermonthica, Hyptis spicigera and Ocimum basilicum Leaf Extracts

    Directory of Open Access Journals (Sweden)

    Gabi Baba

    2012-04-01

    Full Text Available The main aim of this study is to screen the phytochemicals and compare the mosquito repellent activities of essential oils from Hyptis spicigera, Striga hermonthica and Ocimum basilicum (Basil against Anopheles gambiae and Culex quinquefasciatus under laboratory conditions. The global threat of malaria to human race and the need to control its advances is on the focus. Mosquito is the target being the primary host in the spread of malaria. Alkaloids, saponnins, steroids, tannins and terpenoids were present in all the 3 oils. Cardiac glycosides were detected in both H. spicigera and Striga hermonthica, while anthraquinone and phlobatin were present in Striga hermonthica and Hyptis spicigera, respectively. The FTIR spectrum revealed the presence of C = O, C-l, C-O-C, OH, C-N, S = O and NO2. These correlate with the functional groups in the identified phytochemicals. At 50% concentration, O. basilicum and Hyptis spicigera oil exhibited higher repellant potential on Anopheles gambiae with protection time of 183 and 120 min, respectively, while H. spicigera and S. hermonthica had protection time of 180 and 175 min, respectively against Anopheles gambiae. At 100% concentration, O. basilicum oil exhibited the highest protection time against the two species of mosquito tested and at all the concentrations. O. basilicum was equally potent against Culex quinquefasciatus with 180 min protection time. S. hermonthica had more repellent potential against Culex quinquefasciatus. The essential oils of Striga hermontica, Ocimum basilicum and Hyptis spicigera leaf extracts have been confirmed to have potentials as mosquito repellent agents against Anopheles gambiae and Culex quinquefasciatus.

  4. A survival and reproduction trade-off is resolved in accordance with resource availability by virgin female mosquitoes

    OpenAIRE

    Stone, C.M.; Hamilton, I.M.; FOSTER, W. A.

    2011-01-01

    The first 2–4 days after an Anopheles gambiae female mosquito emerges are critical to her survival and reproductive success. Yet, the order of behavioural events (mating, sugar feeding, blood feeding) during this time has received little attention. We discovered that among female cohorts sampled from emergence, sugar feeding had a higher probability than blood feeding of occurring first, and mating rarely occurred before a meal was taken. The night after emergence, 48% of females fed on sugar...

  5. Ammonium sulphate fertiliser increases larval populations of Anopheles arabiensis and culicine mosquitoes in rice fields

    DEFF Research Database (Denmark)

    Mutero, C M; Ng'ang'a, P N; Wekoyela, P;

    2004-01-01

    Field experiments were conducted in central Kenya, to study the effect of ammonium sulphate fertiliser ((NH(4))(2)SO(4)) on mosquito larval populations in rice fields. The experiments used a complete randomised block design having four blocks with two experimental ponds per block, and the...... populations of An. arabiensis (P<0.01) and culicine mosquitoes (P<0.05), after ponds were treated with the fertiliser. Significantly more fourth instar larvae of An. arabiensis were collected in fertiliser than control plots (P<0.001). An. arabiensis data indicated that the first fertiliser application had...... water in rice fields, thereby making them visually more attractive for egg-laying by An. arabiensis and culicine mosquitoes....

  6. A heterodimeric complex of the LRR proteins LRIM1 and APL1C regulates complement-like immunity in Anopheles gambiae

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Richard H.G.; Steinert, Stefanie; Chelliah, Yogarany; Volohonsky, Gloria; Levashina, Elena A.; Deisenhofer, Johann (CNRS-UMR); (UTSMC)

    2012-01-20

    The leucine-rich repeat (LRR) proteins LRIM1 and APL1C control the function of the complement-like protein TEP1 in Anopheles mosquitoes. The molecular structure of LRIM1 and APL1C and the basis of their interaction with TEP1 represent a new type of innate immune complex. The LRIM1/APL1C complex specifically binds and solubilizes a cleaved form of TEP1 without an intact thioester bond. The LRIM1 and APL1C LRR domains have a large radius of curvature, glycosylated concave face, and a novel C-terminal capping motif. The LRIM1/APL1C complex is a heterodimer with a single intermolecular disulfide bond. The structure of the LRIM1/APL1C heterodimer reveals an interface between the two LRR domains and an extensive C-terminal coiled-coil domain. We propose that a cleaved form of TEP1 may act as a convertase for activation of other TEP1 molecules and that the LRIM1/APL1C heterodimer regulates formation of this TEP1 convertase.

  7. Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi.

    Science.gov (United States)

    Gantz, Valentino M; Jasinskiene, Nijole; Tatarenkova, Olga; Fazekas, Aniko; Macias, Vanessa M; Bier, Ethan; James, Anthony A

    2015-12-01

    Genetic engineering technologies can be used both to create transgenic mosquitoes carrying antipathogen effector genes targeting human malaria parasites and to generate gene-drive systems capable of introgressing the genes throughout wild vector populations. We developed a highly effective autonomous Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-associated protein 9 (Cas9)-mediated gene-drive system in the Asian malaria vector Anopheles stephensi, adapted from the mutagenic chain reaction (MCR). This specific system results in progeny of males and females derived from transgenic males exhibiting a high frequency of germ-line gene conversion consistent with homology-directed repair (HDR). This system copies an ∼ 17-kb construct from its site of insertion to its homologous chromosome in a faithful, site-specific manner. Dual anti-Plasmodium falciparum effector genes, a marker gene, and the autonomous gene-drive components are introgressed into ∼ 99.5% of the progeny following outcrosses of transgenic lines to wild-type mosquitoes. The effector genes remain transcriptionally inducible upon blood feeding. In contrast to the efficient conversion in individuals expressing Cas9 only in the germ line, males and females derived from transgenic females, which are expected to have drive component molecules in the egg, produce progeny with a high frequency of mutations in the targeted genome sequence, resulting in near-Mendelian inheritance ratios of the transgene. Such mutant alleles result presumably from nonhomologous end-joining (NHEJ) events before the segregation of somatic and germ-line lineages early in development. These data support the design of this system to be active strictly within the germ line. Strains based on this technology could sustain control and elimination as part of the malaria eradication agenda. PMID:26598698

  8. Comparative mosquito repellency of essential oils against Aedes aegypti (Linn.), Anopheles dirus (Peyton and Harrison) and Culex quinquefasciatus (Say)

    Institute of Scientific and Technical Information of China (English)

    Siriporn Phasomkusolsil; Mayura Soonwera

    2011-01-01

    Objective: To assess the repellency to female Aedes aegypti (Ae. aegypti), Anopheles dirus (An. dirus) and Culex quinquefasciatus (Cx. quinquefasciatus) of seven essential oils using two treatment methods. Methods: Topical applications of three dose concentrations (0.02, 0.10 and 0.21 mg/cm2) were made on the forearms of volunteers. Dose-response study and protection time study were employed in the experiment. Results: In the dose-response test, Cymbopogon citratus (C. citratus), Cymbopogon nardus (C. nardus), Syzygium aromaticum (S. aromaticum) and Ocimum basilicum (O. basilicum) exhibited a high repellency against Ae. aegypti with ED50 at < 0.045 mg/cm2, whereas C. citratus, C. nardus and S. aromaticum showed repellency against An. dirus with ED50 at <0.068 mg/cm2. Furthermore, the essential oils of C. citratus, C. nardus, S. aromaticum, O.basilicum and Cananga odorata gave strong effective dose (ED 50) values at <0.003 mg/cm2 when tested against Cx. quinquefasciatus. For testing by arm in cage method, at 0.21 mg/cm2, protection time of C. citratus gave the longest lasting period against three mosquito species, 72 min for Ae. aegypti, 132 min for An. dirus and 84 min for Cx. quinquefasciatus. In addition, the two essential oils exhibited moderate repellency against Ae. aegypti, An. dirus and Cx. quinquefasciatus, at 60, 90 and 78 min with C. nardus, and 54, 96 and 72 min with S. aromaticum, respectively. Conclusions: The percentage repellency increased when the concentration of essential oils increased. In contrast, biting rates decreased when the concentration of essential oils increased.C. citratus exhibited high efficiency for the protection time and the percentage of biting deterrent against all of 3 mosquito species.

  9. Reduction of malaria transmission to Anopheles mosquitoes with a six-dose regimen of co-artemether.

    Directory of Open Access Journals (Sweden)

    Colin J Sutherland

    2005-04-01

    Full Text Available BACKGROUND: Resistance of malaria parasites to chloroquine (CQ and sulphadoxine-pyrimethamine (SP is increasing in prevalence in Africa. Combination therapy can both improve treatment and provide important public health benefits if it curbs the spread of parasites harbouring resistance genes. Thus, drug combinations must be identified which minimise gametocyte emergence in treated cases, and so prevent selective transmission of parasites resistant to any of the partner drugs. METHODS AND FINDINGS: In a randomised controlled trial, 497 children with uncomplicated falciparum malaria were treated with CQ and SP (three doses and one dose respectively; n = 91, or six doses of artemether in fixed combination with lumefantrine (co-artemether [Coartem, Riamet] (n = 406. Carriage rates of Plasmodium falciparum gametocytes and trophozoites were measured 7, 14, and 28 d after treatment. The infectiousness of venous blood from 29 children carrying P. falciparum gametocytes 7 d after treatment was tested by membrane-feeding of Anopheles mosquitoes. Children treated with co-artemether were significantly less likely to carry gametocytes within the 4 weeks following treatment than those receiving CQ/SP (30 of 378 [7.94%] versus 42 of 86 [48.8%]; p < 0.0001. Carriers in the co-artemether group harboured gametocytes at significantly lower densities, for shorter periods (0.3 d versus 4.2 d; p < 0.0001 and were less infectious to mosquitoes at day 7 (p < 0.001 than carriers who had received CQ/SP. CONCLUSIONS: Co-artemether is highly effective at preventing post-treatment transmission of P. falciparum. Our results suggest that co-artemether has specific activity against immature sequestered gametocytes, and has the capacity to minimise transmission of drug-resistant parasites.

  10. Water management for controlling the breeding of Anopheles mosquitoes in rice irrigation schemes in Kenya

    DEFF Research Database (Denmark)

    Mutero, C M; Blank, H; Konradsen, F;

    2000-01-01

    . Intermittent irrigation was carried out on a weekly schedule, with flooded conditions from Saturday through Tuesday morning. Larval sampling at each plot was conducted every Monday and prior to draining of intermittently irrigated subplots on Tuesday. All the adult anopheline mosquitoes emerging from larvae...

  11. Breeding of Anopheles mosquitoes in irrigated areas of South Punjab, Pakistan

    DEFF Research Database (Denmark)

    Herrel, N; Amerasinghe, F P; Ensink, J;

    2001-01-01

    As part of investigations on potential linkages between irrigation and malaria transmission, all surface water bodies in and around three villages along an irrigation distributary in South Punjab, Pakistan, were surveyed for anopheline mosquito larvae (Diptera: Culicidae) from April 1999 to March...

  12. A multi-detection assay for malaria transmitting mosquitoes.

    Science.gov (United States)

    Lee, Yoosook; Weakley, Allison M; Nieman, Catelyn C; Malvick, Julia; Lanzaro, Gregory C

    2015-01-01

    The Anopheles gambiae species complex includes the major malaria transmitting mosquitoes in Africa. Because these species are of such medical importance, several traits are typically characterized using molecular assays to aid in epidemiological studies. These traits include species identification, insecticide resistance, parasite infection status, and host preference. Since populations of the Anopheles gambiae complex are morphologically indistinguishable, a polymerase chain reaction (PCR) is traditionally used to identify species. Once the species is known, several downstream assays are routinely performed to elucidate further characteristics. For instance, mutations known as KDR in a para gene confer resistance against DDT and pyrethroid insecticides. Additionally, enzyme-linked immunosorbent assays (ELISAs) or Plasmodium parasite DNA detection PCR assays are used to detect parasites present in mosquito tissues. Lastly, a combination of PCR and restriction enzyme digests can be used to elucidate host preference (e.g., human vs. animal blood) by screening the mosquito bloodmeal for host-specific DNA. We have developed a multi-detection assay (MDA) that combines all of the aforementioned assays into a single multiplex reaction genotyping 33SNPs for 96 or 384 samples at a time. Because the MDA includes multiple markers for species, Plasmodium detection, and host blood identification, the likelihood of generating false positives or negatives is greatly reduced from previous assays that include only one marker per trait. This robust and simple assay can detect these key mosquito traits cost-effectively and in a fraction of the time of existing assays. PMID:25867057

  13. A stable isotope dual-labelling approach to detect multiple insemination in un-irradiated and irradiated Anopheles arabiensis mosquitoes

    Directory of Open Access Journals (Sweden)

    Hood Rebecca C

    2008-04-01

    Full Text Available Abstract Background In the context of a Sterile Insect Technique programme, the occurrence of multiple insemination in the malaria mosquito Anopheles arabiensis Patton was studied using a novel labelling system with the stable isotopes 15N and 13C. The incidence of multiple insemination in the absence of radiation, and when males were irradiated in the pupal stage and competed against un-irradiated males were assessed. Males used in the experiments were labelled with either 15N or 13C and the label was applied to the larval rearing water. Males with either label and virgin females were caged at a 1:1:1 ratio. Males used in the radiation treatments were irradiated in the pupal stage with a partially or fully-sterilizing dose of 70 or 120 Gy, respectively. After mating, females were dissected and inseminated spermathecae analysed using mass spectrometry. Results The data indicate that about 25% of inseminated females had been inseminated multiply. The presence of irradiated males in the experiments did not affect the incidence of multiple insemination. In line with previous research, irradiated males were generally less competitive than un-irradiated males. Conclusion The implications of these findings for the Sterile Insect Technique are discussed, and further experiments recommended. The dual-labelling system used to determine paternity gave good results for 13C, however, for 15N it is recommended to increase the amount of label in future studies.

  14. Mosquito adulticidal and repellent activities of botanical extracts against malarial vector,Anopheles stephensi Liston (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    Marimuthu Govindarajan; Rajamohan Sivakumar

    2011-01-01

    Objective:To determine the adulticidal and repellent activities of different solvent leaf extracts ofEclipta alba (E. alba) andAndrographis paniculata (A. paniculata)against malarial vector, Anopheles stephensi (An. stephensi).Methods:Adulticidal efficacy of the crude leaf extracts ofE. alba andA. paniculata with five different solvents like benzene, hexane, ethyl acetate, methanol and chloroform was tested against the five to six day old adult female mosquitoes of An. stephensi. The adult mortality was observed after24 h under the laboratory conditions. The repellent efficacy was determined againstAn. stephensimosquito species at three concentrations viz.,1.0, 2.5 and 5.0 mg/cm2 under laboratory conditions.Results: Among the tested solvents the maximum efficacy was observed in the methanol extract. TheLC50 andLC90 values ofE. alba andA. paniculata against adults ofAn. stephensiwere150.36, 130.19 ppm and285.22, 244.16ppm, respectively. No mortality was observed in controls. Thechi-square values were significant at P<0.05 level. Methanol extract of E. alba andA. paniculata was produce maximum repellency againstAn. stephensi.Conclusions:From the results it can be concluded the crude extract ofE. alba andA. paniculatawas an excellent potential for controllingAn. stephensimosquitoes.

  15. Mosquito larvicidal properties of Impatiens balsamina (Balsaminaceae) against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    Marimuthu Govindarajan; Mohan Rajeswary

    2014-01-01

    Objective: To assess the larvicidal potential of the crude benzene, chloroform, ethyl acetate and methanol solvent extracts of the medicinal plant Impatiens balsamina against Anopheles stephensi(An. stephensi), Aedes aegypti (Ae. aegypti) and Culex quinquefasciatus (Cx. quinquefasciatus). Methods: Twenty five third instar larvae of An. stephensi, Ae. aegypti and Cx. quinquefasciatus were exposed to various concentrations and were assayed in the laboratory by using the protocol recommended by WHO. The larval mortality was observed after 24 h of treatment. Results: Among extracts tested, the highest larvicidal activity was observed in leaf methanol extract of Impatiens balsamina against An. stephensi, Ae. aegypti and Cx. quinquefasciatus with the LC50 and LC90 values 98.04, 119.68, 125.06 and 172.93, 210.14, 220.60 mg/L, respectively. Conclusions:From the results it can be concluded that the larvicidal effect of Impatiens balsamina against An. stephensi, Ae. aegypti and Cx. quinquefasciatus make this plant product promising as an alternative to synthetic insecticide in mosquito control programs.

  16. Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes.

    Science.gov (United States)

    Hall, Andrew Brantley; Papathanos, Philippos-Aris; Sharma, Atashi; Cheng, Changde; Akbari, Omar S; Assour, Lauren; Bergman, Nicholas H; Cagnetti, Alessia; Crisanti, Andrea; Dottorini, Tania; Fiorentini, Elisa; Galizi, Roberto; Hnath, Jonathan; Jiang, Xiaofang; Koren, Sergey; Nolan, Tony; Radune, Diane; Sharakhova, Maria V; Steele, Aaron; Timoshevskiy, Vladimir A; Windbichler, Nikolai; Zhang, Simo; Hahn, Matthew W; Phillippy, Adam M; Emrich, Scott J; Sharakhov, Igor V; Tu, Zhijian Jake; Besansky, Nora J

    2016-04-12

    Y chromosomes control essential male functions in many species, including sex determination and fertility. However, because of obstacles posed by repeat-rich heterochromatin, knowledge of Y chromosome sequences is limited to a handful of model organisms, constraining our understanding of Y biology across the tree of life. Here, we leverage long single-molecule sequencing to determine the content and structure of the nonrecombining Y chromosome of the primary African malaria mosquito, Anopheles gambiae We find that the An. gambiae Y consists almost entirely of a few massively amplified, tandemly arrayed repeats, some of which can recombine with similar repeats on the X chromosome. Sex-specific genome resequencing in a recent species radiation, the An. gambiae complex, revealed rapid sequence turnover within An. gambiae and among species. Exploiting 52 sex-specific An. gambiae RNA-Seq datasets representing all developmental stages, we identified a small repertoire of Y-linked genes that lack X gametologs and are not Y-linked in any other species except An. gambiae, with the notable exception of YG2, a candidate male-determining gene. YG2 is the only gene conserved and exclusive to the Y in all species examined, yet sequence similarity to YG2 is not detectable in the genome of a more distant mosquito relative, suggesting rapid evolution of Y chromosome genes in this highly dynamic genus of malaria vectors. The extensive characterization of the An. gambiae Y provides a long-awaited foundation for studying male mosquito biology, and will inform novel mosquito control strategies based on the manipulation of Y chromosomes. PMID:27035980

  17. Detection of knockdown resistance (kdr mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods

    Directory of Open Access Journals (Sweden)

    Ball Amanda

    2007-08-01

    Full Text Available Abstract Background Knockdown resistance (kdr is a well-characterized mechanism of resistance to pyrethroid insecticides in many insect species and is caused by point mutations of the pyrethroid target site the para-type sodium channel. The presence of kdr mutations in Anopheles gambiae, the most important malaria vector in Africa, has been monitored using a variety of molecular techniques. However, there are few reports comparing the performance of these different assays. In this study, two new high-throughput assays were developed and compared with four established techniques. Methods Fluorescence-based assays based on 1 TaqMan probes and 2 high resolution melt (HRM analysis were developed to detect kdr alleles in An. gambiae. Four previously reported techniques for kdr detection, Allele Specific Polymerase Chain Reaction (AS-PCR, Heated Oligonucleotide Ligation Assay (HOLA, Sequence Specific Oligonucleotide Probe – Enzyme-Linked ImmunoSorbent Assay (SSOP-ELISA and PCR-Dot Blot were also optimized. The sensitivity and specificity of all six assays was then compared in a blind genotyping trial of 96 single insect samples that included a variety of kdr genotypes and African Anopheline species. The relative merits of each assay was assessed based on the performance in the genotyping trial, the length/difficulty of each protocol, cost (both capital outlay and consumable cost, and safety (requirement for hazardous chemicals. Results The real-time TaqMan assay was both the most sensitive (with the lowest number of failed reactions and the most specific (with the lowest number of incorrect scores. Adapting the TaqMan assay to use a PCR machine and endpoint measurement with a fluorimeter showed a slight reduction in sensitivity and specificity. HRM initially gave promising results but was more sensitive to both DNA quality and quantity and consequently showed a higher rate of failure and incorrect scores. The sensitivity and specificity of AS

  18. Epithelial nitration by a peroxidase/NOX5 system mediates mosquito antiplasmodial immunity.

    Science.gov (United States)

    Oliveira, Giselle de Almeida; Lieberman, Joshua; Barillas-Mury, Carolina

    2012-02-17

    Plasmodium ookinetes traverse midgut epithelial cells before they encounter the complement system in the mosquito hemolymph. We identified a heme peroxidase (HPX2) and NADPH oxidase 5 (NOX5) as critical mediators of midgut epithelial nitration and antiplasmodial immunity that enhance nitric oxide toxicity in Anopheles gambiae. We show that the two immune mechanisms that target ookinetes-epithelial nitration and thioester-containing protein 1 (TEP1)-mediated lysis-work sequentially, and we propose that epithelial nitration works as an opsonization-like system that promotes activation of the mosquito complement cascade. PMID:22282475

  19. Epithelial Nitration by a Peroxidase/NOX5 System Mediates Mosquito Antiplasmodial Immunity

    Science.gov (United States)

    de Almeida Oliveira, Giselle; Lieberman, Joshua; Barillas-Mury, Carolina

    2012-01-01

    Plasmodium ookinetes traverse midgut epithelial cells before they encounter the complement system in the mosquito hemolymph. We identified a heme peroxidase (HPX2) and NADPH oxidase 5 (NOX5) as critical mediators of midgut epithelial nitration and antiplasmodial immunity that enhance nitric oxide toxicity in Anopheles gambiae. We show that the two immune mechanisms that target ookinetes—epithelial nitration and thioester-containing protein 1 (TEP1)-mediated lysis—work sequentially and propose that epithelial nitration works as an opsonization-like system that promotes activation of the mosquito complement cascade. PMID:22282475

  20. Field study site selection, species abundance and monthly distribution of anopheline mosquitoes in the northern Kruger National Park, South Africa

    Science.gov (United States)

    2014-01-01

    Background Knowledge of the ecology and behaviour of a target species is a prerequisite for the successful development of any vector control strategy. Before the implementation of any strategy it is essential to have comprehensive information on the bionomics of species in the targeted area. The aims of this study were to conduct regular entomological surveillance and to determine the relative abundance of anopheline species in the northern Kruger National Park. In addition to this, the impact of weather conditions on an Anopheles arabiensis population were evaluated and a range of mosquito collection methods were assessed. Methods A survey of Anopheles species was made between July 2010 and December 2012. Mosquitoes were collected from five sites in the northern Kruger National Park, using carbon dioxide-baited traps, human landing and larval collections. Specimens were identified morphologically and polymerase chain reaction assays were subsequently used where appropriate. Results A total of 3,311 specimens belonging to nine different taxa was collected. Species collected were: Anopheles arabiensis (n = 1,352), Anopheles quadriannulatus (n = 870), Anopheles coustani (n = 395), Anopheles merus (n = 349), Anopheles pretoriensis (n = 35), Anopheles maculipalpis (n = 28), Anopheles rivulorum (n = 19), Anopheles squamosus (n = 3) and Anopheles rufipes (n = 2). Members of the Anopheles gambiae species complex were the most abundant and widely distributed, occurring across all collection sites. The highest number of mosquitoes was collected using CO2 baited net traps (58.2%) followed by human landing catches (24.8%). Larval collections (17%) provided an additional method to increase sample size. Mosquito sampling productivity was influenced by prevailing weather conditions and overall population densities fluctuated with seasons. Conclusion Several anopheline species occur in the northern Kruger National Park and their densities